
Architectural Strategies to Enhance the

Latency and Energy Efficiency of Mobile

Continuous Visual Localization Systems

Raúl Taranco Serna

Department of Computer Architecture
Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Doctor of Philosophy

Advisors: José-Maria Arnau and Antonio González

June, 2024

Barcelona, Spain



2



Abstract

The emergence of new applications such as autonomous machines (e.g., robots or self-
driving cars) and XR (Extended Reality) promises to revolutionize how society interacts with
technology in the rapidly advancing digital era. These technologies, deployed on edge devices,
often rely on mobile or embedded SoCs (Systems-on-a-Chip) operating CV (Continuous
Vision) pipelines that periodically capture and analyze environmental light.

A typical CV SoC comprises a frontend for image capture and a backend for pro-
cessing vision algorithms. The frontend typically includes an off-chip camera sensor and
a specialized SoC component, the ISP (Image Signal Processor), that processes the pixel
stream, transforming raw sensor data into high-quality, color-balanced images. The backend
(e.g., CPU (Central Processing Unit), GPU (Graphics Processing Unit), or an accelerator)
processes the image stored in the main memory’s framebuffer to extract perception insights
and perform advanced decision-making.

Existing research identifies visual localization, object detection, and tracking as the
primary bottlenecks in these emerging applications. Those algorithms face two principal
challenges when deployed in mobile CV systems: latency and energy consumption. For
example, an XR headset employs visual localization to track the user’s head motion to
correctly render the XR frame based on the estimated user’s perspective. Latency can
disrupt the quality of the user experience, leading to discomfort or disorientation. In a self-
driving car, localization determines the vehicle’s position with centimeter-level precision,
unattainable through other means, such as GPS (Global Positioning System), to be later
used for motion planning and actuation. A delay in the processing can compromise safety,
aggravating as the vehicle’s speed increases. Furthermore, energy consumption can severely
restrict the operation of mobile battery-operated systems with limited autonomy.

This thesis embarks on a strategic journey to elevate mobile CV systems’ performance
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and energy efficiency.

We begin by analyzing a state-of-the-art visual localization engine on general-purpose
CPU backends. The localization engine takes camera images as input, extracts interesting
features such as landmarks, and tracks them to estimate the camera pose. Our evaluations
show that the feature extraction phase constitutes the main application bottleneck, taking
between 60% and 90% of the total localization latency.

Then, we explore the highly specialized hardware accelerator designs employed in
the image processing domain. Our first thesis contribution introduces LOCATOR (Low-
power ORB aCcelerator for AuTonomOus caRs), a high-performance, energy-efficient, and
functionally accurate hardware accelerator tailored for detecting the ORB (Oriented FAST
and Rotated BRIEF) features prevalent in many localization frameworks. Their extraction
involves two stages: feature detection and feature description. LOCATOR processes image
tiles on the fly using two parallel synchronized pipelines, one for each stage. The feature
extraction pipeline can steadily process one pixel per cycle, achieving peak performance. On
the contrary, the description generation stage requires hundreds of independent accesses to
on-chip buffers for each detected feature, stalling the pipeline and severely impacting overall
performance.

LOCATOR ameliorates pipeline stalls by combining several techniques to reduce the
description generation latency. We employ a genetic algorithm to establish an optimal static
bank access pattern, integrate a caching mechanism for recurrent accesses, and selectively
replicate ports based on the overall rBRIEF (Rotated BRIEF) pattern characteristics. These
methods collectively address the core bottlenecks of the baseline accelerator without signif-
icant cost increases. As a result, LOCATOR significantly outperforms other specialized
designs in energy efficiency and achieves 16.8× speedup for ORB feature extraction, 1.9×
end-to-end speedup, and 2.1× end-to-end energy reduction per frame, compared to running
the complete localization system on the baseline mobile CPU.

Next, we realize that while specialized architectures are necessary for highly con-
strained mobile systems, there is a pressing need for more programmable and versatile solu-
tions adaptable to the present and future evolving application needs. CPUs are positioned
on the other side of the spectrum, offering high programmability at the cost of sacrificing
performance and energy efficiency. Even those platforms’ SIMD (Single Instruction, Multiple
Data) VPUs (Vector Processing Units) miss critical optimization opportunities.

In the second contribution of the thesis, we identified convolutions and stencil oper-
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ations as foundational primitives in image analysis, which typically utilize a sliding window
dataflow. Thus, we target these operations to propose SLIDEX (SLIDing window EXtension
for image processing), a domain-specific vector ISA (Instruction Set Architecture) extension
to exploit SWP (Sliding Window Processing) in conventional CPUs. SWP reinterprets the
layout of the vector registers not as a sequence of isolated elements but as a sequence of over-
lapped windows of elements. SLIDEX instructions leverage this model to perform multiple
parallel computations sourced from the overlapping, shifted window copies of the elements
within a vector register, maximizing the DLP (Data Level Parallelism) achievable per in-
struction while maintaining the same vector length. Furthermore, it significantly reduces the
need for data access, movement, and alignment, decreasing memory and register file accesses
compared to traditional SIMD designs. SLIDEX achieves significant speedups in vital tasks
such as 2D convolutions for image filtering and stencil operations for feature extraction,
leading to an overall speedup of ∼1.2× and up to 19% energy reduction.

Subsequently, we broadened our research scope beyond isolated backends to leverage
the unique inherent properties of vision input streams and propose novel SoC-level opti-
mizations. The CV frontend captures successive similar images with gradual positional
and orientational variations. Consequently, many regions between consecutive frames yield
nearly identical results when processed in the backend. Despite this, current systems pro-
cess every image region at the camera’s sampling rate, overlooking the fact that the actual
rate of change in these regions could be significantly lower. In the third contribution of the
thesis, we introduce δLTA (δont’t Look Twice, it’s Alright). This novel approach decouples
camera frame sampling from backend processing by extending the camera with the ability
to identify redundant image regions before they enter subsequent CV pipeline stages. δLTA
informs the backend about the image regions that have notably changed, allowing it to focus
solely on processing these distinctive areas and reusing previous results to approximate the
outcome for similar ones. As a result, the backend processes each image region using dif-
ferent processing rates based on its temporal variation. δLTA removes a significant fraction
of unneeded frontend and backend memory accesses and redundant backend computations,
reducing the localization tail, average latency, and energy consumption by 7.2%, 15.2%, and
17%, respectively.

Finally, we notice that many frontend image manipulation byproducts, potentially
valuable for later CV processing, are routinely discarded due to the isolated operation of
the frontend and backend stages. This isolation forces the backend to process the image
without prior insights in an arbitrary (e.g., raster-scan) order, regardless of the amount of
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detail of the different image regions. In the last contribution of the thesis, we leverage these
observations to propose IRIS (Image Region ISP-Software Prioritization), which optimizes
CV by harnessing and repurposing existing computations executed by the frontend’s ISP.
IRIS segments and ranks image regions based on their detail level and perceived motion.
Our proposal enables computational backends to implement an iterative image-processing
approach that focuses on the more relevant regions and obtains results earlier, potentially
reducing latency and energy consumption and achieving zero-latency overhead even in the
worst-case scenario. IRIS enables effective iterative visual localization, reducing tail, average
latency, and energy consumption by 9%, 20%, and 16%, respectively.

Keywords

Continuous Vision Systems, Hardware Accelerator, SIMD, ISP, SLAM, Localization,
Autonomous Driving, Augmented Reality, Extended Reality.
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1
Introduction

This chapter outlines the driving forces behind this thesis. It highlights the sig-
nificance of mobile CV (Continuous Vision) systems in the present and future computing
landscapes. Subsequently, the chapter details the thesis’ research scope and main contribu-
tions, concluding with a review underscoring how our research uniquely advances beyond
prior state-of-the-art methods.

1.1 Thesis Motivation

Historically, computing machines operated within the confines of simplistic models,
interacting with the world through textual or constrained graphical user interfaces. Today,
they are evolving to perceive and interpret their surroundings with a complexity akin to living
organisms, powered by advancements in computational power, energy efficiency, human-
computer interfaces, machine learning, and algorithms.

From the personal computer revolution to the smartphone era, technology has con-
tinually moved closer to humans, becoming more integrated into our daily lives. With their
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myriad sensors and cameras in small form factors and low-power profiles, mobile systems
have set the stage for the next leap in innovation, pushing the boundaries of what machines
can understand and how they interact with the world.

We are entering a new era mediated by the convergence of several influential trends.
First, the abundant computational power and data available enable the development of in-
creasingly complex algorithmic and machine-learning models with unprecedented perception
and reasoning capabilities. Second, with the cessation of Dennard scaling and Moore’s law,
application-driven specialization has emerged as a vital architectural technique to meet the
requirements of the associated emerging applications. Third, designers increasingly deploy
these novel applications on resource-constrained edge devices that directly interface with
the end user and the physical world. This paradigm shift can reduce response latency and
increase energy efficiency since computations are distributed and locally run on the edge
rather than on the cloud. It also facilitates real-time processing and decision-making in
various novel scenarios and form factors, in which edge machines transition from passive
observers to active participants, seamlessly incorporated into our everyday routines.

Among the numerous emerging applications, we highlight two prominent represen-
tatives: XR (Extended Reality) and autonomous machines, specifically AD (Autonomous
Driving). XR promises to amplify human abilities, providing immersive experiences that
enhance learning [33], entertainment [60, 138], and remote collaboration [122], ultimately
changing how we interact with digital content [26]. AD will revolutionize transportation
by enhancing safety, reducing traffic congestion, and increasing mobility for those unable to
drive [170]. The market trajectories of these technologies reflect their potential and signif-
icance. Reports forecast the XR market to reach US$38.6 billion in 2024, with an annual
growth rate of 10.77%, resulting in a projected market volume of US$58.1 billion by 2028 [12].
Apple and Meta recently released AR (Augmented Reality)/VR (Virtual Reality)/XR Vi-
sion Pro [11] and Quest [110] headsets, respectively. Similarly, projections indicate that the
AD market will grow from US$41.06 billion in 2024 to US$61.8 billion by 2026 [55]. Key
players in the AD industry include Tesla [14], Mobileye [111], Waymo [135], Cruise [34], and
Nvidia [136].

The advancements in XR and AD technologies highlight the increasing need for so-
phisticated machine perception capabilities. Vision, in particular, stands out as a pivotal
modality in machine perception. Just as vision is crucial for animals to navigate, identify, and
interact with their surroundings, it has become a cornerstone for machines to understand the
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physical world comprehensively. Through the lens of advanced CV system, machines can
discern intricate details, recognize patterns, and make informed decisions based on visual
input.

Visual perception primarily encompasses object detection, tracking, and localization
tasks [93]. Localization—the ability of a system to understand and place itself within its
environment [47]—is foundational. This critical capability provides spatial awareness, en-
abling effective and meaningful interactions with the physical world. For example, in AD,
precise positioning is crucial as a frame of reference to assess collision avoidance, pedestrians
and other vehicles’ relative positions, and mission operations. In XR context, accurate head
tracking is fundamental and one of the most critical operations since the whole rendered
world depends on it for an adequate immersive user experience. As we will see in the fol-
lowing sections, these CV systems are typically deployed on mobile SoC (System-on-a-Chip)
and face significant challenges in delivering accurate results in a timely and energy-efficient
manner [93, 94, 169, 85].

This thesis explores architectural strategies to enhance mobile CV localization to
meet the growing demands of the next edge computing era. Through this research, we aim
to contribute to a future where machines can see, understand, and interact with the world
in ways that were once the sole domain of living beings.

1.2 Problem Statement, Objectives, and Contributions

The general CV pipeline, shown in Figure 1.1, comprises three essential stages: sam-
pling, imaging, and processing. The pipeline splits into two main modules: the frontend,
managing sampling and imaging, and the backend, focusing on processing.

The frontend initiates the vision pipeline. At a high level, the sampling stage trans-
forms the light from the world scene into electric signals. Following this, the imaging stage
processes the raw image captured to enhance visual quality, converting it into a format
suitable for further analysis or display. In Chapter 2, we will delve into the role of the
ISP (Image Signal Processor), a specialized hardware component that typically completes
this stage. Subsequently, the pipeline places the processed image in a FB (Framebuffer) or
temporary storage for future use.

Later, the backend processes and analyzes the stored images to derive high-level visual
insights. This stage utilizes a blend of computational resources, such as CPUs (Central
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Figure 1.1: High-level depiction of a Continuous Vision pipeline.

Processing Units), GPUs (Graphics Processing Units), and specialized accelerators, which
work together to process the image data.

The backend’s computational capabilities are vital for advanced applications such as
visual localization, where real-time, accurate image analysis is paramount. This analysis
is essential for promptly determining an agent’s position and orientation within a specific
frame of reference using onboard cameras. While dense and sparse localization methods
exist, the latter are more popular due to their computational efficiency and lower resource
requirements [83]. Modern sparse visual localization systems comprise two primary phases:
FE (Feature Extraction and Matching) and OPT (Optimization) [35, 23, 50]. While the
discussed localization method relies on a pre-existing map, other alternative modes support
SLAM (Simultaneous Localization and Mapping) [83, 28], which generates and updates the
map in real-time. These methods can also integrate multi-modal fusion techniques like VIO
(Visual-Inertial Odometry) [124].

As we will further detail in Chapter 2, the FE phase extracts 2D features from every
incoming image. These features are points of interest within the image that the system
can reliably and robustly recognize and track under various viewing conditions using an
associated descriptor that encodes its appearance from the captured images. After FE, the
system tries to find correspondences between the 2D features and previously seen 3D points
from a map that the system can use to estimate the camera pose accurately. The OPT
stage refines the predicted camera pose by minimizing the reprojection error, which is the
difference between the projected positions of the 3D map points on the camera plane and
their corresponding observed 2D features’ positions.

As edge devices integrate an increasing number of video cameras, each capable of
capturing images at progressively higher resolutions and faster frame rates [75, 166, 48, 115],
CV SoCs encounter multiple significant challenges.

The major challenge for CV systems is latency, especially in worst-case scenarios.
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For instance, CV systems must react quickly to environmental changes in AD vehicles to
ensure safe and efficient navigation. With cars capable of traversing 2-3 meters in just 100
ms, even the slightest delay can have dramatic consequences [37, 68]. In the XR domain,
minimizing latency is crucial to avoid user discomfort and motion sickness [40]. The system’s
response time should match or exceed the speed of the vestibulo-ocular reflex, the fastest
human reflex, which stabilizes vision in under ten milliseconds during head movements [32].
For a satisfactory XR experience, industry experts recommended keeping latency below 20
milliseconds, with 60 milliseconds being the upper limit for acceptable performance [88].

Energy consumption also imposes significant limitations and exacerbates previous
challenges, particularly in battery-powered edge systems where autonomy is critical. Energy-
efficient and low-power devices are essential, as they reduce energy consumption and maintain
user-friendly thermal conditions, thereby diminishing the need for intensive cooling. In
autonomous driving (AD), just the computing engine can decrease driving range by 6% [93].
In the XR context, the demand for batteries can increase the weight of headsets or necessitate
an external battery pack for prolonged use, as seen with products like Apple’s Vision Pro [11].

This thesis explores innovative architectural strategies to reduce future visual local-
ization systems’ latency and energy consumption on edge devices. The following sections
specify the objectives necessary to achieve this ambitious goal and explain how our contri-
butions effectively tackle the challenges associated with mobile CV.

1.2.1 Image Feature Extraction Acceleration

Our first goal is to maximize visual localization’s hardware performance and energy
efficiency by fully leveraging architectural specialization. Initially, we analyze a leading
localization engine to identify critical performance bottlenecks. Figure 1.2 illustrates that
the FE stage accounts for over 60% of the total execution time, a figure that persists as the
target number of extracted features rises. Other studies have also reported similar results
across different configurations and platforms [50, 7, 156, 95], highlighting FE’s significant
impact on the system’s computational demands.

In response to this challenge, we introduce a heterogeneous architecture that com-
bines LOCATOR (Low-power ORB aCcelerator for AuTonomOus caRs) for image feature
extraction and a mobile CPU for the remaining tasks, such as tracking OPT, local mapping
and loop closing [113]. LOCATOR specializes in the extraction of ORB (Oriented FAST
and Rotated BRIEF) [134] features, a process that involves detecting corners in the image.
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Figure 1.2: Feature extraction significantly dominates the execution time in visual localiza-
tion systems.

This method is widely used in visual localization frameworks for its computational efficiency
and robust detection capabilities across varying illumination, viewing angles, and rotation
conditions.

ORB’s effectiveness largely stems from using rBRIEF (Rotated BRIEF) descriptors,
which apply pixel subsampling within a patch surrounding the feature point to create reliable
descriptors. Due to the irregular memory access patterns, computing this descriptor in
hardware is the most challenging part. The computation consists of 256 comparisons between
pairs of pixels in each corner’s neighborhood. The locations of the 256 pairs of pixels do
not follow any regular pattern and change dynamically based on the orientation angle of
the corner, which relates to the direction of the brightness gradient. Section 2.2.6 provides
further details about this process.

Previous ORB accelerators modify the rBRIEF algorithm [95, 143] to obtain a more
hardware-friendly version or fully replicate the rBRIEF hardware unit [160]. The first option
incurs a significant accuracy loss, adversely affecting application outcomes. The latter incurs
significant area and power costs.

LOCATOR replicates the rBRIEF unit but introduces several techniques to reduce its
latency (reducing the number of required replicas) and its cost. To cut down latency, a static
scheduling method developed through a genetic algorithm optimizes the mapping between
the rBRIEF subsampling pattern and bank organization, reducing bank access conflicts. A
lightweight duplication cache mechanism enhances this technique by augmenting the number
of memory banks with duplicates of the repeated pixels in the rBRIEF pattern, further
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reducing conflicts and latency. To lower replication costs, we observe that the distribution of
access to banks is not uniform, and some banks have low utilization. Our design selectively
employs a different number of ports for each bank based on this observation, reducing the
cost of replication with a controlled impact on latency penalization. The rBRIEF unit
also incorporates a multi-stage pipeline architecture, enhancing throughput by overlapping
conflict resolution with pixel access.

The accelerator achieves 16.8× speedup for ORB feature extraction, 1.9× end-to-end
speedup, and 2.1× end-to-end energy reduction per frame, compared to running the complete
localization system on an ARM Cortex A72.

This work has been published in the proceedings of the 33rd IEEE International Sym-
posium on Computer Architecture and High Performance Computing (SBAC-PAD) [148]:

• Raúl Taranco, José-Maria Arnau, and Antonio González. “A Low-Power Hardware
Accelerator for ORB Feature Extraction in Self-Driving Cars”. In: 2021 IEEE 33rd
International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). ISSN: 2643-3001. Belo Horizonte, Brazil, Oct. 2021, pp. 11–21. doi:
10.1109/SBAC-PAD53543.2021.00013. url: https://ieeexplore.ieee.org/

document/9651662

Furthermore, an extended version of this work has been published in the Journal of
Parallel and Distributed Computing [149]:

• Raúl Taranco, José-Maria Arnau, and Antonio González. “LOCATOR: Low-power
ORB accelerator for autonomous cars”. In: Journal of Parallel and Distributed Com-
puting 174 (Apr. 2023), pp. 32–45. issn: 0743-7315. doi: 10 . 1016 / j . jpdc .

2022.12.005. url: https://www.sciencedirect.com/science/article/pii/

S0743731522002507

1.2.2 Sliding Window Support for Generic CPUs

While specialized solutions deliver unmatched performance and energy efficiency, cru-
cial for highly constrained edge devices, they lack the flexibility to adapt to the evolving
landscape of CV algorithms. This adaptability is particularly vital in this area, where com-
putational platforms must readily adjust to future and unforeseen algorithms.
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Our second goal is to enhance CPUs with domain-specific image processing capa-
bilities, aiming to reduce the general overhead without compromising as much flexibility as
accelerators. CPUs are ubiquitous in CV platforms, typically run visual localization engines,
and are the most adaptable computational platform to date. However, they incur signifi-
cant overheads. Hameed et al. [61] suggest that a modern CPU spends approximately 94%
of its energy on instruction supply generality, with only 6% devoted to actual instruction
execution.

To achieve this, we combine CPUs’ SIMD (Single Instruction, Multiple Data) pro-
cessing with core image processing primitives. Most mainstream CPUs feature SIMD VPUs
(Vector Processing Units) such as NEON [13], SVE [140], Intel AVX [71], and RISC-V [130],
which amortizing instruction management costs (fetch, decode, issue) across multiple oper-
ations. However, despite their importance, existing SIMD solutions do not fully exploit the
available DLP (Data Level Parallelism) available in foundational image processing opera-
tions like convolutions, crucial in CNNs (Convolutional Neural Networks) or image filtering,
and stencil operations required for morphological operations or feature extraction. Both
operations rely on a sliding window data flow to analyze each image pixel using a window of
neighboring pixels that substantially overlap with the windows of adjacent elements. Unfor-
tunately, current SIMD solutions generally manipulate the elements within a vector register
independently of each other. While this provides excellent generality, it implies that, for
example, for a simple 1D convolution, the programmer needs to load the data, perform
element-wise multiplication with the first kernel component, execute a data shift, conduct a
multiplication with the subsequent kernel component, accumulate the results, and so on. As
a result, there is a notable gap between the available DLP and its actual utilization in these
crucial image-processing tasks.

In response, we propose SLIDEX (SLIDing window EXtension for image processing),
a novel high-performance and energy-efficient vector ISA (Instruction Set Architecture) ex-
tension to exploit SWP (Sliding Window Processing) in conventional CPUs. SWP extends
the conventional vector SIMD execution model, treating vector registers like variable-sized
groups of overlapping pixel windows. SLIDEX-enabled VPU processes multiple windows
simultaneously, maximizing the DLP achievable per instruction while maintaining the same
vector length. Furthermore, it significantly reduces the need for data access, movement,
and alignment, decreasing memory and register file accesses compared to traditional SIMD
designs.
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SLIDEX significantly boosts processing speed for vital operations like 2D convolutions
and stencil operations for feature extraction, achieving around a 1.2× overall performance
increase and up to 19% energy savings compared to standard vector extensions on a low-
power ARM Cortex A55 core.

This proposal has been presented as a poster and published as a short paper in
the proceedings of the 32nd IEEE International Conference on Parallel Architectures and
Compilation Techniques (PACT) [152]:

• Raúl Taranco, José-María Arnau, and Antonio González. “SLIDEX: Sliding Window
Extension for Image Processing”. In: 2023 32nd International Conference on Par-
allel Architectures and Compilation Techniques (PACT). Vienna, Austria, Oct. 2023,
pp. 332–334. doi: 10.1109/PACT58117.2023.00039. url: https://ieeexplore.

ieee.org/document/10364589?signout=success

The full version of the work has been accepted for publication in the proceedings of
the 38th ACM International Conference on Supercomputing (ICS) [150]:

• Raúl Taranco, José-Maria Arnau, and Antonio González. “SLIDEX: A Novel Architec-
ture for Sliding Window Processing”. In: Proceedings of the 38th ACM International
Conference on Supercomputing. ICS ’24. Kyoto, Japan: Association for Computing
Machinery, June 2024. isbn: 979-8-4007-0610-3/24/06. doi: 10.1145/3650200.

3656613

1.2.3 Decouple Camera Sampling from Processing

After the specialization-programmability backend exploration targeted in the previous
objectives, we zoom out to focus on SoC-level architectural optimization. Frontend and
backend communication costs in CV pipelines are three orders of magnitude higher than
actual backend computation costs, as presented in Table 1.1. Consequently, our architectural
strategy targets reducing these communication costs.

While previous optimizations with LOCATOR and SLIDEX have effectively reduced
memory accesses by improving data locality, they are limited by the need to process all
regions of every frame at the camera’s fixed capture rate. This approach does not account
for the inherent smoothness in camera movement, where the camera typically captures images
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Table 1.1: Energy consumption of different components in picojoules per pixel (adapted
from [84]).

Component Energy (pJ/pixel)

Sampling 595 [29, 42]
Communication (SoC - DRAM) 2800 [66, 74, 109, 118, 1]
Storage 677 [162, 107, 157]
Computation (per MAC) 4.6 [61]

of the same scene with gradual changes in position, angle, and orientation. This smoothness
results in consecutive frames having a high degree of temporal similarity. For example, when
an AD vehicle stops at a red traffic light, it processes similar frames. Likewise, when the
vehicle begins to move again, some image regions, such as the sky or road, change minimally.

We leverage this smoothness property of input vision streams to propose δLTA (δont’t
Look Twice, it’s Alright). δLTA optimizes CV by decoupling frontend camera frame sampling
from the backend processing. We introduce a new CV frontend ISP functionality that utilizes
frame-to-frame similarity to discard image regions in the very early stages of the vision
pipeline during the frontend camera sampling. Instead of writing the entire frame to the
FB every time the camera captures an image, δLTA frontend selectively updates only the
regions of the frame that differ from the previous version and informs the backend which
regions are different. This mechanism allows the backend to focus solely on processing the
unique and distinctive regions of the image at their rate of change and not always at the
arbitrary uniform camera sampling rate.

δLTA significantly enhances efficiency compared to current systems by reducing fron-
tend FB updates, minimizing redundant backend computations, and decreasing backend FB
accesses, resulting in lower end-to-end latency and reduced energy consumption.

A pivotal advantage emerges when scaling the camera frame rate. Frame-to-frame
similarity increases as the frame rate grows since the camera has less time to capture varia-
tions in the scene between consecutive frames up to a certain point when, for a given scene,
more frame rate provides only redundant information. Hence, δLTA can progressively filter
the increasingly similar regions of these frames to limit the backend workload to the actual
scene information. The decoupling empowers CV SoCs to not only avoid ineffectual compu-
tations but also to increase the system responsiveness since the backend can virtually process
higher frame rates only for the regions that require it while saving resources for the ones
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that do not.

In our localization engine, δLTA significantly cuts down unnecessary memory accesses
and redundant computations at both the front and backend, achieving a 15.2% reduction in
application latency and a 17% decrease in energy consumption compared with the baseline
mobile ARM Cortex A72 backend processor.

We published this contribution in the proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) [151]:

• Raúl Taranco, José-María Arnau, and Antonio González. “δLTA: Decoupling Camera
Sampling from Processing to Avoid Redundant Computations in the Vision Pipeline”.
In: Proceedings of the 56th Annual IEEE/ACM International Symposium on Microar-
chitecture. MICRO ’23. Toronto, Canada: Association for Computing Machinery, Dec.
2023, pp. 1029–1043. isbn: 9798400703294. doi: 10.1145/3613424.3614261. url:
https://dl.acm.org/doi/10.1145/3613424.3614261

1.2.4 Leverage Synergistic Frontend and Backend Cooperation

Our last objective aims to unleash ISP-software collaboration to enhance SoC-level
efficiency. Current CV systems’ frontend and backend operations are significantly discon-
nected, as these two SoC components function without any synergistic collaboration in their
image processing activities, missing optimization opportunities to reduce computation and
communications costs.

We propose a strategy that repurposes the ISP’s internal imaging byproducts, usually
discarded after processing each frame, to provide early insights for other components within
the SoC. Backends, like CPUs, operate independently, often processing the entire image in
a predetermined order, like raster-scan, to either pre-process the image for identifying key
regions or post-process it for high-level semantic outputs. However, not every region in
an image contains equally valuable information. For example, the image features tracked
in visual localization tend to be concentrated around specific objects rather than spread
uniformly across the image.

Figure 1.3 presents a histogram that illustrates the distribution of image features
across equally sized grid regions, using data extracted from the KITTI [52] dataset sequences.
Notably, a significant number of these regions, approximately 40% on average, contain no
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Figure 1.3: Histogram illustrating the spatial distribution of features, showing the frequency
of grid regions containing varying numbers of features.

features. Thus, early insights from the ISP could identify these areas of interest, allowing
the system to sidestep the access and processing of irrelevant regions (e.g., the sky or the
road in AD), thereby reducing latency and energy consumption.

Building on this rationale, we introduce a novel approach named IRIS (Image Region
ISP-Software Prioritization) to unleash ISP-software collaboration. IRIS enables the fron-
tend to expose a priority map of the image regions based on their prominence, leveraging
already computed operations along the ISP pipeline like edge detection and optical flow.
With this priority image map, the backend can adopt an iterative or incremental image
processing approach where the first iterations of the algorithms begin processing the most
salient regions, yielding relevant insights before the baseline system.

We evaluated IRIS to enable effective iterative feature extraction for visual localiza-
tion on a mobile ARM Cortex A72 backend processor. Our results show a reduction in
tail, average latency, and energy consumption of 9%, 20%, and 16%, respectively. A paper
describing IRIS has been submitted to publication and is currently under review:

• Raúl Taranco, José-María Arnau, and Antonio González.“IRIS: Unleashing ISP-Software
Cooperation to Optimize the Continuous Vision Pipeline”. Under review.

1.3 State-of-the-art in Mobile Continuous Vision

This section reviews the latest advancements in Mobile CV systems. As edge devices
increasingly process complex tasks locally, the demand for sophisticated vision algorithms
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and efficient hardware intensifies. This overview highlights key technological developments,
addresses the prevailing challenges, and identifies emerging opportunities, contextualizing
the contributions of this thesis to the field.

1.3.1 Visual Applications

The research community has increasingly focused on enhancing the performance of CV
applications, driven by the growing interests in XR and AD. Localization, object recognition,
and object tracking represent three major active research areas for visual applications.

State-of-the-art visual localization systems encompass many approaches, including
multi-camera SLAM, which enhances spatial perception; multi-modal systems that integrate
various sensors for improved robustness; and learning-based methods that leverage deep
neural networks for enhanced accuracy and adaptability in complex environments [28, 83,
168].

ORB-SLAM [23, 113], a cornerstone in visual SLAM, employs ORB features to deliver
real-time, reliable localization and mapping with a system capable of handling monocular,
stereo, and RGB-D cameras. Its robustness and flexibility have made ORB-SLAM a bench-
mark in visual localization research and applications, influencing our decision to use it in
our experiments.

SOFT2 [35], a recent feature-based localization method, employs advanced stereo
matching and map optimization to deliver precise visual localization. It rivals the accuracy
of lidar-based systems and achieves top ranking on the KITTI dataset.

Multi-modal sensor VIO systems, systems like VINS-Mono [124] combine inertial mea-
surements with visual data to improve pose estimation, especially when visual information
alone is insufficient. By fusing camera and IMU (Inertial Measurement Unit) data, VINS-
Mono offers increased robustness against rapid movements and feature-poor environments,
demonstrating the strength of multi-sensor integration.

Furthermore, substantial research has leveraged deep learning for mobile object recog-
nition and object tracking [78]. Learning-based methods are also increasingly popular in
enhancing visual localization, with deep neural networks improving feature extraction, data
association, and pose estimation. These methods offer adaptability and learning capabili-
ties beyond what traditional techniques can achieve. For example, SuperPoint [39] employs
CNNs to detect and describe key points across various scenes, ensuring robust localization
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features. DeepVO [159] uses Recurrent Convolutional Neural Networks (RCNNs) to infer
camera poses directly from the sequence of images.

However, despite their effectiveness, these learning-based approaches have substantial
computational and energy costs, especially during inference, which often involves networks
with millions of parameters and numerous layers. These requirements can significantly strain
resources, particularly in environments where GPUs and other accelerators struggle to pro-
cess other crucial perception tasks like object detection and tracking.

Researchers have proposed multiple deep learning optimizations, including the use of
simplified models [127, 67], model compression techniques [62, 30, 108], and quantization
methods [76, 54].

1.3.2 Hardware Specialization

Numerous solutions have been proposed in recent years to optimize the feature-based
localization discussed in this thesis, including FPGAs [160, 143, 95, 144, 156], ASIC accel-
erators [87, 173], frameworks for automatically generating synthesizable accelerators [64, 96,
154], and accelerator-host communication approaches [147]. Another vital research direction
involves hardware support for multi-sensor fusion and synchronization, such as camera-IMU
combination [171, 50]. Most of these solutions try to accelerate feature extraction (e.g., FAST
(Features from Accelerated Segment Test) [133]), speed up descriptor generation (e.g., ORB),
or improve localization accuracy through multi-sensor data fusion.

Table 1.2 compares quantitatively LOCATOR with previous works. LOCATOR
achieves high performance and shows the best energy efficiency, greatly improving Perfor-
mance Per Watt (PPW).

Other machine learning techniques have increasingly received tailored hardware sup-
port, as evidenced by developments in dedicated accelerators designed to enhance their
energy efficiency and performance [27, 82, 119, 6, 137].

1.3.3 Image Signal Processors

Most ISPs follow a fixed-function design described in Chapter 2. Despite this, there is
a significant push within the research community to unlock greater flexibility in ISPs beyond
conventional designs [78].
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Table 1.2: Comparison with previous works. PPW stands for Performance Per Watt.

Work Algorithm Implementation Performance mW PPW

[120] FAST-BRIEF ASIC, 130nm, 78.3k
gates, 128kB SRAM

122fps, FHD, 200MHz 182 670

[173] ORB-like ASIC, 65nm, 127k gates,
205kB MEM

135fps, FHD, 200MHz 87.5 1542

[160] ORB FPGA, Arria V GX,
449 DPS, 206000 LEs,
231973 REGs, 1047kB
BRAM

110.9fps, FHD, 230MHz 5340 20

[43] ORB FPGA, Stratix V, 8
DPS, 25648 LUTs, 21791
REGs, 1208kB BRAM

67fps, VGA, 203MHz 4559 14

[87] FAST-BRIEF ASIC, 65nm, 28kB
SRAM

2170fps, VGA 1131 1918

[144] ORB FPGA, XCZU9EG, 33
DPS, 28168 LUTs, 9528
REGs, 188kB BRAM

108fps, FHD, 200MHz 873 123

[95] FAST+RS-BRIEF FPGA, XCZ7045, 80
DPS, 76424 LUTs,
101694 REGs, 120
BRAM

62fps, VGA, 100MHz 1963 28

[156] ORB FPGA, ZU3EG, 111
DPS, 56954 LUTs, 67809
REGs, 78 BRAM

55.87fps, VGA, 150MHz 4600 N.A.

LOCATOR ORB ASIC, 45nm, 32kB
SRAM

120fps, FHD, 400MHz 10.84 15260

Vasilyev et al. [155] propose a programmable CGRA (Coarse-Grained Reconfigurable
Arrays) framework to enhance the adaptability of ISPs. Additionally, numerous studies have
effectively implemented custom ISPs on FPGAs (Field-Programmable Gate Arrays) [64, 65].

Originally intended to capture images for people, CV systems now generate images
primarily for machine analysis. As a result, there is a shift towards simplifying or removing
specific ISP stages, enabling algorithms to directly process RAW camera data to reduce
latency and energy consumption. Liu et al.[97] developed an ISP design that selectively
deactivates stages according to the application’s specific needs. Buckler et al. [20] explore how
various ISP stages influence application performance and suggest modifications to simplify
the ones without significant effect. Their research shows that color transformation stages
generally have little effect on task performance and accuracy. They emphasize the importance
of demosaicing, denoising, and gamma compression for tasks such as object detection (via
CNNs). Hansen et al.[63] also highlight the critical role of tone mapping, especially for HDR
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(High Dynamic Range) imagery in classification tasks.

While bypassing the ISP in the CV pipeline is appealing, the full impact on vision
applications remains an area of ongoing exploration [78]. This thesis assumes the presence
of a conventional ISP, but its core contributions remain valid regardless of the ISP’s role.

The δLTA approach can operate as a standalone SoC component without an ISP. The
IRIS implementation utilizes the ISP’s temporal denoising and edge enhancement, proven
beneficial (as stated before) for machine image processing. Furthermore, IRIS shows that
early-stage processing in the vision pipeline can provide essential data to the backend, fa-
cilitating reductions in communication and computational costs. These insights could be
advantageous even for systems operating without an ISP.

1.3.4 Programmability and Architectural Flexibility

Prior work has investigated how the degree of programmability affects performance
and energy efficiency in imaging hardware solutions [31, 15]. Remarkably, the CE (Con-
volution Engine) [123] is, like the SLIDEX unit, a programmable processor specialized for
convolution-like data flows. CE partially exploits some SWP. However, it only supports a
fixed set of window sizes (for 1D: 4, 8, and 16) and reductions (e.g., 4:1 and 8:1). Supporting
more sizes requires extra interconnection circuitry for each kernel size, significantly raising
the cost of the solution. SLIDEX differs from CE in its microarchitecture, allowing SWP to
be exploited for any odd sizes from 1 to VL (Vector Length) natively and with a reduced
cost that scales linearly with VL value, making our solution more general, programmable,
scalable, and requiring fewer instructions. Moreover, SLIDEX exploits more inter-window
parallelism as it computes partial results for all windows that fit in the processed register
simultaneously.

Other proposals [25, 155] include VLIW (Very Long Instruction Word) capabilities
to increase the ALU (Arithmetic Logic Unit) utilization of SIMD implementations.

Furthermore, Intel announced the inclusion of AMX (Advanced Matrix Extensions) [71]
to their ISA. AMX aims to support GeMM (General Matrix Multiply) architecture through
a tile register file composed of eight 1KB registers and instructions to manipulate them.
This way, the programmer can express functionality with fewer instructions of high seman-
tic value (e.g., load a tile or multiply two tile registers). This approach is related to our
SLIDEX extension since, in both cases, the proposed ISA extensions manipulate data with
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greater granularity, providing higher performance and lower instruction supply overhead.
However, unlike AMX, our proposal exploits the operand overlap inherent in sliding window
operations in a way that does not require introducing costly architectural extensions (e.g.,
tile registers of several KB), which could not be possible in embedded domains. Our pro-
posal introduces a novel microarchitecture that minimally extends standard vector engines
ubiquitous on modern processors.

Jeong et al. [79] explore the design trade-offs of integrating systolic arrays in CPUs
for GeMM [79] using high semantic value instructions to manipulate the data. Our proposal
also introduces new instructions to control the operation of a tightly coupled processor that
resembles a systolic array.

Adding to this, domain-specific programming languages like Halide [126] or Dark-
room [64] offer tailored solutions for image processing development. These languages simplify
the programming of imaging pipelines, allowing developers to express complex operations
and map them to different target platforms or accelerators.

1.3.5 Exploiting Spatio-temporal Similarity

Previous proposals have capitalized on temporal and spatial redundancies in real-
time frames to reduce computational complexity, with approaches spanning both software
and hardware domains.

Multiple software-based solutions function as a service, acting as a SC (Software
Cache) to minimize system-wide computational redundancy in concurrent vision applica-
tions. Starfish [91] matches library calls with identical arguments, thereby reusing compu-
tation results. CBinfer [24] and DeepMon [69] incorporate CNN SCs, enabling computation
reuse per layer by matching image regions within an equally sized grid. These methods
rely on executing a similarity test on the CPU rather than the ISP, thus incurring overhead
for frame transmission and similarity computation. Potluck [59] enables cross-application
deduplication of image region computations, using a SC for reusing computations across
spatio-temporally similar regions. DeepCache [165] allows cache hits for nearby similar im-
age regions, running a lookup once at the input raw images and propagating reusable region
boundaries across all layers, only recomputing the necessary parts.

All these solutions have a common aspect: they utilize a SC that stores a similarity
metric of different regions. Some use ad-hoc metrics [24] or features like SIFT [59]. They

43



differ in the search methodology to identify similar neighbor regions. This search activity is
very costly and may outweigh the benefits of computation reuse. They also differ in what
they cache: results from image processing subroutines, CNN layer computations, etcetera.
In any case, software caching transfers the entire image from the ISP to the main memory
and from the main memory to the backend (e.g., CPU), at least to perform the cache lookup,
which limits its efficiency and energy-saving potential.

In contrast to these previous works, δLTA offloads similarity computation and match-
ing to the ISP rather than relying on CPU/IP calculations. We proposed an efficient simi-
larity detection overlapped with other ISP stages that, unlike other works, ensures that the
overhead of our technique remains minimal even in the worst-case scenario.

Other previous hardware solutions also capitalize on temporal/spatial redundancies
in real-time frames to streamline computations on mobile CPUs [104, 129, 44].

1.3.6 Frontend-Backend Collaboration

Recently, Kodukula et al. [84] introduced a mechanism allowing the backend to imple-
ment a policy that determines which image regions the frontend should send, as well as their
spatial and temporal resolution. They evaluated its effectiveness for localization tasks. The
backend (e.g., the CPU) must establish this policy without knowing future frame contents.
Therefore, it must process a full frame periodically (every N frames) to prevent the accu-
mulation of errors. In contrast, δLTA enables the frontend to use frame-to-frame temporal
similarities to discard similar regions and inform the backend, overcoming the speculative
limitations inherent in the previous method.

PVF [51] harnesses the predictability of CV streams to introduce a speculative vi-
sion pipeline. This pipeline allows the frontend to predict future frames, scheduling them
speculatively into the SoC’s heterogeneous IPs. When the actual frame arrives, the systems
assess the predicted and actual frames similarly; if similar, the corresponding IP processing
of the predicted frame may have already finished, minimizing frame latency. PVF decou-
ples frontend processing from vision computation through speculation since the backend can
anticipate the processing of future frames. Other proposals exploit motion vectors derived
from classical optical flow methods [21] or hardware codecs [167] for CNN inference for object
detection and tracking.

Euphrates [174] employ motion information collected from high-end ISPs to bypass
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CNN inference for specific frames. The system performs full inferences of a subset of frames
and uses the motion vectors extracted from the ISP to predict the results for the intermediate
ones. Specifically, this technique translates the bounding boxes to their new positions based
on the direction and magnitude of the perceived motion. However, this approach faces a
critical issue: new objects entering the scene during frames with motion vector updates
might go undetected.

Framebuffer compression is a technique to reduce SoC communication costs. Indus-
trial examples include ARM AFBC [101], Imagination IMGIC [70], AMD DCC [53], and
Chips&Media CFrame [139]. These proprietary techniques require decompression before
processing by the consumer IP, implying that they do not discard redundancies or commu-
nicate with the IP about them. Compression reduces the energy consumption of the frame
transmission. One of the most popular industry choices for these techniques is delta encoding
lossless compression [4, 53], which can straightforwardly complement δLTA and IRIS.

1.4 Thesis Organization

The remainder of this thesis is structured as follows:

Chapter 2 establishes the foundational knowledge for understanding this thesis, ex-
plaining the architecture of standard Continuous Vision SoCs and detailing the operation
of predominant visual localization systems that operate on top of them. It also surveys the
latest advancements in the field, framing the context for our contributions.

Chapter 3 outlines our experimental approach, detailing the evaluation tools used to
assess the system’s performance, power, area, and energy efficiency. Additionally, it describes
the image dataset used to test our localization engine.

In Chapter 4, we introduce the LOCATOR architecture aimed at improving ORB
feature extraction efficiency. We address the main challenge of minimizing bank conflicts
during rBRIEF descriptor generation by employing an offline genetic algorithm to find a
pseudo-optimal access pattern and a static bank caching mechanism.

In Chapter 5, we present SLIDEX, an ISA extension to improve the efficiency of
general-purpose CPUs to process fundamental windowed image primitives that are prevalent
in visual applications. We exemplify its benefits over a localization engine’s convolutions and
stencil operations.

45



Chapter 6 presents δLTA, a technique to decouple camera sampling from processing,
providing a scalable CV system capable of processing higher FPS (Frames Per Second) rates
at lower costs. We then show the benefits of the technique by modifying our localization
engine.

Chapter 7 presents IRIS, another technique to leverage already generated pre-processing
information of the ISP to selectively process image regions based on their relevance in later
stages of the vision pipeline. We applied it to implement iterative feature extraction.

Finally, Chapter 8 outlines some of the future steps and open research areas and
summarizes the main conclusions of this thesis.
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2
Background on

Continuous Vision and Localization

This chapter provides an overview of our research context. We explore the architecture
of contemporary mobile CV (Continuous Vision) systems. We then detail the operation of its
primary hardware components and dissect them. Finally, we focus on a key CV application:
camera-based visual localization, emphasizing the FE (Feature Extraction and Matching)
stage, the primary bottleneck of the application.

2.1 Architecture of Modern Continuous Vision Systems

The architecture of the mobile CV systems is paramount in shaping future machines’
perception capabilities and deployability. As introduced in Section 1.2, it comprises two main
components: a frontend that transforms environmental light into high-quality digital images
and a backend that derives high-level semantic information for perception and decision-
making.
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Figure 2.1: Depiction of a CV pipeline, highlighting the front and backend that embeds a
visual localization system.

To support this pipeline, standard CV SoCs (Systems-on-a-Chip) typically follow the
design presented in Figure 2.1. In this architecture, off-chip camera sensors capture light,
generating RAW pixels transmitted to the SoC via the CSI (Camera Serial Interface), a
MIPI (Mobile Industry Processor Interface) Alliance specification [92]. Within the SoC, the
ISP (Image Signal Processor), a highly specialized SoC component, transforms RAW data
into RGB/YUV domain pixels using algorithms like dead pixel correction, demosaicing, and
white-balancing [8, 103, 63, 78]. The ISP then stores the processed image in a frame buffer in
the SoC’s main memory. Subsequently, the backend analyzes these images to enable multiple
applications such as object detection, object tracking, and, notably, visual localization—the
central benchmark of this thesis.

The following subsections further detail each component of the described CV mobile
architecture.

2.1.1 Camera Sensor

The camera sensor is an integral component of vision systems, serving as their primary
interface between the physical and digital worlds. It comprises an array of photosensitive
elements, typically CCD (Charge-Coupled Devices) [41] or CMOS (Complementary Metal-
Oxide-Semiconductor) [41, 17] sensors. Each element within the array converts incident pho-
tons into an electrical charge proportional to the intensity of incoming light, a phenomenon
essentially guided by the photoelectric effect. An ADC (Analog-to-Digital Converter) then
converts these charges into digital data for processing. The design of camera sensors is vital
in defining the overall image quality and sensitivity to light.
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Notably, CMOS sensors have become more ubiquitous than CCDs due to their inher-
ent advantages that align with the demands of modern technology [41]. They use less energy
than CCDs, and their compatibility with standard semiconductor processes reduces produc-
tion costs. CMOS technology enables on-chip integration of processing functions, simplifying
camera designs and enhancing performance. Their rapid readout speeds also facilitate high
frame rates and swift image capture.
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Figure 2.2: Fundamental structure of an image sensor, featuring a standard Bayer photo-
sensitive array configuration.

Image sensors, by design, detect only brightness, not color, as they measure light
intensity across their sensitivity range. To enable color detection, a color filter array overlays
the pixels. A color filter array, precisely the Bayer pattern [78], is applied to introduce color
sensitivity, allocating red, green, or blue filters to pixels in a ratio that reflects the human
eye’s heightened sensitivity to green light. This arrangement ensures that the sensor’s color
interpretation aligns with our vision. Figure 2.2 presents a typical image sensor, illustrating
its photosensitive array arranged in the Bayer mosaic.

2.1.2 Image Signal Processor

An ISP is a specialized SoC component that converts RAW sensor data into high-
quality images. ISPs comprise multiple signal processing stages to enhance image quality, as
illustrated in Figure 2.3. The exact stages of an ISP pipeline vary and are often proprietary
since vendors typically provide only a black-box abstraction of the ISP to end users through
simple register values and ranges. In this section, we outline stages commonly found in most
designs.

Most ISPs feature a fixed function design involving a cascaded stencil operations
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Figure 2.3: Traditional Image Signal Processor (ISP) pipeline.
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Figure 2.4: Scheme of a typical 2D line buffer employed on image processing specialized
hardware.

pipeline on local SRAMs organized as line buffers [20, 64] to perform each image enhancement
step. Stencil operations employ these structures [154] to process an input pixel window and
generate output pixels, typically following the image storage pattern using raster scan order.
Figure 2.4 shows a standard line buffer structure.

In this thesis, we base our discussion on the described ISP pipeline. We elaborate on
its stages in the following sections.

Demosaicing

This process transforms raw image data from a Bayer filter array into a full-color
image. It uses sophisticated algorithms to interpolate missing colors at each pixel, preserving
edges and reducing artifacts.
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Denoising

Denoising is a crucial ISP pipeline process that reduces image noise, enhancing image
quality by filtering out unwanted signal variations or distortions without sacrificing important
details. This step transforms raw sensor data into clear, usable images. There are two
principal approaches: static and temporal denoising.

Static denoising tackles four primary noise sources from RAW images: shot noise from
light detection, dark current noise, ADC quantization noise, and electronic read noise [78].
Researchers have formulated advanced algorithms like BM3D [36] and nonlocal means [19]
to boost the SNR (Signal-to-Noise Ratio), safeguarding crucial image details such as edges
and textures.

TD (Temporal Denoising) leverages the temporal correlation between consecutive
frames to identify and reduce noise, improving image quality over time. This advanced
method can be particularly effective in video processing or situations where multiple frames
of the same scene are available. It leverages ME (Motion Estimation) techniques to detect
pixel shifts across sequential frames [80]. TD uses pixel motion to replace noisy pixels with
clearer ones from previous frames. Noteworthy commercial camera ISPs, such as ARM Mali
C-71AE [103] and Qualcomm Spectra ISP [125], integrate these motion-aware functionalities.

ME methods can be broadly classified into differential-based and template-based
methods. Differential-based methods, like optical flow [46], compute motion based on changes
in pixel intensities over time. Template-based ME compares discrete blocks of pixels be-
tween successive frames to find the best match. BMA (Block-Matching Algorithm) [77] is
the prevalent ME method implemented in ISPs due to its optimal blend of precision and
efficiency.

BMA segments each frame into regions or macroblocks. For each one, it searches for
the best-matching corresponding region in the prior frame using a similarity metric such as
the SAD (Sum of Absolute Differences). The search spans a 2D window of (2d+1) pixels in
both directions, with d being the search range. Some techniques, like the TSS (Three-Step
Search) [81], aim to minimize computational demands. BMA determines an MV (Motion
Vector) for each region, reflecting the displacement between the region and its closest match
in the former frame. In our evaluations, we model an ISP implementing BMA and compute
a motion metric for each region using the vector magnitude of the corresponding MV.
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White Balancing, Color Correction, and Gamut Mapping

White balancing adjusts the image’s color temperature to align with the lighting
conditions in the scene [78]. Camera manufacturers typically select matrix values for these
transformations to achieve desired aesthetic effects.

Color correction in ISPs involves adjusting the color characteristics of an image to
achieve desired accuracy and consistency, compensating for distortions introduced during im-
age capture, such as lighting variations or sensor inaccuracies. Matrix operations or lookup
tables (LUTs) typically achieve this transformation by mapping color values from one color
space to another. The goal is to produce natural-looking images with consistent color repro-
duction across devices and viewing conditions, enhancing overall visual quality and ensuring
color consistency across different applications.

Conversely, gamut mapping involves converting color values captured outside a dis-
play’s acceptable range into colors within that range.

Sharpening (Edge Enhancement)

EE (Edge Enhancement) accentuates boundaries and fine details to improve image
sharpness. It involves applying an edge mask to enhance high-frequency components repre-
senting edges. Typically, ISPs use unsharp masking [38] to construct this mask by subtracting
a blurred (low-pass filtered) version of the image from the original, thereby isolating the high
spatial frequency components. Mathematically, this operation is defined as:

IEE(x, y) = I(x, y) + α× (I(x, y)− Iblurred(x, y)) (2.1)

Where IEE represents the enhanced image, I the original, α a factor modulating the
enhancement’s intensity, and Iblurred a blurred version of the image (e.g., gaussian filtered).

Gamma correction and Tone Mapping

Gamma correction adjusts image pixel values to compensate for the nonlinear re-
sponse of display devices, ensuring a perceptually linear appearance. It enhances brightness
and contrast, preserving detail in shadows and highlights.
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In contrast, tone mapping compresses an image’s dynamic range, enhancing visual
contrast without overexposing bright areas, resulting in a pleasing image. Gamma correction
ensures accurate display representation, while tone mapping aims for aesthetic effect while
preserving detail.

2.1.3 Computation Backends

Computational backends are the powerhouse in CV systems, executing complex vision
algorithms. These backends comprise well-known components like CPUs (Central Processing
Units), GPUs (Graphics Processing Units), TPUs (Tensor Processing Units), DSPs (Digital
Signal Processors), and dedicated accelerators, all crucial for processing the substantial data
generated by mobile CV systems. Section 1.3 covers several backend solutions, yet the
application of computational backends extends into everyday devices.

Apple, for instance, has integrated an NPU (Neural Processing Unit) [10] into its
latest iPhones, enabling FaceID via facial recognition [3]. Google’s Pixel [57] smartphones
employ an edge TPU for a range of vision tasks and previously incorporated the Pixel Visual
Core [128], a dedicated accelerator for imaging. Similarly, Samsung and Qualcomm have
recently embedded NPUs in their Exynos [73] and Snapdragon [161] chipsets to support
analogous functions. Moreover, Intel’s Myriad2 [73] VPU is tailored for edge computing
beyond smartphones, facilitating applications such as drone navigation.

2.2 Visual Localization Overview

As mentioned earlier in this thesis, localization is crucial in enabling a moving agent
(such as AD (Autonomous Driving) vehicle or XR (Extended Reality) headset) to ascertain
its position and orientation within a specific frame of reference. Modern camera-based local-
ization systems comprise two primary stages: FE and OPT (Optimization) stages [50] (refer
to Figure 2.1).

The FE stage plays a crucial role in these systems. It performs several image process-
ing methods and extracts visual features from every incoming camera frame to find visual
correspondences in consecutive observations. Based on our experiments (refer to Figure 1.2),
this stage consumes approximately 60-70% of the total execution time, clearly indicating it
as the primary bottleneck of the application. This bottleneck intensifies as camera resolution
and frame rate increase, underscoring the need for optimized processing strategies.
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Figure 2.5: ORB-SLAM system overview [113]

On the other hand, the OPT stage calculates the agent’s position (x, y, z coordinates)
and orientation (yaw, roll, and pitch) using the visual feature correspondences generated in
the FE stage.

In this thesis, we focus on experimenting with a state-of-the-art visual localization
approach, ORB-SLAM [23, 113], specifically in its localization-only mode. This approach,
highlighted in the survey by Kazerouni [83], is utilized to underscore the benefits and appli-
cability of the principal contributions of our research.

2.2.1 Overview of ORB-SLAM

ORB-SLAM is a prominent open-source SLAM (Simultaneous Localization and Map-
ping) system recognized for its efficiency and versatility, supporting monocular, stereo, and
RGB-D cameras. It leverages ORB (Oriented FAST and Rotated BRIEF) [134] features
for robust image keypoint detection and matching across frames. ORB-SLAM’s capacity to
achieve high accuracy and low latency in pose estimation and map reconstruction, typically
running on CPUs [50], makes it well-suited for AD and XR applications.

Figure 2.5 overviews the ORB-SLAM architecture, segmented into three principal
threads: tracking, local mapping, and loop closing. These threads collaboratively manage
the shared map structure, comprising 3D map points, keyframes, a co-visibility graph, and
a spanning tree, crucial for preserving the system’s operational efficacy and state integrity.

Keyframes, selectively chosen for their significant viewpoint changes or the intro-
duction of new, essential features, play a crucial role in building and refining environmental
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maps. These frames capture vital pose information and are rich in features, enhancing robust
map construction and maintenance. A co-visibility graph connects the keyframes, increasing
system efficiency by showing which frames share observations of the same map points.

2.2.2 Automatic Map Initialization

Automatic map initialization is a crucial step, especially for Monocular localization,
as it requires a procedure to establish an initial map due to the inability to recover depth
from a single image. In ORB-SLAM, the process begins by estimating the relative pose
between two frames to triangulate initial map points using ORB feature correspondences.
The system computes two geometric models in parallel: a homography assuming a planar
scene and a fundamental matrix assuming a non-planar scene. Then, a heuristic selects a
model and attempts to recover the relative pose using a specific method tailored to each
model.

Subsequently, the system checks if the camera’s movements satisfy motion hypothesis
specifications according to the selected model. This hypothesis is an initial assumption made
by the system that a consistent and predictable motion exists between consecutive frames
of the video sequence. This assumption implies that the camera undergoes smooth and
continuous movement as it navigates the environment.

If the system confidently predicts camera motion between frames, it executes bundle
adjustment [153] to refine map and camera poses. Otherwise, it reinitializes the map and
camera poses to establish a more precise motion hypothesis. This reinitialization process
may include steps to enhance feature matching or refine pose estimation.

Bundle adjustment [153], the heart of the OPT stage in ORB-SLAM, refines simulta-
neously the estimated camera poses and map points in the SLAM system. Bundle adjustment
works by iteratively optimizing the camera poses and 3D map points to minimize the repro-
jection error between observed features in the images and their corresponding locations in
3D space.

2.2.3 Tracking

Tracking is the process by which the system continuously estimates the camera’s
position and orientation as it moves through the environment. The Tracking phase comprises
several essential steps:
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1. Detecting Distinctive Features (FE): Initially, ORB-SLAM identifies distinctive
points or features in the current camera frame, crucial for subsequent tracking. We
will delve deeper into this critical stage in Subsection 2.2.6.

2. Matching Features Across Frames: Next, the system matches the detected fea-
tures in the current frame with those from the previous frame. This matching process
establishes correspondences between features, enabling the system to track how the
scene has changed over time.

3. Estimating Camera Pose: Using the correspondences between features from the last
frame, the system estimates the camera’s pose, including its translation and rotation
relative to its previous position. If the system does not succeed, it tries to perform
global relocalization using a place recognition system [49].

4. Track Local Map: After obtaining an initial set of feature matches and camera pose
estimation, the system extends its search for correspondences by projecting potential
3D map points visible from the estimated camera pose into the current frame, lever-
aging the co-visibility graph.

5. Optimization (OPT): Utilizing all matched features, the system executes a full bun-
dle adjustment to refine the camera pose.

After successful tracking, the systems operated according to two possible modes:
SLAM mode and Localization-only mode.

In SLAM mode, the system updates the map by adding new keyframes and collab-
orates with the Local Mapping and Loop Closure threads. Conversely, in Localization-only
mode, the system focuses solely on determining the camera’s position within an existing
static map. As a result, only the tracking thread remains active.

2.2.4 Local Mapping

Upon receiving a new keyframe in SLAM mode, the local mapping module springs
into action, performing the following tasks:

• It incorporates the new keyframe into the co-visibility graph, establishing its connec-
tions with other keyframes.
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• The stability of newly detected map points is verified to ensure their reliability.

• New map points are generated by triangulating ORB features observed in the connected
keyframes.

After executing these steps, the system performs a local bundle adjustment to refine
the map. Local bundle adjustment optimizes the positions of the map points and cam-
era poses within a local area of the map. It corrects errors accumulated during mapping,
improving map accuracy and camera trajectory estimation. Finally, the thread discards
non-informative keyframes to maintain the algorithm’s efficiency and structural integrity.

2.2.5 Loop Closing

The loop closing thread actively detects when the camera revisits previously mapped
areas. Upon identifying these revisits, it works to reconcile these re-observations with the
existing map. This active process significantly improves the global consistency of the map
and enhances the accuracy of the camera’s trajectory estimation. It ensures that the map
maintains coherence and integrity by properly integrating new observations with the pre-
viously mapped environment, thereby refining the overall quality of the reconstruction and
eliminating accumulated trajectory estimation errors.

2.2.6 ORB Feature Extraction

This section details the ORB feature extraction process utilized in ORB-SLAM for
its computational efficiency and robustness against viewpoint, illumination, and rotation
variations. Figure 2.6 displays ORB FE on an image from the KITTI dataset, with detected
features highlighted in green. These features are primarily corners. Corners are invaluable
in image processing as they are points where edges intersect, creating significant pixel inten-
sity changes in multiple directions. Their geometric stability enhances recognizability across
different viewpoints, preserving their angular characteristics despite perspective shifts. ORB
detection techniques ensure corners are rotation and scale invariant, allowing consistent iden-
tification regardless of camera movement or zoom. Additionally, corners maintain contrast
patterns more reliably under varying lighting conditions than other features. All these prop-
erties make ORB features uniquely identifiable landmarks critical for precise algorithmic
matching.
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Figure 2.6: Illustration of ORB feature extraction on a KITTI dataset image, with green
points marking the detected features.

ORB FE stage comprises three primary steps [134]: Gaussian Pyramid Building,
FAST (Features from Accelerated Segment Test) Keypoint Detection, and rBRIEF (Rotated
BRIEF) Descriptor Generation, which collectively address the visual localization frontend
processing bottleneck.

Gaussian Pyramid Building

FAST [132, 133] keypoint detector does not produce multi-scale features. For this
reason, ORB extraction includes the generation of a scale pyramid of images before detection
(see Figure 2.7a). The pyramid consists of several levels with versions of the original image
reduced and smoothed using a Gaussian filter. Feature extraction occurs at every level of
this pyramid.

FAST Keypoint Detection

The FAST feature extraction method, introduced in [132], is a neighborhood operator
used for corner detection in images, commonly employed as features in computer vision. It
tests a candidate pixel, p, to classify it as either a corner or not. This test compares the
intensity of p with the intensities of the 16 pixels forming a Bresenham circle around the
candidate, as illustrated in Figure 2.7b. A corner is detected at p if the intensities of at least
n = 12 contiguous pixels out of the 16 surrounding p are all above or below its intensity by
a threshold, t. The keypoint detection process involves NMS (Non-Maximal Suppression) to
filter the features based on a score computed using the neighborhood of the FAST feature.

58



Level 0

Level 1


Level 2

Level 3


Level 4


Level 5


(a)

16 1 2

15 3

14 4

13 P 5

12 6

11 7

10 9 8

(b)

Figure 2.7: (2.7a) Pyramid of images generated from an original image. (2.7b) Bresenham
circle of radius 3 showing the pixel access pattern for FAST around the pixel P .

This NMS procedure retains only the corners with the highest local maximum score within
a neighborhood.

FAST features typically include a rotation component, which provides a fixed refer-
ence orientation for them. This orientation remains consistent across variations in viewpoint,
image rotation, and lighting conditions, thereby enhancing the robustness and reliability of
the feature descriptors. The orientation of a feature is determined using the intensity centroid
with the following moment [131] calculations:

mpq =
∑
x,y

xpyqI(x, y), (2.2)

where I(x, y) represents the intensity at pixel (x, y). The orientation centroid C is
then calculated as:

C =

(
m10

m00

,
m01

m00

)
, (2.3)

Furthermore, the orientation θ of the feature is given by (Atan2 is the quadrant-aware
version of the arctangent):

θ = atan2(m01,m10). (2.4)

This orientation component will later serve as an input parameter for the feature’s
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rotation-aware descriptor, which we will discuss in the following section. In addition, it is
possible to compute the sin(θ) and cos(θ) using the moments in the following way:

sin(θ) =
m10√

m2
01 +m2

10

, cos(θ) =
m01√

m2
01 +m2

10

(2.5)

rBRIEF Descriptor Generation

The rBRIEF leverages each feature’s previously introduced rotation invariant to en-
hance BRIEF (Binary Robust Independent Elementary Features). BRIEF is a method to
generate a concise representation or signature of an image region’s pixel intensity distribu-
tion [22]. BRIEF describes regions as the concatenation of the results of intensity compar-
isons between sampled pixel pairs within the region.

The generation of the coordinates of the pixel pairs, n in total, is a fundamental
aspect of BRIEF. This pattern is established once and consistently applied when constructing
BRIEF descriptors across all the image regions intended for similarity comparison. Typically,
pixel pair positions can be chosen either through a random sampling within the image region
or through a more sophisticated learning-based approach where machine learning aids in
selecting the optimal pairs based on training data [22].

Figure 2.8: Example of the BRIEF (B) operation to form the signature 01...0.

Given an image intensity function I, a binary test τ on an image patch at pixel
coordinates pA and pB is defined as:

τ(pA, pB) =

1 if I(pA) < I(pB)

0 otherwise
(2.6)
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The BRIEF descriptor B comprises n such binary tests:

B =
[
τ(pA1 , pB1), . . . , τ(pAn , pBn)

]
(2.7)

Figure 2.8 depicts a representation of the BRIEF method operation. For a given pixel
pair, pA, and pB, if the intensity of pA is greater or equal to pB, the bit is set; otherwise, it
is unset.

The rBRIEF descriptor ensures in-plane rotation invariance by rotating the coor-
dinates for binary intensity tests according to the orientation θ, using the corresponding
rotation matrix, Rθ. We express the matrix of binary test point coordinates (xi, yi) as:

S =

(
x1, ..., xn

y1, ..., yn

)
(2.8)

The rotated coordinates for the descriptor calculation are then:

Sθ = RθS (2.9)
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3
Methodology

This chapter outlines the methodologies, simulation environments, tools, and datasets
for assessing our thesis contributions. It describes the specific mobile SoC (System-on-a-
Chip) baseline characteristics evaluated in this thesis. We then detail the simulators and
methodologies to model these characteristics, emphasizing the methods used to evaluate
performance, area, power, and energy consumption. Additionally, the chapter discusses the
dataset used for benchmarking, highlighting its structure and importance in the comprehen-
sive evaluation and validation of our findings.

3.1 Baseline Overview

Our evaluation framework uses various models and simulators to analyze a modern
mobile computer vision SoC’s performance, energy consumption, and accuracy. This SoC
includes an ISP (Image Signal Processor), a CPU cluster with a high-performance out-of-
order core and a lower-power in-order core, resembling an ARM Cortex A72 and an A55,
respectively. It features 8GB of LPDDR3 main memory and optionally incorporates the
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Figure 3.1: Illustration of our mobile CV (Continuous Vision) System on Chip (SoC), fea-
turing an Image Signal Processor (ISP), a cluster of CPU, main memory, and an optional
LOCATOR accelerator.

LOCATOR (Low-power ORB aCcelerator for AuTonomOus caRs) accelerator proposed in
this thesis. Table 3.1 provides further details of the parameters used for each SoC component.

We employed gem5 [100] to model the core CV pipeline. We incorporate a custom
gem5 device model for the ISP and DRAMsim3 [89] for the main memory modeling. We also
utilized the standard CPU models (i.e., Minor and O3CPU ) provided with gem5 to execute
our localization engine.

We enriched the performance evaluations with energy consumption and area esti-
mations. Like other related works [174], we used the Jetson TX2 board’s specifications to
parametrize the baseline ISP consistent latency and power dissipation characteristics. We
used McPAT [90] at 32nm for the backend CPU’s power and area, incorporating statistics
from gem5 and DRAMsim3 to determine the main memory’s power dissipation.

Figure 3.1 represents the SoC components of our baseline mobile system. It details
the models used, providing a clear and structured overview of our evaluation framework.

The following subsections detail the modeling of each proposal built upon the baseline
model. We standardized results to 14nm using the method described by Stillmaker et al. [141]
for consistency, as not all tools supported the same technology nodes or were available during
evaluation.
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Table 3.1: Simulation parameters for the baseline platform.

Component Properties

ISP 700 MHz, 150mW, 10ms latency

A72-like Out-of-Order ARM 64-bit, 3GHz, 3-wide fetch, 8-wide issue
90/256 int/float physical registers, 128-bit NEON vector
L1: 32KB (I), 2-way + 32KB (D), 2-way; L2: 1 MB, 16-way;

A55-like In-order ARM 64-bit, 1.8GHz, 2-wide issue, 128-bit NEON vector
L1: 32KB (I), 2-way + 32KB (D), 2-way; L2: 256KB, 4-way;

Main Memory 8GB, LPDDR3-1600

3.2 LOCATOR Specific Modeling and Evaluation

We have developed a cycle-accurate RTL (Register Transfer Level) model of the ORB
(Oriented FAST and Rotated BRIEF) accelerator proposed in this work and described in
Chapter 4 by leveraging the PyMTL [98] framework. PyMTL is an open-source, Python-
based framework that supports flexible prototyping, modeling, and hardware simulation from
functional to cycle-accurate RTL models. Unlike traditional hardware description languages
such as Verilog or VHDL, PyMTL facilitates concurrent simulation of components across
different abstraction levels. This feature enables iterative testing to verify newly modeled
hardware’s correctness and coherent behavior against higher-level models. Additionally,
this framework assists in thorough performance analysis and creating complex test benches.
These capabilities have significantly enhanced our hardware development processes.

Following this development framework, we evaluated different LOCATOR architec-
ture versions, varying the number of rBRIEF (Rotated BRIEF) window replicas. Figure 3.2
illustrates the different stages of our hardware modeling development, visually representing
the iterative testing and validation process.

We break down the application’s algorithm (i.e., ORB feature extraction) into its
core stages. Each stage is then implemented at the functional level and validated against
the reference software from the OpenCV library [18]. Subsequently, we develop a cycle-level
design for each stage, verifying its functionality individually by utilizing functional models
of the other stages through PyMTL’s multi-level simulation capabilities. After confirming
the correctness of the cycle-level simulations, we apply the same verification process to the
RTL development.
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Figure 3.2: Methodology followed for designing and evaluating the RTL components.

In order to estimate area and critical path delay, we translate the PyMTL models
into Verilog and synthesize them using Yosys [163] with the open-source 45 nm FreePDK45
1.4 [142]. Moreover, we obtain the power dissipation of the gate-level netlist of the accelerator
using Synopsys Design Compiler [146].

3.3 SLIDEX Specific Modeling and Evaluation

We created an RTL description for the microarchitecture augmentation necessary to
support SLIDEX (SLIDing window EXtension for image processing) as presented in Chap-
ter 5, utilizing the Synopsys suite [146] and a 14nm cell library. We used CACTI [114] to
compute the power dissipated by the new register banks added.

3.4 DLTA and IRIS Specific Modeling and Evaluation

We developed a detailed ISP model to evaluate the architectural augmentation of the
δLTA (δont’t Look Twice, it’s Alright) and IRIS (Image Region ISP-Software Prioritization)
techniques described in Chapters 6 and 7. We constructed a bespoke gem5 device of the ISP
that emulates its SoC-level interactions, particularly its framebuffer accesses. Moreover, we
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Table 3.2: Default parameters used in ORB-SLAM3.

Parameter Value

Number of Features 2000
Scale Levels 8
Scale Factor 1.2
Initial FAST Threshold 20
Minimum FAST Threshold 7

implemented another independent model of the internal pipeline of the ISP using a cycle-
accurate RTL hardware description applying the same methodology explained in Section 3.2.

We modeled an RTL implementation of δLTA and IRIS to validate its correct in-
tegration within the ISP pipeline. We ensure that the new stages do not create stalls by
modeling the streaming pipeline of the ISP as a cascaded combination of stencil operations
implemented using line buffers running parallel to the new unit. Additionally, we employed
the Synopsys suite and a 14nm cell to estimate the power and area for δLTA and IRIS units
by synthesizing its RTL description. Finally, we used CACTI to model the internal on-chip
buffers required by each technique.

To implement the specific δLTA stage functionality, we configured the device to pro-
cess images from our dataset, creating reuse and region similarity metadata using OpenCV’s
rBRIEF algorithm. For the IRIS stage, we functionally generate the new region metadata of
each image with the OpenCV library and an implementation of the BMA (Block-Matching
Algorithm) algorithm.

3.5 Visual Localization Engine

In our evaluations, we focus on utilizing ORB-SLAM3 [23, 113] in localization-only
mode as the principal application to assess the impact of our contribution to the mobile
SoC vision pipeline. ORB-SLAM3 is a widely recognized and robust SLAM (Simultaneous
Localization and Mapping) system that can run in real-time on CPUs.

Table 3.2 enumerates the default parameters set for ORB-SLAM3. These parame-
ters are pivotal for ensuring a consistent and replicable analysis framework throughout our
research.
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3.6 Dataset

We employed the KITTI odometry benchmark [52] sequences. The KITTI dataset
features 22 grayscale image sequences, each with a resolution of 1241x376 pixels, captured
at 10 FPS. These sequences span various minutes of recording across different environments,
totaling approximately 23,000 frames.

To assess the accuracy of our thesis contributions, we captured ORB-SLAM trajec-
tories using the corresponding proposed techniques and compared them to baseline ORB-
SLAM trajectories as our ground truth. We utilized the Evo [58] tool to analyze these
comparisons and determine the pose errors in the results sections of each contribution.
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4
LOCATOR

In this chapter, we propose a heterogeneous architecture for visual localization that
combines LOCATOR (Low-power ORB aCcelerator for AuTonomOus caRs) for feature ex-
traction and a mobile CPU for the remaining tasks.

4.1 Low-power Accelerator for ORB Feature Extraction

This chapter introduces a low-power accelerator designed specifically ORB (Oriented
FAST and Rotated BRIEF) feature extraction in image processing. Image processing al-
gorithms typically involve stencil or convolution stages, focusing on localized segments by
accessing neighboring pixels. Traditional designs assign dedicated hardware modules to each
processing stage, often using line buffers to store data. These structures exploit data locality
and minimize off-chip memory access, reading each pixel once and achieving consistently
high throughput with low bandwidth requirements.

Our accelerator embraces a similar approach but focuses on the computational chal-
lenges of ORB feature extraction. It employs two synchronized datapaths: one for computing
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FAST corners and the other for the Rotated BRIEF (rBRIEF) descriptor computation. Com-
puting these descriptors is notably complex in hardware due to its irregular memory access
patterns. Once the system classifies a pixel as a corner (i.e., a feature in the image), it com-
putes an N-bit (typically N=256) descriptor. The computation consists of N comparisons
between pairs of pixels in the corner’s neighborhood. The locations of the N pairs of pixels
do not follow any regular pattern and change dynamically due to the rotation angle.

Previous ORB accelerators have adapted the rBRIEF (Rotated BRIEF) to obtain a
more hardware-friendly version, unfortunately leading to a considerable drop in accuracy [95,
144]. Our work focuses on minimizing the cost of rBRIEF without compromising accuracy,
striving to match the performance of software-based solutions.

LOCATOR stores the neighbor pixels in a multi-banked memory in the rBRIEF unit,
the hardware component that computes the descriptors. Instead of using complex logic to
dynamically schedule which pairs of pixels are accessed on each cycle, we develop a static
scheduling method based on a genetic algorithm that minimizes the number of bank conflicts
for any rotation angle. The system processes the 256 pairs of pixels in the order determined
statically, reducing conflicts while requiring simple hardware. Note that for the matching
between two descriptors to be valid, both must be generated using the same order since the
metric used is the Hamming Distance.

Due to the low cost of the rBRIEF unit, it is possible to replicate it multiple times
to achieve the target performance required to meet real-time constraints. We propose a
specific combination of techniques to make a more effective replication. On the one hand,
the rBRIEF pattern contains 26.75% of repeated pixels. It is possible to take advantage of
this observation using a duplication cache mechanism that increases the number of banks and
stores copies of the repeated pixels, resulting in a potential conflict and latency reduction.
Furthermore, we observe that the distribution of access to banks is not uniform, and some
banks have low utilization. Our design selectively employs a different number of ports for
each bank based on this observation, reducing the cost of replication with a controlled impact
on latency penalization. Finally, the rBRIEF unit employs a multi-stage pipeline design that
overlaps the conflict resolution latency with subsequent pixel accesses.
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4.2 Implementation

4.2.1 Hardware Architecture Overview

Figure 4.1 shows the streaming-based dataflow architecture of LOCATOR. It pro-
cesses a stream of input pixels from memory or image sensors fed at a ratio of one pixel
per cycle in raster scan order. The FAST, NMS, Gauss Filter, rBRIEF, and Rotation units
employ on-chip buffers that support image tiling and access to a sliding window of pixels,
efficiently exploiting the temporal and spatial locality of the operations. The storage capac-
ity for the tiles depends on the tile width (see Table 4.2) and the size of the corresponding
sliding window. All sliding windows of these units are synchronized so that the center pixel
of the NMS (Non-Maximal Suppression) unit window corresponds to the center pixel of the
rBRIEF unit.

When a new pixel arrives, the value follows two paths. The first component of the
top path (see Figure 4.1) is a Delay FIFO (D-FIFO) queue that allows elements to leave the
structure in FIFO order after a fixed number of cycles and is required to synchronize the
top and bottom paths. The output pixels of the D-FIFO structure flow through the FAST
(Features from Accelerated Segment Test) Detector unit. This unit maintains a window of
pixels on which it performs the FAST segment test to detect corners and calculate its score.
The NMS unit keeps a window with pixels’ scores that it filters to determine salient corners.
Concurrently, input pixels feed the bottom path (see figure 4.1), flowing through the Gauss
Filter unit. The filtered pixels and their raw (unfiltered) version leave the Gauss Filter unit
to feed the rBRIEF unit and the Rotation unit, respectively. The Rotation unit calculates
the angle of an eventual feature. When the NMS detects a feature, it sends a signal to
the rBRIEF unit, which begins the ORB descriptor computation process using the sine and
cosine calculated in the Rotation unit and the gauss filtered window of pixels centered on the
feature that the rBRIEF unit contains. The rBRIEF unit temporarily stores the descriptors
in the ORB Output buffer.

4.2.2 Basic Sliding Window Structure

The sliding window structure in our design is commonly used to support 2D con-
volutions in image processing hardware. This structure provides temporary storage and a
synchronization mechanism. Figure 4.2 illustrates a sliding window similar to the ones used
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Figure 4.1: The basic architecture of LOCATOR.
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Figure 4.2: 7× 7 sliding window structure.

by the FAST and Gauss Filter units, which in both cases require a kernel (window) of 7×7
pixels (fixed parameters used in ORB-SLAM).

A sliding window stores W +(W −1)×Cols elements, where W is the square window
size (7 in the example) and Cols is the number of columns of the processed tile. The pixel
stream flows through the elements organized according to the input data format. Initially,
it takes a fixed number of cycles until the entire structure is filled and computations can
begin. After this warm-up phase, the window of pixels shifts one position each cycle. When
the window reaches the border of the tile, the structure takes a fixed number of cycles to
realign the window to the next row.
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4.2.3 rBRIEF Unit

The rBRIEF unit is responsible for implementing the most challenging part of the
ORB extraction in hardware. It requires providing memory accesses to 512 positions that
depend on the feature angle to compute the rBRIEF descriptor, making it hard to find an
optimal access schedule.

Figure 4.3 shows the basic architecture of the rBRIEF unit. The implementation
employs a 37× 37 sliding window that holds the data required to perform each feature point
candidate’s tests (Eq. 2.7). This window size matches the size used in the ORB software
implementation. The structure must support the sliding window dataflow mechanism and,
at the same time, random access to 512 points. The naive implementation allows one pair
of accesses (two points) per cycle. Therefore, this design requires 256 cycles to generate a
descriptor, while the FAST datapath only needs one cycle to process each pixel.

Sliding window structure replication alleviates the rBRIEF bottleneck by employing
each replica to compute descriptors of different features in parallel. An Arbiter decides how
to distribute the descriptor requests among the windows. The Coordinate Rotation module
computes the rotated coordinates using the 0º rBRIEF pattern coordinates (stored in a
LUT), the sine, the cosine, and efficient implementation of multiplications that utilizes just
additions and shifts [158].

Although replication effectively reduces the rBRIEF latency and mitigates the ac-
celerator’s bottleneck, it has a relevant impact on the area and power consumption. For
this reason, we argue that it is necessary to consider alternatives that deliver the required
performance at a much lower cost.

The following sections describe the design and the optimizations that we propose to
increase the efficiency of the rBRIEF unit.

Exploiting Parallelism

Replication can be used to reduce the latency of a single descriptor computation
by exploiting intra-descriptor Data Level Parallelism (DLP), that is, using each replica to
compute a part of a single descriptor in parallel. When the FAST data path encounters
a feature, it cannot continue processing the tile until the rBRIEF data path finishes the
descriptor computation. Our experiments show that dedicating replicas to compute different
descriptors independently to exploit inter-descriptor DLP is more effective because it enables
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Figure 4.4: ORB Window architecture that allows parallel access to multiple pairs (stored
in the banks shown in dark grey) per cycle.

decoupling the FAST and rBRIEF data paths. The FAST data path can continue processing
the tile as long as there is at least one available replica not computing a descriptor. The fact
that features are typically sparse helps to hide a portion of the rBRIEF latency bottleneck
effectively.

However, increasing the granularity of the exploited intra-descriptor DLP is possible
since the computation of each intensity test is entirely independent of the rest. Figure 4.4
illustrates the basic architecture of our initial design that supports multiple pair access
per cycle. The initial design consists of a streaming-friendly architecture that segments the
storage structure for each row in a separated bank of memory with two read ports. The Point
Pair Generation module outputs multiple pair coordinates each cycle using the coordinate
components received from the rBRIEF arbiter petition. A custom interconnection network
is needed to route each point pair to the appropriate bank based on its coordinates, gather
the results, and perform the intensity tests at the other end. With this approach, we could
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potentially access 37×2 points (or 37 pairs) in one cycle, but the cost of the interconnection
and routing for such a solution is prohibitive. Instead, we propose a design that allows
parallel access to a group of pairs of a given size in each cycle. The appropriate group size
was experimentally determined (see Section 4.3).

There may be a structural hazard or conflict if more than one pair has to access the
same row bank and there are not enough ports. The control unit detects conflicts between
pairs and orchestrates sequential access to the conflicting banks, introducing a stall in the
pipeline. Non-conflicting pairs can be routed directly to the appropriate row bank. Each
operand required for the intensity tests is always read from the same bank port, reducing
the interconnection infrastructure’s complexity.

Static Pattern Reordering

The number of conflicts varies according to the angle applied to the ORB pattern
as it affects the composition of the pair groups and, hence, the static access scheduling.
Since Hamming distance defines the metric space of the ORB descriptor set [134], statically
rearranging the order of the pattern does not cause any issues with the quality or metric
space of the descriptor. Finding an optimal order that minimizes the number of conflicts is
an NP-Hard problem. For this reason, we propose to compute static scheduling based on an
optimization performed with a genetic algorithm (GA). Even though other methods could
have been used, a GA offers important advantages: it is highly adaptable to the problem, it is
not necessary to have prior knowledge of the objective function, and it is easily parallelizable.
These advantages allow us to integrate our expensive rBRIEF unit hardware models into the
objective function and find pseudo-optimal solutions in hours.

The Static Pattern Schedule problem consists of a set of pairs P = {P1, P2, ..., PN},
and a set of groups G = {G1, G2, ..., G N

gsize
}, where gsize is a fixed parameter that indicates

the size of the group of pairs. An assignment is represented by a tuple < P,G >. A solution
consists of an assignment for every element of P .

Furthermore, we have two constraints: 1) No pair can be in more than one group,
and 2) All groups must contain gsize number of pairs.

On the other hand, the objective function, F , is defined as the average latency of
the unit for every possible rotation angle using the set of assignments as static scheduling.
We assume an equiprobable distribution of angles and consider that the number of plausible
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angles is bound. According to OpenCV documentation [18], the fastatan2, used in ORB-
SLAM, uses a precision of "about 0.3 degrees".

In order to apply a GA approach as a meta-heuristic, we need to encode a candidate
solution as a chromosome representation and define the Initialization and genetic operators.
The chromosome chosen to represent a Static Schedule solution is a one-dimensional array
Ai, where 0 ≤ i < 256 such that each element of the array represents an element of P . The
group assignment is determined by Ai, the position within the array, as: ⌊ i

gsize
⌋.

The initial population is generated by choosing random permutations of P . The
genetic operators applied in each generation to this initial population are:

• Fitness Evaluation: In a biological sense, fitness is a quality value that measures the
reproductive efficiency of chromosomes. We use the negation of the objective function,
−F , since we want to minimize latency.

• Selection: We choose Tournament selection that involves running several "tourna-
ments" among a few individuals chosen randomly from the population. The winner
(fittest) of each tournament is selected for crossover.

• Crossover: Partially Matched Crossover (PMX) is chosen. This recombination operator
generates two off-springs by matching pairs of values in a specific range of the two
parents and swapping the values of those indexes [56].

• Mutation: The mutation is performed each generation, shuffling each chromosome of
individuals with a given probability. The mutation swaps pairs between groups.

Table 4.1: Parameters used for the GA optimization of conflicts.

Parameter Value

Crossover probability 70%
Mutation probability 20%
Population size 300
Crossover Operator Partially Matched Crossover
Mutation Operator Partial Shuffle Mutation
Selection Operator Tournament Selection

Table 4.1 summarizes the parameters used for the GA. Figure 4.5 shows the evolution
of the fitness of the best individual of all and current generations. In the example, the GA
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converges to a local optimum in 500 iterations taking hours using an AMD Opteron 6338P
with 24 threads. The optimization achieves an 18% reduction in latency compared with a
random ordering.
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Figure 4.5: Example of convergence of the genetic algorithm to a local minimum for a
gsize = 8.

Point Intensity Duplication Cache

An additional approach proposed to reduce conflicts is exploiting the temporal resue
of the points of the ORB pattern, as many are accessed more than once (not all points
of the original pattern are unique). The original ORB pattern is composed of 375 unique
points out of the 512 total points (256 pairs), giving room for a 26.75% reduction in the
number of accesses. We leverage this observation by applying Point Intensity Bypass and
Point Intensity Duplication Cache.

On the one hand, Point Intensity Bypass consists of a reformulation of the definition
of a conflict, taking into account the reuse of points. In this way, two pairs of a group conflict
if they access the same bank but to a different address within it. If the address is the same,
it is possible to save one access since the two accesses target the same point. The control
unit must consider both point coordinates when detecting conflicts collapsing accesses to
identical coordinates. The output routing sends the read value to the output registers that
originated the collapsed access requests.

On the other hand, Point Intensity Duplication Cache adds a structure to store the
repeated ORB pattern points. The rBRIEF unit suffers from structural conflicts due to the
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need to perform more reads than the available read ports allow. Thus, the cache increases
the read ports for repeated points, reducing the conflicts since many accesses will stop being
made to the rows of the sliding window and will be made to the duplication cache.

The implementation is based on adding one or more banks to the sliding window
connected to the same interconnection network and accessible through the usual bank mech-
anism. For simplicity, the banks use the same memory structures as the rows of the sliding
window. The cache is accessed using coordinates outside the range of the sliding window
(without spatial meaning).

When a repeated point is accessed for the first time, the read value is used to process
the rBRIEF descriptor, and at the same time, it is stored in a duplication cache bank. The
static ORB pattern stored in the unit needs two new fields to implement this functionality:
a bit to indicate whether the point is repeated and is the first time accessed in the pattern
and the coordinates of the duplication cache banks in which the point will be stored. These
fields depend on the specific rBRIEF pattern and are calculated offline using a coordinate
assignment method. Figure 4.6 shows the basic structure required to access the new banks
that act as duplication cache. The tables shown represent the information of two repeated
points read in the cycle illustrated in the figure. Cache X is the address inside the cache, and
Cache Y is used to select between the two banks of the available caches. The multiplexers
that select between the values of the four pixels read in each cycle are operated with a
selection signal generated by the control unit. The control unit tracks the code of each of
the four possible inputs.

The coordinate assignment method statically enforces the placement and replacement
policies of the cache since we can simulate its behavior for a particular ORB pattern and
know the future access to repeated points. In addition, there is no hit/miss management
since the correct operation is guaranteed by construction, reducing the cost of the solution.
During execution, the unit only has to read the cache coordinates of each pattern element
from a pre-computed table and store the point value in the corresponding position of the
duplication cache if it is the first time the repeated point is accessed.

There are potential cache bank conflicts if more than one pair in a group with repeated
points are assigned to the same duplication cache bank and port. In such a case, it is possible
to apply optimization to minimize conflicts when applying the placement policy during the
offline execution of the coordinate assignment algorithm. One way would be to distribute the
points in the different banks taking into account the number of repeated points contained
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Figure 4.6: The basic structure of the duplication cache (new cache banks shown filled with
a line pattern) for a group size of 4 pairs. Note that only the first point of each pair PN1 is
represented.
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in the groups of the rBRIEF pattern. However, we have left this exploration for future
work. In addition, we believe that an increase in conflicts and, thus, latency may signal
unpromising solutions to the genetic algorithm described in subsection 4.2.3. Therefore, the
generic algorithm will tend to penalize solutions with groups containing multiple conflicting
repeated pairs, promoting solutions with repeated points better distributed among the pair
groups.

The maximum required size for the cache is 137 bytes which could be stored in 4
banks of 37 bytes. Since all repeated points would fit in the cache, no replacement policy
would be needed. However, it is possible to determine a perfect replacement policy that
reduces the number of banks needed, taking into account that it is possible to statically
determine which points will no longer be used in the future computation of the rBRIEF
descriptor. This way, after the last access to a repeated point, its position in the cache is
available to store other values. According to our experiments, the working set of repeated
points fits within two banks.

Original rBRIEF Pattern
ID X Y Cache X Cache Y  Repeated?

0 11 24 0 37 1

1 16 1 - - 0

2 3 6 0

3 8 12 0

4 11 24 - - 0

5 15 24 - - 0

19 27 1 37 1

... ... ... ... ...

Renamed rBRIEF Pattern
X Y Cache X Cache Y Repeated?

11 24 0 37 1

16 1 - - 0

3 6 - - 0

8 12 - - 0

0 37 - - 0

15 24 - - 0

19 27 1 37 1

... ... ... ... ...

Figure 4.7: rBRIEF pattern renaming example. The left table shows a segment of the original
rBRIEF pattern where points with ID 0 and 4 are repeated. The assignation algorithm
determined that the coordinates to store the value of the ID 0 point in the duplication cache
are (0, 37). Thus, the static renaming changes the coordinates for the subsequent non-first
accesses, such as ID 4, to point to these coordinates (right table). The renaming avoids
points ID 4 and ID 5 conflict in the original pattern (marked in red).
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The last step to implement this proposal consists of applying a static renaming mech-
anism of the coordinates of the rBRIEF pattern. The renaming is applied to the coordinates
of the repeated points that are not the first accesses. The coordinates of the original pat-
tern are replaced with coordinates from the duplication cache for non-first accesses instead
of using the original pattern coordinates, potentially avoiding conflicts with other points.
Figure 4.7 illustrates an example of the described renaming scheme.

Selective Replication of Ports

The first design used for each sliding window replica has 37 banks which become 39
by applying the Point Intensity Duplication Cache optimization. Using two ports per bank,
each of which is pinned to the same operand of the pairs, simplifies the design since it is not
necessary to verify conflicts between points of the same pair or operands of different pairs
pinned to the opposite port.

However, the ports are not used evenly, leading to the distribution of conflicts illus-
trated in Figure 4.8a. The rBRIEF pattern, is rotated according to the angle of the features
found during the accelerator operation. The Y coordinate of the banks that a point can
occupy ranges from [−r, r − 1] where r is the radius or integer distance to the center of
the patch, (0, 0). The radii of action of the points with a larger radius overlap those of
smaller ones, and since the points of the rBRIEF pattern are distributed roughly uniformly
throughout the patch, the number of accesses to the inner banks will be greater than that
of the outer banks. As corner examples, a point with a radius of 16 pixels will potentially
access all banks, and one with a radius of 0 will always access the central bank.

To take advantage of this observation, we propose to selectively determine the number
of ports used in each bank based on the conflict distribution observed. In this way, the outer
banks can provide a single port, decreasing the area and power consumption of the sliding
window replica. It would also be possible to add more ports to central banks to reduce
the conflicts from accessing these banks. However, to simplify the implementation, we have
decided to support banks with single or dual-port capability.

Reducing the number of ports of some banks increases the number of conflicts affecting
performance. Figure 4.8b shows the performance slowdown of the replicas depending on the
number of banks with only one port. The slowdown is the relative measurement obtained by
normalizing the average latency of each single-ported configuration with the baseline (without
single-port banks) latency. Note that the affected ports are distributed symmetrically. If we
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Figure 4.8: (a) Percentage of total conflicts (Y-axis) generated for each bank on average for
all angles. The X-axis shows the index of the banks in the range [-18, 17]. The bank with an
index of zero is the central bank. (b) The slowdown of the average access latency of a replica
when increasing the number of external single-ported banks. The parallel access group had
a size of 4 pairs in this experiment.

eliminate two ports, the affected banks are the outermost ones with Y coordinates -18 and
17, those with coordinates -17 and 16, etc.

Leaving the banks with a single port implies having to modify the control unit. Access
to these ports can generate conflicts, even from the same point pair. Nonetheless, the cost
incurred is reasonable due to the small number of external single-ported banks employed.
In addition, the single-ported banks are connected to a multiplexer that the control unit
operates to select one of the two requests that can arrive from the interconnection network.

Changing the outer four banks from dual to single ported memories allows adding
new banks for the Point Intensity Duplication Cache without increasing the cost of the
solution. Section 4.3 shows the resulting performance improvement and energy efficiency
balance obtained by combining the duplication cache and the technique presented in this
subsection.

Pipelining

When a bank access conflict occurs in the baseline, the conflicting bank accesses
are serialized while all other accesses for the pair group being processed are performed in
parallel. The serialized accesses to the conflicting bank determine the latency necessary to
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process that group of pairs, and, in addition, the following groups are not processed until the
conflicts are resolved. During the cycles of conflict resolution, there is an underutilization of
resources since other pairs could be accessed using the free ports of the replica where there
were no conflicts in the previous cycle.

BANKS

Access to Banks
Stage 

Read Pixels 
Stage 

Descriptor Computation 
Stage 

Computation

Figure 4.9: The proposed stages and pipeline mechanism of each replica of the rBRIEF. The
FIFOs between the stages have a length of 2.

To exploit the existing parallelism between the computations of different groups and
hide the penalty incurred due to conflicts, we have explored using a pipelining mechanism by
adding blocking FIFOS between the stages that we have determined in the design. Figure 4.9
shows a diagram of the architecture of this solution with three stages: access to banks, read
pixels, and descriptor computation stages.

In the access to banks stage, the banks are accessed, selecting those that will be
retrieved employing the X and Y coordinate of each point. In the read pixels stage, the
intensity values are read from the banks and stored in the corresponding FIFOs. Finally, in
the descriptor computation stage, the pixels are read from the FIFOs when both points of
each pair are available and the output FIFO has space left.

With the proposed design, each replica in the rBRIEF unit can be seen as an in-order
statically-scheduled superscalar processing element that can issue multiple pair accesses with
banks being a single shared resource. Each pair issue is independent since there are no data
dependencies between the pixels of the pairs. Furthermore, the stages of the pipeline are
synchronized through the status of the FIFOs.

When the FIFO is full, the previous stage must stall. A stage can process the input
data if the head of all the necessary FIFOs (depending on the stage) contains valid data
and if it can write to the output FIFO. For example, the description computation stage can
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compute a new bit if the FIFOs of the two operands (the pair) with which to perform the
intensity comparison contain an element, and the output FIFO has space. The rest of the
FIFOs of the other operands do not have to be processed or do not belong to the same group.
In addition, in the access to banks stage, a priority system is established in which the group
that has been processed the longest has the highest priority. In this way, we ensure that the
pixels are processed in the correct order generating valid descriptors. At the same time, this
simple design enables the exploitation of the parallelism between the accesses of different
pairs of groups and the overlapping between accesses and conflict resolution.

We have performed an experimental exploration to determine the length of the FIFOs
that retain state between stages. Figure 4.10a shows the replication latency for different
length values for the FIFOs. According to our results, we opt to use FIFOs that allow
queuing the state of each stage in flight two times. This result seems reasonable since, after
genetic optimization, it is rare to find groups with more than one conflict.

Each element of the FIFO between the Read Pixels Stage and the Descriptor Com-
putation Stage contains the pairs of pixels (2 × 8 bits) read for each group (i.e., 64 bits for
G4 and 128 for G8). The elements stored in the output FIFO contain one descriptor bit for
each group (i.e., 4 and 8 bits for G4 and G6, respectively).
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Figure 4.10: (a) Sensitivity to the length of the FIFOs in the replica pipelining stages of
the rBRIEF unit for a group size of 4 (G4) and 8 (G8) pairs processed in parallel. (b) The
pipelined architecture of the Rotation Unit.

Finally, it is worth noting some details about integrating the pipelining mechanism
with the duplication cache optimization discussed in the subsection 4.2.3. When applying
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the duplication cache technique, it is necessary to guarantee the coherence of the replication
cache data and the renaming of the banks for a given rBRIEF pattern.

There can be more than one group being processed in flight by the replica due to
pipelining. Thus, pixels can be stored in the duplication cache at the wrong time. To address
the potential issues, we opt to follow a conservative approach that is statically applied. The
renaming algorithm will only change the bank of a repeated pixel if, for every angle, the
value in the cache is correct. The method employs a functional model of the replica to check
it. Genetic optimization will be able to bring out the solutions that make the best use of
the duplication cache.

4.2.4 FAST Detector Unit

Figure 4.11 illustrates the architecture of the FAST unit. The module employs a Slid-
ing Window structure with the required patch size of 7× 7 (see Subsection 2.2.6), achieving
a throughput of one pixel tested per cycle. The FAST implementation used by ORB-SLAM
applies an adjustment of the threshold at run-time, increasing the sensibility if no features
are found inside a region of size 30× 30. The module detects corners speculatively with the
MinThr until at least one corner of IniThr is found (if any) inside each region. If at least
one corner with the default threshold is found, the descriptors generated in that region with
the MinThr are discarded. The Dynamic Threshold module keeps track of the status of each
region and is responsible for setting the dirty bit high when an IniThr corner is detected.

7x7 registers D-FIFO

FAST
String Search

      ...

IniThr_corner?
Dirty?

Pixel

Dynamic ThresholdMinThr_corner?

score

Figure 4.11: Architecture of the FAST unit.

To perform the segment test and score computation, we use a similar solution as
other works [143]. Each pixel intensity of the Bresenham circumference is compared with
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the central pixel obtaining a 16-bit value. An AND tree with a depth of ten levels searches
for a sub-string with 12 consecutive set bits to classify the candidate pixel as a corner.

4.2.5 Non-Maximal Suppression Unit

A 3 × 3 Sliding Window is used to filter the FAST features. The sliding window
is fed with the FAST scores. In each cycle, the center pixel of the window is compared
with the eight surrounding pixels to determine if it is the local maximum. This operation is
implemented with eight comparators and an AND reduction.

4.2.6 Gauss Unit

The patch around the feature point must be smoothed before computing the intensity
tests to generate the rBRIEF descriptor. The Gauss Filter Unit generates every cycle a pixel
and its Gaussian smoothed version. We employ fixed-point arithmetic to represent the
values of the Gaussian kernel (8 bits for the integer part and 4 for the fractional one) and
intermediate results (24 bits) before rounding to obtain the filtered value (8 bits).

4.2.7 Rotation Unit

The rotation unit is in charge of calculating the sine and the cosine of the angle of the
vector formed joining the centroid and the candidate feature point. This angle is required
to rotate the coordinates of the ORB pattern applying Equation 2.9. The precision of the
calculations is key since errors in the rotation of the points in the ORB pattern produce
severe degradation of the quality of the generated descriptors.

We propose the use of the inverse square root to compute it instead of a LUT of pre-
computed values used in state-of-the-art solutions [160, 121, 144]. The unit uses a 37 × 37

Sliding Window synchronized with the rBRIEF unit. In addition, the unit is pipelined into
several stages, as shown in Figure 4.10b that compute an accurate estimation of the sine and
cosine computation per cycle.

The first pipeline stage of the Rotation Unit computes the moment of a window. In
order to do it efficiently, Equation 2.2 can be reformulated as follows:
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m01n+1 = m01n + 18× (Cn + Cn−37)− Sn,

m10n+1 = m10n + xCn − xCn−37,

m00n+1 = m00n + Cn − Cn−37.

(4.1)

where,

Sn+1 = Sn + Cn − Cn−36,

Cn =
∑

1≤x≤37

px,n,

xCn =
∑

1≤x≤18

x× (p38−x,n − px,n).

(4.2)

and px,n is the pixel’s intensity at the coordinates within the patch indicated by row
x and col n. The moment computation consists of an adder tree used to compute Cn.
Furthermore, an optimized Multiple Constant Block [158] (MCM) is used to compute xCn.

The following two stages perform the centroid division. Image moments, m01 and
m10, computed in the previous stage, could be directly used to determine the trigonometric
functions. However, we divide these values by m00 reducing the number of bits for the
image moment components representation and, therefore, the cost of its manipulation in
later stages. Efficient division circuits are employed for integer and fixed-point division,
with a precision of 1

32
. The accelerator computes the moment components using 20 bits, but

after the normalization with m00, the values fit into 10 bits (5 bits for the integer part and
the other 5 bits for the fractional one).

The next stage is the summation of squares and estimation computation. A first
estimation of the inverse square root is performed considering the Most Significant Bit (MSB)
of the previous square sum. This results in a good estimation considering the following:

log2(
1√
x
) = −1

2
log2(x) (4.3)

Next, the fast inverse square root is computed in three stages. The inverse square
root of x, the summation of squares previously determined, is computed using an approx-
imation based on the Newton–Raphson method. Three iterations of the following formula
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are employed using as y0 the MSB-based estimation:

yn+1 = yn(
3

2
− x

2
yn

2) (4.4)

The final stage computes the sine and cosine, applying Equation 2.5 and updating
the signs of the final values. The fixed-point representation of the trigonometric values uses
16 bits for the fractional part.

4.3 Experimental Results

In this section, we compare the CPU’s and GPU’s performance, energy consumption,
and different LOCATOR versions with all the optimizations presented in Section 4.2.

The configuration labeled as BASELINE-CPU corresponds to the high-performance
OpenCV [18] software implementation of ORB feature extraction running our baseline CPU
described in Table 3.1, the A72-like ARM CPU. We also compare it with a high-performance
desktop CPU (labeled H-CPU ) and a desktop GPU (labeled H-GPU ) parametrized in Ta-
ble 4.2. The ORB implementation features an optimized, vectorized FAST corner detection
method. On the other hand, the configuration labeled as GPU corresponds to the high-
performance OpenCV software implementation of ORB that leverages CUDA on the GPU
described in Table 4.2 to speed up computations.

Configurations labeled with LOCATOR represent different versions of the accelerator.
We use the following nomenclature: LOCATOR-GN-RM, where N indicates the group size
for BRIEF descriptor computation and M shows the degree of replication. For example,
LOCATOR-G4-R2 indicates a configuration of the ORB accelerator with a group size of 4,
i.e., 4 bits of the BRIEF descriptor are computed at a time, whereas the entire rBRIEF unit
is replicated two times. We run the same workloads in the CPU and the different LOCATOR
configurations, employing the same images and algorithmic parameters such as window size
and thresholds.

On the one hand, figure 4.12a shows the speedup of a single replica of the rBRIEF
unit compared to other versions. The speedup is calculated considering the latency of the
G1 case in which the unit takes 256 cycles to perform the computations to generate an
rBRIEF descriptor. We have considered parallel access groups of 1, 4, and 8 pairs. The
figure illustrates the impact of the Selective Replication of banks (SR), Point intensity Cache
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Table 4.2: Hardware parameters for LOCATOR, H-CPU, and H-GPU platforms.

Parameter Value

L
O

C
A

T
O

R
Technology, Frequency 14nm (scaled [141] from 45nm), 400MHz
Tile width 210 columns
Target number of features 2000

C
P

U

Model Intel(R) Core(TM) i7-7700K
Number of cores / threads 4 / 8
Technology, Frequency 14nm, 4.2GHz
L1, L2, L3 0.25 MiB, 1 MiB, 8 MiB
Thermal Design Power 91W

G
P

U

Model GeForce GTX1080
CUDA cores 2560
Memory 8GB
Thermal Design Power 180W

(PC), and Pipelining (PL) techniques compared to using only the Genetic Algorithm (GA)
optimization. The G4 and G8 versions obtain a 1.12× and 1.25× speedup, respectively,
against the corresponding version in which only the GA technique is used. The speedup in
G8 is more significant than in the G4 case. The number of conflicts increases as the group
size grows, implying more opportunities for the PC and PL techniques to reduce structural
conflicts within groups that the GA technique cannot avoid based on rearranging the accesses
order.

On the other hand, figure 4.12b shows a box plot chart for different versions of LO-
CATOR. The figure depicts how the optimizations consistently improve the processing time
when all the optimizations are combined. LOCATOR-G8-R2 reduces the average processing
time per frame by 2.26%. Moreover, the box plot shows how the new techniques shift the
distribution of processing latencies towards lower values and reduce its range and dispersion.
Note that a configuration with two replicas provides enough ports to access four pairs per
cycle with few conflicts, implying that the techniques proposed in this paper have little work
to do. We omitted its evaluation for clarity, only presenting results for the scenario with
groups of eight pairs (LOCATOR-G8-R2 ).

In the context of self-driving cars, the tail latency of the executed tasks is essential
since it can affect the worst case and cause a critical system failure. Figure 4.13a details the
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Figure 4.12: (a) rBRIEF replica speedup respect to the baseline implementation (G1 ). GN
refers to the maximum number of pairs accessed in parallel. (b) Box plot representing the
distribution of LOCATOR processing latencies (Cycles Per Pixel) of the frames of KITTI
sequences for different versions of the accelerator.

99th tail latency of the different versions of the previously selected accelerator with the added
improvements. All LOCATOR versions take advantage of the proposed optimization strate-
gies, improving tail latency compared to the baseline (BASELINE-G1-R1 ). In particular,
LOCATOR-G8-R2 99th percentile latency is 82.77% lower compared with BASELINE-G1-
R1.

In addition to the above analysis, we have evaluated LOCATOR’s worst-case latency.
The worst case has been tested by generating synthetic frames in which there is a maximum
density of features, and their orientation is the one that implies the maximum processing time
by the replicas of the rBRIEF unit. The maximum density with non-maximal suppression
enabled is 0.25 features per pixel, or one feature every two pixels per dimension. Figure 4.13b
shows the results of our experiments.

All versions of the accelerator get a substantial worst-case performance speedup. Due
to the high density of features, the possibility of processing the FAST extraction and the
description generation in parallel is very advantageous. It explains the great results obtained
by LOCATOR versions with more than one replica. LOCATOR-G8-R2 gets a speedup of
9.32×.

The red line in the figure 4.13b indicates the minimum speedup that must be obtained
compared to the baseline performance to perform the ORB extraction in Full HD frames in
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Figure 4.13: (a) 99th Percentile Latency measured in Cycles Per Pixel (CPP) with all the
optimizations proposed applied when processing the KITTI dataset. (b) LOCATOR speedup
in the worst-case scenario compared to the baseline. The red dotted line indicates the
minimum speedup threshold needed to reach our real-time consideration.

100ms or less (that is, 10FPS). We consider this condition to classify the performance as
real-time. Therefore, some versions of LOCATOR can process frames satisfying the real-time
constraint even in the worst case. In addition, this real-time threshold is exceeded, leaving
more slack for other tasks within the localization process.

Besides, figure 4.14 reports the effectiveness of the genetic algorithm (Section 4.2.3) to
reduce bank conflicts. The figure shows the number of penalty cycles due to bank conflicts.
To compute the extra cycles, we define a lower bound for the latency estimated as the
number of accesses of the bank with the most accesses (critical) and assume that the rest
of the accesses can be done in parallel. The lower bound is not guaranteed a feasible global
optimum, but it allows us to know how much room for improvement could be. Our static
scheduling technique (GA label in the figure) reduces the penalty cycles due to conflicts by
51.8% and 40.9% for group sizes of 4 and 8 pairs, respectively, as shown in Figure 4.14.

Figure 4.15a shows the speedup achieved by the ORB H-CPU, the H-GPU, and
LOCATOR implementations with respect to the BASELINE-CPU. All versions of the accel-
erator employ all the optimizations proposed in this work. Additionally, all systems achieve
real-time performance.

The ORB GPU implementation obtains 5.81× speedup. Configurations LOCATOR-
G1-R4 and LOCATOR-G1-R8 achieve speedups of 4.8× and 8.1× respectively. On the other
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Figure 4.14: Average number of penalty cycles due to bank conflicts when computing an
rBRIEF descriptor. The results correspond to the latency incurred when accessing the
baseline implementation with and without the GA optimization.

hand, LOCATOR-G4-R1 and LOCATOR-G8-R1 deliver 4.82× and 5.66× speedups, respec-
tively. Finally, LOCATOR-G8-R2 obtains a 16.8×, a 8× speedup, and a 1.37× speedup
against the A72-like BASELINE-CPU, the H-CPU, and the H-GPU, respectively. The ac-
celerator’s performance is higher as it has a pipeline tailored to the requirements of the ORB
feature extraction algorithm. Increasing the group size and rescheduling the pixel pairs for
BRIEF computation based on static ordering provides significant benefits, alleviating the
need to replicate hardware and its incurred cost. For example, LOCATOR-G8-R2 is only
1.23% slower than LOCATOR-G1-R8 with four times fewer replicas. It also obtains 1.66×
speedup compared with LOCATOR-G1-R4 with half replicas.

The accelerator significantly reduces power dissipation, as illustrated in Figure 4.15b.
This vast power reduction is due to several reasons. First, the accelerator includes a specif-
ically designed streaming architecture for ORB extraction, exhibiting high throughput and
significant data reuse. Second, the improved rBRIEF unit, with the combination of tech-
niques exploited in this work, further improves power dissipation by reducing the required
on-chip structures, avoiding conflicts between pairs of pixels, and decreasing the underlying
data movements. The power reduction and the performance speedup imply significant en-
ergy reductions. LOCATOR-G8-R2 achieves a 7364×, 14597×, 9609×, and 1.64× average
reduction of energy consumption per frame compared with the A72-like BASELINE-CPU,
the H-CPU, the H-GPU, and the baseline accelerator, respectively. Moreover, LOCATOR-
G8-R2 consumes 7.7% less energy per frame on average than LOCATOR-G1-R8, a more
expensive configuration that presents a high replication degree.
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Figure 4.15: (a) speedup achieved by the accelerator compared with the BASELINE-CPU.
(b) Power dissipation of ORB FE (Feature Extraction and Matching) across different plat-
forms and the accelerator.

To conclude, the experimental results show the benefits of the proposed architecture
and the combination of techniques to optimize the rBRIEF unit. The impact of the new
optimizations in energy consumption and area is negligible since the selective replication of
ports counteracts their costs, obtaining a more energy-efficient final result. Although the
impact on average latency is modest, there is an improvement in tail latency and worst-case
scenario latency without needing as high a replication level as in other versions of LOCATOR.

LOCATOR-G8-R2 is the best configuration tested in our experiments since it is only
1.23% slower than LOCATOR-G1-R8, the most performant configuration tested, requiring
four times fewer replicas. It also achieves significantly lower power and area footprint.
The combination of optimizations presented translates into a 1.67× speedup against the
H-CPU in the overall execution time. The accelerator achieves 9609× average reduction of
energy consumption per frame compared with the ORB H-GPU implementation. Finally,
LOCATOR-G8-R2 reduces 99th percentile latency an 82.77% and obtains a speedup of
9.32× in the worst-case scenario compared with the baseline accelerator, achieving real-time
even in critical circumstances.
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4.4 Conclusions

This chapter described LOCATOR: a Low-power ORB aCcelerator for AuTonomOus
caRs for feature extraction, a key component of camera-based localization for self-driving
cars. We propose a novel solution to implement rBRIEF descriptor computation in hardware
that, unlike previous proposals, achieves the same accuracy as reference software implemen-
tations, not sacrificing accuracy for the sake of simpler hardware. The pipelined design of
the rBRIEF unit evaluates multiple pairs of pixels simultaneously following an order based
on static scheduling that minimizes the bank conflicts for any angle. LOCATOR hides
the conflicts of pair accesses with pipelining and avoids them through a statically managed
duplication cache whose cost is mitigated by applying selective replication of ports. Our
experimental results show that LOCATOR achieves a speedup of 16.8×, a 8× speedup,
and a 1.37× speedup against the A72-like BASELINE-CPU, the H-CPU, and the H-GPU,
respectively.
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5
SLIDEX

This chapter presents SLIDEX (SLIDing window EXtension for image processing),
a novel high-performance and energy-efficient vector ISA (Instruction Set Architecture) ex-
tension with specialized instructions to natively support SWP (Sliding Window Processing)
in conventional CPUs and optimize convolutions and stencil operations.

5.1 A Novel Architecture for Sliding Window Processing

As demonstrated in Chapter 4, a specialized ASIC accelerator can surpass a CPU’s
energy efficiency by several orders of magnitude. However, the rapidly evolving nature
of technology can render these specialized solutions quickly outdated. Therefore, in this
chapter, we explore more programmable and versatile solutions to accommodate current
and unforeseen future algorithms better.

Another strategy to increase efficiency while preserving adaptability involves leverag-
ing Data Level Parallelism (DLP) through the SIMD [45] support available in the CPUs of
most embedded and real-time systems that commonly host emerging CV (Continuous Vision)
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Figure 5.1: Different execution models utilizing registers Rm and Ra for computing output
in register Rd.. SLIDEX instructions process multiple windows in parallel to compute the
neighborhood operation (e.g., convolution) reduced results.

applications. SIMD (Single Instruction, Multiple Data) units offer high performance and en-
ergy efficiency by amortizing instruction management costs (fetch, decode, issue) across
multiple operations. Hameed et al. [61] estimate that about 94% of a modern CPU’s total
energy goes towards supporting instruction supply generality, with only around 6% devoted
to ALU (Arithmetic Logic Unit) computations when executing the instructions. Nowadays,
most mainstream CPUs feature SIMD Vector Processing Units (VPUs) that support vector
instructions such as NEON [13], SVE [140], Intel AVX [71], and RISC-V [130].

Convolutions and stencils are core primitive operations critical for CV applications.
Both operations analyze each image pixel, considering a window of neighboring pixels that
substantially overlap between adjacent elements. Unfortunately, current SIMD solutions
generally manipulate the elements within a vector register independently of each other. While
this provides excellent generality, it implies that, for example, for a simple 1D convolution,
the programmer needs to load the data, perform element-wise multiplication with the first
kernel component, execute a data shift, conduct a multiplication with the subsequent kernel
component, accumulate the results, and so on. As a result, there is a notable gap between
the available DLP (Data Level Parallelism) and its actual utilization in these crucial image-
processing tasks.

Furthermore, an ideal system that could eliminate all energy overhead spent to sup-
port the generality of CPUs would be around 16x more energy efficient than the baseline,
assuming this overhead is 94% [61]. However, this efficiency level does not match the over
1000x efficiency in typical accelerators. To bridge this gap, the CPU requires instructions
with higher semantic content. Moreover, reducing the number of memory and register file
accesses, which typically account for about 60% of a standard CPU’s energy use, is also vital
to pushing current efficiency limits.
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Considering these premises, we introduce SLIDEX, a novel high-performance and
energy-efficient vector ISA extension with specialized instructions to natively perform con-
volutions and stencil operations over vector register employing a new execution model, named
SWP, in conventional CPUs. SWP is our proposed SIMD execution model that reinterprets
the layout of the vector registers not as a sequence of isolated elements but as a sequence
of overlapped windows of elements. Figure 5.1 illustrates the difference of scalar, vector,
and SWP execution models. Unlike the traditional vector SIMD paradigm (Figure 5.1b),
the SWP model can perform multiple parallel computations sourced from the overlapping,
shifted window copies of the elements within a vector register. Figure 5.1c depicts how an
SWP instruction can interpret a register as multiple overlapping windows and perform a 1D
convolution to the different windows through a single instruction.

To efficiently exploit SWP, we propose a lightweight microarchitecture extension for
standard VPUs (Vector Processing Units), primarily involving the modification of the dat-
apath to implement a 2D array of ALUs to exploit the arisen DLP when considering the
operand reuse from the overlapping windows. As presented in the following section, SLIDEX
supports variable window sizes at runtime without complex interconnections, thus ensuring
scalability.

5.2 Implementation

This section describes the architecture extension introduced by SLIDEX to sup-
portSWP and a microarchitecture that implements it.

5.2.1 Overview

We engineer SLIDEX as a cost-effective, minimally invasive vector extension for con-
ventional SIMD processors, such as ARM Neon. This design strategically leverages existing
resources in commercial cores, such as vector register files and ALUs. Given the widespread
presence of SIMD engines in edge and embedded domains, our approach requires minimal
integration changes, facilitating industry adoption of SLIDEX. To integrate SLIDEX, we
incorporate support for decoding new instructions, along with various control and predicate
registers. Additionally, we modify the datapath to include specialized ALUs capable of pro-
cessing multiple sliding windows and executing various operations per window in parallel,
thereby enhancing the DLP exploited by the baseline vector engine.
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Figure 5.2: A high-level system overview. The SLIDEX unit is a pipeline placed inside the
Execution stage of the in-order CPU.

Figure 5.2 shows a high-level diagram of the tightly coupled integration of the SLIDEX
augmentation in a conventional in-order CPU pipeline to support SWP, which we detail in
the next section.

5.2.2 Sliding Window Processing

Sliding Window Processing (SWP) is a new SIMD processing model with instructions
that natively operate on vector registers that store multiple overlapped windows. Exploiting
the windows overlap amplifies the potential number of operations per instruction compared
with an equivalent vector instruction without increasing the vector length. The local elements
of each window are processed in parallel and then reduced and written to the output.

This work presents the canonical form of SWP, 1D SWP, which operates on one-
dimensional vector registers. 1D SWP requires fewer changes to conventional vector engines
than, for example, 2D SWP. Additionally, 1D SWP is enough to saturate the memory system
of our baseline, as Section 5.3 shows.

Moreover, 1D SWP supports 2D operations such as 2D non-separable convolutions
by partially accumulating the results of multiple 1D SWP operations (see an example in
subsection 5.2.5).

SWP achieves several benefits compared with the traditional scalar and vector pro-
cessing models, with only a minimal increase in hardware requirements. The key advantages
of SWP to push SIMD performance on modern CPUs for image processing tasks are:

• SIMD instructions with richer semantics : Programs require fewer SWP instructions
than conventional ISAs to implement neighborhood operations, extending SIMD ben-
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Table 5.1: SLIDEX architectural visible state.

Identifier Size Interpretation

p[0-15] V L× 1bit PRF registers to store the predi-
cates.

r_wir V L× 48bits Register to store intermediate
wide results.

r_wsize 1× 32bits Register to store the window size.

efits such as instruction supply reduction. In addition, the richer semantics translate
to more exploited DLP.

• Decrease of reads and alignments of input operands : Specific hardware can efficiently
route window data to processing elements by taking advantage of the overlap between
windows. A specific routing for sliding windows translates into fewer register file and
memory accesses and fewer instructions to align or organize the data.

• Less intermediate result writes : Each instruction performs a partial or total neigh-
borhood operation on multiple windows, reducing or accumulating the results. Other
approaches require saving the intermediate results in the register file or memory before
the reduction.

SLIDEX SWP ISA extension provides specific hardware to achieve these benefits,
increasing CPU performance and energy efficiency. The following sections describe the
lightweight changes required to support SWP on existing vector processors.

5.2.3 Architectural State

In addition to the typical architectural state of the vector engine of the CPU, SLIDEX
includes a Predicate Register File (PRF), a Wide Intermediate Register (WIR), and a control
register that holds the WSIZE (Window Size) value, as shown in Table 5.1. Similar to the
baseline vector registers, some of these new specialized registers scale with the VL (Vector
Length).

The PRF (registers p0-p15) store predicates that applications can utilize to mask the
operations performed by SLIDEX instructions. The WIR (r_wir) register provides additional
temporary storage to accumulate intermediate results before reducing the register to fewer
bits. This process enables operations to use higher precision formats before reducing the
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Table 5.2: SLIDEX new proposed instructions.

Instruction Description

WCONV Rd, Rn, Rm, Ra Performs the convolution using the kernel coefficients stored in
the vector register Ra over the data stored in the vector register
Rm, adds the values from Rn, and places the result in Rd.

WFAST (p0) Rd, Rn, Rm, Ra, #TH Performs the partial FAST (Features from Accelerated Segment
Test) extraction comparing the elements from the register Rm
with the candidate corners stored in Ra using the threshold in-
dicated in the immediate value #TH and fuses the partial result
with the contents of Rn storing the result in Rd. p0 predicates
and masks the execution.

WFASTRED Rd, r_wid Reduce the WFAST state stored in R_wid and places the result
in Rd : zero or the score if the pixel is a corner.

results to a byte. Finally, the programmer can actively control the WSIZE used by SLIDEX
instructions at runtime through the control register (r_wsize).

5.2.4 Instruction Set Extension

Table 5.2 presents the new instructions introduced by SLIDEX to leverage Sliding
Window Processing for convolutions (e.g., Gaussian filtering) and FAST keypoint detection.

5.2.5 SLIDEX Programability

To facilitate programmability and similarly to the manually optimized libraries pro-
vided by most vendors [102, 72], we have created a SLIDEX-optimized library with repre-
sentative kernels for image processing, such as convolution and FAST functions programmed
using the SLIDEX instructions. Additionally, future compilers may support SLIDEX by pro-
viding compiler intrinsic functions. We will illustrate the use of the instructions dedicated
to convolution and FAST tasks through simplified examples.

The WCONV instruction performs 1D convolution. As presented in Figure 5.1c, the
instruction processes multiple windows in parallel, applying the dot product with the coef-
ficients of the convolution operator. The elements that appear crossed out at the beginning
and end of the register are part of the padding, and their value is not defined. Listing 5.1
shows how to perform a separable 2D convolution using WCONV. First, the program appro-
priately sets the window size (WSIZE=5) by loading the correct value on register r_wsize.
Then, it performs horizontal 1D convolution using one instruction per row. Before con-

100



1 LDR r_wsize, 5 # Set Kernel size
2 VLD {V15}, [R1] # Load horizontal kernel
3 # Horizontal Convolution
4 VLD {V0}, [R0]! # Load first row
5 WCONV V0, VZR, V0, V15
6 WCONV V1, VZR, V1, V15
7 ...
8 # Macro to transpose the image block
9 TRANSPOSE_MATRIX V0, ..., V15

10

11 VLD {V15}, [R2] # Load vertical kernel
12 # Vertical Convolution
13 WCONV V0, VZR, V0, V15
14 WCONV V1, VZR, V1, V15
15 ...
16 # Store the result
17 VST {V0}, [R3]! # Store the first column
18 ...

Listing 5.1: 2D Separable Convolution example. VZR is the zero register.

1 LDR r_wsize, 7 # Window size for FAST
2 VMOV r_wir, #0 # Initialize r_wir
3 VMOV p0, #0b0011100
4 # Perform WFAST operations
5 WFAST (p0) r_wir, r_wir, V1, #10
6 ...
7 WFAST (p1) r_wir, r_wir, V5, #10
8 WFAST (p0) r_wir, r_wir, V6, #10
9 # Reduce the WFAST state

10 WFASTRED V15, r_wir

Listing 5.2: FAST feature extraction pseudoassembly example.
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ducting the vertical pass, it is necessary to transpose the output of the results. Then, the
algorithm repeats the convolution process for the vertical operation.

Non-separable 2D convolutions can be efficiently executed by splitting them into
successive 1D convolutions for each kernel row and accumulating them to obtain the final
2D convolution. To implement this strategy with SLIDEX, the programmer can apply a
WCONV instruction for each kernel row (WSIZE in total), generating the final results for
an entire image row.

Similar to the non-separable convolution, stencil operations like FAST require mul-
tiple WFAST instructions to generate the corner classification of the elements of each im-
age block row. In particular, since FAST operates using a WSIZE=7 (see Figure 2.7b),
the programmer should use seven WFAST instructions to process one image row. These
WFAST instructions check whether the pixels in the Bresenham circle, shown in the figure,
are brighter or darker than the center pixel by the corresponding threshold indicated in the
immediate field of the instruction. It stores the comparisons in the destination register. In
addition, the instruction simultaneously computes the corner score. The score is the sum of
absolute differences between the intensity of the candidate and 16 surrounding pixel values.
Listing 5.2 shows how the WFAST instruction employs the WIR register for intermediate
results, as it provides enough bits to store the state of the FAST operation. SLIDEX sliding
window unit provides predication or masking capabilities that can prevent some window
elements from participating in the neighborhood operation. In the case of WFAST, the
predicate allows selecting the pixels of the Bresenham circumference (e.g., the first predicate
will be 0011100X...X corresponding to masking all pixels but the 16, 1, and 2 shown in Fig-
ure 2.7b). Lastly, the final WFAST instruction (line 10) generates the final state with all the
information required to classify the pixels. WFASTRED instruction processes the contents
of the WID register, writing every pixel score to the destination register if the corner satisfies
the FAST condition or a zero otherwise.

5.2.6 SLIDEX Execution Unit

In this work, we propose a cost-effective vector extension that implements the SLIDEX
instructions to leverage 1D SWP as a proof of concept.

Figure 5.3 presents the main component of our proof of concept design. This design
extends the baseline storage composed of the Vector Register File (VRF) with additional
elements: a Predicate Register File (PRF), the WIR, and control registers (detailed in
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Section 5.2.3). The other main component is the SLIDEX Execution unit, whose design we
discuss below in this section.

Before discussing the implementation details, we define one important hardware pa-
rameter of the microarchitecture. The PWO (Parallel Window Operations) parameter is the
maximum number of partial operations of each window that the SLIDEX Execution Unit
can perform in parallel each cycle. It is related to the VL parameter since it indicates the
maximum number of windows computed in parallel each cycle. Together, VL and PWO
embody how SLIDEX allows exploiting 1D SWP and determines the peak performance.
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Figure 5.3: General overview of the SLIDEX augmentations showing the state (VRF, PRF)
visible to the programmer (Table 5.1) and the SLIDEX Execution unit. ROT modules rotate
the input in the direction of the arrow.
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Figure 5.4: WCONV V0, VZR, V0, V15 simplified cycle chronogram (WSIZE=5). Note
how, for example, the register value V0[3] slides in space across the ALU inputs (Cycle 2)
and in time at the cycle change.

In order to implement 1D SWP, the SLIDEX Execution unit has a three-stage
pipeline, namely: i) ORS (Operand Rotation Stage), ii) PCS (Partial Computation Stage),
and iii) RS (Reduction Stage).

The Operand Rotation stage gathers the instruction operands. Then, it rotates
(ROT→) the register Rm (see Table 5.2) that always contains the row of pixels of the
image block loaded in the VRF over which the unit applies the neighborhood operations.
The rotation is required to align the first element of each window with the corresponding
output element for the final result of the window. Thus, the unit shifts the elements of Rm
WSIZE−1

2
positions to the right. Figure 5.5a shows the fundamental generic component of the

variable step shift register used in the ORS. After a first register reading cycle (Rmi element
coming via the corresponding I[i] input), the unit controller determines the maximum step
to shift the Rm register to reach the required position in successive ones. ORS holds the rest
of the instruction’s operands in input latches. Figure 5.4 depicts a chronogram for WCONV
V0, VZR, V0, V15 instruction (WSIZE=5). The unit reads V0 in Cycle 0 and rotates it in
Cycle 1, aligning the V0[0] (first window element) position with the position of the center
pixel of the window (V0[3]).

The Partial Computation Stage performs the local operations on the pixels of the
windows. PCS can process a maximum of VL windows and a maximum of PWO operations
from each window in parallel. The unit initially routes the Rm (rotated), Ra, and p0 (if any)
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Figure 5.5: (5.5a) general diagram of the variable step shift register element used in ORS.
(5.5b) general diagram of the shift register element used in PCS. (5.5c) Pipeline diagram
of SLIDEX Exec Unit with PWO=3 and WSIZE=5. The pipeline can completely hide the
ORS latency.

from the ORS through a shift register that can rotate (←ROT) the instruction operands
PWO positions to the left in each cycle. Figure 5.5b illustrates the design of the generic
element of said mechanism. VL×PWO ALUs process the output values of the shift registers.
These ALUs appear grouped in columns of PWO elements in Figure 5.6a. Each column
processes the pixels of the same window and sends the output results to the next stage.
Note that the columns use the already existing ALUs from the baseline vector processor
(denoted with solid blue color in Figures 5.3 and 5.6a). Our proposal augments it with
simpler ALUs specialized for the typical image processing operations. The columns use a
ring interconnection scheme (i.e., the first column connected with the last), each receiving
elements i, i+ 1, and i+ 2 from register Rm.

Furthermore, each ALU has a multiplexer to control the operand Ra input according
to the operation type. For the WCONV instruction, the multiplexers of the first ALU of
each column select the Ra[0] element from the horizontal bus. For the case of the WFAST
instruction, the unit selects the Ra[i] coming from the vertical bus. Thus, the difference
between the two modes of operation lies in whether the ALUs use the horizontal or vertical
bus. In the first case, the three ALUs of all columns (windows) receive the same three
elements (e.g., convolution coefficients). In the second, the three ALUs of each column
receive the same value (e.g., the corresponding center pixel in WFAST ). The PCS column
interconnection network exploits window overlapping to efficiently route the ALU operands.
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Figure 5.6: (5.6a) SLIDEX column able to perform PWO=3 parallel window operations each
cycle. (5.6b) SLIDEX reduction unit.

In Figure 5.4, cycles 2 and 3 show in more detail an example of how this interconnection
network routes the window pixels and the convolution operator coefficients to the ALUs in
the case of WCONV instruction.

The Reduction Stage, shown in Figure 5.6b, reduces each column’s output of the
ALUs. In the first RS cycle, the unit initializes the internal accumulator (Acc) register with
the corresponding Rn value. Acc register has the same number of bits as the r_wir register,
allowing intermediate accumulations to have a larger state before an eventual reduction.
Furthermore, the unit has Rn operand chaining support, which is especially interesting for
2D window operations such as the one exemplified in Listing 5.2. The stage saves one register
read in each intermediate WFAST instruction since it can immediately use the correct r_wir
value already in the internal accumulatORS.

The pipeline design described can hide the latency of ORS and RS for any PWO value.
The ORS has to shift the register Rm WSIZE−1

2
∼ WSIZE

2
positions. In contrast, the Partial
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Computation stage has to shift the input operands WSIZE positions, taking ⌈WSIZE
PWO

⌉ cycles
to complete its operation. With the variable step shift register of our design (Figure 5.5a),
ORS can shift with a maximum step of up to ⌈PWO

2
⌉ positions taking approximately the

same number of cycles as PCS to finalize. RS also overlaps with PCS, implying that the
pipeline reaches the throughput imposed by the critical stage PCS. Figure 5.5c illustrates
the balanced SLIDEX Execution Unit pipeline diagram for PWO=3 processing a window
operation with WSIZE=5.

Finally, we discuss the performance, power, and area tradeoffs associated with varying
the VL and PWO parameters. First, augmenting VL implies increasing the number of shift
registers, columns, and reduction subunits. All these elements have a fixed cost that depends
on PWO and not VL, making the solution scalable. Second, as shown in Figure 5.7a,
an increase in PWO improves SLIDEX Execution unit performance for the window sizes
(WSIZE) typically used in image processing. However, this leads to a linear increase in the
cost of the solution and degrades the unit’s efficiency. Figure 5.7b shows the sensitivity of
the ALUs’ utilization to the PWO parameter. The chronogram in Figure 5.4 illustrates how,
in Cycle 3, the third ALU of each column does not do any valuable work. Based on our
experiments, we decided to use a value of PWO=3 for our proposal. The design achieves
71% of the ideal (CPI=1) gain at the expense of a 16% average loss of utilization w.r.t. to
PWO=1.

Figure 5.7c shows the effective number of ALU operations per SLIDEX instruction,
normalized by the number of operations performed by a vector instruction. For example,
on average, SLIDEX-16 performs more than twice as many operations per instruction as
a vector instruction. It is worth noting that these operations are also more complex, but
we are simplifying the explanation for clarity. The increased number of operations offsets
the energy cost of the dominant instruction supply, making ALU underutilization energy
inefficiency marginal.

5.3 Experimental Results

This section evaluates the performance of scalar and vector implementations of the vi-
sual localization system’s frontend under study. We then compare these results with SLIDEX
under the same baseline conditions, notably using the same memory bandwidth and L/S unit.
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Figure 5.7: (5.7a) Cycles Per Instruction (CPI) of SLIDEX Exec. unit for different PWO
and WSIZE values. (5.7b) SLIDEX Exec. unit ALU utilization percentage for different
PWO values and window sizes (WSIZE) assuming a fixed VL=64. (5.7c) Normalized ALU
operations per instruction performed by SLIDEX-16, -32, and -64 solutions for PWO=3
and different WSIZE values relative to the operations per instruction performed by a vector
processor with corresponding VL value. The nomenclature SLIDEX-VL specifies the VL
parameter of each SLIDEX version.
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5.3.1 Baseline Characterization

For our evaluation, we select an A55-like CPU as the baseline. We assess the ex-
ecution time per frame for various components of our localization engine as introduced in
Section 2.2.6. The breakdown of the FE (Feature Extraction and Matching) stage comprises
the FAST feature detection (FAST), the Gaussian filtering of pyramid levels (GAUSS), the
feature descriptor generation (DESC), and specific feature manipulation tasks (OTHER).
Another crucial part of the algorithm involves using the detected features to track the cam-
era (TRACK). Figure 5.8 illustrates the relative execution times of these components, high-
lighting that FAST and GAUSS together account for more than 40% of the total execution
time. This significant proportion underscores their potential to demonstrate the benefits of
SLIDEX.

FAST
GAUSS
DESC
TRACK
OTHER

27.9% 12.8% 27.7% 22.8% 8.9%

Figure 5.8: Relative end-to-end execution time breakdown of the main ORB-SLAM tasks.

ORB-SLAM relies heavily on the Opencv library [18] for image manipulation. How-
ever, the standard implementation does not fully utilize the small core of our baseline, as
the library’s Gaussian convolution and FAST implementations are not optimized for ARM
vectorization, and automatic vectorization by the compiler is limited. We have optimized
the software by vectorizing the Gaussian convolution and FAST feature extraction, achieving
speedups of approximately ∼11.1× and ∼3.3×, respectively. We use this vectorized version
as the primary reference for performance and energy comparisons.

We evaluate the performance and energy efficiency of three versions of the visual
frontend of ORB-SLAM:

• OpenCV (CV): Original ARM-compiled version of the visual frontend of the appli-
cation under study. We use OpenCV [18] library for image pre-processing tasks, which
lacks optimal vectorization for this platform.

• Vectorized (VEC): A modified version implemented with NEON vector instructions
for image processing tasks.

• Our proposal (SLIDEX-VL): A modified version using SLIDEX vector extensions.
We denote different VL configurations as SLIDEX-VL.
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All versions use the same L/S unit configuration as the baseline’s NEON unit, de-
signed with a PWO of three. Given that the CPU’s NEON instructions support a VL of
sixteen, the SLIDEX-16 setup is particularly significant for comparison.

5.3.2 Performance Analysis

Figure 5.9a, Figure 5.9b, and Figure 5.9c present the primary metrics of interest
extracted during the execution of the Gaussian convolution and FAST feature extraction.
The results correspond with an average across KITTI sequence executions and normalized
w.r.t. the vector implementation results. We compare the execution of each part using the
vector extensions with the implementations using the SLIDEX extensions.

Figure 5.9a illustrates how, in all cases and for both tasks, we can observe a sub-
stantial decrease in the number of instructions, cycles, and data cache accesses compared to
the vector implementation. There are several explanations for these results. First, NEON
exploits a maximum DLP given by the VL=16 parameter, whereas SLIDEX can exploit a
maximum DLP of VL×PWO, which allows SLIDEX implementation to reduce the number
of cycles. Second, SLIDEX exploits this parallelism through efficient operand routing that
takes advantage of the inherent overlapping between the elements traversed using the sliding
window pattern. Therefore, SLIDEX extensions avoid using the instructions to align, load,
or arrange data in the vectorized code, which reduces the number of instructions and cache
accesses. For example, the vectorized FAST implementation performs sixteen unaligned vec-
tor loads of the pixels of the Bresenhan circumference. Once loaded into the vector register
file, the program can perform vector comparisons to classify multiple corners in parallel, re-
quiring additional instructions to compare and obtain the final results. As opposed, SLIDEX
FAST implementations do not require the intervention of the cache or any other external
mechanism to align the data. Finally, the last key factor that allows SLIDEX extensions to
outperform the vectorized case lies in the higher semantics of the instructions that translate
to a decrease in execution time and energy. The high semantic value of the instructions
comes from expressing 1D SWP and the specialization (WCONV and WFAST ).

Noteworthy, main memory accesses do not change substantially in any cases, indicat-
ing that the cache can contain the application’s working set in all the cases since both the
vectorized code and the SLIDEX code use the same data.

If we compare the difference between convolution and FAST, we notice that the
improvement is more significant in the latter case. The fact that SLIDEX allows the classi-
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(b) Comparison of SLIDEX flavors for the Gaussian convolution.
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(c) Comparison of SLIDEX flavors for the FAST feature extraction.

Figure 5.9: Normalized main hardware metrics extracted during the execution of the Gaus-
sian convolution and FAST feature extraction comparing the behavior of the vectorized
version and that of different flavors of SLIDEX.
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fication of multiple pixels according to the FAST algorithm with only eight instructions (0.8
instructions per pixel in SLIDEX-16 if we ignore load and store instructions) compared to
the tens or hundreds of the vectorized version mitigates the fact that the complexity of the
convolution (1D) is less than that of FAST (2D).

If we compare the different versions of SLIDEX looking at Figures 5.9b and 5.9c, we
observe that by raising VL, the performance increases, although the rate of improvement
stagnates. The improvement comes from increasing the DLP by processing more windows in
parallel. In addition, a higher VL decreases the impact of image tile padding overhead, thus
increasing utilization and efficiency. A simulation with a perfect memory system (instant
access time) shows that SLIDEX-64 obtains more than 4x speedup compared with SLIDEX-
16. However, with a realistic memory model, increasing VL incurs diminishing returns in
the platform under study. SLIDEX-16 almost saturates the memory system. SLIDEX-32
and SLIDEX-64 units process image rows much faster than the system can provide. Thus,
they do not obtain significant performance benefits compared with SLIDEX-16 due to the
memory access bottleneck that throttles the CPU’s overall performance.

Furthermore, we have evaluated ORB-SLAM end-to-end. Figure 5.10 shows a box
plot depicting the different implementations’ end-to-end effects. The end-to-end speedup is
∼1.2× for the VL=16 version of SLIDEX and, following Amdahl’s law, as the VL rises, the
rest of the tasks begin to weigh more in the global computation and the overall speedup
stagnates. We believe that SLIDEX can be a great alternative to classic vector processing
units for image processing, as illustrated by the fact that the speedup obtained for FAST
extraction is 2.4× 4.1× and 5.9× for SLIDEX-16, SLIDEX-32 and SLIDEX-64, respectively.

Despite the benefits of increasing the VL, the memory hierarchy cannot sustain the
hungry data consumption rate of the SLIDEX-32 and SLIDEX-64 versions. Thus, SLIDEX-
16 is the best performance-wise setting on this platform.

5.3.3 Energy, Power and Area Analysis

We have evaluated the cost of SLIDEX unit for the parameters used so far following
the methodology introduced in Section 3.3. Table 5.3 summarizes the costs introduced to
support it.

SLIDEX-16 requires 0.031mm2 increasing the base processor area by only 0.63%.
Assuming 2.79mm2 area of an industry reference CPU [86], SLIDEX incurs a modest 1.13%
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Figure 5.10: End-to-end latency of our localization system for the different systems tested
in this work.

area overhead. We achieve a minimal impact on the area by designing it as a unit tailored
for images with byte-level register banks and operations for this operator size.

Another vital aspect is power consumption. The increase in power is less than 1%,
which helps maintain a low power despite the SLIDEX-16 unit’s high performance. Power
dissipation is critical in autonomous driving systems [93] since it directly affects vehicle
autonomy and cooling.

Table 5.3: Area and power for the baseline CPU and the different versions of SLIDEX.

Platform Area (mm2) Static Power (W) Dynamic Power (W)

Baseline CPU 4.87 0.572 0.934

SLIDEX-16 3.11E-02 2.73E-03 4.07E-03
Storage 3.02E-02 2.73E-03 3.98E-03
Exec. Unit 8.71E-04 2,66E-07 9.41E-05

Relative Change 0.63% 0.48% 0.43%

Finally, we analyze the energy consumption results of the SLIDEX units on the KITTI
dataset. Figure 5.9c and Figure 5.9b show the relative energy improvement of the differ-
ent versions of SLIDEX for the convolution and FAST tasks, respectively. The SLIDEX
implementations obtain an energy reduction not only by reducing execution time but also
by reducing the number of instructions and cache accesses. Figure 5.11 shows the average
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Figure 5.11: End-to-end average energy per frame for the vector and SLIDEX implementa-
tions.

end-to-end energy per frame for the vector and SLIDEX implementations. The 19% energy
reduction comes from the execution time reduction, the number of instructions and their
associated cost, and the reduction in the number of cache accesses. The energy reduction
also stagnates with the increase of VL because SLIDEX-16 already saturates most of the
benefits attainable by optimizing the Gaussian convolution and the FAST feature extraction
in ORB-SLAM on this platform.

Furthermore, the memory access bottleneck and related cost dominate the task under
study, causing the increase in VL to generate diminishing benefits. Thus, SLIDEX-16 is the
most balanced configuration on this platform energy-wise. The vector implementation yields
a PPA (Performance Per Area) of 1.44 FPS/mm2 and a PPW (Performance Per Watt) of
4.64 FPS/W. However, SLIDEX-16 outperforms it with a PPA of 1.79 FPS/mm2 and a
PPW of 5.74 FPS/W, showcasing superior performance and energy efficiency.

5.4 Conclusions

In this chapter, we have introduced SLIDEX, a novel approach that supports the
SWP execution model in conventional cores in the form of ISA extensions. SWP exploits
the inherent data access patterns of the sliding window scheme, a standard traversal method
to perform neighborhood operations. SLIDEX exploits the neighborhood window overlap,
which provides many benefits compared to traditional scalar and vector execution models,
including instructions with richer semantics, a decrease in data reads and alignments, and
fewer intermediate result writes employing a novel scalable and flexible microarchitecture.
We have demonstrated the feasibility of SLIDEX architecture by proposing special instruc-
tions to support 1D SWP targeting visual localization. SLIDEX achieves higher perfor-
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mance and energy efficiency than vector implementations and only requires minor changes
to support it, making SLIDEX a strong candidate to extend the functionalities of vector
architectures in future vision platforms.
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6
δLTA

This chapter introduces δLTA (δont’t Look Twice, it’s Alright), a novel mechanism
that capitalizes on the inherent spatio-temporal similarity in vision streams by empowering
the camera to discard redundant image regions before they enter subsequent CV (Continuous
Vision) pipeline stages.

6.1 Introduction

Camera movements in CV typically result in smooth transitions, causing consecutive
images to exhibit subtle position, angle, and orientation changes. These subtle variations
create significant spatio-temporal similarities between frames, which provide an opportunity
to optimize processing. The processing efficiency is enhanced because similar image regions
tend to yield similar analytical outcomes. To illustrate, Figure 6.1a presents a similarity
study that divides each image into a grid of varying-size regions and assesses the percentage
of identical regions between consecutive frames. As region sizes increase, the percentage of
identical regions decreases significantly. For instance, around 60% of 1x1 regions (i.e., pixels)
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Figure 6.1: (6.1a) Similarity study at different region sizes across adjacent frames for sequence
00 of the KITTI [52] dataset. (6.1b) Reduction in Normalized Temporal Gradient with
increasing frame rate (FPS).

are identical, whereas 20% of 16x16 regions share this characteristic. For larger regions, the
percentage drops considerably, reaching nearly 0% of whole identical frames.

However, opportunities for computation reuse are much higher if we consider similar
regions rather than totally identical ones. Figure 6.2 provides an example using 64x64 pixel
regions, demonstrating that many regions exhibit minimal changes during typical camera
movements. Several factors contribute to this observation, such as the parallax effect, camera
sampling-to-velocity ratio, and low 2D frequency component areas.

The parallax effect causes objects far from the camera to appear to move slowly
relative to the camera. Figure 6.2 depicts these areas in blue.

The camera sampling-to-velocity ratio also impacts the frame-to-frame similarity.
Figure 6.1b illustrates the strong relationship between an increase in the FPS (Frames Per
Second) rate and similarity within a given scene. We assess similarity using a metric called
TG (Temporal Gradient), a widely accepted indicator for temporal similarity in video pro-
cessing [164]. It involves computing the overall absolute difference between the pixel values
of two consecutive frames by subtracting one frame from the other and then averaging the
resulting pixel values across the entire image. A low TG indicates little change between con-
secutive frames, implying high similarity. The normalized TG (by the maximum brightness)
consistently decreases as the frame rate increases, indicating that higher frame rates lead to
higher similarity.

Another property of a CV stream is related to the low 2D frequency areas. These
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Figure 6.2: The figure compares two consecutive KITTI frames and highlights regions that
exhibit spatio-temporal similarity. Yellow regions represent areas with low 2D frequency and
high similarity. The blue regions correspond to distant areas in the scene that move slowly
due to parallax.

areas, containing little information, require lower frame rates than regions with more details.
Figure 6.2 highlights similar regions in yellow. Despite movement between frames, many
of these regions maintain nearly identical values due to the uniformity of their surrounding
area.

6.2 Decoupling Camera Sampling from Processing

Traditionally, optimizations in CV have been approached by enhancing individual
IPs in isolation. However, as outlined in Section 2.1, the CV pipeline comprises components
that primarily operate independently, presenting a significant opportunity for integrating
information across the system. This chapter introduces a novel contribution that leverages
collaborative processing across the CV pipeline.

δLTA redefines the CV pipeline by decoupling the frontend camera frame sampling
from backend processing. It introduces an innovative CV frontend that utilizes frame-to-
frame similarity to discard image regions in the very early stages of the vision pipeline during
the frontend camera sampling. Instead of writing the entire frame to the FB (Framebuffer)
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every time the camera captures an image, δLTA frontend selectively updates only the regions
of the frame that differ from the previous version and informs the backend which regions
are different. This mechanism allows the backend to focus solely on processing the unique
and distinctive regions of the image at their rate of change and not always at the arbitrary
camera sampling rate.

Compared with current systems, δLTA reduces the frontend FB updates, the redun-
dant backend computations, and the backend FB accesses needed to produce equivalent final
results with decreased end-to-end latency and overall energy consumption.

Another pivotal benefit of decoupling the backend workload from the sampling arises
when considering camera frame rate scaling. Frame-to-frame similarity increases as the frame
rate grows since the camera has less time to capture variations in the scene between consec-
utive frames up to a certain point when, for a given scene, more frame rate provides only
redundant information. Hence, δLTA can progressively filter the increasingly similar regions
of these frames to limit the backend workload to the actual scene information. Moreover,
increasing the frame rate enhances responsiveness. To illustrate this, consider a baseline sys-
tem limited to processing streams at 20 FPS. Consider also that, assuming a given scene’s
particular temporal similarity characteristic, this system with the δLTA frontend can process
30 FPS instead. While the baseline system processes all image regions at 20 FPS, δLTA-
equipped one can selectively process some regions, the most distinctive that changed, at up
to 30 FPS, thanks to freeing computational resources that otherwise would be devoted to
processing irrelevant regions.

To ensure all these advantages, δLTA must efficiently address two notable challenges.
The first challenge is enabling the frontend to detect similar regions efficiently without signif-
icant latency and energy consumption overheads. To achieve this, δLTA divides each frame
into a grid of equally sized regions and computes a BRIEF (Binary Robust Independent El-
ementary Features) [22] signature for each region through a specialized hardware accelerator
embedded in the ISP (Image Signal Processor) of the frontend. BRIEF signatures require
a limited number of pixel computations. They can be efficiently stored in a small buffer in
the ISP, as they only occupy a fraction of the original region. To identify similar regions in
an incoming frame, the ISP computes the Hamming distance between the BRIEF signatures
for each region of the incoming frame and the past frame stored in a buffer. This approach
is highly efficient and requires a relatively small accelerator.

The second challenge of δLTA is to design a versatile frontend interface since CV sys-
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tems operate in various potential scenarios. We achieve this flexibility through a hardware-
software co-design and collaboration approach. The proposed frontend interface offers the
programmer two primary mechanisms to regulate its adaptable behavior: i) a threshold that
determines when δLTA ISP should consider that two regions are similar and ii) a mask that
specifies which regions it must update regardless of the similarity measurement. The vision
processing software can be modified to take advantage of the new frontend interface using
the threshold and mask according to the characteristics and requirements of the CV system,
its deployment, and the acceptable approximation levels.

6.3 Implementation

This section presents δLTA, our novel solution to overcome the limitations of existing
CV systems. We discuss the proposal’s core concept and implementation in modern vision
frontends, specifically in the ISP, and describe how to harness its potential using software on
the backend CPU. Importantly, any backend, such as a GPU or ASIC, can similarly leverage
δLTA.

6.3.1 General Overview

δLTA optimizes the end-to-end image transmission and processing of the CV pipeline.
It decouples camera sampling from processing to avoid unnecessary image data transmissions
and redundant computations in the backend. It also enables proactive frontend and backend
collaboration.

As explained earlier, modern CV backends have to access and process all the frames
the camera generates since they cannot make any assumptions about them. Consequently,
the backend’s workload depends on the camera’s frame rate. δLTA breaks this coupling,
enabling the ISP to discard similar regions in consecutive frames by exploiting the spatio-
temporal similarity. Similar regions are not transferred to the main memory nor later ac-
cessed by the backend. The backend of a system equipped with δLTA only has to process
the distinctive regions of images that change. For the rest, it can reuse cached results or
approximate the output using computationally cheaper methods. δLTA design transforms
a system that processes images based on the camera frame rate to one that processes the
images based on how they change.
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Moreover, current vision pipelines communicate only in one direction. The frontend
processes the images without knowing anything about the requirements of the backend ap-
plication. Consequently, it fails to adapt to them and always operates the same. For this
reason, δLTA enables proactive communication between both parts of the pipeline, employ-
ing a richer interface that informs what image regions changed compared to the previously
captured images each time the camera samples. Additionally, it allows the backend to adjust
its behavior. The backend can communicate with the frontend to indicate a threshold deter-
mining if two regions are similar and a mask to indicate which regions must be sent from the
ISP to the Framebuffer (FB) regardless of their similarity. This way, the backend can adjust
the performance, accuracy, and energy tradeoffs employing specific runtime information of
the vision application.

Main Memory

Framebuffer

Signature
Buffer

Threshold MaskReuse Info

Tailored
Vision App.

CPU

SoC Interconnect

  LTA
Unit

ISP

Output Parameters Input ParametersAugmentations

Camera

Figure 6.3: General overview of the proposed vision pipeline.

In summary, we enhance the state-of-the-art vision SoCs with a new ISP capable of
filtering similar regions and a new interface that allows the backend to exploit this similarity.
Figure 6.3 depicts the new extensions and frontend interface parameters. In the remainder of
this section, we delve into the details of implementing δLTA and demonstrate its effectiveness
in addressing the challenges of efficient and flexible CV processing.

6.3.2 Frontend

The δLTA frontend operates by dividing each frame into a grid of equally sized re-
gions, extracting BRIEF [22] descriptors (introduced in Subsection 2.2.6) that are used as
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signatures to identify these regions, and comparing incoming frame regions’ signatures with
the signatures of the corresponding regions in the FB. If the ISP deems a region similar, the
ISP discards it, avoiding its transfer to the FB. Conversely, the ISP transfers the distinct
regions to the FB.

Furthermore, we extend the frontend interface to enable proactive collaboration. The
new ISP exposes the identifiers of regions that have changed since the previous FB version
to the backend in a dedicated Reuse Information area within the FB (see Figure 6.3). The
backend can also guide the ISP’s actions by sending parameters via the FB interface, setting
the threshold for region similarity detection, and supplying a mask to prevent the ISP from
discarding a region, irrespective of the similarity mechanism. This new metadata is vital
for facilitating ISP collaboration and allowing the backend to control the ISP’s behavior,
adjusting latency, energy, and accuracy tradeoffs on demand according to the requirements
of the application, and even enabling the ISP to function as the baseline when required.

We integrated a highly efficient new hardware component into the ISP to support
this new functionality that operates in parallel with other ISP stages to hide its latency.
This design avoids the BRIEF extraction and matching to increase frame processing latency,
even in worst-case scenarios where all regions differ or when the user deactivates δLTA
functionality.

The following subsection presents an example of the δLTA frontend operation. Next,
we will discuss the benefits of using BRIEF descriptors, followed by a description of the
microarchitecture of the new component of the δLTA ISP frontend and its integration within
the pipeline.

Operation Overview

Figure 6.4 provides a high-level overview of δLTA frontend operation. First, the
backend initializes the system with a fixed threshold and an empty mask, indicating to the
frontend that it has to send all regions since this is the first frame. The frontend divides the
frames into an equally-sized grid. In our example, the ISP splits the frames into a 3x4 grid,
with each ISP region having an associated identifier IRi. Additionally, the color of each
region indicates the frame to which it belongs.

The first frame processed in our example is Frame 0. Since it is the first frame, all
regions are new, and the ISP must send all of them and their identifiers (Reuse Information)
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Figure 6.4: Overview of δLTA technique for discarding redundant regions in the frontend.

to the FB in the main memory. We refer to the F ramebuffer Regions as FRi. The ISP
computes the BRIEF (represented with B signatures for each IRi region and stores them
in a Signature Buffer (SB). At the end of this process, the FB contains Frame 0 regions (in
blue), and the SB stores signatures of every FRi.

When Frame 1 arrives, the ISP extracts BRIEF signatures for every region and com-
pares them with the corresponding signature in the SB using their Hamming distance. If
the Hamming distance of a region is below the threshold indicated by the backend, the ISP
classifies it as similar and does not transfer it to the FB (e.g., region IR1 and IRN). Other-
wise, it sends the region to the FB, updates its BRIEF signature in the SB, and sends the
region identifier to the Reuse Information of the frontend interface (e.g., region IR0). This
way, the backend knows which regions have changed. At the end of this process, the FB
contains regions from Frame 0 (in blue) and Frame 1 (in orange).

When Frame 2 arrives, the same process occurs. The δLTA ISP processes each re-
gion, extracting its BRIEF signature, B(IRi), and compares it with the one in the SB
corresponding to the same region, B(FRi). It transfers the distinct regions to the FB and
their identifiers to the Reuse Information. Upon finishing Frame 2 processing, the ISP sends
only four regions, and the FB contains regions from all three processed frames.

Why BRIEF Descriptors?

We employ BRIEF [22] as a signature for the grid regions in which δLTA divides each
frame to leverage spatio-temporal frame-to-frame similarity on CV streams. Our decision to
utilize BRIEF signatures over other methods [99, 16, 134] in δLTA is motivated by several
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key factors:

• Robustness for δLTA use-case: BRIEF signatures can effectively measure simi-
larity between regions under moderate changes like those found in consecutive spatio-
temporal similar frames. We do not require scale or rotation invariant features that
would raise the hardware complexity and cost.

• Speed: BRIEF generation and matching are highly hardware-friendly and computa-
tionally efficient, as they only require a limited number of pixel comparisons. The
matching consists of computing the Hamming distance between two signatures. Other
methods (e.g., SIFT [99]) require costly floating point operations. This efficiency is
particularly beneficial in real-time scenarios where speed and energy efficiency are crit-
ical.

• Compact representation: Storing BRIEF signatures has minimal memory overhead,
less than 4% of the image size. This small overhead eliminates the need for the ISP to
double buffer past frame contents.

We evaluated the effectiveness of BRIEF signatures to describe the grid regions of
frames in CV by conducting experiments to establish the correlation between our method
and the Temporal Gradient (TG).

Figure 6.5a and Figure 6.5b display the negative correlation between the Normalized
TG and the percentage of similar regions detected with BRIEF for 10 and 30 FPS, respec-
tively. The correlation for the 10 FPS case is -0.785, indicating a strong negative relationship
between the change between frames (represented by the normalized TG) and the number of
similar regions identified by the BRIEF method. A similar correlation (-0.8) exists for the 30
FPS case. This robust negative correlation demonstrates that δLTA BRIEF-based approach
can effectively identify similar regions between consecutive frames. To further support this,
we present in Section 6.4 results showing that our method achieves excellent accuracy when
applied to a contemporary localization system.

6.3.3 ISP Implementation

In this subsection, we describe the microarchitecture implementation of the new δLTA
ISP. As shown in Figure 6.3, the new hardware includes a δLTA unit that computes and

125



0.00 0.05 0.10 0.15 0.20
Normalized Temporal Gradient

50

60

70

80

90

100

Si
m

ila
r

R
eg

io
ns

(%
) Data

Regression

(a)

0.04 0.06 0.08 0.10 0.12
Normalized Temporal Gradient

60

70

80

90

100

Si
m

ila
r

R
eg

io
ns

(%
) Data

Regression

(b)

Figure 6.5: Correlation between the normalized Temporal Gradient and the percentage of
similar regions obtained with δLTA similarity detection method at 10 FPS (6.5a) and 30
FPS (6.5b) for the sequence 00 of KITTI [52] benchmark.

matches BRIEF signatures of image regions and a Signature Buffer (SB) that stores the
BRIEF descriptor of every image region stored in the FB (B(FRn)). Every time the ISP
transfers a region, it updates the corresponding signature for the region in the SB to maintain
coherence between the SB and the FB contents. Our choice of using BRIEF signatures
makes the SB cost relatively low. For example, for an FHD (1920x1080 image) that occupies
approximately 2MB, the SB requires only ∼64KB.

δLTA Unit

Figure 6.6 illustrates the δLTA unit microarchitecture, designed for efficient and
hardware-friendly filtering of similar image regions. It features a streaming architecture
capable of processing one pixel per cycle, utilizing a 2D line buffer to access image regions
(IRn) of 32x32-pixel size. State-of-the-art image processing architectures use streaming line
buffers because of their efficiency [154, 64, 43, 160].

The δLTA unit applies a predefined pattern of pixel intensity comparisons to each
specific region to generate its BRIEF signature. Each comparator (CMP), shown in Fig-
ure 6.6, takes Gaussian-filtered pixels from the region as input to generate one bit of the
final signature. The Gauss modules efficiently perform the filtering using a 3x3 Gaussian
kernel approximation, 1

16

(
1 2 1
2 4 2
1 2 1

)
, that only requires sums and proper bit-wise wire routing.

Filtering of the region data smooths out high-frequency noise and details, improving the
robustness of BRIEF.
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Figure 6.6: Microarchitecture of the new ISP components: δLTA unit and Signature Buffer.

The unit subsequently compares the newly generated BRIEF signature (B(IRn))
with the stored SB signature from the FB’s corresponding region (B(FRn)), calculating the
Hamming distance using the sum of bit-wise XOR operations between the two descriptors.
Then, it compares the distance with the threshold input parameter for the similarity test
and updates the SB if the region is not similar. The mask input parameter determines if the
unit updates the region’s SB entry, irrespective of the similarity test.

ISP Pipeline Integration

We consider a baseline ISP that resembles literature [64, 20] and commercially avail-
able solutions [106, 9, 8]. An ISP sequencer orchestrates various ISP stages to convert the
camera sensor’s raw data to RGB and YUV color spaces (demosaicing) and to apply several
image enhancements afterward. As explained in Section 2.1.2, some of these improvements
adjust the image’s color balance to ensure accurate color reproduction (color correction),
adjust the gamma and apply HHDR (High Dynamic Range) processing to improve contrast
and detail in both bright and dark areas (tone mapping) or improve image quality (sharp-
ening), among others [64, 20, 8]. The generated image is temporarily stored in the DMA
(Direct Memory Access) buffer to smooth data flow within the ISP pipeline before the DMA
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Figure 6.7: δLTA incorporates a new ISP stage for BRIEF Similarity Filtering, which over-
laps with other ISP stages.

controller transfers it to the main memory.

Figure 6.7 illustrates the described traditional ISP pipeline and the integration of the
δLTA unit into it by adding a new δLTA similarity Filtering stage. This stage generates a
reuse signal that the DMA controller uses to avoid sending those regions deemed similar by
the δLTA unit.

This new stage runs in parallel with tone mapping and sharpening stages since it does
not rely on the images produced after these stages. As described in the previous subsection,
the δLTA unit utilizes a Gaussian filter to blur the regions, effectively negating the image-
enhancing advantages of tone mapping and sharpening stages.

We modeled a cycle-accurate RTL hardware description of the δLTA similarity Fil-
tering stage and its integration with the two final ISP pipeline stages to demonstrate that
the new δLTA stage latency overlaps with a standard ISP pipeline. We measured that our
new stage has a latency of up to 3ms when running at 700 MHz. We confirmed that its
latency could overlap even with two simple 5x5 stencil operations. Since the latency of ISP
stages in real scenarios is more significant than in our experiments, we can conclude that
the δLTA Similarity Filtering latency can be hidden entirely. This zero-latency overhead
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design is particularly advantageous for mission-critical real-time visual applications, where
minimizing latency is crucial.

Overall, δLTA frontend allows for highly efficient and hardware-friendly similarity
detection, enabling the system to focus only on processing the unique and distinctive regions
of the image that change while avoiding redundant computations and unnecessary data
transfers. Next, we show an example of how a visual application running in a CPU backend
can benefit from using δLTA.

6.3.4 Backend

δLTA frontend is generic and flexible since it makes no assumptions about the ap-
plication. It divides the image into regions and classifies them based on visual change. On
the other hand, the backend can exploit more specialized insights from the application and
adapt the requirements at runtime, proactively communicating with the frontend through
the versatility of our proposed FB interface.

A vision system can exploit δLTA implementing a background service similar to the
ones proposed in prior works [91, 165, 59], but in a more efficient manner. As explained
in Subsection 1.3.5, these previous works leverage frame-to-frame similarity by using image
contents as a key for a SC (Software Cache) that temporarily memoizes the associated output
results for the regions (e.g., CNN partial convolution results). These methods must access
the FB and process the whole image to generate a key (e.g., a descriptor or feature as an
identifier) and perform cache lookups for every incoming image. This approach induces an
unavoidable energy and latency overhead that reduces the gains for cache hits and increases
the worst-case latency since they require reading and processing the entire image for cache
lookup. This cost rises with the camera resolution and frame rate increases; hence, the CPU
and memory transmission bandwidth limit the benefits of these methods. By leveraging the
δLTA frontend interface, it is possible to mitigate these limitations significantly.

We illustrate the benefits of δLTA through a crucial emerging application, a state-
of-the-art visual localization technique called ORB-SLAM [23, 113] that typically runs on
CPUs [50]. We aim to leverage δLTA to reduce latency and energy consumption without
impacting localization accuracy.

To achieve this, we modified the ORB-SLAM codebase to include a SC to store the
ORB features and all its associated metadata (e.g., BRIEF descriptors) that the algorithm
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Figure 6.8: Illustration of how the backend CPU reuses the computations for the redundant
regions (R) and only processes the non-similar regions (C).

uses as the basis for its entire execution. ORB Feature extraction represents more than
60% of execution time for SLAM and up to 90% for localization [50] as we also reported
in Figure 1.2. By leveraging δLTA, the modified algorithm only processes the regions that
change across consecutive frames while ignoring the remaining ones, as detailed in the fol-
lowing subsections. In Section 6.4, we demonstrate how the resulting modified version of
ORB-SLAM significantly reduces computation and memory requirements while exhibiting
the same accuracy.

Operation Overview

The backend initiates the camera pipeline by setting a threshold and an empty blank
mask to compute all regions for the first frame. Figure 6.8 shows the final FB contents seen
by the CPU after the δLTA frontend operation, as discussed in Subsection 6.3.2.

When the δLTA frontend finishes processing Frame 0, the backend starts processing
it. First, the backend reads the Reuse information, which for Frame 0 indicates that all the
regions changed from the last frame (represented with a C in the regions of the figure) since
it is the first frame. Based on this information, the backend processes each region, writing
the extracted ORB features in a sSC that stores these results for each FRn.

Upon Frame 1 arrival, the backend repeats the same process. It reads the Reuse
Information that informs which FRn regions changed from the past frame. For these regions,
the localization algorithm extracts ORB features as usual, and like in the previous frame,
it stores the results in the SC. The system can reuse the features extracted from the last
frame for the rest of the regions, labeled with an R in the figure. The backend does not
have access to the pixel values for similar regions, only to the Reuse information. The rest
of the algorithm continues the processing, employing the ORB features stored in the cache
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to localize the camera.

Next, the backend processes Frame 2. It reads the Reuse information and recomputes
only the regions that changed from the past FB version. For similar regions, the SC contains
the values from either Fame 0 or Frame 1. Similar to what happens with the frontend,
where the ISP SB is kept coherent to hold the BRIEF signatures of the regions of the FB,
the backend also stores the results (e.g., ORB features) of each region of the FB.

Threshold

A crucial element of our proposal is its adaptability to various application require-
ments. The threshold parameter, a value between 0 and 1, dictates the intensity with which
the frontend discards regions. This threshold can be set on a per-frame basis following
different strategies, for example:

• Static Thresholding: This approach involves using a fixed threshold throughout the
entire execution of the application without any alterations.

• Utilizing Application-specific Insights: Many characteristics unique to specific
applications can offer valuable information to modify the threshold. For instance, in
our case study, the number of matched ORB features or unsuccessful re-localization
attempts could be employed to fine-tune the threshold to be more aggressive in regions
that have a minor impact on the localization outcome.

• Multisensor Augmentation: Additional sensor data from the external environment
can be harnessed to adjust the threshold. For example, in some AD systems, the Iner-
tial Measurement Unit (IMU) supplies crucial information on vehicle acceleration [124,
116, 147, 168, 171]. The system can leverage this information to dynamically mod-
ify the threshold, lowering it when the vehicle accelerates, turns, or executes unusual
maneuvers where heightened accuracy is essential.

For dynamic approaches like the last two above, the system requires a threshold
control mechanism receiving feedback from camera pose error estimations. The backend can
estimate this error every N frames by conducting two parallel independent pose estimations
using the full and δLTA-filtered frames and comparing the corresponding poses. Our proposal
supports this process by masking all the regions and forcing the frontend to send them. Note
that the δLTA frontend still updates the Reuse Information.
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Our experiments use conservative static thresholding to illustrate a lower bound of
the potential benefits.

Masking Regions

The other mechanism to control δLTA behavior is a mask. The mask is a binary
string where each bit, mi, tells the ISP if the region IRi must be sent to the FB regardless
of the similarity with previous regions. If the application knows that a region will likely
contain important information, it may conservatively decide to recompute it irrespective of
the similarity test. Moreover, masking all the regions implies that the frontend operates un-
der baseline conditions, transmitting all regions to the FB. Deactivating δLTA functionality
proves beneficial in conservative situations or where backward compatibility is necessary.

This masking mechanism can be leveraged by drawing insights from the particular
visual application. For example, the bounding boxes of objects detected by CNN models
exhibit spatial locality in consecutive frames. If the model detected a pedestrian in a frame,
it would likely be in the same image region in the next frame. The backend can exploit this
mechanism by masking the regions where objects were detected in the precedent frames to
force the frontend to send these regions to the FB.

Likewise, in our case study, ORB features in a frame are expected to be in nearby
positions in the next frame. Since these features determine the final outcome of the algorithm,
the backend could decide to mask the regions that contain a large number of features to force
their computation while using a more aggressive threshold for the remaining ones to achieve
more significant savings without impacting accuracy.

6.4 Experimental Results

This section evaluates the effectiveness and efficiency of δLTA, comparing it against
the state-of-the-art SC mechanisms, detailed in Subsection 1.3.5 (i.e. Deepmon [69]). We
use the ARM Cortex A72, described in Chapter 3, as our baseline for these comparisons.
The assessment involves three versions of our localization system:

• Baseline: Original version of ORB-SLAM compiled for ARM.

• Software Caching (SC): A modified ORB-SLAM version supporting a SC mecha-
nism that computes BRIEF signatures of image regions and reuses previously cached
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ORB image features based on the similarity of the regions. This mechanism performs
cache lookups on the backend CPU, and hence, it needs to read all the image regions
from the main memory.

• δLTA: A modified version of ORB-SLAM that incorporates the δLTA camera interface.
This modification enables the reuse of computations from previously processed similar
regions, avoiding access to such regions and eliminating software cache lookups.

In our localization experiments, we utilize a static threshold established before execu-
tion. We have adapted ORB-SLAM to turn off the SC and δLTA during system initialization,
relocalization, or tracking loss. Furthermore, we conservatively mask regions that contained
at least one feature in the preceding frame.

The terms SC-TH and δLTA-TH denote the use of the SC and δLTA schemes, re-
spectively, with a specified threshold value (TH).

6.4.1 Region Coverage and Accuracy Analysis

Figure 6.9a presents the average percentage of regions our method deems similar
while the localization application processes the KITTI dataset. The lower the threshold, the
higher the percentage of similar regions. This increased region coverage not only enhances
the system’s efficiency but also enables it to process more relevant data in real time.

On the other hand, it is crucial to maintain the accuracy of the application. We
assessed the localization accuracy compared to the Baseline using the APE (Absolute Pose
Error). APE is a key performance metric for localization algorithms, measuring the difference
between the ground truth pose and the estimated pose at each time step. High localization
accuracy is essential, particularly for AD systems that require centimeter-level precision.
Consequently, we report the maximum APE as our central accuracy metric since a single
incorrect critical estimation can significantly impact the user experience. Figure 6.9b presents
all KITTI sequences’ maximum APE. We can see that our method introduces no error for
threshold values up to 0.7. For 0.7, there are no errors except for sequence 02, which incurs
a minor error of half a centimeter in the worst case. Higher thresholds begin to incur some
non-negligible errors, so we conclude that 0.7 is the most appropriate threshold and is the
one adopted by our experiments unless otherwise indicated.
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Figure 6.9: (6.9a) Percentage of similar regions. (6.9b) Maximum Absolute Pose Error
(APE) for different thresholds.

6.4.2 Latency Analysis

To evaluate the performance of our proposed solution, we examine the end-to-end
latency and the 99th percentile tail latency of the CV pipeline, excluding the image sensor.
Tail latency is paramount in the context of AD systems since they have extreme constraints
regarding response time. Figure 6.10a illustrates the normalized average latency, comparing
the Baseline, SC, and δLTA. Figure 6.10b depicts the tail latency. To measure the overheads
of the different approaches, we also evaluate both δLTA and SC with a threshold of 1,
representing a scenario where minimal region reuse occurs (approximately 0.53%, when the
camera stops). In this case, the benefits offered by these schemes are negligible.

Our experiments led to several conclusions. SC’s benefits are minor in average latency
and practically null in tail latency when not harming it (SC-1, 0.9, and 0.8). The overhead
of cache maintenance and lookups offsets the reuse benefits, leading to a negative impact
on the worst-case response of the system, which in turn can introduce safety concerns in
mission-critical scenarios such as AD.

On the other hand, δLTA introduces no overhead since other ISP tasks entirely hide its
latency. Our proposal greatly outperforms SC mechanisms in both average and tail latency
reduction. It achieves an average latency reduction of 15.22% and a tail latency reduction of
7.2% over the Baseline, as well as an average latency reduction of 9.15% and a tail latency
reduction of 7% over SC.
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Figure 6.10: Comparison of Normalized Latencies (6.10a), Normalized Tail Latencies (6.10b),
and Normalized Energy (6.10c) for Baseline, Software Caching (SC), and δLTA.
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Figure 6.11: (6.11a) Percentage of region coverage for different camera rates. (6.11b) Amount
of computations required when increasing frame rate.

6.4.3 Energy Analysis

Figure 6.10c compares energy consumption among the Baseline, SC, and δLTA con-
figurations. δLTA achieves a 17% reduction in energy consumption compared to the Baseline
and a 11% reduction compared to the SC scheme. These results emphasize the advantages
of decoupling camera sampling from processing. The additional energy savings of δLTA
come from fewer ISP and CPU FB accesses and a more energy-efficient implementation of
similarity detection.

6.4.4 Frame Rate Scaling Analysis

In this section, we examine a central advantage of δLTA when processing higher
camera frame rates, something to expect in future systems. Figure 6.11a illustrates how
frame-to-frame similarity in a given scene increases as the frame rate ascends (without mask-
ing regions). Increasing the frame rate reduces the time between samples, leading to fewer
changes and, thus, more similarity.

We study the backend workload response of our proposal when scaling up the frame
rate and comparing it to the Baseline. We assume ideal conditions, meaning no ISP, main
memory, or backend CPU bottlenecks, allowing the system to process arbitrary amounts of
pixels. Figure 6.11b shows the results of this sensitivity experiment.

In the Baseline system without δLTA, the backend must access all image pixels, result-
ing in an increased workload as the camera frame rate grows (see blue line in Figure 6.11b).
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While a SC mechanism can assist the system in skipping some computations to exploit the
similarity increase, it does not eliminate the need for processing the images. In more realis-
tic scenarios, the inherent overhead of the SC would eventually become dominant, hindering
the system’s ability to function and even resolve SC hits in real time. Thus, the Baseline
backend workload depends on the camera frame rate, and it not only constrains the system’s
real-time responsiveness but also misses potential opportunities for energy savings.

In contrast, the δLTA-equipped system discards redundant image regions based on
similarity, which for a given scene becomes more frequent as the frame rate increases. Beyond
a certain point, more samples do not provide more relevant information about the scene;
therefore, the number of distinct regions the backend needs to process eventually stagnates
(see green line in Figure 6.11b). As demonstrated, our proposal enables CV SoC to break the
backend workload dependency from camera sampling, allowing it to adjust the processing
rate based on the amount of information in the captured scene.

6.4.5 Area and Power Analysis

We assess the area and power costs of δLTA using the approach described in Sec-
tion 3.4, considering that the δLTA unit supports up to Full HD resolution (standard nowa-
days).

δLTA introduces a minor area overhead of 0.122mm2 due to the ISP augmentations.
The main area overheads come from the ∼64KB for the Signature Buffer to store BRIEF
descriptors and the ∼60KB for the 2D line buffer. This area overhead is negligible compared
to a typical SoC area, such as the 100mm2 of a Mediatek A72 cluster [105], the 88mm2 of
Apple A14 [2], or the 350mm2 of Nvidia Xavier[117]. δLTA dissipates 50mW mainly due to
the 2D Line Buffer that needs to read and write several pixels during ISP processing.

6.5 Conclusions

In this chapter, we have presented δLTA (δont’t Look Twice, it’s Alright), a novel
architecture that decouples the camera frame rate from the backend processing rate by
augmenting the camera with the ability to identify redundant image regions and notify
the backend of the specific image areas that exhibit substantial changes compared to the
preceding ones. This new frontend capability allows the application to reuse previously
computed results for the redundant regions.
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Our evaluation shows that δLTA can significantly reduce the data sent downstream
while maintaining high accuracy. Our approach reduces the application latency by 15.22%
and its energy consumption by 17%, significantly improving the performance of CV pipelines
even in worst-case scenarios. We also show that δLTA enables systems to process at higher
sampling frame rates by focusing solely on processing the valuable visual information, which
enhances general responsiveness. Consequently, solutions like δLTA are notably promising for
emerging critical applications such as AD (Autonomous Driving) or XR (Extended Reality).
Finally, our work also exemplifies the potential for optimizations in modern vision pipelines,
including the ISP, when carefully considering its holistic end-to-end operation perspective.
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7
IRIS

This chapter presents IRIS (Image Region ISP-Software Prioritization), our second
contribution targetting inter-stage CV pipeline collaboration. IRIS leverages byproducts
already generated and currently discarded in the ISP (Image Signal Processor) to forge a
metric useful to detect relevant image regions, optimizing available computation resources
accordingly.

7.1 Unleashing ISP-Software Cooperation

We make three observations regarding modern CV SoCs:

1. The ISP is a highly efficient and specialized component that performs several funda-
mental image processing operations whose intermediate results it routinely discards
after processing each frame coming from the camera.

2. The backend operates without prior knowledge of the image, and it often requires
processing the whole image in a predetermined order (e.g., raster-scan) to either pre-
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process the image to detect the most distinctive image regions or directly post-process
it to generate the application’s high-level semantic outcome. However, not all regions
in the captured images contain relevant information.

3. The frontend and backend operations are isolated since these two SoC (System-on-a-
Chip) components have no synergistic collaborations between their image manipulation
tasks.

We propose to unleash ISP-software collaboration through the use of our novel pro-
posal IRIS. IRIS enables the frontend to expose a priority map of the image regions based on
their prominence, using already computed operations along the ISP pipeline. The backend
can adopt an iterative or incremental image processing approach where the first iterations
of the algorithms begin processing the most salient regions, yielding relevant insights before
the baseline system. IRIS approach potentially reduces latency and significantly cuts energy
consumption by sidestepping the non-essential regions (e.g., the sky or the road in AV).

Given that our optimization focus is non-functional—targeting latency and energy
reductions with minimal application accuracy impact— it is imperative for our IRIS SoC
augmentation design to avoid critical latency overheads, which could dramatically impact
real-time applications. We constrain our design to only leveraging existing imaging compu-
tations of modern ISPs and solely augmenting them with lightweight extensions to account
for each region’s metric.

Modern ISP pipelines implement multiple image enhancement algorithms. We focus
on two of them, namely, edge enhancement and motion estimation. Edge enhancement
improves the perceived sharpness of the final image by accentuating the acutance around
the image edges, which implies that the ISP implements edge detection capabilities. Motion
estimation determines how pixels move between consecutive frames by associating a motion
vector between each pixel or block of pixels with its past position. High-end ISPs use
these motion vectors at various stages, such as TD (Temporal Denoising) [80] or video
stabilization [103, 125, 174].

Our ISP augmentation divides the image into equally sized regions, forming a grid.
It computes an importance metric for each region to form a PPM (Priority Processing Map)
that it exposes to the rest of the SoC as new metadata in the framebuffer. ThePPM combines
the information from the EDM (Edge Density Map) and the MM (Motion Map). IRIS
implementation assigns a score to each cell based on its edge density to form the EDM. For
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the MM, it calculates each region’s motion vector magnitude. The backend then consumes
this information to adjust its processing order, ensuring prompt processing of the more salient
critical regions. Our evaluations indicate that while software-only-based solutions introduce
significant overheads, our IRIS design seamlessly integrates with the ISP, further amortizing
its cost while guaranteeing minor ISP latency overhead. For a 1080p frame, the newPPM
metadata occupies around 8KB, which is relatively small compared with the 6MB size of the
frame.

IRIS provides a flexiblePPM calculation by combining the EDM and MM in a manner
that the backend can control to suit the vision application’s needs best. Generally, image-
processing applications benefit from prioritizing regions with higher fundamental edge fea-
tures. However, different applications and scenarios profit differently from motion exploita-
tion. For example, suppose the camera is static, such as in video surveillance. In that case,
motion is a strong indicator of moving objects, and the CV applications can leverage MM
to accelerate object detection and tracking. Other applications would benefit from ignoring
moving areas and focusing only on stationary ones, such as localization and mapping [145,
172, 5]. If the camera is moving, common in AD or AR, the perceived relative motion ac-
counts partly for the camera’s movement, and due to the parallax effect, closer scene areas
move faster than farther ones. An agent configuring our novel ISP to prioritize regions with
more motion would benefit from the early processing of close scene areas, which can benefit
collision avoidance or localization.

7.2 Implementation

This section presents IRIS, our novel solution to unleash ISP-software cooperation and
optimize existing CV systems. We discuss the proposal’s core concept and implementation
in modern vision frontends (ISP) and describe how to harness its potential using co-designed
software on the backend CPU.

7.2.1 General Overview

This work highlights a fundamental limitation in modern CV systems: the backend
typically indiscriminately processes all image areas, lacking the context that other IP com-
ponents of the vision pipeline, such as ISPs, might offer. This context could provide valuable
information on which regions to prioritize computational resources and where to downscale
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Figure 7.1: General overview of the proposed vision pipeline.

efforts, such as low-detail background zones or the sky. The backend could pre-process an
entire image and produce equivalent or even more advanced contextual information to pri-
oritize regions of the image. However, this process would come with a high cost in real-time
applications, and such pre-processing costs may outweigh its potential benefits.

IRIS overcomes these challenges by repurposing specific on-the-flight ISP image anal-
yses to compute and expose new image region relevance information. Our proposal allows the
backend to reutilize ISP internal computations through ISP-software co-design, harnessing
application-specific insights to exploit these new SoC-level synergies. Furthermore, as future
ISPs evolve and integrate more sophisticated features, such as AI capabilities, we expect
IRIS’s collaborative approach to become vital for efficiency.

The backend of a system equipped with IRIS can adopt incremental or iterative image
processing mechanisms cost-effectively by capitalizing on the new ISP-provided information
since it does not require new computations to analyze the image. Critically, our hardware
augmentations of the ISP do not increment its latency, incurring negligible end-to-end over-
heads even in the worst-case scenario.

Overall, the IRIS scheme enhances real-time CV processing efficiency, reducing inef-
fective backend framebuffer memory accesses and computations while amortizing further the
cost of standard SoC components within the ISP. Figure 7.1 depicts the new extensions and
frontend interface parameters we will explain in the subsequent sections.
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(a) Original KITTI image. (b) Edge Density Map (EDM).

(c) Motion Map (MM). (d) Priority Processing Map (PPM).
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Figure 7.2: Visualization of IRIS prioritization maps. (7.2a) The foundational KITTI image.
(7.2b) The EDM highlights areas with dense attributes such as building details and cars.
(7.2c) The MM, illustrating forward camera motion, approximates scene depth. (7.2d) The
PPM combines EDM and MM, prioritizing regions with features and closer to the camera
(compared with the EDM).

7.2.2 Augmenting the Vision Frontend

We propose a lightweight ISP augmentation to empower the frontend with the ability
to divide the incoming images into a grid of equally sized regions, collect early fundamental
visual insights from internal ISP pipeline stages for each region of the grid to form the
Priority Processing Map (PPM), and share this information to the rest of the SoC as new
metadata in the framebuffer.

The PPM is a key feature of our design, effectively merging crucial image information
from spatial and temporal domains. From the spatial domain, we use edge information to
compute an Edge Density Map (EDM). Edges define shapes and objects, providing structure
and making them critical for recognizing regions of interest in the images. From the temporal
domain, we use motion information to calculate a Motion Map (MM). Motion captures
change and dynamics in the environment. Combining these maps in the PPM enriches
the saliency scoring mechanism to reflect each particular image region’s distinctiveness and
importance.

Our design computes the EDM and MM by reusing the byproducts from the EE
(Edge Enhancement) and ME (Motion Estimation) performed within the TD stages of the
ISP, which we introduced in Subsection 2.1.2. IRIS also employs the existing ISP SoC-level
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communication mechanisms to expose the PPM in the framebuffer. These decisions provide
high flexibility for potential use cases of the PPM in the backend with minimal costs.

Figure 7.2 provides an example of a camera image featuring a car moving through a
city (Figure 7.2b) alongside the maps generated by our approach, which we describe below.

Edge Density Map (EDM)

The EDM is a representation that assigns a score to each region in an image based on
its edge density. Our technique calculates the edge density in the ISP as the number of edges
per unit of area in a specific image region normalized by the maximum possible density.

Edges are fundamental, well-known image features. Discretizing the image into re-
gions to assess its edge density allows us to inform the backend about the distinctiveness of
image zones with a potential abundance of objects, details, and regions of interest in a prac-
tical and manageable form. Figure 7.2b depicts a visualization of the EDM of the image in
Figure 7.2a. In this example, the EDM highlights the center regions as the most distinctive
ones, corresponding with several cars, trees, and details of the surrounding buildings. On
the other hand, the regions of the sky, some parts of the road, or textureless walls have the
lowest scores.

Motion Map (MM)

The MM is a representation that assigns a score to each region in an image based
on its perceived 2D motion. Our technique calculates the perceived motion of an image
region by computing the magnitude of the associated Motion Vector (MV) generated in the
ME stage of the ISP. We opportunistically design the MM grid aligned with the macroblock
structure of the Block Matching algorithm (discussed in Subsection 2.1.2) so that there is a
unique MV at the center of each MM region.

Measuring perceived 2D motion is crucial in identifying relevant image regions in
dynamic scenes. In surveillance systems with a static camera, the perceived motion helps
recognize the regions of interest that require careful processing. However, when the camera is
moving, as in AD and AR, all the components of the scene, including static areas, appear to
be in motion relative to the camera. This motion is more pronounced for objects closer to the
camera than those further away due to the parallax effect, allowing the MM to approximate
each image region’s relative depth. Figure 7.2c provides a visualization of the MM of the
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image in Figure 7.2a. In this example, the car with the onboard camera capturing the
original image is moving forward. The MM captures a basic structure of the scene, with
higher scores assigned to the areas closer to the car.

Priority Processing Map (PPM)

We formulate the PPM to integrate salient image characteristics from both the EDM
and the MM in an image divided into an N ×M grid of regions. The following equation
describes how to calculate the PPM score for the (i, j) grid region:

PPMij = EDMij + α× EDMij ×MMij (7.1)

Here, EDMij and MMij denote the edge density and motion scores for the region
(i, j), respectively, while α is a scaling factor determining the relative negative, null, or
positive influence of the motion information. Our design encodes each PPMij in a single
byte, resulting in a metadata size of only 8KB for a 1080p frame, which is small compared
to the frame size of 6MB.

Figure 7.2d provides a visualization of the PPM of the image in Figure 7.2a using
α = 1. In this example, EDM accentuates areas with rich and distinct spatial information.
In contrast, the MM emphasizes regions nearer to the camera, distributing high PPM scores
across the image.

7.2.3 Architectural Support

In this subsection, we describe the architecture augmentations to support the gen-
eration of the PPM in the new IRIS frontend. As shown in Figure 7.1, the new hardware
includes an IRIS unit to process the internal edge and motion image information already
generated by current ISPs and forge the PPM. Every time the ISP transfers a frame, it also
updates the PPM metadata to provide the backend with the priority score of each region in
the Framebuffer (FB).
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ISP Pipeline Integration

We consider a baseline ISP that resembles literature [64, 20] and commercially avail-
able solutions [106, 9, 8] with support for TD and ME. Figure 7.3 illustrates the described
standard ISP pipeline and the integration of the IRIS unit running in a parallel datapath.
The ISP sequencer orchestrates the ISP stages to process the camera sensor’s raw data, gen-
erate the RGB and YUV color spaces (demosaicing), and apply several image enhancements
(e.g., white-balancing and tone mapping). The generated image is temporarily stored in the
DMA buffer to smooth data flow within the ISP pipeline before the DMA controller transfers
it to the main memory. The new IRIS unit interfaces with the rest of the ISP by accessing
the EE edge mask, the MVs buffer, the alpha parameter from the framebuffer, and storing
the PPM scores to the ISP’s DMA buffer.

The standard EE stage in modern ISPs employs unsharp masking, as explained in
more detail in Subsection 2.1.2. In hardware, this method involves operating a 2D line
buffer to process the raster-scan stream of image pixels from the previous stage and generate
a Gaussian-filtered version of it. This filtered image is subtracted from the unfiltered one to
create the edge mask. We modified the EE stage to expose this mask directly to the IRIS
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time.

unit.

The ISP’s ME stage has a specialized on-chip buffer to store MVs. We propose adding
a read port to support MV requests from the IRIS unit. Furthermore, we modeled a cycle-
accurate RTL hardware description of the IRIS unit and its integration with the EE and
ME to demonstrate that the new IRIS processing overlaps with the ISP pipeline and never
stalls it.

IRIS Unit

A block diagram of the IRIS unit is shown in Figure 7.4. It features a simple microar-
chitecture to keep track of each image region’s EDM and MM scores. The unit only requires
synchronization to correctly account for each EDM region’s corresponding edge mask values.
Our design features a Row Accumulator Register that aggregates the edge values generated
in the EE stage to compute the sum of each row of each region of the EDM. The Edge Density
Table temporarily holds the partial EDM values for each region, allowing the accumulation
of the region edge row sums. This accumulation process is repeated for each image row until
completion, after which the process restarts for the next row of EDM regions.
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In the last image row required to compute the EDM, the unit generates a final nor-
malized EDM score every l cycles, where l is the length of the side of the image regions in
which EDM divides the image. During these cycles, the unit retrieves the corresponding mo-
tion vector from the TD stage, calculates its magnitude, and computes the final PPM score.
The unit transfers this score to an output buffer and, ultimately, to the DMA infrastructure
through the internal ISP interconnect.

7.2.4 Augmenting the Vision Backend

The vision backend collaborates with the new IRIS frontend by accessing the PPM
metadata and adjusting each region’s perceived motion’s contribution through the α parame-
ter. Our design provides fundamental image information in real-time using a generic format,
a map ranking image regions, that makes no assumptions about the application. Therefore,
the backend is responsible for exploiting more specialized insights from the application to
adapt its behavior based on it.

A viable approach to leverage IRIS scheme consists of tailoring the vision application
to perform iterative image processing where the algorithm processes regions in steps based
on their distinctiveness, as the PPM quantifies. This approach enables the backend to decide
at what step to stop based on criteria such as the onset of diminishing returns. We illustrate
the benefits of such an approach in a crucial emerging application, a state-of-the-art visual
localization technique called ORB-SLAM [23, 113] that typically runs on CPUs [50].

We modified the ORB-SLAM codebase to include an iterative ORB Feature Ex-
traction (FE) algorithm that does not require processing all the image regions, avoiding
processing the ineffectual and the least significant ones. As a result, the backend can sig-
nificantly reduce computation, memory, and energy requirements while providing the same
accuracy. The upcoming subsections will focus on reformulating the FE (Feature Extraction
and Matching) stage, a critical bottleneck in localization algorithms, in an iterative form.

Harnessing the PPM Information

This section elaborates on the localization algorithm-specific insights to exploit the
PPM information. We continue to address the primary bottlenecks in our localization en-
gine, focusing specifically on optimizing feature extraction and matching processes. We
substantiate our discussion with more empirical evidence in Section 7.3.
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Figure 7.5: Analysis of the FE stage and the characteristics of our iterative solution to
perform it.

Although only four correspondences are mathematically necessary for uniquely deter-
mining the camera’s pose, practical systems seek a more significant number to counteract
the potential inaccuracies and noise of the observed 2D positions of the extracted features on
the image. ORB-SLAM extracts thousands of ORB features and selects the most prominent
ones (up to 2000 for the images of KITTI) to narrow down the computational complexity
required in later processing stages. Our observations reveal that most ORB features con-
centrate on a small range of image regions (80% of features cluster in just 35% of regions).
Thus, prioritizing them offers the greatest return on computational investment. As discussed
in the Introduction Chapter, considerable image regions lack features (around 40% on av-
erage), rendering them ineffective for localization. Figure 1.3, previously introduced, shows
a histogram that details the frequency distribution of regions based on the number of ORB
features extracted from each KITTI sequence.

Another vital insight into pose estimation is that points closer to the camera play
a crucial role for two reasons. First, the regions closer to the camera capture objects and
scene attributes with greater scale and details, improving feature extraction and matching
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robustness and accuracy. Second, due to the parallax effect, scene areas close to the camera
exhibit more noticeable apparent motion, providing higher certainty in triangulating the
pose. Figure 7.5b shows the role of MM in favoring regions proximal to the camera. It
examines the average relative distance (depth) of detected ORB features to the camera
within the top 50% of regions ranked by the PPM for different values of α compared to the
case α = 0.

On the other hand, processing regions of images capturing dynamic and moving
objects unrelated to the static scene is unnecessary for localization purposes [145, 172, 5].
Besides, the localization algorithm naturally generates a trajectory prediction, implying that
the systems could infer camera movements, enabling it to discern, for instance, whether a car
is stationary, moving forward, or turning based on the video stream. We can leverage this
ability to adjust the system’s α value based on the mentioned application insights. Setting
α to 1 when the camera moves directs the MM to focus on proximal regions. In contrast,
when the camera is stationary, setting α to −1 de-prioritizes regions with dynamic objects
irrelevant to the static scene.

Moreover, we empirically evaluate the ability of the PPM metadata to rank image
regions consistently. Figure 7.5a illustrates the average number of features extracted per
region (y-axis) for each position of the PPM ranking (x-axis) on sequence 0 of the KITTI
benchmark, showing a clear global trend that correlates PPM with the application level
features.

In conclusion, the presented analyses demonstrated PPM’s effectiveness in precisely
estimating regions with a high density of ORB features and closer to the camera. We next
present the design of our iterative FE algorithm.

Iterative Feature Extraction

As detailed in Algorithm 1, our iterative algorithm processes regions in batches (for
instance, 5% in each iteration) based on their PPM scores. It extracts features from each
batch during each iteration and calculates the MFI (Marginal Feature Increase). The MFI
is the percentage increase in new features obtained in the most recent iteration. The pro-
grammer can establish two parameters: Nmin, the minimal conservative number of regions
to process, and TMFI , a threshold for each iteration MFI to indicate when further processing
yields diminishing returns and thus stops processing. Figure 7.5c shows the MFI progression
during the iterative processing of a typical frame. By setting an MFI threshold of 3% (
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Algorithm 1 Iterative Feature Extraction
1: Define Nmin, TMFI

2: Initialize Processed← ∅, LastFeatureCount← 0
3: while not all regions processed do
4: Selected ← Top 5% PPM regions from the unprocessed pool
5: Extract features from Selected regions
6: FeatureCount← Count of features in Selected
7: Processed← Processed ∪ Selected
8: if Processed > Nmin then
9: MFI ← FeatureCount−LastFeatureCount

LastFeatureCount

10: LastFeatureCount← FeatureCount
11: if MFI < TMFI then
12: Break
13: end if
14: end if
15: end while
16: Continue pose estimation with extracted features

TMFI = 1.03), the algorithm stops when an iteration adds fewer than 3% new features. In
the example, it ceases processing after 65% of the regions, successfully retrieving more than
90% of baseline-identical features.

The advantages of this strategy are twofold. First, the system can skip processing
areas with low information, typically with little to no significant features. Second, it enables
the system to strategically focus on processing the most informative from the rest of the
regions, stopping further processing based on a diminishing returns criterion. This criterion
acknowledges that while processing each region incurs a consistent cost, the benefits, rep-
resented by the potential number of features in each region, increasingly decrease for areas
with lower PPM scores.

Figure 7.6 qualitatively illustrates the benefits of our approach (detailed quantitative
evaluation is provided in Section 7.3) by comparing the baseline approach where the system
processes every image region always, a software-only version where the backend generates an
equivalent PPM (MG box in the figure) to inform the iterative FE, and IRIS, where the ISP
provides this information. Our approach reduces computations and memory accesses to the
frame buffer, aiming to get the best accuracy for the computation resources spent processing
the image.
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Figure 7.6: Comparison of baseline, software-only, and IRIS (not at scale).

7.3 Experimental Results

This section evaluates the proposed ISP-software collaboration approach, contrasting
it with a purely software-based method that produces an analogous image region ranking.

In our study, we statically set the MFI threshold (TMFI) that guides the early termi-
nation of the iterative feature extraction algorithm while also ensuring processing a minimum
of 30% of image regions (Nmin). Additionally, we adjusted ORB-SLAM to fall back to the
baseline’s feature extraction during system initialization, relocalization, and tracking loss,
ensuring the system’s robustness.

We compare the performance, energy efficiency, and accuracy of three versions of this
application running in our baseline mobile ARM Cortex A72 CPU:

• Baseline: Original ORB-SLAM version optimized for ARM architecture.

• Software-only (SO): A modified version of ORB-SLAM that implements our iter-
ative feature extraction algorithm and pre-processes the entire image to generate an
equivalent PPM metric to guide it.

• IRIS: A enhanced version of ORB-SLAM that incorporates the IRIS frontend interface.
This version delegates the PPM generation to the ISP, which it produces at a minimal
cost by amortizing existing computations.

For clarity, we use the terms IRIS-TH and SO-TH to denote our IRIS scheme or its
software-only counterpart with a static MFI threshold (TMFI) value of TH, respectively. To

152



evaluate the performance and robustness of ORB-SLAM, we employed the entire suite of
sequences from the KITTI dataset, replicating the original assessment methodology used in
its validation [112].

7.3.1 Region and Feature Coverage Analyses

We conducted detailed analyses on image region and feature coverage to evaluate
the effectiveness of IRIS to capitalize on existing ISP computations to forge PPM’s new
metadata and rank distinct regions for our localization system. Our goal was to determine
the required region coverage to extract a specific fraction of features comparable to the
baseline and, conversely, the proportion of regions needed to process a target percentage of
identical features.

Figure 7.7a depicts how our ranking method (IRIS) identifies a certain percentage
of features identical to the baseline (x-axis) using an average percentage of regions (y-axis)
in comparison to random sampling (RAND) and a lower bound (MIN) across the entire
KITTI dataset. Random (RAND) sampling necessitates processing a proportion of regions
almost equal to the desired percentage of identical features. In contrast, IRIS PPM metadata
effectively identifies the most distinctive regions. For instance, to extract 80% of the original
features, our method requires processing only about 55% of the image regions on average.
Similarly, to recover 90% of the features, it needs to process just 69% of the regions. We
computed the lower bound (MIN), extracting all the features from the frame, sorting the
regions by feature count, and calculating the minimum regions required to attain each target
feature percentage. IRIS showcases its effectiveness in selective region processing as it is close
to the lower bound, only requiring processing 20% extra regions to obtain 80% of features
compared with the lower bound.

We now focus on the coverage achieved by our proposed iterative feature extraction
method elaborated in Section 7.2.4. This method, one of the potential options to harness IRIS
metadata, selectively bypasses ineffective regions and empowers the programmer to make in-
formed decisions, balancing computational costs with approximate results. It leverages the
insights gained from PPM metadata and its application-specific properties demonstrated in
the preceding figure. Figure 7.7b illustrates the average percentage of processed regions and
the recovered identical features for a subset of representative MFI thresholds. Notably, as the
MFI threshold increases, resulting in more aggressive region reduction, feature coverage de-
creases slower. Lower IRIS-ranked regions typically contain fewer features, underscoring the
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Figure 7.7: Sensitivity analyses of image region and feature coverage. Figure 7.7a contrasts
IRIS with random sampling and the ideal minimum. Figure 7.7b evaluates their response
for different values of MFI threshold during the iterative FE execution.

efficacy of our technique in prioritizing distinctive regions rich in features and deprioritizing
those with lower feature counts.

7.3.2 Accuracy Analysis

Our analysis of localization accuracy against the baseline utilizes the Absolute Pose
Error (APE), a crucial metric for assessing localization algorithms. APE quantifies the dis-
crepancy between the ground truth pose and the estimated pose at each timestep. High
localization accuracy is vital, especially for AD systems requiring centimeter-level precision
and only using onboard sensors. This precision surpasses that of external commercial tech-
nologies like GPS. Therefore, we adopted a conservative methodology, employing median
and maximum APE metrics for our accuracy evaluation. Accounting for the maximum APE
ensures we cover the worst-case scenario on the dataset.

Figure 7.8 displays the maximum and median APE across the evaluated KITTI se-
quences. Our approach maintains an error below 4mm for MFI thresholds within the 0 to
3% range. As thresholds increase beyond this range, noticeable errors emerge, suggesting
the need for advanced methods like dynamic MFI thresholding and the exploitation of more
specific insights. Consequently, we determined that an MFI threshold of 3% is optimal for
our experiments, and it has been adopted as the standard unless specified otherwise.
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7.3.3 Latency Analysis

Our main performance evaluation of our proposed solution focuses on tail and end-to-
end latency within the CV pipeline, excluding the image sensor. Tail latency is particularly
critical in CV systems used in AD, where response times are subject to stringent constraints.
Figure 7.9a presents the normalized average latency, comparing our method, IRIS, with the
baseline and SO configurations. Moreover, Figure 7.9b showcases the 99th tail latency. To
evaluate the overheads of the different approaches, we also assess IRIS and SO using an MFI
threshold of 0%. This scenario is functionally equivalent to the baseline, with the additional
cost of generating the ranking.

The results show that the SO’s benefits are minor in average latency and practically
null in tail latency when not harming it (SO-0.1%, 1%, and 3%). The overhead of computing
the PPM for every frame offsets the potential benefits, forcing the programmer to utilize an
aggressive MFI threshold to realize any benefit. This finding may explain why experts
rarely implement such software-only optimizations in vision algorithms like ORB-SLAM and
motivates the adoption of our novel CV architecture.

Conversely, IRIS significantly surpasses the SO implementation in reducing average
and tail latency. It reduces the average latency by 20% and in tail latency by 9% compared to
the baseline. Moreover, it reduces average latency by 16% and tail latency by 10% relative
to SO. IRIS surpasses its contenders since it adds minimal overhead even in the worst-
case scenario, mainly for reading the PPM (a few KBs) and the control to implement the
iterative feature extraction. Standard, intermediate ISP computations generate the PPM,
and concurrent ISP tasks effectively hide its processing time. Consequently, IRIS enables
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Figure 7.9: Comparison of Normalized Latencies (7.9a), Normalized Tail Latencies (7.9b),
and Normalized Energy (7.9c) for Baseline, Software-Only (SO), and IRIS.
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strategies for selectively processing image regions, greatly benefiting real-time critical CV
systems such as the one evaluated in this work.

7.3.4 Energy Analysis

Figure 7.9c illustrates the energy consumption comparison among the Baseline, SO,
and IRIS configurations. IRIS demonstrates a significant reduction in energy use, achieving
16% less than the Baseline and 10% less than the SO scheme. These results emphasize
the advantages of unleashing the synergies between SoC components in the vision pipeline.
The additional energy savings of IRIS come from fewer CPU framebuffer accesses and the
minimal cost of computing the PPM that IRIS generates by repurposing the existing internal
byproducts of an already highly specialized energy-efficient unit for image processing, the
ISP.

7.3.5 Area and Power Analysis

We assess the area and power costs of IRIS using the approach described in Section 3.4,
considering that the IRIS unit supports up to Full HD resolution, a current standard. IRIS
incurs a minimal area overhead of 0.017mm2, primarily due to the new read port to the MVs
(Motion Vectors) on-chip buffer and the enhancements in the ISP. This increase in area is
insignificant when compared to the areas of typical SoCs, such as the 100mm2 of a Mediatek
A72 cluster, the 88mm2 of the Apple A14, or the 350mm2 of Nvidia Xavier. Additionally,
IRIS dissipates 6.2mW due to the new SRAM accesses and the final PPM metric computation
that requires few operations to obtain the motion vector gradients and edge density.

7.4 Conclusions

Continuous Vision systems face significant challenges regarding latency and energy
consumption. To overcome them, we propose IRIS (Image Region ISP-Software Prioritiza-
tion), a novel co-designed CV architecture that empowers its frontend to expose two critical
fundamental image metrics internally generated in modern ISPs for its ordinary processing:
edge density and motion intensity. Our contribution opens the door to more efficient backend
processing by actively leveraging the new information unleashed by the IRIS frontend.
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As a case study, we demonstrate how to harness the new IRIS image ranking metadata
to prioritize the processing of image regions through an iterative feature extraction algorithm.
Our evaluation shows that our proposal can significantly reduce backend computations while
maintaining high accuracy with simple, lightweight hardware augmentations. Consequently,
IRIS’s efficiency and flexibility make it a significant leap forward in CV SoC design.
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8
Conclusions

This chapter summarizes the main contributions of this thesis and outlines some
promising open research areas for future work.

8.1 Conclusions

In this thesis, we have effectively addressed the critical challenges of latency and
energy consumption in mobile CV (Continuous Vision) systems, presenting a suite of com-
prehensive optimizations that advance the boundaries of performance and energy efficiency
in this domain. Our journey began with a thorough analysis of the visual localization en-
gine, where we pinpointed feature extraction as the primary bottleneck. Addressing this, we
introduced LOCATOR (Low-power ORB aCcelerator for AuTonomOus caRs), an innova-
tive hardware accelerator that significantly enhances the detection and processing of ORB
(Oriented FAST and Rotated BRIEF) features, outperforming existing energy efficiency and
speed solutions.

Building on this, we recognized the need for more versatile and programmable so-

159



lutions in mobile CV systems. Our response was SLIDEX (SLIDing window EXtension
for image processing), a novel vector ISA (Instruction Set Architecture) extension designed
to optimize SWP (Sliding Window Processing). SLIDEX dramatically increases DLP (Data
Level Parallelism) and reduces data movement, showcasing remarkable improvements in vital
image processing tasks.

We then broadened our perspective to SoC-level optimizations with δLTA (δont’t
Look Twice, it’s Alright), a strategy that capitalizes on the inherent properties of vision
input streams to reduce redundant processing. By enabling the frontend’s ISP (Image Signal
Processor) to selectively filter ineffectual regions and the backend to focus on distinct image
regions, δLTA considerably reduces unnecessary computations and memory accesses, leading
to significant latency and energy efficiency gains.

Finally, we presented IRIS (Image Region ISP-Software Prioritization), a novel tech-
nique that leverages computation byproducts from the frontend’s ISP to optimize CV pro-
cessing. By prioritizing image regions based on their detail and motion, IRIS enables more
efficient backend processing and avoids processing unimportant parts of the images.

8.2 Open-Research Areas

Building on the insights gained from this thesis, we spotlight three forward-looking
research areas that promise to elevate the capabilities and efficiency of mobile CV systems
through architectural innovations and advanced computational strategies:

1. Leveraging Heterogeneous Sensory Inputs: Investigating architectures that ex-
ploit heterogeneous properties—such as multi-camera systems, multi-resolution, multi-
frame rate capabilities, and multi-modal sensors, including event cameras—represents
an interesting research direction. Event cameras, which capture pixel-level changes in
intensity instead of static frames, offer a dynamic and efficient way to process visual
information. By integrating these with traditional sensors in a multi-modal setup,
systems can harness the unique advantages of each sensor type, optimizing compu-
tational demands, accuracy, and energy efficiency. Research in this area could focus
on developing algorithms and hardware that dynamically balance and fuse data from
these diverse sources, maximizing the system’s performance while minimizing energy
consumption.
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2. Advanced Frontend and Backend Collaboration: Another promising path lies in
further exploring innovative collaboration models between the frontend and backend,
particularly utilizing advanced machine learning techniques. This direction involves
enhancing the frontend’s capability to conduct more advanced preprocessing and in-
terpretation tasks, significantly offloading the computational burden from the backend.
Employing machine learning techniques to process and transmit higher-level semantic
information can streamline the overall data processing pipeline, reducing latency and
energy usage while maintaining or even enhancing system performance.

3. In-Sensor Computing: A transformative approach involves moving computations
closer to, or directly within, the sensor itself, an advancement known as in-sensor com-
puting. This method addresses and alleviates the communication bottleneck between
sensors and processing units. By integrating processing capabilities directly within the
sensor, data can be preprocessed at the source, dramatically reducing the volume of
data that needs to be transmitted and processed downstream. This shift promises sig-
nificant reductions in energy consumption and latency and opens up new possibilities
for real-time processing and responsiveness in mobile CV applications.
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