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Abstract

Music audio tagging is the Music Information Retrieval task of assigning one
or multiple labels to an audio signal. Music tagging systems are essential for
developing applications involving cataloging, retrieval, or recommendation, so
enhancing the accuracy, robustness, and efficiency of these models is beneficial
for many real-world music applications. Current state-of-the-art music tag-
ging systems rely on deep learning approaches, which offer high performance
but also introduce challenges due to their large data requirements and tend-
ency to overfit. In this thesis, we propose addressing music tagging from the
perspective of representation learning to alleviate these limitations.
The goal of representation learning is to design pre-training objectives that
make the learned representations suitable for several downstream tasks. When
the representations are well-suited to the downstream task, it is often possible
to achieve good performance using shallow models that require few resources to
train and run. Additionally, using a single representation model to feed several
shallow models is more efficient than having individual end-to-end models for
each task, and enables addressing new related tasks with little additional effort.
Our work starts by investigating the capabilities of the representations learned
by competitive music and audio tagging systems and evaluating their cap-
abilities on out-of-distribution data, finding that pre-trained representations
provide generalization benefits. To support the rest of this thesis, we cre-
ate a large-scale dataset matched to Discogs’1 open music metadata that we
use to develop novel representation models. Then, we investigate the effect-
iveness of using editorial and consumption metadata (such as artist names
and playlists) as a source of supervision, showing that this information favors
downstream performance without the need for explicit annotations which are
typically much harder to obtain. After this, we look into the transformer ar-
chitecture, proposing design choices that optimize its performance for music
representation learning. In our last contribution, we propose adapting existing
audio interpretability strategies to operate with pre-trained representations,
thus contributing to more insightful music classification models.
Finally, this work is carried out in the context of Essentia,2 an open-source
library and collection of models for audio and music analysis. The techniques
and models developed in this thesis are openly available as part of Essentia
and have already been used both by the research community and industry.

1http://discogs.com
2http://essentia.upf.edu
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Resum

La classificació d’àudio musical és una tasca del camp de la Recuperació de
la Informació Musical que consisteix a assignar una o múltiples etiquetes a
un senyal d’àudio. Els sistemes de classificació musical són essencials per al
desenvolupament d’aplicacions que impliquen catalogació, recuperació o reco-
manació, de manera que millorar la precisió, la robustesa i l’eficiència d’a-
quests models és beneficiós per a moltes aplicacions musicals del món real. Els
sistemes de classificació musical d’última generació es basen en enfocaments
d’aprenentatge profund, que ofereixen un alt rendiment però també introdu-
eixen desafiaments a causa dels seus grans requisits de dades i la tendència a
sobreajustar-se. En aquesta tesi, proposem abordar la classificació musical des
de la perspectiva de l’aprenentatge de representacions per minimitzar aquestes
limitacions.
La meta de l’aprenentatge de representacions és dissenyar objectius de pre-
entrenament que facin que les representacions apreses siguin adequades per
a diverses tasques posteriors. Quan les representacions són adequades per a
la tasca posterior, sovint és possible aconseguir un bon rendiment utilitzant
models lleugers que requereixen pocs recursos per entrenar i inferir. A més,
utilitzar un únic model de representació per alimentar diversos classificadors
lleugers és més eficient que tenir models d’aprenentatge profund específics per
a cada tasca, i permet abordar noves tasques relacionades amb poc esforç ad-
dicional.
El nostre treball comença investigant les capacitats de les representacions apre-
ses per sistemes competitius de classificació musical i d’àudio i avaluant les
seves capacitats en dades fora de distribució, trobant que les representacions
preentrenades proporcionen beneficis per a la generalització. Per a donar su-
port a la resta d’aquesta tesi, creem un conjunt de dades a gran escala enllaçat
a les metadades musicals obertes de Discogs3 que utilitzem per desenvolu-
par nous models de representació. Després, investiguem l’eficàcia d’utilitzar
metadades editorials i de consum (com noms d’artistes i llistes de reproduc-
ció) com a font de supervisió, demostrant que aquesta informació afavoreix el
rendiment en tasques posteriors sense necessitat d’anotacions explícites, que
normalment són molt més difícils d’obtenir. A continuació, examinem l’arqui-
tectura del transformer, proposant dissenys que optimitzen el seu rendiment
per a l’aprenentatge de representacions musicals. En la nostra última contri-
bució, proposem adaptar estratègies d’interpretabilitat d’àudio existents per

3http://discogs.com
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operar sobre representacions preentrenades, contribuint així a crear models de
classificació musical més comprensibles.
Finalment, aquest treball es duu a terme en el context d’Essentia,4 una bibli-
oteca de codi obert i col·lecció de models per a l’anàlisi d’àudio i música. Les
tècniques i models desenvolupats en aquesta tesi estan disponibles de forma
oberta com a part d’Essentia i ja han estat utilitzats tant per la comunitat
investigadora com per la indústria.

4http://essentia.upf.edu

http://essentia.upf.edu


Resumen

La clasificación de audio musical es la tarea de Recuperación del campo de la
Información Musical que consiste en asignar una o múltiples etiquetas a una
señal de audio. Los sistemas de clasificación musical son esenciales para el desa-
rrollo de aplicaciones que implican catalogación, recuperación o recomendación,
por lo que mejorar la precisión, la robustez y la eficiencia de estos modelos es
beneficioso para muchas aplicaciones musicales del mundo real. Los sistemas de
clasificación musical de última generación se basan en enfoques de aprendizaje
profundo, que ofrecen un alto rendimiento pero también introducen desafíos
debido a sus grandes requisitos de datos y la tendencia a sobreajustarse. En
esta tesis, proponemos abordar la clasificación musical desde la perspectiva del
aprendizaje de representaciones para aliviar estas limitaciones.
La meta del aprendizaje de representaciones es diseñar objetivos de preentre-
namiento que hagan que las representaciones aprendidas sean adecuadas para
varias tareas posteriores. Cuando las representaciones son adecuadas para la
tarea posterior, a menudo es posible lograr un buen rendimiento utilizando
modelos ligeros que requieren pocos recursos para entrenar e inferir. Además,
utilizar un único modelo de representación para alimentar varios clasificadores
ligeros es más eficiente que tener modelos de aprendizaje profundo específi-
cos para cada tarea, y permite abordar nuevas tareas relacionadas con poco
esfuerzo adicional.
Nuestro trabajo comienza investigando las capacidades de las representacio-
nes aprendidas por sistemas competitivos de clasificación musical y de audio y
evaluando sus capacidades en datos fuera de distribución, encontrando que las
representaciones preentrenadas proporcionan beneficios para la generalización.
Pdeara apoyar el resto de esta tesis, creamos un conjunto de datos a gran escala
enlazados a los metadatos musicales abiertos de Discogs’5 que utilizamos para
desarrollar nuevos modelos de representación. Luego, investigamos la eficacia
de usar metadatos editoriales y de consumo (como nombres de artistas y listas
de reproducción) como fuente de supervisión, demostrando que esta informa-
ción favorece el rendimiento en tareas posteriores sin necesidad de anotaciones
explícitas, que normalmente son mucho más difíciles de obtener. Después de
esto, examinamos la arquitectura del transformer, proponiendo diseños que op-
timizan su rendimiento para el aprendizaje de representaciones musicales. En
nuestra última contribución, proponemos adaptar estrategias de interpretabi-

5http://discogs.com
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lidad de audio existentes para operar sobre representaciones preentrenadas,
contribuyendo así a crear modelos de clasificación musical más comprensibles.
Finalmente, este trabajo se lleva a cabo en el contexto de Essentia,6 una bi-
blioteca de código abierto y colección de modelos para el análisis de audio y
música. Las técnicas y modelos desarrollados en esta tesis están disponibles
de forma abierta como parte de Essentia y ya han sido utilizados tanto por la
comunidad investigadora como por la industria.

6http://essentia.upf.edu
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CHAPTER 1
Introduction

1.1 Motivation

Music is a form of artistic expression through sound developed by humans for
tens of thousands of years.7 Through music, cultures have expressed the whole
spectrum of emotions, transmitted their myths and wisdom, and prepared for
rituals and ceremonies. In the modern days, music is present in many aspects
of our lives. For instance, religious festivities such as Christmas are accom-
panied by carols, urban subcultures such as the clubbing scene are associated
with uncountable niche styles of electronic music,8 and sports events are ac-
companied by anthems and fan songs. Additionally, music can be presented
in combination with other cultural expressions such as cinema (soundtracks),
dance (ballet), or theater (musicals), which further enriches the complexity of
the messages it can express. These examples illustrate that music is able to
convey an exceptional amount of information, and so it has been studied from
many different angles including theoretical, musicological, anthropological, or
psychological perspectives.
The Music Information Retrieval (MIR) community is interested in developing
computational approaches to automatically analyze music signals to extract
parts of this information. Some authors use the term Music Understanding to
refer to the set of MIR tasks aiming to extract different types of semantic in-
formation from music signals. For example, Music Genre Recognition (MGR)
or Music Emotion Recognition (MER) are two of the most active research
areas in the field. Being able to automatically recognize the genre of a song,
or the emotions it can evoke, has a wide range of potential applications such
as enhancing music recommendation systems, helping in music discovery or
collection organization, or advancing research in other fields such as computa-

7https://en.wikipedia.org/wiki/History_of_music
8https://en.wikipedia.org/wiki/Clubbing_(subculture)
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tional musicology (Volk et al., 2011), neuroscience (Levitin & Tirovolas, 2009),
or medicine (Hillecke et al., 2005).
In the last decade, approaches based on Deep Neural Networks (DNNs) have
dominated the field of MIR achieving remarkable results in many of its tasks.
In this sense, tasks that are typically modeled as classification problems such as
MGR or MER are especially well-suited for DNNs (Matityaho & Furst, 1995;
Feng et al., 2003). Other examples of music understanding tasks addressed as
classification problems include instrument recognition (Kaminsky & Materka,
1995), artist identification (Berenzweig et al., 2002), or key detection (Laden
& Keefe, 1989). Additionally, tasks that were traditionally addressed with
signal processing techniques such as onset detection (Marolt et al., 2002), beat
tracking (Scaringella & Zoia, 2004), and tempo (Schreiber & Meinard, 2018)
or pitch estimation (Kim et al., 2018b) have also been successfully modeled as
classification problems using DNNs. However, one of the main limitations of
these methods is that they typically require a large amount of annotated data
to train effectively.
In MIR, annotating data can be particularly challenging because of different
factors. First, the temporal dimension of music is crucial in order to create
annotations for tasks such as beat tracking, onset detection, or pitch estima-
tion. This means that if the annotations are not precise enough, the models
will not be able to learn the task correctly. However, generating annotations
with high level of precision is time-consuming and difficult to achieve at scale.
Second, certain tasks require a high level of musical expertise to be annotated.
For instance, it is not possible to generate key or chord annotations without a
certain level of musical training. Finally, while tasks such as onset detection or
tempo estimation are relatively objective, others such as MGR or MER can be
very subjective due to multiple factors. For instance, the boundaries between
different music genres are not always clear, and the same track can be classi-
fied into different genres depending on the listener’s background and musical
knowledge. Also, the mood or emotion evoked by a piece of music can be very
different depending on the cultural background of the listener or the context
in which it is played. Because of these factors, obtaining large and balanced
datasets for music understanding tasks is particularly challenging.
Representation learning is a machine learning paradigm that alleviates the
need for large amounts of high-quality annotated data by splitting the learn-
ing process in two stages (Bengio et al., 2013). In the first stage, a model is
trained on a primary task using a large amount data that can be easily ob-
tained. Typically, the primary task is a self-supervised (not requiring human
annotations), or relies on a source of inexpensive labels that are abundant and
easy to obtain. After training, the model is used to ease solving the actual
task of interest by fine-tuning its parameters or using it as a feature extractor
to train a new model. This process is sometimes called transfer learning, and
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it has been shown to be very effective in many domains including MIR. Im-
portantly, the primary and secondary tasks need to be related up to certain
extent to work. For instance, a model trained on image classification will not
produce useful features for a music classification task (although it may be a
better initialization than starting from scratch (Alonso-Jiménez et al., 2023b)).
With the representation learning paradigm in mind, this thesis explores the
use of inexpensive sources of supervision to train music representation models
to improve music understanding tasks. In particular, we focus on different
sources of publicly available music metadata. First, we rely on Discogs,9 a
public-domain database of editorial metadata. Discogs’ release entries contain
information about the artist, album, record label, country, year of release, and
genre and style tags among other details. Additionally, we are interested in
exploring the use of consumption metadata, which encodes human judgments
of music that is suitable for the same context. For instance, playlists, DJ
setlists, radio programs, or listening histories are examples of consumption
metadata that can be used to train music representation models.
Finally, we could consider the release of Essentia models (Alonso-Jiménez et al.,
2020a)10 as the starting point of this thesis. Essentia models had the goal
of creating a repository of audio-based DNNs to replace the former Essentia
classifiers based on Support Vector Machines (SVMs). This thesis can be
seen as an iterative effort to improve Essentia models by searching for better
techniques to create music representation models that are then used to power
the Essentia models’ classifiers.
In the following sections, we address in more detail the scope of this thesis by
providing deeper insights into the representation learning paradigm, the poten-
tial of weak sources of supervision for music, and the relevance of this research
in the context of Essentia. Then, we identify some of the current problems
related to music classification that representation learning can alleviate, and
the list of research questions to be addressed in this thesis. Finally, we present
the outline of this dissertation.

1.2 Scope of the thesis

In this section we develop in more detail the key concepts that define the scope
of this thesis.

9https://www.discogs.com/
10http://essentia.upf.edu/models.html
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1.2.1 Representation learning

Representation learning is a machine learning paradigm that aims to create sys-
tems to extract information useful for several downstream tasks (Bengio et al.,
2013). The typical representation learning pipeline is depicted in Figure 1.1.
Given a model trained on a primary task, the most common approaches are
fine-tuning the model (or parts of it) in a secondary task or using it as a fea-
ture extractor to train a new model. In the former case, the primary task is
sometimes called “source”, “parent”, or “pre-training” task, the learned rep-
resentations are the “deep” or “latent” features, “deep embeddings”, or just
“embeddings”, and the secondary task is called “target” or “downstream” task.
We will use those terms indistinctly in this dissertation.
This paradigm allows leveraging large amounts of data without expensive cur-
ated annotations to pre-train representation models useful to train downstream
models that generalize well with small amounts of annotated data and compu-
tations. The strategies to create representation models include self-supervised
approaches, tasks with inexpensive labels, or a combination of many weak tasks
in a multitask approach. Within this paradigm, it is possible to address the
music classification problems from a different perspective. Instead of creating
large and balanced music classification datasets to alleviate the reported ambi-
guity factors, one could rely on embedding extractors to improve classification
in small, clean datasets.
The success of representation learning in domains such as Natural Language
Processing (NLP) or Computer Vision (CV) has motivated the MIR com-
munity to explore this paradigm. For instance, most State of the Art (SOTA)
approaches in NLP rely on self-supervised language modeling (Radford et al.,
2018). This task consist of predicting the next word in a sentence given the
previous ones. This approach has demonstrated to be a flexible way to learn
useful representations that can be fine-tuned to solve many downstream tasks
(Radford et al., 2019; Qiu et al., 2020). Self-supervised representation learning
has also reached popularity in the CV and audio communities. However, the
dense nature of image and audio signals makes the design of self-supervised
tasks more challenging. Masked Autoencoders (MAEs) are popular approaches
both in image (He et al., 2022) and audio (Chong et al., 2022). They could
be considered the most similar approach to NLP’s language modeling, and
they work by predicting the masked regions of the input signal from the latent
representation of the unmasked part. Other popular directions exploit metric
learning to create representations that are invariant to distortions on the input
signal. For instance, SimCLR (Chen et al., 2020) and MoCo (He et al., 2020)
are popular CV approaches that rely on contrastive learning to discover useful
representations. Both approaches have been successfully adapted to the audio
domain (Wang et al., 2022).
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Large dataset Representation
model

Pre-training task

Pre-training stage

Small dataset 1 Downstream
model Task 1

Small dataset 0

Small dataset N

Task 0

Task N

Transfer learningDownstream stage

Figure 1.1: Diagram of the representation learning pipeline. In the pre-training
stage, a model is trained on a primary task using a large dataset. In the downstream
stage, the model is fine-tuned or used as a feature extractor to train new models on
downstream tasks.

While the performance of self-supervised representation models have been im-
proving drastically both in the CV and audio, it is still not clear that a single
self-supervised pre-training method would be able to excel in all downstream
tasks, and in particular tasks such as beat-tracking (Hung et al., 2022) or key
estimation (Korzeniowski & Widmer, 2018) custom architectures and train-
ing objectives still perform better. Following this observation, we propose to
explore different sources of inexpensive labels to train music representation
models that can be used to achieve SOTA performance in certain music clas-
sification tasks (Alonso-Jiménez et al., 2023b).

1.2.2 MIR research based on weak supervision

Self-supervised representation learning approaches enable training models with
large amounts of unannotated data and hold the SOTA in domains such as
NLP. In practice, these approaches have a limited scope for domains where
collecting unlabeled data at scale is difficult due to copyright limitations or
simple shortage. In these cases, certain forms of weak supervision may com-
pensate for the lack of training data.
In the last decades, many of the advances in music understanding have been
achieved by relying on weak forms of supervision. To do this, researchers
proposed ways of leveraging data available in the public domain instead of
creating high-quality datasets from scratch.
Music auto-tagging is a popular MIR task formulated as a multi-label classific-
ation problem where the goal is to predict a set of tags describing the content
of a music track. The main characteristic of music auto-tagging is that the
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ground truth is typically obtained from open databases of music metadata
maintained by online communities instead of curated taxonomies created by
experts. Last.fm11, MusicBrainz12, Music4All13, and Discogs are examples of
databases providing music editorial metadata. Most of these platforms allow
users to add free-form tags to the music tracks or albums, which is the main
source of ground truth for music auto-tagging tasks. Bertin-Mahieux et al.
(2011) created the Million Song Dataset (MSD), a dataset of close to one mil-
lion 30-seconds previews linked to editorial metadata from Last.fm, becoming
a reference dataset for music auto-tagging research. The MSD tags typically
refer to high-level concepts such as genre, mood, instrumentation, or cultural
origin. However, there are also many tags related to user preferences (e.g.,
“favorites”, “seen live”), which are not useful for music understanding tasks.
In general, the quality of the tags is not guaranteed, and the annotations are
noisy and unbalanced. Van Den Oord et al. (2014) proposed using auto-tagging
as pre-training method and then transfer the learned representations to MGR
achieving competitive results. The authors proposed considering only the top
50 most frequent tags in the MSD to alleviate the imbalance and noise in the
dataset, which became a common practice in the field. This work inspired a
number of follow-up studies exploring the use of auto-tagging as a pre-training
task for music classification tasks. See Chapter 2.3 for a more detailed review
of the literature on music auto-tagging.
While auto-tagging can be considered a powerful approach for music represent-
ation learning (McCallum et al., 2022), it presents certain limitations. First,
the ground truth tends to be noisy, which creates the need for additional data
cleaning and preprocessing steps. Second, the ground trunth unbalance limits
the exploitation of the full potential of the datasets. For example, only 20% of
the tracks in the MSD are tagged with one of the top 50 tags, which is what
is typically considered in the literature. Finally, since different auto-tagging
datasets use different tag sets, it is not trivial to combine them to create larger
datasets.
Accounting for this, researchers have considered using other types of music
metadata that do not suffer from the shortcomings of auto-tagging datasets.
In this thesis, we focus on two types of metadata that is commonly avail-
able in association with music: editorial and consumption metadata. Editorial
metadata refers to the information used to catalog music (e.g., artist and album
names, or country and year of release), and consumption metadata describes
interactions of humans (or machines) with music (e.g., playlists, DJ setlists,
radio programs, or listening histories). In general, music metadata is easily
accessible in industrial contexts such as streaming services, or radio stations,

11https://www.last.fm/
12https://musicbrainz.org/
13https://music4all.upf.edu/
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and can be combined by crossing data from different sources. Music metadata
does not suffer from the same limitations as auto-tagging datasets. For in-
stance, the name of the artist or a track is objective information, and while it
is susceptible to errors (e.g., misspellings, alternative names), it is not expected
to suffer the same level of noise as user-generated tags. Also, since this type of
information is not attached to a particular taxonomy, it is easier to combine
data from different sources to create larger datasets. Finally, as mentioned
in Section 1.1, the information conveyed on music is sometimes very complex
and hard to capture with language or tags. Instead, relying on the proposed
types of associative metadata (e.g., two tracks that belong to the same artist,
or that are played in the same playlist) could be a more direct way to capture
the relations between music tracks that are relevant for music understanding
tasks. As a drawback, this type of information is not suitable for standard
classification approaches (i.e., the number of classes would be on the same or-
der of magnitude as the number of tracks). To solve this, Kim et al. (2018a)
targeted artists names summarized as Linear Discriminant Analysis (LDA)
topics, and Park et al. (2018) used the triplet loss to attract tracks belonging
to the same artist. Chapter 2.6 provides a detailed review of the literature on
music representation learning approaches using metadata.

1.2.3 Essentia

Essentia14 is an open-source library and collection of models for audio and
music analysis released under the AGPLv3 license and well known for its cap-
ability to serve as a basis for large-scale industrial applications as well as a rapid
prototyping framework (Bogdanov et al., 2013b). Some of its key features are:

It is implemented in C++, with a great focus on efficiency, which makes
it the fastest open-source library with the largest amount of features for
audio analysis (Moffat et al., 2015).

It supports a declarative approach to the implementation of signal pro-
cessing pipelines with the “streaming mode” connecting algorithms for
each computation step via ring buffers. This allows the user to streamline
audio analysis processing input files or audio streams by chunks (in par-
ticular in real-time) and also limits memory usage, which can be crucial
for many applications.

It has a Python interface. Programming in an interpreted language while
all the data flow is ultimately controlled by optimized C++ code provides
a balance between functionality and flexibility.

14https://essentia.upf.edu
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It supports various platforms including Linux, Windows, MacOS, An-
droid, iOS, and can be also cross-compiled to JavaScript.

The first generation of music classification models for Essentia consisted of
a collection of SVM classifiers based on engineered features and trained on
in-house music collections (datasets) available at Music Technology Group
(MTG).15 These classifiers are publicly available and have been used extens-
ively for research Wack et al. (2009, 2010); Laurier (2011); Bogdanov et al.
(2011, 2013a); Fricke et al. (2018) and in AcousticBrainz, an open database
of music audio features Porter et al. (2015) with over 13.5 million analyzed
tracks. Given its focus on efficiency, flexibility of use, modularity and easy ex-
tensibility, we consider Essentia an attractive infrastructure to build efficient
and modular deep learning pipelines for to replace the former SVM classifiers.
In this sense, this thesis aims to improve the models available in Essentia by
improving the quality of the music representation models used to power the
classifiers. Alonso-Jiménez et al. (2020a) proposed the first steps in this dir-
ection, where we released a collection of audio-based deep learning models for
music analysis. The rest of steps of this thesis are aimed to improve the qual-
ity of the classifiers in Essentia models by creating better music representation
models.

1.3 Challenges in music representation learning

In recent years, DNNs have become the go-to approach for classification across
multiple domains, including MIR. However, the characteristics of music and
the complexity of the tasks at hand have not allowed considering most of the
music classification tasks solved despite the vast amount of research on the
topic and computation capabilities available nowadays.
We identify the following problems related to music classification:

Lack of training data. Deep models require large datasets to gen-
eralize well. However, there are very limited large datasets for music
classification. Most of the time there is a trade-off between label quality
and the amount of data. Additionally, the annotation process of music
is considered particularly difficult and time-consuming.

Subjectivity. Many music classification tasks are relatively subjective,
and factors such as the culture, age, or musical training of the listener
influence the perceived genre, mood, or theme of music Gómez Cañón
et al. (2020). Because of this, most music classification datasets suffer

15https://acousticbrainz.org/datasets/accuracy
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from a strong bias induced by the fact that they do not have balanced
annotations concerning those factors, which results in poor generaliza-
tion.

Weak labeling. The track could be considered the minimal unit of mu-
sic suitable for annotation. However, this is very inconvenient for com-
putational approaches relying on a fixed input length, so it is common to
design systems operating on audio segments with a fixed duration. This
is problematic because labels are not always consistent at the patch level.
For example, a particular segment belonging to the intro may not repres-
ent the overall genre or instrumentation of the track. Furthermore, labels
sometimes come from editorial metadata, which can only be available at
the album level, resulting in even less label resolution.

Complex information. If we compare music to speech or environ-
mental recordings, it can be considered a rather crowded signal in terms
of information. It may require much musical training for a human to dis-
tinguish the instrumentation of a track for certain styles. Furthermore,
harmonic sources spread their energy across the spectral representations
usually used to train these classifiers. Thus, this adds extra complexity
to the process of pattern recognition in systems assuming the locality of
patterns such as the Convolutional Neural Networks (CNNs).

Notice that some of these problems interact with each other and altogether
contribute to the difficulty of music classification. As musical signals are very
complex, models would need more data to learn the task correctly. However, it
is also difficult for humans to create clean large datasets for the same reason.
Furthermore, because of the high dataset bias induced by the subjectivity of
the tasks, the metrics are probably over-optimistic, and it is not easy to assess
the actual capabilities of the models.
Our intuition is that the solution should not rely on the classical end-to-end
DNNs by collecting sufficient data for the task of interest. Instead, we propose
relying on approaches that allow leveraging knowledge acquired on easy and
data-abundant tasks to facilitate solving the complex classification tasks with
small but well-curated datasets.

1.4 Research questions

So far, we have framed this thesis into the design and evaluation of models
able to produce deep representations useful for music classification tasks. Our
ultimate goal is to maximize the performance of music classification tasks by
leveraging available sources of public data. For this, we will not only focus
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Figure 1.2: Diagram of the stages in the proposed representation learning setup.
Apart from the typical pre-training and downstream stages, we propose additional
steps to evaluate the generalization capabilities of the models, their interpretability,
and their deployment in real-world applications. The dashed lines mark the blocks for
which we do not propose contributions.

on learning from semantic tags or fully self-supervised approaches, but we will
also explore editorial and consumption metadata as sources of supervision.
Figure 1.2 shows the standard stages of a representation learning pipeline and
the chapters of this thesis contributing to any of their main components. In the
pre-training stage, a representation model is trained on a pre-training task. In
this dissertation we explore using semantic tags (Chapter 3), editorial metadata
(Chapter 4), and consumption metadata (Chapter 5) as sources of supervision
for the pre-training task. Additionally, we assess the impact of different design
decisions on convolutional (Chapter 3) and transformer (Chapter 6) architec-
tures in the learned representations. Typically, the performance of the model
in the pre-training task is only used to monitor the training process, but it is
not useful for practical purposes. In the downstream stage, the representation
model is fine-tuned (Chapter 5) our used as a feature extractor (Chapters 3,
4, and 6) to train downstream models on one or multiple downstream tasks.
In Chapter 3, we propose evaluation metrics that allow for a better compar-
ison between representation models by considering statistical significance and
normalizing the relative difficulty of downstream tasks. Additionally, we have
identified a number of complementary steps that are not commonly covered in
the representation learning literature, which are also part of the objectives of
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this thesis. In Chapter 3, we pay attention to the generalization capabilities of
the models based on deep representations in out-of-distribution scenarios. In
Chapter 7, we explore the interpretability of the models, and in Chapter 8, we
discuss the deployment of certain models developed on the scope of this thesis
in real-world open source and commercial applications.
After this overview, we will now introduce the specific research questions that
we aim to address in the following chapters:

Q1. Can music classification models improve their performance by rely-
ing on deep audio representations? Does this benefit their generalization
capabilities? How does this relate to the amount of available data in the
downstream task?

Q2. What is the best strategy to build a representation model for mu-
sic classification tasks? Can we rely on inexpensive, abundant labels
such as music editorial or consumption metadata? Can we rely on self-
supervised techniques? Is there a benefit if we combine these objectives
in a multitask setup?

Q3. What type of deep architecture is the most convenient for the
embedding model? Will transformers or other assumption-free models
surpass the Convolutional Neural Network (CNN) models? Does the
answer hold for online classification?

Q4. Is it possible to operate representation learning models that do not
behave as simple black boxes? Can we do something to enhance the
interpretability of the resulting classification models?

1.5 Dissertation outline

This dissertation is organized in nine chapters. Chapters 3 to 9 present the
main contributions of this thesis as reflected in Figure 1.2. These chapters ad-
dress the research questions proposed in the previous section, and are primarily
based on the following research papers: Alonso-Jiménez et al. (2020a,b, 2022,
2023a,b, 2024), and complemented with additional experiments, discussions,
and contributions to other publications.
Chapter 2 provides a literate review covering the history of music classification
methods based on neural networks. After this, it contains sections dedicated
to the specific techniques and methods employed in the technical chapters of
this thesis.
Chapter 3 starts by evaluating pre-trained audio tagging systems as feature
extractors for music classification tasks. After showing promising results in
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preliminary experiments, we compare a number of CNN architectures and
pre-training strategies. According to the results, we propose a new model,
DiscogsEffNet, trained on a 3.3 million collection of audio and music style tags
coming from Discogs, which achieved state-of-the-art performance in several
downstream tasks. We perform several experiments finding that the best-
considered representation models allow for a better generalization in out-of-
distribution scenarios and achieve competitive performance with a fraction of
the data required by the end-to-end models.
In Chapter 4, we propose a novel approach to pre-train music embeddings using
editorial metadata from Discogs. Our approach can be considered an extension
of previous works using metadata notions to form the positive pairs (e.g., two
tracks from the same artist form the anchor-positive pair) in conjunction with
the triplet loss (Park et al., 2018). We replace the triplet loss with a SimCLR
a contrastive learning method that already demonstrated good performance
in fully supervised settings (Chen et al., 2020). Additionally, we experiment
with album, artist, and record label notions, and propose a multitask setup.
Our results show that our approach overcomes the standard SimCLR self-
supervised baseline and our DiscogsEffNet model trained on music style tags
associated with the same dataset. We conclude that the proposed approach
combines the computational efficiency and competitive performance of super-
vised approaches, with the scalability and flexibility of self-supervised methods
by preventing the need to work with fixed taxonomies or noisy labels.
Chapter 5 explores leveraging the techniques developed in Chapter 4 to pre-
train music representation models using consumption metadata. The consump-
tion metadata consists of playlists from the Million Playlist Dataset (MPD)
(Chen et al., 2018), and the pre-trained models are fine-tuned instead of used
as embedding extractors as in the previous chapters. Additionally, we develop
new strategies to exploit the consumption metadata, treating the playlist in-
formation as an additional modality and achieving better performance than
the baseline using editorial metadata (artist associations), which demonstrates
the potential of this type of information. Our best model outperforms the con-
sidered baselines and achieved SOTA in the MagnaTagATune dataset (Law
et al., 2009). Finally, we observe that consumption metadata provides better
performance in the task of music similarity than the baseline methods based
on classification or editorial metadata.
In Chapter 6, we explore the usage of transformers as representation models for
music classification tasks. Since contrastive learning approaches require large
amounts of Graphics Processing Unit (GPU) memory, and we are constrained
to consumer grade hardware, we discarded experimenting with the methods
presented in Chapters 4 and 5 in combination with transformers. Instead,
we relied on the supervised approach based on music style tags presented in
Chapter 3. We experiment with different pre-training configurations to find
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the most suitable settings for our downstream classification tasks. We find
that initializing the trained weights if the transformer is crucial, that trans-
formers benefit from longer input sequences compared to CNNs, that the best
representations to transfer are not in the last layer but in the intermediate
ones (again opposing the CNN case), and that transformers are more flexible
and support inference regimes that are more efficient than CNNs while keeping
higher performance.
Chapter 7 explores interpretability in the context of music classification models
based on deep representations. To do so, we take inspiration from the Audio
Prototype Network (APNet) model by Zinemanas et al. (2021). APNet works
by training a prototypical classifier in the latent space of an audio autoencoder,
which allows for sonifying the class prototypes after training. We adapt this
setup to perform the sonification through a diffusion decoder conditioned on
arbitrary representations. Our method allows for a better trade-off between
interpretability and model performance since this setup allows for using SOTA
representations instead of learning them in the downstream task from scratch.
Potentially this method allows for gaining further understanding about the
representations used by the models.
Chapter 8 presents applications of the models developed in this thesis bey-
ond the research context, including commercial and open-source applications.
Chapter 9 concludes the dissertation and provides some directions for future
work. Finally, Appendix 9.3.6 contains a list of the main contributions by the
author in the scope of this thesis.





CHAPTER 2
Scientific background

2.1 Introduction

Classification is arguably one of the fundamental pillars of Music Information
Retrieval (MIR). The first models for tasks such as chord detection (Laden &
Keefe, 1989) or music genre recognition (Matityaho & Furst, 1995) appeared
even before its consolidation as a field, and some authors consider that classi-
fication is the most researched topic in MIR (Fu et al., 2010).
In this chapter, we focus on the evolution of neural-network-based approaches
for music classification, which have been the most explored methods in the
last decade. We start by reviewing the first shallow models that emerged in
the late 80s and early 90s relying on symbolic representations. After this, we
cover the first deep learning models that appeared in the mid-00s, and the
subsequent wave of research that followed the irruption of the MSD (Bertin-
Mahieux et al., 2011). Finally, we review the most recent approaches based
on representation learning, including some of the techniques employed in this
thesis, such as contrastive learning.

2.2 First neural networks for music classification

The first neural networks for music classification emerged in the late 80s follow-
ing the development of algorithms that allowed efficient training, such as back-
propagation (Rumelhart et al., 1985). Back then, Multi-Layer Perceptrons
(MLPs) (or feedforward fully-connected neural network) were the most com-
mon architecture.
Due to the high dimensionality of audio signals or other representations such
as spectrograms, researchers could not feed these signals directly to the MLPs,
especially considering the computational resources available at the time. In-
stead, the first efforts focused on sparse symbolic representations.

15
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The first known music classification neural network consisted of an MLP trained
to distinguish among “major”, “minor”, or “diminished” chords from a 12-
dimensional input vector representing the pitch classes of the chromatic scale
(Laden & Keefe, 1989). Later on, models were able to operate on richer sym-
bolic representations such as MIDI. Dannenberg et al. (1997) proposed differ-
ent machine learning models, including MLPs, to classify MIDI files into nine
different playing styles, including “frantic”, “lyrical”, or “pointillistic”.
Matityaho & Furst (1995) trained an MLP to distinguish between “classical”
and “pop” music using spectrograms as input for the first time. This was a
critical breakthrough as it enabled porting computer vision approaches directly
to the music domain, which is, in fact, still very popular nowadays.
The success of neural networks in these classification tasks encouraged re-
searchers to use them for tasks traditionally treated with signal processing.
For example, most researchers used to approach onset detection as a peak
detection problem on a transformed version of the waveform. Marolt et al.
(2002) approached this task with an MLP operating on a frame-wise manner
deciding if the current timestamp is onset or not, converting it into an actual
classification problem. Later on, tasks such as beat tracking (Böck & Schedl,
2011) or pitch detection (Kim et al., 2018b) were approached as frame-wise
classification problems too.

2.3 Deep learning and music auto-tagging

With the irruption of GPU-accelerated systems in the mid-00s, researchers
started training larger and deeper models that turned into dramatic perform-
ance improvements when sufficient training data was available. However, by
that time, the MIR community lacked large-scale music datasets, and annot-
ating music is a tedious task requiring significant amounts of time and domain
knowledge.
At the same time, a number of music online communities started to develop,
including platforms such as Last.fm16 or Discogs. In order to facilitate brows-
ing, discovering, or recommending music, some of these websites started to
label their music following two different philosophies: taxonomies and folkso-
nomies. While taxonomies are composed of a fixed hierarchy of labels that
are unalterable by the users (e.g., Discogs), in folksonomies users have the
freedom to create arbitrary tags (e.g., Last.fm). While taxonomies are gen-
erally well-structured and hierarchically organized, folksonomies may contain
highly overlapping tags (e.g., “Hip Hop”, “hiphoprap”) and can be considered
more noisy, as it is more difficult to enforce users to follow a common tag-

16last.fm

last.fm


2.3 Deep learning and music auto-tagging 17

ging strategy. On the other hand, folksonomies have advantages. For example,
they allow arbitrary label resolution according to the user’s expertise or quickly
adapt to trends without the intervention of the platform administrators.
For example, Discogs is a database where users can submit editorial metadata,
including a fixed taxonomy of more than 570 music styles grouped in 8 broad
musical genres. On the other hand, Last.fm is an online radio and music re-
commender where users can label music with an arbitrary number of free tags.
With the growing demands of training data, researchers started to identify
these platforms as potential sources of labels for music classification datasets.
However, so far, most of the work has focused on folksonomies due to their
larger size.
In this context, Eck et al. (2007) proposed matching a collection of 90,000 music
tracks to Last.fm tags to build a dataset for music tag prediction giving birth
to the task of music automatic tagging (or auto-tagging). Music tagging is a
multi-label classification task using a vocabulary that can combine multiple
music notions (e.g., genre, moods, eras). The motivation for this work was
to use automatic tags to solve the problems of cold-start and explainability
present in recommender systems based on collaborative filtering. They used
an ADABoost (Freund et al., 1999) classifier and claimed that 70% of the tags
corresponded to the track’s genre, mood, or instrumentation.
The appearance of the MSD by Bertin-Mahieux et al. (2011) was an import-
ant milestone, as it provided a relation of Last.fm tags to approximately one
million tracks accessible as audio features or 30-second previews. Dieleman &
Schrauwen (2014a) used the MSD to train the first auto-tagging CNN operat-
ing directly on the waveform.
Choi et al. (2017a) experimented with recurrent layers on top of the convolu-
tional feature extractor to summarize the temporal information finding benefits
of using hybrid recurrent/convolutional architectures. Choi et al. (2018) were
among the first researchers aiming to quantify noise on auto-tagging collec-
tions. Their methodology consisted of comparisons between feature vectors
obtained from a data-driven approach and the ground truth.
According to a study comparing CNN architectures for auto-tagging Won
et al. (2020b), simple 3×3 convolutional models based on spectrogram repres-
entations, firstly proposed by Choi et al. (2016), achieve the best performance
in datasets of this order of magnitude. However, Pons et al. (2017) found
that waveform-based architectures overcome spectrogram models when they
use sufficient training data. In the proposed setup, this occurs when using
approximately one million training samples.
A number of works propose neural architectures specifically designed for music
applications. Pons et al. (2016) proposed a CNN architecture featuring vertical
(frequency-wise) and horizontal (time-wise) convolutions aiming to capture
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spectral and temporal patterns in music. Won et al. (2020a) proposed a CNN
architecture with filters tuned to capture harmonic structures. Won et al.
(2019) was one of the authors proposing the use of transformers for music
auto-tagging, an architecture that has been widely adopted in the field since
then.

2.4 Representation learning for music classification

One interesting property of deep convolutional architectures is their ability to
learn hierarchical representations, from low-level patterns in the first layers
to abstract features in the last ones. It is reasonable to think that features
learned by models trained to optimize discriminative targets can be helpful for
additional related discriminative tasks, and that the features produced in the
different layers would reflect different levels of abstraction making them appro-
priate for different specific tasks. From the early 10s, classification based on
semantic labels has probably been the most popular task to learn transferrable
representations in MIR. Specifically, music auto-tagging is a multi-label task
that covers a wide range of musical notions such as genre, instrumentation,
moods, or era.
Hamel & Eck (2010) explored this idea by comparing Mel–Frequency Cepstral
Coefficient (MFCC)s and embeddings from a four-layer Deep Belief Network
(DBN) as input features for a SVM classifier. The experiment showed that the
embeddings, particularly those from the final layers, performed better than the
MFCC baseline. While this experiment showed the capabilities of deep models
to operate as feature extractors, it cannot yet be considered transfer learning
as defined in Section 2.1 because the authors trained both the DBN and the
SVM in the same MGR dataset.
Hamel et al. (2013) conducted one of the first transfer learning experiments on
MIR by using an auto-tagging dataset to learn a shallow embedding model used
later to train a linear classifier for MGR. From this point, many works have
relied on the task of music auto-tagging on datasets such as the MSD Bertin-
Mahieux et al. (2011) because this was probably the largest source of annotated
music audio back then. This experiment showed that the learned features were
beneficial under small training data conditions. van den Oord et al. (2014) per-
formed a similar experiment where they replaced the embedding model with
a two-layer MLP trained in the MSD finding that the representations learned
by solving an auto-tagging task improved the performance compared to tra-
ditional MFCCs for several classification tasks. Choi et al. (2017b) followed a
similar approach replacing the MFCCs with a six-layer CNN. This experiment
can be considered the first example of transfer learning featuring deep embed-
dings in MIR. Again, the authors found that the most useful features tend to
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be in the deeper layers of the networks and that stacking the embeddings ex-
tracted from different layers could be beneficial for downstream performance.
Lee et al. (2018) proposed a CNN architecture operating directly on the wave-
form with features achieving competitive performance in several classification
tasks.
More recently, the research directions on the creation of embeddings for clas-
sification have diversified. Pons et al. (2019) compared various approaches
intended for classification with few data, including highly regularized mod-
els, and prototypical learning, finding that transferring representations from
pre-trained auto-tagging models resulted in the most effective technique. Kim
et al. (2019a) measured the effect of perturbations in different feature spaces
and found that deep embeddings tend to be more prone to alteration than
MFCCs. Kim et al. (2020a) studied different strategies to simultaneously solve
supervised and self-supervised tasks to train deep representation models. Lee
et al. (2020b) compared classification to metric learning approaches for auto-
tagging, finding that the classification embeddings performed better in the
classification tasks. Additionally, the authors proposed a method to disen-
tangle the embedding space in terms of the different musical notions present in
the dataset that improved the performance in the classification tasks. Huang
et al. (2020) combined classification and metric learning to leverage the co-
listen information linked to the MSD.
Ultimately, the main bottleneck of most of these approaches is that they rely
on labeled data that is relatively scarce or noisy (it is primarily auto-tagging
datasets derived from folksonomies). One way of overcoming this limitation
is to rely on models trained on general-purpose audio labels, such as VGGish
(Hershey et al., 2017), whose features have been found useful for music clas-
sification for several authors (Alonso-Jiménez et al., 2020a; Koh & Dubnov,
2021). Additionally, researchers have shown interest in alternatives such as
self-supervised methods or approaches requiring more accessible sources of su-
pervision, such as music metadata.

2.5 Self-supervised approaches

Deep learning approaches have been shown to be particularly effective in learn-
ing representations from large amounts of data. However, obtaining human
annotations can be time-consuming and expensive, especially for music tasks.
For this reason, there is a growing interest in developing training paradigms
that do not require human labels.
Some authors have explored leveraging models pre-trained on data from other
domains. Palanisamy et al. (2020) fine-tuned CNNs pre-trained in image re-
cognition tasks for audio classification, achieving competitive performance on
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MGR. The study showed that fine-tuning the first layers of the CNNs does
not significantly impact performance, but the final layers need drastic weight
updates to perform well.
Additionally, self-supervised and unsupervised learning approaches try to learn
representations without any external source of supervision, allowing them to
expand to an arbitrary amount of unlabeled data. While unsupervised al-
gorithms operate without the need for labels, self-supervised learning works
as the conventional supervised approaches in which labels are automatically
derived from the data. For example, a music similarity model could generate
“similar”/“dissimilar” labels from sampling pairs of segments of the same track
versus segments from different tracks.
The Look, Listen and Learn method relies on audiovisual correspondence by
jointly training an audio and a video encoder connected to a classifier that de-
cides if the input segments correspond to the same timestamp (Arandjelovic &
Zisserman, 2017). Cramer et al. (2019) proposed OpenL3, an updated version
of the same training approach where they analyzed the effect of the training
data, the input representation parameters, and the network architecture on the
performance of the model. Pons & Serra (2019b) experimented with randomly
weighted neural networks as feature extractors for classification tasks finding
a correlation between the randomly weighted and the fully-supervised version
of the models, meaning that this approach helps identify architectures suitable
for a given task. Finally, Castellon et al. (2021) extracted embeddings from
Jukebox, a music generation model conditioned on musical genre, and lyrics
(Dhariwal et al., 2020). While Jukebox’s main purpose is music generation, the
authors found that the embeddings extracted from the model were useful for
diverse music classification tasks. Alonso-Jiménez et al. (2020b) compared the
capabilities of different audio models trained on different tasks (auto-tagging,
audio event recognition, source separation, tempo estimation, and audiovisual
correspondence) as embeddings extractors for several music classification tasks
including, music genre tagging, mood and theme recognition, and instrument-
ation detection. The study concluded that models trained on auto-tagging
produced more suitable embeddings for the considered tasks.
Finally, it is also possible to combine supervised and self-supervised objectives
in a multitask setup. Kim et al. (2019b) investigated this idea by exploiting
the information available from the MSD-Last.fm dataset. The authors trained
models to jointly solve different tasks including semantic music tagging, predic-
tion of editorial metadata codified as Probabilistic Latent Semantic Analysis
(PLSA) topics, and predicting whether two audio segments belong or not to
the same track. Huang et al. (2020) combined classification and metric learn-
ing losses and used semantic tags, metadata, and co-listen information from
the MSD to train a model that outperformed the models trained for individual
tasks.



2.5 Self-supervised approaches 21

In the following subsections, we review in more detail two self-supervised ap-
proaches that have been applied to music representation learning in the context
of this thesis: contrastive learning and masked token prediction.

2.5.1 Contrastive learning

Contrastive learning is a form of metric learning that aims to learn a repres-
entation space where similar samples are close to each other and dissimilar
samples are far apart. In its typical form, the positive samples are pairs of
augmented versions of the same input, and the negative samples are the rest
of the samples in the batch.
The MIR community has lately adopted contrastive learning approaches. CLRM
adapts SimCLR (Chen et al., 2020) by applying musically-motivated data aug-
mentations in the waveform domain (e.g., reverb, saturation) to create the
augmented views of the input signal (Spijkervet & Burgoyne, 2021). Then,
the InfoNCE loss (Van den Oord et al., 2018) is used to minimize the dis-
tances between positive pairs while maximizing their distance to other samples.
BYOL-A (Niizumi et al., 2021) relies on the BYOL (Grill et al., 2020) frame-
work and adapts it to the audio domain by proposing specific augmentations
and evaluating it on several audio tasks, including instrument classification.
S3T (Zhao et al., 2022) combines the MoCo framework (He et al., 2020) with
Swin Transformers (Liu et al., 2021) to learn music classification features.
Wang et al. (2022) modify SimCLR by using a normalization-free SlowFast
(Feichtenhofer et al., 2019) backbone and improve the performance in sev-
eral audio tasks, including music auto-tagging. PEMR deals with the lack of
temporal resolution of existing systems by learning to mask important or ir-
relevant parts of the mel-spectrogram to produce self-augmented positive/neg-
ative samples (Yao et al., 2022). COLA samples mel-spectrogram patches
of the same clip as positives instead of generating augmented versions Saeed
et al. (2021). It relies on a bilinear similarity layer to compute the distances
between all samples in the batch and uses the cross-entropy loss to maximize
the similarity between positive pairs while using the rest of the samples as neg-
atives. Wang et al. (2022) compare several self-supervised contrastive learning
methods for audio and music representation learning, finding that the best
performance is achieved by the SimCLR approach. McCallum et al. (2022)
evaluate the performance of supervised and contrastive learning approaches
for music classification, finding that the models with supervised pre-training
tend to perform better in the classification tasks. Meseguer-Brocal et al. (2024)
compare the performance of self-supervised methods for music classification,
finding that the models trained with contrastive learning tend to perform the
best in the downstream evaluation.
Scientific evidence suggests that, in contrastive setups, it is beneficial to choose
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positive pairs that share information relevant to the downstream task while be-
ing diverse with respect to irrelevant characteristics (Tian et al., 2020). How-
ever, most audio and music self-supervised contrastive methods rely on sample
mixing (Wang et al., 2022), audio effects (Spijkervet & Burgoyne, 2021), or
temporal crops (Saeed et al., 2021) to generate the augmented versions, which
intuitively have a small potential to obtain samples that are distinct enough.
Alternatively, it is possible to use label information in combination with con-
trastive learning. One of the most popular approaches is to use contrastive
learning to align representations coming from different modalities. Favory
et al. (2020, 2021) use a contrastive objective to align embedded representa-
tions of tags and audio from Freesound (Fonseca et al., 2021). In a subsequent
study, the system is enriched with playlists-track interactions as an additional
modality to align (Ferraro et al., 2021). Manco et al. (2021) align text embed-
dings from music captions to the correspondent audio representations finding
competitive performance in several downstream tasks. Elizalde et al. (2023)
aligns pre-trained audio and text encoders using AudioSet (Gemmeke et al.,
2017).

2.5.2 Masked autoencoders

Masked autoencoders follow a self-supervised learning approach that has been
widely adopted in NLP and more recently has been applied to the music and
audio domains. Given a partially masked input sequence, the model learns to
predict the masked regions given the rest of the sequence.
Zhao & Guo (2021) used a bidirectional transformer architecture with two self-
supervised objectives, predicting masked spectrogram timestamps and chan-
nels. Chong et al. (2022) proposed MaskSpec, an autoencoder transformer
trained to reconstruct spectrogram chunks from the partially masked input.
Neural codecs have recently emerged as a way to efficiently compress audio
(Zeghidour et al., 2021; Défossez et al., 2022; Kumar et al., 2023) and are some-
times used in combination with masked autoencoders. They usually comprise
a convolutional autoencoder with a Residual Vector Quantization (RVQ) layer
in the bottleneck. The neural codes at the output of the RVQ layer have a low
bitrate because of the low time resolution (75 Hz /∼13 ms frames for EnCodec)
and the quantization. The high reconstruction quality of these neural codes
for generic audio, together with the low frame rate, make them suitable as
features for music-related tasks. Yizhi et al. (2023) proposed MERT, a trans-
former trained to reconstruct the Constant-Q transform (CQT) and predict
discrete neural codes from the masked part of the input. Pepino et al. (2023)
developed EncodecMAE, which learns to reconstruct the masked segments
from the non-quantized EnCodec features using a transformer architecture.
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2.6 Music representation learning with metadata

The most common music representation learning approaches are rather fully
self-supervised or rely on expensive semantic tags. We propose that music
metadata can be seen as an intermediate between these two approaches.
On one hand, metadata is objective and expected to be very clean. On the
other hand, it is not dependent on a specific taxonomy, and it is easy to
combine collections with small preprocessing or data cleaning. Additionally,
it is often available for music collections in the industry by default or can be
easily obtained from online sources such as Discogs or MusicBrainz.
In Section 1.2.2, we introduce the concepts of editorial and consumption metadata
and discuss their primary characteristics. Here, we review the literature on
music representation learning using metadata as a source of supervision.

2.6.1 Editorial metadata

Using editorial metadata as a source of supervision was already considered in
other domains, for example, in document classification (Joorabchi & Mahdi,
2011) or film recommendation (Leung et al., 2020). Likewise, music is naturally
rich in metadata. Especially, this information tends to be extensively available
in industrial scenarios. For example, physical formats typically contain detailed
editorial information on their covers, digital audio files support containers such
as ID3 for this purpose, and most streaming platforms offer album or artist-
level browsability. Most music digital service providers routinely require such
metadata from content uploaders, and therefore it is often available for music
collections in the industry by default. Also, due to the objective nature of
descriptors such as the artist or album name, it is expected to be less noisy
than the semantic tags. Because of these reasons, such metadata allows the
creation of potentially larger and less noisy datasets than tag annotations.
The use of editorial metadata has already been explored in the context of music
representation learning in MIR. Park et al. (2017) trained a CNN targeting
track artist names for the MSD and used the resulting embeddings for music
classification tasks achieving good results. In subsequent work, (Park et al.,
2018) used the artist’s name to form positive pairs to apply the triplet loss.
Kim et al. (2018a) proposed dealing with the high dimensionality of artist
vectors by summarizing them into LDA topics to create targets suitable for
a traditional classification setup. To further leverage existing metadata, Lee
et al. (2019a) trained siamese networks on three different similarity concepts:
correspondence to the same artist, album, and track, finding that learning the
three notions at the same produced the best-performing features. Finally, Kim
et al. (2020b) exploited album, release, and year information in combination
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with semantic tags, and Huang et al. (2020) used semantic tags, editorial
metadata, and co-listen information from the MSD outperforming the models
trained for individual tasks. These works showed that editorial metadata may
be used to complement other supervision sources.

2.6.2 Consumption metadata

Using consumption metadata as a source of similarity ground truth has already
been explored in the recommender-systems literature, enabling tasks such as
music playlist continuation (Chen et al., 2018). Also, while editorial relations
are normally one- or few-to-many (e.g., album-songs), consumption is many-
to-many (e.g., playlists-songs, listening histories-songs), resulting in a more
dense co-occurrence space that may favor associating more heterogeneous mu-
sic. Furthermore, the usage of consumption metadata for music representation
learning has not been as extensively investigated yet (Huang et al., 2020; Fer-
raro et al., 2021) as the case of editorial metadata (Park et al., 2018; Kim
et al., 2018a; Lee et al., 2019b; Kim et al., 2020b; Huang et al., 2020).
Ferraro et al. (2021) extended the work of Favory et al. (2020, 2021) by in-
corporating playlist information as an additional modality to align with the
audio and semantic tag representations. Huang et al. (2020) combined classi-
fication and metric learning to leverage the co-listen information linked to the
MSD. Note that, in none of these works, consumption metadata is used as the
exclusive source of supervision of music representation learning models.

2.7 General purpose audio representations

Some authors have pursued general-purpose representation models to address
simultaneously speech, audio event, and music tasks, which led to the proposal
of challenges such as HEAR (Turian et al., 2022) and benchmarks such as
HARES (Wang et al., 2022).
Typically, general-purpose audio models are trained following self-supervised
objectives using data from multiple domains. Wang et al. (2022) used the
SymCLR contrastive learning approach to find competitive performance in
several audio tasks. Pepino et al. (2023) developed EncodecMAE, which learns
to reconstruct the masked segments from the non-quantized EnCodec features
using a transformer architecture and showed that the resulting features have a
strong performance in a diverse set of audio-related tasks, including MGR and
pitch detection among other speech and audio tasks. However, for now, there
is no evidence that a single training paradigm can yield excellent performance
in all the audio domains simultaneously.
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Alternatively, audio representations can be optimized to a single domain lever-
aging specific data, which tends to produce better performance. In this sense,
music-specific representation models are typically evaluated in music descrip-
tion in terms of genre, mood, era, rhythmic properties or arousal, and valence
estimation, where the annotations are generally on the track level. Addition-
ally, music representation models can be evaluated in more objective tasks such
as tempo or key estimation, although, specific models using domain knowledge
tend to be better suited for these tasks Schreiber & Meinard (2018).

2.8 Discogs in MIR research

The Discogs database has already been used for research. Bogdanov & Herrera
(2012) propose using this collection in the context of music recommendation,
MIR, and computational musicology (Bogdanov & Serra, 2017). The former
study proposes a recommendation system based on the similarity between
artist representations in the form of a tag cloud of the associated genre, style,
record label, and release year and country metadata. The latter illustrates the
potential uses of the database on various cultural analysis examples includ-
ing the evolution of physical distribution formats, genre and style trends, and
their co-occurrences. Similarly, some studies analyze music artist collaboration
networks Burke et al. (2014); Budner & Grahl (2016); Andrade & Figueiredo
(2016); Gienapp et al. (2021).
In the context of music genre classification, the AcousticBrainz Genre dataset
contains mappings across different music genre taxonomies, including the one
from Discogs Bogdanov et al. (2019a). Hennequin et al. (2018) use the genre
and style labels from Discogs for genre tag disambiguation.

2.9 Transformers for music classification

Now, we review the literature on music representation learning using the trans-
former architecture. This section can be seen as a motivation for the experi-
ments presented in Chapter 6.

2.9.1 Transformers in audio classification tasks

Transformers have become a popular choice for audio tasks due to their superior
performance compared to their convolutional counterparts when sufficient data
is available. AudioSet, with almost 2 million audio event excerpts, has become
a popular benchmark led by transformer models.
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Model Init. GPUs Time mAP

ASTGong et al. (2021) ViT - - 45.9
PaSSTKoutini et al. (2022) DeiT 2 RTX 2080ti 24 h 47.6
MaskSpecChong et al. (2022) FS 64 Tesla V100 36 h 47.3
BeatsChen et al. (2022) FS 16 - 48.7

Table 2.1: Comparison transformers from the literature in terms of initialization
weights, number of GPUs used for training, training time, and mAP obtained in
AudioSet.

A popular approach consists of applying self-attention layers over small over-
lapping patches (e.g., 16 × 16) from the spectrogram using a classification
objective. The sequence of spectrogram patches is linearly projected to a 1-D
space where a trainable positional encoding signal is added. A trainable clas-
sification token is appended to the sequence of projections, and after several
Transformer blocks, it is used to solve the classification task using a linear
classifier. This idea was first introduced in the image domain by (Dosovitskiy
et al., 2021) with the ViT and adapted to audio spectrograms in (Gong et al.,
2021) with AST.
Koutini et al. (2022) extend this approach by applying patchout, a technique
consisting of discarding random patches from the input spectrogram at train-
ing time. The resulting model is called the “Patchout faSt Spectrogram Trans-
former” (PaSST). Patchout can be seen as the application of masking as in the
masked autoencoder methods introduced in Section 2.5.2 with the difference
that the goal is to predict a label instead of reconstructing missing segments.
This technique has two benefits. First, by discarding input patches, the train-
ing sequence length is significantly reduced, which can significantly increase
the training speed, considering that transformers have a quadratic complex-
ity with respect to the sequence length. Second, it acts as a regularization
technique that improves the robustness of the transformer.
Table 2.1 compares PaSST with AST (Gong et al., 2021), and two self-supervised
methods: MaskSpec (Chong et al., 2022), and Beats (Chen et al., 2022) in
terms of the number of GPUs used for training, training duration, and mean
Average Precision (mAP) on AudioSet. While self-supervised methods pre-
vent the transformers from depending on initializing from weights of pretrained
models, such systems are significantly more resource-demanding. Remarkably,
PaSST achieves an excellent trade-off between mAP and the required resources.

2.9.2 Music representation learning with transformers

Some works have already combined music representation learning and pure-
attention-based transformers. S3T combines MoCo’s momentum-based self-
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supervised contrastive learning with the Swin Transformer (Liu et al., 2021)
architecture to learn music representations for classification (Zhao et al., 2022).
Huang et al. (2022b) introduced MuLan, an audio representation model trained
with cross-domain contrastive learning that aligns the latent representations of
the associated audio and text pairs. The authors experiment both with a Res-
Net50 and an AST architecture, with the former obtaining better performance
in downstream music tagging tasks. Yizhi et al. (2023) proposed MERT, a
transformer trained to reconstruct the CQT and predict discrete neural codes
from the masked part of the input.

2.10 Interpretability

In this last section, we review the literature on interpretability in the con-
text of music representation learning. This section motivates the experiments
presented in Chapter 7.
Interpretability strategies in the audio domain are rarely explored, especially in
music-related tasks (Batlle-Roca et al., 2023). Among the existing methods for
the classification of sounds and music (Dieleman & Schrauwen, 2014b; Mishra
et al., 2017; Won et al., 2019; Loiseau et al., 2022), only a few are interpretable
by design. In particular, APNet is an interpretable model for sound classifica-
tion based on prototypes that are learned during training along with the latent
space encoder and decoder (Zinemanas et al., 2021). The decoder is devised to
reconstruct the prototypes back to the input representation (mel spectrogram)
that can be sonified. The model shows compelling results illustrating that a
system can be both interpretable and accurate.
However, this model presents scalability issues regarding the number of pro-
totypes and classes, given that the latent space is of high dimension and the
prototypes are learned in this space and stored in the model. Additionally,
APNet’s reconstruction process transfers information on which indices were
kept in the pooling layers from the encoder into the unpooling layers of the
decoder to improve the reconstruction quality. Assuming that the prototypes
are similar to data instances, the pooling indices are extracted from the closest
instance of the training set to reconstruct them, providing interpretability suit-
able for end users. However, the prototype reconstruction is strongly biased
towards a training sample instead of what drives the classification decision,
which would be more interesting from a developer’s perspective.





CHAPTER 3
Representation learning based

on labels

3.1 Introduction

Representation learning has become a popular research direction that enables
improving performance and generalization on tasks with small amounts of data
that would otherwise fall out of the scope of modern deep learning techniques.
Following this paradigm, researchers typically train large models targeting aux-
iliary objectives requiring weak or no supervision that are then used as feature
extractors or fine-tuned for smaller downstream tasks.
The MIR community is also showing a growing interest in representation learn-
ing. Since many MIR tasks suffer a lack of large-scale datasets due to factors
such as the annotation effort (in terms of time and expertise required for
manual annotations), legal constraints on the distribution of music audio, or
the high subjectivity of the tasks, transferring knowledge from a suitable rep-
resentation model can be a viable strategy to improve the performance on
downstream tasks. At the same time, working with low-dimensional embed-
dings has practical advantages for many use cases due to their compact size
compared to the original signals. Also, storing audio datasets as embeddings
can facilitate data reusability, speed up the transfer to downstream tasks, and
facilitate cross-discipline research for communities that are not familiar with
the specifics of audio.
In this context, we start our research by evaluating the performance of existing
representation models on standard music classification tasks. Since previous
studies such as Bogdanov et al. (2016) suggest that some MIR classification
tasks suffer from severe dataset bias, we are particularly interested in un-
derstanding if relying on pre-trained representation models can improve the
generalization capabilities of the resulting classifiers. To this end, we follow

29
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the methodology proposed in that work and complement the evaluation of the
downstream classifiers within the downstream datasets with a cross-collection
evaluation using an unseen collection annotated with the same taxonomy. Once
we have observed the generalization benefits obtained with pre-trained repres-
entation models, we work upon the premise that we can create better repres-
entation by scaling up the training data. We address this by training a model
on an in-house collection of 3.3 million music tracks and comparing it to SOTA
models trained under different paradigms. After this, we design several exper-
iments to further understand the performance of the considered representation
models. In our experiments, we investigate the effect of limiting the amount
of data in the downstream tasks, the benefits of combining different embed-
ding types, the generalization capabilities of the downstream classifiers using
a novel dataset of cross-collection annotations, and the performance on two
large-scale publicly benchmarked datasets.
The experiments of this chapter are based on Alonso-Jiménez et al. (2020a),
presented virtually on ICASSP 2020, and Alonso-Jiménez et al. (2020b), presen-
ted virtually on ISMIR 2020. Finally, to promote reproducibility, we provide
C++ and Python implementations for most of the considered models within
the Essentia Library.17

3.2 Method

To compare the representation learning models, we train shallow classifiers on
several music classification tasks. Similar methodologies are widely used in the
MIR field, for example, Choi et al. (2017b); Castellon et al. (2021).

3.2.1 Transfer learning protocol

Our transfer learning protocol consists of training shallow classifiers on top of
the representations extracted from intermediate layers of the representation
model of interest. For this, we typically use MLPs with a single hidden layer.
The datasets for the considered downstream tasks are composed of full-track
recordings of variable length, fixed-length excerpts, or a mixture of both.
The embedding extractors transform the one-dimensional audio streams into
a two-dimensional representation with shape T × D, where T is the number
of timestamps depending on the hop time of the analysis and D is the num-
ber of dimensions of the embedding. Each timestamp t ∈ [0,T ] summarizes
a time window given by the receptive field of the model. Since we propose
experiments that involve training thousands of MLPs, we pre-extract the em-

17https://essentia.upf.edu/models.html

https://essentia.upf.edu/models.html
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beddings and save them as 16-bit floats (half precision) as this did not seem
to affect the performance in preliminary experiments. As some experiments
rely on combinations of embeddings by different models, they need to be tem-
porally aligned (i.e., given embeddings x and y, Tx = Ty). To achieve this,
we defined a target rate of 1Hz (i.e., one embedding per second) and set the
hop time of each extractor to produce embeddings at this rate when possible.
Since the receptive field is not the same embedding extractor, the MLPs learn
to make predictions over time windows of different lengths depending on the
architecture of the extractor.
To fit variable-length input tracks into regular-shaped batches, we pick a single
t with a random offset per track on every epoch. In validation and testing
times, we average the T predictions per track to derive track-level metrics.

3.2.2 5-fold cross-validation

We evaluate the downstream tasks in a 5-fold cross-validation setting. On each
fold, 20% of the data is reserved for the testing set. The remaining data is
split into 85% for training and 15% for validation. Every split is stratified to
keep a constant label distribution in the training, validation, and testing sets.
Following the transfer learning protocol from Section 3.2.1, we train a shallow
classifier for each of the folds. After this, we compute the following metrics:

Average normalized accuracy. The average of the class-weighted
accuracies obtained for each fold.

Standard deviation. The standard deviation of the class-weighted
accuracies obtained for the different folds. This is a dispersion metric
used to evaluate the statistical significance of the results.

3.2.3 Cross-collection evaluation

Previous studies have shown that evaluating music classifiers on a single dataset
can lead to overfitting and biased results Bogdanov et al. (2016). Accounting
for this, we complement the aforementioned 5-fold cross-validation with an
evaluation using external datasets. In this case, we use 80% of the downstream
data for training and 20% for validation. We do not reserve data for testing
in this case.
We use the resulting model to predict the labels of an unseen collection an-
notated with the same taxonomy as the downstream task. We consider two
approaches to obtain the evaluation data. First, by relying on auto-tagging
datasets that contain the same taxonomy as the downstream task, and second
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Dataset Classes Size
ge

nr
e

dortmund alternative, blues, electronic,
folkcountry, funksoulrnb,
jazz, pop, raphiphop, rock

1820
exc.

gtzan blues, classic, country, disco,
hip hop, jazz, metal, pop, reg-
gae, rock

1000 exc.

rosamerica classic, dance, hip hop, jazz,
pop, rhythm and blues, rock,
speech

400 ft.

m
oo

d

acoustic acoustic, non acoustic 321 ft.
aggressive aggressive, non aggressive 280 ft./exc.
electronic electronic, non electronic 332 ft./exc.
happy happy, non happy 302 exc.
party party, non party 349 exc.
relaxed relaxed, non relaxed 446 ft./exc.
sad sad, non sad 230 ft./exc.

hi
gh

-le
ve

l danceability danceable, non danceable 306 ft.
voice/instrum. voice, instrumental 1000 exc.
gender male, female 3311 ft.
tonal/atonal atonal, tonal 345 exc.

Table 3.1: Downstream tasks (ft.: full tracks, exc.: excerpts).

by manually collecting annotations for the downstream tasks of interest. In
this case, we only compute class-normalized metrics, since there is no way to
obtain dispersion metrics from a single evaluation.

3.2.4 Fixed-splits evaluation

Fixed-split evaluation is a common practice with publicly available datasets. It
consists of training and testing the models using a pre-defined split previously
used in the literature.
This is the less informative of all the considered evaluation approaches. How-
ever, it is useful to compare the performance of the models with previous works
eliminating the variability introduced by random sampling. We will consider
this evaluation for a specific dataset with publicly available splits.
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3.2.5 Downstream tasks

There are many annotated in-house music collections (a large number of which
were created by researchers at Music Technology Group) that are used extens-
ively in Essentia and a number of related large-scale projects such as Acous-
ticBrainz (Porter et al., 2015). Table 3.1 describes these collections in terms
of classes and number of training examples. Even though their scale is not
comparable with many recent datasets, they are interesting to work with be-
cause they represent a typical use-case of a small amount of data available for
a particular application. In addition, our intention is to understand the impact
of different representation models on the downstream performance and not to
challenge the state of the art on any particular task.
We select 14 single-label classification tasks from public and in-house data-
sets, aiming to cover some of the most popular topics in music classification.
These tasks broadly fall into three categories: genre, mood, and other high-level
musical concepts, aiming to cover some of the most popular topics in music
classification. As our cross-collection evaluation experiments involve generat-
ing new ground truth, we limited the selection of tasks to problems that could
be annotated without particular music expertise. This leaves regression tasks
(e.g., arousal-valence estimation) or multi-label ones (e.g., auto-tagging) out
of the scope of this evaluation. Also, we want to represent the variability of
dataset sizes present in typical transfer learning scenarios, from a few hundred
to thousands of tracks.

3.3 Experiments

3.3.1 Preliminary evaluation on music genre recognition

In our first experiment, we are interested in assessing if relying on features
learned by audio tagging models can improve the generalization capabilities
of classifiers trained on small datasets. We use the proposed cross-collection
evaluation methodology as a proxy of generalizability, for which we need a
separate collection annotated with the same taxonomies as our downstream
tasks. To this end, we focus on the task of music genre recognition, for which
we have three downstream datasets: genre-dortmund, genre-gtzan, and genre-
rosamerica. As external data sources, we use two datasets, both containing
tag annotations including genres:

MSD-test is the test set of 28,000 tracks from the MSD dataset with
Lastfm tags. Note that MSD has been also used for the pre-trained
MusiCNN and VGG-Pons models, but they were trained on the train
split and there is no overlap.
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MTG-Jamendo-test is the split-0 test set of 11,000 tracks from the
MTG-Jamendo dataset for music tagging (Bogdanov et al., 2019b). 18

Following the cross-collection methodology introduced in Section 3.2.3, we took
advantage of the taxonomy used by the Lastgenre plugin for Beets19 to generate
ground-truth genre labels from the tags in the MSD-test and MTG-Jamendo-
test. We only considered tracks with one or more tags matching an element in
the taxonomy. Those tags were mapped to their parent in the hierarchy (e.g.,
“progressive rock” to “rock”) unless there was a direct match to one of the
classes of our classifiers. The resulting genre annotations are multi-label, and
to evaluate each group of classifiers (corresponding to one of our downstream
tasks) we use the subset of tracks that have a ground-truth label matching one
of the classes. That is, we only give them music by genres they can theoretically
predict. A prediction is considered correct if it matches one of the labels of
the track.
Regarding the pre-trained models, we consider the following CNN architectures
to create our classifiers:

VGGish is a CNN based on a deep stack of 3×3 convolutional layers
(Hershey et al., 2017). The architecture follows configuration “E” from
the original VGG architecture paper by Simonyan & Zisserman (2014a),
with the difference that the output layer is modified to match the number
of output labels. VGGish was trained using 72M YouTube videos not
specific to music annotated by 3087 labels derived from their titles and
descriptions. The same pool of videos was later used to develop the
AudioSet dataset (Gemmeke et al., 2017). This model has 62 million
parameters.

VGG-Pons is an additional instance of the VGG architecture, intro-
duced by Choi et al. (2016) and following the implementation of Pons &
Serra (2019a). Similar to MusiCNN, it was trained on the MSD train set
annotated by the top 50 Last.fm tags. This model has 605,000 trainable
parameters.

MusiCNN is a CNN model featuring vertical and horizontal convolu-
tional filters aiming to capture timbral and temporal patterns, respect-
ively. MusiCNN was trained using 200,000 tracks from the train set of the
publicly available MSD annotated by the 50 Last.fm tags most frequent
in the dataset.20 The model contains 6 layers and 787,000 parameters
(Pons & Serra, 2019a).

18https://mtg.github.io/mtg-jamendo-dataset
19http://beets.io
20http://millionsongdataset.com/lastfm

https://mtg.github.io/mtg-jamendo-dataset
http://beets.io
http://millionsongdataset.com/lastfm
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Our goal is to assess if the pre-trained models can improve the generaliza-
tion capabilities of the resulting classifiers compared to the same architectures
trained from scratch. When training from scratch, all the layers of the model
are randomly initialized and trained on the downstream dataset. Our transfer
learning setup follows the approach described in Section 3.2.1 by extracting
representations from the penultimate layer of the pretrained model and train-
ing a small neural network on top of it. We consider two variations for the
classification neural network:

A) One fully-connected layer with n output units.

B) Two fully connected layers of 100 and n units.

In both cases, n is the number of classes in the downstream dataset. Variant
A performed better for MusiCNN and VGG-Pons, while variant B gave better
results for VGGish. We used the variant providing the best performance for
each model in the rest of the experiment. For the models trained from scratch,
we consider MusiCNN and VGG-Pons. In this case, their parameters are
randomly initialized and all the layers are trained.
All our CNNs were trained on mel-spectrograms. For the models trained from
scratch, we used the implementation in Essentia with 96 bands. In the case
of transfer learning, we used 96 bands for MusiCNN and VGG-Pons, and 64
bands for VGGish. The models are trained using a batch size of 32 samples.
Each sample is a randomly selected segment of 3 seconds from a different track
of the training set. We employ the Adam optimizer for 600 epochs on the
models trained from scratch and 150 epochs in the transfer learning ones since
these models require fewer iterations to converge. All the models are initialized
with a learning rate of 1e−3. If the loss obtained on the validation set has not
decreased for the last 75 epochs, the learning rate is reduced by half.
The baseline for our experiments comprises the SVM classifiers available in
Essentia.21 They rely on a combination of low-, mid-, and high-level music
audio features describing timbre, rhythm and tonality (Porter et al., 2015).
The best parameters for the SVMs are found in a grid search in the 5-fold
cross-validation, and the final SVM models that we evaluate are trained on
the entire data.22

21We used the latest Essentia 2.1-beta5 version.
22https://essentia.upf.edu/documentation/FAQ.html

https://essentia.upf.edu/documentation/FAQ.html
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Table 3.2 contains the balanced accuracies obtained by each architecture and
training strategy in both the 5-fold cross-validation and cross-collection eval-
uation on the MSD-test and MTG-Jamendo-test. These accuracies are com-
puted by averaging the individual accuracy values obtained for each class. For
the 5-fold cross-validation results, we additionally indicate the standard de-
viation of the balanced accuracies across folds. Our results show that the
models trained from scratch are not superior to the SVM baseline. However,
the transfer learning models outperform the SVM baseline for all the datasets
and models, demonstrating the potential of features learned by audio tagging
models. The Cross-collection evaluation results show that the SVM suffer a
significant drop in performance when evaluated in the cross-validation set-
ting, especially on the MTG-Jamendo-test dataset. Deep learning models, on
the other hand, show less performance degradation, with the VGGish model
showing the best results. Interestingly, the AudioSet model is not specifically
trained for music content, but it is still capable of getting the best results,
potentially due to its training data size and complexity. We hypothesize that
having been trained on a larger dataset, despite not being music-specific, allows
the model to generalize better to unseen data.

3.3.2 Evaluation of pre-trained models on music classification

We continue our research by extending our evaluation to additional pre-trained
models. We considered all the downstream tasks presented in Section 3.2.5 and
limit our evaluation to the 5-fold cross-validation setup.
Apart from the models presented in the previous experiment, we consider sev-
eral CNNs trained for MIR tasks other than tagging with the goal of under-
standing if they can learn useful representations for music classification:

Tempo-CNN is a family of models for tempo estimation introduced
by Schreiber & Müller (2019). For the embeddings, we selected the
DeepSquare model with k = 16 and used the logits of the last layer.

OpenL3 is a multi-modal self-supervised model trained to predict the
correspondence between audio and video segments of YouTube videos
trained by Cramer et al. (2019). For this work, we used the version
trained on musical data on 128-bin mel-spectrograms, and the architec-
ture with the embedding layer of 512 units. We chose this parametriza-
tion because it is the closest to other CNN models with a fixed number
of mel-bends (MusiCNN: 96, VGGish: 64) and embedding dimensions
(MusiCNN: 200, VGGish: 128). Additional informal testing revealed
that the denser versions (256 mel bands, 6144 embedding dimensions)
did not affect the performance significantly. We consider this model
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Model RF (s) Dims. Params. Data size Appr.

MusiCNN 3 200 787K 220K FS
MusiCNN-T200 3 200 787K 350K FS
VGG-Pons 3 256 605K 220K FS
VGG-Pons-T200 3 256 605K 350K FS
VGGish 1 128 62M 70M FS
Tempo-CNN 12 256 1.2M 11K FS
OpenL3 1 512 4.7M 296K SS
Spleeter 12 1280 49M - FS

Table 3.3: Model embeddings. RF: Receptive field, Approach: fully-supervised (FS)
or self-supervised (SS).

as a representative of unsupervised approaches with extensive usage for
transfer learning (Grollmisch et al., 2021; Weck et al., 2021).

Spleeter is a collection of source separation models using a separate
U-Net architecture for each stem (Hennequin et al., 2020). We selected
the 5-stem model and concatenated the bottleneck layers of the stems to
create our embedding. We applied 4×4 max-pooling to reduce dimen-
sionality.

Additionally, we trained two variants of the music auto-tagging models, VGG-
Pons-T200 and MusiCNN-T200, using the 200 most frequent tags of MSD-
Last.fm instead of just 50. Using more tags allowed for increasing the training
size from 220K to 350K tracks.
We use an MLP with a single hidden layer of 100 units on top of the proposed
embeddings. The model has a ReLU activation after the hidden layer and
a Softmax or Sigmoid activation for multi-class and multi-label target tasks,
respectively. We use the Adam optimizer with a learning rate of 1×10−3 and
weight decay of 1×10−5. The model is optimized for a maximum of 30 epochs,
but we only save the weights on the epochs achieving a historical minimum
on the validation loss. This is commonly achieved between the first 10 to 20
iterations, depending on the task. Table 3.3 shows the models used in this
experiment in terms of the receptive field, embedding layer dimension, number
of parameters of the network, and amount of training data.
In preprocessing, we removed the problematic tracks in gtzan according to
Sturm (2013). For each task, we trained a classifier on top of the different
embeddings extracted by the models according to the transfer learning protocol
described in Section 3.2.1. The architecture consists of an MLP with a single
hidden layer with 100 neurons and ReLU activations. The output layer uses a
Softmax activation to generate the output class probabilities.
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dortmund 0.42 0.61 0.46 0.54 0.26 0.50 0.38 0.35 0.16
gtzan 0.77 0.86 0.79 0.83 0.46 0.84 0.58 0.57 0.26
rosamerica 0.86 0.94 0.90 0.93 0.66 0.93 0.84 0.70 0.46
voice/instrum. 0.93 0.98 0.93 0.97 0.78 0.98 0.89 0.76 0.58
tonal/atonal 0.98 0.87 0.91 0.92 0.78 0.93 0.89 0.89 0.70
gender 0.88 0.87 0.79 0.84 0.70 0.83 0.55 0.55 0.51
danceability 0.90 0.98 0.94 0.94 0.71 0.94 0.90 0.90 0.66
acoustic 0.93 0.96 0.93 0.93 0.83 0.93 0.89 0.89 0.75
aggressive 0.97 0.97 0.97 0.99 0.82 0.99 0.91 0.93 0.69
electronic 0.83 0.93 0.88 0.88 0.74 0.94 0.77 0.77 0.64
happy 0.81 0.86 0.77 0.89 0.69 0.86 0.76 0.70 0.68
party 0.88 0.92 0.92 0.64 0.84 0.90 0.77 0.87 0.73
relaxed 0.89 0.89 0.86 0.91 0.79 0.90 0.81 0.80 0.72
sad 0.88 0.87 0.88 0.86 0.83 0.89 0.85 0.83 0.84

Table 3.4: Class-weighted accuracies in the downstream tasks for the embeddings as
an average of 5-fold cross-validation. The Top results are marked in bold.

Table 3.4 reports the results in both evaluations. The embeddings produced by
the MusiCNN, MusiCNN-T200, VGG-Pons, and VGGish models achieved the
best performance in different tasks. OpenL3, the only self-supervised model
considered, obtained competitive results in tonal/atonal and danceability, but
performed poorly in the rest of the tasks. The source separation model Spleeter
achieved relatively competitive results in the tonal/atonal, danceability, mood-
aggresive, and mood-party tasks, revealing that the embeddings produced by
this model can be useful for some music classification tasks. The Tempo-CNN
model, trained for tempo estimation, did not achieve competitive results in any
of the tasks but mood-sad which correlates with the intuition that tempo may
be highly correlated with specific musical moods. In general, the embeddings
produced by the models trained for music auto-tagging tasks achieved the best
results, suggesting that the semantic labels continue to be the most valuable
pre-training tasks for music classification. The 200-tag models, MusiCNN-
T200 and VGG-Pons-T200, did not outperform their 50-tag counterparts, sug-
gesting that the additional tags and tracks did not provide useful information.
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3.3.3 DiscogsEffNet a model based on Discogs’ music styles

From the results of the previous experiments, we conclude that the features
transferred from audio tagging models are beneficial for the creation of down-
stream classifiers for music understanding tasks. We find that using in-distribution
data is important, and models trained on music-tagging tasks (e.g., MusiCNN)
can perform on pair or better than models trained on a more general set of tags
even when using much more parameters and data (e.g., VGGish). Following
this, we are interested in developing a music representation model that can be
used for a wide range of high-level music description tasks by exploiting large
amounts of music data.
We collect metadata from the Discogs dump23 as it was already hypothesized
that it constitutes a detailed source of music metadata Bogdanov & Serra
(2017); Hennequin et al. (2018). From the dump, we could map about 4
million tracks to our in-house audio collection. We consider the top 400 music
style labels and keep only tracks annotated with one to five music styles. This
results in a final dataset of 3.3 million tracks. We reserve 100,000 tracks each
for testing and validation ensuring that each split has at least ten releases (e.g.,
album, EP, compilation...) of each style. To prevent artist leakage, we do not
allow music from the same artist to appear in more than one split. Given the
large size of this dataset, we store the audio as 16-bit mel-spectrograms with
96 mel bands. Because of this, we focus on common CNN architectures that
have been successfully applied to two-dimensional representations before. We
perform a grid search over architectures and hyper-parameters before training
the final model:

Architectures: EfficietNet B0 (Tan & Le, 2019), EfficientNet v2 S (Tan
& Le, 2021), and ResNet50 (He et al., 2016)

Learning rates: 1×10−2, 1×10−3, 1×10−5

Patch size durations: 2 seconds, 3 seconds

On Every epoch, the model receives a randomly selected patch from each track,
which is equivalent to 76 days of music. We use the Adam optimizer and a
scheduler halves the learning rate if the validation loss has not decreased in the
last 10 epochs. We rely on 6 Titan 2080 Ti GPUs with a batch size of 256 each,
resulting in an aggregated batch size of 1536 mel-spectrogram patches. The
validation loss reached a plateau after completing 80 epochs in approximately
5 days.
The results reveal that the ResNet50 trained for 3 seconds achieves the lowest
training loss. However, all the architectures and patch durations reach very

23http://data.discogs.com/

http://data.discogs.com/
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similar validation metrics for the learning rate of 1×10−3. We hypothesize that
the models cannot improve the validation metrics because of the noise in the
Discogs labels, however, we are interested in keeping the experiments simple
as the goal is to produce good music embeddings and not to fine-tune the style
recognition task. Because of this, we select the much smaller EfficientNet (Tan
& Le, 2019) on its B0 configuration trained on 2-second patches. For the rest
of this chapter, we refer to this model as DiscogsEffNet or EffNet (E).

3.3.4 Evaluation on small downstream tasks

In this experiment, we compare our EffNet with several pre-trained feature
extractors. To maximize the relevance of the selection, we only consider mod-
els that have already shown competitive performance in music classification.
These models must have an implementation and weights openly accessible to
allow reproducibility without re-training. All of them share that they were de-
signed to operate as embedding extractors, feature convolutional architectures,
and use mel-spectrograms as input representation. We consider MusiCNN
(M), VGGish (V), and OpenL3 (O) since they are the best-performing
models from the previous experiments. Additionally, we include Jukebox (J)
and YAMNet (Y):

Jukebox (J) is a music synthesis model conditioned on genre, artist
name, and, optionally, lyrics (Dhariwal et al., 2020). Castellon et al.
(2021) showed that the internal representations of this model are powerful
embeddings for music classification. As the authors propose, we extract
the average of the 36th layer of the model as embeddings.

YAMNet (Y) is a MobileNet V1 architecture trained to predict 521.
It was trained on the Youtube-AudioSet corpus, a curated version of the
dataset used for VGGish. We extract representations from its penultim-
ate layer containing 1024 dimensions. While VGGish and YAMNet could
be expected to behave very similarly, this is the only case in which we test
models trained in the same task. This also allows extracting conclusions
about the impact of the architecture.

Table 3.5 compares the representation extractors in terms of the receptive field,
number of embedding dimensions, number of parameters, training dataset size,
and training approach.
In this experiment, we follow the 5-fold cross-validation methodology described
in Section 3.2.2 for all the downstream tasks from Section 3.2.5 and the afore-
mentioned representation extractors. As a baseline, we include a MusiCNN
architecture trained from scratch on the downstream tasks. We chose this ar-
chitecture because it has been found to perform well in small datasets (Won
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Model RF (s) Dimensions Parameters Data size Approach

EffNet 2 200 4.1M 2.2M FS
MusiCNN 3 200 787K 220K FS
OpenL3 1 512 4.7M 296K SS
VGGish 1 128 62M 70M FS
YAMNet 1 1024 3.7M 2M FS
Jukebox 24 4800 5B 1.2M CS

Table 3.5: Embedding extractors. RF: Receptive field in seconds, Approach: fully
supervised (FS), self-supervised (SS), or conditioned supervision (CS).

et al., 2020b). We follow the transfer learning protocol described in Sec-
tion 3.2.1 with the parameters described in Section 3.3.2 for all models but
Jukebox. In this case, we only extract a single timestamp (i.e., 1×D) because
it has a large receptive field of 24 seconds which makes it unstable for direct
time-wise comparison with its CNN counterparts (with receptive fields ranging
from one to three seconds). We consider that (from a human perspective) 24
seconds are generally enough to categorize audio for the proposed taxonomies,
so it should be enough for the model to produce a competitive representation.
For datasets with excerpts of less than 24 seconds (e.g., genre-dortmund) we
repeat the audio to reach the required input size.
Since the considered datasets feature different degrees of difficulty and dis-
persion on the metrics, the accuracies cannot be directly compared (i.e., an
improvement by 10% is a different achievement on different datasets). To ac-
count for this, we express the results as rankings # (i.e., scores 1 to N where
N is the number of considered models and the model with the best accuracy
gets a score of 1). In addition, we take advantage of the standard deviations
collected on the 5-fold cross-validation to compute a ranking correction #̄. We
assign the same ranking to the models that are not statistically different, using
a t-test with a p-value > 0.05 criterion. This means that embedding extract-
ors with equivalent performance will share the same corrected rank. In other
words, the corrected rank of an embedding model is the rank of the best model
that is not statistically different from it.
Table 3.6 reports the metrics obtained by the considered models. At least
one of the embedding models surpassed or matched the baseline in all but the
happy task. However, we do not see a clear advantage of the transfer learning
paradigm in the 5-fold cross-validation setup compared with the baseline for
many of the tasks. Despite this, the metrics outline some tendencies that are
aligned with our expectations: provided that EffNet was trained in a massive
corpus of music styles, it gets the best performance for all the genre tasks.
Also, Jukebox excels in gender, tonal/atonal, and voice/instrumental, which
are notions required to perform music and singing voice synthesis. On the
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other hand, we find it surprising that EffNet is the best model for many mood-
related tasks. While datasets such as MSD and AudioSet contain explicit mood
labels (e.g., “angry music”, “ happy music”), EffNet was exclusively trained on
music styles. We hypothesize that the relevance of the EffNet features could
be due to the larger training dataset and the presence of genre bias in some
mood tasks.24 Our ranking analysis suggests that Jukebox is not significantly
different from EffNet in the genre tasks, that EffNet, VGGish, and YAMNet
are not different for the moods tasks, and that EffNet is not different from
Jukebox for gender, tonal/atonal, and voice/instrumental. Overall, EffNet
is not statistically different from the best-performing model for every task.
Our interpretation is that, while the accuracies suggest which could be the
best model for a given task, the corrected ranking tells in which cases more
evaluation data is needed to confirm it.

24We observed that some mood classes are heavily genre-biased (e.g., most of the “ag-
gressive" items in the mood_aggressive dataset are metal) so that they could be proxied as
combinations of Discogs styles.
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3.3.5 Downstream dataset size analysis

With this experiment, we want to evaluate the performance of the embed-
dings under different amounts of training data. We considered n ∈ {1,5,10,30}
samples per class and compared the results to those obtained using the entire
downstream datasets. In the 5-fold cross-validation, we randomly choose n
samples per class from the training split, but we still use the whole testing
split to compute the metrics. We observe that the selection of the training
samples produced a large variability in the resulting accuracies, especially for
the small values of n. To account for this, we repeat the whole process for
three trials with a different random seed number to select the tracks. We com-
pare five models in 14 target tasks using 5-fold cross-validation for three trials.
Overall, this resulted in training more than 1,000 MLPs.
Figure 3.1 shows the normalized accuracies growing with respect to the amount
of training data. We find that, for most of the tasks, an MLP based on conveni-
ent embeddings achieves most of the performance within the first 30 examples
per class. gender is the only task that shows a clear improvement by using
the whole dataset, probably because it is relatively difficult, and it has a larger
availability of data. Additionally, when the embeddings are well aligned with
the downstream task, we observe that the model can learn from fewer instances
(e.g., EffNet in the genre tasks). On the other hand, models that are not very
well aligned will benefit from seeing more data (e.g., OpenL3 in tonal_atonal).
In contrast to the observations from the previous experiment, we find a huge
performance gap compared to the baseline trained from scratch, especially on
very small training sizes. Finally, we find two tasks: mood_aggresive and
mood_party, which show very small improvement with the increase of data,
which indicates that the classes are easily separable in all the considered em-
beddings spaces. The following experiments will help to identify if this is due
to the easiness of the task or an oversimplification in the considered dataset.

3.3.6 Combination of embeddings

Embedding extractors are practical because they can generate low-dimensional
representations, condensing information for new downstream tasks. Following
this, extractors trained on different upstream tasks may distill different types of
knowledge that can be complementary. A combination of multiple embeddings
might therefore be beneficial for the downstream tasks.
To investigate this hypothesis, we stack embeddings to train our downstream
models. Given a pair of embeddings generated by different extractors x and y
corresponding to the same recording and sampled at an equal rate, a training
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Figure 3.1: Evolution of the normalized accuracies with respect to the number of
samples per class expressed as the average of three trials.
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sample is formed by choosing a random time index t and stacking xt and yt
25

forming a one-dimensional representation of length Dx + Dy. We investigate
combinations of two, three, four, five, and all the types of embeddings by train-
ing models for all the downstream tasks following the transfer learning protocol
described in Section 3.2.1 and express the results as the distribution of nor-
malized rankings per embedding type. We consider a total of 63 combinations,
resulting in 4,410 MLPs. One of our principal concerns about the stacking
method is that embeddings with different D will have different opportunities
to contribute to the downstream model. To mitigate this effect, we experiment
with applying PCA to reduce the dimensionality of all the embedding types to
a common value.
Figure 3.2 shows the metrics for all the combinations of embeddings in terms
of corrected rankings (#̄). The rows are grouped by genre, mood, and other
high-level tasks. The first six columns correspond to the embedding models
alone (same as in the previous section), followed by all the combinations. In
general, the results suggest that the combinations are not able to provide signi-
ficantly better results, as in most cases, there is at least one single model with
#̄1. However, we need to combine embeddings to achieve #̄1 for every task.
Among those, two models combine three types of embeddings only: EffNet,
MusiCNN, and VGGish (EMV), and EffNet, MusiCNN, and Jukebox (EMJ).
It is interesting that models such as MusiCNN and VGGish are not among
the most powerful when considered alone, yet they contribute to one of the
best combinations. This suggests that providing complementary information
is key to producing successful combinations. On the other hand, we notice
that VGGish and YAMNet both obtained an average #̄14, but their combin-
ation (VY) was only able to ascend two positions (#̄12), suggesting that the
additional dimensions are not beneficial if they contain redundant knowledge.
We observe that combining features do not guarantee a performance improve-
ment (e.g., EffNet plus OpenL3 performs worse than EffNet alone). Finally,
we notice combining all the embeddings is just marginally better than EffNet
or Jukebox, the best single models.

25for Jukebox we always take t = 0 since we do not have timestamps.
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3.3.7 Cross-collection evaluation

Existing research suggests that music classification datasets are heavily influ-
enced by the way they were collected and annotated (Bogdanov et al., 2016).
To assess how the different embedding types affect the generalization capabil-
ities of the models, we propose to further evaluate our downstream models in
external data following the cross-collection evaluation methodology described
in Section 3.2.3.
We use the split-0 test subset of the MTG-Jamendo Dataset (Bogdanov et al.,
2019b) containing 11,356 tracks as the source for our external validation. Since
the original labels of this dataset do not have a one-to-one correspondence with
the taxonomies of the downstream tasks, we developed an annotation tool to
manually create a new set of labels. This tool requires the user to choose a
class from the taxonomy of each task. For genre and gender tasks, an addi-
tional option “unmatched” was provided for tracks not fitting in any available
class. To compensate for the subjectiveness of most of the downstream task
classes, we decide to collect annotations by three different annotators for each
track. We evaluate our downstream models only on tracks with a perfect
inter-annotator agreement, not considering tracks labeled as “unmatched". As
a result, the number of tracks used for this validation varies from task to task.
We gathered and published ground-truth annotations from a total of 42 an-
notators for all mood and miscellaneous tasks and a subset of 1,000 tracks for
the genre tasks.26

Table 3.7 shows the annotation agreement rates, number of annotations, the
accuracies of the considered embeddings, and the best combination of em-
beddings per task. The agreement rates express the percentage of tracks in
which the three annotators agreed on the label, and the number of annotations
represents this subset after removing the “unmatched" tracks. These results
estimate the generalization capabilities of the trained downstream models.
One of our first observations is that tasks with high agreement rates (e.g.,
voice/instrumental, gender) tend to correlate with less performance drop with
respect to the 5-fold cross-validation results from Table 3.6. Due to the ad-
ditional difficulties of the tasks, we could not collect many genre annotations,
and the results for these tasks are less consistent. Opposing what we found in
the 5-fold cross-validation setup, in the external validation, the models based
on transfer learning are superior to the baseline by a large margin. This find-
ing supports the idea that transfer learning enhances generalization when only
small datasets are available. The advantage of EffNet for the genre tasks is
only clearly visible in rosamerica, but it is close to other models in the other
two tasks. EffNet is the most frequent embedding in the best combination,

26https://github.com/MTG/mtg-jamendo-dataset

https://github.com/MTG/mtg-jamendo-dataset
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suggesting that it has the most valuable information. Apart from this, the
best combinations do not seem to follow a stable pattern. On average, we
find that VGGish provides the best performance in external data for a small
margin. We hypothesize that this is because it is the most compact repres-
entation, so it is less prone to overfitting. On the contrary, Jukebox (with 37
times more dimensions) is not performing very well despite its excellent results
in the 5-fold cross-validation. On average, the best combination generalizes
just slightly better than VGGish.
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Model GTZAN MTG-Jamendo
Acc. PR-AUC Mediaeval

SampleCNN (Lee et al., 2018) 0.821 - -
lileonardo (Bour, 2021) - 0.1509 1

EffNet 0.848 0.1352 7
MusiCNN 0.819 0.1172 11
OpenL3 0.588 0.1164 11
VGGish 0.786 0.1351 7
YAMNet 0.828 0.1352 7
Jukebox 0.800 0.0880 16

EOVY 0.898 0.13932 6
EMOY 0.795 0.14414 4

Table 3.8: Comparison of the SOTA models (up) with the embedding extractors
(middle) and the best combinations for each task (down) in GTZAN and the moods
and themes subset of the MTG-Jamendo dataset.

3.3.8 Additional benchmarks on public datasets

Since most of the considered downstream datasets are in-house, we select two
additional datasets with well-documented results in the literature to evaluate
the performance of the models using standardized fixed splits with results
extensively reported in the literature. Our goal is to link our classifiers to the
SOTA to contextualize their performance.

GTZAN. We already include GTZAN in our experiments in previous
sections, discarding the problematic files as suggested by Sturm (2013).
For compatibility with other studies, we additionally re-ran our evalu-
ation using the data splits proposed by Kereliuk et al. (2015).

The MTG-Jamendo Mood and Theme split. is a multi-label clas-
sification task based on a subset of the MTG-Jamendo Dataset with
18,486 full-length audio tracks and a predefined data split for training,
validation, and testing (corresponding to the dataset split-0 fold). For
this experiment, we reduced the learning rate to 5×10−4, which slightly
enhanced the performance. Additionally, since this is a multi-label clas-
sification task, we use the PR-AUC metric to evaluate the models.

Table 3.8 contains the metrics obtained by the SOTA models, the proposed
embeddings, and the best combinations of embeddings for each task. For the
MediaEval task, we also show the position the models would have achieved
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Figure 3.3: Distribution of normalized accuracies obtained by classifiers trained on
embeddings extracted from the EffNet model trained with different amounts of data.

in the classification ranking of the 2021 challenge.27 From this comparison,
we conclude that our best downstream models are on par with the SOTA.
Besides, specific combinations of embeddings outperform them. We also find
that some combinations do not improve the individual models’ performance,
or even decrease it. All our downstream models and embedding combinations
outperform the VGGish baseline proposed by the challenge organizers. Using
specific embedding combinations, we achieve good results that rank just below
the top-performing submissions. While the latter potentially uses highly op-
timized methods for this task, our downstream models are generic and demon-
strate how embeddings enable successful systems.

3.3.9 Effect of the pre-training dataset size

One of the axes of research for this work hypothesizes that using more annot-
ated data improves music embedding models. Figure 3.3 shows the variation
in performance in the downstream tasks for the amount of training data in
EffNet. For every model, the plot shows the mean, quartiles, and the 95% con-
fidence interval of the normalized accuracies for all the considered downstream
tasks. The version trained on 3.3 million tracks is the one used in the previ-
ous experiments. The smaller versions of EffNet were created in preliminary
experiments during the development of the dataset.
These results show how increasing the amount of training data consistently
improves the overall downstream metrics. While the improvements in the last

27https://multimediaeval.github.io/2020-Emotion-and-Theme-Recognition-in-Music-
Task/results
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iterations (2 million version 3.3 million) are not significative, we could not find
a clear saturation point at the experimented scales. This suggests that the
models could benefit from even more data.

3.4 Conclusions

In this chapter, we have explored the usage of audio models trained on labels to
extract representations for music classification tasks. We started by evaluating
existing pre-trained models, which led us to the conclusion that using large
collections of annotated music would be the best approach to developing novel
models. After this, we created a new model, EffNet, using a large dataset
of music annotated by the public domain metadata available in the Discogs
database. Note that while the Discogs’ dump contains other types of valuable
information such as artists or record label relations, release year, or country,
we decided to simply target the music styles, leaving the exploration of other
metadata for the next chapters.
We performed a systematic of our model in the context of other SOTA pre-
trained architectures used as feature extractors. First, we conducted a 5-fold
cross-validation revealing that EffNet is not statistically different from the best
SOTA model in every task. However, we found that the smaller datasets are
not appropriate to measure the differences between splits due to the additional
dispersion among folds. The dataset size experiment shows that, as expected,
the models based on embeddings achieve good performance with significantly
fewer examples than the baseline model trained from scratch. Additionally,
we observe that less data is required to achieve good performance when the
source and downstream tasks are more closely aligned (e.g., music style clas-
sification and genre recognition). In the experiment combining different em-
beddings types, we do not find significant improvements on top of original
embeddings for particular tasks, but we find specific combinations that show
good performance in more tasks. In the evaluations on external data, we find
that all the embedding-based systems improve the generalization on top of
the baseline trained from scratch. This opposes the results observed in 5-fold
cross-validation and aligns with other works recommending transfer learning
approaches for contexts of few data. Still, there is a performance gap (huge
for some tasks) demonstrating the need for more work in musical classification
generalization. Interestingly, VGGish is the model with the best metrics in the
external validation, while it was not among the best embeddings in the 5-fold
cross-validation. We hypothesize that this is because it is the embedding with
fewer dimensions, and the MLPs have fewer chances to overfit the downstream
datasets. Then, we find competitive results in two benchmarked datasets,
GTZAN, and the MediaEval Mood and Theme Recognition Challenge, show-
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ing that our models are on par or close with the SOTA. Our interpretation is
that results from datasets with fixed splits, such as in the benchmarked tasks
we considered, are prone to highlighting minimal improvements that, when
seen from the perspective of the statistically corrected metrics or the external
validation, turn out to be not very significant. Thus, we want to highlight
the importance of such studies to understand the true meaning of the metrics.
Finally, we observe that the downstream performance is correlated with the
amount of data used to train the embedding models, suggesting that more data
is beneficial to developing more robust representations.





CHAPTER 4
Representation learning based

on editorial metadata

4.1 Introduction

From the results of Chapter 3, we conclude that supervised approaches are, for
now, more compute-efficient than their unsupervised counterparts, and we will
continue to explore them. However, obtaining large amounts of labeled music
audio data is expensive and time-consuming. In Section 1.2.2, we identified
that one interesting characteristic of music is that it tends to be naturally dis-
tributed together with metadata such as the artist, album, or genre names. We
refer to this information as associative metadata since it allows for establishing
potential similarity relationships between different tracks. For example, two
tracks are more likely to be similar if they were composed by the same artist.
Following Section 1.2.2, we divide associative metadata into two types: edit-
orial and consumption. While editorial metadata contains information about
the music itself, such as the artist, album, or genre, consumption metadata
is related to how the music is consumed, for example, the number of plays,
likes, or the playlists in which a track was included. In this chapter, we focus
on training music representation models based on editorial metadata available
from Discogs. The study of consumption metadata is addressed in Chapter 5.
One of the most appealing characteristics of editorial metadata is its ubiquit-
ous nature, which makes it much more scalable than relying on consistent
taxonomies requiring professional annotators. Basic editorial metadata, such
as the artist or album name, is usually embedded in the audio files themselves
in the form of standardized containers such as ID328 or Vorbis comment.29

28https://en.wikipedia.org/wiki/ID3
29https://xiph.org/vorbis/doc/v-comment.html
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Additionally, online databases such as Discogs,30 MusicBrainz,31 or Last.fm32

provide more detailed information such as the release year, country, record la-
bel, or genres/styles of each release. The metadata of most of these platforms
are publicly available under permissive licenses, which motivates leveraging this
information as a source of supervision to train music representation models.
Notably, metadata can contain inconsistencies, and the process of matching it
to audio may introduce noise compromising the quality of the resulting dataset.
Park et al. (2018) proposed one of the first representation learning models
based on editorial metadata by using artist names as a training target, which
resulted in features close in performance to those obtained from systems trained
on crowdsourced tags of the MSD. Since the artist information is too sparse
to be learned efficiently in a classification setup, they approached the task
using metric learning, by creating triplets with anchor and positive samples
of tracks belonging to the same artist and a negative sample from a track
belonging to a different one. In a posterior study, Lee et al. (2019b) extended
this approach to learning track-, album-, and artist-level associations, finding
that a combination of all provided the best representation models.
In this chapter, we propose creating representation learning models focused on
music tagging using editorial metadata as an inexpensive source of supervision
by extending the work by Park et al. (2018) and Lee et al. (2019b) with three
key contributions. First, we rely on the much larger Discogs20 dataset contain-
ing 3.3 million tracks, which is an order of magnitude larger than the datasets
used in previous works. Second, we adopt a contrastive learning approach
already performant in a self-supervised setup instead of siamese networks.
Specifically, we choose COLA Saeed et al. (2021) for its simplicity, operat-
ing directly on spectral representations, and requiring no data augmentation,
which makes it efficient and suitable for large-data regimes. COLA works by
maximizing the bilinear similarity between a pair of mel-spectrogram patches
(anchor and positive) cropped from the same audio clip while minimizing it for
the rest of the patches in the batch. We propose to modify this self-supervised
approach by constructing the anchor/positive pairs according to the different
types of metadata considered (i.e., same track, release, artist, and record la-
bel). Additionally, we explore whether different metadata associations generate
complementary information by combining the embeddings produced by their
respective models and creating multitask systems jointly optimized to learn
them. Finally, we develop a strategy to disentangle the metadata notions to
isolate their effect on the learned representations, an aspect that was never
considered before.

30https://www.discogs.com/
31https://musicbrainz.org/
32https://www.last.fm/

https://www.discogs.com/
https://musicbrainz.org/
https://www.last.fm/
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Figure 4.1: Overview of the proposed pipelines for a single (left) and multiple tasks
(right). E is the encoder, P the projection head, B are the weights for the bilinear
similarity, and L is the loss term. In the multitask setup, tasks go from 0 to n.

The experiments of this chapter are based on Alonso-Jiménez et al. (2022).

4.2 Method

We are interested in assessing the representation power of features derived from
associations of commonly available editorial metadata. This goal is motivated
by previous works that already showed the usability of the track, artist, and
album similarities as supervision targets Lee et al. (2019b). As these works
already studied the influence of the dataset size and showed a positive correl-
ation with the downstream metrics, we will only perform full-size experiments
and focus on unexplored aspects.
In particular, we are interested in imposing tight constraints on the pair gen-
eration process to emphasize the differences between the different associations.
To formalize our problem, we consider a collection of music where each song
has a track ID (t) and appears in one or more releases (R). Each release is
produced by one or more artists (A) for one or more record labels (L). We
define one self-supervised and three metadata-based associations:

track association, the anchor and positive samples come from the same
track (self-supervised),

ta = tp

release association, ta and tp have at least a release in common,

|R(ta)∩R(tp)| > 0

artist association, ta and tp have at least an artist in common, but they
do not appear in the same release,

|A(ta)∩A(tp)| > 0, and |R(ta)∩R(tp)| = 0
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label association, ta and tp have at least a record label in common, but
they do not share any artist,

|L(ta)∩L(tp)| > 0, and |A(ta)∩A(tp)| = 0

Note that this approach considerably limits the number of pairs that can be
matched and presumably leads to suboptimal representations. However, our
goal is to limit the number of overlapping pairs to emphasize the differences
between associations. For instance, the release associations would be broadly
a subset of the artist ones without the proposed constraints.
For each association, we generate a dataset of anchor/positive pairs. We ini-
tialize a pool with all the songs in the music collection. For each song, we pick
a random pair that complies with the association’s condition and remove both
from the pool. While this approach does not exploit every possible association,
it gives each track one association attempt, which provides us with sufficient
training data for the scope of this work. We also considered a balanced version
of the algorithm (e.g., the same number of tracks per artist) that we discarded
as the performance dropped due to the reduced dataset size without providing
additional insights.
Following our contrastive paradigm, we do not need to create explicit an-
chor/negative pairs. For a given anchor, the rest of the positive samples in
the batch are considered negatives (see Figure 4.1). While this naive approach
implies that two pairs of tracks associated with the same artist will be respect-
ively used as negative examples, there is a small probability of having repeated
artists in a batch, and we ignored this issue.33

4.3 Experiments

We pre-trained different contrastive systems following the proposed similarity
notions. To evaluate the quality of the learned representations, we trained
shallow classifiers on different multi-class and multi-label classification tasks.
Additionally, we conducted experiments to understand the complementarity of
such representations.
We follow a straightforward implementation of COLA, but instead of relying
on the same audio clip (purely self-supervised), we form the anchor/positive
pairs according to relationships from the metadata. The complete pipeline is
represented in Figure 4.1 (left). This is, to the best of our knowledge, the first
usage of this framework in the context of MIR.

33For example, considering a dataset of one million tracks, a batch size of 200 pairs, and
an average of 6 tracks per release, the probability of having two pairs from the same release
in the batch is 6e − 4, which we consider an affordable false-negative rate.
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Association Pairs Diversity Time Acc.

track 3.3M 3.3M 63h 88.7
release 846K 2.0M 21h 35.7
artist 1.2M 257K 33h 41.1
label 1.1M 142K 48h 24.7

Table 4.1: Statistics for the metadata association and their respective models. We
show the number of pairs used, association diversity (number of different tracks, re-
leases, artists, and record labels, respectively), training time (hours), and validation
accuracy (%).

4.3.1 Contrastive targets based on Discogs’ metadata

The Discogs database provides publicly available dumps of their release data
that we used to create our training targets. According to Discogs, a release is “a
broad term for any audio product that is made for general public consumption”;
albums, singles, or compilations are examples of releases. Each release entry
contains lists of the artists and record labels involved, the year and country
of release, and a list of music genres and styles according to the Discogs’
taxonomy. We matched our in-house audio collection to releases and master
releases (groupings of different versions of a release) in the Discogs metadata
dump resulting in 4 million tracks, with 58.2% of the tracks belonging to
more than one release. A track may be linked to many releases for multiple
reasons, including remasters, reeditions, or compilations containing it. For each
track, we generated lists of artists and record labels by pooling the metadata
on the releases linked to it. We observed that different versions of a release
could contain very different information, so for us, this was a simple way of
maximizing the amount of information available per track.
We selected the subset with the top 400 most popular music styles resulting
in 3.3 million tracks to train a baseline model with a multi-label classification
objective (Style tags model). We reserved subsets of 50,000 tracks without
artist overlap and a minimum frequency of 50 releases per music style tag for
testing and validation. These sets were used as data pools to generate training,
validation, and testing sets for the considered metadata associations following
the methodology presented in Section 4.2. Note that we did not apply any data
cleaning or deduplication, meaning that there may be room for improving the
proposed representation models. Table 4.1 contains the resulting number of
pairs and association diversities for each association, as well as the training
time, and the accuracy obtained by their respective models.34

34The high number of releases is partially due to albums with multiple reeditions. On
average, each track in our dataset is linked to 5 releases.
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4.3.2 Pre-training models with editorial metadata

We used an EfficientNet v1 on its B0 configuration as a backbone to learn
the embedding representations Tan & Le (2019). Our models operate on 2-
second patches of mel-spectrograms with 96 bands extracted with the same
parametrization as for MusiCNN (Pons & Serra, 2019a) using the Essentia
library.35

Due to the massive dataset size, we stored the features as half-precision (16-
bit) floats and split the data into three machines with two GeForce RTX 2080
Ti GPUs each to parallelize the training. For every epoch, we fed the model
with a random 2-second crop of the mel-spectrogram from each track in the
training set. We also used a random patch per track for validation, but in this
case, we used the same offset on every epoch to get more stable metrics. We
relied on the Adam optimizer with an initial learning rate of 1 × 10−3 and a
scheduler that reduced the learning rate by a factor of 10 if the validation loss
had not decreased in 10 epochs. We trained the models for 100 epochs and
considered two versions. The first one had the weights from the epoch where
the lowest validation loss was achieved. The second model was obtained with
stochastic weight averaging (Izmailov et al., 2018). For the last 25 epochs, we
imposed a learning rate of 1×10−3 and kept a moving average of the weights.
As the latter version only reported minimum improvements in specific tasks,
we decided to present the results of the former only.
As a baseline, we trained a model targeting the top 400 Discogs music styles
with the multi-label soft-margin loss by connecting a fully connected layer to
the flattened output of the last convolutional block with 1280 units (embedding
layer). As discussed on the Discogs website,36 music styles usually go beyond
purely stylistic descriptions and encode cultural, temporal, or geographical
information, so we hypothesize that the learned representations are valuable
beyond the task of genre recognition.
For the contrastive objectives, we used a fully connected projection head with
512 dimensions on top of the same embedding layer, followed by a normaliza-
tion layer and a tanh activation. We used the bilinear similarity (aT Bp) and
the cross-entropy loss as in the original implementation. While the authors
of COLA showed that larger batch sizes improved the performance, we could
only afford a batch size of 200 pairs due to the memory size of our GPUs. We
parallelized the training so that each optimizer step aggregated six batches
computed by different GPUs. This setup was close to the optimal number of
pairs per optimizer step found in the original publication but used a larger
ratio of positive samples.

35https://essentia.upf.edu/reference/std_TensorflowInputMusiCNN.html
36https://blog.discogs.com/en/genres-and-styles

https://essentia.upf.edu/reference/std_TensorflowInputMusiCNN.html
https://blog.discogs.com/en/genres-and-styles


4.3 Experiments 63

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

association
track
release
artist
label

Figure 4.2: Training accuracies over the epochs for the different associations.

To get additional insights into the models, we computed the top-1 accuracies
by taking the arg max of the similarity matrices. Table 4.1 shows the train-
ing times and validation accuracies obtained by the model of each metadata
association, and Figure 4.2 shows the evolution of the training accuracies over
the epochs. The accuracies show that the associations have different difficulty
levels, which aligns with our expectations.
All the pre-trained models are publicly available for feature extraction within
the Essentia library.37

4.3.3 Downstream datasets

We evaluated our models as frozen feature extractors following a transfer learn-
ing setup. We consider three well-known music auto-tagging and classific-
ation datasets: FMA-small (Defferrard et al., 2016) (FMA), MagnaTagAT-
une (Law et al., 2009) (MTAT ), and the MTG-Jamendo Dataset (Bogdanov
et al., 2019b). The latter contains different subsets for Genre, Instrument, and
mood/theme (Mood) tags, as well as the top-50 tags in the dataset (Top50 )
that we treated independently. For FMA and MTAT, we used the splits pro-
posed by the authors (Defferrard et al., 2016) and the 12:1:3 partition (Van
Den Oord et al., 2014) respectively. In the MTG-Jamendo tasks, we used the
sets defined by its split-0 similarly to previous works (Won et al., 2020b; Manco
et al., 2021). Table 4.2 shows the size of the considered datasets.

37https://essentia.upf.edu/models.html

https://essentia.upf.edu/models.html
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Dataset Size Classes Type

Genre 55,215 87 Multi-label
Instrument 25,135 40 Multi-label
Mood 18,486 56 Multi-label
Top50 54,380 50 Multi-label
MTAT 25,860 50 Multi-label
FMA 8,000 8 Multi-class

Table 4.2: Considered downstream datasets.

4.3.4 Transfer learning evaluation setup

As for the pre-training stage, we trained the downstream models with 2-second
patches randomly cropped on each epoch. For validation, we averaged over the
activations from the half-overlapped patches of the entire tracks. We passed the
patches through the frozen backbone and used the flattened output of the last
convolution layer as the input to a multi-layer perceptron with a single hidden
layer of 512 units with a sigmoid or softmax activation for the multi-label or
multi-class tasks. We used the cross-entropy loss and the Adam optimizer with
a starting learning rate of 1 × 10−3 and added a weight decay of 1 × 10−5. A
scheduler divided the learning rate by half if the loss had not decreased in five
epochs. We trained the models for 30 epochs and used the weights from the
epoch achieving the lowest validation loss to evaluate the test set.

4.3.5 Stacks of embeddings

Apart from evaluating the embeddings obtained from every association in-
dividually, we were interested in understanding their complementarity. We
wanted to understand if the individually learned representations could be com-
bined to boost the performance, and if so, which were the best combinations.
To investigate this, we ran stacks of embeddings through the presented eval-
uation protocol. First, we evaluated the stack of the Track, Release, Artist,
and Label features for all the datasets. Additionally, we performed a system-
atic evaluation considering all the possible combinations of the four contrastive
models plus the model trained on tags on MTAT considering two, three, four,
and five embeddings.

4.3.6 Multitask model

We also considered training a multitask model to learn the metadata associ-
ations jointly. The architecture of the proposed system is depicted in Figure 4.1
(right). For each association, we have a separate pair generator and projection
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head. To perform an optimization step, we ran a batch of pairs from each
association through the shared encoder and its specific projection head and
computed a weighted sum of the losses. The loss weights were empirically se-
lected prioritizing associations with better single-model performances (track:
0.1, release: 0.15, artist: 0.6, and label: 0.15). Additionally, we initialized the
encoder with the weights of the model based on artist associations on its 20th
epoch to speed up the training. While we experimented with multitask models
based on two association types, we did not find additional insights and decided
to omit those results. Due to the additional model size, we had to reduce the
batch size to 50 pairs per association.

4.4 Results and discussion

Table 4.3 reports the metrics obtained by our models and selected works from
the literature. In descending order, the five groups in the table contain SOTA
models trained from scratch without additional data, SOTA embedding mod-
els, baseline embedding models trained by us, our proposed embedding mod-
els trained on metadata associations, and models combining metadata associ-
ations. In the first group, we include MusiCNN (Pons & Serra, 2019a), Har-
monic CNN (Won et al., 2020b), and the winning submission of the 2021 Emo-
tion and Theme Recognition challenge (team Lileonardo) (Tovstogan et al.,
2021)38 as the best models from the literature in MTAT, Top50, and Mood,
respectively. Similarly, MuLaP (Manco et al., 2021) reports the best perform-
ance as a frozen embedding extractor in Genre, Mood, Top50, and FMA, and
the same applies to CALM Castellon et al. (2021) in MTAT. Note that com-
parisons against these reported metrics may be unreliable due to differences in
training and evaluation settings.
We computed three baselines based on audio embeddings from an Efficient-
Net architecture with random weights, an EfficientNet architecture trained on
music style tags as described in Section 4.3.2, and the VGGish model with its
pre-trained weights (Hershey et al., 2017).
Concerning our contrastive models, we observe that the model based on track
associations (Track model) achieves competitive performance in some tasks,
especially in Top50. Nevertheless, the models using metadata associations
show better or equivalent performance despite seeing fewer pairs of tracks in
the pre-training stage. In particular, we find that the model based on artist
associations (Artist model) is the best-performing with a few exceptions, which
aligns with previous studies in metadata-based music representation learning
(Lee et al., 2019b).

38https://multimediaeval.github.io/2021-Emotion-and-Theme-Recognition-in-Music-
Task/

https://multimediaeval.github.io/2021-Emotion-and-Theme-Recognition-in-Music-Task/
https://multimediaeval.github.io/2021-Emotion-and-Theme-Recognition-in-Music-Task/
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Instrument and MTAT are the tasks where our models are further from the
SOTA. For MTAT, we attribute this to the fact that CALM has 1,000 times
more parameters and that the authors report the best metrics from a grid
search over shallow classifiers and hyperparameters. Also, we observed that
models operating in the full MTAT previews tend to report higher PR-AUC
performances (Castellon et al., 2021; Zhao et al., 2022) than models operating
in short chunks (Pons & Serra, 2019a; Spijkervet & Burgoyne, 2021).



4.4 Results and discussion 67

G
en

re
In

st
ru

m
en

t
M

oo
d

To
p5

0
M

TA
T

FM
A

R
O

C
PR

R
O

C
PR

R
O

C
PR

R
O

C
PR

R
O

C
PR

A
cc

.

Li
le

on
ar

do
-

-
-

-
77

.5
15

.1
-

-
-

-
-

H
ar

m
on

ic
C

N
N

-
-

-
-

-
-

83
.2

29
.8

*9
1.

3
*4

5.
9

-
M

us
iC

N
N

-
-

-
-

-
-

-
-

90
.7

38
.4

-

M
uL

aP
85

.9
-

76
.8

-
76

.1
-

82
.8

-
*8

9.
3

*4
0.

2
61

.1
C

A
LM

-
-

-
-

-
-

-
-

91
.5

41
.4

-

R
an

do
m

w
ei

gh
ts

50
.7

3.
1

49
.9

6.
4

50
.4

3.
4

48
.3

6.
5

50
.0

5.
3

12
.5

St
yl

e
ta

gs
87

.7
19

.9
77

.6
19

.8
75

.6
13

.6
83

.1
29

.7
90

.2
37

.4
59

.1
V

G
G

ish
86

.3
17

.2
77

.8
20

.2
76

.3
14

.1
83

.2
28

.2
90

.2
37

.2
53

.0

Tr
ac

k
as

so
ci

at
io

ns
86

.3
18

.0
69

.9
16

.7
74

.0
12

.8
82

.9
29

.4
89

.7
36

.4
58

.9
R

el
ea

se
as

so
ci

at
io

ns
86

.9
18

.9
71

.9
17

.2
72

.8
11

.7
83

.2
29

.8
90

.3
37

.1
60

.9
A

rt
ist

as
so

ci
at

io
ns

87
.7

20
.3

69
.7

16
.9

76
.3

14
.3

83
.6

30
.6

90
.7

38
.0

59
.1

La
be

la
ss

oc
ia

tio
ns

87
.0

19
.4

75
.0

18
.2

74
.8

12
.8

83
.1

29
.9

88
.7

34
.2

59
.5

St
ac

k
86

.9
19

.4
74

.7
18

.8
74

.3
13

.0
83

.4
30

.0
90

.8
38

.6
59

.8
m

ul
tit

as
k

87
.2

19
.9

70
.5

17
.2

76
.1

14
.4

83
.5

30
.3

90
.8

37
.8

60
.0

T
ab

le
4.

3:
R

O
C

-A
U

C
,P

R
-A

U
C

,a
nd

ac
cu

ra
cy

m
et

ric
s

fo
r

th
e

do
w

ns
tr

ea
m

da
ta

se
ts

.
T

he
fiv

e
ho

riz
on

ta
lg

ro
up

s
re

pr
es

en
t

SO
TA

m
od

el
s

fr
om

th
e

lit
er

at
ur

e
tr

ai
ne

d
fr

om
sc

ra
tc

h,
SO

TA
fe

at
ur

e
ex

tr
ac

to
rs

fr
om

th
e

lit
er

at
ur

e,
ba

se
lin

e
fe

at
ur

e
ex

tr
ac

to
rs

tr
ai

ne
d

by
ou

rs
el

ve
s,

th
e

pr
op

os
ed

fe
at

ur
e

ex
tr

ac
to

rs
ba

se
d

on
m

et
ad

at
a

as
so

ci
at

io
ns

,a
nd

th
e

pr
op

os
ed

fe
at

ur
e

ex
tr

ac
to

rs
co

m
bi

ni
ng

as
so

ci
at

io
ns

.
(*

)
re

su
lts

w
er

e
co

m
pu

te
d

in
a

cl
ea

n
ve

rs
io

n
of

M
TA

T
an

d
ar

e
no

t
di

re
ct

ly
co

m
pa

ra
bl

e.



68 Representation learning based on editorial metadata

Tr Re Ar La St ROC-AUC PR-AUC

✓ ✓ ✓ ✓ 90.93 38.75
✓ ✓ ✓ ✓ 90.92 38.69

✓ ✓ ✓ ✓ 90.92 38.51
✓ ✓ ✓ 90.89 38.57

✓ ✓ ✓ 90.87 38.57

Table 4.4: Top-5 combinations of the Track, Release, Artist, Label and Style Tags
features in MTAT. The results are sorted according to the ROC-AUC values.

The Stack is obtained by concatenating the embeddings from the models based
on single associations as input for the MLPs. Except for MTAT, we do not
get improvements over the best single model in any dataset despite the addi-
tional input dimensionality (5,120). Table 4.4 shows the top-5 results of models
trained on combinations of embeddings for MTAT. The representations from
the Artist and Style tags models are the only ones present in all the top 5 com-
binations, suggesting that these are the representations with the most valuable
information. This observation aligns with the results from Table 4.3.
Similarly, our multitask model is not superior to the best single model in any
dataset, but generally, it is close in performance to the Artist model. We
observe that multitask only overcomes Artist in the datasets where other asso-
ciations perform better (i.e., Instrument and FMA), which shows its capability
to pick the best information from different association types.

4.5 Conclusions

In this chapter, we studied the usage of editorial metadata as a source of super-
vision to create contrastive representation learning models intended for music
tagging. We demonstrated that it is possible to rely on this very inexpensive
source of supervision to learn competitive representations. In Chapter 3.3.3,
we propose DiscogsEffNet, a model featuring the same architecture trained
to predict 400 music style labels from Discogs. Our model trained on artist
associations achieves better performance in 5 out of the 6 datasets considered,
showing the potential of metadata-based representations for music classifica-
tion tasks.
Our approach extends previous works on metadata-based representation learn-
ing by scaling up the models in terms of training dataset size, considering ad-
ditional editorial metadata notions, and experimenting with a new contrastive
learning setup. We could validate that some of the observations from pre-
vious studies still hold for models trained on 10 times more data. Namely,
we observed that some metadata-based representations are superior to their
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tag-based counterparts and that artist associations provide the best representa-
tions. Additionally, we found that the features learned from different metadata
notions can be combined or jointly learned, showing slight performance im-
provements for particular tasks. To the best of our knowledge, this was the
first study using Discogs’ metadata to train music representation models. We
did this by generating pairs of tracks according to metadata notions with simple
matching rules, which leaves room for experimentation with the dataset.





CHAPTER 5
Representation learning based

on consumption metadata

5.1 Introduction

In Chapter 4, we explored the use of editorial metadata to pre-train models for
music tagging tasks, showing that the use of artist co-occurrences as positive
pairs can lead to better representations than those obtained using style labels
as classification targets. In this chapter, we extend this approach by exploring
the use of consumption metadata for the same purpose.
As discussed in Section 1.2.2, we identify two main categories of music metadata:
editorial and consumption. While the former typically refers to information
specific about the music pieces (e.g., artist and album names, or country and
year of release), the latter describes interactions of humans (or machines) with
them (e.g., playlists, DJ setlists, radio programs, or listening histories). Using
consumption metadata as a source of similarity ground truth has already been
explored in the recommender-systems literature, enabling tasks such as music
playlist continuation (Chen et al., 2018). However, the usage of consumption
metadata for music representation learning has not been as extensively invest-
igated yet (Huang et al., 2020; Ferraro et al., 2021) as the case of editorial
metadata (Park et al., 2018; Kim et al., 2018a; Lee et al., 2019b; Kim et al.,
2020b; Huang et al., 2020; Alonso-Jiménez et al., 2020b), thus leaving room
for further exploration.
Consumption metadata contains information on human judgments of music
that fit in the same context and thus may be more suitable for learning repres-
entations that encode perceived similarity. Also, while editorial relations are
normally one- or few-to-many (e.g., album-songs), consumption is many-to-
many (e.g., playlists-songs), resulting in a potentially more dense co-occurrence
space that may favor associating more heterogeneous music.

71



72 Representation learning based on consumption metadata

In general, music metadata of diverse types is easily accessible at industrial
contexts such as streaming services, or radio stations, and can be combined
by crossing data from different sources. Specifically, in this chapter, we focus
on music consumption metadata in the form of music playlists. However, our
method could be easily extended to other types of many-to-many consumption
data, such as radio programs, DJ setlists, or listening histories.
In this chapter, we propose strategies to pre-train models using music playl-
ist data. We start by comparing the performance of three models based on
playlist data and four baselines using two different architectures in one similar-
ity and five classification tasks. Then, we find that the proposed pre-training
strategies using playlist information lead to superior performance compared
to previous approaches based on editorial metadata in several music classific-
ation tasks. Additionally, we show that some models trained with playlists
achieve better similarity metrics than those based on self-supervision or ed-
itorial metadata. Finally, we propose a method that leverages training-time
similarity estimations to optimize the process of selecting positive pairs from
the playlists showing benefits in the tagging and similarity tasks.
The main contributions of this chapter were developed during a 6-month in-
ternship in Utopia Music, 39 and the experimental results are based on Alonso-
Jiménez et al. (2023a). Additionally, the algorithm proposed in Section 5.5 has
been registered on the patent “Training methodology for contrastive learning
based on associative metadata.”

5.2 Method

We investigate methods to obtain targets from music playlist datasets to pre-
train models using contrastive learning. Instead of using augmentation tech-
niques to obtain the anchor and positive samples, as done in standard self-
supervised contrastive approaches, we propose using pairs originating from
different tracks by exploiting playlist information. This idea is motivated by
the assumption that songs co-existing in a playlist tend to share a certain
degree of similarity.
The number of possible pairs of elements that co-occur in a playlist of size n
corresponds to the number of combinations without repetition

(n
2
)
. This pro-

duces many pairs when considering millions of playlists, making the exhaustive
usage of the pairs difficult to scale with this contrastive learning approach. Be-
cause of this, we propose algorithms that rely on heuristics to create audio pairs
that utilize a wide range of tracks while preventing track repetitions, as well
as an embedding learning-based technique to create the target pairs.

39http://utopiamusic.com

http://utopiamusic.com
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Considering a dataset of playlists P = {p0, ...,pN }, and tracks S = {s0, ...,sM },
we propose the following strategies:

Co-Occurrence. This approach randomly generates pairs by producing
combinations using the available tracks in each playlist pi and with each
track appearing in only one pair. We iterate randomly through P gener-
ating ⌊ |pi|

2 ⌋ pairs per playlist and discarding the associated tracks from
the set of available tracks. This algorithm is executed at the beginning
of each training epoch.

Top Co-Occurrence. This algorithm counts the number of co-occurrences
of the tracks in all the playlists. For each anchor track, we randomly
select its associated pair among its top 10 most co-occurring tracks while
ensuring that every track appears only in one pair. To do so, at each
epoch, we initialize a set of available tracks A = S. We randomly iterate
through A and for a given track sj we select one of the top co-occurring
tracks sk and discard sj and sk from A.

Word2Vec representation. This is a multi-modal approach in which, for
a given track, we align the projection of its audio representation z′

x to
the projection of its Word2Vec embedding z′

y (Mikolov et al., 2013). We
train a Word2Vec model by considering playlists as sentences and track
IDs as words. We rely on the Continuous Bag of Words approach with a
context window that includes the entire playlist 40 and a learning rate of
0.02 for 20 epochs.41 In this case By(·) is the frozen pre-trained Word2Vec
model, zy is a Word2Vec embedding, and Hy(·) is a different projector
from Hx(·) featuring the same hyper-parameters and dimensions.

5.3 Experiments

Following the proposed methodology, we pre-train music representation models
using contrastive learning with positive pairs sampled by (i) randomly sampling
tracks co-occurring in playlists, (ii) constraining the positive pairs to the top
co-occurrences across playlists, and (iii) using alternative track representations
obtained using a Word2Vec (Mikolov et al., 2013) model trained on the playlist
sequences as associated pair. We consider the ResNet50 (He et al., 2016) and
VGGish (Hershey et al., 2017) architectures and use the playlist data from the
MPD (Chen et al., 2018). After pre-training, the models are fine-tuned and

40We also tested a W2V sensitive to the track positions in the playlists by using smaller
window sizes. However, this degraded the performance.

41We use the Gensim implementation https://radimrehurek.com/gensim/models/
word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
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Pair generator Losssimilar

Figure 5.1: Illustration of our pre-training pipeline. The features x and y from the
associated pairs are input to the model B(·) and projector H(·). B(·) and H(·) are
optimized using a contrastive loss. B(·)=Bx(·)=By(·) and H(·)=Hx(·)=Hy(·) in all
the cases except for Word2Vec representation.

evaluated in the downstream music tagging or directly evaluated in a music
similarity task.

5.3.1 Contrastive learning setup

Our architecture consists of a convolutional backbone B(·) and a projector
H(·) that map a mel-spectrogram input x ∈ RT ×F with T timestamps and F
frequencies into latent representations z ∈ RD, and z′ ∈ RD′ respectively. The
model is trained to bring z′

x close to z′
y while pulling it apart from samples in

the same batch following SimCLR (Chen et al., 2020). After pre-training, H(·)
is discarded, and B(·) is used in the downstream tasks. Our setup is depicted
in Figure 5.1.

5.3.2 Architectures

We repeated all experiments with two standard backbone architectures. Ad-
ditionally, we use an auxiliary projection head H(·) to map the latent repres-
entations to a joint embedding space during the contrastive learning phase.

VGGish (Hershey et al., 2017). This is a variant of the VGG (Simonyan
& Zisserman, 2014b) architecture popular in the audio domain. It has
128 output dimensions. We consider the original model weights obtained
from a classification task in a proprietary dataset as a baseline.42 When
pre-training the architecture with our data, we use our 3-second 96-band
mel-spectrogram patches and modify the kernel of the first pooling layer
from 2 × 2 to 4 × 4 to keep the number of dimensions after the convolu-
tional layers close to the one in the original model.
ResNet50 (He et al., 2016). We use the standard ResNet50 model
considering its good performance in audio and music applications (Wang

42https://github.com/tensorflow/models/tree/master/research/audioset/vggish

https://github.com/tensorflow/models/tree/master/research/audioset/vggish
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et al., 2022). We reduce the output of the last dense layer with global
max- and mean-pooling and concatenate the resulting vectors, leading
to an output embedding of 4,096 dimensions.
Projector. The same projector is used for the two backbone architec-
tures and every contrastive learning setup. It consists of an MLP model
with a single hidden layer of 128 dimensions and ReLu activation and
128 output dimensions.

5.3.3 Pre-training models with consumption metadata

We pre-train several models following the proposed pair generation strategies.
SimCLR is a baseline where x and y are alternative views of the same audio
patch mixed with random patches from the batch scaled with a gain factor
sampled from a β(5,2) distribution similar to previous work (Wang et al.,
2022). Artist CO is another baseline that applies the Co-Occurrence strategy
to the artist names (i.e., considering the set of tracks by each artist as a playlist)
without preventing track repetitions.
Playlist CO, Playlist TCO, and Playlist W2V use the Co-Occurrence, Top Co-
Occurrence, and Word2Vec representation strategies respectively to generate
the x/y pairs using the playlist information. Table 5.1 shows the number of
pairs per epoch and model. In SimCLR and Playlist W2V, the number of pairs
corresponds to the number of tracks in the dataset since these methods do not
associate different tracks. In Playlist CO and Playlist TCO, we constrain to
a single track occurrence per epoch, which results in fewer pairs per epoch.
We train the models for a fixed number of 50 epochs. This makes the pair
generation algorithms execute the same number of times, which leads to a
different number of batch optimization steps for each model.
We pre-train all our models using the Million Playlist Dataset (MPD) (Chen
et al., 2018) matched to our in-house music collection, resulting in 1,779,072
tracks and 999,219 playlists. 43 H(·) has a single hidden layer with 128 units
and a ReLu activation and D′ = 128. We use the NT-Xent loss (Chen et al.,
2020) with a fixed τ value of 0.1 using a batch size of 384 pairs, and the
Adam optimizer with β1 = 0.9 and β2 = 0.999. The learning rate is increased
linearly from 0 to 1×10−4 for the first 5,000 steps and then decreased following
a cosine decay until the models complete 50 epochs similar to Wang et al.
(2022). We train the models on 96-band, 256-timestamp (∼3 seconds) mel-
spectrogram patches randomly selected at each iteration from the 30-second
excerpts available for each track.

43Our dataset has an average number of tracks per artist and playlist of 7.2 and 66.3,
respectively. On average, a track appears on 29.3 playlists and belongs to 1.28 artists.
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Model Pairs per epoch Pair generation algorithm

SimCLR 1,779,072 -
Artist CO 1,014,528∗ Co-Occurrence
Playlist CO 826,368∗ Co-Occurrence
Playlist TCO 731,520∗ Top Co-Occurrence
Playlist W2V 1,779,072 Word2Vec representation

Table 5.1: Number of pairs per epoch and pair generation algorithms. ∗indicates
that these are different pairs on each epoch.

5.3.4 Downstream datasets

Table 5.2 contains the datasets used in our experiments, including the number
of samples, and their purpose.
We use the Genre, Instrument, and Mood subsets of the MTG-Jamendo Data-
set (Bogdanov et al., 2019b) and the MagnaTagATune (MTAT) dataset (Law
et al., 2009) considering its top-50 tags and using the standard 12:1:3 assign-
ment of the train/val/test partition proposed by Van Den Oord et al. (2014).
Additionally, we consider an in-house genre dataset containing 2-minute ex-
cerpts and 72 classes, referred to as Genre Internal. With this dataset, our
goal is to assess if our pre-training approaches are still beneficial when a bigger
and arguably more curated collection is available.
For the music similarity evaluation, we use the dim-sim dataset consisting of
a collection of music similarity triplets produced by human raters (Lee et al.,
2020a). Each triplet was annotated by 5 to 12 people, and the official clean ver-
sion of the dataset contains 879 triplets with a high inter-annotator agreement
(superior to 0.9).

5.3.5 Music tagging

Our first evaluation consists of solving multi-label music classification tasks
by fine-tuning the pre-trained models. We keep the pre-trained B(·) and re-
place H(·) with an MLP with the same hidden layer configuration and output
dimensions matching the number of classes followed by a Sigmoid activation.
We optimize B(·) and the new H(·) using Adam (β1 = 0.9 and β2 = 0.999) and
cross-entropy loss with an L2 regularization term of 1 × 10−5 for a maximum
of 50 epochs. We use a cyclical triangular scheduler that varies the learning
rate from 1 × 10−5 to 1 × 10−4 (Smith, 2017). The weights are selected from
the epoch with the highest Average Precision on the validation set. We apply
early stopping after ten epochs without any improvement on this metric. In
training, we use the same random patch selection approach as in pre-training.
During inference, we average the activations from non-overlapping patches.



5.4 Results and discussion 77

Dataset Size Purpose

MagnaTagATune 25,860 tagging (50 classes)
MTG-Jamendo Genere 55,215 tagging (87 classes)
MTG-Jamendo Instrument 25,135 tagging (40 classes)
MTG-Jamendo Mood&Theme 18,485 tagging (56 classes)
Genre Internal 87,542 tagging (73 classes)
dim-sim 879 similarity (triplets)

Table 5.2: Datasets used in the downstream evaluation.

We use 30 seconds of audio from the center of the track in validation, and the
full duration available in testing.

5.3.6 Music similarity

We extract representations z for the clean subset of dim-sim using the pre-
trained models without fine-tuning. Following the common evaluation ap-
proach used by (Lee et al., 2020a), we measure the cosine distance between
anchor/positive, and anchor/negative, and consider the triplet prediction cor-
rect if the latter is larger. We report the prediction accuracy and the average
difference between anchor/negative and anchor/positive distances.

5.4 Results and discussion

Table 5.3 shows the macro ROC-AUC and Average Precision44 metrics for all
the datasets and models as the average ± the standard deviation of three runs.
On each trial, a different random seed is used for the initialization of the MLP
classifier, the selection of offsets for the mel-spectrogram patches, and the order
in which tracks are presented to the model. Our baselines consist of fine-tuning
the original VGGish (Hershey et al., 2017) (VGGish FT ), randomly initialized
models (From Scratch), SimCLR, and Artist CO. The proposed models based
on metadata are Artist ICO, Playlist CO, Playlist TCO, and PlaylistW2V.
We note that the contrastive approaches based on artist and playlist metadata
always achieve better performance than the VGGish FT, From Scratch, and
SimCLR baselines, which aligns with previous works indicating the benefits of
metadata-based supervision (Park et al., 2018; Kim et al., 2018a; Lee et al.,
2019b; Alonso-Jiménez et al., 2022). The models based on playlist information
achieve equivalent or superior performance to those based on Artist CO on

44Average Precision is also referred to as the area under the precision-recall curve (PR-
AUC) in the literature.
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most datasets and metrics, and Playlist W2V with the ResNet50 architecture
achieves the best performance in at least one metric for the Genre, Instrument,
Mood, and Genre Internal datasets.
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Model VGGish Resnet50 VGGish Resnet50
Accuracy Average difference

SimCLR 0.699 0.672 0.007 0.009
Artist CO 0.819 0.838 0.043 0.039
Playlist CO 0.852 0.845 0.077 0.064
Playlist TCO 0.793 0.813 0.052 0.046
Playlist W2V 0.831 0.818 0.067 0.041

Table 5.4: Music similarity accuracy and the average difference between anchor/neg-
ative and anchor/positive.

Table 5.4 contains the results of the music similarity evaluation in the dim-sim
dataset. We observe that models based on metadata show a stronger correl-
ation with human similarity perception than the baseline SimCLR approach.
While Playlist CO achieves the best metrics with both architectures, Playlist
TCO and Playlist W2V did not improve the performance as in the classific-
ation tasks. We hypothesize that Top Co-Occurrence and Word2Vec repres-
entation reduce the diversity of the positive pairs, which may augment the
discriminative capabilities of the latent space at the cost of becoming weaker
for similarity. Finally, we observe that pair selection strategies as Top Co-
Occurrence that were found beneficial in classification, decrease the similarity
performance compared to the basic Playlist CO, which suggests that augment-
ing the discriminative capabilities of the latent space may have adverse effects
for similarity.
Finally, these results may depend on the nature and sparsity of the available
playlists. In our study, we relied on MPD, which contains a curated subset of
Spotify playlists filtered by quality and enriched with additional tracks. The
playlists were created by US users only between 2010 and 2017 and are not
expected to be representative of the overall distribution of playlists in Spotify
according to the authors. However, this dataset represents a small fraction
of more than 4 billion playlists reportedly existing in Spotify by 2018, which
motivates further research on playlist-based pre-training.

5.5 Improving the selection of positive pairs

While methods based on playlist information showed promising results, we
acknowledge certain limitations in the pair selection strategies. Particularly,
it was easy to find examples of playlists with tracks that are not related in
terms of genre, mood, or instrumentation. For example, In MPD we could
find playlists containing tracks played on films or TV shows, or tracks created
in a particular region or country, without any other apparent relationship.
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Following this idea, we developed an algorithm called Informed Co-Occurrence
(ICO) that operates jointly with the model being trained to improve the relev-
ance of the selected pairs. This algorithm is a variation of Co-Occurrence that
operates jointly with the model B(·) being trained to improve the relevance of
the selected pairs.
At the beginning of each epoch, the algorithm iterates P randomly dividing
each playlist pi ∈ P into two halves,

pi = pia ∪pib with pia ∩pib = ∅ and L = |pia| = |pib| = |p|
2 . (5.1)

For each pi, we compute the similarity among latent representations of the
tracks in pia, and pib,

Sj,k = m(pia,j ,pib,k). (5.2)

Then, for each anchor track pia,j we create a list of candidates cia,k consisting
on the tracks in pib sorted by similarity Si,0:L in descending order. Our goal
is to select a positive sample from the list of candidates that is likely to be
similar to the anchor, but without allowing the model to always choose the
same pair. We solve this by assigning each candidate a weight w based on a
Gaussian density function with µ = 0 and σ = 3

4L.

w(k) = 1
σ

√
2π

exp
(

− k2

2σ2

)
(5.3)

Additionally, we discard candidates that have already been assigned to previous
values of j. Note that candidates in the first positions (with higher estimated
similarity) will have higher weights, making them more likely to be selected.
After this, the anchor and positive tracks are added to a list of used samples, so
that they are no longer used as candidates in the following playlists. Finally,
the pair selection algorithm is run at the beginning of each epoch, allowing
the updated versions of B(·) to provide more accurate estimations each time,
progressively improving the quality of the selected pairs. Overall, our algorithm
favors matching similar pairs within the playlists, while allowing the model to
learn from a variety of examples thanks to the initial random split of the
playlist and weighted sampling of the candidates.

5.5.1 Modifications to the model

The ICO algorithm can be easily integrated into the proposed pipeline, by
computing similarities on top of the latent representations z or z′, e.g., the
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Model VGGish Resnet50
Playlist CO Playlist ICO Playlist CO Playlist ICO

Genre
mAP 17.0±0.1 15.3±0.3 18.7±0.7 18.1±0.2
ROC 85.4±0.2 84.3±0.4 85.7±0.4 84.6±0.6

Instrument
mAP 20.2±0.4 17.5±0.4 21.2±0.7 19.3±0.9
ROC 76.1±0.3 73.8±0.7 76.7±0.9 75.5±1.0

Mood
mAP 13.3±0.8 11.1±0.5 14.8±0.5 14.2±0.1
ROC 73.8±0.8 72.1±0.8 74.2±0.4 74.4±0.8

MTAT
mAP 45.9±0.2 43.8±0.7 46.8±0.2 45.5±0.2
ROC 90.9±0.0 90.3±0.2 91.4±0.0 91.0±0.1

Genre Internal
mAP 67.7±0.7 59.7±1.8 73.4±0.1 70.7±0.1
ROC 98.2±0.1 97.4±0.2 98.6±0.0 98.4±0.0

Table 5.5: Macro ROC-AUC (ROC) and mean Average Precision (mAP) metrics in
the music tagging datasets. The highest metric per dataset marked in bold.

cosine similarity, Sj,k = zj·zk
∥zj∥∥zk∥ . In this sense, it is possible to apply the ICO

algorithm to any of the models we have proposed.
Additionally, we propose modifying the model’s architecture by replacing the
MLP projector H(·) with a bilinear similarity layer that learns a similar-
ity function between the latent representations of the anchor and candidate,
H(zaj ,zck) = zaj

T Wzck . Similar to Saeed et al. (2021), we replace the NT-
Xent loss with standard cross-entropy applied on top of the similarity scores
produced by the new projector. This modification attends practical reasons
since having a projector that produces similarity values instead of latent rep-
resentations allows for a faster execution compared to having to compute these
values in a separate step. This aspect was particularly relevant when dealing
with a dataset of millions of tracks and playlists, as in our case.

5.5.2 Results and conclusions

We evaluated the ICO algorithm on the tasks of music tagging and similar-
ity using the same datasets and evaluation protocols as the previous models.
Table 5.5 shows the results for the music tagging datasets, and Table shows
the results for the music similarity task. We observe that the ICO algorithm
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Model VGGish Resnet50 VGGish Resnet50
Accuracy Average difference

Playlist ICO 0.852 0.845 0.77 0.064
Playlist ICO 0.857 0.857 0.112 0.054

Table 5.6: Music similarity accuracy and average difference for ICO compared to
our previous best model.

achieves lower performance in the music tagging datasets, and better perform-
ance in the music similarity task compared to the Playlist CO model.
One limitation of our evaluation is that, due to time constraints, we could
not conduct further experiments to understand how much the model modifica-
tions proposed in Section 5.5 impacted the performance of the ICO algorithm.
Our results support existing literature suggesting that the standard SimCLR
paradigm is superior to the bilinear similarity plus cross-entropy loss for dis-
criminative tasks (Wang et al., 2022). However, the more positive results in
the similarity task suggest that models should not be jointly optimized for
similarity and discriminative use cases, as optimizing for one task may harm
the performance of the other.

5.6 Conclusions

In this chapter, we have shown that employing contrastive learning for pre-
training neural networks with playlist information is a valuable source of su-
pervision for music tagging. Also, the learned representations achieve a per-
formance comparable to the state of the art for music similarity using a source
of supervision that does not require explicit human annotation.
While Chapter 4 focused on editorial metadata, such as the artist name, we
found that superior performance can be achieved with consumption metadata
consisting of playlist information by relying on track representations obtained
from a Word2Vec model trained on the playlist sequences. Also, the represent-
ations learned using simple playlist co-occurrences perform significantly better
than an unsupervised approach (SimCLR).
Regarding the music similarity task, we found that the proposed models based
on playlist information achieve better performance than the SimCLR baseline
or than using artist co-occurrences for music similarity. Additionally, we pro-
posed an algorithm called ICO that improves the selection of positive pairs by
considering the similarity between tracks in the same playlist.
Notably, the main contributions of this chapter were developed as part of an
industrial internship at Utopia Music, where the author was able to lever-
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age the company’s resources and expertise. As main contributions, the ICO
algorithm was protected by a patent application filed by Utopia Music, and
the results presented in Section 5.4 were presented at the 2023 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP) in
Alonso-Jiménez et al. (2023a).



CHAPTER 6
Representation learning with

transformers and patchout

6.1 Introduction

In Chapters 4 and 5 we relied on standard CNN architectures and focused on
the impact of the training approach on the downstream tasks. In this chapter,
we fix our pre-training task to multi-label classification using Discogs20’ mu-
sic styles and explore how certain design choices can benefit the downstream
performance when using transformer architectures.
The universal success of transformers in text (Vaswani et al., 2017), vision
(Dosovitskiy et al., 2021), and audio (Gong et al., 2021) tasks motivate further
research using this architecture for music representation learning. However,
most SOTA models were based CNNs by the time we started this research
(Huang et al., 2020; McCallum et al., 2022; Alonso-Jiménez et al., 2022; Huang
et al., 2022b). We hypothesized that transformers were not ruling this domain
yet because they require large amounts of data and computational power to
overcome their convolutional counterparts, while such resources are not always
available. To address these challenges, we propose leveraging Discogs20, which
contains 3.3M tracks annotated with public-domain metadata from Discogs,
and using techniques to train transformers efficiently. Specifically, we focus on
PaSST, by Koutini et al. (2022), a method that has demonstrated remarkable
performance in the AudioSet (Gemmeke et al., 2017) benchmark. This method
uses patchout, a technique consisting of discarding parts of the input to regu-
larize the training process, while also allowing reducing the GPU memory and
computations required for training. In this work, we investigate the effective-
ness of this technique for music representation learning, considering the impact
of specific design aspects.
We focus on the impact of using different combinations of tokens from different
blocks of the transformer as embeddings, starting the training from different

85
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Figure 6.1: Illustration of our system at the training and downstream evaluation
stages where x is the input spectrogram, k0 is the sequence of tokens after the patchout,
y is the target labels, and BCE is the binary cross-entropy loss. Trainable and frozen
blocks are colored green and blue respectively.

pre-trained weights from publicly available models, using different input seg-
ment lengths, and using patchout at inference time to speed up the embedding
extraction. Our experiments show that the best performance is obtained by
extracting embeddings from the middle of the transformer and initializing it
with weights pre-trained on other audio tasks. Contrary to previous studies
based on CNNs, our transformers benefit from long input segments both in
training and different downstream scenarios. Finally, we show that, on certain
patchout conditions, our transformers are able to double the inference speed
of an EfficientNet-B0 baseline while producing embeddings that obtain better
performance on downstream tasks. Moreover, this approach has the advantage
of being entirely configurable at inference time, allowing the throughput/per-
formance tradeoff to be adapted to the task at hand.
The experiments of this chapter are based on Alonso-Jiménez et al. (2023b).45

6.2 Method

Our transformer, MAEST, has the same architecture as AST (Gong et al.,
2021), ViT (Dosovitskiy et al., 2021), or PassT (Koutini et al., 2022), and
features 12 blocks of self-attention plus a dense layer resulting in close to 87
million parameters. We use 16 × 16 patches, xt,f , with a stride of 10 × 10.
Similar to PaSST, we split the positional encoding into time/frequency encod-
ings (tet, fef ) and apply patchout by randomly discarding entire rows and
columns from the sliced spectrogram. The input sequence of tokens, k0, is
created as a linear projection of the patches plus the correspondent time/fre-
quency encodings, k0

t,f = P (xt,f ) + tet + fef , where P (·) is a trainable linear
layer.46 k1 to k12 represent the output tokens of the respective transformer
blocks. Similar to DeiT (Touvron et al., 2021) and PaSST, we extend k0 with

45The code and pre-trained models are available at http://github.com/palonso/MAEST/
46Since the mel scale is not linear, we considered specialized projectors for each frequency

patch. However, this did not improve the performance.

http://github.com/palonso/MAEST/
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classification (cls0) and distillation (dist0) trainable tokens, which are initial-
ized with the DeiT or PaSST pre-trained weights in the experiments involving
these models. 47 We take the average of cls12 and dis12 tokens to feed a linear
classifier targeting y.
Given this pipeline, we investigate the following aspects of the model:

Initialization weights. Previous works showed the importance of ini-
tializing the transformer to weights pre-trained on ImageNet (Gong et al.,
2021). To gain further knowledge, we consider three initialization op-
tions: the DeiT B↑384 model pre-trained on ImageNet (Touvron et al.,
2021), the PaSST S S16 model pre-trained on mel-spectrograms from
AudioSet, and random initialization.

Spectrogram segment length. We consider spectrogram segment
lengths of 5 to 30 seconds resulting in the architectures MAEST-5s,
MAEST-10s, MAEST-20s, and MAEST-30s. In all cases, we take ex-
isting PaSST frequency and temporal encodings and interpolate them
to the target shape as an initialization. We use patchout discarding 3
frequency and 15 temporal patches for MAEST-5s and increase the tem-
poral patchout proportionally for models with longer input sequences
(e.g., 60 patches for MAEST-20s).

6.3 Experiments and results

We train our models using Discogs20. The training task consists of a multi-
label classification of the top 400 music styles from Discogs’ taxonomy. We
compare different training configurations in several downstream tasks by train-
ing Multi-Layer Perceptrons (MLP) on representations extracted from the
transformers.

6.3.1 Dataset and pre-processing

Discogs20 is derived from a pool of 4 M audio tracks mapped to the release
information from the Discogs website’s public dump. All release metadata,
which can include music style tags following a pre-defined taxonomy, is sub-
mitted by the community of platform users. Master releases group different
versions of the same release such as special editions, or remasters. We ob-
tain our training labels, y, at the master release level by first aggregating the

47We considered a teacher-student approach similar to DeiT by using a pre-trained
MAEST-30 to generate pseudo-labels that were targeted by the dist12 token in the train-
ing stage. We decided to omit the experiment details since it did not achieve a significant
improvement.
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style tags of all the associated releases and then discarding master releases
with more than five style tags or without any style label among the 400 most
frequent among our pool of tracks. We keep tracks longer than 20 seconds.
Since the style annotations are done at the master release level, the resulting
track annotations are expected to be noisy. We generate validation and test-
ing subsets with approximately 40,000 tracks and a training set with 3.3 M
tracks, ensuring that every artist appears on a single split. This pre-processing
is similar to our previous work (Alonso-Jiménez et al., 2022), and additional
details and statistics about the resulting dataset can be found in the repository
accompanying this publication. For now on, we refer to this internal dataset
as Discogs20.
From every track, we sample 30 seconds from the center of the track and down-
mix it to a mono channel at 16 kHz. We extract 96-bands mel-spectrograms, x,
using 32 ms windows and a hop size of 16 ms compressed with the expression
log10(1 + 10000x) similar to previous works in music tagging (Pons & Serra,
2019a; Alonso-Jiménez et al., 2022). The resulting representations are stored
as half-precision floats (16 bits) resulting in 1.3 TB of data. Given that our
dataset is in the order of magnitude of AudioSet (1.8 M vs. 3.3 M) and presents
similar label density (2.7 average labels in AudioSet and 2.1 in Discogs20), we
adopt the sampling strategy used in previous works (Koutini et al., 2022). On
every epoch, we take a balanced sample of 200,000 tracks without replacement
using the inverse label frequencies as sample weight. We normalize the input
to the mean and standard deviation of the training set.

6.3.2 Pre-training

We use the Adam Optimizer with a weight decay of 1 × 10−4 and train the
model for 130 epochs. We warm up the model for 5 epochs and then keep
the learning rate at 1×10−4 until epoch 50. Then the learning rate is linearly
decreased to 1e−7 during 50 additional epochs. We consider two sets of weights
for inference: those from the last epoch and those obtained by taking the mean
of the model’s weights every 5 epochs from epoch 50 using Stochastic Weight
Averaging (SWA). We pre-compute the mel-spectrograms for efficiency, which
limits the set of data augmentations we could apply. We use mixup (Zhang
et al., 2018) with alpha = 0.3 and SpecAugment (Park et al., 2019) by masking
up to 20 groups of 8 timestamps and up to 5 groups of 8 frequency bands.48



6.3 Experiments and results 89

Dataset Size Lab. Dur. Av. Split

MTGJ-Genre 55,215 87 FT 2.44 split 0 (Bogdanov et al., 2019c)
MTGJ-Inst 25,135 40 FT 2.57 split 0 (Bogdanov et al., 2019c)
MTGJ-Moods 18,486 56 FT 1.77 split 0 (Bogdanov et al., 2019c)
MTGJ-T50 54,380 50 FT 3.07 split 0 (Bogdanov et al., 2019c)
MTT 25,860 50 29s 2.70 12-1-3 (Van Den Oord et al., 2014)
MSDs 241,889 50 30 1.72 usual (Lee et al., 2018)
MSDc 231,782 50 30 1.31 CALS (Won et al., 2021)

Table 6.1: Automatic tagging datasets used in the downstream evaluation. The
datasets are compared in terms of sample size, number of labels, audio duration (Full
Tracks or excerpts of fixed duration), average labels per track, and the splits used in
our evaluations.

6.3.3 Evaluation

We evaluate our models in several music automatic tagging datasets covering
various musical notions. We consider the popular MagnaTagATune (MTT)
and the Million Song Dataset (MSD) with the commonly used training, val-
idation, and testing splits used in Van Den Oord et al. (2014) and Lee et al.
(2018) respectively. Additionally, we report the performance of our models in
the CALS split, which is an artist-filtered version of the MSD ground truth
proposed by Won et al. (2021). Finally, we use the MTG-Jamendo Dataset, a
dataset of Creative Commons music containing sub-taxonomies with the tags
related to genre (MTGJ-Genre), moods and themes (MTGJ-Mood), and in-
strumentation (MTGJ-Inst), along with the top 50 tags (MTGJ-T50) in the
dataset. We use the official split 0 for all the subsets similar to previous works
(Won et al., 2020b; Manco et al., 2021; McCallum et al., 2022). Table 6.1
summarizes these datasets in terms of size, number of labels, audio duration,
average number of labels per track, and used splits.
We evaluate our models by extracting internal representations from different
blocks of the transformer and training MLP classifiers on top. Instead of aver-
aging the cls12 and dist12 tokens as done in the training stage, we consider three
types of representations, clsn, distn, and the average of the tokens representing
the input spectrogram patches (avgn) after n transformer blocks. Additionally,
we evaluate the complementarity of these embeddings training MLP classifiers
on stacks of the different tokens. To generate the dataset of embeddings, we
average the embeddings extracted from half-overlapped segments across the
entire audio available for the tracks in the downstream datasets. The same
setup is used for the training, validation, and testing stages.
The downstream model is an MLP with a single-hidden layer of 512 dimen-

48We trained MAEST using 4 Nvidia 2080 RTX Ti GPUs with 12GB of RAM. The training
takes 31 hours for MAEST-5 and 48 hours for MAEST-30.
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sions with a ReLU activation and dropout. In the experiments described in
Sections 6.3.4, 6.3.5, 6.3.6, and 6.3.8, we use a batch size of 128, drop out of
0.5 and train the model for 30 epochs. In the downstream evaluation from
Section 6.3.7, we perform a grid search over the following hyper-parameters
for each task:

batch size: {64, 128, 256}

epochs: {30, 40, 50, 60, 70, 80}

drop out: {0.5, 0.75}

maximum learning rate: {1×10−3, 1×10−4, 5×10−4, 1×10−5}

The MLP is trained with the binary cross-entropy loss using the Adam optim-
izer with a weight decay of 1×10−3. The learning rate is exponentially raised
to its maximum value during the first 10 epochs, kept constant for the number
of epochs, and linearly reduced until reaching 1 × 10−7 at the end of training.
After training, we report the performance on the testing set obtained using
the weights from the epoch with the highest validation ROC-AUC.

6.3.4 Extracting embeddings from the transformer

We are interested in finding the optimal representations from the transformer
to be used as embeddings. To do this, we extract representations clsn, distn,
and avgn from different transformer blocks n ∈ [5,12]. To measure the comple-
mentarity of these features, we train MLPs fed with stacks of combinations of
these representations. In this experiment, we use MAEST-30s initialized with
PaSST weights and the MTT dataset.
Figure 6.2 shows mAP scores obtained with different stacks of embeddings
extracted from the different transformer blocks. In accordance with previous
studies (Castellon et al., 2021), we find that the embeddings with the best
performance are found in the middle blocks of the transformer. This contrasts
with the typical behavior of CNNs, where the best features are normally to-
wards the last layers of the model, especially, when the downstream task is
well aligned with the training task. Also, concatenating the features benefits
the performance. In the remaining experiments, we fix our embedding to the
stack (cls7, dist7, avg7).

6.3.5 Impact of the initial weights

Due to the lack of inductive biases present in architectures such as CNNs,
transformers are heavily dependent on pre-training. Because of this, many
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Figure 6.2: mAP scores were obtained with our evaluation setup in the MTT dataset
using embeddings extracted from different blocks and tokens from the transformer.
We evaluate the cls (c), dist (d), and avg (a) tokens and stacks of their combinations
extracted from the transformer blocks 5 to 12.

audio transformers are initialized with weights transferred from image tasks
(Gong et al., 2021; Koutini et al., 2022). We evaluate the impact of initializing
our models from the weights of DeiT (Touvron et al., 2021) (image input), the
best single PaSST model (Koutini et al., 2022) (mel-spectrogram input), and
random initialization. In this experiment, we use MAEST-10s and its version
with SWA weights, MAEST-10s-swa. Although our main focus is to evaluate
MAEST on public downstream datasets, we also report their performance on
the training task to provide additional insights.

Model RW DeiT PaSST

Pre-training task: Discogs20
MAEST-10s 20.5 22.7 22.8
MAEST-10s-swa 20.1 23.2 23.5

Downstream task: MTT
MAEST-10s 38.7 40.4 41.1
MAEST-10s-swa 39.0 40.2 41.0

Table 6.2: mAP scores obtained in the training and downstream tasks using different
initializations. We considered Random Weights, and pre-trained weights from DeiT
and PaSST.
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Model 5s 10s 20s 30s

Pre-training task: Discogs20
MAEST-T 21.1 22.8 24.8 26.1
MAEST-T -swa 21.3 23.5 25.8 27.0

Downstream task: MTT
MAEST-T 40.8 41.1 41.2 41.7
MAEST-T -swa 40.9 41.0 41.2 41.5

Table 6.3: mAP scores obtained in the training and downstream tasks using different
spectrogram segment lengths. T represents the spectrogram segment length.

Table 6.2 shows the performance in both, the training (Discogs20), and a
downstream (MTT) task. In both cases, the scores are higher when the training
is started from pre-trained weights. Since the PaSST weights result in slightly
higher performance, we use this initialization for the remaining of this work.
Regarding the SWA, we observe a positive effect on the training task when
the model is initialized with pre-trained weights. However, we do not observe
improvements in the downstream task.

6.3.6 Effect of the input segment length

We train MAEST using input segment lengths ranging from 5 to 30 seconds. In
our experiments, we keep the frequency patchout constant and proportionally
increase the temporal patchout. For our models with segment lengths of 5, 10,
20, and 30 seconds we discard 15, 30, 60, and 90 temporal patches respectively.
Table 6.3 shows the performance of the MAEST models with respect to their
input spectrogram segment length in terms of mAP both in the training (Dis-
cogs20) and a downstream (MTT) evaluation. While music tagging CNNs
tend to reach their peak of performance with receptive fields of 3 to 5 seconds
(Choi et al., 2017b), attention-based systems have shown the capability to
take advantage of longer temporal contexts (Won et al., 2021). Our models
are consistent with this trend, reaching their best performance when trained
on segments of 30 seconds. Although even longer segments could be beneficial,
we could not use them while keeping the same model size due to GPU memory
limitations.

6.3.7 Performance in downstream tasks

Considering our previous findings, we extend the evaluation of MAEST to
a number of downstream datasets. We evaluate MAEST-10s, MAEST-20s,
MAEST-30s,
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and a baseline consisting of embeddings from the DiscogsEffNet (EffNet) model
introduced in Section 3.3.3. This model consists of an EfficientNet-B0 architec-
ture (Tan & Le, 2019) trained in the same 400 music style tags from Discogs20
following previous work (Alonso-Jiménez et al., 2022). Additionally, we report
the performance of SOTA models from the literature considering approaches
fully trained in the downstream tasks and based on embeddings plus shallow
classifiers.
Table 6.4 shows the results of the different models in terms of ROC-AUC and
mAP. 49 We observe that all the MAEST models outperform the baseline in all
tasks, confirming the superiority of the proposed approach. Additionally, we
achieved a new SOTA for the MTGJ-Genre, MTGJ-Inst, and MSDc datasets,
although other models remain superior in the rest of the datasets. Specifically,
MuLan (Huang et al., 2022b) obtains higher mAP in MTT, probably because
it is trained on a much larger corpus of 40 M tracks. In MTGJ-Moods, MTGJ-
T50, MTT, and MSDs, Musicset-Sup, a model trained on a curated dataset
of 1.8 M expert annotations, remains superior (McCallum et al., 2022). In
both cases, the advantage is likely due to the superiority of the training task.
Notably, none of these models is public, which makes MAEST the best open
music embedding extractor available.

49reference correspondences in the table:
[97] Knox et al. (2020)
[135] Pons & Serra (2019a)
[172] Won et al. (2020b)
[169] Won et al. (2021)
[7] Alonso-Jiménez et al. (2022)
[119] McCallum et al. (2022)
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Figure 6.3: mAP scores against throughput for MAEST-30s under different amounts
of frequency (F) and time (T) patchout. The radius is proportional to the parameter
count and the inference is performed on the CPU.

6.3.8 Faster feature extraction with inference patchout

Inferring with transformers is typically more computationally expensive than
with CNNs. To speed up our models, we consider using two types of patchout
at inference time: Time-wise, we keep one out of T spectrogram patches.
Frequency-wise, we discard specific rows of patches. We experiment with tem-
poral patchout using T ∈ [2,3,5,10] and frequency patchout of 3 and 4 patches
corresponding to the first and the two last blocks, and the two first and two
last blocks respectively. The embeddings obtained under different patchout
settings are compared in the training and a downstream task following our
downstream evaluation approach on the MTT dataset.
Figure 6.3 shows the mAP scores on the training and downstream tasks un-
der different patchout settings. In the downstream task, even under strong
patchout settings, MAEST-30s overcomes the throughput of standard CNN
architectures by two to three times while keeping higher mAP. On the train-
ing task, this technique is not so effective because the classifier is frozen and
cannot adapt to the effects of patchout, and also it operates on tokens from
the last block, which requires more computations.
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6.4 Conclusions

In this chapter, we demonstrate that pure-attention-based transformers can
deliver strong performance for music representation learning and study how
different design decisions affect the downstream tasks. We set our pre-training
objective to music style tagging, and limit our experiments to models fitting
in consumer-grade GPUs. We analyze the impact of using activations from
different blocks and tokens of the transformer as embeddings, initializing the
models with different pre-trained weights, and using input segment lengths
ranging from 5 to 30 seconds. Our experiments show that the best embed-
dings come from a stack of features from the middle blocks of the transformer,
initializing from weights pre-trained in audio event recognition provides the
best performance, and that longer input segments correlate with better results.
We evaluate our models in six popular music tagging datasets, and experiment
with patchout at inference time, finding that it allows speeding up significantly
the transformer while producing embeddings with better performance/speed
trade-offs than our convolutional baselines. Finally, we present MAEST, a fam-
ily of transformers for music style tagging and embedding extraction, which
are publicly available and achieve SOTA performance among currently avail-
able music representation models. Chapter 8 discusses the usage of MAEST
in real-world applications and demos.



CHAPTER 7
Sonified prototypical learning

for interpretable music
classification

7.1 Introduction

In previous chapters, we focused on the development of new music representa-
tion models from the perspective of the pre-training dataset (Chapter 3), type
of supervision (Chapters 4, and 5), and model architecture (Chapter 6). In
all these cases, we were able to measure performance improvements by means
of standard metrics obtained with auxiliary downstream models. While this
approach is an established protocol in the field, all models involved operate
as black boxes, failing to provide detailed insights into their inner workings
or decision-making process. In this chapter, we focus on the interpretabil-
ity of music classifiers and propose a new method that allows the creation of
interpretable classifiers on top of pre-trained music representations.
Interpretability can be understood as the capability of an algorithm or model
to be comprehensible, explainable, and understandable, which allows an ex-
ternal observer to decipher its behavior and discern its decisions (AI HLEG,
2019). In the context of sound and music-related applications (such as sound
engineering, music production, and music recommendation), faithful human-
understandable explanations of model predictions can increase trustworthiness
and enhance user experience (Arrieta et al., 2020). From a developer’s per-
spective, an interpretable model could better reveal potential issues of its data
or inner workings, allowing the detection of biases, malfunctions, or possible
adversarial attacks (Sturm, 2017; Prinz et al., 2021). Ultimately, interpretab-
ility can also provide insights into the target problem, thus helping researchers
learn more about it.

97
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classification

In this chapter, we show that it is possible to leverage existing prototype
learning methods supporting sonifications, such as the metho proposed by
Zinemanas et al. (2021), and decouple the training of the autoencoder and
the prototypical network, unlocking the possibility to operate on top of ar-
bitrary pre-trained music representations. While the original APNet model
was applied to voice commands, environmental sounds, and music instrument
recognition tasks, we focus on music genre and instrument recognition to be
more aligned with the downstream tasks considered in previous chapters.
Our method allows taking advantage of SOTA representations trained on large
datasets, while still providing interpretable models, and competitive classific-
ation performance. Additionally, relying on a generative model eliminates the
need to transfer information from specific training samples to reconstruct the
prototypes as in previous works. In this chapter, we show that it is possible
to decouple the training of the autoencoder and the prototype network, which
unlocks the possibility of using a wider range of representations, potentially
with more discriminative power. Additionally, relying on a generative model to
eliminate the need to transfer information from specific training samples to re-
construct the prototypes as in previous work. Finally, we extend the technique
of prototype-based audio classification to the task of music genre classification
for the first time.
The experiments of this chapter are based on (Alonso-Jiménez et al., 2024),
presented in May 2024 at the ICASSP Workshop on Explainable AI for Speech
and Audio at Seoul, Korea.50

7.2 Method

In this section, we introduce Prototype EnCodecMAE (PECMAE), a method
inspired by APNet (Audio Prototype Network) (Zinemanas et al., 2021). Pro-
totypical models allow interpretability by measuring the similarity between
model inputs and the prototypes in the encoder latent space (Li et al., 2018).
Additionally, APNet features an autoencoder architecture that allows to son-
ify the prototypes for further insights. The key differences of our proposal
are that we rely on a pre-trained autoencoder (EnCodecMAE, Pepino et al.
(2023)) instead of jointly optimizing it for the classification task and that we
use a diffusion decoder to sonify the prototypes instead of using information
from specific samples of the training set.
The main components of our system are depicted in Fig. 7.1. The generative
autoencoder operates through the embeddings z. The prototype network solves

50The code and pre-trained models are available at http://github.com/palonso/
PECMAE/

http://github.com/palonso/PECMAE/
http://github.com/palonso/PECMAE/
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Figure 7.1: Diagram of the proposed PECMAE model. The colored boxes indicate
trainable modules.

a classification task by learning prototypes p in the embedding space of z so
that they can be decoded to audio.
While EnCodecMAE already provides a reconstructable latent space, we ob-
served poor prototype sonification after initial experimentation. We hypo-
thesized that this is because the temporal resolution is excessive and that the
system would benefit from summarizing this dimension so that the prototypes
were learned in a more abstract space. To this end, we train an autoencoder
on top of EnCodecMAE features, consisting of a transformer encoder that
summarizes T = 4 seconds of audio (a sequence of 300 768-dimensional EnCo-
decMAE features) into a single vector z ∈ RD with D = 768, and a decoder
based on a latent diffusion model conditioned with z to generate the EnCodec
features corresponding to the original audio. We prepend a CLS token to the
input of the transformer encoder and use the corresponding output element as
z. The conditioning of the diffusion decoder is implemented by prepending z
to the noisy EnCodec inputs. With this approach, our compression rate is 28
times higher than that of APNet, facilitating scalability both in terms of the
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number of prototypes and the input duration.
The prototypical network works by measuring the similarity, S, between the
embeddings of a batch of input audio instances zx ∈ RN×D and the set of pro-
totypes zp ∈ RM×D, where N is the batch size, M is the number of prototypes,
zp is the projection of each prototype p using an optional 1-layer transformer
adaptor,51 and S = exp−||zx−zp||22 . Given C classes, each one is assigned the
same number of prototypes, M/C. The prototypes corresponding to each class
are initialized to centroids obtained by applying k-means clustering over the
embeddings zx of the class samples. Finally, we use a linear layer to map S
into class logits. This layer is initialized so that the connection of each pro-
totype with its respective class is 1 but 0 with the others. During training,
the prototypes, the prototype transformer adaptor, and the linear layer are
optimized while the autoencoder is kept frozen.
PECMAE employs two loss functions. We use binary cross-entropy to optimize
the classification task, Lc. In addition, we define a prototype loss that min-
imizes the L2 distance between each prototype and the closest sample among
the instances of the same class in the batch, zxc,

Lp = 1
M

M∑
j=1

min
i

||zxc,ij −zp,ij ||22. (7.1)

The goal of this term is to prevent prototypes from diverging too much from
real samples to favor interpretable reconstructions. Note that we avoid using
an additional loss term minimizing distances between samples and prototypes
as in previous works (Zinemanas et al., 2021; Li et al., 2018) since, in our case,
the sample representations are not trainable. Finally, the losses are aggregated
using a weighting factor λ, L = λLc + (1 − λ)Lp. After training, the decoder
can be used to sonify the prototypes.

7.3 Experiments and results

We compare the classification accuracy of the proposed model with the SOTA
and baseline systems and study the characteristics of learned prototypes on
one music instrument and two genre classification datasets (Table 7.1).

7.3.1 Datasets

Medley-Solos-DB (Lostanlen & Cella, 2016) is an instrument recognition data-
set consisting of 3-second recordings for eight instruments: clarinet, distorted

51We also report results without this adaptation layer (PECMAE-NA-5).
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Datasets Classes Samples Duration (h)

Medley-solos-DB 8 21,571 17.2
GTZAN 10 919 7.6
XAI-Genre 24 18,634 155.2

Table 7.1: Considered datasets in terms of number of classes, samples, and total
duration in hours.

electric guitar, female singer, flute, piano, tenor saxophone, trumpet, and vi-
olin. While our main interest is in genre recognition, we considered evaluating
our model in one dataset used in previous works for comparison purposes.
GTZAN is a popular genre recognition dataset consisting of 30-second excerpts
across 10 broad musical genres. We consider a filtered version of the dataset
discarding duplicated and corrupted tracks identified by Sturm (Sturm, 2013).
To achieve a genre-balanced split, we use track IDs ending in 8 for validation
(e.g., blues.00008) and in 9 for testing.
XAI-Genre is an in-house dataset of 30-second audio previews annotated by
24 genre classes, retrieved from the Spotify API,52 built for this study and
our planned future work on evaluation methodologies for interpretable genre
recognition. This dataset is 20 times larger than GTZAN in terms of music
tracks and includes more than twice the number of classes, adding complexity
and diversity to the classification task.

7.3.2 Implementation details

We train the diffusion autoencoder in the Free Music Archive dataset (Deffer-
rard et al., 2017), composed of 106,574 30-second music tracks using batches
of 128 4-second segments. The autoencoder consists of a transformer with a
2-layer encoder and an 8-layer decoder, which is then trained for 330,000 steps
using the AdamW optimizer with a weight decay of 0.05 and a fixed learning
rate of 1 × 10−4. We apply classifier-free guidance, setting the unconditional
probability to 0.1 during training, and use the V-Diffusion objective (Salimans
& Ho, 2021). Our experiments use the EnCodecMAE base model, which has
10 transformer layers and 12 attention heads and is trained in a mixture of
Audioset, Librilight Medium, and Free Music Archive.
We train PECMAE models in the GTZAN, Medley-Solos-DB, and XAI-Genre
datasets featuring 1 to 40 prototypes per class. In all cases, we use z-score
normalization and a batch size of 256 samples. We prefer a rather larger batch
size, considering that a larger pool of tracks to approximate our embeddings
will lead to a better embedding reconstruction. All the models are trained

52https://developer.spotify.com/documentation/web-api

https://developer.spotify.com/documentation/web-api
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for 150,000 steps using the Adam optimizer with a weight decay of 1 × 10−5

using the OnceCycleLR learning rate scheduler with a peak value of 1×10−3.
The hyperparameter λ controls the weight of the classification and prototype
loss components. After preliminary experiments, we set λ to 0.25 to favor
prototype reconstruction. In all cases, we use fixed training, validation, and
testing splits, and test the models using the checkpoint of the step achieving the
lowest validation loss. Since our autoencoder operates on 4-second segments,
in testing we average the class logits for non-overlapping segments in the track
and compute the class-normalized accuracy.

7.3.3 Classification Results

Table 7.2 presents the metrics for all compared methods on each of the con-
sidered datasets using the same splits. We report SOTA from literature to-
gether with a Multi-Layer Perceptron (MLP) trained on SOTA audio embed-
dings for genre classification (MAEST) (Alonso-Jiménez et al., 2023b) and the
original APNet model featuring 5 prototypes per class. Additionally, we train
MLPs with EncodecMAE (ECMAE) embeddings and its summarized version
(ECMAE-S), referred to as z in Fig. 7.1. Since our prototypes are learned in
the ECMAE-S space, these serve as our reference for the performance ceiling.
For PECMAE we consider 1, 3, 5, 10, 20, and 40 prototypes per class, plus a
version without the transformer adaptation layer (NA).
The results show that ECMAE achieves lower performance compared to meth-
ods based on large supervised datasets (Alonso-Jiménez et al., 2023b) in XAI-
Genre, or careful feature design (Andén et al., 2019) in Medley-Solos-DB.
ECMAE-S has slightly lower accuracies than ECMAE due to information loss
associated with the higher compression rate but produces better sonification
results.53 As a general trend, PECMAE performance increases with the num-
ber of prototypes and is comparable to or slightly below ECMAE-S. Finally, we
find that our method achieves higher classification performance than APNet
in XAI-Genre and Medley-Solos-DB, even when fewer prototypes per class
are used. We hypothesize that this is due to the powerful representations of
EncodecMAE, which had been trained in a much larger data collection and
already showed good performance in music-related tasks (Pepino et al., 2023).

7.3.4 Effect of the decoder

Since our autoencoder relies on a generative model, its decoder is constrained
to synthesize audio close to its training distribution, which can result in re-
construction biases. After preliminary tests, we found that a decoder based

53Operating in ECMAE’s higher-dimensional space resulted in poor sonification of the
prototypes.
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Params. GTZAN Medley XAI-Genre

State of the Art
Literature 82.1 78.0 -

(Kim et al., 2018c) (Andén et al., 2019)
MLP MAEST 300K 95.6 - 62.9

Baseline
APNet-5 2.7-4.2M 87.4 65.8 48.0

Ceiling
MLP ECMAE 100K 85.7 75.7 58.0
MLP ECMAE-S 100K 85.9 72.1 56.1

Ours
PECMAE-NA-5 31-90K 81.8 66.8 44.0
PECMAE-1 5.5M 80.8 63.9 44.0
PECMAE-3 5.6M 82.8 67.6 48.6
PECMAE-5 5.6M 83.8 70.2 50.1
PECMAE-10 5.6M 86.9 71.1 51.8
PECMAE-20 5.6M 85.9 69.2 52.8
PECMAE-40 5.8M 85.7 71.3 53.6

Table 7.2: Normalized classification accuracies.

on V-diffusion was providing more faithful reconstructions than an alternative
based on a conditional language model over EnCodec tokens decoder using
a GPT2 architecture. We verified that the important class information was
not altered in the decoding process by measuring the class predictions for the
synthesized prototypes (above 99% accuracy for PECMAE-20).

7.3.5 Sonifying the prototypes

As part of developing the proposed models, we conducted iterative listening
examinations of the synthesized prototypes.54 We observe that the sonifica-
tion of the prototypes results in sounds that are far from resembling real class
instances and instead have a sonic texture quality. However, we can identify
many of the classes both in the case of instruments and music genres from
blind listening to the prototypes. Clearly, the sonification of instrument proto-
types is more convincing than genre sonification due to lower sound complexity
(monophonic notes vs complete full-mix music tracks). Increasing the number
of prototypes tends to provide similar-sounding prototypes, even though we
can identify differences in some cases (e.g., pitches or types of timbre). Not-
ably, the autoencoder was able to reconstruct instances from all classes in our
datasets with much better quality than the prototypes, which suggests that

54Prototype sonifications and complementary results available at https://palonso.github.
io/pecmae/

https://palonso.github.io/pecmae/
https://palonso.github.io/pecmae/
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the bottleneck is in the statistical averaging process when learning the pro-
totypes and not in the decoder itself. Overall, the sonification would not be
appropriate for end users but is insightful for model developers (Sturm, 2017),
especially revealing how adversarial attacks can be devised (Prinz et al., 2021).

7.4 Conclusions

In this chapter, we propose an interpretable classification system that learns
prototypes in the embedding space of an autoencoder and enables their sonific-
ation. Our results show that it is possible to achieve prototype-based models
that do not notably degrade classification performance while providing a cer-
tain level of interpretability, which proves helpful in developing classification
models. Through sonification, we observe that the models learn sonic textures
instead of more complex temporal structures as the basis of their classification
decisions for most of the classes. The proposed approach motivates new dir-
ections for interpretable music audio models. We will consider replacing the
self-supervised embeddings with representations optimized for the classifica-
tion tasks and investigate auto-encoding techniques that handle longer input
sequences and increase the diversity of the learned prototypes.



CHAPTER 8
Applications and outreach

8.1 Essentia

Essentia is an open-source C++ library with Python and JavaScript bindings
for audio analysis and audio-based MIR developed at the Music Technology
Group - Universitat Pompeu Fabra (MTG) since 2006. The library contains an
extensive collection of reusable algorithms that implement audio input/output
operations, digital signal processing functionalities, and a large variety of spec-
tral, temporal, tonal, and high-level music descriptors. Besides, Essentia can
be complemented with a wrapper for inference with TensorFlow models and
a set of pre-trained models for audio tagging, music classification, and other
tasks. Many of these models rely on representation learning models developed
in the context of this thesis.
Essentia is released under the Affero GPLv3 license55 and is also available
under a proprietary license upon request. It has served in several projects
including both research activities and large-scale industrial applications. Its
most common use cases include music classification, semantic auto-tagging,
music similarity and recommendation, visualization, and interaction with mu-
sic, sound indexing, musical instrument detection, cover detection, beat detec-
tion, and acoustic analysis of stimuli for neuroimaging studies.
Essentia is not a framework, but rather a collection of algorithms and models
plus the infrastructure required for operating them within a library. It is
designed with a focus on the robustness, performance, and optimality of the
provided algorithms, including computational speed and memory usage, as
well as ease of use. Importantly Essentia is designed so that the provided
functionality is easily expandable in terms of new algorithms and models, and
it uses standard i/o formats for audio and data interchange, which makes it
easy to integrate with other software. For example, Essentia uses FFmpeg56 for

55https://www.gnu.org/licenses/agpl-3.0.en.html
56https://ffmpeg.org/
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audio decoding and encoding, and NumPy57 for data interchange with Python.
Additionally, a large part of Essentia’s algorithms is well-suited for real-time
applications.

8.1.1 Essentia-TensorFlow

The goal of Essentia-TensorFlow58 is to extend Essentia to support deep learn-
ing models with fast inference times and a capability to run on CPUs or accel-
eration hardware such as GPUs. While we could have considered Python-based
solutions similar to madmom (Böck et al., 2016), we were interested in an in-
tegrated C++ solution to take advantage of fast computational speed which is
crucial in many applications. The decision to use TensorFlow instead of other
options such as PyTorch (Paszke et al., 2017) was motivated by the stability
of its C API,59 its active development to keep up with the state of the art, and
a huge availability of existing research relying on it.
To this end, we developed a set of algorithms that allow reading frozen mod-
els from Protobuf files, generating tensors from 1D or 2D audio representa-
tions and running TensorFlow sessions. The Essentia algorithms implementing
TensorFlow support were designed following these criteria:

Efficiency. All dataflow between algorithms for audio feature extraction
and model inference should be implemented in C++ without any over-
head conversion to Python. We also decided to use TensorFlow frozen
models where variables are converted to constants allowing us to remove
some training operations.

Flexibility. The deep learning field moves on fast. Therefore, generic
support for any TensorFlow architecture should be provided. This can be
done by loading both the architecture and the weights from external files
instead of hard-coding any particular architecture. Importantly, it is also
possible to import the models from other frameworks via intermediate
formats such as ONNX.60

Access to intermediate layers. Sometimes intermediate layers of a
model are valuable as they can be used, for example, as features for other
tasks. For this reason, it should be possible to extract the output tensors
from any layer.

57https://numpy.org/
58https://pypi.org/project/essentia-tensorflow/
59https://www.tensorflow.org/install/lang_c
60https://onnx.ai/

https://numpy.org/
https://pypi.org/project/essentia-tensorflow/
https://www.tensorflow.org/install/lang_c
https://onnx.ai/
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Real-time analysis. Being able to run computations in real-time is
one of the key features of Essentia that should be supported by its deep-
learning algorithms. The latency and the overall real-time capability
ultimately depend on the design of a model, its computational cost for
inference, and/or receptive field.

The provided functionality does not include training of the TensorFlow mod-
els, only inference. Users can be flexible in selecting the way how to train
their models as long as they ensure the compatibility of the input features
used for training with their implementation in Essentia for inference. Ideally,
users could also use Essentia features on the training stage to ensure the best
compatibility. Many deep learning models proposed in research have been
trained using features from different software, but they can be also reproduced
in Essentia as its algorithms are sufficiently configurable for most input audio
features. For example, in the case of mel-spectrograms, Essentia can reproduce
virtually any existing common mel implementation.
Most TensorFlow models can then be made compatible with Essentia by freez-
ing and serializing them into Protocol Buffers61 files or SavedModel62 format.
This is a simple process that can be easily done using available Python scripts.
As an example of the efficiency of our framework, we compared inference times
for MusiCNN (Pons & Serra, 2019a) using the original implementation in Py-
thon and our algorithms called from Essentia’s Python bindings. The original
feature extraction time, based on Librosa, took 6.51 seconds compared to 2.30
for Essentia. Loading the model and predicting took 2.07s and 1.66s, respect-
ively. In total, considering the extra overhead of dataflow, the difference is 8.60
to 3.34 seconds, meaning that our framework is 2.5 times faster for the entire
end-to-end process from loading audio to inference. These time estimations
were done by averaging 10 trials of analysis of a 3:27 MP3 file on an i7 6700
CPU.
Essentia-TensorFlow is available through pip 63 and it is compatible with Py-
thon 3.6 and above for Linux and macOS. figure 8.1 shows an example of the us-
age of essentia-tensorflow. internally, the algorithm tensorflowpredictmaest
is loading, downsampling, and downmixing the audio signal, extracting the
mel-spectrogram representations, preparing inference batches with the appro-
priate shape, and running a TensorFlow session with the model loaded from a
protocol buffer file in c++. we provide examples of how to install and use the
framework, create TensorFlow frozen models, and run those models to generate
predictions on the example of music auto-tagging.64

61https://protobuf.dev/
62https://www.tensorflow.org/guide/saved_model
63PyPI installation command: pip install essentia-tensorflow
64https://mtg.github.io/essentia-labs/

https://protobuf.dev/
https://www.tensorflow.org/guide/saved_model
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from essentia . standard import (
monoloader ,
tensorflowpredictmaest ,

)

x = monoloader ( filename ="song.wav", samplerate =16000)()

embeddings = tensorflowpredictmaest (
graphfilename ="discogs -maest -30s-pw -1. pb"

)(x)

Figure 8.1: this code snippet uses essentia-tensorflow algorithms to run a maest
model from chapter 6.

the final goal of essentia-tensorflow is to provide fast c++ inference for SOTA
deep learning models in essentia suitable for deployment in diverse mir ap-
plications. to the best of our knowledge, this is the first effort of its kind to
integrate arbitrary deep-learning models into a MIR library. the new func-
tionality for using models is designed to be fast, easy, and flexible, and it is
especially attractive for applications requiring computational efficiency, such
as large-scale analysis on millions of tracks, real-time processing, or inference
on weak devices. additionally, our algorithms are designed in a way that al-
lows using the models as feature extractors, making this solution suitable for
transfer learning scenarios.

8.1.2 essentia models

most models created throughout this dissertation are available in essentia mod-
els.65 this is a hub for the models that can be used with essentia, including
end-to-end models and systems combining a representation learning model
with a classifier or regressor. to this end, we offer models for specific use cases
(auto-tagging, tempo estimation, source separation, and music classification
by genre, mood, and instrumentation). the models available cover the tasks of
music auto-tagging, instrumentation recognition, MGR, glsmer, voice detec-
tion, danceability estimation, music engagement, and approachability regres-
sion, arousal and valence estimation, tempo estimation, and source separation.
additionally, we provide modes for audio scene recognition. all of these models
are publicly available for researchers and practitioners under cc by-nc-sa 4.0,66

and we plan to add more models in the future. currently essentia models host
over 300 models, including the ones developed in this thesis.
figure 8.2 shows a screenshot of the essentia models site. for every model, the

65https://essentia.upf.edu/models/
66https://creativecommons.org/licenses/by-nc-sa/4.0/
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Figure 8.2: essentia models site screenshot.

site provides a brief description of the model and the variations available, an
explanation of the expected input and output, and example inference python
snippet, and links to the weights and metadata files.

8.1.3 Essentia.js

Correya et al. (2020)’s Essentia.js is a JavaScript (JS) wrapper library for
Essentia. The library’s core is powered by Essentia’s C++ back-end us-
ing WebAssembly67 built via emscripten68 along with a high-level JS and
TypeScript API and add-on utility modules. Essentia.js allows running an
extensive collection of music and audio analysis algorithms and models dir-
ectly on the web browser or node.js runtime applications.
In addition to the core library, Essentia.js has a few add-on modules to facilitate
common MIR tasks. In particular, Essentia.js-extractor contains predefined
feature extractors to compute bpm, beat positions, pitch, predominant melody,
key, chords, chroma features, MFCC, etc. Also, essentia.js-plot provides helper

67https://webassembly.org/
68https://emscripten.org/

https://webassembly.org/
https://emscripten.org/
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functions for visualization of MIR features, allowing both real-time and offline
plotting in a given HTML element.
All the algorithms in Essentia.js are configurable similarly to Essentia’s C++
or Python APIs. The tools provided with the library allow creating lightweight
builds, containing only the specific algorithms required for a particular applic-
ation. Many of the algorithms and models integrated into Essentia.js support
both real-time audio analysis use cases similar to Essentia’s C++ core library.
See the online documentation for more details.69

Our efforts to deploy DNN models on the web were published by Correya
et al. (2021a,b) and received the best paper award at the 2021 Web Audio
Conference. The ability to deploy client-side DNN models is already a widely
supported feature within machine learning frameworks. At the time we started
this work, the main tools being actively developed were TensorFlow.js70 and
ONNX.js.71 We identified the following advantages of using TensorFlow.js for
our case:

It was the most actively maintained project with extensive documenta-
tion and example projects.

It was part of the TensorFlow ecosystem, the same deep-learning library
used in Essentia.

It supported multiple back-end options such as WebGL and WebAssembly
for inference on browsers or Node.js, which provides flexibility for future
scenarios.

It provided a tool to convert the format of existing Essentia models to
its required input format.

We used the converter provided by TensorFlow.js to port the models. While
all our models were stored as TensorFlow v1 frozen protocol buffers, this tool
also supports conversion from TensorFlow v2 SavedModels and Keras hdf5
files. Additionally, PyTorch models can be exported in ONNX format and
converted to TensorFlow v2 SavedModels with the official tools.72 Covering
the two major machine learning frameworks means that the vast majority of
the models developed for research are suitable for web deployment.
The only additional requirement for the model files is to know the name of the
inputs and outputs, which can be done with tools such as Netron.73

69https://mtg.github.io/essentia.js/docs/api/
70https://www.tensorflow.org/js
71https://github.com/microsoft/onnxjs
72https://github.com/onnx/onnx-tensorflow
73https://netron.app/
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// import essentia .js -model and tensorflow .js
import { tensorflowmusicnn } from ’./ essentia .js -model.es.js’;
import * as tf from " @tensorflow /tfjs";

// path where the tfjs models are stored
const modelurl = "./ autotagging /msd/msd -musicnn -1/ model.json";

// create an instance of essentiatensorflowjsmodel
const musicnn = new tensorflowmusicnn (tf , modelurl );

// promise for initializing the model
await musicnn . initialize ();

// run model inference on the given feature input
let prediction = await musicnn . predict ( inputfeature );

Figure 8.3: Inference example with musicnn-based models using essentia.js-model
via es6 style imports.

In the frozen format, the topology and weights are contained in a single binary
file, TensorFlow.js models are defined in two files: a human-readable JSON file
containing the topology and a binary file with the model weights. None of the
weight quantization options offered by the converter were applied. the models
are approximately the same size after conversion.
We compared the activations generated by both the original and the converted
models finding minimal numerical differences in the range of 1×10−5. We have
also seen similar differences when testing the original models under different
computer architectures or TensorFlow versions. After a further inspection of
prediction outcomes, we conclude that they are too small to alter the sense of
the predictions.
Essentia.js is available under AGPL-3.0 license and can be installed via NPM.74

Last year, Essentia.js was downloaded over 500,000 times from NPM, and the
repository has over 630 stars on GitHub. All the converted models are available
for download on the Essentia models site.75 They can be used for inference on
a wide variety of devices, similar to TensorFlow.js. Figure 8.3 shows a code
snippet for inference with the MusiCNN model using essentia.js to on the web.

74https://www.npmjs.com/package/essentia.js
75https://essentia.upf.edu/models
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8.1.4 Essentia demos

Essentia’s site has a dedicated section for web demos showcasing different
capabilities of the library.76 Many of these demos are powered by models
developed in the context of this thesis. The demos include local notebooks
intended for showcasing the real-time capabilities of our models, web-based
demos relying on essentia.js and TensorFlow.js, web-based demos hosted on
Replicate,77 and integrations of our models on Hugging Face’s model hub and
their transformers library.78

Real-time simultaneous classification notebooks. This demo show-
cases the real-time capabilities of our models by running classifiers based
on deep representations detecting music danceability, voice activity, pres-
ence of aggressive mood, and presence of happy mood simultaneously. As
mentioned in Section 1.2.1, the representation learning paradigm allows
leveraging a single representation model to feed several shallow models,
which prevents the redundancy of having individual end-to-end models
for each task, allowing for very efficient inference pipelines. This demo
features the audio classification models based on the MusiCNN architec-
ture (Pons & Serra, 2019a), presented in Section 3.3.2, and it is avail-
able as a Jupyter Notebook from Essentia’s GitHub (https://github.com/
MTG/essentia/blob/master/src/examples/python/tutorial_tensorflow_
real-time_simultaneous_classifiers.ipynb).

Real-time music style classification on the browser. This demo
showcases that it is also possible to run some of the models created
in the context of this thesis on the browser through essentia.js. and
tensorflow.js. We selected the models trained on Discogs’ labels from
Section 3.3.3. While for most of our experiments, we relied on the
EfficientNet architecture, we noticed a ResNet25 model provided bet-
ter inference times on the web. Since the EfficientNet architecture was
originally designed with inference in mind, it features fewer standard
operations compared to the ResNet architectures (depth-wise separable
convolutions and squeeze-and-excitation blocks vs. standard convolu-
tions and residual blocks). Thus we speculate that the better perform-
ance of the ResNet25 model could be attributed to inefficiencies in the
model conversion process (PyTorch to TensorFlow to TensorFlow.js)
(https://essentia.upf.edu/essentiajs-discogs).

Offline classifiers based on representation learning on the browser.
The difference with the previous demo is that this one is intended for

76https://essentia.upf.edu/demos.html
77http://replicate.com
78https://huggingface.co/
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offline use, and it showcases five downstream classifiers trained on the
same representation model. The downstream classifiers predict music
danceability and happy, sad, relaxed, and aggressive mood presence, and
they were presented in Section 3.3.2 (https://mtg.github.io/essentia.js/
examples/demos/mood-classifiers/).

Replicate models. Replicate is an inference platform and model hub
for machine learning models. It allows users to deploy models so that
they can be run on the web, through Replicate’s API, or downloaded
for offline use. Several models developed in the context of this thesis
are available on Replicate, including the new models built on top of the
representation learning models we developed.

First, we provide a demo of the DiscogsEffNet (Section 3.3.3) style clas-
sification model (https://replicate.com/mtg/effnet-discogs).

Then, we created an equivalent demo for the MAEST model (Chapter 6)
(https://replicate.com/mtg/maest).

We provide specific demos for regression models trained on the Discog-
sEffNet and MAEST representations. These demos include Arousal and
Valence estimation (https://replicate.com/mtg/music-arousal-valence).

And music approachability and engagement (https://replicate.com/mtg/
music-approachability-engagement).

Finally, the music-classifiers demo, incorportes runs all the down-
stream classifiers available for MusiCNN, VGGish, and the Effnet-Discogs
models (https://replicate.com/mtg/music-classifiers).

Altogether, these demos accumulate over 150,000 runs by replicate users.

Hugging Face integration. Hugging Face is a popular platform for
sharing and deploying machine learning models. We have integrated our
MAEST (Chapter 6) into this platform, making them available from their
popular transformers’ library. To support reproducibility, all the con-
figurations of MAEST are available for download, which includes models
with receptive fields ranging from 5 to 30 seconds, models trained with
different types of data initialization, and a version of the weights ob-
tained by teacher-student training. All the models can be used for music
style classification and embeddings extraction within the transformers
library (https://huggingface.co/mtg-upf/) under CC BY-NC-SA 4.0 li-
cense.

Overall, the MAEST models have been downloaded more than 2M times
from Hugging Face.

https://mtg.github.io/essentia.js/examples/demos/mood-classifiers/
https://mtg.github.io/essentia.js/examples/demos/mood-classifiers/
https://replicate.com/mtg/effnet-discogs
https://replicate.com/mtg/maest
https://replicate.com/mtg/music-arousal-valence
https://replicate.com/mtg/music-approachability-engagement
https://replicate.com/mtg/music-approachability-engagement
https://replicate.com/mtg/music-classifiers
https://huggingface.co/mtg-upf/
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Figure 8.4: cosine.club website screenshot. Given a query track, the interface returns
the closest tracks in the database based on the cosine distance.

8.2 Examples of applications by third parties

In the context of this thesis, we have made an effort to make the models
developed available to the community through different means. This includes
the integration of the models into the Essentia library, the development of
Essentia-TensorFlow, the creation of the Essentia models hub, the integration
of the models on Essentia.js, and the creation of web demos showcasing the
models on replicate and Hugging Face. In all these cases, the models are
openly available under a CC BY-NC-SA 4.0 license. In this section, we present
examples of third parties that have integrated or experimented with some of
our models for different applications.

8.2.1 cosine.club

cosine.club79 is an electronic music discovery platform powered by represent-
ation learning models developed in the context of this thesis. Particularly,
it utilizes the contrastive learning models based on editorial metadata (artist
associations) presented in Chapter 4 to extract embeddings for a large data-
set of electronic music tracks. When a query track is input to cosine.club, its
embedding is computed and compared against the database of pre-computed
embeddings using cosine distance. Afterward, the closest tracks are presented
to the user. Figure 8.4 shows a screenshot of a query with the returned tracks
on the cosine.club website.
The original goal of cosine.club was to enable discovery of tracks that were
not available on digital platforms such as Spotify. The owners of cosine.club
stated that the platform’s database is focused on genres like House, Techno,

79https://cosine.club/

https://cosine.club/
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Type Sample size ↑ All tags ↑ Some tags ↑ No tags ↓

Baseline 1 308 14% 51% 36%
Baseline 2 313 22% 50% 28%
DiscogsEffNet 18,704 18% 52% 29%
MAEST 25,626 26% 58% 16%

Table 8.1: Comparison of user preferences for the different music stlye labelling
systems tested by SubmitHub. The sable shows the percentage of users that selected
all, some, or no tags when using the different systems.

Funk/Soul, Rare Groove, etc., and not much on mainstream or popular music.
Their database is sourced from Discogs, and they plan to continuously update
it as more releases are added.

8.2.2 SubmitHub

SubmitHub80 is a music promotion website service where artists submit their
music so that it gets distributed to curators, Spotify playlisters, music bloggers,
and influencers that match the artist’s style and context. The curators can
then listen to the music to provide feedback and, optionally, add it to their
playlists or promote it on their channels. As of today, SubmitHub has over
10,000 curators and has processed over 38 submissions by 1 million artists.
To match an artist with the relevant curators, SubmitHub relies on the style
labels, metadata, and description of the track provided by the artists. One of
the limitations of this process is the lack of accuracy when the artists choose
the style labels for their music, which hinders the process of finding appropri-
ate curators. To overcome this, SubmitHub experimented with the integration
of our DiscogsEffnet (Section 3.3.3) and MAEST (Chapter 6) models to auto-
matically suggest style labels to the users. 81

Table 8.1 shows a comparison of music-style labeling systems tested by Sub-
mitHub. While the experimental conditions were not disclosed by the company,
and the sample size values vary significantly across models, the results suggest
that MAEST could outperform other systems in terms of user preferences.

80https://www.submithub.com/
81This test was informally conducted by SubmitHub and the results were shared with the

author. As for now, none of the models developed in this thesis is being used in production
by SubmitHub.

https://www.submithub.com/




CHAPTER 9
Conclusions and future

perspectives

9.1 Introduction

Throughout this dissertation, we have explored different strategies to create
music representations models able to improve the performance of certain music
classification tasks. We have experimented with different sources of supervi-
sion based on music metadata publicly available on the internet, and focused
on track-level multi-label downstream classification tasks. To pre-train our
models, we have collected a large pool of 4 million tracks matched to Discogs
metadata, and for our downstream models, we have used a combination of
in-house and public datasets covering the high-level music description tasks
such as genre recognition, mood and theme detection, and instrument recog-
nition. Through these experiments, we can now draw some insights related
to the research questions posed in Section 1.4. After this, we will summarize
the main contributions of this thesis, and discuss some open issues and future
perspectives.

Q1. Our first research question is related to the benefits of using pre-
trained representation models instead of solving the downstream tasks
from scratch. In Chapter 3, we experiment with a number of pre-trained
models to address this question. We found that relying on pre-trained
models can significantly improve the performance of the downstream
tasks, especially when the amount of downstream data is limited. Addi-
tionally, our cross-collection evaluation suggests that the resulting models
tend to be more robust and generalize better to unseen data.

Q2. Our second research question is related to the type of supervi-
sion providing the best performance. In Chapters 4 and 5, we explored
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the use of editorial and consumption metadata as supervision signals
for pre-training music representation models. In both cases, we found
that models trained with contrastive learning approaches learning to at-
tract tracks associated with metadata notions tend to outperform models
trained with classification-based targets under the same data and para-
meter count conditions. Nevertheless, the best overall performance on
most of the downstream tasks was obtained with the MAEST model,
which was pre-trained to classify music style labels from Discogs. An im-
portant observation is that MAEST relies on a transformer architecture
with a much higher parameter count, and relied on a number of regulariz-
ation techniques to be trained efficiently. While we could especulate that
training a MAEST model with a contrastive learning loss and editorial
metadata could improve the performance of the model, we did not have
the computational resources to test this hypothesis. This observation
highlights one of the main benefits of label-based classification. While
other approaches can provide better performance, it results very efficient
compared to metric learning or other self-supervised approaches. Fol-
lowing this idea, the self-supervised approaches considered in this thesis
could not compete with the metadata or label-based approaches in terms
of performance at the parameter counts, compute resources, and data
sizes considered in this thesis.

Q3. The third research question is related to the best architecture to
use for music representation learning. In Chapter 6, we explored the
use of transformers as feature extractors for music classification tasks.
We found that making transformers work for music classification tasks is
not straightforward, and it requires considerable engineering tricks to be
able to train efficiently. In particular, we only achieved good perform-
ance when combining weights pre-training on other tasks with strong
regularization techniques such as mix-up data augmentation, and patch-
out (learning from partial input sequences). By training the transformers
this way, we found that it is possible to perform inference from partial
input sequences, which allows for reducing the computational cost of the
model, achieving better downstream performance/throughput trade-offs
than their convolutional counterparts.

Q4. Our last research question is related to the interpretability of the
models resulting from pre-trained representation models. In Chapter 7,
we show that it is possible to train interpretable audio classifiers based
on pre-trained representation models, allowing to gain insights on the
decision-making process of the model.
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9.2 Summary of contributions

With this dissertation, we hope to have contributed to the advancement of
the state of the art in the field of music representation learning through differ-
ent contributions. Apart from the research publications, most of the relevant
models developed in the context of this thesis have been published, includ-
ing training code, weights, and different inference options, including Essentia
(C++/Python) as well as implementations of particular models on online APIs
such as Replicate.ai, and Hugging Face. With this effort, the author aims to
provide the community with tools to facilitate new research in MIR as well as
others intersecting fields.
Additionally, our models have the potential to be used in real-world applica-
tions beyond the academic scope. For example, the DiscogsEffNet representa-
tion model is used in consine.club, an online electronic music similarity search
engine, and the MAEST models count with more than 2 million downloads in
the Hugging Face model hub.
The main contributions of this thesis are summarized as follows:

The first contribution of this thesis is the creation of Essentia models,
a hub of deep learning models for audio and music analysis integrated
with the Essentia Library (Chapter 8.1.2). The original publication also
describes the implementation of the C++ algorithms to support using
the models in the Essentia framework efficiently, along with an evaluation
of the preliminary models available at the time (Alonso-Jiménez et al.,
2020a). Subsequent publications serve to extend the models available
in the hub, including alternative versions of the existing classifiers with
enhanced performance powered by updated representation models.

We proposed DiscogsEffNet, a convolutional neural network trained on
a 3.3 million collection of audio and music style tags coming from Dis-
cogs, which achieved state-of-the-art performance in several downstream
tasks (Section 3.3.3). DiscogsEffNet is also integrated as part of Essen-
tia models, and available on Replicate.ai for demonstration purposes. 82

DiscogsEffNet and the downstream models based on its representations
accumulate over 150,000 runs in this platform.

We conducted a comprehensive study on the performance of different rep-
resentations learning models, including DiscogsEffNet, for several music
classification tasks with small datasets. The study analyzed different
aspects such as the performance of the models on low-data regimes (Sec-
tion 3.3.5), the effect of combining embeddings from different models to

82https://replicate.ai/MTG/effnet-discogs
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solve the tasks (Section 3.3.6), and the generalization capabilities of the
models to unseen data (Section 3.3.7), and the impact of the pre-training
dataset size on the downstream performance (Section 3.3.9).

In Chapter 4, we proposed a novel approach to pre-train music repres-
entation learning model using editorial metadata from Discogs and con-
trastive learning. The experimental results showed that the proposed ap-
proach outperforms the baseline models trained with classification based
targets in several music classification tasks, including genre classification,
and mood classification. We isolated the behavior of training the models
using different metadata notions considering album, artist, and record
label properties, finding that the artist metadata provides the features
with the best downstream performance.

Inspired with the success of the metadata-based pre-training methods, we
extended this approach to supervision by consumption music metadata.
In our experiments we focus on music playlist information, and proposed
different strategies to train the models using this data. We obtained
the best results by modeling the playlist information with a Word2Vec
model, and training a contrastive learning model to align the embeddings
of the playlist and the audio features. The results achieved state-of-the-
art in the MagnaTagATune (MTAT) dataset, and in general achieved
better performance than our previous apprach using artist names as the
supervision signal.

We proposed the first study on the usage of pure self-attention-based
transformers as feature extractors for music classification tasks (Chapter6.
In this works, we found a number of direction in which transformers be-
have differently from convolutional neural networks. First they are much
more dependent on pre-training. Opposite to convolutional neural net-
works, transformers can benefit from longer input sequences. Finally,
the best representations are obtained from the middle layers instead of
the last ones as in the convolutional neural networks. We show that it is
possible to train transformers efficiently on supervised tasks by present-
ing only parts of the input sequence (path out), and the same technique
can be used on inference time to reduce the computational cost of the
model, achieving better downstream performance/throughput trade-offs
than their convolutional counterparts.

Finally, we proposed a strategy that allows training interpretable au-
dio classifiers based on pre-trained representation models (Chapter 7).
Our approach updates the APNet model (Zinemanas et al., 2021), which
jointly trains an audio autoencoder and a classifier based on prototyp-
ical learning. Our approach, relies on a pre-trained representation model
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instead of training the autoencoder, which allows for using additional
data to enhance the performance of the model. For the sonification of
the prototypes, we use a difussion-based transformer conditioned on the
desired features. By decoupling the training of the representation model
and the classifier, we can obtain better performance in the downstream
tasks, create systems with more prototypes, or train classification models
with less data.

9.3 Open issues and future perspectives

To conclude this dissertation, we will discuss some open issues and that re-
main to be addressed in the field of music representation learning and future
perspectives that could be explored in the future.

9.3.1 Self-supervised learning perspective

The recent success of AI in the field of NLP has been driven by the development
of self-supervised learning techniques, specially thanks to autoregressive token
prediction models such as BERT (Devlin et al., 2018) and GPT (Radford
et al., 2018). These techniques exploit the sparse nature of natural language
by approaching token prediction task as a classification problem, which is not
directly possible in continuous domains such as image or audio.
Nevertheless, great advances have been made in the field of self-supervised
learning for these domains in recent years. In image, speech, and audio, the
combination of self-supervised pre-training with fine-tuning on supervised tasks
is the de facto standard, and the trend suggest that self-supervised approaches
will continue to be the main driver of progress in the field.
In this thesis, we have experimented with self-supervised techniques derived
from SimCLR, the most powerful for music audio representation learning ap-
proach according to the benchmarks of Wang et al. (2022) and Meseguer-
Brocal et al. (2024). We have shown that adapting this approach to use music
metadata information to form the positive pairs, resulted in better representa-
tions for the considered downstream tasks. However, it is still an open question
if future self-supervise approaches would benefit from the same metadata in-
formation, or if the models could learn to extract the relevant information from
the audio itself.

9.3.2 Multitask learning

The metadata information considered in this thesis opened the door to multi-
task learning approaches. Although the intuition of the authors is that learning
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from multiple sources could benefit the quality of the learned features, the mul-
titask experiments conducted in Section 4.3.6 did not show a clear advantage
of this approach. It is important to mention that these experiments could not
be fairly compared with its single-task counterparts, as the limited amount to
GPU ram forced us to reduce the effective batch size per task. Contrastive
learning approaches are known to be sensitive to the batch size, and the res-
ults could be affected by this limitation. Because of this, we could not draw a
clear conclusion on the benefits of multitask learning in the context of music
representation learning and the proposed metadata sources.

9.3.3 Multi-modal learning

Multi-modal learning is a promising research direction that could benefit the
field of music representation learning. In the area of audio scene recognition,
audio-video models have been able to outperform their audio-only counterparts
recently (Gong et al., 2023). While the usage of the video modality would be
a direct extension of the audio modality, the most direct way of doing this is
through video clips, where the audio and video are not necessarily synchronized
and the benefits have yet to be assessed. Additionally, other modalities that
could be useful include lyrics, music scores, or even album covers.
In this dissertation, we proposed one representation learning approach that
treats playlist information as a different modality, and it was shown to provide
the best performance in the downstream evaluation (Section 5.3). This result
suggests that multi-modal learning could be a promising research direction in
the field of music representation learning.

9.3.4 Representation learning and time resolution

As mentioned in Section 6.4, common NLP self-supervised representation learn-
ing are able to learn useful information with token-level resolution. However,
all proposed supervision approaches investigated in this thesis are based on
track-level supervision. Consequently, all the considered evaluation tasks con-
sider track-level labels, and since all the considered architectures operate with
receptive fields shorter than most tracks, track-level metrics are derived by
statistical aggregation of the chunk level predictions. While this is a common
practice in the field, it can be regarded as a limitation for the development of
more nuanced music understanding systems.
Approaches based on masked token prediction, such as (Huang et al., 2022a),
are a direct way to address this issue. These approaches, can be combined
with a discrete quantization methods such as K-Nearest Neighbors (KNN), or
random codebook projection (Yizhi et al., 2023; Won et al., 2024) allowing



9.3 Open issues and future perspectives 123

to obtain competitive results both in track-level and high temporal resolution
downstream music understanding tasks.
Investigating if these new models could benefit from the metadata information
considered in this thesis remain an open question. Connecting this idea with
Section 9.3.3, we could also consider if overall, metadata-driven objectives
could be combines with token-level reconstruction objectives to obtain better
representations for music understanding tasks.

9.3.5 Music understanding evaluation

As mentioned in Section 9.3.4, advancing the field of music understanding re-
quires the development of more sophisticated evaluation tasks and metrics. In
Section 3.2.3, we propose a cross-collection evaluation, methodology to assess
the generalization capabilities of the considered models. While this approach
supposes a step into expanding the approaches to evaluate representation mod-
els, it is still limited and difficult to scale.

9.3.6 Interpretability in representation learning

Finally, we address the issue of interpretability in representation learning.
While the majority of DNN-based systems operate as black-box models, those
relying on data-driven representations could be considered even more opaque
than their hand-crafted counterparts. In this thesis, we proposed a strategy to
train interpretable audio classifiers based on pre-trained representation models
(Chapter 7). However, we did not assess the influence of different representa-
tions in the sonifications of the prototypes, and for now, we can only speculate
that this approach could be used to obtain understanding of the information
encoded in the representations.





Pablo Alonso Jiménez.
Barcelona, July 17th, 2024.
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