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ABSTRACT 
 

Unsaturated soils are particular instances of porous materials, which are characterized by a solid 

skeleton and a number of fluids that can flow through the skeleton. At the microscale, a porous 

material is made of interacting entities of various dimensions (3D phases, 2D interfaces, 1D common 

lines, 0D common points), which contain various species (mineral, water, air, …). If representative 

volume elements (REV) can be defined, averaging yields a set of macroscale interacting continua, 

which can be modeled using mixture theory. After averaging, the microscale geometric features of the 

entities and the microscale distributions of thermodynamic properties within the entities are lost. In 

order to recover part of this information, macroscale geometric variables (e.g. volume, area, length or 

number of points of each entity per REV volume) and macroscale density variables (e.g. mass of each 

species in each entity per unit REV) are defined. Additional macroscale variables can be defined in 

order to characterize the anisotropy of the porous material (e.g. structure tensors). 

 

The state of a porous material is assumed to be given by the deformation of the solid skeleton, the 

measure (volume, area, length, number of points) of each microscale entity per unit REV, the mass of 

each species in each microscale entity per unit REV, the temperature and a set of internal variables, 

which encapsulate the history of the material. The number of state variables can be significantly 

reduced by assuming that the evolution of the porous material is along local equilibrium states. These 

states are such that, for prescribed values of the strain tensor of the solid skeleton, the total mass of 

each species per unit reference volume, the temperature and the internal variables, the measure of each 

microscale entity per unit REV and of the mass of each species in each microscale entity per unit REV 

take unique values, such that the total free energy per unit reference volume is minimum. As a result, 

the state of a porous material is given by the strain tensor of the solid skeleton, the total mass of each 

species per unit reference volume, the temperature and the internal variables.  

 

The constitutive model of a porous material is derived using the framework of thermodynamics with 

internal variables, in which the porous material is considered to be an open thermodynamic system. 

The state equations are derived from the free energy and the evolutions of the internal variables are 

derived from the dissipation or the dissipation potential. For unsaturated soils, additional simplifying 

assumptions are made: (1) small strains of the solid skeleton; (2) isothermal atmospheric conditions; 

(3) three species: solid mineral, water and gas; and (4) elastoplastic response of the deformation of the 

solid skeleton and of the water mass content. 

 

Eventually, short-range interaction forces bond water to the solid skeleton. Vicinal water is bond to the 

solid skeleton, whereas free water is not. The behavior of free water is as if it were outside the soil, so 

that microscale pressure distributions are uniform (neglecting gravity) and a macroscale pressure can 

be related to chemical potentials and temperature. In contrast, the behavior of vicinal water is 

influenced by interaction forces, so that microscale pressure distributions are not uniform. The 

behavior of a soil is assumed to be given by three different regimes: (1) saturated (fixed vicinal water, 

variable free water, no gas phase); (2) capillary (fixed vicinal water, variable free water, gas phase), 

with an hysteretic water retention curve; and (3) dry (variable vicinal water, no free water, gas phase). 

At each of these regimes a different constitutive model for the soil is used. Generic examples of these 

models are given: elastoplastic for the saturated regime, elastoplastic with water content hysteresis for 

the capillary regime and elastoplastic for the dry regime.  
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1 INTRODUCTION 
 

Unsaturated soils exhibit particular features, such as reversible shrinking and hardening upon drying or 

irreversible collapse upon wetting. This might have led to consider unsaturated soils as special 

problem soils with respect to the more well understood saturated soils (Alonso et al. 1987). However, 

available field data of moisture content distribution with depth in regions with arid and semi-arid 

climates shows that total saturation is never reached in the upper soil layers, so that there is a need of 

an appropriate understanding of the behavior of unsaturated soils. In fact, complete saturation should 

be considered as a particular state of a soil (Gens 2010). The particular features of unsaturated soils are 

the result of complex interactions between solid particles and pore water (Low 1951, 1961), which 

bond the pore water to the soil. It is therefore expected that a measure of these interactions plays an 

important role in unsaturated soil mechanics.  

 

In soil science, the attraction of the solid for water in a moist soil was considered in the pioneering 

work of Buckingham (1907). He defined the capillary potential as "the work required per centigram to 

pull water away from the mass of soil", which he considered to be a function of the gravimetric water 

content of the soil. Soil science applied thermodynamics to soil moisture (Edlefsen and Anderson 

1943; Bolt and Frissel 1960; Babcock 1963; Sposito 1981), and used the concept of chemical potential 

of water. Sposito (1981) notes that the chemical potential of water has units of energy per unit mass, 

but it can be expressed in pressure units by multiplication by the liquid water density at a reference 

state and is called soil water pressure. He further remarks that "The chemical potential of soil water is 

no more a pressure physically after multiplication by the mass density of pure liquid water than it was 

before". 

 

In soil mechanics, Terzaghi's principle of effective stress for saturated soils was an important 

landmark (Terzaghi 1923; Terzaghi 1936; Clayton et al. 1995). This principle was shown to result 

from the incompressibility of the solid grains and the independence of the yield stress in the grain 

material of the confining pressure. A generalization of this principle for soils containing two pore 

fluids at different pressures was proposed by Bishop, which depended on the pressure of both fluids 

(Bishop and Blight 1963). Subsequently, based on experimental evidence and theoretical 

developments, it was proposed that the stress state of an unsaturated soil requires two stress variables, 

such as net stress and matric suction (Fredlund and Morgenstern 1977; Houlsby 1997). Constitutive 

models for unsaturated soils based on a state surface were developed (Lloret and Alonso 1985), which 

give volumetric deformations induced by monotonic changes in net stress and suction. An important 

progress was achieved by the Barcelona Basic Model (Alonso et al. 1990), which extended the 

modified Cam clay model to unsaturated soils and was able to reproduce irreversible deformations 

induced by changes in net stress and suction. Based on this model with two stress state variables, a 

number of models for unsaturated soils have been proposed. On the other hand, models for unsaturated 

soils with one state variable (a generalized effective stress reducing to the Terzaghi's effective stress at 

saturation) have also been proposed (i.e. Wheeler et al. 2003; Li 2007a, 2007b). 

 

Classical irreversible thermodynamics extended equilibrium thermodynamics by using the local 

equilibrium state assumption (de Groot and Mazur 1984; Kestin 1990). Rational thermodynamics was 

used to ensure the compatibility of constitutive laws with the second law of thermodynamics 

(Coleman and Noll 1963). Classical irreversible thermodynamics was enhanced with internal state 

variables to take into account the previous history (Coleman and Gurtin 1967; Lubliner 1973; Maugin 

1999). Mixture theory was developed in order to describe the interactions of bodies composed of 

identifiable constituents (Bowen 1976; Truesdell 1984, Lecture 5) and has been used to develop 

constitutive models for porous materials such as soils (e.g. Bowen 1980, 1982). 

 

Available constitutive models for unsaturated soils are able to reproduce many salient features of 

unsaturated soils. There are however conceptual issues in many of these models, such as not having a 

thermodynamic basis or using exceedingly large negative water pressures (Korevaar et al. 1983; Gray 

and Hassanizadeh 1991; Nitao and Bear 1996; Coussy 2004). It should be mentioned that the physics 
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of unsaturated soils has also been considered in the scientific literature, but often leading to extremely 

complex models (Gray and Miller 2014). 

 

The object of the present work is to propose a general framework for constitutive models for 

unsaturated soils. The conceptual approach employed is summarized below.  

 

At the microscale (Gray and Miller 2014) soils are considered to be made of interacting entities (3D 

phases, 2D interfaces, 1D common lines and, if there are more than 3 phases, 0D common points), 

which contain various species (mineral, water, air, …). Each entity is considered to be a mixture of the 

interacting continua associated to each of its species (e.g. a 3D gas phase is considered a mixture of its 

gas components). If the conditions for the existence of a representative elementary volume (REV) are 

satisfied (Bear and Bachmat 1990), then averaging of these microscale interacting continua yields 

corresponding macroscale 3D interacting continua (Gray and Miller 2014). 

 

After averaging, the microscale geometric features of the entities and the microscale distributions of 

thermodynamic properties within the entities are lost. In order to recover part of this information, 

macroscopic geometric variables are defined, such as the quotient of the measure of each entity 

(volume, area, length, number of points) and the volume of the REV. Similarly, macroscopic density 

variables are defined, such as the quotient of the mass of each species in each entity and the volume of 

the REV. A macroscale continuum is assigned to each species in the soil, which is equivalent to the set 

of the macroscopic continua assigned to the considered species in each entity (e.g. the macroscale 

continuum associated to water is the set of the macroscale continua associated to water in liquid phase,  

water in gas phase, water in liquid-gas interface, …), so that the soil is considered to be the mixture of 

these macroscopic interacting continua associated to each species (e.g. continua associated to mineral, 

water, air, … ). 

 

The hypothesis of local accompanying state (Callen 1985; Kestin 1990; Maugin 1999; Coussy 2004) 

allows to extend equilibrium thermodynamics to non-uniform systems. This hypothesis can be adopted 

provided that the considered evolutions of the soil are sufficiently slow so that at all times the soil in 

each REV can be considered to be approximately in equilibrium. The thermodynamic state is assumed 

to be given by the deformation of the skeleton, the macroscopic geometric and density variables, 

temperature and a set of internal variables, which account for the previous history. Recall that internal 

variables are observable but not controllable (Maugin 1999).    

 

Furthermore, it is also assumed that, for given values of the skeleton deformation, total mass of each 

species, temperature and a set of internal variables, the macroscopic geometric and density variables 

can be obtained by minimization of the total free energy. In this case, the thermodynamic state is 

defined by the skeleton deformation, the mass of each species per unit volume, the temperature and a 

set of internal variables. Constitutive equations of the soil can be derived from the free energy and the 

dissipation or dissipation potential functions (Edelen 1974; Halphen and Nguyen 1975; Ziegler 1983; 

Maugin 1999; Coussy 2004; Houlsby and Puzrin 2006). 

 

Using this thermodynamic framework, derivation of the free energy yields the total stress tensor and 

the chemical potentials of the constituents. If short-range interaction forces bond the liquid water to 

the solid particles (Low 1951), it is not possible to define the pressure of liquid water, because within a 

REV the distribution of liquid pressure is not uniform. However, it may occur that, away from the 

solid particles, there is fluid not subjected to interaction forces (free fluid), so that throughout the free 

fluid the pressure is uniform (neglecting gravity forces). In this case the pressure of the free liquid can 

be given as a function of the chemical potentials of its components and the temperature, as if the free 

liquid were outside the soil. 

 

In the unsaturated soil mechanics literature, often exceedingly high negative liquid water pressures are 

used, whereas in those conditions water should be in fact in gas phase (Gray and Hassanizadeh 1991). 

While it is widely acknowledged that those high negative liquid water pressures are in fact bonding 

energies per unit volume (Gens 2010), results including liquid pressures, such as the work input to a 
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soil (Houlsby 1997; Coussy 2004), are used to develop constitutive models for unsaturated soils in 

which those high negative liquid pressures occur (i.e. energies per unit volume and pressures are used 

interchangeably).  

 

Features of the soil at the microscale, such as the presence of liquid-gas interfaces or the presence of 

free liquid (not bonded to the solid particles), have an impact on the behavior of the soil. In this sense, 

we can define 3 regimes in a soil: (1) saturated (free liquid, no free gas); (2) capillary (free liquid, free 

gas); and (3) dry (no free liquid, free gas). In the saturated regime, under certain conditions (solid 

particles and vicinal liquid (bonded to the solid particles) are incompressible, no phase change), 

Terzaghi's effective stress principle applies. In the capillary regime, the soil water characteristic curve 

exhibits hysteresis, and no (general) effective stress principle seems to apply. In the dry regime, drying 

progressively removes bonded liquid, leading to shrinking of eventually present solid-liquid 

aggregates. Because each of these regimes have different features, from the modeling point of view it 

seems appropriate to model each of these regimes separately. However, the state variables deformation 

of the solid skeleton, mass of each species and temperature are common to all regimes. 

 

The following chapters are organized as follows. Chapter 2 Thermodynamic Framework presents the 

general balance equation of a continuum and gives several alternative expressions of it. They are used 

to establish the fundamental balance equations for a single continuum and for a material with 

identifiable constituents. Chapter 3 Porous Materials first presents the modeling framework for porous 

materials, describes their structure at the microscale, the variables and balance equations at the 

macroscale and introduces the concept of local equilibrium state. Then it presents the general form of 

the constitutive equations, the resulting entropy inequality, its general solution and the dissipative 

mechanisms. Finally, it discusses the pressures of free fluids within a porous material and the effective 

stresses. Chapter 4 Unsaturated Soils first presents the basic assumptions made for modeling 

unsaturated soils and gives a brief summary of convex analysis. Next it presents the elastoplastic 

framework used, with the general forms of the free energy and dissipation functions, Ziegler's 

orthogonality principle and the application of the framework of multisurface plasticity. Next it 

discusses the three regimes considered for the behavior of unsaturated soils, namely saturated, 

capillary and dry, and shows a generic example of a constitutive model for each of them. The capillary 

regime model includes the hysteresis of the water characteristic curve. Finally, additional topics are 

addressed, namely negative pore water pressures in the context of the work input and matrix suction, 

and an example of the implicit use of the concept of local equilibrium state in saturated porous 

materials. Chapter 5 Conclusions presents a summary of the general modeling approach used, the soil 

regimes and discusses some features of the proposed formulation.   
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2 THERMODYNAMIC FRAMEWORK 
 

 

2.1 GENERAL BALANCE EQUATION OF A CONTINUUM 
 

Balance equations are used to express fundamental physical principles, such as balance of mass, 

balance of momentum, balance of moment of momentum, balance of energy and balance of entropy. 

The main forms in which the general balance equation of a continuum can be stated are given below. 

 

 

2.1.1 Basic forms of the general balance equation 

 

The general balance equation of a continuum is stated in integral form. Additional regularity 

assumptions allow to express the general balance equation of a continuum in differential and jump 

forms.  

 

 

2.1.1.1 Integral form  

 

The balance equation of an extensive property   in a material volume    of a continuum states that the 

rate of change of   in    equals the sum of the supply of   through the boundary     of    plus the 

supply of   within   . The integral form of the general balance equation (in Cartesian coordinates) is 

 

 

  
    

   
  

     
      

   

    
   

  

   (2.1) 

 

where   
   is the flux of   

  through    ,    is the outer unit normal to     and   
  is the supply of   

  

within    per unit volume (Truesdell and Toupin 1960, Sect. 157). 

 

 

2.1.1.2 Differential form 

 

If (2.1) holds for all sufficiently regular volumes    and the fields    
    ,    

    ,   
  

  
,    

   
  
 and 

  
  are continuous, where    is the velocity field of the continuum, then it follows the differential form 

of (2.1)  

 

   
        

      
   

  
   

  (2.2) 

 

(Truesdell and Toupin 1960, Sect. 157). 

 

 

2.1.1.3 Jump form 

 

If (2.1) holds for all sufficiently regular material volumes    and there is a persistent (not necessarily 

material) singular surface    with respect to   
  and possibly also with respect to    in it such that 

   
     and   

  are bounded and on each side of    and   
 ,      and   

    , where    is the unit normal 

to   , approach limits that are continuous functions of position on   , then it follows the jump form of 

(2.1) on      

 

   
             

        (2.3) 
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where       denotes the difference of the limits of     as    is approached on both sides and        

is the velocity of    (Truesdell and Toupin 1960, Sect. 193). 

 

For interacting continua, it will be convenient to split the supply   as the sum of the supply as if the 

continuum were alone   and the supply due to interactions with the other continua   (Kelly 1964). In 

this case (2.2) can be rewritten in the form 

 

   
        

      
   

  
   

    
  (2.4) 

 

while (2.3) remains unchanged. 
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2.1.2 Alternative expressions of the general balance equation 

 

There are equivalent expressions of the differential balance equation (2.4) and of the jump balance 

equation (2.3), which can be interpreted by considering a motion                   , which is a 

time-dependent smooth invertible map from a reference space with Cartesian coordinates      to the 

physical space with Cartesian coordinates     . The velocity of the motion is                  

          and the deformation gradient of the motion is      
                         . 

 

The inverse map       
      assigns to the volume   or the surface   in the physical space the 

volume       
      or the surface       

      in the reference space and, vice versa, the map 

          assigns to the volume    or the surface    in the reference space the volume           or 

the surface          in the physical space. Similarly, the map           assigns to the Eulerian 

field         the Lagrangian field                        and, vice versa, the inverse map    
  

      assigns to the Lagrangian field          the Eulerian field              
        . By 

notational convenience, both fields    and    will be denoted by the same symbol  , leaving to the 

context which field is meant.  

 

 

2.1.2.1 Differential form in Eulerian description 

 

Let                       
         be the spatial velocity of the motion          . Then (2.4) can 

be rewritten as follows: 

 

  
     

        
      

   
  

   
  

    
        

       
            

   
  

   
  

    
        

          
      

  
    

            
   

  
   

  

 

and, using the definition       
           

             
                 , it becomes 

 

      
     

      
  

    
            

   
  

   
    

  (2.5) 

 

Note that       
     

         
 is the rate of change of   in the elementary volume with motion 

          and    
          

  
 is the flux of   that leaves the elementary volume with motion 

         . 

 

 

2.1.2.2 Differential form in Lagrangian description 

 

Multiplication of (2.5) by          , where    is the element of volume in the current configuration 

and     is the corresponding element of volume in the reference configuration, yields 

 

         
     

      
  

    
            

   
  

   
        

   

 

and use Euler's formula                          
  
      (Truesdell and Toupin 1960, Sect. 20) yields 

 

        
        

            
   

  
     

      
  

 

where all variables are considered to be Eulerian fields depending on      . Further, using the relation 

      
                  

           and the Piola identity               
  

  
       

  
, where    is a vector 
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field in the physical space and its Piola transform                 
  is a vector field in the reference 

space (Marsden and Hughes 1994, p. 116), yields 

 

     
                 

    
            

    
  

     
      

  

 

where all variables are considered to be Lagrangian fields depending on       . This can be written in 

the form 

 

   
        

            
        

    
   (2.6) 

 

where the Lagrangian fields   
       ,         ,          ,   

        ,   
        and   

        are 

defined in terms of the Eulerian fields   
      ,        ,         ,   

       ,   
       and   

       by 

the relations 

 

  
                  

              

                  
                      

                   
                       

  
                          

             
               

  
                  

              

  
                  

              

(2.7) 

 

 

2.1.2.3 Jump form in Eulerian description 

 

Let                         
         be the spatial velocity of the motion          . Then (2.3) can 

be rewritten as follows: 

 

     
             

      

    
              

              
      

 

so that it becomes 

 

   
                

              
        (2.8) 

 

where all variables are considered to be Eulerian fields on    depending on      . 

 

2.1.2.4 Jump form in Lagrangian description 

 

Multiplication of (2.8) by           , where    is the element of area in the current configuration 

and     is the element of area in the reference configuration, yields 

 

       
                

              
         

 

and using         yields 

 

      
                   

                 
        

 

From Nanson's formula                 
      , where    is the unit normal to the element of surface 

in the current configuration and    is the unit normal to the corresponding element of surface in the 

reference configuration (Truesdell and Toupin 1960, Sect. 20), it follows       
             

   . As in 

definitions (2.7), define the Lagrangian field          in terms of the Eulerian field         by the 

relation 
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                      (2.9) 

 

From this definition and definitions (2.7) it follows   
        

 ,         
   ,          

    ,   
   

         
   

  . and         
   . Using these relations yields 

 

     
                 

    
       

          
       

             
 
   

   
    

       
       

   
            

 

     
                 

    
       

         
        

             
    

   
    

 
     

 
       

   
            

 

     
          

       
   

     
             

 
   

   
 
  

     

   
     

 

Using these results it follows  

 

   
                

              
        (2.10) 

 

where all variables are considered to be Lagrangian fields on    depending on       . 
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2.2 FUNDAMENTAL BALANCE EQUATIONS 
 

Balance of mass, momentum, moment of momentum, energy and entropy express fundamental 

physical principles, so that they hold independently of the material type.  

 

 

2.2.1 Balance equations for a single continuum 

 

The balance equations of mass, momentum, moment of momentum, energy and entropy are obtained 

by replacing in the differential balance equation (2.4) and in the jump balance equation (2.3) the 

general variables   
 ,   

  ,   
  and   

  by the variables indicated in Table 2.1. 

 

 
Table 2.1. Variables used in the balance equations:    is the mass density,    is the supply of mass per unit volume,    is 

the velocity,     is the Cauchy stress tensor,    is the body force per unit mass,     is the supply of momentum 

per unit volume,     is the supply of moment of momentum per unit volume,   is the internal energy per unit 

mass,    is the heat flux,   is the body heat supply per unit mass,    is the supply of energy per unit volume,   

is the entropy per unit mass,    is the entropy flux,   is the entropy supply per unit mass and     is the supply 

of entropy per unit volume (     is the permutation symbol). 

 

balance of   
    

     
    

  

mass          

momentum                 
moment of 

     momentum 
     

 
           

 
           

 
          

energy     
 

 
         

                      

entropy              

 

 

The resulting balance equations and some transformations of them are given below. 

 

 

2.2.1.1 Balance of mass 

 

 Differential form 

 

           
  

    (2.11) 

 

This relation can be transformed as follows 

 

             
        

  
    (2.12) 

 

which, since the expression in the first parenthesis is the material derivative of the density  , can be 

rewritten as  

 

           
  

    (2.13) 

 

 Jump form 

 

               (2.14) 
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This relation states that the flow of mass that enters one side of the surface of discontinuity is equal to 

the flow of mass that exits the surface of discontinuity on the other side (cf. Wilmański 1998, Eq. 

(4.63)). 

 

 

2.2.1.2 Balance of momentum 

 

 Differential form 

 

     
  

            
  

         (2.15) 

 

This relation can be transformed as follows 

 

         
  

            
  

     

      
  

       
       

  
          

  
      

  
     

       
  

       
  
              

  
         

  
     

       
  

     
  
              

  
     

 

where the balance of mass (2.11) has been used in the last equation. Consequently, by use of the 

balance of mass, the balance of momentum becomes 

 

      
  

     
  
         

  
              (2.16) 

 

which, since the expression in the first parenthesis is the material derivative of the velocity    (i.e., the 

acceleration), can be rewritten as 

 

             
  

              (2.17) 

 

 Jump form 

 

                       (2.18) 

 

This relation can be transformed as follows 

 

                       

             
           

 

where in the last equation the jump balance of mass (2.14) has been used. Consequently, by use of the 

jump balance of mass, the jump balance of momentum becomes (cf. Wilmański 1998, Eq. (4.79)) 

 

            
             (2.19) 

 

Note that if              this relation reduces to        , which is the continuity of the traction 

vector       across the surface of discontinuity. 
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2.2.1.3 Balance of moment of momentum 

 

 Differential form 

 

      
 

      
  

       
 

             
 

      
  

      
 

          (2.20) 

 

This relation can be transformed as follows 

 

          
 

      
  

       
 

             
 

      
  

      
 

      

      
 

       
  

      
 

  
                  

 
             

  
      

 
      

      
 

        
  

            
  

           
 

            

      
 

           
 

    

 

where in the last equation the balance of momentum (2.15) and the identity      
 

       have been 

used. Consequently, by the use of the balance of momentum, the balance of moment of momentum 

becomes 

 

     
 

             
 

      (2.21) 

 

Note that if          
 

        this relation reduces to      
 

     , which is equivalent to the 

symmetry of the Cauchy stress tensor        . 

 

 Jump form 

 

      
 

                    
 

           (2.22) 

 

This relation can be transformed as follows 

 

        
 

                    
 

         

      
 

                       

 

Consequently, the jump balance of moment of momentum is equivalent to the jump balance of 

momentum. 

 

 

2.2.1.4 Balance of energy 

 

 Differential form 

 

     
 

 
       

  
      

 

 
            

          
  

              (2.23) 

 

This relation can be transformed as follows 
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where the balance of mass (2.11) and the balance of momentum (2.16) (in which the balance of mass 

(2.11) has been used) have been used in the last equation. Consequently, by use of the balance of mass 

and the balance of momentum, the balance of energy becomes 

 

              
     

       
  

     
  

          
 

 
               (2.24) 

 

which, since the expression in the first parenthesis is the material derivative of the specific internal 

energy  , can be rewritten as (cf. Truesdell 1984, Eq. (5.11)4) 

 

         
       

  
     

  
          

 

 
               (2.25) 

 

Furthermore, if the Cauchy stress tensor is symmetric, the second term on the l. h. s. can be rewritten 

as       , where     is the rate of deformation tensor (i.e., the symmetric part of the velocity gradient 

tensor), so that 

 

                  
  

          
 

 
               (2.26) 

 

 Jump form 

 

     
 

 
                   

               (2.27) 

 

This relation can be transformed as follows 

 

       
 

 
                   

             

              
 

 
          

            

 

where in the last equation the jump balance of mass (2.14) has been used. Consequently, by use of the 

jump balance of mass, the jump balance of momentum becomes (cf. Wilmański 1998, Eq. (4.87)) 

 

             
 

 
          

              (2.28) 

 

 

2.2.1.5 Balance of entropy 

 

 Differential form 

 

                
  

       (2.29) 

 

This equation can be transformed as follows 
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where the balance of mass (2.11) has been used in the last equation. Consequently, by use of the 

balance of mass, the balance of entropy becomes 

 

              
       

  
           (2.30) 

 

which, since the expression in the first parenthesis is the material derivative of the specific entropy  , 

can be rewritten as 

 

           
  

           (2.31) 

 

 Jump form 

 

                     (2.32) 

 

This relation can be transformed as follows 

 

                     

                      

 

where in the last equation the jump balance of mass (2.14) has been used. Consequently, by use of the 

jump balance of mass, the jump balance of entropy becomes 

 

                       (2.33) 

 

It will be further assumed that 

 

    
 

 
   

  
 

 
  

(2.34) 

 

where   is the temperature. In this case, (2.31) becomes (cf. Truesdell 1984, Eq. (5.18)) 

 

        
 

 
   

  
 

 

 
          (2.35) 

 

which can be transformed as follows 

 

        

         
 

 
   

  
 

 

 
   

        
 

  
        

 

 
     

  
     

        
 

  
        

 

 
       

 

 
                        

       
  
  

 

where the balance of energy (2.25) has been used. Defining the free energy per unit mass   by 

 

       (2.36) 

 

it follows that 
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and the balance of entropy becomes  

 

   
 

 
  

       
  

 
 

  
        

 

 
                

 

 
       

 

 
                (2.37) 
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2.2.2 Balance equations for a material with identifiable constituents 

 

We consider a material composed of   identifiable constituents, which are modelled as interacting 

continua with their own motions and thermodynamic properties (Bowen 1976; Truesdell 1984, 

Lecture 5). Constituents are denoted by lowercase Fraktur letters. Variables pertaining to a constituent 

are denoted by a subscript with the constituent symbol, while variables pertaining to the material as a 

whole do not have such a subscript. 

 

Balance of mass, momentum, moment of momentum, energy and entropy are postulated at two levels: 

(1) for each constituent, a balance equation as for a single medium, but including a term to take into 

account the interaction with the other constituents, and (2) for the material as a whole, assuming that 

the interactions between the constituents are exchanges, so that the sum over all constituents of the 

interaction terms vanish. As a result, the sum over all constituents of a balance equation yields the 

corresponding balance equation for the material as a whole, without the interaction terms. It is also 

possible to define thermodynamic properties for the material as a whole in terms of the 

thermodynamic properties of the constituents so that the balance equations are those of a single 

medium. 

 

 

2.2.2.1 Balance of mass 

 

The balance of mass for the constituent   (cf. (2.11)) reads 

 

                
    

  
 (2.38) 

 

which can be rewritten as (cf. Truesdell 1984, Eq. (5.11)1) 

 

                 
    

  
 (2.39) 

 

The balance of mass for the material as a whole reads (cf. Truesdell 1984, Eq. (5.12)1) 

 

    
 

   (2.40) 

 

 

2.2.2.2 Balance of momentum 

 

The balance of mass for the constituent   (cf. (2.15)) reads 

 

   
   

     
   

 
  

     
   

  
      

    
 
  

     
   

 (2.41) 

 

which, using the balance of mass, can be rewritten as (cf. Truesdell 1984, Eq. (5.11)2) 

 

   
   

    
     

   
     

    
 
  

     
   

      
   

 (2.42) 

 

The balance of momentum for the material as a whole reads (cf. Truesdell 1984, Eq. (5.12)2) 

 

    
   

 
   (2.43) 
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2.2.2.3 Balance of moment of momentum 

 

The balance of momentum for the constituent   (cf. (2.20)) reads 

 

   
   

       
 

      
    

  
       

 
      

     
         

 
    

     
  

      
 

      
    (2.44) 

 

which, using the balance of momentum, can be rewritten as (cf. Truesdell 1984, Eq. (5.11)3) 

 

   
   

      
 

  
          

 
     

    (2.45) 

 

The balance of moment of momentum for the material as a whole reads (cf. Truesdell 1984, Eq. 

(5.12)3) 

 

    
   

 
   (2.46) 

 

 

2.2.2.4 Balance of energy 

 

The balance of energy for the constituent   (cf. (2.23)) reads 

 

           
 

 
      

     
  

        
 

 
      

      
        

       
      

     
  

         
       (2.47) 

 

which, using the balance of mass and the balance of momentum, can be rewritten as (cf. Truesdell 

1984, Eq. (5.11)4) 

 

       
          

        
    

  
    

    
  

          
 

 
      

          
        (2.48) 

 

The balance of energy for the material as a whole reads (cf. Truesdell 1984, Eq. (5.12)4) 

 

    
 

   (2.49) 

 

 

2.2.2.5 Balance of entropy 

 

The balance of entropy for the constituent   (cf. (2.29)) with the assumptions (2.34) reads 

 

                 
 

  
  

    
  

   

  
  

 (2.50) 

 

which, using the balance of mass, can be rewritten as (cf. Truesdell 1984, Eq. (5.11)2) 

 

       
        

 

  
  

    
  

 
 

  
           (2.51) 

 

and using the balance of energy becomes (cf. Truesdell 1984, Eq. (5.26)) 

 

    
 

  
   

        
    

  
 

 

  
  

  
          

 

  
      

                (2.52) 
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The balance of entropy for the material as a whole reads (cf. Truesdell 1984, Eq. (5.20)) 

 

    
 

   (2.53) 

 

which, using (2.52), becomes (cf. Truesdell 1984, Eq. (5.27)) 

 

  
 

  
   

        
    

  
 

 

  
  

  
          

 

  
      

                
 

 

            
 

  
         

 

 
      

          
            

(2.54) 

 

If all constituents have the same temperature     , then using (2.49) and multiplying by   (which is 

positive), it follows  

 

     
        

    
  

 
 

 
  

               
               

 
 

                
 

 
      

          
           

(2.55) 

 

This inequality can be transformed as follows 

 

     
        

    
  

 
 

 
  

              
                   

       
 

 

                
 

 
      

          
           

 

     
        

    
  

 
 

 
  

              
                            

    
  
  

 
  

                
 

 
      

          
           

 

and, using the balance of mass for constituent  , yields 

 

           
 

         
    

   
    

           
 

 

       
     

 
 

 

 
        

   

 
  

 

 
     

      
 

        
  

 
   

 

           
 

        
     

            
 

 

       
     

 
 

 

 
        

   

 
  

 

 
     

      
 

        
  

 
   

(2.56) 

 

Introducing a reference velocity    , this expression can be transformed as follows 
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using         and         , and further transforming the resulting expression yields 

 

           
 

        
     

            
 

       
 

                     
       

 
 

 
 

 
        

   

 
                 

 
  

 

 
            

           
 

 

                         
       

 
   

 

           
 

        
     

            
 

       
 

                     
       

 
 

 
 

 
        

   

 
              

           
 

  
 

 
            

           
 

 

                  
       

 
   

 

           
 

       
 

               
     

            
 

 

      
            

       
 

 
 

 
                       

        
 

 

  
 

 
            

           
 

   

(2.57) 

 

Setting     equal to the barycentric velocity   , which is defined by 

 

      
  

       
  

  
 

 

we get (cf. Bowen 1969, Eq. (4.10); Bowen 1975, Eq. (1.6.30)) 

 

           
 

       
 

              
     

            
 

 

      
            

      
 

 
 

 
                       

       
 

 

  
 

 
           

          
 

   

(2.58) 

 

The inequality (2.57) can be further transformed as follows 
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and using the balance of momentum and rearranging yields 

 

           
 

        
 

      
  
        

 
            

    

 
         

      
   

 

  
  

                  
   
 

       
                          

   
 

  
  

     
  

         
 

 

     
   

 
 

 

 
      

  
 

 
            

           
 

   

(2.59) 

 

Setting     equal to the velocity of a constituent   
   and assuming that the Cauchy stress tensors of the 

other constituents are spherical, such that 

 

   
   

 

  
  

        
             

 

yields 

 

           
 

        
 

    
   

  
        

 
            

    

 
         

          
      

    
     

       
      

                                
   

 

     
   

 
 

 

 
       

 

 
            

      
      

   
   

(2.60) 

 

The balance of mass for constituent   can be transformed as follows: 
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and using this result with       
   and rearranging yields 

 

           
 

        
 

    
   

  
        

 
            

    

 
         

                  
   

  
 

   
 

       
      

                                
   

 

     
   

 
 

 

 
           

 

 
            

      
       

   
   

(2.61) 

 

Multiplication of this relation by   , the Jacobian of the motion of constituent  , (which is positive) and 

using the identity              
    

  
 yields (cf. Coussy 2004, Eqs. (3.26), (3.104), (6.16), (6.28)) 

 

            
 

          
 

              
    

 
             

        
   

 

         
      

                                
   

 

       
   

 
 

 

 
             

 

 
            

      
       

   
   

(2.62) 

 

Using the motion of constituent  , we can define the following Lagrangian variables 

 

         
 

 Total (inner) free energy per unit reference volume 

         
 

 Total entropy per unit reference volume 

         
     

    
     

 
   

    

 
 Total (inner) 2nd Piola-Kirchhoff stress tensor 

     
 

 
     

     
 
         Green-Lagrange strain tensor of constituent   

        Mass of constituent   per unit reference volume 

  
           

     
    

      
    Lagrangian mass flux of constituent   w.r.t. constituent   

        
     

    
   

 
 Lagrangian total (inner) heat flux 

          Lagrangian supply of mass of constituent   

 

With these definitions the dissipation inequality (2.62) becomes (Coussy 2004) 

 

                                 
      

   
 

    
        

                               
   

 

   
 

 
           

 

 
            

      
       

   
   

(2.63) 

 

where            
        denotes the partial derivative of     with respect to the  -th Lagrangian 

coordinate. 
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Remarks 

 

 The Lagrangian formulation for porous materials is used in Biot (1972), and is also used in Coussy 

(2004) and Wilmański (1998). 

 

 In the formulation of Coussy (2004) it is assumed that the components are fluids that behave as if 

they were outside the porous material. In our formulation we have not made use of this assumption. 

 

 

The dissipation is the sum of the following groups of terms  

 

                                 
      

   
 intrinsic dissipation 

    
        

                               
   

 fluids dissipation 

   
 

 
      thermal dissipation 

      
 

 
            

      
       

   
 phase change dissipation 

 

Although the dissipation inequality requires the non-negativity of the sum of these four groups of 

terms, often the non-negativity of each group of terms is required. 

 

Note that the form of the dissipation inequality (2.63) is based on the following assumptions: 

 

 All constituents have the same temperature. 

 All constituents have mass. 

 For each constituent, the entropy flux and body entropy source are the heat flux and body heat 

source divided by the temperature, so that the corresponding balance of entropy is given by (2.50). 

 All constituents are non-polar, so that their respective Cauchy stress tensors are symmetric.  

 Except for constituent  , the Cauchy stress tensors of all constituents are spherical. 
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3 POROUS MATERIALS 
 

 

3.1 MODELLING FRAMEWORK 
 

 

3.1.1 Structure of a porous material 

 

Porous materials are characterized by the presence of a solid skeleton and a number of fluids, which 

can flow through the solid skeleton. The solid skeleton and the fluids occupy 3D regions (volumes) of 

the space, are eventually made of various species and have thermodynamic properties, such as mass, 

momentum, energy and entropy. In general, the solid skeleton and the fluids are subjected to 

interactions, so that they may exchange thermodynamic properties. 

 

Short-range interactions between 3D regions give rise to 2D regions (surfaces) with thermodynamic 

properties at the common boundary of the 3D regions. Similarly, short-range interactions between 2D 

regions give rise to 1D regions (lines) with thermodynamic properties at the common boundary of the 

2D regions, and short-range interactions between 1D regions give rise to 0D regions (points) with 

thermodynamic properties at the common boundary of the 1D regions. 

 

Eventually, between the solid skeleton and a neighboring fluid strong interaction forces exist that bond 

the fluid to the solid skeleton (Low 1951). Fluid particles in the regions subjected to these interaction 

forces have properties, such as density or viscosity, that are different from those of fluid particles not 

subjected to those interactions. The former will be referred to as vicinal fluid and the later as free fluid. 

Because of their strong bonding to the solid skeleton, the regions containing vicinal fluids will be 

considered to be part of the solid skeleton. 

 

The structure of porous materials can be complex and some porous material can exhibit several 

structural levels. For instance, clay particles and vicinal water can form aggregates, which can be 

considered as larger particles which form a larger structure and the space left is occupied by free 

fluids, which in turn are mixtures of various species (Alonso et al. 1987). Further, the solid skeleton 

can be cemented by the presence of certain substances and can become unstable by changes in the 

concentrations of certain cations or in the pH of water (Koorevaar et al. 1983). 
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3.1.2 Microscale and macroscale continua 

 

Modeling of a porous material as a continuous medium, implicitly assumes an averaging process. 

Averaging is based on the existence of representative element volumes (REV) that must satisfy certain 

conditions (Bear and Bachmat 1990; Whitaker 1999; Gray and Miller 2014). On the one hand, the 

REV must be large enough with respect to the characteristic dimensions of the details of the structure 

of the porous material so that averaging yields results independent of the REV size. On the other hand,  

the REV must be small enough with respect to the characteristic dimensions of the region analyzed so 

that it can be considered a macroscale point. 

 

We assume that the material in a given region   of a certain dimension (3D, 2D, 1D, 0D) containing a 

number of species can be modeled as a mixture of microscale interacting continua    . The interacting 

continuum     corresponds to the species   contained in the region  , and has microscale 

thermodynamic properties subjected to microscale balance equations, which include interaction terms 

with the other microscale continua such that their sum over all     vanishes. Averaging associates to 

each microscale continuum     a macroscale continuum    , with macroscale thermodynamic 

properties subjected to macroscale balance equations, which include interaction terms with the other 

macroscale continua such that their sum over all     vanishes. 

 

Macroscale thermodynamic properties at a macroscale space point are defined by integration of 

microscale properties over the microscale region   within the REV centered at the considered 

macroscale point. Macroscale balance equations are obtained by integration of microscale balance 

equations over the microscale region   within the REV and use of averaging theorems (Gray and 

Miller 2014). Note that, whereas the microscale continua     that model the behaviour of the material 

in a microscale region   of a certain dimension are defined only on that microscale region, the 

corresponding macroscale continua     are defined on macroscale 3D regions. The porous material 

can be modelled as the mixture of all macroscale continua     as in mixture theory (Truesdell 1984, 

Lecture 5). 

 

Averaging of microscale distributions of extensive thermodynamic variables, such as mass or 

momentum, is conceptually clear, because of the extensive nature of these variables. Averaging of 

microscale distributions of intensive thermodynamic variables, such as pressure, chemical potential or 

temperature, requires the multiplication of the intensive variable by a weighting function that yields an 

extensive variable (Gray and Miller 2014), and it should be mentioned that for the same intensive 

variables different weighting functions have been used by different authors. However, averaging of 

microscale uniform distributions of intensive thermodynamic properties should give this uniform 

value, independently of the weighting function used. 

 

While microscale continua occupy space regions of various dimensions, macroscale continua occupy 

3D space regions, so that microscale geometric information is lost after averaging. Part of this 

geometric information can be recovered by macroscale variables defined as the measure of a 

microscale region (volume, area, length, number of points) within the REV divided by the volume of 

the REV. For instance, in geomechanics several variables are functions of the volume fractions of the 

solid skeleton and the fluids. These additional macroscale variables will be referred to as geometric 

variables. They increase the number of variables and require additional constitutive equations. These 

geometric variables are not independent (for instance, the sum of all volume fractions must be one). 

Moreover, the variations of the geometric variables are not independent (for instance, the variation of 

the volume of a spherical bubble is not independent of the variation of its surface). Approximate 

relations between the variations of the geometric variables have been proposed (Gray and Miller 

2014). Additional geometric variables can be defined from the geometry of the microscale regions, 

giving rise to structure tensors. These variables can be used to describe the anisotropy of the porous 

material. 

 

For many practical problems, the aforementioned modeling of a porous material is too detailed. This 

detail can be reduced in several ways (Gray and Miller 2014). For instance, some properties of a 
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microscale continuum, such as mass or momentum, can be neglected so that the corresponding balance 

equations become boundary conditions between the microscale continua in the neighboring regions, or 

several regions can be grouped into a larger region, with appropriately defined macroscale 

thermodynamic properties. 

 

In what follows the porous material will be modeled as the mixture   of the species-based macroscale 

continua   , where   ranges over all species, which we symbolically denote by       . The 

macroscale continuum    associated to species   is the mixture of the macroscale continua     

associated to species   in region  , where   ranges over all the regions that contain species  , which 

we symbolically denote by         . 
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3.1.3 Balance equations in Eulerian and Lagrangian descriptions 

 

The postulated balance equations are those of mixture theory (Truesdell 1984, Lecture 5) presented in 

section 2.2.2, where the distinguishable constituents are the aforementioned macroscale continua. 

Since no chemical reactions will be considered, all mass exchange terms will be set to zero. We 

assume that (1) for each constituent, the entropy flux and the entropy supply per unit mass are equal to 

the heat flux and the heat supply divided by the temperature; (2) all constituents have the same 

temperature; (3) the Cauchy stress tensors of all constituents are non-polar; and (4) the Cauchy stress 

tensors of all constituents except the solid mineral are spherical. 

 

Notation. In order to simplify the notation, in what follows the following changes will be made 

 

    

    

            

    
      

  

  
     

          

 

Assuming that the microscale 3D region occupied by the solid particles contains only the species   

(solid mineral) and that species   is not contained in any other microscale region, it follows that the 

motion of the constituent   coincides with the motion of the solid skeleton. Recall that the solid 

skeleton contains the solid particles and the tightly bonded vicinal fluids. 

 

With the assumptions 

 

      

     

  
   

   
   

 

  
  

     
           

  
      

    

        

(3.1) 

 

the balance equations can be transformed relative to the skeleton motion, both in Eulerian and in 

Lagrangian descriptions. 

 

 

3.1.3.1 Balance of mass for a species 

 

Equation (2.39) becomes 

 

      
           

           
       

  
     

  
  
 

     
      

  
  

       
      

  
 

 

      
      

  
  

       
      

  
 (3.2) 

 

Multiplication by  , use of the identity           
  
 and the Piola transform     

  
          

     

yields 

 

       
        

     
    

      
  

 (3.3) 
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which can be rewritten in the form (cf. Coussy 2004, Eqs. (1.67), (6.6)) 

 

      
     

       (3.4) 

 

where the following Lagrangian variables have been used:    is the mass of species   per unit 

reference volume and   
    is the Lagrangian mass flux of species   relative to the solid skeleton. 

 

 

3.1.3.2 Balance of mass for the mixture 

 

Since there are no mass exchanges between species, the balance of mass for the mixture is trivial. 

 

 

3.1.3.3 Balance of momentum for a species 

 

Equation (2.42) becomes 

 

   
   

     
   

    
    

 
  

     
   

 (3.5) 

 

Multiplication by  , use of the identity           
  
 and the Piola transform     

  
          

     

yields 

 

    
   

       
   

   
   

           
   

    
 
  

 (3.6) 

 

 

3.1.3.4 Balance of moment for the mixture 

 

Addition of (3.6) over all constituents and use of          yields 

 

         
   

   
   

 
 

      
 
         

        
    

    

  
  

  

 (3.7) 

 

which can be rewritten in the form (cf. Coussy 2004, Eq. (2.50)) 

 

        
   

   
   

 
 

      
 
    

  
 (3.8) 

 

where the following Lagrangian variables have been used:    is the mass of species   per unit 

reference volume and     is the total 2nd Piola-Kirchhoff stress tensor. 

 

 

3.1.3.5 Balance of moment of momentum for a species 

 

Equation (2.45) becomes 

 

  
    

   
    

 

 

        
        

   
    

         
        

   
    

 (3.9) 
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3.1.3.6 Balance of moment of momentum for the mixture 

 

Addition of (3.9) over all constituents yields 

 

        
        

    
    

 
         

        
    

    

 
 (3.10) 

 

which can be rewritten in the form 

 

        (3.11) 

 

where      is the total 2nd Piola-Kirchhoff stress tensor. 

 

 

3.1.3.7 Balance of energy for a species 

 

Equation (2.48) becomes 

 

          
             

         
        

       
  

    
         

  
 

           
    

  
         

                 

            
      

               
         

        
       

  
    

         
  
 

           
    

  
         

                
     

  
               

            
         

  
  

       
      

  
             

          
        

        
  
 

           
         

  
    

    
  

           
                      

            
        

  
  

         
      

  
       

    
        

  
 

           
         

  
    

    
  

           
                      

            
        

  
  

      
  

  
      

      

  

 

           
         

  
    

    
  

           
                      

 

          
        

  
  

      
  

  
      

      

  

 

           
         

  
    

    
  

           
                      

(3.12) 

 

Note that we can set    
        

             
    

        because if     then    
        

          

and if      then    
           

  by assumption. Multiplication by  , use of the identity           
  
, 

the Piola transform     
  

          
     and the identity            

        
 
     

 
 yields 

 

            
        

     
      

      
  

         
        

   
   

     
 
 

                    
   

    
  

            
     

    
           

                   
(3.13) 

 

where             (   ) is the chemical potential of species  . 
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3.1.3.8 Balance of energy for the mixture 

 

Addition of (3.13) over all constituents, and use of          and           yields 

 

         
 

 
 

          
     

    
     

   
 

  

          
    

   

 
 

  

  

       
 

         
        

     
   

 
      

 
       

     
    

           
          

   
 

(3.14) 

 

which can be rewritten in the form (cf. Coussy 2004, Eqs. (3.21), (6.11)) 

 

             
   

 
 

  

                  
 
    

       
          

   
 (3.15) 

 

where the following Lagrangian variables have been used:   is the total internal energy per unit 

reference volume,   
    is the Lagrangian mass flux of species   relative to the solid skeleton,     is the 

total 2nd Piola-Kirchhoff stress tensor,     is the Green-Lagrange strain tensor of the solid skeleton,   

is the total heat supply and    is the total heat flux. 

 

 

3.1.3.9 Entropy inequality for the mixture 

 

Equation (2.61) becomes 

 

        
 

 
 

       
 

     
  
        

 
          

    

 
        

         
      

  
  
 

   
 

       
                               

   
 

     
   

 
 

 

 
        

(3.16) 

 

Multiplication by  , use of the identity           
  
, the Piola transform     

  
          

     and 

the identity            
        

 
     

 
 yields 

 

        
 

 
 

        
 

              
        

     
    

 
      

 
         

 

   
 

       
     

    
             

                          
   

 

           
   

   

 
 

 

 
        

(3.17) 

 

which can be rewritten in the form (cf. Coussy 2004, Eqs. (3.26), (3.104), (6.16)) 

 

                    
 
        

 

   
 

    
       

                           
   

 

   
 

 
        

(3.18) 

 

where the following Lagrangian variables have been used:   is the total free energy per unit reference 

volume,   is the total entropy per unit reference volume,     is the total 2nd Piola-Kirchhoff stress 
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tensor,     is the Green-Lagrange strain tensor of the solid skeleton,    is the mass of species   per 

unit reference volume,   
    is the Lagrangian mass flux of species   relative to the solid skeleton,   is 

the total heat supply and    is the total heat flux. 
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3.1.4 State variables and local equilibrium states 

 

The state of a porous medium will be assumed to be given by the deformation of the solid skeleton, the 

measure (volume, area, length, number of points) of each microscale region per unit reference volume, 

the mass of each species in each microscale region per unit reference volume, the temperature and a 

set of internal variables, which encapsulate the history of the material. In a Lagrangian formulation 

with respect to the motion of the solid skeleton they are 

 

                 (3.19) 

 

where     is the Green-Lagrange strain tensor of the solid skeleton,    is the measure (volume, area, 

length, number of points) of the microscale region   per unit reference volume,     is the mass of 

species   in the microscale region   per unit reference volume,   is the temperature and   denotes a set 

on internal variables. Note that the sum of    over all 3D regions is equal to the Jacobian of the 

motion of the solid skeleton   (i.e. the current volume per unit reference volume). Since   

               
   

 it follows that, for given    , the    of all 3D  regions are not independent, so 

that one of them can be dropped. 

 

The number of the state variables can be significantly reduced by considering local equilibrium states. 

Let    be the total mass of species   per unit reference volume, so that         . It will be 

assumed that, for prescribed values of    ,   ,   and  , the variables    and     take unique values 

                  and                     such that the total free energy per unit reference 

volume reaches a minimum. The state                  given by 

 

                                         (3.20) 

 

will be called the local equilibrium state defined by             . 

 

Let the total free energy per unit reference volume    be given by 

 

                      (3.21) 

 

For fixed             , let us consider the conditions that satisfy the functions                and 

                at a relative minimum of                   . On the one hand, as already 

mentioned, for fixed     the variations of the    are not independent, and some approximations have 

been proposed (Gray and Miller 2014). On the other hand, for fixed    the variables     are related 

by         , so that         . Consequently, the necessary conditions read 

 

   

    
    

 

 
   

   
   

 
   

(3.22) 

 

where    
 denotes the common value of         , the partial derivatives of    are evaluated at the 

local equilibrium state defined by the variables              and the variations of the geometric 

variables     are such that comply with the geometric constraints. 

 

Since the solutions                   comply with the geometrical constraints, using the 

variations                   ,                 ,                and     
           in condition (3.22)2 yields the following results 
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   (3.23) 

 

where the partial derivatives of    are evaluated at the local equilibrium state defined by the variables 

            , the partial derivatives of    are evaluated at              and the fact that     ,    , 

   and    are independent has been used.  

 

Notation. The evaluation of a state function                    at local equilibrium states defines 

the corresponding local equilibrium state function               by 

 

                                                         

 

Note that the symbol of the defined function is the same as the symbol of the original function without 

the superposed tilde (~). 

 

Lemma 3.1. Let the free energy of the porous material per unit reference volume at local equilibrium 

states be 

 

                                                         (3.24) 

 

then, at local equilibrium states, the following relations hold: 

 

  

    
 

   

    
 

  

   
 

   

    
 

  

  
 

   

   
 

  

  
 

   

  
 (3.25) 

 

where the derivatives of    are evaluated at              and the derivatives of     are evaluated at 

the local equilibrium state                                         . 

 

Proof. Derivation of (3.24) with respect to     and use of the minimization conditions (3.22) and the 

results (3.23) yield 

 

  

    
 

   

    
  

   

   

   

     
  

   

    

    

     
 

 
   

    
       

    

     
 

 
   

    
    

 

    
     

 
  

 
   

    
    

   

    
 

 
   

    
 

 
Derivation of (3.24) with respect to    and use of the minimization conditions (3.22) and the results 

(3.23) yields 
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The proofs of the remaining relations follow by derivation of (3.24) with respect to   and with respect 

to  , along the same lines as in the proof of the first relation. ∎ 

 

Thus, along local equilibrium states, the variation of the free energy per unit reference volume 

 

    
   

    
      

   

   
   

 
  

   

    
    

  
 

   

  
   

   

  
   

 

reduces to 

 

   
  

    
      

  

   
   

 
 

  

  
   

  

  
   

 

where the partial derivatives of   are evaluated at              and the partial derivatives of    are 

evaluated at the local equilibrium state                                         . 

 

 

Remarks 

 

 The minimum energy principle is used by Boruvka and Neumann (1977) to obtain the general 

conditions of equilibrium of a multicomponent multiphase fluid system, including phases, 

interfaces, common lines and common points. 

 

 Gray and Miller (2014) use the minimization of the total energy of the system, including phases, 

interfaces, common lines and common points, to obtain the microscale equilibrium conditions. 

 

 Bowen (1976, Sect. 2.9) studied a porous medium made of a gas and an elastic isotropic solid 

without using volume fractions, and proved that the total free energy is a function of the 

temperature, skeleton deformation and mass of the gas per unit mixture volume. This free energy 

might be interpreted as the combination of a free energy depending on the state variables and on 

the volume fractions with volume fractions depending on the state variables, so that the free energy 

ultimately depends on the state variables. 

 

 Bowen (1982) considered a porous medium with a number of fluids using volume fractions, and 

proved that the total free energy is a function of the temperature, solid skeleton deformation, 

masses of the fluids per unit mixture volume and volume fractions of the fluids. He considered 

equilibrium states characterized by the vanishing of the partial derivatives of the total free energy 

with respect to volume fractions (as in our minimization assumption) and assumed that this 

condition could be inverted to obtain the volume fractions as a function of the temperature, 

skeleton deformation and masses of the fluids per unit mixture volume. 

 

 Coussy (2004) considered a porous material saturated by one fluid, and deduced a general form of 

free energy, which depends on the skeleton deformation, the mass of the fluid and the temperature. 

Subsequently, this free energy is equated to the sum of (1) the free energy of the skeleton, which 

depends on the skeleton deformation, the volume of the fluid and the temperature, and (2) the free 

energy of the fluid, which depends on the mass of the fluid, the volume of the fluid and the 

temperature. From this relation it follows that the volume of the fluid is a function of the skeleton 
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deformation, the mass of the fluid and the temperature. In section 4.4.2 we will show that this 

relation can be interpreted as the minimization condition that defines local equilibrium states.  

 

 

 

 

 

  



 37 

 

3.2 CONSTITUTIVE EQUATIONS 
 

Thermodynamics with internal variables is based on the hypothesis of a local accompanying state 

(Kestin 1990; Maugin 1999), which is defined by a set of state variables. This formulation will be 

completed by an additional assumptions concerning dissipative mechanisms. The constitutive 

equations will then be derived from the free energy function of the porous material and from functions 

associated to the considered dissipative mechanisms. The constitutive equations obtained are 

thermodynamically admissible. There is a large number of material models based in this approach 

(Halphen and Nguyen 1973; Ziegler 1983; Maugin 1999; Houlsby and Puzrin 2006). 

 

 

3.2.1 State variables 

 

According to the assumptions made, the state variables that define the local accompanying state are 

 

             (3.26) 

 

where     is the Green-Lagrange strain tensor of the solid skeleton (defined in the reference 

configuration),    is the mass of constituent   per unit reference volume,   is the temperature and   is 

a set of internal variables. 

 

 

Remark 

 

 In finite strain plasticity (Halphen and Nguyen 1973; Maugin 1999; Lubliner 2008), in which  an 

intermediate local configuration is introduced, the deformation gradient tensor (from the reference 

to the current configuration) is decomposed as the product of a plastic deformation gradient (from 

the reference to the intermediate configuration) and an elastic deformation gradient (from the 

intermediate to the current configuration). In this case, in the state variables (3.26) the Green-

Lagrange strain tensor     (defined in the reference configuration) is replaced, by the elastic Green-

Lagrange strain tensor (defined in the intermediate configuration).  

 

The total free energy per unit reference volume is assumed to be a function of the state variables 

 

                (3.27) 

 

which is convex in the variables    ,    and  , and concave in  .  
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3.2.2 Entropy inequality 

 

Using assumption (3.27), the entropy inequality (3.18) becomes 

 

       
  

    
      

 
    

  

  
           

  

   
     

 

   
 

  

  
     

    
        

                           
   

 

   
 

 
        

(3.28) 

 

This inequality has the form        , with  

 

        
 
          

   
  

  
  

 

 
           

                             

       
  

    
     

  

  
     

  

   
           

     

 

where   is the vector of thermodynamic forces and   is the vector of thermodynamic fluxes. Assuming 

thermodynamic fluxes of the general form         , with 

 

               

 

where   is the field argument vector, the entropy inequality can be written in the form 
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3.2.3 Solution of the entropy inequality 

 

Edelen (1973) proved a decomposition theorem for vector-valued functions, and a corollary that has 

an immediate application to the general solution of the entropy inequality             , namely 

 

Theorem 3.2 (Edelen). Let   stand for an element of an  -dimensional vector space    with inner 

product    , let   stand for an element of a  -dimensional vector space   , and let        be a 

mapping of       into    which is continuous in   and of class    in  . Then 

 

        
       

   
         

 

          
 

   

 

             
         

      
 

         

     
   

 

 

 

 

                    
 

 

 

 

where        is unique, and        is unique to within an additive function of  . If        is of 

class    in  , then        is of class    in  , and the symmetry relations 

 
 

   

                  
 

   

                   

 

are satisfied identically in      . 

 

In order to define the vector       , the following approaches have been proposed: 

 

 Orthogonality principle. Ziegler proposed to derive the vector of forces        from a 

dissipation function        which is convex in the   by the condition that        is orthogonal to 

the surfaces                (Ziegler 1958, 1983), namely 

 

              
       

   
            

      

       
   

  

 

 

so that          is defined implicitly by this orthogonality condition.  

 

 Normal dissipation. The notion of dissipation was initially introduced by Rayleigh. Moreau 

studied the hypothesis of the existence of a dissipation potential in the framework of convex 

analysis (Moreau 1970). Halphen and Nguyen extended this approach and defined the generalised 

standard materials (Halphen and Nguyen 1973). The hypothesis of normal dissipation assumes the 

existence of a dissipation potential        which is convex with respect to the   such that 

 

        
       

   
 

 

If            can be inverted with respect to the  , so that           , this is equivalent to 

the existence of a dissipation potential         which is convex with respect to   such that 
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The functions        and         are Legendre transforms of each other. 

 

With the help of Theorem 3.2, we can analyze in which cases the orthogonality principle and the 

normal dissipation hypothesis are equivalent (see also Bataille et al. (1979)). 

 

Corollary 3.3. Let        be a dissipation function and let         be the vector obtained using the 

orthogonality principle 

 

              
       

   
            

      

       
   

  

 

 

Then there exists a dissipation potential         for the vector         

 

        
        

   
 

 

i.e., the orthogonality principle and the hypothesis of normal dissipation are equivalent, if and only if  

 

      

       
   

  

       

   
  

        

   
  

 

 

 

 

and in this case the dissipation potential         is given by  

 

                
  

 

 

 

 

 

to within an additive function of  . 

 

Proof. By Theorem 3.2, the vector         can be decomposed as follows 

 

        
        

   
         

 

where  

 

                     
 

 

    
       

        
   

   

        

   
  

 

 

         
  

 

 

 

 

                
       

   
 

      

       
   

  

       

   
  

        

   
  

 

 

 

 

       is unique to within an additive function of   and         is unique. Thus 

 

        
        

   
 

 

if and only if          . ∎ 
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Because of the restriction on the dissipation function        of Corollary 3.3, in general the 

orthogonality principle and the hypothesis of normal dissipation are not equivalent. However, we have 

the following result. 

 

Corollary 3.4. If the dissipation function        is homogeneous of degree   in the  , so that  

 

                 
 

then the orthogonality principle and the hypothesis of normal dissipation are equivalent, and the 

dissipation potential is given by 

 

        
 

 
       

 

to within an additive function of  . 

 

Proof. Derivation of                  with respect to   at     and with respect to    yield 

 
       

   
           

        

   
     

       

   
 

 

which, when used in the expressions of         and         of Corollary 3.3, yield 

 

                 
  

 

 

 

              
 

 

 
 

 
       

        
 

 

       

   
      

       

   
  

 

 

 
       

   
 

 

 
        

 

 

    

 

so that, in this case, the orthogonality principle is equivalent to the hypothesis of normal dissipation. ∎ 

 

 

Remarks 

 

 The orthogonality principle and the hypothesis of normal dissipation can be extended to the 

framework of convex analysis, whereby the dissipation function or the dissipation potential 

function are proper lower semicontinuous convex functions (Moreau 1970; Halphen and Nguyen 

1973; Eve et al. 1990; Maugin 1999). This is the case of rate-independent materials, whose 

dissipation function is homogeneous of degree   in the  , so that it is not differentiable at    .  

 

 If the dissipation function        is the sum of dissipation functions         , where the set of    
is a partition of  , so that each          is associated to a dissipation mechanism, then the 

orthogonality principle can also be applied separately to each of them. 

 

 If the dissipation potential        is the sum of dissipation functions         , where the set of 

   is a partition of  , so that each          is associated to a dissipation mechanism, then the 

hypothesis of normal dissipation can also be applied separately to each of them. 
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3.2.4 Dissipative mechanisms  

 

In the dissipation inequality (3.28), the dissipation   is the sum of the dissipations due to three 

mechanisms: 

 

 Dissipation     due to changes in the local equilibrium state (vanishes whenever      
 
,     , 

    
  and      vanish). 

 

         
  

    
      

 
    

  

  
           

  

   
     

 

   
 

  

  
     

 

 Dissipation     due to mass flow of constituent   through the solid skeleton (vanishes whenever 

the fluid mass flow   
    vanishes). 

 

    
    

        
                           

 

 Dissipation     due to heat flow (vanishes whenever the heat flow    vanishes). 

 

       
 

 
      

 

We make the following assumptions: 

 

 The three dissipation mechanisms are uncoupled, so that the dissipation due to each of them is non-

negative 

 

                           
 

 In the dissipation due to changes in the local equilibrium state    , only the terms corresponding to 

changes in the internal variables   produce dissipation, so that the coefficients of      
 
,      and 

    
   vanish. This yields the following state laws 

 

    
  

    
             

   
  

  
             

   
  

   
             

(3.29) 

 

Additionally, it is assumed that                          and                       

                      for    , so that the ensuing constitutive equations are rate-independent. 

 

 The mass flow of constituent   with respect to the solid skeleton is a normal dissipative mechanism 

with a dissipation potential      of the form 

 

          
                                        

 
 

 
      

                               
                    

 
                           

 

where     
  

             is a symmetric, positive-definite matrix, so that 

 

  
         

                    
 
                           (3.30) 
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which is analogous to Darcy's law. 

 

 The heat flow is a normal dissipative mechanism with a dissipation potential     of the form 

 

      
 

 
                    

 

 
  

 

 
         

  
              

 

 
       

 

where    
  

             is a symmetric, positive-definite matrix, so that 

 

       
  

              
 

 
       (3.31) 

 

which is analogous to Fourier's law. 

 

It is possible to generalize these assumptions so that couplings between mass flows of constituents and 

heat flow would be taken into account. 
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3.3 PRESSURES OF FREE FLUIDS 
 

 

3.3.1 Free energy of a porous material with free fluids 

 

Free fluids are assumed to behave as if they were outside of the porous material. The free energy of 

the porous material with free fluids per unit reference volume is assumed to be of the form 

 

                                                      
 

 (3.32) 

 

where                      is the free energy of the solid skeleton, interfaces, common lines and 

common points per unit reference volume (which does not depend on the     of the free fluid phases), 

              is the free energy of the fluid phase   per unit reference volume (which only depends 

on its own   ,     and  ) and   ranges over all the free fluid phases. 

 

The state equations of the free fluid   follow from the free energy                (Callen 1985) 

 

    
    

   
            

    
    

    
            

    
    

   
            

(3.33) 

 

where    is the pressure,     is the chemical potential of constituent   and    is the entropy per unit 

reference volume. Moreover, from these equations follow the relations                 ,     

               and                 . Use of these relations in the Gibbs-Duhem relation 

(Callen 1985) 

 

               
 

         (3.34) 

 

and integration of the resulting differential equation yields a relation between   ,     and   , so that 

 

              (3.35) 

 

This result allows to determine the pressure of the fluid phase   from the chemical potentials of its 

constituents and the temperature. 
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3.3.2 Pressures of free fluids within a porous material 

 

From (3.32) and (3.33)2 it follows 

 

   

    
                 

    

    
                         

 

where      (the common temperature) has been used. Further, by Lemma 3.1 and the constitutive 

equation (3.29)3, it follows that at local equilibrium states 

 

   

    
                                         

  

   
                            

 

Combination of the two last results yields that at local equilibrium states the chemical potentials     

of the   free fluid and the chemical potentials    of the porous material coincide 

 

                                                     

 

Using        and      in (3.35) yields the pressure    of the   free fluid within the porous 

material as a function of the chemical potentials    and the temperature   of the porous material 

 

            (3.36) 

 

Note that the pressure    of the   free fluid within the porous material is defined provided that there is 

  free fluid in the porous material (i.e.,     ). In contrast, the chemical potential    of constituent   

in the porous material is defined provided that there is constituent   in the porous material (i.e., 

    ). 

 

 

Remarks 

 

 As already mentioned, averaging of the microscale distribution of an intensive variable requires a 

weighting function, such that for uniform distributions averaging yields the uniform value of the 

distribution. At the considered local equilibrium (neglecting gravity forces), a fluid subjected to 

interaction forces has a non-uniform distribution of pressure but has uniform distributions of 

chemical potentials. Thus, whereas the definition of a macroscale pressure is questionable, the 

definition of a macroscale chemical potential is natural. 

 

 In unsaturated soil mechanics, matric suction is defined as the gas pressure minus the liquid 

pressure. This definition requires that the gas pressure and the liquid pressure can be defined at the 

macroscale. For fine-grained soils, such as clays, in which the area of the particle surfaces per unit 

volume is very large, strong short-range interaction forces bind liquid water to the soil skeleton. 

For low water content, there is no free liquid water, so that the liquid water pressure cannot be 

defined. In contrast, the chemical potential of water can be defined. 
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3.3.3 Effective stresses 

 

If there is only one fluid phase   whose behaviour is assumed to be the same as if it were outside of 

the porous material and interfaces can be neglected, then the free energy of the porous material per 

unit reference volume is (cf. (3.32))  

 

                                                          (3.37) 

 

where        . If the solid skeleton is incompressible and there is no mass exchange between the 

solid skeleton and the fluid, then    and     are constant          and           . Since 

 

                  
   

        

 

it follows that                             . As a result, the total free energy of the 

porous material per unit reference volume becomes 

 

                                              (3.38) 

  

where we have set 

 

                                              

                                        

 

Derivation of (3.38) with respect to     yields 

 
  

    
              

    

    
          

   

   
               

   

    
      

 

and,  using the relations 

 
   

   
                         

  

    
            

        
 

 

 

it follows 

 
    

    
          

  

    
                                      

         
        

 
 (3.39) 

 

where              
        

 
 is the 2nd Piola-Kirchhoff tensor that corresponds to the Cauchy tensor 

     . If we identify         with the 2nd Piola-Kirchhoff stress tensor that corresponds to the 

Cauchy stress tensor of the porous material    , then the tensor           is the 2nd Piola-Kirchhoff 

stress tensor that corresponds to Terzaghi's effective Cauchy stress tensor           (Coussy 2004, 

p. 53). 

 

More generally, if    depends on    , then                        and it follows 

 
    

    
          

  

    
              (3.40) 
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If we identify         with the 2nd Piola-Kirchhoff stress tensor that corresponds to the Cauchy 

stress tensor of the porous material    , then the tensor           is the 2nd Piola-Kirchhoff stress 

tensor that corresponds to a generalization of Terzaghi's effective Cauchy stress tensor, of the form 

                (In Coussy 2004, for non-linear thermoporoelasticy with infinitesimal 

transformations, in Eq. (4.13a)                                , the tensor           

       is a tangent thermoporoelastic property denoted Biot's tangent tensor. In the case of linear 

isotropic thermoporoelasticity           is constant and in Eq. (4.26) Biot's effective stress is defined 

by    
           ). 

 

Note that in expressions (3.39) and (3.40), the stress tensor           depends only on          , so 

that (assuming invertibility)                       , which justifies to qualify the stress tensor 

          as effective. The previous developments demonstrate that the existence of an effective 

stress tensor of a porous material with only one free fluid is a consequence of the elimination of    as 

an independent variable. 
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4 UNSATURATED SOILS 
 

 

4.1 PRELIMINARIES 
 

 

4.1.1 Basic assumptions 

 

The thermodynamic framework for porous materials will be applied to unsaturated soils. We will 

consider the following restrictions 

 

 Infinitesimal transformations. The current configuration is approximated by the reference 

configuration, the Green-Lagrange strain tensor     is approximated by the linearized strain tensor  

   , the 2nd. Piola-Kirchhoff stress tensor     is approximated by the Cauchy stress tensor    . 

 

 Constituents. We assume that in the porous material there are three species: solid mineral, water 

(liquid, vapor) and air (gas or dissolved). The gas phase is a mixture of water vapor and gas, which 

behave as ideal gases and as if it were outside the porous material. The liquid phase is a mixture of 

water and dissolved air, but the effect of the dissolved gas in the mechanical behavior of the porous 

material will be neglected. Liquid water can be subject to interaction forces with the solid skeleton 

(vicinal water) or can be free from these interactions (free water). The soil skeleton is made of the 

solid mineral and the vicinal water. 

 

 Environmental conditions. We assume that the temperature   and the free gas pressure    are 

constant, corresponding to atmospheric conditions. Since at ambient atmospheric conditions the 

saturation water vapor pressure is a small fraction of the atmospheric pressure (for instance, at 

                   as           the saturation water vapor pressure is     
                 ), it follows that               . Since               , it 

follows that if   and     are constant, then     is constant. Thus we will assume that both   and 

   are constant. 

 

 Material behavior. The solid skeleton is assumed to behave as a hardening elastoplastic material, 

with an additive decomposition of the small strains tensor     as the sum of an elastic component 

   
  and a plastic component    

 
. The variation water mass per unit reference volume    with 

respect to water mass in the reference configuration     decomposes as the sum of an elastic 

water content   
  and a plastic water component   

 
. Consequently 

 

        
     

 
 

         
    

 
 

 

 Legendre transform of the free energy. The Legendre transform of the free energy per unit 

reference volume                     
 
   

 
  with respect to the mass of air    is a potential 

                    
 
   

 
 , which is convenient for conditions with        (the mass of 

solid per unit reference volume remains constant)        and     . For simplicity, in what 

follows the potential                          
 
   

 
  will be denoted by             

 
   

 
  (an 

abuse of the already used function symbol    and will be referred to as the free energy (an abuse of 

the already used denomination "free energy"). 
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4.1.2 Brief summary of convex analysis results 

 

We give a brief summary of convex analysis results, which has been adapted from Eve et al. (1990). A 

thorough exposition of convex analysis with proofs of the quoted results can be found in Rockafellar 

(1970). 

 

 

4.1.2.1 Some definitions used in convex analysis 

 

We denote by   a finite-dimensional vector space and by    the dual vector space of  . For       

and    , the action of    on   is denoted by     . 

 

Let   be a subset of  . The interior and boundary of   are denoted by       and     , respectively.   

is convex if, for any       and      ,            . The normal cone to a convex set at 

 , denoted by      , is defined by 

 

                                     
 

Note that if         then          , and if        then       is the cone of outer normals at  . 

 

Let   be a function whose domain is   and whose values are real or   . The effective domain of   is 

defined by 

 

                  
 

The function   is convex if 

 

                                                      

 

positively homogeneous if 

 

                                 
 

and lower semicontinuous (lsc) if 

 

      
   

           

 

for any sequence      converging to  . 

 

A convex function is proper if         for at least one   and         for every  . 

 

 

4.1.2.2 Legendre-Fenchel transforms and subdifferentials 

 

Let   be a proper lsc convex function on  . The Legendre-Fenchel conjugate function of   is the 

function on    defined by 

 

                          
 

If   is proper, convex and lsc then so is   , and 
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Given a convex function   on  , for any     the subdifferential of   at   is the subset of    defined 

by 

 

                                      
 

Note that         if       . If   is differentiable at  , then              . 
 

A proper lsc convex function   and its dual    satisfy Fenchel's inequality  

 

                                 
 

Moreover, the following equivalences hold 

 

                                                      
 

 

4.1.2.3 Some functions used in convex analysis 

 

For any set    , the indicator function    of   is defined on   by 

 

       
    

     
   

 

and the support function    of   is defined on    by 

 

    
                 

 

A function   on   is a gauge if        for all    ,        and is convex, positively 

homogeneous and lsc. 

 

 

4.1.2.4 Some results from convex analysis 

 

Lemma 4.1. Let   be a gauge on   and define the closed convex set       by 

 

                         
 

Then (a)   is the support function of  ,     ; (b) the function    conjugate to   is the indicator 

function of  ,      ; (c) the set   is the subdifferential of   at the origin        ; (d)    
                      , where        is the normal cone to   at   . 

 

Lemma 4.2. Let   be nonnegative and convex, with        and   a point in the interior of      

such that       . Set                . Then          if and only if there exists     such 

that          . 
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4.2 ELASTOPLASTIC FRAMEWORK 
 

Throughout this section reference is made to works on convex analysis (Rockafellar 1970) and on 

application to thermodynamics with internal variables (Halphen and Nguyen 1973; Ziegler 1983; 

Maugin 1999; Eve et al. 1990; Houlsby and Puzrin 2006). 

 

 

4.2.1 Free energy function 

 

We assume that the free energy per unit reference volume is a smooth convex function 

 

              
 
   

 
  (4.1) 

 

We define the elastic strain tensor    
  and the elastic water content   

 by 

 

   
         

 
 

  
             

 
 

(4.2) 

 

where     is the water mass per unit reference volume in the reference configuration. By the state 

equations, the stress tensor      and the water chemical potential    are given by 

 

    
  

    
           

 
   

 
  

   
  

   
           

 
   

 
  

(4.3) 

 

Note that, since   is a smooth convex function in     and   , relations (4.3) can be solved for     and 

  , so that 

 

                  
 
   

 
 

                
 
   

 
 
 (4.4) 

 

We define the generalized stress tensor      and the generalized water chemical potential     by 

 

      
  

    
            

 
   

 
  

     
  

   
            

 
   

 
  

(4.5) 
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4.2.2 Dissipation function 

 

We assume a dissipation function of the form         
 
 

 
    

 
 
 
    

     
 
   

    
 
 . Considering 

     
 
 

 
    

 
 
 
  as variables and     

     
 
   

    
 
  as parameters, the dissipation function becomes a 

function        
 
 

 
    

 
 
 
            

 
   

 
  on the space           

   
 

 
 , where        is the 

space of plastic strain rates     
 
 

 
 and  

   
 

 
  is the space of plastic water mass rates    

 
 
 
 . We will 

assume that this function on           
   

 
 
  is convex, positively homogeneous, lower 

semicontinuous and satisfies 

 

       
 
 

 
    

 
 
 
            

 
   

 
                   

 
 

 
    

 
 
 
          

   
 

 
  

                  
 
   

 
    

(4.6) 

   

Thus,        
 
 

 
    

 
 
 
            

 
   

 
  is a gauge on           

   
 

 
 . 

 

We define the closed convex subset              
 
   

 
  of the space            

, where     

        
 
 is the space of generalized dissipative stresses      and     

   
   

 
 
  

 
 is the space of 

generalized dissipative water chemical potentials    , by 

 

             
 
   

 
                      

          
 
 

 
        

 
 
   

         
 
 

 
    

 
 
 
            

 
   

 
        

 
 

 
    

 
 
 
          

   
 

 
   

(4.7) 

 
Then, by Lemma 4.1, it follows 

 

       
 
 

 
    

 
 
 
            

 
   

 
  is the support function of              

 
   

 
  

 

                        
 
   

 
  is the indicator function of              

 
   

 
  

 

             
 
   

 
                     

 
   

 
  

 

                   
 
 

 
    

 
 
 
            

 
   

 
   

     
 
 

 
    

 
 
 
   

             
 

   
 

 
             

(4.8) 

 

Further, for any                    
 
 

 
    

 
 
 
            

 
   

 
 , we have the relation 

 

       
 
 

 
    

 
 
 
            

 
   

 
           

 
 

 
        

 
 
 
 (4.9) 

 

In particular, if        
 
 

 
    

 
 
 
            

 
   

 
  is differentiable at      

 
 

 
    

 
 
 
 , then the 

subdifferential contains only the gradient, so that 
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(4.10) 

 

in agreement with Euler's theorem, and  

 

     
  

     
 
 

       
 
 

 
    

 
 
 
            

 
   

 
  

    
  

    
 
 
       

 
 

 
    

 
 
 
            

 
   

 
  

(4.11) 
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4.2.3 Ziegler's orthogonality principle 

 

We will apply Ziegler's orthogonality principle (Ziegler 1983), with the free energy function   

            
 
   

 
  and the dissipation function         

 
 

 
    

 
 
 
           

 
   

 
 , namely 

 

  
  

    
   

  

   
             

 
   

 
          

 
 

 
    

 
 
 
            

 
   

 
  (4.12) 

 

which, by Lemma 4.1, is equivalent to 

 

     
 
 

 
    

 
 
 
   

             
 

   
 

 
   

  

    
   

  

   
             

 
   

 
   (4.13) 

 

Note that, if                            
 
   

 
  then  

             
 

   
 

 
                   and if 

                          
 
   

 
  then  

             
 

   
 

 
                  . 

 

Following Eve et al. (1990), given the closed convex subset              
 
   

 
  of         

, we 

define a function on         
, called the canonical yield function, by 

 

                        
 
   

 
                                     

 
   

 
   (4.14) 

 

where               
 
   

 
                                       

 
   

 
  . From its definition, it 

follows that                         
 
   

 
  is a gauge on         

 and its level set at   is equal to 

             
 
   

 
 , i.e. 

 

                                    
 
   

 
                  

 
   

 
  

 

Consequently, by Lemma 4.2, relation (4.13) is equivalent to 

 

                           
 
   

 
       

 
 

 
    

 
 
 
        

                          
 
   

 
       

 
 

 
    

 
 
 
                            

 
   

 
  

(4.15) 

 

where    . 

 

 

Remark 

 

 Eve et al. (1990) note that the canonical yield function and the dissipation function are polars of 

each other. The canonical yield function minus   is   on the boundary of the elastic region, as is 

usually assumed in the theory of plasticity.  

 

We complete the formulation with the consistency condition, which states that at            
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   (4.16) 

 

where     
 
 is the change in                         

 
   

 
  associated with the change in            

accompanying      
 
 

 
    

 
 
 
 , so that either     and    

 
   or     and     

 
  . Note that 

    
 
   is excluded because            must remain in              

 
   

 
 . 

 

We transform the yield function                         
 
   

 
  on         

, where     is the space of 

generalized dissipative stresses and     
 is the space of generalized dissipative water chemical 

potentials    , to the yield function   on       
, were    is the space of stresses and    

 is the 

space of  water chemical potentials, as follows 

 

                          
 
   

 
                     

 
   

 
                

 
   

 
     

                                                                                
 
   

 
               

 
   

 
     

 
   

 
   

(4.17) 

 

where, by Ziegler's orthogonality principle (4.12), we have set                      , and we have 

used relations (4.4). 

 

Note that the yield function   is defined on       
 and depends parametrically on     

 
   

 
  so that, 

in general, the boundary of the yield surface depends on stresses    , water chemical potentials    and 

parametrically on     
 
   

 
 .  In this respect, it should be mentioned that the LC (for loading-collapse) 

curve of the BBM model (Alonso et al. 1990) depends on the net pressure, suction and parametrically 

on the plastic volumetric strain, a feature that allows to model both swelling upon wetting at low 

stresses and collapse upon wetting at high stresses, as is experimentally observed.  

 

 

Remark 

 

 As explained, for instance in Ziegler (1983), Collins and Houlsby (1997) and Houlsby and Puzrin 

(2006), whereas the elastic region in the space of dissipative stresses is convex and the plastic flow 

direction is normal to its surface, in the space of true stresses none of these features are in general 

preserved. This provides more modeling flexibility (Collins and Kelly 2002; Collins and Hilder 

2002). 
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4.2.4 Multisurface plasticity 

 

We will use the framework of multisurface plasticity and we will follow Simo and Hughes (1998). 

 

We will assume that the convex elastic region is defined by 

 

             
 
   

 
                                       

 
   

 
                      (4.18) 

 

where the functions                          
 
   

 
  are smooth, and define independent constraints 

                         
 
   

 
    at the boundary of the elastic region. Consequently, the boundary 

of the elastic region is given by 

 

 

                
 
   

 
  

                                      
 
   

 
                       

(4.19) 

 

so that it is piecewise smooth. 

 

At a point            of the boundary of the elastic region              
 
   

 
  any element of the 

normal cone  
             

 
   

 
 
 can be expressed as a linear combination of the gradients of the 

functions                          
 
   

 
  with coefficients     , so that expression (4.13) becomes  

 

     
 
 

 
    

 
 
 
      

    
     

 
    
    

    
  

    
   

  

   
              

 
   

 
   

 

   
 (4.20) 

 

The consistency condition will be applied to each of the constrains, so that at            

               
 
   

 
  such that                          

 
   

 
    the consistency condition reads 

 

       
 
   (4.21) 

 

where      
 
 is the change in                          

 
   

 
  associated with the change in            

accompanying      
 
 

 
    

 
 
 
 , so that, either      and      

 
   or      and      

 
  . Note 

that      
 
   is excluded because            must remain in              

 
   

 
 .  

 

For            on the boundary of the elastic region, we define the following sets of indices 

 

                                         
 
   

 
     

                  
 
                      

 
   

 
     

(4.22) 

 

Note that if       , then      
 
   because            must remain in the elastic region.  

By (4.20), which we rewrite in the form 

 

     
 
 

 
    

 
 
 
      

    
     

 
    
    

  
 

   
 (4.23) 
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we need to compute the multipliers             . The multipliers of the constraints not 

contained in the set      will be set to zero, because those constraints are not active. The multipliers of 

the constraints contained in the set     , will be computed using the corresponding consistency 

conditions (4.21). 

 

If      , then we proceed to compute      
 
. First we apply the chain rule 

 

     
 
 

    
     

      
 
 

    
    

       
    
    

     
 
 

    
   

     
    

    
     

 
 

 
 

    

   
    

 
 
 
 

 

use the relations 
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Next we use the expressions 

 

    
 

 
 
    

    

     
      

 

   
 
 
 
    

    

    
      

 

 

where we have used      for       , and we arrive at 

 

     
 
  

  
    
     

     

    
 

    
    

    
    

 
    
    

      
   

    
     

     

   
 

    
    

    
    

 
    
   

       

       
    
     

     

    
  

    
    

    

    
  

    

    
  

    

     
  

    
     

     

   
  

    
    

    

   
  

    

   
  

    

    
   

      

 

 



 58 

Consequently, the consistency condition      
 
   reads 

 

    

      

      (4.24) 

 

where 

 

    
    
     

     

    
 

    
    

    
    

 
    
    

      
   

    
     

     

   
 

    
    

    
    

 
    
   

       

      
    
     

     

    
  

    
    

    

    
  

    

    
  

    

     
  

    
     

     

   
  

    
    

    

   
  

    

   
  

    

    
 

 

Thus, in order to compute the multipliers    of the constraints contained in the set     , we must solve 

the system of equations (4.24). However, in order for the solution to be valid, all the multipliers must 

be nonnegative.  

 

To proceed further, in Simo and Hughes (1988) it is assumed that the matrix                is 

positive definite. With this assumption, they conclude the following loading/unloading conditions: (1) 

if      for all        then all      (i.e. elastic response); and (2) if      for at least one 

       then not all      (i.e. elastoplastic response). They also make special note that, if several 

constraints are active, the condition      does not guarantee that     is ultimately active. 
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4.3 SOIL REGIMES 
 

The structure at the microscale of a soil determines the behavior at the macroscale. In the first place, 

there is a solid skeleton, which is made of solid particles and eventually of vicinal liquid, which is 

tightly bonded to them by short-range interaction forces. Additionally, the soil can contain liquid or 

gas not subjected to short-range interaction forces with the solid particles, but whose presence or 

absence have an influence on the soil behavior.  

 

There are several mechanisms that bond the water to the soil skeleton (Lu and Likos 2004). At relative 

low water content, water is mainly in thin films on the particle surfaces, due to short-range interaction 

forces. At relative high water content, water is mainly contained in the pores left by the particles due 

to capillary forces. The relation between the water content and the water chemical potential is the soil-

water characteristic curve (SWCC), and its shape depends on the type of soil. In fine-graded soils, 

such as clays, with a large particle surface, much water is in thin films, while in coarser soils, such as 

sands, very little water is in thin films. 

 

McQueen and Miller (1974) proposed a conceptual model for describing the general shape of a 

SWCC, which was defined by 3 straight-line segments on a semi-log plot of suction versus moisture 

content ranging from zero to saturation: (1) tightly adsorbed segment              (water 

retention by molecular bonding); (2) adsorbed film segment              (water retention by 

short-range liquid-solid interaction); and (3) capillary segment            (water retention by 

capillary). 

 

For modeling purposes, we will distinguish 3 soil regimes: 

 

 Saturated regime (free liquid, no free gas). In this regime the pressure of the free liquid is defined. 

If the soil skeleton (solid particles and vicinal liquid) is incompressible and there are no phase 

exchanges, Terzaghi's effective stress principle holds. If the quotient of the bulk modulus of the soil 

skeleton and the bulk modulus of the skeleton matrix is not negligible, Biot's effective stress may 

conveniently replace Terzaghi's effective stress (Coussy 2004).    

 

 Capillary regime (free liquid, free gas). In this regime the pressure of the free liquid and of the 

free gas are defined. The SWCC exhibits an hysteretic behavior. The presence of the liquid-gas 

interface increases the stress between the particles, which stiffens and hardens the soil, so that upon 

wetting at low loads the soil swells elastically and at high loads the soil collapses plastically 

(Alonso et al. 1987).  

 

 Dry regime (no free liquid, free gas). In this regime the pressure of the gas phase is defined, but 

the liquid pressure is not defined. The SWCC does not exhibit an hysteretic behavior. Vicinal fluid 

is progressive lost. The soil properties depend on the water chemical potential. 

 

In all these regimes the basic state variables, namely, the deformation of the skeleton, the masses of 

species and the temperature are the same. However, the different features of the soil behavior in these 

regimes seem difficult to include in a general constitutive model. We propose therefore to use a 

different constitutive model for each of these regimes. Further, at the change of regime, the 

corresponding constitutive models will be linked by the condition of continuity of the basic variables 

and of the total stress tensor and of chemical potentials. 

 

In order to establish the conditions of change of regime, we propose to use two values of the water 

chemical potential:     that marks the transition between the saturated and the capillary regimes and 

    that marks the transition between the capillary and the dry regimes. Setting to   the water 

chemical potential at atmospheric conditions, the value       corresponds to the air entry value and 

the value         corresponds to the vaporization of free liquid water. 
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Remarks 

 

 If we plot the elastic region in the space (total) pressure   - water pressure    (recall that     
         ) near the water saturation limit, we can see that (1) the compression yield pressure 

increases with increasing water pressure in the saturated zone (Terzaghi's effective principle) but 

decreases with increasing water pressure in the unsaturated zone; and (2) the extent of the elastic 

region is constant in the saturated zone (Terzaghi's effective principle) but increases in the 

unsaturated zone. Indeed, in the unsaturated state the liquid-gas interfaces tends to stabilize the 

contacts of the soil grains (Gens 2010), and these interfaces disappear when saturation is reached.   

 

 Groenevelt and Parlange (1974) present experimental data on a swelling soil at zero load pressure, 

and note that the curve        is not tangent to     at the air entry point, where         is 

the moisture ratio and          is the void ratio. They show that this discontinuity can be 

associated with a second order phase transition in the sense of Ehrenfest (i.e. continuous molar 

Gibbs function with continuous first order derivatives and discontinuous second order derivatives 

(Callen 1960, Sect. 9.9)). They say that this phase transition is linked to the appearance and 

disappearance of the gas phase due to a small change in the chemical potential of water. 

 

In what follows we will show examples of free energy and dissipation functions for each of the soil 

regimes. The corresponding constitutive models will follow by use of the state laws and Ziegler's 

orthogonality principle. 
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4.3.1 Preliminaries 

 

For simplicity, we will consider isothermal conditions, no chemical reactions, small strains and 

volumetric deformations of the solid skeleton. The free energy function per unit reference volume   is 

assumed to be of the form 

 

                    
 
   

 
  

 

where    is the volumetric deformation of the solid skeleton,    is the mass of mineral per unit 

reference volume,    is the mass of water per unit reference volume,    is the mass of air per unit 

reference volume,   is the temperature,   
 

 is the plastic volumetric deformation and   
 

 is the plastic 

water mass per unit reference volume. 

 

As already mentioned, we will assume that the temperature   and the air chemical potential    are 

constant, corresponding to usual atmospheric conditions. This is approximately equivalent to constant 

gas pressure (i.e. the partial water vapor pressure is neglected). It was also mentioned that, for constant 

air chemical potential   , it is convenient to perform the Legendre transform of the free energy 

                  
 
   

 
  with respect to the mass of air per unit reference volume    to get an 

equivalent thermodynamic potential                   
 
   

 
  per unit reference volume. For 

notational convenience, since      (isothermal conditions),        (no chemical reactions) and 

       (air chemical potential is assumed constant), we define a new function 

 

          
 
   

 
                       

 
   

 
  

 

for which, for simplicity, we use the symbol   (an abuse of an already defined symbol) and we 

denominate it the "free energy per unit reference volume" (an abuse of an already defined 

denomination). 

 

For each of the considered regimes, the constitutive model follows from the free energy function   

and the dissipation function   by use of Ziegler's orthogonality principle: 

 

            
 
   

 
  

 

       
 
 
 
    

 
 
 
         

 
   

 
  

(4.25) 

 

where   is a smooth convex function of   ,   ,   
 

 and   
 

, and   is a proper, convex, lower 

semicontinuous positively homogeneous nonnegative function (i.e. a gauge function) of    
 
 
 
 and 

   
 
 
 
, which depends also on   ,   ,   

 
 and   

 
. 

 

From the free energy   follow the constitutive laws of the (total) pressure   and of the water chemical 

potential    

 

   
  

   
         

 
   

 
  

   
  

   
         

 
   

 
  

(4.26) 

 

and from Ziegler's orthogonality principle follow the constitutive laws of the rate of plastic volumetric 

strain    
 
 
 
 and of the rate of the plastic water mass    

 
 
 
 

 

  
  

   
   

  

   
      (4.27) 
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where    denotes the subdifferential of   with respect to    
 
 
 
 and    

 
 
 
. 

 

We will make the following simplifying assumptions: 

 

 Vicinal water. It is subjected to interaction forces with the skeleton, so that it is tightly bond to the 

soil skeleton, and it is only mobilized in the dry regime. In the saturated and capillary regimes it is 

constant   
     

   ; in the dry regime it is variable and     
     

 . 

 

 Free water. It is not subjected to interaction forces with the skeleton. The mass of free water   
  is 

the sum of the initial (reference) free water    
 , the elastic component   

  and the plastic 

component   
 

, i.e.   
     

    
 

   
 . In the saturated and capillary regimes it is variable 

  
   ; in the dry regime it is zero   

   . 

 

 Saturated regime. The mass of vicinal water is constant   
     

   ; the mass of free water is 

variable   
 >0. 

 

 Transition between the saturated and the capillary regimes. Occurs at       ; the mass of 

vicinal water is constant   
     

   ; the mass of free water is variable   
   . 

 

 Capillary regime. The mass of vicinal water is constant   
     

   ; the mass of free water is 

variable   
   . 

 

 Transition between the capillary and the dry regimes. Occurs at       , with        ; 

the mass of vicinal water is constant   
     

   ; the mass of free water is zero   
   .  

  

 Dry regime. The mass of vicinal water is variable     
     

 ; the mass of free water is zero 

  
   . 

 

 

Remarks 

 

 If the mass of vicinal water can be neglected, then the dry regime disappears. This would be the 

case of sands and gravels. 

 

 The transition between regimes involves a change of model, but the variables   ,    and   
 
 are 

common to all regimes and the variable   
 

 is common to the saturated and capillary regimes but 

disappears in the dry regime. In the saturated regime   
 

 is linked to   
 
 

 

 At the transition between regimes, the free energy and its first derivatives with respect to    and 

   (i.e.    and   ) are required to be continuous. 
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4.3.2 Saturated regime 

 

The reference configuration will be assumed to be at the water chemical potential     corresponding 

to the transition between the saturated regime and the capillary regime. We will assume that the solid 

skeleton, which is made of solid mineral and vicinal water, is incompressible and there is no mass 

exchange between the vicinal water and the free water, both of which will be assumed to have only the 

species water. In these conditions, Terzaghi's effective stress principle holds. Recall that we have also 

assumed small strains.  

 

From these assumptions, it follows 

 

                           
    

       
                                            

(4.28) 

 

where   and    is the Jacobian and the volumetric deformation of the skeleton motion,   
  is the 

volume of free water per unit reference volume and    
  is the corresponding value at the reference 

configuration. Consequently 

 

     
     

  (4.29) 

 

and the density of free water is 

 

  
  

  
 

  
 

 
  

 

      
  (4.30) 

 

where   
  is the mass of free water per unit reference volume. 

 

The volumetric strain of the soil skeleton    and the mass of water per unit reference volume    are 

assumed to decompose as follows 

 

     
    

 
 

      
    

     
     

    
    

 
 

(4.31) 

 

were   
  and   

 
 are the elastic and plastic volumetric strains,    

  and    
  are the mass of vicinal 

water and the mass of free water at the reference configuration per unit reference volume, and   
  and 

  
 

 are the elastic and plastic variations of the mass of water per unit reference volume with respect to 

the reference configuration (Coussy 1995).  

 

The plastic volumetric strain   
 

 is the volumetric strain    after (virtual) unloading from the actual 

state         to the reference state          . The plastic water mass per unit reference volume   
 

 

is the variation of the total water mass per unit reference volume    with respect to the reference 

water mass per unit reference volume        
     

  after (virtual) unloading from the actual 

state         to the reference state          . Since it is assumed that the solid skeleton (solid 

mineral and vicinal water) is incompressible and no mass exchange with the free water occurs, it 

follows that the variation of the total water mass        is equal to the variation of free water 

mass   
     

 . Since the free water density is a function only of the water chemical potential, it 

follows that after (virtual) unloading the free water density     is fixed by the water chemical 

potential at the reference configuration    . Consequently, on (virtual) unloading (i.e.   
    and 

  
   ), from relations (4.8) it follows 

 

  
 

          
     

        
     

              
 
 

 

so that    
 
 
 
 and    

 
 
 
 are related by (Coussy 1995) 
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 (4.32) 

 

At       , let      
 
    be the yield pressure in compression and let      

 
    be the yield 

pressure in extension. For notational convenience, we define 

 

         

    
 
  

 

 
      

 
       

 
         

    
 
  

 

 
      

 
       

 
   

(4.33) 

 

 

4.3.2.1 Free energy function 

 

We assume that the free energy has the following form 

 

          
 
   

 
          

 
          

  
 

 

        
    

  
      

 

      
   (4.34) 

 

where   
      

   is the specific (per unit mass) free energy function of free water and   
  is the 

density of free water (cf. (4.30) and (4.31)2). 

 

The pressure   and the water chemical potential    are given by 

 

   
  

   
 

   

   
       

 
     

    
      

 

      
            

 
    

  
      

 

      
   

   
  

   
   

  
      

 

      
   

      
 

      
 

   
    

      
 

      
     

  
      

 

      
   

(4.35) 

 

where    is (Terzaghi's) effective pressure,   
      

   is the pressure function of free water and 

  
      

   is the water chemical potential function of free water. Note that (Callen 1985) 

 

  
  

 

  
 
      

    
 

  
 
  

  
  

 

  
 
    

  
 

  
 
  

 

  
 

   
    

 

  
 
  

(4.36) 

 

Thus the water chemical potential of the soil    and the chemical potential of free water are equal. 

From the expressions of   
      

   and   
      

  , it follows a relation   
    

    
   (an abuse of the 

already used function symbol   
 ), using which (4.35)1 can be written in the form 

 

   
   

   
       

 
    

      (4.37) 

 

The generalized pressure and water chemical potential are given by 

 

     
  

   
  

   

   
       

 
      

 
       

          
 
  

     
  

   
    

(4.38) 
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where (4.37) has been used. 

 

 

4.3.2.2 Dissipation function 

 

We assume that the dissipation function has the following form 

 

          
 
 
 
    

 
 
 
     

 
 
 
       

 
 
 
   

     
 
 
 
    

 
 
 
         

 
   

 
  

 

    
    

 
     

 
 
 
  

(4.39) 

 

Note that      is a closed convex one-dimensional subset of the space  
   

 
 
   

   
 

 
 . Figure 4.1a 

shows the effective domain      and the level set     of the dissipation function. Recall that, by 

the convention used in convex analysis (Rockafellar 1970), outside the effective domain the value of 

the proper lower semi-continuous convex function   is    .  
 

 

 
 
Figure 4.1. Saturated regime. a) The thin line that passes through the origin and forms an angle   with the horizontal axis 

is the effective domain      of the dissipation function and the thick segment is the level set     of the 

dissipation function; b) The gray strip that has a width of      
 
  and its axis passes through the origin and 

forms an angle of          with the horizontal axis is the effective domain       of the dual of the 

dissipation function. The two sets     and       are polars of each other (the length of the segment and 

the width of the strip are reciprocal to each other).  
 

 

Since      
     and      

 
   , it follows that 

 
 

    
    

 
  

 

 
      

 
       

 
     

 

so that   is a non-negative function. 

 

Note that   is not differentiable at any point of     . The subdifferential of   is 
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   (yield in extension) 

 

       
 
 
 
    

 
 
 
          

 
   

 
                                

 
   

            
 
                

 
                  

 

(4.40) 

    

    

    
 
  

    
 
  

  

   
 
 
 
 

  

   
 
 
 
 

a) b) 
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If    
 
 
 
  ,    

 
 
 
   (elasticity) 

 

                 
 
   

 
                 

 
                      

 
   

                                          
 
        

 
   

 

If    
 
 
 
  ,    

 
 
 
   (yield in compression) 

 

       
 
 
 
    

 
 
 
          

 
   

 
                                 

 
   

             
 
                 

 
                  

 

The Legendre-Fenchel dual    of    is the indicator function of  the subdifferential of   at the origin 

                
 
   

 
  , namely 

 

                                       
 
   

 

                     
 
   

 
    

(4.41) 

 

Figure 4.1b shows the effective domain       of this function, which is a closed convex two-

dimensional strip of the dual space          
 of the space  

   
 
 
   

   
 

 
 . By the convention used in 

convex analysis (Rockafellar 1970), outside the effective domain the value of the proper lower semi-

continuous convex function    is   . Thus, the elastic region in the space          
 is  
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(4.42) 

 

The boundary in extension is 
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(4.43) 

 

and, at any of its points, the cone of outer normals is 
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The boundary in compression is 
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(4.45) 

 

and, at any of its points, the cone of outer normals is 

 

            
 
   

 
                    (4.46) 
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4.3.2.3 Ziegler's orthogonality principle 

 

Ziegler's orthogonality principle reads 

 

  
  

   
   

  

   
           

 
   

 
         

 
 
 
    

 
 
 
          

 
   

 
  

 

where the left hand side is given by (4.38) and the right hand side by (4.40). Replacing     and     in 

(4.40) by the expressions of      and     in (4.38), we get 
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(4.47) 

 

The transform of the elastic region in the space        
 is 
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(4.48) 

 

Figure 4.2 shows the portion of the elastic region in the space        
 above the reference     

(here taken to be zero by simplicity), which corresponds to the saturated regime. Note that the 

transformation of the elastic region form the space          
 to the space        

 involves a shift 
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due to the term     
 
  and a deformation due to the term   

     , which causes that the flow 

directions are not orthogonal to the boundary of the elastic region. 

 

 

 
 
Figure 4.2. Saturated regime. Elastic region in the space        

 (here     has been taken to be zero by simplicity). 

At the transition of regime,      
 
  is the yield pressure in compression and      

 
  is the yield pressure in 

extension. Arrows indicate flow directions, which are not normal to the boundary (they are normal to the 

boundary of the elastic region in the space          
).  

 

 

The boundary in extension is 
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(4.49) 

 

and, at any point on it, the flow rule is given by the cone of outer normals at the corresponding point in 

the space          
, namely  

 

    
 
 
 
    

 
 
 
                  (4.50) 

 

The boundary in compression is 

 

          
 

 
      

 
       

 
    

 

 
      

 
       

 
   

or 

       
 
         

(4.51) 

 

and, at any point on it, the flow rule is given by the cone of outer normals at the corresponding point in 

the space          
, namely 

 

    
 
 
 
    

 
 
 
                    (4.52) 

 

 

Remarks 

 

 In the expression (4.34) of the free energy  , the first two terms can be attributed to the free energy 

of the solid skeleton and the last one to the free energy of free water. 

 

 The effective domain of the dissipation function   is one-dimensional because of the constraint 

   
 
 
 
       

 
 
 
. As a result,   is not differentiable at any point of its effective domain. For 
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instance, the subdifferential    at points of the effective domain     
 
 
 
    

 
 
 
        contains 

more elements than just the gradient of   along the one-dimensional effective domain (i.e. 

              
 
             in extension,                

 
             in compression). 

 

 The flow rule is associated in the space          
 but it is not associated in the space        

. 

This is due to the expressions (4.38) of     and    . 
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4.3.3 Capillary regime 

 

The transition from the saturated regime to the capillary regime occurs at       , and the transition 

from the capillary regime to the dry regime occurs at           . It will be assumed that in the 

capillary regime the vicinal water mass is equal to its initial value in the reference configuration    
  

and the free water mass   
  varies. 

 

Let the soil be virtually unloaded to the reference load          . By definition, the elastic 

volumetric deformation   
  and the elastic water mass   

  are zero. The water mass     and the 

plastic water mass    
 

 depend on the plastic volumetric deformation 

 

      
 
     

     
       

 
 

   
 

   
 
       

 
 

(4.53) 

 

Let us fix the soil skeleton and assume that the main wetting curve   and the main drying curve   are 

given by the following expressions (     ) 

 

         
 
                  

      

      
 
     

                  
 
   (4.54) 

 

and that the scanning line determined by   
 

 is given by 

  

         
 
               

     
    

 
   (4.55) 

 

where       
 
  is the water mass at       ,        

  is the water mass at        (i.e. the 

soil has only the vicinal water mass of the reference configuration),   
 

 is the plastic water mass that 

determines the considered scanning line and the constant  , the normalized main wetting curve       

and the normalized main drying curve       are such that 

 

    

for       

                
 

         

        
   

  
      

and 

                       

(4.56) 

 

Figure 4.3a shows the main wetting curve          
 
  and the main drying curve          

 
 . 

The main wetting curve and the main drying curve are strictly increasing functions. The main wetting 

curve is above the main drying curve at all    except at          
 
  and at       , where 

they coincide. Figure 4.3b shows the normalized main wetting curve       and the normalized main 

drying curve      , which, respectively, have the same properties. 

 

Figure 4.3a shows also the scanning line          
 
  determined by   

 
. The scanning line has 

only one intersection point with the main wetting curve and has only one intersection point with the 

main drying curve. This property follows if the slope   of the scanning line is strictly greater than the 

slopes of the main wetting and drying curves at all   .  
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Figure 4.3. Capillary regime. a) The small circle is the current state,   is the main wetting curve,   is the main drying 

curve and   is the current scanning line; the thick segment on the vertical axis is the projection of the current 

elastic region, which at        (transition to the saturated regime) and at       (transition to the dry 

regime) reduces to a point; The scanning line, which has slope  , intersects the main wetting curve at only 

one point and intersects the main drying curve at only one point; also shown are the vicinal water mass at the 

reference configuration    
 , the free water mass at the reference configuration    

 , the current plastic water 

mass   
 

 (here it is negative), the current elastic water mass   
  (here it is negative), the water mass 

        at        and the water mass     at       ; b) normalized main wetting curve       and 

normalized main drying curve      . 
 

 

Since the scanning line          
 
  determined by   

 
 intersects at only one point any of the 

main curves          
 
 , it is possible to express these curves in the form       

 
   

 
 . In order to 

find the expressions of the derivatives of       
 
   

 
 , let us introduce the variable 

 

  
      

      
 
     

 
      

 

   
       

              (4.57) 

 

where        
  and (4.53) have been used. Consequently 

 

       
 
     

      
       

 
   (4.58) 

 

Expression (4.54) becomes 

 

                          (4.59) 

 

and by (4.55) the value of   
 

 that determines the scanning line that intersects the curve   at the point 

determined by   is such that 

 

                                
     

    
 
   

 

so that 

 

  
 

  
       

 
             

      
  

 

and using (4.57) it becomes 

a) b) 
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  (4.60) 

 

Replacing (4.59) and (4.60) in           
 
   

 
  yields 

 

             
 
     

 
    

 
  (4.61) 

 

Partial derivation of (4.61) with respect to   yields 

 

    

  
    

    

   
    

 
     

 
    

 
 
   

 

  
     

 
  (4.62) 

 

and partial derivation of (4.61) with respect to   
 
 yields 

 

  
    

   
    

 
     

 
    

 
 
   

 

   
      

 
  

    

   
    

 
     

 
    

 
  (4.63) 

 

Using (4.59) and (4.60) in (4.62) yields 

 

           
     

    

   
    

 
     

 
    

 
   

       

 
  

        
       

 
  (4.64) 

 

and using the expression (4.57) of   yields 

 

    

   
    

 
   

 
  

           
  

      
 

   
       

  

   
       

 
 

       
 

  
  

      
 

   
       

  

 (4.65) 

 

Using (4.60) in (4.63) yields 

 

  
    

   
    

 
     

 
    

 
      

    

   
    

 
     

 
    

 
  (4.66) 

 

and using the expression (4.57) of   yields 

 

     

      
 

   
       

 

    

   
    

 
   

 
  

    

   
    

 
   

 
  (4.67) 

 

Expressions (4.65) and (4.67) give the partial derivatives of the function       
 
   

 
 . 

 

The requirement that the slope of the main curve   (i.e. the partial derivative of the function 

         
 
  given by (4.54) with respect to   ) is less than the slope   of the scanning line yields 

 

       

   
       

   
  

      

   
       

     

  

where        
  and (4.53) have been used. Consequently, since    

       
 

   (it is the mass 

of free water at       ), the denominator of (4.65) is positive. Furthermore, since   
       and 

         , it follows that 
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    (4.68) 

 

Since in expression (4.67),     is positive, by (4.57) the fraction that multiplies the partial derivative 

of       
 
   

 
  with respect to   

 
 is positive, except at       

  (i.e. at        ) where it is 

zero, and by (4.68) the partial derivative is positive, it follows that 

 
    

   
    

 
   

 
                           

 
    

   
    

 
   

 
                       

(4.69) 

 

Note that the function       
 
   

 
  exists if and only if any scanning line intersects at only one point 

the corresponding main curve. As already mentioned, a sufficient condition is that the slope   of the 

scanning lines is greater than the slope of the corresponding main curve at any of its points. Since the 

main wetting and drying curves are obtained from the corresponding normalized curves by an affine 

transformation (see relations (4.54) and Figure 4.3) so that the square of size     is transformed into 

a rectangle of size     
       

 
           , the slopes of the transformed curves increase as 

  
 
 decreases, so that, for sufficiently low   

 
 the aforementioned sufficient condition does not hold. 

Values of   
 
 such that this condition does not hold will be considered to be outside the model 

capabilities. 

 

In the previous exposition it has been assumed that the soil is virtually unloaded to the reference load 

          so that the volumetric strains    and the plastic volumetric strains   
 

 coincide and that the 

soil skeleton was fixed. For simplicity it will be assumed that the effect of the elastic volumetric 

strains on the main wetting and drying curves is negligible. Consequently in what follows it will be 

assume that this formulation holds in general. 

 

 

4.3.3.1 Free energy function 

 

We assume that the free energy has the following form 

 

          
 
   

 
          

 
          

 
       

 
   

 
  

 

where 

 

        
 
           

 
  

 

 
         

     
    

 
  

 
 

     
 
   

 
   

 

 
       

 
          

 
      

  
 

     
 

 

(4.70) 

 

The pressure   and the water chemical potential    are given by 

 

   
  

   
 

   

   
       

 
  

   
  

   
              

     
    

 
   

(4.71) 

 

Note that (4.71) coincides with the expression (4.55) of the scanning line determined by   
 

. 
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The generalized pressure and water chemical potential are given by 

 

     
  

   
          

 
   

 
  

   

   
       

 
  

   

   
    

 
   

 
  

    
   

   
    

 
   

 
  

     
  

   
          

 
   

 
  

   

   
       

 
  

   

   
    

 
   

 
  

    
   

   
    

 
   

 
  

(4.72) 

 

The partial derivative of      
 
   

 
  with respect to   

 
 is 

 

   

   
    

 
   

 
  

 

   
   

 

 
       

 
          

 
      

  
 

     
 

  

 
 

 
       

 
   

 
        

 
   

 
   

 

thus 

 
   

   
    

 
   

 
  

 

 
       

 
   

 
        

 
   

 
   (4.73) 

 

The partial derivative of      
 
   

 
  with respect to   

 
 is 

 

   

   
    

 
   

 
  

 

   
   

 

 
       

 
          

 
      

  
 

     
 

  

  
 

 
       

 
      

 
        

 
      

 
     

       
 
 

   
   

                                 
 

 
       

 
   

 
        

 
   

 
      

    
 
 

   
   

                                  
 

 
 
    

   
    

 
    

    

   
    

 
      

     
 

  
 

 

  
 

 
          

 
      

 
        

 
      

 
   

                                   

 

 
  

   
   

   
       

   
    

   
    

 
    

    

   
    

 
      

     
 

  
 

 

 

where the Reynolds transport theorem has been used to compute the derivative of the integral. Thus 

 
   

   
    

 
   

 
   

 

 
          

 
      

 
        

 
      

 
   

                                   

 

 
  

   
   

   
       

   
    

   
    

 
    

    

   
    

 
      

     
 

  
 

 

(4.74) 

 

We now evaluate bounds of this integral. 
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Since     
          

 
 so that    

       
 

   , it follows 

 

  
   

     
 

   
       

  
   

   

   
       

  
   

       
 

   
       

    

 

Using these bounds and the relation (4.68)  

 
    

   
    

 
   

 
    

 

in expression (4.74) yields 

 
   

   
    

 
   

 
   

 

 
          

 
      

 
        

 
      

 
   

   

   
    

 
   

 
   

 

 
          

 
      

 
        

 
      

 
   

          

 

 
  

    

   
    

 
    

    

   
    

 
      

     
 

  
 

 

  
 

 
          

 
      

 
        

 
      

 
   

        

 

 
       

 
      

 
        

 
      

 
      

 

 
       

 
   

 
        

 
   

 
   

  
 

 
          

 
   

 
        

 
   

 
   

 

since 

 

          
 
   

 
      

          
 
   

 
      

      
 
      

 
        

 
      

 
       

 

it follows 

 

 
   

   
    

 
   

 
  

 

 
          

 
      

 
        

 
      

 
          

 
   

   
    

 
   

 
  

 

 
          

 
   

 
        

 
   

 
          

 

so that we have the bounds 

 

        
   

   
    

 
   

 
         (4.75) 

 

 

4.3.3.2 Dissipation function 

 

We assume that the dissipation function has the following form 

 

          
 
 
 
    

 
 
 
     

 
 
 
      

 
 
 
    

 

     
 
 
 
    

 
 
 
         

 
   

 
                     

 
 
 
          

 
 
 
  

(4.76) 
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where     ,      and      are functions of the state          
 
   

 
 . The dissipation function must be 

non-negative. Consequently, for the range of admissible pressure  , water chemical potential   , 

plastic volumetric deformation   
 

 and plastic water mass   
 

, the functions of state     ,      and 

     must be such that 

 

                

       
 

We will determine these functions in terms of the yield pressure in extension         
 
 , the yield 

pressure in compression         
 
 , the yield water chemical potential in wetting       

 
   

 
  and 

the yield water chemical potential in drying       
 
   

 
   In the following developments we will 

assume that                         and       . 

 

Figure 4.4a shows the level set     of the dissipation function. Note that   is not differentiable on 

the axes    
 
 
 
   and    

 
 
 
  . 

 

 

 
 
Figure 4.4. Capillary regime. a) The effective domain      of the dissipation function is the whole plane and the gray 

rhombus centered at the origin is the level set     of the dissipation function; b) the effective domain 

      of the dual of the dissipation function is the gray rectangle centered at the origin. The two sets 

    and       are polars of each other (the lengths of the diagonals of the rhombus and the lengths of 

the respectively orthogonal sides of the rectangle are reciprocal to each other). 
 

 

The subdifferential of   is 

 

If    
 
 
 
    and    

 
 
 
   (at these points   is differentiable) 

 

       
 
 
 
    

 
 
 
          

 
   

 
  

                                  
 
 
 
                 

 
 
 
   

 

If    
 
 
 
  ,    

 
 
 
   

 

       
 
 
 
    

 
 
 
          

 
   

 
  

                                       
 

(4.77) 

    

    

a) b) 
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If    
 
 
 
  ,    

 
 
 
   

 

       
 
 
 
    

 
 
 
          

 
   

 
  

                                        
 

If    
 
 
 
  ,    

 
 
 
   

 

       
 
 
 
    

 
 
 
          

 
   

 
  

                                       
 

If    
 
 
 
  ,    

 
 
 
   

 

       
 
 
 
    

 
 
 
          

 
   

 
  

                                        
 

If    
 
 
 
  ,    

 
 
 
   

 

       
 
 
 
    

 
 
 
          

 
   

 
  

                                         
 

The Legendre-Fenchel dual    of    is the indicator function of the subdifferential of   at the origin 

                
 
   

 
  , namely 

 

                                           
 

                     
 
   

 
    

(4.78) 

 

Figure 4.4b shows the effective domain       of this function, which is a rectangle centered at the 

origin of the dual space          
 of the space  

   
 
 
   

   
 

 
 . By the convention used in convex 

analysis (Rockafellar 1970), outside the effective domain the value of the proper lower semi-

continuous convex function    is   . Thus, the elastic region in the space          
 is 

 

           
 
   

 
                                       (4.79) 

 

The sides of the boundary of the elastic region and the respective cones of outer normals are 

 

                                          (extension) 

 

                 
 
   

 
 
                        

 

                                           (compression) 

 

                 
 
   

 
 
                         

 

                                          (wetting) 

 

                 
 
   

 
 
                        

 

                                           (drying) 

 

(4.80) 
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The corners of the boundary of the elastic region and the respective cones of outer normals are 

 

                                         (extension-wetting) 

 

                 
 
   

 
 
                                       

 

                                          (compression-wetting) 

 

                 
 
   

 
 
                                        

 

                                          (extension-drying) 

 

                 
 
   

 
 
                                        

 

                                           (compression-drying) 

 

                 
 
   

 
 
                                         

(4.81) 

 

 

4.3.3.3 Ziegler's orthogonality principle 

 

Ziegler's orthogonality principle reads 

 

  
  

   
   

  

   
           

 
   

 
         

 
 
 
    

 
 
 
          

 
   

 
  

 

where the left hand side is given by (4.72) and the right hand side by (4.77). Replacing     and     in 

(4.77) by the expressions of      and     in (4.72), we get 

 

If    
 
 
 
  ,    

 
 
 
   

 

   
   

   
    

 
   

 
                        

   
   

   
    

 
   

 
       

 

If    
 
 
 
  ,    

 
 
 
   (yield in extension) 

 

   
   

   
    

 
   

 
                        

    
   

   
    

 
   

 
        

 

If    
 
 
 
  ,    

 
 
 
   (yield in compression) 

 

   
   

   
    

 
   

 
                            

(4.82) 
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If    
 
 
 
  ,    

 
 
 
   (yield in wetting) 

 

    
   

   
    

 
   

 
                         

   
   

   
    

 
   

 
       

 

If    
 
 
 
  ,    

 
 
 
   (yield in drying) 

 

    
   

   
    

 
   

 
                         

   
   

   
    

 
   

 
        

 

The transform of the elastic region in the space        
 is 

 

          
 
   

 
  

              
   

   
    

 
   

 
                     

   

   
    

 
   

 
         

(4.83) 

 

We proceed to determine the functions     ,      and     . 

 

 For yield in wetting 

 

      
 
   

 
  

   

   
    

 
   

 
      

 
   

 
  

 

 For yield in drying 

 

      
 
   

 
  

   

   
    

 
   

 
       

 
   

 
  

 

Consequently 

 

    
 
   

 
  

 

 
       

 
   

 
        

 
   

 
   (4.84) 

 

and, since (4.54) and (4.56) imply          
 
           

 
   , it follows 

 

    
 
   

 
    (4.85) 

 

 For yield in extension 

 

         
 
  

   

   
    

 
   

 
             

 
     

 

 For yield in compression 
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Consequently 

 

       
 
   

 
   

        
 
          

 
   

   

   
    

 
   

 
 

        
 
          

 
 

 

       
 
   

 
   

         
 
         

 
           

 
          

 
  

   

   
    

 
   

 
 

        
 
          

 
 

 

(4.86) 

 

The expressions 

 

       
 
   

 
           

 
          

 
   

 
           

 
  

   

   
    

 
   

 
  

       
 
   

 
           

 
          

 
   

 
          

 
  

   

   
    

 
   

 
  

 

are positive if and only if 

 

         
 
  

   

   
    

 
   

 
           

 
  (4.87) 

 

and in this case, since        
 
   

 
             

 
   

 
  is linear in   , it follows  

 

       
 
   

 
             

 
   

 
                

 
              

 
  (4.88) 

 

Since by (4.75) we have the bounds 

 

        
   

   
    

 
   

 
          

 

it follows that the conditions 

 

         
 
          

                 
 
  

 

imply the conditions (4.87). Consequently, we have 

 

         
 
          and                  

 
  

 

       
 
   

 
             

 
   

 
                       

 
              

 
  

(4.89) 

 

This condition restricts the range of applicability of the model, although with the values of     and 

    (the zero of water chemical potential is taken for free water at      and     ), which correspond, 

respectively, to the air entry value and to the total evaporation of free water, this condition is not too 

restrictive. Note that it is necessary that         
 
          

 
    for the expressions (4.86) of 

       
 
   

 
  and        

 
   

 
  to be defined. 
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Figure 4.5 shows the elastic region in the space        
, with a shape similar to the elastic region 

proposed in the BBM model (Alonso et al. 1990), but restricted to a variable horizontal strip 

      
 
   

 
           

 
   

 
 , whose projection on the vertical axis is the thick segment 

shown in Figure 4.3a. This strip reduces to a horizontal line at the transition from the saturated regime 

to the capillary regime        and at the transition between the capillary regime and the dry regime 

      . The flow directions are not normal to the boundary of the elastic region (they are normal to 

the boundary of the elastic region in the space          
). 

 

 

 
 
Figure 4.5. Capillary regime. Elastic region in the space        

. At the transition from the saturated regime to the 

capillary regime        (here     has been taken to be zero by simplicity),          
 
  is the yield 

pressure in compression and          
 
  is the yield pressure in extension. Arrows indicate flow directions, 

which, except at the horizontal boundaries (yield in drying and yield in wetting), are not normal to the 

boundary (they are normal to the boundary of the elastic region in the space          
). At each corner there 

is a fan of flow directions. 
 

 

Remarks 

 

 The interior of the elastic region in the space        
 vanishes at       , the transition from 

the saturated regime to the capillary regime, and at        the transition from the capillary 

regime to the dry regime. 

 

 The elastic region can have a shape similar to the elastic region proposed in the BBM model 

(Alonso et al. 1990), which allows to reproduce reversible shrinking and hardening upon drying or 

irreversible collapse upon wetting. 

 

 In the space        
 the flow rule is associated in wetting and in drying, but it is not associated 

extension and in compression. In the space          
 the flow rule is associated. 
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4.3.4 Dry regime 

 

The transition from the capillary regime to the dry regime occurs at       . It will be assumed that 

in the dry regime there is no free water   
    and the vicinal water varies   

 . 

 

 

4.3.4.1 Free energy function 

 

We assume that the free energy has the following form 

 

          
 
   

 
          

 
           

 
  (4.90) 

 

The pressure   and the water chemical potential    are given by 

 

   
  

   
 

   

   
       

 
     

   
  

   
 

   

   
      

 
     

(4.91) 

 

The generalized pressure and water chemical potential are given by 

 

     
  

   
  

   

   
       

 
     

   

   
    

 
     

   

   
    

 
  

     
  

   
    

(4.92) 

 

 

4.3.4.2 Dissipation function 

 

We assume that the dissipation function has the following form 

 

          
 
 
 
    

 
 
 
     

 
 
 
     

 

     
 
 
 
    

 
 
 
         

 
   

 
                     

 
 
 
  

(4.93) 

 

where      and      are functions of state. Note that      is a closed convex one-dimensional 

subset of the space  
   

 
 
   

   
 

 
 . The dissipation function must be non-negative. Consequently, for 

the range of admissible pressure  , water chemical potential   , plastic volumetric deformation   
 

 

and plastic water mass   
 

, the functions of state     ,      and      must be such that 

 

                
 

We will determine these functions by prescribing the pressure in extension yield         
 
  and the 

pressure in compression yield         
 
   In the following developments we will assume that 

                       . 

 

Figure 4.6a shows the effective domain      and the level set     of the dissipation function. 

Recall that, by the convention used in convex analysis (Rockafellar 1970), outside the effective 

domain the value of the proper lower semi-continuous convex function   is    . 
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Figure 4.6. Dry regime. a) The horizontal axis is the effective domain      of the dissipation function and the thick 

segment is the level set     of the dissipation function; b) The gray strip that has a width of      
 
  and its 

axis is the vertical axis is the effective domain       of the dual of the dissipation function. The two sets 

    and       are polars of each other (the length of the segment and the width of the strip are 

reciprocal to each other). 
 

 

The subdifferential of   is 

 

If    
 
 
 
  ,    

 
 
 
   (yield in compression) 

 

            
 
 
 
    

 
 
 
          

 
   

 
                         

                        
 

If    
 
 
 
  ,    

 
 
 
   (yield in extension) 

 

            
 
 
 
    

 
 
 
          

 
   

 
                          

                         
 

If    
 
 
 
  ,    

 
 
 
   (elasticity) 

 

            
 
 
 
    

 
 
 
          

 
   

 
                           

                                     

(4.94) 

 

The Legendre-Fenchel dual    of    is the indicator function of the subdifferential of   at the origin 

                
 
   

 
  , namely 

 

                                
 

                     
 
   

 
    

(4.95) 

 

Figure 4.6b shows the effective domain       of this function, which is stripe whose axis is the 

vertical axis of the dual space          
 of the space  

   
 
 
   

   
 

 
 . By the convention used in 

convex analysis (Rockafellar 1970), outside the effective domain the value of the proper lower semi-

continuous convex function    is   . Thus, the elastic region in the space          
 is 

 

           
 
   

 
                            (4.96) 

    

    

a) b) 
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The sides of the boundary of the elastic region and the respective cones of outer normals are 

 

                               (extension) 

 

                 
 
   

 
 
                        

 

                                (compression) 

 

                 
 
   

 
 
                         

(4.97) 

 

 

4.3.4.3 Ziegler's orthogonality principle 

 

Ziegler's orthogonality principle reads 

 

  
  

   
   

  

   
           

 
   

 
         

 
 
 
    

 
 
 
          

 
   

 
  

 

where the left hand side is given by (4.92) and the right hand side by (4.94). Replacing     and     in 

(4.94) by the expressions of     and     in (4.92), we get 

 

If    
 
 
 
  ,    

 
 
 
   (yield in extension) 

 

   
   

   
    

 
          

    
 

   
   

   
    

 
          

 

If    
 
 
 
  ,    

 
 
 
   (yield in compression) 

 

   
   

   
    

 
           

    
 

   
   

   
    

 
          

(4.98) 

 

The transform of the elastic region in the space        
 is 

 

          
 
   

 
               

   

   
    

 
                  (4.99) 

 

We proceed to determine the functions      and     . 

 

 For yield in extension 
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 For yield in compression 

 

         
 
  

   

   
    

 
               

 
      

 

Consequently 

 

       
 
   

        
 
          

 
 

        
 
          

 
 
 

       
 
   

         
 
         

 
 

        
 
          

 
 
 

(4.100) 

 

The expressions 

 

       
 
           

 
          

 
           

 
  

   

   
    

 
  

       
 
           

 
          

 
          

 
  

   

   
    

 
  

 

are positive if and only if 

 

         
 
  

   

   
    

 
           

 
  (4.101) 

 

and in this case, since        
 
   

 
             

 
   

 
  is linear in   , it follows  

 

       
 
             

 
                

 
              

 
  (4.102) 

 

This condition is satisfied if         
 
    and         

 
   . Note that it is necessary that 

        
 
          

 
    for the expressions (4.100) of        

 
  and        

 
  to be defined. 

 

Figure 4.7 shows the elastic region in the space        
, 

 

 

 
 
Figure 4.7. Dry regime. Elastic region in the space        

. At the transition         from the capillary regime to 

the dry regime,          
 
  is the yield pressure in compression and          

 
  is the yield pressure in 

extension. Arrows indicate flow directions, which are not normal to the boundary (they are normal to the 

boundary of the elastic region in the space          
). 
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Remarks 

 

 Since water mass is fully recoverable, there is no plastic water mass component   
 

. 

 

 As the water mass decreases with the water chemical potential, the stabilizing effect of the  

liquid-gas interfaces tends to decrease, so that the increase of the compression yield pressure and 

the decrease of the extension yield pressure acquired during the capillary regime tend to vanish. 

 

 In the space        
 the flow rule is not associated extension and in compression. In the space 

         
 the flow rule is associated. 

 

 Since there is no free water, all water in the soil is vicinal water. In the scientific literature 

exceedingly high negative pressures are usual. However, if water is tightly bonded to the soil 

skeleton, water pressures at the microscale are expected to be highly positive. In the proposed 

formulation for the dry regime water pressures are not used.  
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4.4 SOME ADDITIONAL TOPICS 
 

 

4.4.1 Work input, matric suction and negative pore water pressures 

 

Houlsby (1997) considers the power input to an unsaturated soil made of a solid phase, a water phase, 

an air phase and an air-water interface. The total stress tensor is the sum of contributions from the 

solid, water and air phases and from the air-water interface, but it is assumed that the solid phase and 

the air-water interface move with the same velocity. He derives two alternative expressions of the 

power input to an unsaturated soil, one with Bishop's stress (with     ) and suction as stress 

variables and another with net stress and suction as stress variables. From these work input 

expressions follow in each case the identification of the corresponding work-conjugated variables.  

 

Coussy (2004) considers the power input to an unsaturated soil made of a solid phase, a water phase, 

an air phase and the corresponding interfaces. The total stress tensor is the sum of contributions from 

the solid, water and air phases. Gray et al. (2010) consider the power input to unsaturated elastic 

porous media made of a solid phase, a wetting fluid phase, a non-wetting fluid phase, the interfaces 

between these phases and the common curve along the solid surface where the two fluid phases meet. 

The total stress tensor is the sum of contributions from all phases, all interfaces and the common 

curve. In these works, the liquid and gas pressures multiplied by their respective volume fractions 

correspond to the (smeared) spherical stress tensors of the liquid and gas phases. 

 

The expressions of the power input to an unsaturated soil obtained in Houlsby (1997) are often 

referred in the unsaturated soil mechanics literature. However they have been applied even when 

liquid pressures have exceedingly large negative values. Gray and Hassanizadeh (1991) consider that 

negative absolute water pressures are unrealistic and in their work they introduce wetting potentials to 

account for the attraction forces between the solid and fluid phases. In fact, short-range interaction 

forces bonding water to the solid skeleton should give rise to microscale positive (compressive) 

pressures (Nitao and Bear 1996), so that averaging of microscale distributions of those pressures 

would yield positive (compressive) macroscale pressures. But, in this case, the expression of the work 

input used in those developments should include also a contribution from the short-range interaction 

forces. In this regard Alcoverro (2003) noted that, if at a microscale point   an incompressible fluid 

with pressure      is subjected to a potential body force field        , then the terms of the balance 

of momentum of the fluid at the microscale          
     can be written in the form           

 with 

               . If      is the potential of an attraction force field (i.e. bonds the fluid to the 

solid skeleton) that vanishes at infinity, then it follows that       . Consequently, although the 

(absolute) pressure      is positive, the modified pressure       can be negative. Note that, at local 

equilibrium states, the microscale distribution of       is uniform (neglecting gravity forces). 

 

In thermodynamics the work input is used in the balance of energy, which, when combined with the 

balance of entropy, yields the entropy inequality. In the present formulation the entropy inequality 

(3.18) is written in terms of the power of the total stress tensor on the solid skeleton deformation, the 

working of the chemical potentials of the species on the corresponding mass variations and the 

heating. For free water, which is not subjected to interaction forces with the solid skeleton, microscale 

distributions of pressure are uniform (neglecting gravity forces), giving rise to macroscale water 

pressures with the same value as the microscale water pressures. Since free water behaves as if it were 

outside the unsaturated soil, large absolute negative water pressures should not be expected.    

 

In unsaturated soil mechanics, matric suction   is defined by the relation 

 

        (4.103) 

 

where    is the pressure of the gas phase and    is the pressure of the liquid phase. As already 

mentioned, high matric suction values (i.e. several MPa), which at atmospheric gas pressure imply 
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large negative liquid pressures, are acknowledged to in fact represent bonding energies per unit 

volume. In the proposed framework, matric suction         can be defined only in the capillary 

regime, in which both free liquid and free gas are present in the soil, so that the gas pressure and the 

liquid pressure can be defined. It is therefore of interest to state the matric suction in terms of chemical 

potentials. 

 

In an unsaturated soil with a free liquid phase and a free gas phase, the respective pressures can be 

defined as functions of the chemical potentials of the constituents and temperature using their 

respective state equations, as in (3.36). In an unsaturated soil, we assume that the constituents of the 

free liquid and the free gas are water and air. Using the definition of matric suction   yields 

 

                                   (4.104) 

 

where    is the pressure of the free gas and    is the pressure of the free liquid. Thus matric suction   

is a function of the chemical potentials of water    and air    and of the temperature  . We assume 

that the free gas is a mixture of air and water vapor, which behave as ideal gases. Since at ambient 

atmospheric conditions the saturation water vapor pressure is a small fraction of the atmospheric 

pressure (for instance, at                    and           the saturation water vapor 

pressure is                      ), it follows that               . Since     
          , it follows that the matric suction   is a function of the chemical potential of water   , the 

gas pressure    and the temperature  , namely 

 

                                  (4.105) 

 

If the air dissolved in the liquid can be neglected, this relation reduces to 

 

                        (4.106) 

 

Consequently, at constant ambient atmospheric pressure    and temperature  , the matric suction   is 

a function of the water chemical potential   . This conclusion holds only if there is free liquid and 

free gas in the unsaturated soil (i.e. in the capillary regime). 
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4.4.2 Local equilibrium states and Coussy's formulation 

 

We will show that Coussy's formulation (Coussy 2004) for a porous material saturated by a fluid can 

be interpreted by considering local equilibrium states. This formulation can be summarized as follows 

 

 The free energy of the porous material per unit reference volume   of a porous material saturated 

by a fluid is assumed to be of the form (Coussy 2004, Eq. (3.68)) 

 

                 

 

where     is the Green-Lagrange strain tensor of the porous material,    is the fluid mass content 

per unit reference volume,   is the temperature and    is a set of internal variables. Considering 

evolutions where the internal variables do not vary, the following state equations are derived from 

the vanishing of the internal dissipation (Coussy 2004, Eq. (3.69)) 

 

    
  

    
    

  

   
    

  

  
 

 

where     is the total second Piola-Kirchhoff stress tensor and    is the fluid-specific free enthalpy.  

 

 The free energy and entropy of the porous material per unit reference volume are given by  (Coussy 

2004, Eq. (3.62)) 

 

                    

 

where    and    are the free energy and entropy of the solid skeleton per unit reference volume 

and    and    are the fluid-specific Helmholtz free energy and the fluid-specific entropy.  

 

 The fluid state equations are (Coussy 2004, Eq. (3.8)) 

 

      
 

  
    

   
   

  
 
  

 
 

    
   

  
 

 

where   is the fluid pressure and    is the fluid density.  

 

 The free energy of the skeleton per unit reference volume is assumed to be of the form (Coussy 

2004, Eq. (3.62)) 

 

                  

 

where   is the pore volume per unit reference volume. Considering evolutions where the internal 

variables do not vary, the following state equations are derived from the vanishing of the internal 

dissipation (Coussy 2004, Eq. (3.65)) 

 

    
   

    
   

   

  
     

   

  
 

 

Taking into account that (Coussy 2004, Eq. (1.64)) 
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it follows that 

 

                                   
 

  
    

 

but, since                and            are a priori unrelated functions, it follows that the 

variables    ,  ,   ,   and    cannot be independent. However such a dependency is not mentioned 

in Coussy's formulation. 

 

In the proposed formulation,                      and                    , so that 

 

                                       
 

  
    

 

Consequently 

 

   

    
                

    

    
             

   

  
                

    

  
             

   

  
 
  

 
 

 

  
    

   

   
                   

 

  
    

 

  

   

  
 
  

 
 

 

  
    

   

  
                

    

  
               

   

  
 

 

  
    

 

The last 3 relations can be rewritten as 

 

   

  
                

    

  
               

 

  
    

   

   
                   

 

  
    

   

  
                

    

  
                  

 

  
    

 

Solving for   in the minimization condition 

 

   

  
                  

 

 yields the relation                 , so that, at local equilibrium states 

 

    

  
                            

              

  
    

 

If we interpret that Coussy's functions                and                are given by the 

relations  
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then, using Lemma 3.1 and the previous results, we get Coussy's results quoted above 

 

  

    
              

   

    
                             

 
    

    
                          

 
   

    
                          

 

  

  
              

   

  
                             

 
    

  
                               

              

  
    

 
   

  
                               

              

  
    

 

  

   
              

   

   
                             

    
              

  
    

 

   

  
                          

    

  
                          

   
              

  
    

 

We believe that these results, which are based on the minimization condition, can shed light on the 

issues raised in Schreyer (2016) concerning Coussy's thermodynamical definition of fluid pressure.  
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5 CONCLUSIONS 
 

 

5.1 GENERAL MODELING APPROACH 
 

The unsaturated soil is modeled as a porous material using the framework of thermodynamics with 

internal variables. Porous materials are characterized by the presence of a solid skeleton and a number 

of fluids, which can flow through the solid skeleton. The solid skeleton provides a natural reference 

for the evolution of the porous material, which can be used in a Lagrangian description. The approach 

followed is summarized below. 

 

 Microscale continua. It is assumed that the porous material is made of a number of microscale 

regions of various dimensions (3D, 2D, 1D, 0D) containing several species. Each microscale region 

is assumed to be modeled as a mixture of microscale interacting continua    , corresponding to the 

species   in the microscale region  . 

 

 Macroscale continua. It is assumed that, by an averaging process, to each microscale continuum 

    corresponds a macroscale continuum    , which is defined on macroscale 3D regions, and the 

porous material is considered to be the mixture of these interacting macroscale continua. Grouping 

all these macroscopic continua containing species   yields macroscale continua   , and the porous 

material is considered to be the mixture of these macroscale interacting continua. 

 

 State variables. During the averaging process microscale information is lost. Part of this 

information can be recovered by macroscale geometric variables   , defined as the measure of 

microscale region   (volume, area, length, number of points) per unit (reference) volume (e.g. 

volume fractions in geomechanics) and by mass distribution variables    , defined as the mass of 

species   in microscale region   per unit (reference) volume. Additional geometric variables can be 

defined from the geometry of the microscale regions, giving rise to structural tensors. The state of 

the porous material is assumed to be given by                 , where     is the Green-Lagrange 

strain tensor of the solid skeleton,   is the temperature and   is a set of internal variables. 

 

 Local equilibrium states. The number of state variables can be significantly reduced by 

considering local equilibrium states. Let    be the total mass of species   per unit reference 

volume, so that         . It will be assumed that, for prescribed values of    ,   ,   and  , 

the variables    and     take unique values                   and                     

such that the total free energy per unit reference volume reaches a minimum. The state 

                                         will be called the local equilibrium state defined by 

            . This minimization assumption is in line with the postulates of equilibrium 

thermodynamics, and similar approaches have been used by a number of authors, in an explicit or 

an implicit way. 

 

 Constitutive equations. The behavior of the porous material will be assumed to be rate 

independent. The laws of state will be derived from the free energy and the evolution equations of 

the internal variables from the dissipation function, applying Ziegler's orthogonality principle 

separately to the dissipation due to changes in the local equilibrium state, to the dissipation due to 

mass flow of constituents through the solid skeleton, and to the dissipation due to heat flow. The 

dissipation due to changes in the local equilibrium state has been treated in more detail, with the 

outcome of a generalized elastoplastic behavior, in which the small strain tensor and the variation 

with respect to the reference configuration of mass per unit reference volume of constituents are 

considered to be the sum of an elastic and a plastic part. The dissipations due to mass and heat flow 

have only been treated in a simplified manner, with the outcome of equations analogous to Darcy's 

and Fourier's laws.   
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5.2 SOIL REGIMES 
 

For unsaturated soils, additional simplifying assumptions are made: (1) small strains of the solid 

skeleton; (2) isothermal atmospheric conditions; (3) three species: solid mineral, water and gas; and 

(4) elastoplastic response of the deformation of the solid skeleton and of the water mass content. 

 

The behavior of a soil depends on its structure at the microscale (e.g. phases and interfaces). In this 

regard, three soil regimes can be distinguished. 

 

 

5.2.1 Saturated regime 

 

The saturated regime is defined by the presence of fixed vicinal water, variable free water and no gas 

phase. It corresponds to water chemical potential values higher that the air entry value. If the solid 

skeleton (solid particles, water) can be assumed to be incompressible and there is no mass exchange 

with the free liquid, Terzaghi's effective principle holds.  

 

 

5.2.2 Capillary regime 

 

The capillary regime is defined by the presence of fixed vicinal water, variable free water and gas 

phase. It corresponds to water chemical potential values between the air entry value and the 

evaporation of free water value. The free water-air interfacial tension increase the intergranular 

stresses, which decreases the soil volume, increases its stiffness and increases its resistance. Due to the 

geometry of the pore space, water content hysteresis in drying-wetting cycles is observed.  As a result, 

in the total stress - water chemical potential space, the elastic region is bounded above and below by 

the values of the water chemical potential corresponding to the main drying and wetting curves. This 

feature is unique to this regime. 

 

 

5.2.3 Dry regime 

 

The dry regime is defined by the presence of variable vicinal water, no free water and gas phase. It 

corresponds to water chemical potential values lower than the evaporation of free water. The vicinal 

water progressively disappears, so that the interaction forces between the solid particles and the vicinal 

water and the water-air interface progressively disappear. 

 

 

Because of the different features of these soil regimes, we propose to use a different constitutive 

model for each of them. A generic example of constitutive model for each soil regime has been 

presented, including the corresponding free energy and dissipation functions. 
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5.3 FEATURES OF THE PROPOSED FORMULATION 
 

We discuss aspects of some features of the proposed formulation, that have interest for the modeling 

of unsaturated soils. 

 

 Thermodynamic consistency. In the proposed formulation, the constitutive equations are derived 

from the free energy using the state equations and from the dissipation function using Ziegler's 

orthogonality principle. The resulting models for unstaturated soils are thermodynamically 

consistent. Although there are models for unsaturated soils developed without a thermodynamic 

basis that are able to reproduce many salient features of the behavior of unsaturated sois (e.g. 

Alonso et al. 1990), thermodynamic consistency is recognized to be a convenient feature of a 

physical model. 

 

 Chemical potentials and temperature. At local equilibrium states, the microscale distributions of 

chemical potentials and temperature are uniform (neglecting gravity forces). As a result, the values 

of the corresponding macroscale variables are the same as the uniform values of the distributions of 

their microscale counterparts. The proposed formulation uses these macroscale variables. In this 

regard, Bear and Nitao (1995) considered these variables to be the degrees of freedom of a porous 

medium with surface effects in complete equilibrium. Measuring the values of these macroscale 

variables can be done by bringing the measuring device in contact with the soil until equilibrium is 

established.  

 

 Pore water pressure. Eventually, short-range interaction forces bond water to the soil skeleton. 

The  microscale distributions of water bond to the skeleton (vicinal water) are not uniform, so that 

the relationship with a macroscale pressure is questionable. In contrast, the microscale distributions 

of water not bond to the soil skeleton (free water) are uniform (neglecting gravity forces), so that a 

macroscale pressure with the same value as the uniform microscale distributions is appropriate. 

Absolute negative pore water pressures are considered to be unrealistic (Gray and Hassanizadeh 

1991). They are the result of applying the relationship between water chemical potential, water 

pressure and temperature obtained for water outside the soil to the water chemical potential of 

water in the soil. In fact, short-range attractive interaction forces between the soil skeleton and 

water give rise to microscale distributions of water pressure which are increasingly positive as the 

surface of solid is approached (Niao and Bear 1995). The proposed formulation does not use water 

pressures. However, macroscale free water pressures can be determined using the chemical 

potentials and temperature, because free water behaves as if it were outside the soil. 

 

 Local equilibrium states. Macroscale geometric variables, such as porosity, degree of saturation 

and area of air-water interface per unit volume are macroscale variables that are used to recover 

part of the geometric information that is lost during averaging. These variables are usually 

estimated from measures of weights and volumes (e.g. in natural conditions and after oven drying) 

assuming constant density of solids and water or by use of special laboratory techniques. In some 

cases the results are not reliable. For instance, the determination of the degree of saturation from 

measurement of weights and volumes in clays with a large specific surface area often leads to 

degrees of saturation larger than 100%. The proposed formulation does not use macroscale 

geometric variables, because the evolution of these variables is implicit in the considered 

evolutions along local equilibrium states. A similar approach was used by Bowen (1976). 
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