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Abstract

A First Proposal Towards Anticipatory Shipping Implementation In Automotive
Manufacturing Through Machine Learning And Optimization

Juan Manuel Garćıa Sánchez

This research is framed in collaboration with SEAT S.A., a Spanish car manufacturer
which is seeking to deliver the expected vehicle by the customers in the shortest timeframe,
named Anticipatory Shipping. This problem is not exclusive to a particular company, but
it is shared by multiple actors. Additionally, it has also gained the attention of academia
producing literature. The review of the existing state-of-the-art conducted us to find a
research gap that this thesis attempts to fill in. The investigation focuses on logistics,
demand prediction, online data, and manufacturing optimization.

The proposed solution starts from the easiest to the most complex cost of implementation
in the current company’s operation. Firstly, it commences by redirecting already manufac-
tured stock cars to destinations where they are expected to remain for shorter durations.
Several Machine Learning classification algorithms have undergone testing to determine
the most suitable one. Results equal or improve the decisions made by the experts of the
company. Following this, an exploration into customer behavior was initiated using data
obtained from the company’s Car Configurator webpage. This online platform enables
users to browse the company’s entire product lineup and select their preferred vehicle.
This thesis demonstrates that data collected from this tool serves as a reliable source of
information for discerning users’ purchasing intentions. The process involves comparing
the obtained outcomes with various demand prediction models, which may or may not
incorporate Car Configurator data, filtering the data by eliminating anomalous values
and employing heuristic search algorithms such as genetic algorithms. The objective is
to pinpoint the subset of online data with the highest predictive capacity. Ultimately,
the findings from this final phase are utilized to adjust the attributes of the cars within
the manufacturing pipeline. This optimization approach has effectively mitigated the
discrepancy between the stock composition and the anticipated demand.

Presently, this research has yielded with presentations at three globally recognized con-
gresses, along with a publication in a top-quartile indexed journal, and additional docu-
mentation awaiting release.

Keywords : Anticipatory Shipping; Automobile industry; Car Configurator; Ma-
chine learning; Genetic algorithm; Forecasting
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Resumen

Una Primera Propuesta Para La Implementación Del Env́ıo Anticipado En La
Fabricación De Automóviles A Través De Aprendizaje Automático Y Optimización

Juan Manuel Garćıa Sánchez

Esta investigación se enmarca dentro de la colaboración con SEAT S.A., fabricante español
de automóviles que busca entregar el veh́ıculo que los clientes desean en el menor plazo
posible, lo que se denomina Env́ıo Anticipado. Este problema no es exclusivo de una
empresa en particular, sino que es compartido por múltiples actores. Además, también
ha ganado la atención del mundo académico produciendo literatura. La revisión del estado
del arte existente nos llevó a encontrar un vaćıo en la investigación que esta tesis intenta
cubrir. La investigación se centra en la loǵıstica, la predicción de la demanda, los datos
en ĺınea y la optimización de la fabricación.

La solución propuesta inicia de más fácil a más complejo coste de aplicación en el fun-
cionamiento actual de la empresa. En primer lugar, comienza por redirigir los coches de
stock ya fabricados a destinos en los que se espera que permanezcan menos tiempo. Se
han sometido a prueba varios algoritmos de clasificación de aprendizaje automático para
determinar el más adecuado. Los resultados igualan o mejoran las decisiones tomadas por
los expertos de la empresa. A continuación, se inició una exploración del comportamiento
de los clientes utilizando datos obtenidos de la página web del Configurador de Coches
de la empresa. Esta plataforma en ĺınea permite a los usuarios navegar por toda la gama
de productos de la empresa y seleccionar su veh́ıculo preferido. Esta tesis demuestra que
los datos recogidos en esta herramienta constituyen una fuente de información fiable para
discernir las intenciones de compra de los usuarios. El proceso consiste en comparar los
resultados obtenidos con diversos modelos de predicción de la demanda, que pueden in-
corporar o no datos del Configurador de Coches, filtrar los datos eliminando los valores
anómalos y emplear algoritmos heuŕısticos de búsqueda como los algoritmos genéticos. El
objetivo es identificar el subconjunto de datos en ĺınea con mayor capacidad predictiva.
En última instancia, los resultados de esta fase final se utilizan para ajustar los atributos
de los coches dentro del proceso de fabricación. Este enfoque de optimización ha mitigado
eficazmente la discrepancia entre la composición del stock y la demanda prevista.

En la actualidad, esta investigación ha dado sus frutos con ponencias en tres congresos de
prestigio mundial, junto con una publicación en una revista indexada de primer cuartil,
y documentación adicional pendiente de publicación.

Palabras Clave: Env́ıo Anticipado; Industria Automoviĺıstica; Configurador de
Coches; Aprendizaje Automático; Algoritmo Genético; Predicción
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Resum

Una Primera Proposta Cap A La Implementació De L’Enviament Anticipat En La
Fabricació D’Automòbils A Través D’Aprenentatge Automàtic I Optimització

Juan Manuel Garćıa Sánchez

Aquesta investigació s’emmarca en la col·laboració amb SEAT S.A., fabricant d’automòbils
espanyol que busca lliurar el vehicle que els clients desitgen en el menor termini possible,
el que s’anomena Enviament Anticipat. Aquest problema no és exclusiu d’una empresa
concreta, sinó que és compartit per múltiples actors. A més, també ha cridat l’atenció
del món acadèmic produint literatura. La revisió de l’estat de l’art existent ens va portar
a trobar un buit de recerca que aquesta tesi intenta omplir. La investigació se centra en
la loǵıstica, la predicció de la demanda, les dades en ĺınia i l’optimització de la fabricació.

La solució proposada parteix del cost d’implantació, des de més fàcil a més complex en
l’operació de l’empresa actual. En primer lloc, s’inicia reorientant els cotxes de stock ja
fabricats cap a destinacions on s’espera que romanguin durant una durada més curta.
Diversos algorismes de classificació d’aprenentatge automàtic s’han sotmès a proves per
determinar el més adequat. Els resultats igualen o milloren les decisions preses pels ex-
perts de l’empresa. Després d’això, es va iniciar una exploració del comportament dels
clients mitjançant les dades obtingudes de la pàgina web de Configurador de Cotxes de
l’empresa. Aquesta plataforma en ĺınia permet als usuaris navegar per tota la gamma de
productes de l’empresa i seleccionar el seu vehicle preferit. Aquesta tesi demostra que les
dades recollides d’aquesta eina serveixen com a font d’informació fiable per a discernir les
intencions de compra dels usuaris. El procés consisteix a comparar els resultats obtinguts
amb diversos models de predicció de la demanda, que poden incorporar o no dades del
Configurador de Cotxes, filtrar les dades eliminant valors anòmals i emprant algorismes
de cerca heuŕıstics com els algorismes genètics. L’objectiu és identificar el subconjunt de
dades en ĺınia amb la capacitat predictiva més alta. En última instància, les conclusions
d’aquesta fase final s’utilitzen per a ajustar els atributs dels cotxes dins de la ĺınia de fab-
ricació. Aquest enfocament d’optimització ha mitigat de manera efectiva la discrepància
entre la composició del stock i la demanda prevista.

Actualment, aquesta investigació ha donat resultats amb presentacions en tres congres-
sos reconeguts mundialment, juntament amb una publicació en una revista indexada del
quartil superior i documentació addicional pendent de publicació.

Paraules Clau: Enviament Anticipat; Indústria Automobiĺıstica; Configurador
de Cotxes; Aprenentatge Automàtic; Algorisme Genètic; Predicció
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ser mis compañeros de penas y alegŕıas en la épica del doctorado. Los seniors Elisabet
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1

Chapter 1

Introduction

The automotive industry serves as a driving force in the economies of the countries [1].
Within the European Union, it represents over 6% of total employment and 7% of GDP,
whilst in the United States over 7 million jobs are supported by manufacturers, suppli-
ers, and dealers [2, 3]. Particularly, the sector in Spain, the second largest producer in
Europe, amounts to 11% of GDP [4]. Nevertheless, the market is currently undergoing a
paradigm shift, as the number of car brands has recently surged, driven in part by China’s
influence [5, 6, 7]. Furthermore, public expectations are notably high, given that, for a
considerable portion of the population, purchasing a car represents the second most sub-
stantial financial investment after acquiring a house [8]. As a result, companies, including
mass-market manufacturers such as Spanish brand SEAT S.A. (referred to hereafter as
SEAT), strategically segment and specialize their activities and target audiences to gain a
competitive edge. In its endeavor to efficiently meet customer expectations, SEAT strives
to deliver the expected vehicle in the shortest possible timeframe. This thesis contributes
to this objective by comprehensively understanding the factory’s idiosyncrasies, exploring
the state-of-the-art, and proposing a novel approach grounded in Machine Learning, data
mining, and optimization, yielding promising results.

Nevertheless, the attempts from part of SEAT in fulfilling this goal started before
the commencement of the thesis. From 2017 to 2020, former SEAT CEO Luca de Meo
promoted the creation of the Fast Lane project within the company. The project con-
sisted of manufacturing and delivering, in a maximum of 21 days, the vehicle to the final
customers [9, 10]. The project initially was launched in Austria, and after its success in
this market, it was expanded to Germany and Spain. Regrettably, the COVID-19 out-
break had a negative impact on the project. Production was totally interrupted during
the lockdown and, eventually, there was a shortage of electronic components, especially
semiconductors, which made difficult the return to the regular production rate. In the
current days, the Fast Lane service has not been restarted yet.

Consequently, the doctoral thesis researches in the requirements of the main statement
and guides the reader in the proposed solution. It is described not in chronological order,
but in ascending complexity. In other words, the ease of implementation from the point
of view of the company’s operative. Firstly, the proposed solution initiates by redirecting
already manufactured stock cars to locations where it is estimated they will remain for
a shorter duration. Various classification Machine Learning algorithms have been tested
to identify the most suitable one. The results achieved either match or surpass the cur-
rent procedure followed by the company’s experts. Subsequently, an investigation into
customer behavior commenced using data collected from the company’s Car Configurator
webpage. This online portal allows users to explore the entire commercial offering of the
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company and select the vehicle of their interest. This thesis successfully demonstrates that
the data collected by this tool serves as a reliable source of information to discern users’
purchasing intent. The procedure entails comparing the obtained results with various
demand prediction models that either include or exclude Car Configurator data, purging
the data by excluding anomalous values and employing heuristic search algorithms, such
as genetic algorithms. The goal is to identify the subset of online data with the highest
predictive capacity. Ultimately, the outcomes from this final block are utilized to update
the attributes of the cars within the manufacturing line. The optimization mechanism
has effectively reduced the disparity between the stock composition and the estimated
demand.

The primary objective of the thesis is to enhance operational efficiency through a more
qualitative approach rather than a quantitative one, due to the unique nature of the car
industry. Specifically, the thesis aims to achieve a deeper understanding of customer be-
havior and preferences, enabling the sector to make more informed and strategic decisions
about stock allocation, demand prediction, and production adjustments. Expected results
include the development of a robust methodology for predicting car demand with higher
accuracy by leveraging customer interaction data from the Car Configurator.

The thesis has generated the following documentation, including published and pend-
ing to-be-released papers:

• Influence of Car Configurator Webpage Data from Automotive Manufac-
turers on Car Sales by Means of Correlation and Forecasting: Published
in the indexed journal Forecasting from MDPI in Special Issue Feature Papers of
Forecasting 2022. The paper delivers a methodology to prove the influence of Car
Configurator webpage data for automotive manufacturers [11].

• Binary Delivery Time Classification and Vehicle’s Reallocation Based on
Car Variants. SEAT: A Case Study: Presented in the International Catalan
Congress of Artificial Intelligence (CCIA 2022). This note provides a solution to the
vehicle’s compound allocation problem employing Machine Learning Classification
algorithms. It is performed using the car attributes and the time that vehicles have
spent in the compound regions waiting for the customer delivery day [12].

• Filtering User Behavior Data without Losing Significance on Non Trans-
actional Websites: Pending to be submitted in journal paper to be defined of
the Operational Research and/or E-commerce area of study. This study develops
and assesses different filtering rules, based on users’ tracking activity within the
Car Configurator webpage. Results show that data significance is preserved when
compared with the raw clickstream data. It emerged from a collaboration with the
Marketing department of the academical institution.

• Data Mining Car Configurator Clickstream Data to Identify Potential
Consumers: A Genetic Algorithm Approach: Exhibited in the International
Conference on Artificial Intelligence and Soft Computing (ICAISC 2023). This
paper investigates whether valuable information can be extracted from Car Con-
figurator data. The data mining technique of genetic algorithms is employed to
identify the characteristics that maximize the correlation between clickstream data
and car sales [13].
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• Analyzing Car Configurator Impact Through Genetic Algorithm from
a Regional Perspective: Shown in CCIA 2023 edition. This study examines
whether visits to the Car Configurator website from a specific area in Spain have a
similar impact compared to visits from other locations. To analyze this relationship,
genetic algorithms are employed [14].

Regarding the data available, they were provided by SEAT and are related to the four
car models produced in their headquarters: SEAT Ibiza, SEAT Arona, SEAT Leon 5D,
and SEAT Leon Sportstourer. All data are framed within the Spanish market, including:
(a) production and delivery planning of vehicles; (b) sales records; and (c) visits done
by users from the Car Configurator webpage of the company. The first block gathers all
the cars’ deliveries done between January 2017 and January 2020, together with their
factory background. In other words, the day on which cars have passed through all the
milestones in the production flow, i.e., since they are a dealership’s request until the
customers receive their purchase. This tracking includes a full description of the vehicles
in terms of their components, such as car model, trim level, and engine; and attributes,
for instance, color, destination, and order type. All this information is contained in over
200,000 rows. Concerning the sales record, the data collection begins in April 2017 and
finishes in January 2020, both included. The temporal frame refers to the day customers
book their cars in the dealerships, after paying a booking fee. That’s why it has been
taking the decision to consider this moment as the purchasing date, instead of following
the delivery date. Likewise, the location of the sales is given, as well as, the full description
of the vehicle, such as car model, trim level, engine, and color. Nevertheless, it does not
include a tag to distinguish between the order types, although fleet cars are excluded
from the sample. Additionally, for privacy reasons, the company anonymized the vehicles
eliminating all identification signals, such as the name of the buyer or the manufacturing
serial number. The data spans more than 120,000 rows. Finally, the visits to the Spanish
car configurator webpage extend beyond 19M instances, for the same period that the
sales record. Each user is individually identified by means of a unique alphanumeric code
derived from their internet browser’s cookies. This is the only possible tracking approach,
as the webpage does not require login with user and password. The clickstream data
gives access to know all the components and attributes of the configuration explored
by the user, from which geographical location it was scouted, how many times the user
has done the same search, and even, in which step of the process the configuration was
interrupted. To culminate, whenever it was needed, the above data were aggregated in a
weekly format. The motivation lies in the SEAT production calendar, where planification
occurs per week.

The document is structured in the following way. In Chapter 2, the state of the art is
presented. The available data to perform the research is shown in Chapter 3. Afterward,
Chapter 4 describes the proposed solution to fill the research gap. A detailed explanation
of each method or technique included in the solution is found in Chapter 5. The results for
each step within the proposed solution are placed in Chapter 6, whilst they are discussed
in Chapter 7. Finally, Chapter 8 expresses the conclusions of the thesis.
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Chapter 2

State Of The Art

This chapter serves as a compass across the existing literature in the area of research.
Firstly, SEAT’s approach to fulfilling the mission of achieving the fastest delivery of the
vehicle that the customer wants is related. This project has been called SEAT Fast Lane.
Afterward, the bibliographic exploration is executed in the three pillars on which the Fast
Lane is built: (a) efficient operative; (b) reduced variety of products; and (c) demand
forecasting. Additionally, the review includes the studies done in the field of optimizing
the modification of the cars in the manufacturing line. Finally, the chapter presents the
research gaps found in the literature and gives a summary of the suggested solutions.

2.1 SEAT Fast Lane

The trigger that activated the idea of delivering, in the minimum possible time, the cars
requested by customers was Amazon Inc. In 2012, the retail and logistics giant unveiled
a patent aimed at shortening delivery times. The system consists of anticipating users’
purchases and dispatching the products to the closest Amazon facilities to the user, even
prior to the completion of the sale. In case the acquisition is not finally executed, the
product moves to another location, or it is offered in the area with a discount. This
automatic routine is called Anticipatory Shipping [15]. Despite translating this concept
to the automobile industry would be delightful, the migration is not straightforward.
There are strong differences between both business models. The product category is not
comparable, as customers go to Amazon to purchase low-implication products. Fashion
and apparel, leisure and entertainment, or home and DIY categories occupy the first
positions among the best-selling product categories within Amazon [16, 17]. On the
other hand, cars are a more thoughtful buy. Nevertheless, the main discrepancy is the
business sector, one of them a retailer and the other ones are manufacturers depending
on dealerships to sell their products.
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In a manner to follow the philosophy behind Anticipatory Shipping by Amazon, SEAT
began internally the Fast Lane project in 2017. The car models and configurations under
this signature would be delivered in a maximum of 21 days to the final customers [9,
10]. From the operations point of view, the manufacturing process was adapted and new
internal systems were developed. Fast Lane cars gained priority in the waiting list to be
manufactured; there were always available Fast Lane slots within the assembly line ready
to be booked by the dealerships; the Fast Lane slots could be easily updated during the
manufacturing process in non-dependant electrical attributes, such as alloy wheels, color,
etc. in opposition to regular manufacturing orders that were immutable; customers were
capable of performing a follow-up of their purchase thanks to the online Tracking Tool,
which show to them real videos of their vehicles surpassing all the milestones between
purchase and delivery; etc. With these assistances, SEAT was able to guarantee the
reduced 21-day delivery time, against the 90-day average period when cars are requested
directly to the factory. In summary, Fast Lane was supported by three aspects: (a)
efficient and dedicated operations to execute all the manufacturing and logistics, reducing
the dealerships’ stock volume; (b) shortening the number of choseable configurations,
a.k.a., variety in the commercial offer to ease the operations and the supply chain; (c)
accurate demand prediction to acquire in advanced the customers’ interests in order to
activate the supply chain. The review of the literature in these three aspects is performed
in this chapter.

2.2 Efficient Operative

The endeavor of vehicle manufacturers to ship cars in the most efficient manner is not
a recent development, though it has been more extensively explored from an industrial
perspective rather than by academics. This issue is well-described in [18]. The authors
of the previous note present a taxonomy of the studies done in the field of automobile
shipping optimization by level of decision-making, mode of transportation, and type of
optimization decisions. Nevertheless, the focus is on transportation and route optimiza-
tion. From the side of stock management and production optimization, an early example
of these concepts can be found in the early 2000s. Reference [19] proposes the concept of
the ”3-Day Car”. It aimed to achieve a fundamental change across the entire automotive
supply chain by emphasizing the pivotal role of logistics. The viability of the 3-Day Car
in the UK, a market covering three million annual vehicle movements, in terms of key
constraints in the logistics and the possible environmental impact of a more responsive
logistics is analysed in paper [20]. More of the ideas of this author were published in
book [21], in which remarks the concept of ”Build to Order” production as the optimal
solution and touring across the practices done in Japanese, European, and American car
brands. In more recent years, a review of 49 works about the Build to Order is exe-
cuted on note [22]. It focuses on capacity, order planning, and presenting a framework
for structuring planning tasks. These authors stand out for the critical role played by
industrial operations in shaping the impact of forecasting and demand prediction within
supply chains. Researchers underline that an overemphasis on forecasting methodologies
without due consideration for the intricacies of industrial operations can lead to subop-
timal outcomes, such as overproduction or stockouts. Fast Lane exemplifies a proactive
approach towards updating logistics to better align with the demands of contemporary
markets, without ignoring the potential that reliable forecasting can provide.
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2.3 Commercial Offer Variety

The second point of improvement consists of having under control the complexity of the
commercial offer. It is a delicate affair to find the balance between the quantity of vi-
able options a customer can select from and lean logistics. In opposition to Henry Ford,
who claimed that his customers could have any color they wanted, as long as it was
black, nowadays the variety extends from thousands to millions of versions considering all
the combinations among car models, drive trains, colors, interior packages and optional
choices [23]. It might seem beneficial from the point of view of the customers, as it is
easier to find a version that fits their needs. Consequently, the demand and profits of the
manufacturer would experience an enhancement. Nevertheless, it is not a straightforward
effect, as it depends on market-specific factors as well as costs. In instances where con-
sumers lack familiarity with the available options, a preliminary step of learning about
their preferences is needed before arriving at a decision. Excessive diversity in such cir-
cumstances can introduce complications or lead to consumer frustration, a phenomenon
commonly referred to as ”choice overload” or the ”paradox of choice” [24, 25]. As ar-
ticulated in the work [26], the marketer’s responsibility in these scenarios is to mitigate
the perceived complexity of the assortment. Experiments carried on references [27, 28]
validate the effects that variety has on customers. In terms of the industry, the work [29]
offers a structured framework to identify relevant complexities among product variety,
logistics costs, and logistics performance. The latest incurred the most substantial detri-
ment in instances of a misalignment between manufacturing and distribution. Researchers
of the work [30], conducted an empirical investigation within the Philadelphia region to
assess the efficacy of the automotive distribution system in managing product variety.
Their findings revealed that, despite the extensive range of product variety available,
most customers opted to purchase from the dealership’s existing stock. This consumer
behavior was attributed to the fact that ordering a car directly from the factory incurred
a significant six-week delay in the delivery process.

In addition to all these previous aspects related to the variety of products, since the
origin of Fast Lane, the company was outermost aware of the role of logistics. The
current structure is not prepared to manage the shipment of 21 days of a vast selection
of products straight out of the factory. These restrictions caused the commercial offer of
Fast Lane cars would be shorter, and the orders’ logistics flow deviated with respect to
common requests. The best component to illustrate this difference is the cable tree of the
cars. In other words, the batch of harnesses and wires that control all the features of the
vehicle; starting in the engine, gearbox, and so on, but including as well the radio, A/C,
heated seat, cameras, etc. After the drive unit, the cable tree is the most significant item
within a car. It possesses a high level of customization. The layout and design of the
wires are dependent on the attributes of the vehicle. For instance, for two vehicles with
the same configuration except that one of them carries cruise control and the other one
does not, the cable tree will be different. The high level of personalization entails that
cable trees were exclusively requested to the supplier after the approval of the vehicle’s
order in the manufacturing line. The delivery time the supplier had with the factory
is almost 4 weeks. SEAT, like other car manufacturers, is ruled by a ”Just in Time”
manufacturing policy. The pieces of the assembly are requested if they are required in the
manufacturing line. This shipment period contradicts the 21-day delivery commitment of
the company. Consequently, the solution to overpass this issue consisted of the creation
of a cable tree depot within the SEAT facilities. After this measure, the supply of cable
trees was guaranteed for the Fast Lane orders.



CHAPTER 2. STATE OF THE ART 7

Unfortunately, the solution is not perfect. The capacity of the depot was very re-
stricted, as the sales rate of Fast Lane cars was never planned to be the largest out of the
total sales of the firm. Reduced store capacity means smaller product variety, thousands
rather than millions of feasible combinations. It provokes another problem expected to
be solved, i.e., deciding which car variants will be part of the Fast Lane offer. The first
approach to resolving the dilemma selected the best-selling car configurations from those
with the highest contribution margin. Normally, these vehicles are the most expensive
hence, with this policy, it was intended to award the customer who spent the most with
the fastest delivery. Nevertheless, the inconvenient aspect of the current solution was the
lack of capturing a broader market share. Moreover, relying solely on past performance
might hinder the ability to adapt to changing market demands.

2.4 Demand Forecasting

The aforementioned reasons motivated the company to explore a more robust approach.
In particular, it was seen as beneficial the option of anticipating the customers’ request
and triggering the supply chain in advance. Consequently, the third leg of the Fast Lane
was initiated, i.e., demand prediction.

2.4.1 SEAT Background

SEAT contacted a subsidiary company belonging to Volkswagen Group seeking assistance.
The name of the firm was Data:Lab Munich (DataLab for so on), a division specialized in
data science within the automotive industry structured under a start-up frame [31, 32].
Their approach was based on building the Fast Lane offer with the largest coverage, i.e.,
capable of reaching the largest segment of customers. The focus of the commercial offer
was in terms of vehicles’ equipment, i.e., cable trees. Afterward, the future sales of each
car variant were forecasted from 7 to 20 weeks ahead of the current day. To accomplish this
task, it is fed by the history of car variants found in the sales record and the ones done by
the users of the SEAT car configurator webpage. The website is an online tool provided by
car manufacturers, such as SEAT, to their potential customers so they can browse among
all the options available in the company’s portfolio without the need to list them all.
Additionally, the user can obtain an estimated price and book a date at the dealership.
All the information about the activity done by the potential customers is saved. It is
possible to obtain which car variant they have configured, from which location, and when
they did it. DataLab combined the clickstream data together with the car configurations
history sales and, by means of association rules, they proposed a new Fast Lane offer.
During this procedure, the weight of each data source was unequivalent, 70-30 proportion
in favor of the sales record. Afterwards, weekly sales of each of the car variants were
then forecasted between 7 and 20 weeks from the current date. The algorithm behind the
prediction was ARIMA. During the development of the Proof-of-Concept phase, occurring
in the last quarter of 2019, it was observed that the dealerships were adverse to relying
on the output. The DataLab tool suggested car configurations dealers were not familiar
with. Regrettably, before starting a second phase in the collaboration between SEAT
and DataLab, the COVID outbreak began, and together with the consequent component
crisis, especially semi-conductors, Fast Lean delivery ceased.
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2.4.2 Car Configurator As A Helpful Information Source

Despite this interruption, the path initiated by our colleagues was worthy to be explored.
The digital activity leaves a trace that can be analyzed to get a better comprehension
of customers’ behavior. With traditional techniques, such as interviewing or surveying,
the researcher is imposing to rationalize a mental process that might be irrational. On
the contrary, the online path permits to acquisition of this knowledge without perturbing
the subjects. Thus, work [33] for example, permits measuring the weight that the World
Wide Web has among other information search channels, such as relative and friends,
mass media, and retailers. Precisely, it has become one of the main mottos of this thesis.
In light of this, a comprehensive bibliographic review is conducted about the utilization
of Internet data in forecasting, inventory, and production optimization.

The literature found evidence of a correlation between Internet data and sales, being
helpful in demand forecasting for diverse business sectors. Examples are found on e-
commerce [34], the entertainment sector [35, 36], the food industry [37], tourism [38],
financial activity [39], retail business [40], and the editorial sector [41]. Especial attention
deserves the work [42]. They utilized online retailers’ clickstream data and historical sales
data to develop a sales forecast, exploring the optimal quantity and timing of products.
Their findings indicated that anticipatory shipping led to a 5.96% cost reduction for online
retailers and an average reduction of 1.69 days of waiting time for customers compared
to non-anticipatory shipping. However, the previous examples make reference to low-
value purchases, customers are not highly involved, and there are no relevant differences
between brands. Products or services with the opposite characteristics are defined as
high-implication purchases. One of the economic sectors that fulfill these criteria is the
real estate market. This area is not ignorant about the use of Internet data. Several
authors in the literature have explored the utility of the Internet as an external source to
capture customers’ requests. References [43, 44, 45, 46, 47, 48] are proof of this.

Regarding the car market, the bibliographic exploration reveals that the employment
of online data has been treated from two points of view: data acquired from social me-
dia or data coming from Internet search queries. As an example of social media data,
reference [49] focuses on the sentiment analysis of social media and car review online
sites, together with average monthly sales, to perform sales prediction before and after
the launch of the vehicle. Another case is found in [50], where they performed a com-
parison of the outputs given by different multivariate regression models and time series
models which combines monthly total vehicle sales in the USA together with sentiment
scores from Twitter, stock market values, or a mix of both external information. On the
other side, an early example from 2009 is found in [51]; they include Google Trends in
a logarithmic autoregressive model to predict vehicle sales. Another interesting case is
paper [52]; they use a novelty Bass diffusion model that includes customer Internet search
behavior to explain product diffusion, gain significant information in about 84% of the
samples, and help to predict new product diffusion. Publication [53] develops a backward
induction approach to identify keywords that are frequently used by search engine users
of the automotive market and, together with economic variables, the authors can predict
monthly car sales. Research done in [54] focuses on the German market and performed
long-term prediction by adding the information extracted from macroeconomic variables
and online search queries. Similarly, reference [55] does an exercise on the car markets of
Germany and the UK. They prove that online search data are correlated across products
but to different extents. Hence, they develop a model linking search motives to observ-
able search data and sales. Nevertheless, some examples take advantage of both social



CHAPTER 2. STATE OF THE ART 9

media and search queries, such as paper [56]. They compare the outputs of the linear
regression model of about a half million posts on social media for eleven car models in the
Netherlands against the predictions derived from Google Trends. Paper [57] customizes
the typical Bass predictive model of car sales forecasting by adding user-generated Inter-
net information, search traffic, and macroeconomic data to get more accurate predictions.
In every previous case, the addition of Internet data outperformed the results of the rest
of the models.

2.4.3 Car Configurator Data Filtering Procedure

Despite everything above mentioned, Car Configurator is an online service with down-
sides. At first sight, the person who accesses the online tool is willing to purchase a car.
Nevertheless, this is not totally true. There are two groups of users. In the first place,
people who are in the exploration phase before performing the acquisition of the vehicle.
They make extensive use of the tool. On the other side, people who are doing window
shopping, i.e., browsing through the car variants without the intention of making a pur-
chase. Distinguishing between both profiles is not straightforward. Authors from [58]
found inconsistencies in the way the online environment is characterized to profile online
consumer behavior and decision-making process. Additionally, the purchase approach
has not evolved as much faster as technology. It is still necessary to head to a dealership
in order to execute the purchase. They represent a third party with their commercial
interests. Their influence is evident when customers arrive at the dealership intending
to purchase a particular car configuration seen online but ultimately purchase a different
one. This change in choice may be attributed to several factors, such as unavailability or
late delivery of the first option or a generous discount offered on the alternative model.
Regrettably, dealerships do not maintain records about deviations between the online and
the physical world.

Combining this business categorization together with the fact that the car configurator
webpage does not require any user commitment in the form of mandatory login, makes
that generated data volume boosts, with the consequent inconveniences. Among the chal-
lenges Big Data entities should face, are (a) storage; (b) finding and solving data quality
issues; (c) cost-effective escalation and appropriate choosing of big data technology; (d)
data governance and validation; and (e) data collection processing and integration. Nev-
ertheless, a well-managed Big Data environment can optimize operative costs, diminish
time to market, and favor new products [59].

On one side, authors and references that have treated the problem of dealing with large
databases are reviewed. Both from the point of view of technical aspects of managing a
database and also from noisy data stored in the database. It is aimed at reducing the
volume of clickstream data without compromising its significance, with the ultimate goal
of enhancing the utilization of this information source in the decision-making process of
the company. The way we define significance is by means of a correlation between the
visits to the Car Configurator webpage and company sales. On the other side, it is pursued
to find the path that users with real purchase intentions explore. In other words, pointing
to the car attributes that signal a future transaction. To achieve this objective, literature
about data mining techniques is consulted, but special attention to genetic algorithms.
They are a type of optimization algorithm inspired by the process of natural selection.
It explores the data gathered by the Car Configurator webpage. Similarly, it will seek to
identify the characteristics that maximize the correlation between clickstream data and
car sales.
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Firstly, the list of technical issues includes lack of memory storage, which authors
from paper [60] face in recognizing objects in large images database. That’s why they
decided to focus only on a small subset of the training features, based on the concept
that many local features are unreliable or noisy. They perform a features filtering process
thanks to an unsupervised preprocessing that recognizes the matching ones. Another
challenge is represented in work [61], i.e., the extensive running time of algorithms in large
databases. They propose to employ a Hilbert curve-based similarity searching scheme
(HCS) in subsamples of the database, which projects each data point to a low-dimensional
space. This strategy diminishes the searching time latency by mapping a certain data
points cluster rather than the entire database. Another problem consists of database
security, meaning querying and encrypting. The article [62] introduces the concept of
a Verifiable Database with Incremental Updates (Inc-VDB), which allows a resource-
constrained client to securely outsource a large database to a server while ensuring data
integrity and the ability to update records. A good summary of how organizations can
organize themselves to overcome these obstacles is found in [63, 64] in terms of data
modeling and data management, respectively.

And secondly, there is a concern that needs to be highlighted: the presence of noisy
data. It perturbs the data reliability and affects the outputs from any process in which the
database is involved, among other facts. However, handling noise in Big Data is a challenge
as traditional solutions struggle to deal with such large amounts of data. To overcome
this challenge, new algorithms are needed to clean up the noise in Big Data and produce
high-quality, clean data. Authors in reference [65] introduce two Big Data preprocessing
methods, focused on scalability and performance, to remove noisy examples. They are a
homogeneous ensemble filter and a heterogeneous ensemble filter. These methods have
been found to effectively produce a clean dataset from any Big Data classification problem.
Additionally, methodologies and techniques to achieve a filtered database are described
in the book [66], especially in chapters fourth and fifth. Additionally, we find in the
literature successful use cases of filtered Big Data, as it is related in note [67] for Small
to medium-sized businesses (SMEs) from the agri-food sector. Another case is studied
by paper [68], which explains how big data deployment transforms enterprise’s policies in
retail companies.

From the point of view of customer profiling, i.e., distinguishing the real customers
out of the total users of the platform, the approach can be thought of as a feature se-
lection exercise where the most relevant features are selected from the dataset to train
machine learning algorithms. A comprehensive examination of the current advancements
in methods for selecting relevant features can be found in [69]. Genetic algorithms de-
serve special mention. Starting with an initial population of potential solutions, these
algorithms use a process of selection, crossover, and mutation to evolve the population
over multiple generations toward an optimal solution. This approach has been shown to
be effective for a range of optimization problems where traditional methods are either im-
practical or inefficient. Works [70, 71] utilized genetic algorithms for feature selection in
optimizing support vector machines and classification tasks, respectively. In the context
of data mining, book [72] provides a detailed guide to optimizing feature selection using
genetic algorithms.
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There are efforts, as well, in the context of using correlation as an assessment metric. It
is called correlation-based feature-subset selection (CFS). It has proved its validity in can-
cer research, as it is explained in note [73]. A gene-search algorithm for analyzing genetic
expression data was implemented, which combines a genetic algorithm with correlation-
based heuristics for data preprocessing. Nevertheless, it is extended to other uses, such
as the integration of data sources to build a Data warehouse, as it is related in paper [74].
It proposes a method for selecting an optimal subset of attributes based on correlation
analysis, which identifies redundant attributes that do not significantly contribute to the
overall characteristics of the data. Reference [75] proposed a correlation-based filter so-
lution using a genetic algorithm for feature selection, which was able to identify relevant
features quickly and accurately in high-dimensional datasets. The last case is found in
the field of computer vision. Authors from work [76] enhance the accuracy of identifying
apple leaf disease and reduce the dimensionality of the feature space. They select the
most valuable features through a combination of genetic algorithms and CFS.

2.4.4 Improved Demand Forecasting With Genetic Algorithm

After examining all the examples of the aid that Internet data supplies in different sectors
has opened a new research path. Taking into consideration that genetic algorithms are a
powerful tool to perform data mining, and that clickstream data upgrades the performance
of forecasting algorithms, the goal is to prove that better demand prediction can take place
by combining these two techniques. The first instance in the literature to mention is found
in note [77]. They perform exhaustive reviews of the applications of genetic algorithms in
the forecasting field, focused on commodity prices such as energy, metals, and agricultural
products. Their findings reflect the two paths to incorporate genetic algorithms into the
forecasting: (a) parameter tuning; and (b) feature selection.

In the first category, authors from work [78] utilize a genetic algorithm to identify the
order and estimation of the parameters for the SARIMA algorithm. The playground to
check their methodology is climate data, more specifically the average temperature of In-
dia from 2000 to 2017. Their results outperform the prediction accuracy and are executed
in parallel. However, genetic algorithms have been also used to parameter tuning more
complex machine learning techniques, such as neural networks. Good examples in this
area are papers [79, 80]. In the first research, the genetic algorithm delineates the weights,
the bias, as well as the number of hidden neurons. Their proposal is evaluated against
various benchmark methods, including neural networks utilizing back-propagation, Sup-
port Vector Regression, and ARIMA across both the most popular time series datasets
and real-life data. They produce better forecasts with the genetic-based optimization
technique than the rest of the methods. On the other side, the second paper concentrates
on a multivariate LSTM neural network, more specifically bidirectional LSTM (BiLSTM).
Outcomes proved that the tuned BiLSTM model surpasses other procedures, having an
accuracy of 89% in the sales prediction. Special mention deserve the next references, as
they are the only ones related to vehicle sales. Indonesian car sales forecasting is as-
sessed on note [81]. The authors integrate a genetic algorithm to optimize the parameters
of Holt-Winters exponential smoothing to predict the demand for the most popular car
brands. By means of MAPE comparison, the proposed method outperformed the rest.
Finally, the Chinese market of electric vehicles is explored in research [82]. The market
penetration of electric vehicles (EVs) in the country for the next ten years is predicted
with a comprehensive Bass diffusion model fitted with a genetic algorithm. The model
prediction results show that EVs are successful innovative diffusion products.
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Nevertheless, our research is more similar to the second approach: feature selection.
The stock market is a key player in this context. It is a sector alike to our problem as
it presents a large number of indicators to measure the variability of stock price. In the
same way, we pursue to select the insights from clickstream data with more predictive
power. Authors from reference [83] define the genetic algorithm as a ranker of the factors
of importance. Afterward, this lineup feeds an LSTM model for stock prediction of the
China construction bank dataset and the CSI 300 stock dataset. Their experiments prove
the supremacy of the newer model with respect to all the baseline models for time series
prediction. A similar strategy is followed in note [84]. They center on four international
stock indices and combine genetic algorithms with Random Forest. The first technique
chooses a batch of helpful features among the indices. Therefore, the second algorithm
unveils hidden relationships between the set and a particular stock’s trend. The rehearsal
demonstrated that the hybrid predictive model surpasses the performance of the basic
forecast by a significant margin.

In another chapter, climate is another rich-data field where the interaction among the
features is not the simplest. We found examples of research forecasting the air quality [85]
and the risk of flood [86]. The first paper compares the outcomes from the set of features
selected by a genetic algorithm against two other filtering techniques. Next, the daily
maximum concentration of two air pollutants is predicted. For the second research, the
features batch derived from the genetic algorithm feeds a Linear Regression model that
executes the forecasting of the level of the Xingu River. In both cases, the genetic algo-
rithm approach delivers the best outcomes. Another sector that benefits from the power
and versatility of genetic algorithms is the electricity market. These researchers [87] ex-
plored the advantages of genetic-based feature selection in the Australian market using
the M5P forecaster.

Nevertheless, the examples dedicated to sales and/or online data scarves. In the retail
sector, note [88] introduces a genetic algorithm to expand the feature set and investigate
potential feature values. Their validation dataset is the Kaggle Rossman sales data, and
the forecasting algorithm is a tree-based model. The findings indicate that the suggested
approach can substantially enhance both the precision and robustness of decision tree
algorithms. The last example is found in paper [89], for phishing website detection.
Traditional methods dedicated to this task are blacklisted based, however, they are rapidly
outdated. The study utilizes a genetic algorithm to pinpoint the most influential features
and determine the optimal weights for website characteristics. Consequently, the genetic
algorithm’s selected and weighted website features are employed in training a neural
network to achieve the objective. All resulting metrics demonstrate the superior capacity
of this approach.

2.5 Reducing Disparity Between Stock And

Demand Updating The Production

The misalignment between the arrangement of the stock and the composition of the
demand prediction causes inefficiencies. This miscoordination often leads to excess inven-
tory, resulting in increased logistics costs. Moreover, it may imply production delays due
to shortages in crucial components. All these causes are reflected in a growing customer
dissatisfaction. Firstly, this situation has been intended to be solved after the vehicles
are manufactured and before they are headed to the different stock locations of the com-
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pany. Nevertheless, the approach chased in this Section puts its attention on those cars
that are still in the assembly stage. The production framework that SEAT employs per-
mits the modification of vehicle components non-dependant on the cable tree. In order
to decide about which modifications should be done, demand prediction advice in the
decision-making process. Forecasting provides crucial insights into the expected popular-
ity of specific vehicle configurations and options. In case a particular set of features is
projected to be in high demand, adjustments can be made in real time.

This problem can be faced thanks to heuristic search. Inside this category, it is found
simulated annealing [90, 91] or tabu search [92, 93]. Additionally, it is possible to highlight
the evolutionary programming, i.e., genetic algorithms. These last components were ex-
tensively explored during the thesis research. That’s why it is pursued to explore different
options to figure out the most optimum production.

One of the existing solution methods with a large history behind is linear program-
ming. It is a mathematical optimization technique used to find the best outcome in a
mathematical model with linear relationships. In other words, it finds the optimal solu-
tion to a problem where both the objective function and the constraints can be expressed
as linear equations or inequalities [94]. In the current framework, the constraints are
subjected to linear behavior. On the contrary, the objective function does not follow
this conduct as it is ruled by quadratic terms. Another renowned method is called least-
squares. It is defined as an optimization problem in which the objective function is a sum
of square terms but with no constraints [94]. Consequently, it is not applicable to this
problem as the restrictions are well delimited. Therefore, it is necessary to explore more
general techniques. That is how convex optimization has been encountered.

A convex optimization problem is one in which the objective and constraint functions
are convex. In opposition to linearity, convexity is more general: inequality replaces
the more restrictive equality. And the inequality must hold only for certain values [94].
To ensure the viability of the methodology, Disciplined Convex Programming (DCP)
is employed. DCP analysis breaks expressions down into subexpressions and applies a
general composition theorem from convex analysis to each one of them. The convexity of
f(expr1, expr2, ..., exprn) is determined by two factors: the nature of the function f itself
and the characteristics of each of the individual expressions expri. It is considered convex
under the following conditions: (a) f is increasing in argument i and expri is convex;
(b) f is decreasing in argument i and expri is concave; (c) expri is affine or constant. If
none of these three rules apply, the curvature of the expression f(expr1, expr2, ..., exprn)
is categorized as unknown [95]. The tool found to assist in the optimization routine
is CVXPY. It is a modeling language integrated with Python, designed for addressing
convex optimization problems. It simplifies the process by automatically converting the
problem into a standard format, invoking a solver, and then extracting and presenting
the solution. More details in [96, 97].

2.6 Research Gap

To sum up, it is possible to find works related to the three fundamentals of the Fast Lane.
Despite it being nowadays abandoned, its way of procedure is still valid. It is the base
of the advances presented in this document. From the point of view of the operative, the
current manufacturing is a restriction. It cannot be modified in any way and/or it is out
of the scope of this project to propose it. The same for the different pieces, such as the
cable tree, that assemble a car. Therefore, the formula revealed in the literature would be
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extremely laborious to build. Consequently, this research assimilates these limiting inputs.
On one hand, it deepens in the moment when the car is ready to abandon the factory. To
do so, the current SEAT’s outbound logistics approach is related, together with a proposal
to shorten the stock volume. The idea behind this solution consists of dispatching the
manufactured vehicles to the location where it is expected to spend a lesser number of
days waiting until a customer purchases them. The problem is structured as a binary
classification one based on the attributes that compose a car. It is performed thanks to
Machine Learning classification algorithms. Results equal or improve the decisions made
by the experts of the company.

On the other hand, the manufacturing process cannot be modified, but it is permitted
to change some attributes, the non-electrical dependant ones, of the cars under assembly.
That’s why forecasting is seen as the perfect tool to embrace this opportunity. A new
block in the thesis is opened. The bibliography has presented evidence of works dealing
with Internet data to perform predictions, not solely in the car market, but in other
sectors as well. However, none of these notes exploit or have access to the data gathered
by the Car Configurator, the first contact point between the customer and the company.
At the beginning, the reliability of the clickstream data is under inspection. Results
analyzing the correlation prove that Car Configurator visits subsequently influence in the
sales record. Moreover, the performance of forecast algorithms that add this online source
is superior to predicting future sales.

Nevertheless, the clickstream dataset deserves to be truly well managed because of its
own nature. Quantitative and qualitative approaches are executed. On one side, the data
is filtered applying some rules to eliminate outliers. The bibliography is vast in terms of
technical considerations and several solutions are exposed, specific literature is modest
in the field of dealing with noisy data. Specially, for a problem with the characteristics
previously referred to: filtrate big data without losing significance. Each one of these rules
defines an outlier differently or it is applied in a distinct dataset feature. The significance
preservation is validated thanks to statistical tests. On the other hand, genetic algorithms
are used to find the car variants configured in the webpage that identify the users with real
purchase intention. There is no evidence of research that addresses user-generated data
from non-transactional webpages. The core of the answer explores the possible choices
that define each attribute of a car variant and aggregates all of them into a set of rules
for filtering the dataset.

In both cases, results show excellent behavior with respect to the baseline. These
experiments were carried out under circumstances of low variety, as they only affect
changeable elements, such as the color or destination, of the vehicle. These attributes
are non-dependant on the cable tree or spare parts, and the number of combinations is
not overwhelming, which transforms them into the perfect candidates. To last up, the
efficiency of the genetic algorithm is employed to improve the outcomes of the demand
prediction done at the beginning of the block. Despite it having been tested and validated
in both tasks of parameter tuning and feature selection, for a range of areas of knowledge,
the sector of user-generated online data and car sales has not been under analysis. These
predictions are utilized to assign a new destination to the vehicles in the manufacturing
line. The purpose is to decrease the gap between the composition of expected demand and
the vehicles within the stock. In all cases under analysis, it was achieved an improvement
in the objective function, diminishing the disparity between what customers want and
what the factory manufactures.
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Chapter 3

Exploratory Data Analysis

Throughout this chapter, the available data provided by SEAT is intricately detailed. The
focus is confined to the Spanish market and centered on the urban SUV SEAT Arona and
the utility vehicle SEAT Ibiza, both belonging to segment B and derived from the same
platform. Additionally, attention is given to the segment C SEAT Leon (Leon 5D) and the
SEAT Leon Sportstourer (Leon ST), the family-oriented variant of the compact model.
Essentially, these are the vehicles produced at the company’s headquarters, over which the
firm exercises complete operational control. The data encompasses: (a) production and
delivery planning of vehicles, (b) sales records, and (c) user visits to the Car Configurator
webpage of the company.

3.1 Production And Deliveries

The information regarding the operation of the company spans from January 2017 to
January 2020, both inclusive. The dataset encompasses over 200,000 rows. Essentially, it
captures the date on which cars traverse every milestone in the production process. It is
convenient to understand what is the context of the company in terms of the operatives
and logistics. Everything it follows makes reference to the SEAT headquarters, placed in
Martorell, approximately 30 km northwest of Barcelona. The sole facility where the com-
pany exercises complete authority over the logistics and production within the automotive
assembly process. It boasts a notable production capacity of approximately 500,000 units
annually.
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INTERNAL

Figure 3.1: Manufacturing flow and supply chain management diagram within SEAT
headquarters.

Figure 3.1 illustrates the entire flow of vehicle manufacturing. Prior to the vehicle’s
delivery to the customer at the dealership, it undergoes various stages involving differ-
ent stakeholders. The dealership serves as the initiator of this process by sending car
orders to the factory, indicating the vehicles they are prepared to sell. At this stage, two
distinct request groups can be identified. Firstly, there are orders supported by existing
customers, referred to as Build-to-Order (BTO) cars. Conversely, there are requests that
the dealership anticipates selling in the future and consequently keeps in its inventory,
known as Build-to-Stock (BTS) cars. The data subdivides these order types into four
categories: ’0’ - private customer; ’1’ - fleet cars; ’2’ - dealership stock; ’3’ - importer
stock. The first two categories correspond to BTO cars, while the last two categories rep-
resent BTS cars. It is worth noting that the role of the importer exists as an intermediary
between the dealerships and the factory. The importer consolidates all order requests
received from the dealership network and possesses the authority to request cars for its
own purposes. These cars form an additional reservoir, supplementing the existing stock,
to meet the demands of the dealerships. Ultimately, all these orders reach the factory and
are recorded in a repository referred to as the Order Bank.

In order to learn how the order types are manufactured every year, this information
is gathered in Table 3.1. For the first two years, the production is balanced between both
order types. However, BTO vehicles take the lead in the last year of data. It is necessary
to clarify that 2020 data only includes the first month of the year and that 2019 was the
best year for the company in terms of sales. That explains the disproportion between
groups. Additionally, the trend of the production can be observed along the production
weeks in Figure 3.2. This image helps to understand the production cycles of the factory,
such as the null manufacturing rate during Christmas holidays and/or summer, but year
2019. Despite the decreasing trend, BTS cars have a significant influence on production.
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Table 3.1: Production rate of Build-to-Order (BTO) and Build-to-Stock(BTS) vehicles
per year

Order Type 2017 2018 2019 2020
BTO (%) private customer 29.43 33.65 37.23 50.43

fleet cars 16.58 15.11 21.94 11.76
BTS (%) dealership stock 53.99 39.33 33.78 37.8

importer stock 0 11.91 7.05 0
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Figure 3.2: Weekly production segmented per Order Type. Data is presented in terms of
ZP8 week, i.e., the calendar week in which vehicles abandon the manufacturing line.

Additionally, it is worth giving more details about how it is structured the production
of BTS vehicles along the dataset. Figure 3.3 collects the details of BTS weekly produc-
tion, measured in terms of ZP8 calendar week, per car model. This date represents the
week the manufactured car abandons the factory after passing all quality checks. It is
seen the period of inactivity of the factory, such as the summer and Christmas holidays.
The exception occurs during the summer of 2019. As it was the top seller year of the
brand’s history, there were enough production orders to keep the factory open. However,
the production peak for the four car models does not take place during this year, but it
happens in 2018. The maximum manufactured units of SEAT Leon 5D car model were
420 at the 35th calendar week of the year, i.e., the last week of August. For the rest of the
car models, the maximum volume happened in the 28th calendar week, during the first
half of July. The number of units produced for each car model starts from 246 (SEAT
Leon ST) up to 587 (SEAT Ibiza), passing through 368 (SEAT Arona).
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Figure 3.3: Weekly production of Build-to-Stock vehicles segmented per car model and
year. Data is presented in terms of ZP8 week, i.e., the calendar week in which vehicles
finish the manufacturing line.

The responsibility for managing the Order Bank lies with the commercial department
(VP-81) of the brand. In collaboration with the markets and the factory, they determine
which batch of orders from the Order Bank will commence production in the following
week. This significant milestone is referred to as Order Generation or FU. The selection
criteria for orders from the Order Bank vary and can include factors such as prioritization
lists provided by dealerships; preference for BTO cars over BTS cars; former Fast Lane
vehicles, a first-in, first-out (FIFO) policy; cars’ contribution margin; and others. How-
ever, the department also takes into account the factory’s operational status. In-house
Logistics (PL-1) provides information regarding ongoing restrictions, i.e., the availability
of components required for car assembly.

Subsequently, the Production department (PF-6) assumes control of orders in the FU
status. One of their tasks is to determine the production sequence of vehicles, specify-
ing the production day of the week and shift. They also initiate communication with
various suppliers in charge of providing different components except for engines, which
are Volkswagen Group’s responsibility. Among these components, the cable tree is what
defines the TRIM level of the vehicle. TRIM represents the specific features, options, or
design elements that distinguish versions of the same model. It ranges from standard to
premium. Moreover, cable tree holds critical importance as it has the longest lead time.
Consequently, the phase preceding actual manufacturing extends for around three weeks.
During this stage, neither the cable tree nor the engine can be modified. However, other
elements such as color, alloy wheels, and final destination can still be adjusted, thanks
to the improvements carried on during the Fast Lane project. Once all the components
are prepared following this preparatory period, the physical production process begins,
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and no further changes to the order composition are allowed. This phase commences at a
point referred to as A500. It is at this stage that the vehicle undergoes the transformation
from a metal sheet in subsequent stations, ultimately becoming a finished product within
a single week. Table 3.2 illustrates the manufacturing flow and the changes permitted in
each milestone.

Table 3.2: Production process and the modifications of attributes permitted in each mile-
stone. Colored circles represent the attributes that cannot be varied. Empty circles
symbolize changeable attributes. W means week

OB FU A500 ZP8
t - xw t - 4w t - 1w t0

Platform/Car Model • • • •
Engine • • • •
Cable Tree/TRIM Level ⃝ • • •
Non-Electrical (color/alloy wheels) ⃝ ⃝ • •
Destination (compound region) ⃝ ⃝ • •

The information about the number of available options per car model registered in the
data is placed in Table 3.3. The common TRIM levels for the four car models are named,
from basic to top: Reference, Style, Xperience, and FR. Additionally, the SEAT Leon
family has a supreme version called CUPRA; and SEAT Leon ST, in particular, includes
a mid version called Xcellence. The urban SUV is the car model with the largest number
of choseable colors due to the car body and roof having distinct coloring. However, it
should be noted that not all combinations of attributes are offered within the company’s
commercial lineup. For instance, certain colors are exclusive to specific TRIM levels, and
the same applies to engine or alloy wheel options. As a result, the actual number of
combinations observed in the dataset is significantly lower due to these restrictions.

Table 3.3: Number of available elements in each attribute for each car model in SEAT
production and deliveries data.

TRIM Color Alloy Wheels Engines
SEAT Arona 4 48 9 6
SEAT Ibiza 4 12 8 9
SEAT Leon 5D 5 14 16 16
SEAT Leon ST 6 14 17 16
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The subsequent steps are overseen by the Outbound Logistics department (PL-3).
Regardless of whether a car leaving the factory is BTO or BTS, both types follow the
same route. This department is responsible for the car’s reception in the stock warehouse,
denoted as DEPEIN, as well as its departure from this location, indicated as DEPAUS.
In the company jargon, these locations are referred to as redistribution compounds or
just compounds. After the manufacturing process, the cars are directed to the nearest
compound in close proximity to their final destination. These facilities serve as collec-
tion points for cars ordered by dealerships within their respective geographical areas of
influence. In the case of Spain, the national territory is divided into six compounds, as
depicted in Figure 3.4.

INTERNAL

MADRID

SANTANDER

LLAGOSTA

CMC

CHESTELA RODA

Figure 3.4: Map reflecting the location of the different compounds in which SEAT divides
Spanish territory

Another relevant look in this exploratory phase of the BTS vehicles is to understand
the behavior per compound region. Table 3.4 collects the weekly average production
rate of BTS vehicles per compound region and year. Over the years, the distribution
is preserved mainly constant. The compound region with the lowest production rate is
CMC, although it has been increasing over the period. On the contrary, the winning
compound region varies from MADRID to LLAGOSTA. It is not bizarre as they are the
region that accommodates the largest population within the national territory. However,
their weight is not very distance from the rest of the compound regions. A reason for this
behavior might be found in the production policy. It seems that is more oriented to fill
the diverse compound regions according to the dealerships’ demands, leaving some room
for improvement.
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Table 3.4: Weekly average production rate of BTS vehicles per compound region and year

2017 2018 2019 2020
CMC (%) 4.04 ± 3.56 7.19 ± 5.51 8.33 ± 5.8 11.11 ± 4.05
MADRID (%) 25.91 ± 13.76 20.27 ± 4.51 18.36 ± 4.92 18.41 ± 4.09
LA RODA (%) 20.35 ± 8.4 18.89 ± 7.22 21.16 ± 6.71 16.61 ± 5.31
CHESTE (%) 14.39 ± 5.51 12.91 ± 3.11 12.76 ± 4.38 16.18 ± 9.3
LLAGOSTA (%) 20.96 ± 5.84 22.68 ± 6.06 23.08 ± 6.29 32.01 ± 28.97
SANTANDER (%) 17.92 ± 4.89 18.63 ± 3.8 16.31 ± 3.77 15.4 ± 6.89

The primary distinction between BTO and BTS cars lies in the duration of their
stay within the compounds. BTS cars remain in the compounds for an extended period
as they await a customer to purchase them. Conversely, BTO cars spend minimal time
within the compounds as there is already a client awaiting their delivery. The term to call
this milestone is KDUEB, when the customers finally receive their purchased cars. The
number of days between ZP8 and KDUEB is named Time in Compound within the data.
For instance, 105 car variants have recorded the minimum time, which is a single day. The
longest duration within the compound was observed in the case of a dealership’s SEAT
Leon ST, which remained for 716 days. The main statistics about Time in Compound
per compound region are found in Table 3.5. In this block, a car variant is defined as the
combination of car model, TRIM level, color, engine, together with order type.

Table 3.5: Main descriptive values for Time in Compound [days] per each compound
region individually collected in the production and deliveries dataset.

CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Min. [days] 1 1 1 1 1 1
Mean [days] 62 53 60 52 48 54
Std. Dev. [days] 52 57 63 56 55 55
Q1 [days] 26 14 16 14 14 18
Q2 [days] 46 29 34 27 25 30
Q3 [days] 82 71 82 71 62 69
Max. [days] 716 447 516 490 470 554
No. of Variants 532 1259 1004 1046 1267 1105
No. of Cars 8670 24526 16608 14216 31874 17432
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In Table 3.5, it is observed that the CMC compound stands out distinctly from the
others due to its significantly higher number of days spent in the compound. Furthermore,
it has the lowest number of cars and variants among all the regions. Conversely, the
LLAGOSTA compound emerges as the region with the best deliveries. It exhibits the
lowest values in the time distribution and the largest figures in terms of the number of
variants and cars. However, it is worth noting that the statistical values for all compounds
exhibit a similar order of magnitude. This similarity indicates that they follow nearly
identical distributions, characterized by a large concentration of cases on the left and a long
tail on the right side. This behavior is visually depicted in Figure 3.5, where it becomes
apparent that distinguishing one compound from another is practically impossible.
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Figure 3.5: Distributions per Compound Region of Time in Compound registered in the
production and deliveries dataset.

The analysis of Time in Compound of cars in terms of car model follows the same
trend previously observed per compound region. The summary statistics are placed on
Table 3.6. On average, SEAT Arona is the model with the fastest delivery time, while
SEAT Ibiza occupies the last position. Nevertheless, the most popular car model is the
SEAT Leon 5D but the SEAT Leon ST is the least sold. From Figure 3.6, it is learned that
the distributions of Time in Compound overlap in the same range for every car model,
which is not helpful to differentiate the deliveries in categories.
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Table 3.6: Main descriptive values for Time in Compound [days] per Car Model individ-
ually collected in the production and deliveries dataset.

SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST
Min. [days] 1 1 1 1
Mean [days] 43 60 55 54
Std. Dev. [days] 46 61 57 62
Q1 [days] 14 17 16 15
Q2 [days] 24 35 31 27
Q3 [days] 56 83 74 68
Max. [days] 470 462 497 716
No. of Variants 547 250 347 379
No. of Cars 26940 26940 33571 18589
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Figure 3.6: Distributions per Car Model of Time in Compound registered in the produc-
tion and deliveries dataset.

Therefore, it is studied what it is the behavior between BTO cars and BTS cars,
identified by the Order Type. Bearing in mind that there are two categories for BTO cars
and other two for BTS cars. From Table 3.7, as it might be presumed, BTO cars are faster
in the delivery time than the other category, especially those from private customers rather
than fleet cars. This information is acquired too from Figure 3.7. However, stock cars
represent a significant percentage of the total deliveries, mainly dealerships stock due to
importer stock serving as a backup for the former. That’s why we consider that optimizing
the delivery time within the different compound regions can have such a positive impact,
especially when there are epochs in the time range where BTS cars represent a larger
percentage in the weekly deliveries than BTO cars, as is shown in Figure 3.8.
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Table 3.7: Main descriptive values for Time in Compound per Order Type individually
collected in the production and deliveries dataset.

Build-to-Order Build-to-Stock
Private Customers Fleet Cars Dealerships stock Importer Stock

Min. [days] 1 1 1 2
Mean [days] 25 51 77 60
Std. Dev. [days] 29 49 67 54
Q1 [days] 12 20 26 20
Q2 [days] 16 35 55 41
Q3 [days] 26 65 113 88
Max. [days] 516 716 554 490
No. of Variants 1393 1017 1263 454
No. of Cars 38846 20326 46099 8056
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Figure 3.7: Distributions per Order Type of Time in Compound registered in the produc-
tion and deliveries dataset.
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Figure 3.8: Distributions per Order Type of Time in Compound registered in the produc-
tion and deliveries dataset along the entire timespan.
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3.2 Sales Record

The compilation of sales records commenced in April 2017 and concluded in January
2020, encompassing both months. This period translates into 149 weekly instances. The
timeframe makes reference to the day when customers reserve their vehicles at the deal-
erships, subsequent to the payment of a booking fee. Consequently, the decision has been
made to designate this moment as the purchase date, rather than using the delivery date.
The sales data includes information about the location of the purchase and provides a
comprehensive description of the vehicles, such as the car model, trim level, engine spec-
ifications, and color, aside from the engine. However, a classification tag distinguishing
between different order types is absent. Nevertheless, the firm provided registers exclu-
sively related to regular customers, excluding fleet cars from the sample. Furthermore,
to safeguard privacy, the company has taken measures to anonymize the vehicles by re-
moving all identifying markers, including the buyer’s name and the manufacturing serial
number. The dataset comprises over 120,000 rows of data.

Table 3.8 shows the number of elements found in each attribute within the sales
record. Unfortunately, the information about the alloy wheels is not available in the
dataset. The gap between these values and the ones shown in Table 3.3, especially in
engines, are consequence of the temporal mismatching between both datasets. In other
words, the sales record only registers the date of the purchase, not when those vehicles
were manufactured. From Table 3.9, SEAT Ibiza exhibited the highest weekly sales figures
among all car models, with a maximum of 613 units sold per week. Additionally, it is the
most represented car model within the sales (35229 units sold). On the other hand, SEAT
Ibiza together with SEAT Arona have the lowest minimum weekly sales, directly affecting
the magnitude of the the standard deviation values. The starting epoch has no activity.
For the SEAT Arona, it represents the launching of a totally new product. In the other
case, SEAT Ibiza suffered a version update, meaning the product was replaced. Sales
records from the old version are not available in this study. The overall trend suggests
that Leon family models are relatively more balanced. The same descriptive analysis of
the main statistics for the weekly sales is done in Table 3.10 at the compound region level.
Llagosta first, and afterward MADRID, both are the compound regions with the largest
number of sales, average, and rest of metrics. The last position is occupied by CMC (6547
cars sold). Nevertheless, it is not the place with the lowest minimum weekly sales, tied
with SANTANDER. This position is occupied by CHESTE. Lastly, Table 3.11 collects
the name of the element with the largest and least sales volume in total in the sales record
per attribute. The homogeneity in the best-seller TRIM levels is not reflected in the least
popular ones. The same occurs in the exterior color of the vehicle. The diversity is large
in terms of the engine for both cases. On the contrary, compound regions are a loyal
representation of the previous learnings.

Table 3.8: Number of available elements in each attribute for each car model in SEAT
sales record.

TRIM Level Exterior Color Engines
SEAT Arona 4 48 8
SEAT Ibiza 4 12 12
SEAT Leon 5D 5 18 31
SEAT Leon ST 6 19 39
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Table 3.9: Main descriptive statistics for the weekly car sales per car model in the sales
record

SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST
Min 0 0 11 4
Mean 192 236 203 92
Std. Dev. 119 116 81 38
Q1 143 172 147 66
Q2 208 231 189 84
Q3 256 300 248 110
Max 544 613 536 197
Total 28612 35229 30300 13663

Table 3.10: Main descriptive statistics for the weekly car sales per compound region in
the sales record

CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER
Min 1 4 2 0 7 1
Mean 44 145 130 96 182 126
Std. Dev. 22 61 66 46 76 59
Q1 29 108 85 68 132 85
Q2 47 139 122 89 175 117
Q3 59 174 164 121 228 151
Max 97 351 346 260 400 326
Total 6547 21610 19416 14315 27080 18836

Table 3.11: Element with the most and least sales volume per car model in the sales
record data

SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST
TRIM Level Max Style Style FR FR

Min Reference Xperience Cupra Xcellence
Exterior Color Max B4B4 B4B4 2Y2Y 2Y2Y

Min L5F5 F5F5 S3S3 E4E4
Engine Max KX CV IX 2X

Min GZ GZ TY NU
Compound Max LLAGOSTA LLAGOSTA LLAGOSTA MADRID

Min CMC CMC CMC CMC



CHAPTER 3. EXPLORATORY DATA ANALYSIS 27

3.3 Car Configurator Data

The visits to the SEAT car configurator Spanish webpage are from the same period as the
sales records, from April 2017 to January 2020. The clickstream data gives access to know
all the components and attributes of the configuration explored by the users, from which
geographical location it was scouted, how many times the user has done the same search,
and even, in which step of the process the configuration was interrupted. Nevertheless,
the firm exclusively extracted the information of the users who have completed all the
steps within the webpage. Despite this restriction, the amount of data collected by the
online tool is massive. In our context, plain clickstream data contains close to 19M rows.
The webpage has no cost to the user and there is an absence of mandatory login. However,
each user is individually identified by means of a unique alphanumeric code derived from
their internet browser’s cookies. This is the only possible tracking approach.

The cleaning process in which the clickstream data has been involved includes deleting
any null values in the relevant variables of the dataset. For example, accessory items of
the car have not been registered in the 9% of the samples; car equipment in 2%; and more
than 100,000 rows have null ID. In the same way, all users placed outside the Spanish
national territory are neglected. Therefore, after the cleaning procedure, the information
is enclosed in 3,689,418 rows for 1,890,579 visitors. Beware that now each row represents
a car variant and a date. A visitor is defined as a user of the online tool who accesses the
webpage once a day to create a single car variant. Specifically, if an individual configures
the same car variant multiple times within a single day, it is counted as a single visitor.
However, if the user explores different car variants on the same day, each configuration is
considered a separate visit. This decision is based on the premise that the aim is to assess
the level of interest in car variants. It is proposed that growth in car variant visits by
multiple users over an extended duration may indicate a triggering effect for future sales.

The data is described, firstly, in Table 3.12. Once again, alloy wheels are a feature
not available. In addition, the range of the figures lies in the order of the magnitude of
the ones seen in the sales record. With respect to the weekly performance of the visits to
the car configurator, Table 3.13 shows the main descriptive stats at the car model level.
On the other side, Table 3.14 do it per compound region level. Once again, the zero
visits to SEAT Ibiza and SEAT Arona are a consequence of the aforementioned situation.
Despite this background, these models are averaging the largest number of visits per week.
Nevertheless, SEAT Leon 5D is the most popular car model among the users of the online
tool. Regarding the geographical location, the data has been aggregated according to the
area of influence of each compound region. Therefore, visits received from the MADRID
region overpass the rest of the regions, in which LLAGOSTA occupies the second place
and the CMC area the last one. These habits are confirmed in Table 3.15. Other insights
are the preference of SEAT Arona visitors over the Xperience trim, being the latter the
least popular trim for the rest of the car models. Regarding exterior colors, the most
popular ones are shared by vehicles of the same segment, whilst the least visited colors
are more diverse. On the contrary, there is consensus on the least preferred engines from
part of the users of the car configurator.
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Table 3.12: Number of available elements in each attribute for each car model in SEAT
car configurator data.

TRIM Level Exterior Color Engines
SEAT Arona 4 47 8
SEAT Ibiza 4 14 12
SEAT Leon 5D 5 15 24
SEAT Leon ST 6 14 33

Table 3.13: Main descriptive statistics for the weekly car configurator visits per car model
in the car configurator data

SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST
Min 0 0 699 385
Mean 5096 6749 6803 3360
Std. Dev. 3444 3161 2338 1133
Q1 3508 4524 5158 2361
Q2 5305 6292 6613 3672
Q3 6487 8103 8259 4153
Max 17647 21472 13832 6286
Total 759266 1005556 1013584 500633

Table 3.14: Main descriptive statistics for the weekly car configurator visits per compound
region associated with the geographical access point of the user in the car configurator
data

CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER
Min 56 976 386 332 726 403
Mean 462 7161 2900 2381 6258 2846
Std. Dev. 171 2342 1068 878 2127 1023
Q1 335 5462 2117 1659 4519 2121
Q2 436 6920 2695 2358 6156 2803
Q3 560 8937 3679 3068 7713 3572
Max 900 13146 6328 4708 11088 5543
Total 68846 1067007 432072 354721 932410 423983
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Table 3.15: Element with the most and least visits to car configurator per car model in
the car configurator data

SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST
TRIM Level Max Xperience FR FR FR

Min Reference Xperience Xperience Reference
Exterior Color Max B4B4 B4B4 2Y2Y 2Y2Y

Min 9P9P W0W0 L5S7 T4T4
Engine Max CV KX XX XX

Min GZ GZ TZ TZ
Compound Max LLAGOSTA MADRID MADRID MADRID

Min CMC CMC CMC CMC
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3.4 Comparison Between Sales Record And Car

Configurator Data

The previous sections give insights into the sales record and the clickstream data of the Car
Configurator webpage individually. However, as the customer journey normally begins
with searching for information and finishes when purchasing, it is relevant to comprehend
the relationship between both data sources. Figure 3.9 shows that the SEAT Ibiza and
the SEAT Leon 5D are the most popular car models in both sales records and online
visits. SEAT Arona occupies the third place in the two categories, and SEAT Leon ST
closes the ranking. This trend has been constant for all the years, except 2017. It is
not atypical, due to it refers to the launching moment of the SEAT Arona. The market
behavior was impacted by the introduction of the new model until it was corrected in the
subsequent years.

0 10 20 30 40 50

SEAT Arona

SEAT Ibiza

SEAT Leon 5D

SEAT Leon ST

TOTAL REGISTERS (%)
Car Configurator
Sales

0 10 20 30 40 50

2017 (%)

0 10 20 30 40 50

2018 (%)

0 10 20 30 40 50

2019 (%)

0 10 20 30 40 50

2020 (%)

Figure 3.9: Comparison of TMA Level registers within the Car Configurator webpage and
Sales record [%]

Regarding the common attributes, the analysis with respect to TRIM Level is visible
in Figure 3.10. It might look that Xcellence and Cupra trim are residuals. However,
the poor figures are due to they are exclusive equipment level of the Leon family. The
contrary occurs for FR trim. Except for SEAT Arona, it is consistently the favorite choice
by the users of the Car Configurator webpage. Nevertheless, this is not a mirror of the
reality. Sales records do not reflect this behavior. People have a preference to configure
the more expensive car variants, but they are not the ones they finally acquire. There is a
mismatch between Style and FR trim levels. It is manifest why there is an opportunity to
data mining the clickstream information and isolate the users with real purchase intention.
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Figure 3.10: Comparison of TRIM Level registers within the Car Configurator webpage
and Sales record [%]

The second attribute to discuss is the Exterior Color of the vehicle, shown in Fig-
ure 3.11. On this occasion, the information is solely exposed per car model, as there are
colors that exclusively belong to one of them. SEAT Arona is the model with the largest
number of combinations, as a consequence of the bicolor modality. The roof and car body
can have different colors. On one side, car configurator data counts 47 different colors,
whilst the sales record collects 48 unique colors. The merge of both datasets derives into
46 common colors, although all of them are shown in the image. Among them, the color
named B4B4 is the favorite in the online world and the physical environment. However,
this trend is not preserved for the rest of the instances. The second most popular online
color, called 9550; is not the second in sales, being E10E. This behavior is repeated for
the SEAT Ibiza. The first place is occupied by the same color, B4B4, in both categories,
but this overlap does not continue for the next positions. On the contrary, the profile is
more stable in the customers of the LEON family. The disproportion between the car
configurator and sales record registers is not as much evident. For both car models of the
family, color 2Y2Y is the front runner in the two categories. The same for the second
and third variants. However, the most noteworthy imbalance is observed in color 9550.
It is one of the most visited, but eventually, customers do not acquire it in the same
proportion.

The analysis is executed in the engine of the vehicle, as it is exposed in Figure 3.12.
The number of available engines in the sales record is equal to or superior to the ones
offered in the clickstream data. Each car model has its unique engine selection. The only
exception occurs with an engine called MX, which can power all the vehicles. Among all
car models, there are engines in which the discrepancy between the sales and online visits
is remarkable. Since the engine’s choice is attached to the TRIM level, this performance
was expected.
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Finally, insights into the performance done at the geographical level are gained. Fig-
ure 3.13 assesses the behavior at the compound level, whilst Figure 3.14 does it at province
granularity. LLAGOSTA and MADRID, the largest Spanish regions, attract the most vis-
its to the webpage. Although the sales record has the core in these locations too, it does
not mean that there is no activity in the rest of the country. The well balanced proportion
suggests that users normally do not move to other regions seeking a good product, but
they prefer to close the deal with the dealership in their area.
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Figure 3.11: Comparison of Exterior Color registers within the Car Configurator webpage
and Sales record [%]
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Figure 3.12: Comparison of Engine registers within the Car Configurator webpage and
Sales record [%]
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Chapter 4

The Proposed Solution

The solution presented in this research is structured following an ascending complexity
scale. What this means is the difficulty level the company should face to execute the
different options. Consequently, the first step consists of reallocating the already man-
ufactured vehicles to a new destination to improve their purchase likelihood; whilst the
proposal evolves up to updating the same attribute meanwhile the cars are in the man-
ufacturing line. In this chapter, the diverse ways of procedure utilized to overcome the
existing challenges in the construction of the solution are detailed. Essentially, the dis-
coveries made in the thesis have been released in the form of journal papers or congress
proceedings published, or pending to be published.

4.1 Compound Reallocation Of Manufactured Cars

Automotive manufacturers are witnessing a paradigm shift in the traditional vehicle pur-
chase process and are taking decisive action. In recent years, automotive OEMs have
been transitioning from the conventional dealership system to the agency model, a trend
reported by both newspapers [98, 99, 100] and consulting companies [101, 102, 103]. In
the former system, dealers purchased cars from manufacturers based on their requests,
subsequently selling them to customers and profiting from the transactions. As a re-
sult, the mission of manufacturers can be said to revolve around satisfying the needs of
dealerships rather than those of customers.

However, the emerging market trend implies that dealerships will serve as distribution
points, diminishing their influence in the vehicle purchase process. Consequently, manu-
facturers must excel in aligning with customer demand as it directly impacts the financial
health of the company. In this context, Machine Learning (ML) can prove to be valuable
to automotive OEMs in optimizing vehicle allocation. Given that car brands continue
to employ the Built-To-Stock manufacturing strategy, shipping vehicles to regions with
the highest likelihood of purchase presents a significant competitive advantage. On one
hand, being able to swiftly deliver requested vehicles to customers is an effective way to
enhance customer satisfaction. On the other hand, each day a car spends in the com-
pound awaiting a customer incurs logistic costs and may necessitate price discounts to free
up space. For instance, note [104] found the correlation between inventory volume and
sales in the American automobile market. It is a clear explanation about how dealership
system works. The conclusions are that given how vehicles were allocated to dealerships,
adding inventory actually lowered sales.
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In consequence, it is proposed answering to the problem by conducting a binary clas-
sification procedure, assisted by algorithms of machine learning. The features of the
problem will be the components defining a car variant, whilst the target is the delivery
type a vehicle can be categorized. A car variant is defined as the combination of Car
Model, Equipment Level (TRIM), Exterior Color, and Engine. Additionally, the Order
Type is a parameter to consider, as it indicates whether the car is BTO or BTS. The
first step consists of assigning classes to each car in the dataset according to different
time thresholds. These binary classes are Fast Delivery and Normal Delivery, FD and ND
hereinafter. Whether a car in the dataset spent fewer days than the threshold, it is tagged
as FD. The threshold spans from 1 to 6 weeks waiting in the compound region. We want
to explore the performance of the methodology in an extreme case, such as delivering
cars in 1 week, although data does not follow this trend. On the other hand, the highest
median in Table 3.5 is close to 6 weeks remaining in the compound region. We exclude
from the range the numbers of weeks associated with percentile-75, owing to we consider
that a car waiting more than 2 months cannot be catalogued as FD. Correspondingly, the
weight of the FD class in the production and deliveries dataset varies with the threshold.
Table 4.1 reflects the performance of the class per compound region, whilst Table 4.2 does
it per car model. LLAGOSTA and CHESTE compounds consistently are the places with
the largest rate of cars cataloged as Fast Delivery, whilst CMC is the lowest. Regarding
car models, SEAT Arona has the best values, in opposition to SEAT Ibiza, with the least
number of Fast Delivery cars.

Table 4.1: Fast Delivery (FD) class percentage per compound region and threshold time,
or label, over the total number of vehicles in each compound region

7 days 14 days 21 days 28 days 35 days 42 days
CMC [%] 1.13 7.47 18.27 29.6 38.93 47.27
MADRID [%] 5.54 25.68 40.94 49.79 56.45 61.32
LA RODA [%] 5.64 21.47 36.12 45.13 51.52 57.12
CHESTE [%] 5.8 26.87 42.64 52.09 58.17 62.94
LLAGOSTA [%] 5.74 26.97 44.29 54.67 61.88 66.95
SANTANDER [%] 3.52 15.83 35.1 48.13 55.92 61.8

Table 4.2: Fast Delivery (FD) class percentage per car model and threshold time, or label,
over the total number of vehicles of each car model

7 days 14 days 21 days 28 days 35 days 42 days
SEAT Arona [%] 6.21 27.31 45.46 56.07 63.09 68.09
SEAT Ibiza [%] 4.27 19.75 33.68 43.55 50.66 56.65
SEAT Leon 5D [%] 4.79 21.29 37.2 47.38 54.76 60.11
SEAT Leon ST [%] 4.95 23.81 41.21 51.53 58.09 63.34

The subsequent stage in the roadmap involves the development of a dependable clas-
sification model for each threshold day. This model will be based on the car variant and
vehicle’s order type. The literature review has identified a collection of Machine Learn-
ing algorithms that have already demonstrated efficacy in solving problems within an
industrial context [105, 106, 107, 108, 109, 110, 111, 112, 113]. On one hand, there are
algorithms rooted in heuristic trees, while on the other hand, there are boosting-based
algorithms. Decision Tree (see Section 5.1 for more details) and Random Forest (5.2)
appoint the first group, whilst XGBoost (5.3) and CatBoost (5.4) are encountered in
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the second family. The listed algorithms will be tuned to obtain the maximum results.
For that purpose, both concepts of hyper-parameters tunning and Cross-Validation will
be employed (5.5). BayesSearchCV unifies these two methods by iteratively exploring
the hyper-parameter space based on previous evaluation results and adjusting its search
strategy.

The next point is the selection of the most efficient algorithm from the aforementioned
list. This task is solved by employing the most appropriate metric. In the case of binary
classification problems, there are plenty of suitable options. One of them is accuracy,
i.e., the ratio of true results to the total number of cases. It is a preferred choice for
well-balanced problems. However, in this framework, it is not always applicable. If it is
aimed to obtain certainty regarding the proportion of predicted positives that truly belong
to the positive class, precision is the appropriate metric. Conversely, recall measures
the proportion of actual positives that are correctly classified. In this specific context,
it is desirable to optimize both precision and recall. It is wanted to ensure that cars
are correctly classified as ”Fast Delivery” (i.e., precision) while capturing as many Fast
Delivery cars as possible (i.e., recall). The solution to this requirement lies in the F1
score, which is defined as the harmonic mean of precision and recall. The F1 score
is particularly suitable for unbalanced datasets, addressing one of the shortcomings of
accuracy. Although there are other metrics such as binary cross-entropy or the area
under the ROC curve (AUC ROC), previous studies [114, 115] have demonstrated the
effectiveness of the F1 score in binary classification problems within the industrial sector.
Additionally, the winning estimator will pass an interpretability assessment. The goal is
to comprehend the most helpful features to execute the classification task. Two techniques
are used to fulfill this purpose. The first approach is computed according to how frequently
and to what extent each feature was used to make decisions. These magnitudes are
extracted thanks to the property feature importances of the algorithm’s library. On the
other side, it is possible to gain the relevance of each feature per each single observation.
The technique behind this concept is called SHAP (SHapley Additive exPlanations) values
(see explanation in Section 5.6).

Afterward, the highest-performing classifier is employed to develop the reallocation
strategy. The approach involves directing the cars towards compound regions classified
as ”Fast Delivery.” To accomplish this, car variants (including Order Type) pertaining
to each compound region are enumerated. Subsequently, if the output of the fitted algo-
rithm corresponds to the ”Fast Delivery” category, the car variant conserves its original
destination. On the contrary, the destination changes to one of the remaining alternative
compounds. In regions where the car variant is classified as ”Fast Delivery,” the car variant
alters its path. However, if none of the alternative destinations are deemed valid options,
the car variants maintain their original destination. The pseudo-code representation of
this procedure is depicted in Algorithm 1.
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Algorithm 1 Reallocation of cars to the most suitable compound region

1: procedure Reallocation strategy
2: Inputs: car variant, original compound
3: compound = original compound
4: if car variant & compound == Fast Delivery then
5: compound region = compound
6: else
7: for compound in alternative compound do
8: if car variant & compound == Fast Delivery then
9: compound region = compound
10: else
11: compound region = original compound

12: return compound region

Finally, the outcomes of the reallocation process are assessed. Specifically, the time
distribution per compound region is examined before and after the reallocation process
under two approaches: (a) vehicles preserve the same number of days from the original
compound; (b) the time in compound is estimated from the existing distribution of days
of the vehicles with the same characteristics in the new location. It is assumed that the
reality would be between these two scenarios. However, it is important to note that the
capacity of the compound regions was not considered during the destination changes.
Additionally, no criteria were included to determine the selection between two or more al-
ternative compounds. Nevertheless, the region with the most significant disparity between
the compound and demand is recommended as the discrimination criteria.

4.2 Car Configurator Webpage As A Reliable

Source
The reallocation strategy is a good starting point to optimize the logistics of the car
brand. However, the interest of the potential customers is absent. The hypothesis under
study is that this information can be extracted from the data gathered from the SEAT
Car Configurator (CC) webpage. The procedure to validate this concept is based on
correlation and forecasting.

The customer starts the purchasing path with an exploratory phase, followed by the
decision stage, and ends with the acquisition moment within the dealership. There exists
a lag between the last and first steps. The objective consists of gaining knowledge about
this delay by means of the correlation between the sales and the clickstream data. The
moment the correlation is maximum defines the dimension of the period. For that purpose,
both information sources are transformed into time series and shifting the sales data over
the webpage information. The duration of the shifting lasts for 52 points, i.e., the number
of weeks within a full year. On the first trial, the process is implemented at the total
weekly sales and users of the CC webpage per car model. Afterwards, the outputs are
validated in second granular levels. These ones are defined by joining the color or the
compound destination to the car model. The choice of these granularity levels is driven
by logistical considerations. These elements are interchangeable without difficulties and
independent of spare parts, in opposition to alloy wheels, for instance. We expect to
observe the same behavior in CC users but reinforced. Hence, this learning is employed
to divide data into time chunks, which will be helpful in the next step.



CHAPTER 4. THE PROPOSED SOLUTION 39

Within each time chunk, the last month and a half defines the test period. It will
serve to predict the sales volume of each car variant, also called the second granular
level. Additionally, this division is intended to face all the stages of the product life cycle:
introduction, growth, maturity, and decline. Hence, the construction of forecast weekly
mix sales will be possible. They are defined as the percentage of sales each car variant has
over the weekly sales volume. These mixes are derived from a set of ML algorithms. They
are trained with the rest of the data of the corresponding time chunk. The algorithms
listed are ARIMA(X) (5.7) and XGBoost (5.3). However, we distinguish between two
modalities: univariate and multivariate. The first one only considers past sales data. The
latter ones include additionally the information from the automotive brand’s webpage.
We use these techniques to perform the sales prediction of each car variant.

Inside each time chunk and the car variants belonging to it, some rules were fixed.
Firstly, only those colors and compounds with any information from both sales and click-
stream data during the test period of each chunk were predicted. Hence, for those algo-
rithms where it is possible to estimate in advance the most precise parameters, such as
ARIMA, autocorrelation function and partial autocorrelation function were employed to
obtain the moving average (q) and autoregressive parameter (p), respectively. Stationar-
ity, or order of integration (d), of the time series is analyzed by means of the augmented
Dickey-Fuller test. In case this procedure is unsuccessful, parameters (p,q) are estimated
as first order, by default. For the multivariate version, i.e., ARIMAX, the same tools were
applied to perform the forecasting of the exogenous variable. For the case of algorithms
of boosting nature, there were no shortcuts, and all parameter combinations within the
range of the training set were evaluated. In the case of the univariate version, the algo-
rithm explored up to 3 months of previous sales records to perform the forecast. For the
multivariate algorithm, the same methodology took over to predict the exogenous series.
Afterwards, the predictions are guided by a rolling strategy. In other words, each point
within the test of the time chunk will be predicted individually and using all the original
preceding data. It is a scenario to gain accuracy with respect to longer horizons. We
select parameter combinations with the lowest mean average error (MAE). The different
techniques are assessed under this metric, all car variants and time chunks. It has been
decided to employ MAE as an evaluation metric because outliers might be found in the
sales record of each variant and this metric is very resistant to these events.

Once the previous step is completed, these outcomes are assessed with respect to the
real weekly mix sales. Hence, the results obtained from univariate techniques will be
compared to multivariate ones. Traditional metrics such as MAE and root mean squared
error (RMSE) were discharged because they are scale-dependent. They are useless to
compare different time chunks and car models. One solution arrives in the form of mean
average percentage error (MAPE). However, this metric is not able to deal with zero
values in any of the series. That is why we propose to compute the correlation between
the actual weekly mix sales and the forecast mix. The correlation takes the form of R2
Score. We are inspired by work [116] as a valid framework to compare different forecasting
algorithms in the automotive industry. Conclusions will arrive after following a sequential
procedure. Firstly, the outputs are averaged over the total length of weeks and time chunks
the dataset has. The second step consists of averaging but over each time chunk. Acting
in this way, we gain more detail about the performance of each technique. Lastly, the
assessment process finishes with the third step. At this level, we count what technique
provides the best metric for each week of the test set within each chunk.
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4.3 Quantitave Reduction Of Car Configurator Data

The users’ quantitative activity is summarized in two metrics: (a) Number of car variants;
and (b) Time between connections (TBC). The first item gathers how many car variants
have been explored by any users of the online tool. In this scenario, the car variant is
defined as the union of car model, trim level, engine, exterior color, and compound region
linked to the location of the user. On the other side, the number of days between the first
and last connection to the car configurator webpage per each user is stored in TBC. The
intention is to track the purchase interest, concentrated on epochs. This behavior can
be captured by this metric, instead of any other temporal feature, such as the number of
days the user has entered the webpage. The summary of the users’s activity is shown in
Table 4.3. All users have configured, at least, one car variant, but the average is nearly
two car variants. It is remarkable the maximum number of car variants done by a single
user is nearly 5000 different. However, this value is affected by the null ID. It is a unique
alphanumeric code for all those users who are impossible to track for any reason. From the
point of view of time between connections, 75% of the users have accessed only one day
to the online tool, but the average is nearly 21 days from the first to the last connection.
The statistics prove that they are distributions with very long tail or outliers. For more
details see Figure 4.1, where it is plotted without the influence of the null ID.

Table 4.3: Main descriptive statistics of users’ activity on the Car Configurator automotive
OEM webpage.

Min Mean Std. Dev. Q1 Q2 Q3 Max
No. of Car variants 1 1.67 4.06 1 1 2 4924
Time between connections [days] 0 20.87 77.84 0 0 0 1031

0 50 100 150 200 250 300
Number of Car Variants

101

103

105

Nu
m

be
r o

f U
se

rs
 (l

og
)

0 200 400 600 800 1000
Time Between Connections [days]

102

103

104

105

106

Nu
m

be
r o

f U
se

rs
 (l

og
)

Figure 4.1: Distributions in log-scale of the quantitative activity of the users of the Car
Configurator webpage per Number of Car Variants configured (left) and days between
first and last connection (right).

The objective is to decrease clickstream data volume without compromising signifi-
cance, defined by the correlation between Car Configurator webpage visits and company
sales. The way of procedure is inspired by the work of [117]. They are capable of match-
ing clickstream and offline purchasing data of a webrooming enterprise that sells doors
to other industries. Hence, they introduce a dynamic decision support model that aug-
ments the classic inventory planning model. Even so, it is infeasible to perform the same
association they did, that’s why we follow another strategy in the form of correlation.
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However, for the reasons aforementioned, the correlation is not straightforward. Firstly,
customers research online the product and, after a while, they head to the dealer shop in
order to purchase it. There is a delay between these two moments to give consideration to
it. We have established this delay at 8 weeks. This election is not trivial. It enters in the
epoch of the largest correlation discovered in the reliability experiment of Car Configura-
tor data. Additionally, the reasons are supported by the manufacturing flow followed by
the car manufacturer. Section 3.1 already relates the SEAT production cycle. Although
the assembly stage lasts one week, previously it is required a preparation phase where
the car’s attributes are being defined. This period can span up to 6 weeks. It includes
preparation of cars’ wire-harness system, and defining sequence in the production line.
Therefore, we overlook and expand the range for one week.

Acknowledging this delay period, the computation strategy is as follows. Rather than
lagging the full sales record over the entire CC time series and performing the computation,
we have proceeded monthly. Figure 4.2 illustrates the method. For each month of CC
data within the time range, sales records from 8 weeks in advance, with respect to the
first week, are selected to compute the R2 score. The sales range extends as much as the
month’s number of weeks.
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Figure 4.2: Example of R2 Score monthly lagged computation strategy. Soft lines are
full weekly time series for Car Configurator data (orange dashed line) and Sales record
(blue line). The larger width indicates the period range to compute R2 Score between
the inputs. There exists 8 8-week delay between the beginning of both periods.

We propose to apply diverse filters through the entire clickstream data. These filters
are based on users’ quantity tracking rather than qualitative performance. In other words,
how much they have used the tool instead of what they have selected. It has been shown
in Table 4.3 that minimum values are not the pain points. For the outliers detection task,
we have established two limits. The first is more restricted and it uses the Q3 value of the
distribution. Meanwhile, the other one is the popular technique of inter-quartile range
(IQR). For more details, see for instance book [118].

The filtering sequence is as follows. The first one consists of eliminating users that have
accessed the automotive brand’s webpage to configure exclusively one single variant. On
the whole, customers with purchase intention normally compare products, but especially
prices as it is pointed out in reference [119]. As we do not have this last magnitude, we
focus on users with Number of car variants larger than one. We call it rule1. Secondly,
we pay attention to the attribute TBC. The purge is motivated by the users’ acquisition
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“urgency”. In other words, if the number of days exceeds by far the normal behavior of
the population, it means that purchasing a vehicle is not a high-priority issue for him. The
first bifurcation along the filtering process is faced. The Q3-based limit is called rule2A
while the threshold established by IQR is named rule2B. Finally, it is necessary to return
to the Number of car variants each user has consulted. The normal flow a person follows
in these online tools is such as: (1) the user selects all attributes he wishes; (2) he realizes
the outcome is not affordable, (3) he modifies the product until finding a commitment
between price and wished characteristics. Therefore, if the number of variants analyzed
during this procedure surpasses the typical practices, it is concluded he is doing window
shopping. Once again, the outliers detection thresholds aforementioned are repeated.
Consequently, they are applied into the outcome data from rule2A, which derives into
rule3A1 and rule3A2; and from rule 2B, whose sons are rule3B1 and rule3B2. A
summary of all filtering criteria is placed in Figure 4.3. From the latter, only the most
restricted rules are chosen to build weekly CC filtered clickstream time series.

Lastly, it is assessed how the filtering procedure has affected the significance of the
dataset. In case it is preserved, it has been found a procedure to reduce the impact of the
main concerns of Big Data systems. The manner to measure this indicator is by means
of statistical analysis. Significance outcomes from raw clickstream data are used as the
reference frame. Therefore, the equivalency of filtered car configurator data outputs with
respect to the benchmark is under analysis thanks to statistical Kolmogorov-Smirnov test
(see Section 5.9). To indicate how much equivalent both distributions are, the flag is
the resulting p-value. The larger the p-value obtained, the larger the certainty of the
similarity. More details can be found in the book [118].

Figure 4.3: Car Configurator clickstream data filtering process.
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4.4 Qualitative Filtering Of Car Configurator Data

The Car Configurator (CC) website has proved its validity as a reliable source. Addition-
ally, it is found a path to overcome the obstacles that represent a Big Data environment.
On the contrary, it persists the challenge of discriminating the users of the online plat-
form: (a) people with real purchase intention; and (b) users doing window-shopping. To
accomplish this effort, genetic algorithms will explore throughout the data gathered by
the Car Configurator webpage. Similarly, as it was executed in the previous Section 4.3, it
will seek to identify the characteristics that maximize the correlation between clickstream
data and car sales.

Customer profiling is performed at two levels. In the first one, the entire filtered
clickstream data is correlated with the totality of the sales record. In order to achieve
the best results, a genetic algorithm (go to Section 5.8 for learn all the details) takes
place under different boundaries. These limits are defined by the set of number of rules,
population size, and number of generations. These three parameters establish the search
space. Afterward, the genetic algorithm executes five independent trials under identical
initial conditions. The goal is to ensure the reliability of our findings. Consequently,
outcomes are averaged and compared among them and with the benchmark value. The
latter is achieved by applying the fitness function to the plain clickstream data. In the
end, the best set of genetic algorithm parameters is chosen. It follows to select the best
solution candidate and evaluate it individually. The frequency of the elements chosen
by each rule is analyzed and related to the position they place in the clickstream data.
Additionally, the fitness of each single rule that composes the best candidate is computed.
Therefore, it is understood the weight each individual rule has and it is possible to find
which are the Pareto optimum. In other words, what are the subset of filtering rules
within the candidate that represent around 80% of the correlation power. Afterwards,
associate them with the sales frequency rate.

Thereupon, the second phase of the study begins. It is carried on at the compound
region level. The sales record is gathered according to the compound region they belong.
For each one of them, the genetic algorithm is executed to optimize the correlation with the
clickstream data. The chosen inputs are the winning ones from the previous experiment.
Later on, the results are compared with baseline values. Subsequently, a detailed analysis
of the filtering rules is performed. This analysis includes not only a count of the number
of provinces that are included in the best candidate for each compound but also how
they are segmented. Specifically, it is noted which locations belonging to the compound
are considered, which ones were discarded, and which ones were added from outside the
compound’s geographical domain. Finally, a fitness comparison is conducted between the
first and last groups. It determines the weight each segment carries in the final solution.

From the point of view of the chromosome, it is structured with the following at-
tributes: day of the week, car model, trim level, engine, exterior color, and geographical
location. The dimension of the choromosome is as much big as it is established by the
number of rules parameter (see Table 5.1 to learn about the composition of the chromo-
some). Therefore, the population gathers a set of feasible solutions ranked according to
their quality, i.e., the fitness. In order to compute it, it is followed the same strategy
illustrated in the previous Figure 4.2 to obtain the significance. The correlation impos-
ing an 8-week lag between the sales and the clickstream data is preserved. Nevertheless,
the fitness averages these outcomes to reduce them into one single number, rather than
delivering the array. The larger, the better. It is a maximization problem and the theo-
retical limit value is 100%, i.e., perfect correlation every month. The fitness is computed
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between the sales record and the clickstream data filtered according to the set of rules of
the chromosome. In case there are no users that fulfill the filtering criteria, the fitness is
penalized according to the maximization problem requirements.

Additionally, it has been incorporated another stopping criterion based on antistag-
nation of fitness. In case the fitness does not vary larger than tolerance for a number of
consecutive generations, the mechanism is triggered. This routine can exclusively be re-
peated for five attempts. After that, the algorithm is interrupted. In this framework, the
permitted tolerance is 0.001 and the number of consecutive generations, to activate or de-
activate it, is 5% of the population size. It consists of increasing the mutation probability
for the next generations until the mutation probability returns to its original value.

4.5 Genetic Algorithm Improves Demand

Forecasting

The skeleton of the genetic algorithm utilized in Section 4.4 (and described in Section 5.8)
is conserved. The chromosome structure together with the selection, the mutation, the
crossover and the elitism mechanisms are the same. However, the fitness function has
been adapted to fit the new needs of the problem. Rather than maximizing the correlation
between the clickstream data and the sales record, the goal is to decrease the prediction
error of the car variant demand. From hereinafter, they are referred to as Variant of
Interest (VOI) prediction, as they are computed using exclusively the clickstream data of
the car variant under study. On the other side, the predictions derived from the genetic
algorithm have been named genetic or chromo, due to they come from the filtering rules
found in the chromosome. The chosen metric to rule the fitness function is the mean
average error (MAE). It is the magnitude employed to quantify the performance in the
initial demand prediction, the ones that confirmed the reliability of Car Configurator
data.

Nevertheless, the focus will be on finding the set of optimum parameters that deliver
the best figure of merit. In other words, the number of cases of MAE reduction with
respect to the VOI benchmark from all the car variants and time chunks analyzed. In
case there is more than one candidate, to make a decision on which is the winning subject,
it would be explored which one of the aspirants provides more forecasting error reduction.
This metric is defined as the average of the difference between the MAE from the VOI
forecast and the MAE of the genetic forecast for each time chunk and car variant. This
procedure will take place only on the initial demand prediction which is considered to
have the largest margin of improvement.

The parameters encompass a range of 50 to 150 rules per chromosome, 20 to 300
chromosomes within the population, and 20 to 200 new generations. It is not attended to
scout a search space radically different from the one surveyed in the previous experience
with genetic algorithm. The conditions of mutation, crossover, tournament, and elitism
probabilities are unaltered.

Finally, the last perspective of the final candidate comes from the assessment of the
weekly sales mix, real vs forecast ones, based on R2 Score. This scenario accommodates:
(a) averaging the outcomes over the total length of weeks and time chunks; (b) and
averaging over each time chunk. In this last attempt, the outcomes derived from the
genetic forecast are compared with the ones obtained in the VOI prediction.
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4.6 Production Modification Based On Improved

Forecasting
Using the innovative approach of applying evolutionary computation to the data gath-
ered by the Car Configurator webpage has two positive consequences. On one side, the
reliability of the information is treated from a qualitative point of view. On the other
side, more accurate forecasts of customer demand are extracted. These predictions will be
used to update the current cars in the production line in terms of non-dependant electrical
components.

Following the explanation given in Section 3.1, the update will exclusively impact the
Build-to-Stock (BTS) vehicles, and during the time interval occurring between FU and
A500. It will be effective for those cars that are one week before A500, named Point of
Modification (PM). These modifications search to minimize the gap between the estimated
stock composition and the future demand distribution. In other words, the weight each car
variant has over the total amount of vehicles. A minimum gap means that the compound
region accommodates vehicles in the proportion that customers call. The mathematical
expression to be fulfilled is Equation 4.1.

F (p̃PMi
(t))m : min

 N∑
i=1

(
ŝi(t + 3)

Ŝ(t + 3)
− d̂i(t + 3)

D̂(t + 3)

)2


m

(4.1)

where p̃PMi
(t) makes reference to the production volume of car variant i from car

model m that can be updated in week t. N represents the total number of car variants
from a given car model. This distinction per car model is caused by it is not possible
to transform, at this stage of the manufacturing process, one car model into another
type. Capital letters symbolize the added total volume of the car variants, and widehat
represents that it is an estimation. Therefore, Ŝ(t + 3) and D̂(t + 3) mean the total
estimated stock and demand volume, respectively, of the third week in advance. Finally,
ŝ(t + 3) and d̂(t + 3) allude to the volume of car variant i in the estimated stock and
demand for the same epoch. The decomposition of the terms of Equation 4.1 is found in
the next Equation 4.2, and its equivalent Equation 4.3.

ŝi(t + 1) = si(t0) + pi(t0) − d̂i(t0)

ŝi(t + 2) = ŝi(t + 1) + pi(t− 1) − d̂i(t + 1)

ŝi(t + 3) = ŝi(t + 2) + pi(t− 2) − d̂i(t + 2)

(4.2)


ŝi(t + 1) = si(t0) + pZP8i − d̂i(t0)

ŝi(t + 2) = ŝi(t + 1) + pA500i − d̂i(t + 1)

ŝi(t + 3) = ŝi(t + 2) + p̃PMi
− d̂i(t + 2)

(4.3)

The previous formulae represent a mass flow equation. In other words, the estimated
stock level of a given car variant i for the following week (ŝi(t+j+1)) is ruled by the current
status of the stock ŝi(t+ j); plus the volume that will enter to the stock (pi(t− j)); minus

the outputs, i.e. the demand prediction (d̂i(t + j)), where jϵ [0, 2] represent the weeks.
The stock of the current week (si(t0)) is limited to the number of cars whose production
finishes at the week at hand, or before, but they will leave the stock in the actual week or
later. Special mention deserves the incoming cars, i.e., the production. Only those cars
who are currently in ZP8 are headed to the compound region (pi(t0) == pZP8i). That’s
why this milestone serves as a reference point and the weeks until arrive to it are counted.
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For this reason, the vehicles that are still one week away from reaching are currently in
A500 (pi(t− 1) == pA500i). The same logic applies to the cars that are in the Point of
Modification, they are two weeks away from ZP8 (pi(t− 2) == p̃PMi

).
The last step to solve Equation 4.1 is to concrete the circumstances of the problem.

In other words, which are the constraints and boundaries. Firstly, the sum of the current
volume in PM (PPM) is respected. It is not possible to add or remove cars within the
manufacturing. This case is ruled by Equation 4.4. The other limitation claims that all
outputs of the optimization problem should be positive. Equation 4.5 relates that the
updated values of the production should lay between zero and the total volume in the
milestone.

N∑
i=1

p̃PMi
− PPM = 0 (4.4)

0 ≤ p̃PM1 , p̃PM2 , · · · , p̃PMN
< PPM (4.5)

The optimization is only possible in those periods in which information about the
expected demand is available. Consequently, it will be computed in the test periods of
the time chunks. However, it is introduced the new concept of modification dates. In
other words, the subset of four weeks on which the simulated compound region update
can take place. It begins with the current week (si(t0)) and continues with the three
next weeks in advanced, according to the optimization requirements. This process is
exemplified in Table 4.4. It is needed to clarify that the optimization process will run
isolated on each modification date. This means that the production, stock, etc. of the
second set of modification dates is not affected by the new conditions computed in the
first modification dates list.

Table 4.4: Exemplification of the modification dates to perform the optimization proce-
dure within a given test period

Test Period
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Modification Dates 1 t0 t1 t2 t3
Modification Dates 2 t0 t1 t2 t3
Modification Dates 3 t0 t1 t2 t3
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Chapter 5

Methods And Techniques

In this chapter, we delve into a diverse array of methodologies and tools meticulously
selected to address the research objectives comprehensively. Machine learning algorithms
used for classification tasks and demand forecasting range from the foundational Deci-
sion Tree to the classical time series forecasting methods like ARIMA, passing through
bagging-based techniques such as Random Forest, or state-of-the-art boosted-based algo-
rithms such as XGBoost or CatBoost. Furthermore, Bayesian Optimization and Genetic
Algorithm, and SHAP (SHapley Additive exPlanations) are two blocks introduced as op-
timization and explicability techniques, respectively. They enrich the analytical toolkit
with advanced capabilities. Bayesian Optimization facilitates the exploration of com-
plex optimization spaces, guiding the search for optimal solutions efficiently. Genetic
Algorithms facilitate the discovery of optimal solutions in complex optimization scenar-
ios. SHAP, on the other hand, offers insights into model predictions by attributing them
to individual features, enhancing interpretability and trustworthiness. Statistical tests
like the Kolmogorov-Smirnov test complement these techniques, enabling rigorous hy-
pothesis testing and distributional diagnostics. Each method is meticulously chosen for
its relevance, applicability, and effectiveness, collectively forming a robust framework for
analyzing and solving the multifaceted challenges addressed in this thesis.

5.1 Decision Trees

Decision Trees [120, 121] represent a fundamental non-parametric supervised learning
method extensively applied in both classification and regression tasks. This section focuses
on the mathematical formulation and key considerations, with a specific emphasis on the
Classification and Regression Trees (CART). Notable alternatives to CART include ID3
and C4.5 algorithms. This method is utilized in Section 4.1.

The foundation of Decision Trees lies in the partitioning of the feature space through
simple decision rules derived from the training data. For given training vectors xi ∈ Rn,
where i = 1, . . . , l, and a label vector y ∈ Rl, a decision tree recursively divides the data
into subsets at each node. This division is performed to group samples with identical labels
or similar target values together. At a specific node m, the data is represented by Qm

with nm samples. The process of partitioning is directed by a candidate split θ = (j, tm),
comprising a feature j and a threshold tm. This split results in two subsets: Qleft

m (θ)
and Qright

m (θ). The evaluation of the quality of a candidate split at node m involves the
use of an impurity function or loss function H (). The objective is to select parameters
θ∗ = argminθ G (Qm, θ), where G (Qm, θ) represents the impurity computation. The
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choice of the impurity function depends on the nature of the task, whether it involves
classification or regression. The process continues recursively for subsets Qleft

m (θ∗) and
Qright

m (θ∗) until a stopping criterion, such as reaching the maximum allowable depth or a
minimum number of samples, nm ≤ minsamples, is met.

G (Qm, θ) =
nleft
m

nm

H
(
Qleft

m (θ)
)

+
nright
m

nm

H
(
Qright

m (θ)
)

For classification outcomes with values 0, 1, . . . , K − 1, for node m, the impurity mea-
sures commonly used are Gini and Log Loss (or Entropy). The Gini index evaluates how
often a randomly chosen element in a set would be incorrectly labeled; while Log Loss
quantifies uncertainty in classification predictions, indicating how close the prediction
probability is to the corresponding actual value.

Gini impurity is
H (Qm) =

∑
k

pmk (1 − pmk)

while Log Loss (Entropy) is set as:

H (Qm) = −
∑
k

pmklog (pmk)

where pmk is the proportion of class k observations in node m.

pmk =
1

nm

∑
y∈Qm

I(y = k)

When predicting continuous values, Decision Trees rely on criteria such as Mean
Squared Error (MSE), Half Poisson deviance, and Mean Absolute Error (MAE). These
criteria serve as guiding metrics for the decision tree, aiding in the minimization of er-
ror or deviation between predicted values and actual values. Additionally, they assist
in determining optimal locations for future splits in the decision tree. The Half Poisson
deviance criterion is particularly advantageous when the target involves counts or fre-
quencies (count per some unit). It is essential to note that utilizing this criterion requires
the condition y ≥ 0. It is worth highlighting that both Poisson deviance and MAE exhibit
slower fitting compared to the MSE criterion.

Mean Squared Error:

ym =
1

nm

∑
y∈Qm

y

H (Qm) =
1

nm

∑
y∈Qm

(y − ym)2

Poisson deviance:

H (Qm) =
1

nm

∑
y∈Qm

(
y log

y

ym
− y + ym

)
Mean Absolute Error:

median (y)m = median (y)
y∈Qm

H (Qm) =
1

nm

∑
y∈Qm

|y −median (y)m|
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To calculate the feature importance fij, it is counted the number of node s splits
provoked by each feature j and then divide it by the feature importance of all the nodes:

nim =
nm

N

[
G ()m −

(
nleft
m

nm

G ()leftm

)
−
(
nright
m

nm

G ()rightm

)]

fij =

∑
s:node s splits on feature j nis∑

k ∈ all nodes nik

where nim is the node importance, N is the total number of samples in the data, nm

number of samples in node m, G ()m is the impurity computation in the node m, and
superindexes left and right make reference to descendant nodes from node m.

Decision Trees present numerous benefits, making them a popular choice in various
applications. They possess inherent interpretability, demanding minimal data prepara-
tion. Their versatility extends to handling both numerical and categorical data, including
scenarios with multi-output requirements. Decision trees generate white box models,
facilitating straightforward interpretation and validation through statistical tests. Re-
markably, despite their simplicity, decision trees demonstrate robust performance. How-
ever, certain limitations should be acknowledged. Notably, the current implementation
of the algorithm in the widely-used Python library scikit-learn lacks support for categor-
ical variables, recommending alternative options to overcome this restriction. Among the
drawbacks, the risk of overfitting arises, potentially resulting in overly complex trees that
struggle with generalization. Pruning, i.e., removing unnecessary branches or nodes to
diminishing tree complexity; setting a minimum number of samples at a leaf node; or
imposing a maximum tree depth are common strategies to mitigate overfitting. More-
over, the NP-completeness of learning an optimal decision tree necessitates reliance on
heuristic algorithms like the greedy algorithm, making locally optimal decisions at each
node. While these algorithms cannot ensure a globally optimal decision tree, the issue is
mitigated by training multiple trees in an ensemble learner. In the same way, ensemble
methods are useful to address the sensitivity of decision trees to small data variations.
Finally, decision tree predictions are piecewise constant, limiting smoothness and conti-
nuity, impacting extrapolation performance. Additionally, they exhibit bias towards the
dominant class, necessitating careful consideration of dataset balance.

5.2 Random Forest
Decision trees may experience elevated variance, rendering their outcomes sensitive to the
particular training data employed. Mitigating this variance can be achieved by construct-
ing multiple models using various samples from your training data. Ensemble learning,
a broad meta-approach to machine learning, aims to enhance predictive performance by
combining predictions from numerous models. While there’s a myriad of possible ensem-
bles, three predominant methods prevail: bagging, stacking, and boosting. This section
will primarily focus on the first method, bagging. Bootstrap Aggregation, abbreviated as
Bagging, constitutes an ensemble comprising decision tree models, although it can also
be used to combine the predictions of other types of models. It hinges on the concept
of a bootstrap sample, which refers to a dataset subset obtained with replacement. Re-
placement entails that a selected sample from the principal dataset is reinstated, enabling
the possibility of its reselection and potential inclusion multiple times in the new sample.
Consequently, this process allows for the presence of duplicate examples from the original
dataset within the sample [122, 123].
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Random forest [124, 125] represents an extension of decision tree bagging, applicable
to both classification and regression challenges. This method is utilized in Section 4.1.
Diverging from traditional bagging, random forest incorporates a distinctive element in-
volving the selection of a subset of input features at each split point during tree construc-
tion. Ordinarily, constructing a decision tree entails evaluating the value for every input
variable in the data to determine an optimal split point. However, random forest disrupts
this process by diminishing the features to a random subset considered at each split point.
This approach compels each decision tree within the ensemble to exhibit greater diversity.
For classification tasks, the typical practice is to employ the square root of the total num-
ber of features at each split, while for regression problems, it is advisable to use one-third
of the features. Nevertheless, identifying the optimal values for these parameters is a task
that should be tuned for each problem.

Notably, the trees in the ensemble are unpruned, in opposition to standard decision tree
models. This deliberate choice leads to a slight overfitting of the training dataset, fostering
greater dissimilarity among individual trees and reducing the correlation in their predic-
tions or prediction errors. The outcome is that predictions and, consequently, prediction
errors made by each tree in the ensemble tend to be less correlated. When combined,
this often results in improved overall performance. In regression problems, the ensem-
ble’s prediction is the average across all trees, while for classification tasks, the prediction
corresponds to the majority vote for the class label among the ensemble’s trees.

Within each bootstrap training set, approximately one-third of the instances are de-
liberately excluded, forming what is known as out-of-bag (OOB) samples. In the con-
struction of a random forest, this process is iteratively repeated. As these OOB sets are
not utilized in training the model, they serve as a valuable test for assessing the model’s
performance. The calculation involves the following steps: (1) identifying all decision
trees that have not been trained using the OOB instance; (2) determining the majority
vote among these models for the OOB instance; (3) comparing this majority vote with
the true label of the OOB instance; and (4) compiling the OOB error for all instances
in the OOB dataset. Over numerous iterations, the OOB error stabilizes and converges
towards the cross-validation error. The OOB method offers the advantage of requiring
less computational effort and enables ongoing testing of the model during its training,
contributing to an enhancement in the number of variables used per step.

A key advantage of the random forest algorithm lies in its versatility, making it appli-
cable to both regression and classification problems. Its adaptability extends to handling
large datasets characterized by high dimensionality, encompassing both numeric and cat-
egorical data, as well as accommodating outliers and missing values. Notably, feature
scaling is unnecessary, as the algorithm employs a rule-based approach rather than rely-
ing on distance calculations. The algorithm can model complex, non-linear relationships
between features and the target variable. It effectively mitigates the overfitting issue com-
monly associated with decision trees and enhances overall accuracy. Moreover, random
forest minimizes prediction variance compared to a single decision tree. An insightful
feature of this algorithm is its ability to supply information about the importance of each
feature, simply averaging the importance derived from each tree in the ensemble, which it
is valuable for uncovering underlying patterns. The absence of interdependence between
trees facilitates parallelization, accelerating the training time. However, the algorithm
does have some drawbacks. It sacrifices the intrinsic interpretability inherent in decision
trees. Additionally, random forest can be computationally demanding, especially when
dealing with large datasets, necessitating ample memory resources. And, finally, they are
sensitive to noisy data which may cause overfitting [126].
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5.3 XGBoost

XGBoost, or eXtreme Gradient Boosting [127], stands out as a state-of-the-art machine
learning algorithm for regression and classification across diverse domains. Belonging to
the family of boosting algorithms, specifically gradient boosting, XGBoost is highly re-
garded for its proficiency in handling various data types and producing accurate models.
Despite the traditionally time-consuming nature of model construction in boosting meth-
ods, recent implementations like open-source XGBoost or LightGBM have significantly
enhanced computational efficiency, making them widely adopted and leading approaches
in the field. This method is utilized in Sections 4.1 and 4.2.

Boosting involves constructing a strong learner by sequentially incorporating weak
learners into the ensemble. Traditionally, this entails using a decision stump. Essentially,
a decision tree that focuses on a single value of one variable to make a prediction. Boosting
can be comprehended by drawing a comparison with bagging. The initial distinction lies in
that each decision tree is trained using the same dataset, without any sampling involved.
Instead, every instance in the training dataset possesses a weight according to the difficulty
the ensemble encounters in predicting that particular example. Another deviation from
bagging is that the underlying learning algorithm, e.g., decision tree, needs to take into
account the weightings assigned to the training dataset. This implies that ensemble
members are constructed with a bias towards making accurate predictions on heavily
weighted examples. The third point refers to the construction of the ensemble. Members
are added sequentially, until the desired number is reached. Notably, the weightings of the
training dataset update based on the capability of the entire ensemble after incorporating
the new member. This ensures that the next added member works to rectify errors
made by the entire model on the training dataset. The contribution of each model to
the final prediction is a weighted sum of the performance exhibited by each individual
model. Adaptive Boosting, or AdaBoost for short, stands out as the first successful
implementation of the boosting technique [128, 129].

Gradient boosting represents an extension of the AdaBoost set of techniques. Naive
gradient boosting operates as a greedy algorithm. It constructs trees by selecting optimal
split points based on purity scores or minimizing the loss. The addition of trees occurs
one at a time, and the existing trees in the model remain unchanged. A gradient descent
procedure is then employed to minimize the loss when incorporating additional trees. The
choice of the loss function relies on the nature of the problem at hand. The only limitation
is that the loss function must be differentiable. Regularization methods are integrated to
penalize specific aspects of the algorithm, enhancing overall performance and mitigating
overfitting. Additionally, several enhancements aim to optimize the performance of the
gradient boosting approach. These include tree constraints, such as controlling the depth
of trees and the quantity of trees within the ensemble; random sampling, involving fitting
trees on random subsets of features and samples, labeling the model as stochastic gradient
boosting; and weighted updates, such as employing a learning rate or shrinkage to limit
the impact of each tree on the ensemble [130, 131].
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Now that the model has been introduced, the mathematical background of the algo-
rithm is detailed. It is governed by the objective function, formed by training loss and
regularization terms, that should be optimized for the step t.

obj(t) =
n∑

i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

ω(fi)

where ŷ
(t)
i is the prediction value at step t; and ω(fi) is the complexity of the tree.

The most common measures for the training loss are mean squared error in regression
problems, and logarithmic loss for classification tasks.

It can be observed that the essential elements to be learned are the functions fi, each
encompassing the tree structure and leaf scores. An additive strategy is employed, wherein
the learned aspects are fixed, and one new tree is added at a time.

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

. . .

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi)

Therefore, the objective function becomes:

obj(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + ω(ft) + constant

Afterwards, the training loss terms are replaced according to the nature of the problem.
Nevertheless, in the general case to simplify the math, the loss function is linearized by
means of second-order Taylor expansion:

obj(t) =
n∑

i=1

[l(yi, ŷ
(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)] + ω(ft) + constant

where the gradients gi and hessian hi are the first and second derivative of the loss
functions, respectively.

gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i )

hi = ∂2

ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i )

After omitting all the constants, which do not have an impact within the optimization,
the specific objective function at step t, only depending on gi and hi, becomes

obj(t) =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + ω(ft)
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The training step has been introduced. Nevertheless, the regularization terms need
to be defined as well. XGBoost expresses the complexity of the tree as, in which λ is a
parameter to encourage prunning, and T is the number of leaves:

ω(f) = γT +
1

2
λ

T∑
j=1

w2
j

The next step in the procedure consists of re-formulating the objective function for
the t tree as, where Ij = {i|q(xi) = j} is the set of indices of data points assigned to the
j-th leaf:

obj(t) ≈
n∑

i=1

[giwq(xi) +
1

2
hiw

2
q(xi)

] + γT +
1

2
λ

T∑
j=1

w2
j

=
T∑

j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j ] + γT

in which the definition of tree f(x) has been refined as:

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, · · · , T}.

where w is the vector of scores on leaves, and q is a function assigning each data point
to the corresponding leaf.

Finally, it arrives at the point of solving for the best vector of scores w∗
j and the

best objective reduction obj∗ for a tree structure q(x), given that Gj =
∑

i∈Ij gi and

Hj =
∑

i∈Ij hi:

w∗
j = − Gj

Hj + λ

obj∗ = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT

Keep in consideration that it is not viable to create all possible trees, assess them, and
pick the best estimator. Instead, the tree is optimized one level at a time. The gain of
the tree is the score on the left leaf, the score on the right leaf, the score on the original
lead, and the regularization on the additional leaf:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL + GR)2

HL + HR + λ

]
− γ

A relevant observation emerges: if the gain is less than γ, it is more beneficial not to
add the branch. This aligns precisely with the pruning techniques applied in tree-based
models.
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One advantage of employing gradient boosting lies in the ease of obtaining importance
scores for each attribute once the boosted trees are built. For a single decision tree, the
importance of each attribute split point is computed based on the improvement it brings
to the performance measure, weighted by the number of observations the corresponding
node is accountable for. The feature importances are subsequently averaged across all
the decision trees within the model. In addition to the previously mentioned positive
qualities, such as flexibility and high accuracy, another notable advantage of XGBoost is
its speed. This algorithm is specifically designed to perform well, even when dealing with
large datasets, and it is optimized for both single- and multi-core processing. Nevertheless,
XGBoost is not without its drawbacks. One notable limitation is its memory-intensive
nature, particularly evident when dealing with large datasets. This can challenge com-
puters with limited memory, resulting in slower performance. Additionally, XGBoost is
often characterized as a black box algorithm, making it difficult to interpret and com-
prehend the underlying processes that drive its predictions. This lack of transparency
makes troubleshooting and fine-tuning more difficult for users seeking to understand and
optimize the model.

5.4 CatBoost

CatBoost [132], abbreviated from Categorical Boosting, is a cutting-edge open-source
extension that uses gradient boosting on decision trees. It stands out for its ability to
effectively handle categorical features, for both classification and regression tasks. This
method is utilized in Section 4.1.

Dealing with categorical data in machine learning introduces challenges that require
thoughtful consideration to ensure accurate model performance. Diverse techniques, such
as One-Hot Encoding or Label Encoding, have appeared to manage the situation. Never-
theless, those methods carry their own limitations and drawbacks. Key concerns include
high cardinality, i.e., a large number of unique values within a categorical feature which
increases computational complexity; and ordinality assumption, assigning numerical val-
ues to categorical variables, creating an artificial ordinal relationship that may mistake
the model. Another advanced technique for categorical encoding is Target Encoding. This
method involves replacing categories with the weighted mean of the target variable for
each category, leveraging information from the target variable. Unfortunately, it implies
a high risk of overfitting. As the categorical value is transformed based on the target, an
unintentional inclusion of information might occur during the training phase. It is known
as data leakage. To eliminate, or diminish, this concern the K-Fold Target Encoding
technique is employed. This approach incorporates K-fold cross-validation, dividing the
dataset into k folds and performing target encoding k times, with each fold acting as the
validation set once [133, 134].

Nonetheless, complete avoidance of data leakage risk remains a challenge. In extreme
case scenarios, like employing Leave-One-Out Target Encoding within a single category
variable, data leakage appears. CatBoost adopts an alternative categorical data encoding
strategy that mitigates leakage concerns. This method introduces an artificial time vari-
able, simulating the sequential handling of each data sample by the algorithm. CatBoost
encodes based on all preceding data for the current sample, thereby minimizing the risk
of leakage. Because the order of the samples is relevant in the process, the authors called
it Ordered Target Encoding. Lastly, the encoding equation is adjusted, substituting the
Overall Mean with an initial guess or prior in this approach.
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When CatBoost generates a tree, it initiates the process by shuffling the rows of the
training dataset. Subsequently, it employs Ordered Target Encoding on discrete variables
with more than two options. For binary variables, a transformation to ones and zeros
is performed. For regression tasks, continuous values are discretized into equally sized
bins. Hence, the model initializes predictions with a prior value and calculates residuals.
Then, it constructs a tree with leaves whose outputs are set to zero. Eventually, the
score varies according to the average of the residuals in the leaf. This approach ensures
that the sample’s residual does not influence the leaf output calculation, preventing any
form of leakage. To assess the quality of predictions for each split, CatBoost measures
the cosine similarity between the leaf outputs and the residuals. The updated predictions
result from adding the existing residuals to the current tree’s leaf outputs, scaled by a
learning rate. This process repeats until reaching the maximum number of trees or failing
to achieve a significant performance improvement. Notably, CatBoost builds symmetric
trees, meaning they employ the same threshold for every node at the same level. This
decision is motivated by the notion that symmetric trees are weaker and, especially, faster
learners than the other types of trees.

CatBoost provides a wide range of opportunities to assess feature importance [135].
By default, for non-ranking metrics, features are arranged based on the average change in
prediction when the feature value undergoes a change. The greater the variation, the more
significant the relevance of the feature. Conversely, for ranking metrics, the relevance is
determined by the difference in the model’s loss value with and without the feature. The
greater the disparity in performance, the more crucial the feature becomes. Since this
technique is computationally intensive, CatBoost approximates it. Instead of retraining
the model from scratch, it utilizes the original model and virtually eliminates the feature
from all the trees in the ensemble. It’s important to note that this calculation relies on a
dataset, making the derived value dataset-dependent. Consequently, the importance of a
feature may vary based on the specific dataset used.

Furthermore, it is possible to analyze the impact of a feature on prediction results for
a pair of samples. The process involves calculating the maximum possible change in the
difference between predictions when the feature value is altered for both objects. This
is particularly beneficial for understanding why a pair of instances might be incorrectly
ranked. Another approach is feature interaction, i.e., assessing the dependency between
two features in making predictions. For each pair of features, CatBoost examines all the
splits in the trees where these features are utilized. If splits of both features exist in
the same tree, CatBoost calculates the change in leaf value when these splits have the
same value and when they have opposite values. The greater the change, the stronger
the interaction between the two features. Finally, CatBoost also allows obtaining SHAP
values, but these will be explained in their dedicated section.

5.5 Bayesian Optimization

Machine learning algorithms aim to create models that generalize well to unseen data,
necessitating robust evaluation techniques. Cross-validation and Hyperparameters Tuning
have emerged as a pivotal method in this context, providing a systematic approach to
assess and refine the performance of machine learning models. Together, these techniques
form a comprehensive methodology for ensuring the reliability and effectiveness of machine
learning models in real-world applications. This method is utilized in Section 4.1.
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The K-Fold Cross Validation procedure is a standard method for estimating the per-
formance of a machine learning algorithm or configuration on a dataset. It assesses and
mitigates the risk of overfitting by partitioning a dataset into multiple subsets. These
subsets, or folds, are used iteratively for training and testing the model. The goal is
to obtain a more reliable estimate of the model’s performance by evaluating it on dif-
ferent portions of the data. By systematically rotating the folds, cross-validation pro-
vides a robust means of assessing how well a model generalizes to unseen instances. Let
D = {(x1, y1) , (x2, y2) , ..., (xn, yn)} represent a dataset with n instances, where xi is the
feature vector and yi is the corresponding label. In K-Fold Cross Validation, the dataset
is partitioned into k non-overlapping folds D =

⋃k
i=1Di, where Di is the i − th fold.

The training and testing procedure is repeated k times, with each fold serving as the test
set once. For each iteration i, the model is trained on the union of all folds except Di,
denoted as Dtrain =

⋃
j ̸=i Dj. The performance metric Ei is then computed by testing the

model on Di. The overall performance ECV of the model is obtained by averaging the
performance metrics overall k folds.

Hyperparameters tuning, on the other hand, focuses on optimizing the internal con-
figurations of a model that unlike model parameters, which are learned from the data,
are set prior to training. These internal parameters, such as learning rates, regularization
strengths, or network architectures, significantly impact a model’s performance, so they
must be tuned to maximize it. The process of hyperparameter tuning involves systemati-
cally searching through a predefined parameter space, evaluating the model’s performance
for each set of hyperparameters, and selecting the combination that yields the best results.
The search space entails the range of values that hyperparameters can take.

Two of the most common methods for executing hyperparameters tuning are Grid
Search and Random Search. The former is a straightforward approach that involves
defining a set of values for each hyperparameter within a predefined range. Afterwards,
for each one from all possible combinations the machine learning model is trained and
evaluated. Consequently, it is guaranteed that the optimal solution within the specified
search space will be found. Additionally, the simplicity of grid search makes it an attrac-
tive choice, especially when the search space is discrete and not overly complex. On the
contrary, the primary drawback lies in its computational cost. As the number of hyper-
parameters and their potential values increases, the search space expands exponentially,
leading to an impractical number of combinations to evaluate. Additionally, in scenar-
ios where hyperparameters have a continuous range, grid search may be less effective,
as it discretizes the search space, potentially missing optimal configurations between the
predefined values.

Regarding Random Search, it takes a probabilistic approach by randomly sampling
hyperparameter configurations from the search space. Given a learner M, with parame-
ters x and a loss function f(x), random search tries to find x such that f(x) is maximized,
or minimized, by evaluating f(x) for randomly sampled values of x. This stochastic na-
ture allows random search to efficiently navigate high-dimensional and continuous spaces,
where an exhaustive grid search would be computationally impractical. Random search
typically requires fewer evaluations as it does not explore every possible combination. On
the contrary, it does not ensure finding the globally optimal hyperparameter configuration.
While it is more likely to explore diverse regions of the search space, it may overlook crit-
ical areas that lead to improved model performance. And similar to grid search, random
search may face challenges in efficiently exploring discrete hyperparameter spaces.
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Hence, Bayesian Optimization (BO) [136] stands out as a sophisticated and effective
strategy for hyperparameter tuning. The fundamental concept involves constructing a
surrogate model, typically a Gaussian Process that models f(x), to approximate the
genuine objective function. This approximation facilitates a more informed selection of
subsequent hyperparameter configurations x for evaluation, thanks to the acquisition
function. The algorithm can be broadly summarized as follows.

1. Assess f(x) at n initial points.

2. Iterate while n ≤ N :

• Update the surrogate model, such as the Gaussian Process, utilizing all avail-
able data D1 : n.

• Calculate the acquisition function u(x | D1 : n) using the current surrogate
model.

• Determine xn+1 as the maximizer of the acquisition function, denoted as xn+1 =
argmaxxu(x | D1:n).

• Evaluate yn+1 = f(xn+1).

• Expand the data set D1:n+1 = D1:n, (xn+1, yn+1) and increment n.

3. Return either the x assessed with the highest f(x) or the point with the highest
posterior mean.

A Gaussian Process (GP) [137, 138], understood as the surrogate model, extends the
concept of a Gaussian distribution from random variables to a distribution over functions.
Initially, it begins with a distribution encompassing all conceivable functions that could
potentially have generated the samples, without taking the actual data into account.
These functions are referred to as GP priors and represent the uncertainty regarding
the true underlying function f(x). Subsequently, the range of functions is refined by
incorporating the available samples.

The reality is that it’s not necessary to consider every mathematically valid function.
Instead, constraints are applied to the prior distribution covering all potential functions.
Initially, there is an expectation for our functions to exhibit smoothness, aligning with
empirical knowledge about the typical functioning of the world. Points in close proximity
within the input space, denoted as x1, x2, ..., are associated with corresponding y1, y2, ...
values that are also close to each other. This smoothness is introduced through the
covariance matrix, where each element determines the degree of correlation between the
(yi, yj) variables based on the proximity of values in the input space (xi, xj). The distance
is measured by the kernel function k(x, x′). Figure 5.1 compiles some widely used kernel
functions for constructing GPs and the resulting GP priors.
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Figure 5.1: Examples of structure expressible by some basic kernels. Source: [139]

Given a kernel k(x, x′), the covariance matrix is construct as follows:

Σ(x, x′) =


k(x1, x1) k(x1, x2) k(x1, x3) . . . k(x1, xN)
k(x2, x1) k(x2, x2) k(x2, x3) . . . k(x2, xN)

...
...

...
...

...
k(xN , x1) k(xN , x2) k(xN , x3) . . . k(xN , xN)


The covariance matrix Σ(x, x′) must be positive definite, meaning that the following

condition must be met x⊤Σx > 0,∀x ̸= 0. Lastly, a mean function m(x) is required
to fully characterize the multivariate normal distribution that will simulate the function
f(x):

f(x) ∼ GP (m(x), k(x, x′))

To find the best point to sample f(x) next from, it will be chosen the point that
maximizes an acquisition function (AF) [140]. Instead of maximizing directly f(x), whose
analytic form is unknown, another function, that is much easier to do and much less
expensive, is maximized. Acquisition functions are constructed so that a high value
corresponds to potentially high values of the objective function. By finding the x that
maximizes the AF, it is identified the next best guess for f(x) to try. Either because
the prediction is high or because the uncertainty is high. This is known as the so-called
exploration-exploitation trade-off. There are three often cited acquisition functions: upper
confidence bound (UCB), probability of improvement (PI), and expected improvement
(EI).
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UCB With an upper confidence bound, the exploitation vs. exploration tradeoff is
straightforward and tuned via the parameter λ. Concretely, UCB is a weighted
sum of the expected performance captured by µ (x) of the Gaussian Process, and
of the uncertainty σ (x), captured by the standard deviation of the GP. When λ
is small, Bayesian Optimization will favor solutions that are expected to be high-
performing, i.e., exploitation. On the contrary, when λ is large, BO rewards the
exploration of currently uncharted areas in the search space:

a (x;λ) = µ (x) + λσ (x)

PI Improvement I(x⋆) is defined as an indicator function that measures the positive
difference between the function values at the candidate point x⋆ and the reference
one x.

I(x⋆) = max(f(x⋆) − f(x), 0)

In the context of the probability of improvement acquisition function, each candi-
date x⋆ is assigned the probability of I(x⋆) > 0. In a Gaussian Process, a Gaussian
distribution is associated with each point, and at the specific location x⋆, the func-
tion value f(x⋆) is sampled from a normal distribution with a mean of µ(x⋆) and
a variance σ2(x⋆).The expression can undergo a reparameterization after assuming
that z ∼ N (0, 1). Therefore, the improvement function is rewritten as:

I(x⋆) = max(f(x⋆) − f(x), 0) = max(µ(x⋆) + σ(x⋆)z − f(x), 0) z ∼ N (0, 1)

Hence, the probability that x⋆ produces an improvement, in other words, the prob-
ability of improvement, is captured by PI(x⋆) = Pr(I(x⋆) > 0) ⇔ Pr(f(x⋆) > f(x)).
Building upon this, PI can be articulated using the standard normal distribution:

PI(x⋆) = 1 − Φ(z0) = Φ(−z0) = Φ

(
µ(x⋆) − f(x)

σ(x⋆)

)
The interpretation of these expressions lies in the cumulative distribution function
Φ(z0) of the standard normal distribution. The term 1−Φ(z0) represents the prob-
ability that a randomly sampled point around x⋆ yields an improvement. Similarly,
Φ(−z0) represents the probability that f(x⋆) is better than a randomly chosen point.
The development of z0 considers how much the mean function value at x⋆ deviates
from f(x) in terms of the standard deviation σ(x⋆). This formulation allows for a
probabilistic assessment of improvement, taking into account both the mean and
variability of the function.

EI Probability of improvement considers only the probability of improving the current
best estimate, but it does not factor in the magnitude. On the contrary, expected
improvement acquisition function calculates the expected value of I(x⋆), where φ(z)
is the probability density function of the normal distribution N (0, 1):

EI(x) ≡ E [I(x)] =

∫ ∞

−∞
I(x)φ(z) dz =

∫ ∞

−∞
max(f(x⋆) − f(x), 0)φ(z) dz
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In order to calculate this integral, it is necessary to get rid of the max operator.
Thus, the expression will be split into two components, one where f(x⋆) − f(x) is
positive and other one where it is zero.

f(x⋆) = f(x) ⇒ µ + σz = f(x) ⇒ z0 =
f(x) − µ

σ

EI(x⋆) =

∫ z0

−∞
I(x)φ(z) dz︸ ︷︷ ︸

Zero since I(x)=0

+

∫ ∞

z0

I(x⋆)φ(z) dz

Therefore, the expected improvement acquisition function evolves such as:

EI(x⋆) =

∫ ∞

z0

max(f(x⋆) − f(x), 0)φ(z) dz =

∫ ∞

z0

(µ + σz − f(x))φ(z) dz

=

∫ ∞

z0

(µ− f(x))φ(z) dz +

∫ ∞

z0

σz
1√
2π

e−z2/2 dz

= (µ− f(x))

∫ ∞

z0

φ(z) dz︸ ︷︷ ︸
1−Φ(z0)≡1−CDF(z0)

+
σ√
2π

∫ ∞

z0

ze−z2/2 dz

= (µ− f(x)) (1 − Φ(z0)) −
σ√
2π

∫ ∞

z0

(
e−z2/2
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The explanation of the above formula is as follows. EI(x⋆) will take high values
when µ > f(x), in other words, the mean value of the Gaussian process is higher at
x⋆. The equation is also increased when the uncertainty is large, i.e., when σ > 1.
Notably, the expression works for σ(x⋆) > 0. Otherwise, as the case of observed data
where the uncertainty is null (σ(x) = 0), it holds that EI(x) = 0. Lastly, the trade-
off between exploitation vs exploration is ruled by the inclusion of the parameter ξ
into the formula for EI(x⋆). The larger the values of ξ, the more explorative the
Bayesian Optimization will be. Thus, the full equation is:

EI(x⋆; ξ) = (µ− f(x) − ξ) Φ

(
µ− f(x) − ξ

σ

)
+ σφ

(
µ− f(x) − ξ

σ

)
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5.6 SHAP

SHAP (SHapley Additive exPlanations) [141] is a technique designed to provide expla-
nations for individual predictions. This method is utilized in Section 4.1. It builds upon
Shapley values [142], a concept originating from coalitional game theory, which addresses
the fair allocation of rewards among players in a game. In this context, the ”game” repre-
sents the prediction task for a single instance of the dataset, where the ”gain” is defined as
the difference between the actual prediction for this instance and the average prediction
across all instances. The ”players” in this scenario are the features within the instance,
working together to contribute towards achieving a certain predicted value.

The Shapley value is determined through a value function, denoted as val, which
operates on features within the set S. Each feature’s marginal contributions are assessed
based on the probability of them making those contributions. Subsequently, the total of
all potential coalitions that a feature can engage with to make a marginal contribution is
computed. This process yields an expected marginal contribution.

ϕj(val) =
∑

S⊆{1,...,p}\{j}

|S|! (p− |S| − 1)!

p!︸ ︷︷ ︸
Weight

(val (S ∪ {j}) − val(S))︸ ︷︷ ︸
Marginal contribution

where S is a subset of the features used in the model, |S| is the number of features
in the subset and |S|! is the number of ways coalition S can form; x is the vector of
feature values of the instance to be explained; |p| is the number of coalitions made out of
p features; consequently, (p−|S|−1)! is the number of ways features can join after feature
j joins. With respect to the marginal contribution, val(S) is the value of the coalition S
excluding feature j, whilst val (S ∪ {j}) has the same meaning but including the feature
j.

Shapley values offer a fair method for distributing the contribution of each feature.
They consider all possible coalitions a feature can engage with, thus capturing both in-
dividual feature contributions and interactions between features. However, to support
this claim, four properties need to be examined: Efficiency, Symmetry, Null Player, and
Additivity. Efficiency ensures that no value of gain is left unaccounted for. Symmetry
dictates that two features are interchangeable if they make identical contributions to all
coalitions. If a feature yields zero marginal contribution across all coalitions, it is classified
as a Null Player and contributes nothing to the total value. Lastly, Additivity stipulates
that when combining two predictions, the overall contribution of a feature is the sum of
its contributions to the individual predictions. This property assumes that predictions
are independent of each other. Unlike other attribution methods, Shapley values are the
only ones that satisfy all these properties [143, 144].

SHAP differs from Shapley values for two primary reasons. Firstly, it introduces
KernelSHAP and TreeSHAP, which are alternative kernel-based estimation approaches
for Shapley values. KernelSHAP is inspired by local surrogate models, while TreeSHAP
offers an efficient estimation method for tree-based models. Secondly, SHAP includes
various global interpretation methods that are based on aggregations of Shapley values.
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KernelSHAP aims to estimate the contributions of each feature value to the prediction
for a given instance x. It operates through five key steps:

• Sampling coalitions z′k ∈ 0, 1M , k ∈ 1, . . . , K, where 1 indicates the presence of a
feature in the coalition, and 0 indicates absence.

• Obtaining predictions for each z′k by first converting them to the original feature

space and then applying the model f̂ : f̂(hx(z′k)).

• Calculating the weight for each z′k using the SHAP kernel.

• Fitting a weighted linear model.

• Returning the Shapley values phik corresponding to the coefficients obtained from
the linear model.

To derive values from coalitions of features that validate data instances, a function
hx(z′) = z is required, where hx : {0, 1}M → Rp. This function maps 1’s to the corre-
sponding values from the instance x being explained and 0’s to values from the instance,
which will be replaced by random feature values from the data. The function hx treats
feature Xj and X−j (i.e., the other features) as independent and integrates them over

the marginal distribution: f̂(hx(z′)) = EX−j
[f̂(x)]. This approach disregards the depen-

dence structure between present and absent features, resulting in KernelSHAP suffering
from the same problem as all permutation-based interpretation methods. This estimation
places excessive weight on improbable instances, leading to unreliable results. However,
sampling from the marginal distribution is necessary, despite this limitation.

Concerning TreeSHAP [145], it represents a variation of SHAP tailored for tree-based
machine learning models such as decision trees, random forests, and gradient-boosted
trees. Unlike the exact KernelSHAP, TreeSHAP achieves polynomial time complexity
instead of exponential. Specifically, it reduces computational complexity from O(TL2M)
to O(TLD2), where T stands for the number of trees, L denotes the maximum number
of leaves in any tree, and D represents the maximal depth of any tree. TreeSHAP em-
ploys conditional expectation EXj |X−j

(f̂(x)|xj) to estimate effects rather than marginal
expectation. The fundamental concept involves simultaneously propagating all possible
subsets S down the tree. However, a challenge with the conditional expectation arises
when features lacking influence on the prediction function f receive a TreeSHAP estimate
different from zero, violating the Null player property. This scenario can occur when a
feature is correlated with another feature that does impact the prediction.

Regarding interpretation methods, there are numerous options available. Some of
these will be outlined shortly. SHAP feature importance entails calculating the average of
the absolute Shapley values per feature across the dataset. Subsequently, the features are
arranged in descending order of importance and visualized accordingly. The summary plot
combines feature importance with feature effects, where each point represents a Shapley
value for a feature and an instance. The color gradient indicates the feature’s value
from low to high, with overlapping points slightly jittered along the y-axis to illustrate
the distribution of Shapley values per feature. Features are organized based on their
importance. However, for a deeper understanding of the relationship between a feature’s
value and its impact on the prediction, it is necessary to visualize a SHAP dependence plot.
This plot depicts each data instance’s feature value on the x-axis and the corresponding
Shapley value on the y-axis. Additionally, the dependence plot can be enhanced by
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highlighting feature interactions, which represent the combined effect of features after
accounting for individual effects. Lastly, Shapley values can aid in data clustering by
clustering the Shapley values of each instance, grouping instances based on similarity
in explanations. The resulting plot comprises multiple force plots, each explaining the
prediction of an instance.

5.7 ARIMA(X)

At first glance, time series forecasting seems like a conventional regression problem. How-
ever, certain crucial distinctions necessitate attention. Unlike other regression tasks in
machine learning, time series possess a temporal order. This temporal indexing must be
preserved. Otherwise, the model risks being trained on future information unavailable
during prediction, leading to what is known as look-ahead bias. Consequently, the re-
sultant model would likely lack reliability and perform inadequately when making future
forecasts. Additionally, time series occasionally lack distinct features. In the absence of
additional features, methods must be devised to utilize past values of the time series for
forecasting future values. All explanations in this section are derived from the book [146].
This technique is used in Section 4.2.

A time series comprises a sequence of data points arranged chronologically. Addition-
ally, the data typically exhibits uniform time spacing, with consistent intervals separating
each data point. Understanding time series can be enhanced by examining their three
constituent elements: trend, seasonality, residuals. The trend encompasses the grad-
ual changes observed within a time series. The seasonal component captures recurring
patterns that manifest over fixed time intervals, illustrating deviations from the trend.
The residuals, representing the unexplained variance not attributable to either the trend
or seasonal components, often correspond to random errors, also known as white noise.
They embody information that defies modeling or prediction due to its stochastic nature.
Indeed, all time series can be decomposed into these three constituent elements. Decom-
position refers to the statistical process of partitioning a time series into its constituent
components.

In the context of a non-stationary integrated time series, the autoregressive integrated
moving average model, abbreviated as ARIMA(p,d,q) [147], can be employed for gen-
erating forecasts. This model consists of an autoregressive process AR(p), integration
I(d), and a moving average process MA(q). The mathematical representation of the
ARIMA(p,d,q) process stipulates that the present value of the differenced series y′t equals
the sum of a constant C, past values of the differenced series ϕpy

′
t−p, the mean of the

differenced series µ, past error terms θqϵ
′
t−q, and a current error term ϵt.

y
′

t = C + ϕ1y
′

t−1 + · · ·ϕpy
′

t−p + θ1ϵ
′

t−1 + · · · + θqϵ
′

t−q + ϵt

The definition of the ARIMA(p,d,q) model introduces new concepts not previously
discussed, which will now be elucidated. The order of integration corresponds to the
number of differencing operations applied to a series to achieve stationarity. Differencing
involves calculating the change between successive time steps, with a first-order differ-
encing denoting a single differencing operation and a second-order differencing indicating
two consecutive operations. A stationary time series maintains constant statistical prop-
erties over time, including a stable mean, variance, and autocorrelation. Many forecasting
models presume stationarity, necessitating its verification. A commonly used test for this
purpose is the augmented Dickey-Fuller (ADF) test [148, 149]. This statistical test assesses
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the null hypothesis that the time series possesses a unit root, indicating non-stationarity,
while the alternative hypothesis suggests the absence of a unit root, confirming station-
arity. Consider a simplistic time series where the present value yt solely depends on its
past value yt–1, governed by a coefficient α1, a constant C, and white noise ϵt. This time
series attains stationarity only if the root lies within the unit circle, implying its value
falls between -1 and 1; otherwise, the series remains non-stationary.

The moving average model represents the present value yt as a linear combination of
the series mean µ, the current error term ϵt, and past error terms ϵt−q. The coefficient θq
quantifies the extent to which past errors influence the present value.

yt = µ + ϵt + θ1ϵt–1 + θ2ϵt–2 + · · · + θqϵt–q

Determining the order of the moving average model can be facilitated by examining
the autocorrelation function (ACF) [150]. Autocorrelation assesses the linear relationship
between lagged values within a time series, with lag representing the number of time steps
between two values. Consequently, the ACF illustrates how the correlation between any
two values evolves with increasing lag. In the presence of a trend, the ACF plot typically
exhibits high coefficients for short lags, which diminish linearly as the lag increases. If the
data exhibits seasonality, the ACF plot may also reveal cyclic patterns. In cases where
consecutive coefficients exhibit significant changes in behavior, the order of the moving
average process corresponds to the latest coefficient before the transition.

However, the ACF plot may also indicate that the time series is governed by an
autoregressive process. In such a model, the present value yt is expressed as a linear
combination of a constant C, the current error term ϵt (also characterized as white noise),
and past values of the series yt−p. The extent to which past values influence the present
value is represented by phip, signifying the coefficients of the autoregressive model.:

yt = C + ϕ1yt–1 + ϕ2yt–2 + · · ·ϕpyt–p + ϵt

The partial autocorrelation function (PACF) [151] is utilized for validation and de-
termination of the autoregressive process order. PACF assesses the correlation between
lagged values within a time series after eliminating the influence of correlated intermediate
lagged values, often referred to as confounding variables. PACF indicates how partial au-
tocorrelation changes with increasing lag, with coefficients becoming insignificant beyond
lag p. Figure 5.2 illustrates the disparity between ACF and PACF.

(a) Autocorrelation Function (ACF) (b) Partial Autocorrelation Function (PACF)

Figure 5.2: Summary of the ACF and PACF for a time series
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Once the components of the ARIMA(p,d,q) model have been elucidated, the model
can be further developed to incorporate additional complexity. If the time series exhibits
a seasonal pattern, the SARIMA predictive model is considered. However, particular
attention is warranted for examining the influence of an exogenous variable, denoted by
Xt, on predictions. In statistics, the term exogenous is used to describe predictors or input
variables, whereas endogenous pertains to the target variable. Hence, the ARIMAX model
originates from this distinction. It essentially integrates a linear combination of exogenous
variables into the ARIMA model:

yt = ARIMA(p, d, q) +
n∑

i=1

βiX
i
t

Incorporating external variables may offer potential benefits, as strong predictors for
the target variable could be identified. However, challenges may arise when forecasting
multiple future timesteps using the ARIMAX model. This model necessitates forecasting
the exogenous variables as well, which can be accomplished using a variant of the ARIMA
model. Nonetheless, it is recognized that all forecasts inherently carry some degree of er-
ror. Thus, forecasting an exogenous variable alongside the target variable can amplify
the prediction error of the target, leading to degradation in predictions as the forecast-
ing horizon extends further into the future. The only recourse to elude this scenario is
to limit forecasting to a single timestep ahead and await observation of the exogenous
variable before forecasting subsequent timesteps for the target variable. Conversely, if the
exogenous variable follows a known function that can be accurately forecasted, there is
no detriment in forecasting the exogenous variable and utilizing these forecasts to predict
the target variable.



CHAPTER 5. METHODS AND TECHNIQUES 66

5.8 Genetic Algorithm

The Genetic Algorithm [152, 153] is categorized within the family of stochastic optimiza-
tion algorithms, particularly those inspired by biological or physical processes. Stochastic
denotes the utilization of randomness in the objective function. Optimization, on the other
hand, is a mathematical method for determining the maximum or minimum value of a
function with multiple independent variables, subject to a set of constraints. Stochas-
tic algorithms are straightforward to conceptualize, flexible, and adaptable to various
contexts. They impose no specific requirements on the formulation of the optimization
problem. Moreover, they offer an excellent balance between solution quality and com-
putational time. However, they do not guarantee the discovery of the global optimum
solution, although they typically excel at finding sufficiently good solutions. The algo-
rithm employs analogs of genetic representation, fitness evaluation, genetic recombination,
and mutation. Initially, a population of a fixed size is generated. The main algorithmic
loop iterates for a predetermined number of iterations until the optimal value is attained
or no further improvement is observed in the best solution after a specified number of it-
erations. All the steps are illustrated in Figure 5.3. This method is applied in Sections 4.4
and 4.5.

Initial
Population

Fitness

Selection Crossover Mutation

Termination 
Criteria?

Results

Yes • Tournament
• Roulette wheel
• Rank selection
• …

• Single-point
• Multi-point
• Uniform
• …

• Permutation
• Swap
• Insertion
• …

Elitism
No

• No. of generations
• Fitness value
• …

• Preserve N chromosomes
from previous generation

• Clear definition
• Quantitative output
• Efficient implementation

• Chromosomes set
• Chromosomes normally 

as binary array
• Randomly generated

New Population

Figure 5.3: Genetic Algorithm Flowchart
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The process begins with the generation of the initial population, which consists of a set
of chromosomes. This population is randomly generated to ensure a diverse starting point
within the solution space, thereby providing a broad search area and avoiding premature
convergence to suboptimal solutions. Each chromosome encodes a potential solution to
the problem under consideration, representing a point within the solution space. Chro-
mosomes are commonly encoded as binary arrays, although they can be adapted to suit
the specific problem. An inadequate representation can lead to a lack of convergence. In
the context of this research, the chromosomes are made up of the following attributes:
car model, trim level, engine, exterior color, and geographical location as the Spanish
province, rather than the compound region, where the users access the online platform
from. Additionally, a temporal flag is included in the form of the day of the week (DOW)
the connection was done. The skeleton of the chromosome is represented in Table 5.1.
Therefore, each chromosome represents a valid solution, i.e., a set of rules for filtering the
clickstream data and distinguishing the users with real purchase intention. This strategy
is called Pittsburgh [154], in opposition to Michigan [155] which claims that the population
is the solution to the problem.

Table 5.1: Example of the structure of the chromosome, composed by the number of rules
to find based on the attributes of the search space

DOW Car Model TRIM Engine Exterior Color Location
Rule 1 Monday SEAT Ibiza Reference KX L5L5 SEVILLA
Rule 2 Thursday SEAT Leon ST FR 2X B4B4 AVILA
Rule 3 Sunday SEAT Ibiza FR PV 9M9M MURCIA

..
.

..
.

Rule R Tuesday SEAT Arona Style GZ 0CF5 SANTANDER

Afterwards, the quality of the solution is quantified by its fitness, which assesses the
proximity of a given candidate solution to the optimum solution. The fitness function
translates the problem’s objective into a form that the algorithm can evaluate. This typ-
ically involves computing a numerical score that reflects how well a candidate solution
meets the desired criteria. Additionally, it must be carefully crafted to avoid misleading
the search process. It should accurately reflect the true quality of solutions, ensuring that
top fitness values correspond to better solutions. Nevertheless, efficiency in implementing
the fitness function is crucial. Computationally expensive evaluations can significantly
slow down the overall performance of the genetic algorithm. Therefore, the function
should be designed to provide rapid assessments. In some cases, multi-objective fitness
functions are employed to balance multiple criteria simultaneously. These functions ag-
gregate different performance metrics, to provide a comprehensive assessment of solution
quality. Along the thesis, two different fitness functions have been developed to match
the required criteria. On Section 4.4 is sought to maximize the average correlation be-
tween the subset of clickstream data derived from the chromosome solution and the sales
record, whilst the fitness function governing the Section 4.5 minimizes the prediction error
of a multivariate forecasting. The aforementioned sections provide the details about the
construction of the corresponding fitness functions.
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New candidates, constituting subsequent populations, are derived from the preceding
generation. This process continues until any of the termination criteria are met. After
arriving to the maximum number of generations permitted, or achieving the fitness limit
value, the genetic algorithm is interrupted. Some candidates from the previous generation
are chosen to persist and undergo further evolution. Among various selection strategies,
the roulette wheel selection calculates the cumulative probability for each individual and
selects the first one whose probability meets or exceeds a randomly generated number.
Similarly, rank selection involves sorting all individuals in the population based on their
fitness. The selection of parents is determined by the rank of each individual rather than
their fitness. This method is particularly useful when individuals in the population have
similar fitness levels, which often occurs towards the end of the process. In contrast,
truncation selection orders the candidates and selects a portion of the fittest individuals.
However, in this context, tournament selection is the preferred strategy. It accommodates
negative fitness values, does not necessitate sorting individuals, and operates efficiently
on parallel architectures. The old generation is exposed to a tournament among its
chromosomes. It generates random indices and picks the corresponding candidates from
the old population. The amount of participants is defined by the tournament probability.
It signifies the fraction of the population participating in each tournament. In our case,
it is fixed at 30%. The genetic algorithm iterates to randomly select the best candidates.
The tournament strategy aims to strike a balance between exploring diverse solutions
(by allowing weaker candidates to occasionally win) and exploiting strong solutions (by
favoring candidates with better fitness values).

The survivor chromosomes, which are called parents, will experience crossover, mu-
tation, both, or none. The first methodology works based on the crossover probability,
which is established into 90% in order to promote information exchange and rapid conver-
gence towards optimal solutions. Crossover combines a pair of parents’ solutions to create
potentially improved children’s solutions. To perform crossover, the algorithm randomly
chooses a single intersection point on the parents and assembles the parts. An illustra-
tion of the methodology is presented in Figure 5.4. This method is called single-point
crossover, although multi-point and uniform crossover are valid options.

Figure 5.4: Exemplification of single-point crossover between two parents
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The next step, the mutation might take place under the circumstance of the mutation
probability. In this context, it is set in terms of the population size, such one chromo-
some, at least, is affected. Mutation introduces small random changes in a chromosome
within the population. It serves to maintain diversity and prevent the algorithm from
getting stuck in local optima. Whilst crossover recombines existing chromosomes’ infor-
mation, mutation introduces novel variations. However, a low mutation probability is
recommended to maintain stability, preserve good solutions, and strike the right balance
between exploration and exploitation. The procedure is shown in Figure 5.5. In this
scenario, the element’s rule is permuted by means of a uniform distribution by other per-
mitted values. The feasibility is relevant for engine and exterior color, such as they are
conditioned by the car model and TRIM level.

DOW CAR NAME TRIM ENGINE EXT. COLOR LOCATION

D1 C1 T1 E1 EC1 L1

D2 C2 T2 E2 EC2 L2

... … ... ... ... ...
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DOW CAR NAME TRIM ENGINE EXT. COLOR LOCATION
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Figure 5.5: Exemplification of mutation of a chromosome of the genetic algorithm

Lastly, elitism is employed to prevent fitness from decreasing in successive generations.
It is a strategy that involves preserving a certain number of the best chromosomes from one
generation to the next, without subjecting them to any genetic operators. The purpose
is to prevent the risk of losing highly fit solutions due to the randomness introduced by
genetic operators. In our approach, exclusively the best single solution transfers from the
precedent generation to the newer one.
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5.9 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test [156, 157, 158] serves to determine whether a sam-
ple originates from a population following a specific distribution. Section 4.3 uses this
technique. It enables comparison of a sample with a reference probability distribution or
between two samples. The KS test relies on the cumulative distribution function, which
signifies the probability of the function assuming a value less than or equal to a reference
point. This function is a stepwise progression that increments by the inverse of the total
number of data points N at each ordered data point’s value. Consequently, the KS statis-
tic represents the maximum absolute difference between the two cumulative distributions
F1 and F2 respectively, as it is shown in Figure 5.6:

D = supx|F1(x) − F2(x)|

Figure 5.6: Exemplification of Kolmogorov-Smirnov test. Source [158]

The null hypothesis employed in this experiment posits that both samples are drawn
from identical distributions. It constitutes a non-parametric and distribution-free test,
indicating it does not assume any particular distribution for the data. Furthermore, it
is considered an exact test, unlike the chi-square test, which relies on sufficient sample
size for valid approximations. Despite these advantages, the KS test is subject to certain
limitations. It is applicable solely to continuous distributions and demonstrates greater
sensitivity toward the center of the distribution compared to the tails. Lastly, for the KS
test to be valid, the distribution must be fully specified. If parameters such as location,
scale, and shape are estimated from the data, instead of being known in advance, the
standard K-S test results are not valid. In such cases, one usually needs to use simulation
methods to determine the correct critical values for the test.
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Chapter 6

Results

This chapter presents the results of each one of the topics that assemble the thesis. Each
section is introduced by a brief summary of the methodology. Afterwards, results are
shown and properly assessed.

6.1 Compound Reallocation Of Manufactured Cars

Four machine learning algorithms will be assessed on this classification task within the
production and delivery data: Decision Tree, Random Forest, XGBoost, and CatBoost.
The features space includes Car Model, Equipment Level (TRIM), Exterior Color, and
Engine, together with Order Type and Compound Region. The target of the problem
is the Delivery Type of the vehicle. In other words, whether a car is categorized as
Fast Delivery or Normal Delivery, according to the number of days it has spent on the
compound region. The threshold to decide between these two classes ranges from 1 to 6
weeks. It is pursued to obtain the best estimator among all the possible configurations of
each algorithm. In order to execute this search most efficiently, Bayes Optimization has
been employed. More details are found in Section 4.1.

6.1.1 The Best Estimator

The conditions of the Bayesian optimization are limited to 150 number of iterations, so
it has room enough for searching for the best solution; 5 stratified folds according to the
threshold time under analysis; and F1 Score as the scoring metric. The hyper-parameter
space for each algorithm, together with the best combination for each label, are found
from Table 6.1 to Table 6.4.

Table 6.1: Hyper-parameter space and best combinations according to threshold days for
algorithm Decision Tree

Decision Tree
Hyper-param. Search Space 7 days 14 days 21 days 28 days 35 days 42 days
max depth [3,21] 21 14 16 21 19 19
min samples split [2,51] 2 20 21 51 2 2
min samples leaf [1,21] 1 1 21 18 13 21
criterion [gini,entropy] gini gini entropy gini entropy entropy

max features
[auto,sqrt

None None None None None None
log2,None]
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Table 6.2: Hyper-parameter space and best combinations according to threshold days for
algorithm Random Forest

Random Forest
Hyper-param. Search Space 7 days 14 days 21 days 28 days 35 days 42 days
n estimators [50, 500] 237 50 440 344 451 500
max depth [3,21] 21 21 21 21 21 5
min samples split [2,51] 2 2 16 51 23 46
min samples leaf [1,21] 2 2 16 51 23 46
criterion [gini,entropy] gini gini entropy gini gini gini

max features
[auto,sqrt

None None None None None log2
log2,None]

Table 6.3: Hyper-parameter space and best combinations according to threshold days for
algorithm XGBoost

XGBoost
Hyper-param. Search Space 7 days 14 days 21 days 28 days 35 days 42 days
n estimators [50, 500] 500 500 500 357 500 497
max depth [3,21] 19 13 21 15 17 14
learning rate [0.001,0.3] 0.300 0.300 0.010 0.207 0.110 0.230
min child weight [1,11] 1 1 1 11 1 1
alpha [0,10] 0 0 4.342 6.304 10 9.47
lambda [0,10] 0 10 2.886 0 0 3.596
subsample [0.8,1] 0.800 0.800 0.870 0.800 0.800 0.982
colsample bytree [0.8,1] 1 0.800 0.846 1 1 0.806

Table 6.4: Hyper-parameter space and best combinations according to threshold days for
algorithm CatBoost

CatBoost
Hyper-param. Search Space 7 days 14 days 21 days 28 days 35 days 42 days
n estimators [50, 500] 482 125 349 245 272 262
max depth [3,16] 16 16 10 16 16 14
learning rate [0.01,0.3] 0.213 0.300 0.120 0.300 0.177 0.178
colsample bylevel [0.8,1] 0.828 1 0.827 0.810 0.996 1
reg lambda [0.001,100] 2.554 0.001 50.984 85.202 97.431 63.541
subsample [0.8,1] 0.824 1 0.994 1 0.820 0.800

The goal is to ensure that each of these estimators can not only distinguish between
classes but also be reliable in its decision-making. This balance is effectively addressed by
the assessment metric, F1 Score. The results, based on this metric, for all the algorithms
under analysis, are presented in Table 6.5.
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Table 6.5: F1 Score achieved at each threshold days in the training process for each
classification algorithm

7 days 14 days 21 days 28 days 35 days 42 days
Decision Tree 0.078 0.400 0.653 0.709 0.741 0.766
Random Forest 0.056 0.436 0.664 0.716 0.752 0.765
XGBoost 0.151 0.463 0.658 0.724 0.753 0.781
CatBoost 0.047 0.423 0.654 0.722 0.751 0.778

Among these algorithms, XGBoost demonstrates the highest and most consistent per-
formance, obtaining the maximum F1 Score of 0.781 at the threshold of 42 days. This
indicates that XGBoost is the most effective in accurately predicting the target class. The
trend of increasing F1 Scores as the threshold days increase for most algorithms implies
that a larger ratio of Fast Delivery cars within the dataset is beneficial for improving pre-
dictive performance. It is worth mentioning that while XGBoost achieves the highest F1
Score, the other algorithms also perform competitively and consistently well. All values
are in the same order of magnitude as XGBoost, including in this batch Decision Tree.
It performs better than Random Forest and/or CatBoost in the first and last threshold,
despite its simplicity and limitations.

The interpretability of the results provided by the best estimator has been achieved
by comparing two techniques: feature importance and SHAP values. The outcomes from
these two procedures are illustrated in Figure 6.1. It is not a surprise that the Private
Customers tag is the most relevant attribute by far to identify a car within the category
of Fast Delivery. Actually, these are cars Build-to-Order. The time within the compound
will be minimal as there is already a customer waiting for the automobile. In the second
place of the ranking, with one order of magnitude less than the predecessor, Dealerships
Stock appears. Cars belonging to this Order Type are more likely to be categorized
as Normal Delivery. With respect to the significance of the compound region, choosing
CMC as the final destination has more weight than the other options to be selected as
Normal Delivery. It is the location with the longest average and median period of days
within the compound (see Table 3.5). Additionally, in the winning threshold days, it is
the compound with the lowest percentage of Fast Delivery cars (see Table 4.1). Finally,
with respect to the elements that build the car attribute, the most relevant TRIMs are
Style and Reference, i.e., the cheapest equipment levels; the most relevant color is the
one designated as B4B4; the first car models to appear in the list are SEAT Arona and
SEAT Leon 5D. In terms of engines, DS8 and D33 are the earliest options to appear.
However, the relevance of these attributes is small paying attention to the SHAP values.
To comprehend the distinction between both approaches, it is important to remember that
SHAP values assess the influence of a feature on predictions, while features importance
estimates the impact of a feature on model fit.
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Figure 6.1: Analysis of feature relevance for the best estimator done with feature impor-
tances and with SHAP values.

6.1.2 Benefits Of The Reallocation Strategy

It is presented the confusion matrix derived from the best estimator in Figure 6.2. The
rows represent the predicted class labels, while the columns represent the actual class
labels. True Positives are the dominant category, whilst True Negative occupies the second
place. Nevertheless, the estimator has more preference for classifying Fast Delivery cars
as Normal Delivery type, rather than the opposite. This trend is favorable. There are
more actual Fast Delivery cars occupying the slot of Normal Delivery cars than the other
way around. As every day in the compound region has associated logistic costs, it is
preferable the misclassification in this direction. They are car variants still attractive to
customers.
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Figure 6.2: Confusion matrix from the best estimator

Based on the discoveries about the interpretability of the model, it is worth exploring
the performance of the estimator per Order Type. Figure 6.3 shows the individual con-
fusion matrices for each category. In addition, Table 6.6 collects four evaluation metrics
related to each single confusion matrix, and contrasts them with the general outcomes.
The best and worst performances, based on the F1 Score criteria, correspond to Private
Customer and Dealership Stock, respectively. Especially, the latter category tends to
classify cars as Normal Delivery. For the other subgroups, the number of vehicles that
are actual Normal Delivery but are classified as Fast Delivery is superior than the inverse
scenario.
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Figure 6.3: Confusion matrices from the best estimator for each one of the classes within
the Order Type feature
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Table 6.6: Main performance statistics from the confusion matrices derived from the best
estimator

General Private Customer Fleet Cars Dealership Stock Importer Stock
Accuracy 0.734 0.888 0.695 0.635 0.656
Recall 0.772 0.993 0.858 0.341 0.684
Precision 0.79 0.893 0.701 0.604 0.658
F1 Score 0.781 0.94 0.772 0.436 0.671

Therefore, a point of improvement is detected, as there are cars that based on their
configurations are Normal Delivery but they can become Fast Delivery. Nearly 40% of
observations can benefit from it. That’s why it is pursued to proceed with the reallocation
strategy. The best-trained classification system is used to assign an alternative destination
in the vehicles that were labeled as Normal Delivery. The attempt is to transform a
Normal Delivery car into a Fast Delivery type by changing the compound destination of
the vehicle. It was a successful trial for 22301 out of 45222 classified as Normal Delivery
cars, having one alternative compound destination, at least, half of the sample. More
details are placed in Figure 6.4.

0 2000 4000 6000 8000 10000

1

2

3

4

5

No
. o

f a
lte

rn
at

iv
e

 c
om

po
un

d 
de

st
in

at
io

ns

9925

3333

3557

3026

2460

Figure 6.4: Number of labeled Normal Delivery cars updated to Fast Delivery type per
number of alternative compound regions available
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It follows the analysis at the compound destination level. The comparison between the
before and after the reallocation strategy is presented in Table 6.7. As it is expected, the
number of cars per compound has suffered modifications and does not respect the total
quantity of vehicles within the dataset. We do not discriminate when there is more than
one alternative compound destination for the car variant. That’s why there are duplicates.
Paying attention to CHESTE, the metrics after reallocation do not imply an improvement
in the operation of the compound. However, the maximum number of days waiting in the
compound has varied positively. On the other side, the median of the cars headed to the
CMC compound region has been reduced thanks to the reallocation, despite the average
has increased in once of the scenarios. The opposite case occurs in LA RODA, where the
average Time in Compound has diminished. Until this point, the reallocation strategy
is globally comparable to the decisions taken by the experts of the company. On the
contrary, the compounds from MADRID, LLAGOSTA, and SANTANDER experiment
an improvement both in average and median in days waiting in the compound.

Table 6.7: Main descriptive values, before and after reallocation strategies, for Time in
Compound per each compound region individually. Reallocation A refers to the approach
without new Time in Compound computation for the vehicles. For Reallocation B, the
Time in Compound for the vehicles with new destination has been estimated from the
existing time distribution in that region

CMC MADRID
Original Reallocation A Reallocation B Original Reallocation A Reallocation B

Min 1 1 0 1 1 1
Mean 62 64 46 54 46 36
Std. Dev. 53 57 36 58 50 34
Q1 26 24 24 14 14 14
Q2 46 43 37 29 25 25
Q3 82 88 52 71 59 44
Max 716 716 716 447 554 377
No. of Cars 8670 11153 11153 24526 21355 21355

LA RODA CHESTE
Original Reallocation A Reallocation B Original Reallocation A Reallocation B

Min 1 1 1 1 1 1
Mean 60 56 37 52 56 39
Std. Dev. 64 53 31 57 54 33
Q1 16 17 17 14 16 16
Q2 34 37 31 27 37 32
Q3 82 77 44 71 78 47
Max 516 516 516 490 470 335
No. of Cars 16608 19027 19027 14216 21313 21313

LLAGOSTA SANTANDER
Original Reallocation A Reallocation B Original Reallocation A Reallocation B

Min 1 1 1 1 1 1
Mean 49 42 35 54 48 37
Std. Dev. 55 45 34 56 46 30
Q1 14 14 14 18 18 18
Q2 25 24 24 30 29 28
Q3 62 54 43 69 62 41
Max 470 461 461 554 447 397
No. of Cars 31874 29861 29861 17433 17062 17062
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6.2 Car Configurator Webpage As A Reliable

Source
This section attempts to verify if data collected from the the car configurator is useful and
reliable to capture the interest of potential customers (see Section 4.2). Therefore, the
analysis will count on the clickstream data and the sales record of the company. The first
step within the study includes measuring the correlation between these two datasets.,
pursuing to understand the starting of the customer’s exploration phase. Afterward,
taking advantage of these outcomes, the timeframe will be divided into time chunks, in
which the next step of the research will take place. The second phase is oriented to
perform demand prediction with and without being assisted by the information gathered
by the car configurator. Finally, the assessment of the results, by means of the comparison
with respect to the real weekly mix sales, will permit to validate or reject the contribution
of the online source.

6.2.1 Correlation Analysis

The time series of the sales record and the clickstream data will be shifted during 52
points. It is attempted to discover the lag between the start of the exploratory phase and
the purchase moment. Firstly, it is computed individually per car model. Afterwards,
seeking to confirm the outputs, the correlation is performed at the car variant level.
In other words, the conjunction of the car model together with color or the compound
destination.

Regarding the most aggregated level, the results in Figure 6.5 show that a positive
correlation exists for all car models under analysis. It is computed in the form of Pearson
correlation coefficient (PCC). Although it does not have the strength it would be expected.
None of our four car models reaches a peak close to the unit, being SEAT Arona the one
with the largest values. However, it is possible to extract one conclusion. For all car
models, the largest correlation is within the first half of the shifting period, as well as the
rest of the top five largest points. The unique exception is for SEAT Leon ST, where one
of these top five points occurs at the 28th shifted week. Hence, we conclude that purchase
likelihood increases within a period of up to 6 months after visiting the Car Configurator
webpage.

For the car variant’s granular level, results regarding car model and exterior color are
displayed in Figure 6.6. They are averaged along the entire lagging period among the
set of car variants. At this granular level, the behavior of PCC is similar to the previous
one. Correlation is stronger in the first half of the shifting period than in the second
half. However, larger values are reached than at the previous granular level, meaning a
stronger correlation. The same study is performed at the car model and compound region
level. It is illustrated in Figure 6.7. The average value is lower than for the other car
variants. The exception is SEAT Arona, in which values are similar. On the contrary,
the standard deviation has diminished as well. Therefore, the behavior along the different
compound regions is more consistent than among the different colors of each car model.
Finally, despite three out of the five largest values of SEAT Leon ST peak occurring in
the second half, the pattern is repeated. The correlation exhibits greater strength during
the initial half of the shifting period compared to the latter half. To understand more in
detail about the lagged correlation of each car variant, see Annex A. Therefore, the time
series will be divided into five time chunks of six-month size, where the last month and a
half defines the test period.
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Figure 6.5: Pearson correlation coefficient (PCC) after shifting Car Configurator webpage
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level. Thicker line represents the average correlation value per lagged week among the
car variants. Shadow area symbolizes the standard deviation. A square mark signals the
largest positive PCC. Circle marks point to the rest of top 5 largest positive PCC.

6.2.2 Forecasting Performance
For each one of the aforementioned time chunks, the sales volume for all the car variants
will be predicted. The forecast will be performed using well-known machine learning
algorithms, i.e., ARIMA(X) and XGBoost, both in univariate (only sales record) and
multivariate (sales record and clickstream data) modalities.

The time chunk structure is as follows. As the largest correlation points occur within
the first part of the lagging interval, the training epoch of these periods will last for six
months, i.e., 24 weeks. The next six weeks are used as test data. Predictive algorithms
will be evaluated on them. Therefore, there are 5 groups of up to 30 weeks. The test phase
of the last time chunk counts with 5, rather than 6 weeks, as there is only information
of 149 weeks. Additionally, with the time chunks division, it is intended to face all the
stages of the product life cycle: introduction, growth, maturity, and decline. The group
of time chunks is illustrated in Figure 6.8.
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Consequently, the first step consists of assessing the different forecasting techniques
in terms of MAE. The decision to utilize MAE is based on its resistance to outliers that
may be present in the sales records of each variant. To illustrate the procedure, there
is in Figure 6.9 the comparison of the predicted sales record against the actual one in
each forecasting algorithm. It reflects the best-seller car variant at the exterior color
level. It is referred to as SEAT Ibiza and the color named B4B4 for the third time chunk.
The car variant’s sales were 1165 units during the test period associated with this time
chunk. It lies from the week of 11st November to the week of 16th December 2018. The
best technique is XGBoost Multivariate. The MAE of each car variant and forecasting
method can be found in Annex B.

The error analysis is extended to encompass the entire dataset. It is executed for both
types of car variants. Figure 6.10 collects the results for car model and exterior color,
whilst car model and compound region is shown in Figure 6.11. The largest variability
is observed for the exterior color car variants, rather than at the compound region level.
Nevertheless, the lowest MAE in order of magnitude corresponds to the second time
chunk of the SEAT Leon ST. Additionally, the algorithm families follow similar behavior,
performing better the gradient boosting type. At these levels, the previous pattern is
repeated. Multivariate techniques provide the best outputs. It opens a path to consider
Car Configurator webpage data as reliable information.
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Figure 6.9: Sales predictions obtained for the best seller car variant at third time chunk
with the different forecasting techniques.
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Figure 6.10: Averaged MAE per car variant (car model plus exterior color) and time
chunk of each forecasting technique. The colored bar indicates the technique with the
best metric. Whiskers represent standard deviation of the metric.
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Figure 6.11: Averaged MAE per car variant (car model plus compound region) and time
chunk of each forecasting technique. The colored bar indicates the technique with the
best metric. Whiskers represent standard deviation of the metric.
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6.2.3 Weekly Mix Sales Assessment

After completing the forecasting performance tests, it is proceeded with the evaluation of
weekly mix sales. This stage is crucial for validating the accuracy of the previous forecasts.
It is found that data from the automotive brand’s website consistently proves to be a
dependable and trustworthy source. The evaluation process follows the same structured
approach as before. Firstly, the metric is exemplified with a car variant. Subsequently,
the performance assessment is extended to encompass the entirety of the available data.

The chosen car model is the top seller. In other words, SEAT Ibiza at the third time
chunk. Figure 6.12 illustrates the weight each color had on the sales of the first week of
the test period. It is observed that one out of every two cars is painted in color B4B4.
Therefore, these proportions are compared with the ones derived from each forecasting
method. They are presented in the lower grid. The comparison between real and forecast
mix is executed thanks to R2 Score. In this scenario, the univariate techniques have a great
performance. Nevertheless, the winning method belongs to the multivariate category.
ARIMAX outputs present the largest similarity between prediction and reality. On the
contrary, despite its good performance in terms of MAE, the outcomes from XGBoost
multivariate are the lowest. Nevertheless, this is a representation of a single case, which
is why it is important to proceed with the assessment methodology. The R2 Score of each
car variant, week, and forecasting method can be found in Annex C.

0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 E1E1 F5F5 F8F8 L5L5 S7S70

20

40

60

Re
al

 W
ee

kl
y 

M
ix

 S
al

es
 [%

]

0.82% 2.61% 3.59%
8.65% 8.32%

0.0%

50.73%

10.6%
0.33% 2.94% 3.1%

8.32%

0

20

40

U
ni

va
ri

at
e

 W
ee

kl
y 

M
ix

 S
al

es
 [%

]

Real
ARIMA

0 20 40
0

20

40
ARIMA:
95.23 %

0

20

40
Real
XGBoost (Uni)

0 20
0

20

40
XGBoost (Uni):
95.16 %

0C
0C

0E
0E

2Y
2Y

7Y
7Y

95
50

9M
9M

B4
B4

E1
E1

F5
F5

F8
F8

L5
L5

S7
S7

0

20

40

M
ul

ti
va

ri
at

e
 W

ee
kl

y 
M

ix
 S

al
es

 [%
]

Real
ARIMAX

0 20 40
Preds

0

20

40
ARIMAX:
96.10 %

0C
0C

0E
0E

2Y
2Y

7Y
7Y

95
50

9M
9M

B4
B4

E1
E1

F5
F5

F8
F8

L5
L5

S7
S7

0

20

40
Real
XGBoost (Multi)

0 20
Preds

0

20

40
XGBoost (Multi):
76.35 %

Figure 6.12: Real weekly color mix sales (upper), forecast ones and assessment in the
form of R2 Score (lower grid) for SEAT Ibiza in third time chunk.

Therefore, the averaged performance is computed over the total length of weeks and
time chunks of the different forecasting techniques. This stage is shown in Table 6.8 re-
garding exterior color attribute, and in Table 6.9 for compound region level. The leading
technique corresponds to the XGBoost in its variant multivariate in both car variants’
granular levels. Additionally, the univariate mode of the gradient boosting method con-
sistently delivers the best outputs from its group. The similarity between predictions and
reality is larger when it is assessed for the exterior color attribute. Nevertheless, SEAT
Arona is the car model with the lowest performance. The launching phase impacts its
outcomes.
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Table 6.8: Average R2 Score (%) of each forecasting technique for the weekly sales mixes
of each car model at exterior color level over the total size of time chunks of the dataset.
Bold text signals the largest value

SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST
ARIMA 74.15 ± 32.65 91.07 ± 7.61 80.97 ± 13.26 71.48 ± 18.25
XGBoost (Uni) 75.9 ± 34.13 93.68 ± 4.32 88.76 ± 8.43 82.21 ± 12.82
ARIMAX 67.2 ± 34.62 82.73 ± 18.26 77.22 ± 14.41 71.59 ± 20.01
XGBoost (Multi) 78.87 ± 31.38 94.5 ± 5.93 92.42 ± 4.14 86.47 ± 12.91

Table 6.9: Average R2 Score (%) of each forecasting technique for the weekly sales mixes
of each car model at compound region level over the total size of time chunks of the
dataset. Bold text signals the largest value

SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST
ARIMA 47.72 ± 33.6 60.44 ± 25.44 67.21 ± 23.24 71.94 ± 22.94
XGBoost (Uni) 49.66 ± 31.13 72.94 ± 17.52 69.46 ± 22.0 80.74 ± 17.98
ARIMAX 55.98 ± 34.26 52.19 ± 24.98 57.72 ± 27.66 72.25 ± 22.03
XGBoost (Multi) 63.74 ± 33.71 75.43 ± 19.8 77.84 ± 18.5 83.86 ± 19.54

In the second phase, assessment occurs at the time-chunk level. The outcomes of each
forecasting technique are averaged over this time level. The intention is to gain more de-
tails about the performance. This behavior is displayed in Figure 6.13 and Figure 6.14 for
color and compound region granularity levels, respectively. In the first element, XGBoost
multivariate clearly dominates the best outcomes per time chunk and car model. There
is a single exception in the third time chunk of the SEAT Ibiza. In this frame, XGBoost
univariate is ahead of the other algorithms. In the compound destination case, the dom-
inance of XGBoost multivariate is not so wide, but it is for the multivariate algorithms
in general. Nevertheless, univariate techniques lead in some time chunks of SEAT Ibiza
and SEAT Leon ST.
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Figure 6.13: Average R2 Score (%) of each forecasting technique for the weekly sales mixes
of each car model at exterior color attribute over each chunks of the dataset.Colored bars
represent the forecasting algorithm with the largest metric.



CHAPTER 6. RESULTS 86

20

0

20

40

60
SE

AT
AR

O
N

A
 A

vg
. C

or
re

la
tio

n
Time Chunk 1

0

25

50

75

100 Time Chunk 2

0

20

40

60

80

Time Chunk 3

0

20

40

60

80
Time Chunk 4

0

25

50

75

100

Time Chunk 5

0

20

40

60

80

SE
AT

IB
IZ

A
 A

vg
. C

or
re

la
tio

n

0

20

40

60

80

0

25

50

75

100

0

20

40

60

80

0

25

50

75

100

0

25

50

75

100

SE
AT

LE
O

N
5D

 A
vg

. C
or

re
la

tio
n

0

25

50

75

100

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

AR
IM

A

XG
Bo

os
t (

Un
i)

AR
IM

AX

XG
Bo

os
t (

M
ul

ti)

0

25

50

75

100

SE
AT

LE
O

N
ST

 A
vg

. C
or

re
la

tio
n

AR
IM

A

XG
Bo

os
t (

Un
i)

AR
IM

AX

XG
Bo

os
t (

M
ul

ti)

0

25

50

75

100

AR
IM

A

XG
Bo

os
t (

Un
i)

AR
IM

AX

XG
Bo

os
t (

M
ul

ti)

0

20

40

60

80

AR
IM

A

XG
Bo

os
t (

Un
i)

AR
IM

AX

XG
Bo

os
t (

M
ul

ti)

0

25

50

75

100

AR
IM

A

XG
Bo

os
t (

Un
i)

AR
IM

AX

XG
Bo

os
t (

M
ul

ti)

0

25

50

75

100

Figure 6.14: Average R2 Score (%) of each forecasting technique for the weekly sales mixes
of each car model at compound region level over each chunks of the dataset. Colored bars
represent the forecasting algorithm with the largest metric.
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The evaluation of weekly color mix sales finishes with the third step. The results for
exterior color and compound region car variants levels are summarized in Figures 6.15
and 6.16, respectively. Regarding the color level, there are two scenarios. In the first
one, XGBoost multivariate consistently delivers the largest metric along the test period
of the time chunk. In the other scenario, there is an even between the gradient boosting
algorithms. Nevertheless, the multivariate option is always included. On the contrary,
the case at the compound region level presents more variety. All car models have time
chunks on which one of the univariate techniques outperforms. However, it is also valid
to say that multivariate techniques are more regular in their behavior. It is the leader
or it participates in the tie of the algorithms providing the largest metric for most weeks
within the test periods.
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Figure 6.15: Count of what is the forecasting technique that provides the best R2 Score
each week of the test period within each time chunk of the dataset for each car model and
exterior color attribute. The technique(s) with the largest number of weeks is colored.
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Figure 6.16: Count of what is the forecasting technique that provides the best R2 Score
each week of the test period within each time chunk of the dataset for each car model and
compound region level. The technique(s) with the largest number of weeks is colored.
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6.3 Quantitave Reduction Of Car Configurator Data

The properties of the Car Configurator webpage cause the quantity of data generated
by the online service to dramatically boost. Despite the dataset having been processed
and cleaned, problems bonded to Big Data environments are still likely, such as noisy
and corrupted data. This section presents the results achieved by reducing the volume of
clickstream data without compromising significance. The latter is defined as the correla-
tion between Car Configurator webpage visits and company sales. The data disminishing
is ruled by a set of filtering rules, based on outliers detection within users’ quantitative
activity, such as Number of Car Variants and Time Between Connections. The summary
of the filtering sequence can be recovered (see Figure 4.3 and Section 4.3).

6.3.1 Comparison of significance: benchmark vs filtering rules

On one hand, Figure 6.17 presents the R2 Score measuring the correlation between plain
Car Configurator data and 8-week lagged sales records. The horizontal axis represents
the date on which the correlation calculus took place. Additionally, for the same time
period, they are overlapped the outcomes related to each filtered CC data. Nevertheless,
the overlapping is not exact in all the periods from the time range. It is distinguished
a gap happening in November 2018 for the four cases. Filtered CC data provide larger
significance than raw Car Configurator data does. The opposite occurs in February 2019,
when raw Car Configurator data gives the largest values.
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Figure 6.17: Monthly significance value between visits to Car Configurator webpage and
lagged sales record. Comparison of the outcomes attained by raw Car Configurator data
(orange line) and each one of the filtering rules applied to Car Configurator data (dashed-
dotted lines)

Thus, in order to gain precision in the comparison of results, the main statistical values
can be found in Table 6.10. It collects the average, the standard deviation as well as the
minimum and maximum values from each individual R2 Score. They are computed as
supportive variables in an attempt to detect anomalies between series. All of them lay in
the range given by the raw clickstream. However, we need to summarize the comparison
into a single value. The elected magnitude is the p-value from the statistical Kolmogorov-
Smirnov test between benchmark and filtering rules’ outcomes. The four filtering rules
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have proved to be as good as unprocessed Car Configurator data in terms of significance
with a lagged sales register. Nevertheless, it is difficult to choose which one is the best.
On one side, Filtering Rule 3A2 provides the largest average with not one of the largest
standard deviations. On the contrary, the filtering rule most similar to raw CC data is
Filtering Rule 3B2, which has the largest p-value.

Table 6.10: Main statistical values of the Significance comparison between Raw CC data
and Filtered CC data. Column p-value collects the outcome of statistical Kolmogorov-
Smirnov test between Plain Car Configurator data and filtered Car Configurator data.

Average Standard Deviation Minimum Maximum p-value
Plain Car Configurator 28.28 32.94 0.02 93.60 –
Filtering Rule 3A1 29.69 33.73 0.00 94.21 0.838
Filtering Rule 3A2 30.37 33.24 0.03 96.95 0.838
Filtering Rule 3B1 29.72 32.98 0.00 94.59 0.838
Filtering Rule 3B2 30.29 32.90 0.00 92.47 0.968

6.4 Qualitative Filtering Of Car Configurator Data

The challenge of discriminating between users of the Car Configurator webpage is per-
sisting. The chosen approach is using a genetic algorithm that explores all the data
generated and identifies the behavior of the users with purchasing intention. To accom-
plish this task, the genetic algorithm will filter the clickstream data while maximizing the
correlation with respect to car sales. Customer profiling is performed at two levels. In
the first one, the optimization is performed globally between Car Configurator data and
sales record. In the second stage, the optimization takes place at the compound region
level. The full methodology is found in Section 4.4.

6.4.1 Results Using General Clickstream Data

For the first part of the analysis, the purpose consists of tuning the parameters of the
genetic algorithm. There are three degrees of freedom. The terms related to tournament,
crossover, and mutation are constant. The tournament probability is set to 30% the
population size; there is 90% chance of crossover between the parents; and mutation
probability is limited to 1 over population size. This is a problem oriented into augmenting
the fitness, whose theoretical limit value is 100%. This number represents the perfect
monthly correlation between clickstream data and sales record.

The experiments carried out are named after the chromosome size, i.e., the number
of filtering rules; the population size; and the number of generations beyond the initial,
respectively. These parameters range from 50-150 rules within the chromosome; 20-300
chromosomes within the population; and 20-200 new generations. For all these scenarios,
five independent trials took place. The outcomes of these attempts are visible in Fig-
ure 6.18. It reflects the average fitness achieved among all trials in each generation for
every experiment. All lines evolved following the same trend. From the very beginning,
all experiments surpass the benchmark value. However, there is an evident gap in the
lower parts of the graph. The experiments with inferior population size (30 chromosomes)
provide smaller fitness. Additionally, most of the trials were interrupted before arriving
at the limit number of generations. The cause is the genetic algorithm stacked in local
minima more times than permitted by the anti-stagnation mechanism. The summary of
generations computed in each experiment and trial is found in Table 6.11.
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These reasons conduct the expansion of the search space. Population size and number
of generations boost in the next two scenarios. The best output delivers a maximum
average fitness close to 90%. Moreover, both experiments were performed without inter-
ruptions. A last attempt to achieve the theoretical limit value was carried on. All free
parameters increased their values. In this experiment, despite all trials being stopped
by the anti-stagnation mechanism, the fitness delivery improved. However, the difference
with respect to the previous experiment is not magnificent. Therefore, it is not possible
to decide which experiment is clearly dominant.
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Figure 6.18: Average fitness per generation along all trials for each experiment. Thicker
lines represent the average value, whilst the shadow area symbolizes the standard devia-
tion. Experiments are named after number of rules within the chromosome, the population
size and the number of generations to explore, respectively.

Table 6.11: Number of generations computed for each trial within every experiment of
the genetic algorithm.

No. Rules Pop. Size No. Gens Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
50 30 20 18 18 20 15 16
100 30 20 13 12 16 13 13
100 100 50 50 50 50 50 50
100 250 100 100 100 100 100 100
150 300 200 109 109 109 109 111

Other reasons that elude us from making a decision are presented in Table 6.12. It
collects the largest fitness values for every trial and experiment. Both candidates deliver
the largest maximum values, on average. They surpass about 40 and 15 points in the
first two and third cases, respectively. The peaks of the two experiments have the same
order of magnitude. The difference is negligible. Hence, it is intended to discover whether
simpler scenarios could provide the same performance. That’s why a detailed analysis of
the best candidate from the two inputs is necessary.
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Table 6.12: Maximum fitness values achieved for each trial and experiment of the genetic
algorithm. Bold text signals the largest value.

No. Rules Pop. Size No. Gens Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average

50 30 20 48.22 58.32 57.79 53.63 53.83 54.36 ± 4.06
100 30 20 50.12 49.83 52.15 56.01 56.20 52.86 ± 3.09
100 100 50 79.51 79.85 76.81 79.94 79.77 79.17 ± 1.33
100 250 100 85.34 90.27 95.45 91.72 93.28 91.21 ± 3.80
150 300 200 94.39 94.22 95.98 94.28 91.63 94.10 ± 1.56

The two candidates under discussion are renamed exp1, the case with 100 rules; and
exp2, the scenario with 150 rules. All of these rules are exclusive. There is no single
match between the chromosomes of the two candidates. Therefore, for each one of the
experiments, the frequency of the elements that compose the rules is computed. Addi-
tionally, they are compared against the plain Car Configurator data. The first study takes
place in Table 6.13. The row Size GA signifies how many items from all the available op-
tions within each feature were explored by the Genetic Algorithm. In both experiments,
only the day of the week and the information related to car model and trim were totally
scouted. Additionally, the number of chosen items grows together with the size of the
chromosomes. A larger number of items were selected in exp2 than in exp1. However,
the feature Exterior Color has the most substantial gap. Nearly 50% of available items
were chosen. The next two rows, ItemGA and FreqGA, represent the item with the largest
appearance frequency and this value within the filtering rules. However, the remarkable
insight is that there are only two cases where the most popular visited item in the Car
Configurator was the most chosen attribute by the genetic algorithm. For exp1, it occurs
in the TRIM Level. For exp2, SEAT Leon 5D is the favorite item in both aspects. For
the rest of the features, the leading attributes are in long distance of occupying the first
places in popularity within the plain clickstream data.

Table 6.13: Frequency of the best items of each chromosome’s features in each experiment
of the genetic algorithm (GA) and what position that item occupies in Car Configurator
(CC) webpage

DOW Car Model TRIM Level Engine Ext. Color Location

exp1 SizeGA 7/7 4/4 6/6 34/48 23/51 40/50
ItemGA Friday SEAT Leon ST FR GV 7Y7Y ALAVA
FreqGA 17% 32% 27% 10% 11% 6%
PosCC 7th 4th 1st 7th 5th 37th

exp2 SizeGA 7/7 4/4 6/6 39/48 26/51 44/50
ItemGA Thursday SEAT Leon 5D Xperience MX 2Y2Y ALICANTE
FreqGA 20% 35% 22% 7% 10% 6%
PosCC 5th 1st 4th 15th 4th 6th

The second analysis is shown in Table 6.14. In this case, the most popular item among
the users of the Car Configurator is searched in the solutions of the genetic algorithm. It
reflects the most visited item per feature individually, not the top car variant configured
in the online tool. Besides for TRIM Level and Car Model in exp1 and exp2, respectively,
the rest of the information is new. The top visited car model SEAT Leon 5D ranks in
second position within the filtering rules of the chromosome from the first experiment.
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However, this case is an exception. The rest of the attributes do not occupy these leader
rankings. The most dramatic case belongs to the location of exp1. The Spanish province
causing the largest number of visits to the Car Configurator aligns in the 23rd position
out of 40 explored locations. The other items stands between 4th and 9th place.

Table 6.14: Most popular item per feature within Car Configurator (CC) webpage and
what position that item occupies in the best solution of each experiment of the genetic
algorithm (GA)

DOW Car Model TRIM Level Engine Ext. Color Location
ItemCC Tuesday SEAT Leon 5D FR KX 9550 MADRID

exp1 FreqGA 14% 30% 27% 4% 7% 2%
PosGA 5th 2nd 1st 9th 6th 23th

exp2 FreqGA 15% 35% 21% 5% 9% 3%
PosGA 4th 1st 4th 4th 5th 9th

The findings suggest that the most popular elements within the Car Configurator
webpage, while often capturing a significant share of attention, are not necessarily the
best indicators of potential consumers among online tool users. This underscores the
need for a more nuanced approach to customer profiling analysis. The following trail is
built on the fitness of every single rule from the best two candidates. The motivation lies
in understanding the weight each individual rule has. To accomplish this purpose, the
correlation is computed between the sales record and the reduced clickstream data. This
small sample derives from using exclusively the criteria of the rule under analysis, not
the entire chromosome. In this manner, from the 100 rules forming the solution of the
exp1, 76 of them perform positively to the fitness. The contribution of the 24 remaining
rules is null. In the case of exp2, 104 out of 150 rules deliver some individual fitness. The
ratio of active rules is similar in both experiments, about 70%. The distinction between
both groups of rules is illustrated in Figure 6.19. The rules with zero individual fitness
are at the right of the graph and white colored. Additionally, there is green shadow area
named Pareto Rules. These regions signal the rules that provide 80% of the value of the
accumulated rules fitness. For the first experiment, there are 24 of these Pareto Rules. In
the second case, the percentage of Pareto Rules is a little bit higher and increases up to
41 out of 150 rules.
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Figure 6.19: Accumulated fitness achieved by each rule within the chromosome of the
experiment

It is worth to repeat the appearance frequency comparison exercise. It is performed
between the Pareto Rules and the sales record. It is pursued to understand whether it
is preserved the same pattern discovered in the clickstream data. The best indicators
are not always the most popular elements. Table 6.15 gathers the most chosen item per
attribute of the Pareto rules and places it within the ranking of sales record. There is only
a match between top preferences. The most common engine from exp2 is the best-seller
engine, too. Equal results are found regarding Car Model and TRIM Level, besides the
frequency within the Pareto rules is different. The ranking from the rest of the attributes
is in the next tiers. On the contrary, Table 6.16 shows the opposite question. Where
the best seller items are placed within the Pareto Rules. Clarify that it is presented as
the most common item per attribute, not the top-seller car variant. In this case, high-
demand items are placed in upper positions than the most visited elements within the
Car Configurator webpage. The most distance case occurs in the Location attribute. The
village of BARCELONA ranks in the 7th position among the Pareto Rules of the second
experiment. This behavior indicates the reliability of the genetic algorithm. It is able to
find the filtering rules helping in the correlation with the sales record.

Table 6.15: Frequency of the best items of the Pareto Rules (PR) in each experiment and
what position that item occupies in sales record

DOW Car Model TRIM Level Engine Ext. Color Location

exp1 ItemPR Monday SEAT Leon 5D Reference JX 7Y7Y CASTELLON
FreqPR 25% 46% 25% 17% 25% 12%
PosSALES 5th 2nd 3rd 16th 4th 23th

exp2 ItemPR Tuesday SEAT Leon 5D Reference CV 0E0E ALICANTE
FreqPR 27% 39% 29% 12% 15% 12%
PosSALES 4th 2nd 3rd 1st 8th 5th
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Table 6.16: Most popular item per feature within Sales record and what position that
item occupies in the Pareto Rules (PR) of each experiment of the genetic algorithm (GA)

DOW Car Model TRIM Level Engine Ext. Color Location
ItemSALES Friday SEAT Ibiza Style CV B4B4 BARCELONA

exp1 FreqPR 12% 29% 21% 12% 12% 12%
PosPR 4th 2nd 2nd 2nd 3rd 2nd

exp2 FreqPR 10% 17% 27% 12% 12% 5%
PosPR 6th 4th 2nd 1st 2nd 7th

The previous results validate the aforementioned tendency. Frequently favored compo-
nents, from both sales records and clickstream data, they may not necessarily serve as the
most accurate indicators of potential consumers. Nevertheless, it is mandatory to make
a decision about what are the best input parameters. The experiment with the largest
number of rules, population size, and number of generations is declared as the successful
candidate. The behavior shown in the detailed study of the two candidates is equivalent.
That’s why, the decision is based on objective magnitude. It delivers the largest fitness
value. The impact of these parameters at the compound region level is under assessment
in the next section.

6.4.2 Results From Compound Region Approach

In this part of the research, the sales data has been divided at the compound region level.
Hence, the genetic algorithm seeks to optimize the correlation between the clickstream
data and the local sales. Nevertheless, the benchmark value is computed in the next way.
Only visits registers and sales coming from the same compound region are employed.
That’s how they are obtained the results from Table 6.17. The input parameters of the
genetic algorithm are the previously chosen. All compound regions exhibit a consider-
able enhancement in terms of correlation when compared to the baseline values. Among
the considered compounds, MADRID displays the most significant improvement, while
LLAGOSTA obtains the highest correlation value. On average, the fitness is augmented
by 66.25 ± 1.46.

Table 6.17: Maximum fitness value obtained by the genetic algorithm (GA) in each com-
pound and the benchmark value.

CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Benchmark 31.08 29.46 30.49 32.08 35.35 29.91
FitnessGA 96.92 97.22 98.32 98.00 99.25 96.15

The next steps consist of a detailed analysis of the filtering rules. This time, done
for each individual compound region. Rather than focusing on the frequency aspect of
the items within the candidates, we explore the location attribute. In other words, the
locations included in the chromosomes are divided into two groups. Depending on whether
the locations belong to the compound region under analysis or they do not.
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Therefore, the outputs are placed on Table 6.18. Firstly, it is searched how many
locations from each group compose the structure of the candidates. In all compound
regions, the Spanish provinces that built it are included. Nevertheless, they are not
the majority among the rest of the items. The group of the outsider locations has an
appearance frequency that ranges between 70% and 93% within the filtering rules of the
candidates. Despite this, the vast presence of outsider locations does not necessarily
mean they are more relevant. Therefore, it is interesting to understand whether groups
are comparable regarding fitness. To accomplish this task, the individual fitness of each
individual rule is computed in the same way was performed in the past. This is the path
to achieve the average fitness value provided by each group. The external locations of
CMC, MADRID, and SANTANDER provide more fitness than the internal ones, since
the average fitness is larger. The contrary occurs in CHESTE and LLAGOSTA. Finally,
the difference between the two groups in LA RODA is not significant.

Table 6.18: Outputs of the analysis performed to the solution of each compound region.
Suffix In stands for locations belonging to the compound under analysis. Suffix Out is
the opposite.

CMC MADRID LA RODA
No. LocationsIn 4 10 9
No. LocationsOut 45 39 38
FrequencyIn 8.0% 14.0% 19.33%
FrequencyOut 92.0% 86.0% 80.67%
Average FitnessIn 0.34 ± 0.83 1.7 ± 3.29 2.01 ± 3.06
Average FitnessOut 2.26 ± 3.15 2.48 ± 4.15 2.0 ± 3.45

CHESTE LLAGOSTA SANTANDER
No. LocationsIn 4 8 15
No. LocationsOut 45 40 34
FrequencyIn 7.33% 20.0% 29.33%
FrequencyOut 92.67% 80.0% 70.67%
Average FitnessIn 2.24 ± 2.17 4.61 ± 8.53 1.89 ± 2.9
Average FitnessOut 2.16 ± 4.19 3.0 ± 4.61 3.53 ± 5.72
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6.5 Genetic Algorithm Improves Demand

Forecasting

The power and versatility of the genetic algorithm will be employed to decrease the
prediction error of the car variant demand, rather than maximizing correlation. Different
executions under different boundary conditions will be carried out. The goal consists of
finding the scenario within the search space that provides the largest improvement with
respect to the benchmark of all the car variants and time chunks forecasted. In other
words, predictions shown in Section 6.2 for compound region level, as it is the granularity
with the largest upgrading room. Lastly, the outcomes will be assessed based on weekly
mix sales. More details are placed in Section 4.5.

6.5.1 Forecast Comparison

The first part of the analysis includes presenting the number of cases where the genetic
algorithm was superior. In other words, the forecast error is smaller than the one al-
ready shown in Annex B, i.e., the predictions derived from using the sales record and the
clickstream data exclusively from the car variant under study. The forecast errors of the
genetic prediction are placed in Annex D. Therefore, the comparison is extended to the
full amount of cases, totaling 120 instances. The summary of the analysis is placed on
Table 6.19.

Table 6.19: Number of cases per each trial and experiment on which genetic algorithm
improved the benchmark results. Bold text signals the largest value.

No. Rules Pop. Size No. Gens Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average

50 30 20 67 66 71 72 71 69.4 ± 2.7
100 30 20 80 77 74 74 75 76.0 ± 2.5
100 100 50 99 98 99 99 100 99.0 ± 0.7
100 250 100 109 110 107 110 107 108.6 ± 1.5
150 300 200 112 113 111 111 112 111.8 ± 0.8

The trend that data evoke shows the rising behavior of the figure of merit attached
to the complexity of the experiment. The largest the latest, the best figure of merit. On
the other side, the numbers per trial for each experiment remain basically constant. In
this scenario, the fifth experiment delivers the largest figure of merit. Additionally, the
best outputs correspond to the second trial out of the five trials executed. That’s why it
is named as the winning candidate. In case there is more than one prospect, to make a
decision on which is the winning subject, it would be explored which one of the candidates
provides more forecasting error reduction. This metric is defined as the average of the
difference between the MAE from the VOI forecast and the MAE of the genetic forecast
for each time chunk and car variant. For instance, the average reduction achieved by the
winning candidate is 3.89 ± 0.96 cars.
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The specifics of the winning candidate are illustrated in Figure 6.20. It reflects the
MAE obtained within each car variant and time chunk for the two forecasting approaches.
There are only seven cases in which the genetic algorithm is inferior to the benchmark
values: two are from the SEAT Arona, both LA RODA in the first and third time chunk;
two other cases belonging to the SEAT Ibiza, in the fifth time chunk in the compound
regions of LA RODA and SANTANDER; two of them applied to SEAT Leon 5D, linked to
SANTANDER and MADRID in the first and third time chunk, respectively; and the last
one corresponds to SEAT Leon ST, occurring in the fourth time chunk in CMC compound
region. The best and worst differences owe to SEAT Ibiza and LA RODA as compound
region. The largest positive deviation (12.7 cars) takes place in the third time chunk,
while it is in the fifth time chunk when the negative deviation (-17.6 cars) is maximum.
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Figure 6.20: Comparison of car variant MAE per time chunk of the best experiment
and trial between predictions using the data sole from the car variant under analysis
(Preds VOI) and new predictions derived from the genetic algorithm (Preds Chromo).
Full colored bar represents the car variant forecast with the lowest error.
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Another perspective from the final candidate regards the assessment of the weekly
mix sales. The performance of each single instance is placed in Annex D. The average
performance across weeks and time chunks is summarized in Table 6.20. All car models
show a significant improvement in metrics, ranging from 5 to 15 points. Cases where the
genetic algorithm doesn’t surpass old predictions are not penalized in this comparison.
Lastly, the assessment takes place at the time-chunk level. Table 6.21 gathers the averaged
outcomes. The numbers achieved by the genetic algorithm are higher than the ones
computed by the original prediction. The exceptions occur at the same items found in
Figure 6.20, but SEAT Arona, SEAT Leon 5D, and SEAT Leon ST during first, third, and
forth time chunks, respectively. The new forecast error derived from the genetic algorithm
is not enough to disturb the upgrade from the rest of the car variants.

Table 6.20: Comparison of the average R2 Score (%) for the predictions used as benchmark
(VOI) and the ones obtained by means of the genetic algorithm (Chromo). Average is
computed for the weekly sales mixes of each car model at compound region granular level
over the total size of time chunks of the dataset

SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST
R2 Score (VOI) 63.74 ± 33.71 75.43 ± 19.8 77.84 ± 18.5 83.86 ± 19.54
R2 Score (Chromo) 69.33 ± 37.23 90.01 ± 18.83 87.94 ± 13.48 96.08 ± 10.08

Table 6.21: Comparison of the average weekly sales mixes R2 Score (%) for the predic-
tions used as benchmark (VOI) and the ones obtained by means of the genetic algorithm
(Chromo). Average is computed per time chunk and car model. († highlights cases in
which the VOI outputs are larger than Chromo outputs. ‡ represents cases in which there
is a car variant where MAE was not improved by genetic algorithm, but average weekly
sales mixes R2 Score is not affected.)

SEAT Arona SEAT Ibiza
R2 Score (VOI) R2 Score (Chromo) R2 Score (VOI) R2 Score (Chromo)

Time Chunk 1 12.5 ± 27.03 13.71 ± 24.33‡ 60.65 ± 24.8 93.38 ± 6.69
Time Chunk 2 71.65 ± 25.65 94.7 ± 8.38 75.38 ± 17.63 98.88 ± 1.56
Time Chunk 3 77.25 ± 17.21† 59.17 ± 32.57 81.18 ± 15.35 96.72 ± 2.76
Time Chunk 4 68.11 ± 15.89 85.33 ± 16.2 84.83 ± 9.46 96.94 ± 6.87
Time Chunk 5 94.28 ± 5.6 98.61 ± 2.03 75.03 ± 25.91† 58.96 ± 29.58

SEAT Leon 5D SEAT Leon ST
R2 Score (VOI) R2 Score (Chromo) R2 Score (VOI) R2 Score (Chromo)

Time Chunk 1 87.62 ± 6.25† 84.52 ± 15.69 88.71 ± 9.15 95.99 ± 6.27
Time Chunk 2 88.71 ± 6.95 95.11 ± 9.14 89.52 ± 10.27 98.85 ± 1.62
Time Chunk 3 60.11 ± 27.65 72.64 ± 13.8‡ 56.69 ± 27.46 87.99 ± 20.34
Time Chunk 4 75.81 ± 14.25 95.1 ± 6.25 94.56 ± 6.6 98.67 ± 2.5‡

Time Chunk 5 76.75 ± 16.61 93.23 ± 3.79 90.99 ± 3.85 99.45 ± 0.37
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6.6 Production Modification Based On Improved

Forecasting

More precise forecast permits to anticipate the future needs and requirements of the
customers. Consequently, the genetic predictions can be utilized to adapt the current
production of the company to the expected demand. This section addresses efforts to
align stock composition with customer demand by optimizing vehicle destinations through
convex optimization, particularly for Build-to-Stock cars in production data. Section 4.6
possesses all the methodology.

6.6.1 Diminishing the gap between compound and demand

Figure 6.21 shows the points of imbalance between the composition of estimated stock and
future demand before and after the optimization. This magnitude is the resulting number
after computing Equation 4.1 with the original and the updated production. The smaller
the number, the more aligned the demand and the stock. The outcomes are presented per
the starting week of the modification dates. Outcomes are scaled so they can be easily
comparable among them, but preserving the gap between cases. It is worth explaining
that optimized outputs have an annotation. The primitive updated production values of
the solver are float. However, the reality only permits integer units. That’s why after
the rounding of the values, it was necessary to correct, in case it was needed, the total
production volume. In all cases, the compound region with the largest quantity of vehicles
assigned is the subject of the correction, by means of addition or subtracting vehicles.

In all cases of Figure 6.21, there has been an improvement. It might seem that this
fact does not apply to the entire first time chunk of SEAT Arona and also to the first week
of the last time chunk for the SEAT Leon ST. In these events, the differences between
before and after the updating process are null. The reason that explains this behavior is
that they are in which there is no production for these car models and time ranges. The
largest improvements, in real magnitude, correspond to SEAT Ibiza in the last week of
the third time chunk, from 36.5 to 25.5 points, whilst the shortest upgrading belongs to
SEAT Leon ST car model in the last week of the second time chunk, only 6.5·10−4 points
of difference from the starting to last situation. Actually, the average improvement for
all cases after removing the outliers, i.e., those situations with zero upgrade or values far
from the general trend, is about 3.25 ± 4.47·10−2 points, for instance, the first week of
the fourth time chunk from SEAT Arona. In fact, to give a deepest insight, Table 6.22
presents the original and optimum production for the three cases aforementioned. The
original production of car variants with the maximum upgrade was widely distributed
along all compound regions possible. Afterward, the number of candidate destinations is
reduced to three, being CHESTE the main one. It follows the average case, where it is
discovered that not all compound regions will receive vehicles. The optimization process
suggests that all production is headed to LLAGOSTA as single destination. The last
case, the one delivering the lowest improvement, both original and optimum production
are concentrated into an unique destination. However, this is happening because there
is one single vehicle to be produced. The optimization output proposes to accommodate
this car in SANTANDER, rather than MADRID. It is learned that the updating policy
tends to rearrange the production or to concentrate it into a unique destination.
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Figure 6.21: Comparison of points of imbalance before and after the updating process
of the destination of cars in production. Colored bars represent the case with the best
output.

Table 6.22: Comparison of the production before (Original) and after (Optimum) the
optimization process for three out of the most representative cases: the one with the
largest improvement, the one with average improvement, and the one with the least
improvement.

Max Improv. Avg Improv. Min Improv.
Original Optimum Original Optimum Original Optimum

CMC 1 0 0 0 0 0
MADRID 4 11 4 0 1 0
LA RODA 8 5 2 0 0 0
CHESTE 9 26 0 0 0 0
LLAGOSTA 15 0 7 14 0 0
SANTANDER 5 0 1 0 0 1
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Chapter 7

Discussion

The path that guided the development of the presented solution attempts to proceed from
the least to the most impactful repercussions in the company’s operations. Although this
thesis has taken place under the constraints of a particular automotive manufacturer, it
can be extrapolated to other environments. The limitations of SEAT are not unique since
all manufacturers depend on a production planning constrained to certain restrictions;
follow some kind of forecast; fabrication is a mix of Build-to-Order and Build-to-Stock;
external agents, such as dealerships, may affect the company outcomes, etc. They are
seeking to deliver their products in the minimum time with the largest acceptance ratio.

The first step focuses on the cars already manufactured. Based on the attributes that
construct a vehicle, a binary classifier is built to distinguish whether the car will be a
Fast Delivery or a Normal Delivery within the destination it is headed. These attributes
include the Car Model, the Equipment Level (TRIM), and the Engine, together with the
Exterior Color of the vehicle and its destination. Moreover, the label that points out a
car as Build-to-Order (BTO) or Build-to-Stock (BTS) is added to the feature space. It
is discovered that two out of the values within this last parameter lead in the features
relevance analysis of the best classifier (see Figure 6.1). Remembering Table 3.7, Private
Customers is the Order Type with the lowest mean and median days waiting in the
compounds and the second category most populated by number of cars. On the other
side, Dealerships Stock is the feature with the largest mean and median in relationship
with the number of days cars spend within the compounds. It is difficult for dealers to
always order the most suitable batch of vehicles from the factory. When these situations
occur they do not suffer any heavy penalties for future orders. Additionally, it is the tag
with the largest number of observations, not only from the BTS family but in general.
For these reasons, it is coherent that these labels are critical to catalog the instances.

The best classifier has been chosen among a broad number of candidates. Four dif-
ferent machine learning algorithms have been trained and optimized to provide the best
outcomes. The list is: Decision Tree, Random Forest, XGBoost, and CatBoost. It ranges
from the simplest to the last state-of-the-art technique, but all of them with success-
ful use cases in industrial frameworks. Other approaches, such as neural networks, are
well-known for modeling complex relationships and patterns in data. In spite of this,
they were disregarded for two reasons. On one side, since they are fed by larger data
volume than the one available in the experiment to be trained effectively. On the other
side, the explicability of neural networks’ solutions is challenging, which poses a signifi-
cant drawback in scenarios where understanding the decision-making process is crucial.
Consequently, more interpretable models were preferred to ensure both performance and
clarity in understanding how predictions are made.
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The hyperparameters optimization has been accomplished by means of Bayesian Op-
timization, guiding the estimator in the right path to upgrade the performance and rather
than the brute force strategy followed by GridSearch or the blind and aleatory approach of
RandomSearch. Additionally, the exploration has been carried out under the conditions
of cross validation. The attempt was to diminish the trend of some of the algorithms
under analysis to overfit. The optimization has evolved maximizing the F1 Score, instead
of other common assessment metrics such as accuracy, recall, or precision. The first one
has been rejected because of the conditions of the problems, the dataset is seriously unbal-
anced under some threshold days. Recall and precision are excellent choices, consequently,
it is attempted to optimize both. The needs of the car industry demand that vehicles
are correctly classified as Fast Delivery, whilst the most Fast Delivery cars are captured.
Consequently, F1 Score is employed as the assessment metric to guide the optimization
process since it balances precision and recall.

These thresholds are the maximum number of days a vehicle can stay in the compound
region until it is delivered. Above these limits, the car is considered a Normal Delivery.
It ranges from the extreme case of shipping in one week up to spending six weeks in the
compound region. This decision is motivated since the largest median in the number of
days cars stay in the compound regions is close to this value (see Table 3.5). Consequently,
the poorest results are delivered in the first threshold, but they improve together with
the thresholds since the classes become balanced. It implies that a larger ratio of Fast
Delivery cars within the dataset is positive for the algorithms’ performance. Henceforth,
among all the candidates, XGBoost is the most solid in its outcomes, but it is worth
mentioning Decision Tree results in spite of being known to be less effective in capturing
complex relationships within the data.

After selecting the best estimator, it is presented the confusion matrix derived from
it (see Figure 6.2). It is learned that the trend of the classifier consists of classifying
Fast Delivery cars as Normal Delivery ones. This tendency is provoked mainly by cars
requested by dealerships. The segmentation of the confusion matrix per Order Type is
motivated by the feature relevance analysis, as two out of the four classes within this
feature occupy the top positions. However, this misclassification is not critical since Fast
Delivery vehicles are car variants attractive to the customers. Hence, future clients would
purchase them easily, affecting into the number of days these vehicles would spend within
the compound regions.

Hold in awareness that each day spent incurs logistical costs, particularly since a
vehicle might be occupying the slot of a car that is more suitable to the client’s preferences.
Hence, the company is forced to offer a discount on the price of the stocked vehicle
with the aim of augmenting its purchasing likelihood. Thus, a reallocation of the cars
to the location where they are classified as Fast Delivery gives more opportunities than
obstacles. Customers would have their desired car in a shorter time, whilst the company’s
economics is enhanced. Unfortunately, this last aspect is not quantified since managers of
the compound regions did not share their costs. As a result, it has been left out of the scope
of the research. Nevertheless, the impact of pursuing a reallocation of vehicles is analyzed.
All those vehicles that were classified as Normal Delivery within their original destination
will pass again through the classifier, but listing all the alternative destinations. This
strategy offers a new perspective to the bibliography on establishing an efficient operation
for the automotive industry. This research is situated in a context where it is not feasible to
modify the manufacturing process or any of the vehicle assembly components in opposition
to the existing literature.
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Nearly half out of all Normal Delivery cars found, at least, one alternative destination
(see Figure 6.4). When the new distribution of days within the compound is compared
against the original, the reallocation procedure matches or enhances the decisions taken by
the company’s experts (see Table 6.7). The median has decreased in all the locations but
two, LA RODA and CHESTE. Especially relevant is the last location, in which the decay
is about 10 days for the approach without new Number of Days computations. Regarding
the second scenario, it presents concerns due to its random nature. Ideally, this approach
would involve multiple repetitions of the experiment. However, it is believed that the
actual behavior of the reallocation would fall between the two presented concepts: either
the car would spend the same amount of time at the new destination, or the new location
would influence the duration.

Although, the estimator has a preference for misclassifying Fast Delivery vehicles.
Hence, customers from these regions might find in their dealerships these kind of vehicles
easily. Moreover, locations such as LLAGOSTA and MADRID compensate it since they
aggregate the largest delivery volume. The impact on the company’s operations and on
customer satisfaction will be greater. Despite the favorable outcomes, the reallocation
strategy lacks a criterion to select among the alternative regions where the car variants
are cataloged as Fast Delivery. As a result, there are duplicities in the instances of the
dataset that might affect the final outcomes of this procedure. It is proposed to prioritize
the destination with the largest disparity between the demand and stock. Therefore, it
is recommended to have a reliable estimation of the expected customer demand and the
following stock composition. This need encourages the following steps of the proposed
solution. Lastly, once a decision about the final destination of the vehicles has been made,
the transport planning and logistics of the reallocation output is another area of special
interest to manage. Regarding this step, customers’ preferences are not deeply taken into
consideration. The best performance classifier has inferred them from the sample although
the estimator is strongly influenced by the Order Type feature. Therefore, it is proposed
in this research to explore the data collected by the SEAT car configurator webpage. It
can be used to capture future customers’ preferences. The outcomes achieved prove this
hypothesis. The correlation analysis between clickstream data and sales records suggests
the duration of the purchase period. Furthermore, the addition of visits to the online tool
has enhanced the performance of the diverse demand prediction techniques carried out.
Supplementary, quantitative and qualitative approaches have been successfully put into
practice to diminishing the noise and meaningless data contained in the entire set.

Exploring the correlation analysis between clickstream data and sales records, none
of the car models under study is close to the maximum value. Nevertheless, when the
correlation values are ranked the top five of them lay in the first half of the lagging
period. Exclusively positive correlations are listed since negative values are not strongly
significant either. It is irrational considering that having no visits to the car configurator
webpage will boost the sales of the company. Because of these top five correlation values,
it is concluded that users consult the online tool from 1 to 6 months before the purchase
date. Results are consistent at different granular levels. The same experiment has been
performed at the car model level and car model plus exterior color granularity, offering
the same outputs. These findings align with the discoveries of other authors. Paper [36]
was able to find a correlation in the entertainment industry in terms of weeks. For the
financial sector, the correlation with online data is found at the day level, as supported
in [39]. These timeframes are considered normal for these products. However, in the car
purchase process, the period expands considerably, as it is common in high-implication
products.
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The previous findings are used to divide the temporal range into five subsets, called
time chunks. In each one of these, the prediction of the sales record for each car variant will
be executed by means of diverse forecasting techniques. Nevertheless, there is a concern
about the time chunk division. Possible seasonality or trend of the time series, benefit
for the prediction, could be interrupted. However, the exploratory data analysis carried
out did not show robust evidence of consistent and helpful time series decomposition for
each one of the car variants. Additionally, more complex prediction methods, such as
neural networks, were not considered due to their needs of vast amounts of data or black-
box behavior. Unfortunately, it is not the case in these circunstances. In this context,
traditional techniques can deliver a good performance. This strategy describes the second
phase of the planning to confirm the reliability of the clickstream data. A supplementary
effect of the temporal division is that the forecasting will be carried out in the stages of
the life cycle of a product.

The efficiency of the prediction enhances those forecasting algorithms that are sup-
ported by the clickstream data gathered from the car variant under analysis, i.e., multi-
variate, in opposition to those ones that only rely on the past sales record of the instance,
i.e., univariate. Actually, outcomes could be better since the hiperparameters of the tree-
based algorithm were not optimized. However, the abscence of fine-tunning is a deliberate
choice. The model maintains a balance between simplicity and performance, ensuring that
the predictions remain generalizable and not overly tailored to the training data. For the
two elected car variant granularities, car model plus exterior color or compound region, the
multivariate technique has no rivals (see Figure 6.10 and Figure 6.11, respectively). The
granularity levels are chosen due to logistics reasons. They are elements non-dependable
of spare parts and easily interchangeable.

Afterward, weekly mix sales are calculated. The chosen metric to evaluate the func-
tioning of this new schema is the correlation between the real and the forecast ones. The
motivation behind this decision is that production volume is a parameter depending on
other stakeholders. It is beyond the capabilities of this thesis to modify it. Consequently,
what is proposed in this research is being accurate with the proportion each car variant
should have in the weekly production, rather than the quantity. For this reason, the R2
Score computed between both weekly mix sales represents the behavior of the experiments
between zero, or null correlation, and one hundred, i.e., perfect match. The assessment
procedure includes averaging the results over the totality of cases, but as well per time
chunk. In the first case, the addition of clickstream data benefits the performance of the
prediction for both types of car variants (see Table 6.8 and Table 6.9). However, in the
subsequent steps, the outcomes derived from the car model plus exterior color variant are
more solid than the ones achieved in the case of the car model plus compound region.
In the latter, XGBoost multivariate is not as prevailing as much as in the exterior color
case. Nevertheless, one of the multivariate forecasting algorithms is in the competition
of leading the outputs in the vast majority of experiments. One possible explanation for
these events is that car configurator data correlates better at exterior color granularity
than at compound region level(see Figure 6.6 and Figure 6.7). It seems that users are
more determined about the painting of the vehicle, rather than the location from where
they will purchase the vehicle, although exploratory data analysis suggests evidence of
the contrary behavior (see Figure 3.11 and Figure 3.13). The plausible explanation is the
existence of noisy and meaningless data that worsens the functioning of the forecasting
algorithms.
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The next point in the proposed solution deals with the problem of diminishing the
quantity of worthless data within the information gathered by the online tool. The pre-
vious outcomes were achieved with a dataset processed and cleaned. Nevertheless, the
car configurator webpage is a service with some implicit difficulties chained. Recording
the activity within the webpage exclusively relies on the user’s internet browser cookies,
since any kind of personal information is not requested. Consequently, performing rig-
orous tracking is challenging. A user can erase his browser cookies, access from another
device, two people can connect from the same gadget, among many other casuistics. All
these events cause the amount of data to skyrocket. Additionally, nowadays there does
not exist the possibility of finishing the purchase within the webpage. The user must
head to the dealership, which can influence him to finally acquire a vehicle different from
the one chosen on the online platform. Therefore, it is an arduous task to discriminate
between users with real purchase intentions from those doing window shopping. On one
hand, reducing the amount of data to a smaller fraction simplifies all the issues linked to
Big Data environments, listed as: storage, data quality, data governance, escalation, etc.
On the other hand, a genetic algorithm is run to find the patterns of users with genuine
purchase intention.

The reduction of data volume is based on the users’ quantitative activity, instead of
what are the features he has selected. The quantitative activity is summarized in the
number of days that have passed between the first and last registered connection, known
as Time between connections; and the number of unique car variants he has configured
in the webpage. The strategy followed consists of consecutively eliminating the outliers
detected within each feature. Outlier detection is based on two well-known techniques. In
the end, the amount of car configurator users to analyze has passed from nearly 1,9M to
less than 500k (see Figure 4.2). Despite the filtering rules might look arbitrary; they are
supported, on the one side, by the user’s acquisition necessity; and on the other side, by
the typical customer journey. They have proved themselves as effective rules to preserve
the significance contained in the raw clickstream data. In all cases, the statistical test
delivered a large p-value proving the equivalency between the raw data and the filtered
ones (see Table 6.10). The significance is computed based on lagged correlation. The delay
is added to simulate the period between browsing in the car configurator and heading to
the dealer shop. As a result, the election of the 8-week delay matches with the previous
findings of a six-month period and it is time enough to manufacture a vehicle. The goal
of the entire procedure is not to discover the exact duration of this period or any other
parameters of the experiment but to verify the preservation of the significance of the
dataset. Therefore, there is still room for improvement of the results.

The discrimination between users with and without purchase intention is a task suit-
able for a genetic algorithm. The problem is framed as one that maximizes the average
significance between the sales record and the clickstream data that respect the rules con-
tained in the chromosome of the genetic algorithm. In other words, the subset of car
variants that a user can select on the webpage together with the day they do it. The
chromosome with the largest fitness draws the online path of users with real purchase
intention. This methodology has been evaluated at both general and compound region
levels. In the general case, it has been improved from a 29.42 fitness to an average of
91.21 ± 3.8 (see Figure 6.18). At the compound region level, the average improvement is
66.25 ± 1.46 in fitness (see Table 6.17).
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In the first approach, the purpose consists of tuning the parameters of the genetic
algorithms. Some aspects of the algorithm, such as tournament, crossover, or mutation
probabilities are fixed. The attempt is to create a stable framework to ease the compar-
ison of the different candidates. They were generated fitting the number of rules within
the chromosome, the number of chromosomes that assemble a population, and, finally,
the maximum number of generations the algorithm can iterate. The total number of
conducted experiments has reached six. For each of these experiments, five independent
trials under identical conditions were performed. It is an attempt to obtain robust re-
sults that overcome the randomness inherent in this type of solution. Since two feasible
candidates from distinct experiments are delivering almost exact outcomes, the two of
them are analyzed, focusing on the frequency of the constituent rules. Although all trials
from the bigger experiment delivered analogous results, it is intended to comprehend if
the similar solutions could be obtained from different size experiments. The appearance
rate of the elements listed in the chromosomes is compared against the popularity index
within clickstream data and extended to the sales record, as well. Regarding the latter, it
is performed employing single Pareto rules, i.e., the rules that individually collect nearly
80% of the total chromosome fitness. The findings suggest that the most popular elements
from these sources are not necessarily the best indicators of potential consumers among
online tool users.

Afterward, the procedure is individualized per compound region, isolating the online
data and the sales record belonging to each one of these locations. In this scenario, the ge-
netic algorithm has been executed with the best parameters achieved in the previous step,
rather than exploring again the search space. The maximization objective is preserved.
Nevertheless, the assessment is oriented on how the Spanish provinces are segmented. To
be more precise, listing which locations are inside and outside the area of influence of
each compound region and performing a fitness comparison. The outcomes reveal an un-
derrepresentation of locations that define the compound’s influence area. Unfortunately,
we were uncapable to find in the data an explanation to those cases in which external
locations provide more fitness than internal ones. The reasons might lay in external in-
formation that we do not have access to. However, the distribution of individual fitness
scores for both groups was found to be equivalent.

To conclude, these data mining experiments have accomplished their objectives. Hence,
it is suggested to apply this methodology in the businesses’ decision-making process of the
automotive sector, although it can be extended to webrooming economical sectors of the
same characteristics, in case there are any. The procedure exposed attenuates the coun-
terparts of managing large databases because they escalate together with data size. In the
same way, a genetic algorithm is a versatile tool that can be adapted to various contexts.
The experiments that have taken place confirm the correlation between clickstream data
and sales records. Nevertheless, there is still room for improvement in these outcomes.
Future researchers should pursue clickstream data without the current limitations.

Since users can be straightforwardly identified, the genetic algorithm can be modified
to obtain a more precise forecast. Consequently, the next part of the proposed solution
manages this situation. Because the assessment of the old forecast for car model plus
compound region from Section 6.2 is less homogeneous than the other car variant ones,
the former will be used as a benchmark in this new scenario. The genetic algorithm,
hence, is trained to reduce the forecasting error of the sales predictions. The machine
learning algorithm employed is XGBoost multivariate. In this case, it will be fed by the
clickstream data that respect the rules within the best chromosome, rather than the visits
to the car configurator belonging exclusively to the car variant under analysis.



CHAPTER 7. DISCUSSION 108

Considering that the context has shifted, and the purpose is no longer the maximiza-
tion of the correlation, the free parameters need to be tuned again. However, it has been
decided to explore the same search space as in the previous experiments. It is a framework
in which behavior and trends are well understood. Therefore, the manner of electing the
winning candidate is anchored on counting the number of cases in which genetic predic-
tions outperformed the benchmark. It is a course of action inspired by the literature. The
bibliography contrasts the prediction outcomes against the reference values after execut-
ing several experiments. Therefore, this logic will be followed listing all the cases in which
the genetic algorithm delivered a better result than the benchmark. As was expected
from the search space, this figure of merit grows together with the complexity of the ex-
periments executed (see Table 6.19). The best outcome enhances the original results in
113 samples out of the 120 cases. The detailed picture of the solution (see Figure 6.20)
explains that the seven cases of difference belong to all the car models and time chunks.

It would be possible to pursue the total efficiency increasing the complexity of the
experiments. Nevertheless, the time requested and computational power required to make
it a not worthy endeavor. Especially, since the assessment procedure evolves in another
direction. Weekly mix sales are rebuilt employing the genetic predictions. The evaluation
follows a two-step approach. In the first one, it is learned that the general average R2
Score of each single car model surpasses the previously obtained (see Table 6.20). But
when the correlation metric is averaged per time chunk, the results are equally promising.
In three out of the seven cases which worse performing, the situation has shifted. The
forecast error generated by the genetic algorithm is insufficient to disrupt the upgrade for
the remaining car variants.

The merge of two powerful tools such as a genetic algorithm and forecast technique
has been proven as a good strategy. At the same instant, it validates the reliability of
the car configurator data; proposes a qualitative manner to overpass the concerns related
to this data source; and promotes more accurate demand forecasting. This combination
of techniques will permit the private partner of the research to react more efficiently to
the challenges of its business. The company looks very positively at the investigation
done in this part of the thesis and they are already incorporating it into their systems.
Additionally, a new methodology is added to the literature, to our knowledge.

Despite this, there is a counterpart in the use of genetic algorithms both applied in
the qualitative filtering and the demand prediction. On one side, correlation might be
mistaken for causality. Statistical tests such as Granger causality were carried out, but
not included in the research since they do not provide an explanation from the physical
world. On the other hand, overfitting is a real threat. To mitigate these risks, the fitness
function of the genetic algorithm has always been isolated from the benchmark value it
was pretended to improve. In this way, the executions were not influenced by the outside.
Bearing in mind all these warnings, we are aware of all the problems that they could cause.
For instance, misguided decisions or wasted resources. Therefore, our recommendation to
the private partner of the research is to create a testing environment in which to apply
A/B tests or other strategies to validate or refuse these concepts.

The last step in the proposed solution introduces a new utility to the newer demand
predictions. The more accurate forecasts are used in this simulation to update the vehicles
in the manufacturing line. Specifically, a new compound region is assigned to each one
of the car models. The motivation behind this simulation refers to the first solution
developed in the thesis. It attempted to find the most suitable destination for the cars
after they were manufactured. Nevertheless, on this occasion, the object of study is the
vehicles in the assembly line. Hence, to accomplish this task, it is required to understand
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the production flow of the factory, as well as estimate the stock there will be in the
different destinations. Accordingly, the equations governing the functioning of the stock
are presented (see Equation 4.1). In consequence, the problem can be structured as an
optimization one. It is searched to minimize the imbalance between the configuration of
the future demand against the composition of the expected stock, being the latter the
one dependable of the optimization parameters. In other words, the production volume
lies in the point of modification. Additionally, the problem is bounded in such a way the
production of each single-car variant cannot be negative and the initial volume should be
respected. It is not possible to add or remove any vehicle from the manufacturing line.

Applying all these steps, a simulation has been carried out. It has taken place in the
test period from each one of the time chunks. It was seeked the subset of four weeks
required by the optimization. Nevertheless, the simulation was launched independently
for each one of the modification dates. In all cases under analysis, there has been an
improvement of the objective function after applying the optimization of the produc-
tion. The unique exceptions are a consequence of the null production for the car model
at that epoch. Moreover, it has been understood that the upgrading routine makes a
rearrangement of the current production or concentrates it into a single destination.

On the contrary, this simulation has its limitations. It is not a faithful representation
of reality. The manufacturing policy is ruled by commercial interests, but also by private
ones. Currently, it is difficult to imagine a work-frame in which dealerships from one region
are willing to transfer their orders to the dealerships from a different place. Especially, if
the first is not rewarded in any manner, besides it might represent an adequate business
approach from the point of view of economics. Cars are placed in the most likely location
to be sold, rather than occupying valuable space and offering a discount so the spot is
free. That’s why the company is migrating to an agency model, in which the firm will
have the ownership of the vehicle they manufacture and dealerships will play the role of
advisors and sales point. Under this scenario, this optimization protocol is welcomed and
extended to be used for more restrictive attributes and longer timeframes. For instance,
the wheels, which are a component of the cars that depend on a supplier. This actor
has its own logistics and the flexibility required to execute the optimization procedure
deserves its own research.
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Chapter 8

Conclusions
From the early stages of this research, the focus has been on understanding what are the
needs and problems of the automobile industry. One of the main concerns for any company
is learning how to fulfill the expectations of their clients. That’s why the document begins
with a chapter dedicated to the customers. It has been revealed that the automobile
industry is a market very well segmented, but with a common bond. The company that
delivers the best customer experience holds a competitive edge over its rivals. In this
manner, this research is framed together with a well-known car manufacturer, i.e., SEAT
S.A. The brand is looking to improve its operation. Therefore, the document continues
with the idiosyncrasy of the manufacturer, such as their most popular products, the lay-
up, or the production flow within the main factory.

From the latter part, it is especially relevant the section about the company’s car
distribution system, based on compound regions or warehouse stock locations. The first
contribution of the investigation consisted of proposing a reallocation of Build to Stock
vehicles based on where they are projected to spend the minimal time. It is sought to
enhance the purchasing likelihood whilst mitigating the logistic costs. Afterward the data
exploration, the problem has been settled as a binary classification task, on which the car
attributes (car model, trim level, exterior color, and engine, together with order type) are
the features. On the other side, the labels consisted of, according to a time threshold,
tagging the vehicle as a Fast Delivery or Normal Delivery within the compound region of
destination. Four popular Machine Learning algorithms (Decision Tree, Random Forest,
XGBoost, and CatBoost) have been under analysis to accomplish this task, all of them
trained in cross-validation and hyperparameters fine-tuned. Lastly, it has been set the
assessment metric, in the form of f1-score. The decision is motivated by capturing as
many positive classes as possible, but ensuring the classification is correctly performed.
Therefore, the experiments can take place, resulting in XGBoost with a time threshold
of 42 days as the winning candidate, delivering a result of 0.781 in the f1-score. The
features relevance analysis shows that order type, together with one of the compound
regions available, are the most relevant terms to base the decision of where vehicles should
be headed. Lastly, the classification algorithm is employed to perform the reallocation
strategy. The outcomes of these last steps prove to be equal to or better than the ones
delivered by the experts, in terms of the median average time spent in each one of the
compound regions. These findings were presented in CCIA 2022 [12].

Despite the promising results, the previous block does not include into consideration
the information from the potential customers. A new perspective begins. Firstly, it is
hypothesized whether these insights can be extracted from the information gathered by
the Car Configurator webpage. However, this data source carries with it some concerns,
related to noisy and irrelevant information, that are managed next. In the first place, the
approach has been quantitative, whilst a qualitative view is given in the upcoming part.
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As was aforementioned, the first hypothesis to be validated consists of measuring the
reliability of the Car Configurator webpage to capture, in advance, customers’ demand.
The initial part of the investigation was in charge of gauging the correlation between the
clickstream data and the sales record at different granular levels. On one side, at the car
model level. On the other hand, the granularity has expanded to both car model and color
or compound region. Results are consistent at different granular levels. Users browse the
online tool within the timeframe of a semester before the purchase date. Secondly, the
forecasting capacity of the online data source is under evaluation. For the second level of
granularity, and at different test periods built from splitting the data into time chunks, a
comparison has been made. Two pairs of forecasting algorithms were trained and assessed.
The first group, called univariate, are algorithms based exclusively on past sales records.
The second set includes the information of the clickstream date, that’s why they are called
multivariate. Along all the steps of the assessment process, which includes forecast error
and weekly mix sales, the multivariate algorithms deliver better performance, despite the
outcomes being more robust in terms of exterior color granularity rather than compound
region. These discoveries were published in Forecasting journal [11].

This path was initially explored by the colleagues at DataLab. Their outcomes would
have served as a valuable benchmark if the project had continued beyond the initial
testing phase. However, comparing the results would have presented certain challenges.
DataLab’s focus was specifically tied to the vehicles’ cable tree and its coverage among
customers. This scope significantly diverges from the objectives of this thesis, which
concentrates on a different aspect of the problem. Therefore, despite the potential benefits
of benchmarking against DataLab’s findings, the distinct goals and methodologies of each
initiative necessitate separate evaluation criteria and success metrics.

Afterward accomplishing the first objective, it was learned that dealing with the data
source is not straightforward. The dataset is massive and it has values that only add noise
to the field. The reason behind this is that the webpage is non-transactional. It is not
possible to execute a purchase online. Moreover, two groups of users can be distinguished:
(a) people who are in the early stages of the acquisition process of a new vehicle, i.e., they
do have real purchase intention; (b) people who are doing window shopping, i.e., exploring
the company’s product catalog without the intention of buy. The dilemma lies on the
online service does not save information from their users, in the form of a mandatory
login, that permits them to link the online activity with the requests in the dealerships.
Therefore, it is not possible to differentiate these two clusters. This concern motivates the
next two chapters of the thesis. On the first try, the clickstream data has been filtered
according to some rules, based on identifying and removing the outliers. These rules
are based on how users have interacted with the tool, i.e., the number of car variants
configured and days between the first and last connection; rather than what they have
configured exactly. It is expected that the reduced datasets, created by means of these
filtering rules, have the same significance as the raw one. This magnitude is defined as
the weekly lagged correlation between the clickstream data and the sales record. The
outcomes have proved that significance is preserved after removing the outliers element.

The second attempt is more oriented toward understanding what car variants trigger
the purchase intention of the users. In other words, the approach is executed from a
qualitative point of view. As the search space is truly wide and extensive, it has been relied
on the power of genetic algorithms to fulfill this task. They are a type of optimization
algorithm inspired by the survival of the fittest. From an initial population of feasible
solutions, it evolves by means of different mechanisms (selection, crossover, mutation)
until finding the optimal solution. Therefore, this idea has been employed to identify
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the car variants that originate the clickstream dataset with the largest averaged lagged
weekly correlation with respect to sales records. This approach has been assessed at both
general and compound region levels. In order to guarantee the reliability of our findings,
five independent trials under identical conditions take place. Thereupon, outcomes are
evaluated against the benchmark value. The latter is achieved thanks to applying the
fitness function to the plain clickstream data. In the overall scenario, there has been an
enhancement from a fitness score of 29.42 to an average of 91.21 ± 3.8. On the specific
compound region scale, the average improvement in fitness is 66.25 ± 1.46.

After deconstructing and evaluating the winning candidate, the results indicate that
the most popular items from the Car Configurator webpage and sales record may not
necessarily serve as the most reliable indicators of potential consumers among users of
online tool. Conversely, when investigation occurs at the compound region level, the
locations belonging to the compound regions are underrepresented compared to those
that are outside of it. Nevertheless, the examination of individual fitness scores for both
groups yielded comparable results, as confirmed by a Kolmogorov-Smirnov statistical test,
with just one exception. Despite an extensive analysis of the data, the underlying reasons
for this behavior remain elusive with the information available. We recommend exploring
demographic data, including social and economic factors, as an external data source that
might provide insights into this matter. This research produced two publications [13, 14].

Finally, all the discoveries from the previous parts are assembled in this last section.
The flexibility of the genetic algorithm is merged with the potency of forecasting. The
objective is to demonstrate that superior results in demand forecasting can be attained.
Later on, these outputs will be utilized to update the cars under production in the man-
ufacturing line.

Therefore, the adaptation of the genetic algorithm needs to be carried out. In this
scenario, the fitness function decreases the prediction error of the car variant under analy-
sis, rather than maximizing the correlation. The forecasting technique running under the
genetic algorithm has been the XGBoost, in the multivariate version. The reference frame
has been the predictions done at the car model and compound region granular level, as
their performance is the least robust. The formula of executing five independent trials per
each one of the experiments is preserved, as well as the search space. In consequence, the
attempt pursues to find the experiment with the largest figure of merit. In other words,
the number of instances where forecast error was reduced compared to the initial bench-
mark. It has been observed that the figure of merit’s magnitude evolves together with the
experiment’s level of complexity. Once, the leading candidate was found the assessment
procedure, in terms of weekly mixes sales, is executed again. Their outputs confirm the
efficiency of the proposed solutions. The latter ones are used as input for the upgrading
of the final destination of Build to Stock vehicles in production. The problem is settled
in terms of the objective function, constraints, and boundaries. It is sought to minimize
the square difference between the estimated stock composition and the future demand.
In this case, the situation is faced mathematically with convex optimization, instead of
employing heuristic algorithms. The simulation is framed within the modification dates
for each one of the test periods. Under this scenario, the updating of the compound region
destination of the vehicles outperforms the figures achieved by the original situation. The
single exceptions are those cases in which there was no production available.
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Nevertheless, this simulation comes with its set of limitations as it does not provide
a fully accurate picture of reality. The manufacturing policy is influenced not only by
commercial considerations but also by private interests. At present, it’s challenging to
envision a framework where dealerships from one region would be willing to transfer their
orders to dealerships in a different location. Consequently, the company is transitioning
to an agency model. I mean, the company retains ownership of the vehicles it produces,
and dealerships primarily serve as advisors and sales points.

In this context, the optimization protocol is being embraced and expanded to accom-
modate more restrictive parameters and longer timeframes. The new paradigm would
permit to assessment the steps of the proposed solution in a real environment under con-
trolled conditions. Current production would be improved according to the indications of
a better forecast fed by online visitors’ insights, and the logistics would take place freely,
allocating vehicles to the most suitable location. After all the aforesaid, the company
views the research conducted in this thesis very positively and is already integrating it
into its systems and operations.

Additionally, it is filling a gap in the existing literature, to the best of our knowledge.
Despite the study being constrained to one particular car brand, it has faced challenges
shared by multiple companies. The timing control in production, despite variations in each
manufacturer’s production flow, emerges as a central theme. Moreover, the transformation
from a sales forecast to a production planning is not straightforward since external factors
should be taken into consideration, for instance, the restrictions and limitations in the
manufacturing line or with the suppliers. Furthermore, we emphasize the importance of
considering both Build-to-Order (BTO) and Build-to-Stock (BTS) strategies in addressing
efficient operation in the production and delivery tasks. The acknowledgment of the
Dealer effect sheds light on the impact of dealership networks on sales and production
dynamics. They are an external agent that assists but influence the customers in their
decision-making process. Notably, the ubiquitous presence of Car Configurators across
manufacturers highlights the potential for data extraction despite the often opaque nature
of this information, on which the thesis mitigates these concerns.

The comparison of all these findings with respect to the current practices in the in-
dustry is aligned. For instance, the technological hub of SEAT, named SEAT:CODE, is
dedicating its efforts in this direction. Digitising all SEAT operations, from production
to marketing, is the first of its challenges. The second is to maximize user experience
with brands, from purchase to customer services. With the data of the connected vehicle,
they are working on algorithms for searching for use cases [159, 160]. Additionally, our
findings extend beyond the automotive sector, offering insights applicable to analogous
industries, thus broadening the scope and relevance of our research beyond its immediate
context. The use of Artificial Intelligence and Big Data, as they were utilized during the
research, together with other technologies, such as Cloud Computing and Smart Facto-
ries... is leading the automation and data exchange in manufacturing technologies. This
trend is called Industry 4.0. The goals of Industry 4.0 include increasing automation,
improving communication and monitoring, enabling self-diagnosis and self-maintenance
of machines, and facilitating flexible and efficient production processes. This industrial
revolution aims to create more adaptive, efficient, and responsive manufacturing systems
that can meet the demands of a rapidly changing market [161, 162, 163, 164]. Lastly,
this research has resulted in one publication in a top-quartile indexed journal, as well as
presentations at three internationally recognized congresses, besides more documentation
waiting to be released.
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Appendix A

Correlation Analysis
The information exposed in this appendix supplement the results shown in Subsection 6.2.1.



APPENDIX A. CORRELATION ANALYSIS 115

Table A.1: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Arona colors (1/4)

SEAT ARONA
Lag 0C0C 0C0E 0CF5 0E0C 0E0E 0EF5 0ES7 2Y0C 2Y0E 2Y2Y 2YF5 2YS7

0 0.58 0.65 0.06 0.29 0.54 0.26 0.41 0.71 0.25 0.43 0.08 0.57
1 0.61 0.67 0.12 0.34 0.58 0.21 0.41 0.69 0.3 0.48 0.14 0.58
2 0.62 0.67 0.15 0.4 0.57 0.14 0.44 0.69 0.29 0.48 0.13 0.66
3 0.64 0.68 0.18 0.38 0.53 0.18 0.39 0.68 0.26 0.46 0.15 0.65
4 0.67 0.69 0.1 0.37 0.5 0.16 0.31 0.59 0.28 0.47 0.16 0.7
5 0.7 0.74 0.09 0.41 0.51 0.2 0.26 0.61 0.32 0.51 0.08 0.69
6 0.68 0.74 0.09 0.4 0.46 0.22 0.29 0.55 0.37 0.52 0.07 0.7
7 0.65 0.75 0.15 0.46 0.47 0.29 0.23 0.51 0.33 0.49 0.16 0.66
8 0.61 0.74 0.18 0.49 0.42 0.12 0.28 0.47 0.28 0.47 0.12 0.62
9 0.62 0.74 0.29 0.5 0.48 0.15 0.29 0.44 0.34 0.54 0.13 0.6
10 0.61 0.69 0.39 0.51 0.47 0.25 0.31 0.36 0.34 0.55 0.16 0.62
11 0.62 0.67 0.44 0.47 0.41 0.25 0.27 0.39 0.31 0.5 0.22 0.6
12 0.63 0.66 0.4 0.56 0.4 0.26 0.22 0.35 0.28 0.44 0.1 0.54
13 0.61 0.68 0.37 0.66 0.4 0.15 0.24 0.34 0.32 0.42 0.09 0.54
14 0.61 0.64 0.36 0.6 0.33 0.17 0.23 0.36 0.35 0.44 0.09 0.49
15 0.54 0.58 0.29 0.44 0.33 0.22 0.2 0.36 0.37 0.48 0.14 0.46
16 0.48 0.54 0.32 0.47 0.29 0.32 0.23 0.33 0.3 0.45 0.18 0.44
17 0.43 0.47 0.31 0.48 0.26 0.26 0.21 0.28 0.26 0.46 0.15 0.44
18 0.42 0.41 0.36 0.37 0.25 0.17 0.22 0.25 0.31 0.5 0.3 0.44
19 0.41 0.37 0.32 0.33 0.3 0.18 0.26 0.24 0.35 0.51 0.26 0.38
20 0.43 0.3 0.34 0.32 0.23 0.21 0.26 0.21 0.32 0.5 0.2 0.39
21 0.4 0.3 0.25 0.25 0.17 0.13 0.23 0.19 0.33 0.46 0.22 0.4
22 0.4 0.29 0.29 0.2 0.19 0.2 0.27 0.14 0.42 0.46 0.11 0.37
23 0.38 0.27 0.21 0.25 0.19 0.13 0.26 0.13 0.44 0.52 0.14 0.35
24 0.32 0.22 0.22 0.18 0.17 0.17 0.3 0.11 0.38 0.49 0.11 0.31
25 0.24 0.12 0.16 0.18 0.11 0.16 0.29 0.07 0.34 0.42 0.19 0.22
26 0.25 0.11 0.16 0.16 0.15 0.15 0.29 0.06 0.45 0.48 0.18 0.21
27 0.28 0.05 0.14 0.21 0.18 0.17 0.31 0.08 0.51 0.44 0.11 0.19
28 0.28 0.03 0.17 0.3 0.17 0.16 0.32 0.06 0.5 0.48 0.11 0.2
29 0.26 0.03 0.08 0.17 0.15 0.17 0.26 -0.0 0.27 0.42 0.04 0.17
30 0.24 0.01 0.12 -0.0 0.14 0.14 0.29 -0.01 0.28 0.45 0.12 0.19
31 0.26 -0.01 0.18 -0.06 0.22 0.16 0.33 0.01 0.33 0.48 0.37 0.2
32 0.24 -0.02 0.17 -0.03 0.23 0.14 0.37 -0.03 0.37 0.47 0.22 0.2
33 0.22 -0.01 0.22 -0.1 0.21 0.32 0.4 -0.08 0.32 0.36 0.24 0.19
34 0.17 -0.02 0.17 -0.19 0.06 0.3 0.36 -0.14 0.32 0.32 0.17 0.22
35 0.2 -0.05 0.17 -0.19 0.04 0.18 0.31 -0.15 0.45 0.34 0.11 0.19
36 0.25 -0.04 0.31 -0.19 0.07 0.24 0.31 -0.11 0.39 0.34 0.15 0.15
37 0.25 -0.02 0.19 -0.19 0.03 0.17 0.27 -0.13 0.27 0.31 0.2 0.15
38 0.19 -0.02 0.09 -0.2 -0.04 0.09 0.2 -0.25 0.15 0.26 0.2 0.13
39 0.2 -0.03 0.12 -0.2 0.0 0.11 0.28 -0.26 0.23 0.3 0.12 0.16
40 0.22 -0.05 0.12 -0.2 0.01 0.18 0.23 -0.26 0.27 0.37 0.14 0.13
41 0.18 -0.08 0.19 -0.2 -0.02 0.24 0.26 -0.24 0.32 0.38 0.14 0.13
42 0.13 -0.1 0.06 -0.21 -0.05 0.26 0.26 -0.25 0.26 0.33 0.1 0.16
43 0.11 -0.09 0.16 -0.21 -0.1 0.0 0.15 -0.29 0.24 0.26 0.04 0.11
44 0.15 -0.07 0.25 -0.2 -0.06 0.04 0.18 -0.29 0.29 0.29 0.15 0.1
45 0.16 -0.08 0.13 -0.2 0.0 -0.02 0.06 -0.29 0.3 0.29 0.14 0.09
46 0.11 -0.09 0.22 -0.2 -0.06 0.07 0.04 -0.27 0.24 0.27 0.24 0.06
47 -0.01 -0.13 0.08 -0.2 -0.13 0.04 0.03 -0.29 0.14 0.08 0.13 0.02
48 0.01 -0.13 0.13 -0.2 -0.1 0.13 0.03 -0.31 0.18 0.11 0.17 0.04
49 0.01 -0.13 0.18 -0.2 -0.12 0.01 0.11 -0.3 0.19 0.16 0.18 0.03
50 -0.06 -0.17 0.18 -0.21 -0.11 0.06 0.12 -0.28 0.18 0.12 0.25 -0.01
51 -0.09 -0.19 0.17 -0.21 -0.15 0.03 0.12 -0.3 0.21 0.06 0.12 0.01
52 -0.07 -0.17 0.07 -0.2 -0.11 -0.01 0.16 -0.3 0.31 0.08 0.09 -0.0
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Table A.2: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Arona colors (2/4)

SEAT ARONA
Lag 7Y0C 7Y0E 7Y7Y 7YS7 9529 9532 9545 9550 9M9M B40C B40E B4B4

0 0.24 0.45 0.39 0.5 0.34 0.59 0.48 0.66 0.77 0.78 0.41 0.39
1 0.25 0.47 0.39 0.49 0.42 0.56 0.53 0.69 0.8 0.8 0.47 0.44
2 0.28 0.53 0.4 0.46 0.41 0.5 0.6 0.73 0.78 0.8 0.5 0.46
3 0.29 0.43 0.36 0.46 0.34 0.56 0.59 0.7 0.78 0.78 0.5 0.42
4 0.18 0.44 0.45 0.51 0.38 0.56 0.58 0.65 0.76 0.78 0.51 0.4
5 0.23 0.45 0.46 0.5 0.37 0.57 0.57 0.68 0.76 0.8 0.54 0.45
6 0.26 0.48 0.45 0.52 0.39 0.54 0.6 0.66 0.76 0.75 0.51 0.46
7 0.38 0.46 0.42 0.57 0.42 0.59 0.53 0.61 0.78 0.67 0.48 0.44
8 0.4 0.45 0.36 0.51 0.4 0.51 0.48 0.5 0.78 0.61 0.44 0.36
9 0.33 0.51 0.39 0.57 0.37 0.46 0.49 0.56 0.79 0.63 0.49 0.41
10 0.28 0.53 0.36 0.52 0.39 0.48 0.47 0.59 0.82 0.62 0.49 0.43
11 0.35 0.52 0.4 0.59 0.31 0.41 0.43 0.59 0.77 0.59 0.49 0.42
12 0.34 0.49 0.34 0.55 0.31 0.41 0.39 0.56 0.77 0.53 0.46 0.36
13 0.35 0.48 0.37 0.56 0.33 0.37 0.35 0.48 0.76 0.51 0.48 0.39
14 0.28 0.49 0.34 0.55 0.29 0.4 0.31 0.47 0.74 0.49 0.43 0.42
15 0.3 0.52 0.37 0.52 0.3 0.39 0.22 0.41 0.74 0.45 0.38 0.41
16 0.39 0.49 0.4 0.54 0.24 0.38 0.17 0.35 0.76 0.41 0.3 0.36
17 0.36 0.52 0.31 0.54 0.26 0.38 0.18 0.3 0.74 0.39 0.31 0.34
18 0.37 0.53 0.3 0.54 0.25 0.34 0.19 0.29 0.72 0.38 0.3 0.38
19 0.33 0.53 0.35 0.51 0.14 0.31 0.17 0.32 0.65 0.35 0.27 0.36
20 0.22 0.56 0.36 0.52 0.16 0.21 0.16 0.28 0.65 0.32 0.21 0.36
21 0.33 0.49 0.34 0.5 0.22 0.24 0.12 0.23 0.64 0.28 0.19 0.34
22 0.23 0.52 0.36 0.55 0.24 0.27 0.05 0.2 0.61 0.27 0.21 0.38
23 0.3 0.52 0.41 0.58 0.23 0.22 0.01 0.19 0.6 0.24 0.19 0.4
24 0.19 0.51 0.42 0.57 0.2 0.18 -0.01 0.21 0.56 0.19 0.13 0.41
25 0.25 0.44 0.39 0.52 0.08 0.14 -0.0 0.15 0.56 0.14 0.06 0.31
26 0.31 0.47 0.39 0.53 0.09 0.06 -0.03 0.09 0.5 0.13 0.06 0.3
27 0.3 0.48 0.45 0.48 0.05 0.05 -0.05 0.06 0.52 0.13 0.05 0.3
28 0.24 0.47 0.5 0.44 0.04 0.04 -0.08 0.02 0.55 0.1 -0.01 0.29
29 0.18 0.49 0.48 0.41 -0.01 -0.01 -0.14 -0.07 0.46 0.07 -0.05 0.16
30 0.25 0.49 0.44 0.41 -0.01 0.01 -0.21 -0.12 0.46 0.05 -0.07 0.13
31 0.25 0.54 0.43 0.36 -0.04 0.01 -0.27 -0.18 0.43 0.05 -0.05 0.19
32 0.37 0.58 0.52 0.31 0.0 0.01 -0.29 -0.15 0.0 0.03 -0.07 0.22
33 0.14 0.54 0.41 0.27 -0.01 -0.05 -0.24 -0.17 0.0 0.01 -0.09 0.17
34 -0.04 0.46 0.34 0.24 0.01 -0.03 -0.23 -0.19 0.0 0.01 -0.09 0.04
35 -0.01 0.54 0.4 0.2 -0.09 -0.06 -0.25 -0.2 0.0 0.05 -0.03 0.16
36 0.02 0.57 0.42 0.13 -0.14 -0.06 -0.23 -0.15 0.0 0.08 0.02 0.22
37 0.07 0.58 0.41 0.13 -0.16 -0.02 -0.17 -0.16 0.0 0.05 0.01 0.21
38 -0.05 0.46 0.32 0.04 -0.16 -0.08 -0.16 -0.28 0.0 0.01 -0.0 0.05
39 -0.05 0.54 0.18 -0.0 -0.14 -0.05 -0.14 -0.28 0.0 -0.01 0.03 0.14
40 -0.06 0.52 0.23 -0.04 -0.13 -0.04 -0.03 -0.26 0.0 -0.04 0.07 0.21
41 -0.05 0.55 0.32 -0.09 -0.19 -0.03 -0.01 -0.24 0.0 -0.08 0.1 0.19
42 -0.02 0.48 0.26 -0.13 -0.24 -0.03 0.06 -0.24 0.0 -0.08 0.07 0.13
43 -0.12 0.38 0.11 -0.15 -0.25 -0.04 0.11 -0.3 0.0 -0.08 0.06 0.07
44 -0.09 0.46 0.15 -0.15 -0.27 0.04 0.16 -0.29 0.0 -0.07 0.12 0.16
45 -0.12 0.52 0.17 -0.17 -0.28 -0.01 0.2 -0.27 0.0 -0.11 0.13 0.11
46 -0.08 0.43 0.15 -0.17 -0.28 -0.02 0.19 -0.24 0.0 -0.16 0.06 0.08
47 -0.19 0.28 0.08 -0.19 -0.29 -0.14 0.1 -0.31 0.0 -0.22 -0.07 -0.11
48 -0.2 0.32 0.08 -0.19 -0.3 -0.14 0.13 -0.3 0.0 -0.21 0.01 -0.06
49 -0.2 0.34 0.11 -0.2 -0.3 -0.14 0.09 -0.3 0.0 -0.21 0.06 -0.02
50 -0.18 0.38 0.08 -0.2 -0.3 -0.16 0.13 -0.29 0.0 -0.24 0.0 -0.09
51 -0.17 0.34 0.06 -0.2 -0.29 -0.18 0.05 -0.35 0.0 -0.25 -0.13 -0.15
52 -0.15 0.39 0.05 -0.19 -0.29 -0.14 0.11 -0.33 0.0 -0.24 -0.08 -0.15
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Table A.3: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Arona colors (3/4)

SEAT ARONA
Lag B4F5 B4S7 E10C E10E E1E1 E1S7 F50C F50E F5F5 F5S7 F80C F80E

0 0.13 0.66 0.41 0.38 0.44 0.55 0.38 0.22 0.32 0.49 0.51 0.31
1 0.17 0.66 0.4 0.43 0.47 0.55 0.46 0.21 0.37 0.51 0.52 0.34
2 0.09 0.68 0.38 0.46 0.5 0.6 0.52 0.26 0.39 0.54 0.53 0.34
3 0.06 0.67 0.37 0.46 0.44 0.58 0.54 0.27 0.4 0.5 0.55 0.33
4 0.12 0.67 0.36 0.45 0.39 0.65 0.55 0.3 0.38 0.47 0.57 0.33
5 0.27 0.68 0.38 0.5 0.42 0.62 0.6 0.3 0.48 0.47 0.55 0.38
6 0.26 0.69 0.34 0.43 0.4 0.65 0.47 0.28 0.47 0.47 0.52 0.39
7 0.3 0.64 0.29 0.39 0.41 0.62 0.53 0.28 0.35 0.49 0.56 0.38
8 0.25 0.63 0.25 0.36 0.38 0.64 0.52 0.27 0.28 0.47 0.56 0.38
9 0.28 0.65 0.23 0.47 0.47 0.67 0.57 0.29 0.33 0.5 0.62 0.43
10 0.25 0.65 0.21 0.52 0.47 0.64 0.53 0.28 0.27 0.48 0.65 0.46
11 0.14 0.67 0.21 0.45 0.44 0.62 0.57 0.25 0.25 0.45 0.68 0.4
12 0.15 0.59 0.18 0.37 0.35 0.49 0.57 0.24 0.18 0.42 0.6 0.44
13 0.25 0.61 0.16 0.39 0.33 0.52 0.48 0.27 0.22 0.46 0.61 0.41
14 0.35 0.6 0.15 0.39 0.34 0.49 0.39 0.27 0.17 0.38 0.56 0.45
15 0.36 0.59 0.12 0.36 0.3 0.45 0.4 0.19 0.16 0.45 0.57 0.43
16 0.3 0.55 0.07 0.27 0.3 0.41 0.42 0.11 0.16 0.45 0.57 0.44
17 0.12 0.55 0.06 0.31 0.28 0.4 0.4 0.15 0.14 0.37 0.59 0.45
18 0.02 0.57 0.05 0.28 0.31 0.39 0.44 0.17 0.17 0.4 0.54 0.41
19 -0.01 0.59 0.02 0.25 0.28 0.4 0.43 0.13 0.13 0.34 0.55 0.36
20 0.11 0.58 0.01 0.19 0.25 0.36 0.38 0.07 -0.01 0.39 0.51 0.29
21 0.15 0.51 0.01 0.12 0.25 0.35 0.3 0.09 0.01 0.32 0.38 0.19
22 0.19 0.54 -0.01 0.14 0.27 0.36 0.3 0.08 0.04 0.34 0.36 0.25
23 0.23 0.53 -0.03 0.13 0.29 0.37 0.27 0.04 0.13 0.38 0.4 0.34
24 0.14 0.55 -0.06 0.11 0.26 0.41 0.21 0.0 -0.01 0.29 0.44 0.32
25 0.04 0.47 -0.09 0.05 0.18 0.35 0.2 -0.01 -0.04 0.35 0.39 0.32
26 -0.0 0.45 -0.11 0.06 0.15 0.39 0.18 0.01 -0.04 0.27 0.34 0.2
27 0.03 0.4 -0.11 0.08 0.14 0.36 0.15 0.0 0.01 0.28 0.31 0.22
28 0.05 0.42 -0.13 0.0 0.12 0.41 0.08 0.01 -0.1 0.19 0.22 0.19
29 0.13 0.35 -0.15 -0.11 0.08 0.38 0.08 0.04 -0.14 0.16 0.18 0.13
30 0.05 0.33 -0.15 -0.15 0.09 0.39 0.07 0.04 -0.16 0.17 0.13 0.18
31 0.09 0.32 -0.16 -0.13 0.18 0.41 0.03 0.03 -0.15 0.17 0.18 0.18
32 0.05 0.32 -0.17 -0.15 0.19 0.41 0.03 0.01 -0.19 0.21 0.18 0.18
33 -0.05 0.34 -0.18 -0.16 0.11 0.43 -0.0 -0.02 -0.24 0.15 0.11 0.07
34 -0.14 0.28 -0.2 -0.24 0.03 0.41 -0.04 -0.01 -0.2 0.18 -0.02 0.02
35 -0.03 0.31 -0.2 -0.11 0.09 0.48 0.02 0.04 -0.13 0.24 -0.05 0.06
36 0.09 0.28 -0.2 -0.03 0.19 0.46 0.07 0.11 -0.12 0.19 -0.04 0.09
37 0.17 0.29 -0.21 -0.07 0.22 0.43 0.14 0.13 -0.14 0.2 -0.01 0.01
38 0.04 0.24 -0.25 -0.19 0.14 0.41 0.04 0.1 -0.14 0.13 -0.1 0.04
39 -0.03 0.27 -0.25 -0.08 0.2 0.45 -0.02 0.15 -0.09 0.18 -0.08 0.04
40 -0.03 0.29 -0.26 0.0 0.18 0.41 -0.04 0.21 -0.14 0.16 -0.07 0.02
41 -0.0 0.3 -0.27 -0.02 0.13 0.37 -0.04 0.17 -0.13 0.23 -0.09 -0.06
42 0.02 0.22 -0.28 -0.1 0.08 0.3 -0.03 0.14 -0.09 0.19 -0.12 0.06
43 0.05 0.22 -0.27 -0.07 0.11 0.27 -0.01 0.14 -0.04 0.09 -0.13 -0.03
44 0.05 0.21 -0.27 0.07 0.25 0.31 0.04 0.15 0.06 0.16 -0.1 0.01
45 0.14 0.18 -0.27 0.04 0.28 0.26 0.03 0.13 -0.06 0.14 -0.09 -0.03
46 0.01 0.19 -0.28 -0.03 0.27 0.25 0.06 0.1 -0.11 0.14 -0.03 -0.01
47 -0.09 0.15 -0.29 -0.16 0.05 0.24 -0.1 0.06 -0.16 0.05 -0.09 -0.06
48 -0.06 0.14 -0.3 0.02 0.04 0.24 -0.03 0.06 -0.12 0.05 -0.09 0.03
49 -0.02 0.15 -0.31 0.04 0.04 0.24 -0.08 -0.02 -0.07 0.07 -0.06 0.01
50 -0.07 0.16 -0.31 -0.02 -0.03 0.24 -0.09 -0.08 -0.22 0.08 -0.08 0.08
51 0.0 0.13 -0.31 -0.12 -0.06 0.22 -0.1 -0.14 -0.22 0.13 -0.09 -0.08
52 -0.0 0.16 -0.3 -0.01 -0.02 0.27 -0.06 -0.11 -0.15 0.1 -0.07 0.01
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Table A.4: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Arona colors (4/4)

SEAT ARONA
Lag F8F8 F8S7 L50C L50E L5F5 L5L5 L5S7 S70E S7F5 S7S7

0 0.48 0.58 0.54 0.52 0.15 0.62 0.44 0.56 0.34 0.59
1 0.5 0.56 0.64 0.54 0.07 0.66 0.42 0.59 0.28 0.6
2 0.5 0.56 0.61 0.5 0.09 0.63 0.38 0.6 0.3 0.61
3 0.5 0.58 0.54 0.49 0.08 0.62 0.47 0.62 0.26 0.61
4 0.58 0.55 0.44 0.48 0.01 0.62 0.5 0.59 0.39 0.6
5 0.63 0.56 0.49 0.51 0.04 0.56 0.49 0.61 0.34 0.61
6 0.58 0.58 0.41 0.53 0.01 0.59 0.52 0.59 0.3 0.61
7 0.61 0.52 0.38 0.51 0.01 0.54 0.49 0.58 0.26 0.63
8 0.57 0.49 0.35 0.53 0.07 0.55 0.47 0.61 0.32 0.62
9 0.58 0.47 0.39 0.57 0.11 0.62 0.5 0.58 0.41 0.65
10 0.53 0.44 0.3 0.57 0.08 0.62 0.49 0.56 0.35 0.64
11 0.51 0.39 0.29 0.61 0.08 0.62 0.49 0.57 0.37 0.65
12 0.49 0.36 0.14 0.59 -0.05 0.51 0.47 0.57 0.28 0.63
13 0.51 0.44 0.14 0.62 -0.05 0.5 0.6 0.6 0.43 0.66
14 0.54 0.33 0.2 0.59 0.1 0.49 0.57 0.58 0.36 0.65
15 0.45 0.26 0.18 0.61 0.12 0.49 0.58 0.58 0.29 0.65
16 0.44 0.3 0.08 0.64 0.03 0.45 0.51 0.54 0.25 0.64
17 0.46 0.22 0.11 0.64 -0.02 0.45 0.51 0.54 0.25 0.67
18 0.41 0.17 0.17 0.65 0.03 0.48 0.44 0.56 0.28 0.71
19 0.4 0.15 0.19 0.65 0.05 0.48 0.41 0.58 0.31 0.7
20 0.31 0.19 0.14 0.63 0.03 0.43 0.39 0.58 0.24 0.71
21 0.29 0.11 0.11 0.55 0.13 0.38 0.34 0.6 0.18 0.72
22 0.3 0.13 0.11 0.59 0.07 0.41 0.39 0.59 0.18 0.75
23 0.32 0.15 0.17 0.59 0.02 0.4 0.44 0.59 0.27 0.75
24 0.3 0.13 0.19 0.61 0.23 0.42 0.53 0.59 0.28 0.74
25 0.21 0.1 0.02 0.61 0.08 0.37 0.43 0.59 0.17 0.69
26 0.2 0.13 0.02 0.64 -0.07 0.35 0.53 0.62 0.18 0.68
27 0.17 0.01 0.01 0.65 -0.02 0.32 0.38 0.6 0.13 0.61
28 0.13 0.01 0.05 0.65 -0.14 0.27 0.37 0.61 0.24 0.59
29 0.08 -0.03 -0.0 0.54 -0.09 0.19 0.35 0.54 0.23 0.54
30 0.04 -0.06 -0.07 0.53 0.02 0.23 0.35 0.59 0.23 0.5
31 0.06 -0.12 -0.07 0.62 0.14 0.23 0.34 0.58 0.21 0.48
32 0.02 -0.14 -0.05 0.58 0.15 0.2 0.41 0.63 0.24 0.47
33 -0.07 -0.15 -0.03 0.55 0.03 0.15 0.34 0.66 0.2 0.42
34 -0.08 -0.18 -0.11 0.48 0.14 0.13 0.34 0.6 0.32 0.36
35 -0.06 -0.18 -0.14 0.56 -0.04 0.16 0.44 0.63 0.26 0.37
36 -0.09 -0.22 -0.13 0.53 -0.11 0.13 0.37 0.6 0.18 0.34
37 -0.06 -0.25 -0.13 0.53 -0.04 0.12 0.37 0.6 0.19 0.3
38 -0.1 -0.24 -0.17 0.48 -0.17 0.03 0.39 0.57 0.25 0.24
39 0.0 -0.24 -0.18 0.52 -0.04 -0.03 0.39 0.56 0.34 0.23
40 -0.0 -0.24 -0.17 0.51 -0.03 0.01 0.26 0.53 0.17 0.23
41 0.04 -0.25 -0.15 0.5 0.06 -0.03 0.33 0.57 0.19 0.21
42 -0.05 -0.29 -0.19 0.46 0.04 -0.08 0.29 0.52 0.28 0.17
43 -0.05 -0.3 -0.22 0.46 -0.04 -0.09 0.34 0.47 0.19 0.16
44 0.01 -0.31 -0.2 0.45 0.07 -0.09 0.29 0.55 0.2 0.17
45 -0.06 -0.31 -0.24 0.41 0.17 -0.07 0.3 0.51 0.15 0.16
46 -0.09 -0.28 -0.24 0.39 0.05 -0.03 0.2 0.53 0.24 0.14
47 -0.1 -0.29 -0.23 0.28 -0.15 -0.18 0.19 0.44 0.06 0.12
48 -0.01 -0.32 -0.23 0.26 -0.04 -0.13 0.21 0.47 0.24 0.13
49 -0.12 -0.31 -0.22 0.27 -0.01 -0.09 0.18 0.47 0.18 0.12
50 -0.13 -0.3 -0.22 0.31 -0.01 -0.1 0.19 0.45 0.25 0.12
51 -0.19 -0.28 -0.21 0.27 0.0 -0.1 0.16 0.46 0.13 0.12
52 -0.18 -0.28 -0.21 0.29 -0.11 -0.09 0.18 0.49 0.25 0.12
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Table A.5: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Ibiza colors

SEAT IBIZA
Lag 0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 E1E1 F5F5 F8F8 L5L5 S7S7

0 0.45 0.33 0.31 0.2 0.61 0.88 0.07 0.19 0.38 0.46 0.47 0.73
1 0.47 0.34 0.34 0.24 0.64 0.89 0.12 0.24 0.34 0.57 0.51 0.77
2 0.49 0.27 0.38 0.13 0.66 0.89 0.13 0.24 0.37 0.6 0.54 0.79
3 0.56 0.28 0.37 0.26 0.63 0.87 0.14 0.24 0.37 0.53 0.55 0.77
4 0.58 0.26 0.37 0.22 0.6 0.87 0.15 0.22 0.37 0.49 0.55 0.76
5 0.59 0.3 0.36 0.21 0.61 0.88 0.15 0.23 0.42 0.48 0.53 0.77
6 0.56 0.14 0.36 0.1 0.54 0.9 0.06 0.14 0.44 0.46 0.52 0.75
7 0.59 0.14 0.32 0.08 0.48 0.89 0.03 0.14 0.4 0.45 0.49 0.74
8 0.61 0.14 0.31 0.09 0.45 0.87 0.05 0.09 0.31 0.35 0.45 0.7
9 0.61 0.09 0.37 0.04 0.44 0.86 0.05 0.09 0.31 0.39 0.43 0.72
10 0.6 0.05 0.37 -0.0 0.44 0.87 0.02 0.11 0.31 0.44 0.41 0.74
11 0.6 -0.01 0.36 -0.04 0.47 0.87 0.03 0.1 0.3 0.41 0.42 0.77
12 0.63 0.04 0.34 0.01 0.5 0.84 0.06 0.14 0.4 0.4 0.43 0.75
13 0.64 0.08 0.41 0.03 0.53 0.8 0.08 0.11 0.45 0.43 0.49 0.75
14 0.65 0.04 0.4 -0.02 0.55 0.78 0.11 0.16 0.45 0.41 0.49 0.78
15 0.64 0.03 0.39 -0.02 0.5 0.79 0.13 0.12 0.4 0.4 0.5 0.79
16 0.68 0.06 0.38 0.01 0.48 0.79 0.18 0.12 0.38 0.43 0.51 0.77
17 0.68 0.06 0.39 0.08 0.47 0.76 0.19 0.14 0.4 0.44 0.45 0.72
18 0.68 0.03 0.35 0.06 0.46 0.71 0.26 0.2 0.4 0.45 0.48 0.72
19 0.7 0.07 0.33 0.11 0.49 0.69 0.33 0.3 0.35 0.44 0.46 0.7
20 0.71 0.04 0.33 0.11 0.52 0.69 0.39 0.31 0.28 0.44 0.48 0.7
21 0.73 0.09 0.33 0.12 0.46 0.68 0.38 0.34 0.29 0.34 0.5 0.66
22 0.7 0.1 0.34 0.06 0.42 0.64 0.34 0.31 0.25 0.34 0.42 0.67
23 0.72 0.09 0.35 0.1 0.41 0.59 0.29 0.3 0.28 0.37 0.41 0.68
24 0.71 0.08 0.35 0.11 0.38 0.57 0.24 0.29 0.33 0.44 0.41 0.66
25 0.69 0.05 0.29 0.04 0.31 0.58 0.15 0.2 0.27 0.26 0.37 0.62
26 0.64 -0.1 0.27 -0.06 0.27 0.52 0.07 0.15 0.17 0.2 0.33 0.62
27 0.64 -0.01 0.29 0.03 0.25 0.45 0.09 0.17 0.12 0.2 0.29 0.59
28 0.63 -0.06 0.34 0.02 0.19 0.46 0.07 0.11 0.17 0.22 0.28 0.57
29 0.62 -0.08 0.29 0.06 0.11 0.43 0.04 -0.01 0.13 0.24 0.2 0.56
30 0.59 -0.12 0.28 -0.03 0.08 0.37 0.06 -0.03 0.22 0.24 0.23 0.53
31 0.6 0.0 0.3 0.09 0.13 0.29 0.16 0.04 0.22 0.31 0.26 0.52
32 0.59 -0.15 0.33 -0.1 0.14 0.0 0.19 0.05 0.16 0.3 0.28 0.5
33 0.57 -0.14 0.31 -0.04 0.16 0.0 0.15 0.06 0.06 0.22 0.25 0.5
34 0.57 -0.19 0.3 -0.01 0.09 0.0 0.11 -0.0 -0.01 0.17 0.17 0.46
35 0.59 -0.19 0.34 -0.03 0.06 0.0 0.14 -0.01 0.06 0.19 0.11 0.45
36 0.59 -0.12 0.29 -0.05 0.03 0.0 0.14 -0.02 -0.01 0.08 0.01 0.44
37 0.59 -0.21 0.24 -0.16 -0.03 0.0 0.1 -0.06 0.02 0.04 -0.05 0.44
38 0.6 -0.22 0.2 -0.12 -0.04 0.0 0.1 -0.05 -0.07 0.03 -0.07 0.43
39 0.6 -0.16 0.26 -0.05 0.02 0.0 0.21 0.04 -0.12 0.08 -0.08 0.41
40 0.62 -0.09 0.29 0.0 0.09 0.0 0.27 0.12 -0.19 0.08 -0.13 0.43
41 0.61 -0.14 0.34 0.02 0.07 0.0 0.24 0.08 -0.19 0.06 -0.13 0.41
42 0.64 -0.06 0.33 0.1 0.08 0.0 0.23 0.05 -0.2 0.09 -0.16 0.4
43 0.63 -0.07 0.29 0.09 0.07 0.0 0.18 -0.02 -0.22 -0.03 -0.18 0.36
44 0.6 -0.14 0.27 0.01 -0.02 0.0 0.11 -0.07 -0.28 -0.03 -0.19 0.37
45 0.57 -0.06 0.31 -0.02 -0.05 0.0 0.05 -0.05 -0.25 0.12 -0.16 0.35
46 0.55 -0.11 0.35 0.08 -0.1 0.0 -0.0 -0.06 -0.25 0.15 -0.16 0.32
47 0.52 -0.17 0.32 0.17 -0.14 0.0 -0.09 -0.11 -0.25 0.01 -0.22 0.3
48 0.5 -0.1 0.28 0.19 -0.22 0.0 -0.06 -0.16 -0.24 -0.01 -0.22 0.28
49 0.47 -0.11 0.31 0.16 -0.24 0.0 -0.07 -0.07 -0.22 0.03 -0.19 0.3
50 0.41 -0.18 0.37 0.03 -0.27 0.0 -0.11 -0.1 -0.2 0.05 -0.21 0.28
51 0.4 -0.21 0.35 0.03 -0.24 0.0 -0.1 -0.13 -0.25 -0.07 -0.23 0.28
52 0.42 -0.2 0.29 0.03 -0.23 0.0 -0.06 -0.07 -0.3 -0.06 -0.2 0.26
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Table A.6: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Leon 5D colors

SEAT LEON 5D
Lag 0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 C0C0 E1E1 F5F5 L5L5 P5P5 S7S7 T4T4

0 0.78 0.08 0.01 0.35 0.54 0.34 0.18 0.35 0.11 0.4 0.26 0.52 0.68 0.39
1 0.79 0.12 0.03 0.37 0.58 0.35 0.19 0.35 0.16 0.37 0.28 0.49 0.71 0.35
2 0.77 0.02 -0.06 0.24 0.54 0.36 0.11 0.31 0.13 0.37 0.25 0.47 0.73 0.36
3 0.77 -0.09 -0.13 0.2 0.46 0.38 0.07 0.2 -0.02 0.32 0.14 0.47 0.71 0.44
4 0.76 -0.13 -0.1 0.22 0.42 0.41 0.0 0.18 -0.01 0.41 0.17 0.43 0.71 0.34
5 0.79 -0.14 -0.08 0.17 0.41 0.47 0.04 0.24 0.02 0.42 0.15 0.41 0.7 0.3
6 0.79 -0.24 -0.1 0.05 0.45 0.48 0.02 0.26 0.04 0.43 0.12 0.28 0.7 0.3
7 0.79 -0.23 -0.12 0.04 0.41 0.5 0.04 0.2 0.02 0.38 0.08 0.27 0.69 0.34
8 0.81 -0.26 -0.1 0.03 0.37 0.54 0.08 0.21 0.01 0.41 0.09 0.36 0.69 0.44
9 0.79 -0.22 -0.07 0.15 0.37 0.54 0.11 0.18 -0.01 0.36 0.08 0.28 0.7 0.42
10 0.81 -0.14 -0.07 0.2 0.42 0.59 0.12 0.12 0.0 0.36 0.11 0.24 0.71 0.42
11 0.79 -0.21 -0.1 0.16 0.47 0.57 0.12 0.08 -0.02 0.41 0.06 0.34 0.72 0.54
12 0.77 -0.18 -0.1 0.16 0.44 0.59 0.13 0.12 -0.05 0.45 0.11 0.47 0.74 0.7
13 0.76 -0.08 -0.07 0.18 0.42 0.61 0.17 0.11 -0.01 0.47 0.12 0.48 0.77 0.63
14 0.78 -0.1 -0.06 0.17 0.42 0.62 0.19 0.22 0.03 0.5 0.1 0.51 0.77 0.61
15 0.77 -0.11 0.01 0.13 0.4 0.61 0.17 0.18 0.08 0.47 0.08 0.51 0.78 0.58
16 0.77 -0.08 0.03 0.13 0.33 0.63 0.16 0.14 0.12 0.38 0.07 0.44 0.76 0.54
17 0.76 -0.02 0.05 0.18 0.31 0.62 0.11 0.1 0.07 0.36 0.1 0.39 0.77 0.46
18 0.73 -0.04 0.05 0.16 0.34 0.57 0.14 0.15 0.06 0.3 0.09 0.28 0.76 0.39
19 0.71 -0.13 0.07 0.09 0.36 0.55 0.09 0.13 -0.04 0.3 0.08 0.2 0.76 0.36
20 0.7 -0.16 0.02 0.08 0.35 0.56 0.04 0.09 0.01 0.32 0.04 0.41 0.77 0.46
21 0.7 -0.15 0.05 0.1 0.32 0.54 0.12 0.14 0.06 0.37 0.01 0.6 0.76 0.57
22 0.65 -0.1 0.06 0.0 0.25 0.48 0.12 0.14 0.11 0.28 0.07 0.56 0.73 0.53
23 0.67 -0.02 0.11 0.03 0.25 0.43 0.19 0.21 0.07 0.29 0.16 0.45 0.73 0.43
24 0.66 -0.08 0.09 0.08 0.27 0.42 0.22 0.16 0.04 0.29 0.11 0.5 0.7 0.43
25 0.65 -0.08 0.03 0.1 0.28 0.44 0.26 0.09 0.06 0.23 0.04 0.55 0.68 0.58
26 0.62 -0.05 -0.0 0.07 0.22 0.42 0.15 0.05 0.06 0.29 0.05 0.42 0.68 0.46
27 0.61 -0.03 0.06 0.16 0.24 0.29 0.17 0.09 0.13 0.34 0.09 0.34 0.67 0.51
28 0.58 -0.03 0.03 0.12 0.19 0.08 0.19 0.07 0.1 0.34 0.05 0.34 0.66 0.49
29 0.57 0.01 -0.01 0.11 0.12 0.18 0.16 0.02 0.03 0.26 -0.07 0.48 0.65 0.59
30 0.58 0.09 0.07 0.12 0.15 0.22 0.2 0.11 0.13 0.31 -0.01 0.5 0.65 0.62
31 0.55 0.1 0.14 0.12 0.12 0.17 0.2 0.01 0.15 0.18 -0.03 0.48 0.63 0.48
32 0.54 0.06 0.07 -0.01 0.04 0.1 0.09 0.02 0.15 0.08 0.02 0.42 0.6 0.52
33 0.51 0.04 0.05 0.03 0.12 0.12 0.12 -0.04 0.11 0.05 -0.02 0.55 0.58 0.65
34 0.47 -0.01 0.06 0.05 0.18 0.11 0.14 -0.1 -0.02 0.14 -0.04 0.63 0.58 0.64
35 0.44 0.03 0.06 -0.0 0.14 0.01 0.08 -0.14 0.04 0.13 -0.07 0.57 0.57 0.69
36 0.42 0.06 0.11 0.02 0.08 -0.05 0.08 -0.06 0.14 0.19 -0.02 0.34 0.55 0.69
37 0.41 0.12 0.03 0.02 -0.0 -0.06 0.12 -0.04 0.08 0.11 0.06 0.42 0.53 0.62
38 0.42 0.16 0.12 0.04 -0.06 -0.08 0.16 -0.03 0.06 0.04 0.04 0.54 0.49 0.79
39 0.39 0.23 0.11 0.03 -0.11 -0.09 0.1 -0.05 0.04 -0.04 0.01 0.34 0.49 0.67
40 0.4 0.22 0.21 0.08 -0.02 -0.1 0.17 -0.08 0.16 -0.01 0.03 0.37 0.47 0.83
41 0.36 0.05 0.08 -0.11 0.0 -0.11 0.09 -0.16 0.05 0.02 -0.03 0.36 0.45 0.56
42 0.36 0.05 0.01 -0.13 0.01 -0.12 0.06 -0.15 0.09 0.01 -0.01 0.36 0.41 0.5
43 0.34 0.09 -0.01 -0.06 -0.01 -0.12 0.08 -0.13 0.09 -0.04 0.03 0.12 0.39 0.49
44 0.31 0.14 -0.13 -0.1 0.02 -0.13 0.12 -0.15 0.06 -0.09 0.02 0.0 0.39 0.2
45 0.33 0.12 -0.01 -0.07 0.07 -0.14 0.11 -0.04 0.02 -0.13 0.0 0.0 0.38 0.16
46 0.29 0.08 -0.05 -0.1 0.04 -0.14 0.08 -0.12 -0.11 -0.19 -0.15 0.0 0.35 0.12
47 0.29 0.07 -0.12 -0.13 -0.01 -0.14 -0.02 -0.09 -0.19 -0.21 -0.17 0.0 0.32 0.18
48 0.28 0.1 -0.22 -0.21 -0.03 -0.14 -0.09 -0.13 -0.14 -0.23 -0.11 0.0 0.31 0.03
49 0.23 0.16 -0.09 -0.11 0.07 -0.14 0.05 -0.13 -0.1 -0.21 -0.04 0.0 0.3 -0.05
50 0.21 0.12 -0.06 -0.15 0.04 -0.14 0.14 -0.18 -0.03 -0.18 -0.08 0.0 0.29 -0.05
51 0.21 0.16 -0.02 -0.19 0.01 -0.15 0.11 -0.18 -0.03 -0.15 -0.13 0.0 0.26 -0.05
52 0.2 0.29 -0.01 -0.05 0.01 -0.15 0.04 -0.08 0.08 -0.19 0.03 0.0 0.25 -0.05
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Table A.7: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Leon ST colors

SEAT LEON ST
Lag 0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 C0C0 E1E1 F5F5 L5L5 P5P5 S7S7 T4T4

0 0.75 0.02 0.46 0.31 0.46 0.46 -0.11 0.41 0.24 0.28 0.35 0.36 0.71 0.19
1 0.75 -0.03 0.48 0.31 0.5 0.49 -0.05 0.38 0.24 0.31 0.31 0.3 0.73 0.16
2 0.75 -0.07 0.45 0.27 0.53 0.49 -0.05 0.43 0.29 0.36 0.19 0.17 0.74 0.16
3 0.78 -0.08 0.48 0.25 0.46 0.49 -0.13 0.43 0.15 0.32 0.16 0.17 0.75 0.26
4 0.76 -0.06 0.41 0.24 0.37 0.46 -0.15 0.41 0.05 0.28 0.22 0.16 0.76 0.33
5 0.76 -0.01 0.4 0.21 0.39 0.46 -0.12 0.35 0.04 0.29 0.23 0.1 0.73 0.32
6 0.76 -0.14 0.38 0.15 0.42 0.44 -0.14 0.38 0.01 0.3 0.22 0.14 0.72 0.35
7 0.79 -0.17 0.4 0.15 0.45 0.43 -0.17 0.44 -0.01 0.27 0.24 0.17 0.74 0.38
8 0.81 -0.12 0.41 0.14 0.44 0.43 -0.12 0.35 -0.19 0.24 0.24 0.22 0.72 0.48
9 0.8 -0.1 0.4 0.23 0.4 0.4 -0.16 0.34 -0.02 0.28 0.33 0.24 0.71 0.35
10 0.8 -0.1 0.44 0.21 0.38 0.43 -0.19 0.36 0.02 0.32 0.34 0.42 0.72 0.36
11 0.8 -0.16 0.46 0.23 0.42 0.46 -0.17 0.38 0.07 0.34 0.28 0.53 0.75 0.41
12 0.8 -0.13 0.47 0.22 0.41 0.45 -0.12 0.36 -0.0 0.31 0.28 0.6 0.73 0.56
13 0.78 -0.02 0.42 0.31 0.33 0.42 -0.19 0.37 0.06 0.33 0.34 0.63 0.72 0.53
14 0.78 -0.04 0.39 0.3 0.36 0.47 -0.2 0.34 0.11 0.3 0.38 0.7 0.72 0.49
15 0.79 -0.09 0.4 0.33 0.31 0.48 -0.14 0.37 0.05 0.3 0.28 0.6 0.69 0.46
16 0.78 -0.06 0.41 0.24 0.33 0.49 -0.16 0.39 0.14 0.34 0.25 0.5 0.69 0.47
17 0.76 -0.11 0.36 0.23 0.33 0.51 -0.19 0.35 0.09 0.36 0.24 0.56 0.72 0.46
18 0.76 -0.15 0.34 0.21 0.32 0.5 -0.16 0.35 0.1 0.34 0.21 0.54 0.72 0.33
19 0.75 -0.14 0.35 0.2 0.31 0.48 -0.1 0.35 -0.03 0.28 0.13 0.45 0.68 0.34
20 0.75 -0.16 0.36 0.18 0.33 0.51 -0.1 0.39 0.05 0.24 0.09 0.4 0.66 0.35
21 0.75 -0.14 0.36 0.15 0.25 0.49 -0.07 0.37 0.03 0.25 0.07 0.33 0.69 0.41
22 0.73 -0.17 0.32 0.18 0.25 0.41 -0.05 0.26 0.05 0.2 0.08 0.31 0.67 0.3
23 0.73 -0.07 0.35 0.17 0.33 0.4 -0.11 0.27 0.13 0.21 0.13 0.18 0.66 0.24
24 0.72 -0.03 0.32 0.21 0.32 0.36 -0.13 0.3 0.12 0.16 0.11 0.34 0.68 0.33
25 0.71 0.01 0.35 0.19 0.29 0.31 -0.15 0.3 0.11 0.15 0.09 0.4 0.66 0.46
26 0.68 0.1 0.29 0.17 0.22 0.25 -0.14 0.21 0.04 0.17 0.13 0.35 0.63 0.39
27 0.67 0.18 0.35 0.23 0.19 0.18 -0.07 0.24 0.07 0.15 0.12 0.33 0.61 0.4
28 0.66 0.19 0.37 0.29 0.22 0.09 -0.06 0.23 0.1 0.16 0.15 0.44 0.61 0.38
29 0.65 0.1 0.35 0.23 0.22 0.1 -0.12 0.21 0.07 0.12 0.14 0.54 0.58 0.52
30 0.63 0.17 0.36 0.21 0.14 0.1 -0.16 0.16 0.01 0.14 0.09 0.34 0.54 0.42
31 0.61 0.18 0.33 0.12 0.12 0.02 -0.15 0.13 0.18 0.15 0.07 0.31 0.52 0.44
32 0.58 0.08 0.29 0.15 0.17 -0.03 -0.09 0.17 0.11 0.17 0.1 0.33 0.47 0.51
33 0.56 0.06 0.28 0.09 0.2 -0.05 -0.06 0.2 0.12 0.19 0.08 0.48 0.45 0.61
34 0.53 0.16 0.27 0.12 0.15 -0.08 -0.02 0.27 0.09 0.17 0.02 0.26 0.43 0.67
35 0.52 0.1 0.21 0.06 0.12 -0.1 0.08 0.22 0.1 0.17 0.05 0.23 0.43 0.52
36 0.51 -0.0 0.26 0.14 0.13 -0.11 0.19 0.23 0.14 0.17 0.05 0.18 0.42 0.57
37 0.51 0.09 0.24 0.08 0.1 -0.11 0.13 0.29 0.15 0.21 0.07 0.21 0.4 0.57
38 0.52 0.03 0.27 0.13 0.15 -0.08 0.08 0.29 0.08 0.19 0.09 0.06 0.41 0.63
39 0.5 0.1 0.17 0.17 0.09 -0.05 -0.02 0.11 -0.04 0.19 0.0 -0.03 0.42 0.56
40 0.49 0.22 0.3 0.11 0.14 -0.04 -0.05 0.15 0.09 0.14 0.01 -0.03 0.43 0.62
41 0.45 0.19 0.27 0.05 0.18 -0.05 -0.06 0.16 0.06 0.09 0.0 0.14 0.42 0.62
42 0.44 0.08 0.26 0.04 0.2 -0.05 -0.1 0.09 0.07 0.12 -0.03 0.31 0.41 0.77
43 0.41 0.2 0.27 0.06 0.19 -0.05 -0.11 -0.01 -0.06 0.09 -0.08 0.28 0.39 0.76
44 0.38 0.17 0.18 -0.06 0.21 -0.09 -0.05 -0.09 -0.07 0.09 -0.07 0.29 0.37 0.63
45 0.41 0.08 0.3 -0.05 0.28 -0.11 -0.08 -0.07 -0.05 0.05 -0.02 0.23 0.38 0.64
46 0.39 0.08 0.26 -0.07 0.31 -0.11 -0.11 0.06 -0.02 0.04 -0.0 0.27 0.35 0.74
47 0.37 0.07 0.2 -0.1 0.39 -0.12 -0.11 0.05 -0.12 0.04 -0.01 0.09 0.3 0.64
48 0.33 0.03 0.07 -0.13 0.27 -0.12 -0.13 -0.14 -0.21 0.12 0.01 -0.03 0.25 0.54
49 0.34 0.12 0.16 -0.08 0.25 -0.12 -0.08 -0.15 -0.14 0.1 -0.03 0.22 0.25 0.49
50 0.31 0.05 0.19 -0.13 0.32 -0.12 -0.13 -0.14 -0.08 0.07 -0.12 0.46 0.24 0.51
51 0.3 -0.01 0.17 -0.1 0.26 -0.12 -0.12 -0.14 -0.16 0.08 -0.09 0.42 0.22 0.42
52 0.27 0.09 0.17 -0.19 0.07 -0.12 -0.11 -0.1 -0.12 0.15 -0.0 0.44 0.2 0.23
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Table A.8: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Arona compound region

SEAT ARONA
Lag CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

0 0.39 0.49 0.45 0.49 0.44 0.49
1 0.43 0.54 0.48 0.54 0.51 0.52
2 0.45 0.57 0.49 0.54 0.51 0.55
3 0.45 0.54 0.44 0.51 0.49 0.49
4 0.45 0.54 0.39 0.53 0.49 0.49
5 0.5 0.57 0.45 0.56 0.52 0.58
6 0.5 0.55 0.45 0.56 0.48 0.54
7 0.46 0.47 0.41 0.52 0.45 0.5
8 0.45 0.37 0.33 0.44 0.41 0.38
9 0.49 0.47 0.45 0.5 0.47 0.43
10 0.51 0.5 0.48 0.5 0.5 0.45
11 0.49 0.45 0.43 0.49 0.46 0.45
12 0.46 0.35 0.33 0.47 0.38 0.39
13 0.53 0.35 0.37 0.46 0.37 0.44
14 0.55 0.36 0.39 0.43 0.35 0.43
15 0.52 0.3 0.38 0.38 0.33 0.41
16 0.44 0.21 0.31 0.33 0.3 0.36
17 0.45 0.2 0.32 0.27 0.31 0.31
18 0.42 0.22 0.35 0.32 0.32 0.31
19 0.4 0.21 0.34 0.3 0.33 0.27
20 0.35 0.18 0.31 0.29 0.26 0.26
21 0.35 0.14 0.27 0.24 0.2 0.19
22 0.39 0.16 0.32 0.28 0.22 0.22
23 0.38 0.16 0.32 0.33 0.25 0.21
24 0.42 0.15 0.34 0.3 0.2 0.13
25 0.29 0.04 0.24 0.18 0.09 0.05
26 0.32 0.06 0.22 0.16 0.12 0.0
27 0.31 0.06 0.24 0.17 0.12 0.04
28 0.26 0.03 0.26 0.15 0.05 0.0
29 0.18 -0.06 0.17 0.03 -0.09 -0.08
30 0.17 -0.09 0.17 0.01 -0.12 -0.12
31 0.24 -0.05 0.23 0.06 -0.09 -0.09
32 0.23 -0.02 0.25 0.1 -0.12 -0.06
33 0.15 -0.04 0.17 0.04 -0.16 -0.14
34 0.1 -0.14 0.01 -0.07 -0.17 -0.24
35 0.17 -0.02 0.08 0.01 -0.05 -0.16
36 0.16 0.05 0.16 0.07 -0.02 -0.04
37 0.07 0.01 0.18 0.09 -0.05 -0.01
38 0.03 -0.16 0.04 -0.02 -0.16 -0.09
39 0.14 -0.07 0.17 0.02 -0.12 -0.03
40 0.19 0.05 0.24 0.1 -0.1 0.02
41 0.17 0.07 0.23 0.12 -0.12 0.03
42 0.03 0.05 0.09 0.13 -0.13 0.0
43 0.03 0.03 -0.03 0.09 -0.08 -0.08
44 0.02 0.15 0.04 0.17 0.04 0.04
45 -0.03 0.18 0.07 0.19 0.05 0.05
46 -0.1 0.14 0.08 0.15 0.02 0.12
47 -0.15 -0.09 -0.1 -0.04 -0.1 -0.07
48 -0.02 -0.02 0.01 0.03 -0.04 0.04
49 0.04 0.05 0.03 0.06 0.01 0.04
50 0.05 0.03 -0.02 0.02 -0.01 -0.05
51 -0.08 -0.04 -0.09 -0.05 -0.05 -0.12
52 -0.01 0.06 -0.06 0.02 0.08 -0.09
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Table A.9: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Ibiza compound region

SEAT IBIZA
Lag CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

0 0.09 0.27 0.19 0.26 0.14 0.13
1 0.1 0.37 0.22 0.37 0.2 0.16
2 0.05 0.38 0.26 0.37 0.18 0.17
3 0.07 0.37 0.28 0.35 0.16 0.2
4 0.06 0.3 0.26 0.33 0.19 0.16
5 0.06 0.32 0.21 0.28 0.21 0.13
6 -0.04 0.28 0.17 0.16 0.09 0.07
7 -0.04 0.29 0.14 0.12 0.01 0.06
8 -0.02 0.26 0.11 0.14 0.0 0.01
9 -0.03 0.22 0.1 0.15 0.02 -0.04
10 -0.1 0.15 0.11 0.18 0.01 -0.06
11 -0.12 0.15 0.13 0.17 0.02 -0.06
12 -0.06 0.22 0.12 0.18 0.06 -0.04
13 -0.02 0.28 0.14 0.2 0.02 0.05
14 -0.02 0.32 0.16 0.25 0.05 0.08
15 -0.05 0.28 0.18 0.26 0.06 0.12
16 -0.03 0.26 0.19 0.26 0.08 0.14
17 0.08 0.23 0.2 0.23 0.07 0.13
18 0.1 0.21 0.25 0.28 0.08 0.14
19 0.02 0.27 0.33 0.33 0.19 0.2
20 0.03 0.29 0.32 0.36 0.28 0.25
21 0.09 0.32 0.26 0.35 0.23 0.28
22 0.08 0.24 0.22 0.36 0.16 0.18
23 0.13 0.25 0.22 0.33 0.18 0.15
24 0.16 0.26 0.2 0.24 0.18 0.18
25 0.18 0.14 0.12 0.12 0.03 0.13
26 0.12 0.06 0.04 0.01 0.01 0.01
27 0.01 0.11 0.02 0.09 0.06 0.05
28 -0.1 0.12 -0.02 0.06 0.03 0.08
29 -0.12 0.06 -0.08 0.05 -0.01 -0.05
30 -0.08 0.06 -0.01 0.07 -0.01 -0.08
31 -0.03 0.19 0.11 0.17 0.06 0.06
32 -0.14 0.15 0.14 0.19 0.05 0.1
33 -0.17 0.14 0.12 0.15 0.04 0.11
34 -0.21 0.08 0.02 0.12 -0.02 0.05
35 -0.12 0.09 0.01 0.1 -0.02 0.05
36 -0.14 0.1 0.05 -0.02 -0.04 0.02
37 -0.19 -0.04 0.03 -0.09 -0.08 -0.04
38 -0.14 -0.11 -0.01 -0.04 -0.05 -0.05
39 -0.12 -0.02 0.06 0.11 0.07 0.03
40 -0.04 0.06 0.1 0.16 0.09 0.07
41 -0.16 0.05 0.08 0.15 0.08 0.11
42 -0.02 0.01 0.03 0.17 0.14 0.11
43 0.03 -0.0 -0.04 0.1 0.1 0.05
44 0.05 -0.09 -0.04 0.01 -0.02 -0.04
45 0.03 -0.03 -0.04 -0.03 -0.01 -0.0
46 0.05 -0.03 -0.08 -0.03 -0.01 0.02
47 0.1 -0.06 -0.13 -0.13 -0.13 -0.03
48 0.17 -0.15 -0.11 -0.16 -0.09 -0.05
49 0.16 -0.09 -0.12 -0.16 -0.01 -0.04
50 0.09 -0.12 -0.13 -0.15 -0.1 -0.1
51 0.15 -0.16 -0.14 -0.2 -0.2 -0.11
52 0.2 -0.16 -0.11 -0.22 -0.17 -0.14
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Table A.10: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Leon 5D compound region

SEAT LEON 5D
Lag CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

0 0.1 0.24 0.11 0.15 0.19 0.13
1 0.11 0.29 0.11 0.22 0.23 0.13
2 0.05 0.2 0.08 0.13 0.13 0.05
3 -0.09 0.08 -0.04 0.04 0.01 -0.03
4 -0.01 0.06 -0.03 0.03 0.0 -0.03
5 -0.0 0.07 0.01 0.07 -0.02 0.03
6 -0.03 0.05 -0.02 0.02 0.01 0.01
7 -0.13 -0.0 -0.03 0.03 -0.01 -0.03
8 -0.11 0.04 -0.04 0.05 -0.04 -0.03
9 -0.12 0.09 0.01 0.01 -0.03 -0.01
10 -0.05 0.15 0.03 0.06 -0.04 0.04
11 -0.01 0.08 0.06 0.03 -0.09 -0.01
12 -0.12 0.06 0.03 0.03 -0.06 -0.01
13 -0.06 0.05 0.05 0.14 -0.02 0.07
14 0.09 0.06 0.09 0.1 -0.0 0.04
15 0.11 0.1 0.1 0.03 0.04 0.05
16 0.1 0.13 0.09 0.03 -0.02 0.12
17 0.16 0.13 0.07 0.09 -0.05 0.18
18 0.04 0.06 0.06 0.11 -0.02 0.14
19 -0.07 0.04 0.01 0.04 0.0 0.05
20 0.01 -0.02 0.05 -0.01 0.03 -0.02
21 0.0 0.02 0.09 0.01 0.05 0.01
22 -0.07 0.03 0.05 0.04 0.05 0.03
23 -0.02 0.1 0.08 0.12 0.03 0.07
24 0.03 0.09 0.07 0.04 0.0 0.03
25 -0.03 0.09 0.06 0.03 -0.07 0.04
26 0.07 0.01 0.02 0.01 -0.08 0.05
27 0.11 0.03 0.12 0.06 0.01 0.15
28 -0.03 -0.03 0.09 0.12 0.01 0.11
29 0.15 -0.07 0.03 0.09 -0.05 0.03
30 0.22 -0.0 0.14 0.1 0.03 0.06
31 0.17 0.05 0.07 0.05 0.01 0.05
32 0.13 0.02 0.06 0.03 -0.08 0.01
33 0.2 -0.01 0.06 0.04 -0.04 0.01
34 0.01 -0.01 0.01 0.07 0.0 0.0
35 0.1 -0.05 -0.03 0.09 0.01 -0.03
36 0.11 -0.01 0.07 0.06 0.07 -0.11
37 0.08 -0.04 0.05 0.07 0.07 -0.12
38 0.04 0.03 0.08 0.12 0.02 -0.11
39 0.12 -0.09 0.07 0.13 -0.02 -0.02
40 -0.01 0.05 0.1 0.1 -0.01 0.13
41 -0.13 -0.08 0.05 -0.01 -0.16 -0.02
42 -0.09 -0.14 0.09 -0.06 -0.22 0.02
43 -0.03 -0.09 -0.03 -0.06 -0.15 0.07
44 -0.04 -0.14 -0.09 0.04 -0.12 0.01
45 0.1 -0.07 -0.01 -0.01 -0.02 -0.01
46 0.07 -0.1 -0.06 -0.11 -0.02 -0.12
47 -0.06 -0.16 -0.13 -0.12 -0.13 -0.09
48 -0.01 -0.18 -0.15 -0.16 -0.14 -0.12
49 -0.06 -0.04 -0.08 -0.16 -0.01 0.05
50 -0.19 0.02 -0.05 -0.1 0.03 0.08
51 -0.12 0.01 -0.05 -0.05 0.06 -0.0
52 0.07 0.04 0.01 -0.03 0.18 0.06
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Table A.11: Pearson correlation coefficient (PCC) between lagged sales record and online
visits of SEAT Leon ST compound region

SEAT LEON ST
Lag CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

0 0.14 -0.07 0.22 0.27 0.28 0.18
1 0.11 -0.01 0.2 0.29 0.33 0.14
2 0.01 -0.04 0.21 0.3 0.31 0.14
3 -0.01 -0.08 0.21 0.35 0.26 0.19
4 0.11 -0.09 0.17 0.29 0.23 0.11
5 0.14 -0.07 0.09 0.27 0.2 0.1
6 -0.0 -0.08 0.1 0.26 0.12 0.06
7 -0.06 -0.04 0.15 0.2 0.1 0.1
8 0.03 -0.05 0.16 0.23 0.1 0.05
9 0.02 -0.14 0.12 0.18 0.16 0.03
10 0.16 -0.11 0.09 0.24 0.18 0.03
11 0.0 -0.08 0.14 0.3 0.18 0.05
12 0.11 -0.11 0.17 0.31 0.17 0.12
13 0.08 -0.1 0.14 0.29 0.2 0.06
14 0.09 -0.05 0.1 0.31 0.2 0.09
15 0.13 0.02 0.08 0.26 0.19 0.09
16 0.13 0.04 0.14 0.19 0.17 0.15
17 0.14 0.06 0.13 0.19 0.11 0.1
18 0.06 0.04 0.09 0.23 0.14 0.11
19 -0.1 0.05 0.07 0.22 0.14 0.09
20 -0.02 0.06 0.09 0.19 0.14 0.13
21 0.06 0.12 0.2 0.16 0.12 0.16
22 -0.04 0.08 0.13 0.08 0.08 0.14
23 -0.04 0.08 0.22 0.18 0.11 0.16
24 -0.02 -0.03 0.21 0.16 0.17 0.2
25 0.1 -0.05 0.24 0.18 0.13 0.21
26 0.01 -0.06 0.13 0.18 0.14 0.13
27 0.13 -0.01 0.15 0.27 0.19 0.24
28 0.14 -0.02 0.23 0.31 0.24 0.25
29 0.09 -0.0 0.21 0.27 0.16 0.24
30 0.04 -0.04 0.21 0.25 0.13 0.21
31 0.01 0.02 0.12 0.2 0.14 0.14
32 0.07 0.04 0.17 0.19 0.07 0.05
33 0.02 0.07 0.17 0.2 0.05 0.13
34 0.05 0.12 0.15 0.17 0.1 0.13
35 0.02 0.07 0.08 0.12 0.1 -0.01
36 -0.01 0.18 0.09 0.02 0.12 0.0
37 0.07 0.16 0.17 0.08 0.1 0.07
38 0.01 0.08 0.24 0.23 0.01 0.1
39 -0.02 -0.14 0.15 0.13 0.0 0.05
40 0.11 -0.07 0.15 0.23 0.05 0.16
41 0.09 -0.11 0.11 0.22 0.05 0.1
42 0.1 -0.21 0.16 0.15 0.09 0.11
43 0.08 -0.18 0.05 0.09 0.07 0.07
44 0.21 -0.21 -0.1 0.16 0.03 -0.05
45 0.12 -0.07 -0.01 0.17 0.17 0.02
46 0.05 -0.01 0.08 0.02 0.18 0.09
47 -0.03 -0.02 0.1 0.03 0.09 0.03
48 0.07 -0.12 -0.02 -0.12 -0.01 -0.11
49 0.13 -0.07 0.06 -0.04 0.07 -0.05
50 -0.18 -0.02 0.12 -0.09 0.07 0.09
51 -0.17 -0.1 0.18 -0.0 0.03 0.16
52 -0.15 -0.14 0.14 -0.09 0.1 0.01
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Appendix B

Forecasting Performance

The information presented in this appendix complements the findings detailed in Subsec-
tion 6.2.2.

Table B.1: Mean Average Error (MAE) per SEAT Leon ST car variant (car model plus
exterior color) and time chunk of each forecasting technique. Roll. refers to Rolling, Uni.
refers to Univariate, Multi. refers to Multivariate, and nan implies that forecast was not
computed because there was not data in both time series.

SEAT LEON ST (Time Chunk 1)
Algorithm 0C0C 0E0E 2Y2Y 3W3W 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 E4E4 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 4.17 3.17 17.0 nan 4.17 nan 2.17 1.83 7.33 1.33 2.83 nan 0.0 nan 3.33 0.67 nan 0.0 5.17
XGBoost Uni. 4.17 3.33 7.33 nan 3.33 nan 0.67 1.17 5.0 0.67 2.17 nan 0.0 nan 2.0 0.33 nan 0.0 5.5
Roll. ARIMAX 3.0 2.83 16.83 nan 4.0 nan 2.83 1.0 5.17 2.0 2.33 nan 0.0 nan 1.83 0.33 nan 0.0 6.17
XGBoost Multi. 2.67 1.17 7.0 nan 1.83 nan 0.67 1.0 4.83 0.67 1.5 nan 0.0 nan 2.0 0.33 nan 0.0 3.83

SEAT LEON ST (Time Chunk 2)
Algorithm 0C0C 0E0E 2Y2Y 3W3W 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 E4E4 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 5.17 2.5 4.17 nan 4.0 nan 1.33 0.5 2.0 1.5 6.5 nan 0.33 nan 2.5 0.33 nan 0.0 1.5
XGBoost Uni. 5.0 2.5 2.17 nan 3.83 nan 1.17 0.0 1.83 1.0 3.5 nan 0.33 nan 1.33 0.17 nan 0.0 0.5
Roll. ARIMAX 69.83 2.0 4.17 nan 4.83 nan 1.83 0.33 2.67 1.5 6.83 nan 0.5 nan 1.83 0.33 nan 0.0 1.5
XGBoost Multi. 1.67 1.17 1.83 nan 3.0 nan 0.83 0.0 0.83 1.0 2.67 nan 0.33 nan 1.17 0.17 nan 0.0 0.5

SEAT LEON ST (Time Chunk 3)
Algorithm 0C0C 0E0E 2Y2Y 3W3W 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 E4E4 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 2.0 5.33 8.83 nan 7.33 nan 1.17 0.0 6.33 1.0 7.5 nan 0.67 nan 1.83 0.0 nan 8.0 0.0
XGBoost Uni. 2.5 5.5 5.83 nan 7.33 nan 0.5 0.0 5.5 1.17 4.67 nan 0.5 nan 2.33 0.0 nan 4.17 0.0
Roll. ARIMAX 3.17 6.17 7.67 nan 8.83 nan 0.83 0.0 4.83 0.67 7.83 nan 0.67 nan 2.67 0.0 nan 5.67 0.0
XGBoost Multi. 1.17 3.33 3.83 nan 6.67 nan 0.17 0.0 4.33 0.83 4.83 nan 0.5 nan 1.83 0.0 nan 2.67 0.0

SEAT LEON ST (Time Chunk 4)
Algorithm 0C0C 0E0E 2Y2Y 3W3W 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 E4E4 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 0.5 7.5 7.0 nan 4.83 nan 1.83 0.83 10.0 3.33 4.83 nan 0.67 nan 2.17 0.0 nan 8.0 0.0
XGBoost Uni. 0.0 4.17 4.17 nan 2.33 nan 1.0 0.17 7.33 0.5 3.33 nan 0.5 nan 1.33 0.0 nan 5.67 0.0
Roll. ARIMAX 0.0 6.5 9.33 nan 4.67 nan 2.5 1.67 9.83 2.33 5.33 nan 0.33 nan 1.33 0.0 nan 7.83 0.0
XGBoost Multi. 0.0 4.67 3.0 nan 2.5 nan 1.0 0.17 7.17 0.67 2.17 nan 0.5 nan 0.83 0.0 nan 3.5 0.0

SEAT LEON ST (Time Chunk 5)
Algorithm 0C0C 0E0E 2Y2Y 3W3W 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 E4E4 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 0.0 4.8 7.2 nan 3.8 nan 0.8 2.8 6.4 0.0 1.6 nan 0.4 nan 2.4 0.0 nan 4.2 0.0
XGBoost Uni. 0.0 2.8 3.2 nan 2.0 nan 0.4 1.6 2.4 0.0 2.2 nan 0.0 nan 2.2 0.0 nan 4.8 0.0
Roll. ARIMAX 0.0 4.0 4.8 nan 3.8 nan 0.8 2.6 5.0 0.0 1.8 nan 0.0 nan 2.8 0.0 nan 5.2 0.0
XGBoost Multi. 0.0 2.2 4.0 nan 2.0 nan 0.4 1.6 1.2 0.0 2.2 nan 0.0 nan 2.0 0.0 nan 3.0 0.0
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Table B.2: Mean Average Error (MAE) per SEAT Arona car variant (car model plus
exterior color) and time chunk of each forecasting technique. Roll. refers to Rolling, Uni.
refers to Univariate, Multi. refers to Multivariate, and nan implies that forecast was not
computed because there was not data in both time series.

SEAT ARONA (Time Chunk 1)
Algorithm 0C0C 0C0E 0CF5 0E0C 0E0E 0EF5 0ES7 2Y0C 2Y0E 2Y2Y 2YF5 2YS7 7Y0C 7Y0E 7Y7Y 7YS7 9529 9532 9545 9550 9M0E 9M9M 9MS7 B40C

Roll. ARIMA 0.5 0.0 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 nan 0.0 nan 2.17
XGBoost Uni. 0.5 0.0 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 nan 0.0 nan 2.17
Roll. ARIMAX 0.5 0.0 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 nan 0.0 nan 2.17
XGBoost Multi. 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 nan 0.0 nan 1.83

SEAT ARONA (Time Chunk 1)
Algorithm B40E B4B4 B4F5 B4S7 E10C E10E E1E1 E1S7 F50C F50E F5F5 F5S7 F80C F80E F8F8 F8S7 L50C L50E L5F5 L5L5 L5S7 S70E S7F5 S7S7

Roll. ARIMA 0.67 0.83 0.0 0.0 2.17 1.67 1.33 0.0 0.67 0.83 0.0 0.0 0.5 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
XGBoost Uni. 0.83 1.17 0.0 0.0 2.17 1.83 1.33 0.0 0.33 0.83 0.0 0.0 0.5 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Roll. ARIMAX 0.33 1.0 0.0 0.0 2.5 2.0 1.0 0.0 0.5 0.5 0.0 0.0 0.33 0.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
XGBoost Multi. 0.83 1.17 0.0 0.0 2.0 1.5 1.0 0.0 0.5 0.67 0.0 0.0 0.67 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEAT ARONA (Time Chunk 2)
Algorithm 0C0C 0C0E 0CF5 0E0C 0E0E 0EF5 0ES7 2Y0C 2Y0E 2Y2Y 2YF5 2YS7 7Y0C 7Y0E 7Y7Y 7YS7 9529 9532 9545 9550 9M0E 9M9M 9MS7 B40C

Roll. ARIMA 4.83 3.5 0.83 0.67 2.5 0.5 0.17 1.83 2.0 1.17 0.0 1.0 0.5 1.5 0.83 0.0 0.67 1.0 2.33 3.17 nan 0.0 nan 5.17
XGBoost Uni. 4.17 3.0 0.5 0.17 1.67 0.5 0.17 1.17 1.33 1.5 0.0 0.83 0.33 1.5 0.67 0.0 0.5 0.67 0.5 2.5 nan 0.0 nan 4.17
Roll. ARIMAX 4.0 3.17 0.83 0.67 2.5 0.5 0.17 1.67 1.83 1.17 0.0 1.0 0.5 1.67 1.0 0.0 0.5 0.5 1.67 2.33 nan 0.0 nan 4.83
XGBoost Multi. 3.83 1.5 0.33 0.5 1.33 0.33 0.17 1.17 1.33 1.0 0.0 0.83 0.33 1.17 0.83 0.0 0.5 0.5 0.5 2.5 nan 0.0 nan 2.67

SEAT ARONA (Time Chunk 2)
Algorithm B40E B4B4 B4F5 B4S7 E10C E10E E1E1 E1S7 F50C F50E F5F5 F5S7 F80C F80E F8F8 F8S7 L50C L50E L5F5 L5L5 L5S7 S70E S7F5 S7S7

Roll. ARIMA 6.83 6.33 1.17 1.17 2.17 6.67 4.5 1.17 2.0 1.67 0.5 1.0 1.83 1.83 0.67 0.17 1.17 1.17 0.0 2.5 1.0 0.67 0.0 0.17
XGBoost Uni. 8.0 6.67 1.33 1.0 3.0 7.0 3.67 0.67 1.67 1.33 0.33 0.67 1.17 1.33 0.67 0.0 0.5 0.83 0.0 1.17 0.67 0.67 0.0 0.17
Roll. ARIMAX 11.17 6.33 1.5 1.0 1.83 13.17 4.83 1.17 1.17 1.67 0.33 1.0 1.17 1.83 0.67 0.17 1.0 1.17 0.0 2.67 1.0 0.67 0.0 0.17
XGBoost Multi. 6.5 6.5 1.17 1.0 1.67 4.5 3.5 0.67 1.33 0.83 0.17 0.67 1.33 1.0 0.67 0.0 0.5 0.83 0.0 1.0 0.67 0.67 0.0 0.17

SEAT ARONA (Time Chunk 3)
Algorithm 0C0C 0C0E 0CF5 0E0C 0E0E 0EF5 0ES7 2Y0C 2Y0E 2Y2Y 2YF5 2YS7 7Y0C 7Y0E 7Y7Y 7YS7 9529 9532 9545 9550 9M0E 9M9M 9MS7 B40C

Roll. ARIMA 5.5 1.17 0.67 0.0 3.0 0.5 0.67 0.33 3.83 6.83 0.5 3.17 1.0 7.67 1.83 2.17 0.67 1.0 2.5 6.17 nan 0.0 nan 2.83
XGBoost Uni. 2.83 0.33 0.17 0.0 2.5 0.33 0.33 0.33 3.5 6.33 0.33 2.5 0.33 3.67 1.17 2.17 0.5 0.0 1.83 4.0 nan 0.0 nan 2.33
Roll. ARIMAX 5.67 0.67 0.33 0.0 4.17 0.67 0.83 0.5 4.5 6.83 0.5 3.0 0.83 7.67 1.5 2.33 0.83 0.0 1.83 6.17 nan 0.0 nan 2.83
XGBoost Multi. 1.83 0.17 0.17 0.0 1.83 0.33 0.33 0.17 2.33 5.17 0.33 2.33 0.33 3.67 0.67 1.67 0.33 0.0 1.67 3.33 nan 0.0 nan 1.5

SEAT ARONA (Time Chunk 3)
Algorithm B40E B4B4 B4F5 B4S7 E10C E10E E1E1 E1S7 F50C F50E F5F5 F5S7 F80C F80E F8F8 F8S7 L50C L50E L5F5 L5L5 L5S7 S70E S7F5 S7S7

Roll. ARIMA 8.17 22.67 1.5 6.67 2.0 7.5 10.0 2.67 2.33 3.67 2.0 1.5 1.33 2.0 2.0 1.67 0.83 6.33 0.33 3.0 0.83 2.17 0.67 6.33
XGBoost Uni. 9.17 14.83 0.83 4.33 0.83 6.5 8.67 2.0 1.17 1.17 1.0 0.83 1.0 1.83 1.33 0.83 0.17 4.83 0.17 1.67 0.67 2.17 0.83 4.67
Roll. ARIMAX 8.67 14.5 1.17 7.67 1.83 6.83 7.33 2.67 1.5 2.0 1.17 1.33 1.33 3.0 2.0 1.33 0.17 6.0 0.17 3.83 1.0 2.0 0.5 5.83
XGBoost Multi. 7.5 15.5 1.0 3.83 0.83 5.0 7.17 2.17 0.5 1.5 1.17 0.83 1.17 1.83 1.33 1.0 0.17 4.67 0.17 1.67 0.67 1.67 0.5 3.17

SEAT ARONA (Time Chunk 4)
Algorithm 0C0C 0C0E 0CF5 0E0C 0E0E 0EF5 0ES7 2Y0C 2Y0E 2Y2Y 2YF5 2YS7 7Y0C 7Y0E 7Y7Y 7YS7 9529 9532 9545 9550 9M0E 9M9M 9MS7 B40C

Roll. ARIMA 0.83 0.0 0.0 0.0 1.5 0.67 1.17 0.17 2.17 2.5 0.67 1.83 0.0 3.0 1.33 2.5 0.67 0.0 0.5 4.0 nan 1.33 nan 0.5
XGBoost Uni. 0.17 0.0 0.0 0.0 0.67 0.5 0.33 0.17 2.67 1.17 0.5 1.83 0.0 1.67 0.83 1.5 0.33 0.0 0.5 3.33 nan 1.0 nan 0.0
Roll. ARIMAX 0.17 0.0 0.0 0.0 1.67 0.5 1.33 0.17 3.33 2.17 0.5 1.17 0.0 6.83 1.83 2.5 0.67 0.0 0.83 4.33 nan 3.17 nan 0.33
XGBoost Multi. 0.17 0.0 0.0 0.0 0.83 0.0 0.33 0.17 2.5 1.0 0.33 1.5 0.0 1.17 0.83 1.67 0.33 0.0 0.33 2.83 nan 1.0 nan 0.0

SEAT ARONA (Time Chunk 4)
Algorithm B40E B4B4 B4F5 B4S7 E10C E10E E1E1 E1S7 F50C F50E F5F5 F5S7 F80C F80E F8F8 F8S7 L50C L50E L5F5 L5L5 L5S7 S70E S7F5 S7S7
Roll. ARIMA 7.0 19.17 0.67 6.83 0.0 13.5 6.83 4.33 0.0 1.67 1.33 0.33 0.0 1.33 0.83 1.0 0.0 3.67 0.17 1.83 1.17 1.5 0.5 7.83
XGBoost Uni. 2.5 10.67 0.33 1.67 0.0 8.0 5.17 4.17 0.0 1.5 0.67 0.33 0.0 1.5 0.5 0.5 0.0 4.0 0.17 1.5 0.83 1.0 0.33 6.67
Roll. ARIMAX 5.33 19.83 0.67 7.17 0.0 16.17 6.5 4.67 0.0 1.33 0.83 0.33 0.0 1.0 1.67 0.83 0.0 3.83 0.17 1.67 0.83 1.67 0.33 8.17
XGBoost Multi. 4.17 8.33 0.17 1.67 0.0 10.67 3.83 3.33 0.0 1.17 0.67 0.33 0.0 0.5 0.67 0.33 0.0 3.17 0.0 1.5 0.33 1.5 0.17 7.17

SEAT ARONA (Time Chunk 5)
Algorithm 0C0C 0C0E 0CF5 0E0C 0E0E 0EF5 0ES7 2Y0C 2Y0E 2Y2Y 2YF5 2YS7 7Y0C 7Y0E 7Y7Y 7YS7 9529 9532 9545 9550 9M0E 9M9M 9MS7 B40C

Roll. ARIMA 0.0 0.0 0.0 0.0 2.2 0.4 1.0 0.0 5.0 2.8 1.0 4.4 0.0 4.6 2.4 1.0 0.0 0.0 0.0 0.0 nan 4.2 nan 0.0
XGBoost Uni. 0.0 0.0 0.0 0.0 1.6 0.2 0.4 0.0 3.2 2.8 0.4 2.6 0.0 4.2 1.8 0.8 0.0 0.0 0.0 0.0 nan 3.4 nan 0.0
Roll. ARIMAX 0.0 0.0 0.0 0.0 1.8 0.6 0.8 0.0 4.4 3.4 1.0 4.2 0.0 3.8 2.4 0.8 0.0 0.0 0.0 0.0 nan 4.2 nan 0.0
XGBoost Multi. 0.0 0.0 0.0 0.0 1.0 0.2 0.6 0.0 3.0 2.0 0.8 1.8 0.0 3.0 1.0 0.6 0.0 0.0 0.0 0.0 nan 2.8 nan 0.0

SEAT ARONA (Time Chunk 5)
Algorithm B40E B4B4 B4F5 B4S7 E10C E10E E1E1 E1S7 F50C F50E F5F5 F5S7 F80C F80E F8F8 F8S7 L50C L50E L5F5 L5L5 L5S7 S70E S7F5 S7S7

Roll. ARIMA 7.0 9.0 0.2 5.4 0.0 12.8 4.0 2.2 0.0 1.4 1.2 2.0 0.0 0.6 0.0 0.2 0.0 2.4 0.6 4.0 0.8 4.4 0.6 5.0
XGBoost Uni. 4.2 9.4 0.6 1.4 0.0 9.4 3.2 1.2 0.0 1.2 1.2 2.0 0.0 0.8 0.0 0.2 0.0 2.2 0.6 2.4 0.8 3.8 0.2 4.6
Roll. ARIMAX 11.8 13.2 0.8 4.4 0.0 8.6 3.2 2.6 0.0 1.6 1.2 2.2 0.0 0.8 0.0 0.2 0.0 3.0 1.0 2.6 0.8 4.4 0.8 6.0
XGBoost Multi. 2.0 6.8 0.4 1.0 0.0 7.2 2.4 1.2 0.0 1.2 0.4 1.8 0.0 0.8 0.0 0.2 0.0 0.8 0.4 2.2 0.4 3.2 0.2 3.6
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Table B.3: Mean Average Error (MAE) per SEAT Ibiza car variant (car model plus
exterior color) and time chunk of each forecasting technique. Roll. refers to Rolling, Uni.
refers to Univariate, Multi. refers to Multivariate, and nan implies that forecast was not
computed because there was not data in both time series.

SEAT IBIZA (Time Chunk 1)

Algorithm 0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 E1E1 F5F5 F8F8 L5L5 S7S7

Roll. ARIMA 12.33 9.83 0.0 19.83 8.67 0.0 24.5 6.83 0.0 4.83 0.0 0.0
XGBoost Uni. 7.83 6.83 0.0 9.5 5.0 0.0 15.0 6.83 0.0 5.83 0.0 0.0
Roll. ARIMAX 11.67 8.33 0.0 21.5 9.5 0.0 17.0 7.83 0.0 4.33 0.0 0.0
XGBoost Multi. 7.5 4.5 0.0 9.0 4.5 0.0 12.0 4.17 0.0 3.67 0.0 0.0

SEAT IBIZA (Time Chunk 2)
Algorithm 0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 E1E1 F5F5 F8F8 L5L5 S7S7

Roll. ARIMA 9.33 11.17 1.83 15.83 8.17 0.0 10.33 11.0 1.33 6.83 2.0 0.83
XGBoost Uni. 7.83 6.67 2.5 14.17 5.33 0.0 6.33 6.5 1.0 4.0 1.5 0.83
Roll. ARIMAX 14.17 9.33 2.0 11.5 11.5 0.0 22.33 7.5 1.17 22.83 2.67 0.83
XGBoost Multi. 6.0 4.83 1.17 8.5 3.0 0.0 6.67 6.0 0.67 4.0 1.17 0.83

SEAT IBIZA (Time Chunk 3)
Algorithm 0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 E1E1 F5F5 F8F8 L5L5 S7S7

Roll. ARIMA 5.83 3.67 4.83 11.0 9.0 0.0 82.83 14.17 2.67 4.17 7.17 12.67
XGBoost Uni. 2.0 2.83 5.17 8.67 5.0 0.0 79.83 9.17 2.17 4.33 5.0 7.5
Roll. ARIMAX 4.33 3.33 6.0 8.17 11.5 0.0 82.83 10.33 2.5 4.33 5.33 9.5
XGBoost Multi. 1.83 2.5 3.67 5.33 5.17 0.0 75.5 9.67 1.83 3.5 3.67 7.83

SEAT IBIZA (Time Chunk 4)
Algorithm 0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 E1E1 F5F5 F8F8 L5L5 S7S7

Roll. ARIMA 0.17 2.33 9.83 3.5 6.83 1.83 22.67 6.5 2.17 5.5 3.83 7.83
XGBoost Uni. 0.17 2.17 5.83 4.83 5.0 1.5 16.67 5.5 1.67 3.67 3.33 5.83
Roll. ARIMAX 0.0 3.17 11.0 7.0 9.67 11.67 47.67 8.67 3.0 2.33 4.0 7.83
XGBoost Multi. 0.0 1.67 3.67 3.83 5.0 1.5 17.0 3.67 1.5 2.83 2.83 3.67

SEAT IBIZA (Time Chunk 5)
Algorithm 0C0C 0E0E 2Y2Y 7Y7Y 9550 9M9M B4B4 E1E1 F5F5 F8F8 L5L5 S7S7

Roll. ARIMA 0.0 6.2 8.8 9.4 0.4 4.8 34.6 12.8 3.0 0.0 6.2 7.4
XGBoost Uni. 0.0 1.4 5.6 4.0 0.4 3.2 22.6 11.8 0.8 0.0 4.4 4.0
Roll. ARIMAX 0.0 7.2 14.0 8.8 0.4 4.0 28.8 27.6 1.2 0.0 6.2 12.0
XGBoost Multi. 0.0 1.6 4.0 4.0 0.4 2.8 16.0 9.6 0.4 0.0 5.2 4.6
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Table B.4: Mean Average Error (MAE) per SEAT Leon 5D car variant (car model plus
exterior color) and time chunk of each forecasting technique. Roll. refers to Rolling, Uni.
refers to Univariate, Multi. refers to Multivariate, and nan implies that forecast was not
computed because there was not data in both time series.

SEAT LEON 5D (Time Chunk 1)
Algorithm 0C0C 0E0E 2Y2Y 7V7V 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 14.67 5.5 11.67 nan 13.17 nan 8.5 4.17 17.5 3.17 7.0 0.0 nan 4.5 1.5 nan 0.0 7.83
XGBoost Uni. 7.0 3.5 7.17 nan 6.0 nan 4.33 3.67 4.33 1.83 3.5 0.0 nan 3.67 1.0 nan 0.0 4.0
Roll. ARIMAX 8.0 4.67 9.0 nan 9.33 nan 8.33 4.33 18.17 3.83 8.67 0.0 nan 3.5 1.0 nan 0.0 6.0
XGBoost Multi. 5.17 2.33 7.0 nan 3.0 nan 3.67 2.5 6.0 2.0 4.33 0.0 nan 3.0 0.67 nan 0.0 3.5

SEAT LEON 5D (Time Chunk 2)
Algorithm 0C0C 0E0E 2Y2Y 7V7V 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 2.83 2.17 11.5 nan 14.33 nan 4.5 0.0 7.5 3.5 13.0 0.83 nan 4.33 0.0 nan 0.17 0.0
XGBoost Uni. 2.83 1.17 9.33 nan 7.83 nan 2.83 0.0 4.5 3.17 7.83 1.17 nan 4.33 0.0 nan 0.17 0.0
Roll. ARIMAX 6.0 3.83 11.83 nan 13.33 nan 4.83 0.0 8.33 3.0 13.67 1.0 nan 4.5 0.0 nan 0.17 0.0
XGBoost Multi. 2.17 1.67 9.5 nan 4.17 nan 2.83 0.0 2.67 1.33 7.67 1.17 nan 4.17 0.0 nan 0.17 0.0

SEAT LEON 5D (Time Chunk 3)
Algorithm 0C0C 0E0E 2Y2Y 7V7V 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 2.67 7.17 17.33 nan 13.83 nan 4.0 0.0 23.33 2.0 12.67 1.83 nan 6.5 0.0 nan 10.67 0.0
XGBoost Uni. 1.67 3.5 8.67 nan 6.83 nan 1.5 0.0 5.83 2.0 9.0 1.17 nan 3.5 0.0 nan 6.17 0.0
Roll. ARIMAX 9.0 10.0 16.67 nan 27.17 nan 5.83 0.0 21.67 2.33 15.33 1.83 nan 8.0 0.0 nan 9.0 0.0
XGBoost Multi. 1.33 3.17 7.67 nan 7.33 nan 1.33 0.0 5.83 1.67 7.83 1.0 nan 1.83 0.0 nan 5.17 0.0

SEAT LEON 5D (Time Chunk 4)
Algorithm 0C0C 0E0E 2Y2Y 7V7V 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 0.0 4.5 25.17 nan 10.67 nan 6.0 0.67 15.17 1.0 10.67 1.33 nan 5.33 0.0 nan 13.0 0.0
XGBoost Uni. 0.0 2.67 11.83 nan 5.83 nan 5.67 0.5 10.83 2.0 6.5 0.83 nan 2.33 0.0 nan 8.33 0.0
Roll. ARIMAX 0.0 4.33 22.0 nan 9.33 nan 3.83 0.5 16.17 1.17 12.5 1.17 nan 5.5 0.0 nan 13.5 0.0
XGBoost Multi. 0.0 3.0 11.67 nan 4.17 nan 4.0 0.5 11.0 0.67 4.83 0.67 nan 2.17 0.0 nan 6.83 0.0

SEAT LEON 5D (Time Chunk 5)
Algorithm 0C0C 0E0E 2Y2Y 7V7V 7Y7Y 9019 9550 9M9M B4B4 C0C0 E1E1 F5F5 I4I4 L5L5 P5P5 S3S3 S7S7 T4T4

Roll. ARIMA 0.0 6.4 13.6 nan 8.4 nan 1.4 3.8 11.6 0.4 12.0 1.2 nan 6.4 0.0 nan 14.8 0.0
XGBoost Uni. 0.0 2.0 6.0 nan 6.8 nan 0.8 3.4 13.8 0.0 9.2 0.6 nan 5.6 0.0 nan 7.8 0.0
Roll. ARIMAX 0.0 6.4 20.2 nan 10.8 nan 0.4 4.0 20.0 0.8 11.6 1.0 nan 6.8 0.0 nan 21.6 0.0
XGBoost Multi. 0.0 4.0 7.8 nan 7.8 nan 0.4 3.4 15.8 0.0 5.4 0.4 nan 3.4 0.0 nan 5.2 0.0
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Table B.5: Mean Average Error (MAE) per SEAT Arona car variant (car model plus
compound region) and time chunk of each forecasting technique. Roll. refers to Rolling,
Uni. refers to Univariate, Multi. refers to Multivariate, and nan implies that forecast was
not computed because there was not data in both time series.

SEAT ARONA (Time Chunk 1)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 1.0 1.83 2.17 1.33 4.5 3.5
XGBoost Uni. 1.0 1.83 2.0 1.17 4.67 2.33
Roll. ARIMAX 0.83 1.33 2.5 1.17 4.0 2.0
XGBoost Multi. 1.0 1.33 1.67 1.17 3.67 2.0

SEAT ARONA (Time Chunk 2)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 7.17 12.0 11.67 10.33 31.0 8.33
XGBoost Uni. 4.5 10.5 10.5 9.17 15.33 7.83
Roll. ARIMAX 6.67 11.33 16.17 10.83 23.67 8.0
XGBoost Multi. 3.17 5.17 6.5 7.33 11.67 7.33

SEAT ARONA (Time Chunk 3)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 12.0 10.67 18.17 14.0 27.5 13.0
XGBoost Uni. 7.17 9.33 13.33 8.5 16.83 11.67
Roll. ARIMAX 5.83 15.5 21.33 17.33 28.5 11.33
XGBoost Multi. 6.33 8.83 13.83 7.83 9.83 9.33

SEAT ARONA (Time Chunk 4)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 5.83 15.83 18.83 7.33 19.5 13.5
XGBoost Uni. 5.0 13.83 14.17 8.33 18.33 10.83
Roll. ARIMAX 6.0 15.33 17.83 6.17 27.33 17.17
XGBoost Multi. 5.17 10.0 10.33 5.67 16.17 8.67

SEAT ARONA (Time Chunk 5)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 8.8 14.0 14.2 12.2 34.2 11.2
XGBoost Uni. 7.6 5.0 6.6 8.8 24.8 8.0
Roll. ARIMAX 6.6 16.4 15.8 12.2 25.8 11.8
XGBoost Multi. 5.2 4.8 5.4 7.0 11.8 7.6
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Table B.6: Mean Average Error (MAE) per SEAT Ibiza car variant (car model plus
compound region) and time chunk of each forecasting technique. Roll. refers to Rolling,
Uni. refers to Univariate, Multi. refers to Multivariate, and nan implies that forecast was
not computed because there was not data in both time series.

SEAT IBIZA (Time Chunk 1)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 3.33 19.17 10.83 17.0 15.67 13.33
XGBoost Uni. 2.83 15.5 10.33 10.0 17.67 10.0
Roll. ARIMAX 3.83 19.0 9.17 16.67 15.33 15.67
XGBoost Multi. 2.33 12.5 9.17 8.0 15.5 11.17

SEAT IBIZA (Time Chunk 2)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 2.5 17.33 14.83 10.67 16.33 11.5
XGBoost Uni. 4.17 11.33 11.67 6.17 14.5 12.0
Roll. ARIMAX 2.0 16.33 32.67 12.5 15.33 20.17
XGBoost Multi. 3.0 10.17 8.83 8.17 13.33 9.33

SEAT IBIZA (Time Chunk 3)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 6.33 17.5 30.67 25.83 19.0 24.0
XGBoost Uni. 5.5 16.33 23.17 12.5 16.5 16.5
Roll. ARIMAX 5.33 18.33 26.33 25.67 34.33 24.0
XGBoost Multi. 6.5 17.0 22.67 12.67 12.67 15.5

SEAT IBIZA (Time Chunk 4)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 8.67 13.0 11.5 10.0 12.83 12.17
XGBoost Uni. 7.83 8.67 10.5 7.0 8.0 4.33
Roll. ARIMAX 11.17 13.33 18.67 19.0 14.33 11.5
XGBoost Multi. 7.67 6.67 10.17 8.33 6.33 6.5

SEAT IBIZA (Time Chunk 5)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 8.2 6.4 42.4 11.2 11.6 14.8
XGBoost Uni. 3.4 4.2 11.8 14.0 14.8 6.8
Roll. ARIMAX 9.0 10.0 13.6 10.6 13.2 14.2
XGBoost Multi. 4.2 4.2 8.6 8.4 11.2 5.6
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Table B.7: Mean Average Error (MAE) per SEAT Leon 5D car variant (car model plus
compound region) and time chunk of each forecasting technique. Roll. refers to Rolling,
Uni. refers to Univariate, Multi. refers to Multivariate, and nan implies that forecast was
not computed because there was not data in both time series.

SEAT LEON 5D (Time Chunk 1)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 5.67 12.5 12.17 10.5 18.83 11.17
XGBoost Uni. 4.17 9.67 7.33 8.33 13.5 6.17
Roll. ARIMAX 6.33 12.83 12.17 10.17 10.5 13.33
XGBoost Multi. 3.67 7.17 5.67 5.33 9.67 4.33

SEAT LEON 5D (Time Chunk 2)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 3.5 8.5 8.0 5.67 12.83 9.0
XGBoost Uni. 1.5 7.83 4.33 4.0 9.83 9.17
Roll. ARIMAX 2.83 19.33 10.0 7.67 27.67 14.17
XGBoost Multi. 0.83 7.5 4.17 1.5 12.33 6.83

SEAT LEON 5D (Time Chunk 3)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 5.0 17.17 17.0 12.5 13.83 18.17
XGBoost Uni. 2.5 10.33 11.67 7.33 10.83 11.0
Roll. ARIMAX 5.33 20.17 18.33 10.83 13.5 24.17
XGBoost Multi. 2.5 9.83 7.83 7.17 12.67 10.83

SEAT LEON 5D (Time Chunk 4)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 2.67 18.5 15.83 8.5 10.0 17.17
XGBoost Uni. 1.67 11.67 14.5 6.33 6.5 11.5
Roll. ARIMAX 2.5 12.83 15.83 7.67 9.5 20.83
XGBoost Multi. 0.67 9.5 9.67 4.67 2.67 10.17

SEAT LEON 5D (Time Chunk 5)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 4.6 12.0 14.0 5.6 20.0 16.4
XGBoost Uni. 1.6 7.8 13.4 8.4 16.6 11.8
Roll. ARIMAX 3.0 17.2 12.6 6.2 22.6 16.0
XGBoost Multi. 1.0 9.8 13.2 7.2 11.4 8.0
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Table B.8: Mean Average Error (MAE) per SEAT Leon ST car variant (car model plus
compound region) and time chunk of each forecasting technique. Roll. refers to Rolling,
Uni. refers to Univariate, Multi. refers to Multivariate, and nan implies that forecast was
not computed because there was not data in both time series.

SEAT LEON ST (Time Chunk 1)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 0.5 9.67 5.0 2.67 8.33 11.17
XGBoost Uni. 0.83 8.0 4.0 1.5 4.0 5.67
Roll. ARIMAX 0.83 9.67 5.17 3.17 8.0 9.33
XGBoost Multi. 0.5 4.5 3.33 1.83 3.5 6.0

SEAT LEON ST (Time Chunk 2)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 0.83 2.83 5.17 1.83 12.0 6.0
XGBoost Uni. 0.33 3.5 3.83 0.67 5.5 3.83
Roll. ARIMAX 0.83 3.17 6.0 2.0 5.67 4.33
XGBoost Multi. 0.33 3.17 3.33 0.5 4.5 3.0

SEAT LEON ST (Time Chunk 3)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 1.17 11.0 6.67 1.83 10.33 13.5
XGBoost Uni. 1.17 5.17 4.5 1.0 8.83 12.5
Roll. ARIMAX 2.0 9.33 6.17 1.67 9.67 13.83
XGBoost Multi. 0.67 4.5 3.83 1.0 7.67 11.67

SEAT LEON ST (Time Chunk 4)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 0.33 13.67 7.67 2.5 6.83 7.33
XGBoost Uni. 0.33 12.0 3.33 1.67 5.33 4.17
Roll. ARIMAX 0.5 16.0 7.17 3.33 8.5 12.67
XGBoost Multi. 0.0 8.17 3.17 1.5 4.5 3.5

SEAT LEON ST (Time Chunk 5)
Algorithm CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

Roll. ARIMA 0.6 5.0 3.0 2.6 7.4 9.4
XGBoost Uni. 1.0 5.4 1.4 2.2 4.6 4.4
Roll. ARIMAX 0.6 4.6 5.0 2.6 5.8 10.0
XGBoost Multi. 0.6 3.2 0.8 1.4 2.2 4.0
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Appendix C

Weekly Mix Sales Assessment

The information presented in this appendix complements the findings outlined in Subsec-
tion 6.2.2.
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Table C.1: R2 Score (%) of each forecasting technique for the weekly sales mixes of SEAT
Arona at exterior color level. Uni. refers to Univariate, Multi. refers to Multivariate.

SEAT ARONA (Exterior Color)
Time Chunk Week ARIMA XGBoost Uni. ARIMAX XGBoost Multi.

1st 2017-09-17 0.0 0.0 0.0 0.0
2017-09-24 0.0 0.0 0.0 0.0
2017-10-01 3.62 0.0 0.87 0.0
2017-10-08 21.47 15.6 0.69 37.5
2017-10-15 0.02 0.49 0.83 33.88
2017-10-22 78.51 78.8 27.43 69.65

2nd 2018-04-15 91.62 95.66 41.74 93.77
2018-04-22 95.96 97.3 98.1 96.1
2018-04-29 90.47 89.71 88.46 93.69
2018-05-06 89.35 91.99 89.78 90.72
2018-05-13 90.69 91.41 92.4 96.33
2018-05-20 89.04 92.3 88.75 98.1

3rd 2018-11-11 84.63 96.1 85.85 97.52
2018-11-18 86.47 90.96 85.34 90.99
2018-11-25 82.89 92.02 83.2 90.43
2018-12-02 80.32 88.49 85.47 89.1
2018-12-09 84.75 84.23 85.61 85.46
2018-12-16 88.25 90.53 82.9 96.25

4th 2019-06-09 93.98 91.49 87.32 90.85
2019-06-16 79.63 81.38 72.39 89.98
2019-06-23 91.68 97.45 85.1 95.64
2019-06-30 95.61 93.96 91.36 94.89
2019-07-07 90.41 90.44 88.77 92.68
2019-07-14 88.92 90.28 69.43 92.52

5th 2020-01-05 87.98 89.51 85.44 86.14
2020-01-12 81.83 87.89 55.11 94.87
2020-01-19 95.23 95.13 86.31 96.77
2020-01-26 93.96 97.11 94.79 98.31
2020-02-02 93.11 90.8 95.38 95.17
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Table C.2: R2 Score (%) of each forecasting technique for the weekly sales mixes of SEAT
Ibiza at exterior color level. Uni. refers to Univariate, Multi. refers to Multivariate.

SEAT IBIZA (Exterior Color)
Time Chunk Week ARIMA XGBoost Uni. ARIMAX XGBoost Multi.

1st 2017-09-17 95.09 88.72 91.28 95.18
2017-09-24 95.24 93.32 93.74 83.18
2017-10-01 92.81 85.8 96.95 92.56
2017-10-08 75.68 84.32 76.46 95.98
2017-10-15 92.69 93.73 86.21 95.96
2017-10-22 92.92 88.56 93.96 96.18

2nd 2018-04-15 68.12 92.16 96.63 96.9
2018-04-22 91.91 97.5 31.64 98.34
2018-04-29 95.6 86.66 88.64 93.23
2018-05-06 95.09 97.62 92.05 98.52
2018-05-13 93.15 92.93 91.57 99.01
2018-05-20 93.7 94.36 86.54 79.38

3rd 2018-11-11 92.25 92.81 94.34 94.42
2018-11-18 84.51 92.56 81.77 99.63
2018-11-25 93.3 97.57 93.91 91.89
2018-12-02 95.23 95.16 96.1 76.35
2018-12-09 97.81 89.79 97.86 96.02
2018-12-16 98.11 98.74 98.01 99.44

4th 2019-06-09 94.85 97.64 66.23 98.75
2019-06-16 97.74 98.97 80.45 99.35
2019-06-23 94.48 96.88 51.92 98.59
2019-06-30 97.51 97.14 97.22 93.76
2019-07-07 96.26 95.98 93.57 97.37
2019-07-14 97.95 96.73 46.29 98.93

5th 2020-01-05 76.17 96.11 71.61 94.16
2020-01-12 91.1 90.51 78.96 88.46
2020-01-19 80.7 98.14 94.95 97.66
2020-01-26 89.21 98.79 42.2 99.74
2020-02-02 81.84 87.65 88.08 91.45
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Table C.3: R2 Score (%) of each forecasting technique for the weekly sales mixes of SEAT
Leon 5D at exterior color level. Uni. refers to Univariate, Multi. refers to Multivariate.

SEAT LEON 5D (Exterior Color)
Time Chunk Week ARIMA XGBoost Uni. ARIMAX XGBoost Multi.

1st 2017-09-17 56.5 90.19 63.62 92.07
2017-09-24 67.58 70.31 60.84 88.75
2017-10-01 83.12 94.35 88.49 90.84
2017-10-08 79.34 70.3 79.45 89.59
2017-10-15 53.16 85.3 74.1 90.91
2017-10-22 55.13 94.92 72.66 94.05

2nd 2018-04-15 55.5 93.15 90.68 98.06
2018-04-22 91.17 89.83 74.72 89.92
2018-04-29 92.68 88.01 83.7 92.43
2018-05-06 85.24 98.56 80.48 95.01
2018-05-13 73.86 92.17 68.11 93.61
2018-05-20 85.64 85.52 71.68 91.51

3rd 2018-11-11 80.04 91.03 39.05 94.75
2018-11-18 94.98 92.52 88.97 96.89
2018-11-25 87.45 94.62 53.97 96.33
2018-12-02 94.51 95.66 91.62 94.46
2018-12-09 84.96 95.03 75.49 91.75
2018-12-16 62.47 89.05 75.11 94.52

4th 2019-06-09 97.42 86.38 97.45 92.04
2019-06-16 91.75 82.33 90.17 98.69
2019-06-23 84.65 93.91 89.22 90.32
2019-06-30 93.66 93.19 95.06 99.53
2019-07-07 86.72 95.47 88.16 95.7
2019-07-14 96.35 88.64 90.86 88.99

5th 2020-01-05 84.58 97.08 67.47 92.4
2020-01-12 86.09 63.24 57.32 79.25
2020-01-19 78.97 83.27 84.18 84.57
2020-01-26 77.09 95.23 56.31 91.93
2020-02-02 87.57 84.68 90.4 91.36
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Table C.4: R2 Score (%) of each forecasting technique for the weekly sales mixes of SEAT
Leon ST at exterior color level. Uni. refers to Univariate, Multi. refers to Multivariate.

SEAT LEON ST (Exterior Color)
Time Chunk Week ARIMA XGBoost Uni. ARIMAX XGBoost Multi.

1st 2017-09-17 54.73 93.92 77.5 98.03
2017-09-24 83.55 93.25 91.81 95.5
2017-10-01 92.64 86.78 84.77 95.51
2017-10-08 60.74 66.47 59.87 64.11
2017-10-15 71.25 74.81 63.0 73.71
2017-10-22 66.31 76.2 50.46 80.77

2nd 2018-04-15 80.84 85.53 91.0 93.34
2018-04-22 73.96 73.97 91.1 95.57
2018-04-29 82.88 96.14 89.21 96.19
2018-05-06 82.92 96.18 71.68 96.6
2018-05-13 87.02 81.73 74.25 77.74
2018-05-20 93.05 83.51 10.04 96.2

3rd 2018-11-11 24.74 89.86 63.39 70.15
2018-11-18 70.48 70.17 74.97 95.57
2018-11-25 77.32 60.65 71.76 87.29
2018-12-02 80.65 66.01 73.75 72.54
2018-12-09 66.66 52.25 65.38 43.14
2018-12-16 60.82 91.88 70.58 97.48

4th 2019-06-09 55.08 66.66 44.5 75.53
2019-06-16 81.66 92.25 57.76 95.55
2019-06-23 85.85 95.27 91.81 93.34
2019-06-30 81.98 89.68 84.58 93.68
2019-07-07 82.09 96.43 95.73 97.0
2019-07-14 87.96 87.88 86.75 81.07

5th 2020-01-05 52.77 93.24 74.26 92.49
2020-01-12 13.88 59.23 23.66 77.82
2020-01-19 78.24 83.35 86.61 85.88
2020-01-26 74.65 90.3 81.49 93.25
2020-02-02 68.22 90.62 74.52 92.58
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Table C.5: R2 Score (%) of each forecasting technique for the weekly sales mixes of SEAT
Arona at compound region level. Uni. refers to Univariate, Multi. refers to Multivariate.

SEAT ARONA (Compound Region)
Time Chunk Week ARIMA XGBoost Uni. ARIMAX XGBoost Multi.

1st 2017-09-17 0.0 0.0 0.0 0.0
2017-09-24 0.0 0.0 0.0 0.0
2017-10-01 0.0 0.0 2.94 0.0
2017-10-08 31.06 31.06 6.09 6.17
2017-10-15 28.39 4.74 100.0 1.4
2017-10-22 14.12 1.51 14.41 67.46

2nd 2018-04-15 3.53 55.88 45.37 32.87
2018-04-22 81.74 70.24 76.98 89.4
2018-04-29 0.04 62.39 49.26 95.53
2018-05-06 53.4 68.38 66.81 65.06
2018-05-13 75.8 52.07 91.89 94.16
2018-05-20 3.85 75.58 42.87 52.91

3rd 2018-11-11 79.52 7.38 67.13 74.82
2018-11-18 80.88 71.25 90.0 93.08
2018-11-25 80.84 86.07 77.86 84.58
2018-12-02 93.09 86.9 87.39 82.62
2018-12-09 66.12 45.12 43.82 44.17
2018-12-16 27.11 36.2 43.79 84.21

4th 2019-06-09 85.52 37.66 74.92 51.44
2019-06-16 53.01 51.34 3.28 88.59
2019-06-23 16.36 63.84 77.25 57.47
2019-06-30 37.85 5.86 66.2 81.86
2019-07-07 49.7 55.65 53.31 53.7
2019-07-14 80.86 72.6 70.79 75.59

5th 2020-01-05 90.72 79.06 91.8 97.26
2020-01-12 37.22 68.35 0.44 85.38
2020-01-19 89.33 62.12 92.77 99.07
2020-01-26 85.43 97.47 96.87 97.46
2020-02-02 38.5 91.42 89.19 92.23
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Table C.6: R2 Score (%) of each forecasting technique for the weekly sales mixes of SEAT
Ibiza at compound region level. Uni. refers to Univariate, Multi. refers to Multivariate.

SEAT IBIZA (Compound Region)
Time Chunk Week ARIMA XGBoost Uni. ARIMAX XGBoost Multi.

1st 2017-09-17 35.87 55.26 40.35 58.31
2017-09-24 64.01 43.43 64.42 32.72
2017-10-01 60.7 34.73 71.16 51.66
2017-10-08 90.07 87.32 79.56 98.46
2017-10-15 30.83 71.46 49.75 41.63
2017-10-22 93.59 38.39 80.25 81.11

2nd 2018-04-15 46.59 73.23 24.75 45.12
2018-04-22 82.46 75.24 6.12 73.49
2018-04-29 57.76 82.78 48.19 93.57
2018-05-06 45.34 82.63 15.88 72.51
2018-05-13 77.42 76.09 71.57 75.05
2018-05-20 88.12 90.64 78.34 92.55

3rd 2018-11-11 73.06 63.55 67.71 82.08
2018-11-18 51.45 74.61 50.19 95.9
2018-11-25 93.69 88.34 6.73 94.99
2018-12-02 69.61 85.46 65.31 59.94
2018-12-09 93.83 89.5 87.18 65.13
2018-12-16 72.81 85.34 86.09 89.0

4th 2019-06-09 55.31 32.39 20.03 84.04
2019-06-16 90.85 71.74 49.51 93.7
2019-06-23 96.33 82.32 41.81 84.85
2019-06-30 26.84 72.09 51.78 96.76
2019-07-07 28.28 73.77 45.1 71.24
2019-07-14 44.02 95.81 14.96 78.41

5th 2020-01-05 22.96 54.4 66.29 93.69
2020-01-12 0.1 88.07 32.27 76.5
2020-01-19 55.06 85.32 40.4 32.04
2020-01-26 45.12 78.29 93.01 97.11
2020-02-02 60.51 83.04 64.94 75.81
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Table C.7: R2 Score (%) of each forecasting technique for the weekly sales mixes of
SEAT Leon 5D at compound region level. Uni. refers to Univariate, Multi. refers to
Multivariate.

SEAT LEON 5D (Compound Region)
Time Chunk Week ARIMA XGBoost Uni. ARIMAX XGBoost Multi.

1st 2017-09-17 84.92 76.89 57.41 94.23
2017-09-24 88.04 83.71 65.72 96.16
2017-10-01 98.17 85.03 90.49 86.71
2017-10-08 91.17 87.32 95.84 85.21
2017-10-15 31.01 33.94 34.57 82.84
2017-10-22 54.16 75.63 82.2 80.59

2nd 2018-04-15 45.96 86.99 14.62 85.12
2018-04-22 91.0 91.47 94.79 98.98
2018-04-29 86.07 93.11 16.96 88.95
2018-05-06 72.63 80.45 71.69 94.8
2018-05-13 63.91 58.18 29.61 81.34
2018-05-20 87.73 82.83 61.38 83.1

3rd 2018-11-11 78.94 52.59 52.56 58.68
2018-11-18 14.16 20.28 18.75 30.23
2018-11-25 74.94 68.58 60.11 87.25
2018-12-02 71.67 71.94 82.68 83.96
2018-12-09 50.32 87.51 3.82 76.97
2018-12-16 34.94 4.8 11.09 23.55

4th 2019-06-09 95.57 77.98 71.48 91.5
2019-06-16 16.58 62.37 35.95 52.07
2019-06-23 78.24 75.95 56.96 70.84
2019-06-30 83.47 76.9 78.09 88.45
2019-07-07 56.11 32.42 68.32 79.28
2019-07-14 48.72 88.74 29.37 72.7

5th 2020-01-05 76.21 63.68 96.26 94.33
2020-01-12 75.89 60.86 76.26 77.75
2020-01-19 64.32 70.5 69.39 49.43
2020-01-26 86.98 76.55 79.69 79.0
2020-02-02 47.3 87.11 67.72 83.23
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Table C.8: R2 Score (%) of each forecasting technique for the weekly sales mixes of
SEAT Leon ST at compound region level. Uni. refers to Univariate, Multi. refers to
Multivariate.

SEAT LEON ST (Compound Region)
Time Chunk Week ARIMA XGBoost Uni. ARIMAX XGBoost Multi.

1st 2017-09-17 61.28 72.32 55.51 86.84
2017-09-24 94.28 95.1 94.75 96.37
2017-10-01 92.71 83.69 86.29 94.9
2017-10-08 79.92 80.83 94.02 81.85
2017-10-15 94.35 91.67 90.54 97.5
2017-10-22 21.71 70.31 37.89 74.8

2nd 2018-04-15 68.66 92.76 90.38 97.93
2018-04-22 77.5 64.17 80.56 95.96
2018-04-29 78.61 98.55 88.85 99.08
2018-05-06 89.83 63.39 62.29 73.33
2018-05-13 37.55 92.18 87.41 81.67
2018-05-20 65.62 96.77 87.73 89.13

3rd 2018-11-11 58.03 43.85 72.25 59.45
2018-11-18 90.44 91.36 85.34 83.97
2018-11-25 66.07 69.35 39.55 66.36
2018-12-02 88.02 79.43 78.97 63.31
2018-12-09 23.07 17.75 25.9 3.47
2018-12-16 58.18 80.76 79.92 63.56

4th 2019-06-09 80.67 85.5 31.01 96.9
2019-06-16 91.58 95.79 81.4 98.75
2019-06-23 91.98 99.05 87.88 99.54
2019-06-30 93.18 85.54 82.38 82.44
2019-07-07 83.94 87.08 92.14 91.51
2019-07-14 93.71 90.73 73.14 98.25

5th 2020-01-05 28.9 94.88 47.76 92.02
2020-01-12 42.74 62.55 25.86 86.08
2020-01-19 76.61 76.72 63.51 90.67
2020-01-26 98.85 96.17 94.63 96.64
2020-02-02 58.17 83.18 77.43 89.53
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Appendix D

Forecast Comparison
The information provided in this appendix complements the results presented in Subsec-
tion 6.2.2.

Table D.1: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 50, Population Size 30,
Number of Generations 20 - Trial 1.

Experiment: (50, 30, 20) - Trial 1
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.83 1.83 2.0 1.0 3.83 2.33 5.5 18.17 6.17 7.17 23.5 5.33
2nd 2.67 19.33 16.0 13.17 10.67 5.33 2.83 6.83 31.0 3.83 8.0 6.5
3rd 9.33 3.33 28.0 7.17 22.17 6.5 2.67 10.17 16.0 8.17 11.5 11.67
4th 8.17 7.5 6.83 5.0 14.33 5.67 2.33 5.0 6.83 2.0 6.17 3.67
5th 2.4 2.8 3.0 12.2 9.4 19.4 8.0 12.8 28.0 14.8 10.2 20.6

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 6.67 16.33 12.17 9.83 5.83 10.17 0.17 14.17 2.5 1.33 1.67 5.5
2nd 0.67 9.33 12.17 13.5 6.67 23.5 1.17 2.83 9.33 2.67 2.67 8.5
3rd 3.83 22.33 5.33 12.67 7.5 10.0 1.5 11.5 2.67 1.83 2.67 9.33
4th 2.0 8.0 17.0 3.83 16.17 5.83 1.0 12.83 2.33 1.0 3.0 2.0
5th 0.6 8.0 12.8 4.8 23.2 12.4 0.4 3.0 1.6 3.6 6.8 8.2

Table D.2: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 50, Population Size 30,
Number of Generations 20 - Trial 2.

Experiment: (50, 30, 20) - Trial 2
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.83 1.83 2.0 1.17 3.17 2.33 5.5 7.83 6.5 6.67 12.83 4.17
2nd 1.83 11.83 16.17 6.17 35.83 4.0 1.17 18.17 28.0 6.17 8.67 5.33
3rd 5.83 3.17 26.83 12.33 21.83 7.17 10.33 14.67 39.5 9.33 11.17 12.17
4th 9.0 7.17 6.33 5.0 14.5 4.17 3.33 4.67 5.0 3.83 22.33 2.83
5th 3.0 2.8 22.0 5.4 11.6 6.0 3.6 14.0 26.0 16.6 7.4 21.2

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 5.0 17.0 14.33 11.33 5.33 10.17 0.17 4.17 8.0 1.0 1.0 5.0
2nd 1.83 20.67 10.17 11.5 7.33 29.0 1.5 12.5 8.17 2.5 2.5 9.67
3rd 2.17 22.33 5.5 16.33 8.5 10.5 1.17 3.83 6.0 0.67 3.67 9.0
4th 1.17 9.17 17.0 3.5 17.83 6.17 1.0 15.17 2.67 1.17 8.5 2.17
5th 0.6 8.4 7.8 6.2 17.4 14.2 1.4 2.0 2.0 2.4 6.4 10.8
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Table D.3: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 50, Population Size 30,
Number of Generations 20 - Trial 3.

Experiment: (50, 30, 20) - Trial 3
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.83 1.83 2.0 1.17 3.17 2.33 4.83 12.0 8.17 6.33 11.83 6.67
2nd 6.33 18.17 8.5 8.67 35.83 3.83 1.83 5.67 31.67 4.5 7.33 4.33
3rd 5.5 4.83 32.0 5.0 25.67 5.33 2.67 13.5 19.5 6.67 19.17 11.33
4th 7.83 8.17 7.0 3.5 13.67 5.17 4.5 4.67 5.83 2.5 5.0 4.0
5th 2.2 2.4 2.8 5.6 8.6 18.4 9.0 13.8 28.0 15.2 4.6 18.4

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 5.83 16.0 10.5 10.33 5.33 10.17 0.17 4.17 1.33 1.5 1.67 3.5
2nd 0.67 6.5 18.33 13.33 5.17 25.33 1.0 8.5 7.67 1.83 3.33 6.5
3rd 2.0 20.67 5.33 14.83 8.17 8.0 0.5 13.67 3.17 0.83 4.33 7.67
4th 2.67 7.5 13.5 3.83 16.33 5.5 0.83 16.5 2.33 1.17 8.67 2.17
5th 0.4 5.8 6.2 6.2 20.0 13.6 0.4 7.2 1.8 3.4 4.2 9.0

Table D.4: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 50, Population Size 30,
Number of Generations 20 - Trial 4.

Experiment: (50, 30, 20) - Trial 3
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 1.0 1.83 2.0 1.17 3.33 1.83 5.5 11.67 7.33 7.83 14.0 5.17
2nd 7.83 19.83 18.0 7.0 11.33 5.33 2.17 7.5 30.67 3.17 3.17 5.33
3rd 6.0 7.33 28.67 5.17 22.5 7.33 4.5 13.67 40.17 9.17 10.67 9.33
4th 4.67 7.33 8.33 14.67 14.5 5.5 3.33 3.67 4.33 3.67 4.83 2.67
5th 2.6 2.8 5.0 6.2 29.8 6.6 8.4 12.0 26.2 11.4 24.4 15.6

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 5.5 16.67 14.5 9.67 5.67 11.17 0.17 9.17 1.0 1.0 1.67 12.83
2nd 2.33 6.0 15.83 9.17 8.17 19.5 1.33 8.17 9.17 2.33 3.17 10.67
3rd 1.83 23.17 6.0 15.5 8.17 7.5 1.5 11.0 3.33 1.83 3.17 8.33
4th 0.5 7.5 8.83 2.33 14.33 8.33 0.5 14.5 2.5 1.0 3.83 1.17
5th 0.4 16.4 12.4 6.6 18.8 12.4 0.6 6.6 0.6 1.0 6.2 9.2

Table D.5: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 50, Population Size 30,
Number of Generations 20 - Trial 5.

Experiment: (50, 30, 20) - Trial 3
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 1.0 1.83 2.0 1.17 3.0 2.33 4.67 12.0 3.5 11.33 12.67 5.5
2nd 2.83 19.5 16.5 10.5 10.17 3.5 2.67 7.0 29.67 3.0 3.83 5.33
3rd 8.5 7.17 26.83 7.33 28.5 8.33 5.33 14.17 22.67 9.83 11.83 7.83
4th 5.0 8.83 8.5 5.0 15.5 6.5 4.17 2.5 5.83 2.17 17.17 3.5
5th 3.4 1.8 3.8 6.2 19.6 7.0 10.4 14.2 26.8 8.2 5.8 19.2

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 5.5 16.0 12.5 9.83 5.17 10.5 0.17 11.67 1.83 1.0 1.5 4.83
2nd 1.83 19.5 13.83 9.33 6.5 20.33 0.0 2.83 9.5 1.83 3.5 9.5
3rd 3.33 20.67 6.0 13.5 6.17 6.67 1.33 14.17 1.83 0.83 3.83 7.17
4th 3.5 5.17 16.33 4.0 9.17 6.83 0.5 13.83 2.5 1.17 9.5 10.33
5th 0.4 8.8 8.4 4.0 10.2 13.6 0.4 8.0 2.2 1.0 8.0 11.8
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Table D.6: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
30, Number of Generations 20 - Trial 1.

Experiment: (100, 30, 20) - Trial 1
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 1.0 1.83 1.67 1.17 3.0 2.33 5.0 8.67 6.5 6.67 15.0 5.0
2nd 2.67 17.17 10.67 5.5 11.33 4.17 2.67 8.17 21.5 2.33 6.0 6.67
3rd 9.67 3.67 25.67 5.83 26.33 3.67 3.0 10.17 32.17 7.67 33.5 10.5
4th 7.33 7.67 7.17 5.0 12.5 5.5 2.83 2.83 5.17 1.33 16.0 3.0
5th 2.8 1.2 2.6 5.8 9.8 5.6 3.4 13.6 26.6 6.2 3.2 20.8

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 3.33 16.5 11.83 7.83 3.83 10.17 0.17 4.0 2.5 0.83 2.17 10.5
2nd 3.67 6.83 3.33 11.33 6.17 6.0 1.0 2.17 7.67 0.33 3.17 8.67
3rd 2.33 23.0 4.33 15.0 6.17 10.33 1.5 11.33 3.0 2.33 5.17 7.67
4th 3.67 6.5 15.33 3.17 16.33 6.33 0.33 15.33 2.5 1.0 6.33 2.33
5th 0.4 8.4 9.0 5.8 24.4 13.6 0.4 2.2 0.6 1.2 1.8 8.0

Table D.7: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
30, Number of Generations 20 - Trial 2.

Experiment: (100, 30, 20) - Trial 2
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.83 1.83 2.0 1.0 3.0 2.33 6.17 7.17 7.5 7.17 13.17 6.83
2nd 2.67 17.17 4.0 6.67 11.0 6.0 2.83 7.17 23.0 4.17 7.17 5.33
3rd 5.17 7.0 30.67 6.67 28.5 4.0 2.33 11.17 19.0 11.0 26.5 11.33
4th 8.0 6.67 8.67 2.83 15.33 4.17 2.83 2.83 5.17 3.5 23.5 3.0
5th 3.0 1.8 4.2 5.2 5.8 20.6 3.4 13.2 23.4 16.2 6.4 18.4

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 3.5 15.33 5.5 10.33 5.5 10.0 0.17 3.5 2.5 1.5 1.83 5.5
2nd 4.0 6.83 15.5 9.33 7.33 19.5 0.17 2.83 7.5 2.17 3.5 2.83
3rd 2.33 23.83 3.17 12.5 6.17 17.83 1.0 9.5 3.17 2.33 4.0 8.33
4th 4.17 5.67 17.0 3.83 14.67 6.67 0.67 16.5 2.5 1.0 8.0 2.33
5th 0.6 16.0 11.0 4.2 23.0 13.2 0.4 7.0 0.6 0.8 9.8 6.2

Table D.8: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
30, Number of Generations 20 - Trial 3.

Experiment: (100, 30, 20) - Trial 3
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.83 1.83 2.0 1.0 3.0 2.33 5.0 9.17 4.5 7.33 12.83 5.0
2nd 1.17 14.83 5.17 6.0 5.67 4.5 1.83 9.17 30.17 3.67 7.33 5.5
3rd 8.83 7.67 28.5 11.5 26.17 5.67 2.83 10.67 31.83 9.5 26.0 10.33
4th 4.83 6.83 5.67 2.83 14.67 6.0 3.33 4.83 5.67 2.83 5.17 3.5
5th 2.4 3.2 2.4 6.8 5.8 21.2 8.6 15.4 26.8 12.6 2.8 19.8

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 5.67 14.5 8.83 8.0 4.0 10.33 0.17 6.67 3.17 1.17 1.83 5.67
2nd 2.67 16.17 12.0 10.33 5.5 17.67 0.5 2.0 2.67 2.17 4.0 10.33
3rd 2.33 19.83 2.83 16.33 7.33 5.17 0.5 12.17 2.67 2.67 4.33 7.0
4th 3.83 4.5 16.83 3.33 19.83 6.5 0.67 14.67 2.5 0.83 9.83 2.67
5th 0.4 9.4 12.4 5.4 20.6 7.6 0.2 9.4 0.6 1.0 8.4 11.4
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Table D.9: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
30, Number of Generations 20 - Trial 4.

Experiment: (100, 30, 20) - Trial 4
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.83 1.83 2.0 1.17 3.17 2.33 5.67 8.17 6.83 7.0 22.5 3.67
2nd 2.5 11.67 6.33 6.17 8.83 4.0 2.67 7.83 25.33 4.17 8.5 5.33
3rd 8.67 5.83 35.0 5.83 27.67 6.17 8.17 12.0 20.17 7.83 24.5 11.0
4th 8.33 6.83 3.83 4.5 12.83 5.5 3.83 3.67 4.5 2.67 6.0 3.83
5th 2.6 2.6 2.4 6.6 6.2 16.4 6.2 13.0 29.8 15.4 21.6 17.4

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 4.67 16.5 12.83 4.33 6.5 10.5 0.33 9.67 1.5 1.5 2.0 15.5
2nd 2.0 14.67 4.0 6.67 6.67 30.67 0.83 3.0 8.0 0.33 3.0 9.67
3rd 4.17 19.5 4.67 14.33 7.83 8.17 0.5 11.5 3.17 0.83 5.0 8.33
4th 2.17 8.83 12.33 3.0 9.33 7.33 0.67 7.83 2.17 0.83 3.17 3.33
5th 0.6 8.2 8.4 3.8 24.8 13.8 0.4 7.0 2.0 0.8 1.6 11.2

Table D.10: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
30, Number of Generations 20 - Trial 5.

Experiment: (100, 30, 20) - Trial 5
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.83 1.83 2.0 1.0 3.0 2.33 5.17 9.5 6.5 6.5 14.83 5.17
2nd 2.67 9.83 24.67 4.33 9.67 4.17 2.33 4.67 32.5 5.17 8.83 6.83
3rd 2.17 6.5 28.67 7.33 19.83 8.5 5.17 10.5 17.33 6.5 38.67 9.83
4th 8.5 8.17 7.5 4.0 15.5 6.33 3.17 4.0 6.0 2.83 3.5 4.5
5th 3.2 2.0 5.0 6.6 5.4 11.0 3.2 9.8 24.4 13.2 1.2 19.0

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 5.5 18.83 12.0 7.0 4.0 10.17 0.17 12.5 2.67 1.33 1.5 5.83
2nd 1.83 5.5 10.5 6.83 7.0 20.5 1.0 7.5 8.83 0.33 2.0 5.83
3rd 2.0 20.0 4.0 10.67 8.0 10.17 1.17 11.17 2.17 0.83 3.83 5.83
4th 4.83 8.5 18.67 2.67 16.0 7.33 1.0 15.0 2.5 1.0 7.83 1.83
5th 0.4 8.8 12.4 5.4 11.2 13.6 0.4 2.6 1.4 4.4 6.8 7.0

Table D.11: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
100, Number of Generations 50 - Trial 1.

Experiment: (100, 100, 50) - Trial 1
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.33 2.0 1.0 3.0 2.33 5.5 8.33 5.0 5.67 8.67 4.33
2nd 0.5 20.5 2.5 3.17 7.33 3.0 1.83 3.33 35.83 0.83 2.0 1.67
3rd 5.17 2.5 24.83 5.83 40.17 4.33 2.83 7.83 15.33 6.33 10.83 6.33
4th 4.0 4.17 4.0 2.67 8.33 4.33 0.33 1.5 4.33 0.83 1.5 1.0
5th 1.4 1.8 2.2 5.6 1.2 2.8 2.4 13.6 25.6 15.6 3.4 19.0

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.33 17.33 1.83 2.17 1.67 10.33 0.0 10.0 0.67 1.0 0.83 3.67
2nd 0.67 4.0 4.0 10.67 2.5 3.17 0.17 0.83 0.67 0.17 1.67 4.5
3rd 1.33 22.0 2.0 3.67 4.17 3.17 0.5 13.0 1.5 0.67 2.0 5.17
4th 0.0 4.17 17.17 1.17 15.5 2.83 0.67 6.67 2.17 0.67 1.5 0.83
5th 0.2 3.6 6.6 1.2 9.6 7.0 0.0 0.4 0.2 0.4 1.0 2.4
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Table D.12: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
100, Number of Generations 50 - Trial 2.

Experiment: (100, 100, 50) - Trial 2
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 2.33 5.67 7.83 4.5 5.67 9.5 3.67
2nd 1.0 3.33 4.83 3.5 9.67 2.83 1.33 4.0 7.83 2.33 4.67 3.0
3rd 4.5 2.33 29.0 4.17 26.5 4.5 1.67 9.33 12.5 4.0 8.67 6.0
4th 3.83 5.67 5.67 2.5 6.5 3.17 2.0 2.33 4.33 1.33 1.83 1.67
5th 0.6 0.8 0.8 5.8 1.2 4.8 1.4 15.4 26.8 2.4 2.2 18.4

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.0 16.83 4.83 2.0 1.67 10.0 0.0 2.83 1.17 0.67 1.0 4.33
2nd 0.5 4.17 10.0 9.33 1.83 23.33 0.0 2.33 0.67 0.33 1.5 8.33
3rd 1.83 20.33 2.0 6.0 4.5 3.0 0.5 1.67 0.83 0.67 2.33 7.33
4th 3.83 2.67 16.0 2.33 14.67 2.83 0.83 4.5 2.17 0.5 1.33 1.33
5th 0.2 7.0 6.4 2.2 24.6 13.6 0.2 1.0 0.4 0.6 2.0 10.6

Table D.13: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
100, Number of Generations 50 - Trial 3.

Experiment: (100, 100, 50) - Trial 3
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 2.33 5.33 7.17 4.33 5.0 10.5 3.17
2nd 1.5 16.33 3.33 3.5 7.17 1.0 0.33 1.17 4.83 1.5 3.33 2.0
3rd 1.33 2.5 27.67 2.33 23.0 2.5 2.83 4.0 18.83 5.83 4.17 7.33
4th 3.17 4.17 3.67 2.0 10.0 1.5 1.83 1.5 4.17 1.0 3.0 1.83
5th 1.2 1.0 2.0 4.0 2.4 3.4 2.8 3.0 15.0 16.2 1.2 20.0

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 5.67 16.17 2.83 2.5 2.0 8.5 0.0 3.33 0.67 0.67 1.17 1.33
2nd 0.67 5.17 3.17 8.67 2.0 21.33 0.17 2.17 3.0 2.67 1.83 10.17
3rd 1.67 21.17 2.5 4.67 4.83 1.67 1.33 12.83 1.0 0.33 2.83 6.5
4th 0.5 4.5 8.67 2.83 16.67 3.0 0.67 5.17 2.33 0.5 1.17 1.0
5th 0.2 7.2 5.8 2.0 4.6 5.0 0.2 0.4 0.2 0.4 2.0 2.8

Table D.14: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
100, Number of Generations 50 - Trial 4.

Experiment: (100, 100, 50) - Trial 4
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.83 2.0 1.0 3.0 2.33 5.0 6.67 3.5 6.17 11.5 4.17
2nd 1.83 22.0 5.33 3.0 8.5 2.5 0.33 3.67 8.0 2.33 5.17 2.33
3rd 4.67 2.5 29.0 4.83 17.83 2.67 2.83 8.83 7.5 5.67 39.83 4.33
4th 3.33 4.83 5.0 2.33 12.0 4.5 1.83 1.5 4.17 1.17 1.33 1.0
5th 1.0 0.8 2.0 5.2 2.8 4.2 3.0 2.2 25.8 4.8 3.8 17.0

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.17 15.67 11.83 4.0 3.33 13.83 0.0 2.0 1.17 0.5 1.33 2.83
2nd 0.33 3.0 2.83 10.83 3.67 27.0 0.17 1.33 8.67 3.5 1.0 2.83
3rd 1.83 19.5 0.33 3.83 3.17 2.67 0.5 11.33 1.83 0.17 2.0 4.17
4th 2.5 2.17 8.17 2.33 2.17 5.5 0.67 6.33 2.17 0.33 2.83 0.83
5th 0.4 6.4 7.2 3.2 8.4 6.2 0.2 1.6 0.4 0.6 1.0 2.2
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Table D.15: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
100, Number of Generations 50 - Trial 5.

Experiment: (100, 100, 50) - Trial 5
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 2.33 5.83 8.5 3.5 5.17 12.0 6.0
2nd 1.67 9.5 1.17 4.5 4.17 2.5 1.0 5.17 31.0 1.0 4.33 1.33
3rd 10.0 3.0 27.33 3.5 3.67 2.5 2.67 7.33 13.33 5.17 6.67 6.83
4th 4.0 5.83 5.5 1.33 9.17 3.17 1.33 1.67 4.0 0.67 2.0 1.33
5th 2.4 1.4 1.6 4.0 2.2 7.2 1.2 15.4 25.0 4.2 1.6 16.6

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 1.67 15.5 9.0 3.33 3.33 10.17 0.0 2.5 0.33 0.5 1.0 3.83
2nd 0.67 5.33 2.5 15.33 3.0 4.67 0.0 1.67 9.17 0.33 2.0 8.17
3rd 1.5 19.33 1.83 5.5 5.0 2.33 0.5 12.17 2.0 0.67 2.5 7.0
4th 0.5 5.5 6.0 2.5 16.0 3.33 1.17 6.5 2.33 0.5 1.5 1.67
5th 0.4 4.4 5.0 3.0 10.0 2.0 0.0 0.2 0.2 0.8 1.0 0.8

Table D.16: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
250, Number of Generations 100 - Trial 1

Experiment: (100, 250, 100) - Trial 1
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.33 1.17 2.0 1.0 3.0 1.67 5.83 7.17 4.17 5.0 11.67 3.17
2nd 1.5 2.83 2.67 1.83 2.5 1.67 0.17 2.83 5.67 0.5 3.0 2.33
3rd 3.33 2.5 26.5 1.0 24.0 2.5 2.17 5.83 10.67 4.0 3.67 3.83
4th 4.0 6.0 3.5 1.33 4.83 3.83 2.0 0.17 3.33 0.5 1.67 1.17
5th 2.0 1.2 1.2 4.2 3.0 2.2 1.6 13.8 6.4 7.4 1.2 19.2

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.0 2.0 4.33 2.33 1.17 10.0 0.0 2.67 0.5 0.0 0.5 3.17
2nd 0.5 1.83 1.33 0.33 1.67 4.0 0.17 1.0 1.17 0.0 0.83 2.17
3rd 1.67 17.83 1.83 1.0 3.67 2.83 0.33 13.17 1.33 0.33 0.67 5.5
4th 0.0 5.0 4.0 1.33 18.33 3.67 1.0 5.0 2.0 0.83 0.5 0.33
5th 0.0 4.8 5.2 2.8 8.0 4.2 0.0 0.2 0.4 0.4 0.8 1.8

Table D.17: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
250, Number of Generations 100 - Trial 2

Experiment: (100, 250, 100) - Trial 2
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 1.67 5.67 6.5 2.83 5.83 6.83 3.17
2nd 0.5 2.33 2.67 1.0 6.5 1.17 0.33 1.33 3.5 0.67 2.5 1.5
3rd 1.67 2.5 25.0 1.33 2.33 1.33 2.17 9.0 9.83 4.67 1.83 5.17
4th 3.83 3.33 3.83 0.83 12.33 2.0 1.83 1.67 3.33 1.17 0.33 1.67
5th 1.0 0.8 1.0 4.0 1.4 3.2 2.6 2.6 16.2 2.8 0.6 18.4

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.5 5.33 1.83 2.17 1.67 9.83 0.0 1.5 0.33 0.33 0.5 2.5
2nd 0.33 1.67 1.0 1.17 2.33 1.83 0.0 0.5 8.33 0.0 1.33 2.83
3rd 1.5 17.0 1.0 2.83 3.67 1.0 0.33 3.0 1.33 0.17 3.0 5.83
4th 0.17 3.33 6.17 1.0 16.0 2.33 0.83 5.33 2.17 0.67 0.5 0.5
5th 0.2 4.4 5.2 1.4 5.6 5.8 0.2 0.4 0.2 0.4 0.8 1.0
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Table D.18: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
250, Number of Generations 100 - Trial 3

Experiment: (100, 250, 100) - Trial 3
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 1.67 5.67 5.67 3.33 5.0 8.83 3.17
2nd 0.17 1.33 2.5 3.17 7.67 1.33 0.5 2.5 6.33 1.33 1.83 1.17
3rd 3.0 0.83 28.17 4.0 5.83 2.17 3.33 6.5 12.0 4.83 4.67 7.0
4th 4.0 2.67 5.67 1.5 4.67 0.67 1.67 2.0 3.83 0.67 1.17 2.33
5th 0.6 1.4 2.0 2.8 1.6 2.2 3.0 13.8 23.6 1.8 1.6 18.2

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.83 15.67 1.33 1.67 2.33 10.17 0.0 1.83 0.0 0.33 0.33 3.17
2nd 0.17 3.0 1.33 8.33 1.83 2.33 0.0 0.33 1.33 0.17 0.5 1.83
3rd 1.17 21.17 0.33 3.17 4.17 2.17 0.33 10.5 1.33 0.17 1.0 5.67
4th 0.17 3.83 7.67 1.0 16.67 4.67 0.83 4.83 1.83 0.83 1.33 0.5
5th 0.0 6.4 4.6 2.6 4.6 5.8 0.0 0.4 0.2 0.4 0.4 1.8

Table D.19: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
250, Number of Generations 100 - Trial 4

Experiment: (100, 250, 100) - Trial 4
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 1.67 5.83 6.33 3.17 4.5 9.83 3.33
2nd 0.33 1.33 2.67 2.33 4.83 2.5 0.17 1.83 4.5 1.5 1.67 1.0
3rd 3.17 1.83 26.5 1.5 7.67 0.33 2.17 5.67 7.0 2.33 1.67 7.17
4th 3.83 1.83 5.5 1.17 5.0 3.0 0.67 2.0 3.5 0.67 0.83 1.5
5th 1.4 0.4 1.8 3.8 2.2 2.8 2.0 3.2 27.0 2.2 1.4 21.2

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.5 15.0 1.5 2.83 1.67 11.0 0.0 2.33 0.67 0.17 0.5 2.33
2nd 0.17 2.17 0.83 0.83 1.67 1.33 0.0 0.33 0.0 0.17 1.0 2.33
3rd 1.0 22.5 1.83 4.33 3.83 4.83 0.33 1.17 1.17 0.33 1.0 4.17
4th 0.17 1.17 5.83 1.0 16.83 2.17 0.67 4.67 2.0 0.67 2.33 0.83
5th 0.0 3.4 5.6 2.0 8.2 5.6 0.0 0.0 0.2 0.4 0.6 1.8

Table D.20: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 100, Population Size
250, Number of Generations 100 - Trial 5

Experiment: (100, 250, 100) - Trial 5
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.5 1.17 2.0 1.0 3.0 2.33 4.83 5.0 1.5 4.83 6.83 4.33
2nd 0.67 3.5 3.5 1.33 4.67 2.33 0.17 2.17 2.83 1.0 3.33 1.33
3rd 2.5 2.17 33.17 3.33 20.33 3.67 2.0 8.5 7.83 4.33 3.5 5.0
4th 3.5 3.17 4.0 1.67 6.17 2.17 0.67 0.5 3.17 1.33 1.5 2.33
5th 1.2 0.2 1.0 3.0 6.0 2.8 1.4 11.6 18.4 5.0 2.4 18.2

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 1.67 14.83 1.0 2.83 1.33 10.0 0.0 2.83 0.33 0.17 0.83 2.33
2nd 0.17 1.67 1.5 0.33 0.83 3.33 0.0 0.5 0.33 0.0 0.33 1.5
3rd 1.67 22.83 1.17 2.33 2.67 3.0 0.33 2.5 0.83 0.33 1.5 5.83
4th 0.5 2.67 7.67 0.67 22.0 3.33 0.5 4.33 2.0 0.5 0.83 1.0
5th 0.2 4.4 8.0 0.8 6.4 4.6 0.2 1.2 0.2 0.0 1.2 2.0
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Table D.21: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 150, Population Size
300, Number of Generations 200 - Trial 1.

Experiment: (150, 300, 200) - Trial 1
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 1.67 5.33 5.5 2.33 5.17 10.33 3.0
2nd 0.83 2.33 3.0 0.83 4.0 0.83 0.0 1.33 3.83 0.83 2.17 1.33
3rd 1.0 2.5 8.17 5.33 1.33 3.0 0.83 5.0 9.5 2.83 3.17 3.67
4th 3.83 1.67 4.5 0.17 5.83 0.83 0.83 0.5 3.17 0.5 2.0 1.33
5th 1.0 1.6 0.4 2.6 2.4 4.8 1.2 1.6 14.6 5.8 0.6 16.8

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 1.67 2.67 0.83 2.0 1.83 9.67 0.0 2.0 0.33 0.0 0.17 2.67
2nd 0.0 2.17 1.0 0.5 0.67 1.0 0.17 0.67 0.33 0.0 0.33 1.33
3rd 1.5 20.5 0.0 2.0 3.33 2.83 0.33 3.0 0.67 0.17 1.0 4.5
4th 0.17 1.5 7.17 0.83 7.17 2.33 0.17 4.83 2.0 0.5 0.67 0.5
5th 0.0 4.2 2.8 1.4 8.6 4.0 0.2 0.2 0.0 0.4 1.0 0.0

Table D.22: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 150, Population Size
300, Number of Generations 200 - Trial 2.

Experiment: (150, 300, 200) - Trial 2
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 1.67 2.17 4.67 1.67 5.0 8.0 2.5
2nd 0.33 3.0 2.33 0.33 4.5 1.17 0.67 2.0 3.83 1.67 1.67 0.5
3rd 2.83 2.0 27.5 2.5 4.5 2.17 0.67 6.33 10.0 1.67 2.67 5.33
4th 3.0 5.0 4.67 0.67 7.33 0.83 1.0 1.5 3.33 0.17 0.67 0.83
5th 1.6 0.6 0.6 3.2 1.8 3.2 1.4 1.0 26.2 3.2 1.0 17.6

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 1.83 4.33 2.17 1.5 1.33 9.83 0.0 1.67 0.0 0.0 0.17 1.5
2nd 0.33 3.5 0.83 0.33 0.67 3.17 0.0 0.5 0.67 0.0 1.0 0.67
3rd 1.17 21.5 0.83 1.83 3.33 0.5 0.33 2.67 0.83 0.0 1.5 3.5
4th 0.0 3.17 4.5 1.17 0.67 2.67 0.83 4.17 1.83 0.5 0.17 0.67
5th 0.0 3.2 3.2 2.4 6.0 5.2 0.0 0.4 0.2 0.2 0.4 0.8

Table D.23: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 150, Population Size
300, Number of Generations 200 - Trial 3.

Experiment: (150, 300, 200) - Trial 3
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 1.67 5.5 7.17 4.33 4.5 8.67 4.5
2nd 0.5 18.17 1.0 1.5 3.83 0.67 0.33 2.0 3.5 0.33 2.17 1.5
3rd 0.67 2.17 27.0 3.83 2.83 2.17 2.17 4.33 4.83 1.17 3.33 3.0
4th 3.5 3.0 2.5 0.33 5.5 1.67 0.67 1.0 3.5 0.83 1.5 0.5
5th 1.0 1.8 1.0 2.4 0.2 2.2 1.8 0.8 26.6 1.8 0.6 18.0

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.17 1.83 1.5 3.17 1.83 10.33 0.0 2.0 0.33 0.17 0.33 3.17
2nd 0.17 1.0 0.33 0.17 0.83 1.0 0.0 0.17 0.0 0.17 0.5 0.5
3rd 1.33 5.5 1.0 1.33 4.17 4.83 0.33 2.0 1.5 0.0 0.67 5.17
4th 0.17 3.5 5.67 1.0 10.0 2.17 1.0 1.67 2.17 0.67 1.17 0.33
5th 0.0 4.8 6.0 1.2 5.6 2.2 0.0 0.2 0.2 0.0 0.0 1.2
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Table D.24: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 150, Population Size
300, Number of Generations 200 - Trial 4.

Experiment: (150, 300, 200) - Trial 4
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 1.67 6.17 7.0 2.33 4.67 6.83 2.5
2nd 0.67 3.0 3.17 0.83 2.5 0.83 0.0 0.67 3.5 1.0 1.5 2.5
3rd 0.17 2.5 27.17 2.33 2.83 4.67 2.33 5.67 5.67 3.67 1.33 4.17
4th 3.17 1.5 2.83 0.17 5.67 1.5 1.17 0.5 3.33 0.33 0.83 1.67
5th 1.2 0.8 0.6 3.0 1.8 3.8 1.4 15.2 27.2 3.8 1.0 16.4

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 2.0 3.83 2.67 2.0 2.5 10.33 0.0 2.0 0.67 0.17 0.33 2.17
2nd 0.17 3.0 0.83 0.33 1.17 2.0 0.17 0.5 0.0 0.0 0.33 1.33
3rd 1.5 7.0 0.17 3.83 4.0 0.83 0.33 1.5 1.67 0.0 1.17 6.17
4th 0.17 1.67 6.33 1.33 14.33 1.33 0.5 4.5 2.17 0.33 1.17 0.0
5th 0.0 3.8 1.4 2.0 6.4 4.0 0.0 0.4 0.2 0.4 0.2 1.2

Table D.25: Mean Average Error (MAE) of the genetic prediction for all car models and
time chunks done under the following conditions: Number of rules 150, Population Size
300, Number of Generations 200 - Trial 5.

Experiment: (150, 300, 200) - Trial 5
SEAT Arona SEAT Ibiza

Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 0.67 1.17 2.0 1.0 3.0 1.67 5.5 4.67 4.33 5.0 7.17 2.33
2nd 0.17 0.5 0.5 2.67 2.67 0.67 0.33 1.67 3.17 0.83 1.5 1.17
3rd 1.83 0.67 26.0 1.67 4.5 2.0 1.33 3.0 6.0 2.83 3.33 3.5
4th 3.67 3.67 3.5 1.0 4.0 2.0 2.83 1.0 4.17 1.17 1.33 0.67
5th 1.2 0.6 1.2 3.0 3.2 3.6 1.8 1.8 23.2 5.2 0.6 20.4

SEAT Leon 5D SEAT Leon ST
Time Chunk CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER CMC MADRID LA RODA CHESTE LLAGOSTA SANTANDER

1st 1.67 4.0 0.83 2.0 2.67 10.0 0.0 1.67 0.33 0.17 0.5 2.5
2nd 0.17 2.67 0.33 0.5 0.67 0.67 0.0 0.5 0.33 0.0 0.5 0.17
3rd 1.5 22.0 0.83 1.83 2.33 1.33 0.33 2.17 1.17 0.17 1.17 7.67
4th 0.0 2.17 6.0 2.17 0.83 1.5 0.33 4.83 2.17 0.33 1.17 0.83
5th 0.0 4.2 4.6 1.0 3.4 5.6 0.0 0.4 0.2 0.2 0.0 2.2
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Table D.26: R2 Score (%) of the best candidate derived from the genetic forecast for each
time chunk, week, and car model.

Experiment: (150,300,200) - Trial 2
Time Chunk Week SEAT Arona SEAT Ibiza SEAT Leon 5D SEAT Leon ST

1st 2017-09-17 0.0 97.12 81.14 99.85
2017-09-24 0.0 90.23 94.23 99.96
2017-10-01 2.94 91.74 99.07 100.0
2017-10-08 11.07 82.29 57.04 90.98
2017-10-15 5.62 99.15 79.54 99.69
2017-10-22 62.66 99.75 96.07 85.45

2nd 2018-04-15 77.73 99.67 99.68 98.77
2018-04-22 98.59 99.56 99.57 99.67
2018-04-29 97.2 95.78 95.98 99.64
2018-05-06 99.14 99.05 98.91 95.63
2018-05-13 96.49 99.24 76.69 99.52
2018-05-20 99.07 100.0 99.83 99.89

3rd 2018-11-11 54.76 92.72 92.52 99.67
2018-11-18 81.89 97.2 68.36 98.45
2018-11-25 67.21 99.26 82.51 83.39
2018-12-02 45.73 94.0 67.58 98.26
2018-12-09 5.59 97.73 72.61 48.49
2018-12-16 99.81 99.39 52.24 99.66

4th 2019-06-09 60.04 99.87 90.7 99.49
2019-06-16 90.11 99.37 99.67 99.85
2019-06-23 99.72 99.94 99.76 99.93
2019-06-30 71.3 82.93 95.92 93.6
2019-07-07 90.81 99.68 84.64 99.2
2019-07-14 100.0 99.83 99.9 99.95

5th 2020-01-05 99.95 25.74 88.47 99.6
2020-01-12 95.21 37.98 93.3 98.93
2020-01-19 99.79 91.29 93.87 99.61
2020-01-26 99.89 88.22 91.63 99.25
2020-02-02 98.18 51.55 98.87 99.89
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