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RESUM 

 

Títol:  El fenotip neurocognitiu de l'excés de pes en adolescents i adults joves: factors 

biològics, genètics i psicosocials 

Introducció: L'excés de pes és una condició de salut complexa que s'associa amb el 

desenvolupament de (multi)morbiditat. El fet que els adolescents amb excés de pes tinguin 

cinc vegades més risc de mantenir aquesta condició en l'edat adulta posa de manifest la 

necessitat d'estudiar quins factors afavoreixen la seva aparició i cronicitat. El fenotip 

neurocognitiu de l'excés de pes es podria referir a aquelles característiques psicològiques i 

cerebrals que representen una vulnerabilitat per adoptar comportaments que promouen 

l'excés de pes. Estudiar els correlats d'aquest fenotip neurocognitiu ajudaria a identificar 

individus amb risc de desenvolupar excés de pes i proposar intervencions específiques. 

Hipòtesis: Aquesta tesi aborda l'excés de pes més enllà de l'adipositat i se centra en factors 

biològics, genètics i psicosocials per estudiar el fenotip neurocognitiu de l'excés de pes en 

adolescents i adults joves. Així, aquesta tesi presenta tres hipòtesis. En primer lloc, l’excés de 

pes i  l’al·lel A del gen associat a la massa grassa i l’obesitat rs99396309 podrien estar associats 

amb una connectivitat estructural més baixa a la xarxa de recompensa. En segon lloc, els 

factors cardiometabòlics habitualment presents en l'excés de pes podrien estar associats a 

una major impulsivitat i alteracions en la microestructura de la substància blanca. En tercer 

lloc, l'estrès, ja sigui precedit per l'exposició a experiències adverses en la infància o subseguit 

per la càrrega alostàtica, podria estar associat a un pitjor funcionament executiu. 

Objectius: En el primer estudi es va investigar els patrons de connectivitat estructural de la 

xarxa de recompensa segons l'índex de massa corporal i el risc genètic d'obesitat avaluat per 

l’al·lel A del gen associat a la massa grassa i l’obesitat rs99396309. En el segon estudi es va 

avaluar l'associació entre factors cardiometabòlics, la impulsivitat i els canvis 

microestructurals en els tractes de substància blanca normalment associats amb l'excés de 

pes i la impulsivitat. En el tercer estudi es va estudiar si les funcions executives eren 

vulnerables a l'estrès fisiològic (càrrega alostàtica) i psicològic (experiències adverses en la 

infància). 

Mètodes: Al llarg de tres estudis originals, vam incloure adolescents i adults joves (de 10 a 

21 anys) amb i sense excés de pes. Es van sotmetre a una avaluació mèdica (antropometria, 

pressió arterial, extracció de sang, genètica) i neuropsicològica (funcions executives, 
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impulsivitat, exposició a experiències adverses en la infància), i a l’adquisició d’una 

ressonància magnètica cerebral. L'índex de càrrega alostàtica es va estimar amb biomarcadors 

que representen l'estrès fisiològic. Les anàlisis de neuroimatge es van basar en imatges per 

tensor de difusió, tant per avaluar la microestructura de la substància blanca com la 

connectivitat estructural. 

Resultats principals: En el primer estudi vam trobar una connectivitat estructural més baixa 

de la xarxa de recompensa en participants amb categories d'índex de massa corporal més 

altes, però no en aquells portadors de l’al·lel A del gen associat a la massa grassa i l'obesitat 

rs99396309. En una anàlisi exploratòria vam observar que la connectivitat estructural global 

estava positivament associada amb l’índex de massa corporal. En el segon estudi vam 

observar una relació inversa entre l'hemoglobina glicada i l'anisotropia fraccional al cíngol. A 

més, vam evidenciar que nivells més alts de triglicèrids estaven associats amb més errors de 

comissió al Conners’ Continuous Performance Test (CPT-II) i que la glucosa i la pressió arterial 

diastòlica es van associar amb puntuacions més altes a la subescala d’ingesta emocional del 

Three-Factor Eating Questionnaire R-18. En el tercer estudi, vam trobar que una exposició més 

elevada a experiències adverses en la infància, però no la càrrega alostàtica, estava associada 

amb un pitjor funcionament executiu.  

Conclusions: En adolescents i adults joves, els mecanismes pels quals l'excés de pes afecta 

la connectivitat estructural cerebral van més enllà del risc genètic d'obesitat. A més, factors 

cardiometabòlics de diferent naturalesa s'associen amb una impulsivitat més alta i una 

anisotropia fraccional més baixa en els tractes de substància blanca normalment relacionats 

amb l'excés de pes i la impulsivitat, cosa que suggereix que fins i tot a nivells preclínics, els 

factors cardiometabòlics són potencials biomarcadors del fenotip neurocognitiu de l'excés 

de pes. Finalment, l'estrès psicològic mesurat per l'exposició a experiències adverses en la 

infància, però no l'estrès fisiològic estimat per un índex de càrrega alostàtica, s'associa amb 

un pitjor funcionament executiu.  
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SUMMARY 

 

Title: The neurocognitive phenotype of excess weight in adolescents and young adults: 

biological, genetic, and psychosocial factors 

Introduction: Excess weight is a complex health condition that is associated with the 

development of (multi)morbidity. The fact that adolescents with excess weight have a five-

fold increased risk of maintaining this condition as adults highlights the need to study which 

factors favor its emergence and chronicity. The neurocognitive phenotype of excess weight 

could be referred to as the psychological and brain characteristics that represent a 

vulnerability to engage in behaviors that promote excess weight. Studying the correlates of 

this neurocognitive phenotype would help identify individuals at risk of developing excess 

weight and to propose specific interventions.  

Hypotheses: This thesis approaches excess weight beyond adiposity and targets biological, 

genetic, and psychosocial factors to study the neurocognitive phenotype of excess weight in 

adolescents and young adults. Consequently, the hypotheses of this thesis are threefold. First, 

excess weight and the A allele of the fat mass and obesity-related gene rs9939609 may be 

associated with lower structural connectivity in the reward network. Second, cardiometabolic 

factors usually present in excess weight may be associated with increased impulsivity and 

alterations in white matter microstructure. Third, stress, either led or followed by exposure 

to adverse childhood experiences or allostatic load, may be associated with poorer executive 

functioning. 

Objectives: In the first study, we aimed to investigate the structural connectivity patterns in 

the reward network according to body mass index and the genetic risk of obesity assessed by 

the A allele of the fat mass and obesity-related gene rs99396309. In the second study, we 

evaluated the association between cardiometabolic factors and both impulsivity and 

microstructural changes in white matter tracts typically associated with excess weight and 

impulsivity. In the third study, we examined whether executive functioning was vulnerable 

to physiological (allostatic load) and psychological stress (adverse childhood experiences). 

Methods: Along three original studies we included adolescents and young adults (aged 10-

21) with and without excess weight. They underwent a medical (i.e., anthropometry, blood 

pressure, blood draw, genetics) and neuropsychological (i.e., executive functions, impulsivity, 

exposure to adverse childhood experiences) evaluation, and a brain magnetic resonance 
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acquisition. The allostatic load index was estimated using biomarkers representing 

physiological stress. Neuroimaging analyses were based on diffusion tensor imaging to 

evaluate white matter microstructure and structural connectivity.  

Main results: In the first study, we found lower structural connectivity in the reward 

network in participants with higher body mass index categories, but not in those carriers of 

the A allele of the fat mass and obesity-related gene rs99396309. In an exploratory analysis 

we found that whole-brain structural connectivity was positively associated with body mass 

index. In our second study, we observed an inverse relationship between glycated 

hemoglobin and fractional anisotropy in the cingulum. We also reported that higher 

triglyceride levels were associated with higher commission errors in Conners’ Continuous 

Performance Test (CPT-II), and that glucose and diastolic blood pressure were associated 

with higher scores on the emotional eating subscale of the Three-Factor Eating 

Questionnaire R-18 8 (TFEQ-R18). In the third study, we found that higher exposure to 

adverse childhood experiences, but not to allostatic load, was associated with worse executive 

functioning.  

Conclusions: In adolescents and young adults, the mechanisms by which excess weight 

affects brain structural connectivity go beyond the genetic risk of obesity. Moreover, 

cardiometabolic factors of different nature are associated with higher impulsivity and lower 

fractional anisotropy in white matter tracts typically related to both excess weight and 

impulsivity, suggesting that even at preclinical levels, cardiometabolic factors are potential 

biomarkers for the neurocognitive phenotype of excess weight. Finally, psychological stress, 

measured by exposure to adverse childhood experiences but not physiological stress 

estimated by an allostatic load index, is associated with poorer executive functioning. 
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1.1. Excess weight as a public health concern 

Excess weight is a health condition defined as the excessive accumulation of body fat. The 

most commonly used anthropometric measure to classify excess weight is the body mass 

index (BMI), calculated as the body weight in kilograms divided by the square of the body 

height in meters (kg/m2). Within this thesis, the term excess weight will be used to group 

both overweight (OW) and obesity (OB) conditions. A BMI of 25 kg/m2 or higher would 

be indicative of OW, while a BMI of 30 kg/m2 or higher would be indicative of OB. In 

children (aged less than 10 years) and adolescents (aged 10-19), excess weight status is 

determined by applying age and sex-specific centile curves equivalent to adults’ BMI (2). 

Table 1 displays the excess weight cut-off points according to age. Although BMI is widely 

used, it is an indirect and limited measure of adiposity. BMI does not differentiate between 

body lean mass and body fat mass, nor does it capture the location of body fat accumulation. 

On the other hand, waist circumference (WC) measures abdominal adiposity and can thus

detect higher-risk phenotypes of OB. However, there is no consensus on how WC should 

be measured (i.e., by using the midpoint between the lower border of the last rib and the iliac 

crest, or by using the superior border of the iliac crest), and absolute differences between 

these two measurements have been reported in females, even in samples including children 

and adolescents (3). Other sensitive but also subject to error methods to measure adiposity 

are bioelectric impedance and skinfold thickness, among others (4). Overall, the precise 

characterization of excess weight requires the use of multiple measurements.  

Table 1. Excess weight definition by age.

Excess weight

Overweight Obesity

Children and adolescents th BMI Pc <95th for age and sex h for age and sex

Adults BMI 2  and < 30kg/m2 2

Adapted from Hampl (5). Abbreviations: BMI: body mass index; Pc: percentile. 

Despite the World Health Organization targets, no country has reported a decline in OB

by 2035. Obesity
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prevalence of OB is particularly concerning in children and adolescents. Globally, although 

will be living with OB by 2035. In Europe, these estimates are 

hood OB from 2020 to 

2035 (6). Importantly, pediatric OB is not limited to the developmental period in which it 

occurs. Obesity throughout childhood and adolescence is associated with a 5-fold increased 

risk of OB in adulthood (7). Moreover, OB is not an isolated health condition. Its presence 

is a risk factor for other diseases and their co-occurrences. In children and adolescents, OB 

is linked to a higher risk of hypertension, dyslipidemia, fatty liver disease, impaired glucose 

tolerance, metabolic syndrome, and type 2 diabetes mellitus, among others . This 

morbidity also protracts into adulthood and, in adults, a large observational multicohort 

study reported that the OB 

non-overlapping diseases compared to those with normal weight (NW). Moreover, the 

degree of OB -occurring diseases) in 

a dose-response relationship (9).   

Given the high prevalence of excess weight in our society, understanding the determinants 

of this health condition might help implement preventive strategies to diminish its current 

impact. 

 

1.2. Excess weight determinants  

Excess weight is usually the product of energy imbalance, where energy intake exceeds 

expenditure and the surplus of energy is stored (10). However, excess weight is not only the 

result of specific nutritional and lifestyle-related habits; it is a complex and multifactorial 

health condition that can also be modulated by genetic and environmental factors.  

 

1.2.1. Genetic factors 

From a genetic perspective, OB can be classified into two categories: monogenic and 

polygenic. Monogenic OB is an infrequent condition characterized by an early onset of 

severe OB and involves chromosomal deletions or single-gene defects. On the other hand, 

polygenic OB – otherwise known as common OB – is the product of the small effect of 

hundreds of polymorphisms and the environment. Gene discovery for both monogenic and 
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polygenic OB was initially restricted to candidate gene studies, based on their susceptibility 

to the phenotype of interest, and genome-wide linkage studies, which tested whether certain 

chromosomal regions co-segregate with a specific phenotype across individuals from the 

same pedigree (11).   

Over time, gene discovery methods rapidly advanced, and the study of genetic variants across 

the whole genome became possible, although most were – and still are – performed in 

European populations, not accurately representing other ancestries. In 2007, the first 

genome-wide association study (GWAS) for OB identified a cluster of variants in the first 

intron of the fat mass and OB-related gene (FFTO) locus that were associated with BMI. 

Multiple GWAS later, more than 750 loci have been associated with BMI, including variants 

in brain-derived neurotrophic factor and melanocortin 4 receptor (11), both of which are 

highly expressed in the hypothalamus and are associated with food intake and energy 

homeostasis (12,13). However, FTO is the locus with the largest effect (0.35 kg/m2 per risk 

allele), which can start as early as 3 years old and increase progressively to reach its peak in 

the twenties. However, the underlying biological mechanisms by which FTO affects body 

weight have not been fully elucidated. In humans, the literature suggests that variations in 

FTO may modulate food intake by influencing the brain regions that affect appetite and 

reward processing. Still, the presence of the FTO risk allele is not deterministic. Even 

polygenic score studies that estimate susceptibility to OB by summarizing the effect of 

multiple variants observed in a GWAS report a discrete explained variance (11,14).  

Thus, if genes only explain a small fraction of phenotypic variations, it is possible that OB-

associated variants interact with the environment to modify OB risk. Concerning lifestyle 

habits, which are subject to socioeconomic status (SES), evidence suggests that moderate-

to-vigorous physical activity may attenuate the effect of FTO on OB development. On the 

other hand, eating-related habits, such as the consumption of high-fat, high-sugar foods, may 

accentuate OB risk (15). Therefore, in common OB, although genetics may play an important 

role in OB development and maintenance, adherence to healthy habits may act as a protective 

factor.    

 

1.2.2. Environmental factors and adverse childhood experiences 

Given that no human exists out of a concrete context, environmental factors are crucial 

builders of an individual’s reality.  
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The obesogenic environment can be defined as “the sum of influences that the 

surroundings, opportunities, or conditions of life have on promoting OB in individuals or 

populations” (16). These influences may be due to the increased availability of palatable 

foods, or from neuromarketing strategies that condition food intake in the absence of 

metabolic need or amplify hedonic hunger in the presence of metabolic depletion (17). One 

of the key neural substrates of incentive salience may be the mesolimbic dopamine system, 

including the ventral tegmental area, nucleus accumbens (NAcc), prefrontal cortex (PFC), 

and hippocampus (17). Beyond how modern times have changed access to certain types of 

food and implemented aggressive food marketing campaigns, SES also shapes adherence to 

healthy habits. SES is an increasing field of interest in neuroscience, and although there is no 

consensus on its definition, the most commonly used measures are parental education, 

income, occupational status, and neighborhood quality . Research on the importance of 

social inequalities in health is mostly based on high-income countries, underrepresenting 

impoverished countries and populations (19). With that in mind, a meta-analysis concluded 

that individuals with a lower life SES had a higher mean BMI than those with a more 

privileged SES and that there was an association between lower SES and OB among women, 

but not among men (20).  

In children, multiple socioeconomic factors may interact to influence the development of 

excess weight, such as food insecurity, which leads to affordable high-energy dense foods 

with limited nutritional value, or neighborhoods with high crime rates that are not safe to 

engage in physical activity (19). Moreover, significant SES and brain system interactions have 

been reported, in which more deprivation imposes distinctive effects on brain health. 

Structurally, reductions in gray matter (GM) volumes in the prefrontal, insular, frontal 

opercular, lateral parietal, and lateral temporal regions, as well as subcortical areas including 

the cerebellum, striatum, and thalamus, have been described in lower SES, with a special 

stronger association in the striatum (21). Despite this, low SES should not be pathologized, 

categorizing it as a property of the brain rather than a situation that needs to be politically 

and socially addressed (22).  

Adverse childhood experiences (ACEs), defined as potential traumatic events that 

destabilize children’s lives, are a form of victimization – usually more prevalent in vulnerable 

SES (23) – that have long-lasting consequences on mental and physical health. Adolescents 

exposed to ACEs are more likely to develop mental health conditions such as depression, 

anxiety, behavioral problems, attention-deficit/hyperactivity disorder, or substance use 

disorder (24). On the physical dimension, ACEs have been associated with higher BMI 
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measures as early as 6 years of age (25). Consistently, ACEs increase the odds of adult OB, 

cardiovascular disease, and diabetes, among others (26). Possible factors that may mediate 

the relationship between ACEs and excess weight are lack of social support, engagement in 

unhealthy habits, changes in the stress response – including the possible disruption of the 

hypothalamic-pituitary-adrenal (HPA) axis and the chronic role of weight stigma –, and 

mental health issues (27) 

Overall, excess weight development and maintenance are modulated by multiple factors – 

from genetic to environmental – that interact with each other and condition the adherence 

to health-related habits.  

 

1.3. Excess weight pathophysiology  

A sustained positive energy balance initiates pathophysiological changes that can ultimately 

lead to disease. Taking adipose tissue expansion as the starting point, other processes, such 

as inflammation, insulin resistance, dyslipidemia, and stress responses, are also involved. 

 

1.3.1. Adipose tissue 

The surplus energy is stored in adipocytes, which are known as adipose tissue cells. Although 

adipose tissue was initially considered as an energy reservoir depot, it was subsequently 

redefined as an endocrine organ . Adipose tissue can be classified into two types: brown 

adipose tissue and white adipose tissue, which exhibit functional differences. Brown adipose 

tissue is present in small proportions, mainly in the shoulders and ribs, and it has 

thermoregulatory properties. In contrast, white adipose tissue is present throughout the body 

at both the subcutaneous and visceral levels, and is the main source of energy storage and 

regulation (29).  

When there is a positive energy balance, insulin drives lipid storage in white adipocytes by 

stimulating fatty acid uptake and converting the heightened levels of glucose, via de novo 

lipogenesis, into lipids, which are also stored in the adipose tissue (29). If this situation is 

sustained over time, white adipocytes will eventually expand to accommodate the need for 

increased lipid storage, either by number (i.e., hyperplasia) or size (i.e., hypertrophy) (30). 

However, white adipocyte expansion has a limit and, when reached, its vascular supply 

becomes insufficient, angiogenesis is inhibited, fibrosis is accelerated, macrophages infiltrate 

and polarize to an inflammatory profile, and inflammatory cytokines are locally produced 
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-6)) (29), leading to subsequent 

chronic low-grade systemic inflammation . In addition, visceral adipose tissue is 

considered to be more active than subcutaneous tissue, displaying higher levels of lipolysis, 

macrophage infiltration, and cytokine production, and thus is associated with a less favorable 

metabolic profile (29). In addition, when the storage capacity of adipose tissue is exceeded, 

the remaining circulating lipids accumulate in other organs (i.e., the liver, muscle, heart, and 

pancreas), a phenomenon known as ectopic fat accumulation, which promotes systemic 

insulin resistance and inflammation (30).  

 

1.3.2.  Chronic low-grade systemic inflammation  

Inflammation is an immune physiological reaction to harmful stimuli intended to restore 

homeostasis. When an acute insult occurs, inflammatory, cellular, and molecular mediators 

interact to heal the affected tissue. If successful, harmful stimuli are eliminated, inflammatory 

responses dissipate, and tissue repair is initiated (31). However, under excess weight 

conditions, an inflammatory response of a different nature is generated. The trigger is not an 

infection or trauma but metabolic in nature, leading to chronic low-grade systemic 

inflammation. It is hypothesized that the chronicity of the inflammatory state observed in 

excess weight might be related to the metabolic origin of inflammation. It is possible that a 

metabolic trigger does not initiate inflammatory responses that are strong enough to resolve 

noxious stimuli, or that there is an evolutionary defect in responding to such metabolic 

signals. Nevertheless, the presence of chronic low-grade systemic inflammation is one of the 

hallmarks of excess weight and has multiple implications (32). Table 2 summarizes the main 

biomarkers involved in the inflammatory process.  

 

Table 2. Biomarkers involved in chronic low-grade systemic inflammation. 

Cytokines Adipokines Acute-phase proteins 

  

-6 

 

 

Fibrinogen 

CRP 

-  

 

the presence of proinflammatory factors – at the expense of protective anti-inflammatory 
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adipokines, such as adiponectin – that not only contribute to local inflammation but also 

induce systemic inflammation (33). Proinflammatory cytokines, such as  and IL-6, 

decrease insulin sensitivity and glucose uptake, and induce lipolysis (32) -6 also acts in the 

hypothalamus to regulate satiety and energy expenditure (34), influences the secretion of 

other cytokines from adipocytes (35), and stimulates hepatocytes to synthesize and secrete 

fibrinogen and C-reactive protein (CRP), which are markers of systemic inflammation (34). 

Leptin, an adipokine that also acts in the hypothalamus, promotes lipolysis by stimulating 

neuroadipose junctions and promotes an inflammatory state by directly interacting with 

immune cells. (29)  

Systemic inflammation has been associated with metabolic and cardiovascular pathologies, 

as well as cognitive decline, possibly due to metabolic and endothelial dysfunction, and 

neuroinflammation, respectively (34). Regarding neuroinflammation, when the blood-brain 

barrier is persistently challenged, such as in low-grade chronic systemic inflammation, its 

permeability changes, and pro-inflammatory molecules can enter the brain and interact with 

microglia, the brain-resident macrophages. Microglia then induce the secretion of more 

inflammatory cytokines, particularly in brain regions with higher microglial density, such as 

the hypothalamus, hippocampus, cerebral cortex, and striatum (36). 

 

1.3.3. Cardiometabolic and cardiovascular alterations  

Although excess weight itself has been described as an independent predictor of 

cardiovascular risk, the initial consequences of adipose tissue dysregulation – such as 

alterations in lipid metabolism and insulin resistance – can act as intermediate risk factors 

that promote cardiovascular and metabolic events (37). Table 3 provides a list of biomarkers 

whose dysregulation may lead to cardiometabolic diseases.  

 

Table 3. Biomarkers associated with cardiometabolic diseases.  

Dyslipidemia Hypertension Diabetes 

  

 

 

 

 

 

 

Glycated hemoglobin 

- -density lipoprotein cholesterol.  
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Alterations in lipid metabolism can lead to dyslipidemia, characterized by increased levels of 

low-density lipoprotein cholesterol (LDL), triglycerides and total cholesterol, and 

decreased levels of high-density lipoprotein cholesterol (HDL). Dyslipidemia is one of the 

features of metabolic syndrome, and it is also related to atherosclerosis through the 

 Moreover, the presence of endothelial dysfunction – the 

inability of the endothelium to vasodilate correctly – is considered an early marker of 

atherosclerosis and one of the possible mechanisms leading to hypertension (i.e., high 

systolic and diastolic blood pressure) . On the other hand, peripheral insulin resistance 

can dysregulate hepatic and pancreatic mechanisms that support glucose homeostasis. In 

the liver, decreased insulin sensitivity prevents the regulation of glucose production, 

contributing to hyperglycemia. In the pancreas, the overproduction of insulin to remove 

feature of diabetes mellitus (32). Diabetes mellitus can be diagnosed using plasma glucose 

and glycated hemoglobin concentrations (39).  

These intermediate risk factors lead to the development of metabolic and cardiovascular 

diseases such as diabetes, coronary heart disease, and ischemic stroke (37). However, 

engagement in healthy lifestyle habits can improve metabolic profiles. Specifically, physical 

activity has been associated with improvement in glucose tolerance and -

well as with decreases in triglyceride concentration and platelet aggregation .  

 

1.3.4. Stress and allostatic load 

Stress responses are adaptive and allow the organism to maintain stability through 

challenging contexts and to recover homeostasis. However, when facing long-term stress, 

the primary neuroendocrine responses (i.e., catecholamines from the sympathetic adrenal-

medullary axis or glucocorticoids from the HPA axis) that prepare the organism for a fight-

or-flight response become chronically over-activated. This over-activation, in conjunction 

-6, s other interconnected systems that, 

by trying to compensate for the chronic effects of neuroendocrine mediators (e.g., cortisol), 

initiate secondary preclinical variations. This preclinical state is known as allostatic load (AL) 

and affects the metabolic (e.g., 

cardiovascular (e.g., systolic and diastolic blood pressure), and immune systems (e.g., 

fibrinogen and CRP). If sustained over time, what was initially a dysregulation eventually 
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becomes a disease, a final stage known as allostatic overload (40). Figure 1 illustrates the 

progression of .  

When excess weight is added to this cascade of events, some mediators may become even 

more affected. Cardiometabolic and cardiovascular dysregulations already present in excess 

weight can increase the cumulative effect (41). Moreover, low-grade inflammation 

can increase HPA axis activity and cortisol production (42). This increase in cortisol levels 

has different implications. First, cortisol also contributes to hepatic glucose production (43). 

Second, cortisol promotes eating by enhancing reward pathways (i.e., dopamine release) and 

leptin resistance in the brain, as well as promoting abdominal fat deposition, leading to a 

vicious cycle of excess weight and stress responses (44). 

Figure 1. Allostatic load diagram. Original figure created specifically for this doctoral thesis.

Overall, the medical consequences of excess weight are not the result of a single physiological 

alteration but rather of the interconnected dysregulation of multiple systems, which confers 

a challenge for its correct management. Disentangling how these dysregulations may affect 

neurocognitive traits that ultimately favor excess weight development and maintenance 

requires the implementation of neuropsychological and neuroimaging protocols.  

1.4. A brief history of human white matter 

Throughout human history, the study of the brain has been an ongoing question. While the 

prevalent doctrine in antiquity was that the ventricular system acted as a recipient for mental 

functions, a scientific revolution started in 1543, when Andreas Vesalius differentiated 

human GM and white matter (WM) for the first time. The anatomical and functional 

Chronic stress Allostatic load Allostatic overload

Preclinical metabolic, 
cardiovascular, and immune 

dysregulations

Disease emergence 
(e.g., hypertension, diabetes, 

dyslipidemia) 
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understanding of the brain advanced, and almost 100 years later, it was proved that WM was 

formed by fibers. Subsequently, numerous advances happened, such as the description of 

WM tracts, their classification (i.e., projection, association, or commissural fibers) and 

organization, and the acknowledgement of the communication between brain regions. 

However, the architecture of the WM fibers was still unknown. The discovery by Santiago 

Ramón y Cajal of neurons as an independent entity of the nervous system was crucial to 

enable a finer examination of fiber bundles. Studies focusing on myelination and the 

description of the pathological correlates of WM disturbance continued, and an in vivo study 

of the cerebral anatomy became a reality using magnetic resonance imaging (MRI) techniques 

(45). The first brain MRI of a living human being (46). In the 1990s, 

the possibility of using the diffusion tensor in MRI, known as diffusion tensor imaging (DTI), 

was introduced. This diffusion tensor model allowed the indirect measurement of the 

diffusion of water molecules in the brain and to infer the architecture of its surroundings 

(47). 

 

1.5. Diffusion tensor imaging 

MRI techniques allow the study of the brain from different perspectives. Structural MRI 

provides information on the macrostructural features of the brain, such as volume, area, 

surface, length, or thickness. The GM can be assessed using either voxel- or surface-based 

approaches. Voxel-based morphometry, using probabilistic segmentation, labels each brain 

voxel as GM, WM, or cerebrospinal fluid and returns an estimated measure of tissue volume 

. Surface-based morphometry, by identifying the borders between tissue types, has the 

ability to measure GM volume, cortical thickness, surface area, gyrification, and folding 

patterns (49). Microstructural features, which assess the properties of tissue components, are 

usually studied using DTI, a type of diffusion MRI.  

DTI describes diffusion in each voxel by modeling it as a mathematical tensor that can be 

decomposed into eigenvectors representing the direction of diffusion and eigenvalues 

representing the magnitude of diffusion. Diffusion can be either isotropic, where water 

molecules disperse equally in all directions, or anisotropic, where molecules follow a certain 

direction owing to structural limits (i.e., WM axons). Tract-based spatial statistics is one of 

the most common methods for quantitatively assessing diffusion. This method produces 

different measures, including fractional anisotropy (FA), mean diffusivity (MD), axial 

diffusivity (AxD), and radial diffusivity (RD), which provide an indirect estimation of 
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microstructural status. FA is the most used metric to study WM microstructure. FA – ranging 

from 0 meaning isotropic to 1 meaning anisotropic – indicates how coherent the movement 

of the water is along the fiber with higher values suggesting well-myelinated and undamaged 

1, 2, 3) and reflects the overall magnitude of 

diffusion, where lower values are indicative of heightened myelination (50). AxD is a measure 

1), which reflects axonal integrity, and RD is a measure 

of the amount of diffusivity perpendicular to the primary axis of diffusion, calculated by 

2 3, and reflects myelin integrity (47). Figure 2 provides a graphical 

representation of the diffusion tensor ellipsoid.  

 

 

 

 

 

 

 

 

Figure 2. Diffusion tensor ellipsoid representing anisotropic diffusion. Adapted from 

García- - (51). Abbreviations. AxD: axial diffusivity, FA: fractional 

anisotropy, MD: mean diffusivity, RD: radial diffusivity.  

 

Structural connectivity 

The architecture of WM fibers and their connections with cortical and subcortical regions – 

the structural connectome – can be studied using tractography and graph metrics. 

Deterministic tractography reconstructs WM pathways by inferring the orientation of the 

principal eigenvector of the tensor model in each voxel, whereas probabilistic tractography 

models multiple diffusion orientations per voxel based on their probability distribution (47). 

Either way, tractography visually reconstructs the inferred WM fiber connections between 

GM areas using DTI (52). Graph theory suggests that structural brain networks can be 

represented as graphs composed of nodes (i.e., brain regions usually defined by brain 

parcellation methods) connected by edges (i.e., axonal projections). The connectivity of these 

FA =  

MD = ( 1 + 2+ 3)/3 

RD = ( 2+ 3)/2 

AxD = 1 
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edges can be assessed quantitatively (e.g., number of streamlines between regions) or 

qualitatively (e.g., mean value of a diffusion metric across voxels included in the streamlines) 

(52). Moreover, the organization of a brain network can be analyzed globally by means of 

connectivity strength, which describes the overall strength of the connections between brain 

regions, or locally by means of a clustering coefficient, which measures the probability of 

neighboring nodes in the network being interconnected (53). 

1.6. Normative brain development 

Human brain development is a dynamic and adaptive process that begins in the third 

gestational week and extends at least through late adolescence, facilitating the emergence of 

new neural organizations (54). Brain development occurs at different rates across brain 

regions, and beyond the complexity of developing in a posterior-to-anterior fashion, the 

temporal sequence of maturation is mostly led by the function served rather than its location. 

Thus, GM maturation begins in brain regions that underlie basic sensory (i.e., primary visual, 

sensory, olfactory, and gustatory areas) and motor (i.e., precentral gyrus) functions, followed 

by the development of regions that assist complex processing, spatial orientation, and 

attention (i.e., inferior-posterior temporal and inferior parietal areas). Regions implicated in 

executive functioning (i.e., PFC) and multimodal integration (i.e., superior temporal areas) 

are the last to develop (55), with full maturation of the PFC in the mid-twenties indicating 

complete brain development (56). Consistently, WM somatosensory pathways mature first, 

whereas frontotemporal tracts show a protracted maturational trajectory (55). 

Throughout development, the global GM volume strongly increases from mid-gestation 

onwards, peaking before the onset of puberty – at 5.9 years – and following a progressive 

reduction (57) that reflects synaptic pruning (54). Cortical thickness peaks early at 1.7 years, 

but its maximum velocity development peaks even earlier, during mid-gestation (57). 

Subcortically, GM volume is characterized by an intermediate growth pattern, peaking in 

adolescence and mid-puberty at 14.4 years (57). Concerning WM trajectories, WM volume 

increases quickly from mid-gestation to early childhood, peaking in adulthood at , 

with a subsequent rapid decline after the fifties (57). Microstructurally, FA exponentially 

increases in the first three years of life and continues to increase until age 25 in a more discrete 
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manner, while the reverse pattern is observed for MD . In addition, the increased 

structural connectivity present during development, which follows an inverted U-shaped 

trajectory and peaks approximately in the third decade, is supported by the parallel nonlinear 

trajectories of WM integrity. The most prominent changes in brain connections occur in the 

prefrontal and temporal cortices, facilitating higher-order cognitive functions during 

development (59). Figure 3 provides a visual representation of the age at peak of the different 

brain development trajectories. 

Figure 3. Age at peak of normative neurodevelopmental trajectories. Adapted from 

Bethlehem (57) , and Zaho (59). Crosses and rectangles represent the peak value 

(57) and peak range of each brain category, respectively. Abbreviations. Yr: years.

Moreover, developmental brain trajectories might not only be a function of age, but also of 

sex and puberty. At the macrostructural level, more advanced pubertal stages and higher 

testosterone and estradiol levels are associated with GM volume reductions, even though 

their effects may differ depending on sex (60). WM maturation starts earlier in girls than in 

boys and is positively associated with more advanced pubertal maturation, either defined 

using physical measurements (i.e., Tanner scale) or hormonal markers (i.e., gonadal 

hormones). However, boys develop larger WM volumetric increments than girls do (61). 

To summarize, while trajectories of brain development are variable between brain tissues, 

there is consistency between WM, GM, and structural connectivity patterns to first develop 

core sensory and motor regions, followed by more protract development in frontal and 

temporal areas. In addition, biological sex and hormonal changes during puberty may 

influence these trajectories. Determining how excess weight might uniquely impact the 



Chapter 1. Introduction 

34 
 

developing brain can help elucidate the neural mechanisms that promote and maintain such 

condition in adolescent populations. 

 

1.7. Normative development of executive functions 

Normative brain developmental trajectories are synchronized with the development of 

neurocognitive skills. The protract maturation of the PFC parallels the continuous advances 

seen in executive functions (EF) throughout childhood and adolescence, although EF also 

rely on other interconnected brain areas (e.g., the anterior cingulate and parietal cortices, 

hippocampus, or amygdala) that support their correct functioning (62). EF can be defined as 

top-down mental processes that allow goal-oriented behavior. Therefore, EF are essential 

for maintaining one’s health and cognitive, social, and psychological development, as well as 

academic and personal achievement (63). Within this set of skills, according to Diamond’s 

framework (63), three core EF can be distinguished: inhibitory control, working memory, 

and cognitive flexibility. Table 4 provides a description of each domain. From these core EF, 

higher-order EF are built, including problem-solving, reasoning, and planning (63). EF can 

be further distinguished by using the hot and cold principle, where EF that are required in 

emotionally charged situations would be hot EF, whereas those required in more affectively 

neutral contexts would be cold EF (64).  

 

Table 4. Description of core executive functions.  

Inhibitory 

control 

Ability to control one’s attention, behavior, thoughts, or emotions to ignore a strong 

internal predisposition or external distractors, and instead do what’s more 

appropriate. 

Working 

memory 

Involves holding information in mind, either verbal or visual-spatial, and mentally 

working with it. 

Cognitive 

flexibility 

Allows the adjustment to changing environments or demands by inhibiting previous 

perspectives and loading into working memory a new perspective. 

Adapted from Diamond 2013 (63) 

 

The development of EF is gradual. Even in the immaturity of a newborn, primitive reflexes 

are shown in their interaction with the environment. In the first months of life, early evidence 

of inhibitory control, working memory, and cognitive flexibility is shown in infants’ looking 
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behavior, which extends to reaching behavior by the second half of the first year of life. From 

3 to 5 years of age, children show dramatic improvements in inhibitory control and cognitive 

flexibility, as well as working memory by 5 years of age. Nevertheless, their executive skills 

are error-prone and require refinement (64,65).  

During middle childhood, improvement in EF is more evident. Inhibitory control, which is 

disproportionately difficult for young children, shifts from reactive to proactive and becomes 

less sensitive to interference. Working memory boosts, and children can engage in complex 

span and spatial tasks that require the manipulation of multiple elements. Cognitive flexibility 

also improves, and the cost of switching declines progressively (64).  

EF skills continue to mature and stabilize throughout adolescence, following nonlinear 

trajectories. Significant age-related changes in EF accuracy (i.e., increases in correct 

responses) and latency (i.e., decreases in response speed) are observed from 10 to 15 years 

20 years of age, which some studies extend into the mid-twenties (66).  

 

1.8. Adolescent behavior: impulsivity, reward, and stress responses 

Adolescence is a vulnerable developmental period characterized by dramatic biological, 

behavioral, emotional, and social changes. The onset of puberty determines its beginning, 

and from an evolutionary perspective, the full acquisition of independence skills marks the 

transition to adulthood. Adolescence is characterized by suboptimal decisions that are 

generally the product of impulsive and reward-seeking behaviors (56). These tendencies seem 

to underlie the normative maturation of the adolescent brain, and do not necessarily 

represent psychopathology. Individual differences in neural responses to rewards may 

explain the predisposition of some adolescents to engage in risky behaviors (56).  

Impulsive and reward-seeking behaviors follow distinct developmental trajectories. 

Impulsivity, which can be conceptualized as a multidimensional construct that involves 

urgency, lack of perseverance and premeditation, and sensation seeking (67), steadily 

diminishes with age across childhood and adolescence. The protracted and linear 

development of the PFC sustains the ongoing acquisition of inhibitory control competence, 

which is paired with progressive reduction of impulsivity. However, reward-seeking and 

risky behaviors appear to increase during adolescence. It has been proposed that this is due 

to a developmental mismatch between the early maturation of subcortical structures that 
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influence affect and reward, as opposed to the delayed maturation of the PFC, which is 

involved in cognitive control. The delayed functional connectivity between prefrontal and 

limbic subcortical regions observed in adolescents could explain the lack of top-down control 

of reward processing . In addition, puberty itself may intensify sensitivity to reward 

(69).  

Adolescence is characterized by increased stress and heightened stress reactivity (70). Stress 

can be defined as a “negative emotional experience accompanied by predictable biochemical, 

physiological, and behavioral changes that are directed toward adaptation either by 

manipulating the situation to alter the stressor or by accommodating to its effects” (71). 

During this time of development, the HPA axis is remarkably sensitive to social challenges 

and the PFC is richer in cortisol receptors, making adolescents more susceptible to the 

consequences of stress. The nature of stressors varies among adolescents. Some are only 

subjected to adolescent-specific daily stressors, such as academic, peer, or romantic 

pressures, whereas others face additional exposure to adverse and victimizing experiences 

(70) that further dysregulate the HPA axis (72).   

 

1.9. A neural, cognitive, and behavioral approach to adolescent eating behavior  

Eating behavior is the product of the interaction between multiple homeostatic and non-

homeostatic systems. Homeostatic regulation of eating behavior relies on information 

about the energy status provided by physiological signals (e.g., ghrelin, insulin, and leptin) to 

the hypothalamus. Under conditions of negative energy balance, neuropeptide Y, agouti-

related protein, and gamma-aminobutyric acid neurons located in the arcuate nucleus of the 

hypothalamus are activated and stimulate food intake. Satiety perception is posteriorly 

determined by peptide secretion from the gastrointestinal tract (e.g., glucagon-like peptide 1 

and cholecystokinin) and by neural signaling of gastric distension via the vagus nerve to the 

hindbrain. Moreover, leptin favors brain responsiveness to satiety signals and stimulates 

hypothalamic proopiomelanocortin neurons, which inhibit food intake (73).  

These homeostatic processes do not operate alone. Eating behavior is also guided by reward 

and cognitive control systems, among others. Several brain regions are involved in reward 

processes. Although the anterior cingulate cortex, orbitofrontal cortex (OFC), ventral 

striatum, ventral pallidum, and midbrain dopamine neurons could be considered key 

structures, connections to and projections from these areas to others (e.g., hippocampus, 

hypothalamus, and amygdala) are also important (74). However, in this thesis, the reward 
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network is defined – following Marqués-Iturria et al. (75) approach – as lateral and medial 

OFC, NAcc, caudate nucleus, and putamen. The reward network is influenced by signals that 

inform about the energy status, which are used to adjust the rewarding value of food, defined 

as the momentary value of a specific food to a person. Thus, hunger states would increase 

food reward to facilitate meal initiation, and satiety states would decrease food reward to 

facilitate meal termination. However, the rewarding aspect of food can go beyond nutritional 

purposes (73). It is hypothesized that either hypo- or hyperactivation of the reward network 

can lead to food ingestion in the absence of an energy deficit, favoring excess weight states. 

Dopamine deficiency in the reward network may decrease the reward sensitivity to food 

consumption 

reward responsivity to food cues may lead to overeating (76).  

On the other hand, cognitive control, which mainly depends on the PFC, is central to 

successful regulation of eating behavior. Working memory supports long-term goal 

achievement (e.g., healthy eating) by maintaining goal-relevant information and redirecting 

attention away from the tempting stimuli. Inhibitory control limits impulsive responses that 

may impede goal accomplishment (e.g., eating highly palatable foods), and cognitive 

flexibility facilitates health-related goals by pursuing a more adaptive method to accomplish 

them (e.g., avoiding unrealistic or too restrictive dieting) (77). Although all EF are involved 

in eating behavior, it has been theorized that deficits in inhibitory control can increase 

sensitivity to food reward and impulsivity traits, leading to food overconsumption and excess 

weight (76).  

Throughout adolescence, the interaction between multiple systems that regulate eating 

behavior is conditioned by ongoing developmental processes. Rapid physical growth and 

elevated metabolic activity increase food intake. Moreover, the conjunction of changes in 

caloric needs, increased reward sensitivity, and the development of PFC and cognitive 

control abilities (e.g., inhibitory and impulsivity control) can easily lead to overconsumption 

of highly palatable and nutritionally deprived foods. Simultaneously, repetitive exposure to 

unhealthy food increases the vulnerability of developing brain systems involved in self-

regulation by inducing structural and functional changes in the PFC and altering the 

mesocorticolimbic system . Additionally, the increased exposure to stress seen in 

adolescents may promote dopamine release and thus food reward responsivity (44). Finally, 

environmental factors (e.g., food insecurity and food availability) also determine the quality 

of food choices.  
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1.10. Brain characteristics of the excess weight phenotype

Excess weight involves increases in adiposity, the onset of cardiometabolic changes, and 

has suggested that these factors are associated with 

varying degrees of structural, microstructural, and connectivity changes in the brain. 

Different frameworks have been proposed to outline the directionality of this relationship; 

however, there is still no consensus. Brain changes have been described as predictors and 

outcomes of excess weight. Some studies suggest that individual differences in regions that 

support cognitive control, such as the PFC and particularly the dorsolateral PFC, may predict 

susceptibility to overeating. Others point to pathophysiological changes associated with 

excess weight as disruptors of brain health. Even some researchers have proposed a potential 

reciprocal relationship between the brain and excess weight (79). This thesis follows the 

premise that brain changes may be a consequence of the excess weight phenotype. A 

description of these brain outcomes across different age ranges (children younger than 10 

years, adolescents: 10-19, young adults: 20-39, middle-aged adults: 40-64, and old adults aged

65 years or older) continues below. 

1.10.1. Structural brain changes 

Excess weight is associated with structural changes in the brain. This relationship has been 

primarily studied in adult populations, and there is less evidence in younger populations, 

particularly adolescents. Table 5 highlights how brain regions that undergo structural changes 

in excess weight states are also involved in impulsivity (e.g., basal ganglia, frontal gyri, insula, 

anterior cingulate cortex, OFC ), reward (e.g., lateral and medial OFC, NAcc, caudate 

nucleus, putamen (75)), and executive functioning (e.g., PFC including the OFC, anterior 

cingulate cortex, parietal cortex, cerebellum ).

1.10.2. Microstructural brain changes 

Excess weight and its related physiological characteristics are also related to WM 

microstructural changes, which have been reported in association fibers connecting cortical 

areas within the same hemisphere, commissural fibers connecting the two hemispheres, and 

in projection and thalamic fibers connecting cortical and subcortical structures. Again, this 

relationship has been underexplored in youth, especially in adolescents. Table 6 provides 
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information about how WM tracts affected in excess weight states are intrinsically related to 

neuropsychological processes that could potentially maintain or increase the excess weight 

condition, such as impulsivity (e.g., superior longitudinal fasciculus, forceps major, 

corticospinal tract ), reward (e.g., corpus callosum, uncinate fasciculus, cingulum ), 

and executive functioning (e.g., superior longitudinal fasciculus, corpus callosum, forceps 

major, anterior corona radiata, fornix, cingulum ).   

 

1.10.3. Structural connectivity changes 

Excess weight can affect the structural connectome. Although multiple brain networks may 

support eating behaviors, the reward network is particularly relevant for the excess weight 

phenotype. Higher adiposity measures have been related to lower structural connectivity of 

the reward network in samples comprising adolescents, young adults, and middle-aged adults 

. Studies assessing brain signatures of the excess weight phenotype beyond the reward 

network found, in young adults with OW (compared to their NW peers), an increased 

structural connectivity between the reward network and regions of executive control, 

emotional arousal, and somatosensory networks. Moreover, decreased connectivity was 

found between the ventromedial PFC and anterior insula, and between the thalamus and 

executive control network regions . Another study of young adult females with OB 

reported lower connectivity in WM tracts connecting the insula, amygdala, PFC, OFC, and 

striatum, as well as higher connectivity between the amygdala and anterior cingulate cortex 

. Regarding eating patterns, in healthy adolescents and young adults aged 17-25, those 

with higher scores on a food addiction scale presented lower structural connectivity between 

brain regions related to reward, cognitive control, and interoceptive processes (i.e., the insula 

and anterior cingulate cortex, insula and caudate, and ventromedial PFC and putamen) than 

those with lower food addiction scores . In addition, in healthy adults aged 50 years or 

older, a higher adherence to the Mediterranean diet was associated with higher structural 

connectivity between the left amygdala, left lingual, olfactory, and middle occipital gyri, and 

left calcarine areas, suggesting their possible implication in the integration of sensory and 

tase stimuli, and thus in food intake .  

The extent to which cardiometabolic factors and AL affect structural connectivity is 

underexplored. Adults aged 50-70 with type 2 diabetes showed lower structural connectivity 

in the bilateral lingual gyrus than healthy controls (90). In another study comprising young 

and middle-
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associated with lower structural connectivity between the hippocampus and hypothalamus, 

regardless of the diagnosis (91).  Overall, despite initial efforts made to disentangle the impact 

of the excess weight phenotype on the structural connectome, evidence is limited and mainly 

focused on adults.  
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Table 5. Structural brain changes associated with adiposity, cardiometabolic factors, and allostatic load.  
 

Article Sample characteristics 
MRI 

measure 
Excess weight 

feature 
Results 

Adiposity 

Kaltenhauser 
2023 

 
(92) 

  

CTh BMI z-score, 
WC 

Baseline: negative association (BMI z-score and WC) in both hemispheres. Strongest 
association in the R rostral middle frontal cortex. 

-year follow-up): higher baseline BMI z-score associated with 
 

Age range 9-10 

Weight status (n) 

191 UW, 
3046 NW, 

OW, 
656 OB 

 
 

 
(93) 

 3190 (49) 

CTh BMI 

 
-R rostral middle frontal gyri - -R 

superior frontal gyri - -
-R temporal lobes

fusiform gyrus.  

Age range 9-10 

Weight status (n) 
2270 UW/NW, 
429 OW, 
491 OB 

Ronan 
2020 

 
(94) 

 3297 (49.9) 

CTh BMI z-score 

 
- -R inferior frontal gyri (pars orbitalis 

-R rostral middle frontal cortices -R superior frontal 
cortices   

Age range 9-11 

Weight status (n) 

127 UW, 
2197 NW, 
472 OW, 
501 OB 

 
Steegers 

2021 
 

(95) 

 3160 (50.3) 

CTh BMI standard 
deviation score 

 
Positive association in the R superior parietal, R inferior temporal, R pericalcarine 
and  gyrus, - - -R postcentral, 
and -R lingual gyri.  

Age range 9-11 

Weight status (n) 
UW, 

2464 NW/OW, 

OB 
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Table 5. Continued.  
 

Article Sample characteristics 
MRI 

measure 
Excess weight 

feature 
Results 

Adiposity 

García-García 
2019 

 
(96) 

Meta-analysis 

GM volume BMI, 
BMI group 

Negative association in the medial PFC (ventral subdivision), cerebellum, temporal 
pole, precentral gyrus, and inferior parietal cortex. 
 

  

Age range -92 

Weight status (n) N/A NW,  
N/A OW/OB 

Pflanz 
2022 

 
(97) 

 15634 (N/A) 

Total brain, 
GM, and 

WM volumes 

WHR, 
BMI, 

body fat 

(Whole-brain and ROI-based analysis: caudate, putamen, pallidum, thalamus, 
amygdala, Nacc, hippocampus) 
Total brain volume: negative association with body fat. 
GM volume: negative association with body fat and WHR. 
GM volume ROIs - -R 

- -R Nacc. 
WM volume: no significant associations. 

Age range 50-69 

Weight status (n) 
N/A NW,  
N/A OW, 
N/A OB 

Cardiometabolic factors 

Silva 
2021 

 
 

  

Total brain, 
GM, and 

WM volumes  

Blood pressure, 
insulin, glucose, 
total cholesterol, 

triglycerides 

Total brain volume: no associations. 
GM volume: negative association with diastolic blood pressure and positive 
association with triglycerides. 
WM volume: no associations. 

Mean age (SD)  

Weight status (n) 
201 UW, 
2355 NW, 
536 OW/OB 

Ross 
2015 

 
(99)  

  

CTh, 
GM volume    

Insulin resistance 
(ROI-based analysis: OFC, anterior cingulate cortex) 
CT: negative association in the OFC. 
GM volume: no significant associations. 

Age range 15-21 

Weight status (n) 51 NW, 
79 OB 
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Table 5. Continued 
 

Article Sample characteristics 
MRI 

measure 
Excess weight 

feature 
Results 

Cardiometabolic factors 

Gabay 
2022 

 
(100) 

  

CTh,  
GM volume Insulin resistance 

(ROI-based analysis: OFC, anterior cingulate cortex, insula) 
CT: negative association in the insula and medial OFC only in females. 
GM volume: negative association in the anterior cingulate cortex only in females. 

Age range 16-21 

Weight status (n) N/A NW, 
N/A OB 

Shang 
2022 

 
(101) 

 36647 (53.4) 
Total brain 

and 
GM volumes 

57 major 
diseases 

(n = 10 cardio-
metabolic/ 
vascular) 

Total brain volume: negative association mainly with hypertension, dyslipidemia, 
coronary heart disease and diabetes. 
GM volume: negative association mainly with hypertension, dyslipidemia, and 
diabetes.  

Age range 44-  

BMI N/A 

Beyer 
2019 

 
(102)  

  

GM volume 

Metabolic profile 
(BMI, WHR, 

glycated 
hemoglobin, 

total cholesterol, 
-6, 

adiponectin, 
leptin) 

Negative association between metabolic profile (manly driven by BMI, WHR, 
glycated hemoglobin, CRP, and leptin) and GM volumes in the frontal, temporal and 
occipital lobes -R insular cortices -
cerebellum, R temporal pole, R planum polare and R postcentral gyrus.  

Age range 60-79 

Mean BMI (SD) 
BMI range 

27.7 (4.1) 
- 42.3 

Allostatic load 

Ottino-González 
2017 

 
(103) 

 63 (57.1) 

CTh  
(15 biomarkers) precentral gyrus, R precuneus, R transversal temporal gyrus, R inferior parietal 

cortex, R lateral OFC. 

Age range 21-40 

Weight status (n) 29 NW, 
34 OW/OB 
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Table 5. Continued. 
 

Article Sample characteristics 
MRI 

measure 
Excess weight 

feature 
Results 

Allostatic load 

Ottino-González 
 

 
(104) 

 52 (57.7) 

GM volume  
(15 biomarkers) gyrus, and R pars opercularis. 

Age range 21-40 

Weight status (n) 21 NW, 
31 OW/OB 

Booth 
2015 

 
(105) 

 633 (47.3) 
Total brain, 

GM, and 
WM volumes 

 
(10 biomarkers) 

Total brain volume: negative association. 
GM volume: no association. 
WM volume: negative association. 

Mean age (SD) 72.49 (0.72) 

Mean BMI (SD)  

-reactive protein, CTh
not available, NAcc: nucleus accumbens, NW: normal weight, OB: obesity, OFC: orbitofrontal cortex, OW: overweight, PFC: prefrontal cortex, R: right, ROI: region of 
interest, UW: underweight, WC: waist circumference, WHR: waist-to-hip ratio, WM: white matter.  
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Table 6. Microstructural brain changes associated with adiposity, cardiometabolic factors, and allostatic load. 
 

Article Sample characteristics 
MRI 

measure 
Excess weight 

feature 
Results 

Adiposity 

Kaltenhauser 
2023 

 
(92) 

  

FA, 
MD  

BMI z-score, 
WC 

Baseline FA: global negative association with BMI z-score and WC, and locally in 
the corpus callosum, forceps major and minor, fornix, and superior longitudinal 
fasciculi. 
Baseline MD: no global association with BMI z-
association between WC and the corpus callosum and forceps minor.  

-year follow-up): higher baseline BMI z-score was associated with 
lower FA increments in the inferior fronto-occipital fasciculi, anterior thalamic 
radiations, striatal inferior cortices, corpus callosum, forceps minor, R inferior 
longitudinal fasciculus, and superior longitudinal fasciculus.  

Age range 9-10 

Weight status (n) 

191 UW, 
3046 NW, 

OW, 
656 OB 

Silva 
2021 

 
 

  

FA, 
MD 

  

BMI standard 
deviation score, 

body fat 

Global FA: negative association with BMI standard deviation score and body fat. 
Global MD: negative association with BMI standard deviation score and body fat. 

Mean age (SD)  

Weight status (n) 
201 UW, 
2355 NW, 
536 OW/OB 

Daoust 
2021 

 
(106) 

Meta-analysis 

FA 

OB (defined 
either by BMI, 

BMI group, WC, 
WHR, or body 

fat) 

Negative association in the R genu of the corpus callosum. 
 4453 (55) 

Age range -92 

Weight status (n) N/A NW,  
N/A OW/OB 

Cardiometabolic factors 

Nouwen 
2017 

 
(107) 

 
 

20 healthy, 
13 diabetes 

FA, 
MD Diabetes 

 
FA

-occipital 
fasciculi
anterior external capsule.  
MD: no associations. 

Age range 12-  

Mean BMIz (SD) 0.23 (0.96) healthy 
2.2 (1.55) diabetes 
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Table 6. Continued.  
 

Article Sample characteristics 
MRI 

measure 
Excess weight 

feature 
Results 

Cardiometabolic factors 

Repple 
2021 

 
 

 737 (54.5) 

FA Glycated 
hemoglobin 

-R longitudinal superior 
fasciculi -R internal and external capsules -R uncinate fasciculus, corticospinal 
tract, and cerebellar peduncles. 

Mean age (SD)  

Mean BMI (SD)  

Cox 
2019 

 
(109) 

 9722 (52.5) 

FA, 
MD  

Smoking, 
hypertension, 
diabetes, pulse 
pressure, high 

cholesterol, BMI 
and WHR 

(ROI-based analysis: acoustic radiation, anterior thalamic, cingulum gyrus, and 
parahippocampal, corticospinal, forceps major and minor, inferior fronto-occipital, 
inferior longitudinal, middle cerebellar peduncle, medial lemniscus, posterior 
thalamic, superior longitudinal, superior thalamic, and uncinate.) 
 
Global FA and MD: negative and positive associations, respectively, with smoking, 
hypertension, pulse pressure, and diabetes across thalamic and association fibers, 
and forceps minor. For BMI and WHR, these associations were more consistent 
across projection bundles. High cholesterol was not associated with FA or MD.   

Age range 44-79 

Mean BMI (SD)  

Jing 
2022 

 
(110) 

 

 
509 healthy, 
1205 prediabetes,  
504 diabetes 

FA, 
MD 

Prediabetes, 
diabetes 

Prediabetes (vs. controls): 
FA -R anterior corona radiata, R superior 
longitudinal fasciculus, posterior corona radiata, anterior limb of internal capsule. 
MD -R anterior corona radiata, anterior 
limb of internal capsule, superior longitudinal fasciculi, and superior corona radiata. 
 
Diabetes (vs controls): decrease of FA and increase in MD in widespread WM 
tracts. 

Age range 50-75 

Mean BMI (SD) 
23.2 (2.7) healthy, 
24 (3) prediabetes, 
24.7 (3.2) diabetes 

 
Zsoldos 

 
 

(111) 
  

 349 (19.5) 

FA, 
MD 

Metabolic 
syndrome 

FA: no association. 
MD: no association.  

Age range 60-  

BMI N/A 
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Table 6. Continued. 
 

Article Sample characteristics 
MRI 

measure 
Excess weight 

feature 
Results 

Allostatic load 

Ottino-González 
 

 
(104) 

 

 52 (57.7) 

FA, 
MD 

 
(15 biomarkers) 

FA: Negative relationship (only for OW/OB) in the inferior fronto-occipital 
fasciculi and R anterior corona radiata. 
 
MD: no association. 

Age range 21-40 

Weight status (n) 21 NW, 
31 OW/OB 

 
Ritchie 
2017 

 
(112) 

 
 

  

  731 

 
FA, 
MD 

 
 

-year follow-up. ROI- -R anterior 
-R arcuate fasciculi, genu and splenium of the corpus 

- -R inferior longitudinal fasciculi -R uncinate fasciculi). 
 
FA: negative association at baseline, no association at follow-up. 
MD: no association at baseline, positive association at follow-up. 

Mean age (SD) 

Baseline:  
 

Follow-up: 
 

BMI N/A 

Zsoldos 
 

 
(111) 

  

 349 (19.5) 
FA, 
MD 

 
(9 biomarkers) 

FA: no association. 
MD: no association.  

Age range 60-  

BMI N/A 

etic resonance imaging, N/A: not available, 
NAcc: nucleus accumbens, NW: normal weight, OB: obesity, OW: overweight, R: right, ROI: region of interest, UW: underweight, WC: waist circumference, WHR: waist-to-
hip ratio, WM: white matter. 
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1.11. Psychological characteristics of the excess weight phenotype 

Excess weight has been widely associated with changes in several psychological domains. 

From EF to impulsivity, reward, and stress responses, among others, the literature suggests 

that individuals with excess weight perform poorly or have increased vulnerability in these 

domains, with most of the evidence centered on EF. While excess weight has usually been 

on psychological traits is emerging as a new area of interest.  

   

1.11.1.  Executive functions 

While the excess weight phenotype (i.e., adiposity, cardiometabolic features, and ) has 

been previously associated with multiple cognitive functions (113,114), EF are of special 

relevance for eating behaviors and excess weight development and maintenance (77). 

Excess weight, defined by measures of adiposity, has been widely associated with changes 

in working memory, cognitive flexibility, and inhibitory control across all age groups, as 

reported in meta-analyses and reviews (115–117). Theoretically, the low-inflammatory 

processes and cardiometabolic dysregulations associated with increased adiposity could 

potentially induce structural and functional brain changes in the PFC, resulting in poorer EF 

performance, which has been found to be more pronounced in higher BMI categories (117). 

programs may provide initial evidence of the direction of the relationship between excess 

weight and EF (115,116). However, it has also been hypothesized that EF may serve as 

predictors of excess weight, where ineffective cognitive control at baseline, especially 

inhibitory control, would favor overeating. This view has been supported by longitudinal 

studies in which better EF predicted greater weight loss after bariatric surgery or weight-

reduction programs (115,116). Although no single theoretical model prevails, and both are 

supported by empirical data, this thesis is based on the hypothesis that excess weight may 

lead to EF impairments.  

Cardiometabolic changes, another feature of the excess weight phenotype, are associated 

with differences in EF. A large cross-sectional study of young adults showed a negative 

association between glycated hemoglobin and working memory . Moreover, a meta-

analysis of individuals aged 13-40 reported that, compared to healthy controls, those with 

type 1 diabetes performed poorly across all EF domains . Another meta-analysis that 

assessed differences in EF (i.e., working memory and cognitive flexibility) in adults aged 50 
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years or older showed that those with type 2 diabetes had deficits in cognitive flexibility, but 

not in working memory (119). Moreover, in a study of adolescents, the association between 

triglycerides, and WC) and inhibitory control was tested. Their results suggested that higher 

levels were associated with poorer inhibitory performance (120).  

Consistently, in another study of adults aged 40 years or older, those with metabolic 

syndrome exhibited poorer EF performance, although the number of altered metabolic 

syndrome components did not show an additive effect on EF (121). In contrast, a large 

longitudinal study (10-year follow-up) of middle-aged women with metabolic syndrome did 

not show reductions in working memory performance (122). 

Evidence on how AL impacts EF is primarily from adult samples. A meta-analysis of adults 

years or older 

and poorer EF (113).  

 

1.11.2.  Impulsivity, reward, and stress  

Adiposity measures that reflect excess weight have been linked to impulsivity, reward, and 

stress. A large meta-analysis evidenced that higher impulsivity levels, assessed by either 

questionnaires or behavioral tasks, were associated with higher BMI categories (123). 

Another review highlighted that temporal discounting (i.e., the preference for small 

immediate rewards over larger delayed rewards) was associated with OB in most studies 

(124)  or older showed that the prevalence 

of OB increased as the number and severity of ACEs increased too (125).  

Although the effect of cardiometabolic factors on impulsivity traits is usually studied in 

samples with mental health conditions (e.g., bipolar disorder, depression, schizophrenia, 

addiction, and self-harm tendencies), there is initial evidence of this relationship in healthy 

participants. In a large study of participants aged 14-92, impulsivity traits were associated 

(126). In contrast, a study of middle-aged twins 

, and 

triglycerides) and self-control (127). Regarding reward and stress features, a study of female 

young adults evidenced that in those with lower total cholesterol levels, there was a 

preference for immediate rewards despite being subjected to higher losses over time . 

-49 indicated that work stress was associated with metabolic 

syndrome, especially in young males (129)  
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or older showed that individuals exposed to higher numbers and severity of ACEs had a 

higher risk of diabetes and cardiovascular disease (125).  

The impact of AL on impulsivity and reward responses has yet to be determined. Regarding 

stress, a study of adults aged 27- -

reported chronic stress and burnout symptoms (130). A systematic review also reported that 

(131).  

 

1.12. A comprehensive model of excess weight development and maintenance in 

adolescents. 

Excess weight is a health condition that goes far beyond the act of overeating. Throughout 

this thesis, several factors that condition excess weight development or promote its 

maintenance have been presented, recognizing their multiple interactions, and emphasizing 

the developmental period in which they occur. Given that excess weight at young ages is 

associated with increased morbidity, it is particularly important to understand this condition 

holistically to provide appropriate medical and (neuro)psychological interventions. Figure 4 

shows the proposed comprehensive model of excess weight development and maintenance 

in adolescents.  
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Figure 4. Proposed comprehensive model of excess weight development and maintenance in adolescents. Abbreviations. ACEs: adverse childhood 

experiences, EF: executive functions, FTO: mass and obesity-related gene; HPA: hypothalamic-pituitary-adrenal, PFC: prefrontal cortex, SES: 

socioeconomic status. Original figure created specifically for this doctoral thesis.
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HYPOTHESES  

 

This thesis frames excess weight as a multifactorial condition and acknowledges its 

complexity by proposing a comprehensive model in which genetic, developmental, 

environmental, biological, neurological, and psychological elements interact, ultimately 

promoting the development and maintenance of excess weight during adolescence. Targeting 

different aspects of this model, and to disentangle potential biomarkers that may help better 

predict the neurocognitive changes associated with the excess weight phenotype, the present 

thesis proposes the following hypotheses: 

 

1. Excess weight and the A allele of the fat mass and obesity-related gene rs9939609 

may be associated with lower structural connectivity in the reward network.  

 

2. Cardiometabolic factors usually present in excess weight may be associated with 

increased impulsivity and alterations in white matter microstructure. 

 

3. Stress, either led or followed by exposure to adverse childhood experiences or 

allostatic load, respectively, may be associated with poorer executive functioning. 
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OBJECTIVES 

 

1. To investigate the structural connectivity patterns of the reward network in adolescents 

and young adults. 

1.1.  To determine the structural connectivity differences in the reward network 

according to body mass index. 

1.2. To determine the structural connectivity differences in the reward network in 

carriers versus non-carriers of the A allele of the fat mass and obesity-related gene 

rs99396309. 

 

2. To evaluate the association between cardiometabolic factors, white matter 

microstructure, and impulsivity in adolescents with and without excess weight.  

2.1. To assess the relationship between cardiometabolic factors and microstructural 

changes in white matter tracts typically associated with both excess weight and 

impulsivity. 

2.2. To assess the relationship between cardiometabolic risk factors and impulsivity. 

 

3. To establish whether executive functioning is vulnerable to physiological and 

psychological stress in adolescents and young adults with and without excess weight. 

3.1. To test the association between executive functioning and allostatic load. 

3.2. To test the association between executive functioning and adverse childhood 

experiences.  
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From the reward network to whole-brain metrics: structural
connectivity in adolescents and young adults according to
body mass index and genetic risk of obesity
Anna Prunell-Castañé1,2,3, Frauke Beyer 4,5, Veronica Witte 4,5, Consuelo Sánchez Garre6, Imma Hernán7, Xavier Caldú 1,2,3,
María Ángeles Jurado 1,2,3✉ and Maite Garolera8,9
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BACKGROUND: Obesity is a multifactorial condition. Genetic variants, such as the fat mass and obesity related gene (FTO)
polymorphism, may increase the vulnerability of developing obesity by disrupting dopamine signaling within the reward network.
Yet, the association of obesity, genetic risk of obesity, and structural connectivity of the reward network in adolescents and young
adults remains unexplored. We investigate, in adolescents and young adults, the structural connectivity differences in the reward
network and at the whole-brain level according to body mass index (BMI) and the FTO rs9939609 polymorphism.
METHODS: One hundred thirty-two adolescents and young adults (age range: [10, 21] years, BMI z-score range: [−1.76, 2.69]) were
included. Genetic risk of obesity was determined by the presence of the FTO A allele. Whole-brain and reward network structural
connectivity were analyzed using graph metrics. Hierarchical linear regression was applied to test the association between BMI-z,
genetic risk of obesity, and structural connectivity.
RESULTS: Higher BMI-z was associated with higher (B= 0.76, 95% CI= [0.30, 1.21], P= 0.0015) and lower (B=−0.003, 95%
CI= [−0.006, −0.00005], P= 0.048) connectivity strength for fractional anisotropy at the whole-brain level and of the reward
network, respectively. The FTO polymorphism was not associated with structural connectivity nor with BMI-z.
CONCLUSIONS: We provide evidence that, in healthy adolescents and young adults, higher BMI-z is associated with higher
connectivity at the whole-brain level and lower connectivity of the reward network. We did not find the FTO polymorphism to
correlate with structural connectivity. Future longitudinal studies with larger sample sizes are needed to assess how genetic
determinants of obesity change brain structural connectivity and behavior.

International Journal of Obesity; https://doi.org/10.1038/s41366-023-01451-w

INTRODUCTION
Obesity is a complex condition caused by a combination of
biological, social, psychological, and environmental factors [1].
Genetic variants, with heritability estimates of 40–70%, may
underlie the inter-individual variation in the susceptibility to the
obesogenic environment. The fat mass and obesity related gene
(FTO), the first gene to emerge from body mass index (BMI)
genome-wide association studies, has been consistently asso-
ciated with obesity. The most representative single nucleotide
polymorphism in the first intron of the FTO gene is rs9939609 [2].
The effect of the FTO on BMI is relatively large (0.35 kg/m2 per A
allele), although the underlying biological mechanisms have not
yet been fully elucidated [3].

In humans, variations in the FTO gene may exert an effect on
BMI by modulating food intake rather than energy expenditure [4].
Polymorphisms in the FTO may regulate the activity of dopami-
nergic neurons in the reward circuit, thus affecting reward
sensitivity within the reward network [5]. The reward network
comprises interconnected cortical and subcortical structures
(lateral and medial orbitofrontal cortices, nucleus accumbens,
caudate nucleus and putamen) that are involved in reward
processing, learning, motivation and self-regulation [6]. Evidence
suggests that a disruption in this network may increase food
cravings and preference for high-calorie food, as well as impair
reward learning and impulse control, thus changing feeding
behavior and producing weight gain [7].
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Various neuroimaging approaches have been used to assess the
structural and functional neurobiology of obesity. A compromised
(lower) structural connectivity within the reward network has been
associated with obesity [6, 8, 9]. However, other studies showed
contradictory results, describing both higher and lower structural
connectivity between the ventral striatum and the frontal cortex
[10, 11]. Gray matter volume of the reward network has also been
studied in the context of obesity. In a recent meta-analysis, greater
volumes of the nucleus accumbens were associated with higher
BMI in adolescents, whereas the opposite result was found in
adults [12].
Importantly, not only is weight status associated with the

reward network, but also having a genetic risk of developing
obesity. A functional neuroimaging study suggested a positive
and additive relationship between obesity genetic factors and
striatal activation [13]. Similarly, another study [14] revealed
disrupted structural connectivity in the nucleus accumbens and
the thalamus in homozygous participants for the FTO A allele,
while another study found increased structural connectivity
between the ventral tegmental area/substantia nigra and the
nucleus accumbens in FTO A allele carriers [7].
While other studies have investigated the relationship between

FTO polymorphisms and brain structural connectivity in children
and adults with diverse BMI values [7, 9, 14, 15], to our knowledge,
the associations of structural connectivity with BMI and genetic
risk of obesity in adolescents and young adults remain
unexplored. Since changes in the reward network connectivity
might stem from adverse effects of obesity (i.e., metabolic burden)
or arise from predisposing factors (i.e., genetics), in this study we
investigate, in a sample of adolescents and young adults, the
structural connectivity differences in the reward network accord-
ing to (i) BMI and (ii) being carrier of the FTO rs9939609 A allele.
Based on previous literature, we hypothesized that (i) higher BMI
and (ii) the presence of the FTO rs9939609 A allele may be related
to lower connectivity in the reward network. Using an exploratory
approach, we also investigated the same hypotheses at the whole-
brain level.

METHODS
Participants selection and procedure
Potential participants from public primary care centers of the Consorci
Sanitari de Terrassa were randomly contacted by telephone and invited to
take part in the study. If they agreed, they underwent a telephonic
screening interview to assess the adequacy of their participation. Inclusion
criterion was being aged between 10 and 21 years [16]. Exclusion criteria
were: (i) underweight, (ii) psychiatric, neurological, developmental (e.g.,
attention-deficit/hyperactivity disorder, autism spectrum disorder), cardi-
ometabolic (e.g., diabetes, metabolic syndrome, hypo/hyperthyroidism), or
systemic (e.g., cancer, lupus) diagnosis, and (iii) global cognitive impair-
ment or bulimia-like behaviors. Additionally, the medical doctor explored
with the participants their medical history to ensure the suitability of their
inclusion.
The first day, 144 potential candidates were cited to undergo a medical

evaluation and a blood sample extraction at the Hospital de Terrassa –
Consorci Sanitari de Terrassa (n= 89), or to undergo an at-home medical
visit and blood sample extraction (after SARS-Cov-2 breakdown, n= 55).
Pubertal stage was determined according to the Tanner scale of sexual
maturity. The second day, we further assessed exclusion criteria with
specific questionnaires: a scalar score <7 in the Weschler Adults
Intelligence Scale-III/Weschler Intelligence Scale for Children-IV vocabulary
subtest determined global cognitive impairment, and meeting criteria for
bulimia nervosa at the Mini International Neuropsychiatric Interview for
Bulimia or a score ≥20 in the Bulimia Inventory Test of Edinburgh
determined bulimia-like behaviors. Three participants were excluded for
presenting bulimia-like behaviors (n= 2 assessed with the Bulimia
Inventory Test of Edinburgh and n= 1 with the Mini International
Neuropsychiatric Interview for Bulimia). Bulimia was not assessed using
the same questionnaire for all participants due to a change in the protocol.
Anxiety and depression symptoms were also assessed using the Hospital
Anxiety and Depression Scale. Recruitment and data collection were

carried out between 2010 and 2022. Some of the participants in the
present study were already included in previous works [17, 18].
Participants without claustrophobia or metal protheses also underwent

a brain magnetic resonance imaging (MRI) acquisition on a 3T MAGNETON
(Siemens, Germany) at the Centre de Diagnòstic per la Imatge Clínica at the
Hospital Clínic de Barcelona. One participant was excluded during the MRI
acquisition due to the detection of a low-grade glioma and was
immediately referred to neurology and oncology services. Eight more
participants were excluded after the neuroimaging quality control (see
imaging preprocessing and connectome reconstruction section). This led
to a final sample size of 132 adolescents and young adults, of which two
had missing genetic data.
This study was approved by the Ethics Committee for Clinical Research

of the Consorci Sanitari de Terrassa, and Institutional Ethics Committee of
the University of Barcelona (Institutional Review Board IRB00003099,
assurance number FWA00004225). The research was conducted in
accordance with the Helsinki Declaration. Written informed consent was
obtained from all participants, or their legal guardian in underage
participants, prior to entry in the study.

Anthropometric measurement
Anthropometric measures were obtained by a trained nurse from
participants in light clothing without shoes. Height was measured with
two different devices (n= 81: Holtan Limited Harpenden Stadiometer, and
n= 51: Längenmessstab 5003-Soehnle Professional). Weight was also
measured with two different devices (n= 81: Seca 704 s, and n= 51: Tanita
InnerScan-V). T-tests were performed and no differences in height and
weight measurements were observed (P > 0.05). BMI was calculated as
kilograms/meters2 (kg/m2), and then transformed into BMI z-score using
the R package cdcanthro. Since BMI-z values can be calculated for
participants up to 20 years, for those participants aged 20 and 21, their BMI
z-score was calculated as if they were 19 years and 11 months [19]. For
descriptive purposes, we classified participants as normal-weight or
overweight/obesity using the BMI cut-offs from Cole and Lobstein [20]
for underage participants, and the 25 kg/m2 BMI cut-off from the World
Health Organization [21] for participants aged 18–21.

Genotyping
Peripheral blood samples were obtained from 130 participants and
genomic DNA was extracted automatically using the MagNaPure
Compact Instrument (Roche Applied Science, Barcelona, Spain). The
FTO polymorphism rs9939609 was genotyped in 70 participants using
polymerase chain reaction and Sanger Sequencing (primers and
conditions available on request). On the other 60 patients, rs9939609
was genotyped using the Flex Six GT Integrated Fluidic Circuit and SNP
Type assays according to the manufacturer’s protocol using the
genotyping platform Fluidigm Juno System and Biomark HD (Fluidigm
Corp, South San Francisco, CA, USA). The risk allele of this variant is the A
allele. The genotype counts in our sample were nTT= 39, nAT= 68,
nAA= 23 (minor allele frequency= 0.44, test for Hardy–Weinberg
equilibrium Chi2= 0.33, df= 1, P= 0.56). Two participants had missing
genetic data. Participants were mostly White and Spaniard (n= 124). Six
participants had American Latino ancestry, and for two participants race
or ethnicity was not reported. For the analysis, we grouped together
carriers of at least one risk allele (A) vs. non-carriers, and we controlled
for the batch effect by adding a covariate indicating which laboratory
genotyped the FTO polymorphism.

MRI data acquisition
MRI acquisition was performed using a 3 T Siemens Magnetom Trio (n= 72)
and a 3 T Siemens Magnetom Prisma (n= 60). T1-weighted images were
acquired with the following parameters for the Trio scanner: inversion
time= 900ms, repetition time= 2300ms, echo time= 2.98ms; flip angle=
9°, band width= 240 Hz/Px, field of view= 256 × 256 × 240mm3, voxel
size= 1 × 1 × 1mm3, slices= 240, total scan time= 7:48min; and with these
parameters for the Prisma scanner: inversion time= 1000ms, repetition
time= 2400ms, echo time= 2.22ms; flip angle= 8°, band width= 220 Hz/
Px, field of view= 256 × 240 × 167mm3, voxel size= 0.8 × 0.8 × 0.8mm3,
slices= 208, total scan time= 6:38min.
Diffusion-weighted images (DWI) were acquired with the following

parameters for the Trio scanner: repetition time= 7700ms, echo time= 89ms,
field of view= 244 × 244 × 120mm3, diffusion directions= 30, slice
thickness= 2mm, number of slices= 60, max b value= 1000 s/mm2, total
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scan time= 4:23min; and these parameters for the Prisma scanner: repetition
time= 3230ms, echo time= 89.2ms, field of view= 210 × 210 × 138 mm3,
diffusion directions= 99, slice thickness= 1.5mm, number of slices= 92, max
b value= 3000 s/mm2, total scan time= 5:41min.

Imaging preprocessing and connectome reconstruction
DWI data were denoised using MRtrix’s tool dwidenoised [22] and corrected
for distortions (n= 40 Brainsuite registration-based distortion correction
[23], n= 92 FSL topup [24]) and eddy-current and head motion [25], while
performing outlier detection and replacement [26]. Quality control was
performed using eddyqc (FSL) output [27]. Two participants were excluded
for having large ventricles and 6 participants were excluded for excessive
(>3 SD) head motion. The final sample size included 132 participants.
DWI were resampled to 2 mm isotropic resolution and rotated to align

with the anterior commissure – posterior commissure line. The diffusion
data were reconstructed using generalized q-sampling imaging [28] with a
diffusion sampling length ratio of 2. Deterministic whole-brain fiber
tracking was implemented in DSI Studio using a modified fiber assignment
by continuous tracking algorithm [29]. For each subject, 1.000.000 stream-
lines with a length between 30–300mm were initiated. Fiber tracking was
performed with randomized angular threshold, step size and anisotropy
threshold values. Fractional anisotropy (FA) was calculated for each
reconstructed streamline.
Brain parcellation was performed using DSI Studio’s built-in Freesurfer

Desikan-Killiany Cortical and Subcortical atlases, with 80 regions of interest
that were transformed to each participant’s native space. For every
participant, structural weighted and undirected connectivity matrices were
constructed by using 80 cortical and subcortical regions as nodes, and
connectivity weights between the regions as edges. Two types of
connectivity weights were evaluated: the total number of connecting
streamlines touching two regions and the mean FA across voxels included
in these streamlines.

Reward network analyses
The reward network was reconstructed based on ten bilateral regions
(Fig. 1): lateral and medial orbitofrontal cortex, nucleus accumbens, caudate
nucleus and putamen [6]. Again, such regions were defined as nodes, and
the number of streamlines (NOS) and average FA between regions as edges.
We calculated graph metrics using the Brain Connectivity Toolbox (Matlab)
implemented in DSI Studio. The organization of the reward network was
analyzed by means of connectivity strength (CS), that describes the overall
strength of connections between regions both quantitatively (NOS) and
qualitatively (FA), and clustering coefficient (CC), that measures local
organization as the average probability of neighboring nodes in the network
to be interconnected. The resulting network metrics (NOS CS, NOS CC, FA
CS, FA CC) were normalized by the whole brain connectivity metrics [6, 9]
and harmonized between-scanners and protocols using ComBat (see
Supplementary Fig. S1), a batch-effect correction tool that removes the
unwanted variation by site and preserves biological variability [30].

Data treatment and statistical analysis
Prior to conducting the analyses, we registered our analysis plan in Open
Science Framework: https://osf.io/nfyha. Data manipulation and statistical
procedures were performed in R statistical package v.4.0.5 and RStudio
v.2022.02.3. Mann–Whitney U and Chi-square tests were used to analyze
between-group differences in sample demographic characteristics.
Assumptions of linear regression were visually checked for all models
using R’s check_model in package performance. If the assumptions were not
met, we log-transformed the variables.

Main analysis. We performed hierarchical linear regression analyses to
assess the relationship between reward network (REW) metrics (NOS CS,
NOS CC, FA CS, FA CC) and different predictors, which were entered in the
models by steps. We used F-tests and associated P values from ANOVA to
compare the models.
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Fig. 1 Reconstruction of the reward network using R’s package brainconn. Dots refer to hubs of the lateral (1,6) and medial orbitofrontal
cortex (2,7), caudate nucleus (3,8), putamen (4,9), and nucleus accumbens (5,10). Lines indicate structural connections.
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To assess the first hypothesis – whether higher BMI may be related to
lower connectivity in the reward network –, we tested the null model 1a:
REW metric ~ age+ sex+ estimated intracranial volume (eTIV) vs. the full
model 1b: REW metric ~ age+ sex+ eTIV+ BMI-z). For the second
hypothesis – whether the FTO rs9939609 A allele is related to lower
connectivity in the reward network – we used the same approach (null
model 2a: REW metric ~ age+ sex+ eTIV+ batch effect; full model 2b:
REW metric ~age+ sex+ eTIV+ batch effect+ FTO). Additionally, we
investigated whether the FTO locus explained variance in BMI-z (null
model 3a: BMI-z ~age+ sex+ batch effect; full model 3b: BMI-z ~age+
sex+ batch effect+ FTO). Unstandardized betas were reported. To assess
whether the results were consistent despite possible confounders, we
repeated the analyses of hypotheses (1) and (2) controlling for pubertal
stage (prepubescent or pubertal), and the anxiety and depression scores of
the Hospital Anxiety and Depression Scale. We based the inference of
whether the effect was still present on the uncorrected p values of the
model comparison. A sensitivity analysis without controlling for eTIV can
be found in Supplementary Material.

Exploratory analysis. We further performed an exploratory analysis that
was not included in the registration of the study. Hypotheses (1) and (2)
were explored at the whole-brain level using the same predictors and
structure described above (model 4a: whole-brain metric ~age+ sex+
eTIV; model 4b: whole-brain metric ~age+ sex+ eTIV+ BMI-z; model 5a:
whole-brain metric ~age+ sex+ eTIV+ batch effect; model 5b: whole-
brain metric ~age+ sex+ eTIV+ batch effect+ FTO), as well as repeating
the analyses controlling for possible confounders. A sensitivity analysis
without controlling for eTIV can be found in Supplementary Material.

Multiple comparison correction: Using R studio, we applied a false
discovery rate (FDR) correction to 17 models: REW metrics and BMI-z (4
models), REW metrics and FTO (4 models), whole-brain metrics and BMI-z (4
models), whole-brain metrics and FTO (4 models), and BMI-z and FTO
(1 model). Significance was set at FDR-corrected p-value < 0.05. When testing if
the results were consistent after controlling for possible confounders (anxiety,
depression, pubertal stage), we reported the results at an uncorrected level.

RESULTS
Descriptive characteristics of the sample according to BMI
(n= 132) and FTO status (n= 130) are detailed in Table 1. A
histogram of age distribution is provided in Supplementary Fig. S2.

Main analysis: reward network results
When testing if the variables of interest (BMI-z or FTO A allele
carrier) explained variance in the graph metrics of the reward
network, we did not find significant results (FDR > 0.05; Supple-
mentary Table S1). After controlling for possible confounders, we
observed that higher BMI-z was associated with lower FA CS
(beta=−0.003, F= 3.97, uncorrected P= 0.048, Table 2). That is,
with a lower white matter integrity among the white matter tracts
that interconnect the reward network brain regions (lateral and
medial orbitofrontal cortex, nucleus accumbens, caudate nucleus
and putamen). Additionally, we investigated whether the FTO
polymorphism explained variance in BMI-z, and found no
significant results (beta= 0.11, F= 0.0026, FDR > 0.05).

Exploratory analysis: whole-brain results
Furthermore, we investigated differences in the whole-brain
structural connectivity according to BMI-z and genetic risk of
obesity. We observed that higher BMI-z was associated with
higher FA CS (beta= 0.77, F= 11.34, FDR= 0.017, Supplementary
Table S2). After controlling for confounders (Table 3), this
relationship was still significant (beta= 0.76, F= 10.49, uncor-
rected P= 0.0015). No significant associations were found
regarding whole-brain structural connectivity and FTO variants.

DISCUSSION
In this pre-registered study of adolescents and young adults, we
examined the relationship between the structural connectivity ofTa
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the reward network, BMI-z, and the genetic risk of obesity. Here, a
higher BMI-z was significantly associated with lower structural
connectivity of the reward network. Specifically, a higher BMI-z
was associated with lower FA CS. Interestingly, when exploring the
direction of the results at the whole-brain level, we found that a
higher BMI-z was significantly related to higher FA CS. Regarding
the FTO polymorphism, we did not observe genetic associations
with measures of structural connectivity neither in the reward
network nor at the whole-brain level. Moreover, the FTO
polymorphism was not associated with BMI-z differences.

BMI-z and FTO
In our sample, although the FTO polymorphism was not
significantly associated with BMI-z, the association was in the
expected direction. This is contrary to the results of a meta-
analysis [31] that assessed, in children and adolescents of diverse
ethnicities, the effect of the FTO risk alleles on obesity. We
hypothesize that such unexpected results might be explained by
both methodological considerations and the presence of con-
founders. First, it is possible that we could not detect the effect
due to the relatively small sample size and low power.
Furthermore, our approach for the FTO analysis (carriers of the
risk allele vs. non carriers; instead of differentiating between
homozygous and heterozygous genotypes) might also have

influenced the results. Additionally, it is worth considering that
other factors such as developmental stage, socioeconomic status,
and epigenetics might modify the effects of the FTO polymorph-
ism on BMI in this group. Regarding developmental status, a
previous study suggested that the influence of a genome-wide
polygenic score of obesity on BMI trajectories was more
pronounced as development advanced and adulthood was
reached [32]. Thus, the genetic effect of FTO might be age-
dependent [33], and the impact of FTO on BMI in our sample
might be blurred due to the wide age range of our participants (10
to 21 years old), probably via the endocrinological and
physiological changes present during midpuberty that might
temporarily diminish the association between BMI-z and FTO [34].
There is also evidence of the interaction between socioeconomic
status and FTO, and how a higher socioeconomic status exerts a
protective effect regarding obesity in both children [35] and adults
[36]. Although the socioeconomic status was an intended
question of our protocol, 65% of the sample did not provide
information about their monthly family income. Thereby, this
variable was not included in the analyses. However, we stress the
importance of including social determinants in genetic studies.
Additionally, lifestyle variables (e.g., diet, physical activity, sleeping
patterns, and alcohol intake) and environmental exposure to
endocrine disruptors (e.g., bisphenol A or organophosphate

Table 2. Results from the hierarchical multiple regression analysis of BMI-z, FTO and reward network structural connectivity after controlling
for confounders.

REW metric Model Multiple regression Model comparison Variable of interest

Adj R2 P model F P uncorrected b 95% CI P

CC NOS (log) 1c 0.007 0.27 – – BMI-z – – –

1d −0.002 0.45 0.62 0.61 – – –

1e −0.009 0.57 0.03 0.86 0.004 (−0.04, 0.05) 0.87

2c 0.006 0.32 – – FTO – – –

2d −0.0004 0.44 0.74 0.53 – – –

2e −0.0003 0.44 1 0.32 −0.06 (−0.17, 0.06) 0.32

CS NOS 1c −0.013 0.74 – – BMI-z – – –

1d −0.023 0.81 0.58 0.63 – – –

1e −0.03 0.85 0.29 0.59 −0.01 (−0.05, 0.03) 0.59

2c −0.02 0.81 – – FTO – – –

2d −0.03 0.83 0.65 0.58 – – –

2e −0.03 0.85 0.56 0.45 −0.037 (−0.13, 0.06) 0.45

CC FA 1c 0.06 0.012 – – BMI-z – – –

1d 0.06 0.026 1.2 0.31 – – –

1e 0.07 0.026 1.64 0.2 −0.01 (−0.03, 0.005) 0.2

2c 0.05 0.025 – – FTO – – –

2d 0.06 0.037 1.31 0.27 – – –

2e 0.06 0.04 1.2 0.27 0.02 (−0.02, 0.06) 0.27

CS FA 1c −0.005 0.52 – – BMI-z – – –

1d −0.0009 0.44 1.23 0.3 – – –

1e 0.02 0.2 3.97 0.048 −0.003 (−0.006, −0.00005) 0.048

2c −0.01 0.62 – – FTO – – –

2d −0.003 0.47 1.32 0.27 – – –

2e 0.003 0.48 0.99 0.32 0.004 (−0.004, 0.01) 0.32

Model 1c: REW metric ~age+ sex+ eTIV; model 1d: REW metric ~age+ sex+ eTIV+ prepubescent+ anxiety+ depression; model 1e: REW metric
~age+ sex+ eTIV+ prepubescent+ anxiety+ depression+ BMI-z; model 2c: REW metric ~age+ sex+ eTIV+ batch effect; model 2d: REW metric ~age+
sex+ eTIV+ batch effect+ prepubescent+ anxiety+ depression; model 2e: REW metric ~age+ sex+ eTIV+ batch effect+ prepubescent+ anxiety+
depression+ FTO. Unstandardized betas were reported.
BMI-z body mass index z-score, CC clustering coefficient, CS connectivity strength, eTIV estimated total intracranial volume, FA fractional anisotropy, FTO fat
mass and obesity related gene (A-allele carrier vs. non carrier), NOS number of streamlines, REW reward network.
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pesticides) are known to contribute to obesity via alterations in
DNA methylation, histone modification, and non-coding RNAs
[37]. Thus, and although we did not include these variables in our
study, epigenetics might explain BMI variance and should be
considered in future studies.

BMI and structural connectivity
Our results suggested a divergence in the structural connectivity
patterns in adolescents and young adults with higher BMI-z. In the
reward network, and consistent with other studies [6, 9, 38], BMI-z
was associated with lower structural connectivity, whereas the
opposite relationship was found at the whole-brain level, similar to
the results reported by Augustijn et al. [39]. While these findings
(at an uncorrected level) in the reward network agreed with our
hypothesis, the finding of higher global FA CS related to higher
BMI-z values was unexpected. We presume that the contrary
findings in our study may evidence that the obesity-related
alterations of white matter integrity are not widespread across the
brain, but that distinct brain regions may not be affected equally
by BMI. Specifically, we hypothesize that lower FA CS values in the
reward network may explain the alterations in the reward
processing of food seen in obesity states [40]. However, in
supplementary analyses, we found that higher BMI was not
significantly related to the reward network FA CS when using raw

(not normalized) values. This might indicate that the relationship
was to some extent driven by the positive association of BMI and
whole brain FA CS (Supplementary Section A and Supplementary
Figure 3). Moreover, it is possible that differences in brain
development due to age and sex may moderate the relationship
between FA CS and BMI [41, 42]. Longitudinal sex-stratified
approaches are required to assess how the obese physiological
state affects structural connectivity during development. Impor-
tantly, since our sample size was small and our results regarding
the reward network were significant at an uncorrected level, they
should be considered preliminary. Validating these results in an
independent cohort (e.g., ABCD dataset) is advised to confirm our
findings. Additionally, it would be interesting to assess if body fat
percentage – which highly correlates with BMI but may be a more
specific measure of adiposity and probably more relevant in the
context of adolescence – has a stronger relationship with
structural connectivity in the reward network and at the whole-
brain level.

FTO and structural connectivity
In our study, and consistent with the results of Beyer et al. [9], we
did not find an association between the FTO polymorphism and
structural connectivity. Few studies have assessed the effect of the
FTO gene on brain structure and function. One study found that

Table 3. Results from the hierarchical multiple regression analysis of BMI-z, FTO and whole-brain structural connectivity after controlling
for confounders.

Whole-brain metric Model Multiple regression Model comparison Variable of interest

Adj R2 P model F P uncorrected b 95% CI P

CC NOS 4c 0.001 0.37 – – BMI-z – – –

4d −0.003 0.47 0.82 0.49 – – –

4e 0.001 0.42 1.58 0.21 0.0002 (−0.0001, 0.0006) 0.21

5c 0.21 0.0000009 – – FTO – – –

5d 0.19 0.00002 0.12 0.95 – – –

5e 0.2 0.00002 2.05 0.15 0.0006 (−0.0002, 0.001) 0.15

CS NOS 4c −0.01 0.7 – – BMI-z – – –

4d −0.02 0.8 0.55 0.65 – – –

4e −0.009 0.57 2.73 0.1 0.038 (−0.007, 0.08) 0.1

5c −0.018 0.8 – – FTO – – –

5d −0.03 0.85 0.56 0.64 – – –

5e −0.02 0.67 2.39 0.12 0.09 (−0.02, 0.2) 0.12

CC FA 4c 0.014 0.19 – – BMI-z – – –

4d 0.016 0.24 1.1 0.35 – – –

4e 0.036 0.12 3.61 0.06 0.004 (−0.0001, 0.009) 0.06

5c 0.006 0.31 – – FTO – – –

5d 0.01 0.29 1.26 0.29 – – –

5e 0.005 0.38 0.03 0.85 0.001 (−0.01, 0.01) 0.85

CS FA 4c 0.1 0.0006 – – BMI-z – – –

4d 0.11 0.002 1.22 0.31 – – –

4e 0.17 0.00007 10.49 0.0015 0.76 (0.30, 1.21) 0.0015

5c 0.1 0.002 – – FTO – – –

5d 0.1 0.004 1.3 0.28 – – –

5e 0.1 0.007 0.27 0.6 0.3 (−0.84, 1.44) 0.6

Model 4c: whole-brain metric ~age+ sex+ eTIV; model 4d: whole-brain metric ~age+ sex+ eTIV+ prepubescent+ anxiety+ depression; model 4e: whole-
brain metric ~age+ sex+ eTIV+ prepubescent+ anxiety+ depression+ BMI-z; model 5c: whole-brain metric ~age+ sex+ eTIV+ batch effect; model 5d:
whole-brain metric ~age+ sex+ eTIV+ batch effect+ prepubescent+ anxiety+ depression; model 5e: whole-brain metric ~ age+ sex+ eTIV+ batch
effect+ prepubescent+ anxiety+ depression+ FTO. Unstandardized betas were reported.
BMI-z body mass index z-score, CC clustering coefficient, CS connectivity strength, eTIV estimated total intracranial volume, FA fractional anisotropy, FTO fat
mass and obesity related gene (A-allele carrier vs. non carrier), NOS number of streamlines, REW reward network.
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high-risk FTO genotype carriers had greater activation by high
energy dense food in the ventral tegmental area/substantia nigra,
amygdala, and ventral striatum, suggesting that allelic variations
in FTO may disturb satiety processing [43]. Another study found
that the FTO risk allele was associated with lower nucleus
accumbens volumes, indicating possible impairment of dopami-
nergic projections in the reward network [44]. Overall, it is still
unclear whether FTO really exerts its obesity risk via reward
network structures. We suggest that using polygenic risk scores in
larger sample sizes might elucidate with greater predictive power
the relationship between the FTO gene and the reward network
structural connectivity.

Adolescence and reward system neurodevelopment
The dopamine system undergoes significant changes across
development. Dopamine-rich regions, such as frontal and striatal
regions, undergo maturational processes during adolescence. At
the functional level, the reward system becomes hyper-responsive
to reward and incentives, and rewarding events may result in a
larger dopamine release that can contribute to a cycle of reward-
seeking behavior [45]. The asynchrony between a heightened
bottom-up reward-related drives and a not fully matured top-
down cognitive control may underpin the adolescents’ sub-
optimal decision-making regarding risk and health behaviors (e.g.,
substance use or overconsumption of palatable foods) [46, 47].
Structurally, the reported increases in white matter volumes
during adolescence are accompanied by progressive increases in
white matter integrity – such as FA –, that may reflect the
continuous axonal myelination that undergoes during this
developmental window [48]. However, both higher BMI categories
and high fat diets may affect early myelinization, either via
disruption of essential fatty acid production or oligodendrocytes
impairment [49]. Thus, it is possible that individual differences in
white mater maturation [50] condition the effect of biological
insults, such as having overweight/obesity.

Strengths and limitations
Strengths of our study include a high-resolution MRI protocol and
the application of ComBat harmonization. Further, we pre-
registered our hypotheses and thereby increase transparency
and reliability of human neuroimaging. Limitations include that
we could not assess potential mediating factors (see the
registered analysis plan to check the conditions in which the
mediation analyses would have been performed: https://osf.io/
nfyha). Second, the sample size used might have been under-
powered to detect the effect of the FTO polymorphism on brain
connectivity. Third, lifestyle factors [51, 52] and cardiometabolic or
inflammatory variables that could help to better define our sample
were not included in our study. Fourth, we preregistered using
normalized graph metrics of the reward network, but this made it
difficult to understand whether reward vs. whole-brain changes
drove the effect. Future studies should study those independently
or use other metrics to adjust for whole-brain effects.

CONCLUSIONS
We provide evidence that, in healthy adolescents and young
adults, higher BMI-z is associated with higher connectivity at the
whole-brain level. Using an uncorrected threshold, we show that
higher BMI-z is associated with lower structural connectivity of the
reward network. Such findings may be indicative of specific
anatomical alterations associated with obesity in adolescents and
young adults. We did not find the FTO polymorphism to correlate
with structural connectivity, suggesting that the genetic contribu-
tion of this variant to white matter microstructure patterns is small
and not a plausible mechanism through which obesity risk is
conferred. Future longitudinal studies with larger sample sizes are
needed to assess how genetic determinants of obesity may

change brain structural connectivity and its behavioral
implications.

DATA AVAILABILITY
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Not harmonized 

 

Harmonized 

 

Figure S1. Graph metrics (NOS CS, NOS CC, FA CS, FA CC) with and without 

ComBat harmonization application. Each color represents a different neuroimaging 

protocol acquisition. Abbreviations: CC: clustering coefficient; CS: connectivity 

strength; FA: fractional anisotropy; NOS: number of streamlines.  

 

 



Chapter 3. Materials and Methods 

72 
 

 

 

 

Figure S2. Histogram of age distribution.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3. Materials and Methods 

73 
 

A) Testing the effect of BMIz on whole-brain CS FA and reward network CS FA 

We performed an exploratory analysis and regressed both whole-brain and reward network 

FA CS on BMIz (BMz ~ whole-brain CS FA + reward network CS FA). We used the raw 

values for reward network FA CS because the normalized reward network FA CS depends 

on whole brain FA CS. We found that whole-brain FA CS was positively associated with 

BMIz (beta = 0.11, 95% CI = (0.05, 0.17), P = 0.0009), whereas the coefficient for the reward 

network FA CS was negative but not significant (beta = -0.14, 95% CI = (-0.52, 0.33), P = 

0.44).  

 

 

 

   

Figure S3. Association between BMI-z and whole-brain FA CS (left), and BMI-z and 

reward network FA CS (right). FA CS is defined as the sum of FA values that connect 

the nodes either for the whole-brain cortical and subcortical structures (n = 80), or 

the nodes of the reward network (n = 10). Abbreviations: BMI-z: body mass index z-

score, FA: fractional anisotropy, CS: connectivity strength.  

 

 

 

 



Chapter 3. Materials and Methods 

74 
 

Table S1. Results from the hierarchical multiple regression analysis of BMI-z, FTO 

and reward network structural connectivity  

 

REW 
metric 

Model 
Multiple regression 

Model 
comparison 

Variable of interest 

Adj R2 PP model F FDR  bb  95% CI PP 

CC 
NOS 

(log) 

1a 0.007 0.27 ---- ----  
BMI-z 

---- ---- ---- 

1b 0.0001 0.41 0.09 0.93 0.007 (-0.04, 0.05) 0.76 

2a 0.006 0.32 ---- ----  
FTO 

---- ---- ---- 

2b 0.008 0.31 1.28 0.4 -0.06 (-0.18, 0.05) 0.26 

CS 
NOS 

1a -0.01 0.74 ---- ----  
BMI-z 

---- ---- ---- 

1b -0.02 0.84 0.13 0.93 -0.007 (-0.05, 0.03) 0.71 

2a -0.02 0.81 ---- ----  
FTO 

---- ---- ---- 

2b -0.02 0.81 0.66 0.59 -0.04 (-0.13, 0.06) 0.42 

CC FA 

1a 0.06 0.01 ---- ----  
BMI-z 

---- ---- ---- 

1b 0.06 0.02 1.39 0.4 -0.009 (-0.02, 0.006) 0.24 

2a 0.05 0.02 ---- ----  
FTO 

---- ---- ---- 

2b 0.06 0.02 1.78 0.4 0.02 (-0.01, 0.06) 0.18 

CS FA 

1a -0.005 0.52 ---- ----  
BMI-z 

---- ---- ---- 

1b 0.01 0.2 3.76 0.31 -0.003 (-0.006, 0.00003) 0.05 

2a -0.01 0.62 ---- ----  
FTO 

---- ---- ---- 

2b -0.006 0.52 1.59 0.4 0.005 (-0.003, 0.01) 0.21 
 

Model 1a: REW metric ~ age + sex + eTIV; model 1b: REW metric ~ age + sex + eTIV + BMI-z; 
model 2a: REW metric ~ age + sex + eTIV + batch effect; model 2b: REW metric ~ age + sex + 
eTIV + batch effect + FTO. Unstandardized betas were reported. 

Abbreviations: BMI-z: body mass index z-score; CC: clustering coefficient; CS: connectivity strength; 
eTIV: estimated total intracranial volume; FA: fractional anisotropy; FTO: fat mass and obesity 
related gene (A-allele carrier vs. non carrier); NOS: number of streamlines; REW: reward network 

 

 

 

 

 

 



Chapter 3. Materials and Methods 

75 
 

Table S2. Results from the hierarchical multiple regression analysis of BMI-z, FTO 

and whole-brain structural connectivity  

 

 

Model 4a: whole-brain metric ~ age + sex + eTIV; model 4b: whole-brain metric ~ age + sex + 
eTIV + BMI-z; model 5a: whole-brain metric ~ age + sex + eTIV + batch effect; model 5b: whole-
brain metric ~ age + sex + eTIV + batch effect + FTO. Unstandardized betas were reported. 

Abbreviations: BMI-z: body mass index z-score; CC: clustering coefficient; CS: connectivity strength; 
eTIV: estimated total intracranial volume; FA: fractional anisotropy; FTO: fat mass and obesity 
related gene (A-allele carrier vs. non carrier); NOS: number of streamlines; REW: reward network. 

 

 

 

 

 

 

 

Whole-
brain 

metrics 
Model 

Multiple regression 
Model 

comparison Variable of interest 

Adj R2 PP model F FDR  bb  95% CI PP 

CC 
NOS 

 

4a 0.001 0.37 ---- ----  
BMI-z 

---- ---- ---- 

4b 0.004 0.34 1.45 0.4 0.0002 (-0.0001, 0.0006) 0.23 

5a 0.2 9.49x10-7 ---- ----  
FTO 

---- ---- ---- 

5b 0.21 1.23x10-6 2.1 0.4 0.0006 (-0.0002, 0.001) 0.15 

 

CS 
NOS 

4a -0.01 0.7 ---- ----  
BMI-z 

---- ---- ---- 

4b 0.001 0.39 2.75 0.4 0.038 (-0.007, 0.08) 0.1 

5a -0.02 0.8 ---- ----  
FTO 

---- ---- ---- 

5b -0.01 0.6 2 0.4 0.078 (-0.03, 0.19) 0.16 

 

CC FA 

4a 0.01 0.19 ---- ----  
BMI-z 

---- ---- ---- 

4b 0.04 0.06 4.29 0.31 0.004 (0.0002, 0.009) 0.04 

5a 0.006 0.31 ---- ----  
FTO 

---- ---- ---- 

5b -0.001 0.44 0.02 0.94 -0.0008 (-0.01, 0.01) 0.88 

CS FA 

4a 0.1 0.0006 ---- ----  
BMI-z 

---- ---- ---- 

4b 0.17 0.00001 11.34 0.017 0.77 (0.32, 1.22) 0.001 

5a 0.1 0.002 ---- ----  
FTO 

---- ---- ---- 

5b 0.09 0.004 0.04 0.94 0.11 (-1.01, 1.24) 0.84 
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Sensitivity analysis  

Table S3. Results from the hierarchical multiple regression analysis of BMI-z, FTO 

and reward network structural connectivity wwithout controlling for estimated total 

intracranial volume. 

 

REW 
metric 

Model 

Multiple regression Model 
comparison 

Variable of interest 

Adj R2 P model F 
P 

uncorrected 
 b 95% CI P 

CC 
NOS 

(log) 

1c 0.01 0.14 ---- ----  
BMI-z 

---- ---- ---- 

1d 0.007 0.27 0.07 0.79 0.006 (-0.04, 0.05) 0.79 

2c 0.01 0.19 ---- ----  
FTO 

---- ---- ---- 

2d 0.01 0.2 1.25 0.26 -0.06 (-0.17, 0.05) 0.26 

 

CS 
NOS 

1c -0.008 0.62 ---- ----  
BMI-z 

---- ---- ---- 

1d -0.01 0.76 0.2 0.65 -0.009 (-0.05, 0.03) 0.65 

2c -0.01 0.7 ---- ----  
FTO 

---- ---- ---- 

2d -0.01 0.73 0.57 0.45 -0.04 (-0.13, 0.06) 0.45 

 

CC FA 

1c 0.07 0.004 ---- ----  
BMI-z 

---- ---- ---- 

1d 0.07 0.007 1.35 0.25 -0.009 (-0.02, 0.006) 0.25 

2c 0.06 0.01 ---- ----  
FTO 

---- ---- ---- 

2d 0.07 0.01 1.68 0.20 0.02 (-0.01, 0.06) 0.2 

 

CS FA 

1c 0.002 0.33 ---- ----  
BMI-z 

---- ---- ---- 

1d 0.02 0.11 3.85 0.052 -0.003 (-0.006, -0.000004) 0.05 

2c -0.003 0.45 ---- ----  
FTO 

---- ---- ---- 

2d 0.002 0.38 1.55 0.21 0.005 (-0.003, 0.01) 0.22 
 

Model 1c: REW metric ~ age + sex; model 1d: REW metric ~ age + sex + BMI-z; model 2c: REW 
metric ~ age + sex + batch effect; model 2d: REW metric ~ age + sex + batch effect + FTO. 
Unstandardized betas were reported. 

Abbreviations: BMI-z: body mass index z-score; CC: clustering coefficient; CS: connectivity strength; 
FA: fractional anisotropy; FTO: fat mass and obesity related gene (A-allele carrier vs. non carrier); 
NOS: number of streamlines; REW: reward network. 
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Table S4. Results from the hierarchical multiple regression analysis of BMI-z, FTO 

and whole-brain structural connectivity wwithout controlling for estimated total 

intracranial volume. 

 

Whole-
brain 

metrics 
Model 

Multiple regression 
Model 

comparison Variable of interest 

Adj R2 P model F 
P 

uncorrected 
 b 95% CI P 

 

CC 
NOS 

 

4a -0.009 0.67 ---- ----  
BMI-z 

---- ---- ---- 

4b -0.001 0.42 2.03 0.16 0.0002 (-0.0001, 0.0006) 0.16 

5a 0.21 4.34x10-7 ---- ----  
FTO 

---- ---- ---- 

5b 0.22 5.21x10-7 2.51 0.11 0.0006 (-0.0001, 0.001) 0.12 

CS 
NOS 

4a -0.005 0.52 ---- ----  
BMI-z 

---- ---- ---- 

4b 0.009 0.24 2.88 0.09 0.04 (-0.006, 0.08) 0.09 

5a -0.01 0.65 ---- ----  
FTO 

---- ---- ---- 

5b -0.003 0.46 1.95 0.16 0.08 (-0.03, 0.18) 0.16 

CC FA 

4a 0.01 0.16 ---- ----  
BMI-z 

---- ---- ---- 

4b 0.04 0.04 4.95 0.03 0.005 (0.0005, 0.009) 0.03 

5a 0.008 0.26 ---- ----  
FTO 

---- ---- ---- 

5b 0.0005 0.4 0.07 0.78 -0.001 (-0.01, 0.009) 0.78 

CS FA 

4a 0.08 0.001 ---- ----  
BMI-z 

---- ---- ---- 

4b 0.17 0.00001 13.31 0.0004 0.83 (0.38, 1.28) 0.0004 

5a 0.08 0.003 ---- ----  
FTO 

---- ---- ---- 

5b 0.07 0.008 0.002 0.96 -0.03 (-1.15, 1.1) 0.96 
 

Model 4a: whole-brain metric ~ age + sex; model 4b: whole-brain metric ~ age + sex + BMI-z; 
model 5a: whole-brain metric ~ age + sex + batch effect; model 5b: whole-brain metric ~ age + sex 
+ batch effect + FTO. Unstandardized betas were reported. 

Abbreviations: BMI-z: body mass index z-score; CC: clustering coefficient; CS: connectivity strength; 
FA: fractional anisotropy; FTO: fat mass and obesity related gene (A-allele carrier vs. non carrier); 
NOS: number of streamlines; REW: reward network. 
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Table S5. Results from the hierarchical multiple regression analysis of BMI-z, FTO 

and reward network structural connectivity wwithout controlling for estimated total 

intracranial volume but controlling  for other confounders (pubertal stage and 

anxiety and depression scores). 

 

 

Model 1c: REW metric ~ age + sex; model 1d: REW metric ~ age + sex + prepubescent + anxiety 
+ depression; model 1e: REW metric ~ age + sex + prepubescent + anxiety +  depression + BMI-
z; model 2c: REW metric ~ age + sex + batch effect; model 2d: REW metric ~ age + sex + batch 
effect + prepubescent + anxiety +  depression; model 2e: REW metric ~ age + sex + batch effect + 
prepubescent + anxiety +  depression + FTO. Unstandardized betas were reported. 

Abbreviations: BMI-z: body mass index z-score; CC: clustering coefficient; CS: connectivity strength; 
FA: fractional anisotropy; FTO: fat mass and obesity related gene (A-allele carrier vs. non carrier); 
NOS: number of streamlines; REW: reward network. 

 

REW 
metric 

Model 
Multiple 

regression Model comparison Variable of interest 

Adj R2 P model F P uncorrected  b  95% CI P 

CC 
NOS 

(log) 

1c 0.01 0.14 ---- ----  
BMI-z 

---- ---- ---- 
1d 0.006 0.33 0.63 0.6 ---- ---- ---- 
1e -0.001 0.45 0.03 0.85 0.004 (-0.04, 0.05) 0.85 
2c 0.01 0.19 ---- ----  

FTO 
---- ---- ---- 

2d 0.008 0.33 0.75 0.53 ---- ---- ---- 
2e 0.008 0.34 1.03 0.31 -0.06 (-0.17, 0.05) 0.31 

CS 
NOS 

1c -0.008 0.62 ---- ----  
BMI-z 

---- ---- ---- 
1d -0.01 0.71 0.66 0.58 ---- ---- ---- 
1e -0.02 0.77 0.34 0.56 -0.01 (-0.05, 0.03) 0.56 
2c -0.01 0.7 ---- ----  

FTO 
---- ---- ---- 

2d -0.02 0.74 0.69 0.56 ---- ---- ---- 
2e -0.02 0.78 0.51 0.48 -0.03 (-0.13, 0.06) 0.48 

CC FA 

1c 0.06 0.005 ---- ----  
BMI-z 

---- ---- ---- 
1d 0.07 0.01 1.19 0.32 ---- ---- ---- 
1e 0.07 0.01 1.51 0.22 -0.01 (-0.02, 0.006) 0.22 
2c 0.06 0.01 ---- ----  

FTO 
---- ---- ---- 

2d 0.07 0.02 1.28 0.28 ---- ---- ---- 
2e 0.07 0.03 1.07 0.3 0.02 (-0.02, 0.06) 0.3 

CS FA 

1c 0.002 0.33 ---- ----  
BMI-z 

---- ---- ---- 
1d 0.008 0.32 1.26 0.29 ---- ---- ---- 
1e 0.03 0.13 3.92 0.05 -0.003 (-0.006, -0.00003) 0.05 
2c -0.003 0.45 ---- ----  

FTO 
---- ---- ---- 

2d 0.004 0.37 1.3 0.27 ---- ---- ---- 
2e 0.004 0.39 0.9 0.34 0.004 (-0.004, 0.01) 0.34 
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Table S6. Results from the hierarchical multiple regression analysis of BMI-z, FTO 

and whole-brain structural connectivity wwithout controlling for estimated total 

intracranial volume but controlling  for other confounders (pubertal stage and anxiety 

and depression scores). 

Whole-
brain 

metric 
Model 

Multiple regression Model 
comparison 

Variable of interest 

Adj R2 P model F 
P 

uncorrect

ed 
 b 95% CI P 

 

CC 
NOS 

 

4c -0.009 0.67 ---- ----  
BMI-z 

---- ---- ---- 

4d -0.005 0.50 1.2 0.31 ---- ---- ---- 

4e 0.003 0.38 1.99 0.16 0.0003 (-0.0001, 0.0006) 0.16 

5c 0.21 4.34x10-7 ---- ----  
FTO 

---- ---- ---- 

5d 0.19 0.00001 0.06 0.98 ---- ---- ---- 

5e 0.2 0.00001 2.50 0.12 0.0006 (-0.0001, 0.001) 0.12 

CS 
NOS 

4c -0.005 0.52 ---- ----  
BMI-z 

---- ---- ---- 

4d -0.01 0.69 0.59 0.62 ---- ---- ---- 

4e -0.002 0.45 2.7 0.1 0.04 (-0.007, 0.08) 0.1 

5c -0.01 0.65 ---- ----  
FTO 

---- ---- ---- 

5d -0.02 0.77 0.56 0.64 ---- ---- ---- 

5e -0.01 0.57 2.43 0.12 0.09 (-0.02, 0.2) 0.12 

CC FA 

4c 0.01 0.16 ---- ----  
BMI-z 

---- ---- ---- 

4d 0.01 0.22 1.17 0.32 ---- ---- ---- 

4e 0.04 0.08 4.14 0.04 0.004 (0.0002, 0.009) 0.04 

5c 0.008 0.26 ---- ----  
FTO 

---- ---- ---- 

5d 0.02 0.24 1.34 0.26 ---- ---- ---- 

5e 0.008 0.34 0.006 0.94 0.0004 (-0.01, 0.01) 0.94 

CS FA 

4c 0.08 0.001 ---- ----  
BMI-z 

---- ---- ---- 

4d 0.09 0.004 1.54 0.21 ---- ---- ---- 

4e 0.16 0.00007 12.15 0.0007 0.81 (0.35, 1.26) 0.0007 

5c 0.08 0.003 ---- ----  
FTO 

---- ---- ---- 

5d 0.09 0.005 1.53 0.21 ---- ---- ---- 

5e 0.09 0.01 0.09 0.76 0.17 (-0.96, 1.31) 0.76 
 

Model 4c: whole-brain metric ~ age + sex; model 4d: whole-brain metric ~ age + sex + prepubescent 
+ anxiety + depression; model 4e: whole-brain metric ~ age + sex + prepubescent + anxiety +  
depression + BMI-z; model 5c: whole-brain metric ~ age + sex + batch effect; model 5d: whole-
brain metric ~ age + sex + batch effect + prepubescent + anxiety +  depression; model 5e: whole-
brain metric ~ age + sex + batch effect + prepubescent + anxiety +  depression + FTO. 
Unstandardized betas were reported.  Abbreviations: BMI-z: body mass index z-score; CC: clustering 
coefficient; CS: connectivity strength; FA: fractional anisotropy; FTO: fat mass and obesity related 
gene (A-allele carrier vs. non carrier); NOS: number of streamlines; REW: reward network 
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Abstract
Obesity is characterized by cardiometabolic and neurocognitive changes. However, how these two factors relate to each other 
in this population is unknown. We tested the association that cardiometabolic measures may have with impulse behaviors 
and white matter microstructure in adolescents with and without an excess weight. One hundred and eight adolescents (43 
normal-weight and 65 overweight/obesity; 11–19 years old) were medically and psychologically (Temperament Character 
Inventory Revised, Three-Factor Eating Questionnaire-R18, Conners’ Continuous Performance Test-II, Stroop Color and 
Word Test, Wisconsin Card Sorting Test, Kirby Delay Discounting Task) evaluated. A subsample of participants (n = 56) 
underwent a brain magnetic resonance imaging acquisition. In adolescents, higher triglycerides and having a body mass 
index indicative of overweight/obesity predicted a more impulsive performance in Conners’ Continuous Performance Test-
II (higher commission errors). In addition, higher glucose and diastolic blood pressure values predicted increments in the 
Three-Factor Eating Questionnaire-R18 emotional eating scale. Neuroanatomically, cingulum fractional anisotropy showed 
a negative relationship with glycated hemoglobin. The evaluation of the neurocognitive differences associated with obesity, 
usually based on body mass index, should be complemented with cardiometabolic measures.
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Abbreviations
BMI  Body mass index
CPT-II  Conners’ Continuous Performance Test-II

DBP  Diastolic blood pressure
DDT  Kirby Delay Discounting Task
DTI  Diffusion tensor imaging
FA  Fractional anisotropy
FDR  False discovery rate
HDL-c  High-density lipoprotein cholesterol
IFOF  Inferior fronto-occipital fasciculus
LDL-c  Low-density lipoprotein cholesterol
MD  Mean diffusivity
MRI  Magnetic resonance imaging
ROI  Region of interest
TCI-R  Temperament Character Inventory Revised
TFEQ-R18  Three-Factor Eating Questionnaire-R18
WCST  Wisconsin Card Sorting Test
WM  White matter

Introduction

Overweight and obesity represent a major public health 
concern. Since 1975, the prevalence of excess weight 
among children and adolescents has more than quadrupled. 
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Psychological, biological, and sociocultural factors can 
contribute to the development of overweight/obesity 
(World Health Organization 2020). Impulsivity is a mul-
tidimensional construct that can correlate with the expres-
sion of excess weight, since it may lead to a rapid and 
unplanned reaction towards food. Impulsivity involves 
urgency, lack of perseverance and premeditation, and 
sensation seeking (Mobbs et al. 2010). Importantly, it 
is a broad concept that has diverse traits and manifesta-
tions. A systematic review (Liang et al. 2014) highlighted 
that, although the literature had mixed results, most stud-
ies found more pronounced impulsive behaviors in chil-
dren and adolescents with overweight/obesity.

Overweight/obesity is also associated with neuroanatomic 
changes. White matter (WM) differences in this population 
have been studied with diffusion tensor imaging (DTI). DTI 
research evidenced WM alterations related to excess weight. 
Two common measures of WM microstructure are fractional 
anisotropy (FA) and mean diffusivity (MD). Lower FA and 
higher MD may reflect disturbances in WM microstruc-
ture. In adults, many studies found a negative association 
between body mass index (BMI) and FA in several WM 
tracts (Verstynen et al. 2012; Xu et al. 2013; Papageorgiou 
et al. 2017; Rodrigue et al. 2019). A positive association 
between BMI and MD was also described (Xu et al. 2013); 
although another study did not find associations between 
BMI and MD (Papageorgiou et al. 2017). In children and 
adolescents, there are mixed results regarding BMI and WM 
microstructure. There was described a positive (Ou et al. 
2015), negative (Alarcón et al. 2016), and no relationship 
(Alosco et al. 2014) between BMI and FA. Concerning BMI 
and MD, no significant relationship was found in two studies 
(Ou et al. 2015; Alarcón et al. 2016), while another observed 
higher MD values in participants with excess weight (Car-
bine et al. 2019).

Moreover, not only BMI is related to WM microstructure. 
Obesity is usually accompanied by cardiometabolic changes 
that might have a potential impact on neural integrity. How 
WM integrity is negatively related to cardiometabolic meas-
ures has been studied under a broader approach: metabolic 
syndrome. Metabolic syndrome has been related to WM 
microstructure (Segura et  al. 2009) and macrostructure 
(Morys et al. 2021), and in adolescents (Yau et al. 2012) 
and adults (Segura et al. 2009). Studies evaluating the inde-
pendent effect that each cardiometabolic variable may have 
on WM are sparse and focused on adults (Verstynen et al. 
2013; Lou et al. 2014; Cox et al. 2019; Johnson et al. 2019).

While BMI is a commonly used indirect measure of over-
weight/obesity, it is an incomplete diagnostic tool (Barlow 
2007).

Thus, to favor an integrative assessment of overweight/
obesity, we complemented BMI with cardiometabolic 
variables. Despite the emerging interest in the study of 

cardiometabolic profile as a possible biomarker of impul-
sivity—especially focused on mental health (Conklin and 
Stanford 2008; Kavoor et al. 2017; Messaoud et al. 2017)—, 
the relationship of cardiometabolic measures with impul-
sivity and neuroanatomical differences in adolescents with 
overweight/obesity remains unknown.

The present study evaluates, in adolescents with normal 
weight and overweight/obesity, the association of cardiomet-
abolic risk factors with (1) impulsive behaviors and (2) WM 
microstructure. We hypothesize that greater cardiometabolic 
risk factors might be related to (1) more impulsive behav-
iors, and (2) to WM microstructure differences. Specifically, 
we expect to find lower FA and higher MD values in associa-
tion with greater cardiometabolic risk.

Materials and methods

Participants

We recruited 108 adolescents (mean age = 15 ± 2.02 years 
old) from public primary care centers. From this sample, 
53 participants were already included in a previous work 
regarding inflammation and grey matter (Prats-Soteras 
et al. 2020). Inclusion criteria involved being from 11 to 
19 years old and having a BMI indicative of normal weight, 
overweight or obesity. Participants were classified into two 
groups: normal-weight (n = 43) and overweight/obesity 
(n = 65). For that purpose, Cole and Lobstein centile curves 
(Cole and Lobstein 2012), that provide age and sex-specific 
cut-off points from 2 to 17 years old, were used to clas-
sify underage participants. In participants aged 18 and 19, 
according to the World Health Organization’s classifica-
tion (World Health Organization 2020), those with a BMI 
between ≥ 18.5 and < 25 kg/m2 were classified as normal-
weight, and those with BMI ≥ 25 kg/m2 were classified as 
overweight/obesity.

Exclusion criteria were (1) being prepubescent and (2) 
having a psychiatric, neurological, developmental, or sys-
temic diagnosis. Participants did not take any chronic medi-
cation. Participants aged 18 and 19 were excluded if they 
met metabolic syndrome criteria (Alberti et al. 2009). For 
underage participants, and given the lack of general con-
sensus to define pediatric metabolic syndrome (Yau et al. 
2012), we used the cut-off points available from the Expert 
Panel on Integrated Guidelines for Cardiovascular Health 
and Risk Reduction in Children and Adolescents (De Jesus 
2011) as exclusion criteria. Finally, participants showing 
global cognitive impairment (i.e., scalar score < 7 in the 
Weschler Adults Intelligence Scale-III/Weschler Intelli-
gence Scale for Children-IV vocabulary subtest (WAIS-III/
WISC-IV)), significant anxiety and depression symptoms 
(i.e., anxiety or depression symptoms total score ≥ 11 in the 
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Hospital Anxiety and Depression Scale), and binge eating 
behaviors (i.e., score ≥ 20 in the Bulimia Inventory Test of 
Edinburgh) were also excluded.

This study was approved by the Institutional Ethics 
Committee. The research was conducted in accordance 
with the Helsinki Declaration. Written informed consent 
was obtained from all participants, or their respective legal 
guardian in underage participants, prior to entry into the 
study.

Procedure

Participants were randomly contacted by phone and briefly 
interviewed about general health aspects. The first day, 
potential candidates were cited to undergo a complete 
medical evaluation and a fasting blood sample extraction 
in the Pediatric Endocrinology Unit at a Public Hospital. 
Subjects not presenting any medical comorbidity were neu-
ropsychologically evaluated in the next days. Participants 
without claustrophobia or metal prothesis also underwent 
a brain magnetic resonance imaging (MRI) acquisition on 
a 3T MAGNETON Trio (Siemens, Germany) at a Public 
Hospital.

Measures

Anthropometric and cardiometabolic measures

All anthropometric measurements were taken by a trained 
nurse from participants in light clothing without shoes: 
waist circumference, height (Holtan Limited Harpenden 
Stadiometer), weight (Seca 704 s) and BMI (kg/m2), which 
was transformed into BMI z-score. Pubertal stage was 
determined according to the Tanner scale of sexual matu-
rity. Cardiometabolic measures included total cholesterol, 
high-density lipoprotein cholesterol (HDL-c), low-density 
lipoprotein cholesterol (LDL-c), triglycerides, glucose and 
glycated hemoglobin. Diastolic (DBP) and systolic blood 
pressure were manually determined twice (Riester Big Ben 
Round), and the mean of both determinations was used for 
posterior analyses. A description of cardiometabolic meas-
ures can be found in Supplementary Material-1a.

Impulsivity measures

The neuropsychological evaluation included: Temperament 
Character Inventory Revised (TCI-R), Three-Factor Eat-
ing Questionnaire-R18 (TFEQ-R18), Conners’ Continuous 
Performance Test II (CPT-II), Stroop Color and Word Test, 
Wisconsin Card Sorting Test (WCST) and Kirby Delay 
Discounting Task (DDT). We used the following scores to 
characterize impulsivity: higher scores in the TCI-R novelty 
seeking subscale, TFEQ-R18 uncontrolled and emotional 

eating scales, CPT-II commissions errors, WCST persevera-
tive errors and DDT geometric mean; and lower scores in 
Stroop Interference score. A description of the neuropsy-
chological assessment can be found in Supplementary 
Material-1b.

Image acquisition and diffusion-tensor imaging processing

DTI is a neuroimaging analysis technique that quantifies the 
directionality of water molecules in the brain (Basser et al. 
1994). A common measure used in DTI studies is FA, which 
reflects the orientation dependence of water movement, and 
hence gives information about WM microstructure. FA 
measurement ranges from 0 to 1. Higher FA values may 
suggest well myelinated and undamaged tracts constrain-
ing the directional diffusion of water to be parallel, whereas 
lower FA values may reflect disturbed WM microstructure 
(Kullmann et al. 2015). Since FA is unspecific to the source 
driving the changes in WM microstructure, we tested a 
complementary diffusivity scalar. MD is the average of all 
eigenvalues with higher values meaning exacerbated cell 
permeability and thus WM impairments.

Fifty-six participants (25 normal-weight and 31 over-
weight/obesity) underwent an MRI. The parameters used to 
acquire the diffusion-weighted images are detailed in Sup-
plementary Material-1c. Image processing was performed 
in FMRIB Software Library (FSL) v.6.0.4 and BrainSuite 
v.18a1. Estimated total intracranial volume was obtained for 
each participant using Freesurfer v.6.0 recon-all pipeline. 
An explanation of the imaging processing procedure can be 
found in Supplementary Material-1d.

Two approaches were considered in the DTI analysis: 
region of interest (ROI) and whole brain. Using the JHU 
ICBM-DTI-81 White-Matter Labels Atlas and JHU White 
Matter Tractography Atlas, five ROIs previously implicated 
in obesity and impulsivity were defined: cingulum, corona 
radiata, corpus callosum, inferior fronto-occipital fasciculus 
(IFOF) and internal capsule (Verstynen et al. 2012; Yau et al. 
2012, 2014; Kullmann et al. 2015; Ou et al. 2015; Uhlmann 
et al. 2016; Jeong et al. 2017; Jiang et al. 2017; Papageor-
giou et al. 2017; Bessette and Stevens 2019; Reich et al. 
2019; Rodrigue et al. 2019; Carbine et al. 2019; Schreiner 
et al. 2020; Huang et al. 2020; Owens et al. 2020; Morys 
et al. 2021). FA and MD values of every ROI were averaged 
per individual and WM tract.

To explore additional relationships between the cardio-
metabolic profile and WM microstructure, whole-brain con-
trasts were implemented in FSL randomise with 10,000 iter-
ations and a Threshold-Free Cluster Enhancement approach 
(Smith et al. 2006). Age, sex, BMI z-score and estimated 
total intracranial volume were modeled as nuisance vari-
ables. Due to the exploratory nature of these tests, a Bonfer-
roni correction was applied. This method is more restrictive 
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than the False Discovery Rate (FDR) correction used in 
the ROI analysis. Thus, for whole-brain analysis, statistical 
significance was set at P < 0.0015 (8 cardiometabolic vari-
ables × 2 WM measures × 2 contrasts).

Data treatment and statistical analyses

Data manipulation and statistical procedures were performed 
in R statistical package v.4.0.5 and RStudio v.1.2.5033. Nor-
mality was determined with Shapiro–Wilk tests. Positively 
and non-normally distributed variables were transformed 
into their logarithmic form prior to any analyses. Briefly, 
we performed three different types of analyses: (a) Mean/
median differences between BMI groups in all variables, 
(b) multiple regression: impulsivity or DTI measures ~ car-
diometabolic variables + covariates, and (c) median differ-
ences of impulsivity measures between high/low cardio-
metabolic groups. Analysis (a) was performed to describe 
between-group differences. Analysis (b) was performed with 
all variables of interest, regardless of whether they were or 
not significantly different between groups in analysis (a). 
Analysis (c) was performed with only those variables that 
were significant in analysis (b).

Specifically, (a) independent sample T-tests, Mann–Whit-
ney U tests and Chi-square tests were used to analyze 
between-group differences. Effect sizes were calculated 
using R packages effsize and rcompanion. Missing values for 
every variable were reported in Tables 1 and 2. We repeated 
these analyses for the subsample of participants that under-
went an MRI acquisition (Supplementary Material, Tables 
S1 and S2). (b) Multiple regression analyses were per-
formed to determine which cardiometabolic variables were 
the strongest predictors of impulsivity measures (covari-
ates: age, sex, BMI z-score and intelligence quotient esti-
mation (WAIS-III/WISC-IV vocabulary subtest)) and FA/
MD differences (covariates: age, sex, BMI z-score and esti-
mated total intracranial volume) in 5 WM tracts. Variance 
inflation factor (VIF) was used to assess multicollinearity 
within the predictors. To avoid a misestimation of the regres-
sion coefficients, total cholesterol was removed for having 
a VIF > 10. Confidence intervals at 95% for the regression 
coefficients were calculated as follows: [βi − 1.96 × SE(βi), 
βi + 1.96 × SE(βi)]. Multiple testing was controlled by FDR 
for 17 models (i.e., 7 impulsivity, 5 ROI-FA and 5 ROI-
MD models). Only those with FDR < 0.05 were considered 
significant. (c) To provide a better visualization of the rela-
tionship between cardiometabolic measures with impulsiv-
ity, and only for those cardiometabolic regressors that were 
statistically significant in the multiple regression analysis, 
we defined two groups: participants with lower (≤ percen-
tile 50th measure of interest) and higher (> percentile 50th 
measure of interest) cardiometabolic values. Then, the 
Mann–Whitney U test was used to analyze between-group 

differences in impulsivity test medians, and their ratio was 
calculated. 

Results

Groups were not significantly different for sex, age, bulimia, 
anxiety, and depression symptoms (P > 0.05). As expected, 
the overweight/obesity group had a higher BMI z-score and 
waist circumference (mean = 1.95 and 95.08, respectively; 
P < 0.01) than their peers with normal weight (mean = − 0.06 
and 69.85, respectively). Significant between-group differ-
ences were also found in the lipid profile: the overweight/
obesity group had lower HDL-c values (P < 0.01) and higher 
triglycerides (P < 0.01) than the normal-weight group. Nei-
ther LDL-c (P = 0.7) nor total cholesterol (P = 0.2) were sig-
nificantly different. Differences in demographic, anthropo-
metric and cardiometabolic measures are detailed in Table 1. 
Regarding impulsivity measures, participants belonging to 
the overweight/obesity group performed higher commission 
errors in the CPT-II test (P < 0.01). No significant differ-
ences between groups were found in the other impulsivity 
measures (P > 0.05). Table 1 provides a summary of impul-
sivity measures for both groups.

Cardiometabolic and impulsivity measures

After FDR correction, two out of the seven impulsivity 
models remained statistically significant: CPT-II commis-
sion errors [R2 adj = 0.24; R2 adj 95% CI = (0.11, 0.36), 
FDR = 0.0016] and TFEQ-R18 emotional eating [R2 
adj = 0.18; R2 adj 95% CI = (0.06, 0.29); FDR = 0.012] 
models. The CPT-II model showed that for a 1% increase 
in triglycerides there was an increment of 0.04 commission 
errors in CPT-II (P = 0.018), and that for each unit of BMI 
z-score there was an increment of 2.1 commission errors 
(P = 0.004). Also, the TFEQ-R18 emotional eating model 
indicated that for each unit of glucose (mmol/L) and DBP 
(mmHg) there was an increment of 1.11 (P = 0.016) and 0.06 
(P = 0.02) in this scale score, respectively. Table 2 provides 
a summary of the significant models. Correlations between 
cardiometabolic and impulsivity measures are included in 
Supplementary Material (Table S3).

Additionally, we tested for differences between par-
ticipants with lower (values ≤ percentile 50th) and higher 
(values > percentile 50th) cardiometabolic values and 
impulsivity (Fig.  1). Participants from the higher tri-
glycerides group (26% normal-weight, 74% overweight/
obesity) committed 19% more CPT-II commission errors 
than those within the lower triglycerides group (53.7% 
normal-weight, 46.3% overweight/obesity): median = 25 
and 21, respectively; P = 0.006. Also, participants from 
the higher DBP group (15.7% normal-weight, 84.3% 
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overweight-obesity) scored 25% higher in the TFEQ-R18 
emotional eating scale than those within the lower DBP 
group (61.4% normal-weight, 38.6% overweight/obesity): 
median = 5 and 4, respectively; P = 0.04. The rest of the 
regressors did not show significant statistical differences 
between higher and lower values.

Cardiometabolic and neuroanatomical measures

Global FA and MD were not significantly different 
between groups (P > 0.05). In the ROI-based analysis, and 
regarding FA, the cingulum was significantly predicted 
by cardiometabolic variables [R2 adj = 0.31; R2 adj 95% 
CI = (0.15, 0.46); FDR = 0.015] (Table 3; Fig. 2; Sup-
plementary Fig. S1). Specifically, glycated hemoglobin 

Table 1  Demographic, anthropometric, cardiometabolic and impulsivity measures in the normal-weight (NW) and overweight/obesity (OW/OB) 
groups

BMI: body mass index; WC: waist circumference; SBP: systolic blood pressure, DBP: diastolic blood pressure; HbA1c: glycated hemoglobin; 
TC: total cholesterol; HDL-c: high-density lipoprotein cholesterol; LDL-c: low-density lipoprotein cholesterol; TG: triglycerides, WAIS-III: 
Weschler Adults Intelligence Scale-III; WISC-IV: Weschler Intelligence Scale for Children-IV; TFEQ-R18: Three-Factor Eating Questionnaire-
R18; TCI-R: Temperament Character Inventory Revised; CPT-II: Conner’s Continuous Performance Test-II; Stroop: Stroop Color and Word 
Test; WCST: Wisconsin Card Sorting Test; DDT: Kirby Delay Discounting Task

Test statistics: aChi Squared Test; bMann–Whitney U test; ct-test

Effect size interpretation: Nnegligible; Ssmall; Mmedium; Llarge

*Significant differences between groups

NW (n = 43) OW/OB (n = 65) Test statistic Effect size P

Mean (SD) Range NA Mean (SD) Range NA

Demographic measures
Females (n) 23 – – 30 – – x2 = 0.3a 0.58

Age (years old) 15.28 (2.08) 12–19 – 14.83 (1.99) 11–19 – W =  1539b r = 0.09N 0.37

Anthropometric measures
BMI z-score  − 0.06 (0.59)  − 1.3 to 0.9 – 1.95 (0.38) 0.8–2.69 – W = 2.5b r = 0.84L  < 0.01*

WC (cm) 69.85 (7.2) 59–90 – 95.08 (10.24) 70–117 1 W = 75.5b r = 0.79L  < 0.01*

Cardiometabolic measures
SBP (mmHg) 107.78 (12.3) 82.5–132 – 116.69 (9.84) 96–135 – W = 813.5b r = 0.35M  < 0.01*

DBP (mmHg) 60.32 (7.95) 45–82.5 – 67.95 (8.92) 50–85 – W = 727.5b r = 0.41M  < 0.01*

Glucose (mmol/L) 4.32 (0.4) 3.12–4.91 – 4.52 (0.41) 3.62–5.39 – W =  1043b r = 0.21S 0.03*

HbA1c (%) 5.06 (0.24) 4.4–5.5 – 5.19 (0.28) 4.5–5.7 1 t =  − 2.48c d =  − 0.49S 0.015*

TC (mmol/L) 4.06 (0.6) 2.9–5.95 – 3.9 (0.62) 2.67–5.58 – t = 1.3c d = 0.25S 0.2

HDL-c (mmol/L) 1.53 (0.32) 1.05–2.35 – 1.22 (0.25) 0.67–1.76 – t = 5.69c d = 1.12L  < 0.01*

LDL-c (mmol/L) 2.21 (0.49) 1.3–3.5 – 2.25 (0.54) 1.3–3.5 – t =  − 0.38c d =  − 0.07N 0.7

TG (mmol/L) 0.65 (0.25) 0.34–1.63 – 0.96 (0.44) 0.35–2.02 – t =  − 4.51c d =  − 0.82L  < 0.01*

Estimated intelligence quotient
WAIS-III/WISC-IV 

vocabulary
11.07 (2.43) 8–19 – 10.31 (2.17) 7–17 – t = 1.7 d = 0.33S 0.09

Impulsivity measures
TFEQ-R18 Emotional 

eating
4.58 (2.01) 3–11 – 4.86 (1.83) 3–9 – W =  1235b r = 0.1S 0.29

TFEQ-R18 Uncontrolled 
eating

16.37 (5.13) 3–29 – 17.03 (5.22) 9–30 – W =  1306b r = 0.060N 0.57

TCI-R Novelty seeking 
total score

104.49 (11.25) 82–129 6 103.44 (11.69) 79–130 15 t = 0.42c d = 0.09N 0.67

CPT-II Commission 
errors

19.5 (6.39) 3–30 1 23.45 (7.13) 5–35 – t =  − 2.9c d =  − 0.58M  < 0.01*

Stroop Interference score 3.49 (5.7)  − 9.19 to 20.37 – 2.77 (6.86)  − 16.91 to 21.24 – t = 0.57c d = 0.11N 0.56

WCST Perseverative 
errors

16.48 (11.92) 4–51 1 18.66 (12.63) 5–65 – t =  − 1.27c d =  − 0.18N 0.2

DDT Geometric mean 0.01 (0.01) 0.0001–0.047 2 0.01 (0.02) 0.0001–0.117 11 W =  1240b r = 0.1S 0.32
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and BMI z-score were negatively associated with FA 
(b = − 0.01, P = 0.012; and b = − 0.002, P = 0.0495, 
respectively). Another WM tract, the IFOF, was signifi-
cantly associated with glycated hemoglobin (b = − 0.003, 
P = 0.01), although the model did not overcome FDR 
correction (FDR = 0.059). Regarding MD, no significant 

associations were found. Correlations between cardio-
metabolic and neuroanatomical measures are included 
in Supplementary Material (Table S4). To second-assess 
the results obtained in the ROI-based analysis, we did a 
whole-brain analysis. After applying Bonferroni adjusted 
threshold for 32 tests (P < 0.0015), no significant associa-
tions were found. 

Table 2  Multiple regression 
coefficients of the TFEQ-R18 
emotional eating and CPT-II 
commission errors models

BMI: body mass index; IQ: intelligence quotient; WAIS-III: Weschler Adults Intelligence Scale-III; WISC-
IV: Weschler Intelligence Scale for Children-IV; TFEQ-R18: Three-Factor Eating Questionnaire-R18; 
CPT-II: Conner’s Continuous Performance Test-II; HDL-c: high-density lipoprotein cholesterol; LDL-c: 
low-density lipoprotein cholesterol; TG: triglycerides; HbA1c: glycated hemoglobin; DBP: diastolic blood 
pressure; SBP: systolic blood pressure

*Significant associations (P values < 0.05) for the CPT and TFEQ-R18 emotional eating regression models 
with FDR < 0.05

TFEQ-R18—emotional eating CPT-II—commission errors

b 95% CI P b 95% CI P

Sex (female) 1.15 (0.45, 1.85) 0.002*  − 1.6 (− 4.14, 0.94) 0.22

Age (years old) 0.18 (− 0.006, 0.36) 0.06  − 0.92 (− 1.59, − 0.25) 0.009*

BMI z-score 0.07 (− 0.31, 0.45) 0.7 2.1 (0.71, 3.48) 0.004*

Estimated IQ (WAIS-III/
WISC-IV vocabulary)

 − 0.07 (− 0.23, 0.09) 0.37  − 0.11 (− 0.68, 0.45) 0.71

HDL (mmol/L) 0.33 (− 0.96, 1.63) 0.62  − 0.18 (− 4.88, 4.53) 0.94

LDL-c (mmol/L)  − 0.41 (− 1.08, 0.26) 0.23  − 0.26 (− 2.68, 2.16) 0.83

TG (mmol/L) (Log)  − 0.07 (− 0.99, 0.85) 0.88 4.09 (0.74, 7.43) 0.018*

Hb1Ac (%)  − 0.64 (− 1.94, 0.66) 0.33 0.8 (− 3.91, 5.51) 0.74

Glucose (mmol/L) 1.11 (0.26, 1.96) 0.016*  − 1.56 (− 4.66, 1.54) 0.32

DBP (mmHg) 0.06 (0.007, 0.11) 0.02*  − 0.17 (− 0.36, 0.02) 0.08

SBP (mmHg)  − 0.03 (− 0.07, 0.01) 0.23  − 0.05 (− 0.2, 0.1) 0.48

Fig. 1  a Boxplot of CPT-II commission errors test (raw scores). b 
Boxplot of the TFEQ-R18 emotional eating scale (raw scores). Par-
ticipants with lower TG and DBP (values ≤ median) are grouped as 
‘Lower TG or lower DBP values’, whereas those with higher TG and 
DBP (values > median) are grouped as ‘Higher TG or higher DBP 

values’. Participants are not stratified by normal-weight and over-
weight/obesity groups. Abbreviations: CPT-II: Conners’ Continuous 
Performance Test-II; TFEQ-R18: Three-Factor Eating Questionnaire-
R18; TG: triglycerides; DBP: diastolic blood pressure
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Discussion

We examined the relationship of cardiometabolic measures 
with impulsive behaviors and WM differences in adoles-
cents with normal-weight and overweight/obesity. First, we 
explored the relationship that cardiometabolic measures 
might have with impulsivity. We found that triglycerides 
were associated with a more impulsive performance in the 
CPT-II test (higher commission errors), and that glucose and 
DBP were associated with higher scores on the TFEQ-R18 
emotional eating scale. Second, we assessed whether car-
diometabolic variables were related to WM microstructure 
in five ROIs. We found that FA values in the cingulum were 
negatively associated with glycated hemoglobin.

Impulsivity

The most common ways to evaluate impulsivity are through 
rating scales and performance-based tests. Rating scales 
measure self-reported features of impulsive behavior over 
time, whereas performance-based tests provide an objective 

Table 3  Multiple regression coefficients of the significant white matter tract

FA: fractional anisotropy; BMI: body mass index; HDL-c: high-den-
sity lipoprotein cholesterol; LDL-c: low-density lipoprotein choles-
terol; TG: triglycerides; HbA1c: glycated hemoglobin; DBP: diastolic 
blood pressure; SBP: systolic blood pressure; Total ICV: estimated 
total intracranial volume

*Significant associations (P values < 0.05) for the WM tract regres-
sion model with FDR < 0.05

FA cingulum

b 95% CI P

Sex (female) 9.56e−04 (− 5.4e−03, 7.3e−03) 0.77

Age (years old) 1.84e−03 (5.45e−04, 3.1e−03) 0.008*

BMI z-score  − 2.35e−03 (− 4.6e−03, − 7e−05) 0.0495*

HDL (mmol/L)  − 6.53e−03 (− 1.6e−02, 2.7e−03) 0.17

LDL-c (mmol/L) 4.13e−03 (− 4.1e−04, 8.7e−03) 0.08

TG (mmol/L) (Log) 5.99e−04 (− 5.5e−03, 6.7e−03) 0.85

Hb1Ac (%)  − 1.05e−02 (− 1.8e−02, − 2.6e−03) 0.012*

Glucose (mmol/L) 3.92e−04 (− 5.6e−03, 6.3e−03) 0.9

DBP (mmHg) 2.22e−04 (− 1.9e−04, 6.3e−04) 0.3

SBP (mmHg)  − 1.3e−04 (− 4.7e−04, 2.1e−04) 0.45

Total ICV  (mm3) 1.83e−10 (4e−10, 1e−11) 0.04*

Fig. 2  a Fractional anisotropy (FA), b mean diffusivity (MD) effect sizes—Cohen’s d—with 95% confidence intervals of lipid and cardiometa-
bolic traits on the cingulum, corona radiata, corpus callosum, inferior fronto-occipital fasciculus (IFOF) and internal capsule. Significant effect 
sizes are labeled in the X axis with rhombus, circle, triangle, cross and square symbols for cingulum, corona radiata, corpus callosum, IFOF and 
internal capsule, respectively. After FDR correction, only the FA cingulum model remained significant. Abbreviations: DBP: diastolic blood 
pressure; HbA1c: glycated hemoglobin; HDL-c: high-density lipoprotein cholesterol; LDL-c: low-density lipoprotein cholesterol; SBP: systolic 
blood pressure; TG: triglycerides
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assessment of behaviors related to impulsive actions (Emery 
and Levine 2017). Impulsivity has been conceptualized as 
a broad trait composed of different phenotypes that mani-
fest in a similar manner (Sharma et al. 2014). Within our 
sample, higher triglycerides were related to greater commis-
sion errors in the CPT-II test, which is also the only impul-
sivity measure (Shaked et al. 2020) significantly different 
between groups in the t-tests. Performance-based tests can 
never assess an isolated cognitive domain. It is possible that, 
compared to other tests, the CPT-II evaluates more directly 
impulsivity because it leads to more automatic responses and 
the capacity of inhibition becomes fundamental.

To date, there is a lacking consensus about the relation-
ship between impulsivity and cardiometabolic measures. A 
study in a large healthy sample (Sutin et al. 2010) evalu-
ated the relationship of personality traits (NEO Personal-
ity Inventory) with lipid profile. They found that impul-
sivity was positively associated with triglycerides, while 
self-discipline and deliberation were negatively associated 
with triglycerides and positively with HDL-c. Excitement-
seeking was not significantly associated with lipid profile. 
Conversely, another study (Peterfalvi et al. 2019) did not find 
any relationship between the lipid profile (total cholesterol, 
HDL-c, LDL-c, triglycerides) and any CPT-II parameter in 
adults with major depression disorder, whereas lower HDL-c 
values did predict poorer shifting (WCST) abilities in this 
population. Although, as mentioned, there is a disparity in 
the literature, our results agree with previous studies that 
reported associations between cardiometabolic risk factors 
and impulsivity (Pozzi et al. 2003; Sutin et al. 2010). How-
ever, more research in clinical and healthy populations is 
needed to assess the nature of this relationship.

In addition, higher glucose and DBP values were related 
to higher scores on the TFEQ-R18 emotional eating scale. 
Emotional eating leads to the consumption of highly pal-
atable and energy-dense foods—comfort foods—as a 
mechanism to cope with negative emotions. Given this, 
we hypothesize that such an eating pattern is accompanied 
by immediate glucose spikes and, at a mid/long term, with 
higher basal glucose levels. Also, negative emotions as a 
form of stress may be related to higher blood pressure. Par-
ticularly, the obesogenic environment and the easy access 
to palatable foods may be a key factor in this eating pattern, 
and future research studying its possible mediator effect may 
help to target specific public health actions.

Overall, our results support our first hypothesis. In our 
data, cardiometabolic risk factors are associated with impul-
sivity. Importantly, this association was found with cardio-
metabolic variables of different nature: blood pressure, glu-
cose, and triglycerides.

White matter microstructure

The present study provides new evidence regarding WM 
microstructure and cardiometabolic measures in adolescents 
with and without excess weight. Our results suggested an 
inverse association between glycated hemoglobin and FA 
values in the cingulum; a WM tract that has been previously 
related to obesity (Verstynen et al. 2012; Kullmann et al. 
2015; Papageorgiou et al. 2017; Carbine et al. 2019). This 
finding is consistent with a recent study in healthy adults 
(Repple et al. 2021) that demonstrated that non-pathological 
variations in glycated hemoglobin are related to WM micro-
structure. Regarding our second hypothesis, we expected to 
find more cardiometabolic components associated with WM 
microstructure. It is possible that glycated hemoglobin, even 
at levels much below the prediabetes, works as an early indi-
cator of cardiometabolic risk (Veeranna et al. 2011), whereas 
more morbid levels may be required for the other cardiomet-
abolic components to show an association with WM micro-
structure. Also, and since our research targets adolescence—
a period where individuals undergo several developmental 
processes, including WM maturation (Barnea-Goraly et al. 
2005)—future longitudinal studies are necessary to see if 
our findings are related to brain maturation and myelination 
processes that occur in adolescence.

Limitations and future directions

This study has some limitations that should be acknowl-
edged: (1) given our cross-sectional design, we could not 
assess causality in our results, (2) the smaller sample size 
used for the neuroimaging analyses limited their statistical 
power, and (3) the diffusion-weighted images were acquired 
with only 30 directions. Future studies including larger sam-
ple sizes and a longitudinal approach are needed to confirm 
whether our findings are consistent in different age spec-
trums and persist over time.

Conclusions

Our findings show that, in adolescents, triglycerides and 
having a BMI indicative of overweight/obesity predict 
a more impulsive performance in the CPT-II test (higher 
commission errors). In addition, glucose and DBP predict 
increments in the TFEQ-R18 emotional eating scale. Neuro-
anatomically, the cingulum FA shows a negative association 
with glycated hemoglobin and BMI. Our study provides a 
comprehensive overview of the relationship between cardio-
metabolic risk factors typically related to overweight/obesity 
and neurocognitive variables; and invites us to look beyond 
the BMI when evaluating possible behavioral, cognitive, and 
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neuroanatomical differences associated with overweight/
obesity.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00429- 023- 02615-0.
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1a. Biological roles of the cardiometabolic measures 

Cholesterol is (i) a key component of cell membranes, (ii) needed to produce hormones 

(including sex hormones) and vitamin D, and (iii) needed to produce bile acids to digest food.  

When the level of cholesterol is above the normal range, it can combine with other 

substances and build up plaques in the arteries. If this situation persists, a condition known 

as atherosclerosis is likely to appear, which increases the cardiovascular risk. LDL-cholesterol 

contributes to plaque formation, and HDL-cholesterol collects excessive blood cholesterol 

levels and transports them to the liver for excretion. Triglycerides are fundamentally involved 

in energy storage. Excessive levels of triglycerides contribute to atherosclerosis development. 

Glucose is the body’s main source of energy. When eating, glucose levels spike, and the 

pancreas produces insulin to regulate blood glucose levels. If glucose levels are persistently 

high, the risk of insulin resistance and diabetes increases. The excess of blood glucose is 

attached to hemoglobin –glycated hemoglobin –, which is one of the diabetes diagnostic 

biomarkers. Blood pressure allows blood circulation. When the levels of blood pressure are 

high, cardiovascular risk increases (Wishart et al. 2022). 

 

1b. Description of impulsivity measures 

Temperament Character Inventory Revised (TCI-R) (Gutierrez and Bayón 2004) is a 240 questions 

self-administered questionnaire designed for the evaluation of the seven dimensions of 

personality: novelty seeking, harm avoidance, reward dependence, persistence, self-

directedness, cooperativeness and self-transcendence. Novelty seeking subscale comprises a 

punctuation range from 35 to 175, where higher scores indicate greater impulsivity traits.  

Three-Factor Eating Questionnaire-R18 (TFEQ-R18) (Stunkard and Messick 1985) examines 

cognitive and behavioral components of eating. It is an 18 self-report questionnaire that 

targets three eating behaviors: uncontrolled eating, emotional eating and cognitive restraint 

eating. Impulsiveness is assessed through emotional eating (tendency to eat in response to 

negative emotions) and uncontrolled eating (tendency to overeat while experiencing feelings 

of being out of control). Uncontrolled eating comprises a punctuation range from 9 to 36, 

and emotional eating from 3 to 12. In both cases, higher scores indicate greater impulsivity 

traits (Aoun et al. 2019) 
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The Conners’ Continuous Performance Test-II (CPT-II) (Conners 2004) is a computerized task that 

assesses inattention and the response inhibition component of executive function. 

Participants are required, with a previous short training, to press a computer key after every 

letter except the X. Commission errors are computed as the number of responses given to 

the non-target letter. Higher commission errors are indicative of greater impulsivity. 

The Stroop Color and Word Test (Golden 1995) assesses the ability to inhibit cognitive 

interference. The Stroop test consists of three sheets with 20 words distributed in five 

columns each. Participants have forty-five seconds to read aloud and as fast as possible each 

sheet. The word-sheet (W) requires the participant to read a list of black-inked color names 

(i.e., red, green, blue). In the color-sheet (C), the subject is required to name the color (i.e., 

red, green or blue) of non-readable stimuli (i.e., “XXXX”). The incongruent-sheet (I) 

requires the participant to name the color of the word, which differs from the written name 

(i.e., “blue” in red-ink). The interference score is calculated with the formula: I – [(W x C)/W 

+ C)]. Lower interference values denote less ability to suppress automatic responses, and 

thus greater impulsivity.   

The Wisconsin Card Sorting Test (WCST) (Heaton 1999) is a computerized task that measures 

cognitive flexibility. Participants are asked to match 64 cards based on a principle (i.e., color, 

shape or number of elements) that is not explained to them and needs to be learned from 

the feedback as to whether their responses are correct or incorrect. After ten consecutive 

hits, the matching rule changes without announcement. Perseverative errors are computed 

as the number of incorrect responses that would have been correct for the preceding 

matching rule. Higher perseverative errors scores mirror impulsivity traits and cognitive 

rigidity, or the inability to switch from the original mindset to an alternative one. 

The Kirby Delay Discounting Task (DDT) (Kirby 1996) is a task that measures impulsive 

decision-making, evaluating the preference for smaller and immediate rewards over larger 

and delayed rewards. Participants are asked to answer 27 questions that require them to 

choose between small ($25-35), medium ($50-60) and large ($75-85) delayed rewards. For 

example, ‘Would you prefer $33 today or $80 in 14 days?’. The discount rate k is estimated within 

each range (small, medium, large), and the geometric mean of the three rates is calculated for 

each participant. Higher k values indicate the preference for small immediate rewards, which 

correspond to higher levels of impulsivity. 
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1c. Parameters used to acquire the diffusion weighted images   

The diffusion-weighted images (DWI) were acquired with the following parameters: 

repetition time = 7,700 ms, echo time = 89 ms, acquisition matrix = 122 × 122, 2 mm 

isotropic voxel, field of view = 244 × 244 mm2, diffusion directions = 30, slice thickness = 

2 mm, number of slices = 60, b-values = 0 and 1,000 s/mm2, IPAT factor = 2 and total scan 

time = 4:23 minutes. A T1-weighted MPRAGE 3D sequence was also acquired for 

registration, EPI distortion correction, and cortical grey matter morphometry analysis using 

the following parameters: TR = 2300 ms, TE = 2.98 ms, inversion time = 900 ms, 240 slices, 

FOV = 256 × 256 mm2, 1 mm isotropic voxel.  

 

1d. Explanation of the DTI imaging processing procedure  

All DWI sequences were visually inspected to detect artifacts, skull-stripped and corrected 

for head motion and eddy currents. Parallel skull stripping and bias-filed correction (FAST) 

were applied to the T1-weighted images. EPI distortions of DWI images were solved by 

using a constrained non-rigid registration to each participants’ T1-weighted image (Bhushan 

et al. 2012), which is a default step from the BS diffusion pipeline 

(http://brainsuite.org/processing/diffusion/). Gradient rotation after this registration was 

also performed to optimize tensor fitting in subsequent steps. The diffusion tensor was fitted 

to each voxel to generate the FA maps with a linear weighted least squares model to 

appropriate scale data variances (Jones et al. 2013). FA maps were non-linearly registered 

onto the most representative participant’s FA map to prevent anatomical misalignments 

(Bach et al. 2014). To limit the presence of spurious tracts, the mean FA skeleton was 

generated based on each participants’ FA values with a threshold > 0.25. MD was also 

projected onto the mean FA skeleton for complementary analysis. 

 

 Programs used for neuroimaging and statistical analyses 

 FMRIB Software Library (FSL) v.6.0.4: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL 
 BrainSuite v.18a1: http://brainsuite.org/ 
 Freesurfer v.6.0 recon-all pipeline: 

https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all 
 R statistical package v.4.0.5: https://www.r-project.org 
 RStudio v.1.2.5033: https:// www.rstudio.com 
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Fig. S1 Scatterplot of the observed vs predicted cingulum FA values of the multiple 

regression model. All the independent variables included in the full model were used to 

predict cingulum FA values (sex + age + BMIz + HDL + HDL + TG(log) + Hb1Ac + 

glucose + DBP + SBP + Total ICV)  
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Table S1. Demographic, anthropometric, cardiometabolic and measures in normal-weight 

(NW) and overweight/obesity (OW/OB) groups of the participants that underwent an MRI 

acquisition. 

 
Abbreviations. BMI: Body Mass Index; WC: waist circumference; SBP: systolic blood pressure, DBP: diastolic 
blood pressure; HbA1c: glycated hemoglobin; TC: total cholesterol; HDL-c: high-density lipoprotein 
cholesterol; LDL-c: low-density lipoprotein cholesterol; TG: triglycerides. 
 
Test statistics: a Chi Squared Test; b t-test; c Mann-Whitney U Test 
Effect size interpretation: N negligible; S small; M medium; L large 
*Significant differences between groups  

 

 

 

 

 

 

 

 

  NW (n = 25) OW/OB (n = 31) Test 
statistic 

Effect size PP value    Mean (SD) Range NA Mean (SD) Range NA 

Females (n) 12   13   x2 = 0,03a  0,85 

Age (years old) 14,88 (2,05) 12 – 19 - 15,42 (2,11) 12 – 19 - T = -0,96b d = -0,26S 0,34 

BMI z-score -0,13 (0,58) -1,28 – 0,9 - 1,94 (0,34) 1,06 – 2,69 - T = -16,82b d =-4,52L <0,01* 

WC (cm) 69,6 (6,88) 59 – 89,5 - 98,15 (10,67) 78 – 117 1 T = -11,5b d = -3,11L <0,01* 

SBP (mmHg) 107,7 (11,59) 85 – 125 - 115,34 (11,33) 96 – 135 - W = 248c r = 0,3M 0,02* 

DBP (mmHg) 61,6 (8,65) 50 – 82,5 - 67,81 (9,77) 50 – 83,5 - T = -2,48b d = -0,67M 0,02* 
Glucose 

(mmol/L) 4,26 (0,43) 3,12 – 4,79 - 4,52 (0,38) 3,62 – 5,3 - T = -2,39b d = -0,64M 0,02* 

HbA1c (%) 5,05 (0,25) 4,4 – 5,5 - 5,1 (0,3) 4,5 – 5,7 - T = -0,6b d = -0,16N 0,55 

TC (mmol/L) 4 (0,6) 2,9 – 5,08 - 3,98 (0,63) 2,67 – 5,11 - T = 0,15b d = 0,04N 0,88 
HDL-c 

(mmol/L)  1,46 (0,3) 1,05 – 2,35 - 1,19 (0,24) 0,67 – 1,67 - T = 3,75b d = 1L <0,01* 

LDL-c 
(mmol/L) 2,24 (0,48) 1,3 – 3,1 - 2,31 (0,51) 1,4 – 3,3 - T = -0,64b d = -0,17N 0,53 

TG (mmol/L)  0,69 (0,3) 0,34 – 1,63 - 1,04 (0,5) 0,35 – 1,98 - T = -2,86b d = -0,82L <0,01* 
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Table S2. Impulsivity measures in the normal-weight (NW) and overweight/obesity 

(OW/OB) groups of the participants that underwent an MRI acquisition. 

 

Abbreviations. TFEQ-R18: Three-Factor Eating Questionnaire-R18; TCI-R: Temperament Character 
Inventory Revised; CPT-II: Conner’s Continuous Performance Test-II; Stroop: Stroop Color and Word Test; 
WCST: Wisconsin Card Sorting Test; DDT: Kirby Delay Discounting Task. 

Test statistics: a Chi Squared Test; b t-test 
Effect size interpretation: N negligible; S small; M medium; L large 
*Significant differences between groups  

 

 

 

 

 

 

  
Impulsivity measures 

NW (n = 25) OW/OB (n = 31) 
Test 

statistic 
Effect 
size 

 
P Mean (SD) Range NA 

Mean 
(SD) 

Range NA 

TFEQ-R18                    
Emotional eating 4,68 (2,08) 3 – 11 - 4,9 (1,94) 3 – 9 - W = 357a r = 0,07N 0,61 

Uncontrolled eating 17,4 (5,3) 9 – 29 - 18,22 (5,29) 9 – 30 - T = -0,58b d = -
0,15N 0,56 

TCI-R          
Novelty seeking total 

score 103,92 (8,99) 83 – 129 1 100,8 (7,84) 87 – 113 6 T = 1,26b d = 0,36S 0,21 

CPT-II          

Commission errors 19,6 (6,37) 3 – 28 - 23,19 (6,91) 5 – 35 - W = 261a r = 0,28S 0,04* 
Stroop          

Interference score 3,24 (4,14) -6,58 – 11,48 - 2,1 (5,29) -7,92 – 12,59 - T = 0,89b d = 0,24S 0,4 
WCST          

Perseverative errors 15,12 (9,95) 4 – 47 - 20,48 (14,8) 6 – 65 - T = -1,69b d = -0,42S 0,1 
DDT          

Geometric mean 0,01 (0,008) 0,0004 – 0,02 1 0,02 (0,03) 0,0001 – 0,12 6 W = 318a r = 0,05N 0,73 
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Table S3. Bivariate correlations between cardiometabolic and impulsivity measures (n = 108).  

 

Abbreviations. BMI-z: Body Mass Index z-score; WC: Waist Circumference; SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure; HbA1c: Glycated Hemoglobin; TC: Total 
Cholesterol; HDL-c: High-Density Lipoprotein cholesterol; LDL-c: Low-Density Lipoprotein cholesterol; TG: Triglycerides; Vocabulary_ss: WAIS-III/WISC Vocabulary subtest 
scalar score; Stroop_INT: Stroop Color and Word Test_Interference score;  TFEQ_UE: Three-Factor Eating Questionnaire-R18_Uncontrolled Eating; TFEQ_EE: Three-Factor 
Eating Questionnaire-R18_Emotional Eating; TCI_NS: Temperament Character Inventory Revised_Novelty seeking subscale; CPT_CE: Conner’s Continuous Performance Test-
II_Commission errors; WCST_PE: Wisconsin Card Sorting Test_Perseverative errors; DDT_Geomean: Kirby Delay Discounting Task_Geometric mean. 

Significant correlations 
P<0.05*    P<0.01**    P<0.001*** 
 

 

 

 

BMI-z WC SBP DBP HbA1c Glucose TC HDL-c LDL-c TG (log) Vocabulary_ss Stroop_INT CPT_CE TFEQ_UE TEFQ_EE TCI_NS DDT_Geomean WCST_PE (log)
Age -0,08 0,18 0,23* 0,3** -0,08 -0,18 -0,02 0,07 -0,11 0,08 0,29** 0,03 -0,35*** 0 0,19* 0,06 0,24* -0,14

BMI-z 0,86*** 0,38*** 0,4*** 0,23* 0,25** -0,12 -0,49*** 0,04 0,39*** -0,16 -0,11 0,32*** 0,05 0,08 -0,1 0,08 0,1
WC 0,44*** 0,44*** 0,15 0,24* -0,06 -0,5*** 0,09 0,45*** -0,05 0,02 0,2* 0,12 0,16 -0,09 0,19 0,09
SBP 0,68*** 0,02 0,13 0,13 -0,22* 0,19 0,37*** 0,04 -0,06 -0,08 0,02 0,02 -0,12 0,01 0,08

DBP 0,08 0,12 0,05 -0,18 0,06 0,4*** 0,08 -0,09 -0,14 0,1 0,25** -0,17 0,01 0,12
HbA1c 0,17 -0,16 -0,25** -0,04 0,06 -0,2* -0,04 0,11 -0,01 -0,03 0,08 0,02 0,1

Glucose 0 -0,16 0,05 0,14 0,01 -0,08 0,05 0,27** 0,15 0,11 0,05 -0,03
TC 0,45*** 0,88*** 0,15 0,16 0,19 -0,03 -0,2* -0,11 -0,05 -0,07 0,13

HDL-c 0,07 -0,46*** 0,19* 0,09 -0,24* -0,16 0 -0,02 -0,2* -0,05
LDL-c 0,13 0,05 0,17 0,02 -0,18 -0,14 -0,02 0 0,15

TG (log) 0,03 -0,05 0,25** 0,1 0,01 -0,06 0,18 0,04
Vocabulary_ss 0,17 -0,17 -0,15 -0,05 0,09 0,05 -0,03

Stroop_INT -0,08 -0,03 0,04 0,21 -0,05 0,02
CPT_CE 0,03 -0,23 -0,02 0,02 0,15

TFEQ_UE 0,47 0,07 0,03 0,11
TEFQ_EE 0 -0,02 0,06

TCI_NS 0,01 -0,03
DDT_Geomean 0

Cardiometabolic measures
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Table S4. Bivariate correlations between cardiometabolic, FA and MD measures (n = 56).  

 

Abbreviations. BMI-z: Body Mass Index z-score; WC: Waist Circumference; SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure; HbA1c: Glycated Hemoglobin; TC: Total 
Cholesterol; HDL-c: High-Density Lipoprotein cholesterol; LDL-c: Low-Density Lipoprotein cholesterol; TG: Triglycerides; CC: Corpous callosum; CR: Corona radiata; INT 
CAPSULE: Internal capsule; IFOF: inferior fronto-occipital fasciculus. 

Significant correlations 
P<0.05*    P<0.01**    P<0.001*** 
 
 
 
 
 
 

BMI-z WC SBP DBP HbA1c Glucose TC HDL-c LDL-c TG (log) CR CINGULUM IFOF CC INT CAPSULE CR CINGULUM IFOF CC INT CAPSULE
AGE 0,2 0,45*** 0,48*** 0,5*** 0,08 -0,12 -0,13 -0,21 -0,11 0,27* 0,07 0,42** 0,28* -0,06 0,37** -0,25 -0,4** -0,3* -0,18 -0,3*

BMI-z 0,88*** 0,34** 0,35** 0,07 0,34** -0,06 -0,51*** 0,08 0,38** -0,05 -0,03 0 -0,12 0,03 0,05 -0,15 0,03 0,04 -0,08
WC 0,46*** 0,48*** 0,05 0,38** -0,01 -0,5*** 0,11 0,43*** -0,02 0,1 0,12 -0,15 0,16 -0,08 -0,22 -0,08 -0,03 -0,13
SBP 0,79*** -0,08 0,26 0,17 -0,18 0,15 0,45*** 0,26 0,31* 0,34* 0,12 0,42** -0,3* -0,26 -0,24 -0,19 -0,22

DBP -0,01 0,23 0,15 -0,19 0,1 0,57*** 0,25 0,34** 0,33* 0,11 0,35** -0,27* -0,37** -0,22 -0,19 -0,22
HbA1c 0,2 -0,1 -0,07 -0,11 0,06 -0,38** -0,29* -0,37** -0,34** -0,28* 0,27* 0,13 0,21 0,26 0,24

Glucose 0,01 -0,22 0,05 0,19 -0,17 -0,09 -0,15 -0,18 -0,2 0,19 0,06 0,15 0,12 0,11
TC 0,4** 0,9*** 0,28* 0,13 0,12 0,18 0,04 0,19 -0,2 -0,03 -0,08 -0,16 -0,04

HDL-c 0,08 -0,48*** -0,07 -0,15 -0,14 -0,09 0,01 0,04 0,22 0,14 0,01 0,09
LDL-c 0,24 0,16 0,16 0,21 0,03 0,15 -0,19 -0,09 -0,09 -0,16 -0,04

TG (log) 0,12 0,22 0,25 0,14 0,21 -0,23 -0,23 -0,27* -0,15 -0,14
CR 0,49*** 0,78*** 0,66*** 0,75*** -0,78*** -0,46*** -0,67*** -0,72*** -0,68***

CINGULUM 0,7*** 0,41** 0,73*** -0,49*** -0,83*** -0,52*** -0,48*** -0,63***

IFOF 0,7*** 0,79*** -0,78*** -0,59*** -0,76*** -0,69*** -0,68***

CC 0,49*** -0,51*** -0,32* -0,49*** -0,55*** -0,43**

INT CAPSULE -0,75*** -0,7*** -0,67*** -0,64*** -0,8***

CR 0,54*** 0,87*** 0,89*** 0,82***

CINGULUM 0,6*** 0,58*** 0,76***

IFOF 0,81*** 0,77***

CC 0,84***

INT CAPSULE
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Abstract

Objectives: Chronic stress induces preclinical changes in the metabolic, car-

diovascular, and immune systems. This phenomenon, known as allostatic load

(AL), can impair executive functions (EF), which may be even more affected

in individuals with excess weight due to their characteristic inflammatory state

and cardiometabolic changes. Adverse childhood experiences (ACEs) contrib-

ute to AL and may influence executive functioning presumably via alterations

within the hypothalamic–pituitary axis, including epigenetic modifications.

We assess the relationship between AL and EF in youth with and without

excess weight, and the effect ACEs on executive functioning.

Methods: One hundred eighty-two adolescents and young adults (85 with nor-

mal weight and 97 with overweight/obesity; 10–21 years) were recruited. The

estimated AL index included the following: systolic and diastolic blood pres-

sure, glycated hemoglobin, high- and low-density lipoprotein cholesterol, tri-

glycerides, high-sensitivity C-reactive protein, fibrinogen, and cortisol. ACEs

were measured using the Juvenile Victimization Questionnaire. The neuropsy-

chological evaluation included the assessment of inhibition, working memory,

and cognitive flexibility processes.

Results: AL was not significantly associated with executive functioning, and

this relationship did not depend on body-weight status. ACEs, available for

57 of 182 participants, were significantly associated with poorer executive

functioning.

Conclusions: Our study shows that AL is not associated with executive func-

tioning in adolescents and young adults. Since the current sample was young,

we hypothesize that a longer exposure to AL might be required for its negative

effects to surface. Nevertheless, exposure to early adversity seems to be associ-

ated with poorer executive functioning in youth.
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1 | INTRODUCTION

Stress involves allostasis, a complex process where the
organism initiates physiological multisystemic adapta-
tions to overcome a challenging scenario and return to a
new stable state. When the brain interprets a situation as
a threat, primary mediators in the form of neuroendo-
crine responses prepare the organism for a fight-or-flight
response. Such adaptations are necessary to maintain sta-
bility through adversity but, when facing long-term
stress, secondary outcomes take place as preclinical varia-
tions in metabolic, cardiovascular, and immune systems.
This preclinical state is known as allostatic load
(AL) and, if sustained over time, tertiary outcomes—
clinical disorders—can arise (Juster et al., 2010).

Throughout adolescence, there is an increased sensi-
tivity to stress and a change in the biological responses to
stress, making this period particularly vulnerable to its
effects (Whelan et al., 2021). For example, the prefrontal
cortex (PFC) is richer in cortisol receptors during this
time of development, making it more susceptible to the
neurocognitive consequences of stress (Tottenham &
Galv�an, 2016). The PFC includes brain regions that sup-
port executive functions (EF), namely inhibition, cogni-
tive flexibility, and working memory, key functions that
collectively facilitate the achievement of goals
(Diamond, 2013). Cognitive dysfunction is known to be
one of the tertiary outcomes of AL (Juster et al., 2010),
and a recent meta-analysis in adults suggested that
higher AL values were associated with poorer EF
(D'Amico et al., 2020).

Chronic stress can be triggered by multiple reasons
but here we focus on excess weight and early life adver-
sity. Excess weight has been broadly related to states of
low-grade chronic inflammation and cardiometabolic
alterations that can not only initiate or add up to the
effects of AL (Suvarna et al., 2020) but also hinder execu-
tive functioning (Farruggia & Small, 2019). Similarly, the
accumulation of adverse childhood experiences (ACEs)
across childhood can trigger adaptative multisystemic
responses that may in turn have long-lasting effects on
cognition among children (Guinosso et al., 2016) and
adults (Hawkins et al., 2021). Moreover, the nature of the
ACEs has also been described as a possible contributor to
cognitive dysfunction (McLaughlin et al., 2014).

To the best of our knowledge, although previous
works have explored the association between AL and EF
in adult populations (D'Amico et al., 2020), none have
focused on adolescents and young adults. Moreover,
given that the literature suggests a relationship between
body mass index (BMI) and AL in pediatric and adult
samples (Cedillo et al., 2019; Suvarna et al., 2020), we
explore whether the association between AL and EF

might be different according to the BMI group. This has
already been done in adult samples (Ottino-Gonz�alez
et al., 2019), but not in adolescents. On the other hand,
ACEs are strongly associated with psychopathology, and
psychopathology affects cognitive functioning. Therefore,
studying the extent to which ACEs affect EF in a sample
without mental health diagnoses may help to disentangle
this relationship without the influence of such an impor-
tant confounder.

Thus, the present study fills a gap in the literature by
evaluating, in adolescents and young adults, the relation-
ship between (i) AL and EF, and (ii) AL and EF accord-
ing to BMI. Additionally, we assessed how (iii) ACEs—
from infancy to adolescence—as a form of chronic stress
may affect EF. We hypothesized that (i) a higher AL
index will be related to lower EF, (ii) and that this rela-
tionship will be stronger in participants with overweight/
obesity. Also, we hypothesize that (iii) higher ACEs will
be associated with poorer EF.

2 | MATERIALS AND METHODS

Recruitment and data collection took place between 2010
and 2022 and included three different protocols. Potential
candidates (n = 205) underwent a medical evaluation
and a blood draw either in person at the Hospital de
Terrassa-Consorci Sanitari de Terrassa or at home due to
the SARS-CoV-2 outbreak. The pubertal stage was deter-
mined in this visit according to the Tanner scale of sexual
maturity. A neuropsychological evaluation, either in-
person or online, was completed in a second visit. The
inclusion criterion was being aged between 10 and
21 years old. Exclusion criteria were having
(i) underweight, (ii) high sensitivity C-reactive protein
(hs-CRP) >10 mg/L as a likely indicator of acute infec-
tion (Pearson et al., 2003), (iii) psychiatric, neurological,
developmental, cardiometabolic, or systemic diagnosis,
(iv) global cognitive impairment, or (v) bulimia-like
behaviors. Exclusion criteria application led to a final
sample size of 182. Most participants self-identified as
White and Spaniard (n = 170). Ten participants self-
identified as Latino, and two participants did not report
their race or ethnicity. The socioeconomic status,
assessed by monthly family income, was only available
for 96 participants. From the sample used in this study,
some participants were already included in previous
works (Prunell-Castañé, Beyer, et al., 2023; Prunell-Cas-
tañé, Jurado, et al., 2023).

This study was approved by the Institutional Ethics
Committee of the University of Barcelona (Institutional
Review Board IRB00003099, assurance number
FWA00004225). The research was conducted by the
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Helsinki Declaration. Written informed consent was
obtained from all participants, or their legal guardians in
underage participants before they entered into the study.

2.1 | Anthropometric measurement

Participants wore light clothing and no shoes for height
and weight measurments. BMI was calculated as
kilogram per square meter and transformed into BMI z-
scores (BMIz) after CDC growth charts with the R pack-
age cdcanthro. Since BMIz can be calculated for partici-
pants up to 20 years, the BMIz for participants aged
20 and 21 years was calculated as if they were 19 years
and 11 months (Must & Anderson, 2006). We classified
participants as normal weight or overweight/obesity
using the BMI cutoffs from Cole and Lobstein (2012) for
underage participants, and the 25 kg/m2 BMI cutoff from
the World Health Organization (2021) for participants
aged 18–21 years.

2.2 | AL index

The AL index included nine biomarkers representing car-
diovascular (systolic blood pressure and diastolic blood
pressure), metabolic (glycated hemoglobin, high-density
lipoprotein cholesterol (HDL), low-density lipoprotein
cholesterol (LDL), and triglycerides), immune (hs-CRP
and fibrinogen), and neuroendocrine (cortisol) systems.
Supplementary material S1 provides information on how
the concentrations of hs-CRP, fibrinogen, and cortisol
were determined. Anthropometric measures are usually
included in the calculation of AL (Whelan et al., 2021).
However, we aimed to assess differences in AL between
BMI groups. Therefore, including anthropometric mea-
surements in the AL index would be a circular analysis,
since they strongly correlate with BMI. Given this, we did
not consider anthropometric measurements in the AL
calculation but rather included other biomarkers that
broadly represent the metabolic system.

We used two different methods to calculate the AL
index. Although the high-risk percentile is the most used
in the literature, we additionally calculated the AL as a
composite z-score, as it uses the full continuum of data
(Carbone et al., 2022). For both methods, a prorated AL
index was computed in participants with missing values.
Supplementary material provides a more thorough expla-
nation of both methods.

• In the first method, the AL index was the sum of all
nine biomarkers' dichotomous scores, that is, each
participant surpassing the biomarker's high-risk

percentile scored 1 on that biomarker (i.e., ≥75th or
≤25th in the case of HDL cholesterol). The sum of
all biomarkers constituted the AL index (range 0–9),
with higher scores meaning higher AL. Cutoff scores
were based on the normal weight group (n = 85) to
prevent setting the thresholds too high by including
participants with overweight/obesity, as these are
more likely to have higher values in all biomarkers
(Ottino-Gonz�alez et al., 2017). Additionally, we set
different cutoffs for males and females (Kerr
et al., 2020), and for the time of blood draw (morn-
ing or afternoon) in biomarkers that presented statis-
tical differences (p < .05). Table 1 shows the cutoff
points for all biomarkers.

• In the second method, all biomarkers were z-scaled
and added into a composite with greater scores mean-
ing higher AL. The HDL z-score was reverse-scored so
that higher values reflected greater alteration. Addi-
tionally, we adjusted the AL composite score to sex
and blood draw daytime. To do so, we used the stan-
dardized residuals of the linear regression: AL compos-
ite score � sex + blood draw daytime.

2.3 | Neuropsychological assessment

The neuropsychological assessment included in-person
and online evaluation of EF and ACEs. A more detailed
description of these assessments can be found in
Supplementary Material. Working memory was assessed
using the Letter–Number Sequencing scalar score of the
WAIS-III/WISC-IV (Wechsler, 2002, 2007). Inhibition
was evaluated using the Stroop color and word test inter-
ference score (Golden, 1995). Cognitive flexibility was
assessed using the perseverative raw errors from the com-
puterized version of the Wisconsin Card Sorting Test
(Heaton, 1999). We additionally calculated a composite
to assess EF globally. Higher scores in working memory,
inhibition, and EF composite, and lower scores in cogni-
tive flexibility indicated better performance.

Furthermore, the Juvenile Victimization Question-
naire (Pereda et al., 2014) was used to assess ACEs
exposure among participants. It is a self-reported ques-
tionnaire translated into Spanish and validated in the
Spanish population that focuses on six types of victimi-
zation from infancy to adolescence: conventional
crimes, caregiver victimization, peer and sibling vic-
timization, sexual victimization, witnessing and indi-
rect victimization, and electronic victimization. Higher
scores were indicative of higher victimization. Only
participants of the third protocol (n = 57) received this
questionnaire.
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2.4 | Statistical analysis

The analytical plan of this paper was preregistered in
Open Science Framework (osf.io/37t2e). Data manipula-
tion and statistical procedures were performed in R
(v.4.0.5) and RStudio (v.2022.02.3). Independent sample
T-tests, Mann–Whitney U tests, and Chi-squared tests
were used to analyze between-group differences in sam-
ple characteristics. We assessed potential differences in
cognitive variables in participants who underwent the
neuropsychological assessment in-person versus online,
as well as the interaction of confounding variables such
as age, sex, and BMI group with the modality of evalua-
tion (see Table S1). Regarding ACEs, we compared the
estimated prevalence of juvenile victimization in Spain
with our data. The following methods were used for both
AL index calculations (sum of the high-risk percentile of
the sample distribution and composite mean z-score):

• Semi-partial correlations in the entire sample
(n = 182) were conducted between AL and EF (ppcor
package, v.1.1). We controlled EF for age, sex, BMIz,
and estimated intelligence (WAIS-III/WISC-IV Vocab-
ulary subtest scalar score). Then, to further assess the
effect of BMI on the relationship among AL and EF,
we repeated the analysis stratifying our data into two
BMI groups (normal weight and overweight/obesity)
while still adjusting EF for age, sex and estimated
intelligence. The resulting p-values from multiple tests
were adjusted with a false discovery rate (FDR). FDR-
corrected p-values <0.05 were considered significant.
For the group-specific correlations, we assessed
whether the correlation coefficients were different
between BMI groups (cocor package, v.1.1.4).

• Using a subsample of n = 57, multiple regression
determined how ACEs predicted EF. Age, sex, BMIz,
and estimated intelligence were included as nuisance
covariates. Multiple testing was controlled by FDR cor-
rection. Mediation analysis, as specified in the prere-
gistered analytical plan, could not be performed due to
the lack of association between ACEs (X) and AL
(mediator).

We examined descriptive characteristic differences
between the whole sample and the subsample. Addition-
ally, we performed a sensitivity analysis excluding prepu-
bescent participants.

3 | RESULTS

3.1 | AL index, EF, and BMI

Groups did not differ for sex, age, anxiety/depression
symptoms, or monthly family income (p > .05). As
expected, the overweight/obesity group had higher AL
index (Figure 1). Also, the overweight/obesity group per-
formed worse in the overall assessment of EF. Table 2
provides descriptive characteristics for BMI groups.

Using both AL indexes and after FDR correction,
semi-partial correlations did not reveal a significant asso-
ciation between AL and any EF, including its composite,
either for the whole sample or at the BMI group-specific
level. At an uncorrected level, the semi-partial correlation
between cognitive flexibility and the AL composite score
was significant for the overweight/obesity group
(sr = 0.21, p = .04). Semi-partial correlation coefficients
were also not different between groups (Table 3).

TABLE 1 Allostatic load cutoff points for the high-risk percentile calculation method.

Females Males

Both Morning Afternoon Both Morning Afternoon

Diastolic blood pressure (mmHg) - 65.75 75.5 72.75 - -

Systolic blood pressure (mmHg) 112.5 - - 124.5 - -

Glycated hemoglobin (%) - 5.17 5.4 - 5.3 5.37

HDL (mmol/L) 1.42 - - 1.3 - -

LDL (mmol/L) 2.6 - - - 2.5 2.05

Triglycerides (mmol/L) 0.865 - - 0.95 - -

hs-CRP (mg/L) 0.775 - - 0.9 - -

Cortisol (nmol/L) - 642.82 213.5 - 470.7 250

Fibrinogen (g/L) 3.72 - - - 3.25 3.83

Abbreviations: HDL: high-density lipoprotein cholesterol; hs-CRP: high-sensitivity C-reactive protein; LDL: low-density lipoprotein cholesterol.

4 of 10 PRUNELL-CASTAÑ�E ET AL.
 15206300, 0, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/ajhb.24089 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [26/04/2024]. S

ee the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 1 Allostatic load

(AL) indexes (A: AL composite

mean of z-score, B: AL high-risk

percentile sum) comparison

between body mass index (BMI)

groups.

TABLE 2 Sample descriptive characteristics.

NW (n = 85) OW/OB (n = 97)

Test statistic p valueMean (SD) Range Mean (SD) Range

Age (years) 15.8 (2.92) 10, 21 15.06 (2.43) 10, 21 W = 4674 0.12

Sex (n females, %) 43 (50.6%) - 46 (47.42%) - χ2 = 0.07 0.78

Prepubescents (n, %) 6 (7%) - 4 (4.12%) - χ2 = 0.29 0.59

Monthly family income (€)

300–899 (n, %)
900–1499 (n, %)
1500–2099 (n, %)
2100–2699 (n, %)
≥2700 (n, %)
N.A. (n, %)

4 (4.7%)
9 (10.59%)
16 (18.82%)
8 (9.41%)
14 (16.48%)
34 (40%)

-
-
-
-
-
-

3 (3.1%)
9 (9.28%)
10 (10.31%)
11 (11.34%)
12 (12.36%)
52 (53.61%)

-
-
-
-
-
-

χ2 = 1.79 0.77

BMI z-score �0.07 (0.62) �1.76, 0.82 1.81 (0.42) 0.95, 3.02 W = 0 <0.001

AL index high-risk percentile 2.47 (1.6) 0, 6 4.43 (1.67) 1, 9 W = 1690 <0.001

AL index composite score �0.53 (0.88) �1.97, 2.24 0.46 (0.87) �1.84, 2.7 W = 1704 <0.001

HADS anxiety 4.83 (2.55) 0, 10 4.54 (2.72) 0, 10 W = 4390 0.45

HADS depression 1.98 (1.75) 0, 6 2.49 (2.27) 0, 9 W = 3688 0.21

Estimated intelligence 11.26 (2.32) 7, 19 10.82 (2.37) 7, 19 W = 4546 0.23

Working memory 11.63 (2.42) 5, 17 10.94 (2.7) 5, 18 T = 1.83 0.07

Cognitive Flexibility 14.87 (10.91) 4, 51 16.05 (12.01) 4, 65 W = 3797 0.43

Inhibition 4.75 (6.54) �9.7, 23.5 3.77 (7.06) �16.9, 22.75 W = 4340 0.54

EF composite 0.09 (0.66) �2.02, 1.88 �0.08 (0.66) �1.87, 1.43 W = 4939 0.02

Note: We provide mean (SD) and range for numerical variables, and n counts (%) for categorical variables (sex, prepubescents, monthly family income).
Estimated intelligence was assessed by the Weschler Adults Intelligence Scale-III/Weschler Intelligence Scale for Children-IV (WAIS-III/WISC-IV) vocabulary
subtest scalar score. Working memory was assessed using the Letter-Number Sequencing scalar score of the WAIS-III/WISC-IV. Cognitive flexibility was

assessed by the Wisconsin Card Sorting Test perseverative raw errors. Inhibition was assessed by the Stroop Test Interference score.
Abbreviations: AL, allostatic load; BMI, body mass index; EF, executive functions; HADS, hospital anxiety and depression scale; NA, not available; NW,
normal weight; OW/OB, overweight/obesity.
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Sensitivity analyses without prepubescent participants
provided similar results (Table S2).

3.2 | ACEs and EF

The descriptive characteristics of the subsample (n = 57,
Table S3) were not statistically different from the whole
sample (n = 182). There were no differences in the preva-
lence of ACEs between the study by Pereda et al. (2014)
and our study (Table S4).

Multiple regression analyses (Table 4) indicated that
higher ACEs were associated with worse performance in
cognitive flexibility (b = 0.07, pb-value = 0.0009, Adj
R2 = 0.26, FDRmodel = 0.003) and the overall EF
(b = �0.09, Pb-value = 0.0005, Adj R2 = 0.2,
FDRmodel = 0.01). Although higher ACEs were associated
with poorer inhibitory control (b = �0.66, pb-
value = 0.02), the model only reached significance at a
trend level (Adj R2 = 0.1, FDRmodel = 0.09). Working
memory was not associated with ACEs. Moreover, age

was significantly associated with cognitive flexibility,
inhibitory control, and overall EF (pb-values <0.05). Sensi-
tivity analyses without prepubescent participants
(n = 50) provided similar results (Table S5).

4 | DISCUSSION

In this preregistered study, we evaluated the relationship
between EF and AL in adolescents and young adults, and
how this relationship might differ according to BMI sta-
tus. Furthermore, we studied the effect of ACEs on
EF. Importantly, our approach included two different cal-
culations of the AL index. As highlighted in a recent
review (Carbone et al., 2022), the sum of the high-risk
percentiles of the sample distribution is the most com-
monly used method in the literature, whereas composite
mean z-scores permits using the full continuum of data.
Here, regardless of the method chosen, adolescents and
young adults with overweight/obesity exhibited greater
levels of AL. This is not an unexpected result, as BMI or

TABLE 3 Spearman's semi-partial correlation estimates between executive functions and allostatic load (AL) index using two AL index

calculations.

AL high-risk percentile AL composite mean of z-score

Spearman semi-partial
correlation estimate (sr)

sr comparison
between BMI
groups

Spearman semi-partial
correlation estimate (sr)

sr comparison
between BMI
groups

Working
memory

Whole
sample

�0.03 - 0.001 -

NW group 0.03 Z = 0.49
p = 0.62

�0.005 Z = �0.16
p = 0.87OW/OB

group
�0.04 0.02

Cognitive
Flexibility

Whole
sample

0.07 - 0.1 -

NW group 0.04 Z = �0.71
p = 0.47

0.08 Z = �0.86
p = 0.39OW/OB

group
0.14 0.21*

Inhibition Whole
sample

�0.004 - 0.01 -

NW group �0.02 Z = �0.45
p = 0.65

�0.004 Z = �0.34
p = 0.74OW/OB

group
0.05 0.05

EF
Composite

Whole
sample

�0.07 - �0.08 -

NW group �0.007 Z = 0.88
p = 0.38

�0.04 Z = 0.69
p = 0.48OW/OB

group
�0.14 �0.15

Note: All FDR-corrected p-values of the sr estimates were >0.05.

Abbreviations: AL, allostatic load; BMI, body mass index; EF, executive functions; NW, normal weight; OW/OB, overweight/obesity.
*Significant at an uncorrected level (p = 0.04).
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other measures of adiposity are almost universally
included in estimated AL indices. Also, adolescents and
young adults with overweight/obesity performed worse
in EF. However, the relationship between AL and EF
was not significant either for the whole sample (irrespec-
tive of BMI) or when assessing BMI groups separately.
Interestingly, we found that higher exposure to ACEs
was associated with poorer EF.

4.1 | Executive functioning, AL, and BMI

Cognition is known to be sensitive to physiological dys-
regulations (Juster et al., 2010), such as AL or obesity.
Concerning AL, a meta-analysis—with samples formed
mostly by senior participants—reported that poorer EF
were related to a higher AL (D'Amico et al., 2020). Con-
sistently, a recent study with adults (Beydoun
et al., 2023) described an association between worse EF
and higher AL. Interestingly, and despite all the evi-
dence for the existing relationship between EF and AL
in adults, we did not find significant results in adoles-
cents and young adults. Given that the AL model sug-
gests that the physiological burden and disease states of
chronic stress exposure accumulate over time, we specu-
late that adolescents and young adults may not have

had sufficient exposure to the effects of AL. Notably, we
found an association at the trend level between poorer
cognitive flexibility and higher AL composite scores, but
only in participants with overweight/obesity. Previous
research has reported a relationship between AL and
BMI in children and adolescents (Calcaterra
et al., 2019), and concluded that there is a cumulative
physiological dysregulation in higher BMI categories.
Furthermore, a recent study suggested that BMI might
be one of the earliest signs of increased AL in adoles-
cents (King et al., 2019). Thus, it is conceivable that
excess weight, which has also been consistently associ-
ated with poorer EF regardless of age (Yang et al., 2018),
could potentiate physiological stress status (i.e., low-
grade inflammation and cardiometabolic changes) and
favor its consequences.

4.2 | ACEs and executive functioning

Exposure to ACEs can cause health consequences not
only within the vulnerable developmental window they
occur but also into adulthood (Finlay et al., 2022). Here,
we found that ACEs were associated with worse EF in
adolescents and young adults, as reported elsewhere
(Johnson et al., 2021; Li et al., 2013; Lund et al., 2020).

TABLE 4 Multiple regression coefficients for the working memory, cognitive flexibility, inhibition, and executive functions composite

models.

Variable of interest

Predictors

Adj R2 FDRACEs Sex BMIz Age Intelligence

Working memory b �0.22 �0.72 �0.34 0.19 0.05 0.002 0.41

95% CI �0.44, 0.006 �2.32, 0.92 �1.11, 0.43 �0.12, 0.5 �0.27, 0.38

p 0.06 0.38 0.38 0.22 0.75

Cognitive flexibility b 0.07 �0.05 �0.11 �0.12 0.01 0.26 0.003

95% CI 0.03, 0.11 �0.35, 0.24 �0.25, 0.03 �0.17, �0.06 �0.05, 0.07

p 0.0009 0.72 0.11 0.00008 0.72

Inhibition b �0.66 1.53 �0.23 0.86 0.12 0.1 0.09

95% CI �1.18, �0.13 �2.34, 5.4 �2.05, 1.58 0.12, 1.59 �0.64, 0.88

p 0.02 0.43 0.8 0.02 0.75

EF composite b �0.09 �0.02 �0.01 0.11 0.01 0.2 0.01

95% CI �0.14, �0.04 �0.37, 0.34 �0.18, 0.15 0.04, 0.18 �0.06, 0.08

p 0.0005 0.92 0.85 0.002 0.76

Note: Working memory was assessed using the Letter-Number Sequencing scalar score of the Weschler Adults Intelligence Scale-III/Weschler Intelligence
Scale for Children-IV (WAIS-III/WISC-IV). Inhibition was assessed with the Stroop Test Interference score. Cognitive flexibility was assessed using the

Wisconsin Card Sorting Test perseverative raw errors, which was transformed into its logarithmic form. Adverse childhood experiences were assessed with the
Juvenile Victimization Questionnaire. Estimated intelligence was assessed with the Vocabulary scalar score of the WAIS-III/WISC-IV. Unstandardized betas
were reported.
Abbreviations: ACEs: adverse childhood experiences; AL: allostatic load; BMIz: body mass index z-score; EF: executive functions; FDR: false discovery rate;
Intelligence: estimated intelligence.
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Theoretically, exposure to ACEs could generate epige-
netic modifications (Juster et al., 2016) and alterations in
the activity of the hypothalamic–pituitary–adrenal axis
(responsible for mobilizing the primary mediators of AL),
subsequently inducing changes in the PFC and in the
development of EF (Lund et al., 2020). Additionally,
the timing, duration, type, and severity of the ACEs
might influence the emergence of cognitive dysregula-
tions (De Bellis & Zisk, 2014). In our study, the results of
the multiple regression analysis showed that age was pos-
itively associated with EF, which is consistent with the
ongoing maturation of the PFC observed during adoles-
cence (Tervo-Clemmens et al., 2023). However, these
age-related increases in cognitive performance may not
be sufficient to compensate for the detrimental effects of
ACEs, whose exposure also increases with age (see
Figure S1). Moreover, individuals who have survived
more severe forms of ACEs might display greater cogni-
tive changes. Individual characteristics, such as resilience
and vulnerability, might also shape psychological
responses to ACEs. A recent study with adults (D'Amico
et al., 2022) reported that AL mediated the relationship
between ACEs and cognitive function. Given that we
could not perform mediation analysis, future studies
should replicate these results in adolescent and young
adult samples.

4.3 | Strengths and limitations

Strengths of our study include its preregistration, using
two methods to calculate the AL index to ensure that the
results were not driven by a specific calculation method,
and controlling for sex differences in the AL index calcu-
lation. Moreover, other than overweight/obesity, our
sample did not have any medical condition (tertiary out-
come) that could increase the AL index, or blur whether
such condition predated or emerged from allostatic over-
load. The present study also has limitations. The retro-
spective and self-report recall of ACEs might diminish
their accuracy. The tests chosen for neuropsychological
assessment may not be sensitive enough to detect differ-
ences in young and predominantly healthy samples.
Socioeconomic status, which is associated with EF
(Lawson et al., 2018), was not included as a confounding
variable due to a large proportion of missing values. Also,
95% of the sample identified themselves as White, a race
that does not experience certain adverse events such as
racism and is less likely to suffer from poverty. These two
dimensions—poverty and racism—are known to be
related to higher AL (Miller et al., 2021; Thomas Tobin &
Hargrove, 2022). Given this, future studies with a more

diverse sample size are needed to confirm our results and
to evaluate potential differences in the relationship
between AL and EF in adolescents and young adults
according to weight status and psychosocial risk
exposure.

5 | CONCLUSIONS

We provide evidence that, in adolescents and young
adults, overweight/obesity is associated with higher
levels of AL and worse executive functioning. How-
ever, we did not find AL to be related to EF either for
the whole sample or when assessing BMI groups sepa-
rately. We hypothesize that the AL burden might affect
cognition only if sustained over time. Still, we found
that exposure to ACEs was associated with poorer exec-
utive functioning. This could be taken to suggest that
exposure to early chronic psychological stress is related
to dysregulations that might detriment cognitive
functions.
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1. Determination of hs-CRP, fibrinogen, and cortisol concentrations.  

Concentrations of hs-CRP, fibrinogen, and cortisol were determined at CatLab 

(https://www.catlab.cat/en/about-us) through nephelometry (Beckman Coulter Immage 800), 

PT-derived fibrinogen assay, and electrochemiluminescence (Elecsys Cortisol II), respectively. 

Three participants did not have the hs-CRP measured and instead had the CRP. We did not 

exclude these participants from the study (their CRP values were <1mg/L), but, when calculating 

the AL index, these three CRP values were considered missing.  Fibrinogen values (g/L) of 71 

participants were quantified with STA-Neoplastin-Plus reactive (STA-Rack) (mean = 3.36, SD = 

0.58, range = 2.23 – 5.19), while for the rest of the sample, Recombiplastin 2 G reactive (ACLTOP 

700) was used (mean = 3.83, SD = 0.58, range = 2.49 – 6.21). The inter-assay coefficients for STA-

Rack and ACLTOP 700 were 6.52% and 3.18%, respectively, and the intra-assay coefficient of 

variability for ACLTOP 700 was 0.75%. We cannot provide the intra-assay coefficient of STA-

Rack because these data are not available. 

 

2. Allostatic load index calculations 

For both methods, a prorated AL index was conducted in participants with missing values. The 

variables with missing values were the following: glycated hemoglobin n = 3, hs-CPR n = 3, 

cortisol n = 2, and fibrinogen n = 1. 

Sum of the high-risk percentile of the sample distribution. The AL index was the sum of all 9 

biomarkers' dichotomous scores, with higher scores meaning higher allostatic overload (range 0-

9). For every participant, we gave a score of “1” to those biomarkers that were in the high-risk 

-cholesterol), or a “0” to those biomarkers that 

didn’t exceed their cut-off point. Since in our sample we had a large proportion of participants 

with overweight/obesity, the calculation of the high-risk percentiles was based on the control 

group (normal weight, n = 85). That is because, although participants with overweight/obesity did 

not meet diagnostic criteria for cardiometabolic diseases when they were included in the study, 

they were more likely to have higher values in almost all biomarkers.  Additionally, and since there 

are well-known sex differences in the AL, we set different cut-off points for males (n = 42) and 

females (n = 43). Given that some participants underwent the sample blood extraction in the 

morning (n = 28 males, n = 34 females), while others in the afternoon (n = 14 males, n = 9 

females), we further set different cut-off points for each daytime in those biomarkers that 

presented statistical differences (p < 0.05). If a participant had missing values, we applied a cross-
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multiplication to calculate the proportion of risk biomarkers they would have if all biomarkers 

were available (e.g., the AL index included 9 biomarkers). If a participant had only available 8 

biomarkers and 2 of them were at the high-risk percentile, we calculated the AL index as follows: 

(9*2)/8 = 2.25).  

Composite mean of z-score: All biomarkers were z-scaled and added into a composite with greater 

scores meaning higher AL (i.e., (Z systolic blood pressure + Z diastolic blood pressure + Z 

-Cholesterol + Z LDL-Cholesterol + Z triglycerides + Z hs-CRP 

+ Z f -score was reversed so that higher values reflected 

greater physiological dysregulation. If a participant had missing values, the allostatic index 

composite was calculated according to the number of available biomarkers (e.g., if a participant 

had only available 8 out of 9 biomarkers, the composite was calculated as follows: ((Z1 + Z2 + Z3 

+ Z4 + Z5 + Z6 + Z7 + Z8) /8). Additionally, we adjusted the AL mean z-score to sex and blood 

sample extraction daytime. To do so, we used the standardized residuals of AL mean z-score ~ 

sex + blood extraction daytime. 

 

3. Neuropsychological evaluation 

Bulimia-like behaviors: assessed by the Mini International Neuropsychiatric Interview for Bulimia 

 

Global cognitive impairment: assessed by a scalar score <7 in the Weschler Adults Intelligence 

Scale-III/Weschler Intelligence Scale for Children-IV (WAIS-III/WISC-IV) vocabulary subtest. 

Working memory was assessed using the Letter-Number Sequencing scalar score of the WAIS-

III/WISC-IV. In this task, after listening to a sequence of numbers and letters, participants had to 

repeat aloud the numbers ordered (from 1 to 10), and then the letters in alphabetical order. A 

higher scalar score represented better performance in working memory.   

Inhibition was evaluated using the Stroop Color and Word Test interference score. In the Stroop 

test, participants were required to read as fast as possible. In the word-sheet condition (W), they 

had to read aloud a list of black-inked color names (i.e., red, green, or blue). In the color-sheet 

condition (C) they were required to name the color (i.e., red, green, or blue) of non-readable stimuli 

(i.e., “XXXX”). In the incongruent-sheet condition(I), they were required to name the color of the 

word, which differed from the written name (i.e., “blue” in red ink). The interference score was 

calculated with the formula: I – 

ability to inhibit automatic responses.   
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Cognitive flexibility was assessed using the perseverative raw errors from the computerized version 

of the Wisconsin Card Sorting Test (WCST). In the WCST, participants were asked to match 64 

cards based on a principle (i.e., color, shape, or number of elements) that was not explained to 

them and needed to be learned from the feedback as to whether their responses were correct or 

incorrect. After ten consecutive hits, the matching rule changed without announcement. 

Perseverative errors were computed as the number of incorrect responses that would have been 

flexibility. One participant had a missing value in the WCST.  Although in the preregistration we 

specified that cognitive flexibility would be assessed using both the WCST and the Trail Making 

Test (TMT), we found statistically significant differences between participants that completed the 

TMT in person vs. online that could not be explained by confounding variables such as age, sex, 

or BMI. Thus, we excluded the TMT from the analyses.  

EF composite: we additionally calculated a composite to assess EF globally. The composite was 

calculated as follows: (Z scalar score Letters-Numbers Sequencing + Z Stroop test interference 

score + Z WCST perseverative errors)/3). The WCST scores were reversed so that higher values 

reflected better performance. One participant had a missing value in the WCST. In this case, we 

calculated a prorated EF composite (i.e., Z scalar score Letters-Numbers Sequencing + Z Stroop 

test interference score/2). 
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Table S1. Cognitive variables differences according to the method of evaluation (in-person vs. online).  

 
We provide mean (sd) for numerical variables, and n counts (%) for categorical variables (sex, overweight/obesity).  
 
Abbreviations: CPT-II: Conners’ Continuous Performance Test-II; Stroop: Stroop Color and Word Test; TMT: Trail Making; WAIS-III/WISC-IV: Weschler Adults 
Intelligence Scale-III/Weschler Intelligence Scale for Children-IV; WCST: Wisconsin Card Sorting Test.  
 
The differences seen in the perseverative errors of the WCST according to the method of evaluation were explained by age (significant interaction between method 
of evaluation and age (beta = -3.8; 95% CI = -6.6, -0.99; P = 0.008) 

 

  In-person (n = 135) Online (n = 47) Test 
Statistic 

P value 

Demographic and anthropometric measures         

Age (years) 15.57 (2.65) 14.94 (2.78) W = 3475 0.33 
Sex (n females, %) 70 (51.85%) 19 (40.42%) Chi2 = 1.39 0.24 

Overweight/Obesity (n, %) 73 (74.04) 24 (51.06%) Chi2 = 0.03 0.85 
Neuropsychological evaluation         

Estimated intelligence WAIS-III/WISC-IV Vocabulary subtest scalar score 11 (2.4) 11.11 (2.24) W = 3083 0.77 
Inhibition Stroop interference 3.69 (6.71) 5.77 (6.7) T = -1.78 0.08 

Cognitive flexibility 
WCST perseverative errors 17.71 (12.17) 9.22 (5.85) W = 4801 < 0.001 

TMT part B - part A 41.9 (21.75) 53.23 (28.65) W = 2258 < 0.001 

Working memory WAIS-III/WISC-IV Letter-Number Sequencing scalar score  11.3 (2.56) 11.17 (2.7) T = 0.28  0.78 
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Table S2. Spearman’s semi-partial correlation estimates between executive functions and allostatic 

load (AL) index using two AL index calculations (n = 172, prepubescent participants excluded). 

  AL high-risk percentile AL composite mean of z-
score 

Spearman 
semi-
partial 

correlation 
estimate 

(ssr) 

ssr 
comparison 

between 
BMI 

groups 

Spearman 
semi-
partial 

correlation 
estimate 

(ssr) 

ssr 
comparison 

between 
BMI 

groups 

Working 
memory 

Whole sample -0.03 ------ -0.01 ------ 

NW group 0.03 Z = 0.49 
P = 0.62 

-0.01 Z = -0.12 
P = 0.9 OW/OB group -0.05 0.006 

Cognitive 
Flexibility 

Whole sample 0.07 ------ 0.09 ------ 

NW group 0.05 Z = -0.4 
P = 0.69 

0.09 Z = -0.63 
P = 0.53 OW/OB group 0.11 0.18* 

Inhibition Whole sample 0.001 ------ 0.02 ------ 

NW group -0.04 Z = -0.64 
P = 0.52 

-0.02 Z = -0.54 
P = 0.59 OW/OB group 0.06 0.07 

EF 

Composite  

Whole sample -0.07 ------ -0.08 ------ 

NW group -0.03 Z = 0.56 
P = 0.57 

-0.06 Z = 0.47 
P = 0.64 OW/OB group -0.12 -0.14 

 
 
All FDR-corrected p-values of the sr estimates were >0.05. 
*Significant at a trend level (P = 0.08) 
 
Abbreviations: AL: allostatic load; BMI: body mass index; EF: executive functions; NW: normal weight; 
OW/OB: overweight/obesity 
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Table S3. Subsample descriptive characteristics.  

 
We provide mean(sd) and range for numerical variables, and n counts (%) for categorical variables (sex, 
prepubescents, monthly family income).  
 

and depression scale; NA: not available; NW: normal weight; OW/OB: overweight/obesity. Estimated 
intelligence was assessed by the Weschler Adults Intelligence Scale-III/Weschler Intelligence Scale for 
Children-IV (WAIS-III/WISC-IV) vocabulary subtest scalar score. Working memory was assessed using 
the Letter-Number Sequencing scalar score of the WAIS-III/WISC-IV. Cognitive flexibility was assessed 
by the Wisconsin Card Sorting Test perseverative raw errors. Inhibition was assessed by the Stroop Test 
Interference score. Adverse childhood experiences were assessed with the Juvenile Victimization 
Questionnaire. 

 NW (n = 31) OW/OB (n = 26) Test statistic P value 

 Mean (SD) Range Mean (SD) Range 

Age (years) 15.03 (2.98) 10, 20 14.61 (2.48) 10, 19 T = 0.57 0.57 

Sex (n females, %) 13 (42%) ----- 11 (42.3%) ----- Chi2 < 0.001 1 

Prepubescents (n, %) 6 (19.3%) ----- 1 (3.8%) ----- Chi2 = 1.88 0.17 

Monthly family income (€) 

300 – 899 (n| %) 

900 – 1499 (n, %) 

1500 – 2099 (n, %) 

2100 – 2699 (n, %) 

 

N.A. (n, %) 

 
2 (6.4%) 
4 (12.9%) 
6 (19.3%) 
3 (9.7%) 

11 (35.5%) 
5 (16.2%) 

 
----- 
----- 
----- 
----- 
----- 
----- 

 
1 (3.8%) 
4 (15.4%) 
2 (7.7%) 
7 (27%) 

9 (34.6%) 
3 (11.5%) 

 
----- 
----- 
----- 
----- 
----- 
----- 

 
 
 

Chi2 = 3.96 

 
 
 

0.41 

BMI z-score -0.04 (0.67) -1.76, 0.80 1.63 (0.42) 0.95, 2.58 W = 0 < 0.001 

AL index high-risk percentile 2.52 (1.52) 0, 5 3.88 (1.53) 1, 7 W = 218 0.003 

AL index composite score -0.45 (0.88) -1.98, 1.82 0.33 (0.76) -1.84, 1.58 T = -3.56 < 0.001 

HADS anxiety 5.32 (2.57) 1, 10 4.92 (2.56) 0, 10 T = 0.58 0.56 

HADS depression 2.39 (1.91) 0, 5 3.54 (2.97) 0, 9 W = 325 0.21 

Estimated intelligence 11.42 (2.39) 7, 18 11.31 (2.69) 7, 19 T = 0.16 0.87 

Working memory 11.29 (2.71) 6, 17 10.73 (3) 6, 18 T = 0.73 0.47 

Cognitive Flexibility 12.19 (9.4) 4, 43 9.88 (6.14) 4, 25 W = 463 0.33 

Inhibition 4.62 (6.72) -9.70, 23.5 3.8 (7.16) -16.9, 22.75 T = 0.78 0.43 

EF Composite 0.1 (0.68) -2.02, 1.88 -0.07 (0.66) -1.87, 1.43 T = 1.66 0.1 

Adverse childhood experiences 4.25 (4.3) 0, 17 3.65 (3.11) 0, 12 W = 407 0.95 
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Table S4. Comparison of the prevalence of juvenile victimization in Spain with our data.  
 
 

  Pereda et al., 2014 (n = 1107) Present study (n = 57)   

  n YES % YES n NO % NO n YES % YES n NO % NO P value 

Conventional crimes 681 61.5 426 38.5 38 66.66 19 33.34 >0,05 

Caregiver victimization 280 25.3 827 74.7 19 33.33 38 66.67 >0,05 

Peer and sibling victimization 540 48.8 567 51.2 30 52.63 27 47.37 >0,05 

Sexual victimization 96 8.7 1011 91.3 6 10.52 51 89.48 >0,05 

Witnessing and indirect victimization 541 48.9 566 51.1 30 52.63 27 47.37 >0,05 

Electronic victimization 139 12.6 968 87.4 12 21.05 45 78.95 >0,05 
 

Reference 

Pereda N, Guilera G, Abad J. Victimization and polyvictimization of Spanish children and youth: Results from a community sample. Child Abus 
Negl. 2014;38(4):640–9. 
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Table S5. Multiple regression coefficients for the working memory, inhibition, cognitive 

flexibility, and executive functions composite models (n = 50, prepubescent participants excluded). 

Variable of 
interest 

Predictors  
Adj R2 

 
FDR  ACEs Sex BMIz Age Intelligence 

Working 
memory 

 

b -0.24 -0.96 -0.37 0.08 0.03  
-0.001 

 

 
0.41 95% CI -0.47, -0.001 -2.7, 0.83 -1.2, 0.48 -0.27, 0.45 -0.31, 0.37 

P 0.05 0.29 0.38 0.64 0.88    
Cognitive 
flexibility 

 

b 0.07 0.001 -0.11 -0.1 0.02  
0.22 

 

 
0.01 95% CI 0.03, 0.12 -0.32, 0.32 -0.26, 0.04 -0.16, -0.03 -0.04, 0.08 

P 0.001 0.99 0.16 0.004 0.54 
Inhibition 

 
 

b -0.62 2.08 0.03 1.05 0.1  
0.1 

 

 
0.11 95% CI -1.19, -0.05 -2.25, 6.41 -2.03, 2.08 0.17, 1.93 -0.73, 0.93 

P 0.03 0.34 0.98 0.02 0.81 
EF 

composite 
 

b -0.09 -0.04 -0.008 0.09 0.002  
0.17 

 

 
0.02 95% CI -0.14, -0.04 -0.45, 0.35 -0.19, 0.18 0.02, 0.17 -0.07, 0.08 

P 0.0008 0.82 0.93 0.02 0.95 
 

Working memory was assessed using the Letter-Number Sequencing scalar score of the Weschler Adults 
Intelligence Scale-III/Weschler Intelligence Scale for Children-IV (WAIS-III/WISC-IV). Inhibition was 
assessed with the Stroop Test Interference score. Cognitive flexibility was assessed using the Wisconsin 
Card Sorting Test perseverative raw errors, which was transformed into its logarithmic form. Adverse 
childhood experiences were assessed with the Juvenile Victimization Questionnaire. Estimated intelligence 
was assessed with the Vocabulary scalar score of the WAIS-III/WISC-IV. Unstandardized betas were 
reported. 

Abbreviations: ACEs: adverse childhood experiences; AL: allostatic load; BMIz: body mass index z-score; 
EF: executive functions; FDR: false discovery rate; Intelligence: estimated intelligence. 
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Figure S1. Scatter plot of the correlation between Adverse Childhood Experiences and age. 
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The present thesis focused on identifying biomarkers associated with neurocognitive changes 

in adolescents and young adults with excess weight. In three studies, we explored the 

relationship between genetic (i.e. FTO), biological (i.e., adiposity, cardiometabolic factors, 

allostatic load), and psychosocial (i.e., ACEs) elements with changes in structural 

connectivity, WM microstructure, impulsivity, and executive functioning. Overall, despite 

some results, higher biological and psychosocial burdens were associated with 

neurocognitive changes. 

 

Structural connectivity in excess weight states 

The first objective of this thesis was to determine the structural connectivity differences in 

the reward network according to BMI in adolescents and young adults. As hypothesized, we 

found lower structural connectivity of the reward network – when normalized by whole-

brain connectivity metrics – in participants with higher BMI categories. When assessing 

whether the raw connectivity metrics of the reward network were also associated with BMI, 

significance was not achieved, possibly suggesting that our findings were driven to some 

extent by whole-brain connectivity metrics. In an exploratory analysis, we observed a positive 

association between whole-brain structural connectivity and BMI.  

Brain regions are interconnected in such complex and well-organized networks that any 

disruption severe enough to a node has the potential to result in redistribution of network 

traffic. Initially, as a compensatory mechanism, damage to one node results in increased 

connectivity in another node. If the affected node recovers from the disruptor, normal 

connectivity is restored. However, if more nodes begin to be affected, and consequently 

other nodes become persistently overloaded, structural and functional damage will occur, 

impairing connectivity (132). This framework could be applied to excess weight, in which 

either higher BMI categories or more years of exposure would represent more severe 

disruptors. Following this idea, despite our results being only significant when normalized 

by whole-brain metrics, initial disruption of the reward network in excess weight – possibly 

via neuroinflammation and metabolic inflexibility – would initiate compensatory 

mechanisms (i.e., increases in brain connectivity) that would ultimately fail in OB states (i.e., 

decreases in brain connectivity). This was also described in a study of adults aged 50-70, 

which showed that, although both global connectivity density and strength weakened as 

diabetes progressed (from healthy controls to prediabetes to diabetes), compensatory 

mechanisms also emerged. In prediabetes, connectivity first decreased in frontal regions, 
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which extended to subcortical areas with the onset of diabetes. Interestingly, these 

subcortical regions displayed stronger connections in prediabetes, suggesting an attempt to 

counteract the increasing disruption in brain connectivity as the disease advanced (133). 

Given the approach of our first study, in which the reward network was targeted as the 

primary analysis and whole-brain connectivity was an exploratory one, we could not evaluate 

which brain regions initiated the hypothesized compensatory mechanisms. Furthermore, 

studying brain features in young samples represents a challenge, as developmental changes 

in microstructural properties inevitably result in changes in connectome architecture. 

Throughout adolescence, increases in axonal diameter and myelination or synaptic pruning 

translate into increases in structural connectivity to facilitate a topology that progressively 

improves higher-order cognitive functioning (59). It is therefore reasonable to question the 

extent to which, in individuals undergoing developmental processes, brain differences reflect 

the phenotype of interest (i.e., excess weight), normative brain trajectories, or both.  

The influence of age and development on brain structure in excess weight was clearly 

evidenced in a meta-analysis testing the relationship between NAcc volume and OB 

measures, where positive and negative relationships were found in younger and older 

individuals, respectively (134). Thus, it is possible that in our study, both normative brain 

trajectories and the emergence of compensatory mechanisms explained the increased whole-

brain connectivity observed in excess weight states. This positive association between BMI 

and structural connectivity was also evidenced in a recent study of adults, in which multiple 

adiposity measures were associated with increased connectivity between brain regions 

involved in reward processing, appetite regulation, and cognitive control (135). These results 

lead to two other interpretations. On one hand, increments in brain connectivity, particularly 

in brain regions of special importance for the excess weight phenotype, may increase 

susceptibility to weight gain. On the other hand, structural connectivity between brain 

regions of different networks, rather than the connectivity within a network, may better 

characterize the brain correlates of the excess weight phenotype and its behavioral 

implications. 

 

Structural connectivity according to genetic risk of obesity (FTO) 

The second objective of this thesis was to determine the structural connectivity differences 

in the reward network in adolescent and young adult carriers versus non-carriers of the FTO 

rs99396309 A allele. Contrary to our hypothesis, we did not find any significant connectivity 
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differences in individuals with a genetic risk of OB. Although the literature suggests that 

FTO may modulate weight status by affecting brain regions associated with food intake and 

reward (11), it is probable that this relationship is influenced by other variables.  

The functional relevance of FTO is extensive, from its implications for behavioral encoding 

in the brain to its effects on neurodevelopmental pathways. FTO can modulate both the 

activity of dopamine receptors in meso-striatal regions and the expression of numerous genes 

involved in cell proliferation, migration, and neuronal development, among others (136). In 

humans, the role of FTO in brain development has been demonstrated in loss-of-function 

studies, in which FTO inactivation resulted in microcephaly, functional brain deficits, and 

structural changes (137). Consequently, the involvement of FTO in neurodevelopment may 

partially explain the mixed results in the literature regarding FTO-associated brain 

differences. Studies of children with a genetic risk of OB, as determined by FTO, reported 

volumetric increases in cortical and subcortical regions (138–140), while the opposite pattern 

was found in old adults (141,142). In young and middle-aged adults, increases, decreases, and 

no significant differences in structural connectivity have been reported in reward structures 

(85,143). Despite the evidence being limited and at times inconsistent, we can extract a trend 

from these studies, in which the relationship between FTO and brain metrics is positive in 

children and progressively turns negative as adulthood is reached.  

These early FTO-related increases in volume and connectivity between brain regions, 

particularly within the dopaminergic system, may also represent increased susceptibility to 

weight gain. Following this idea, as excess weight is developed over time and physiological 

burden arises, the relationship between FTO and brain metrics would become negative. 

Interestingly, this scenario is paired with the effect of the genetic risk of OB on BMI. A 

genome-wide polygenic score (GPS) study of OB showed that the GPS predicted only 

minimal differences in birth weight, which progressively increased in subsequent years and 

diverged widely by adulthood (144).   

In our study, there were no significant differences (positive or negative) in the structural 

connectivity of the reward network in adolescent and young adult carriers of the FTO 

rs99396309 A allele. Although the age range of our participants (from 10 to 21 years) had 

the potential to display the differential effect of FTO on brain metrics across development, 

methodological considerations, such as sample size, may have affected the results. Moreover, 

while our approach focused on the reward network, the effect of FTO on brain structure 

has been reported in other brain regions, such as the cerebellum, right fusiform cortex, and 
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frontal and occipital lobes (138,141). Additionally, FTO variants have been associated with 

attention deficit hyperactivity disorder, Alzheimer's disease, and major depressive disorder 

(137), suggesting their involvement in brain changes beyond reward structures. Therefore, 

ROI selection may have influenced our findings. Importantly, although our objective was to 

evaluate the direct influence of FTO on the reward network, it may also exert its effect by 

interacting with dopamine-related variants such as the Taq1A polymorphism near the D2 

dopamine receptor (145,146). While FTO is considered the locus with the largest impact on 

BMI, a single variant is far from having the predictive power that polygenic risk scores, ideally 

GPS, may have. Given the polygenic nature of common OB, studying its inherited 

susceptibility using the whole genome has the potential to identify individuals at risk before 

the onset of the condition, providing a window to intervene and avoid future consequences.  

 

White matter microstructure and cardiometabolic factors 

The third objective of this thesis was to assess the relationship between cardiometabolic 

factors and the microstructure of WM tracts associated with both excess weight and 

impulsivity (i.e., cingulum, corona radiata, corpus callosum, inferior fronto-occipital 

fasciculus, and internal capsule) in adolescents. As hypothesized, we found an inverse 

relationship between glycated hemoglobin and FA in the cingulum. Nevertheless, no other 

cardiometabolic biomarkers (glucose, diastolic blood pressure, systolic blood pressure, HDL, 

LDL, and triglycerides) were related to WM microstructure. 

The literature suggests that cardiometabolic factors are associated with changes in the brain. 

An extensive review revealed a clear relationship between hyperglycemia, central OB, and 

hypertension and brain alterations (i.e., structural, microstructural, functional features, and 

presence of small vessel disease), while the role of dyslipidemia was less consistent (147). 

Although our sample included adolescents without a clinical diagnosis of cardiometabolic 

disease, our results suggested that variations in glycated hemoglobin were associated with 

WM microstructure. Glycated hemoglobin has already been described as a possible early 

biomarker of metabolic syndrome, even at preclinical levels (148). A recent study on healthy 

adults also demonstrated that a glycated hemoglobin level below the threshold for 

prediabetes diagnosis (<5.7%) was associated with lower FA in multiple WM tracts (108). In 

our study, although only the cingulum remained significant after correction for multiple 

testing, FA of the corpus callosum, corona radiata, and inferior fronto-occipital fasciculus 

was also associated with glycated hemoglobin.  
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Even though the brain requires a constant glucose supply, which is guaranteed by specific 

transcellular glucose transporters, the uptake of glucose also depends on its extracellular 

concentration. Acute or sustained hyperglycemia inevitably over increases glucose entry into 

the brain, which can cause neural damage. The neurotoxicity caused by uncontrolled 

hyperglycemia may explain why structural brain deficits have been reported in children with 

type 1 diabetes shortly after diagnosis (149). Contrary to our expectations, we did not find 

glucose to be associated with WM microstructure. Since circulating levels of glucose only 

indicate the current glycemic state, it is possible that glycated hemoglobin, as an indicator of 

plasma glucose control over the last three months (150), may be a more representative 

marker of cumulative hyperglycemic insults in the brain. In addition, given that our sample 

included adolescents, it is possible that higher exposure to hyperglycemia, as assessed by 

glycated hemoglobin, may have disrupted the development of brain myelination (151), which 

would explain the decrease in FA observed in our study.  

Interestingly, we did not find an association between other cardiometabolic factors and WM 

microstructure. A systematic review highlighted that metabolic syndrome was associated with 

reductions in FA across studies including wide age ranges (i.e., from childhood to old 

adulthood) (152).  While the effect of glycated hemoglobin on WM microstructure is gradual, 

and even small changes in preclinical levels show an influence on FA (108), other 

cardiometabolic markers may require further dysregulation to have an effect on WM 

microstructure. Excluding participants with cardiometabolic disease may have prevented us 

from exploring the whole continuum of the relationship between cardiometabolic factors 

and WM microstructure. Moreover, the trajectories of cardiometabolic factors across 

developmental stages are affected by the onset of puberty (153). Both linear and non-linear 

reductions and increments in cardiometabolic factors have been reported throughout 

adolescence (154). Hence, our results may have been affected by these dynamic changes in 

the cardiometabolic profile that occur during puberty.  

 

Impulsivity and cardiometabolic factors 

The fourth objective of this thesis was to evaluate the relationship between impulsivity and 

cardiometabolic factors among adolescents. As hypothesized, we found that higher 

triglyceride levels were associated with higher commission errors in the Conners’ Continuous 

Performance Test (CPT-II) and that glucose and diastolic blood pressure were associated 
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with higher scores on the emotional eating subscale of the Three-Factor Eating 

Questionnaire R-18 (TFEQ-R18).  

Over the years, impulsivity has gained attention as a correlate for excess weight. A large meta-

analysis showed a significant yet small effect size in the relationship between impulsivity and 

BMI (123). The variability in the direction and magnitude seen across studies may be 

explained by the lack of consensus on the operationalization of impulsivity. This has 

promoted the development of multiple models and measures that, instead of having 

convergent validity, appear to measure distinct impulsive traits. Thus, the association 

between impulsivity and excess weight may depend on the measure of impulsivity selected 

for the specific domain of impulsivity being evaluated (123). In this sense, a proper 

characterization of impulsivity in excess weight would help to identify individuals at greater 

risk of developing or maintaining this condition, define specific neural correlates of the 

different constructs of impulsivity, and evaluate the effectiveness of specific 

neuropsychological interventions (155).  

In our study, we assessed behavioral task measures of impulsivity using the Stroop Test 

interference score, Wisconsin Card Sorting Test (WCST) perseverative errors, CPT-II 

commission errors, and Kirby Delayed Discounting Task geometric mean. These tasks are 

aligned with four higher-order factors of performance-based impulsivity: inattention, set-

shifting, inhibition, and impulsive decision-making, respectively (123). However, it is worth 

noting that behavioral tasks often lack specificity and measure multiple processes, making it 

difficult to disentangle what cognitive factors influence the performance (123). We also used 

the novelty-seeking subscale of the Temperament Character Inventory Revised and the 

uncontrolled and emotional eating subscales of the TFEQ-R18 as questionnaire measures of 

impulsivity. While the novelty seeking subscale is aligned with the extraversion/positive 

emotionality higher-order factor of impulsive personality traits (123), there is a lack of 

agreement about the impulsive nature of uncontrolled and emotional eating. However, some 

studies have reported small-to-moderate correlations between these two subscales and 

impulsivity questionnaires (156,157).  

Although the effect of impulsivity on excess weight (as defined by BMI) has been a topic of 

interest for years, the extent to which cardiometabolic factors are also associated with 

impulsivity in samples with excess weight is understudied. This approach has been explored 

particularly in samples with mental health conditions, in which alterations in glucose levels 

and lipid profile (HDL, LDL, triglycerides) have been associated with more suicidal ideation, 
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suicide attempts (158,159), and aggression (160), among other conditions also related to 

impulsivity. However, some inconsistencies have also been reported (161). The 

neurobiological mechanisms by which cardiometabolic factors are associated with impulsive 

phenotypes are still to be fully elucidated. Nevertheless, several frameworks have been 

proposed to explain this relationship. On the one hand, reductions in cholesterol may 

influence the microviscosity of serotonin receptors, affecting serotonin activity and 

contributing to impulsive behaviors. On the other hand, pro-inflammatory states 

characterized by increased cytokine production may lead to increases in lipid profile, affecting 

melatonin release and increasing impulsivity (159). Alterations in glucose metabolism have 

also been associated with suicidal tendencies, although there is no evidence that this 

relationship is causal nor is its direction clear (162).  

Focusing on our results, it is possible that the association we found between higher 

triglycerides and more commission errors in the CPT-II was mediated by inflammatory 

biomarkers. Also, finding that higher glucose and diastolic blood pressure levels were 

associated with higher scores on the emotional eating subscale of the TFEQ-R18 may reflect 

the natural consequences of consuming highly palatable, sugary, and energy-dense foods. 

Moreover, as mentioned above, the dynamic trajectories of the cardiometabolic profile 

observed throughout adolescence may have influenced our results (154). 

 

Executive functioning and allostatic load 

The fifth objective of this thesis was to evaluate the association between EF and AL in 

adolescents and young adults, and to assess whether this relationship differed according to 

BMI status. Contrary to our hypothesis, we found no association between AL and EF in the 

whole sample. However, AL correlated with cognitive flexibility (assessed by perseverative 

errors of the WCST), but only in individuals with excess weight at the nominal level.  

While the estimation of AL in early studies was based on the same 10 biomarkers (163), later 

studies have proposed alternative AL indices (164). Across the literature, not only is there 

variability as to which biomarkers should or should not be included in the AL index, but also 

regarding which algorithm should be applied (164). Moreover, AL at different ages can only 

be considered to have the same interpretation if two assumptions are met: i) the same 

biomarkers contribute to AL, and ii) the magnitude of these contributions is equal. It is 

possible that a group of biomarkers that are sensitive and clinically significant across all ages 

fails to construct an invariant AL index, as their intercorrelations and cumulative meaning 
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may change over time (165). This was evidenced by a recent study in which the same factor 

structure of AL was not observed across children, adolescents, and young adults (165). 

Moreover, and given that AL refers to the accumulation of the ‘wear and tear’ of the body, 

and this implicitly requires time, findings of AL in children and adolescents may be more 

likely indicative of stress severity rather than chronicity. It may also suggest that during 

vulnerable periods, such as adolescence, physiological systems are more sensitive to being 

disrupted (166). Thus, our proposed estimation of AL (i.e., systolic blood pressure, diastolic 

blood pressure, glycated hemoglobin, HDL, LDL, triglycerides, high sensitivity CRP, 

fibrinogen, and cortisol) and the age range of our participants (i.e., 10–21 years) may have 

conditioned both our results and their comparability with other studies.  

In the context of acute stress, it has been theorized that stress can affect executive 

functioning by biasing cognition to process information directly related to the stressor, 

shifting cognition from top-down control processes to bottom-up automatic responses, or 

through the upregulation of cortisol and other biological factors (167). An extensive meta-

analysis evaluated the effect of acute stress on three core EF, and their results suggested that 

stress impaired working memory and cognitive flexibility but did not influence inhibitory 

control. In our study, while we did not assess acute stress but instead used an estimated AL 

index that represented the physiological stain of chronic stress, we found that only cognitive 

flexibility was associated with AL in participants with excess weight, which is consistent with 

the results of the meta-analysis. We hypothesize that since cognitive flexibility is a complex 

EF that requires the coordinated use of working memory and inhibitory control to manage 

and integrate multiple streams of information (63), it may be more vulnerable to the effects 

of stress. Furthermore, the fact that this relationship was only significant in individuals with 

excess weight suggests that the definition of AL could include both the cumulative effects of 

stressful situations and the physiological consequences of unhealthy lifestyles, such as 

sedentarism or diets based on high-fat and high-sugar foods (168). In children and 

adolescents, both excess weight and malnutrition have been associated with higher AL, 

highlighting that unhealthy lifestyles contribute to physiological dysregulation and 

development of illnesses (168). 

Importantly, although AL represents the wear and tear of the body, the biomarkers used do 

not provide information on the underlying causes. This emphasizes the importance of using 

an integrated approach that includes both biomarkers and clinimetric criteria to identify AL 

states (169).  
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Executive functioning and adverse childhood experiences 

The sixth objective of this thesis was to assess the relationship between EF and ACEs in 

adolescents and young adults. As hypothesized, higher exposure to ACEs was associated 

with worse performance in cognitive flexibility (perseverative errors of the WCST) and the 

overall EF composite (including the perseverative errors of the WCST, Stroop interference, 

and letter–number sequencing of the Weschler Adults Intelligence Scale-III/Weschler 

Intelligence Scale for Children-IV). 

When adversity occurs during sensitive developmental periods (i.e., ACEs), neuroplastic 

processes that disrupt normative brain structure and function can occur. Different types of 

ACEs are considered to leave a mark on specific parts of the brain, although a common 

substrate has been described (i.e., anterior cingulate cortex, PFC, amygdala, hippocampus, 

striatum, and thalamus) (Figure 5) (170). Since the PFC is one of the last brain structures to 

fully develop and is also particularly dense in glucocorticoid receptors, it may be more 

vulnerable to the effects of chronic stress associated with ACEs exposure (72). Consistent 

with our results, two meta-analyses including children, adolescents and young adults 

evidenced that ACEs were associated with lower inhibitory control, cognitive flexibility, and 

working memory (171,172). While our approach was based on the deficit model, in which 

children exposed to highly adverse environments are at risk of cognitive and behavioral 

impairments, it is worth noting that exposure to ACEs can also lead to successful adaptation 

and the development of resilience. In this case, cognitive capacities, despite adversity, would 

be either enhanced or maintained (173). However, it should not be overlooked that the 

development of resilience may require the repeated activation of allostatic systems, which 

can induce AL over time (174).  

Interestingly, while we found a negative association between ACEs and EF in our study, the 

results of one of the covariates (i.e., age) provided further insight into the interpretation, as 

it was positively associated with better EF performance. While this is consistent with the 

ongoing maturation of the PFC observed throughout adolescence (66), it seems that these 

age-related increases in cognitive capacity may not be sufficient to compensate for the 

detrimental effects of ACEs, whose exposure also increases with age. This highlights the 

importance of the timing of trauma, as well as the duration, type, and severity, as they can 

modulate the HPA axis differently depending on the stage of development. Earlier and 

repetitive exposure to more severe types of ACEs would result in greater dysregulation and 

thus lead to a more pronounced EF impairment (175).  
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Figure 5. Schematic illustration of the impact of various adversities on selected brain 

regions. Reproduced from Vaidya (170) under a Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/).

The relevance of including confounders when studying the cognitive effects of ACEs was 

demonstrated by a longitudinal study. Their findings indicated that childhood victimization 

predicted impaired cognitive functioning in young adulthood and midlife. Strikingly, these 

significant bivariate associations were attenuated after controlling for child and maternal 

intelligence quotient, and family SES (176). This challenges the conventional causal 

interpretation of the relationship between ACEs and cognition, and suggests that preexisting 

cognitive vulnerabilities (i.e., low intelligence quotient) and socioeconomic disadvantage may 

explain the cognitive deficits described in those victimized (176). Other possibilities have 

also been proposed, such as the mediating role of AL in the relationship between ACEs and 

cognitive functions (177).  

Final remarks

Excess weight does not have a unique phenotype and is not the product of a single habit. 

While usually directly associated with overeating or unhealthy eating, there are multiple 

factors that interfere in between. Starting with the basics, and despite the lack of significant 

results in our first study, genetic variants such as FTO may modulate food intake by 

disrupting brain regions that affect appetite and reward processing (e.g., the reward network) 
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(11). Additionally, environmental factors such as exposure to childhood adversity may affect 

EF (171). This was confirmed in our third study, in which a higher number of ACEs was 

associated with poorer overall executive functioning. Of course, although it was not the focus 

of this thesis, there are many other socioeconomic and sociocultural factors that can also 

favor the development of excess weight via brain and cognitive changes, or directly by 

malnutrition in those without access to healthy food. Importantly, both genetic and 

environmental vulnerabilities, especially during adolescence, occur without choice. Thus, the 

paradigm ‘calories in, calories out’ does not integrate the complexity of excess weight.  

With the progressive increase in adiposity above healthy ranges and the onset of excess 

weight, several neurocognitive changes can emerge (106,117). While most of the literature is 

focused on BMI, an indirect and non-specific measure of adiposity, we have broadened this 

perspective by including cardiometabolic factors, which are usually dysregulated in excess 

weight. Our first study indicated that BMI was associated with lower structural connectivity 

in the reward network. Our second study showed that glycated hemoglobin was associated 

with lower FA in the cingulum, triglycerides were associated with higher impulsivity 

performance, and glucose and systolic blood pressure were associated with higher impulsive 

traits. AL, which could be considered the physiological result of both the exposure to 

vulnerable situations and excess weight (168), can also impair EF (113), although this was 

not evidenced in our third study.  

By integrating biological, genetic, and psychosocial factors in the evaluation of the excess 

weight phenotype, vulnerabilities at both the population and individual levels can be 

approached and interventions can be proposed. Reductionist perspectives on excess weight 

not only prevent the correct management of this condition but also promote stigmatizing 

environments. Adolescence is by itself a challenging developmental period in which the 

foundations for adulthood are built. Thus, addressing any risk factors that may lead to 

morbidity in later years, such as excess weight, is of paramount importance to guarantee 

positive health outcomes.  

  

Strengths, limitations, and future research 

The present thesis tried to bring inside into one of the most vulnerable developmental 

periods: adolescence. Excess weight is a health condition that increases the odds of 

developing cardiometabolic and cardiovascular events, and longitudinal studies have shown 
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that adolescents with excess weight have an increased risk of maintaining this condition as 

adults (7).  

One of the main strengths of the present thesis is that we characterized adolescents from 

multiple perspectives (i.e., biological, genetic, and psychosocial) to avoid a reductive 

approach when studying the neurocognitive characteristics of the excess weight phenotype. 

Moreover, by applying strict exclusion criteria, we ensured that excess weight was the only 

health condition our participants could have. This allowed the study of excess weight without 

the interaction of important confounders, from neuropsychiatric conditions to 

cardiometabolic comorbidities, among others.  

Specific limitations from each study can be found in the section “Methods and Results” 

section. Here, general limitations of the present thesis are mentioned. All our studies had a 

cross-sectional design, which prevented us from establishing causation. In addition, the 

sample sizes used were small, thus our studies were possibly underpowered. Despite the 

incorporation of ACEs exposure as a psychosocial variable in the third study, SES was not 

included in our three studies due to a large proportion of missing values. SES is a transversal 

determinant of health and, as such, has the potential to mediate the relationships tested in 

this thesis (18). Moreover, two of the three studies in this thesis were based on DTI, a 

neuroimaging technique that is influenced by both biological and methodological factors. On 

the one hand, the tensor model is not able to correctly characterize diffusion regions of 

complex fiber architectures, such as crossing fibers, which can yield lower anisotropy metrics 

because there is no dominant diffusion direction. On the other hand, the role of the analytical 

approach is of paramount importance. Different results can be obtained using the same 

dataset because each approach utilizes different assumptions and image processing strategies 

(47). Therefore, our results should be interpreted with due caution. 

The findings obtained in this thesis indicate the need for further research. In the first study, 

while we assessed the independent effect of FTO on the structural connectivity of the reward 

network, the possible interaction between FTO and dopamine-related variants should also 

be evaluated in adolescents and different age groups. In addition, OB-related GPS studies 

are encouraged to assess with greater predictive power how inherited susceptibility to excess 

weight may change over the lifespan, and thus determine the best window to implement 

interventions (144). Moreover, it would be of particular interest to study brain characteristics 

(i.e., structural, microstructural, and connectivity) in individuals that, despite an unfavorable 

GPS maintain a NW status, or despite a favorable GPS develop OB (144). 
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In the second study, since puberty influences cardiometabolic trajectories, the use of specific 

reference values that consider both linear and non-linear reductions and increments in 

cardiometabolic factors throughout adolescence would help standardize them and provide a 

more accurate interpretation and reliable comparison between studies (154). Moreover, since 

excess weight is associated with both impulsivity and cardiometabolic alterations and, at the 

same time, these two characteristics are associated with one another, studying their 

independent and shared neural correlates would open a window to new interventions in the 

excess weight context. For example, identifying the healthy range of cardiometabolic values 

associated with more restrained impulsivity traits and brain integrity.  

As for the third study, complementing the use of AL indices with clinimetric criteria would 

provide context to this set of biological parameters. The Psychosocial Index, a questionnaire 

that includes 55 items covering 6 domains (i.e., sociodemographic and clinical data, stress, 

psychological distress, abnormal illness behavior, well-being, and quality of life), is the first 

step in the clinimetric assessment of AL (169). This questionnaire has already provided a 

sensitive assessment of AL in various studies, highlighting its potential to increase the 

number of people screened (169). The detection of adolescents with past and present 

vulnerable backgrounds using both biological and psychosocial measurements (e.g., the AL 

index, Psychosocial Index, or ACEs questionnaire) would help identify those with an 

increased risk of developing or maintaining toxic levels of stress, which have been associated 

with a broad range of health conditions, including excess weight.   
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The main conclusions of the three studies included in the present thesis, which focused on 

adolescents and young adults with and without excess weight, are as follows: 

1. A higher body mass index, but not the genetic risk of obesity assessed by the A allele 

of the fat mass and obesity-related gene rs99396309, is associated with lower 

structural connectivity in the reward network and increased whole-brain structural 

connectivity. The mechanisms by which excess weight affects brain structural 

connectivity go beyond genetic risk and are probably modulated by developmental 

processes.  

 

2. Cardiometabolic factors of different nature are associated with higher impulsivity and 

lower fractional anisotropy in white matter tracts typically related to both excess 

weight and impulsivity. Cardiometabolic factors, even at preclinical levels, are 

potential biomarkers for the neurocognitive phenotype of excess weight.  

 
3. Psychological stress, measured by exposure to adverse childhood experiences, but 

not physiological stress estimated by an allostatic load index, is associated with poorer 

executive functioning.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5. Conclusions 

148 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5. Conclusions

149



Chapter 5. Conclusions 

150 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

151 
 

1.  World Health Organization. Obesity and Overweight [Internet]. 2020. Available from: 

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight 

2.  Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for 

thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284–94.  

3.  Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, et al. Waist circumference 

as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR 

Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020;16(3):177–89.  

4.  Nuttall FQ. Body mass index: Obesity, BMI, and health: A critical review. Nutr Today. 

2015;50(3):117–28.  

5.  Hampl SE, Hassink SG, Skinner AC, Armstrong SC, Barlow SE, Bolling CF, et al. 

Clinical Practice Guideline for the Evaluation and Treatment of Children and 

Adolescents With Obesity. Pediatrics. 2023;151(2):e2022060640.  

6.  Global Obesity Observatory. World Obesity Atlas [Internet]. 2023. Available from: 

https://data.worldobesity.org/publications/?cat=19 

7.  Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from 

childhood obesity: A systematic review and meta-analysis. Obes Rev. 2016;17(2):95–

107.  

8.  Lister NB, Baur LA, Felix JF, Hill AJ, Marcus C, Reinehr T, et al. Child and adolescent 

obesity. Nat Rev Dis Prim. 2023;9(24):1–19.  

9.  Kivimäki M, Strandberg T, Pentti J, Nyberg ST, Frank P, Jokela M, et al. Body-mass 

index and risk of obesity-related complex multimorbidity: an observational 

multicohort study. Lancet Diabetes Endocrinol. 2022;10(4):253–63.  

10.  Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 

2012;126(1):126–32.  

11.  Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev 

Genet. 2022;23(2):120–33.  

12.  Doulla M, McIntyre AD, Hegele RA, Callego PH. A novel MC4R mutation associated 

with childhood-onset obesity: A case report. Paediatr Child Health (Oxford). 

2014;19(10):515–8.  

 

 



References 

152 
 

13.  Lebrun B, Bariohay B, Moyse E, Jean A. Brain-derived neurotrophic factor (BDNF) 

and food intake regulation: A minireview. Auton Neurosci Basic Clin. 2006;126–

127:30–8.  

14.  Loos RJF, Yeo GSH. The bigger picture of FTO - The first GWAS-identified obesity 

gene. Nat Rev Endocrinol. 2014;10(1):51–61.  

15.  Albuquerque D, Nóbrega C, Manco L, Padez C. The contribution of genetics and 

environment to obesity. Br Med Bull. 2017;123(1):159–73.  

16.  Swinburn B, Egger G, Raza F. Dissecting obesogenic environments: The 

development and application of a framework for identifying and prioritizing 

environmental interventions for obesity. Prev Med (Baltim). 1999;29(6):563–70.  

17.  Berthoud HR. The neurobiology of food intake in an obesogenic environment. Proc 

Nutr Soc. 2012;71(4):478–87.  

18.  Farah MJ. The Neuroscience of Socioeconomic Status: Correlates, Causes, and 

Consequences. Neuron. 2017;96(1):56–71.  

19.  Vazquez CE, Cubbin C. Socioeconomic Status and Childhood Obesity: a Review of 

Literature from the Past Decade to Inform Intervention Research. Curr Obes Rep. 

2020;9:562–70.  

20.  Newton S, Braithwaite D, Akinyemiju TF. Socio-economic status over the life course 

and obesity: Systematic review and meta-analysis. PLoS One. 2017;12(5):1–15.  

21.  Kweon H, Aydogan G, Dagher A, Bzdok D, Ruff CC, Nave G, et al. Human brain 

anatomy reflects separable genetic and environmental components of socioeconomic 

status. Sci Adv. 2022;8(20):1–10.  

22.  Farah MJ. Socioeconomic status and the brain: Prospects for neuroscience-informed 

policy. Nat Rev Neurosci. 2018;19:428–38.  

23.  Walsh D, McCartney G, Smith M, Armour G. Relationship between childhood 

socioeconomic position and adverse childhood experiences (ACEs): A systematic 

review. J Epidemiol Community Health. 2019;73(12):1087–93.  

24.  Bomysoad RN, Francis LA. Adverse Childhood Experiences and Mental Health 

Conditions Among Adolescents. J Adolesc Heal. 2020;67(6):868–70.  

 

 



References 

153 
 

25.  Elsenburg LK, van Wijk KJE, Liefbroer AC, Smidt N. Accumulation of adverse 

childhood events and overweight in children: A systematic review and meta-analysis. 

Obesity. 2017;25(5):820–32.  

26.  Hughes K, Bellis MA, Hardcastle KA, Sethi D, Butchart A, Mikton C, et al. The effect 

of multiple adverse childhood experiences on health: a systematic review and meta-

analysis. Lancet Public Heal. 2017;2(8):e356–66.  

27.  Wiss DA, Brewerton TD. Adverse Childhood Experiences and Adult Obesity: A 

Systematic Review of Plausible Mechanisms and Meta-Analysis of Cross-Sectional 

Studies. Physiol Behav. 2020;223:1–11.  

28.  Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: Its role in 

energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7:1–

16.  

29.  Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health 

and disease. Cell. 2022;185(3):419–46.  

30.  Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose 

tissue dysfunction as determinant of obesity-associated metabolic complications. Int 

J Mol Sci. 2019;20(9):2358.  

31.  Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and 

inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18.  

32.  Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev 

Immunol. 2011;29:415–45.  

33.  Kawai T, Autieri M V., Scalia R. Adipose tissue inflammation and metabolic 

dysfunction in obesity. Am J Physiol - Cell Physiol. 2021;320(3):C375–91.  

34.  Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity & inflammation: The 

linking mechanism & the complications. Arch Med Sci. 2017;13(4):851–63.  

35.  Eder K, Baffy N, Falus A, Fulop AK. The major inflammatory mediator interleukin-

6 and obesity. Inflamm Res. 2009;58(11):727–36.  

36.  Salas-Venegas V, Flores-Torres RP, Rodríguez-Cortés YM, Rodríguez-Retana D, 

Ramírez-Carreto RJ, Concepción-Carrillo LE, et al. The Obese Brain: Mechanisms of 

Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. 

Front Integr Neurosci. 2022;16:1–19.  



References 

154 
 

37.  Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and 

contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 

2014;56(4):369–81.  

38.  Gaal LF Van, Mertens IL, DeBlock CE. Mechanisms linking obesity with 

cardiovascular disease. Nature. 2006;444:875–80.  

39.  Ortiz-Martínez M, González-González M, Martagón AJ, Hlavinka V, Willson RC, 

Rito-Palomares M. Recent Developments in Biomarkers for Diagnosis and Screening 

of Type 2 Diabetes Mellitus. Curr Diab Rep. 2022;22(3):95–115.  

40.  Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and 

impact on health and cognition. Neurosci Biobehav Rev. 2010;35(1):2–16.  

41.  Suvarna B, Suvarna A, Phillips R, Juster RP, McDermott B, Sarnyai Z. Health risk 

behaviours and allostatic load: A systematic review. Neurosci Biobehav Rev. 

2020;108:694–711.  

42.  van der Valk ES, Savas M, van Rossum EFC. Stress and Obesity: Are There More 

Susceptible Individuals? Curr Obes Rep. 2018;7(2):193–203.  

43.  Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue 

metabolism in the obese state. Nutr Metab. 2020;17(1):1–16.  

44.  Tomiyama AJ. Stress and Obesity. Annu Rev Psychol. 2019;70:703–18.  

45.  Schmahmann JD, Pandya DN. White Matter Pathways in Early Neuroscience. In: 

Fiber Pathways of the Brain. 2006. p. 7–38.  

46.  Viard A, Eustache F, Segobin S. History of Magnetic Resonance Imaging: A Trip 

Down Memory Lane. Neuroscience. 2021;474:3–13.  

47.  Hecke W Van, Emsell L, Sunaert S. Diffusion Tensor Imaging. A Practical Handbook. 

New York: Springer; 2016.  

48.  Ashburner J, Friston KJ. Voxel-based morphometry - The methods. Neuroimage. 

2000;11:805–21.  

49.  Mills KL, Tamnes CK. Methods and considerations for longitudinal structural brain 

imaging analysis across development. Dev Cogn Neurosci. 2014;9:172–90.  

50.  Kullmann S, Schweizer F, Veit R, Fritsche A, Preissl H. Compromised white matter 

integrity in obesity. Obes Rev. 2015;16(4):273–81.  



References 

155 
 

51.  García-Martín ML, López-Larrubia P. Preclinical MRI: Methods and Protocols. 2018.  

52.  Yeh CH, Jones DK, Liang X, Descoteaux M, Connelly A. Mapping Structural 

Connectivity Using Diffusion MRI: Challenges and Opportunities. J Magn Reson 

Imaging. 2021;53(6):1666–82.  

53.  Bullmore E, Sporns O. Complex brain networks: Graph theoretical analysis of 

structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.  

54.  Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 

2010;20(4):327–48.  

55.  Gerván P, Soltész P, Filep O, Berencsi A, Kovács I. Posterior-anterior brain 

maturation reflected in perceptual, motor and cognitive performance. Front Psychol. 

2017;8:1–10.  

56.  Casey BJ, Getz S, Galvan A. The adolescent brain. Dev Rev. 2008;28(1):62–77.  

57.  Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. 

Brain charts for the human lifespan. Nature. 2022;604:525–33.  

58.  Lebel C, Deoni S. The development of brain white matter microstructure. 

Neuroimage. 2018;182:207–18.  

59.  Zhao T, Cao M, Niu H, Zuo XN, Evans A, He Y, et al. Age-related changes in the 

topological organization of the white matter structural connectome across the human 

lifespan. Hum Brain Mapp. 2015;36(10):3777–92.  

60.  Vijayakumar N, Op de Macks Z, Shirtcliff EA, Pfeifer JH. Puberty and the human 

brain: Insights into adolescent development. Neurosci Biobehav Rev. 2018;92:417–

36.  

61.  Piekarski DJ, Colich NL, Ho TC. The effects of puberty and sex on adolescent white 

matter development: A systematic review. Dev Cogn Neurosci. 2023;60:1–27.  

62.  Cristofori I, Cohen-Zimerman S, Grafman J. Executive functions. In: Handbook of 

Clinical Neurology. Elsevier B.V.; 2019. p. 197–219.  

63.  Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.  

64.  Diamond A. Executive functions. In: Handbook of Clinical Neurology. Elsevier B.V.; 

2020. p. 225–40.  

 



References 

156 
 

65.  De Luca CR, Leventer RJ. Developmental trajectories of executive functions across 

the lifespan. In: Executive functions and the frontal lobes: A lifespan perspective. 

Taylor & Francis; 2008. p. 23–56.  

66.  Tervo-Clemmens B, Calabro FJ, Parr AC, Fedor J, Foran W, Luna B. A canonical 

trajectory of executive function maturation from adolescence to adulthood. Nat 

Commun. 2023;14(1):1–17.  

67.  Whiteside SP, Lynam DR. The five factor model and impulsivity: Using a structural 

model of personality to understand impulsivity. Pers Individ Dif. 2001;30(4):669–89.  

68.  Mills KL, Goddings AL, Clasen LS, Giedd JN, Blakemore SJ. The developmental 

mismatch in structural brain maturation during adolescence. Dev Neurosci. 

2014;36:147–60.  

69.  Forbes EE, Dahl RE. Pubertal development and behavior: Hormonal activation of 

social and motivational tendencies. Brain Cogn. 2010;72(1):66–72.  

70.  Tottenham N, Galván A. Stress and the adolescent brain: Amygdala-prefrontal cortex 

circuitry and ventral striatum as developmental targets. Neurosci Biobehav Rev. 

2016;70:217–27.  

71.  Baum A. Stress, intrusive imagery, and chronic distress. Health Psychol. 

1990;9(6):653–75.  

72.  Lund JI, Toombs E, Radford A, Boles K, Mushquash C. Adverse childhood 

experiences and executive function difficulties in children: A systematic review. Child 

Abus Negl. 2020;106:1–19.  

73.  Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and 

disease. Nat Rev Neurosci. 2014;15(6):367–78.  

74.  Haber SN. Anatomy and connectivity of the reward circuit. In: Decision 

Neuroscience: An Integrative Perspective. Elsevier Inc.; 2017. p. 3–19.  

75.  Marqués-Iturria I, Scholtens LH, Garolera M, Pueyo R, García-García I, González-

Tartiere P, et al. Affected connectivity organization of the reward system structure in 

obesity. Neuroimage. 2015;111:100–6.  

76.  Stice E, Yokum S. Neural Vulnerability Factors That Predict Future Weight Gain. 

Curr Obes Rep. 2021;10(4):435–43.  

 



References 

157 
 

77.  Dohle S, Diel K, Hofmann W. Executive functions and the self-regulation of eating 

behavior: A review. Appetite. 2018;124:4–9.  

78.  Lowe CJ, Morton JB, Reichelt AC. Adolescent obesity and dietary decision making—

a brain-health perspective. Lancet Child Adolesc Heal. 2020;4(5):388–96.  

79.  Lowe CJ, Reichelt AC, Hall PA. The Prefrontal Cortex and Obesity: A Health 

Neuroscience Perspective. Trends Cogn Sci. 2019;23(4):349–61.  

80.  Whelan R, Conrod PJ, Poline JB, Lourdusamy A, Banaschewski T, Barker GJ, et al. 

Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat 

Neurosci. 2012;15:920–5.  

81.  Nowrangi MA, Lyketsos C, Rao V, Munro CA. Systematic review of neuroimaging 

correlates of executive functioning: Converging evidence from different clinical 

populations. J Neuropsychiatry Clin Neurosci. 2014;26(2):114–25.  

82.  Alfano V, Longarzo M, Aiello M, Soricelli A, Cavaliere C. Cerebral microstructural 

abnormalities in impulsivity: a magnetic resonance study. Brain Imaging Behav. 

2021;15(1):346–54.  

83.  Park HRP, Verhelst H, Quak M, Jeurissen B, Krebs RM. Associations between 

different white matter properties and reward-based performance modulation. Brain 

Struct Funct. 2021;226(4):1007–21.  

84.  Goddings AL, Roalf D, Lebel C, Tamnes CK. Development of white matter 

microstructure and executive functions during childhood and adolescence: a review 

of diffusion MRI studies. Dev Cogn Neurosci. 2021;51:1–12.  

85.  Beyer F, Zhang R, Scholz M, Wirkner K, Loeffler M, Stumvoll M, et al. Higher BMI, 

but not obesity-related genetic polymorphisms, correlates with lower structural 

connectivity of the reward network in a population-based study. Int J Obes. 

2021;45:491–501.  

86.  Gupta A, Mayer EA, Sanmiguel CP, Van Horn JD, Woodworth D, Ellingson BM, et 

al. Patterns of brain structural connectivity differentiate normal weight from 

overweight subjects. NeuroImage Clin. 2015;7:506–17.  

87.  Riederer JW, Shott ME, Deguzman M, Pryor TL, Frank GKW. Understanding 

neuronal architecture in obesity through analysis of white matter connection strength. 

Front Hum Neurosci. 2016;10:1–8.  



References 

158 
 

88.  Peng-Li D, Sørensen TA, Li Y, He Q. Systematically lower structural brain 

connectivity in individuals with elevated food addiction symptoms. Appetite. 

2020;155:1–10.  

89.  Rodrigues B, Coelho A, Portugal-Nunes C, Magalhães R, Moreira PS, Castanho TC, 

et al. Higher Adherence to the Mediterranean Diet Is Associated With Preserved 

White Matter Integrity and Altered Structural Connectivity. Front Neurosci. 

2020;14:1–12.  

90.  Cui Y, Tang TY, Lu CQ, Lu T, Wang YC, Teng GJ, et al. Disturbed Interhemispheric 

Functional and Structural Connectivity in Type 2 Diabetes. J Magn Reson Imaging. 

2022;55(2):424–34.  

91.  Savransky A, Chiappelli J, Rowland LM, Wisner K, Shukla DK, Kochunov P, et al. 

Fornix Structural Connectivity and Allostatic Load: Empirical Evidence from 

Schizophrenia Patients and Healthy Controls. Psychosom Med. 2017;79(7):770–6.  

92.  Kaltenhauser S, Weber CF, Lin H, Mozayan A, Malhotra A, Constable RT, et al. 

Association of Body Mass Index and Waist Circumference with Imaging Metrics of 

Brain Integrity and Functional Connectivity in Children Aged 9 to 10 Years in the US, 

2016-2018. JAMA Netw Open. 2023;6(5):1–14.  

93.  Laurent JS, Watts R, Adise S, Allgaier N, Chaarani B, Garavan H, et al. Associations 

among Body Mass Index, Cortical Thickness, and Executive Function in Children. 

JAMA Pediatr. 2020;174(2):170–7.  

94.  Ronan L, Alexander-Bloch A, Fletcher PC. Childhood Obesity, Cortical Structure, 

and Executive Function in Healthy Children. Cereb Cortex. 2020;30(4):2519–28.  

95.  Steegers C, Blok E, Lamballais S, Jaddoe V, Bernardoni F, Vernooij M, et al. The 

association between body mass index and brain morphology in children: a population-

based study. Brain Struct Funct. 2021;226(3):787–800.  

96.  García-García I, Michaud A, Dadar M, Zeighami Y, Neseliler S, Collins DL, et al. 

Neuroanatomical differences in obesity: meta-analytic findings and their validation in 

an independent dataset. Int J Obes. 2019;43(5):943–51.  

97.  Pflanz CP, Tozer DJ, Harshfield EL, Tay J, Farooqi S, Markus HS. Central obesity is 

selectively associated with cerebral gray matter atrophy in 15,634 subjects in the UK 

Biobank. Int J Obes. 2022;46(5):1059–67.  



References 

159 
 

98.  Silva CCV, Jaddoe VWV, Muetzel RL, Santos S, El Marroun H. Body fat, 

cardiovascular risk factors and brain structure in school-age children. Int J Obes. 

2021;45(11):2425–31.  

99.  Ross N, Yau PL, Convit A. Obesity, fitness, and brain integrity in adolescence. 

Appetite. 2015;93:44–50.  

100.  Gabay A, London S, Yates KF, Convit A. Does obesity-associated insulin resistance 

affect brain structure and function of adolescents differentially by sex? Psychiatry Res 

- Neuroimaging. 2022;319:1–9.  

101.  Shang X, Zhang X, Huang Y, Zhu Z, Zhang X, Liu J, et al. Association of a wide 

range of individual chronic diseases and their multimorbidity with brain volumes in 

the UK Biobank: A cross-sectional study. eClinicalMedicine. 2022;47:1–16.  

102.  Beyer F, Masouleh SK, Kratzsch J, Schroeter ML, Röhr S, Riedel-Heller SG, et al. A 

metabolic obesity profile is associated with decreased gray matter volume in 

cognitively healthy older adults. Front Aging Neurosci. 2019;11:1–14.  

103.  Ottino-González J, Jurado MA, García-García I, Segura B, Marqués-Iturria I, Sender-

Palacios MJ, et al. Allostatic load is linked to cortical thickness changes depending on 

body-weight status. Front Hum Neurosci. 2017;11:1–11.  

104.  Ottino-González J, Jurado MA, García-García I, Segura B, Marqués-Iturria I, Sender-

Palacios MJ, et al. Allostatic load and disordered white matter microstructure in 

overweight adults. Sci Rep. 2018;8(1):1–12.  

105.  Booth T, Royle NA, Corley J, Gow AJ, Valdés Hernández M del C, Muñoz Maniega 

S, et al. Association of allostatic load with brain structure and cognitive ability in later 

life. Neurobiol Aging. 2015;36(3):1390–9.  

106.  Daoust J, Schaffer J, Zeighami Y, Dagher A, García-García I, Michaud A. White 

matter integrity differences in obesity: A meta-analysis of diffusion tensor imaging 

studies. Neurosci Biobehav Rev. 2021;129:133–41.  

107.  Nouwen A, Chambers A, Chechlacz M, Higgs S, Blissett J, Barrett TG, et al. 

Microstructural abnormalities in white and gray matter in obese adolescents with and 

without type 2 diabetes. NeuroImage Clin. 2017;16:43–51.  

 

 



References 

160 
 

108.  Repple J, Karliczek G, Meinert S, Förster K, Grotegerd D, Goltermann J, et al. 

Variation of HbA1c affects cognition and white matter microstructure in healthy, 

young adults. Mol Psychiatry. 2021;26(4):1399–408.  

109.  Cox SR, Lyall DM, Ritchie SJ, Bastin ME, Harris MA, Buchanan CR, et al. 

Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur 

Heart J. 2019;40(28):2290–9.  

110.  Jing J, Zhou Y, Pan Y, Cai X, Zhu W, Zhang Z, et al. Reduced white matter 

microstructural integrity in prediabetes and diabetes: A population-based study. 

eBioMedicine. 2022;82:1–13.  

111.  Zsoldos E, Filippini N, Mahmood A, Mackay CE, Singh-Manoux A, Kivimäki M, et 

al. Allostatic load as a predictor of grey matter volume and white matter integrity in 

old age: The Whitehall II MRI study. Sci Rep. 2018;8(1):1–11.  

112.  Ritchie SJ, Tucker-Drob EM, Cox SR, Dickie DA, del C. Valdés Hernández M, Corley 

J, et al. Risk and protective factors for structural brain ageing in the eighth decade of 

life. Brain Struct Funct. 2017;222(8):3477–90.  

113.  D’Amico D, Amestoy ME, Fiocco AJ. The association between allostatic load and 

cognitive function: A systematic and meta-analytic review. 

Psychoneuroendocrinology. 2020;121:104849.  

114.  Mina T, Yew YW, Ng HK, Sadhu N, Wansaicheong G, Dalan R, et al. Adiposity 

impacts cognitive function in Asian populations: an epidemiological and Mendelian 

Randomization study. Lancet Reg Heal - West Pacific. 2023;33:100710.  

115.  Favieri F, Forte G, Casagrande M. The executive functions in overweight and obesity: 

A systematic review of neuropsychological cross-sectional and longitudinal studies. 

Front Psychol. 2019;10:1–27.  

116.  

obesity indicators in children and adolescents: A literature review. Neurosci Biobehav 

Rev. 2019;107:59–68.  

117.  Yang Y, Shields GS, Guo C, Liu Y. Executive function performance in obesity and 

overweight individuals: A meta-analysis and review. Neurosci Biobehav Rev. 

2018;84(2):225–44.  

 



References 

161 
 

118.  Broadley MM, White MJ, Andrew B. A Systematic Review and Meta-analysis of 

Executive Function Performance in Type 1 Diabetes Mellitus. Psychosom Med. 

2017;79(6):684–96.  

119.  Sadanand S, Balachandar R, Bharath S. Memory and executive functions in persons 

with type 2 diabetes: a meta-analysis. Diabetes Metab Res Rev. 2016;32(30):13–23.  

120.  Bugge A, Möller S, Westfall DR, Tarp J, Gejl AK, Wedderkopp N, et al. Associations 

between waist circumference, metabolic risk and executive function in adolescents: A 

cross-sectional mediation analysis. PLoS One. 2018;13(6):1–13.  

121.  Falkowski J, Atchison T, Debutte-Smith M, Weiner MF, O’Bryant S. Executive 

functioning and the metabolic syndrome: A project FRONTIER study. Arch Clin 

Neuropsychol. 2014;29(1):47–53.  

122.  Kazlauskaite R, Janssen I, Wilson RS, Appelhans BM, Evans DA, Arvanitakis Z, et 

al. Is midlife metabolic syndrome associated with cognitive function change? The 

study of women’s health across the nation. J Clin Endocrinol Metab. 

2020;105(4):E1093–105.  

123.  Emery RL, Levine MD. Questionnaire and behavioral task measures of impulsivity 

are differentially associated with body mass index: A comprehensive meta-analysis. 

Front Physiol. 2017;143(8):868–902.  

124.  Bickel WK, Freitas-Lemos R, Tomlinson DC, Craft WH, Keith DR, Athamneh LN, 

et al. Temporal discounting as a candidate behavioral marker of obesity. Neurosci 

Biobehav Rev [Internet]. 2021;129(March):307–29. Available from: 

https://doi.org/10.1016/j.neubiorev.2021.07.035 

125.  Salas J, van den Berk-Clark C, Skiöld-Hanlin S, Schneider FD, Scherrer JF. Adverse 

childhood experiences, depression, and cardiometabolic disease in a nationally 

representative sample. J Psychosom Res. 2019;127:109842.  

126.  Sutin AR, Terracciano A, Deiana B, Uda M, Schlessinger D, Lakatta EG, et al. 

Cholesterol, triglycerides, and the Five-Factor Model of personality. Biol Psychol. 

2010;84(2):186–91.  

127.  Schwartz JA, Rowland MW, Beaver KM. A genetically informed test of cholesterol 

levels and self-control, depressive Symptoms, antisocial behavior, and neuroticism. J 

Affect Disord. 2014;164:139–47.  



References 

162 
 

128.  Gendle MH, Flashburg AG, Higgins KL, Oristian KM. Low Total Cholesterol Levels 

and Performance on the Iowa Gambling Task. J North Carolina Acad Sci. 

2015;131(2):19–24.  

129.  Schmidt B, Bosch JA, Jarczok MN, Herr RM, Loerbroks A, Van Vianen AEM, et al. 

Effort-reward imbalance is associated with the metabolic syndrome - Findings from 

the Mannheim Industrial Cohort Study (MICS). Int J Cardiol. 2015;178:24–8.  

130.  Juster RP, Sindi S, Marin MF, Perna A, Hashemi A, Pruessner JC, et al. A clinical 

allostatic load index is associated with burnout symptoms and hypocortisolemic 

profiles in healthy workers. Psychoneuroendocrinology. 2011;36(6):797–805.  

131.  Finlay S, Roth C, Zimsen T, Bridson TL, Sarnyai Z, McDermott B. Adverse childhood 

experiences and allostatic load: A systematic review. Neurosci Biobehav Rev. 

2022;136:104605.  

132.  Stam CJ. Hub overload and failure as a final common pathway in neurological brain 

network disorders. Netw Neurosci. 2024;8(1):1–23.  

133.  Zhou Y, Jing J, Zhang Z, Pan Y, Cai X, Zhu W, et al. Disrupted pattern of rich-club 

organization in structural brain network from prediabetes to diabetes: A population-

based study. Hum Brain Mapp. 2024;45:e26598.  

134.  García-García I, Morys F, Dagher A. Nucleus accumbens volume is related to obesity 

measures in an age-dependent fashion. J Neuroendocrinol. 2020;32(12):1–12.  

135.  Okudzhava L, Schulz S, Fischi-Gomez E, Girard G, Machann J, Koch PJ, et al. White 

adipose tissue distribution and amount are associated with increased white matter 

connectivity. Hum Brain Mapp. 2024;45(5):1–11.  

136.  Edwin Thanarajah S, Hanssen R, Melzer C, Tittgemeyer M. Increased meso-striatal 

connectivity mediates trait impulsivity in FTO variant carriers. Front Endocrinol 

(Lausanne). 2023;14:1130203.  

137.  Annapoorna PK, Iyer H, Parnaik T, Narasimhan H, Bhattacharya A, Kumar A. FTO: 

An Emerging Molecular Player in Neuropsychiatric Diseases. Neuroscience. 

2019;418:15–24.  

138.  Lugo-Candelas C, Pang Y, Lee S, Cha J, Hong S, Ranzenhofer L, et al. Differences in 

brain structure and function in children with the FTO obesity-risk allele. Obes Sci 

Pract. 2020;6(4):409–24.  



References 

163 
 

139.  Rapuano KM, Zieselman AL, Kelley WM, Sargent JD, Heatherton TF, Gilbert-

Diamond D. Genetic risk for obesity predicts nucleus accumbens size and 

responsivity to real-world food cues. Proc Natl Acad Sci U S A. 2017;114(1):160–5.  

140.  Thapaliya G, Kundu P, Jansen E, Naymik MA, Lee R, Bruchhage MMK, et al. FTO 

variation and early frontostriatal brain development in children. Obesity. 

2024;32(1):156–65.  

141.  Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD, et al. A commonly carried allele 

of the obesity-related FTO gene is associated with reduced brain volume in the healthy 

elderly. Proc Natl Acad Sci U S A. 2010;107(18):8404–9.  

142.  De Groot C, Felius A, Trompet S, De Craen AJM, Blauw GJ, Van Buchem MA, et 

al. Association of the fat mass and obesity-associated gene risk allele, rs9939609A, and 

reward-related brain structures. Obesity. 2015;23:2118–22.  

143.  Olivo G, Latini F, Wiemerslage L, Larsson EM, Schiöth HB. Disruption of 

accumbens and thalamic white matter connectivity revealed by diffusion tensor 

tractography in young men with genetic risk for obesity. Front Hum Neurosci. 

2018;12(75):1–10.  

144.  Khera A V., Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic 

Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell. 

2019;177(3):587–96.  

145.  Hess ME, Hess S, Meyer KD, Verhagen LAW, Koch L, Brönneke HS, et al. The fat 

mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain 

circuitry. Nat Neurosci. 2013;16(8):1042–8.  

146.  Sevgi M, Rigoux L, Kühn AB, Mauer J, Schilbach L, Hess ME, et al. An obesity-

predisposing variant of the FTO gene regulates D2R-dependent reward learning. J 

Neurosci. 2015;35(36):12584–92.  

147.  Vergoossen LWM, Jansen JFA, Backes WH, Schram MT. Cardiometabolic 

determinants of early and advanced brain alterations: Insights from conventional and 

novel MRI techniques. Neurosci Biobehav Rev. 2020;115:308–20.  

148.  Veeranna V, Ramesh K, Zalawadiya SK, Niraj A, Pradhan J, Jacob S, et al. 

Glycosylated hemoglobin and prevalent metabolic syndrome in nondiabetic 

multiethnic U.S. adults. Metab Syndr Relat Disord. 2011;9(5):361–7.  



References 

164 
 

149.  Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on 

the developing brain. Front Endocrinol (Lausanne). 2022;13:1047545.  

150.  Nathan DM, Turgeon H, Regan S. Relationship between glycated haemoglobin levels 

and mean glucose levels over time. Diabetologia. 2007;50(11):2239–44.  

151.  Barnea-Goraly N, Raman M, Mazaika P, Marzelli M, Hershey T, Weinzimer SA, et al. 

Alterations in white matter structure in young children with type 1 diabetes. Diabetes 

Care. 2014;37(2):332–40.  

152.  Alfaro FJ, Gavrieli A, Saade-Lemus P, Lioutas VA, Upadhyay J, Novak V. White 

matter microstructure and cognitive decline in metabolic syndrome: a review of 

diffusion tensor imaging. Metabolism. 2018;78:52–68.  

153.  Steinberger J, Daniels SR, Hagberg N, Isasi CR, Kelly AS, Lloyd-Jones D, et al. 

Cardiovascular Health Promotion in Children: Challenges and Opportunities for 2020 

and Beyond: A Scientific Statement from the American Heart Association. 

Circulation. 2016;134(12):e236–55.  

154.  Stavnsbo M, Resaland GK, Anderssen SA, Steene-Johannessen J, Domazet SL, 

Skrede T, et al. Reference values for cardiometabolic risk scores in children and 

adolescents: Suggesting a common standard. Atherosclerosis. 2018;278:299–306.  

155.  Mattavelli G, Gorrino I, Tornaghi D, Canessa N. Cognitive and motor impulsivity in 

the healthy brain, and implications for eating disorders and obesity: A coordinate-

based meta-analysis and systematic review. Cortex. 2024;171:90–112.  

156.  Aoun C, Nassar L, Soumi S, El Osta N, Papazian T, Rabbaa Khabbaz L. The 

Cognitive, Behavioral, and Emotional Aspects of Eating Habits and Association With 

Impulsivity, Chronotype, Anxiety, and Depression: A Cross-Sectional Study. Front 

Behav Neurosci. 2019;13(204).  

157.  Lattimore P, Fisher N, Malinowski P. A cross-sectional investigation of trait 

disinhibition and its association with mindfulness and impulsivity. Appetite. 

2011;56(2):241–8.  

158.  Koponen H, Kautiainen H, Leppänen E, Mäntyselkä P, Vanhala M. Association 

between suicidal behaviour and impaired glucose metabolism in depressive disorders. 

BMC Psychiatry. 2015;15(1):1–8.  

 



References 

165 
 

159.  Qing G, Deng W, Zhou Y, Zheng L, Wang Y, Wei B. The association between non-

high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio 

(NHHR) and kidney stones: a cross-sectional study. Lipids Health Dis. 2024;23(1):1–

10.  

160.  

Is Associated with Lower HDL Cholesterol Levels. Int J Mol Sci. 2022;23(19).  

161.  Hjell G, Mørch-Johnsen L, Holst R, Tesli N, Bell C, Lunding SH, et al. Disentangling 

the relationship between cholesterol, aggression, and impulsivity in severe mental 

disorders. Brain Behav. 2020;10(9):1–13.  

162.  Dong R, Haque A, Wu HE, Placide J, Yu L, Zhang X. Sex differences in the 

association between suicide attempts and glucose disturbances in first-episode and 

drug naive patients with major depressive disorder. J Affect Disord. 2021;292:559–

64.  

163.  Seeman TE, Singer BH, Rowe JW, Horwitz RI, Mcewen BS. Price of Adaptation—

Allostatic Load and Its Health Consequences. MacArthur Studies of Successful Aging. 

Arch Intern Med. 1997;157(19):2259–68.  

164.  Carbone JT, Clift J, Alexander N. Measuring allostatic load: Approaches and 

limitations to algorithm creation. J Psychosom Res. 2022;163:111050.  

165.  Holochwost SJ, Volpe V V., Collins AN, Propper CB, Mills-Koonce WR, Brown ED, 

et al. Allostatic Load in Childhood, Adolescence, and Young Adulthood: Are 

Assumptions of Measurement Invariance Warranted? Psychosom Med. 

2024;86(3):169–80.  

166.  Whelan E, O’Shea J, Hunt E, Dockray S. Evaluating measures of allostatic load in 

adolescents: A systematic review. Psychoneuroendocrinology. 2021;131:105324.  

167.  Shields GS, Sazma MA, Yonelinas AP. The effects of acute stress on core executive 

functions: A meta-analysis and comparison with cortisol. Neurosci Biobehav Rev. 

2016;68:651–68.  

168.  Lucente M, Guidi J. Allostatic Load in Children and Adolescents: A Systematic 

Review. Psychother Psychosom. 2023;92(5):295–303.  

169.  Fava GA, Sonino N, Lucente M, Guidi J. Allostatic Load in Clinical Practice. Clin 

Psychol Sci. 2023;11(2):345–56.  



References 

166 
 

170.  Vaidya N, Marquand AF, Nees F, Siehl S, environMENTAL and IMAGEN 

consortium, Schumann G. The impact of psychosocial adversity on brain and 

behaviour: an overview of existing knowledge and directions for future research. Mol 

Psychiatry. 2024;1–23.  

171.  Op den Kelder R, Van den Akker AL, Geurts HM, Lindauer RJL, Overbeek G. 

Executive functions in trauma-exposed youth: a meta-analysis. Eur J 

Psychotraumatol. 2018;9(1).  

172.  Johnson D, Policelli J, Li M, Dharamsi A, Hu Q, Sheridan MA, et al. Associations of 

Early-Life Threat and Deprivation with Executive Functioning in Childhood and 

Adolescence: A Systematic Review and Meta-analysis. JAMA Pediatr. 2021;175(11):1–

10.  

173.  Ellis BJ, Bianchi JM, Griskevicius V, Frankenhuis WE. Beyond Risk and Protective 

Factors: An Adaptation-Based Approach to Resilience. Perspect Psychol Sci. 

2017;12(4):561–87.  

174.  Trudel-Fitzgerald C, Ouellet-Morin I. The cost of resilience: How allostatic load may 

jeopardize health through repeated demands for (successful) adaptation. 

Psychoneuroendocrinology. 2022;144.  

175.  De Bellis MD, Zisk A. The Biological Effects of Childhood Trauma. Child Adolesc 

Psychiatr Clin N Am. 2014;23(2):185–222.  

176.  Danese A, Moffitt TE, Arseneault L, Bleiberg BA, Dinardo PB, Gandelman SB, et al. 

The origins of cognitive deficits in victimized children: Implications for 

neuroscientists and clinicians. Am J Psychiatry. 2017;174(4):349–61.  

177.  D’Amico D, Amestoy ME, Fiocco AJ. The mediating role of allostatic load in the 

relationship between early life adversity and cognitive function across the adult 

lifespan. Psychoneuroendocrinology. 2022;141.  

 

 

 

 

  

 



References 

167 
 

 

 

 

 

 

 

 

 

 

 


	APC_COVER
	Tesi printb



