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Dedication

To my beloved and our little one on the way.

Une aventure s’achève et une autre commence.
Apollon fait place à Dionysos.

Je t’aime.
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Abstract

From conception onward, environmental factors such as air quality or di-
etary habits can significantly impact the risk of developing various chronic
diseases. Within the epidemiological literature, indicators known as Envi-
ronmental Risk Scores (ERSs) are used not only to identify individuals at
risk but also to study the relationships between environmental factors and
health. A limit of most ERSs is that they are expressed as linear combina-
tions of a limited number of factors. This doctoral thesis aims to develop
ERS indicators able to investigate nonlinear relationships and interactions
across a broad range of exposures while discovering actionable factors to
guide preventive measures and interventions, both in adults and children.

To achieve this aim, we leverage the predictive abilities of non-parametric
machine learning methods, combined with recent Explainable AI tools and
existing domain knowledge. In the first part of this thesis, we compute ma-
chine learning-based environmental risk scores for mental, cardiometabolic,
and respiratory general health for children. On top of identifying nonlinear
relationships and exposure-exposure interactions, we identified new predic-
tors of disease in childhood. The scores could explain a significant proportion
of variance and their performances were stable across different cohorts.

In the second part, we propose SEANN, a new approach integrating
expert knowledge in the form of Pooled Effect Sizes (PESs) into the training
of deep neural networks for the computation of informed environmental risk
scores. SEANN aims to compute more robust ERSs, generalizable to a
broader population, and able to capture exposure relationships that are
closer to evidence known from the literature. We experimentally illustrate
the approach’s benefits using synthetic data, showing improved prediction
generalizability in noisy contexts (i.e., observational settings) and improved
reliability of interpretation using Explainable Artificial Intelligence (XAI)
methods compared to an agnostic neural network.

In the last part of this thesis, we propose a concrete application for
SEANN using data from a cohort of Spanish adults. Compared to an agnos-
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tic neural network-based ERS, the score obtained with SEANN effectively
captures relationships more in line with the literature-based associations
without deteriorating the predictive performances. Moreover, exposures
with poor literature coverage significantly differ from those obtained with
the agnostic baseline method with more plausible directions of associations.

In conclusion, our risk scores demonstrate substantial potential for the
data-driven discovery of unknown nonlinear environmental health relation-
ships by leveraging existing knowledge about well-known relationships. Be-
yond their utility in epidemiological research, our risk indicators are able
to capture holistic individual-level non-hereditary risk associations that can
inform practitioners about actionable factors in high-risk individuals. As
in the post-genetic era, personalized medicine prevention will focus more
and more on modifiable factors, we believe that such approaches will be
instrumental in shaping future healthcare paradigms.

Keywords: Machine Learning, Informed Machine Learning, Exposome,
Environmental Risk Scores, Deep Neural Networks.



Résumé - French summary

Dès la conception, des facteurs environnementaux tels que la qualité de l’air
ou les habitudes alimentaires peuvent significativement influencer le risque
de développer diverses maladies chroniques. Dans la littérature épidémiolo-
gique, des indicateurs connus sous le nom de Scores de Risque Environne-
mental (Environmental Risk Score, ERS) sont utilisés non seulement pour
identifier les individus à risque, mais aussi pour étudier les relations entre les
facteurs environnementaux et la santé. Une limite de la plupart des ERSs
est qu’ils sont exprimés sous forme de combinaisons linéaires d’un nombre
limité de facteurs. Cette thèse de doctorat vise à développer des indicateurs
ERSs capables d’investiguer des relations non linéaires et des interactions à
travers un large éventail d’expositions tout en découvrant des facteurs ac-
tionnables pour guider des mesures et interventions préventives, tant chez
les adultes que chez les enfants.

Pour atteindre cet objectif, nous exploitons les capacités prédictives des
méthodes d’apprentissage automatique non paramétriques, combinées avec
des outils récents d’IA explicable et des connaissances existantes du do-
maine. Dans la première partie de cette thèse, nous calculons des scores de
risque environnemental basés sur l’apprentissage automatique pour la santé
mentale, cardiométabolique et respiratoire de l’enfant. En plus d’identifier
des relations non linéaires et des interactions entre expositions, nous avons
identifié de nouveaux prédicteurs de maladies chez les enfants. Les scores
peuvent expliquer une proportion significative de la variance des données et
leurs performances sont stables à travers différentes cohortes.

Dans la deuxième partie, nous proposons SEANN, une nouvelle approche
intégrant des connaissances expertes sous forme d’Effet Agrégées (Pooled Ef-
fect Size, PES) dans l’entraînement de réseaux neuronaux profonds pour
le calcul de scores de risque environnemental informés (Informed ERS).
SEANN vise à calculer des ERSs plus robustes, généralisables à une po-
pulation plus large, et capables de capturer des relations d’exposition plus
proches de celles connues dans la littérature. Nous illustrons expérimentale-
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ment les avantages de cette approche en utilisant des données synthétiques.
Par rapport à un réseau neuronal agnostique, nous obtenons une meilleure
généralisation des prédictions dans des contextes de données bruitées et une
fiabilité améliorée des interprétations obtenues en utilisant des méthodes
d’Intelligence Artificielle Explicable (Explainable AI - XAI).

Dans la dernière partie de cette thèse, nous proposons une application
concrète de SEANN en utilisant les données d’une cohorte espagnole com-
posée d’adultes. Comparé à un score de risque environnemental basé sur
un réseau neuronal agnostique, le score obtenu avec SEANN capture des re-
lations mieux alignées avec les associations de la littérature sans détériorer
les performances prédictives. De plus, les expositions ayant une couver-
ture littéraire limitée diffèrent significativement de celles obtenues avec la
méthode agnostique de référence en bénéficiant de directions d’associations
plus plausibles.

En conclusion, nos scores de risque démontrent un indubitable potentiel
pour la découverte informée de relation environnement-santé non linéaires
peu connues, tirant parti des connaissances existantes sur les relations bien
connues. Au-delà de leur utilité dans la recherche épidémiologique, nos indi-
cateurs de risque sont capables de capturer, de manière holistique, des rela-
tions de risque au niveau individuel et d’informer les praticiens sur des fac-
teurs de risque actionnables identifiés. Alors que dans l’ère post-génétique,
la prévention en médecine personnalisée se concentrera de plus en plus sur
les facteurs non héréditaires et actionnables, nous pensons que ces approches
seront déterminantes pour façonner les futurs paradigmes de la santé.

Mots-clés: Machine Learning, Informed Machine Learning, Exposome,
Scores de Risque Environmental , Réseaux de Neurones Profonds.



Resumen - Spanish summary

Desde la concepción, factores ambientales como la calidad del aire o los hábi-
tos alimentarios pueden influir significativamente en el riesgo de desarrollar
diversas enfermedades crónicas. En la literatura epidemiológica, se utilizan
indicadores conocidos como Puntuaciones de Riesgo Ambiental (Environ-
mental Risk Score, ERS) no solo para identificar a individuos en riesgo, sino
también para estudiar las relaciones entre los factores ambientales y la sa-
lud. Una limitación de la mayoría de los ERS es que se expresan en forma
de combinaciones lineales de un número limitado de factores. Esta tesis
doctoral tiene como objetivo desarrollar indicadores ERS capaces de inves-
tigar relaciones no lineales e interacciones a través de una amplia gama de
exposiciones, descubriendo al mismo tiempo factores accionables para guiar
medidas e intervenciones preventivas, tanto en adultos como en niños.

Para alcanzar este objetivo, aprovechamos las capacidades predictivas de
métodos de aprendizaje automático no paramétrico, combinados con herra-
mientas recientes de IA explicable y conocimientos existentes del campo. En
la primera parte de esta tesis, calculamos puntuaciones de riesgo ambiental
basadas en aprendizaje automático para la salud mental, cardiometabólica
y respiratoria infantil. Además de identificar relaciones no lineales e interac-
ciones entre exposiciones, identificamos nuevos predictores de enfermedades
en la infancia. Las puntuaciones pueden explicar una proporción significati-
va de la varianza de los datos y sus rendimientos son estables en diferentes
cohortes.

En la segunda parte, proponemos SEANN, un nuevo enfoque que integra
conocimientos expertos en forma de Tamaños de Efecto Agrupados (Pooled
Effect Size, PES) en el entrenamiento de redes neuronales profundas para
el cálculo de puntuaciones de riesgo ambiental informadas (Informed ERS).
SEANN tiene como objetivo calcular ERS más robustos, generalizables a
una población más amplia y capaces de capturar relaciones de exposición
más cercanas a las conocidas en la literatura. Ilustramos experimentalmente
las ventajas de este enfoque utilizando datos sintéticos. En comparación
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con una red neuronal agnóstica, obtenemos una mejor generalización de
las predicciones en contextos de datos ruidosos y una mayor fiabilidad de
las interpretaciones obtenidas utilizando métodos de Inteligencia Artificial
Explicable (Explainable AI - XAI).

En la última parte de esta tesis, proponemos una aplicación concreta de
SEANN utilizando los datos de una cohorte española compuesta por adul-
tos. En comparación con una puntuación de riesgo ambiental basada en
una red neuronal agnóstica, la puntuación obtenida con SEANN captura
relaciones mejor alineadas con las asociaciones de la literatura sin deterio-
rar el rendimiento predictivo. Además, las exposiciones con una cobertura
limitada en la literatura difieren significativamente de las obtenidas con el
método agnóstico de referencia, beneficiándose de direcciones de asociación
más plausibles.

En conclusión, nuestras puntuaciones de riesgo demuestran un indudable
potencial para el descubrimiento informado de relaciones ambientales-salud
no lineales poco conocidas, aprovechando los conocimientos existentes sobre
las relaciones bien conocidas. Más allá de su utilidad en la investigación
epidemiológica, nuestros indicadores de riesgo son capaces de capturar, de
manera holística, relaciones de riesgo a nivel individual e informar a los pro-
fesionales sobre los factores de riesgo accionables identificados. Mientras que
en la era post-genética, la prevención en medicina personalizada se centrará
cada vez más en los factores no hereditarios y accionables, creemos que estos
enfoques serán determinantes para dar forma a los futuros paradigmas de la
salud.

Palabras clave: Aprendizaje Automático, Aprendizaje Automático In-
formado, Exposome, Puntuaciones de Riesgo Ambiental, Redes Neuronales
Profundas.
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logical and statistical lectures, peer-reviewed scientific articles, and provided
technical guidance and support for Meersens.

Few lines about Meersens Meersens is a French startup company founded
in 2017 by Morane Rey-Huet and Louis Stockreisser. Their mission is to
measure, analyze, and model environmental exposures geographically and
provide preventive recommendations to promote health and well-being. An
important part of their business lies in the development of a Software as a
Service (SaaS) application that enables a stakeholder (e.g., a local authority,
company, or hospital) to assess the exposure of the people for whom it is
responsible and to determine the potential resulting health impacts in order
to set up adapted prevention policies. The objective of Meersens through
this thesis is to improve its risk assessment solution by using performant and
adapted machine learning models. Details about how this work is or will be
integrated into its industrial solution are not discussed in this document.
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1.1 Context and motivation

1.1.1 The Epidemiological Transition and the Importance of
Environmental Health Initiatives

Over the past century, technological progress has deeply reshaped our so-
cieties. One of the most important changes we can observe is the massive
increase in life expectancy (multiplied by 2.5 in developed countries) over
the past 150 years. Not only do we live longer, but we are also in better
health than our ancestors [Riley, 2001]. In 1971, Abdul Omran explained
this phenomenon with the epidemiological transition theory [Omran, 2005].
In essence, the idea is that the increase in life expectancy is largely due to a
shift from deaths due to infectious diseases such as pneumonia or influenza,
to deaths attributed to chronic diseases like cancer or cardiovascular diseases
from which we mainly die at an older age. While pandemics like Covid-19
are still major threats to public health, the reduction of mortality from in-
fectious diseases, once the leading cause of death worldwide, combined with
the augmentation of the chronic disease burden marks a profound shift in
modern public health challenges. For instance, in the US, infectious diseases
were responsible for 47% of all deaths at the beginning of the 20th century
[Armstrong, 1999] compared to only 5.4% from 1980 to 2014 [Hansen et al.,
2016]. In contrast, chronic diseases are now responsible for 74% of deaths
worldwide [Thomas et al., 2023].

This shift was facilitated by significant advances in medical science, notably
including the development of vaccines and antibiotics that effectively combat
infectious diseases. Simultaneously, the scale of the human impact on the
environment has escalated to the point that scientists such as Crutzen relate
to a new geological era, the Anthropocene, defined by human activity’s
profound effect on the Earth to designate our epoch [Crutzen, 2006]. While
the term itself can be controversial, we know that the recent history of
mankind is marked by a more pronounced release of pollutants into the
environment, a consequence of industrialization, urbanization, and other
human endeavors, which have proven to impact human health [Fuller et al.,
2022].

Unlike infectious diseases, for which the cause is simple and direct, i.e.,
exposure to an infectious agent, chronic diseases often result from the ac-
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cumulation of multiple low-dose exposures to various environmental factors
combined with a genetic liability. A recurring phrase in environmental sci-
ence put it this way: “Genetics load the gun, environment pulls the trigger”.
The first statement of it should be accredited to MD Elliott Joslin in the
early 20s’. While it is an excellent punchline, a sentence like “Genetics set the
board, environment makes the moves” would be less fatalistic—the environ-
ment can also have positive effects on health—and would better highlight
the actionable property of the environment in opposition to the genome.
Moving forward, as the growing understanding of the impact of long-term
exposure to environmental factors spreads outside the scientific community,
there has been an increase in public interest in this research area.
In such context, environmental health assessment has emerged as a cor-
nerstone for public health initiatives, aiming to quantify and mitigate the
adverse effects of environmental hazards on human health. Over the past
decades, several governmental agencies worldwide, such as the World Health
Organization (WHO), the United States Environmental Protection Agency
(EPA), or the European Environment Agency (EEA), have been tasked with
developing and enforcing environmental health policies and regulations. The
significance of chronic diseases was, for instance, recognized in the United
Nations 2030 Agenda for Sustainable Development, which set targets to
“reduce by one-third premature mortality from noncommunicable diseases
through prevention and treatment” [Cf, 2015].

1.1.2 About environmental health

Environmental health is a field of research aiming at studying the effect of
exposure to environmental factors on health. Those factors refer to any ex-
ternal substance or condition that an individual comes into contact with,
which could potentially affect their health. Exposures to such factors can
include a wide range of physical, chemical, biological, and social elements,
such as air and water pollutants, radiation, infectious agents, dietary compo-
nents, and socioeconomic conditions. Their effects can be direct and obvious
(e.g., car accidents, gunshots, lethal dose injection of poisonous substances)
but also very subtle and not visible without adequate tools, for instance in
the case of long-term and repetitive exposures to low concentrations of air
pollution. While typical approaches in modern medicine are able to identify
the biological mechanisms that caused the illness, they are unable to iden-
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tify their cause. Environmental health science aims to identify such distal
causes (i.e., the cause of the cause).
The field is traditionally studied through three distinct types of approaches.
Environmental epidemiologists are looking for associations at the population
level, exposure scientists at the individual level, and toxicologists at the
molecular-cellular level [Miller and Jones, 2013]. All three disciplines are
naturally interconnected and rely on each other. For instance, toxicologists
rely on epidemiological exploratory studies to target relevant exposure to
assess, while epidemiologists rely on toxicological studies to verify if their
observed associations are in line with the known biological pathways. In
this thesis, we were interested in environmental-health relationships at the
epidemiological level.

1.1.3 About environmental epidemiology

In their population studies, environmental epidemiologists generate statis-
tical estimates about the effect on health of some environmental factors.
Those are generally in the form of associations, i.e., statistical relationships,
between a variable of interest (called the explanatory or the independent
variable) and a health outcome (called the response or the dependent vari-
able). Such associations are qualified as positive when an increase in one
variable (such as smoking) is associated with an increase in another variable
(such as the prevalence of lung cancer) or negative when the increase in one
variable is associated with a decrease in the other. In practice, an associa-
tion is quantified as a single value estimate, such as a beta coefficient in a
linear regression model or an odds ratio in a logistic model, which represents
the effect of the predictor on the outcome. Additionally, these estimates are
commonly accompanied by a measure of statistical significance (i.e., the p-
value), which quantifies the likelihood that the observed relationship could
have occurred by chance.
Those associations can be obtained from different study designs that yield
different levels of evidence in terms of strength and reliability. Those differ-
ent levels are traditionally ranked from bottom to top in a pyramid (Fig.1.1)
[Wallace et al., 2022]. The first and stronger category of evidence in this
pyramid is Filtered Information, where evidence has been critically evalu-
ated and synthesized from multiple studies. Those include meta-analyses,
systematic reviews, and guidelines developed by panels of experts based on
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previous studies. Understanding the concept of meta-analysis is im-
portant in this thesis. Meta-analyses are studies that aim to provide a
more precise estimate of the effect size, i.e., statistically stronger than the
results of any single study, by pooling association estimates between a given
predictor on a given outcome from several studies [Borenstein et al., 2021].
The pooled effect size (PES) estimate is obtained by weighting the estimate
in each study by its statistical significance. In practice, this is generally
performed by using each study sample size or the inverse of the estimate’s
variance.
Considered less robust in general, Unfiltered Information represents evidence
obtained from a single analysis. This is obviously the main source of knowl-
edge in the field in terms of quantity. The different study designs encom-
passed in this category have been ranked according to their evidence quality
[Wallace et al., 2022] from the highest to the lowest:

• Randomized controlled trials (RCTs). An experiment involving
one or a few variables in which participants are randomly assigned to
either a treatment or control group to rigorously test the effects of
an intervention. While being the gold standard in this category, they
are costly to implement and can be impracticable (when the exposure
is hard to administrate) and/or unethical (for instance when testing
prenatal potential harmful effects).

• Cohort studies consist of following a group of people (a cohort) over
a period to see how different exposures affect their outcomes. Partic-
ipants are not assigned by the researcher to exposed or non-exposed
groups; rather, they are observed based on their real-life exposure sta-
tuses. While they can track changes over time and study exposures
that would be unethical to assign deliberately, they are also more sus-
ceptible to confounding factors and bias as the assignment to exposure
is not controlled by the researcher. In this thesis, we used this design
in Paper 3.

• In cross-sectional studies, data are collected from a population at
a single point in time. The focus is on assessing the prevalence of an
outcome or a particular set of variables within the study population
at that specific time. Compared with cohort studies, since the data
are collected at one point in time, it is difficult to ascertain temporal
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sequences or causality between variables. In this thesis, we used this
design in Paper 1.

• Finally, the lower level of evidence is case-control studies, where
researchers start with an outcome (i.e., the presence or absence of a
disease) and then look backward to find exposures or risk factors. They
select a group of individuals who have the disease (cases) and a group
without the disease (controls), and then compare their past exposures.
While being less costly than cohort studies and requiring less time (the
outcome has already occurred), they are prone to bias, especially when
participants do not recall precisely their past exposures.

Figure 1.1: Evidence pyramid
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1.1.4 Confounding in epidemiology

As mentioned in the previous section, this thesis leverages observational
data. An important source of bias in observational studies is called con-
founding. It occurs when a variable (the confounder) influences both an
exposure under study and the outcome, leading to the measure of a spuri-
ous association. This phenomenon can be difficult to discern when no data
about the confounder is available.
Let us illustrate this phenomenon with an example. The consumption of fish
(moderate) is known to influence health positively in general as it is filled
with omega-3 fatty acids and vitamins such as D and B [Stratakis et al.,
2020]. However, it is also a major source of exposure to heavy metals such as
mercury, which are notably detrimental to the nervous system. Hence, if not
accounted for correctly, the effect of mercury on health could be confounded
by healthy fish consumption and appear as a protective factor.
Several approaches are possible to mitigate the impact of confounding, such
as randomly assigning individuals to exposure and control groups in RCTs.
In observational studies, common approaches imply stratifying study popu-
lations according to known confounders or using multivariate models (such
as multivariate regression) that incorporate (i.e., adjust for) the confounders’
effects.

1.1.5 The exposome paradigm

Historically in epidemiological studies, the impact of environmental health
associations was largely studied using a ‘one-exposure-one-health-effect’ ap-
proach [Vrijheid, 2014]. While such targeted approaches are still useful,
scaling them to the diversity of existing environmental factors is expensive.
Additionally, they can be subjected to unaccounted confounding and they
may miss subtle, unattended effects (e.g., potential interactions with other
exposures or genetic liabilities). To address those challenges, a new research
paradigm was needed.
Concerned about a lack of measures and adequate tools for researchers to use
in order to explore and identify new environmental exposures, Dr. Christo-
pher Wild, an epidemiologist, coined the term ’exposome’ in 2005 as an
environmental equivalent to the human genome and an indispensable com-
plement regarding its impact on health [Wild, 2005]. Dr. Wild wanted
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to draw attention to the need for better and more complete environmental
exposure data, in order to balance the investment, tools and knowledge in
genetics. At the time, significant advancements were made regarding the
mapping and understanding of the human genome. The human genome
project (HGP), a massive international project aiming at mapping the com-
plete set of nucleotides contained in the human reference genome, had been
completed just two years earlier. This project is still, to that day, the largest
collaborative project in biological science.

Wild defined the exposome as a holistic view of "all exposures from concep-
tion onward, including those from lifestyle, diet and environment" that com-
plements the genome. In a subsequent publication [Wild, 2012], he further
divided the exposome into three main complementary yet distinct domains:
the specific external exposome (encoding the immediate local environment
such as air quality, radiation, infectious agents, professional occupation and
lifestyle), the general external exposome (the socio-economic setting) and
the internal exposome (encoding measurements of the body response to ex-
posures). This categorization aimed to better federate a variety of research
fields, ranging from toxicology to epidemiology, ecology, and the social sci-
ences.

The exposome as a research paradigm recognizes that individuals are si-
multaneously exposed to a multitude of environmental factors and takes a
holistic approach to the discovery of etiological factors for disease. Its main
advantage over traditional “one-exposure-one-disease” approaches is that it
provides a conceptual framework for investigating multiple environmental
hazards (e.g., urban, chemical, lifestyle, social) and their combined effects.
Classical single exposure analyses may be limited as the studied exposure
association could arise from another correlated factor not taken into account
and are, moreover, unable to capture interactions or cumulative effects from
the exposure mixture. Exposures are not isolated, can be correlated with
one another, and are likely to interact both among themselves, i.e., Environ-
ment x Environment (ExE) and with genetics, i.e., Genetics x Environment
(GxE) to drive health and non-communicable diseases [Jaffee and Price,
2008, Johns et al., 2012].

To address the exposome’s inherent challenges, a wide range of environmen-
tal data coupled with clinical biomarkers is needed to comprehensively cap-
ture its main domains. Consequently, advanced modeling approaches, suit-
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able for the analysis of complex mixtures of exposures in observational and
clinical studies, are needed to process such data. In addition to traditional
biostatistical methods, recent advances in explainable AI allow extracting
and making intelligible the relationships captured by powerful predictive al-
gorithms (e.g., [Guidotti et al., 2018]), whose use was previously limited to
prediction and forecast only.

1.1.6 Environmental risk scores

Inspired by risk prediction models, such as the Framingham risk score for
coronary heart disease [D’Agostino et al., 2008] or polygenic risk scores
(PRSs) [Khera et al., 2018] from genetic research, ERS are summary mea-
sures of the effects of multiple exposures used to estimate the environmental
liability for a particular health outcome at an individual level [Park et al.,
2014]. Those scores are useful tools for screening individuals to select for
more expensive testing, and, more importantly, they can be used to study
the effect of environmental exposure on health [Park et al., 2014].
ERSs are usually built as a weighted sum of the individual exposure es-
timates, obtained either from previous literature studies (e.g., from meta-
analyses) or derived through linear regression models (from either single
multivariate models or several single exposures models, adjusted for multi-
ple testing, c.f. Section 2.2.1) [Pries et al., 2021]. This scheme, however,
assumes that each environmental stressor individually acts in a linear dose-
response relationship, while previous research has shown that their combined
effect does not necessarily follow this rule [Le Magueresse-Battistoni et al.,
2018].
Unlike genetics, some environmental factors are actionable, which gives
ERSs a broader potential for informing public health policies by identi-
fying actionable key factors that facilitate the implementation of preventive
measures. Combined with PRSs, these scores could also serve as an initial
step in identifying at-risk populations, who can then be directed to more
specific clinical diagnostic tests, thereby serving as a complementary tool
in the healthcare decision-making process [Murray et al., 2021, Wray et al.,
2021]. By giving recommendations at an individual level, ERSs combined
with PRSs are a first step towards personalized medicine 1.

1Considered the future of healthcare, personalized medicine is a shift from the "one-
size-fits-all" approach to a more precise and patient-centered one, performed by taking
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1.1.7 Incorporating Domain Knowledge in Exposome Stud-
ies

As recent research on the exposome involves more and more observational
studies collecting large varieties of environmental factors, there is a recog-
nized need for data-driven methods able to handle large amounts of variables
for analysis [Miller and Jones, 2013, Haddad et al., 2019]. However, purely
data-driven approaches can lead to unsatisfactory results, such as capturing
spurious associations or poorly generalizable performances. Such results are
more likely to occur when facing a small available sample size for the train-
ing data, high measurement errors, or confounding effects. Additionally,
purely data-driven methods do not necessarily follow important guidelines
about security or fairness nor necessarily satisfy known natural laws (e.g.,
biological pathways). Incorporating additional knowledge to complement
the training data is a way to address those issues that we explored in this
doctoral work.
The information gathered in previous studies about exposure-health rela-
tionships is a particularly useful form of knowledge for studying the ex-
posome concerns. Incorporating the known relationships into the machine
learning models can help better capture less studied associations in case of
confounding, for instance, using the firsts to adjust the seconds. Considered
one of the most reliable forms of knowledge in epidemiological studies [Ros-
ner, 2012], PESs represent well-known exposure effects aggregated across
several studies in meta-analyses [Pathak et al., 2020], as previously men-
tioned in section 1.1.3. In practice, these estimates are generally encoded as
odd ratios (ORs), risk ratios (RRs), or simple linear estimates (cf., section
2.2.1).

1.2 Objectives

Our overarching goal in this work was, in line with the exposome concept,
to study the combined effects of environmental exposures on human health.
More specifically, our work focused on the exploratory analysis of obser-
vational cohort data, examining a broad range of exposures. It was not
specific to any health outcome in particular but rather on proposing new ap-

into account genetic, environmental, and lifestyle factors.
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proaches for the untargeted discovery of environmental health relationships.
To achieve this, we leveraged the predictive abilities of non-parametric ma-
chine learning methods, which are still uncommon in the field, combined
with the recent advancements in Explainable AI and the availability of ex-
isting domain knowledge to derive informed summary risk scores aiming to
address some of the exposome’s challenges, including:

• The extraction of complex non-linear exposure-health relationships.
• The disentanglement of the marginal effects on health of exposures

within intricate mixtures.
• The extraction of ExE interactions (i.e., synergies or "cocktail-effects"

within exposures).
• The learning and the extraction of plausible effects according to the

literature’s established knowledge.
• The identification of individuals at risk for further targeted testing and

prevention.
• The identification of actionable factors of disease for preventive ac-

tions.
This thesis being co-supervised by two universities specialized in different
fields, we separate our research objectives into two main types, methodolog-
ical and applicative. Our methodological objectives were:

1) To demonstrate the benefits of using highly expressive but complex
models combined with adequate explainability tools to study exposome-
health relationships (Paper 1).

2) To develop a new approach, i.e., Summary Effects Adapted Neural
Network (SEANN), that incorporates relevant scientific knowledge into
highly expressive predictive models to provide informed environmen-
tal risk scores and to demonstrate the benefits of this approach in a
controlled environment by using generated data (Paper 2).

3) To demonstrate the benefits of this approach compared with knowledge-
agnostic risk scores (similar to those mentioned in point 1) on real
observational data (Paper 3).

Our applicative objectives were to explore complex relationships and inter-
actions on a wide range of exposures while being able to identify individuals
at risk and actionable factors to guide preventive measures and intervention
in both adults (Paper 3 ) and children (Paper 1 ).
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1.3 Contributions

In more detail, the contributions presented in this work are:

• New machine learning-based early life environmental risk
scores for the European population: In this work (Paper 1 ), we
computed environmental risk scores for mental, cardiometabolic, and
respiratory general health using machine learning and explaining AI
for mother and child pairs in the HELIX cohorts. Compared with the
previous HELIX cohort studies, our approach identified new important
predictors of disease in childhood on top of identifying nonlinear re-
lationships and exposure-exposure interactions. The scores could also
explain a significant proportion of variance (meaning that they had
some predictive value), and their performances were stable across all
six cohorts, meaning that they were generalizable across different Eu-
ropean countries. Raw performances however were comparable with a
traditional method.

• SEANN, a novel informed machine learning approach for the
computation of environmental risk scores: In this work (Pa-
per 2 ), we proposed SEANN, a new approach integrating external
knowledge into the training of deep neural networks for the compu-
tation of informed ERSs. This approach integrates literature-based
PESs to the training of DNNs, which are estimates considered to be
one of the best levels of evidence in epidemiological studies. SEANN
aims to compute more robust ERSs, generalizable to a broader pop-
ulation, and able to capture exposure relationships that are closer to
the known evidence. Using the available knowledge about well-known
relationships, SEANN can better capture those that are still poorly
studied. In this work, we experimentally illustrated the approach’s
benefits using synthetic data only.

• An informed machine learning risk score for hypertension in
adults: In this work (Paper 3 ), we proposed a concrete application
for SEANN using data from GCAT, a cohort of Spanish adults. We
also refined our approach by proposing another way to determine the
relative weights of the literature knowledge with regard to the avail-
able data. Compared to an agnostic neural network-based ERS, the
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score obtained with SEANN effectively captured relationships that
were more in line with the known meta-estimates without deteriorat-
ing the predictive performances. Additionally, the exposures with poor
literature coverage significantly differed from those obtained with the
agnostic NN with more plausible directions of associations. Similarly
to our previous work on the HELIX cohorts, we identified important
actionable environmental factors of diseases and nonlinear associations
between a wide range of environmental factors and hypertension.

1.4 Thesis structure

This document is organized according to the three main papers produced
during the three years of the PhD. Before presenting the contributions men-
tioned in the previous section, we provide an overview of related work pre-
viously performed in the literature to help the reader understand where our
work stands in the exposome literature.

• Chapter 2 - Related work A literature overview of previous work is
described in this chapter, which first presents the methods developed
to study the exposome and compute environmental risk scores. Ad-
ditionally, besides the traditional methods of biostatistics, we provide
an overview of the use of machine learning models in healthcare and,
more particularly, in studies of the exposome. We then discuss previ-
ous works that have been proposed to integrate domain knowledge in
machine learning methods, in particular in healthcare.

• Chapter 3 - Methods. In this chapter, we propose a quick presen-
tation of the data sources, study designs, study populations, health
outcomes and exposures used in this thesis.

• Chapter 4 - Machine Learning Based Environmental-Clinical
Risk Scores in Children. In this chapter, we relate the work
performed in (Paper 1 ), where we proposed early-life environmental
risk scores for various health outcomes in European populations com-
puted using a combination of existing non-parametric machine learning
(ML) methods and Explainable AI tools. This approach, still novel
in the field, allowed the identification of new exposure-health relation-
ships missed in previous studies on the HELIX cohorts (i.e., European
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mother-child cohorts). However, challenges such as the limited sample
sizes typically provided in such observational studies on a wide variety
of factors prevented leveraging its full potential.

• Chapter 5 - A Deep Learning Approach for Informed En-
vironmental Risk Scores. In this chapter, we relate the work
performed in (Paper 2), where we presented a novel informed ma-
chine learning approach, namely SEANN, that incorporated literature-
extracted effect size estimates for computing environmental risk scores.
Using synthetic data, we provided an experimental illustration of the
approach’s benefits in a controlled environment.

• Chapter 6 - An Informed Environmental Risk Score for Adult
Hypertension. In this chapter, we relate the work performed in (Pa-
per 3 ), where we leveraged SEANN for the computation of an environ-
mental risk score of hypertension in adults based on the GCAT Spanish
cohort. The paper further demonstrates the approach’s benefits in a
real setting, notably identifying exposure to health relationships more
aligned with literature knowledge.

• Chapter 7 - Conclusion and future directions
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2.1 Introduction

As research in environmental epidemiology increasingly focuses on complex
mixtures—that is, multiple exposures analyzed simultaneously—there has
been a corresponding adaptation in analytical tools to meet the challenges
introduced by this paradigm shift. This chapter provides an overview of
those tools and methods and explores promising new directions. While this
is not an exhaustive review of all the methods ever used in the field, we aim
to provide the necessary background to understand the types of methods
typically used during recent years, their limitations, and the pertinence of
the contributions proposed in this doctoral work.

We organize this overview of methods into three main parts: First, we focus
on the biostatistical methods used to study the exposome, which are the
most commonly used but have limitations. Second, we discuss the incorpo-
ration of non-statistical machine learning methods originating from various
computer science disciplines in healthcare and, more specifically, in expo-
some studies. Those have become more prominently used over the past few
years. Finally, we discuss the integration of domain knowledge in healthcare
and its potential to address various challenges of the exposome.

2.2 Statistical Methods for Studying the Expo-
some

Statistical methods have been widely used over the past few years to study
the effects of environmental exposure on health. Initially tailored to study
the effects of a limited number of pre-selected exposures, some of those
methods had to be adapted for exposome-wide approaches, cf. Section
1.1.5. Extensive literature describes those methods, e.g., [Billionnet et al.,
2012, Sun et al., 2013, Stafoggia et al., 2017, Barrera-Gómez et al., 2017,
Oskar and Stingone, 2020, Maitre et al., 2022b]. In this section, we organize
these into two research axes, namely: 1) Methods measuring the individual
effects on health and 2) methods measuring Environment x Environment
(ExE) and/or Genetics x Environment (GxE) interactions.
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2.2.1 Methods for studying marginal effects of exposure on
health

In the following subsections, we present an overview of the methods used to
study health relationships from a group of exposures. These relationships
can be analyzed in two ways: independently cf. subsection 2.2.1.1, dis-
regarding the influence of other factors, or simultaneously cf. subsection
2.2.1.2, adjusting for the effects of each exposure. When the number of
exposures is large, specialized techniques may be required to filter the rel-
evant information cf. subsection 2.2.1.3. Additionally, predictive models
designed to identify individuals at risk based on their exposure profiles can
be used to explore these relationships cf. subsection 2.2.1.4.

2.2.1.1 Methods for estimating effects independently: EWAS and
ExWAS

Environment-Wide Association Studies (EWASs) [Patel et al., 2010] is an
approach designed to estimate the impact of a diverse array of environmental
factors in a high-dimensional setting. It is adapted from Genome-Wide
Association Studies (GWASs) [Chang et al., 2018], an approach widely used
for analyzing high dimensional genomic data. Subsequently, [Rappaport,
2012] proposed Exposome-Wide Association Studies (ExWASs), a similar
approach that includes biomarkers of exposures and diseases in order to
encompass all domains of the exposome. Both methods agnostically explore
environmental health associations within wide mixtures of exposures. Their
primary aim is to discover untargeted associations at the population level
that could subsequently be further validated at the toxicological level.
EWASs and ExWASs typically designate studies where each environmental
exposure is individually tested to determine its association with a health
outcome [Zheng et al., 2020]. This is usually done with a logistic or linear
regression model. As many tests are conducted simultaneously, which in-
creases the probability of type I error, those approaches subsequently apply
a correction for multiple testing (i.e., a Bonferroni or Benjamini-Hochberg
correction) on the significance thresholds (i.e., the p-values).
EWAS and ExWAS approaches have limitations due to their reliance on
single-pollutant models. In particular, they are unable to properly adjust
each exposure effect relative to the others and disentangle each effective
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contribution. In addition, EWAS and ExWAS face significant challenges
compared to their genetic analogs. While genetic factors are fully mea-
surable with recent genome sequencing approaches [Petersen et al., 2017],
environmental factors are diverse in nature and must be measured from
different sources and methods. Consequently, those approaches might be
facing issues such as limited exploitation of data sources, high heterogeneity
in analytical approaches, and lack of replication across the studies [Zheng
et al., 2020].

2.2.1.2 Methods for estimating effects simultaneously

Linear methods have the advantage of being easily understandable by
the human mind. They measure simple estimates encoding the effect of a fac-
tor on health in a single coefficient and assume that each effect is additive.
Often based on linear or logistic regression, such methods usually incor-
porate a variable selection mechanism. Prominent examples are the Least
Absolute Shrinkage and Selection Operator (LASSO) [Tibshirani, 1996] and
Elastic-Net [Zou and Hastie, 2005] methods, which add a penalty term to
the optimization function. This penalty leads to a selection of the most
impactful effects via a shrinkage of weakly associated coefficients toward
zero. Some studies leverage more elaborated methods such as Group-Lasso
INTERaction-NET (GLINTERNET) [Lim and Hastie, 2015] that captures
pairwise interactions or Adaptive Elastic-Net (AENET-I) [Zou and Zhang,
2009] that provides linear estimates with desirable properties. Penalized
methods perform well in high-dimensional settings and are an attempt to
handle the problem of multi-collinearities, where a model cannot disentangle
the effects among highly correlated factors. However, as they tend to provide
biased estimates [Tibshirani, 1996], some researchers adopt a two-step pro-
cedure where variable selection is first performed via weight shrinkage (i.e.,
using Lasso or Elastic-Net), and then exposures with non-null estimates are
studied in a standard regression procedure [Gibson et al., 2019].
Obviously, assuming that exposure-health relationships are linear is a strong
assumption. It means that each unit increase in exposure is associated
with a constant change in the health outcome, regardless of the exposure
level. For instance, if we assume a linear relationship between air pollution
and respiratory health, we would predict the same incremental impact of
pollution on health, whether the air quality is slightly below or far above
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the safety threshold. This can be a severe limitation because, in reality,
health effects may increase disproportionately at higher levels of exposure.
Consequently, other methods have been developed to capture more complex
relationships.

Nonlinear methods are less commonly used in exposome studies due to
their increased complexity, higher computational demands, larger data re-
quirements, and the historical precedent and interpretability advantages of
linear methods. Two prominent approaches from biostatistics are Bayesian
Kernel Model Regression (BKMR) and generalized additive models (GAMs)
[Stafoggia et al., 2017]. Similar to Gaussian processes [Quadrianto et al.,
2011], BKMR uses a Gaussian kernel to estimate the exposure-outcome re-
lationship as a nonlinear function. BKMR also includes a variable selection
process, directly embedded into its Bayesian framework, by estimating the
posterior probabilities that each variable has an effect on the outcome. This
variable selection can help with groups of highly correlated exposures by
selecting only one representative among them (not necessarily one with a
causal effect). GAMs express the overall effect on health as a weighted sum
of the individual effects, similar to linear regression, but using nonlinear
functions (generally splines or a set of basic functions). Both approaches,
however, can be computationally demanding when the number of predic-
tors increases. BKMR can have convergence issues and be sensible to prior
choices, while GAMs assume that effects are additives.

2.2.1.3 Methods for addressing the curse of dimensionality

A major challenge associated with analyzing exposure-health associations
across a large number of exposures is commonly referred to as the “curse
of dimensionality”. This “curse” refers to poor performances due to a low
signal-to-noise ratio, where the amount of useful information for the task is
diluted into the number of factors that are often unrelated. Hence, as the
attentive reader would have already noticed in the previous subsections, a lot
of the methods used in exposome studies aim to reduce this dimensionality
by using different approaches.
While some already presented methods use a variable selection process em-
bedded within a modeling procedure, other ones perform only data selection,
and can thus be used in conjunction with any type of model. The Deletion-
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Substitution-Addition (DSA) algorithm [Sinisi and van der Laan, 2004] is a
popular iterative feature selection procedure originally developed for omics
data analysis that has been adapted for environmental observational data.
DSA iteratively selects the most significant exposures through deletion, sub-
stitution, or addition steps based on the predictive performance of predictive
models (originally generalized linear models). Such iterative procedures can
be very computationally demanding as the number of variables from which
performing the selection increases and, similar to penalized regression ap-
proaches, they provide no guarantee of selecting predictors with an actual
effect. A recent approach tries to address this limitation by incorporating
external knowledge on existing causal relationships into a LASSO-performed
feature selection [Frndak et al., 2023].

In the same vein as variable selection, another approach consists in grouping
similar exposures together and computing the effects on health of those
groups/families. Weighted Quantile Sum (WQS) regression is an index-
based regression designed for environmental exposure analysis [Carrico et al.,
2014]. An index is a single numerical measure summarizing the effects of
a group of exposures. WQS builds this index as weighted sums using a
linear regression scheme. More recently, [Masselot et al., 2022] proposed
the constrained groupwise additive index model (CGAIM) using the same
underlying principle while being able to capture nonlinear relationships. A
similar approach is the group Lasso, an extension of the Lasso technique
where nonoverlapping variables are grouped based on prior knowledge [Yuan
and Lin, 2005]. Group Lasso performs variable selection and regularization
across these groups rather than individual variables.

Instead of grouping exposures, some methods aim to identify distinct expo-
sure profiles among individuals. They categorize them into groups where
members within the same group have similar exposures while ensuring that
these exposures differ significantly from those in other groups. Once the
grouping of individuals has been done, usually using unsupervised algo-
rithms such as k-means [Lloyd, 1982] or hierarchical clustering [Nielsen,
2016], these methods typically consist of leveraging the indicators of group
membership as predictors in a regression procedure for a health outcome.
Another approach consists of selecting one observation—called a prototype—
to represent each cluster [Reid and Tibshirani, 2015]. These prototypes
are then used in a classical statistical analysis, often employing LASSO
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or EWAS, using post-selection inference theory [Tibshirani et al., 2016] to
compute exact p-values and confidence intervals.
Lastly, a range of methods has been used to summarize the exposure matrix
in a lower dimensional space. Most commonly used methods within this
scheme are principal component analysis (PCA) and its supervised variant
[Bair et al., 2006]. PCA computes a new set of variables, called princi-
pal components, which are ordered so that the first few retain most of the
variance present in the original variables. Supervised PCA is an extension
of PCA incorporating health outcomes into the dimensionality reduction
process to better capture the variance relevant to the predictive task. Pos-
itive Matrix Factorization (PMF) [Paatero and Tapper, 1994] is a similar
method commonly used to estimate source apportionment of air pollutants,
more specifically the source profiles (i.e., the type of emission) and the source
contributions (i.e., the amount of emitted pollution), constrained to be pos-
itives. Such source estimates are used in several epidemiological studies
[Krall and Strickland, 2017, Zhang et al., 2024]. PMF, similarly to PCA
(and SPCA), assumes linear relationships between variables.

2.2.1.4 Methods for computing Environmental Risk Scores

Using similar methods to those presented in Section 2.2.1.2, a subset of
studies, also interested in identifying individuals at risk for a given health
condition, propose building predictive models to estimate risk indicators
while exploring exposure-health relationships. Such indicators are referred
to as Environmental Risk scores (ERSs). Understanding what those scores
are and how they are typically computed is important in this thesis, as our
main contribution is a new approach for estimating them.
Historically, predictive models have been used to predict health liabilities
according to various health factors for years. The first proposed health
risk scores were developed as cost-effective tools for population screening
applicable in clinical settings using few variables. For instance, in 2008, the
Framingham risk score for coronary heart disease was developed as a simple
tool predicting a person’s liability from a restricted set of factors that are
easily measurable in clinical settings, such as age, blood pressure, or smoking
status [D’Agostino et al., 2008].
Health risk scores encompassing a wide variety of environmental factors are
more recent. Inspired by the progress in genetic epidemiology, in which high-
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dimensional polygenic risk scores (PRSs) were developed to assess genetic
liabilities [Khera et al., 2018], [Park et al., 2014] proposed high-dimensional
environmental risk score as a new tool for studying multi-pollutant effects
1. According to their definition, ERSs in epidemiology should not only
discriminate the individuals at risk of developing a disease but also point
out potential unexplored environmental effects on health.
Similarly to PRSs, ERSs are typically built as simple weighted sums of linear
individual estimates of exposure liability [Pries et al., 2021]. While those
scores can be directly built from data using regression procedures such as
logistic regression, LASSO, or ExWAS (e.g., [He et al., 2023]), this scheme
also allows ERSs to be built based on the estimates of previous studies [Pries
et al., 2021, Vassos et al., 2019, Padmanabhan et al., 2017]. The underlying
idea behind literature-based ERS is to leverage large populations used to
derive estimates of environmental health associations from previous studies
to establish a robust score that can be validated on a smaller population.
Examples of such literature-based ERSs include [Padmanabhan et al., 2017,
Vassos et al., 2019, Mas et al., 2020].
In this thesis, we propose an approach that allows the computation of more
powerful ERSs. Derived from machine learning methods, those ERSs can
more precisely discriminate the individuals at risk. They can also be used
to explore more complex exposome-health relationships (e.g., nonlinearities)
using explainable tools. Finally, they can incorporate knowledge from pre-
vious large-scale studies by using our informed machine-learning approach.

2.2.2 Methods for estimating interaction effects

In this section, we focus on methods that study the interactions, i.e., the
synergies or “cocktail effects” that could arise between the effects on health
of several combined exposures, or even between environmental exposures
and omics factors.
A straightforward method for assessing those is to add additional multiplica-
tive terms in linear regression procedures. However, even when considering

1Their proposed ERSs, computed for a north american population, encompassed hun-
dreds of exposures. Compared to the number of single nucleotide polymorphisms (SNPs)
commonly included in PRSs (hundreds of thousands), the number of exposures included in
this score was small but still represented a substantial gap in scales compared to previous
risk scores.
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only 2-ways interactions2 (i.e., pairwise interactions), the number of param-
eters to be estimated can grow significantly depending on the number of
exposures considered (n = 2p +

(p
2
)
). Several methods have been proposed

to address this issue.
Some of these (e.g., [Yuan et al., 2009, Choi et al., 2010, Bien et al., 2013]),
propose to integrate two types of assumptions, a strong and weak heredity
assumption [Chipman, 1996]. A model with a strong heredity assumption
refers to a model in which pairwise interactions are included only if both
main effects are considered significant, while a weak hereditary assumption
refers to a model in which pairwise interactions are included if at least
one main effect is. The underlying concept, that an interaction term can
be selected only if their parents are in the model, is also referred to as
the marginality principle [Nelder, 1977]. These methods are feasible when
the number of exposures is a few hundred or less [Choi et al., 2010]. For
higher numbers, an alternative procedure is to first perform the selection
using a penalized regression on the marginal effects only and then perform
a selection on the remaining derived pairwise interactions [Hao et al., 2018].
Bayesian procedures have been proposed to extend linear regression-based
methods by including prior information about the data and providing mea-
sures of uncertainty for the estimates, e.g., [Bondell and Reich, 2012, Nishimura
and Suchard, 2018]. Bayesian procedures can be computationally demand-
ing as the size of the input data increases. However, recent approaches
designed for exposome studies such as [Ferrari and Dunson, 2020] are able
to handle hundreds of predictors and thousands of rows (i.e., individuals) to
derive linear estimates.
Some methods have also been proposed for the estimation of nonlinear in-
teractions. Both [Radchenko and James, 2010] and [Ma et al., 2015] directly
extend the quadratic regression procedures by introducing nonlinear func-
tions in the regression equation. Similar to their linear counterparts, they
also rely on sparsity assumptions, obtained with different forms of penal-
ization, to be computationally tractable. Other types of variable selection
for pairwise interactions have been proposed, such as a forward stepwise
feature selection procedure [Narisetty et al., 2018], where most significant
marginal effects and interaction terms are progressively added to the model,
continuing until a maximum number of iteration k is achieved.

2This is commonly referred to as quadratic regression.
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While estimating interactions was not our primary aim, the first approach
used in this thesis (c.f., Paper 1) can extract nonlinear pairwise interactions
learned by tree-based models, using already existing tools, without making
sparsity assumptions or assuming known basic functions. However, deriving
those from our informed machine learning method (i.e., neural networks) is
computationally untractable with our approach.

2.3 Machine Learning Methods in Healthcare

The term “machine learning” (ML) was coined in 1959 by Arthur Samuel
to describe a pioneering computer program that he invented, which could
learn to play the game of checkers more proficiently than an average hu-
man player [Samuel, 1959]. Today, machine learning can be viewed as a
subfield of Artificial Intelligence that encompasses a wide variety of super-
vised and unsupervised algorithmic procedures, where a computer is able
to acquire its own knowledge by extracting patterns from raw data [Good-
fellow et al., 2016]. In that regard, many of the biostatistical methods
presented earlier, such as linear regression, could be qualified as machine
learning methods. However, traditional epidemiological methods are typi-
cally frequentists, sometimes Bayesians, and yield statistical measures, such
as effect size estimates and p-values, that are tailored for hypothesis test-
ing. In contrast, “machine learning methods” typically refer to algorithmic
procedures primarily designed for raw predictive performances rather than
deriving specific statistical measures. Those methods can generally capture
complex patterns and relationships within the data.
In this section, we will discuss the use of machine learning methods in health-
care in opposition to traditional biostatistics. We will discuss how, although
machine learning has been employed for a variety of medical applications,
its use in studying the health effects of exposure to environmental factors,
i.e., the main interest of this thesis, has been limited due to their lack of
interpretability.

2.3.1 Machine learning in clinical setting

The availability of large volumes of data in clinical settings through the
collection of large electronic health records (EHR) databases of diverse na-
tures (e.g., texts, images, tabular) has lead to a surge of ML models us-
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age for the implementation of clinical decision support systems (CDSSs)
[Alanazi, 2022]. CDSSs are typically used for diagnosing various health con-
ditions (e.g., cancer [Teramoto et al., 2020], cardiovascular risk [Kennedy
et al., 2013]) but also include other use cases such as identifying candi-
date molecules for research more likely to pass through regulatory processes
[Onay and Onay, 2020]. They have also been widely applied for image data
processing [Shailaja et al., 2018, Rahman et al., 2023], including identify-
ing body organs from medical images [Yan et al., 2016], automated tissue
characterization [Anthimopoulos et al., 2016], reconstructing medical images
[Schlemper et al., 2017], segmenting brain tumors [Mehta and Majumdar,
2017], or other specific sources such as voice waveform data to predict the
onset of dementia [Xue et al., 2021]. Overall, these tools provide guidance
for decision-making, increase medical experts’ efficiency and reduce costs by
highlighting particular areas worth investigating in large volumes of data.
In contrast, epidemiological studies aim to explore the relationships between
various factors and health. Additionally, the data collected through different
processes (e.g., observational studies) are generally less abundant in terms
of sample sizes. Hence, the use of such methods has been scarcer compared
with the typical parametric regression methods.

2.3.2 Machine learning in epidemiology

2.3.2.1 Predictive machine learning for public health

Population-level forecasting of disease is a critical public health issue. For
instance, several public health agencies such as the European Centre for
Disease Prevention and Control (ECDC) or the US Center for Disease Con-
trol (CDC), mainly specialized in infectious disease surveillance, have been
focused on epidemic forecasting (e.g., influenza, COVID19) in order to es-
timate future demands in medical resources. Beyond traditional statisti-
cal approaches for time series forecasting (e.g., ARMA, ARIMA, SARIMA,
exponential smoothing), machine learning methods (e.g., neural networks,
meta-learners, support vector machines) have been widely used for the task
[Volkova et al., 2017, Lee et al., 2021]. Given sufficient training data, neural
network architectures (e.g., transformers [Wu et al., 2020], recurrent (RNNs)
[Kondo et al., 2019], and convolutional networks (CNNs) [Lee et al., 2021])
have proven to perform far better than their statistical counterparts [Lee
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et al., 2021].
For non-communicable diseases, predictive ML methods have been used
for modeling and forecasting known disease factors such as air pollution
[Bellinger et al., 2017], road traffic [Alsolami et al., 2019], noise sources
[Bravo-Moncayo et al., 2019] or allergens [Zewdie et al., 2019]. As mentioned
in Section 2.3.1, ML methods have also been used in clinical settings to
directly forecast the onset of non-communicable diseases such as Cancer.

2.3.2.2 Machine learning for studying environmental effects on
health

While unable to directly derive exposure-outcome relationships like a lin-
ear regression would, tree-based methods such as Random Forest [Breiman,
2001], Bayesian Additive Regression Trees (BART) [Chipman et al., 2010],
Classification and Regression Trees (CART) [Breiman, 2001], or gradient-
boosted decision trees (GBDT) [Friedman, 2001] are non-parametric ap-
proaches able to capture complex relationships such as nonlinearities or in-
teractions in data while allowing a quick computation of a measure of feature
importance. While mostly used in clinical settings, as they can guide medi-
cal researchers to isolate potential sites of intervention, they have also been
used in various epidemiological studies [Stafoggia et al., 2017].
Besides tree-based procedures, the use of ML methods for studying the ef-
fects on health of exposure to environmental factors has been limited due to
their lack of interpretability [Cheng et al., 2020]. However, recent explain-
able AI (XAI) methods are a promising solution to address this challenge.
XAI techniques aim to make the decision-making processes of complex mod-
els, such as deep neural networks and ensemble methods, more transparent
and understandable to humans. These methods provide insights into how
and why certain predictions are made, which is crucial for applications in
epidemiology to understand the relationships between various factors and
health outcomes. For instance, methods like SHAP (SHapley Additive ex-
Planations) and LIME (Local Interpretable Model-agnostic Explanations)
help elucidate the contribution of individual features to the model’s pre-
dictions, thereby enhancing trust and facilitating better decision-making in
public health contexts [Ribeiro et al., 2016, Lundberg and Lee, 2017]. XAI
not only improves model transparency but also aids in identifying potential
biases and ensuring the ethical use of AI in healthcare [Guidotti et al., 2018].
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Recently, with the development of explainable AI tools, complex models such
as deep neural networks or ensemble learning methods, previously commonly
referred to as ’black boxes’, can now be used to study the relationships be-
tween various factors and health. This approach leverages the raw predictive
power of these models, able to capture relevant information from the data
with its potential complexities, and then extract and make it intelligible
using appropriate tools. Similar to the approach we proposed in the first
publication of this doctoral work (c.f., chapter 4), a few studies have been
proposed in the last year to study the environmental impact of exposure
and health. [Romano et al., 2024] studied the effect of air pollution and so-
cioeconomic factors on respiratory cancer mortality, and [Atehortúa et al.,
2023] studied the effects of a wide range of exposures on cardiometabolic
risk. Both of those approaches leveraged Shapley values [Hart, 1989] ap-
proximated with the SHAP package [Lundberg and Lee, 2017] to explain
their ML models.
Researchers in the field have recognized that there is a lack of effective inte-
gration of skills and knowledge between the disciplines of data science and
epidemiology, which represents a challenge for the broader adoption of ML
methods in epidemiological studies [Alanazi, 2022, Bi et al., 2019]. For in-
stance, different words are used to designate the same concepts across the
two domains (e.g., recall is sensitivity, label is dependant variable [Wiemken
and Kelley, 2020]). [Kolachalama and Garg, 2018] stated that the integra-
tion of more data science and ML-related concepts into the curriculum of
biomedical researchers is needed to facilitate broader adoption of the ML
paradigm in their studies.

2.4 Incorporating Domain Knowledge in Machine
Learning Models

Recent advances in machine learning have led to significant improvements in
multiple fields, including natural language processing, data generation, com-
puter vision, and many others. However, most machine learning algorithms
rely on both the quantity and the quality of the available training data. In
multiple applications, securing vast and representative datasets poses sig-
nificant challenges (e.g., in healthcare [Mandreoli et al., 2022]) that would
consequently impact the learning process and, thus, the reliability of ob-
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tained predictions. Beyond predictive performances, most machine learning
procedures do not consider the underlying mechanisms at play (e.g., biolog-
ical pathways, physical rules, etc) when they learn patterns within the data.
As such, they may learn and amplify potential biases (also known as short-
cut learning [Geirhos et al., 2020]), particularly when the data is noisy and
incomplete. An approach to tackle those problems consists of integrating
domain knowledge into the machine learning procedure, which is known as
Informed Machine Learning (IML) [Von Rueden et al., 2021].
Domain knowledge or expert knowledge refers to a form of knowledge spe-
cific to a field of application that is not contained within the input data. In
the medical field, it could be, for instance, knowledge about known interac-
tions that would occur at the molecular level, while the input data contains
relationships at the population level. A taxonomy of the different repre-
sentations for this knowledge, encountered across various fields, has been
proposed by [Von Rueden et al., 2021]. Among them, the most relevant to
our application case are:

• Probabilistic relationships between variables. Typically, they can en-
code assumptions on the conditional independence of random vari-
ables, such as health risk scores relative to individual input factors
(e.g., [Kumar et al., 2021]).

• Algebraic Equations. Knowledge is encoded as equality or inequality
relations and can generally be seen as constraints on the variables
present in the input data. For instance, such equations can encode
linear relationships between a predictor and an outcome, which has
been incorporated into nonlinear methods (e.g., kernel methods to
predict breast cancer [Mangasarian and Wild, 2008]).

• Knowledge graph. Nodes generally describe concepts, and edges rela-
tionships between them. For instance, those graph are use to represent
known metabolic and regulatory pathways in databases such as [Ogata
et al., 1999].

• Human Feedback. This refers to human-in-the-loop machine learning
[Mosqueira-Rey et al., 2022], a ML design where human feedback is
incorporated into the learning of a ML procedure, generally through a
direct interface. For instance, expert feedback was used to enhance the



29 Related work

selection of features used to train a DNN for cancer survival prediction
[Marschner et al., 2021].

Four different ways have been identified by [Von Rueden et al., 2021] to
incorporate knowledge into the Informed ML procedure, namely:

• by directly encoding it into the training data. For instance, by gener-
ating meta features [Bergman, 2020], based on physic rules (e.g., [Wu
et al., 2018]).

• by encoding it into the model’s structure. For instance, by designing
neurons to enforce specific rules in a neural network.

• by comparing it with the output of the ML procedure. For instance,
the outputs of a model can be compared with known constraints, and
noncompliant results can be discarded or labeled.

• by incorporating it into the loss function. For instance, adding penalty
terms to relationships that do not comply with external-knowledge-
based constraints as we did in this thesis. This approach induces the
existence of a tradeoff between constraints compliance and learning
patterns from the data if the two tasks diverge, which in our us offered
more flexibility.

2.4.1 Informed machine learning in healthcare

A first reason to use Informed ML in healthcare research is to mitigate
the problem of data accessibility. Gathering the data needed to train Ml
models can be difficult and expensive. Medical data can be sensitive and
subject to legal and ethical restrictions. It can be fragmented across various
institutions and encoded into diverse forms. Integrating domain knowledge
can thus be a solution to supplement potential data deficiencies.
Another major factor hindering the use of ML methods in healthcare is the
need for interpretability and trustworthiness. Integrating domain knowledge
can also help address this issue. While it is still an emergent stream of re-
search, the number of papers published per year has approximately doubled
every year, starting from 10 published studies in 2018 to 58 in 2021, [Leiser
et al., 2023].
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In a recent literature review (2023) on Informed ML in healthcare, [Leiser
et al., 2023] reported that most approaches focused on image data and con-
sequently, most of these models use CNNs. More generally, neural networks
are largely the most frequently used Informed ML models [Leiser et al.,
2023]. Other methods used included Bayesian networks and biostatistical
methods such as logistic regression (e.g., [Radovanović et al., 2019]). The
five most prominent forms of domain knowledge incorporated in medical In-
formed ML [Leiser et al., 2023], ranked by decreasing order of importance,
includes: 1) spatial invariances (e.g., [Chawla et al., 2009]) widely used for
image processing, 2) probabilistic relations (e.g., [Rahaman and Hossain,
2013]), 3) knowledge graphs (e.g., [Chen et al., 2019]), 4) algebraic equa-
tions (e.g., [Demirel et al., 2021]) and 5) human feedback (e.g., [Sampedro
et al., 2014]).

In this thesis, we propose a novel method to integrate pooled effect esti-
mates (PESs) from meta-analyses into machine learning procedures, specif-
ically neural networks. In epidemiological studies, PESs are considered to
be among the strongest levels of confidence for a factor’s relationship with
health at a population level [Rosner, 2012]. Despite their significance, there
has been limited research on incorporating them into informed machine
learning procedures, particularly using deep neural networks (DNNs). To
our knowledge, our approach is the first to achieve this. In recent work, [Neri
et al., 2022] proposed to integrate them into a naive Bayes model for the
computation of health risk scores, the CArdiovascular LIterature-Based Risk
Algorithm (CALIBRA). While their approach can combine input data with
literature estimates to learn health relationships, it is limited to naive Bayes
models and cannot be directly applied to other types of machine learning
procedures.

The use of DNNs in epidemiology has been limited due to their black-box
nature and the requirement for large training datasets. However, by incor-
porating domain knowledge such as PESs, these challenges can be mitigated.
Our work demonstrates that integrating PESs into DNNs can enhance their
effectiveness and trustworthiness, thereby addressing some of the key issues
associated with their application in this field.
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2.5 Conclusion

To summarize, most epidemiological studies applying the exposome paradigm
use simple biostatistical methods, making various assumptions about the na-
ture of exposure-health associations, such as linearity, additivity, and spar-
sity. Advanced statistical methods have been developed to address those
limitations. However, depending on their assumptions, they can be com-
putationally expensive when applied to large amounts of data or may miss
intricacies within the exposure relationships.
A promising approach for exposome studies departs from traditional statis-
tical methods to leverage the predictive capabilities of non-parametric mod-
els, such as deep neural networks or ensembles of trees, to efficiently capture
complex patterns of associations and interactions. While nonparametric
machine learning methods are widely used in various domains of healthcare,
particularly for automated diagnosis in clinical settings, their application
in studying health-exposure relationships remains limited. This is primar-
ily because these models require recently developed tools and techniques to
extract and interpret the captured information.
Purely data-driven approaches, however, are heavily dependent on the qual-
ity and quantity of the input data. Complex models, in particular Deep
Neural Networks, demand large amounts of data to be trained efficiently.
However, large sample sizes in observational studies covering a wide range
of exposures are rare, and accurately measuring exposures such as air pol-
lution remains challenging. Additionally, access to data can be subject to
legal restrictions. Integrating domain knowledge has proven to be beneficial
in many settings to improve the plausibility, trustworthiness, and gener-
alizability of Informed ML procedures, but their use within the exposome
paradigm has been limited.
In this thesis, we address those gaps by first proposing ML-based ERSs
for European Children, leveraging nonparametric ensembles of trees and
individual-level models’ explanations derived with SHAP. Those scores un-
covered new relationships compared with previous studies on the same ob-
servational data (the HELIX cohort) but also reported some of the same
spurious associations. To address this, we propose a new Informed ML
method designed to incorporate one of the most reliable knowledge in epi-
demiological studies, pooled effect estimates, and enhance the plausibility
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of captured associations.



3

Methods

3.1 Data sources and study populations . . . . . . . . . . . . . . 34
3.1.1 The HELIX dataset . . . . . . . . . . . . . . . . . . . 34
3.1.2 The GCAT dataset . . . . . . . . . . . . . . . . . . . . 35

3.2 Outcome assessment . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Exposure assessment . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Chemical exposures . . . . . . . . . . . . . . . . . . . 38
3.3.2 Psycho-social exposures . . . . . . . . . . . . . . . . . 39
3.3.3 Lifestyle exposures . . . . . . . . . . . . . . . . . . . . 39

3.3.3.1 Diet . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3.2 Physical activity . . . . . . . . . . . . . . . . 40
3.3.3.3 Smoking and alcohol . . . . . . . . . . . . . . 40

3.3.4 Occupational exposures . . . . . . . . . . . . . . . . . 40
3.3.5 Outdoor and urban exposures . . . . . . . . . . . . . . 41

3.3.5.1 Atmospheric pollutant . . . . . . . . . . . . . 41
3.3.5.2 Natural spaces . . . . . . . . . . . . . . . . . 41
3.3.5.3 Built environment . . . . . . . . . . . . . . . 41
3.3.5.4 Road Traffic . . . . . . . . . . . . . . . . . . 42



3.1. DATA SOURCES AND STUDY POPULATIONS 34

This chapter gives a general overview of the data sources, study de-
signs, study populations, health outcomes and exposures used in this
thesis. Each of the papers provides a more detailed description of
the methods and analyses, referring to chapters 4, 5, and 6 of this
manuscript.

3.1 Data sources and study populations

In this thesis, we use two different data sources from two distinct popula-
tions: The Human Early Life Exposome (HELIX) project [Maitre et al.,
2018] and the Genomes for Life (GCAT) [Obón-Santacana et al., 2018].
The HELIX project includes pregnancy and childhood data—used in paper
1—on a wide range of variables, including urban exposures, lifestyle, and
clinical biomarkers. This exposome dataset was adapted for the untargeted
discovery of environmental health associations with our machine learning-
based approach as it is one of the richest in terms of the number and quality
of early life exposure assessments and it is measured across several European
countries.
The GCAT project includes longitudinal data—used in paper 3—on a more
restricted selection of exposure, but benefits from a larger sample size. We
needed a bigger sample size to test our novel informed machine learning
approach and it was not necessary to have many exposures to prove its
utility.

3.1.1 The HELIX dataset

The HELIX project is a collaborative project that comprises six established
ongoing longitudinal population-based birth cohort studies from six different
European countries:

• from Greece, the Mother-Child Cohort in Crete (RHEA).

• from Lithuania, the Kaunas Cohort (KANC).

• from Norway, the Norwegian Mother, Father and Child Cohort Study
(MoBa).

• from Spain, the Infancia y Medio Ambiente (INMA) cohort.

http://www.projecthelix.eu/index.php/en


35 Methods

• from the United Kingdom, the Born in Bradford (BiB) cohort.

• and from France, the Etude des Déterminants pré- et postnatals du
Développement et de la santé de l’ENfant (EDEN) cohort.

The aim of the project was to assess and describe multiple environmental ex-
posures during pregnancy and the first years of life and relate them with dif-
ferent molecular omics signatures and health outcomes. The recruitment of
pregnant women was conducted between 1999 and 2010. Specifically, INMA,
KANC, and RHEA recruited pregnant women during the first trimester of
pregnancy between 2003 and 2008, EDEN and MoBa through the first and
second trimesters from 1999 to 2008, and BiB between weeks 26 and 28 of
gestation between 2007 and 2010.

The project used a multilevel study design, with an entire study popula-
tion of 31,472 mother-child pairs recruited during pregnancy, a subcohort
of 1,301 mother-child pairs in which the measurement of biomarkers, omics
signatures and health outcomes was obtained at age 6-11 years and repeat-
sampling panel studies with around 150 children and pregnant women with
personal exposure data. This thesis (paper 1) leverage the wide variety of ex-
posures available in the subcohort (N=1600) at two time points, pregnancy
and childhood.

3.1.2 The GCAT dataset

The Genomes for Life (GCAT) project is one of the largest prospective co-
hort in Spain. It aims to assess the role of environmental and omic factors
(i.e., genomic, metabolomic, proteomic, and epigenomic) in the development
of chronic diseases in adults from Catalonia. The project baseline popula-
tion recruitment was performed between 2014 and 2017 and covers 19 209
mid-term adults aged 40-65. Several follow-up assessments were performed
through online and telephonic questionnaires in the following years, as well
as the collection of electronic health records. This thesis (paper 3) leveraged
both baseline exposure data and follow-up EHR data collected until the year
2022.

http://www.gcatbiobank.org/investigadors/en_gcat-summary-aggregate-data/
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DATASET The HELIX cohorts The GCAT cohort
Type Cross-sectional and longitudinal Longitudinal
Sample size 1600 19000
Geographical cov-
erage

European population Spanish population (Catalonia)

Temporality Early life (pregnancy and child-
hood)

Adulthood (40-65)

Exposome data
Chemical Water disinfection Byproducts

Organochlorine and brominated
compounds

Perfluorinated alkylated sub-
stances (PFAS)

Metals and elements
Organophosphate pesticide
Phenols and phthalates

Psycho-social Perceived stress
Socio-economical capital

Socio-economical capital

Lifestyle Dietary habits
Physical activity
Smoking, alcohol

Dietary habits
Physical activity
Smoking, alcohol
Time to sleep

Occupational Occupational mobility
Occupational physical activity
Work schedule, status, category

Outdoor and ur-
ban

Built environment (e.g., factory
proximity)

Traffic
Natural spaces (green/blue)
Air pollution
Noise disturbance (traffic, nei-
ghbors, etc)

Temperature
UV
Artificial light

Built environment
Traffic
Natural spaces (green)
Air pollution
Noise disturbance (traffic only)

Omics
Blood/urine metabolites, pro-
teins

Clinical markers
BMI
Blood pressure
Neurodevelopment
Lung function test

Blood pressure
Hypertenssion medication

Table 3.1: Description of the data used in this thesis.
Synthetic data used in Paper 2 are not discussed.

3.2 Outcome assessment

Unlike most scientific studies on such data, this thesis was not focused on any
health outcome specifically but rather on proposing new approaches for the
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untargeted discovery of environmental health relationships. The first paper
proposed risk scores for three general health areas: mental, cardiometabolic,
and respiratory. The mental health risk score was based on the P-factor
[Cervin et al., 2021], a well-known composite measure of psychopathology
in the young population. It was computed using responses from a standard-
ized questionnaire, the 99-item Child Behavior Checklist [Achenbach, 1991]
using confirmatory factor analysis [Harrington, 2009]. The cardiometabolic
risk score was based on the Metabolic Syndrome (MetS) [Cornier et al.,
2008], another well-known composite measure summarizing an individual
liability to develop cardiometabolic conditions such as heart disease, stroke,
and type II diabetes. It was obtained using a parametric model on waist
circumference, HDL cholesterol, triglycerides, and blood pressure. The res-
piratory score was obtained based on the child’s Forced Expiratory air Vol-
ume in one second (FEV1) measured from a standardized spirometry test.
The Global Lung Initiative reference equations [Quanjer et al., 2012] were
used to compute standardized values (i.e., by age, height, sex, and ethnicity
of the patient). The third paper proposed a more specific risk score focusing
on hypertension. Individuals were considered hypertensive if they had at
least one diagnosis of hypertension or took medication related to this condi-
tion (anatomical therapeutic chemical codes C02, C03, C07, C08 and C09)
at baseline or during the following years.
For children, we use continuous symptom scores as the onset of disease typ-
ically comes later in life. For adults however, we used a clinically diagnosed
outcome.

3.3 Exposure assessment

In Paper 1, we evaluated a broad range of environmental exposures and pre-
clinical markers, including 63 during pregnancy and 240 during childhood.
While Paper 3 assessed a more restricted selection (53 exposures) in the
GCAT cohort, it benefited from a larger sample size (19 000 vs. 1600). We
categorized environmental exposures into four groups: (1) chemical biomark-
ers of exposures, (2) Psycho-social exposures, (3) lifestyle exposures and, (4)
outdoor and urban exposures. Below, we briefly describe the exposure as-
sessment of these families, but an extensive explanation can be found in
Annexe A.1 for HELIX and in the following publication [Obón-Santacana
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et al., 2018] for GCAT.

3.3.1 Chemical exposures

In HELIX, different chemical contaminants were evaluated within the frame-
work of the early life exposome investigated in paper 1. For the pregnancy
period, several chemicals were already measured in some cohorts before the
HELIX project was created, and their results were used. More information
can be found in Supplementary Table 6 (Paper 1). During the childhood
period, the sample collection was harmonized in all six cohorts and analyzed
at the Norwegian Institute of Public Health. The biological sample collec-
tion consisted of two urine and one blood sample. Below is a quick summary
of the methods used for measuring those markers.

• Metals and essential minerals including arsenic, cadmium, cesium,
cobalt, mercury, selenium, thallium, zinc, lead, manganese, molybde-
num, potassium, magnesium, and sodium were measured in the whole
blood according to [Rodushkin and Axelsson, 2000].

• Organochlorine compounds (OCs) and polybrominated diphenyl
ethers (PBDEs) including dichlorodiphenyldichloroethylenes (DDEs),
dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzenes (HCBs),
polychlorinated biphenyls (PCBs) 118, 138, 153, 170 and 180 were
measured in blood serum (maternal samples in EDEN, INMA, RHEA
and BiB, and children’s samples) or plasma (BiB and MoBa maternal
samples) according to [Caspersen et al., 2016] and adjusted for lipids.

• Organophosphate pesticides (OPs) including diethyl phosphates
(DEPs), diethyl thiophosphates (DETPs), dimethyl phosphates (DMPs),
dimethyl thiophosphates (DMTPs) and dimethyl dithiophosphates (DMDTPs)
were measured in urine according to [Cequier et al., 2016] and adjusted
for creatinine.

• Phenols including Bisphenol A (BPA), n-Butyl paraben (BUPA),
ethyl paraben (ETPA), methyl paraben (MEPA), oxybenzone (OXBE),
propyl parabens (PRPAs), and triclosan (TCS) were measured in urine
according to [Sakhi et al., 2018] and adjusted for creatinine.

• Phthalates including Mono benzyl phthalates (MBzPs), mono-2-ethyl
5-carboxypentyl phthalates (MECPPs) and others (MEHHP,MEHP,
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MEOHP,MEP,MiBP,MnBP,oh-MiNP and oxo.MiNP) were measured
in urine according to [Sakhi et al., 2018] and adjusted for creatinine.

• Per- and polyfluoroalkyl substances (PFASs) including perflu-
orohexane sulfonate (PFHxS), perfluorononanoate (PFNA), perfluo-
rooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluo-
roundecanoate (PFUnDA) were measured in the whole blood using
[Haug et al., 2009] method for the pregnancy period and in plasma
using [Poothong et al., 2017] method for the childhood period.

• Water disinfectant byproducts, including trihalomethanes (THMs),
brominated THMs and chloroform, were estimated during the preg-
nancy period following the protocol developed for the HiWate project
[Jeong et al., 2012] using data from the water companies.

No chemical exposures were collected in GCAT to investigate the adult
exposome (Paper 3).

3.3.2 Psycho-social exposures

In HELIX, variables related to socioeconomic positions (e.g., maternal ed-
ucation) were collected during pregnancy in all cohorts through a question-
naire and harmonized. During childhood, more psychosocial exposures were
assessed using a follow-up questionnaire. Those included maternal stress,
family Affluence Score family affluence score (FAS), house crowding, contact
with friends and family, and social participation (membership in an orga-
nization). GCAT collected socioeconomic information (e.g., marital status,
social network, household incomes, type of healthcare access, and education
levels) through the baseline survey.

3.3.3 Lifestyle exposures

3.3.3.1 Diet

Food frequency questionnaires were used in both HELIX and GCAT for di-
etary assessment. In Helix, diet during pregnancy was assessed by each co-
hort and harmonized a posteriori for the HELIX project. During childhood,
information on the child’s diet was collected through the standardized HE-
LIX subcohort questionnaire and then summarized in 15 food groups. Ad-
ditionally, a dietary score representative of Mediterranean dietary patterns,
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the KIDMED index, was estimated based on this questionnaire’s data. In
GCAT, the 14-item Mediterranean Diet Adherence Screener [Schröder et al.,
2011] was used to estimate adherence to the Mediterranean diet based on
the responses from the baseline food frequency questionnaire.

3.3.3.2 Physical activity

In HELIX, physical activity during pregnancy was estimated based on the
harmonization of the respective cohort questionnaire data. Two variables
were created: moderate (corresponding to walking) and vigorous activity
(corresponding to sport). During childhood, the time spent doing moderate-
to-vigorous physical activity variable (>3 MET) and sedentary behavior
duration (e.g., TV, computer) were created based on questionnaire data.
In GCAT, a short version of the European Prospective Investigation into
Cancer and Nutrition (EPIC) Physical Activity Questionnaire (PAQ) [Con-
sortium, 2012] is used to assess physical activity during the past year (before
the baseline assessment).

3.3.3.3 Smoking and alcohol

In HELIX, tobacco smoking, and alcohol consumption were assessed during
pregnancy using questionnaire data. During childhood, passive child smok-
ing exposure was assessed using a follow-up questionnaire and through coti-
nine measurements in urine. In GCAT, detailed information about smoking
(including electronic cigarettes and others), passive smoking, and smoking
history were assessed in the baseline questionnaire. Alcohol consumption
(i.e., reported number of standard glasses per day/week) was also assessed
in this questionnaire.

3.3.4 Occupational exposures

No occupational exposures were collected in HELIX. In GCAT, the baseline
questionnaire assessed occupational exposures, including work travel (du-
ration, vehicle), work schedules, and job positions (further classified using
CNO-11, the Spanish classification of occupations).
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3.3.5 Outdoor and urban exposures

3.3.5.1 Atmospheric pollutant

In HELIX, nitrogen dioxide (NO2), particulate matter with an aerodynamic
diameter of less than 2.5 μm (PM2.5), less than 10 μm PM10, and absorbance
of PM2.5 filters were assessed during childhood in the HELIX subcohort.
Briefly, outdoor air pollution exposures were assessed using estimates mostly
based on Land Use Regression (LUR) modeling approach developed within
the framework of the ESCAPE project [Beelen et al., 2009]. Estimates on
air pollutants were assigned to each individual based on their residential and
school geocoded addresses, which were collected through the last available
follow-up survey for each cohort. Different time windows were calculated for
the evaluated air pollutants by averaging them over one day, one week, and
one year before the clinical and molecular assessment. In GCAT, similar to
HELIX, the residences of participants were geolocated and a GIS approach
was applied to estimate an annual average concentration for different air
pollutants, namely NO2, PM2.5 and ozone (O3).

3.3.5.2 Natural spaces

For HELIX, the amount of surrounding greenness (i.e., from trees, shrubs,
and parkland) was summarized in a single numerical value, i.e., the Nor-
malized Difference Vegetation Index (NDVI), and was calculated within
100, 300, and 500-meter buffers around residential and school geocoded ad-
dresses. NDVI was calculated using satellite imaging following the PHE-
NOTYPE protocol [Nieuwenhuijsen et al., 2014]. Major green spaces (parks
or countryside) and blue spaces (bodies of water), i.e., with an area greater
than 5000 m2, were localized using topographical maps or local sources. The
straight line distance from the home or school to those spaces was measured.
For GCAT, NDVI was computed around participants’ residences using [Di-
dan, 2015]. Additionally, a percentage of green spaces within a 1000m buffer
around the residential addresses was computed using CORINE Land Cover.

3.3.5.3 Built environment

For both HELIX and GCAT, indicators of the built environment were es-
timated using topological maps obtained from local authorities or Europe-
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wide sources. While both projects included building and population density,
the HELIX project provided more information on street connectivity, walk-
ability, facility diversity, and facility density.

3.3.5.4 Road Traffic

In both Helix and GCAT, annual average traffic noise pressure levels during
the day and night were derived from noise maps produced in each local
municipality under the European Noise Directive (directive 2002/49/EC),
or for GCAT and INMA (the Spanish cohort within HELIX) under the
Spanish Law 37/2003.
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This chapter relates the work performed for the first publication of
this doctoral work [Guimbaud et al., 2024]. In this work, we com-
puted ERSs for three general health outcomes in children: a P-factor
score derived from the Child Behavior CheckList (CBCL) for men-
tal health, a MetS severity score for cardiometabolic health, and a
lung function score (spirometry test) for respiratory health. Those
ERSs were computed using non-parametric machine learning models
(namely, tree ensemble methods), able to capture complex exposome-
health relationships and interactions. Compared with previous stud-
ies on the same observational data—i.e.,the HELIX cohorts—our ap-
proach identified new important predictors of disease in childhood on
top of identifying nonlinear relationships and exposure-exposure in-
teractions. The scores could also explain a significant proportion of
variance (meaning that they had some predictive value), and their
performances were stable across all six cohorts, meaning that they
were generalizable across different European countries.

4.1 Introduction

The availability of rich data on multiple levels of environmental exposures
in birth cohorts presents an opportunity to address the gap in large-scale
studies on the association between the exposome and child and adolescent
development. Previous ERS studies have been limited by the number of ex-
posure variables or domains included [D’Agostino et al., 2008, Vassos et al.,
2019, Padmanabhan et al., 2017]. In contrast, our study aims to identify
a predictive environmental-clinical risk score (ECRS) based on a wide ar-
ray of pregnancy and childhood environmental exposures related to both
external (e.g., air quality, lifestyle, psychosocial) and internal (e.g., blood
metals, pesticides) exposures, (pre)clinical factors (metabolites, proteins,
co-morbidities), and link these to a range of physical and mental symptoms
in the large European Human Early-Life Exposome (HELIX) cohort [Maitre
et al., 2018, Vrijheid, 2014]. In the context of this study, the term prediction
refers to the inference of diagnostical risk scores from pregnancy and child-
hood cross-sectional epidemiological factors to predict childhood liabilities
at a single point in time.
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ECRSs obtained in this study explained a substantial portion of the variance,
in particular for mental and cardiometabolic ECRSs, and their performances
generalized well across all six cohorts in the HELIX project. We identified
predictors with an overall high impact on the predicted risk, such as maternal
stress, child BMI, and noise exposure for mental health. We also extracted
non-linear dose-response relationships. Our approach’s main benefit lies in
its ability to capture complex associations and extract insights at both a
global and personal level for each exposure or group of exposures. Overall,
this study highlight the potential of such approaches to compute risk scores
able to inform practitioners about actionable factors in high-risk children.

4.2 Methods

4.2.1 Study participants

This study uses data from the HELIX project. This project includes data
from six different European longitudinal birth cohorts, namely: 1) Born
in Bradford alias BiB; UK [Wright et al., 2012], 2) Etude des Détermi-
nants pré et postnatals du Développement et de la santé de l’Enfant, alias
EDEN; France [Heude et al., 2015], 3) Infancia y Medio Ambiente alias
INMA, Spain [Gascon et al., 2017], 4) Kaunas Cohort alias KANC; Lithua-
nia [Grazuleviciene et al., 2015], 5) Norwegian Mother, Father and Child
Cohort Study alias MoBa; Norway [Magnus et al., 2016, Rønningen et al.,
2006], and 6) Mother-Child Cohort in Crete alias RHEA; Greece [Chatzi
et al., 2017]. Children were born at different periods depending on the co-
hort (RHEA 2007-2008, EDEN 2003-2005, INMA and MoBa 2005-2007 and
KANC 2007-2009). In total, nearly 32 000 mother-child pairs were initially
followed during pregnancy and a subset into childhood from 6 to 12 years
old, depending on the cohort. From these, we used data from 1622 pairs for
which biological samples, environmental exposures, clinical biomarkers and
health outcomes were assessed with common standardized protocols. All
six cohorts in which HELIX is based had undergone the required evaluation
by national ethics committees (prior to the start of the project) and con-
firmed that relevant, informed consent was given for secondary use of the
data [Maitre et al., 2018].
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4.2.2 Data

4.2.2.1 Health outcomes

Health outcomes during childhood were either directly measured or derived
from variables collected between December 2013 and 2016 in the Helix sub-
cohort follow-up visit [Maitre et al., 2018]. Hence, health outcomes and
childhood environmental factors are cross-sectional.

• Mental health. We modeled mental health using the P-factor, a reliable
measure of psychopathology in youth populations [Constantinou et al.,
2019, Haltigan et al., 2018] that represents life course vulnerability to
psychiatric disorders [Caspi et al., 2020] and is predictive of long-term
psychiatric and functional outcomes [Cervin et al., 2021]. P-factor in
childhood has been found to predict the course and severity of a multi-
tude of psychiatric outcomes in adolescence [Rijlaarsdam et al., 2021].
It was computed using confirmatory factor analysis (CFA) to fit a hi-
erarchical general psychopathology model with the Lavaan statistical
package [Rosseel, 2012] with data from the 99-item Child Behavior
Checklist [Achenbach, 1991], a questionnaire filled by the parents.

• Cardiometabolic health. We used an aggregated metabolic syndrome
score as a summary score for cardiometabolic health [Stratakis et al.,
2020]. It was calculated using the z scores of waist circumference, sys-
tolic and diastolic blood pressures, levels of triglyceride, high-density
lipoprotein cholesterol, and insulin with the following formula: metabolic
syndrome= z waist circumference +(–z HDL cholesterol level + z
triglyceride level)/2 + z insulin + (z systolic blood pressure + z dias-
tolic blood pressure)/2. A higher metabolic syndrome score indicated
a poorer metabolic profile.

• Respiratory health. Finally, we assessed the lung function using the
child-forced expiratory (air) volume in one second (FEV1) percent
predicted value (PPV) (i.e., values standardized by age, height, sex,
and ethnicity of the patient) as in a previous HELIX study [Agier
et al., 2019]. FEV1 was measured with a spirometry test (EasyOne
spirometer; NDD [New Diagnostic Design], Zurich, Switzerland) using
a standard standardized protocol. Then, the Global Lung Initiative
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reference equations [Quanjer et al., 2012] were used to compute FEV1

percent predicted values.

4.2.2.2 Environmental data

We used a wide variety of environmental exposures from both mothers (dur-
ing pregnancy) and children (between ages 6 to 12, depending on the cohort
of inclusion) that participated in the HELIX follow-up visit organized be-
tween December 2013 and 2016 [Maitre et al., 2018]. Measurements on preg-
nant mothers were collected between 1999 and 2010. Information about the
methods used to estimate those exposures is available in Supplementary
Notes, Supplementary Tables 1-9.
In previous HELIX exposome-wide studies (including chemical, outdoor,
and psychosocial exposures), a sub-selection of variables was made among
the questionnaire data, and they did not include together external and in-
ternal exposome. Due to the exploratory nature of our study, we included
new variables previously unexplored in the HELIX studies. In total, we
selected 63 prenatal and 240 postnatal exposures grouped in 18 exposure
families. An overview of those families is given in Figure 4.1. Most of the
exposures used were already described in previous publications, specifically
measurement available and baseline data [Maitre et al., 2018]. New expo-
sures, previously not described in detail, were extracted from the HELIX
subcohort main questionnaire, more precisely about children’s time spent
outside (during weekends and holidays), noise disturbance, and house clean-
ing products. A full list and a description of the selected variables are
available in Supplementary Data 1.

• Outdoor and indoor exposures. Outdoor exposures were estimated
using geographic information system (GIS), remote sensing, and spa-
tiotemporal modeling [Robinson et al., 2018]. Considered exposures
include air pollutants (e.g., particulate matter), meteorological factors
(temperature, humidity, UV exposure), traffic noise, traffic indicators,
natural space (green spaces, blue spaces), and built environment (e.g.,
building density, public transport, facilities, etc.). More details are
provided in Supplementary Notes, Supplementary Tables 1-4.
Indoor air pollution exposure to NO2 and to volatile organic com-
pounds, benzene, toluene, ethylbenzene, meta-xylene, para-xylene,



4.2. METHODS 48

and ortho-xylene was measured through passive samplers installed in
the homes of 150 individuals in the panel studies and extrapolated for
the whole HELIX subcohort using prediction models [Maitre et al.,
2018].

• Lifestyle. Lifestyle exposures were collected using a standardized ques-
tionnaire developed for HELIX and included the child’s diet, physical
activity, sleeping patterns, socioeconomic variables (e.g., subjective
wealth, social capital of the family), exposure to environmental to-
bacco smoke, water consumption habits, cleaning products, noise per-
ception and time outdoors. Water disinfection by-product measure-
ments were collected from water companies for the entire cohorts in
each HELIX center. More details are provided in Supplementary
Notes, Supplementary Table 5.

• Biomonitored Chemical pollutants. Pollutant biomarkers were as-
sessed during pregnancy and childhood using blood and urine sam-
ples. They include organophosphate pesticides, phenols, phthalates,
metals, perfluoroalkyl (PFAS) substances, polybrominated diphenyl
ethers (PBDEs), organochlorines and creatine. These measurements
were adjusted for lipids and creatinine when appropriate. More details
are provided in Supplementary Notes, Supplementary Tables
6-9.

4.2.2.3 Metabolites and proteins

We included 122 protein and metabolite measurements in the study. More
specifically, we included 36 proteins that were assessed from plasma us-
ing Luminex immunoassay kits (cytokines 30-plex, apoliprotein 5-plex, and
adipokine 15-plex). Forty-two blood serum metabolite indicators were as-
sessed using the targeted Biocrates’ AbsoluteIDQ p180 kit and the MetIDQTM
RatioExplorer software that calculated sums and ratios of metabolites, termed
metabolism indicators, to improve biological interpretation. Forty-four urine
metabolites were assessed using proton nuclear magnetic resonance (1H
NMR) spectroscopy [Lau et al., 2018]. Urine metabolites were normalized
using the median fold change normalization method [Dieterle et al., 2006],
which takes into account the distribution of relative levels of all metabolites
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Figure 4.1: Proportions of exposures grouped into families.
Pie chart displaying the 18 different families of exposures considered in the study and
their relative sizes in terms of the number of exposures considered within each family.
The top half of the chart displays exposures measured during childhood (n=240), while
the bottom part displays those measured during pregnancy (n=63).

compared to the reference sample in determining the most probable dilution
factor. The full list and description of selected metabolites and proteins is
available in Supplementary Data 1.

4.2.2.4 Parental and child Clinical factors

Clinical factors were collected during childhood or pregnancy from the HE-
LIX subcohort follow-up clinical examination (between December 2013 and
2016) [Maitre et al., 2018] or initial cohort assessments on pregnant mothers
(between 1999 and 2010). Childhood clinical factors included maternal men-
tal and cognitive states (e.g., maternal perceived stress (short form version)
[Cohen, 1988], maternal working memory [Sweet, 2011]), child respiratory
factors (e.g. diagnosed asthma, self-reported rhinitis) and cardiometabolic
factors (e.g., systolic and diastolic blood pressure, blood lipids). Pregnancy
clinical factors only include maternal blood lipids collected during the initial
cohorts’ assessments. The complete list and description of included clinical
variables is available in Supplementary Data 1.
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4.2.2.5 Covariates

Covariates were used as predictors in the ECRSs. We used both children’s
characteristics (e.g., age at examination, sex, asthma medication, season
of birth) and parents’ characteristics (e.g., parents’ nativity, paternal and
maternal education, mother’s age at birth, mother’s parity) as covariates.
A full list and description are available in Supplementary Data 1.

4.2.3 Statistical analysis

All data processing was performed in Python 3.9.7.

4.2.3.1 Data preparation

Figure 4.2 provides a brief description of the data selection process and the
study workflow. This study aims to agnostically discover exposure-health
associations while minimizing the likelihood of overfitting and maximizing
ECRS models’ interpretability. Hence, we performed several minimal data
selection steps, from the initial selection of data to the filtering of strongly
correlated and noisy data.
First, as detailed in Section 4.2.2, we used a wide selection of previously
described variables enriched with new exposures that were not assessed in
previous HELIX studies. In this step, similarly to previous studies on the
HELIX sub-cohort data [Agier et al., 2019, Maitre et al., 2022a], we selected
single representatives from groups of related and correlated variables to re-
duce multicollinearity and increase interpretability. For instance, we only
kept the 300-meter buffers for the number of road intersections per km2 and
removed the 100m buffers, or we considered only home-based air pollutants
measurements and discarded those from schools or other places. The full de-
scription of the preselection steps is available in the annex (Supplementary
Methods – part 1).
Then we further refined this selection by filtering among strongly correlated
variables (r>0.9), discarding 28 variables in total. A description of the
applied rules for this step is also described in the annex (Supplementary
Methods – part 2).
To reduce the amount of missingness in the data, we discarded records
of individuals with more than 50% (102 records discarded) and variables
with more than 60% missing data (3 variables discarded). More informa-
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tion about each selection step is provided in Supplementary Table 10.
The mean percentage of missing values per exposure was 14% (first quartile
0.66% and third quartile 20.59%). Percentages of imputed missing values
for each selected variable are available in Supplementary Data 1 and
computed for each cohort in Supplementary Data 2. Missing values were
imputed once using MissForest [Stekhoven and Bühlmann, 2011], a single
iterative imputation algorithm that can handle both categorical and con-
tinuous variables and capture nonlinear relationships. We compared perfor-
mance of this method with two classical single imputation methods, namely
KNN and mean imputation on manually generated missing values. The
number of missing values to add on top of the originals was settled to be
proportional to 15% of the total sample size for each variable (i.e., 243).
MissForest considerably outperformed KNN and mean imputation with a
mean squared error of 0.56, 1.00 and 1.25 respectively. From this imputed
dataset, individuals with non-missing outcomes were selected for the men-
tal, cardiometabolic, and respiratory risk scores resulting in three distinct
datasets.
Finally, depending on the outcome for each dataset, we excluded clinical
factors closely related to the outcome to prevent data leakage, which could
over-inflate the model’s predictive power (e.g., blood pressure for MetS). The
selection made on the basis of the outcome is available in Supplementary
Data 1.
After selection, the data were prepared for the analysis. Depending on their
nature, categorical data were one hot encoded (i.e., changed into dummy
variables), labeled, or encoded with floating values (for frequencies, binned
continuous variables, etc.). Out of the 478 total selected variables, 75 were
categorical (11 one-hot encoded, 43 labeled). Then each phenotype was
standardized into z-scores.

4.2.3.2 Modeling

We computed ECRSs with supervised machine learning methods, predicting
simple scalar measures as outcomes (P-factor, MetS and lung function) and
using multiple environmental and clinical variables, including metabolites
and proteins as predictors. Training is first performed in a 10-fold cross-
validation (CV) procedure, where hyperparameters of the methods are opti-
mized and performances measured. 10-fold CV was chosen over, for instance,
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Figure 4.2: Analysis workflow.
This figure provides a concise overview of the steps performed in the study analysis,
organized sequentially within three main stages corresponding to three columns. These
stages are the preprocessing of input data, the modeling of ECRS, and the reporting of
results.
Abbreviations: Random Forest (RF), XGBoost (XGB), Environmental-Clinical Risk Score
(ECRS), metabolic syndrome (MetS), Forced expiratory volume in 1 second (FEV1).

leave-one-out or 5-fold CV, to balance the computational efficiency and the
robustness of our performance estimates. Hyperparameters optimizations
of each method were achieved using the Tree-structured Parzen Estimator
[Bergstra et al., 2011] from the Optuna library, which optimizes the path
through the hyperparameters space. Supplementary Tables 11 and 12
show the selected hyperparameters for each model.

We compared predictive performances of ECRSs computed with three meth-
ods: LASSO, Random Forests, and XGBoost. LASSO is a penalized linear
regression method widely used in the field. Note that technically, while the
model itself is linear (it models the relationships between the input features
and the output using a linear equation), the optimization process due to the
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L1 penalty is non-linear. One of its main advantages is its ability to han-
dle high-dimensional data through regularization. For this method, data
was standardized before training. The other two methods are nonlinear and
non-parametric ensembles of trees: Random Forests and eXtreme Gradient
Boosting, aka XGBoost [Chen and Guestrin, 2016]). Ensemble methods are
able to handle small datasets and high dimensionality [Yang et al., 2010]
while interaction effects can be captured and extracted from tree models
[Lundberg et al., 2020, Lundberg et al., 2018]. In terms of prediction power,
tree-based methods are still competitive with deep neural networks (DNNs)
on tabular data [Grinsztajn et al., 2022] due to 1) their robustness to un-
informative features, 2) their ability to preserve the data orientation, and
3) their ability to easily learn irregular functions. Machine learning, with
systematic out-of-sample testing, employs a rigorous approach to test how
well relationships between targets and variables are captured. The better a
model performs, the more accurate associations it captures, and very poor
performances may indicate unreliably captured information.
One of the HELIX project particularities is that it aggregates data from
six different cohorts, with some variables having very distinct distributions
across them [Tamayo-Uria et al., 2019]. Those variables are likely to be
biased by cohort-related effects. Thus, we chose to penalize contributions
of features strongly associated with the cohorts proportionally to their im-
portance in the prediction. Each ECRS was computed using the following
modeling (including those in the CV procedures):

Y = fo(X) + g0(Z) +R,E[R|Z,X] = 0

Where Y is the phenotype, X the environmental/clinical factors and usual
covariates, Z the one hot encoded cohorts of inclusion, and R the residuals.
f0 and g0 were estimated using our regressive methods (LASSO, RF, XGB)
in two sequential steps with separate models.

Step 1: Y = g0(Z) + U,E[U |Z] = 0
Step 2: U = f0(X) + V,E[V |X] = 0

4.2.3.3 Model’s explanations

Unlike LASSO, tree-based approaches can capture complex relationships
that are not limited to a single coefficient per feature. We used SHAP [Lund-
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berg and Lee, 2017], a local explanation method that uses Shapley values
to extract different contribution coefficients for each individual. This al-
lowed us to keep nonlinear relationships in the explanations. Shapley values
were initially used in cooperative game theory to estimate the contribution of
each player to the overall cooperation with desirable properties [Hart, 1989].
Adapted to machine learning, it gives the contribution of each feature to the
overall prediction at the local (individual) level and can be aggregated (tak-
ing the average absolute Shapley values) to give a global measure of feature
importance. Concretely, a Shapley value gives, for a given individual, how
much the given associated variable impacted the model prediction from the
mean predicted value (negatively or positively). They are additives and sum
up to the mean predicted value. We used them to explore captured associa-
tions (e.g., their directions, nonlinearities) and to compute measures of the
global importance of a feature (or a family/group of features) obtained by
averaging its absolute (Shapley) values across individuals. Because Shapley
values are additives, the contribution of a group of features is easily com-
puted (taking the sum of Shapley values at the individual level). We also
computed SHAP interactions [Lundberg et al., 2018] to explore potential
(pairwise) cocktail effects.
Measures of global feature importance were computed in the 10-fold CV
loop to estimate confidence intervals. Features importances were computed
using XGBoost, the best-performing nonlinear tree-based method. Local
explanations and stratification were conducted on the final ECRS obtained
by training the XGBoost models on the whole dataset, with the hyperpa-
rameters selected by the 10-fold CV procedure. We also computed ECRS
with Lasso on the whole dataset to compare extracted Shapley values.

4.2.4 Sensitivity analysis

Finally, for each ECRS, we tested the robustness of our method when ap-
plied to different populations. Leveraging the data available in our study
from six different cohorts, we applied a leave-one-cohort-out cross-validation
procedure, recursively training our XGBoost models on five cohorts to pre-
dict the sixth. Before training, we standardized both features and targets
(e.g., P-factor, MetS, and lung function) across each cohort. The hyper-
parameters used were the same as before and were not optimized for this
task.
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4.2.5 Ethics approval

Local ethical committees approved the studies that were conducted accord-
ing to the guidelines laid down in the Declaration of Helsinki. The ethical
committees for each cohort were the following: BiB, Bradford Teaching
Hospitals NHS Foundation Trust; EDEN, Agence nationale de sécurité du
médicament et des produits de santé; INMA, Comité Ético de Inverticación
Clínica Parc de Salut MAR; KANC, LIETUVOS BIOETIKOS KOMITE-
TAS; MoBa, Regional komité for medisinsk og helsefaglig forskningsetikk;
RHEA, Ethical committee of the general university hospital of Heraklion,
Crete. Informed consent was obtained from a parent and/or legal guardian
of all participants in the study.

4.2.6 Data availability

The raw data supporting the current study are available from the corre-
sponding author on request subject to ethical and legislative review. The
“HELIX Data External Data Request Procedures” are available with the
data inventory at http://www.projecthelix.eu/data-inventory. The docu-
ment describes who can apply to the data and how, the approval timings,
and the conditions for data access and publication.

4.2.7 Code availability

Python code is publicly available on GitHub [Guimbaud, 2024].

4.3 Results

4.3.1 Population characteristics

To investigate the predictive potential of early-life external and internal
exposome associated with mental, cardiometabolic, and lung health in chil-
dren, we selected a study cohort of 1622 mother-child pairs who participated
in the HELIX study. This cohort was composed of approximately half fe-
males (46.1%), mainly of European ancestry (82.9%), from highly educated
families (40.1% with high maternal education), and the majority residing
in urban areas (75.3% in areas with a density of population >1500 inhab-
itants/km2) (see Supplementary Figure 1). At the time of the health
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assessment, children were on average 8 years old (range: 5.5 to 12 years),
3.9% regularly visited the psychologist, and 7.3% had a neuropsychiatric
diagnosis at the time of the visit (according to parent’s reports, besides the
CBCL screening). Based on the World Health Organization (WHO) in-
ternational standards for BMI cut-offs (normal: 18.5–25 kg/m2, overweight:
25–30 kg/m2, obese: ≥30 kg/m2), while 69.2% of participants fell within the
normal category (n=1122), 10.6% of participants were categorized as over-
weight (n=172), and 20.2% of participants were identified as obese (n=328).
Additionally, 10.2% of children were reported to have asthma (ever diag-
nosed).
Leveraging data from the pregnancy (p=63) and childhood (p=240) ex-
posome, preclinical biomarkers (p=112), and clinical factors (p=18) along
with covariates (p=14) (full list available in Supplementary Data 1), we
trained machine learning models to predict the P-factor, MetS, and lung
function. We used 445 features from 1513 individuals for mental health,
432 from 1151 for cardiometabolic health, and 442 from 1176 for respiratory
health (Figure 4.2). P-factor and metabolic syndrome were square roots
transformed to be normally distributed. All three health outcomes were
standardized to have a mean of 0 and a standard deviation of 1, with ranges
of -2.27 to 3.46, -3.25 to 3.68, and -4.80 to 5.60 for mental, cardiometabolic,
and respiratory health, respectively (Figure 4.3). After transformation
and standardization all outcomes were normally distributed with two-sided
Kolmogorov-Smirnov test p-values of 0.08, 0.11 and 0.24 for P-factor, MetS
and lung function respectively. For P-factor and MetS, higher scores indicate
an increase risk and for lung function a decrease risk.

4.3.2 Predictive performances

To address overfitting, improve stability, and compare model performances
and generalizability for all children, we implemented a ten-fold iteration
scheme for tested algorithms (XGBoost, RF, and LASSO) with cross-validation
(CV) (Figure 4.2; see Method). This approach generated, for each algo-
rithm, ten fitted sparse models for each outcome. The comparative analysis
of all methods’ predictive performances is presented in Figure 4.4. These
performances were obtained after cohort adjustment (see Method, part 2:
Modeling). Cohorts accounted for 5 to 14% of the out-of-sample variance
(see Supplementary Figure 2).
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Figure 4.3: Standardized health outcome distributions measured in 6–12-
year-old HELIX children.
Each histogram represents the distribution of a health outcome grouped into 10 bins. The
horizontal axis shows the range of the outcome, and the vertical axis shows the number
of children falling within each bin.
Abbreviations: Metabolic Syndrome (MetS), Forced Expiratory air Volume in 1 second
(FEV1).

LASSO models explained around 12% of the variance in the P-factor, 51%
in MetS, and 2% in lung function. In contrast, RF explained 11% of the
variance in the P-factor, 41% in MetS, and 3% in lung function. Finally, XG-
Boost explained 13% of the variance in the P-factor, 50% in MetS, and 4% in
lung function (Figure 4.4). Across the three outcomes, the differences be-
tween LASSO and XGBoost were not statistically significant, as confirmed
by 10-fold cross-validated two-sided paired student t-tests with p-values of
0.686, 0.656, and 0.216 for P-factor, MetS, and lung function, respectively.
Information about the residuals obtained during the cross-validation proce-
dure is summarized in Supplementary Table 13. They were, on average,
centered around 0 and normally distributed across all CV folds unless for
the respiratory health scores that were considered normal less consistently.

4.3.3 Global feature importance

From the three ECRSs computed with XGBoost, the best-performing non-
linear method, we computed Shapley values for each feature and each indi-
vidual using SHAP. Averaging the absolute values of Shapley values across
all individuals gives a measure of the global impact of each variable (or
groups of variables) on health outcomes. Figure 4.5 shows the feature
importance for the top 20 variables at the level of each feature and of expo-
sure families for all phenotypes obtained from the 10 fitted cross-validated
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Figure 4.4: Models’ performance comparison obtained after cohort adjust-
ment.
The box extends from the first quartile (Q1) to the third quartile (Q3) of the data com-
puted from the ten models (n=10) in the cross-validation procedure, with a line at the
mean. The whiskers extend from the box to the farthest data point lying within 1.5x the
inter-quartile range (IQR) from the box.

XGBoost models. More exhaustive feature importance lists (top 100) are
available in Supplementary Data 3 and 20 for mental, cardiometabolic
and respiratory ECRSs respectively. In addition, the overall importance of
all metabolites and proteins compared to exposomic variables, clinical fac-
tors and covariates is displayed, for each ECRS, in Supplementary Figure
3.

For the P-factor, maternal stress was by large the most important feature,
with a mean SHAP of 0.16, followed by noise disturbance from other chil-
dren with a mean of 0.05 and zBMI with a mean of 0.04. Apart from
parental clinical factors with a mean SHAP of 0.16 (mostly driven by the
impact of maternal stress), noise disturbance, and lifestyle exposures (such
as skipping breakfast, dairy intake and processed meat consumption) were
the most important families of exposures, with mean of 0.07 and 0.06, re-
spectively. Other factors not belonging to these families such as tyrosine
(urine metabolite) with a mean SHAP of 0.02 and bisphenol A (phenols)
with a mean SHAP of 0.02 were also noteworthy.

For MetS, the interleukin-1 beta (IL1B) protein was the most prominent fea-
ture, with a mean SHAP of 0.29. Proteins, serum and urine metabolites, as
families of variables, exhibited the most impact on the predicted phenotype.
They were largely driven by IL1B, Apolipoprotein A1 (APOA1), and the
ratio of short-chain acylcarnitines to free carnitine ((C2+C3)/C0). Overall,
for this ECRS, metabolites and proteins combined had a mean SHAP of
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0.50 while exposures had 0.14 and clinical factors 0.03 (Supplementary
Figure 3).
Finally, for lung function, although the XGBoost model could explain only
a minor part of the outcome (4%) and therefore warrants precaution in the
interpretation of the feature importance, no individual features stand out
compared to the other health outcomes. The most important features were
child zBMI, N-acetylneuraminic acid (Neu5Ac) and the inverse distance to
the nearest road during pregnancy (Figure 4.5).
On average, childhood measurements were 3.03 to 8.95 times more important
than prenatal variables for all risk scores. We found that childhood factors
had a mean contribution of 0.23 (standard deviation: 0.01), in comparison
with a prenatal mean contribution of 0.06 (standard deviation: 0.01). For
cardiometabolic health, the postnatal mean contribution was 0.51 (standard
deviation: 0.03), while prenatal factors had a mean contribution of only
0.06 (standard deviation: 0.00). For respiratory health, the postnatal mean
contribution was 0.13 (standard deviation: 0.01), while the prenatal mean
contribution was only 0.04 (standard deviation: 0.01).

4.3.4 Local feature importance

Unlike linear models where feature coefficients are identical for all individu-
als, SHAP extracts contributions that are specific to each individual, allow-
ing to assess more complex exposome-health relationships than regression
coefficients. The ECRS captured both linear and nonlinear relationships, as
shown by SHAP dependence plots (Figure 4.6 and Supplementary Fig-
ure 4). For instance, the relationship between maternal stress and noise
disturbance from neighbors followed a linear trajectory, while the impact
of child zBMI on the P-factor displayed a more complex pattern with a
threshold effect. These plots also allowed us to visualize the directions of
the distinct associations for each outcome.
A high value in maternal stress was related to an increase in the predicted
P-factor, indicating an increased risk for mental health issues. Low levels of
noise disturbances and child zBMI slightly reduced the risk of mental health
problems, while high values had a particularly harmful impact, especially in
the case of child zBMI.
For cardiometabolic health, IL1B was positively associated with MetS, with
high values having an important impact on the risk. We observed similar
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Figure 4.5: Global feature contributions to the three environmental-clinical
risk scores in the HELIX mother-child pairs.
Mean contributions are estimated from Shapley values for each individual factor (left
column) and each family of factors (right column). The black interval bars represent the
standard deviation across the ten models (n=10). Only the top 20 most impactful factors
are displayed here. Extended lists of feature contributions for each ERS are available in
Supplementary Data 3). Variables assessed during pregnancy are indicated by an *.
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relationships, to a lesser magnitude for AAA, apolipoprotein-E (APOE) and
C-peptide. Conversely, high values of APOA1 and the (C2+C3)/C0 ratio
showed a strong protective impact.
The results for the respiratory health scores should be interpreted with cau-
tion because of the low variance explained by the model after cohort ad-
justment (4%). We observed a protective impact on lung function for child
BMI and inverse distance from the nearest road during pregnancy. Low
BMI values substantially increased the risk, while moderate to high values
slightly reduced it. On the contrary, high values of Neu5Ac, facility density
near school (300m), CRP, Monocyte Chemoattractant Protein-1 (MCP1),
sugar and oil intake were associated with decreased lung function.
Compared with the linear associations obtained with Lasso (Supplementary
Figure 5), directions of associations were consistent with XGBoost, with
some exceptions (e.g., leptin for cardiometabolic health and bus line acces-
sibility for respiratory health). Overall, predictions obtained with XGBoost
were more conservative for extreme values of the predictors (e.g., maternal
stress for mental health or child zBMI for respiratory health, etc.).

4.3.5 Pairwise interactions

Pairwise interaction effects were derived from Shapley values using SHAP.
Supplementary Figures 6 and 7 show plots for the top ten interactions
(according to the mean absolute value of Shapley values) derived from the
mental and the cardiometabolic risk scores. For lung function, the predictive
power of the risk score was insufficient to extract meaningful information
from its captured interactions. Overall, interaction effects on predicted risk
were relatively small compared to the marginal effects. We observed a 7.4
to 8.8 ratio between the mean top ten marginal effects and the mean top
ten interaction effects, depending on the outcome of interest (respectively,
0.042 and 0.005 for mental health, and 0.093 and 0.013 for cardiometabolic
health). This indicates that overall, pairwise interactions had a much smaller
impact than marginal relationships on the predicted risk for the two scores.
For mental health, the most important captured interactions were between
perceived maternal stress during follow-up assessment and factors from di-
verse exposure families (clinical factors, lifestyle, noise disturbance, etc.).
Specifically, the most important interactions were between the following
factors: maternal stress and allergic rhinitis, with a mean SHAP value of
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Figure 4.6: Local explanations (SHAP) from the three environmental-
clinical risk scores in HELIX mother-child pairs.
a, b, c Beeswarm plots of Shapley values for the ten most important features for mental,
cardiovascular and respiratory ECRS respectively. Each dot represents the contribution
(Shapley value) of a feature for a given individual in the model’s prediction. Dots accu-
mulate along each feature to show density. The feature value for each individual is shown
in a colored range from low to high. d, e, f Dependence plots of the top three most im-
portant features for mental, cardiovascular, and respiratory ECRS, respectively. Each dot
represents the contribution (Shapley value), on the y-axis, of a feature, on the x-axis, for
a given individual in the model’s prediction. Gray bars show the features’ distributions.
Variables that were assessed during pregnancy are indicated by an *.
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0.0070; maternal stress and insulin, with a mean SHAP value of 0.006 and
maternal stress with dairy intake, with a mean of 0.006 (Supplementary
figure 6). For cardiometabolic health, the top ten most relevant captured
interactions were between clinical biomarkers (proteins and metabolites) or
between IL1B and other factors, such as temperature or child’s age. Specif-
ically, the most important captured interactions were between the following
factors: IL1B and ratio of short-chain acylcarnitines to free carnitine, with
a mean SHAP value of 0.025; APOA1 and APOE, with a mean of 0.016 and
APOA1 and the ratio of short-chain acylcarnitines to free carnitine with a
mean of 0.013 (Supplementary Figure 7). Figure 4.7 shows two arbi-
trary interactions, selected from the top ten most important ones, derived
from the mental and the cardiometabolic risk scores. The first interaction is
between maternal stress and the insulin measured in children and impacts
mental health. It indicates a harmful impact of high insulin combined with
maternal stress. The second interaction for cardiometabolic health is be-
tween IL1B and the ratio of short-chain acylcarnitines to free carnitine. It
indicates a significative impact of this ratio on children with high values of
IL1beta, with a high ratio value associated with higher risk and vice-versa.

Figure 4.7: SHAP selected interaction effects derived from the mental (P-
factor) and the cardiometabolic (MetS) environmental-clinical risk scores.
Each dot corresponds to a child. Ordinate axis is the corresponding Shapley value of the
pairwise interaction, representing its contribution to the predicted risk. Feature values
are given on the x-axis (first feature) and on the colored scale (second feature). Marginals
and interactions effects are additive for each individual and sum to the predicted value.
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4.3.6 Generalizability across cohorts

For each of the three ECRSs, performances obtained from the leave-one-
cohort-out cross-validation were consistent with those obtained using the
ten-fold cross-validation. The explained variance was 13.4% (4% std), 46.8%
(12% std), and 2.4% (2% std) for mental, cardiometabolic, and respiratory
health, respectively. Differences in predictive performances were observed
for all ERCSs depending on the left-out cohort. For instance, the ECRS for
the P-Factor was less predictive of the outcome when the KANC cohort was
predicted based on all the other cohorts (R2=6.3% versus 13.4 on average).
Table 4.1 shows the variance explained within each cohort.

Cohorts Aggregates
BiB EDEN KANC MoBa RHEA INMA Mean SD

P-Factor 16.9 11.8 6.3 15.5 13.3 16.7 13.4 4
MetS 53.2 47.3 41.6 59.4 56.4 22.7 46.8 12
FEV1 3.4 3.6 2.8 1.0 -0.8 4.6 2.4 2

Table 4.1: Variance explained (R2) by each ECRS in the leave-one-cohort-
out cross validation procedure.
Our XGBoost-based machine learning procedure was used to predict each cohort while
training on the others.
Abbreviations: Metabolic Syndrome (MetS), Standard Deviation (SD), Forced Expiratory
air Volume in one second (FEV1)

4.4 Discussion

This is the first study that computed children’s machine learning-based
ECRSs (for mental, cardiometabolic, and respiratory health), covering such
a wide range of pre- and post-natal factors (including air pollution, noise, ur-
ban and social environment, lifestyle, chemical exposures, metabolites, pro-
teins, and clinical factors). The inclusion of data from six different cohorts
across different countries allowed us, by adjusting our models for cohorts, to
extract non-cohort-specific relationships, thereby increasing their likelihood
of being generalizable. Predictive performances were superior for the car-
diometabolic risk score (R2: 50%), in particular, driven by the (pre)clinical
biomarkers compared to the other two health domains, R2: 13% for general
mental health and 4% for lung function. Most important variables were the
following: parental clinical factors (mainly maternal stress), noise distur-
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bance (mainly from neighbors and other children) and lifestyle exposure for
mental health; protein and metabolites (mainly IL1B) for cardiometabolic
health; and child BMI and urine metabolites for respiratory health. While
our results need to be validated on an external population (e.g., different
from the countries available in HELIX), the cohorts-based sensitivity anal-
ysis (leave-one-out cross-validation) showed promising results regarding the
generalizability of our ECRSs on European populations. Our approach’s
main benefit lies in its ability to capture complex associations and extract
insights at both a global and personal level for each exposure or group of
exposures. Results showed that several important relationships were poten-
tially nonlinear.

Our study was performed in a context where current clinical tests often fail
to identify children at-risk of developing chronic diseases, notably consid-
ering mental and cardiovascular diseases, which is a key challenge to the
development of effective prevention and treatment policies. This limitation
is largely attributed to the fact that many of these tests were developed and
validated primarily in adult populations and to the paucity of longitudinal
data on children. In the case of cardiovascular risk, the role of adipokines is
a pertinent example. While the association between elevated inflammatory
biomarkers and increased cardiovascular risk is well established in adults,
there is a lack of comprehensive studies on the onset and progression of these
biomarkers in children [Balagopal et al., 2011]. Therefore, more prospective
studies focused on children are necessary to provide guidance to the pe-
diatric medical community for more effective interventions and prevention
policies.

Polygenic risk scores have substantially improved predictions in compari-
son with single genetic factors, and their potentials for screening, preven-
tion, treatment, and disease management start to become apparent, sug-
gesting that their environmental analog will be equally valuable in public
health prevention [Vassos et al., 2019], for both the identification of indi-
viduals and environmental factors of risk. A recent study from the UK
biobank [He et al., 2021] showed that, in addition to standard clinical risk
factors such as sex, age, blood pressure, or BMI, ERSs provides a greater in-
crease in predictive performances compared with PRSs. Furthermore, ERSs
capture holistic individual-level non-hereditary risk associations, informing
clinicians about actionable factors in high-risk patients that are indepen-
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dent of genetics and provide guidance for prevention and treatment. In this
case the environmental factors include, among others: noise disturbance,
bisphenol A and humidity for mental health; bus lines accessibility, child’s
dichlorodiphenyldichloroethylene and oily fish intake for cardiometabolic
health; facility density, bus lines accessibility and sugar intake for respi-
ratory health.

A known limitation of most nonlinear machine learning approaches is the
model identifiability, which can lead to complications such as overfitting
or ambiguity in interpreting the model’s parameters [Hastie et al., 2008b,
Hastie et al., 2008a]. However, we believe our approach has several strengths
that mitigate these concerns. First, our modeling strategy, backed by rigor-
ous cross-validation, limits overfitting and prioritizes generalizability across
different data subsets. Second, both nonlinear methods used in this study
aggregate results from multiple models, whether from boosting or bagging,
which enhances the stability of results. Finally, it is worth remembering that
identifiable models such as linear regression or LASSO also have important
limitations. In particular, they cannot capture nonlinear relationships, and
the coefficients obtained through regression can be interpreted with confi-
dence only if all relationships are linear, which is unlikely to always be the
case in real application scenearios.

Our tree-based approach has shown comparable predictive performances to
LASSO, which could indicate that the relationships to capture are mostly
linear in nature and that there are no interactions. However, the difference
in prediction is likely to be due to the ability of simpler models to perform
better in situations of small training sample size [Hastie et al., 2008b]. More
data would be needed in order to confirm the nature of those relationships
and, even if LASSO performs well, it may not capture all the complexities
within the data, especially nonlinear relationships and interactions, which
other algorithms could reveal. In this study, we explored such relationships
using, to our knowledge, a novel approach in this field. We did not aim to
assess nor confirm the causality of extracted relationships but rather to iden-
tify new associations that previous methods would have missed, and explore
the complexity of known ones (e.g., nonlinearities, interactions). Thus, the
causality of those findings needs to be validated in a causal inference frame-
work.

We compared our findings to those previously obtained in the literature
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and highlighted relationships with poor literature coverage. Besides non-
linearities that are rarely assessed in the field, we found our results, when
comparing only directions of associations, to be mainly consistent with those
observed in other studies, which indirectly validates our approach.
For mental health, previous studies have found that maternal stress can lead
to an increased risk of anxiety, depression, and behavioral problems in chil-
dren [Farewell et al., 2021], while a higher BMI has been associated with de-
pression, anxiety, and low self-esteem [Wang and Veugelers, 2008]. Similarly,
exposure to noise has been linked to both internalizing and externalizing be-
havioral problems in children [Lim et al., 2018]. Overall, while the majority
of factors identified in this study have been linked with mental health out-
comes in the literature, the exact causal pathways, the potential interactions
between these factors, and the nuances of their impacts during specific devel-
opmental windows would benefit from further investigation. Specifically, the
links involving noise disturbance sources, pollutant exposure to bisphenol A,
which is not conventionally studied in mental health research, and certain
metabolic markers such as tyrosine levels and the Kynurenine/Tryptophan
ratio.
For cardiometabolic health, several of the identified markers are well estab-
lished in cardiometabolic health (e.g., IL1beta [Esser et al., 2014], APOA1
[Wilkins et al., 2021], Leptin [Tsai, 2017]), and their known relationships are
consistent with our findings. Other markers, such as aromatic amino acids
or plasmalogens have been linked to several aspects of metabolic and car-
diovascular health [Sun et al., 2022, Ding et al., 2023, Novgorodtseva et al.,
2011], but their causal pathways are still areas of ongoing research. Finally,
4-deoxyerythronic acid is not well covered in the literature.
At last, concerning respiratory health, we mainly identified a positive (non-
linear) association between FEV1 and child BMI, which supports the obesity
paradox in chronic obstructive disease [Sun et al., 2019, Köchli et al., 2019].
Unexpectedly, the inverse distance to the nearest road during pregnancy was
associated with an increased FEV1. This association was already reported
in a previous HELIX study [Agier et al., 2019] and is driven by the RHEA
cohort. Overall, while our study identified relationships already well estab-
lished (e.g., air quality through facility density or accessibility), others might
be less direct and require further investigations (e.g., N-acetyl neuraminic
acid, sugar and vegetable oil intake).
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4.4.1 Strengths and limitations

This study benefited from the richness of the HELIX project data, which
used standardized outcomes, clinical biomarkers, and exposure measurement
methods across six different European countries. The HELIX project used a
wide range of exposure measurement techniques to collect both internal and
external exposome data. In contrast to previous studies where ERSs are
usually derived from weighted sums of a limited number of exposures, our
approach simultaneously assessed the impact of a wide range of exposures,
metabolites, and clinical factors on several health outcomes. To address
multicollinearities and nonlinearities, we used penalization and recent AI
modeling techniques. SHAP allowed us to decompose the complex rela-
tionships captured by our ECRSs for each feature at a global and personal
level, extracting interactions and marginal effects. Our risk scores were ad-
justed for the cohorts of inclusion, which is a particularity of the HELIX
project. We acknowledge that in the case of highly correlated variables, our
approach exposes those with the estimated higher impact on the predicted
risk without implying causality. Correlations between exposures are known
to present a challenge for exposome research, especially in the ability to
differentiate true predictors from correlated covariates [Agier et al., 2016].

The main limitation of our study is the lack of external validation using
an independent cohort. While our study benefited from the richness of ex-
posome data not found in any other early-life cohort studies or pre-clinical
studies, our sample size was relatively small (n 1500), especially for applying
certain machine learning methods (e.g., deep neural networks). This sample
size constraint limited our ability to capture and extract complex relation-
ships such as interaction effects, and favored our choice towards tree-based
ensemble machine learning methods. Nevertheless, we observed a similar
predictive value with LASSO. The other outcomes were both precomputed
composite risk scores (P-factor and MetS), possibly suggesting better perfor-
mances of machine learning methods in predicting raw outcomes. Addition-
ally, as our study is exploratory in nature, we did not assess the causality
of extracted exposome-health relationships. Further work is required to
validate these relationships using a proper causal inference methodology.
For instance, our scores might capture bidirectional cause-and-effect rela-
tionships, such as, potentially, the association between maternal stress and
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child behavior. The inclusion of internal peripheral markers that reflect the
body’s response to the measured health outcomes (e.g., IL1B and obesity)
could also reinforce this phenomenon. In the case of MetS, the array of
proteins and blood metabolites primarily covered biological pathways re-
lated to cardiometabolic outcomes, such as blood lipids. By decomposing
the importance attributable to metabolites/proteins and the other factors
(Supplementary figure 3), and further refined into families of factors, we
limit this issue. The integration of these preclinical biomarkers aimed to
enhance the predictive power of our ECRSs and to investigate their rela-
tionships and interactions when combined with a wide variety of factors.
Another limitation is that our study does not account for the risk evolution
over time since we used pregnancy and cross-sectional epidemiological data
to assess childhood exposures at a single point in time without considering
their impact throughout an individual’s lifetime. This limitation will be
addressed in ATHLETE, the HELIX follow-up project in which the same
children were regularly monitored into adolescence with repeated health out-
come measures [Vrijheid et al., 2021].
Finally, our study participants are mostly representative of the European
population since the data was collected from six different European coun-
tries. Therefore, caution must be taken when extrapolating our findings
to different populations. As more datasets become available in the future,
we will be able to further validate the scores obtained in this study and
generalize our findings beyond the populations here analyzed. Beyond the
validation of our scores, the associations extracted in this study, which are
yet rarely studied in exposome research, could be validated more indepen-
dently without such a high-dimensional dataset. Some of those factors are
easily collectible through questionnaires (e.g., noise disturbance, maternal
stress for mental health). Social and perceived environmental factors are yet
poorly covered in exposome research [Neufcourt et al., 2022] and this study
provides more evidence of their importance.

The combined use of complex machine learning techniques and explainable
artificial intelligence methods remains uncommon in the environmental epi-
demiology field, despite its excellent fit with the exposome paradigm, which
aims to capture complex associations within mixtures of environmental fac-
tors. Our study revealed results mostly consistent with previous studies
while, at the same time, exposing individual-level relationships with nonlin-
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earities. Furthermore, we believe that the development of bigger databases
and federated analysis tools such as dataShield [Gaye et al., 2014] can unlock
the true potential of these approaches to more accurately capture exposome-
health associations.

4.5 Conclusion

In this large exposome study, environmental clinical risk scores were com-
puted using linear (LASSO) and nonlinear methods (XGBoost, Random
Forest). No significant differences in predictive performances among these
methods were found across the computed risks, however, machine-learning-
based ERS extracted different effects including non-linearities. From the
nonlinear risk scores, we extracted exposome-health relationships from Shap-
ley values, allowing us to derive feature importance at a local and a global
level and uncover interactions, which is, to our knowledge, a novelty in the
field. The most important predictors included maternal stress, child BMI
and noise exposure for mental health; biomarkers such as IL1B and APOA1
for cardiometabolic health; and child BMI and sialic acid (Neu5Ac) for res-
piratory health.
Besides their usefulness for epidemiological research, our risk scores showed
great potential to capture holistic individual-level nonhereditary risk asso-
ciations that can inform practitioners about actionable factors of high-risk
children. As in the post-genetic era, personalized prevention medicine will
focus more and more on modifiable factors, we believe that such integrative
approaches will be instrumental in shaping future healthcare paradigms.
However, the adoption of such machine learning methods introduces new
challenges, particularly concerning 1) the substantial data requirements nec-
essary for training these models to effectively outperform traditional ap-
proaches in terms of predictive performance, and 2) the trustworthiness of
the derived models. Although our approach did not achieve significantly su-
perior predictive performance, it offered equivalent solutions that captured
different relationships. This raises the question of which solution to trust.
One possible answer is to choose the solution that best aligns with estab-
lished domain knowledge when such knowledge is available. In the next
chapter, we develop an informed machine learning procedure that integrates
this domain knowledge into predictive modeling to supplement the train-
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ing data and enhance the trustworthiness of our environmental risk scores
approach.
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This chapter relates the work performed for the second paper of this
doctoral work (not yet published at the time of writing). In this work,
we aim to mitigate the limitations encountered in the first contribu-
tion, namely: 1) the small available sample size, 2) the presence of
noise (e.g., from missingness or measurement errors) that limited our
capabilities for modeling complex relationships, and 3) the presence
of confounding bias leading to the capture of spurious associations.
To that end, we develop a novel method for incorporating domain
knowledge into the training of nonparametric methods, this time us-
ing deep neural networks, to inform machine learning-based environ-
mental risk scores. We call this method SEANN (Summary Effects
Adapted Neural Network). We use synthetic data to illustrate its
benefits in a controlled setting.

5.1 Introduction

Various domains of healthcare research (e.g., pharmacology, psychology),
and, in particular epidemiology, study the relationships between factors and
outcomes of interest using conventional statistical methods such as linear or
logistic regression algorithms [Bender, 2009, Stafoggia et al., 2017]. These
models typically provide simplistic and easily interpretable representations
of potentially complex relationships by encapsulating dose-response esti-
mates in different forms, including odd ratios (ORs), risk ratios (RRs), haz-
ard ratios (HRs), or standardized regression coefficients (SRCs). Such esti-
mates can be easily aggregated across several studies, i.e., in meta-analyses
[Borenstein et al., 2021], to derive a more reliable and statistically robust
indicator describing the relationship between a variable of interest and a tar-
get outcome, namely a pooled effect size (PES) [Pathak et al., 2020], that
represents a quantitative formulation of a scientific consensus. In epidemi-
ology, PESs are considered one of the most reliable forms of information
[Wallace et al., 2022].
Inspired by risk prediction models, such as the Framingham risk score for
coronary heart disease [D’Agostino et al., 2008] or PRSs [Khera et al., 2018]
from genetic research, environmental risk scores (ERS) are summary mea-
sures of the effects of multiple exposures used to estimate the environmental
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liability for a particular health outcome at an individual level [Park et al.,
2014]. Those scores are useful tools for screening individuals to select for
more expensive testing, and, more importantly, they can be used to study
the effect of environmental exposure on health [Park et al., 2014]. ERSs are
usually built using interpretable methods as a weighted sum of the individ-
ual exposure estimates (cf. Section 2.2.1.4), obtained either from previous
literature studies or derived through regression models [Pries et al., 2021].
The use of modern ML methods such as DNNs to compute them is still rare
(cf. Section 2.3.2.2).

PESs have been used to compute literature-only health risk scores (cf. Sec-
tion 2.2.1.4) and informed risk scores (e.g., [Neri et al., 2022]) using tra-
ditional biostatistical methods (e.g., logistic and linear regression). In epi-
demiological studies, data gathering can be challenging as it may require
costly measurements and is often subject to ethical and legal regulations.
Consequently, risk scores derived from PESs are often more robust compared
to those computed from restricted datasets collected for specific populations
(e.g., from a specific country, age range, or socioeconomic profile).

In this work, we introduce SEANN (Summary Effects Adapted Neural Net-
work), a method designed to integrate prominent forms of PESs, namely
ORs, RRs, and SRCs [Bakbergenuly et al., 2019, Nieminen, 2022] into the
training of DNNs for the computation of ERSs. The underlying idea of
SEANN is to penalize deviations from integrated PESs measured through
differences in prediction when perturbing the inputs. While various meth-
ods have been developed to integrate different forms of external knowledge
within the learning process of DNNs [Dash et al., 2022], we are, to our
knowledge, the first to integrate PESs.

In addition to enhancing the robustness of derived ERSs by leveraging es-
timates from large and diverse populations, SEANN aims to capture expo-
sure relationships that closely align with known evidence. By incorporating
knowledge from well-known relationships, SEANN can better characterize
those that are less studied. Additionally, this approach addresses challenges
posed by Deep Neural Networks (DNNs) that limit their use in the field.
DNNs are not inherently interpretable and require large sample sizes for
effective training. SEANN compensates for the limited observational data
typically available in epidemiological studies and improves the generalizabil-
ity and trustworthiness of computed risk indicators.
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In Section 5.2 of this chapter, we introduce SEANN; In Section 5.3,
we perform a series of experiments on synthetic scenarios illustrating the
method’s benefits in a controlled environment. More specifically, we refer
to improved prediction accuracy in noisy contexts and improved reliability
of interpretation using XAI. Finally, Section 5.4 discusses the significance
of those results and concludes.

5.2 Method

This section introduces SEANN. We first define the general setting of in-
tegrating PESs as soft constraints via additional terms to the loss function
and then detail the implementation of this approach for three types of PESs:
standardized regression coefficients, odd ratios, and risk ratios.
Given a set of p observed variables P , and a subset Q ⊆ P , with |Q| = q

of these variables for which we have an effect size estimate value to use
as enforced external knowledge, we define X, an n × p input matrix of n
observations, and V , a vector of q effect size estimates values. Similarly to
previous works (e.g., [Muralidhar et al., 2018, Daw et al., 2022]), the general
principle of our method, described in Eq. 5.1, consists in adding a term to
the loss function L for each meta-heuristic to incorporate.

L = λ0Lpred(X, θ) +
q∑
i=1

λiLmeta(X, θ, vi, hi) (5.1)

Where Lpred is the convex function used for the predictive task (e.g., mean
squared error, cross-entropy, etc.) and θ the parameters of the model. Lmeta
is the convex loss function used to enforce the desired soft constraints for the
neural network, i.e., to enforce the neural network to respect the PESs vector
V . λ0 and λi are weights pondering the importance of each term, namely the
predictive task and the ith constraint. They can be treated as hyperparam-
eters and set to values that optimize the obtained predictive performances.
However, for cases where learning plausible relationships, i.e., relationships
aligned with known associations, is considered equally or more important
than raw predictive power (e.g., imperfect input data, trustworthiness), a
different approach should be used to settle the tradeoff between learning
from the data (and optimizing performances) or learning associations ob-
served in the literature. We propose choosing weight values proportional to



5.2. METHOD 76

the confidence in both the data and the external knowledge. Following a
common principle in meta-analyze (e.g., [Borenstein et al., 2021]), we ex-
press this confidence using the sample size available in each study1 as well
as the sample size available in the training data.
The proposed weighting is calculated as follows: first, we define a confidence
score ci associated with vi corresponding to the sample size of the ith meta-
analysis. Similarly, we define a confidence score c0 for the input data X
composed of n rows and p variables to be computed as n×p. Then, for c > 1,
we estimate the final λ weights using a log scale relative normalization:

λi = ln ci∑q
j=0 ln cj

This scheme ensures that terms associated with small confidence scores have
a noticeable impact on the learning process compared to the others and are
not entirely ignored.
Depending on the type of PES considered, the loss function Lmeta will be im-
plemented differently. As effect estimates in the meta-analysis are typically
represented either as OR, RR, or SRC, we express Lmeta for those forms be-
low. In all cases, the principle is to generate for each observation a slightly
perturbated copy of it with an increment h—called the perturbation— for
each variable in Q, to measure the difference between the expected change
in the target value according to our PESs and the observed change in our
model, and to penalize this difference.

5.2.1 Case of a standardized regression coefficient

Let us first consider, for simplicity, a single SRC, called βi, that we want
to integrate into the training of a DNN. This βi would be either directly
extracted in a domain-specific literature study from a uni/multi-variate lin-
ear regression model or would summarize several similar effects in a meta-
analysis. Considering a multivariate linear regression model defined as:

fβ(Z) = β0 +
m2∑
j=1

βjzj

1Here we are referring to the total sample size used for estimating each PES.
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With Z ∈ Rm1×m2 an input matrix and β, a vector of SRCs, βi ∈ β, 1 ≤ i ≤
m2. Then the expected change in the target values according to βi when
modifying the corresponding input variable zi with a perturbation step h is:

fβ(Zzi+h) = fβ(Z) + βih

Where Zzi+h denotes the matrix obtained from the input matrix Z by per-
turbing its i-th column, denoted as zi, through the addition of a quantity h,
where h ∈ R \ {0}.
To integrate βi within SEANN, we enforce a similar relationship between our
model’s predicted values fθ(X) and predicted values with perturbed inputs
fθ(Xxi+h) as a soft constraint, i.e., fθ(X) = fθ(Xxi+h) − βih, by penalizing
the deviation from this equality.
For a vector V of SRCs derived from the literature, with vi ∈ V , the ith

element of V , the training loss term Lmeta is defined as:

Lmeta(X, θ, vi, hi) = 1
n

n∑
k=1

(
fθ(Xxi+h

k ) − vihi − fθ(Xk)
)2

(5.2)

Where Xk denotes the kth row vector of matrix X. fθ is the output of the
neural network with parameters θ, n the number of data points (i.e., batch
size), and hi ∈ R \ {0} a perturbation parameter. In this case, as SRCs
(similar to other PESs) are constant regardless of input data Z, we can
theoretically use any value other than 0. For simplicity, we use hi = 1 for
every SRCs to integrate. In a hypothetical, more general case of a constraint
to integrate as a function of X, h would be taken as the smallest possible 2.

5.2.2 Case of an odd-ratio

The approach we proposed in this section, while mathematically correct,
can suffer from numerical instability during the training (cf., Eq. 5.3). In
paper 3, we addressed this issue by generalizing equation 5.2 instead.
Similar to section 5.2.1, let us consider a single OR, referred to as (ORi =
eβi), that we want to integrate into the training process of a DNN. This
OR would be extracted from logistic regression models in a meta-analysis.

2The underlying property is explained more extensively in the next chapter where we
extend this equation to any locally differentiable function.
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Considering a multivariate logistic regression model defined as:

pβ(Z) = 1

1 + e
−
(
β0+
∑m2

j=1 βjzj

)
With Z ∈ Rm1×m2 an input matrix and β, a vector of m2 log-odds coeffi-
cients, βi ∈ β, 1 ≤ i ≤ m2. We can express the change in Logit(pβ) when
modifying the input variable zi associated with βi with a perturbation step
h. This difference is independent of other variables in Z.

log

(
pβ(Zzi−h)

1 − pβ(Zzi−h)

)
− log

(
pβ(Z)

1 − pβ(Z)

)
= −βih

Thus, we can express the corresponding relationship between the predicted
values on inputs Z with and without modifying the corresponding input
variable zi with a perturbation step h:

pβ(Z) = eβihpβ(Zzi−h)
eβihpβ(Zzi−h) − pβ(Zzi−h) + 1

For a vector V of log-odds coefficients derived from the literature, with
vi ∈ V , the ith element of V , the training loss term Lmeta to integrate vi is
defined as in Eq. 5.3

Lmeta(X, θ, vi, hi) = 1
n

n∑
k=1

(
evihipθ(Xxi−h

k )
evihipθ(Xxi−h

k ) − pθ(Xxi−h
k ) + 1

− pθ(Xk)
)2

(5.3)
Where pθ is the probability given by the neural network with parameters
θ, n the number of data points (i.e., the batch size) and h ∈ R \ {0} a
perturbation parameter. Similar to section 5.2.1, as a given OR is constant
for every corresponding z, h can theoretically take any values other than
0. However, within SEANN, we fix h to keep the quantities within the
exponential terms small and enhance numerical stability during the learning
process. We define:

h =

1 if vi = 0,
1
vi

otherwise.
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5.2.3 Case of a risk ratio

Following the same principle, let’s define the integration of a single PES
encoded as a risk ratio. Considering a negative binomial regression model
defined as:

log (µβ(Z)) = β0 +
m2∑
j=1

βjzj

With Z ∈ Rm1×m2 an input matrix and β, a vector of log-estimates, βi ∈
β, 1 ≤ i ≤ m2. Then the expected change in the target values according to
βi when modifying the corresponding input variable zi with a perturbation
step h is:

µβ(Zzi+h) = eβihµβ(Z)

Where Zzi+h denotes the matrix obtained from the input matrix Z by per-
turbing its i-th column, denoted as zi, through the addition of a quantity h,
where h ∈ R \ {0}.
To integrate βi within SEANN, we enforce a similar relationship between our
model’s predicted values fθ(X) and predicted values with perturbed inputs
fθ(Xxi+h) as a soft constraint, i.e., fθ(X) = fθ(Xxi+h)e−βih, by penalizing
the deviation from this equality.
For a vector V of log-estimates derived from the literature, with vi ∈ V , the
ith element of V , the training loss term Lmeta is defined as:

Lmeta(X, θ, vi, hi) = 1
n

n∑
k=1

(
e−vihifθ(Xxi+h

k ) − fθ(Xk)
)2

(5.4)

Where Xk denotes the kth row vector of matrix X. fθ is the output of the
neural network with parameters θ, n the number of data points (i.e., batch
size), and hi ∈ R\ {0} a perturbation parameter. Similar to Section 5.2.2,
we recommend using:

h =

1 if vi = 0,
1
vi

otherwise.

To demonstrate the approach’s potential, we rely on synthetic data that
emulates different scenarios. In each experiment, we compare two DNNs,
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identical in all aspects but the inclusion of our modified loss and external
knowledge. For the sake of simplicity, we use and compare basic multi-
layer perceptrons. The approach can be directly usable with more complex
feed-forward neural architectures (e.g., convolutional networks, residual net-
works), and the benefits highlighted in this study should apply to other neu-
ral configurations. Below, we call SEANN the model that implements our
approach, and agnostic DNN the reference one.

5.3 Experimental validation

5.3.1 Data scenario

To illustrate the relevance in real applications, we introduce an intuitive
fictional example composed of 1) a target variable y representing the risk of
developing a disease or the strength of symptoms and 2) several variables
contributing to the outcome y according to a dose-response relationship.
Those variables are constructed to test specific hypotheses. First, we define
two correlated variables, mercury (x1) and fish intake (x2), having an oppo-
site effect on the target variable. Typically, the fish intake reduces the risk,
while mercury increases it. Correlation between x1 and x2 is designed to
emulate a confounding effect [Jager et al., 2008], a common issue in health
research. We also define two additional variables, namely perceived stress
(x3) and body mass index (i.e., BMI, x4) uncorrelated to the variables x1 and
x2 but affecting y. x3 is linear and positively correlated with the outcome,
while x4 has a nonlinear effect.
In this simple scenario, we perform different experiments in which we test
the benefits of incorporating PESs to eligible variables (i.e., x1, x2 and x3).
We are interested not only in the networks’ predictive performances but also
in their ability to capture and restitute the input-output relationships that
we encoded in the data. The experiments presented focus on SRCs and
ORs, but we could use RRs in a similar manner.

5.3.1.1 Standardized regression coefficients

For the case where PESs are encoded as SRCs, we generate an input matrix
X by sampling m = 1000 values from a multivariate Gaussian with mean 0
and covariance matrix

( 1 0.8 0 0
0.8 1 0 0
0 0 1 0
0 0 0 1

)
. Target vector Y is generated from the
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additive function described in Eq. 5.5 with β0 = 1, β1 = 1, β2 = −2, β3 = 5
and β4 = 10.

Y (X) = β0 + β1 × x1 + β2 × x2 + β3 × x3 + β4 × cos(x4) (5.5)

5.3.1.2 Odd-ratios

Similar to the linear case, we generate a data matrix X with three variables,
namely x1, x2, and x3, corresponding to mercury, fish intake, and perceived
stress, respectively, to predict an outcome (i.e., a risk to develop a disease).
X was generated by sampling m = 1000 values from a multivariate Gaussian
with mean 0 and covariance matrix

( 1 0.8 0
0.8 1 0
0 0 1

)
. Target vector Y was gener-

ated from the function described in Eq. 5.6 with β0 = 0, β1 = 1, β2 = −2,
β3 = 5.

Y (X) = 1
1 + e−β0−β1×x1−β2×x2−β3×x3

(5.6)

5.3.1.3 Experimental design

We use a fully connected neural network (NN) with a single hidden layer for
both SEANN and the agnostic model. Both NNs were implemented using
Pytorch and trained with a batch size of 64 and a maximum number of
epochs of 1000. Parameter optimization was achieved using Adam [Kingma
and Ba, 2017]. We standardize and split data into training (n=600), vali-
dation (n=200), and test (n=200) datasets. To reduce over-fitting, we use
early stopping (with patience 10) on the validation set.

5.3.1.4 Evaluation

To evaluate the correctness of extracted relationships, we propose a score,
called ∆Shap, to compute the distance between two dose-response relation-
ships represented with Shapley values [Shapley, 1953]. ∆Shap is defined by
the mean absolute error (MAE) computed across Shapley values for a given
marginal relationship that must be computed using the same background
dataset. We can use it to compare the distance between a neural network-
extracted relationship and a relationship admitted in the literature or, in this
work, as we use synthetic data, to compare the distance between a neural
network-extracted relationship and the true predictor-outcome relationship.
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The smaller the distance, the more we would consider a relationship to be
scientifically plausible or in line with the true effect. In this work, we use
the generative functions (i.e., Eq. 5.5 and Eq. 5.6) to compute Shapley
values representing the reference relationships for ∆Shap. Shapley values
are approximated using the SHAP library [Lundberg and Lee, 2017] and
systematically computed on the test sets.

To evaluate the performance of models, we use the coefficient of determina-
tion (R2) score for regression tasks and the receiver operating characteristic
curve’s (ROC) area under the curve (AUC) for binary classification tasks
(i.e., odd-ratios).

5.3.2 Experiment 1

In this experiment, we illustrate that SEANN can leverage the information
from external expert knowledge to mitigate the poor quality of the data. To
simulate the data imperfection, we progressively increase the level of noise
on all variables (i.e., x1, x2, x3, x4) and check that while the performance of
the agnostic NN deteriorates quickly, our informed NN can retain most of
it. Information was degraded differently for linear coefficient and odd ratios
to illustrate two common scenarios. In the linear case, we added Gaussian
noise to all input variables, with a mean of 0 and increasing standard devi-
ation. For odd ratios, missing values were generated completely at random
with increasing proportions and imputed using a simple mean imputation.
External knowledge was integrated on top of training data for every eligible
predictor (i.e., beta1,.., beta3 for x1, ..., x3 respectively).

Better performances were obtained with SEANN both for the predictive task
and the explainability of constrained relationships measured with ∆Shap.
No significant gains were observed for the nonlinear unconstrained variable
(BMI). Results are displayed in Figure 5.1 for linear coefficients and sum-
marized in Table 5.1 for odd-ratios. Results indicate that given PESs
encoding correct relationships between input variables and target outcome,
performances obtained while training on imperfect data can be more stable
with SEANN.
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Percent Agnostic DNN SEANN
missing ROC AUC Sum ∆ Shap ROC AUC Sum ∆ Shap

0 0.999 0.083 0.998 0.137
25 0.930 0.262 0.975 0.176
50 0.915 0.318 0.95 0.204

Table 5.1: Comparison of Performances depending on the proportion of
imputed missing values in training and validation sets (experiment 2).
ROC AUC is a measure of predictive performances, whereas Sum ∆ Shap summarizes the
quality of captured relationships across all predictors.

Figure 5.1: Performance comparison of SEANN and agnostic DNN with
different noise levels in input features (experiment 1).
The X-axis is the standard deviation of added noise.

5.3.3 Experiment 2

In this experiment, we focus on the quality of the relationships captured
when external knowledge is integrated for a single predictor. The objective
is to show that variables that do not benefit directly from external knowledge
may nevertheless be better captured, thanks to corrections brought to the
other variables. Similar to the previous experiment, Gaussian noise was
added to a single variable (i.e., fish intake, x2) with mean 0 and standard
deviation 0.75, and 1.5 for the SRCs and ORs respectively, in both training
and validation sets.
Figure 5.2 show results with PESs encoded as SRCs. The most signifi-
cant gain was observed for fish intake, the variable with integrated external
knowledge. ∆Shap (see definition in Section 5.3.1.4) measured for this
variable was 1.11 with the agnostic DNN and 0.04 with SEANN. A signif-
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Figure 5.2: Comparison of extracted relationships (Shapley values) between
the agnostic DNN and SEANN (experiment 2).
Only the beta coefficient for fish intake was added as external knowledge. However, both
mercury and fish intake are better captured by SEANN compared with the agnostic DNN.

icant gain was also observed for mercury, the variable correlated with the
informed one (1.02 for agnostic DNN to 0.53 for SEANN). Finally, no sig-
nificant performance gains were observed for the remaining variables, i.e.,
those uncorrelated with the informed one (0.99 to 1.04 for perceived stress,
1.74 to 1.64 for BMI, with agnostic DNN and SEANN, respectively). Re-
sults show that not only SEANN better captures relationships for features
with corresponding external knowledge but also for noninformed features
that are correlated with those externally informed.
A similar scenario is observed for odd ratios, with ∆Shap down from 0.087
with the agnostic DNN to 0.050 with SEANN for mercury.

5.3.4 Experiment 3

In a last experiment, we simulate a setting where a confounding variable
is missing from the data. A confounding variable is a predictor impacting
both the outcome to predict and other predictor(s) of interest. In numerous
contexts, including health science, it is challenging to collect all relevant
variables to predict an outcome (and study their effects), and we can expect
to have unseen confounders.
We train both NNs with a missing variable (fish intake) and compare both
the predictive performance and the quality of extracted relationships on the
test set. With SEANN, we integrate external knowledge for mercury alone
(i.e., the variable correlated with the missing predictor), and we duplicate
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the mercury variable in both training and validation datasets, the copy being
an unconstrained variable. The objective of this duplication is that 1) The
constrained version captures what is known by external knowledge, and 2)
The unconstrained version captures what comes from the unseen confounder.

Figure 5.3: Comparison of extracted relationships (Shapley values) between
the agnostic DNN and SEANN for the linear case (experiment 3).
Without external knowledge, the interpretation of the Mercury effect is opposed to the
ground truth. When adding the constraint, we see that the duplicated variable can capture
the confounder, i.e., fish intake.

We observe (Fig. 5.3) that without the constraint, mercury is incorrectly
captured, with a ∆Shap of 1.32. In this case, interpreting the Shapley
values directly could lead to the misleading conclusion that mercury has a
protective effect. On the contrary, with SEANN, the constraint allows the
capture of the correct relation (∆Shap=0.013). Additionally, SEANN was
able to capture part of the association with the missing variable (fish intake)
using duplicated input data of mercury (∆Shap: 0.43). Minor improvements
were also observed for other variables. Results show that SEANN can be
used to better disentangle individual effects while estimating the effect of
unknown confounding factors.
For odd ratios, the results are similar. SEANN better captured the mercury
predictor, with ∆Shap=0.128 for the agnostic DNN and 0.048 for SEANN.
SEANN was also able to capture part of the association with the missing
variable (i.e., fish intake) using the duplicated input data (∆Shap= 0.056).

5.4 Conclusion

In this paper, we propose a method to integrate the wealth of knowledge
available in the scientific literature encoded as PESs. While these represen-
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tations are simple estimates unable to express complex relationships, they
are easily understandable, can be aggregated across multiple studies, and are
widely used in multiple domains of science, including epidemiology in partic-
ular. By integrating traditional statistical measures into the deep learning
process, our approach offers a tool to capture complex nonlinear relation-
ships from data while leveraging simpler but well-established knowledge.
Our experimental protocol demonstrates that, theoretically, compared with
a standard DNNs, our approach offers two main benefits. First, a bet-
ter generalization of the predictive performances on unseen data could be
obtained under the condition that PESs contain relevant information for
the task at hand that is lacking in the available data. This is a common
use case, notably in epidemiology, where vast amounts of data are scarce
and independent relationships are well studied across multiple studies on
different populations. Second, significant improvements were observed in
the alignment of extracted relationships with external knowledge when us-
ing SEANN, both for informed and uninformed variables. In particular,
we demonstrated its potential to better disentangle individual input-output
relationships in the presence of collinearity.
A common limitation of approaches that, similar to ours, integrate soft
constraints through additional terms in the loss function is the introduction
of additional hyperparameters. We propose a way to estimate those, adapted
to our application case, based on the relative confidence in each study from
which the PESs are taken. In the next chapter, we validate this approach
using real data.
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This chapter relates the work performed for the third paper of this
doctoral work (not yet published at the time of writing). In this work,
we illustrate SEANN’s potential in a real case scenario by comput-
ing an Informed ERS for hypertension in adults. Those scores were
derived from a wide range of exposures measured in the GCAT co-
hort and “informed” by multiple PESs estimated in meta-analyses.
By comparing the relationships extracted with SEANN with those
obtained from an agnostic machine learning model, that learned only
from the input data, we empirically demonstrate the benefits of our
approach. Compared to an agnostic neural network, SEANN learns
relationships more aligned with established scientific knowledge and
better disentangles each effect. Similarly to Chapter 4, we leverage
our risk score to identify actionable factors of diseases, assess their
overall impact on the risk, and estimate the nature of their relation-
ships with health.

6.1 Introduction

Defined as elevated blood pressure to an unhealthy level, hypertension is
the leading preventable cause of cardiovascular diseases (CVDs) worldwide
[Reuter and Jordan, 2019], with direct implications in a wide range of ad-
verse conditions such as heart failure, stroke or atherosclerosis. CVDs are
the leading cause of mortality worldwide, accounting for an estimated 17.9
million lives each year, according to the World Health Organization. From
those deaths, 8.5 million deaths worldwide (4.5 million men and 4 million
women) were attributable to elevated systolic blood pressure (i.e., >115
mmHg) [Zhou et al., 2021].
Well-established CVD factors, easily measurable in clinical settings, such as
age, sex, blood pressure, body mass index and current smoking have been
used as predictors for diagnostic risk scores for decades, e.g., [D’Agostino
et al., 2008, Woodward et al., 2007, Achenbach et al., 2021]. The integra-
tion of representative arrays of genetic and environmental factors into these
scores represents a more recent advancement [Bhatnagar, 2017, O’Sullivan
et al., 2022]. This evolution in approach is critical, as chronic diseases
are increasingly recognized as the outcome of a complex interplay between
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genetic predispositions and environmental exposures [Hunter, 2005]. How-
ever, while the integration of polygenic factors into these risk scores has
slightly improved performances of predictions, in particular for early-onsets,
the contribution of environmental CVD factors such as sedentary lifestyle,
unhealthy diet, social stress, air pollution or traffic noise have not been as
systematically assessed but rather studied as single causes. Acknowledging
and incorporating the multifactorial nature of non-communicable disease
into risk assessments is essential for a more comprehensive and accurate
understanding of disease aetiology and the development of more effective
preventive and therapeutic strategies.

A growing research paradigm in recent environmental epidemiological stud-
ies, called the exposome [Siroux et al., 2016], diverges from the traditional
studies focusing on only one environmental exposure-health relationship to
endorse a more holistic approach. Classical single exposure analyses may be
limited because the studied exposure association could arise from another
correlated factor not taken into account and are, moreover, unable to cap-
ture interactions or cumulative effects from the exposure mixture. Within
this framework, new data analysis approaches are developed, combining ma-
chine learning predictive power and explainable AI as we [Guimbaud et al.,
2024] and others [Atehortúa et al., 2023] have recently proposed in order
to capture those complexities while providing intelligible insights. Those
approaches, however, are still limited by the presence of confounding biases
[Jager et al., 2008] and multicollinearities, impacting the quality of extracted
relationships.

Moreover, the generalizability of data-driven risk scores needs to be val-
idated in external populations, both in terms of predictive performances
and robustness of captured relationships. However, compared to polygenic
risk scores for which all the genes are measurable at once, the validation
of environmental risk scores is more challenging as the diversity of environ-
mental exposures and methods to measure them makes it difficult to find
different populations with the same measured exposures. A wealth of knowl-
edge is however available in the literature, regarding certain environmental
exposure-health relationships considered independently across several stud-
ies and populations. While limited in several aforementioned aspects (i.e.,
they ignore non-linearities and interactions), those pooled effect size esti-
mates represent one of the strongest currently available evidence in the field
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and can be leveraged to guide the training of multifactorial risk scores [Ros-
ner, 2012].
In this work, we applied SEANN, our informed ML approach described in
the previous chapter, in a real-life scenario on observational data. With
SEANN, we aimed to calculate an environmental risk score for hypertension
encompassing a wide range of factors in an adult Spanish population. This
approach incorporates literature knowledge, more specifically well-known
exposure-health relationship estimates, into the training of deep neural net-
works. Leveraging the predictive capabilities of deep learning, SEANN is
able to capture complex relationships that can be further extracted with ex-
plainable AI. More importantly, by learning well-known relationships more
aligned with the scientific consensus, SEANN is able to better disentan-
gle each individual effects. By comparing the relationships extracted with
SEANN with those obtained from an agnostic machine learning model, that
learned only from the input data, we empirically demonstrate the benefits of
our approach. Compared with risk scores used as diagnosed tools that focus
only on predictive abilities [D’Agostino et al., 2008, Ulusoy, 2013, Ahsan
and Siddique, 2022], and are hence built using predictors strongly associ-
ated with the outcomes such as body mass index (BMI) or blood pressure
for CVDs 1, our score is designed to extract more reliable and informative
insights about environmental and socio-economic stressors and would be
usable as a better-informed decision-support tool.

6.2 Methods

6.2.1 Study participants

This study uses data from the GCAT project, a prospective cohort study
designed to recruit middle-aged adults from the general population of the
region of Catalonia in Spain. With the aim of identifying chronic disease
events in the mid-term, the project covers 19 209 adults at baseline aged 40-
65, from whom written informed consent was obtained. Participants were
recruited across all of Catalonia from 11 permanent recruitment centers.
A more detailed description of this project is available elsewhere [Obón-

1As those factors encode the body response to exposure, not the exposures themselves,
including them in a risk score is likely to impact the quality of the captured exposure-
health relationships due to confounding.
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Santacana et al., 2018].
Within the 18337 total individuals from which a diagnosis of hypertension
has been obtained, 59% were females. A vast majority (98%) were born in
Spain, are Caucasians (84%) and were married (65%). A vast majority also
lived in cities (90%, vs 9% in suburban areas and 1% in rural areas). A more
detailed description of the population is given in Supplementary figure
1.
All predictors used in this study were collected at baseline (between 2014
and 2017). Diagnoses of hypertension come from follow-up data collected
until 2022.

6.2.2 Outcome

Based on EHR data collected until 2022, individuals were considered to
have hypertension if they had at least one diagnosis of hypertension at any
point or if they were taking hypertensive-related medication (i.e., anatomi-
cal therapeutic chemical codes C02, C03, C07, C08, and C09). From 18337
individuals with available information, 4592 were categorized as hyperten-
sive.

6.2.3 Predictors

Figure 6.1 displays an overview of the diversity of exposures included in
this study. A complete description is available in Supplementary Table
1. Lifestyle information (i.e., sociodemographic and socio-economic sta-
tus, occupation, diet, and tobacco-alcohol consumption) used in this study
was collected from a questionnaire submitted at baseline. A more detailed
description has been presented in [Obón-Santacana et al., 2018]. Environ-
mental exposures (i.e., green spaces proximity, air pollution, noise, degree
of urbanization) were assessed using a geographical information approach
based on the residence localization of participants. This was also described
in more detail in [Obón-Santacana et al., 2018].

6.2.4 Ethics approval

Informed consent was obtained from all participants in the study.
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Figure 6.1: Exposome factors and their families assessed in the GCAT co-
hort, collected at baseline (2014-2017) and used in the Environmental Risk
Score for Hypertension.
The counts of exposures within the circle were carried out before one hot encoding for
multi-categorical variables (53 exposures vs 99 after this step).

6.2.5 Machine learning pipeline

In the following section, we describe the machine learning procedure per-
formed in this study. This procedure was performed using Python 3.10.13.

6.2.5.1 Data preparation

Several steps were required before training the neural networks and obtain-
ing the risk score models. The initial steps involved preparing the input
data. Categorical variables were either one-hot encoded or encoded with
floating values, depending on their nature (e.g., frequencies or binned con-
tinuous variables). After this encoding step, the final dataset comprised 99
variables. Missing values within the dataset, which accounted for 7.71% of
the data overall, were imputed using MissForest [Stekhoven and Bühlmann,
2011], a single imputation algorithm able to handle both categorical and
continuous variables while capturing nonlinear relationships. Within the
imputed variable, no variable had more than 42% missingness. The input
data was finally standardized before being fed into the neural networks.

6.2.5.2 Literature effect sizes

To build an informed risk score, we collected external knowledge, i.e., dif-
ferent from the input data, in the form of PESs reported in the domain
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literature. To that end, a literature review was performed in order to ex-
tract suitable effect sizes. All relevant studies were identified by searching
PubMed and Google Scholar databases on March 2024. The keywords used
in the search queries were the name of the exposure of interest (for instance
“sedentary behaviour”), “hypertension”, “odds ratio” and “meta-analysis”.
A first selection was made based on the titles’ relevance, and a second, based
on the selected full texts. Table 6.1 lists the final 11 PESs included in this
work.

Table 6.1: Selected meta-analysis with corresponding pooled effect estimates
included as external knowledge in the informed risk score.

Exposure Estimate
(with CI)

Lit. Unit Input
Unit

Sample
Size

First Au-
thor(s)

Year

Current
smoker

1.13 (0.93-
1.37)

Binary Binary 250741 [Guo et al.,
2011]

2011

Alcohol con-
sumption

1.06 (1.01-
1.11)

10g/d UBE/wk 414477 [Liu et al.,
2020]

2020

Mediterranean
Diet

0.87 (0.78-
0.98)

Binary Binary 59001 [Cowell
et al., 2020]

2021

Sedentary
time

1.04 (1.00-
1.07)

1h/d 1h/w 367264 [Guo et al.,
2019]

2019

Physical ac-
tivity

0.94 (0.92-
0.96)

10
METh/w

METh/w 330222 [Liu et al.,
2017]

2017

NDVI 0.97 (0.96-
0.99)

0.1 unit 1 unit 100 ×
106

[Liu et al.,
2022]

2022

NO2 1.05 (1.02-
1.18)

10μg/m3 1μg/m3 29274 [Yang et al.,
2018]

2018

PM2.5 1.10 (1.06-
1.13)

10μg/m3 1μg/m3 20006 [Yang et al.,
2018]

2018

O3 1.05 (0.98-
1.12)

10μg/m3 1μg/m3 27783 [Yang et al.,
2018]

2018

Deprivation
index

1.14 (1.01-
1.30)

N/A N/A 62 ×
106

[Satapathy
et al., 2024]

2024

Traffic noise
(day)

1.02 (0.98-
1.05)

10 dB 1 dB 5.5 ×
106

[Dzhambov
and Dim-
itrova, 2018]

2018

Abbreviations: CI - Confidence Interval; NDVI - Normalized Difference Vegetation Index;
NO2 - Nitrogen Dioxide; PM2.5 – Particulate Matter 2.5; O3 – Ozone.

Meta-analyses were accepted only if 1) They assessed the association be-
tween hypertension or pre-hypertension and a predictor directly computable
within our available input data. 2) If they reported a pooled effect estimate
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in the form of odds ratios or risk ratios. Similar to [Liu et al., 2020, Liu
et al., 2017, Satapathy et al., 2024], we assumed that risk ratios were ap-
proximately ORs for hypertension [Orsini et al., 2011]. 3) Their reported
estimates for adults or the general population. 4) The publication date was
after 2010. Meta-analyses that used both cross-sectional and longitudinal
studies were accepted. When encountering multiple analyses concerning the
same predictor, preference was given to the study with the largest sample
size.
Prior to standardization, each literature estimate was converted to match
the unit of the corresponding input data. For standardized predictors, the
standard deviation of each predictor was used to recalibrate the literature
estimates into the appropriate units.

6.2.5.3 Machine learning workflow

An overview of the study workflow is presented in Figure 6.2. A reference
risk score was first obtained using a standard feed forward deep neural net-
work only trained using the input data. The shape of this neural network
(i.e., the number of layers and neurons within each layer) has been opti-
mized using the Tree-structured Parsen Estimator [Bergstra et al., 2011]
from the Optuna library within a 10-fold cross-validation procedure. Sup-
plementary table 2 displays the list of hyperparameters used within the
study.
Once the structure of the reference model was obtained, we built a sec-
ond, exactly equivalent that would be trained with additional knowledge
extracted from the literature. As the proposed approach is quite generic,
in the sense that it can be directly used with most feed-forward neural ar-
chitectures, this point ensures a fair comparison that focuses only on the
external knowledge integration.
Data was randomly split into training, validation and test datasets using
60%, 20% and 20% of the original sample size respectively. The training set
was used to train both NNs; the validation set was used to perform early
stopping and the test set was used to compute predictive performances (ROC
AUC) as well as to approximate Shapley values using the SHAP [Lundberg
and Lee, 2017] python package.
Shapley values were used to define exposure-outcome associations encoded in
the literature or captured by each of the two neural networks. For literature-
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extracted exposure-outcome relationships, we computed Shapley values, us-
ing also the SHAP package, by constructing univariate logistic regression
models according to the literature’s pooled ORs. As those models used
fixed ORs as coefficients, they were not trained on the data.
From those Shapley values, we computed a simple measure, delta SHAP
(cf. Section 5.3.1.4), of the distance between two marginal relationships,
between the same factors, captured differently. In this work, we use it
to compute the distance between a neural network extracted relationship
and the relationship that is admitted in the literature from meta-analysis.
The smaller the distance, the more we would consider a relationship to be
scientifically plausible.
We present our approach integrating literature effect size estimates within
the training of neural networks in the next section. It follows a com-
mon principle in constrained learning [Fajemisin et al., 2024], which is the
presence of a tradeoff between respecting the constraints (i.e., literature-
extracted marginal relationships) and learning from the data. As such, our
approach seeks to optimize two objectives: First, minimizing the NN error
on the datasets and, hence, indirectly maximizing the predictive perfor-
mances on the held-out dataset; Second, maximizing the concordance with
the literature-extracted relationships. We determined this trade-off using a
Pareto frontier combined with an elbow method.

6.2.6 Introducing SEANN

In this section, we present a refined version of SEANN, which was, to the
best of our knowledge, the first approach to integrate literature effect size
as soft constraints within the training of deep neural networks. Within
SEANN, several types of estimates (i.e., linear betas, odds ratios, risk-ratios)
are covered (cf., Section 5.2). However, in this work, we focused on odd
ratios, a commonly reported form in epidemiology.
Similar to what was described in the previous chapter, the general principle
of our method described in Eq. 5.1 consists of adding a term to the loss
function L for each meta-heuristic to incorporate.
In this work, we propose a refined approach to determine the values of λ0

and λi in Eq. 5.1. Those parameters are weighting the relative importance
of the original error term and the penalty terms, and regulate the learning
from both input data and external knowledge. Compared with the approach
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Figure 6.2: Simplified overview of the analysis workflow.
Shapley values are used to extract marginal relationships and to compare them with those
extracted in the literature. AUC (Area Under the receiver operator characteristic Curve)
is used to compare predictive performances.

proposed in the previous chapter, this one is more flexible and allows the
user to choose a preferred trade-off value (between the plausibility of learned
relationships and predictive performances) among efficient solutions. We
decompose each λ into the following terms:

λ0 = α0 × γ

λi = αi × (1 − γ) × ωi
(6.1)

where α ∈ R is a standardization coefficient, ensuring each λ is comparable
with the others, γ ∈ [0, 1] is the trade-off hyperparameter settled by the user
that gives the importance of learning relationships from the data vs respect-
ing the constraints, and ω ∈ [0, 1] is a relative importance coefficient within
each constraint. The first step is to determine each α depending on Lpred and
Lmeta such as α0 = 1

EX[Lpred(X,θ0)] and αi = 1
EX[Lmeta(X,θ0,vi,hi)] . We simply

express E[Lpred(X, θ0)] as Lpred(X,E[fθ0(X)]) and similarly E[Lmeta(X, θ0, vi,

hi)] as Lmeta(X,E[fθ0(X)], vi, hi), fθ0(X) being the prediction of the neural
network with initial parameters θ0. In this work, we are predicting a binary
target. Thus, we set E[fθ0(X)] = 0.5. Lpred is the binary cross-entropy and
Lmeta is defined below. Then, we determine ω to be proportional to the level
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of confidence within each study from which we extract the effect sizes. In
this work we used each study sample size to determine its confidence score.
Denoting ci the confidence (i.e., the sample size) of the i-th study, we deter-
mine ω as ωi = ci∑j=1

q
cj

. Finally, the hyperparameter ω is determined using

an elbow method on a Pareto frontier as described in Section 6.2.5.3.

We now explain how to determine the loss function terms Lmeta in Eq.
5.1. Depending on the type of exposure-outcome relationship (e.g., OR,
RR, linear coefficient), the terms will be implemented differently. Similar to
the previous chapter, the general principle of our approach is to generate,
for each observation, a slightly perturbated copy of it with an increment
h—called the perturbation—for each variable in Q, in order to measure the
difference between the expected change in the target value, according to
the literature extracted relationship, and the observed change in our model,
and to penalize this difference. To address problems of numerical instability
when enforcing certain forms of non-linear estimates such as ORs (cf. Eq.
5.3), we now compute this expected change using the local derivative of
the literature relationships (as ORs for instance, are logistic estimates, the
encoded relationship is derivable).

Let us consider ψ a univariable function we want to enforce that is derivable
locally on an input variable x ∈ Q (the relation encoded by an odd ratio in
a meta-analysis for instance). We know that

h
δψ

δx0
= lim

x→0
ψ(x0 + h) − ψ(x0)

Then, if h δψδx exists and is known locally for every x, we can easily construct
the following loss function that penalizes the divergence from the relation
ψ.

Lmeta(X, θ, vi, h) = 1
n

n∑
k=1

(
fθ(Xxi+h

k ) − h
δψ(xi, vi)

δxi
− fθ(Xk)

)2
(6.2)

Where Xxi+h denotes the matrix obtained from the input matrix X by
perturbating its i-th column, denoted as xi, through the addition of a small
quantity h. Xk denotes the k-th row vector of input matrix X. fθ is the
output of the neural network with parameters θ, n the number of data points
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(i.e., the batch size), and vi ∈ V the literature effect estimate associated
with variable xi. For odd ratios, we can directly compute δψ(xi,vi)

δxi
, denoting

σ(xi, vi) = 1
1+e−vi×xi

, as δψ(vi)
δxi

= vi × σ(xi, vi)(1 − σ(xi, vi)).
Despite its simplicity, this novel approach is flexible as it can directly be
used to incorporate any complex relationship given the condition of being
able to compute its derivative. While being able to incorporate traditional
forms of PESs, its potential applications may extend beyond this use case.

6.3 Results

6.3.1 Captured associations

Figure 6.3 displays a comparison of captured associations with SEANN, the
agnostic NN, and those reported in the literature. Compared with the ag-
nostic neural network, relationships captured with SEANN are much closer
to those reported in the literature. For example, when examining the Shap-
ley values for the variable “smoking habits”, the agnostic neural network
identified a protective effect of smoking on the predicted risk, while in con-
trast, the relationship captured with SEANN aligned more closely with the
literature-reported association indicating a harmful effect. This pattern of
being closer to the integrated literature association is observed for every vari-
able and confirmed by delta SHAP distances. Overall, the mean delta SHAP
distance averaged over all variables of the relationships extracted with both
models and those observed in the literature, was 0.8 × 10−3 with SEANN
compared to 6.1 × 10−3 with the agnostic NN. Delta SHAP distances for all
individual variables are displayed in Supplementary Table 2. More plau-
sible directions of associations (taking the literature pooled effect sizes as
reference) were observed with SEANN for smoking habits, physical activity,
no2, and traffic noise variables.
Figure 6.4 displays a comparison of the response functions extracted with
SEANN and the agnostic NN fomer a subset of the remaining variables for
the sake of conciseness. Response functions for all remaining variables are
displayed in Supplementary Figure 3-8. It should be noted that due
to the absence of corresponding relationships identified within the existing
literature, these relationships were not subjected to constraints during the
training of the SEANN model. We however observe, in both Figure 6.4
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Figure 6.3: Comparison of response functions extracted from the literature,
SEANN and the agnostic NN.
Dots are Shapley values, encoding the response of the model (y-axis) for a given exposure
value (x-axis).
Abbreviations: UBE - Unidad de Bebida Estándar (Standard Beverage Unit); NDVI –
Normalized Difference Vegetation Index; NO2 – Nitrogen Dioxide; PM25 – Particulate
Matter 2.5, O3 - Ozone; SEANN – Summary Estimates Adapted Neural Network

and supplementary Figure 3-8, substantial changes in the extracted re-
lationships of some variables extracted with SEANN compared with those
extracted with the agnostic NN, confirming that the model is able to adjust
its captured effects. For smoking-related variables notably, we see interest-
ing results, with extracted relationships more inline with the known effects
of smoking on hypertension. Unlike the agnostic NN, SEANN correctly cap-
tured that being an ex-smoker is generally a factor increasing the risk and
more specifically, that being a recent ex-smoker is more detrimental than
being 10 years ex-smoker which, in turn, is also more detrimental than be-
ing a 20 years ex-smoker. The effect of electronic cigarettes seems also to
be less pronounced and the effect of smoking starting age more pronounced.
These adjustments are likely to be principally due to the correction of the
smoking status variable, which was incorrectly captured by the agnostic NN
as a protective factor (c.f., Figure 6.3). Similar adjustments are observed
for other variables. Nevertheless, although the method has the potential to
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mitigate data biases and disentangle correlated associations, it is important
to clarify that the approach is not causal. Consequently, it does not offer
guarantees in that respect.

Figure 6.4: Comparison of response functions extracted from a subset of the
remaining variables (relative to smoking).
Dots are Shapley values, encoding the model’s response (y-axis) for a given exposure value
(x-axis).

6.3.2 Predictive performances

Figure 6.5 shows the Pareto frontier used to determine the gamma param-
eter (cf. Eq. 6.1). The objective was to find a solution that both maximizes
the AUC and minimizes delta SHAP. Following the elbow method, we chose
γ=0.045. Obtained predictive performances (AUC) was 0.702 for the ag-
nostic NN vs 0.695 for SEANN. With our approach, the very principle is
to purposely diverge from the optimal solution obtained within the data in
order to capture more plausible relationships, closer to those estimated in
the literature (from meta-analysis, for instance). Hence predictive perfor-
mances, while very similar, are, by design, lower than those obtained by
the agnostic NN on the held-out dataset. However, performances measured
on different populations, would not necessarily be lower as we incorporate
reliable estimates that are computed from bigger, more heterogenous data
across different studies. For instance, it could hypothetically increase the
generalizability of the risk for non-Spanish adults. However, we need access
to data encoding similar exposures across different cohorts to accurately test
this hypothesis.
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Figure 6.5: Pareto front with several efficient solutions.
The y-axis measures the mean distance between the relationships captured by SEANN and
those encoded within the literature. The X-axis is a measure of predictive performance.
Displayed numbers are the value of the parameter gamma determining the trade-off be-
tween learning from the literature or from the data. A value of 0 is the extreme case where
the model is only learning relationships in the literature, while a value of 1 is equivalent
to a standard neural network that only learns from the data. The selected point using the
elbow method has been highlighted in green and is further displayed within a zoomed-in
area frame.

2. The risk score is not necessarily less accurate than one obtained with
the data only, when trying to compute a score for the general population as
the idea is to incorporate reliable estimates that are computed from bigger,
more heterogenous data across different studies. Hence, to accurately test
enhancements in generalizability, we would need access to data encoding
similar exposures within different cohorts.

6.3.3 Important predictors

Figure 6.6 displays the importance of the top 20 predictors in terms of their
average impact on the predicted value. Demographic and socio-economic

2Here we are referring to a dataset that comes from the same distribution as the training
dataset (i.e., with the same biases).
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Figure 6.6: Relative importance of features within the informed risk score
(top 20).
Measures are obtained by averaging amplitudes of Shapley values over each feature.
Abbreviations: UBE - Unidad de Bebida Estándar (Standard Beverage Unit); NO2 -
Nitrogen Dioxide; O3 - Ozone; WTM - Work Transport Mode.

variables such as age, sex and ethnicity were the most impactful variables.
More details are available about the nature of those relationships Supple-
mentary Figure 3-8 where corresponding response functions are displayed,
showing in this case that the risk is substantially increased with age and
for males while decreased for individuals of Hispanic or Caucasian ethnic-
ity. Then, smoking-related variables such as the number of smoking packs
or smoking start age were the most important, followed by diet (including
coffee consumption), physical activity, then air pollution and alcohol con-
sumption.

6.4 Discussion

The impact of certain environmental exposures addressed in this research has
been extensively explored for decades across numerous studies and is largely
well-understood. However, their effects are mostly studied individually, and
may ignore potential interactions among exposures. This study utilizes the
exposome holistic approach, considering all exposures as acting together, to
draw a simplified map of the nature of each individual effects adjusted from
one another, and their averaged, global impact. Furthermore, our approach
leverages already well-established knowledge in order to better disentangle
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the intricacies of less studied relationships. The computed risk score relies
mostly on demographic-socioeconomic factors, including ethnicity, which
could be subject to fairness problematics. While it is important to note that
it is straightforward, using our approach, to ensure fairness by enforcing a
fair relationship between predictors and outcome of interest, for instance
using an odd ratio of 1 with a strong associated weight parameter ω, this
is beyond the scope of this work that focuses on incorporating literature
knowledge.

Results highlight that SEANN is able to successfully learn from the data
while capturing relationships substantially closer to the expert knowledge.
Preferences between learning relationships from the data or from the litera-
ture can be a choice left to the users depending on their particular setting.
In this study we employed an elbow method on a Pareto frontier. Another
possibility worth considering to determine this trade-off would be to com-
pare the available input data sample size and number of features with each
individual literature study incorporated. This second approach could be pre-
ferred as it is more systematic but does not allow the users to choose whereas
they want to favour scientific plausibility over predictive performances on
the input data or vice-versa.

Additionally, exposures from which no corresponding exposure-health rela-
tionships have been found in the literature were adjusted from the newly
learned relationships within SEANN. In that regard, a particular attention
must be given by the user about the choice of the remaining variable. Taking
an extreme example for demonstration: let us consider a case of enforcing a
relationship between actively smoking tobacco and an increased health risk,
as it was done in this work. Let us also consider that the user is including
another one hot encoded variable designing people that don’t smoke tobacco
(hence completely redundant with the first one), then the model will directly
adjust what it has been forced to learn on the first variable into the second
and extract a relationship were non-smoking is also increasing the related
risk. The point is that direct redundancies between the constrained vari-
ables and the unconstrained ones should be avoided when possible. Other
types of correlation however (variables that are correlated with one another,
but different in nature), can be kept and in this case, the adjustment made
with SEANN will help the model disentangle the true effect within each cor-
relate. Taking another example to illustrate this last point: let us imagine a
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confounding bias where variable A, let’s say exposure to mercury, is strongly
correlated with variable B, fish consumption, which leads to difficulties for
models to disentangle the true effects for each variable. Enforcing one effect
using a well-defined literature estimate with SEANN will allow to correctly
capture the other.
The score presented in this work does provide predictive capabilities that
could be used to identify individuals at risk, understand the risk factors at
play and assess the nature of their impact. This provides potential for use
in diverse contexts, such as a decision support tool for aiding in the develop-
ment of preventive policies. However, with an AUC of 0.7, the discriminative
accuracy is insufficient to be used as a diagnose tool. This is partially due
to the deliberate omission of clinical factors in our score, such as BMI or
blood pressure, that are closely related to the outcome, and commonly used
in such settings as they greatly enhance the precision. As the inclusion of
such factors would have impacted the quality of extracted relationships (po-
tentially hiding effects of exposures), we chose to focus on environmental
and socio-economic variables. A promising direction for further refinement
of our score involves integrating genomic traits to allow for more precise
relationship adjustments.

6.5 Conclusion

In this work we applied SEANN, a new informed neural machine learning
method in a real case scenario on cohort data, providing an environmental
risk score for hypertension. By integrating literature-extracted exposome-
health relationships in the form of pooled effect estimates, SEANN suc-
cessfully aligned learned exposome-health relationships toward known liter-
ature consensus. Furthermore, the remaining variables for which no well-
established literature estimate was infused were successfully adjusted. While
the approach in itself does not guarantee the extraction of causal relation-
ships, its potential within the exposome framework to provide holistic maps
of exposures’ effects and better disentangle their effects is certain.
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7.1 Conclusion

Chronic diseases, the most important cause of death worldwide, are caused
by a combination of environmental and hereditary factors. Despite impor-
tant advancements in the understanding of the effects of environmental ex-
posures on health, there remains a need for further research in this area.
Epidemiological studies studying environmental factors, in particular, are
still widely relying on simple parametric methods to assess health relation-
ships despite the recent development of more expressive statistical methods.
The expressive power of these methods remains limited, particularly when
the interactions between environmental factors are not simple correlations
but present non-linear effects (threshold effects, multiplicative effects, etc.).

This work aimed to address the complexities of environmental risk assess-
ment by employing advanced nonparametric machine learning methods to
develop environmental risk score (ERS) based on a broad spectrum of fac-
tors. The adoption of such methods introduces new challenges, particularly
concerning 1) the interpretability and trustworthiness of the derived mod-
els—a critical aspect in healthcare applications and 2) the extensive data
requirement for training these models effectively and the fact that exist-
ing observational data from studies on broad exposure panels often prove
inadequate. To overcome those challenges, we utilized a model-agnostic ex-
plainable AI tool to extract and study exposome health relationships and
incorporated literature-based domain knowledge to enhance the robustness
and the trustworthiness of our ERS indicators.

More precisely, in the first publication, we highlighted the benefits of com-
plex nonparametric models combined with appropriate tools to study environmental-
health relationships using a rich early-life exposome dataset. In the second
paper, we developed an informed machine-learning approach to integrate
known relationships into the training of deep neural networks and demon-
strated the benefits of this approach using synthetic data. In the last paper,
we further demonstrated these benefits in a real scenario by computing in-
formed ERS in the GCAT adult population.
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7.2 Contributions

In Chapter 4, referring to Paper 1, we computed environmental risk scores
for the early life exposome on three general health outcomes, namely men-
tal, cardiometabolic, and respiratory health. While the predictive perfor-
mances obtained were comparable with simpler traditional methods (which
may be due to the available sample size), we discovered new associations
compared with previous HELIX studies. Moreover, we extracted nonlinear
associations, pairwise interactions, local and global feature importance, and
family-wise feature importance.
In Chapter 5, referring to Paper 2, we developed SEANN, a new approach
for the integration of domain knowledge into the learning of deep neural net-
works. More specifically, we integrated knowledge about known exposome-
health relationships in the form of pooled effect size, which are considered to
be one of the strongest levels of evidence in epidemiology. In this chapter,
we used synthetic data to test our approach in a controlled environment,
showing its ability to better disentangle the true effects within correlated
variables and to estimate unaccounted confounding effects.
In Chapter 6, referring to Paper 3, we further refined our approach, of-
fering better numerical stability in the case of odd ratio. We also proposed
new ways to set the hyperparameter values regulating the tradeoff between
complying with the literature knowledge or learning from the data. We
demonstrated the benefits of our approach on real data by providing in-
formed ERSs for hypertension in a Spanish adult population. We compared
informed ERS with agnostic ERS (i.e., obtained with input data only) and
showed that we captured relationships that are more in line with the do-
main knowledge without sacrificing performances. By better adjusting for
the known relationships, we better captured those that are less known. Ad-
ditionally, similar to the first paper, we derived nonlinear relationships and
feature importance.

7.3 Benefits and potential applications

In this section, we briefly summarize the main benefits of the approach used
in this thesis and point out potential applications. In line with person-
alized medicine, our risk scores can capture different effect sizes for each
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individual which can be used to tailor health interventions based on an in-
dividual’s unique environmental exposure profile. Traditional ERSs provide
insights at the population level. Furthermore, by incorporating literature
knowledge, we enhance the reliability and trustworthiness of risk indicators,
compared with agnostic approaches, by ensuring compliance with known re-
lationships. In cases where access to data is limited (i.e., in terms of quality,
quantity, or population diversity), our informed machine-learning procedure
can supplement those deficiencies and improve performances by leveraging
literature-reported associations.

The approach developed in this thesis has the potential to impact various
sectors related to health. Industries can implement such risk scores to assess
and regulate risk factors and their impact on health. For instance, manu-
facturing or agriculture companies can use ERSs to monitor environmental
factors in workers, thereby enhancing workplace safety, reducing health-
care costs, and ensuring regulatory compliance. Researchers can use these
ERSs to uncover and refine unknown associations and provide new etiologi-
cal insights into chronic diseases as we did during this thesis. Public health
authorities can leverage these scores to formulate informed and targeted pre-
vention policies to promote health. For instance, local authorities could use
such scores to promote regulations on urban planning and justify measures
in municipal elections.

7.4 Future works

During the thesis, we provided new evidence regarding the impact of some
environmental factors on health. More importantly, we highlighted the po-
tential of using explainable AI tools applied to complex models to study the
exposome, but this approach faces multiple challenges, including the need
for a large amount of data to be trained efficiently, the discovery of spurious
relationships, or the provision of acceptable ethical guarantees. While we
help address those by incorporating domain knowledge, this is not sufficient
to solve them completely. Informed risk scores are still partially dependent
on the input data quantity and quality and our approach provides no guar-
antee for causal relationships. In this section, we discuss promising research
directions for addressing those issues.
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7.4.1 Improving data quality and resolution

Several improvements can be made to the quality of the exposure measure-
ments in future observational studies. In the HELIX and GCAT studies,
air pollution was measured in a few fixed outdoor areas and modeled us-
ing statistical tools to extrapolate measurements at home or school. These
measurements may have limited accuracy as they were averaged over vari-
ous periods (e.g., year, month) and showed little variance within the same
city. The HELIX project also measured indoor air exposures using in-situ
sensors at home, but this was limited to only 157 individuals out of the 1,600
in the subcohort. Industrial companies like Meersens and its competitors
now offer scalable solutions to monitor both outdoor and indoor exposures
using deployable sensors and advanced GIS modeling methods. Increasing
the number of sensors and placing them in strategic areas can greatly en-
hance data quality. An even better, though more costly, solution is to use
small sensors, smartphones, and other IoT devices to create a more person-
alized exposure profile. These devices can continually track exposure levels
(e.g., physical activity, sleep, air quality) at each time point, providing a
comprehensive view of an individual’s exposure profile.

7.4.2 Assessing the time dimension

In this work, we did not assess the dynamics of exposures over time, and we
acknowledge that understanding their cumulative impact on health is criti-
cal for prevention. Echoing the point just mentioned, rich time series data
on exposures could be assessed using methods similar to those employed in
this thesis. This can be achieved by using adapted tools such as recurrent
neural networks or transformers to modelize health trajectories, explainable
tools such as SHAP or attention weights to extract exposure-health relation-
ships, and an informed ML method for incorporating appropriate domain
knowledge, such as hazard ratios into those models.

7.4.3 Facilitating access to data

Federated data analysis (FDA) is a very promising research direction that
can provide the amount of data required by recent machine learning meth-
ods such as DNNs in environmental studies. FDA aims to facilitate access
to larger and more robust datasets by pooling data from several sources.
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As well known in healthcare, the pooling of information from individuals
in a central database can raise important ethical and legal questions. Soft-
wares such as DataShield [Wilson et al., 2017] allows the analysis of sensi-
tive individual-level data from one or several studies simultaneously without
physically pooling them or disclosing sensitive information. However, those
tools principally incorporate traditional biostatistical methods and do not
allow the use of more complex approaches yet.

7.4.4 Assessing the causal pathways

More work is needed to incorporate causal inference techniques such as
g-computation [Snowden et al., 2011], Mendelian Randomization [Emdin
et al., 2017], or Mediation Analyses [MacKinnon et al., 2007] to clarify
the potential mechanisms that underpin the statistical associations. Our
method, while having the potential to enhance the plausibility of extracted
relationships, is an informed machine learning approach not designed for
causal inference per se. Thus, it does not offer direct guarantees about the
causality of extracted relationships. It could however integrate most rela-
tionships estimated with causal methods (i.e., treatment effects).

7.4.5 Ensuring equity and fairness

The ethical use of AI-derived health risk scores should consider the diverse
socio-economic and demographic contexts in which they are applied to avoid
biases that could disproportionately affect vulnerable populations. To that
end, explainable AI tools are required to understand the prediction given
by complex models and verify their fairness and equity. Those issues were
out of the scope of this thesis, however, our informed machine-learning ap-
proach can be directly used to enforce the learning of fair exposure-outcome
relationships1.

7.5 Difficulties

We briefly discuss the main difficulties encountered during this doctoral work
in this section. Obtaining access to large cohort data was a major issue in

1Instead of PESs, we can consider using SEANN to incorporate fair relationships in
the form of ORs, SRCs or others (given that they are locally derivable)
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this thesis. The original plan was to leverage such data combined with
additional data provided by Meersens (from its customer base composed of
adults) in a transfer learning procedure designed to improve their industrial
solution. However, as we couldn’t access sufficient data from the company
and had only access to birth cohorts (from the HELIX project) initially, we
had to change direction. In the end, after an amount of research, discussions,
and unsuccessful trials, we managed to obtain access to a rich database on
an adult population (the GCAT cohort) for research purposes only.
Another difficulty worth mentioning concerned the time and effort necessary
to perform this industrial PhD supervised by two universities specialized in
different domains. While the company has kept the number of solicita-
tions near a minimum, being employed in an industrial company in parallel
added extra work, taking part in regular meetings, sharing expertise, and
redacting reports. Additionally, the first year of the doctoral program in-
volved a valuable but necessary process of discovery and learning in the field
of environmental epidemiology, as the PhD candidate’s background was in
computer science with no prior expertise in this area.

7.6 Final words

In recent years, there have been important breakthroughs in the AI subfields
of generative AI and natural language processing, still transforming numer-
ous industrial and research applications. However, despite these advance-
ments, the need for interpretability remains crucial, especially in domains
like healthcare, as the ability to understand AI-based outputs is a require-
ment to ensure a trustworthy, reliable and ethical use of these technologies.
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2 

Supplementary Notes 

This note is extracted from 1, we provide the methods used to estimate all exposures 

included in the exposome for the HELIX subcohort. For the purpose of this document 

“pregnancy” refers to the period from conception to the day of birth, while “childhood” 

refers to the period between 6 and 11 years (the exact range varies among cohorts). Part 

1 pertains to outdoor and urban exposures, part 2 to contaminant exposure biomarkers, 

part 3 to water disinfection by-products and indoor air pollutants, and part 4 to lifestyle 

and other exposures (tobacco smoke, diet, physical activity, alcohol, allergens, sleep, 

socio-economic capital).  

Part 1 - Outdoor and urban exposures 

Outdoor and urban exposures were assessed in the following exposure groups: 

Atmospheric pollutants, ultraviolet (UV) radiation, surrounding natural space, 

meteorological measures, built environment, traffic, and road traffic noise. Exposure 

assessment for these exposure groups was conducted within the PostgreSQL (copyright 

© 1996-2017 The PostgreSQL Global Development Group), PostGIS (Creative 

Commons Attribution-Share Alike 3.0 License http://postgis.net) and QGIS (QGIS 

Development Team, 2016. QGIS Geographic Information System) platforms. Source of 

data for each exposure are summarized in Supplementary Table 1. For the pregnancy 

period, exposure was assessed at the geocoded residential address of each woman. For 

each woman, assessment of exposure during pregnancy at the geocoded residential 

address at recruitment was made. For the childhood period, exposure was assessed at the 

geocoded residential and school addresses of each child as reported at the time of the 

subcohort visit. In case of multiple addresses, results were averaged by mother or child. 

 
Supplementary Table 1. Exposure data sources 

Exposure BiB EDEN INMA KANC MoBa Rhea 

Atmospheric pollutants 

NO2 ESCAPE 

local LUR 

ESCAPE local 

LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

PM2.5 ESCAPE 

local LUR 

ESCAPE 

European LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

PM10 ESCAPE 

local LUR 

Local dispersion 

modela 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

PMabs ESCAPE 

local LUR 

NA ESCAPE 

local LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

ESCAPE 

local LUR 

Surrounding natural space 

Major green and 

blue spaces and 

landuse 

Urbanatlas 

(2006) 

Urbanatlas 

(2006) 

Urbanatlas 

(2006) 

Urbanatlas 

(2006) 

Kartverket 

(2014) 

Urbanatlas 

(2006) 

NDVI Landsat 4–5 TM, Landsat 7 ETM+, and Landsat 8 OLI/TIRS 

Meteorological measures 

Temperature, 

Humidity, 

Pressureb 

Keighley Poitiers Cerdanyola/ 

Sabadell 

Kaunas Tryvannshogda Iraklion 

UV TEMIS 

project 

TEMIS project TEMIS project TEMIS project TEMIS project TEMIS 

project 

Built environment 
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Building Density MasterMap 

(Ordinance 

Survey) 

(2013) 

IGN (2014) ICC (2011) Open  Street 

Maps (2014) 

Open Street 

Maps (2014) 

Greek 

Statistical 

Authority 

(2001) 

Street 

Connectivity and 

Facilities 

 

Navteq 

 

Navteq 

 

Navteq 

 

Navteq 

 

Navteq 

 

Navteq 

Population 

Density 

EEA (2001) EEA (2001) INE (2011) EEA (2001) Statistics 

Norway (2005-

2013) 

EEA (2001) 

Public transport 

(bus stops) 

Bradford 

Metropolita

n District 

Council 

(2014, 

2015) 

Grand Poitiers 

(2013) 

Sabadell 

Municipality 

(2014) 

Open Street 

Maps (2015) 

Company 

“Ruter” (2015) 

Open Street 

Maps (2015) 

Road traffic 

Traffic City of 

Bradford 

metropolitan 

district, 

Leeds City 

Council 

(2009, 

2012) 

Atmo Poitou 

Charentes (2005) 

GENCAT 

(2007) 

AudriusDedelé, 

Vytautas 

Magnus 

University  

(2010) 

Municipality of 

Oslo, 

Norwegian 

Public Roads 

Administration 

(2006, 2011, 

2014) 

Fieldwork 

(2015 

Road traffic noise 

Noise DEFRA 

GOV. UK 

(2006) 

Mairie de Poitiers 

(2007-2009) 

GENCAT, 

Barcelona 

municipality 

(2006, 2012) 

Kaunas 

Municipality 

(2007) 

Oslo 

Municipality 

(2006, 2011) 

Fieldwork 

(2015) 

Abbreviations: DEFRA, Department of Environment Food and Rural Affairs; EEA, European Environment Agency; 
ESCAPE, European Study of Cohorts for Air Pollution Effects; ETM+, Enhanced Thematic Mapper Plus; GENCAT, 

Generalitat of Catalonia; ICC, Institut Cartogràfic de Catalunya; IGN, Institut National de l’Information Géographique 
et Forestière (http://professionnels.ign.fr); INE, Instituto Nacional de Estadística; LUR, Land Use Regression;  NA, 
not available; Navteq: ESRI Street Map for Mobile Navteq 2012; NDVI, Normalized Difference Vegetation Index; 
NO2, nitrogen dioxide; OLI, Operational Land Imager; PM2.5, particulate matter with an aerodynamic diameter of less 
than 2.5 μm; PM10, particulate matter with an aerodynamic diameter of less than 10μm; PMabs, absorbance of PM2.5 
filters; TEMIS: Tropospheric Emission Monitoring Internet Service (http://www.temis.nl/uvradiation/archives); 
TIRS, Therma Infrared Sensor; TM, Thematic Mapper; UV, ultraviolet.  
a only for pregnancy period; blocation of weather station.   
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Atmospheric pollutants 

The following atmospheric pollutants were assessed: nitrogen dioxide (NO2), particulate 

matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) and of less than 10 µm 

(PM10), and absorbance of PM2.5 filters (PMabs). These were assessed using land use 

regression (LUR) or dispersion models (for PM10 in EDEN during pregnancy), 

temporally adjusted to measurements made in local background monitoring stations and 

averaged over the periods of interest. In most cases we used site-specific LUR models 

developed in the context of the European Study of Cohorts for Air Pollution Effects 

(ESCAPE) project 2–6. For BiB, assessment for PM2.5 and PM10 was made based on the 

ESCAPE LUR model developed in London/Oxford (UK) and adjusted for background 

PM levels from monitoring stations in Bradford 7. For EDEN, the ESCAPE European-

wide LUR model was applied for PM2.5 
8, and ESCAPE local LUR were used to assess 

NO2 and PM10 exposure (the latter only for the pregnancy period) 9. Data on daily 

background concentrations of air pollutants for temporal adjustment were obtained from 

routine background stations active during the whole study period. Back-extrapolation 

based on other available pollutants was used when data on a pollutant were not available. 

In particular, daily PM10 was used to adjust NO2; daily NO2 or PM10 factors to adjust 

PM2.5; daily NO2 to adjust PM10; and daily NOx to adjust PMabs. Data availability is 

summarized in Supplementary Table 2. For the pregnancy period the exposure estimates 

were calculated for the three pregnancy trimesters and as the mean of whole pregnancy 

period. 

 
Supplementary Table 2. Availability of daily values for each outdoor air pollutant by 

cohort 

Cohort NO2 PM10 PM2.5 PMabs 

MoBa Daily values available Daily values available Daily values available Back extrapolated (NOx) 

KANC Daily values available Daily values available Back extrapolated (NO2) Back extrapolated (NOx) 

BiB Daily values available Back extrapolated (NO2) Back extrapolated (NO2) Back extrapolated (NOx) 

EDEN Daily values available Back extrapolated (NO2) Back extrapolated (NO2) NA 

INMA Daily values available Back extrapolated (NO2) Back extrapolated (NO2) Back extrapolated (NOx) 

RHEA Back extrapolated 

(PM10) 

Daily values available Back extrapolated (PM10) NA 

Abbreviations: NA, not available; NO2, nitrogen dioxide; PM2.5, particulate matter with an aerodynamic 

diameter of less than 2.5 μm; PM10, particulate matter with an aerodynamic diameter of less than 10μm; 

PMabs, absorbance of PM2.5 filters.  

 

Surrounding natural space 

We followed the PHENOTYPE protocol 10 to measure the surrounding greenness, i.e. 

trees, shrubs and parkland, and applied the Normalized Difference Vegetation Index 

(NDVI)11 derived from the Landsat 4–5 Thematic Mapper (TM), Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI)/Thermal 

Infrared Sensor (TIRS) with 30m × 30m resolution (courtesy of the  U.S. Geology 

Survey). NDVI quantifies greenness by measuring the difference between near-infrared 

(which vegetation strongly reflects) and red light (which vegetation absorbs). NDVI 

values range from +1.0 to -1.0, with higher numbers indicating more greenness. To 

achieve maximum exposure contrast, we used available cloud-free Landsat images during 
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the period between May and August for years relevant to our period of study and 

calculated greenness within 100, 300 and 500 meter buffers around each address. 

Negative values in the images have been reclassified to null values previously. 

Furthermore, an indicator for “residential proximity to major green spaces” was created, 

as it covers different aspects of natural space exposure, i.e. easy access to recreational 

space. We calculated access to major green spaces (parks or countryside) and major blue 

spaces (bodies of water) as the straight line distance from the home or school to nearest 

blue or green space with an area greater than 5000 m2 from topographical maps 12,13 or 

local sources, see table Supplementary Table 1. We also created a dichotomous variable 

to define whether  a major green or blue space was present or not within a buffer of 300 

m. For the pregnancy period the presence of a major blue or green space, and NDVI 

within a 100 meter buffer, were selected as the main exposure variables. 

Meteorological variables 

We used meteorological stations in the study area to obtain data on temporal variability 

in temperature. Daily measurements of temperature and humidity were obtained from a 

local weather station in each study area and averaged over each period of interest. 

Atmospheric pressure data were obtained from the ESCAPE project, and were available 

only for pregnancy trimesters and the entire pregnancy period (pregnancy mean was 

selected as main exposure), not for the childhood period. During the childhood period 

temperature and humidity were estimated for the home and school address. Daily, weekly 

and monthly measurements of UV radiation (as erythemal UV, Viamin-D and DNA 

damaging UV) at home and at school at 0.5 x 0.5 degree resolution were obtained from 

the Global Ozone Monitoring Experiment onboard the ERS-2 (European Remote 

Sensing) satellite (Temis), and averaged over the day, week and month before the 

subcohort follow-up examination. 

Built environment 

Topological maps for the following built environment indicators were obtained from local 

authorities or from Europe wide sources (Table 1). Building density was calculated 

within 100 and 300 meters buffer by dividing the area of building cover (m2) by the area 

of each buffer (km2). Population density was calculated as the number of inhabitants per 

km2 surrounding the home address. Street connectivity was calculated as the number of 

street intersections inside 100 and 300 meters buffer, divided by the area (km2) of each 

buffer. Facility richness index was calculated as the number of different facility types 

present divided by the maximum potential number of facility types specified, in a buffer 

of 300 meters, giving a score of 0 to 1. Facility density index was calculated as the number 

of facilities present divided by the area of the 300 meters buffer (number of 

facilities/km2). A higher value indicates a more availability of different facility types. 

Landuse Shannon's Evenness Index (SEI) was calculated to provide the proportional 

abundance of each type of land use in a buffer of 300 meters, giving a score between 0 

and 1 14. It was calculated by multiplying each proportion of land use type by its logarithm 

and dividing the sum of all land use type products by the logarithm of the total possible 

land use types. We developed an indicator of walkability, adapted from the previous 

walkability indexes 15–17, calculated as the mean and sum of the deciles of population 

density, street connectivity, facility richness index and land use SEI within 300 meters 

buffers, giving a walkability score ranging from 0 to 1. Accessibility was measured by 

BST (bus public transport) lines and stops were obtained from local authorities of each 

study area and from Open Street Maps (“OpenStreetMap”) where local layers were not 

available. BST lines density was calculated as meters of BST lines inside 100, 300 and 

500 meters buffer, divided by the buffer area in square kilometers. BST stop density was 
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calculated as number of BST inside 100, 300 and 500 meters buffer, divided by the buffer 

area in square kilometers. 

Road traffic 

Traffic density indicators (traffic density on nearest road, traffic load on all and major 

roads within 100 m buffer and inverse distance to nearest road) were calculated from road 

network maps following the ESCAPE protocol 4,6. A fieldwork campaign was conducted 

in Heraklion during 2015, to assess multiple exposures as previously described 19. Briefly, 

measurements of manual traffic counts of light and heavy vehicles over 15 minutes, and 

of noise, averaged over 30 minutes monitoring (Sonometer SC160, CESVA monitors -

Spain),  were made in 160 sites around the city. Sites were chosen representing multiple 

types (e.g. traffic, urban background, urban green etc.). During the campaign each 

monitoring site was measured three times in different seasons (summer, winter and 

autumn). We applied the LUR methods and GIS predictor variables used within the 

ESCAPE project and described in Eftens (Eeftens et al. 2012) to develop LUR models of 

traffic count and road traffic noise (Supplementary Table 3).  

Road traffic noise 

Noise levels, i.e. Lden (annual average sound pressure level of 24h period: day, evening 

and) and Ln (annual average sound pressure level of night period) were derived from 

noise maps produced in each local municipality under the European Noise Directive (EC 

Directive 2002/49/EC 20
). To improve comparability between centers, the values were 

categorized into six categories (<55; 55-59.9; 60-64.9; 65-69.9; 70-74.9; >75) for 

analysis. For RHEA, estimates on noise were newly modeled following new fieldwork 

(see Supplementary Table 3 and above for details). 

 
 

Supplementary Table 3. Summary of land use regression models and descriptive statistics 

of traffic count and road traffic noise exposure within Heraklion. 

 

Exposure LUR model R2 model R2 cross 

validation 

RMSE Moran’s 

I2 (p 

value) 

Mean Measured 

levels (range) 

Traffic 

count 

1.2 -  0.38 * TypeofRoad + 

PostCode + Land Use – 0.47 *  

LOG dist dense road + 0.004 * 

Buffer 50 m to roads 

0.71 0.65 3.2veh/15 

mins 

-0.04 

(0.16) 

133 veh/15 mins 

[0-933] 

Road traffic 

noise 

71.7 -  103 * TypeofRoad + 

SiteType – 39.4 * PavedY 

0.45 0.41 55 dB -0.02 

(0.23) 

58.6 dB [44.4 -

72.3] 

Abbreviations: dB, decibel; LUR, land use regression; mins, minutes; RMSE, Root-mean-square 
deviation; dist, distance; veh, vehicles.  
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Part 2 - Water Disinfection By-Products and Indoor Air Pollutants 

Water Disinfection By-Products (DBPs) 

We collected data on routine measurements of disinfection by-product (DBP) in water 

from water companies for all cohorts for the pregnancy period. For KANC, BiB, INMA 

and RHEA cohorts this was built on the HiWate project (Health Impacts of long-term 

exposure to disinfection by-products in drinking Water) 21 that previously modelled 

exposure levels in the water supply of the residence of each participating mother-child 

pair. For BiB, routine monitoring data on trihalomethanes (THMs) were obtained for the 

eight water supply zones covering the study area. Each zone was sampled nine times per 

year on average, giving 374 data points in total 22. For INMA, levels of THMs were 

ascertained based on sampling campaigns and regulatory data from local authorities and 

water companies. Sampling locations were defined to be geographically representative of 

the study areas, and water samples were collected from taps with no filtration or other 

treatments that could affect THMs concentration. THMs were determined in 198 places 
23. For RHEA, the city was divided into six zones according to the source of underground 

water used in each area, corresponding to six different water treatment plants. In total, 18 

sampling points were selected (12 areas in Heraklion and 6 in rural areas), which covered 

geographically the residences of participating mother-child pairs 24. For KANC, tap water 

THM concentration, derived as the average of quarterly sample values over the time that 

the pregnancy occurred from all sampling sites located in the each distribution system, 

and geocoded maternal address at birth to assign the individual women’s residential 

exposure index 25. Routine DBP measurements were acquired for MoBa and EDEN 

cohorts as these cohorts were not part of the HiWate project. THMs exposure levels were 

modelled for each residence, following the protocol developed within HiWate 21. 

Indoor Air Pollutants 

Indoor air concentrations of nitrogen dioxide (NO2), particulate matter <2.5μm (PM2.5), 

particulate matter absorbance (PMabs), benzene, and toluene, ethylbenzene, xylene (TEX) 

were estimated through a prediction model that combined measurements in the homes of 

a subgroup of children with questionnaire data from the subcohort.  

Measurements of indoor NO2, benzene and TEX were conducted in the homes of 157 

participants as part of the child panel study , which was nested within the HELIX 

subcohort in all cohorts except MoBa. PM2.5 and PMAbs were measured in INMA, BiB, 

and EDEN. Participants in the child panel study were followed for one week in two 

seasons, and the last day of the first week coincided with the subcohort examination, 

including the completion of the main HELIX questionnaire. NO2, benzene and TEX 

sampling lasted 7 days, and PM2.5 and PMAbs sampling lasted 24 hours.  

NO2 short-term diffusive Passam samplers were used to measure indoor NO2 

concentrations. The samplers were composed of polypropylene housing with a 20 mm 

diameter opening, covered with a removable plastic cap and protected from wind 

disturbance by a teflon membrane. Triethanolamine was used as absorbent material inside 

the tube. NO2 was collected by molecular diffusion to the absorbent and its concentration 

was determined spectrophotometrically by the Saltzmann method. The detection limit 

(DL) for a week’s sampling for the NO2 sampler was 0.3 µg/m3. Passam ORSA5 diffusion 

tubes were used to measure indoor levels of benzene, toluene, ethylbenzene and ortho-, 

para- and metaxylenes. The DL for a week’s sampling for each compound was 0.4 µg/m3. 

The samplers were placed in the living rooms of the participating homes, away from the 

sources of ventilation. After collection, the NO2, Benzene and TEX samplers were 
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hermetically sealed and kept in zip-lock bags in boxes, in a cool and dark place and 

shipped to the analyzing laboratory within 3 months of the end of the sampling campaign.  

For indoor PM modeling, active PM2.5 cyclone pumps were placed in the living room. 

After 24 hours the samplers were collected and sent to laboratory. PM2.5 mass was 

collected gravimetrically using 37-mm Teflon filters held in a cyclone (model GK2.05 

SH, BGI Inc., Waltham MA, USA) with an aerodynamic cut point of 2.5 µm and 

connected to a BGI/Mesa Labs A4004 pump working at 3.5L/min. Filter weighing and 

reflectance measurements were conducted with a microbalance of 1 µg accuracy (Model 

MX5, Mettler-Toledo International Inc., Switzerland) and a Smoke Stain Reflectometer 

(SSR) (Model 43D, Diffusion Systems Ltd., UK), respectively. Measurement procedures, 

quality control, as well as PM2.5 mass concentration and absorbance estimations followed 

the ESCAPE project protocols (both available at www.escapeproject.eu/manuals).  

Statistical analyses were performed separately for each of the exposure variables. A TEX 

variable was created by summing the concentrations of each TEX compound. The HELIX 

main questionnaire (Maitre et al., under revision) was used to identify housing and 

participant characteristics as input for the prediction model; these characteristics 

included: exposure to environmental tobacco smoke, cooking and heating methods at the 

home, cleaning products between others.  

After extracting potential predictor variables from the questionnaires, bivariate analyses 

were run by either Kruskal-Wallis or Wilcoxon rank sum tests, as all of the potential 

predictors were categorical and the exposure variables were not normally distributed. The 

variables that yielded a p value lower than 0.2 in bivariate analyses were selected to enter 

into the multiple linear regression models. Prior to that, univariate linear regressions were 

performed for each of the predictors selected in the bivariate analysis in order to assess 

the adjusted determination coefficient (adjusted R2) for each of them individually. To 

ensure normality of the distributions of the outcome variables, the univariate linear 

regression models and subsequent multiple linear regression models were built using log-

transformed. 

Supervised forward stepwise procedure was employed to build multiple linear regression 

models. In all cases the starting point for the regression was the variable which yielded 

the highest adjusted R2 in the univariate linear regressions. Then the other predictors were 

added one-by-one and additional increase in the adjusted R2 was recorded. The variable 

which increased the adjusted R2 by a highest value was retained in the model and the 

procedure was repeated until none of the variables increased the adjusted R2 by at least 

1%. In case any of the variables included into the model had an individual p value equal 

or higher than 0.05, it was removed from the model. All statistical analyses were 

performed using R Statistic Software (version 3.4.1).  

The best explained pollutant was NO2 with an R2 of 57%, followed by PMAbs with 50%.  

Supplementary Table 4 shows the efficiency of the models and the statistically 

significant variables. For example, cohort, natural gas oven, type of hob and boiler, butane 

in the living room, and the number of people living in the house, were the statistically 

significant variables in the NO2 model; all of these were positively correlated. 
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Supplementary Table 4. Summary of the models of indoor air pollutions. 

*** < 0.001 ** < 0.005 * < 0.05. For negative coefficients (-) sign is included. 

Exposure NO2 Benzene TEX PM2.5 PMAbs 

Explained variability (R2 ) 57% 31% 31% 47% 50% 

Cohort ***   * ** 

Oven with natural gas ***     

Type of hob ***     

Type of boiler **     

Butane in living room **   *  

How many people live at home? ***     

Garage connected to the house?   *** *   

PM2.5 outdoor  ***    

Does air pollution bother you?  *    

Does your family manage financially?  **    

Number of floors of the house  (-)*    

How many cigarettes per week do you smoke 

(mother)?  *    

How often do you use degreasing sprays?   **   

Presence of central heating?   (-)*   

How often do you use perfumed cleaning 

products?   (-)**   

How many cigarettes smoke (mother’s 

partner)?   **   

Calendar month   **   

NO2 outdoor   *  *** 

How many cigarettes last week (mother)?    *** *** 

Family has a car?    (-)**  

Stay at home parent?    **  

How often do you use glass cleaning sprays?    *  
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Part 3 - Lifestyle and other exposures 

Tobacco smoke 

Tobacco smoke exposure was assessed in pregnancy via questionnaire for active and 

passive smoking, as well as based on cotinine measurements (as described in part 3). 

Pregnancy questions on tobacco smoke from the cohorts were harmonized as part of the 

ESCAPE project. Tobacco smoke exposure of the mother at any point during pregnancy 

was categorised into: no exposure, only passive smoke exposure, active smoking. Active 

smoking was also measured by the number of cigarettes per day on average during 

pregnancy 

 

For children, in addition to the cotinine-based classification (see part 3), the following 

two variables were created based on the questionnaires completed by the parents:  

- The global exposure of the child to ETS with two categories: "no exposure", no 

exposure at home neither in other places; “exposure”: exposure in at least one 

place, at home or outside. 

- Active smoking of the parents: “1” none of the parents, “2” one parent or “3” both 

parents.  

Diet 

Diet during pregnancy was assessed through food frequency questionnaires by each 

cohort and harmonized a posteriori for the HELIX project. Harmonisation was possible 

for eight main food groups (average consumption in times/week) and folic acid 

supplementation intake (yes/no) in the first trimester for five of the six cohorts (KANC 

not available). 

In early childhood years information about breastfeeding duration (in weeks) was 

collected by the cohorts and then harmonized as part of HELIX. 

Information on the child’s diet was collected through the standardized HELIX subcohort 

questionnaire. The child’s diet was then summarized in 15 food groups (times/week) and 

dietary habits such as eating organic food (see Supplementary Table 5). We also 

included the KIDMED index, a dietary score representative of healthy eating and based 

on the principles of Mediterranean dietary patterns. The KIDMED index consists of 16 

questions with questions denoting a negative connotation with respect to the 

Mediterranean diet assigned a value of -1, and those with a positive aspect scored +1 

(Serra-Majem et al., 2004). Further, we analysed as separate variables few factors that 

contribute to the KIDMED index including fast food visits, organic food and ready-made 

supermarket meal consumption.  

Supplementary Table 5. Diet variables included in the exposome for pregnancy and 

childhood periods. 

 Pregnancy Childhood 

Cereals Yes Yes 

Dairyproducts Yes Yes 

Fish and seafood Yes Yes 

Fruits Yes Yes 

Meat Yes Yes 

Vegetables   Yes Yes 

Visits a fast food restaurant/take away Yes Yes 
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Folic acid supplementation (yes/no) Yes - 

Legumes Yes - 

Breastfeeding duration (in weeks) - Yes 

Bakery products - Yes 

Breakfast cereal - Yes 

Bread (white and whole wheat) - Yes 

Potatoes - Yes 

Sweets - Yes 

Yogurt and probiotics - Yes 

Processed meat - Yes 

Total added lipids (butter, margarine and vegetable oils) - Yes 

Beverages (sodas) - Yes 

Caffeinated drinks - Yes 

Organic food - Yes 

Ready-made supermarket meal - Yes 

KIDMED score - Yes 

Physical activity 

Physical activity during pregnancy (3rd trimester only) was estimated based on the 

harmonization of the respective cohort questionnaire data. Two variables were created: 

(1) moderate activity corresponding to walking and/or cycling activity (expressed in 

frequency categories: never or sometimes; often; very often); and (2) vigorous activity 

(in two frequency categories: low and medium/high) corresponding to exercise or sport 

activity.  

For children, the moderate-to-vigorous physical activity variable was created based on 

questionnaire data. It was defined as the amount of time children spent doing physical 

activities with intensity above 3 metabolic equivalent tasks (METs), and is expressed in 

units of min/day. Physical activity over-reporting was corrected based on the 

accelerometer (Actigraph) correlation with questionnaire answers, using the data from 

three cities involved in the HELIX panels (nested study of the HELIX project where 

participants wore accelerometers for two non-consecutive weeks).   

A variable representing sedentary behavior in the children was created based on the 

questionnaire and corresponds to the duration of time spent watching TV, playing 

computer games or other sedentary games. This variable is a new concept which is 

commonly defined as ‘‘any waking behavior characterized by an energy expenditure <1.5 

metabolic equivalent tasks (METs) while in a sitting or reclining posture’’ by the 

Sedentary Behaviour Research Network 46. Sedentary behavior has been shown to be a 

health risk factor independently from physical activity.  

Alcohol 

Alcohol consumption during pregnancy was harmonized based on questionnaire data 

from the cohorts and classified as whether or not any alcohol was consumed during 

pregnancy (except in the KANC cohort where the lowest exposure category included 

women with less than 1 glass a month). 

Allergens 

For allergen exposure only pet ownership of the child was added to the exposome. There 

was no prenatal information on this. Three variables were created based on the HELIX 
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questionnaire as follow: (1) if the child had any cats that live mainly in his home (2) or 

dogs, or (3) any other pets than dogs and cats. 

Sleep 

Sleep duration was available for the subcohort children, not for the mothers, and 

corresponds to the average sleep duration at night during an entire week (weighted 

average of weekdays and weekend sleep duration). This variable was calculated based on 

the questionnaire taking the average bedtime and wake-up time (earliest and latest 

bedtime/wake-up times available) during weekdays and weekends.  

Socio-economic capital 

Questions related to socio-economic position (maternal education and others) were 

collected during the pregnancy in all cohorts and harmonized for use as covariates in 

analyses; they were not included in the exposome as separate exposure variables. In the 

childhood exposome, the Family Affluence Score (FAS) was included based on questions 

from the subcohort questionnaire 47. A composite FAS score was calculated based on the 

responses to the next four items: (1) Does your family own a car, van or truck? (2) Do 

you have your own bedroom for yourself? (3) During the past 12 months, how many times 

did you travel away on holiday with your family? (4) How many computers does your 

family own? (Liu et al, 2012).A three point ordinal scale was used, where FAS low (score 

0,1,2) indicates low affluence, FAS medium (score 3,4,5) indicates middle affluence, and 

FAS high (score 6,7,8,9) indicates high affluence FAS 48. The FAS score in this study had 

only a maximum value of 7 instead of 9 because of the smaller number of possible 

answers for certain items. 

Further social capital-related questions were included in the HELIX questionnaire to 

capture different aspects of social capital, relating both to the cognitive (feelings about 

relationships) and structural (number of friends, number of organizations) dimensions and 

to bonding capital (close friends and family), bridging capital (neighborhood connections, 

looser ties) and linking capital (ties across power levels; for example political 

membership). Two summary variables were selected for the exposome analysis: social 

participation (membership of organizations: 0, 1, or 2) and contact with friends and family 

(daily, once a week, less than once a week). In addition, house crowding was included, 

representing the number of persons living in the house with the child. 
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Part 4 - Contaminant exposure biomarkers 

For all the 1,301 children in the subcohort, biomarker the determinations of a set of 

chemical contaminants (organochlorine compounds, brominated compounds, 

perfluorinated alkylated substances (PFAS), metals and elements, phthalate metabolites, 

phenols, and organophosphate (OP) pesticide metabolites) were performed at the 

Department of Environmental Exposure and Epidemiology at the Norwegian Institute of 

Public Health (NIPH), in Norway or in collaboration with their contract laboratories. This 

was also the case for the majority of the maternal samples collected during pregnancy or 

at birth and stored in cohort biobanks; however, for some maternal samples in some 

cohorts, measurements were already completed at thus we used these results 

(Supplementary Table 6). Here we provide a summary of the methods used to determine 

biomarker levels for the chemical contaminants; more detailed information can be found 

in Haug et al.26 

 
Supplementary Table 6. Concentrations of chemical contaminants previously analyzed in 

other labs. 

 Total maternal samples 

analyzed 

Analyzed in NIPH as 

part of HELIX 

Previously analyzed in 

other labs 

Organochlorine compounds 1078 657 

 

INMA: 223 

RHEA: 198 

Brominated compounds 855 657 RHEA: 198  

(only PBDE-47 available) 

Perfluorinated alkylated 

substances 

1240 1032 INMA: 208 

Metals and essential elements 1020 833 INMA: 223  

(only Hg available) 

Phthalate metabolites 1089 914 INMA: 175 

Phenols 1085 1023 EDEN: 62 

Organophosphate pesticide 

metabolites 

1086 1086 - 

Cotinine 1093 883 INMA: 210 

Creatinine 1093 870 INMA: 223 

Lipids 1075 654 INMA: 223 

RHEA: 198 

 

Quality assurance 

The sample collections for the children were performed in a completely harmonized way, 

using the same protocols and equipment for sample collection and processing in all the 

six cohorts (Maitre et al, under revision). The children’s samples were randomized into 

batches before chemical analyses, aiming at a minimum of three cohorts to be included 

in each batch. However, this was not feasible for the maternal samples as the cohorts 

shipped the maternal samples at different time points to the laboratories for analysis. 

Chemical analysis 

SupplementaryTable 7 shows the fifty-eight environmental chemicals measured in the 

HELIX subcohort. Supplementary Tables 8 and 9 show the collection time points and 

the biological matrices, respectively.  
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Supplementary Table 7. Chemical contaminants and number of samples analyzed from 

mothers and children in the HELIX subcohort. 

 Abbreviation Children’s samples  

N=1,301 

Maternal samples 

N=1,294 

Compound  n analysed % quantifiable samples n analysed % quantifiable samples 

Organochlorine compounds (OCs) 

2,3',4,4',5-Pentachlorobiphenyl PCB 118 1296 99.8 1078 79.1 

2,2',3,4,4',5'-Hexachlorobiphenyl PCB 138 1296 99.8 1078 96.5 

2,2',4,4',5,5'-Hexachlorobiphenyl PCB 153 1296 100 1078 99.6 

2,2',3,3',4,4',5-Heptachlorobiphenyl PCB 170 1296 90.7 855 99.5 

2,2',3,4,4',5,5'-Heptachlorobiphenyl PCB 180 1296 99.2 1078 97.6 

4,4'dichlorodiphenyltrichloroethane DDT 1296 79.8 1078 65.6 

4,4'dichlorodiphenyldichloroethylene DDE 1296 100.0 1078 99.9 

Hexachlorobenzene HCB 1296 99.9 1078 99.1 

Brominated compounds (PBDEs) 

2,2',4,4'-Tetrabromodiphenyl ether PBDE 47 1296 90.8 855 80.9 

2,2',4,4',5,5'-Hexabromodiphenyl ether PBDE 153 1296 54.4 657 72.9 

Perfluoroalkyl substances (PFASs) 

Perfluorohexanesulfonate PFHxS 1301 99.7 1240 97.5 

Perfluorohexanesulfonate PFOS 1301 99.8 1240 100 

Perfluorooctanoate PFOA 1301 100 1240 99.7 

Perfluorononanoate PFNA 1301 99.5 1240 97.9 

Perfluoroundecanoate PFUnDA 1301 68.6 1032 95.4 

Metals and essential elements 

Mercury Hg 1298 97.7 1020 98.9 

Cadmium Cd 1298 86.5 833 99.6 

Lead Pb 1298 100 833 100 

Arsenic As 1298 67.1 833 58.5 

Cesium Cs 1298 100 833 100 

Copper Cu 1298 100 833 100 

Thallium Tl 1298 7.2 833 1.1 

Manganese Mn 1298 100 833 100 

Zinc Zn 1298 100 833 100 

Cobalt Co 1298 99.9 833 100 

Molybdenum Mo 1298 99.5 833 100 

Sodium Na 1298 100 833 100 

Potassium K 1298 100 833 100 

Magnesium Mg 1298 100 833 100 

Phthalate metabolites 

Monoethyl phthalate  MEP 1301 100 1089 99.0 

Mono-iso-butyl phthalate  MiBP 1301 100 1089 99.9 

Mono-n-butyl phthalate  MnBP 1301 100 1089 100 

Mono benzyl phthalate  MBzP 1301 99.9 1089 99.7 

Mono-2-ethylhexyl phthalate MEHP 1301 96.8 1089 99.5 

Mono-2-ethyl-5-hydroxyhexyl phthalate  MEHHP 1301 99.8 1089 100 

Mono-2-ethyl-5-oxohexyl phthalate  MEOHP 1301 99.9 1089 100 

Mono-2-ethyl 5-carboxypentyl phthalate MECPP 1301 99.9 914 99.9 

Mono-4-methyl-7-hydroxyoctyl phthalate oh-MiNP 1301 100 914 92.6 

Mono-4-methyl-7-oxooctyl phthalate  oxo-MiNP 1301 100 914 95.7 

Phenols 

Methyl paraben MEPA 1301 99.7 817 99.8 

Ethyl-paraben ETPA 1301 99.3 817 97.4 

Propyl-paraben PRPA 1301 67.3 1085 97.3 

N-Butyl paraben BUPA 1301 96.6 1085 97.0 

Bisphenol-A BPA 1301 98.3 1085 99.4 

Oxybenzone OXBE 1301 100 1085 98.5 

Triclosan TCS 1301 99.9 1085 99.3 

Organophosphate (OP) pesticide metabolites 

Dimethyl phosphate  DMP 1301 49.3 1086 90.8 

Dimethyl thiophosphate DMTP 1301 90.4 1086 88.9 

Dimethyl dithiophosphate DMDTP 1301 18.2 1086 41.6 

Diethyl phosphate  DEP 1301 80.9 1086 97.8 

Diethyl thiophosphate DETP 1301 43.5 1086 50.0 

Diethyl dithiophosphate DEDTP 1301 1.5 1086 1.7 

Other compounds 

Cotinine  1301 17.4 1093 43.7 

Creatinine  1301 100 1093 100 

Phospholipids  1284 100 1052 62.4 

Total cholesterol  1284 100 1052 100 

Triglycerides  1284 100 1052 100 

High-density lipoprotein cholesterol HDL  1284 100 830 100 

Low-density lipoprotein cholesterol LDL 1284 99.8 830 100 

n analysed: samples with biomarker measurements  

% quantifiable samples: % of the biomarker measurements with concentrations reported  
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Supplementary Table 8. Collection time points of maternal and child blood and urine 

samples (mean, SD). 

 Cohort 

 BiB EDEN KANC INMA MoBa RHEA 

Mother, 

gestational weeks 
26.6 (1.4) 26.1 (1.2) 39.4 (1.3) 13.7 (2.0) / 34.2 (1.3) a 18.7 (0.9) 14.1 (3.7) 

Child, years 6.6 (0.2) 10.8 (0.6) 6.5 (0.5) 8.8 (0.6) 8.5 (0.5) 6.5 (0.3) 

Abbreviations: SD: standard deviation 
aIn INMA, blood was collected in the first trimester whereas urine was collected in the third 

trimester of pregnancy. 

 
Supplementary Table 9. Biological matrices of maternal and child samples. 

Chemicals 

Cohort 

BiB EDEN KANC INMA MoBa RHEA 

OCs and PBDEs 

   Mother serum/plasma serum - serum plasma serum 

   Child serum serum serum serum serum serum 

PFASs 

   Mother serum/plasma serum whole blood plasma plasma serum 

   Child plasma plasma plasma plasma plasma plasma 

Metals 

   Mother whole blood whole blood whole blood cord whole blood whole blood whole blood 

   Child whole blood whole blood whole blood whole blood whole blood whole blood 

Phthalate metabolites, phenols, OP pesticide metabolites, cotinine, and creatinine 

   Mother urine urine - urine urine urine 

   Child urine urine urine urine urine urine 

Lipids 

   Mother serum/plasma serum - serum plasma serum 

   Child plasma plasma Plasma plasma plasma plasma 

Abbreviations: OC: organochlorine; OP: organophosphate pesticides; PBDEs: 

polybrominateddiphenyl ethers; PFASs: per- and polyfluoroalkyl substances. 

 

Organochlorine compounds (OCs) 

Concentrations of OCs were determined in serum or plasma according to Caspersen et al 

(2016) except that gas chromatography–mass spectrometry (GC-MS/MS) was used 

instead of gas chromatography/high-resolution mass spectrometry (GC-HRMS). The 

limit of detection (LOD) was in the range of 0.3 to 1.5 pg/g. OCs concentrations in 

maternal samples (serum) of INMA and RHEA were determined according to Goñi et al 

( 2007) with a LOD of 67.0 pg/g and Koponen et al ( 2013) with LODs between 1.7 and 

14.3 pg/g, respectively. We also calculated the sum of PCBs by summing the 

concentrations of the 5 PCBs in pg/g. 

Brominated compounds (PBDEs) 

Concentrations of PBDEs were determined in serum or plasma following the method 

described in Caspersen et al (2016) also using GC-MS/MS for detection. The LOD ranged 
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from 0.15 to 0.3 pg/g. In RHEA only PBDE-47 was determined in maternal samples 

(serum) following the method described in Koponen et al ( 2013) with a LOD of 2.85pg/g.  

Perfluorinated alkylated substances (PFAS)  

Concentrations of PFASs were determined in serum or plasma using the method by Haug 

et al (2009), while the method by Poothong et al (2017a) was applied for the whole blood 

samples. The LOD was 0.02 µg/L for all PFASs. In the majority of INMA maternal 

samples (plasma), PFASs were determined according to Manzano-Salgado et al (2015) 

and with LODs between 0.05 and 0.1 µg/L. Only five maternal samples from INMA were 

analyzed at NIPH. In order to know whether concentrations measured in both labs were 

comparable we performed an inter-laboratory comparison of 10 samples with low to high 

PFOS concentrations as reference selected from all analyzed in the Institute for 

Occupational Medicine, RWTH Aachen University (Germany) 32. NIPH was blinded to 

the concentrations of samples. PFOS and PFHxS plasma concentrations determined in 

both laboratories were highly correlated (Spearman r=0.83 and 0.93, respectively) 

whereas PFOA and PFNA were less correlated (Spearman r=0.70 and 0.55, respectively). 

The three samples with low PFOS concentrations had levels between the LOD and the 

LOQ or close to the LOQ for PFHxS, PFOA, and PFNA. Considering that concentrations 

between the LOD and the LOQ have higher uncertainty, we excluded these samples and 

the spearman correlations became higher: PFOA r=0.96, PFHxS r=0.93, and PFNA 

r=0.86. Due to the high correlations the NIPH concentrations for subjects included in the 

comparison have been used. For the PFASs, 1:1 ratios were assumed for serum and 

plasma, while 1:2 ratios were used for whole blood vs serum/plasma 33. Thus, for PFASs 

all whole blood concentrations were multiplied by two. 

Metals and essential elements 

Concentrations of 15 metals and elements in whole blood were performed at ALS 

Scandinavia, Sweden according to Rodushkin et al (2000). The LOD ranged from 0.003–

3.03 µg/L except for sodium (Na), potassium (K) and magnesium (Mg) for which the 

LOD ranges from 0.06-0.15 mg/L. Mercury in INMA was determined in cord whole 

blood following the procedure described in Ramon et al (2011) with a LOD of 2.0 μg/L. 

Cord blood Hg concentrations were be divided by 1.7 to be comparable with maternal 

whole blood concentrations 36. Ten of these metals and elements (Hg, Cd, Pb, As, Cs, Cu, 

Tl, Mn, Co, and Mo) were included in the exposome analyses because of their potential 

toxicity. Zn, Na, K, Mg, and Se were not considered toxic and were included as 

covariates. This classification was based on expert judgment (Joan Grimalt, personal 

communication) and literature review 37 

Phthalate metabolites 

Concentrations of ten phthalate metabolites were determined in urine according to 

Sabaredzovic et al (2015). The LOD ranged from 0.06 to 0.61μg/L. In the majority of 

INMA maternal samples, phthalates were determined according to Valvi et al (2015) with 

LOD ranged from 0.5-1.0 μg/L except 37 INMA samples that were analyzed at NIPH. 

For comparability, we analyzed 10 samples with low to high monoethyl phthalate (MEP) 

concentrations as reference selected from all analyzed in the Bioanalysis Research Group 

at the Hospital del Mar Medical Research Institute (Barcelona, Spain) 39. NIPH was 

blinded to the concentrations of samples. Urinary concentrations of the phthalate 

metabolites determined in both laboratories were highly correlated (Spearman ranging 

from r=0.69 to 0.97). Due to the high correlations the NIPH concentrations for subjects 

included in the comparison have been used. We also calculated the total concentration of 

di-2-ethylhexyl phthalate (DEHP) by summing the molar concentrations of mono-2-
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ethylhexyl phthalate (MEHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), 

mono-2-ethyl-5-oxohexyl phthalate (MEOHP), and mono-2-ethyl 5-carboxypentyl 

phthalate (MECPP). The molar concentrations (in µmol/L) were calculated by dividing 

the concentration of every metabolite by its molecular weight. 

Phenols 

Concentrations of phenols were determined in urine according to Sakhi et al (2018) with 

the LOD ranged from 0.03-0.06 μg/L. In EDEN, phthalate metabolites were determined 

in urine samples according to Philippat et al (2011) with the LOD ranged from 0.2-2.3 

μg/L. We performed an inter-lab comparison of 12 samples selected from all analyzed in 

the I National Center for Environmental Health laboratory at the CDC in Atlanta, Georgia, 

USA 40. NIPH was blinded to the concentrations of samples. Phenols urinary 

concentrations determined in both laboratories were strongly correlated (Spearman 

ranging from r=0.90 to 1.0). Due to the high correlations the NIPH concentrations for 

subjects included in the comparison have been used. 

Organophosphate (OP) pesticide metabolites 

Analysis of OP pesticide metabolites in urine was made according to Cequier et al (2016) 

and with the LOD ranged from 0.06-0.36μg/L. DMDTP in children was detected in less 

than 20% of samples and DEDTP in children and mothers was detected in less than 2% 

of samples (Table 7); therefore, categorical variables were created categorizing urinary 

DMTDP and DEDTP levels as detected or not detected considering the limits of detection 

of 0,19 and 0,05 μg/L, respectively. However, the DEDTP variable in mothers and 

children and the DMDTP variable in mothers had too few subjects in the “detected” 

category (less than 30) and were finally removed from the exposome analyses. 

Cotinine 

Concentrations of cotinine in urine were determined using The Immulite® 2000 Nicotine 

Metabolite (Cotinine) 600 Test on an Immulite 2000 XPi from Siemens Healthineers at 

Fürst Medisinsk Laboratorium, Norway. The LOD was 3.03μg/L. Cotinine in maternal 

urine samples from INMA were determined according to Aurrekoetxea et al (2013) and 

with a LOD of 1.21μg/L. We performed an interlab-comparison of 10 urine samples with 

low to high cotinine concentrations selected from all analyzed in the Public Health 

Laboratory of Bilbao - LSPPV (Spain) 42. NIPH was blinded to the concentrations of 

samples. Cotinine urinary concentrations determined in both laboratories were highly 

correlated (Spearman r=0.95).  

For maternal smoking, a categorical variable was created based on the urinary cotinine 

levels to distinguish non-smokers, second-hand-tobacco smokers, and smokers 43: 

- Non-smokers: values <LOD or cotinine levels <18.5 µg/L 

- Second-hand-tobacco smokers: cotinine levels ≥18.5-50 µg/L 

- Smokers: cotinine levels >50 µg/L  

In the children, a categorical variable was created categorizing urinary cotinine levels as 

detected or not detected considering the limit of detection of 3.03μg/L. 

Adjustments for total fat percentage and creatinine 

Concentrations of lipids were determined in the Fürst Medical Analysis Laboratory in 

serum or plasma using the FS kit from DiaSys for phospholipids and the ADVIA® 

Chemistry XPT System for the other lipids. LODs ranged from 0.003 to 0.08 mmol/L. In 

maternal samples (serum) of INMA and RHEA total cholesterol and triglycerides were 

determined using the Cobas Mira self-analyzer (Roche Diagnostic, Basel, Switzerland) 

using an enzymatic-colorimetric method with spin react reagents and a standard 
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enzymatic method, respectively. Phospholipid concentrations in maternal samples from 

INMA and RHEA were calculated based on the formula of Covaci et al (2006). Total fat 

percentage was calculated considering the molecular weight of phospholipids, total 

cholesterol, and triglycerids, and calculated according to the method described in 45. 

Concentrations of OCs and PBDEs were then adjusted in respect to total fat percentage 

and expressed in ng/g of lipids. Concentrations of creatinine in urine were performed on 

an AU680 Chemistry System form Beckman Coulter using DRI® Creatinine-Detect® 

Test at Fürst Medisinsk Laboratorium, Norway with a LOD of 0,03mmol/L. Creatinine 

in maternal samples of INMA and EDEN were determined by using the Jaffé method - 

Beckman Coulter© AU5400 and an enzymatic reaction using a Roche Hitachi 912 

chemistry analyzer (Roche Hitachi, Basel, Switzerland), respectively. Urinary 

concentrations of phthalate metabolites, phenols, OP pesticide metabolites, and cotinine 

were adjusted in respect to creatinine and expressed in μg/g of creatinine.  
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Supplementary Methods 

This section details the data selection procedure performed in this study. 

Part 1 - Initial data selection 

From all variables available in the HELIX sub-cohorts, we made minimal selection decisions 

among groups of related variables, selecting representatives in order to reduce the dimensionality 
of the dataset with minimal loss of information. More specifically, we filtered single 

representatives from groups of corelated variables identified in previous HELIX studies 49. In 

total, we dropped 122 variables from 598 variables, for a remaining total of 476 variables. See 

full description below: 

1. Chemical exposures 

For those pollutants, we used the sum of pollutants instead of the single entities, as we are 

interested in the overall effect of those toxicant exposure. 

For Polychlorinated biphenyl exposures (PCB), both in mother and child, we only used a 

summary variable that aggregates the measure of all types of PCBs (namely 118, 138, 153, 170, 

180). In total, we dropped 10 variables and added 2. 

Similarly, for phthalates (DEHP), we used a summed variable to resume the measure of all types 

of DEHP (namely mono benzyl phthalate, mono-2-ethyl 5-carboxypentyl phthalate, mono-2-

ethylhexyl phthalate, Mono-2-ethyl-5-hydroxyhexyl phthalate, mono-2-ethyl-5-oxohexyl 

phthalate, mono-iso-butyl phthalate, Mono-n-butyl phthalate, mono-4-methyl-7-

hydroxyoctyl phthalate and mono-4-methyl-7-oxooctyl phthalate). In total, we dropped 18 

variables and added 2. 

2. Built environment 

For build environment variables that were measured at different radius (100-meter, 300-meter and 

500-meter radius), following selection made on previous studies using those data, we selected 
300m when available or else 100m. As a result, we selected: 100m for NDVI values, 300m area 

for amount of public transport lines, 300m area for the number of bus public transport mode stops, 

300m area for building density and 300m area for connectivity density (number of intersections / 

km2)). In total, we dropped 14 variables. 

3. Outdoor air pollutants 

For outdoor air pollutants variables measured at different areas (home, school, commuting, other 
places), we selected pollutants measured at home (namely for NO2, NOX, pm10, pm25, pm 

absorbance and pm coarse). We dropped a total of 72 variables. 

4. Meteorological variables 

For temperature and humidity, we only selected averaged values across several periods (day, week 
and month) and discarded min/max values. Additionally, yearly averaged values were discarded 

as they were encoding only the cohort information. In total, we dropped 12 variables. 
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Part 2 - Data driven selection 

We additionally filtered remaining groups of very strongly correlated variables (r > 0.9) to reduce 
dimensionality without losing information. In total, from 476, we discarded 28 variables for 448 

remaining variables. The rules for selecting variables among correlated groups were designed to 

retain features that are likely to be more informative and more universally applicable. Namely, 1. 
if correlation were between the same variable averaged on different time frames (e.g., day, week, 

year), keep the longest; 2. if correlation were between the same variables computed at home and 

at school, or other places, keep the variable computed at home. In any other cases, the default rule 
was simply to keep the first variable in the order they appear. Those rules are really simple but, 

as Pearson correlation r is > 0.9, we are dropping variables that mostly encode redundant 

information, and thus, impact on the performance is likely to be low. 

 
Supplementary Figure 1. Description of all covariates.  
Shows the distributions of variables used as covariates in the study. 
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Supplementary Figure 2. Explained variance comparison. 
First plot shows variance explained (R2 score) by original cohorts (first step of the modelling) for mental 

(P-Factor), cardiometabolic (MetS) and respiratory (lung function) risk scores. Second is variance 
explained by other variables after cohort adjustment (second step). Final plot shows total variance 

explained by modelling. The black interval bars represent the standard deviation across the ten models 

(n=10)  
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Supplementary Figure 3. Global feature importance across all Exposures, 

Metabolites/Proteins, Clinical Factors and Covariates. 
Shapley values were aggregated within each category, with the mean absolute value then computed for 

each group across all participants. The black interval bars represent the standard deviation across the ten 

models (n=10) 
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Supplementary Figure 4. SHAP dependence scatter plots (XGBoost). 
Shows how the models respond to variations in the nine most impactful features for mental (P-Factor), 

cardiometabolic (MetS) and respiratory (lung function) risk scores. Grey bars show the features' 

distribution.  
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Supplementary Figure 5. SHAP dependence scatter plots (Lasso).  
Shows how the lasso models respond to variations in the nine most impactful features for mental (P-

Factor), cardiometabolic (MetS) and respiratory (lung function) risk scores. Grey bars show the features' 

distribution. 
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Supplementary Figure 6. SHAP interactions effects (P-Factor). 
Shows the ten most impactful pairwise interaction effects derived from the mental (P-Factor) risk score 

(according to the mean absolute value of the Shapley values of all individuals for a given interaction) 

sorted by decreasing order. 
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Supplementary Figure 7. SHAP interactions effects (MetS). 
Shows the ten most impactful pairwise interaction effects derived from the cardiometabolic (MetS) risk 

score (according to the mean absolute value of the Shapley values of all individuals for a given 

interaction) sorted by decreasing order.  
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Supplementary Figure 8. ECRS stratification with age, sex and parental education.  



28 

Supplementary Table 10. Data selection process 

  Population selection Variable selection 

Step 0 available data n=1622 p=478 

Step 1 Selection of (one 
among) strongly 

correlated variables 
(r>0.9) 

… p=451 

Step 2 Selection of individuals 
with sufficient non 

missing values (>50%) 

n=1520 
 

… 

Step 3 Selection of features 
with sufficient non 

missing values (>40%) 

… p=448 
 

Step 4 Selection of individuals 
with non missing 

outcomes. 

p-factor = 1513 
mets score = 1151 

lung function = 1176 

… 

Abbreviations: n: number of individuals, p: number of variables, r: Pearson correlation  

coefficient. 

Supplementary Table 11. Hyperparameters (step 1). 

 P-Factor MetS Lung function 

XGBoost 

learning_rate 0.1 [1e-2, 1e-1] 0.1 [1e-2, 1e-1] 0.1 [1e-2, 1e-1] 

n_estimators 140  [50, 200] 80 [50, 200] 100 [50, 200] 

max_depth 2 [0, 4] 3 [0, 4] 3 [0, 4] 

objective reg:squarederror reg:squarederror reg:squarederror 

booster gbtree gbtree gbtree 

seed 0 42 42 

Random Forest 

n_estimators 100 [50, 200] 100 [50, 200] 100 [50, 200] 

min_sample_leaf 90 [0, 100] 70 [0, 100] 90 [0, 100] 

max_leaf_nodes 8 [0, 10] 6 [0, 10] 8 [0, 10] 

max_depth 5 [2, 8] 5 [2, 8] 5 [2, 8] 

random_state 42 42 42 

LASSO 

alpha 0 0 0 
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Supplementary Table 12. Hyperparameters (step 2). 

 P-Factor MetS Lung function 

XGBoost 

learning rate 0.024 [1e-3, 5e-1] 0.0842 [1e-3, 5e-1] 0.0395 [1e-3, 5e-1] 

n_estimators 382 [50, 450] 317[50, 400] 318 [50, 400] 

max_depth 2 [1, 10] 2 [1, 8] 1 [1, 8] 

min_child_weight 1 [1, 100] 9 [1, 75] 6 [1, 100] 

subsample 0.725 [0.5, 1] 0.948 [0.5, 1] 0.944 [0.5, 1] 

colsample_bytree 0.839 [0.5, 1] 0.552 [0.5, 1] 0.915 [0.5, 1] 

reg_alpha 0.3 [0, 10] 1.42 [0, 10] 0.2 [0, 10] 

reg_lambda 7.577 [0, 10] 4.688 [0, 10] 0.595 [0, 10] 

gamma 0 [0, 5] 0.3 [0, 5] 2.2 [0, 5] 

objective reg:squarederror reg:squarederror reg:squarederror 

booster gbtree gbtree gbtree 

seed 42 42 42 

Random Forest 

n_estimators 158 [50, 300] 232 [50, 300] 50 [50, 300] 

min_samples_leaf 4 [0, 150] 6 [0, 150] 15 [0, 150] 

max_leaf_nodes 61 [0, 10] 74 [0, 10] 17 [0, 10] 

max_depth 13 [1, 12] 11 [1, 12] 8 [1, 12] 

min_sample_split 20 [2, 50] 14 [2, 50] 48 [2, 50] 

max_features 0.84 [0.5, 1] 0.72 [0.5, 1] 0.7 [0.5, 1] 

random_state 42 42 42 

LASSO 

alpha 0.03 [1e-2, 1] 0.02 [1e-2, 1] 0.05 [1e-2, 1] 

random_state 42 42 42 
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Supplementary Table 13. Summary of residuals statistics obtained in the held out sets 

within the 10 fold cross-validation procedure 

 Mean of residuals across all folds Number of normality distributed 
residuals over 10 folds (Shapiro-Wilk 

test p-value > 0.05) 

Mental ECRS 

Lasso 0.002 10 

Random Forest 0.002 9 

XGBoost 0.002 9 

Cardiometabolic ECRS 

Lasso -0.001 8 

Random Forest 0.001 9 

XGBoost 0.002 8 

Respiratory ECRS 

Lasso -0.001 5 

Random Forest 0.002 5 

XGBoost 0.002 5 
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Name Agnostic NN SEANN 

Hidden layers 3 3 

Size layer 0 89 89 

Size layer 1 8 8 

Size layer 2 2 2 

Learning rate 1.9e-3 1.5e-3 

Supplementary table 1: Hyperparameter sets for SEANN and its agnostic counterpart. Both use the 

same architecture, only the training procedure is different. 

 

Variable name Delta SHAP Agnostic NN Delta SHAP SEANN 

Smoking habit: smoker 15.2 x 10-3 1 x 10-3 

UBE per week 5 x 10-3 1.4 x 10-3 

Predimed high 2.6 x 10-3 1.4 x 10-3 

Weekly sedentary time 3.3 x 10-3 0.4 x 10-3 

Sports (Metw) 10.1 x 10-3 0.8 x 10-3 

NDVI 2.5 x 10-3 1 x 10-3 

NO2 11.7 x 10-3 1 x 10-3 

PM25 3.6 x 10-3 0.3 x 10-3 

O3 2.3 x 10-3 0.4 x 10-3 

Deprivation index 7.1 x 10-3 0.6 x 10-3 

Traffic noise days 3.4 x 10-3 0.6 x 10-3 

Average 6.1 x 10-3 0.8 x 10-3 

Supplementary table 2: Mean absolute error (i.e., delta SHAP) between ground truth Shapley values 

and those obtained with the agnostic NN and SEANN respectively. 

  



 

Supplementary Figure 1. Distributions of the main covariates. 



 

Supplementary Figure 2: Correlation graph of the exposome. The size of the nodes is proportional to 
the number of correlations were >0.5 outside the exposure group and the length of the edges is 
proportional to the inverse of the correlation (the higher the correlation, the shorter the edge length) 
between exposures. The colour of the nodes represents the pre-defined exposure groups. The minimum 
absolute correlation to create an edge was 0.10. 



 

Supplementary Figure 3: Comparison of response functions extracted from a subset of the remaining 
variables (1-15). Dots are Shapley values, encoding the model’s response (y-axis) for a given exposure 
value (x-axis). 

 

 

Supplementary figure 4: Comparison of response functions extracted from a subset of the remaining 
variables (15-30). Dots are Shapley values, encoding the model’s response (y-axis) for a given exposure 
value (x-axis). 

 



 

Supplementary figure 5: Comparison of response functions extracted from a subset of the remaining 
variables (30-45). Dots are Shapley values, encoding the model’s response (y-axis) for a given exposure 
value (x-axis). 

 

 

Supplementary figure 6: Comparison of response functions extracted from a subset of the remaining 
variables (45-60). Dots are Shapley values, encoding the model’s response (y-axis) for a given exposure 
value (x-axis). 
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