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Abstract

The word "emergence" refers to the formation of collective behaviors, actions
not undertaken by the components of a system when isolated. On one hand,

we have the components—particles or agents, ranging from water molecules to
bees, birds, and humans. On the other hand, we see interactions, the capacity
for these particles to perceive each other, through electrical energy, released and
received substances, observation and movement coordination, or verbal commu-
nication.

Societies are intricate systems composed of multiple interacting layers. Grasp-
ing their mechanics enables us to enhance our analytical and strategic capabilities.
For centuries, various disciplines have explored human behavior, primarily from
qualitative and descriptive perspectives. Yet, in the digital era, fields such as
physics and mathematics are increasingly contributing to this exploration, taking
advantage of the growing amount of available data to provide fresh insights and
enrich our understanding of these questions.

A significant breakthrough in twentieth-century science was the development
of statistical physics, which bridges microscopic and macroscopic phenomena and
provides an ideal framework for examining a system’s emergent properties. Con-
sequently, much of the sociophysics literature relies on physico-statistical models,
initially devised to describe physical entities like gases and magnetic materials.
These models were designed for specific media and therefore took into account the
spatial properties appropriate for the context. For example, regular structures like
lattices are often used when modeling solids. In complex systems, however, the
connections among elements exhibit different types of patterns, with properties
common across diverse fields, from ecology and genetic networks to neuroscience.
Graph theory offers a mathematical framework to describe these topologies, and
networks have been adopted as the substrate for physico-statistical models in
complex system studies. This approach allows for the observation of novel be-
haviors within each model, based on network characteristics.
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This thesis adapts a model, initially aimed at explaining the transition be-
tween two helium isotopes, to describe opinion dynamics. The model highlights
a central faction’s active role in opinion exchange and allows the modulation of
neutral and extremist relative conviction levels, aiming to assess its impact. The
system’s evolution is influenced by the homophily principle or peer pressure—
the inclination to align our opinions to those held by the people we interact with.
Moreover, the model takes into account a certain probability that the agents will
deviate from this principle. An increase in this probability is analogous to a rise
in temperature in physical systems.

We propose an embedding of the model across various topologies, from less
to more complicated. Its implementation in straightforward networks allows an
accurate analytical treatment, laying a solid groundwork for examining more
intricate structures aimed at capturing essential elements of human behavior. The
goal is to integrate into the model, via topology, features such as the tendency
to change our relationships to be surrounded by like-minded individuals or the
phenomena of cognitive dissonance.

The introduction of the thesis provides an overview of network theory and
social physics models and concludes with a description of the newly proposed
model. The subsequent chapters are divided into two parts: one focused on single-
layer topologies, and the other on spatiotemporal and multilayer topologies.

The first part establishes the foundations of dynamic and equilibrium studies
in mean field theory before extending the model to various complex topologies.
It starts with the application to entirely random networks, then incorporates a
multi-level community structure in synthetic networks, and concludes with real
networks derived from Twitter, offering a multi-resolution community structure
analysis of the examined topologies.

The first chapter of the second part explores the coevolution of topology and
opinion dynamics, blending active matter concepts with opinion models. The
second chapter introduces another framework for individual opinion states, now
depicted not by a singular variable but a belief network, governed by the three-
state opinion model applied throughout the thesis.

In essence, the goal is to deepen our understanding of topological nuances
within a discrete opinion model that has two extreme states and a neutral one
— the latter not signifying indecision but a different option with various levels
of engagement. When there is a dense connection pattern, with a homogeneous
degree distribution, neutral agents can dominate the opinion dynamics, catalyzing
neutral consensus, even when less committed than extremists. On the other hand,
sparser topologies can prevent consensus and lead to echo chambers shaped by
the network structure.
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Finally, we use network descriptions to broaden the concept of opinion states,
facilitating the study of consensus formation at multiple scales. This framework
enables us to explain the presence of zealots as a result of a star-like internal
topology in an agent’s belief system. Sparse belief systems can lead to cognitive
dissonance, which in some cases enhances global agreement. Furthermore, the
intermixing of agents with diverse internal structures significantly affects individ-
ual and collective behavior, especially near critical transition points, which could
be useful in understanding system-wide shifts in consensus.
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Resum

La paraula emergència es refereix a l’existència o formació de comportaments
col·lectius, allò que els constituents del conjunt no farien si estiguessin sols.

Per un costat tenim les parts, les partícules, els agents, que poden ser qualssevol
cosa: mol·lècules d’aigua, abelles, ocells, éssers humans. etc. Per l’altra banda
tenim les interaccions, la capacitat d’aquestes partícules de sentir-se les unes a
les altres, ja sigui a través d’una energia elèctrica, d’una substància que alliberen
i que capten, d’una observació i coordinació amb el moviment d’aquells que els
envolten o de paraules.

Les societats són sistemes complexos formats per moltes capes d’interacció.
Entendre el seu funcionament ens permet millorar i actuar amb més capacitat
d’anàlisi i estratègia. Moltes branques del coneixement han abordat l’estudi del
comportament humà durant segles, principalment des d’una vessant qualitativa i
descriptiva. En l’era de la informació, disciplines com la física i les matemàtiques
s’estan sumant a la recerca, aprofitant l’augment del nombre de dades disponibles
per oferir altres perspectives i enriquir la visió global.

Un dels avenços més importants de la ciència del segle XX va ser el desenvolu-
pament de la física estadística, una teoría que conecta els fenòmens microscòpics
amb els macroscòpics, oferint un marc perfecte per l’estudi de les propietats emer-
gents d’un sistema. És per això que bona part de la literatura en sociofísica està
basada en models fisico-estadístics, en un primer moment utilitzats per la de-
scripció de sistemes físics com ara gasos, materials magnètics, etc. Els detalls del
model i la topologia emprada per descriure la disposició de les partícules estava
adaptada a aquests medis, i per tant es resolien els models considerant les propi-
etats espaials adients, com per exemple, en el cas del sòlid, estructures regulars o
"lattices" en varies dimensions. Tanmateix, els sistemes complexos no segueixen
aquests patrons, sino que les seves connexions tenen propietats característiques i
comunes a la majoria de camps d’estudi, desde l’ecologia a les xarxes genètiques,
passant per la neurociència. La teoria de grafs ofereix el marc matemàtic per
descriure aquestes topologies i, de manera natural, les xarxes van començar a ser
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emprades com a sustrat dels models fisico-estadístics quan s’apliquen per estu-
diar sistemes complexos. A més, depenent de les característiques de cada xarxa,
poden observar-se nous comportaments per a cada model.

Aquesta tesi adapta un model, originalment concebut per explicar la transició
entre 2 isòtops d’heli, per descriure una dinàmica d’opinions. El model emfatitza
l’existència d’una facció central que participa en l’intercanvi d’opinions de manera
activa, i permet modular el seu grau de convicció respecte a les faccions extrem-
istes per a estudiar-ne l’efecte. L’evolució del sistema està dominada pel principi
d’homofília o pressió de grup, que assumeix la tendència a l’aliniament de les
opinions pròpies amb les dels individus amb qui interaccionem. D’altra banda, el
model també considera una certa probabilitat que aquesta tendència no es com-
pleixi, per l’acumulació de diversos factors oposats a ella. L’increment d’aquesta
probabilitat es relaciona amb el concepte de temperatura en els sistemes físics.

Es proposa l’aplicació del model a diferents topologies, de més senzilles a més
elaborades. L’aplicació en xarxes senzilles perment un tractament analític acu-
rat que serveix com a base sòlida per explorar estructures més complicades que
busquin capturar alguns aspectes essencials del comportament humà, com ara la
tendència a canviar de relacions per buscar connectar amb persones de pensa-
ments afins, o el fenòmen de la dissonància cognitiva. L’objectiu és incorporar
aquests trets al model a través de la topologia.

La introducció de la tesi consta d’un resum de la teoria de xarxes i els models
de la física social que acaba amb una descripció del nou model proposat. La resta
de capítols es divideixen en un primer bloc dedicat a topologies monocapa i un
segon bloc amb topologies temporals i multicapa.

El primer bloc assenta les bases de l’estudi dinàmic i d’equilibri del model en
camp mitjà i l’extén a diferents topologies complexes. En primer lloc aplica el
model a xarxes purament al·leatòries, per després incorporar una estructura de
comunitats de diversos nivells en xarxes sintètiques i acaba emprant xarxes reals
extretes de Twitter. Com a resultat, s’arriba a una descripció multiresolutiva de
l’estructura de comunitats de les topologies estudiades.

El primer capítol del segon bloc explora la coevolució de la topologia amb
la dinàmica d’opinions, barrejant conecptes de matèria activa i models d’opinió.
En el segon i últim capítol d’aquest bloc es proposa un nou marc per als estats
d’opinió individuals, que ja no venen representats per una sola variable, sino per
una xarxa de creences, governada pel mateix model d’opinó de 3 estats emprat
en la resta de la tesi.

En conjunt es busca aprofundir en l’anàlisi de la casuística topològica en un
model discret d’opinió amb dos estats extrems i un de neutre que no representa
indecisió, sinó una tercera via amb diversos graus d’implicació. Quan hi ha un
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patró de connexió dens i una distribució de graus homogènia, els agents neutres
poden dominar la dinàmica, catalitzant un consens neutral, encara que estiguin
menys compromesos que els extremistes. D’altra banda, les topologies més dis-
perses poden impedir el consens i conduir a cambres de ressò conformades per
l’estructura de la xarxa.

Finalment, utilitzem les descripcions en forma de xarxes per ampliar el con-
cepte d’estats d’opinió, facilitant l’estudi de la formació de consens a diverses
escales. Aquest marc ens permet explicar la presència de fanàtics com a resultat
d’una topologia interna en forma d’estrella en el sistema de creences d’un agent.
Els sistemes de creences amb poques connexions internes poden conduir a la dis-
sonància cognitiva, que en alguns casos pot millorar el grau de consens social.
A més, la barreja d’agents amb estructures internes diverses afecta significativa-
ment el comportament individual i col·lectiu, especialment a prop de punts de
transició crítics, el que podria ser útil a l’hora d’entendre canvis en el consens
global del sistema.
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CHAPTER 1
Introduction

This chapter introduces the dissertation topic and overviews the network theory
concepts used in this thesis. After that, I discuss several commonly used

opinion models before presenting the pivotal three-state opinion model at the
heart of this work. The chapter concludes with some preliminary analyses of the
model and an outline of the thesis.

1.1

Complex systems and opinion models

Complex systems theory is an interdisciplinary field that explores the emer-
gent properties of systems formed by interacting components. Although the

behavior of individual components might be easily reduced to a few analyzable pa-
rameters, the effects of their interactions lead to collective behaviors that are often
rich, non-linear, or even chaotic and unpredictable. This phenomenon is ubiq-
uitous across nature, highlighting the field’s interdisciplinary relevance. Notable
examples include the formation of spontaneous fields in ferromagnetic materials,
insect swarming, birds flocking, neural activity in the brain, or the dynamics of
power grids, among many others [(110; 87)].

The study of complex systems extends beyond these, touching on areas such
as economic markets, where feedback loops and interaction patterns result in
unpredictable behaviors. Prices, supply, and demand are not only determined
by individual decisions but also by the overall market sentiment, policies, and
external factors like political events or natural disasters. Emergent behaviors
in economic markets can include bubbles, crashes, and long periods of stability
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Chapter 1. Introduction

or volatility, all resulting from the interconnectedness of market participants’
actions.

Healthcare systems comprise hospitals, insurance companies, patients, health-
care providers, and governmental bodies, among others. Conflicts of interest and
policy issues, such as access to care or the cost of treatments, impact emergent
behaviors such as epidemics, health disparities, and the varying effectiveness of
health interventions. The unpredictability of human health and behavior adds
another layer of complexity to the problem.

Political systems involve the interactions of various entities, including gov-
ernments, political parties, interest groups, and the electorate. Policy-making,
governance, and the balance of power are just a few examples of phenomena that
emerge from the interactions within these systems. Understanding shifts in polit-
ical ideology, changes in governance structures, and the rise of social movements,
influenced by both internal dynamics and external pressures is one of the goals
of social sciences.

Social networks, both online and offline, represent another example of a com-
plex system, composed of individuals or groups connected by various types of
relationships. Their structure and dynamics influence information spread, opin-
ion formation, and the emergence of trends and social norms. Phenomena such as
viral content [(128)], the rapid mobilization for social causes [(137)], or the forma-
tion of echo chambers [(153; 167; 14; 12)], where diverse opinions are minimized,
illustrate the complex interplay of network effects.

Self-organization refers to the process by which structure or pattern emerges in
an open system without a central authority, arising naturally from the interactions
among the system’s components. In the context of social sciences, this concept
is applied to understand how individual behaviors, decisions, and interactions
can lead to the emergence of complex social patterns, structures, and dynamics
without a central control. Social norms and values are not just passively absorbed
by individuals but are actively interpreted, internalized, and sometimes modified,
leading to the evolution of these norms and values over time. For example, a social
movement may begin with a small group of individuals but can rapidly grow and
evolve as more people join, each bringing their own perspectives and motivations.
The movement’s goals and strategies may shift in response to its size, the reaction
of external entities (such as governments or other organizations), and the social
context, reflecting a cascade of self-organization where the movement’s growth
and direction are continually shaped by its participants, being the study of social
complex systems itself just another expression of this mechanism.

Auguste Comte [(30)], who, in the 19th century, laid some of the foundational
stones for what would become the scientific study of society. Comte aimed to
establish sociology as a discipline capable of applying scientific methods to the
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1.1. Complex systems and opinion models

understanding of social life and exploring the mathematical underpinnings of so-
cial phenomena. Despite these intertwined beginnings, sociology and sociophysics
followed different paths. For decades, sociology studied the qualitative and theo-
retical exploration of social structures, norms, and institutions, while the nascent
field of sociophysics, lingering in a conceptual limbo, awaited the maturation of
tools and methodologies that could quantify the dynamics of social interactions.
The turn of the millennium marked a significant shift since the advent of digital
technologies and the explosion of big data have provided access to large-scale
social data sets, from online interactions to urban mobility patterns. Computa-
tional tools and methods, including network analysis, agent-based modeling, and
machine learning, offer sophisticated means to analyze, model, and simulate the
behaviors of complex social systems.

The application of models from statistical mechanics to the understanding
of social phenomena can be traced back to figures like Lewis Fry Richardson
(Arms and Insecurity (1949) [(134)], Statistics of Deadly Quarrels (1960) [(135)])
who applied techniques of weather forecasting to explore the origins of wars and
strategies for their prevention. He proposed a system of equations to describe the
dynamics of armament escalation between rival nations. According to his model,
the rate at which a country increases its armament is directly proportional to its
rival’s armament level and the grievances held against this rival, and inversely
proportional to its own arsenal size.

Other early approaches in the interdisciplinary field of sociophysics and com-
plex systems include the Schelling model for cultural segregation [(140)], the Ax-
elrod model for cultural dissemination [(8)], and the Watts and Strogatz model
[(168)] for the formation of social networks.

The key idea in sociophysics is that the dynamics of opinion formation and
propagation among individuals can be understood using the same principles that
describe phase transitions in physical materials. Under certain conditions, a
macroscopic order can emerge from the microscopic interactions among the com-
ponents of a system, whether this order manifests as the transition from a liquid to
a solid state or as the emergence of consensus within a population of individuals.

Various models have been developed to study these dynamics, being the most
paradigmatic the voter model [(80)], which simplifies opinion exchange to discrete
binary choices and examines how local interactions can lead to global consensus
or coexistence of opinions. The voter model can be mapped to the Ising model,
a spin model introduced by Ising in 1925 [(83)] to explain the formation of mag-
netic domains, which also has been applied to unravel voting patterns [(62)]. An-
other prominent model is the Sznajd model introduced by Sznajd-Weron (((159)
Sznajd-Weron and Sznajd (2000))), which is based on the principle that a pair or
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group of individuals holding the same opinion can influence their neighbors more
effectively than a single individual, leading to larger clusters of consensus.

There is another branch of models that considers the opinion space as a con-
tinuum spectrum between two extremes. In 1964, Abelson proposed a time-
differential equation to describe the opinion transition rates driven by the strength
of persuasive communication and conformity pressure (1). Bounded confidence
models, developed more recently, consider a continuous opinion space where indi-
viduals only interact with those who are placed close enough in the opinion space.
[(41; 77; 40; 170)]. Such models usually predict the formation of opinion clusters
in the stationary state, so their analysis leads us back to the idea of a discrete
opinion space.

A study of a multibody bounded confidence model in its final stages is pro-
vided in Appendix B. A recent experiment showed that angry participants felt
less trusting of pairs [(44)]. Another study concludes that anger can activate
prejudice, revealing that angry participants were more prone to associate neg-
ative rather than positiive traits with members of an out-group [(42)]. In Ap-
pendix B, we propose a framework where the deviation threshold is determined
by a decreasing function of the emotional arousal of the agents; the higher their
emotional arousal, the smaller the deviation threshold. Additionally, by interact-
ing, agents influence the timing of each other’s activities. Our results highlight
the importance of synchronization in shaping consensus formation. Furthermore,
we demonstrate that varying confidence intervals alter the impact of parameters
like step length in navigating the opinion space, leading to deviations from the
predictions of the traditional Deffuant model.

By integrating sociological insights with physical models, opinion models in
sociophysics provide a powerful tool for analyzing and interpreting social phenom-
ena. They have applications in predicting social trends, designing more effective
communication strategies, fostering social cohesion, mitigating the effects of mis-
information and polarization, or understanding the effects of social network struc-
tures on public opinion. A more detailed explanation of discrete models closely
related to this thesis is provided in Section 1.3.

1.2

Networks

The structure and pattern of connections among individuals significantly in-
fluence how ideas, beliefs, and norms are shared and evolve within a society.

The study of these topological features provides insights into the mechanisms of
opinion formation, the speed of information dissemination, and the emergence of
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consensus or polarization. The geometry of social structures is crucial in opin-
ion formation and other contemporary questions such as pandemic spreading,
economics (151; 104; 146), and smart cities design (105; 5).

Mathematically speaking, a graph, or network is a pair G = (V,E) where V
is a set of nodes (also called vertices) that represent objects or entities and E is
a set of links (or edges) {v1, v2} that represent the connections or relationships
between these objects. Different network topologies can lead to markedly different
outcomes in opinion dynamics. For example, in highly clustered networks or those
that exhibit a strong community structure, opinions can become localized, leading
to a persistence of diverse viewpoints.

Embedding opinion models on complex topologies has expanded the knowl-
edge about fundamental questions regarding critical behavior and transitions be-
tween states. At the same time, the study of the dynamics of these models on
networks can also help in solving complex systems problems, for instance, com-
munity detection (75) or brain functioning [(172; 36; 131; 107)].

The adjacency matrix is a representation of a network that encloses all the
information about the connections between nodes. For a network with n vertices,
the adjacency matrix A is a square matrix of dimension n×n where the element
aij represents the connection from vertex i to vertex j. Formally, the adjacency
matrix for a network is defined as:

A = [aij ] where aij =
{
weight of the edge if there is an edge between i and j,
0 otherwise.

(1.1)

The value of the element aij corresponds to the weight of the edge, and for
signed networks, this weight can be positive or negative to reflect the nature
of the relationship (friendly or antagonistic, in the context of social networks).
The diagonal elements aii are often set to zero, indicating the absence of self-
loops in the network. Symmetric adjacency matrices correspond to undirected
networks, where the relationships are equivalent in both directions between any
two connected nodes.

The adjacency matrix is a powerful tool for analyzing the structure and prop-
erties of a network, allowing the application of matrix theory to compute different
properties. For instance, it can be used to compute the degree, or number of con-
nections, for each node, which can be determined by summing the elements in the
corresponding row or column of the matrix.; to calculate the number of connected
components —subsets of vertices in which any two vertices are connected by a
path, and no vertices outside the subset are linked to any vertex within it; or to
determine the path length between nodes.

7



Chapter 1. Introduction

In the context of this work, we limit our consideration to symmetric, binary
adjacency matrices, corresponding to undirected, unsigned, and unweighted net-
works, where an entry of one indicates the presence of an edge between nodes i
and j, and zero indicates no edge. This simplification allows us to focus on the
topology of the network without the added complexity of edge weights, directions,
or signs.

A simple example of an adjacency matrix is the one corresponding to the
fully connected (FC) graph, or complete network, where every node is directly
connected to every other node. Each off-diagonal element is set to 1, indicating
the presence of an edge between distinct nodes, while elements on the diagonal
are zero.

1.2.1 Topological measures
In this section, I provide a brief overview of the key topological measures applied
in this research. Note that the field of network science encompasses a broader
array of significant metrics. Among these, various forms of centrality—such as
degree, betweenness, closeness, eigenvector, and PageRank centralities—stand
out as they provide deeper insights into the roles and influences of individual nodes
within the network’s overall connectivity and flow dynamics. For a thorough
understanding of network topology measures, Newman’s book "Networks: An
Introduction" is a comprehensive guide to network theory and its applications
across various fields (118).

Paths

A path in a network is a sequence of nodes in which each adjacent pair of vertices
is connected by an edge. For a network represented as a graph G = (V,E), a
path P from vertex u to vertex v is a sequence of vertices (v1, v2, . . . , vk) such
that v1 = u, vk = v, and ∀i, 1 ≤ i < k, (vi, vi+1) ∈ E. Paths are fundamental for
understanding the structure of networks, allowing us to analyze connectivity and
the flow of information or resources.

The average shortest path length is defined as the average length of the short-
est paths between all pairs of vertices in the network and it can be expressed
as:

L = 1
n(n− 1)

∑
u,v∈V

d(u, v), (1.2)

where n is the number of vertices in the network, d(u, v) is the shortest path
distance between vertices u and v, and the summation is over all pairs of
vertices. A smaller average shortest path length implies that, on average,
fewer steps are needed to get from one vertex to another, therefore indicating
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a higher efficiency for the transmission of information or resources in the network.

Clustering Coefficient

The clustering coefficient quantifies the likelihood that two adjacent nodes of a
given node are also connected, forming a triangle. There are two primary versions
of the clustering coefficient: local and global. For a given node v, with degree kv,
the local clustering coefficient Cv is defined as:

Cv = 2T (v)
kv(kv − 1) , (1.3)

where T (v) is the number of triangles passing through node v. This formula
calculates the ratio of existing links connecting a node’s neighbors to the total
possible links between them.

The global clustering coefficient C is calculated by taking the ratio of the
number of triangles in the network to the number of connected triples of nodes
(subsets of three nodes where one node is connected to the other two), and it
has a value of 1 in fully connected graphs. Alternatively, Watts and Strogatz
measure the overall level of clustering in a network [(168)] as the average of the
local clustering coefficients of all nodes, often referred to as transitivity.

This measure provides insights into the micro- and macro-structure of
networks, revealing local grouping patterns and the overall tendency for the
formation of cohesive groups. Networks with high clustering coefficients tend
to be more robust against random link destruction, as the dense connections
provide alternative paths for network flow. In social networks, a high clustering
coefficient indicates a strong tendency for social groups to form tightly inter-
connected communities, while in biological networks, such as neural or genetic
networks, a high clustering coefficient may indicate functional segregation into
modular sub-networks.

Assortativity

Correlations measure the tendency of nodes to connect with other nodes that are
similar (or dissimilar) in certain attributes. When considering attributes like age,
race, or income, analyzing correlations offers insights into the underlying social
structure and the extent of community segregation. In networks, the assortativity
coefficient, r, quantifies the level of similarity between connected nodes in the
network. It ranges from −1 to 1, where a value of 1 indicates perfect assortativity
(high-degree nodes connect with high-degree nodes, and the other way around,),
while 0 indicates no assortativity (node connections are random with respect to
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degree), and −1 indicates perfect disassortativity (high degree nodes connect with
low degree nodes). Mathematically, r is defined as:

r =
∑
ij(aij − kikj/2m)kikj∑
ij(kiδij − kikj/2m)kikj

, (1.4)

where aij refers to the adjacency matrix of the network, ki and kj are the degrees
of nodes i and j, m is the total number of edges in the network, and δij is the
Kronecker delta function.

In the context of social networks, this might refer to the tendency of indi-
viduals with similar social backgrounds to form connections and can influence,
for instance, the threshold and dynamics of epidemic outbreaks. In technical
networks, such as the Internet or neural networks, assortativity can describe
how nodes of similar degrees (number of connections) preferentially connect to
each other. Assortative networks, in which high-degree nodes are more likely
to be connected, tend to be more robust against random link destruction, but
more vulnerable to targeted attacks. A comprehensive understanding of these
connection patterns can help in modeling the growth and evolution of networks,
predicting how networks may develop over time based on their current structure.

Modularity

Modularity is a measure used to determine the strength of a partition of a network
into communities (also called modules or clusters) [(117)]. These communities are
groups of nodes that are densely connected internally and sparsely connected with
the rest of the network. High modularity indicates a structure where there are
clear divisions within the network.

Modularity (Q) for a given division of the network is defined as:

Q = 1
2m

∑
ij

[
aij −

kikj
2m

]
δ(ci, cj), (1.5)

where m is the sum of all of the edge weights in the network, δ(ci, cj) is a delta
function that equals 1 if nodes i and j are in the same community and 0 otherwise,
and ci denotes the community to which node i is assigned.

Modularity is crucial for understanding the underlying structure of networks,
enabling the identification of community structures which can have significant
implications in various domains such as biology (identifying functional modules
within cellular networks), social sciences (discovering groups within social net-
works), and more [(60)].
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Finding the optimal community structure in a network, as indicated by max-
imum modularity, is not a problem with a unique solution. This is due, among
other reasons, to the resolution limit of modularity, which can make it difficult to
detect smaller communities within large networks. As a result, multi-resolution
algorithms that can adjust the scale at which the network is examined, are use-
ful for the detection of community structures at various levels of granularity
[(7)]. These algorithms work by modifying the modularity function or by ap-
plying different principles to explore the community structure across different
scales, providing a more comprehensive understanding of the network’s modular
organization.

1.2.2 Real Networks: Twitter
Real networks, particularly social networks like Twitter, exhibit small-world prop-
erties, meaning that they have high clustering and small average path length. The
small-world phenomenon facilitates efficient information transfer, enhancing the
spread of opinions by allowing both local clustering of opinions and global dis-
semination.

Another well-known feature of real-world networks is that they exhibit scale-
free properties, characterized by a power-law degree distribution of the form:
P (k) ∼ k−γ , where P (k) is the probability that a randomly selected node has
degree k, and γ is a constant typically in the range 2 < γ < 3 for many real-world
networks. In such networks, a few nodes have a significantly higher number of
connections than others. These hubs can act as influential spreaders of opinions,
making the network more susceptible to rapid changes in the dominant opinion
or the spread of information (or misinformation).

Twitter, a platform central to digital communication and social interaction,
offers a rich dataset for analyzing real-world networks. These interactions form
complex networks that provide insights into information dissemination, influence
dynamics, and community structures. Networks are built by linking users (han-
dles) when they re-share content from one another or mention them in their posts.
The study of these networks can answer questions about the flow of information,
the spread of ideas, and the viral nature of certain topics. They can be used to
identify influential users, understanding how information travels through social
groups, and map the diffusion of news, rumors, or misinformation.

1.2.3 Generative Models
Generative network models offer frameworks for understanding the underlying
mechanisms that drive network formation and evolution. These models aim
to reproduce some structural characteristics observed in real-world networks,
such as scale-free degree distributions, small-world properties, and community
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structures. [(118)]. By simulating the process through which networks grow
and develop, generative models help to analyze the fundamental principles
governing network dynamics across various domains, including social, biolog-
ical, and technological systems. This section explores some of the classical
network models, although many extensions, variants, and other important
models have been proposed in the past years. Some of these extensions, like
the Holme-Kim model [(81)], have successfully explained all features in Table 1.1).

Model 〈L〉 〈C〉 P (k)
Erdös-Rényi (ER) ∼ lnN/ ln〈k〉 〈k〉/N Poisson
Barabási-Albert (BA) ∼ lnN/ ln (lnN) ∼ (lnN)2

/N ∼ k−3

Watts-Strogatz (WS) (p intermediate) ∼ lnN O
(
N0) ∼ Poisson

Table 1.1: Dependencies of generative network models on the number of nodes N ,
for the average shortest path length 〈L〉, the average clustering coefficient 〈C〉, and the
degree distribution P (k). Cells are colored green if the model successfully reproduces
properties of real networks, and red otherwise.

Erdös-Rényi Graphs

Erdös-Rényi (ER) graphs, named after Paul Erdös and Alfréd Rényi, are one of
the simplest yet most studied models of synthetic random graphs [(47)]. There
are two versions of the model, denoted as G(n, p) and G(n,M), where n indicates
the number of nodes in the network:

• In the G(n, p) model, a graph is constructed by connecting nodes randomly.
Each pair of distinct nodes is connected with probability p, independent of
every other pair.

• In the G(n,M) model, a graph is formed by selecting exactly M out of the
possible n(n− 1)/2 edges, uniformly at random.

A phenomenon of particular interest within these models is the existence of
a critical probability, pc = 1

n , which marks a phase transition in the graph’s
structure from a collection of small disconnected subgraphs to a phase where a
giant component emerges (21). In G(n, p) graphs, the degree distribution follows
a binomial distribution, which approximates a Poisson distribution for large n
and small p.

In real-world networks, the average clustering coefficient decreases with an
increase in the average node degree and is independent of the system size, but
in ER networks 〈C〉 increases with 〈k〉 and decreases with N . Despite their
limitations, ER graphs can reproduce the small average shortest path observed
in real networks although they fail to capture scale-free degree distributions.
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(see Table 1.1).

Watts-Strogatz

The Watts-Strogatz (WS) model, introduced by Duncan J. Watts and Steven
Strogatz in 1998, is a simple and influential network model that captures the
small-world phenomenon, producing networks that exhibit both high clustering
and short average path lengths.

The model starts with a regular lattice network where each node is connected
to k nearest neighbors in a ring topology. Then, with a probability p, each edge
is rewired to a randomly chosen node, introducing a transition from a highly
ordered state to a random one.

For small values of p, the network maintains a high clustering coefficient,
however, the average shortest path length is large. As p increases, the average
path length between nodes quickly decreases, entering a range with small-world
properties where any node can be reached from any other in a small number of
steps and the clustering coefficient is still high (see Figure 1.1).

Barabási-Albert Graphs

The Barabási-Albert (BA) graph, introduced by Albert-László Barabási and
Réka Albert in 1999, is a model that reproduces the scale-free properties ob-
served in real-world networks, via two mechanisms: growth and preferential
attachment[(11)].

The generation process of a BA graph starts with a small number (m0) of
fully connected nodes. New nodes are added to the network one at a time,
each connecting to m(≤ m0) existing nodes with a probability pi = ki/

∑
j kj

proportional to the number of links that the aforementioned nodes already have.
This "rich-get-richer" mechanism ensures that nodes with higher degrees have a
higher chance of receiving new links, leading to the emergence of hubs or highly
connected nodes. This process not only reproduces some key properties of real-
world networks at a macro scale but also mimics micro-mechanisms of real-world
network formation (4).

The degree distribution of BA graphs follows a power law with γ = 3 and
they have small average path lengths. However, although their average clustering
coefficient is higher than that of ER graphs, it is still smaller than what is observed
in real networks (see Table 1.1).
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Regular Lattice Small-World Random Network
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Figure 1.1: Transition from a regular lattice to a random network via the Watts-
Strogatz model. The relationship between rewiring probability p and network metrics,
average clustering coefficient 〈C〉, and average shortest path length 〈L〉 with the small-
world regime highlighted. Adapted from (168)

Girvan-Newman communities

A widely recognized benchmark in community detection is a graph structure
proposed by Girvan and Newman [(120)], consisting of 128 vertices divided into
four groups of 32. Each vertex has an average degree of 16, and the internal group
connectivity is adjusted by a parameter zin, which represents the average number
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of edges each vertex has within its own group. When zin is close to 16, the graph
exhibits a clear community structure, as most connections are within the same
group, making the communities distinct. When zin ≤ 8 edges predominantly link
vertices across different groups, blurring the community boundaries.

The effectiveness of a given community detection method is tested by compar-
ing the algorithm’s groupings to the graph’s known partition into four "natural"
groups. A vertex is considered correctly classified if it shares a cluster with at
least 16 of its original group members. If an algorithm merges two or more of
the natural groups into a single cluster, all vertices in that cluster are considered
incorrectly classified. Algorithms generally perform well when zin is high but
struggle as zin decreases toward 8 (116; 58), which in turn suggests that the ran-
domness introduced in the rewiring process challenges the assumption that the
initial four-group partition represents the true structure of the graph.

Random Geometric graphs

In Random Geometric Graphs (RGGs) nodes occupy a physical space and edges
represent proximity-based interactions. RGG’s are generated by randomly plac-
ing their vertices within a given space, forming links between nodes within a
certain distance threshold. The foundational work by Penrose [(126)] provides a
comprehensive mathematical framework for RGGs, emphasizing their application
in modeling and analyzing spatially structured networks.

RGGs have a critical percolation threshold that marks the transition from
a disconnected network to one where a giant connected component emerges,
spanning a significant portion of the network. This point is related to the den-
sity of nodes and the radius within which nodes are considered neighbors by:
(Ninit − 1)πd2

c/L
2 ≈ 4.51 (141). Dall et al. (2002) discussed graphs with ver-

tices assigned random coordinates in a geometric space, focusing on the critical
connectivity found numerically by examining the size of the largest cluster [(33)].

This model is especially suitable for networks which connectivity is dictated
by spatial positioning, like wireless communication networks [(147; 88)], brain
networks [(127)], and social interactions that have a spatial component [(22)].

1.2.4 Graph Product Multilayer Networks
Traditional network analysis assumes all interactions are similar, which overlooks
the varied nature of real-world connections. For instance, human relationships
can be categorized as personal or professional, flight routes as commercial or
cargo, and relationships in an ecosystem as mutualistic, predatory, or parasitic.
Multilayer networks allow for the examination of different types of links within
the same framework. This approach includes multiplex networks, where different
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layers represent various kinds of interactions among the same nodes; hypergraphs,
which include connections among more than two nodes to capture higher-order
interactions; and interdependent networks, which reveal how different scales or
domains are interconnected, influencing each other’s functionality. These inter-
dependencies often highlight critical points of vulnerability and resilience within
interconnected systems.

Another structure that can be englobed in the multilayer framework is the
networks of networks, in which each node is a network itself, and inner nodes
are connected to other inner nodes via the external nodes’ connections. This
kind of graph can be mathematically represented as graph products, offering a
rich framework to model complex systems spanning multiple scales [(139)]. Such
representations are crucial for understanding the emergent behavior in systems
ranging from biological entities to technological and social systems, where differ-
ent layers of interaction play a relevant role in determining the system’s overall
dynamics.

Graph Product Multilayer Networks (GPMNs) represent a framework for con-
structing complex network structures through the application of graph product
operators. Originating from graph theory, these operators facilitate the combina-
tion of simpler factor networks into a comprehensive product network, particu-
larly useful for modeling multilayer networks where different types of interactions
coexist across multiple layers. This subsection provides a brief description of the
three principal graph product operators: Cartesian, direct (tensor), and strong
products (see Figure 1.2).

Cartesian Product

The Cartesian product of two graphs G and H, denoted as G�H, constructs a
graph whose vertices correspond to all possible pairs (g, h) for g ∈ G and h ∈ H.
Edges between vertices (g1, h1) and (g2, h2) exist if:

• g1 = g2 and h1 is adjacent to h2 in H, or

• h1 = h2 and g1 is adjacent to g2 in G.

This means that if one component of the pair is identical and the other is adjacent
in its respective graph, then the pairs are connected in the product graph. This
product can be used to model networks where connectivity in one layer operates
independently of another. The adjacency matrix of the Cartesian product G�H
is given by: AG�H = AG⊕AH = AG⊗I|VH |+I|VG|⊗AH ⊕ denotes the Kronecker
sum, and ⊗ denotes the Kronecker product. I|VH | and I|VG| are identity matrices
of sizes corresponding to the number of vertices in H and G, respectively.
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Figure 1.2: Visual Representation of Graph Products in Network Analysis – This series
of diagrams illustrates different graph products derived from a simple triangle graph G
and a line graph H. From left to right: Graph G as a triangle, Graph H as a line, their
Cartesian Product G�H showing possible connections based on matching vertices, the
Tensor Product G⊗H emphasizing direct connectivity, and the Strong Product G�H
combining properties of both Cartesian and Tensor products. Each graph product
helps in exploring complex network structures and their properties, demonstrating how
different layers and connectivity patterns can be analyzed in multilayer networks.

Direct (Tensor) Product

The direct or tensor product of two graphs G and H, denoted as G⊗H, creates
a graph whose vertices are all possible pairs (g, h) for g in G and h in H. In this
graph, an edge connects vertices (g1, h1) and (g2, h2) if and only if g1 is adjacent
to g2 in G and h1 is adjacent to h2 inH. This condition means that connections in
the product network depend on simultaneous connections in both of the original
or factor networks, highlighting the necessity for coordinated adjacency in both
dimensions. Such a model is particularly useful for scenarios where interactions
within the combined network are dependent on the presence of corresponding
connections in each of the separate networks.

The adjacency matrix of the tensor product G⊗H is given by:

AG⊗H = AG ⊗AH

where ⊗ denotes the Kronecker product. Unlike the Cartesian product, which
combines the identities and adjacency matrices in a form representing indepen-
dent connectivity across layers, the tensor product uses a straightforward Kro-
necker product, creating a matrix that represents direct pairwise connections
across both graphs.
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Strong Product

The strong product, denoted byG�H, merges the properties of both the cartesian
and direct products, thereby providing a rich structure for network analysis. The
vertices of the strong product are formed by pairs (g, h) for every g in G and h
in H. An edge between two vertices (g1, h1) and (g2, h2) in G�H is established
under any of the following conditions:

• g1 = g2 and h1 is adjacent to h2 in H, reflecting the connectivity pattern
of the Cartesian product;

• h1 = h2 and g1 is adjacent to g2 in G, also reflecting the Cartesian product
structure;

• g1 is adjacent to g2 in G and h1 is adjacent to h2 in H, reflecting the tensor
product’s connectivity requirements.

The strong product can highlight pathways for redundancy and multiple con-
nectivity routes, thereby providing insights into how network architecture can in-
fluence overall system stability and functionality. This makes the strong product
particularly useful in scenarios where network resilience and robustness against
failures are studied.

1.3

Opinion Models

Instead of creating a universal model to explain human behavior comprehen-
sively, it is more effective to construct specific models that focus on distinct

aspects of behavior. These models isolate and analyze the key characteristics
useful for the particular research question at hand. By examining and synthe-
sizing the main findings of these models, one can establish connections that may
facilitate the development of a more complete theory for describing human be-
havior. (63; 64; 97).

Opinion models in sociophysics allow for the study of the mechanisms under-
lying opinion formation and the conditions leading to various societal outcomes.
These models employ variables to represent individual opinions, which evolve
according to specified rules. The aim is to capture the complex interplay of fac-
tors that drive consensus formation, polarization, fragmentation and other social
large scale phenomena. Recent advancements in the field of sociophysics have
led to refined models targeting specific aspects of societal interactions, such as
the formation of echo chambers [(14; 12)], polarization [(145; 176; 90; 91)], opin-
ion expression (61), information spreading [(113; 106; 24)] or gerrymandering
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[(84; 154; 17)]. This section offers a description of a few examples of discrete
opinion models, which represent opinions as discrete values, as they are more
relevant to the present work. For a more extensive review of opinion models in
sociophysics, the reader can refer to [(26; 144)].

Despite the differences in the details of each model, the questions they aim
to answer are primarily related to the distribution of opinions in the population.
A common goal in many of these works is to understand the transition from an
initial disordered state, where opinions are random and uncorrelated, to a state
where agents exhibit some form of local or global consensus.

1.3.1 The voter model
The first opinion model in the field of sociophysics is often credited to the voter
model. Introduced in the early 1970s by Thomas M. Liggett and Richard A.
Holley (80), the voter model is a binary simple time-discrete agent-based model
that describes the dynamics of opinion formation through a stochastic Markovian
(memoryless) process of imitation.

Each agent is assumed to have a discrete opinion, typically represented as +1
or−1, and at each time step, an agent is randomly selected and adopts the opinion
of one of its neighbors, also chosen at random. The global state of the system
at any time can be represented by a configuration {σ}, where σi ∈ {+1,−1}
denotes the opinion of the ith agent. The evolution of the system over time can
be treated analytically via the master equation (which form will depend on the
agents’ connection pattern) or numerically, through Monte Carlo simulations.

In the absence of external influences or additional rules, a finite system will
always reach consensus, however, the network structure on which the voter model
is applied (e.g., lattice, random graph, scale-free network) significantly affects the
time to reach consensus. For instance, in highly connected networks, consensus is
typically reached faster than in sparsely connected networks due to the increased
interaction opportunities between differing opinions. The process of reaching
consensus in the voter model can be mathematically described as a random walk,
especially in one-dimensional or two-dimensional systems, an analogy that helps
in analyzing the model’s behavior.

Several extensions have been developed to capture more realistic social mech-
anisms and scenarios. One notable variant is the majority rule voter model, where
the update rule is modified to ensure that the state of a chosen agent is deter-
mined by the predominant opinion among all its neighbors within a certain local
neighborhood or interaction range. From a social perspective, this variant simu-
lates social conformity under peer pressure, a mechanism that drives individuals
to adopt the most common opinion or behavior observed in their social circle.
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The role of "zealots", stubborn agents who never change their opinion, has
been explored in many studies. Mobilia et al. (2003) find that the effectiveness of
"zealots" in influencing the entire system varies with the system’s dimensionality
(111). Yildiz et al. (2013) (178) study how the density fluctuations of "zealots"
and their position impact the process of consensus formation. Granovsky et al.
introduce noise by allowing agents to randomly flip their opinions (73) and Galam
et al. (2007) investigate the role of opinion inertia (65). The model has also been
embedded on a wide variety of topologies (156; 96).

Classical Voter Model Dynamics

Step 1: Agent Selection

Randomly select one agent, denoted as i, from among the N agents in
the system.

Step 2: Random Neighbor Selection

Randomly select one neighbor of agent i, denoted as j, from its immediate
local neighborhood or defined interaction range.

Step 3: Opinion Adoption

Agent i adopts the opinion of the selected neighbor j, effectively mirror-
ing j’s state.

1.3.2 The Ising model
In the attempt to model basic human behavior, the complex systems community
realized very soon that the analogies with well-known physical models could be
exploited. For instance, the tendency to align one’s opinion with those of their
neighbors is a property that ferromagnetic materials exhibit as well (98; 169; 62;
94; 66; 102).

The first and simplest choice was the Ising model, a statistical physics model
originally developed to describe the behavior of magnets [(83)]. Atomic spins can
take two orientations σi = −1,+1 and interact with their nearest neighbors via
a potential energy that is a function of the spins’ alignment:

H = −J
∑
〈i,j〉

σiσj − h
∑
i

σi, (1.6)
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where J is a positive constant representing the coupling strength between neigh-
boring spins, h is an external magnetic field, and the summation runs over nearest
neighbors. The external field term can be associated to an external influence or
propaganda that attempts to sway the general population’s opinion in a partic-
ular direction. It models how external pressures or information campaigns can
shift the overall sentiment of a population towards a specific viewpoint. The pair-
wise term accounts for the agents’ tendency to align their opinions. The system
evolves to minimize this energy, subject to temperature fluctuations. The key
phenomenon described by the Ising model is the second-order (continuous) phase
transition from a disordered state at high temperatures to an ordered state (all
spins aligned) as the temperature decreases below a critical point.

While there is no energy function explicitly defined in the voter model, there
exists a mapping between these two models that becomes apparent when con-
sidering the Ising model at zero temperature and in the absence of an external
magnetic field. Despite their microscopic rules being different, under these condi-
tions, both models exhibit the same macroscopic behavior and can be considered
part of the same equivalence class. An equivalence class in this context, is a
set of models that are equivalent in terms of their long-term dynamics, although
sometimes this concept is used in a more relaxed form to refer to models which or-
der parameters show the same behavior near their critical points (171; 71),. This
equivalence highlights the universality of certain statistical properties across mod-
els, allowing us to understand the common properties of collective phenomena,
transcending the specific details of individual models, and predicting the behavior
of complex systems using simpler or more well-studied models.

Although the Ising model is an equilibrium model, it can be dynamically
simulated—similarly to the voter model—through a Markov chain, and sample
from its equilibrium distribution once it reaches a stationary state. This approach
is interesting from a social perspective, as understanding the system’s temporal
evolution in this context can offer valuable insights. The sequences below describe
one elementary move for the two most commonly used dynamical algorithms: the
Glauber dynamics and the Metropolis dynamics.
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Metropolis dynamics

Step 1: Pick one agent i at random with uniform probability among the
N agents.

Step 2: Propose a random opinion change with probability 1/2 for the
agent i and calculate the energy difference ∆H between the new and old
configuration.

Step 3: Accept the change with probability min{1, e−β∆H}, otherwise
remain in the current state.

Glauber dynamics

Step 1: Pick one agent i at random with uniform probability among the
N agents.

Step 2: Calculate the energy differences ∆H1 and ∆H2 between the new
and old configuration, for the two possible opinion changes for the agent i.

Step 3: Accept either of the two possible changes with probability Pk =
wk/(1 +w1 +w2), where wk = e−β∆Hk for k = 1, 2, or remain in the current
state with probability 1− P1 − P2.

Just as in physical systems where particles settle into states of minimum
energy, opinions in a social network evolve towards stable configurations that
can be viewed as attractors. A basin of attraction in this framework can be
understood as the set of initial configurations that lead the system to a particular
stationary state, and their shape and size will depend on the network topology
and the dynamics governing opinion/spin changes.

Various studies have compared these dynamics and those of the voter Model.
for instance, Paula et al. analyzed the Glauber and Metropolis master equations
in one and two-dimensional lattices, revealing that neglecting spin correlations can
lead to discrepancies between predictions and simulation results [(124)]. Castel-
lano textitet al. examined Glauber and voter dynamics on complex networks
with varying degrees of heterogeneity in their distribution. They discovered that,
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unlike voter dynamics, Glauber dynamics at zero temperature gets trapped into
metastable states without ever achieving an ordered state, even in finite systems
[(26)]. More recent studies explore how Glauber and Metropolis can lead to dif-
ferent between basins of attraction and the influence of long-range interactions
on coarsening processes (66; 86).

By modeling voters as spins and their social interactions as links among these
spins, we can effectively simulate how localized interactions give rise to large-
scale phenomena, such as political consensus or polarization, analogous to phase
transitions observed in physical systems [(19; 57; 102; 12)]. These investigations
into binary opinion dynamics motivate the exploration of the model on complex
topologies, including synthetic graphs, real networks, coevolving networks, and
multilayer networks [(78; 121; 37; 29; 82)]. The results of these studies indicate
that the topology influences the universality class of the model.

1.3.3 The Potts Model
The Ising and voter models are well-suited for analyzing polarized scenarios char-
acterized by clear bipartisanship. However, in more complex situations, adopting
a model that accommodates a broader range of opinions provides a more realistic
representation of the opinion space.

The Potts model (130) generalizes the Ising model to take into account three or
more opinions. In the Potts model, each agent can be in one of σi ∈ {1, q} distinct
independent states, with no inherent ordering or notion of distance between them.
The expression for the Potts Hamiltonian, which gives the system’s total energy,
is:

H = −J
∑
〈i,j〉

δ(σi, σj), (1.7)

where σi is the state of the spin at site i, J > 0 is the interaction strength, and
δ is the Kronecker delta. The global energy is minimized when adjacent spins
are in the same state, thus promoting domain formation where contiguous sites
preferentially align in the same state.

Many results observed in the Ising model context can be easily generalized
(148). For instance, the Potts model also exhibits phase transitions, undergoing
a change in behavior from disordered to ordered states at certain critical tem-
peratures. The nature and universality class of these transitions depend on the
number of states q and the connections pattern. For instance, in two-dimensional
lattices, the model has a second-order (continuous) phase transition for q ≤ 4 and
a first-order (discontinuous transition) for q > 4 (173). Bray provides a review
in phase ordering kinetics, including a study of the coarsening dynamics in the
Potts model after a quench from a high to a low temperature, highlighting the
scaling laws and the universality of the domain growth process. (25).
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This model offers a robust framework to simulate how individuals with di-
verse states or opinions might spontaneously organize into communities sharing
similar attributes or ideologies. In the realm of community detection, having
multiple states facilitates the identification of clusters, especially in real-world
networks, where community ties are not strictly binary but display a wide range
of interactions (132; 58; 101)

The model has also been embedded in random graphs (46; 51) and more
recently on complex signed networks finding that the nature of relationships
(positive or negative) can significantly affect the propagation of opinions. For
instance, antagonistic ties might hinder consensus or lead to the formation of
polarized opinion clusters (103).

Schulze (2005) used the Potts model with temperature to study the formation
of ghettos in cities, modeled as two-dimensional lattices (142). Bordogna et al.
applied the Potts model to model social behavior shedding light on the conditions
under which a social system might reach a consensus or become divided, consid-
ering factors such as the strength of interpersonal influence and the structure of
the social network (23).

Another work studies the effect of quenched disorder caused by the presence
of "zealots" (111; 112), which introduction in the system disrupts the conservation
of magnetization in lattices. In dimensions d ≤ 2, a single zealot can influence the
entire system, inducing a general consensus in alignment with its own stance. In
higher dimensions, while a consensus may not be achieved, the stationary state
in the zealot’s vicinity is biased toward its opinion.

1.3.4 Three-state models
A compelling scenario in social dynamics is the three-party system, encompassing
extremists on both ends of the opinion spectrum and a neutral group in the mid-
dle. The inclusion of an intermediate or neutral state is not merely theoretical
but finds grounding in real-world phenomena. This setup, reflecting a significant
portion of social debates, underscores the relevance of neutral agents in facilitat-
ing or obstructing consensus within diverse groups (162; 177; 52). The Catalan
independence consultation in 2014 and language competition in multilingual soci-
eties are prime examples where three distinct choices or states naturally emerge,
requiring models that can accommodate this nuance (27).

In contrast with the Potts model, where all states are equivalent, models
adapted to this context often interpret neutral agents as mediators in the inter-
action between opposing extremists, effectively serving as a bridge for opinion
exchange. Vazquez et al. (2003) propose a three-party Ising-like model where
extremists are incompatible and do not affect each other, thus the only opinion
changes allowed are those involving neutral agents, which often leads to situations
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with a mixture of extremists (162). One year later they studied a stochastic ki-
netic model in the mean-field approximation, finding that the final configuration
depends strongly on the initial proportion of agents in each state (163). Along
similar lines, Svenkeson et al. (2015) incorporated temperature and find a phase
transition analogous to the one exhibited by the Ising model (157).

1.3.5 - The Blume-Emery-Griffiths model
The Blume-Emery-Griffiths model [(20)], introduced in 1971, incorporates in-
teractions between pairs of spins as well as a single-ion anisotropy term and a
term that models the interaction between spins and a non-magnetic impurity or
a lattice distortion. In its general form is described by the Hamiltonian :

HBEG = −J
∑
〈i,j〉

σiσj −K
∑
〈i,j〉

σ2
i σ

2
j +

∑
i

∆iσ
2
i + C . (1.8)

Although the direct application of the BEG model in sociophysics is less com-
mon compared to the Ising or Potts models, its potential for capturing the nuances
of multi-state social dynamics is significant. The biquadratic interaction term in
the Hamiltonian can be thought of as representing the societal pressure for in-
dividuals to adopt a strong (extremist) stance, rather than remaining neutral.
The single-ion anisotropy term penalizes non-zero spins, making it energetically
favorable for spins to be in the neutral state. In social terms, this might repre-
sent an inherent individual or societal bias towards neutrality or indecision. The
nearest-neighbor exchange contribution, analogous to the Ising model, favors the
alignment of extremist agents only. The contribution from the coupling of two
neutral neighbors is equal to zero, the same as if they hold different opinions.

Yang (2010) applied the BEG model in the context of social networks, showing
that the probability distribution function of opinion time series under Glauber dy-
namics exhibits a Gaussian-like shape (177). The same year Gauvin et al. mapped
the zero-temperature BEG model with kinetic constraints onto the Schelling
model of spatial segregation (140; 67), investigating the role of neutral agents
(interpreted as vacancy density) on the system’s phase diagram. Their findings
reveal that the interfaces between clusters of differing agent types, as shaped by
the dynamics, can lead to segregation distinct from that observed in Schelling’s
original formulation.

1.3.6 - The Blume-Capel model
The Blume-Capel model, developed in the 1960s, is a particular case of the BEG
model which hamiltonian includes only the nearest-neighbor exchange term and
single-ion anisotropy term with a global parameter D:
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HBC = −J
∑
〈i,j〉

σiσj + ∆
∑
i

σ2
i . (1.9)

Hohnish et al. (2005) successfully applied the model to replicate large fluctu-
ations observed in time series obtained from German business-climate data (79).
Fernandez et al. (2016) explored the model on random graphs, Watts-Strogatz
networks, and networks following Newman’s models from a social perspective
(52). They showed that the network topology on the system’s macrostate behav-
ior, in particular low connectivity may hinder global consensus. Naskar (2021)
conducted a study investigating the lifetime of metastable states using Metropo-
lis simulations, applied to both the Ising and Blume-Capel models, which were
extended to include additional discrete states (115).

1.4

A vectorial three-state opinion model

In many real-world social systems, there is a significant proportion of individuals
who hold a neutral or centrist opinion, and their behavior can have a crucial

impact on the overall dynamics of opinion formation.

The model is inspired by magnetic spin-like models and aims to emphasize the
role of the relative degree of conviction between neutral agents and extremists.
It considers three possible states for the agents: two extreme opposite states
and a neutral one. The third opinion is placed symmetrically between the two
polarized ones, and we quantify the probability transition to this central state
using a neutrality parameter denoted by α.

Model description

In our model, agents live on the nodes of an undirected and unweighted graph
of size N , and their opinions are represented by two-dimensional vectors Si that
can take three orientations:

• Si = (1, 0); positive opinion / rightist

• Si = (0, α); neutral opinion / centrist

• Si = (−1, 0); negative opinion / leftist

where α is a dimensionless parameter. We assume that the agents prefer to
agree with their neighbors so as to minimize, in the absence of social agitation or
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temperature T , the following cost function, or Hamiltonian:

H = −J
∑
〈i,j〉

Si · Sj , (1.10)

where J > 0 and the sum runs over all the edges of the graph.

The possible values of the interaction energy between two agents, −JSi · Sj
are shown in Figure 1.3. The quantity J(α2− 1) thus measures the reward of the
presence of connected neutral pairs of nodes, we called it the neutrality parameter.

Although the model considers the tendency to align agents opinions with
those of their neighbors as the main opinion change mechanism, we also consider
the possibility that an agent adopts a state that does not minimize the sum of
opinion products with their neighbors with a certain probability. This probability
is governed by a parameter that we call temperature, by its analogy with physical
systems in contact with a thermal bath T . It is the same parameter used in
the conventional Metropolis dynamics, and accounts for a coarse-graining of all
sources of noise that may lead an agent to take a stand against their neighbors
as, for instance, social agitation. For simplicity, we use dimensionless units for
the energy and temperature such that J = 1.

The order parameters of the model are the Ising-like magnetization m =∑
i〈σi〉/N , namely the difference between the fractions of rightists and leftists,

and the fraction of neutral agents, n0 = 1−
∑
i〈σ2

i 〉/N . Here, 〈. . .〉 denotes either
the theoretical expectation with respect to the Boltzmann distribution, or the
average over the different repetitions of the simulations.

Mapping to the BEG model

An equivalent way to express the model Hamiltonian is to replace the state vectors
with scalar variables taking the values σi ∈ {1, 0,−1}, which gives

H = −J
∑
〈i,j〉

[
σiσj + α2(σ2

i − 1)(σ2
j − 1)

]
. (1.11)

In this form, the model can be seen as a special case of the BEG model (20),
which In fact, we recover Eq.(1.11) by setting

K = Jα2, ∆i = kiK, C = −NzK / 2, (1.12)

where ki is degree of node i, i.e. the number of nodes connected to it, and
z =

∑
i ki/N is the average degree of the graph. Note that the standard BEG

model has a unique value ∆i = ∆ for all i. Therefore, for graphs with constant
degree ki = z, we can obtain the phase diagram of our model by projecting that of
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Figure 1.3: Contribution of a pair of interacting agents to the energy of the system.

the BEG model, which is defined in the three-dimensional parameter space (K/J ,
∆/J , T/J), onto the two-dimensional semiplane (α, T/J) defined by Eq.(1.12).

In contrast with the Blume-Capel (BC) model, whose Hamiltonian rewards
the presence of neutrals within the system, the model introduced here specifically
rewards the alignment of opinions among neutral neighbors. This distinction
underlines that, in the context of our model, a neutral opinion is not simply in-
dicative of indecision; rather, it represents a deliberate choice within the spectrum
of possible opinions, which is spread among agents similarly to extremist views.

1.5

Preliminar analysis and open questions

For α = 0, the model can be thought of as an Ising model with vacancies.
Hence, in the thermodynamic limit it will generically display a continuous

phase transition in the Ising universality class at a critical temperature T 0
c >

0, between a low-temperature polarized (ferromagnetic) phase, characterized by
m 6= 0, and a high-temperature disordered (paramagnetic) phase, in whichm = 0.

We can anticipate some general features of the equilibrium phase diagram in
the plane (α, T ). For α < 1, the ground state is ferromagnetic, namely the agents
achieve a global consensus either in the positive or in the negative state (m =
±1, n0 = 0). For α > 1, all agents assume the neutral opinion (m = 0, n0 = 1) in
the ground state. Hence, moving along the zero-temperature axis we encounter
a discontinuous phase transition at α = 1.

We thus generally expect a phase boundary in the plane (α, T ) connecting
the two points (α = 0, T = T 0

c ) and (α = 1, T = 0). Since the transition is
discontinuous at one end of the boundary and continuous at the other, we also
expect a tricritical point (αtc, Ttc) at some point along the boundary, separating
a line of continuous transitions at T = Tc(α) for 0 ≤ α ≤ αtc from a line of
discontinuous transitions at T = Td(α) for αtc < α ≤ 1. Such a phase boundary
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was indeed observed for a different projection of the BEG model, the Blume-
Capel model, on various types of random graphs, including some cases in which
the phase boundary is reentrant (99). Exceptions to this scenario are represented
by 1D system, in which T 0

c = 0, since no long-range order can survive at finite
temperature, and by graphs with a degree distribution falling more slowly than
k−3 for large k, in which the system is known to remain ferromagnetic at all
temperatures for α = 0 (99) (we expect this to remain true for all α < 1.)

When embedded in different networks, we expect changes in the energy land-
scape, with local minima appearing and/or disappearing. The population’s
macrostate, determined by the system’s order parameters, may transition from
consensus to polarization or vice versa as a result of topological variations, even
while maintaining the same temperature and neutrality parameter values. Our
goal is to determine which network features are most influential. Starting from the
baseline of a fully connected network, which can be solved analytically, we will ex-
plore more complex topologies, varying average degrees and modular structures.
We will assess global features of both synthetic and real networks and identify
which synthetic networks yield outcomes most similar to those observed in real
networks.

Changing one’s opinion is not the only way to align with neighboring agents;
people can also decide to change their connections by breaking old relationships
and forming new ones. Allowing the coevolution of opinion dynamics and network
structure enables us to understand the interplay between these two mechanisms.
When studying in-person interactions, link formation and breaking can be con-
nected to movement patterns in a physical space. Moreover, since these processes
generally occur at different time scales, it is interesting to examine how the ad-
justment of these time scales affects not only the system’s outcome but also the
time it takes to achieve it.

Finally, we can expand the opinion space in a topology-oriented fashion by
maintaining the same model and constructing networks that represent people’s
belief systems. This approach not only provides interpretability to the structure
of the studied topology beyond the existence of mere community structures but
also allows for the study of cognitive dissonance phenomena and its interplay with
social consensus formation. By focusing on the structure of internal connections
among beliefs, we can analyze its potential to reinforce or alter outcomes observed
when considering a single belief per agent and interpret how it may impact on
both individual and population-wide behavior.
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1.6

Organization of this thesis

The thesis is divided into two main parts:

• A first part including:

– Chapter 2, providing a detailed analysis of the mean-field approxima-
tion (MFA), exploring the equilibrium phase diagram of the model
through different analytical approaches and Monte Carlo (MC) simu-
lations at zero and finite temperatures.

– Chapter 3, discussing the model embedding Erdös-Rényi graphs.
Chapters 2 and 3 present the results derived in the article [(54)]

– Chapter 4, exploring the model on modular networks. We use both
synthetic and real networks and examine their community structure
and their interplay with the model. This Chapter exposes the findings
of the article [(55)]

• A second part, presenting a branch of the research focused on the study of
spatiotemporal and multilayer topologies:

– In Chapter 5, addressing the implications of considering movement in
a two-dimensional plane and coevolving opinion-structure dynamics.
We combine an active matter framework with the three-state opin-
ion model to incorporate new behaviors to the study. This chapter
corresponds to the results published in [(53)].

– Chapter 6, analyzing the role of belief systems in consensus formation.
We apply the description of beliefs as networks offers a more nuanced
representation of agents and has been used in many recent studies in
psychology.

Finally, Chapter 7 closes the thesis and discusses possible future directions.
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CHAPTER 2
Fully-Connected Graph

In this chapter, we provide an analysis of the equilibrium and dynamic behavior
of the model described in Section 1.4. in the fully connected graph. We analyze

the equilibrium order parameters’ behavior as a function of both the neutrality
parameter α and the temperature T . We discuss the dynamic basins of attraction
at T = 0 for different values of α and analyze the distribution of the magnetization
near the tricritical point.

2.1

Introduction
The mean-field approximation (MFA) provides an initial understanding of the
equilibrium behavior of the model and is exact for the fully connected graph as
N → ∞. There exist different ways to carry out the approximation, yielding
identical results. This section, along with Chapter 6, adopts the Weiss molecular
field theory approach (71) (the Bragg-Williams derivation can be found in (54)),
focusing on a single agent a, with state s̄a and ki ≡ z neighbors in a network
with a uniform degree distribution P (k) = z. One foundational assumption of
mean-field theory is to argue that the chosen agent’s is representative, hence
its expected value must be identical to the magnetization, thus establishing a
self-consistency condition m = 〈sa〉.

We define the monoparticular hamiltonian s̄a:

h = H

z
= − J

z2

N∑
i6=j

s̄is̄j = −J(1
z

N∑
i

s̄i) · (
1
z

N∑
j

s̄j), (2.1)
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hs̄a = −s̄a · J(1
z

N∑
j

sjm ,
1
z

N∑
j

sjn0
) (2.2)

where the sum extends over agent a neighbors. If we decompose the neighbors
spins into their mean value and fluctuations, sj = m+ (sj −m), and then we set
the fluctuations to zero, (sj −m) = (sj − 〈sj〉)→ 0, the hamiltonian reads:

hs̄a = − J
N
s̄a(m,αn0) = −s̄am̄. (2.3)

The mean-field analysis allows for the study of the system’s equilibrium proper-
ties. We explore zero-temperature dynamics by analyzing the order-parameter
fluxes within in the Metropolis dynamics, while finite-temperature behavior is
investigated through Monte Carlo simulations employing both Metropolis and
Glauber algorithms.

2.2

The Mean-field solution
The computation of the order parameters’ expected values via the canonical en-
semble yields the following system of self-consistent equations (SCE):

m = 2eβzα2(n−1) sinh(βzm)
1 + 2eβzα2(n−1) cosh(βzm)

, (2.4)

n = 2eβzα2(n−1) cosh(βzm)
1 + 2eβzα2(n−1) cosh(βzm)

, (2.5)

where n = 1 − n0 and J = 1. By expanding them for small m, we find a line of
continuous transitions between the disordered phase and the polarized phase, at
an inverse critical temperature βc(α) given by

α2 = 1
βc(α)z − 1 ln [2(βc(α)z − 1)] . (2.6)

In particular, we have βc(0)−1 = 2z/3, which is below the critical temperature
Tc = z of the Ising model in the mean-field approximation. This is because,
even if at α = 0 the neutral state does not contribute to the energy, it brings
an additional entropy that destabilizes the polarized phase. The line of critical
points, shown in Fig. 2.1, ends at a tricritical point (αtc, βtc) determined by the
condition

ln[2(βtcz − 1)] = 3− βtcz
2 (2.7)
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Figure 2.1: Mean-field phase diagram. The line of continuous transitions T = βc(α)−1

for α < αtc is given by Eq.(2.6). For α > αtc, the points are obtained numerically as
explained in the text, the lines being only a guide to the eye.
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By solving this numerically we obtain β−1
tc = 0.532573 , and substituting this

value into Eq.(2.6) gives αtc = 0.800354.

For α > αtc, the phase diagram displays a line of discontinuous transitions at
inverse temperature βd(α), which we locate by finding numerically the values ofm,
n, β that satisfy simultaneously Eqs.(2.4) and (2.5), together with the condition of
equality between the free energies of the ferromagnetic and paramagnetic phases.
The resulting phase boundary is shown in Fig. 2.1. Also shown in the figure
Figure 2.1 is the limit of metastability of the ferromagnetic phase, namely the
value of T above which the SCEs no longer admit a solution with m 6= 0.

The equilibrium values 〈m〉 and 〈n0〉 = 1 − 〈n〉, obtained by solving numer-
ically Eqs.(2.4) and (2.5), are shown in Fig. 2.2 as a function of temperature.
For α < αtc, the magnetization vanishes continuously at the critical tempera-
ture and is described by the usual mean-field critical and tricritical exponents as
T → Tc(α)−, namely 〈m〉 ∼ (Tc(α)−T )1/2 for α < αtc and 〈m〉 ∼ (Ttc−T )1/4 for
α = αtc. The fraction of neutral agents 〈n0〉 increases with T up to the critical
point Tc(α), then it decreases monotonically towards 〈n0〉 = 1/3 in the T → ∞
limit, in which the three states become equiprobable. We note that at T = Tc(α)
we have 〈n0〉 = 1− Tc(α).

For αtc < α < 1, 〈m〉 decreases monotonically with T and jumps to zero at
T = Td(α), while 〈n0〉 has a strongly non-monotonic temperature dependence:
starting from 〈n0〉 = 0 at T = 0, it increases slowly with T , then it jumps to
a large value at the discontinuous transition, before decreasing monotonically
towards 1/3.

Finally, for α ≥ 1, we have 〈m〉 = 0 at all temperatures, and 〈n0〉 decreases
monotonically with T , starting from 〈n0〉 = 1 at T = 0, since in the ground state
all agents are in the neutral state.

From a social point of view, we see that agents agree on one of the polarized
opinions when coupling dominates over temperature, and above the discontinuous
transition they have a neutral preference at intermediate levels of upheaval.

The qualitative features of the phase diagram and of the behavior of 〈m〉 and
〈n0〉 described above will hold in a large class of graphs. In particular, for d-
dimensional regular lattices we expect the same qualitative phase diagram when
d ≥ 2 (no finite-temperature phase transition can exist for d = 1), with mean-field
critical exponents for d > 4 and non-mean-field exponents of the Ising universality
class for d = 2, 3.
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Figure 2.2: Mean-field results for the equilibrium values of the magnetization (a) and
the fraction of neutral sites (b), as a function of the temperature and for different values
of α. The thick red line corresponds to α = αtc, separating the continuous transition
from the discontinuous transition. In b) the thick green curve corresponds to α = 1.2,
and the other curves are as in a).
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2.3

Zero-temperature dynamics
Next, we discuss the stochastic dynamics of the model on the FC graph, in
which each agent interacts with all other agents. In this case, in order for the
Hamiltonian to be extensive (i.e. proportional toN), we must replace in Eq.(1.10)
the coupling constant J by J/N . Since the degree is z = N − 1, for large N we
have zJ/N = J , which is equivalent to setting z = 1 in the mean-field solution.
The Hamiltonian can then be written, up to terms of order 1/N and setting again
J = 1, as

H = −N2 (m2 + α2n2
0) . (2.8)

The dynamics can then be represented as the evolution of a point (m,n0) in-
side the triangle of vertices (1, 0), (−1, 0), (0, 1) shown in Fig. 2.3. We will refer
to this as the macrostate of the system, to distinguish it from the microscopic
configuration of the N agents.

If we sample the initial configuration of the N agents independently and uni-
formly at random among the three states, the distribution of the initial macrostate
is

p(m,n0) = 3−N N !
(Nn+)! (Nn−)!(Nn0)! , (2.9)

where n± = (1 − n0 ± m)/2 is the fraction of agents in the positive and nega-
tive state, respectively. For large N , one has p(m,n0) ∼ exp[Nf(m,n0)], where
f(m,n0) is a large-deviation function that has a maximum at m = 0, n0 = 1/3,
which corresponds to equal fractions of the three opinions and is shown by the
red point in Fig. 2.3. The probability of any macrostate different than this point
decreases exponentially with N .

It is nevertheless interesting to analyze the fate of the system prepared in an
arbitrary macrostate (m,n0), even if exponentially rare, as it might be relevant
from a social viewpoint. At zero temperature, with both the Glauber and the
Metropolis dynamics the system can only evolve from any given configuration by
moves that do not increase H. In the following we will focus on the Metropolis
dynamics, in which an elementary move consists in choosing an agent at random
and proposing to change its state with probability 1/2 to either of the two states
different from the current one, and accepting the proposal if the energy change
∆H is negative or zero, in which case a new macrostate (m′, n′0) = (m+∆m,n0 +
∆n0) is reached.

Since there are two possible proposals starting from each of the three opinion
states, there are six possible moves, except at the edges of the triangle where
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2.3. Zero-temperature dynamics

some transitions are forbidden, and at the vertices where they are all forbidden.
The six moves are listed in Table 2.1 together with their proposal probability
wr (r = 1, . . . , 6), the displacement vector (∆mr,∆nr0) multiplied by N , and the
energy change ∆Hr (up to terms of order 1/N) upon accepting the move r. For
example, move r = 1 consists in picking at random an agent i that is currently in
the state σi = −1 and proposing to change its state to σi = +1. The probability
to propose this move is n−/2 (since the fraction of agents with σi = −1 is n− and
we can choose to go to σi = 1 or 0 with probability 1/2). The total magnetization
changes by +2, the number of neutral sites remains unchanged, and the energy
changes by −[(M + 2)2 −M2]/(2N) = −(2m+ 2/N).

All macrostates are unstable with respect to downhill moves (i.e. moves with
∆Hr < 0) except the vertices of the triangle, which are absorbing states. The
lines m = ±α2n0 are the separatrices of the basins of attractions of the absorbing
states, as they discriminate between different sets of allowed moves. In fact, for
m > 0 (the case m < 0 follows by symmetry), the only downhill moves are moves
1, 3, and 5 below the separatrix, and moves 1, 3, and 4 above it. This is illustrated
in Fig. 2.3.

A full analysis of the master equation associated to the stochastic dynam-
ics would allow to determine the probability to end up in each of the absorbing
states for a given initial macrostate, but is beyond the scope of the paper. In
Fig. 2.3 we display instead the flux lines corresponding to the average displace-
ment, (〈∆m〉, 〈∆n0〉), given by

〈∆m〉 =
6∑
r=1

wr∆mrθ(−∆Hr) , (2.10)

and similarly for 〈∆n0〉, where θ is a Heaviside function ensuring that only down-
will moves contribute. One can observe that below the separatrices, the average
flux flows to the polarized m = ±1 states, and above the separatices it flows to
n0 = 1.

In detail, if α < 1, all the allowed moves from a point below the separatrix
(moves 1, 3, and 5 for m > 0) displace the point further away from it. Thus all
the points below the separatix belong to the basin of attraction of the m = 1
absorbing state and have zero probability to flow to n0 = 1. In contrast, a
point above the separatrix can move away from the separatrix with probability
n+/2 (move 4) or move towards it with total probability n− (the sum of the
probabilities of moves 1 and 3). If n0 < 1− 3m, the former probability is smaller
than the latter, thus the preferred direction is towards the separatrix. Therefore,
a starting point in the triangle defined by m/α2 < n0 < 1 − 3m,m > 0 will
have a non-zero probability to end up in the “wrong” absorbing state m = 1.
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Figure 2.3: Evolution of the Metropolis dynamics on the FC graph. The red lines are
the separatrices m = ±n0α

2 of the three basins of attraction (shown here for α = 0.8).
The red point shows the equiprobable macrostate m = 0, n0 = 1/3. The solid black
arrows represent the allowed moves (∆H ≤ 0) from a macrostate below (green point)
and above (blue point) the separatrix for m > 0. The dashed arrows represent the
forbidden moves (∆H > 0). The light grey lines show the average direction of the
evolution at each point.

However, since there are many more paths towards n0 = 1 than towards m = 1,
this probability will in fact decrease exponentially with N .

We verified the above predictions by performing repeated MC simulations
with the Metropolis dynamics at T = 0 and estimating, for every possible initial
macrostate, the probability to reach each of the three aborbing states. In Fig. 2.4
(left column) we display our results for α = 0.8. Indeed, points below the sepa-
ratrices end up in the m = ±1 absorbing states, while above the separatrices we
observe regions of “mixed fate” points, which we define as those with a probabil-
ity larger than 1.5% to end up in a state different than their “natural” absorbing
state (for example, points displayed in green can end up in m = 1 instead of
n0 = 1). The width of the mixed fate regions decreases with N , approximately as
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2.4. Finite-temperature dynamics

r Transition wr N(∆mr,∆nr0) ∆Hr

1 − −→ + n−/2 (2, 0) −2m
2 + −→ − n+/2 (−2, 0) 2m
3 − −→ 0 n−/2 (1, 1) −m− α2n0

4 + −→ 0 n+/2 (−1, 1) m− α2n0

5 0 −→ + n0/2 (1,−1) −m+ α2n0

6 0 −→ − n0/2 (−1,−1) m+ α2n0

Table 2.1: Allowed transitions for the Metropolis algorithm. The second column shows
the transition between two spin values. wr is the probability of proposing the transition,
N∆mr, N∆nr

0, ∆Hr are the changes in total magnetization, number of neutral spins,
and Hamiltonian upon executing the transition r.

1/N as implied by the previous argument. We also verified that the probability
of a point above the separatrix to end up in m = 1 decreases exponentially with
its distance from the separatrix (not shown).

An analogous analysis for the Glauber dynamics shows that, since there are
fewer allowed downhill moves, the probability to cross the separatrix is even
smaller and thus the mixed-fate region is thinner, as confirmed numerically in
Fig. 2.4 (right column).

It is also interesting to observe that a deterministic downhill dynamics that
follows the direction opposite to the gradient of H, −∇H = N(m,α2n0), also
has the same separatrices.

From a social perspective, the above results show that for α < 1, when we start
from equiprobable opinions (m = 0, n0 = 1/3), the population evolves towards
neutrality (n0 = 1), despite the optimal configurations are the polarized states.
As we show below, social agitation is necessary in order to overcome the energy
barrier and reach optimality.

2.4

Finite-temperature dynamics
We performed MC simulations at T > 0 with the Glauber dynamics withN = 500
agents, again starting from a random configuration. When α < αtc or α > 1, the
system is able to equilibrate at all temperatures T > 0.1 in less than 103 Monte
Carlo steps (MCS), where 1 MCS = N elementary moves. Our MC estimates for
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Figure 2.4: Basins of attraction at T = 0 and α = 0.8 on the FC graph. (a) N =
50, Metropolis dynamics; (b) N = 50, Glauber dynamics; (c) N = 200, Metropolis
dynamics; (d) N = 100, Glauber dynamics. The lines are separatrices. Symbols at each
point indicate the fate of the system starting from that point. Results are obtained with
1000 MC runs for each point above the separatrix, and 40 for each point below it.
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2.5. Conclusions

〈m〉 and 〈n0〉 agree with the exact mean-field results displayed in Fig. 2.2, with
negligible finite-size effects.

For αtc < α < 1, at temperatures below the phase boundary (see Fig. 2.1),
we expect metastability effects due to the discontinuous transition: starting from
a random configuration, the system gets trapped in a region of the configuration
space with m ' 0 for a time that diverges exponentially with N and with 1/T .

This is confirmed by inspecting the probability distribution of the magnetiza-
tion obtained from many MC runs, shown in Fig. 2.5. The right column shows
results for α = 0.9, which is well into the discontinuous region and for which the
transition temperature is Td = 0.47. We see that for T = 0.4, after 103 MCS the
distribution is bimodal, with one peak at the mean-field equilibrium magnetiza-
tion 〈m〉 = 0.83, and the other near m = 0, corresponding to runs stuck in the
metastable state. After 106 MCS, the system is able to overcome the free energy
barrier and the peak at m = 0 disappears. In contrast, for T ≤ 0.3 even after 106

MCS the distribution remains peaked around m = 0, while the equilibrium value
is close to m = 1. This shows that almost all agents remain in the neutral state
(similarly to the T = 0 case analyzed in the subsection 2.3), and social agitation
is not enough to overcome the free energy barrier towards polarized consensus.

This contrasts with the results for α = 0.75, shown in the left column of
Fig. 2.5, at which the continuous transition takes place at Tc = 0.56. We now
see that for T ≥ 0.3, already after 103 MCS the distribution is peaked around
the mean-field equilibrium value (〈m〉 = 0.95, 0.85, 0.63 for T = 0.3, 0.4, 0.5 re-
spectively), which shows that in this case thermal fluctuations are able to bring
the system towards consensus. On the other hand, for T = 0.1 there is only
a small peak near the equilibrium value 〈m〉 ' 1, and a large peak at m ' 0,
which hardly changes from 103 to 106 MCS. At such low temperature, the system
remains in a metastable configuration because the probability to flip a polarized
agent surrounded by agents of opposite sign is exponentially small.

2.5

Conclusions

At high temperatures, the agents do not feel the influence of their peers and evolve
quickly towards a disordered state, that can be interpreted as social unrest. At
low temperature, for α > 1 the system reaches a configuration dominated by
neutral agents on all networks, while for α < 1 we observe different behaviors
depending on the network type, and on the value of α, as we summarize below.
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Figure 2.5: Probability distribution of the magnetization for two values of α below
(left) and above (right) the tricritical point for different temperatures obtained with
Glauber MC simulations with N = 500 agents and 104 repetitions. The first row show
results for a computational time of 103 MCS and the second row for 106 MCS.
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2.5. Conclusions

The equilibrium phase diagram of the model exhibits a phase boundary for
α < 1 between a low-temperature phase, in which one of the polarized opinions
prevail, and the high temperature disordered phase. At temperatures just above
the transition, we observe a majority of neutral agents and equal-sized minorities
of extremists of both signs. Upon crossing the phase boundary by decreasing the
temperature, the fraction of polarized agents increases continuously from zero
when α is below the tricritical value αtc, while it jumps discontinuously to a
non-zero value when αtc < α < 1. We also found that in the absence of social
agitation, starting from a random configuration, the population is exponentially
more likely to get stuck in neutral consensus than to reach the optimal polarized
consensus. Moderate social agitation allows the system to reach polarized con-
sensus for α < αtc, while for α < αtc < 1 the barriers to achieve equilibrium are
much higher due to metastability.

It is interesting to compare our results with those of other three-state models.
Vazquez and Redner (164) studied a kinetic model in which pairs of agents inter-
act stochastically. Their model exhibits the same three absorbing states, but the
largest basin of attraction is that of an absorbing boundary on the bottom line
of the triangle (see Fig.2.3), representing frozen mixtures of oppositely polarized
agents. A large bipolarized region was also found by Balenzuela et al.(10), who
proposed a kinetic model in which agents hold a continuous spectrum of convic-
tions, which is partitioned in three states according to some thresholds. The pair
interaction is such that oppositely polarized agents tends to increase their polar-
ization, leading to a phase transition from a neutral to either a bipolarized or a
polarized population. Svenkeson and Swami (158) considered a pair dynamics,
in which polarized agents can become neutral and viceversa, with a temperature
coupled to the instantaneous magnetization. They find a transition of the Ising
type without a tricritical point.
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CHAPTER 3
Erdös-Rényi Networks

In this Chapter we embed the model on Erdös-Rényi (ER) random graphs with
different mean degrees. We apply the annealed mean-field approximations and

use Monte-Carlo simulations to examine the changes in critical temperature in
comparison with the fully connected graph, and we study the metastable states
at zero temperature.

3.1

Introduction
Although the Erdös-Rényi (ER) random graph ensemble is not representative of
real-world structures, it is frequently used as a baseline model to study complex
networks (120), providing insightful results into how phenomena such as consensus
or polarization may develop in such topologically simplified settings.

Sood and Redner applied the voter model to ER graphs and highlighted the
role of fluctuations in reaching consensus, demonstrating that the consensus time
scales logarithmically with system size in dense graphs [(150)].

Xie et al. explored the effects of zealotry in an Ising-like system on ER graphs,
comparing the results with those obtained for the complete graph. They found
that a larger number of "zealots" is necessary to cause a drop in the consensus
time is longer for sparser networks. However, once this threshold is reached, the
average time to achieve consensus decreases with the average degree [(175)].

Benjamini et al. study the basins of attraction of the majority voter model
(Section 1.3) in ER graphs with random initial conditions and found that the
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state with the initial majority gets global consensus when the average degree is
sufficiently large [(16)].

For random graphs, the mean-field approximation is not exact and various
other theoretical approaches have been developed to study the equilibrium prop-
erties of spin models. For the Ising model, it was found, using the replica method,
that if the degree distribution falls off as k−γ for large k with γ > 5 (which in-
cludes the case of random-regular and ER graphs), a continuous transition with
mean-field exponents takes place. On the other hand, for γ ≤ 5 different scenarios
depending on γ are observed [(99)]. In the Blume-Capel model, a tricritical point
was found using an annealed mean-field approximation (see Section 3.2) [(39)].

3.2

Annealed mean-field approximation
In the case of non-uniform degrees ki, in principle one could solve numerically the
2N local SCEs. Alternatively, one can make the additional approximation con-
sisting in treating the graph in an “annealed’ fashion, by replacing the adjacency
matrix εi,j (which is one if i, j are connected and zero otherwise) by kikj/zN ,
where z = 〈ki〉 (18; 43). If we introduce the weighted order parameters

mw = 1
zN

∑
j

kjmj , nw = 1
zN

∑
j

kjnj , (3.1)

we have ∑
j∈V (i)

mj =
∑
j 6=i

εi,jmj = 1
zN

∑
j 6=i

kikjmj = kimw, (3.2)

and similarly
∑
j∈V (i) nj = kinw. Multiplying the local SCEs by ki/(zN) and

summing over i we thus obtain two SCEs for the weighted order parameters

mw = 1
zN

∑
i

ki
2eβα2ki(nw−1) sinh(βkimw)

1 + 2eβα2ki(nw−1) cosh(βkimw)
, (3.3)

nw = 1
zN

∑
i

ki
2eβα2ki(nw−1) cosh(βkimw)

1 + 2eβα2ki(nw−1) cosh(βkimw)
(3.4)

For large N we can replace the sum over i with a sum over all possible degrees,

mw = 1
z

∑
k

kP (k) 2eβα2k(nw−1) sinh(βkmw)
1 + 2eβα2k(nw−1) cosh(βkmw)

, (3.5)

nw = 1
z

∑
k

kP (k) 2eβα2k(nw−1) cosh(βkmw)
1 + 2eβα2k(nw−1) cosh(βkmw)

. (3.6)
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Finally, after solving the above equations we can obtain the average order
parameters as

m = 1
N

∑
i

mi =
∑
k

P (k) 2eβα2k(nw−1) sinh(βkmw)
1 + 2eβα2k(nw−1) cosh(βkmw)

, (3.7)

n = 1
N

∑
i

ni =
∑
k

P (k) 2eβα2k(nw−1) cosh(βkmw)
1 + 2eβα2k(nw−1) cosh(βkmw)

., (3.8)

3.3

Phase transition
In this case, one also expects a tricritical point separating a line of continuous
transitions for low α from a line of discontinuous transitions at large α, as in
the Blume-Capel model on ER graphs [(100)]. We determined the location of
the continuous transition by solving numerically the SCEs using a Broyden first
Jacobian approximation from the optimize root of SciPy. Fig. 3.1 shows the
comparison between the numerical solution and MC simulations for α = 0 and
0.4. For low connectivity (panel (a)), we find a significant discrepancy between the
annealed approximation and the simulations, while for high connectivity (panel
(b)) we obtain a better agreement.

Fig. 3.2 shows that the critical temperature, normalized by z, converges
asymptotically for large z to that of the FC graph. The critical temperature
decreases with α for any 〈k〉, as in the mean-field solution.

The presumed tricritical point and the discontinuous transition can, in prin-
ciple, be located from a Taylor expansion in m of the annealed SCEs. We have
not attempted this, and note that it is a more complicated task than in the
Blume-Capel model (100), in which the SCE m decouples from n.

3.4

Zero-temperature dynamics
We performed MC simulations with the Metropolis and Glauber dynamics at
T = 0. starting from a random configuration as in the FC graph. We consider
graphs with only one connected component, created by generating ER graphs
with the Python networkx library and then randomly adding and/or subtracting
agents and links until the desired N and z = 〈k〉 are reached, preserving the
degree distribution of the original graph.
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Figure 3.1: Magnetization vs. temperature on ER graphs of average degree z = 4 (a)
and z = 16 (b) for α = 0 and α = 0.4. The lines corresponds to the numerical solution
in the annealed approximation, while the bars are the results of MC simulations with
104 MCS, averaged on 100 realizations of different ER graphs with N = 1000 agents.

50



3.4. Zero-temperature dynamics

Figure 3.2: Critical temperature vs. 1/z for different values of α, calculated by solving
numerically the system of equations (3.7), (3.8). Mean-field results are represented by
bigger points at z →∞.
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Figure 3.3: Probability distribution function of the residual energy ε, for the steady
state reached through Glauber dynamics on a ER graph with N = 3000 and z = 〈k〉 =
2, 3, 4 for (a) α = 0, (b) α = 0.5, and (c) α = 1. (d) Comparison of the probability
distribution function for 〈k〉 = 3 and different values of N . Data are obtained from 105

different random initial conditions on a single realization of the network for N = 500
and 2 · 104 different random initial conditions for N = 1000, 3000.
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Figure 3.4: Example of subgraphs with a stuck spin configuration, despite not being
compatible with the ground state.

We perform many runs for each graph, letting the system relax until it reaches
a steady state in which the energy no longer changes. In this way we collect the
probability distribution P (ε) of the residual energy, defined as the normalized
difference between the energy of the steady state reached in a given run and the
ground-state energy of the graph, ε = (Esteady − E0)/Nz. Fig. 3.3 shows the
results obtained with the Glauber dynamics for z ≤ 4 and different values of
α. For z = 2, in all cases P (ε) has a single peak at ε > 0, indicating that the
system never reaches the ground state as it gets stuck in a manifold of excited
isoenergetic configurations, the energy of which changes from run to run. The
same behavior persists for α > 1 (see Appendix E for N = 500).

A similar behavior has been observed before for the Ising model (9), and Häg-
gström (123) showed rigorously that it stems from the existence of an extensive
number of subgraphs in which some nodes are frozen (i.e. they cannot change
state without increasing the energy) in an excited configuration. In addition,
some nodes are blinkers, namely they can change state forever without changing
the energy, thus the system gets trapped in a manifold of configurations at con-
stant energy above the ground state. As an illustration, the two central nodes of
Fig. 3.4-a) are frozen, while the middle node in Fig. 3.4-b) is a blinker.

For z = 3, there are fewer dynamical traps, as the number of frozen nodes
and blinkers decreases upon increasing z. As shown in Fig.3.3, in this case upon
increasing α the distribution is first bimodal with both peaks at ε > 0 for α ≤ 0.75
(the ground state is never reached), then the peak closer to ε = 0 disappears for
0.85 ≤ α ≤ 0.95, and finally it becomes unimodal with a finite weigth at ε = 0
for α > 1 (see Appendix E). Note that these dynamical traps are not a finite-size
effect: as shown in Fig. 3.3d) for z = 3 and α = 0, the peak near ε = 0 decreases
with the system size, and the one at larger ε grows.

For z = 4, we observe a large probability P (0) to reach the ground state for
all values of α. For α < 1 there is still a peak at ε > 0, which is largest for
0.85 ≤ α ≤ 0.95, but significantly smaller than that for z = 3. It is an interesing
question whether the increase of the trapping probability in a range before α = 1
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is related to the possible discontinuous nature of the phase transition between
the polarized and disordered phases.

Finally, we observed that the Metropolis dynamics gives very similar results
to the ones just discussed. A comparison between the two dynamics for several
values of α, z and N is shown [(54)].

These results show that the relaxational T = 0 dynamics on ER graphs, is
quite different from the FC case in which, as shown in Chapter 2, for large N
the system prepared in a random configuration always reaches the ground state
if α > 1 (namely the absorbing state n0 = 1), and never reaches it if α < 1. In
ER graphs, instead, except for small values of z, the system is able to reach the
ground state for all α.

3.5

Conclusions
ER random graphs, which are somewhat closer to a real population where agents
have a finite number of contacts, exhibit a finite-temperature transition to a
polarized phase that mirrors the behavior seen in the FC graph. This indicates
that despite the randomness of connections, some properties presented in the
complete graph remain preserved.

However, differences dependent on the connectivity pattern arise in the dy-
namical process. For graphs with a high average degree, our simulations show
that the system achieves the polarized instead of the neutral state consensus
when starting from a random configuration at low temperatures. For graphs
with lower connectivity, the system gets stuck in dynamical traps due to the pres-
ence of frozen nodes, locked in states that do not change, impeding the system’s
progression to the ground state. We find that the residual energy distribution
shows different characteristics based on the average degree and the value of the
neutrality parameter α. These findings have significant implications for under-
standing the dynamics of opinion formation and consensus in social networks,
where connectivity can vary widely. The insights gained from the ER graphs can
help designing strategies to mitigate the effects of structural traps and enhance
consensus formation.

In summary, the results on ER random graphs extend the understanding of the
model, shedding light on how network topology influences collective phenomena.
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CHAPTER 4
Modular Networks

In Chapter 4, we apply the model to networks characterized by a well-defined
community structure. We start with a synthetic benchmark choosing one and

two levels of community structure and conclude with an embedding in Twitter
networks (55). We find that the opinion groups identified across different values
of the neutrality parameter, α, help reveal the community structure within these
networks at different resolutions.

4.1

Introduction
Many complex networks, and social networks in particular, have been shown to
have a clear community (modular) structure (59). Community detection has
been intensely studied, and many different methods have been suggested (35).
At the same time, benchmarks for testing the efficiency of these methods have
also appeared in the literature. For instance, in a system of coupled oscillators,
modular structures corresponding to well-defined communities of nodes, ordered
in a hierarchical way, emerge at different time scales during the synchronization
process (6).

Our purpose now is to assess the role of community structure in the opinion
dynamics of our model. In the limit of low temperatures, the homophilic term
that drives the agents to agree with their neighbors is expected to dominate
over the social agitation. Therefore, we put the focus on the achievement of a
polarized or a neutral consensus, or on the contrary the arising of bipartidism or
tripartidism at low levels of temperature. We explore the outcomes for different
levels of the neutrality parameter α.
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Models based on magnetic-like interactions, as the Ising or the Potts model,
have been used previously for community detection (149; 28; 101; 180). In our
case, it turns out that the correlations of the final opinion state of the nodes
are sensitive to the value of α. Actually, for small α, only the smaller clusters
arrive to local consensus; however, larger values of α enable consensus in a larger
scale. We can take advantage of this feature and reveal the different levels of
structure by tuning the parameter α, like other multiresolution methods (7) have
done before. In this way, we can study at the same time the opinion dynamics
on a particular network and learn about its community structure.

In practice, we define a matrix Ĉij , where each element represents the
number of times nodes i and j conclude a Metropolis Monte Carlo (MMC)
simulation with identical opinions. We run a large number of simulations
Nreps and normalize this correlation value as Cij = Ĉij/Nreps. Given that our
Hamiltonian, as specified in equation (1.10), only contains positive interactions
among nodes (i.e., it lacks a repulsive term which could lead to divergent opinions
among neighboring nodes at lower temperatures), we expect a correlation value
of Cij = 0 for node pairs belonging to separated, well-defined communities.
In order to compare graphs with different average connectivity 〈k〉 = z in a
meaningful way, we always consider the rescaled reduced temperatures T ∗ = T/z.
For a description of the algorithms we use to find the correlation between nodes
and to identify the community structure of the networks see Appendix A .

4.2

Girvan-Newman
One of the most commonly used benchmarks for community detection was the
one proposed by Newman and Girvan (119). There, the authors construct a
set of networks with different community structures, as explained in detail in
Section 1.2 . Each network has 128 nodes divided into four communities of 32
nodes each. In the original model, links are established independently at random
between nodes with probability pin if both nodes belong to the same community
and pout otherwise, with z = 16. Here, we work with a slightly different version
in which we fix the number of links a node has to nodes in the same community,
kin, and to other communities, kout = 16 − kin. In this way, we can tune the
relevance of the community structure, which is evaluated in terms of modularity
(see Figure 4.1)).

In Figure 4.2 (a), we can see the average of the absolute value of the mag-
netization as a function of the number of intra-community links at a very low
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a) b)

c) d)

Figure 4.1: (a) kout = 1, all links distributed at random; (b) kout = 6, communities
are still not well-defined; (c) kout = 9, it is possible to distinguish communities. (d)
kout = 14, community structure is clear. Colors are assigned to different communities
to distinguish them and do not represent opinion states in this case.
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temperature for different values of α. The green line corresponds to the modu-
larity of the best partition. There is a clear change in behavior around kin = 8
that can be understood by examining the probability of acceptance for a given
flip proposal in the dynamics. In particular, if we consider two communities of
agents, each holding +1 and -1 opinion, respectively, we have that, for α = 0,
the probability of an agent in the positive community accepts to change their
opinion to state σi = −1 (in two steps, i.e., passing through the neutral opinion)
is equal to Pacc = min [exp((16− 2 · kin)/T ∗), 1], where kin denotes the number
of intra-community links. Therefore, when kin ≤ 8, we have Pacc = 1 ∀T .

For low values of α, these networks are not able to achieve global consensus
when the number of intra-community links exceeds 8 (however, the modules reach
internal consensus in all cases; see Figure 4.3(a)). When α = 0.75, we observe
that 〈|m|〉 6= 1 even for kin ≤ 8. We speculate that these results are related to
a putative first order transition analogous to that of the fully-connected graph
(54), which may occur at alpha around the interval α ∈ (0.8, 1). In this range, the
dynamics end up in consensus, but this consensus occurs in a polarized opinion for
roughly half of the simulations, and in a neutral opinion the other half. For kin >
8, we observe a decay in 〈|m|〉, similar to the one presented for α = 0. Finally,
for α ≥ 1, when the neutral consensus becomes an absolute energy minimum,
we observe clear preference for the neutral consensus for all kin. Nevertheless,
some polarized clusters can appear for α = 1, especially for the largest values of
intra-community links.

Figure 4.2 (b) shows the average value of the magnetization as a function
of temperature for several values of intracommunity links kin and α = 0. For
values kin > 8, we observe a peak which indicates that the greatest majority
in a polarized opinion occurs at T > 0. As we mentioned above, the different
communities arrive at a local consensus in the steady state, but, in general, the
modules do not share all the same opinion. Figure 4.2 (c) shows the position of
this peak for every value of kin. Above kin = 8, the system still reaches |m| ∼ 1
at a temperature that increases with the number of intra-community links until
kin = 11; above this value, the maximum value of 〈|m|〉 starts decreasing.

The case kin = 15, with very well-defined communities in the limit of low tem-
peratures, is examined in Figure 4.3. The left panel shows an example of a final
configuration for this network at T ∗ = 0.1 and α = 0.75. This is just one of the
possible final outcomes for this network, in which magnetization and fraction of
neutral agents turn out to be |m| = 0 and n0 = 0.5, respectively. The right panel
shows the possible final values for |m| and n0 for 30 MMC repetitions, starting
from random initial conditions. These results show that the final configurations
correspond to situations of consensus within communities but, in general, the
system does not reach a global consensus. Notice that neutral communities do
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4.2. Girvan-Newman

Figure 4.2: (a) Absolute value of the magnetization in the stationary state as a
function of the number of intracommunity links at T ∗ = 0.001, for different values of
α; (b) absolute value of the magnetization versus temperature for several values of the
number of intracommunity links and α = 0 (for clarity, errorbars have been removed);
(c) position of the magnetization peak as a function of the number of intracommunity
links. Results are averaged over 100 simulations, except those for kin = 15 in panel (b),
which are averaged over 500 simulations because of large fluctuations.
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Figure 4.3: (a) Example of a stationary configuration for the kin = 15 network at
T ∗ = 0.1 and α = 0.75, corresponding to m = 0 and n0 = 0.5; (b) final values of
|m| (orange dots) and n0 (black dots) for the kin = 15 network at T ∗ = 0.1 versus
α. Outcomes of 30 independent simulations with 104 MC steps for several values of α
between 0.2 and 1.6. A dot is plotted when at least one of the simulations ends up at
these values of |m| and n0.

not have representation for α . 0.5; therefore, in this range, the final n0 is always
0, and the magnetization can take three possible values:

• |m| = 0, corresponding to a system divided into two communities, each one
holding a different extremist opinion.

• |m| = 0.5 that is obtained when three communities hold the same polarized
opinion and the fourth holds the opposite one.

• |m| = 1, if by chance the system reaches the global consensus.

When 0.5 . α . 1.0, the number of possible final configurations is larger be-
cause they include all combinations with communities in any of the three opinion
states. For α & 1, the contribution of the neutral nodes to the energy becomes
larger than the contribution of polarized agents and most often the system reaches
neutral consensus, characterized by |m| = 0 and n0 = 1. However, in some cases,
the magnetization takes the value |m| = 0.25 and the fraction of neutral agents
is n0 = 0.75, indicating that one extremist community appears in the final state
while the other three are neutral. Finally, for values of α & 1.4, we always obtain
neutral consensus as the final macrostate.
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4.3

Two-level modular networks
We have also considered synthetic modular networks with a hierarchical commu-
nity structure formed by more than one cluster level. These networks have been
used in previous studies regarding community detection, (6), in this case using
the Kuramoto model, as they are specifically constructed to highlight the nodes
correlations between the final states of a specific dynamics.

In Figure 4.4, we can see a network with two community levels generated as
follows: a set of 256 nodes is divided into 16 clusters that will represent the first
community level. The second organizational level of the network is formed by four
compartments, each one containing four different clusters of the first level. Here,
node colors do not represent opinions but are just to clarify the network topology.
The results for α = 0 show clearly the first level, corresponding to the smallest
subgraphs that appear with correlation Cij = 1 in 16x16 boxes in the main
diagonal (Figure 4.4 (b)) (We expect that, for α = 0, the results would resemble
those obtained by using the Ising model). The second level is not so evident, but,
when we use α = 0.75, we can distinguish it better, as the correlations within
the four big compartments are stronger. This property, which is caused by the
fact that a higher value of the neutrality parameter increases opinion diffusion,
can also be used to detect asymmetries in the link distribution between nodes.
For example, in Figure 4.5, we can see a network formed by four compartments
which are in turn divided in two subgroups, but connections are not perfectly
symmetric, unlike in the case shown in Figure 4.4. In particular, we can see one
node, marked with a circle in Figure 4.5 (a) that has more out-community links
outside its compartment (on the second level of community structure) than the
rest of the vertices. This feature is not visible when we perform simulations with
α = 0, but it becomes noticeable when we use α = 0.75.

4.4

Twitter networks
We started applying the model on well-known topologies that have been used
for benchmarking reasons (35). Let us now analyze its behavior when embedded
on real social networks. In particular, we study interaction networks of Twitter
handles around a given topic, i.e., hashtag. Each vertex in the network represents
a Twitter handle and a link represents an interaction (retweet or mention) be-
tween two handles in a tweet containing the selected hashtag. Multiple edges and
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Figure 4.4: (a) Representation of a two-level synthetic network formed by N = 256
nodes. Colors are just here to visualize the community levels; (b) correlation values for
every pair of nodes, obtained using α = 0; (c) correlation values for every pair of nodes,
obtained using α = 0.75. Results are obtained using 5000 MMC steps, and are averaged
over 200 repetitions.
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Figure 4.5: (a) Representation of an heterogeneous two-level synthetic network formed
by N = 64 nodes. Colors are just here to visualize the community levels; (b) correlation
values for every pair of nodes, obtained using α = 0; (c) correlation values for every
pair of nodes, obtained using α = 0.75. Results are obtained using 5000 MMC steps,
and are averaged over 1000 repetitions.
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self-edges have been removed from the network, as well as small non-connected
components.

Data (provided by Associació Heurística) were collected through the Twitter
Standard Search API, which returns a collection of Tweets matching a specified
query, namely a hashtag or a set of keywords. The network was built by adding
an edge between two Twitter users whenever a user retweets or mentions another
one. The fact that they are built from retweets/mentions instead of "follows"
is the reason for the low clustering coefficient of these networks, dominated by
star-like structures.

Twitter networks are directed, since one can follow a user that does not follow
you back; however, we have considered links as undirected, for simplicity. The
graph is not used for a realistic embedding but rather as a proxy for social net-
works of information diffusion. Another hard assumption is the achievement of a
stationary state; surely, many observable states are transient, since social systems
are often perturbed by supervening events, but this is beyond the scope of the
present work.

The networks we chose correspond to the hashtags #yotambiensoynazi (which
in English means I am also a Nazi, and we shorten as #yotambien), #nochebuena
(in English Christmas Eve) and #martarovira (the name of a Catalan politician).
(The first one is a small network that does not have to be confused with the
feminist movement since it actually corresponds to an altercation occurred in
Zaragoza (Spain), in the context of the Catalan independence process. The second
one came in the wake of a speech that the Spanish King delivered against the
aforementioned process on 3 October 2017. This official communication was
sarcastically criticized by pro-independence supporters, making fun of it by using
a comparison with the King’s yearly Christmas Eve speech. The third one is
associated with the Spain government legal actions against the politician Marta
Rovira, again in the context of the independence process in Catalonia.)

Some properties of these networks are displayed in Table 4.1. The table shows
that the absolute value of the magnetization at very low T is inversely propor-
tional to the modularity value of the best partition.

Despite not considering transient regimes and directed or weighted links, we
would expect to be able to observe some well known social phenomena regard-
ing opinion spreading. According to simulations, all of these systems are unable
to reach consensus at low temperatures, as we see in Figure 4.6. The behav-
ior resembles the one found in BA networks with 〈k〉 = 2, indicating that the
dynamics are mainly driven by the existence of highly connected vertices which
lead to the formation of opinion bubbles (Figure 4.7) because the opinion of the
hubs is harder to change. The attractors of the dynamics at low temperature
are metastable configurations that depend on the particular initial configuration,
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Table 4.1: Network global coefficients for the explored topologies and average value of
the magnetization at low T and α = 0.5, denoted by 〈|m|◦〉. C is for the clustering, L for
the average shortest path length, A for the assortativity, andM for the best partition
modularity.

ER z4 #yotambien #martarovira #nochebuena #BA
z2

N 2000 2408 29110 20022 BA z2
z 4 2.8 3.67 2.45 2
C 0 0.12 0.08 0.01 0
L 5.58 3.1 4.04 4.14 8.04
A 0 -0.28 -0.27 -0.33 -0.13
M 0.52 0.62 0.65 0.76 0.94
〈|m|◦〉 1.0 0.70 0.47 0.32 0.19

which is set at random for every repetition; therefore, we observe a large disper-
sion in the results. Blinkers, which are present for instance in random networks
with low connectivity (see Section 3.4), appear in the final configurations reached
by the MMC simulations for these networks as well.

In order to infer which topological property is related to the lack of consensus
at T → 0, we have compared different network coefficients and the value of 〈|m|〉
at T = 0 for α = 0.5 (see Table 4.1) for the three real networks, the BA graph
with 〈k〉 = 2 and the ER network with 〈k〉 = 4 (included as a null model).
The comparison suggests that that the maximum value of the magnetization that
the system is capable of reaching is related to the modularity value of the best
partition for each network.

Note that the strong modular structure prevents the system from reaching
zero-magnetization at T → 0, even for α = 1.25, where the energy has a unique
global minimum at the macrostate of neutral consensus. As in some networks
analyzed in the previous section, once opinion bubbles are formed, changes be-
tween different microstates become too costly, not only between extremists but
also when the change occurs from or towards the neutral opinion.

The highest value for the magnetization at low temperatures is found at α
around 0.5; α = 0.75 in the case of BA graphs with 〈k〉 = 2. When the magneti-
zation reaches its maximum value the fraction of neutral agents n0 is zero. From
a social point of view, this means that the system gets divided into communities
formed by positive or negative agents, but there is a stronger majority in one
polarized opinion than for other values of α. Neutral communities are found at
higher values of α, destabilizing the polarized majority. The fact that a moder-
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Figure 4.6: Comparison of the magnetization curves for three real networks and the BA
network with 〈k〉 = 2, all of them presenting frozen configurations at low temperatures,
dominated by the presence of big hubs in the network. Results are averaged over 100
repetitions, except for #martarovira, whose results are averaged over 20 repetitions.
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-1 opinion
0 opinion
+1 opinion

Figure 4.7: Example of a stationary configuration for #yotambien network at T = 0.05
and α = 0, reached after 104 MMC steps.
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Figure 4.8: Correlation values for every pair of nodes of the Twitter network #yotam-
bien, obtained using (a) α = 0 and (b) α = 0.75. Results are obtained using 104 MMC
steps, and are averaged over 1000 repetitions.

ate neutral intensity catalyzes the majority in one polarized opinion adds to the
conclusions presented in (158).

The networks #martarovira and #nochebuena exhibit a non-monotonic be-
havior of 〈|m|〉 with T for α = {0, 0.5}. This is caused by the fact that the model
presents a very complex energy landscape with multiple local minima when em-
bedded in these topologies. This landscape is sensitive to the neutrality parameter
α, since it changes the energy difference between the local neutral consensus and
local polarized consensus. When the temperature increases, some energetic bar-
riers can be easily overcome, so the attractors of the dynamics change. In some
cases, this can enhance the dominance of one polarized opinion over the other
one, which corresponds to higher average absolute magnetization; in others, it is
the other way around.

The community structure of real networks can be easily visualized using the
method described in the Appendix A. In Figure 4.8, we observe a large community
containing approximately half of the nodes and a few smaller clusters. Simulations
using α = 0 and α = 0.75 show just some minor differences in this network; for
instance, the biggest community is slightly smaller. The network does not appear
to have more than one level of community structure.
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4.5

Conclusions

Here, we apply the three-state model t to modular networks, both synthetic and
real.

At low temperatures, homophilic behavior dominates, and the system reaches
either global or local consensus. At very high temperatures, the entropic term
becomes dominant and agents change constantly their opinion regardless of their
neighbors’ states. This disordered state could be associated with conflict or ri-
ots. Although it may seem counterintuitive, moderate levels of social agitation
can also help to catalyze consensus in modular graphs. On some networks, the
system is unable to reach consensus at T → 0, but it can do so when there is
enough energy available in the form of upheaval. This energy is used by agents
to transition between states until the system reaches a globally ordered state
(consensus), which is more difficult to destabilize since it corresponds to a lower
energy minimum.

When the modularity value of the best partition of a given network isM & 0.6
indicates that the graph has a well-defined community structure, with multiple
attractors that exhibit partial order. When this happens, the steady state at low
temperatures is not consensus but a population fragmented into opinion clusters,
which are different depending on the initial conditions. Some "blinker" agents
may appear at the domain walls in some topologies; these nodes freely change
their opinion, since they are connected to two or more clusters aligned in different
directions.

The opinion fragmentation into clusters, known as echo chambers or opinion
bubbles’ formation, is mainly related to the network topology, but the contri-
bution of neutral agents to the energy of the system is also relevant. Within
a certain range of the neutrality parameter value, that depends on the specific
network and is always below α = 1, the neutral state becomes a bridge between
polarized states. This behavior enhances polarized consensus, since agents do not
remain in the neutral state, they just use it to transition between opposite opin-
ions. Nonetheless, beyond a certain threshold, approximately α & 0.5—using the
Newman–Girvan network with kin = 15 as a benchmark—neutral clusters emerge
at low temperatures. At higher levels of social agitation, agents can overcome
some energetic barriers between domains, which, for α < 1, increases the mag-
netization and hence drives the system closer to a polarized consensus. In this
situation, any neutral clusters present at low temperatures tend to disappear as
T rises.
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On the other hand, when the best partition of the network has a modularity
value M . 0.6, there is not a strong community structure in the system. In these
cases, the population of agents already reaches the most possible ordered state
at T → 0, and its dominant order parameter (either |m| for low α or n0 for high
α) decreases at intermediate temperatures by the effect of thermal fluctuations.

Opinion formation appears to be strongly determined by the action of influ-
ential nodes and modularity. Social media networks exhibit tree-like diffusion
properties, which naturally lead to bipartisan or tripartisan configurations in our
model, depending on the strength of the neutral opinion α. When the modularity
of the best partition is sufficiently low, a moderate level of noise allows agents
to partially align. Results from real networks indicate that intermediate levels
of individual thinking, meaning a moderate disregard for peer pressure, (i.e., the
existence of a finite temperature that does not exceed the critical point) can foster
a closer approach to consensus than pure imitation of linked agents’ ideologies
(T → 0).

70



Spatio-Temporal and
Multilayer Networks





CHAPTER 5
Mobile agents

Another area of research, originally detached from traditional sociophysical
models, focuses on the collective dynamics of agents moving within a plane.

A prominent example of this category is the Vicsek model [(165)], where agents
are represented as particles moving on a two-dimensional plane, with interactions
governed by an alignment rule. Each agent adjusts its movement direction to align
with the average vector of motion observed among its nearest neighbors. These
models are used to analyze collective motion and flocking behavior in systems
of self-propelled entities, ranging from biological organisms to synthetic systems.
[(133; 31; 122)].

5.1

Introduction
The recent access to massive mobile phone data allows a deeper study of human
mobility patterns [(13; 138)]. It has been found that in some cities there exist
gender gaps, for instance, in (68) they show that in Santiago de Chile men tend
to visit more diverse places than women, and women tend to spend less time at
each location compared to men. Other demographic factors, including age, socio-
economic status, and race can also be linked to heterogeneous mobility patterns
(174; 155), contributing to the persistence of social segregation.

Faras et al. combined the Potts model with spatial motion in a recent work
(50), finding similarities with systems having long-range interactions, even though
the interactions are short-ranged. We follow a similar approach in this chapter
to explore the interplay between the opinion dynamics studied in this work and
mobility (50). We allow the agents to move on a plane according to a random
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walk, with their velocities taken as a parameter of the system, and interact only
with neighbors placed within a given distance. The agents’ opinions are updated
in parallel with their movement, using a Markov Chain Monte Carlo algorithm
(Metropolis et al.; 69). The transition probability for an agent to change its opin-
ion depends on the relative number of agents with different opinions in its neigh-
borhood. By coupling the movement of the two-dimensional spatial structure and
the opinion changes, we study their interplay and its impact on phenomena such
as the formation of the global consensus or the appearance of spatial clusters of
agents with similar opinions.

By varying the parameters of the model, we find that the mobility patterns
and the role of neutral agents in the opinion updating rules affect the emergent
patterns of opinion formation, leading to non-trivial outcomes. We compare
our results with those obtained in (54; 55) for static networks, showing that, in
general, velocity enhances the appearance of consensus and diminishes the neutral
basins of attraction. However, it is shown that the amount of time necessary to
reach a consensus is much shorter when it occurs in the neutral state. Our findings
have implications for understanding the mechanisms that drive the dynamics
of opinion formation in some real-world social phenomena, such as the spread
of misinformation on social media, the polarization of political opinions, and
the emergence of extremist groups, and will contribute to the ongoing dialogue
between the fields of sociology and physics.

Our model not only considers opinion dynamics, but also incorporates move-
ment rules that reflect a co-evolving process between homophily (i.e., the ten-
dency to align opinions with those around us) and the capacity of agents to
change their connections and the people they discuss a topic with. In their book
(74), Gross and Sayama provide a review of previous studies on the interplay
between dynamics and network structure. Here we analyze the behavior of the
system for different movement rules, starting from the static case, where vi = 0
for all agents, following with the case with constant finite velocity vi = v, with
two subcases: return to the initial position after every movement and subsequent
opinion update and advance to the next position with no return. In the following
sections, we introduce an acceleration term for the extremists, influenced by the
proportion of neighbors sharing the same opinion state. This concept is grounded
in the understanding that extremists exhibit a stronger confirmation bias, lead-
ing them to actively seek like-minded neighborhoods instead of opting for places
with diverse opinions to evade discussions. Conversely, neutrals may demonstrate
greater open-mindedness and be content in any kind of neighborhood [(114)].

We explore three different scenarios for the accelerated case, taking into ac-
count diverse intensities in the extremists’ reactions to their neighbors: total
halting, non-accumulative acceleration, and accumulative acceleration. In the
total halting scenario, extremists come to a complete stop when surrounded by
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like-minded agents, while neutrals maintain the constant initial velocity v. In
the non-accumulative acceleration scenario, the initial velocity of extremists is
doubled when surrounded by agents holding opposing opinions, but it is halved
when the majority of their neighbors share their own opinion. Centrists continue
to move at a constant velocity v throughout the simulation. In the accumulative
acceleration scenario, extremists experience a doubling of their velocity at each
time step when they are surrounded by agents with opposing opinions. In the
last variant, centrists retain the velocity they acquired in previous time steps if
they were extremists at those times.

We will consider low temperature for this context and Agents evolve until
either they reach a stability condition that will depend on the particular case of
study, or they have completed a fixed number of steps. In this case, along with
the order parameters, we also measure the number of steps required to achieve
the stability condition, when it is reached, and the size of the biggest cluster,
in case the system ends up fragmented into several connected components with
different opinions.

5.2

Static case
In this section, we assume that all agents remain immobile, i.e., vi = 0; ∀i, so we
only consider the opinion updating dynamics. To create the network displayed
in Fig. 5.1(a), we randomly place Ninit = 155 agents in a square with side length
L = 1. We then connect all pairs of nodes that are separated by a distance less
than or equal to R = (1 + ε)dc, where dc is the critical distance and is defined
by the following relation: (Ninit − 1)πd2

c/L
2 ≈ 4.51 (141). Finally, we remove all

connected components with a size NC less than 0.2N0.

The critical distance dc separates the system’s regime below percolation, in
which it is divided into several small connected components, from the regime
above percolation, in which a giant connected component appears. For this case,
we choose ε = 10−5, which places us slightly above the critical distance and
enables us to take only the nodes belonging to the giant connected component.

As mentioned in the previous section, we already analyzed this model in
(54; 55) for a wide variety of graphs, including the complete graph, the one-
dimensional chain, Erdos-Renyi graphs, Barabási-Albert networks, the Girvan-
Newman communities (70), and other synthetic modular graphs, as well as three
particular cases of hashtags and mentions networks extracted from Twitter. In
general, we found that networks with a well-defined community structure are
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unable to reach the global consensus and that the local consensus within commu-
nities is the stationary state at low temperatures.

When randomly scattering nodes on a plane and connecting them based on
a maximum Euclidean distance between first neighbors, we obtain a random
geometric graph. When this distance is close to the percolation threshold the
giant connected component of the graph exhibits a strong community structure
(34). We expect that the opinion dynamics we propose will never lead to the
global consensus in such networks. Panels (b) and (d) in Fig. 5.1 were obtained by
running 1000 Monte Carlo simulations on the graph shown in panel (a), starting
from different initial opinions each time. The correlation value Cij between any
pair of nodes i and j takes the value 1 if the nodes belonging to that pair always
finish the simulations in the same opinion state, and -1 if they always finish in
different states. We identify pairs of nodes with Cij = 1 as belonging to the same
community, since their opinions at the end of the simulation are totally correlated,
while nodes with Cij ≤ 0 denote pairs of nodes in different communities whose
opinions are totally uncorrelated. Intermediate values 0 < Cij < 1 indicate
more levels of community structure, in other words, partitions of the network
that achieve local consensus with a certain probability proportional to Cij (see
Appendix A).

For α = 0, we observe mainly one level of community structure, correspond-
ing to the small groups with Cij = 1 that appear in the diagonal. When α
increases, the transition between extremist opinions and the neutral one becomes
easier, leading to two consequences. Firstly, a second level of community structure
emerges, as a consequence, we observe that small communities in the diagonal
appear surrounded by nodes with correlation values Cij > 0, indicating bigger
communities that achieve local consensus in a partial number of simulations.
Secondly, the number of attractors of the dynamics increases, causing the frag-
mentation of the first level of community. For instance, the nodes that occupy the
positions {12, . . . , 28} in Fig. 5.1 b) form a single community with a correlation
value equal to one for α = 0. However, they rearrange into smaller communities
for α = 0.75, as the neutral state can now also form a stable local consensus. In
fact, panel c) shows that the fraction of neutral agents n0 becomes non-zero for
α ≈ 0.8, indicating the appearance of neutral communities above this value of the
neutrality parameter. Below this value, the system becomes fragmented only into
extremist communities. We would expect them to be evenly distributed, with an
average magnetization 〈|m|〉 close to zero, by symmetry reasons. However, we
observe a non-zero 〈|m|〉 due to finite-size effects. For higher values of α, the
number of neutral communities rapidly increases until the global consensus at
the neutral opinion is guaranteed for α > 1.5.
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Figure 5.1: (a) Random geometric graph with N = 104 nodes and an average degree
〈k〉 = 4.87. (b) Opinion correlation matrix for α = 0.0, obtained from simulations on
the graph represented in (a) 1000 with different initial opinions. (c) Absolute value of
the magnetization and fraction of neutrals as a function of the neutrality parameter α,
with their standard deviations. Results are averaged over simulations with 100 different
initial opinions. (d) Opinion correlation matrix for α = 0.75, obtained from simulations
with 1000 different initial opinions.
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Chapter 5. Mobile agents

5.3

Constant velocity. Elastic

In this section, we continue our study of the same graph analyzed in the previous
section, but now incorporating movement. At each time step, agents are allowed
to move in a random direction with a constant velocity vi = v. They update
their opinions in the new position and return to their original position afterward,
indicating that agents have a preferred location, akin to a home, to which they
periodically return. This movement can be understood as oscillations around the
initial positions, with short amplitudes for low velocities. Therefore, for v → 0,
the results are similar to those obtained for the static case, since the agents are
not able to change their neighbors.

As we increase the velocity, opinions can be transmitted to different neighbors
at each time step, which makes the global consensus more likely to emerge, since
it creates connections between more pairs of agents. The emergence of the global
consensus is related to the saturation value of the aggregated reachability (see
5.2 a), defined as the accumulated proportion of links between any pair of agents
holding different opinions that have been present in the system up to a given
moment, in the absence of opinion updates. At the initial instant, the aggregated
reachability is equal to the ratio between the number of links connecting agents
with different opinions in Fig. 5.1(a) and the total number of pairs of agents that
have different opinions. This number will monotonically increase until it reaches
its maximum value, which depends on the velocity. Notice that since we impose
periodical boundary conditions for the plane, we do not consider velocities larger
than v = L/2 = 0.5.

The amount of time (in steps) required to reach consensus, once the velocity is
sufficiently large, is shown in Figure 5.2b and exhibits a non-monotonic behavior.
At low velocities, the consensus time is high and has large fluctuations, since
it strongly depends on the initial conditions and the extent to which random
movements favor changes towards a given majority opinion. For large values
of v, we can think of the system as a complete graph with blinking edges that
appear at each time step with a certain probability. The consensus time for high
velocities stabilizes around 2000 steps, but with large fluctuations because the
neighborhood changes completely at every time step, and every movement of the
agents can potentially destabilize the local consensus achieved in the previous
step. There is a minimum around v = 0.1 ≈ R, for which opinion diffusion
is very efficient, and the system reaches the global consensus rapidly in all the
simulations, as shown in the example displayed in Fig. 5.2 c).
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5.4. Constant velocity. Non - elastic
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Figure 5.2: a) Aggregated reachability for the elastic case with constant velocity
(see main text for explanation). Results averaged over 100 simulations. b) Number
of steps needed to reach the global consensus as a function of the velocity for α = 0
(orange), in-plot: number of simulations that does not achieve the global consensus
(red bars) and saturation value of the aggregated reachability (blue line,. See main
text for explanation). The grey dashed line indicates the value of v for which the fails
become zero, which is very close to the value of v for which the saturation value of
the aggregated reachability becomes one. Results averaged over 100 simulations. c)
Particular example of temporal evolution of the number of agents in each opinion state
for α = 0 and v = 0.1.

5.4

Constant velocity. Non - elastic

In this section, we again consider a constant velocity of vi = v for all agents, but
now we let the agents evolve following a random walk without returning to their
initial position. In this case, the aggregated reachability (as defined in 5.3) never
saturates to values lower than 1; instead, it always increases with time until it
reaches 1, ensuring that the system eventually achieves the global consensus given
enough simulation time. However, the growth rate of the aggregated reachability
increases with the velocity until it saturates around v = 0.2, as shown in Fig. 5.3.
Unexpectedly, the time needed to reach the global consensus increases with the
aggregated reachability for low velocities until it reaches a peak that depends on
α (see 5.3 b) and d)). In order to understand which features of two consecutive
time adjacency matrices cause this behavior, we represent the probability of an
agent being a first neighbor of another agent, given that they were the second
neighbor in the previous step (represented by the black line), which shows a peak
close to the consensus time peak (see Fig. 5.3 b) and d)). We show an example
of the evolution of the fraction of agents in each opinion state for a system that
evolves with a velocity around the maximum in Fig. 5.3 c). We observe switches in
the majority opinion that prevent the system from achieving the global consensus
quickly. Local consensus is preserved by the motion, but individual agents keep
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Chapter 5. Mobile agents

bouncing between opinions for a large number of steps. Note that this behavior
is very different from the one observed in the elastic case.

For higher velocities, the behavior is identical to that observed in the elastic
case, as the position of the agents is random at each time step in both cases.
Similar to the elastic case, we do not consider v > L/2 = 0.5 due to the symmetry
imposed by the periodic boundary conditions.

The neutrality parameter α plays the most significant role in determining
the opinion state of the final consensus, as shown in Fig. 5.4. These results are
obtained for a system of N = 100 agents and a value of R = dc − 0.1dc =
0.108, which is only slightly lower than the one used in the previous section, and
therefore, we do not expect significant differences. Broadly speaking, the system
achieves neutral consensus for α > 1 and a polarized global consensus otherwise.
With respect to velocity, the minimum value of α required to observe neutral
consensus in some simulations is very close to α = 1 for low velocities, while for
high velocities, it decreases to α = 0.8.

This model exhibits a first-order phase transition at α = 0.8 in the mean-field
limit (55). The mean-field approximation assumes that each agent interacts with
the average effect of all other agents, rather than taking into account specific
interactions with every neighbor, and it is exact for the fully-connected graph.
Therefore, the previous result is consistent with the notion that, for high veloci-
ties, the system behaves like a complete graph with blinking edges, where every
possible pair of agents gets connected with a certain probability at each time
step, regardless of their previous connections. Above α = 1, the absorbing state
is neutral consensus, regardless of velocity, as expected.

The average value of the absolute magnetization is complementary to the
fraction of neutral agents, since all simulations end in a global consensus. When
this consensus is polarized, both rightist and leftist consensus have an equal
probability of appearing due to the opinion symmetry of the model.

5.5

Total halting
In this section, we examine how the system behaves when the velocity is ad-
justed at every time step following the next rule: extremists stop moving if they
are surrounded by a majority of neighbors who share the same opinion state as
them, and they move in a non-elastic fashion with velocity v if half or less of
their neighbors share their same opinion. Neutral agents, on the other hand, are
unaffected by this rule and move with a constant velocity of v at all times. The
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Figure 5.3: (a) Aggregated reachability for the non-elastic case with constant velocity.
Number of steps needed to reach the global consensus as a function of the velocity
(orange bars) for α = 0 (b) and α = 0.75 (d), along with the slope of the aggregated
reachability as a function of the logarithm of time in the first seven steps (blue line),
and the probability that an agent is the first neighbor of another agent given that in
the previous step they were their second neighbor (black line). (c) Particular example
of the temporal evolution of the number of agents in each opinion state for α = 0 and
v = 0.05. All results are averaged over 100 simulations.
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Chapter 5. Mobile agents

Figure 5.4: Phase diagram showing the fraction of simulations that finish with neutral
consensus for the non-elastic case as a function of the velocity v and the neutrality
parameter α. Results for a system of N = 100 agents and are averaged over 100
simulations that start from different initial positions and opinions.
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5.5. Total halting

simulation ends either when the system reaches a global consensus or when all the
agents remain immobile. With these rules, we assume that extremists are more
prone to change their links with people whose opinion is opposite to theirs. On
the contrary, neutrals agents are sensitive to their neighbors’ opinions regarding
the opinion update, but do not selectively change their links according to their
neighbors’ opinion.

This type of motion favors local consensus, which by construction is always
polarized, over global consensus. Additionally, it penalizes the neutral opinion,
since extremists tend to form communities that capture neutral agents when they
pass nearby, and convince them to change their opinion. Even for values of α > 1
the average number of neutral agents is lower than 1, as we can see in Fig. 5.5
a). For large velocities, neutral agents, who do not stop, are able in to propagate
their opinion fast enough to become a majority within the first time steps (at
least in a certain number of simulations) and as a consequence 〈n0〉 increases.
When this happens the system achieve the neutral global consensus in very few
time steps (see Fig. 5.6), compared to the number of steps necessary to get partial
or polarized consensus.

The average absolute magnetization strongly depends on both the velocity
and the neutrality parameter α, as shown in Fig. 5.5 b). For α < 1 and low
velocities, the system reaches a local polarized consensus with a similar number
of clusters in both positive and negative opinions. Therefore, 〈|m|〉 is low, and the
number of neutral agents 〈n0〉 is approximately zero. However, when the velocity
is higher, the agents travel further and the formation of local polarized clusters is
faster. Any imbalance between rightists and leftists grows rapidly, leading to an
increase in magnetization because the number of clusters in each polarized state
is no longer equal, and the fraction of neutral agents remains close to zero.

Counterintuitively, when the neutrality parameter α > 1, the tendency is re-
versed and the average value of the absolute magnetization is larger for lower
velocities. This is because the abundance of neutral agents allows the system
to achieve polarized global consensus in a significant number of simulations, as
shown in Fig. 5.6. Due to the high value of α, neutral agents persist in time,
while extremists stop and form communities. Eventually, neutral agents separate
and get caught into the polarized clusters, changing their opinion to align with
the community they encounter. Furthermore, the abundance of neutral agents
can convert small polarized clusters to the neutral opinion, making its mem-
bers move again. Later, these agents may be converted to extremism again by
a larger polarized community, and eventually, the system can reach the global
polarized consensus. When the velocity increases, extremist communities cannot
grow enough, and in most simulations, we obtain either neutral global consen-
sus, marked by an increase of 〈n0〉, or polarized local consensus with an similar
number of small extremist groups, consistent with a low average magnetization.
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Chapter 5. Mobile agents

Figure 5.5: a) Final average fraction of neutral agents and b) final average absolute
magnetization as a function of the velocity v and the neutrality parameter α for the
total halting model. Results for a system formed by N = 100 agents and averaged over
100 simulations starting from different initial positions and opinions.

Figure 5.6 displays examples of the consensus time histogram for each sce-
nario. However, it is worth noting that for v = 0.25 and α = 0.95, the system
only reaches local polarized consensus, despite having an average magnetization
of 〈|m|〉 > 0, indicating an unbalanced distribution of extremists in each state.
Global neutral consensus is achieved much faster than local or global polarized
consensus. Surprisingly, the value of the initial velocity v does not have a high
impact on the consensus time, especially for α < 1.

5.6

Non-accumulative acceleration
In this section, we consider a case that is similar to the previous one, except
that extremists do not stop their motion completely when they have a majority
of neighbors sharing their same opinion. Instead, they reduce their velocity to
half the initial value (v/2) and, in addition, they double the initial velocity if
their neighbors with an equal opinion are not a majority. This strategy enables
the system to reach a global consensus, just like in the case where the velocity is
constant. As a consequence, magnetization is complementary to the fraction of
neutral agents.

Although the dynamics still always converges to a global consensus, the phase
diagram exhibits slight differences from the case where the velocity is constant.
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5.6. Non-accumulative acceleration

Figure 5.6: Histograms for the consensus time for the total halting model, for a)
v = 0.25 and α = 0.95, b) v = 0.25 and α = 1.2, c) v = 0.15 and α = 0.95 and d)
v = 0.15 and α = 1.2. Blue bars represent global polarized consensus, green bars are
for global neutral consensus and yellow bars denote local polarized consensus. Results
averaged over 100 repetitions, starting from different initial positions and opinions.
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Chapter 5. Mobile agents

Figure 5.7: a) Average fraction of simulations that finish with consensus in the neutral
opinion and b) final average value for the absolute magnetization as a function of the
velocity v and the neutrality parameter α for the non-accumulative accelerated model.

In particular, for low velocities, a value of the neutrality parameter α greater
than 1 is required to guarantee neutral consensus (see Figure 5.7). This is
because extremists adapt their motion to their neighborhood, making them come
to an agreement more efficiently. In contrast, the neutrals, which are not affected
by this rule need a stronger interaction (i.e. a higher value of the neutrality
parameter α) to be able to form neutral opinion groups. Therefore, for low
velocities the results for the order parameters are resemblant to those obtained for
the total halting case. Conversely, for high velocities, the changes in velocity are
insufficient to produce this effect, and the average values of the order parameters
are equal to those obtained for the constant velocity case.

Regarding the consensus time, the motion rules steer the system towards the
global consensus by making the agents sensitive to the agents’ opinions, while
allowing all of them to move around the plane and potentially interact with any
other agent. As a result, the consensus is reached in significantly fewer steps
compared to agents moving with a constant velocity, as evidenced by comparing
Figure 5.3 and Figure 5.8. Neutral consensus is always faster than polarized
consensus, and it is enhanced by high velocities, as observed in the previous
scenarios. Both increasing v or α reduce the number of steps required to achieve
consensus, similar to the constant velocity case.
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5.6. Non-accumulative acceleration

Figure 5.8: Histograms for the consensus time for the non-accumulative accelerated
model, for a) v = 0.10 and α = 1.0, b) v = 0.10 and α = 1.2, c) v = 0.25 and α = 1.0
and d) v = 0.25 and α = 1.14. Blue bars represent global polarized consensus and
orange bars denote global neutral consensus. Results are averaged over 100 simulations,
starting from different initial positions and opinions.
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5.7

Accumulative acceleration
In the case examined in this section, extremists, modify their velocity based on
the proportion of neighbors who share their opinion, as in the previous sections.
However, in this case, an extremist agent i reduces their velocity to vi(t) =
vi(t − 1)/2 when they have a majority of neighbors in their same opinion state
and increases it to vi(t) = vi(t − 1) ∗ 2 otherwise (with a maximum velocity of
vmax = L/2 = 0.5 to avoid higher velocities that do not make sense with periodic
boundary conditions). Although the extremists’ velocity can now increase, they
still tend to form opinion clusters, similar to the total halting scenario. On
the other hand, neutrals no longer move with the initial constant velocity v,
but instead, they conserve the velocity they had acquired previously, so if a
neutral agent i was polarized at some point in the past time, and they have
modified its velocity to a given vi 6= v, they will continue moving at their own vi.
Eventually, agents move so slowly that they are considered immobile, so we stop
the simulation when the average velocity is lower than 5 ∗ 10−4.

In most simulations, the stationary state for this scenario is local consensus
for α < 1, similar to the total halting case. While for high values of the neutrality
parameter α, the system reaches a neutral consensus. The main difference now
is that when an extremist changes their opinion to neutral, they conserve their
velocity, which can be arbitrarily slow. Therefore, although neutral agents do
not react to their neighbors’ opinions, partial consensus can still contain neutral
clusters, even for α = 0.95 (see Fig. 5.10). Polar cluster formation depletes some
regions of extremists, leaving empty zones that can eventually be occupied by slow
neutral agents with short average displacement. As in previous scenarios, we find
that higher initial velocities v favor the achievement of neutral consensus. For
example, in Fig. 5.9 a), the proportion of neutrals at the end of the simulations
when α = 1.2 is 〈n0〉 ≈ 1 only for v ' 0.2.

The phase diagram for the average magnetization Fig. 5.9 b) is slightly dif-
ferent from the one obtained for the total halting scenario. Specifically, for low
α and low v, we obtain higher values for 〈|m|〉. This is because in this case,
extremists do not suddenly stop their movement when surrounded by a majority
of agents with the same opinion. Instead, they gradually modify their velocity,
adjusting their positions, aligning their opinions, and convincing isolated neutral
agents when they pass nearby. This mechanism allows them to form larger clus-
ters, thus increasing the magnetization. For α < 1, the system rarely reaches
global neutral consensus. The average absolute magnetization increases with v,
as in the total halting case, and the proportion of local consensus with neutral
clusters decreases.
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Regarding the typical size of opinion clusters, polarized and neutral agents
behave differently, which is expected, since the movement rules are still different
for both types of agents. Figure 5.9 c) shows that the largest neutral cluster
found in the simulations has a number of agents N0 ≈ 45, while the polarized
clusters can be the size of the system N = 100, as shown in panel d). On one
hand, this is due to the fact that neutral agents’ motion is not reduced when they
are surrounded by other neutrals, hence any big neutral connected component
can break more easily than a polarized one. On the other hand, we do not see
such big polarized clusters in the case of total halting, but we do here due to
the smoother movement of the extremists. It may seem counterintuitive that
these big polarized clusters only appear for high values of α. However, the reason
is that it takes time to form these structures and, for α < 1, we achieve local
polarized consensus too fast to give the agents time to form big opinion groups.

Our casuistic is richer than in other scenarios, particularly for α = 0.95 and
v = 0.25, where we observe all four possible outcomes, although a global consensus
is less likely (see Figure 5.10). In contrast to the total halting case, the time
required to achieve a polarized consensus is sometimes shorter than the time
needed to reach a global neutral consensus. Local polarized consensus is only
observed for α = 0.95, and the time required to achieve it is similar to that of
achieving global neutral consensus. The impact of v and α on the consensus time
is smoother than in the non-accumulative model.

5.8

Conclusions
We use Monte Carlo simulations to investigate the impact of agents’ motion on
the final outcomes of our three-state opinion model with a neutrality parameter
that adjusts the relevance of the neutral opinion state. Our findings indicate that
both the movement and neutrality parameter play a significant role in the final
outcome of the system. In particular, for a given value of α, mobility patterns
can change the system’s attractors in all cases studied.

We found that motion drives the system towards the global consensus, whereas
the local consensus arises when the motion rules involve agent stopping. The com-
position of this local consensus depends on how agents adjust their velocity ac-
cording to their neighbors’ opinions. In the case of total halting, where polarized
agents stop completely when they are surrounded by like-minded individuals, and
neutrals move at a constant velocity, local consensus is always polarized. Only
when neutrals inherit the extremists’ velocity are they able to occupy the free
space left by polarized agents and form stable clusters, even if α < 1.
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Chapter 5. Mobile agents

Figure 5.9: a) Average fraction of agents that finish the simulation holding the neutral
opinion, and b) average final value for the magnetization as a function of the velocity
v and the neutrality parameter α for the accumulative accelerated model. Size of the
biggest c) neutral-connected component and d) polarized connected component. The
grey dot in the upper right corner of panel d) (α = 1.16 and v = 0.275) indicates that
there were no polarized clusters in any of the simulations for that particular values of
the parameters. Results are averaged over 100 simulations, starting from different initial
positions and opinions.
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5.8. Conclusions

Figure 5.10: Histograms for the consensus time for a) v = 0.10 and α = 1.0, b)
v = 0.10 and α = 1.2, c) v = 0.25 and α = 1.0 and d) v = 0.25 and α = 1.14 for
the accumulative accelerated model. Blue bars represent global polarized consensus,
orange bars are for global neutral consensus, green bars denote local consensus which
only contain polarized clusters and red bars represent local consensus which contains
at least 1 neutral cluster. Results for 100 simulations, starting from different initial
positions and opinions.
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Chapter 5. Mobile agents

In the limit case of a static network, a strong community structure gives rise
to multiple opinion groups that may merge due to mobility effects. Performing
a regular random walk at a constant velocity leads to the global consensus in
all cases. However, it is interesting to note that periodically returning to a base
location, even if agents do not update their opinions there, can reduce the time
needed to achieve the global consensus by disrupting the formation of opinion
clusters. This is true as long as the velocity is high enough to allow the system
to eventually achieve an aggregated reachability of one.

Across all cases studied, high velocities favor the neutral opinion, bringing
the system closer to mean-field behavior, where the neutral opinion becomes a
dynamic attractor. In general, global neutral consensus is achieved faster than
global or local polarized consensus, except for some marginal simulations for the
accelerated accumulative model with large velocity and α < 1, where we observe
local polarized consensus at very short times. Extremists use to take advantage
of longer interaction times to form large clusters and establish polarization. Once
a large polarized community forms, it is hard to destabilize because opinion tran-
sitions become unlikely when agents remain clustered. In contrast, neutral agents
are more prone to changing their minds, both because their movement is not in-
fluenced by the neighborhood opinion and because they have a higher probability
of changing to either polarized opinion state. Interestingly, in some cases, a larger
value of the neutrality parameter α can increase polarization instead of reducing
it, not only for mobile agents but also for some static networks, as shown in (55).

While this work primarily concentrates on the physical plane of agent move-
ment, there is potential to extend the concept to include ideological or emotional
spaces, where the dimensions represent beliefs or emotions. In such scenarios, at
lower velocities, agents would primarily interact if their ideas or emotional states
are closely aligned, following the homophily principle, similar to what is done in
bounded confidence models. As an example, we refer to the works by Starnini et
al. (153), which explore related concepts in the context of social dynamics and
opinion formation. The work "Bounded Confidence Opinion Formation Model
of Periodical Interacting Agents" (Ferri, Nicolás-Olivé, Cozzo, Díaz-Guilera and
Prignano), currently in preparation, also focuses on these types of spaces (Ap-
pendix B).

To summarize, we present an overview of all the mobile agent-model variants
and their corresponding outcomes in Table 5.1 and Table 5.2.
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5.8. Conclusions

Table 5.1: Table to summarize the variants of the model.

Variants of
the model

Motion Rules Time step

A. Static vi = 0 = ctt ∀i Opinion update

B. Elastic Initial positions: Same as the static case.
vi = v = ctt ∀i

Move in random
direction - Opinion
update - Return to
the initial position

C. Non-elastic Initial positions: Same as the static case.
vi = v = ctt ∀i

Move in random
direction - Opinion
update

D. Total
Halting

Polarized: v = 0 if at least half their
neighbors share their same opinion state;
v = vinitial otherwise

Neutrals: v = vinitial = ctt

Move in random
direction - Opinion
update

E. Accelerated
non-
accumulative

Polarized: v = vinitial/2 if at least half their
neighbors share their same opinion state;
v = 2 · vinitial otherwise

Neutrals: v = vinit = ctt

Move in random
direction - Opinion
update

F. Accelerated
accumulative

Polarized: v = vt−1/2 if at least half their
neighbors share their same opinion state;
v = 2vt−1 otherwise (vmax = L/2 = 0.5)

Neutrals: v = vt−1

Move in random
direction - Opinion
update
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Table 5.2: Table to summarize the outcomes of the model.

Variants Time for global consent Stationary state

A. Static Only partial consensus Network divided into opinion clusters
according to: 1) the network structural
partitions and 2) the value of α

B. Elastic The system reaches global
consensus only if v
guarantee an aggregated
reachability equal to 1 at
any time step.
Non-monotonic behavior
with a minimum around
v = R and higher values
with large fluctuations for
slower and faster velocities.

Global consensus if v ≥ R.
• Neutral consensus if α > 1
• Polarized consensus if α < 1
• Partial consensus for low v: the

simulation stops at the maximum
time steps, and the proportion of
agents in each state depends on α

C. Non-elastic The system reaches global
consensus only if ∀ v. Non
monotonical behavior with
a maximum around v = R

Global consensus if v ≥ R.
• Neutral consensus if α > 1
• Polarized consensus if
α < 0.8 = αtricritical(mean-field)

• If 0.8 < α < 1 opinion state of the
consensus depending on v (higher
v favors global neutral consensus)

D. Total
Halting

Partial consensus for all
parameter values explored

The number of neutral or polarized
agents depend on both α and v, both
parameters boosting the neutral
proportion of agents.

E. Accelerated
non-
accumulative

Global consensus, faster
than in variant C

Similar to variant C. However, velocity
has a greater impact favoring neutral
consensus when 0.8 < α < 1

F. Accelerated
accumulative

All possible outcomes:
• Neutral consensus
• Polarized consensus
• Partial polarized

consensus
• Partial consensus

with neutral groups

Rich casuistic. Mixture of variants D
and E. See main text for details
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CHAPTER 6
Belief and social networks

Human beings and the belief systems that support their thought and opin-
ion formation processes are complex in themselves. Representing opinion

as a single variable offers many advantages for modeling, as it is usually simple
enough to be treated analytically in some limit cases and enables the description
of a wide variety of social phenomena. However, a more detailed description of
each agent’s opinion can be interesting and provide information on smaller scales.
Robert Abelson, along with Milton J. Rosenberg, developed the concept of ’sym-
bolic psycho-logic,’ an early attempt at describing a psychological organization
of attitudes and attitude consistency through an idiosyncratic type of adjacency
matrix of a signed graph, which was pivotal in the development of the field of
social cognition [(2)]. In this chapter, we follow this idea, exploring our vectorial
three-state model embedded in a network of networks where external nodes (or
supernodes) represent individuals. We focus on the role that the topology of
their belief system (the inner nodes) plays in achieving both social consensus and
internal coherence.

6.1

Introduction
While single-variable models are the most studied in the sociophysics literature,
many recent studies consider opinions as collections of uncorrelated variables,
components of a vector in a multidimensional space (15; 129; 93). Baumann
et al. (2021) propose a Euclidean space spanned by a basis of topics that may
overlap, indicating that intersecting arguments could apply across different topics.
Indeed, it is the application of a nonorthogonal basis in their model that can
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Chapter 6. Belief and social networks

explain the emergence of an ideological phase, characterized by the polarization
with alignment observed in empirical data.

Recent advancements in psychology explore graph representations of an indi-
vidual’s belief system (32; 166). The exploration of different themes in philosophy
suggests that while the specific discussions and approaches may evolve, the fun-
damental human concerns like justice, ethics, and altruism remain constant over
time [(125)]. While individuals are mutable entities heavily influenced by context
and culture, ideas are more stable, making them more suitable as foundational
elements for the study of human behavior.

Several studies have shown that when a dynamical process is embedded in
a complex network, the distribution of connections between nodes significantly
influences the system’s behavior, leading to diverse outcomes. Although single-
layer networks effectively represent many systems, recently multilayer networks
have attracted attention in the study of complex systems, since they offer a more
nuanced representation of real-world systems.

Networks of networks, are a type of multilayer graphs that represent different
levels of complex interactions of a particular system. For instance, we can deepen
our understanding of neurons’ behavior by modelizing them as deep artificial neu-
ral networks, proposing a computational framework that simulates the behavior
of these neurons in a detailed and nuanced manner [(38)]. In these networks,
a neuron layer’s activity is looped back into the same layer or preceding ones,
allowing the network to combine new input with its past activities. It is also
known that the brain consists of various densely linked regions that operate as
units for specific tasks, and that are, in turn, interconnected forming a complex,
hierarchical network, known as the connectome. [(152)].

We find another example in Zitnik et al. (2017), where authors discuss the im-
portance and mechanics of protein-protein interactions within the larger context
of cellular and tissue-level organization [(181)]. In social networks individuals in-
teract and form various organizations contributing to higher-level networks such
as schools, enterprises, associations, cities and countries [(72)].

Kim et al. (2019) studied the interplay of intracellular and extra-cellular net-
works revealing that the statistical properties at the macro-level were affected by
the parameters set at the micro-level, but the influence did not work in the oppo-
site direction. However, when it came to the detailed dynamics of the networks,
the patterns were dominated by the macro-networks [(92; 48)].

Friedkin et al. (2016) use a matrix approach and the example of public opinion
on the Iraq War to demonstrate how belief systems operate under logical con-
straints. They show that belief connections, combined with social influence, can
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lead to a cascading effect, where a change in one belief may trigger a reevaluation
of related beliefs.

Ellinas et al. (2017) proposed a model incorporating peer pressure, social rank,
and internal cognitive coherence into the dynamics of belief adoption. They con-
sider interconnected networks of beliefs and individuals to explore their interplay
in organizational culture. [(45)]. Grounded in empirical data, their paper reveals
that an organization might appear cohesive in its culture even when composed
of individuals who are experiencing internal conflicts between their own beliefs
and those adopted through social conformity. It also found that social conformity
components—peer pressure and social rank—have varying degrees of influence at
different levels within the organization.

Van der Maas et al. (2020) implemented a hierarchical Ising opinion model
(HIOM) to explore the dynamics of polarization among individuals, testing it in
Watts-Strogatz and modular networks generated by the stochastic block model.
They associated the concept of temperature with the inverse of the attention indi-
viduals pay to their peers and employed a network of networks framework, where
individuals are represented by networks comprising beliefs, feelings, and behav-
iors. [(161)]. Finally, they suggest integrating a bounded confidence approach,
which they found to be effective in mitigating polarization.

The interpretations in the present work will be mainly focused on the social
application of networks, in which the internal level will account for a network
of beliefs interconnected in different ways, and the external network nodes will
represent people [(136; 3)]

6.2

Structural considerations

As in previous Chapters, we consider a social adjacency matrix, representing the
connections among individuals of a population, but here each individual is not
represented by a single node, but by a network that represents the belief system
of the agent. Each agent has an internal network of µ = {1, . . . , c} subnodes or
beliefs. Each belief has a label denoting a certain topic, which is connected to the
nearest neighbors’ beliefs with the same label, meaning that in a single interaction
(communication act) agents discuss a specific topic. Internally, all beliefs inside
an agent form a network with a certain topology. The complete structure can
be obtained by performing the cartesian product of the external (social) and the
internal (beliefs) adjacency matrices Aext�Aint (see Fig. 6.1).
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Chapter 6. Belief and social networks

Figure 6.1: Representation of four agents with a 4-node ring-shaped internal belief
topology and socially connected forming a star. Modified from [(139)].

For the social external network, we exclusively consider a fully connected
graph, while in the case of the internal structures, we explore three distinct net-
works to represent different individual belief systems (see Fig. 6.2).:

• Clique (fully connected): as a proxy for a richly interconnected belief system

• Ring-shaped: to exemplify sparse inner connections

• Star-like topology, denoting individuals with a dominant core belief sup-
ported by all other belief components

This chapter aims to investigate how these internal topologies influence the con-
sensus state of a population whose beliefs may align with one of the three orien-
tations characterized by our model. So far, this work has associated temperature
with social agitation, leading to a lack of opinion alignment among agents. In
the case of the internal network, temperature needs to be reinterpreted. The
mechanism by which an individual may tend to misalign their internal belief sys-
tem is cognitive dissonance, as described by Festinger (1957) [(56)]. Cognitive
dissonance is the psychological stress or discomfort experienced by individuals
when they simultaneously hold two or more contradictory beliefs, ideas, or val-
ues, perform an action that contradicts their beliefs, or are confronted with new
information that conflicts with existing beliefs, ideas, or values. This discomfort
prompts an internal drive to reduce the dissonance, either by changing beliefs,
justifying the dissonance by integrating new beliefs, or diminishing the signifi-
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6.2. Structural considerations

Figure 6.2: Illustration of the three network topologies used to model belief systems
with a number of internal beliefs c = 10.

cance of the conflicting belief. We will maintain fixed the number of beliefs and
the internal link weights, and focus on the change of belief state mechanism.

6.2.1 - Hamiltonian
The hamiltonian describing our system is:

H = − J

zext

c∑
µ=1

∑
〈i,j〉ext

Siµ · Sjµ −
J

zint

N∑
i=1

∑
〈µ,ν〉int

Siµ · Siν , (6.1)

where, zext is the external number of connections (N − 1) between agents; zint
corresponds to the average internal number of connections, which depends on
each internal topology; and the vectors are belief states, for instance, Sµi is belief
µ in agent i. The first term of the Hamiltonian extends over connected beliefs
in different agents, while the second term covers the internal connections of all
agents.

We calculate the contribution to the energy of each pair of connected beliefs
as the scalar product of their corresponding opinion vectors, summing all contri-
butions to compute the global energy (see Fig. 1.3). For simplicity, the positive
coupling constant J is set to one, but we normalize it by the average number of
connections in each term to maintain comparability between internal and external
contributions. Thus, the embedded dynamics ensure an equal relevance between
intra- and extra-modular links. Our goal is not to explore the relative importance
of external peer pressure versus internal cognitive dissonance, as investigated by
Rodriguez et al. [(136)], but to study the effects of the connection patterns in
the agents’ belief networks.
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6.3

Finite temperature behavior
In this section we examine how the order parameters of a particular belief change
with the temperature and the number of internal beliefs for each inner topology.
We choose 2 values for the neutrality parameter: α = 0, for which we expect a
second-order phase transition and α = 0.85, which is in the range of the first-
order transition for the fully connected graph. We aim to know how the critical
and tricritical points vary with the parameters of the system and the beliefs’
topology. Since for both the clique and the ring-like topology all connections
are symmetrical for all internal nodes, we will consider belief A, without loss
of generality. In the case of star-like minded individuals, we will consider both
A (the core belief) and B (one of the peripheral beliefs, which are topologically
equivalent).

6.3.1 - Analytical approximation
Here we extend the methodology applied in Chapter 2 to a broader context. We
use the Weiss mean-field approximation (MFA) to build the local hamiltonian for
a particular belief A inside a given agent, and calculate the expected value for
order parameters. This calculation now incorporates all possible combinations of
internal contributions given by this particular belief to the global energy:

〈s̄A〉 =
tr
{
s̄A exp

[
βs̄A (zJm̄)ext + βs̄A

(∑
µ Js̄µ

)
int

]}
tr
{

exp
[
βs̄A (zJm̄)ext + βs̄A

(∑
µ Js̄µ

)
int

]} , (6.2)

where (zJm̄)ext = zextJext
(
mA, αnA0

)
, and he sum over µ accounts for the inter-

nal contributions from all neighbors within the network, considering three possible
opinion states for belief A and its neighbors. Note that, since the external net-
work is fully-connected, we take zext = N − 1, and therefore Jext = N − 1 to
ensure the preservation of energy extensivity. In the case of the clique and the
ring, the sum in the second term of the exponential functions runs over the same
number of neighbors, c− 1, for any belief, thus one can take the common factor
(c− 1)Jint = 1.

Table 6.1 shows the magnetization approximations for internal networks rang-
ing from 2 to 5 beliefs. Internal energy contributions to belief A remain consistent
for ring agents, regardless of the total number of beliefs, since its number of inter-
nal neighbors is always two. However, the heterogeneous number of connections
for the star agents is not accounted in Equation 6.2, which yields to the same
results for clique than for star agents. Belief propagation could be used to take

100



6.3. Finite temperature behavior

into account that belief A is a hub in star agents, but this calculation is out of
the scope of this thesis.

6.3.2 - Order parameters versus temperature
Here we present results for the order parameters as a function of the temperature
for different numbers of internal beliefs. We compare MFA and MMC results
analyzing two values for the neutrality parameter: α = 0, which is below the
tricritical point obtained in Section 2.2, and α = 0.85, which is above.

Results for α = 0

When α = 0, all topologies exhibit a second-order phase transition for the number
of internal beliefs studied. As observed for ER graphs (see Chapter 3), the MFA
underestimates the critical temperature value, yet it qualitatively captures the
influence of additional beliefs on it for the clique and ring internal topologies, as
shown in Figure 6.3-a,b)).

The addition of a second belief results in a considerable increase in the critical
temperature ∆T (c1→ 2) compared to the single belief case analyzed in Chapter 2
(see Figure 6.3-a). The increment caused by adding a third belief ∆T (c2→ 3) is
smaller than ∆T (c1→ 2) for the triangle agents and slightly lower for the 3-node
open chain agents.

Further additions of beliefs do not affect the ring agents and all order pa-
rameter curves in Figure 6.3-b collapse, both for the MMC simulations and the
MFA. However, for c = 10 the magnetization exhibits larger fluctuations at low
temperature. This effect is due to the tendency of nodes in a circular topology
to form clusters separated by boundaries. Although these boundaries are des-
tined to annihilate when the number of beliefs is finite, the annihilation process
significantly lengthens as the number of nodes in the circle increases.

On the other hand, clique and star agents continue to increase their Tc when
adding more beliefs to each agent, although at different rates, as shown both in
Figure 6.3-a),c), and in Figure 6.4.

The behavior of peripheral belief B in star agents is different. Magnetization
curves for any number of beliefs c coincide at low temperatures, reflecting the fact
that peripheral beliefs have only one internal link to the central agent, regardless
of the size of the internal network. However, approaching the critical point, where
all correlation lengths are significant, the curves diverge to match the critical
temperature of belief A, and the system undergoes the transition as a whole.
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Chapter 6. Belief and social networks

Table 6.1: MFA Order Parameters for Different Cases

2 Beliefs

mA = 2 sinh(βmA)(2 cosh β + 1)
2 cosh(βmA)(2 cosh β + 1) + exp(α2βnA

0 )(exp(α2β) + 2)

nA
0 = exp(α2βnA

0 )(exp(α2β) + 2)
2 cosh(βmA)(2 cosh β + 1) + exp(α2βnA

0 )(exp(α2β) + 2)

Triangle (Ring)

mA = 2 sinh(βmA) [2 cosh(2β) + 4 cosh β + 3]
2 cosh(βmA)[2 cosh(2β) + 4 cosh β + 3] + exp(α2βnA

0 )(exp(2α2β) + 4 exp(α2β) + 4)

nA
0 = exp(α2βnA

0 )(exp(2α2β) + 4 exp(α2β) + 4)
2 cosh(βmA)[2 cosh(2β) + 4 cosh β + 3] + exp(α2βnA

0 )(exp(2α2β) + 4 exp(α2β) + 4)

Clique 4 Beliefs

mA = 2 sinh(βmA) [2 cosh(3β) + 6 cosh(2β) + 12 cosh β + 7]
Den4

nA
0 =

exp(α2βnA
0 )
[
exp
(
3α2β

)
+ 6 exp

(
2α2β

)
+ 12 exp

(
α2β
)

+ 8
]

Den4

Den4 = 2 cosh(βmA) [2 cosh(3β) + 6 cosh(2β) + 12 cosh β + 7] +

+ exp(α2βnA
0 )
[
exp
(
3α2β

)
+ 6 exp

(
2α2β

)
+ 12 exp

(
α2β
)

+ 8
]

Clique 5 Beliefs

mA = 2 sinh(βmA) [2 cosh(4β) + 8 cosh(3β) + 20 cosh(2β) + 64 cosh β + 19]
Den5

nA
0 =

2 exp(α2βnA
0 )
[
exp
(
4α2β

)
+ 4 exp

(
3α2β

)
+ 12 exp

(
2α2β

)
+ 16 exp

(
α2β
)

+ 8
]

Den5

Den5 = 2 cosh(βmA) [2 cosh(4β) + 8 cosh(3β) + 20 cosh(2β) + 64 cosh β + 19] +

+ 2 exp(α2βnA
0 )
[
exp
(
4α2β

)
+ 4 exp

(
3α2β

)
+ 12 exp

(
2α2β

)
+ 16 exp

(
α2β
)

+ 8
]
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6.3. Finite temperature behavior

Results for n0 at α = 0 are not relevant, as they relate solely to thermal
effects and are similar to those obtained in Section 2.2, but with the shifted
critical temperature for each case.

Figure 6.4 displays the critical temperature for α = 0 as a function of the
number of internal beliefs. The results were obtained using MMC simulations by
identifying the midpoint between the temperatures corresponding to the magne-
tization segment with the minimum slope.

The critical temperature for the clique increases monotonically with the num-
ber of internal beliefs within the interval c ∈ [4, 10] , though the increments dimin-
ish as c increases, presumably reaching a saturation point at or slightly beyond
c ≈ 10. In contrast, Tc for the star agents grows linearly as Tc = 0.04c + 1.06.
Peripheral beliefs act as a support to the core belief A, making star agents be-
have as "zealots" for α = 0, if the number of nodes in the internal network is large
enough. The case with c = 3, corresponding to a 3-beliefs open chain, deviates
from this linear pattern; in fact Tc(c = 3) for the star topology is slightly lower
than for the triangle, indicating that it is easier to destabilize consensus in the
3-beliefs open chain.

Results for α = 0.85

When all nodes have the same degree ki = z, which holds true for both ring and
clique agents, all beliefs share the same magnetization such that mµ = m and the
fraction of neutral beliefs n0µ = n0, for all µ ∈ {A,B,C, . . .}. Consequently, the
mean-field free-energy function L(m,n, β) ≡ (HMF − β−1SMF)/N simplifies to:

L (m,n, β) = −z2(m2 + α2n2) + zα2n

+ 1
β

[
n+m

2 ln n+m

2 + n−m
2 ln n−m2 + (1− n) ln(1− n)

]
(6.3)

By solving the equations presented in Table 6.1, both with and without the
constraint that m = 0, we can determine the free energy associated with both
minima. In doing so, we observe a discontinuity in the order parameters corre-
sponding to the lowest free energy, indicative of a first-order transition, for both
clique and ring agents regardless of the number of beliefs. The transition temper-
ature rises with the number of beliefs in the case of the clique. However, when
compared to the single-belief scenario, the first-order transition at α = 0.85 is
predicted to occur at a temperature that lies between which is found with MFA
for two beliefs and for the triangle. This discrepancy is again attributed to the
mean-field approximation’s underestimation of the critical temperature.

Monte Carlo results also indicate a jump to zero magnetization, more abrupt
than that observed for α = 0, occurring at a lower temperature T ≈ 1. On the
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Chapter 6. Belief and social networks

Figure 6.3: Magnetization curves for a particular belief as a function of temperature
for each internal topology and different numbers of internal beliefs. Results obtained
with MMC simulations for a system of N = 104 agents, neutrality parameter α = 0,
averaged over 100 repetitions with c · 104 MMC steps. Comparisons with MFA results
are shown for the clique and the ring.
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Figure 6.4: Critical temperature versus number of beliefs when α = 0 for the clique
(blue circles), the ring (red crosses), and the star-like (green dots) agent types. Results
obtained averaging 100 repetitions with systems of N = 104 agents.

other hand, atsimulations tend to get trapped in a local minimum corresponding
to neutral consensus, except for c = 2, which gets to the global minimum at an
extremist consensus. At high temperatures, yet below the first-order transition
threshold, the system initially trapped in neutral consensus can overcome the en-
ergy barrier separating it from the ground state, leading to a dynamical transition
towards polarized consensus. Generally, this dynamic transition becomes sharper
and happens at higher temperatures as the number of internal beliefs increases.

Transition temperature towards the disordered paramagnetic state in clique
agents increases with the number of internal beliefs similarly to whats is observed
for α = 0, suggesting a saturation point close to 1 around c ≈ 10. Likewise, the
temperature at which the dynamical shift from neutral to extremist consensus
occurs also grows with c, and probably approaches a saturation value. The tem-
perature rise from 4 to 5 beliefs i is comparable to that from 5 to 10 beliefs, yet the
precise saturation point for this transition temperature remains undetermined.

Ring agents exhibit the anticipated convergence of all results into the triangle
one, except for the dynamical transition, which occurs at a temperature 0.1 kB
units higher for all ring inner topologies from c = 4 onwards.

For star agents, MMC results present more variations compared to the behav-
ior at α = 0. Notably, the decay to zero magnetization now occurs at a constant
T = 1 for any number of beliefs, and it is particularly abrupt for c = 10. The
dynamical transition curves, occurring at identical temperatures for both the cen-
tral belief A and the peripheral belief B, solapate for the 3-node open chain and
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Figure 6.5: Magnetization curves for a particular belief as a function of temperature
for each internal topology, and a different number of internal beliefs. Results obtained
with MMC simulations for a system of N = 104 agents, with a neutrality parameter
α = 0.85, and averaged over 100 repetitions. The curves are compared with MFA results
for the clique and the ring topologies.
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the 4-node star. As c increases, the jump from neutral to extremist consensus
happens at higher temperatures, and, as in the case of the ring agents, results
suggest that this transition temperature may saturate at some c value.

6.4

Zero temperature behavior
At zero temperature, the system becomes trapped in a collection of metastable
states, the nature of which depends on the system’s parameters. For α = 0.85,
all beliefs reach the central state, leading to a global neutral consensus. However,
at α = 0, the system gets trapped in states with mixtures of extremist nodes,
akin to the behavior seen in Erdős-Rényi graphs (see Chapter 3). Clique and
star agents reach a steady state with two factions of agents who have reached
an internal agreement in opposite extremist opinions, characterized by internal
energy Eint = −(c − 1)/2. Once internally aligned, they cannot overcome the
energy barriers that would lead the dynamics to global polarized consensus. The
same behavior is observed for ring agents with a low number of internal beliefs
c. For these systems, which end up the simulation with all agents in internal
agreement, the distribution of magnetization for belief A is the same as for any
other belief and the entire system. Ring agents with larger c, on the other hand,
exhibit different behavior that requires extra analysis.

In Figure 6.6 We present the distributions for the global magnetization ob-
tained by conducting 2000 simulations for each topology with a different number
of internal beliefs allowing the system to evolve for c · 104 MMC steps.

The clique agents display a first peak around |m| = 0 followed by subsequent
peaks of decreasing heights. As c increases, these later maxima shift toward lower
magnetization values, suggesting that, with a sufficiently large number of beliefs,
only the peak at |m| = 0 will persist, impliying an outcome with two opposite
factions of roughly the same size in each extreme opinion.

Interestingly, for c = 7 the lowest peak is not located at |m| = 0, but at a
slightly higher value; moreover, star agents also exhibit a peak in the magnetiza-
tion distribution at |m| = 0 for c = 4 and c = 10, but not for c = 7. This pattern
may be attributed to the fact that 7 is an odd number while 4 and 10 are even,
suggesting that this detail is a minor deviation that does not significantly impact
the broader interpretation of the system’s macroscopic behavior.

Ring agents have a more complicated behavior. Since, the critical temperature
for the one-dimensional chain is zero [(54)], ring agents do not reach internal
consensus for α = 0 unless the number of beliefs is very small. It’s important to
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Figure 6.6: Histograms of the magnetization of belief A for systems of agents with
c = 4, 7, 10 beliefs for (a) clique, (b) ring, and (c) star-like agent types. Results obtained
from 104 repetitions for sytems of N = 104 agents with α = 0, at zero temperature.
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note that due to the normalization of internal and external coupling constants,
this behavior is not attributable to the lesser number of connections per belief
per se, but to the connection pattern of internal links.

For c = 4 (Figure 6.6a), their behavior closely resembles that of the clique
agents, with the highest peak at |mA| = 0 and two subsequent peaks at larger
magnetization values. The heights of these maxima are roughly the same as those
of the 4-node clique agents, but the magnetization values corresponding to the
second and third peaks are larger for the ring agents.

For c = 7 and 10, a significant proportion of ring agents conclude the sim-
ulation in a situation of cognitive dissonance. The internal energy distributions
display two peaks (see Figure 6.7a)): one at the minimum corresponding to in-
ternal coherence Eint = −c/2, and another at Eint = 2 − c/2, indicative of two
internal clusters of opposing opinions separated by two domain boundaries, each
contributing with an energy cost of 1. The evolution of rings towards internal
agreement takes place via a domain-growth process (known as coarsening in sta-
tistical physics), in which the walls between domains of different signs perform a
random walk. For c = 7, we observe that the lower energy peak is more prominent
than the higher energy one, whereas for c = 10, they are of equal magnitude. It
is plausible that with an increase in the number of internal beliefs, the peak at
Eint = −c/2 may vanish, and new peaks at higher energies may emerge due to
the formation of more than two belief domains within the rings.

In panel b) of Figure 6.7, we examine the agents corresponding to the first
peak by displaying the magnetization distribution for belief A, similar to what was
done in Figure 6.6, but counting only those agents that have achieved internal
agreement. The magnetization peaks appear noisier compared to those from
systems where all agents reach internal coherence. With an increase in c, the
magnetization peaks for ring agents approach |m| = 1, suggesting their increasing
likelihood of reaching a global extremist consensus as the number of internal
beliefs grows. Same as for clique and star agents, the peak at zero magnetization
does not emerge for c = 7, yet it does for c = 4, 10.

In panel c) of Figure 6.7, the distribution of the internal number of beliefs in
the σi = +1 state is presented (the distribution for the -1 state is identical due to
the model’s symmetry). The pronounced peaks at 0 and c correspond to agents
in internal agreement in both opposite states, indicating that most agents achieve
a coherent internal state. Intermediate peaks are associated with agents having
two internal clusters in opposing states, and their heights decrease monotonically
as they approach n1 = c/2. Given that the number of possible configurations
compatible with two equally sized belief clusters is larger than for clusters of dif-
ferent sizes, the lower central maxima are not due to combinatorial probabilities.
Instead, this effect arises because agents that achieve internal coherence influ-
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Figure 6.7: Distribution of internal parameters per agent for ring agents at temper-
ature T = 0, neutrality parameter α = 0, and number of internal beliefs c = 7, 10.
In panel (a) distribution probability fo the internal energy, in panel (b) distribution of
magnetization for the agents that reach internal agreement and in panel (c) distribution
of number of internal beliefs in state +1. Results obtained for systems of N = 104

agents and 2000 simulations with different initial conditions.
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ence other agents to adopt higher internal magnetizations. The distribution of
extremist beliefs inside each agent becomes flatter as c increases because the time
required for internal consensus in the ring grows with the number of nodes, thus
we expect that it tends to a uniform distribution for larger c. There are no peaks
at n1 = 1 or n1 = −1 because such values would correspond to a single internal
belief in a state opposite to the rest of the beliefs within that agent, which would
energetically favor a change in the state of belief B.

It is worth remarking that all distributions in Figure 6.7 remain unchanged
even when the system evolves for a number of MMC steps ten times larger; the
states reached by ring agents with a large number of internal beliefs are stable.
The reason is that once a particular belief—such as belief B—achieves a majority
of positive state across all agents, those agents with neighboring beliefs A and C
also in the +1 state will not accept any change for belief B, even if the rest of
their internal beliefs are in the negative state. Consequently, the configuration
becomes frozen, as happens with the agents that achieve internal coherence.

Star agents exhibit a series of peaks similar to those of the clique agents;
however, unlike cliques, their maxima do not consistently converge toward |m| = 0
when c increases, nor is the tallest peak the one with the lowest magnetization
value. The peaks for star agents are found within the range |m| ∈ [0, 0.5] and
maintain a similar profile across all studied numbers of beliefs, being the only
remarkable difference is the absence of a peak at zero magnetization for c = 7.
Star agents are more likely than cliques to reach a steady state in a polarized,
bipartite scenario with a dominant majority of one of the two extremist factions,
rather than in a situation with two equally sized opposing groups.

6.5

Mixed topologies
We have seen that agents exhibit diverse behaviors depending on the topology
connecting their internal beliefs. A natural question arises: do agents with a spe-
cific inner topology maintain consistent behavior when interacting with different
types of agents? To address this, we have conducted Monte Carlo simulations,
mixing two types of agents in equal proportions. Instead of the order parameter
for a particular belief, we focus on the internal order parameters of the agents.
We present results at temperatures near the transitions, where agents exhibit
more behavioral diversity, and we choose the largest number of internal beliefs
considered in previous sections, c = 10, which presents the greater differences
among internal topologies.
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6.5.1 - Second-order transition
For α = 0 (Figure 6.8-top row) we present results for T = 1.2, which is close
to the second-order transition. Distributions are generally broad, presenting all
internal magnetization values, with medians at 4 or 5, with star agents exhibiting
distributions more sharply peaked around the median. At α = 0, the distribu-
tion of neutral internal beliefs is only due to thermal fluctuations and remains
approximately the same across all topologies, regardless of whether agents are
isolated or mixed with another type. The median of N0int is 3 (2 for stars mixed
with rings), which is roughly c/3, the value expected as T →∞.

We observe that when mixed with ring agents (blue-shaded plot), clique agents
display slightly lower internal magnetizations compared to when they are alone
(black line), indicating that ring agents lead to equalize the number of internal
beliefs in states +1 and −1 inside the cliques. Taking into account that N0int is
around c/3, this distribution of internal beliefs for clique agents closer to having
one third of their beliefs in each possible state of the model, indicative of maximal
cognitive dissonance. By contrast, star agents (pink-shaded plot) lead to higher
internal magnetization, promoting greater internal coherence and polarization
towards one of the extreme opinions in cliques.

Rings, with their tendency to form internal clusters of opposite magnetiza-
tions of similar size, exhibit a distribution skewed towards low internal mag-
netization when isolated. Presumably, the neutral beliefs are situated at the
boundaries between the extremist clusters, facilitating their separation, since the
energy cost of a chain segment {+1 · · ·+ 1, 0,−1 · · · − 1} is equivalent to that
of {+1 · · ·+ 1,−1 · · · − 1}. Both clique and star agents shift the rings towards
higherMint (although star agents have a stronger effect), pushing the rings closer
to a state of maximal cognitive dissonance.

Star agents are the only ones that do not experience the influence of being
mixed with another agent type. Their "zealot" behavior at α = 0 remains evident
in mixed simulations as the shape of their internal order parameter distribution
stays consistent whether they are alone or mixed with cliques or rings. They
maintain Mint = 5, and the distribution is slightly skewed towards higher magne-
tizations, indicating a stronger internal preference for one of the extremist states.

6.5.2 - First-order and Dynamical transitions
For α = 0.85 (Figure 6.8-bottom row), we chose a temperature T = 0.63 corre-
sponding to the change in the basins of attraction. This represents a dynamical,
not an equilibrium, effect. Here, we observe distributions that are more skewed
towards one of the two limits: 0 or 10. The values for N0int are no longer merely
thermal fluctuations, but complement Mint, meaning that when Mint = 0, it is
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Figure 6.8: Distribution of the absolute values of internal magnetization (first column)
and the number of internal neutral beliefs (second column) for agents of each topology
when mixed with another type in a 50% proportion. Values for internal magnetization
are represented in blue (and green for neutral beliefs) when agents were mixed with the
first type listed in parentheses beneath them, and in pink (and orange for neutral beliefs)
when mixed with the second type. Lines indicate the medians. Results were obtained
from 104 repetitions with systems of N = 104 agents at a temperature of T = 1.2 and
neutrality parameter α = 0 (top row), and at T = 0.63 and α = 0.85 (bottom row).
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not due to an equal number of opposite beliefs, but because there is neutral in-
ternal agreement. In this scenario, rings, rather than stars, are the dominant
structure.

When cliques are alone, they display an almost flat distribution for both order
parameters, indicating that any number of beliefs from 0 to 10 are equally likely
to be in any of the three possible states. However, when mixed with rings, they
become entirely extremist, with Mint close to c = 10 and N0int around zero. In
fact, they adopt the same distribution as the rings alone. The opposite effect is
observed when cliques are mixed with stars; here, cliques assume the same order
parameter distributions as the stars alone, characterized by a median N0int of 7
and a low value for Mint.

As mentioned before, rings, characterized by high internal magnetization with
a median equal to c = 10 and a median of zero for internal neutral beliefs, are not
affected by mixing with cliques or stars. Their system maintains a ferromagnetic
global phase, corresponding to the ground state of the system, despite the high
value of the neutrality parameter and any perturbations caused by mixing with
other agents. This stability makes them a catalyst for causing other types to
converge towards the ground extremist global minima.

Star agents, when alone, have low internal magnetization values, with a me-
dian of 1, and are mostly neutral. Mixing them with clique agents does not alter
their internal order parameter distributions; however, as previously mentioned,
rings pull them towards extremism, completely changing their behavior.

6.6

Conclusions
The networks discussed in this chapter can be seen as a special case of graphs
with well-defined community structures. The interpretability of the modular
structure at two operational levels is valuable from a qualitative perspective and
can potentially be extended to other multilevel systems. Despite these graphs
being non-trivial, the selection of simple symmetrical structures for the internal
and external networks allows for an analytical analysis of the system.

When the neutrality parameter α is low, in the region of the second-order
transition, adding more belief nodes to each agent generally increases the critical
temperature. This increase in Tc may reach saturation at an upper bound number
of beliefs, depending on the topology of the internal belief network. Furthermore,
additional beliefs complicate the energy landscape, steering the system dynamics
toward metastable states at low temperatures.
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With high α, on the other hand, central agents are not merely undecided
individuals but play a significant role in the opinion-spreading process. When
the neutrality parameter exceeds the tricritical point for one internal belief, all
topologies undergo a first-order transition at a temperature that depends solely
on α, except for 2-belief and triangle agents whose critical temperature is slightly
lower. Furthermore, all systems exhibit neutral consensus as a dynamic attractor
at low temperatures, but they transition to global energy minimum corresponding
to the extremist consensus at a given temperature, prior to the first-order tran-
sition. This dynamical transition temperature is influenced by both the internal
topology and the number of beliefs.

Mixing agents with different internal topologies in the same simulation sig-
nificantly impacts their behavior. Agents far from a transition point are more
likely to retain their behavior when mixed with agents closer to their critical
temperature. These stable agents may influence the behavior of the other type,
pulling it closer to their own. Overall, when mixing at α = 0.85, close to the
temperature corresponding to the change in dynamical basins of attraction, the
impact is more significant than when close to the second-order phase transition at
α = 0. In general, we expect that the phenomena related to mixing agent types
strongly depend on the selected temperature and neutrality parameter, further
exploration is necessary to fully understand how these parameters influence each
system’s behavior.

In clique agents, internal all beliefs support each other. With increasing c,
the order parameters approach a saturated regime where agents act as a supern-
ode. Their beliefs are tightly coherent, functioning as a single unit, leading to a
extremist bipartisan situation at zero temperature and low α.

When in their equilibrium state, rings with any number of internal beliefs are
effectively equivalent to triangles. However, at low temperatures, α = 0 and large
c values, they exhibit a more complex behavior characterized by local minima
and internal cognitive dissonance. This difficulty in reaching internal consensus
quickly enhances the influence of peer pressure and pushes the system towards a
global polarized consensus. Therefore, when α = 0, ring agents are most likely
to reach high levels of global extremist consensus at T = 0, but at the expense of
maintaining a subset of agents in a state of internal cognitive dissonance.

Star agents, with a large enough number of peripheral beliefs supporting their
core beliefs, act as "zealots" and maintain a global extremist consensus phase
that is difficult to destabilize. Even when mixed with other agent types near the
transition temperature, they remain uninfluenced by their presence, retaining the
same internal order parameters as if isolated. However, this is only true for low α.
As neutral beliefs gain strength, star agents undergo a first-order phase transition
just at the same temperature as cliques or rings. Moreover, during the dynamic
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shift from neutral to extremist consensus, it is the star agents that are influenced
by the rings, which dominate the dynamics when mixed with other types in this
parameter region.

Besides the possible social interpretation of this study, its results are also
significant due to their novelty in the realm of Ising-based models on multilayer
networks. This area of study has been considered in a few previous works [(76;
85; 29; 95; 179)], yet the existing body of literature is still limited. It could
be interesting to extend this work to include other structures for the external
network, such as scale-free or modular graphs, and examine their impact on the
phase diagram and the dynamical attractors of the system.

To summarize, the network of networks multilayer approach is still in its initial
phase of development and holds great potential for application across various
fields, ranging from biological to technical. Incorporating asymmetric, weighted,
or even complex adjacency matrices and embedding other dynamics could lead
to interesting findings with wide applicability.
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CHAPTER 7
Conclusions and outlook

This final chapter provides an overview of the research presented in this thesis
and the key findings from all chapters, highlighting some open questions that

would require further investigation. Structurally, the chapter is segmented into
three parts. The initial two sections maintain the organization of the thesis’s
main content, with discussions on Chapters 2 to 4 grouped together, followed by
an analysis of Chapters 5 and 6. It concludes with a general summary that closes
the thesis.

7.1

Remarks on Single Layer topologies

Connections are at the core of complex systems, and humans are perhaps
some of the most elusive agents to model. Yet, it can be advantageous for

society to understand why and how relationships shape our ideas both individu-
ally and collectively. When designing models, we aim to capture some relevant
aspects of human behavior to understand a problem, so it seems natural that we
first focus on extracting conclusions about the model’s features. However, con-
sidering its interplay with temporal or structural features is a logical extension
that exploits the model in a more realistic context.

An extensive topological study of an opinion model like the one considered in
this work is useful from various perspectives. It ranges from isolating the essential
structural properties that contribute to opinion spreading and consensus forma-
tion to extending the model for a multiscale description of social phenomena.

The model has the potential to describe a large number of social situations.
Its rich energy landscape, especially when the topology is non-trivial, implies mul-
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tiple dynamic attractors that depend on both the connection patterns and the
system’s parameters. This allows for the identification of key aspects that enhance
the probability of observing a specific social phenomenon, such as the formation
of a central consensus—even when extremist agents have stronger convictions,
represented by larger contributions to the system’s energy—or the fragmenta-
tion of the population into opinion clusters that can vary in size even within
the same topology, depending on the temperature or neutrality parameter val-
ues. For instance, at low temperatures—where agents pay significant attention to
their neighbors’ opinions over other factors—individuals in different communities
belong to separate opinion groups. However, they can reach a global agreement
with an increase in temperature.

The mean-field analysis of the system’s transitions demonstrates that the
model can reproduce various scenarios with social interpretability under specific
parameter conditions. The results provide insights into how a neutral faction be-
haves and how temperature influences the system in different ways, depending on
the level of neutral engagement in opinion transmission. Low neutral conviction
leads to continuous transitions from extremist consensus to disorder, driven by
temperature. Surprisingly, central consensus can become a dynamics attractor,
even when neutral convictions are lower than those held by extremists, highlight-
ing the significant role a neutral party can play. These intermediate levels of
neutral conviction are associated with jumps from neutral consensus to extrem-
ist consensus and then to disorder again, with the coexistence of ordered and
disordered phases.

A three-state opinion spreading dynamics on a network can be metaphorically
visualized as three fluids moving through a system of pipes and cavities. In this
analogy, communities are akin to cavities where fluids (opinions) tend to accu-
mulate due to larger cross-sectional areas, while inter-community links are repre-
sented by narrower pipes. Both temperature and neutrality parameters modify
the ’viscosity’ of these fluids, affecting how easily each opinion state flows; tem-
perature impacts all states uniformly, whereas neutrality specifically facilitates
the flow of neutral opinions over extremist ones. Although this analogy simpli-
fies complex interactions and neglects the conservation of matter—unless sinks
and sources are introduced at each node—it provides a heuristic model to con-
ceptualize and potentially explore new questions regarding dynamic processes on
networks, including the investigation of structural and entropic barriers [(160)].
It is important to note that this analogy serves purely as a conceptual tool and
should not be interpreted as a strict physical representation of the dynamics of
opinions or fluids.

When applied to modular and real networks, our model primarily serves as a
tool to understand how opinion groups emerge as a consequence of structure, tem-
perature, and dynamics. It also acts secondarily as a multiresolution community
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detection method, which could be extended to include signed and/or weighted
networks, potentially offering further insights.

Regarding real-world applications, Twitter networks represent just an initial
approach to analyzing social structures. A more comprehensive analysis using
additional real datasets could yield further insights. Moreover, comparing this
model with other opinion models on the same real networks could provide a
complementary cross-view analysis of model-topology interactions, further eluci-
dating how model construction and topological effects interplay. When it comes
to calibrating the model with real data, it is advantageous that the neutrality
parameter models relative conviction values, rather than absolutes ones.

7.2

Remarks on temporal and multilayer networks

Coevolving opinion states and network links offer a fresh reinterpretation
of the model. With the addition of self-propulsion, the model enters into

a non-equilibrium regime, which presents more complex analytical challenges.
Nevertheless, the interplay between neighborhood selection and opinion formation
has a significant influence on opinion dynamics and remains a topic of interest in
the sociophysics literature [(96; 109)].

Movement patterns can disrupt established opinion groups, going beyond the
static community structure of a network and introducing a temporal dimension
to the analysis. Consequently, consensus time becomes more significant, demon-
strating that resonating patterns between opinion changes and link reconfigura-
tion rates can significantly accelerate the path to consensus.

When the model combines selective rewiring processes with persistence in like-
minded neighborhoods, it can achieve a local consensus outcome, characterized by
groups of agents who share the same opinion but differ from one group to another.
In these scenarios, polarization exhibits non-monotonic behaviors, influenced both
by the agents’ velocity in the physical plane and the conviction of neutral agents.
Generally, polarized clusters, when formed, are larger than neutral ones; however,
it is the neutral consensus, the outcome that is achieved more quickly.

The network of networks approach represents the most state-of-the-art project
of this thesis; therefore, it involves significant simplifications in both external and
internal network structures. However, we expect it to serve as a tool for under-
standing nested complex networks that may mimic multiscale system structures.
Coarse-graining is an important step in modeling, yet fine-tuning specific sys-
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tem characteristics can help to deepen into different nuances of complex systems.
Effectively managing this balance is essential in this context.

Network representations and interpretations of belief systems are a current
research line in psychology, and as a result, the availability of data for studying
such networks is steadily increasing. It could be interesting to adapt traditional
psychological questionnaires and fine-tune them for a more accurate testing of
the model.

The multilayer approach offers a versatile framework for analyzing social-
belief systems from both bottom-up and top-down perspectives. In a bottom-
up approach, researchers can examine the topology of belief networks within
population samples to infer the potential impact of their topology on the social
dynamics and collective behavior of the aforementioned population. On the other
hand, the top-down approach could be used to understand psychological states
such as cognitive dissonance through a social analysis of an individual’s network
of social contacts.

7.3

General concluding remarks

This thesis represents a foundational exploration into the topological aspects
of a discrete opinion model, rather than an exhaustive study. Future research

may broaden the scope of the model to include weighted networks, signed net-
works, or networks with complex weights (i.e [aij ] ∈ C), hinting the next steps in
this line of research.

Like covering a vast sphere with small patches, sociophysics literature strives
to overlap adequately to afford a comprehensive understanding of the surface,
thus building a more general framework and integrating insights from each study.

In decision-making processes, the ability to see the bigger picture can be
paramount. A formal, methodical understanding of the interplay across multi-
ple social mechanisms is crucial for achieving meaningful results. These studies
stand out for their ability to condense information and results into a format
that is manageable and broadens the global perspective. Deliberative processes
across political contexts, cooperative enterprises, or neighborhood communities
can benefit from the insights derived from these analyses.
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APPENDIX A

Algorithms

Here we present a compilation of all algorithms used to generate simulation
data used in this thesis.
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Algorithm 1 Calculate correlations
Require: multiple initial set of opinions {Si}initial and the adjacency matrix of
the embedding network Aij . Number of repetitions Nreps

Ensure: a correlation matrix Cij that contains the number of times a pair of
nodes has the same final opinion in the steady state when running a Metropolis
algorithm Nreps times

set Ĉij = 0 ∀i, i
set rep = 0
repeat

set initial opinion {Si}initial uniformly at random
call a Metropolis algorithm
define correlation value for each pair of nodes
for all Si,Sj ∈ {Si}final with i, j ∈ 1, ..., N do

if Si = Sj then
Ĉij ← Ĉij + 1

else
Ĉij ← Ĉij − 1

end if
end for
rep← rep+ 1

until rep = Nreps
return Ĉij/Nreps as Cij correlation matrix

Algorithm 2 Sorting links
Require: Cij correlation matrix
Ensure: a correlation matrix Cij that contains in the secondary diagonal the

pairs of nodes that always share the same opinion in the steady state, regardless
of the initial set of opinions. Rows and columns are sorted in such way that
the structure of the network can be inferred from its visual representation

set pivot = Cij dimension
sort from lowest to highest correlation value Cpivot,node all nodes from 1 to
pivot
repeat

set the new pivot
for all i ∈ Cpivot,i do

if Cpivot,i = 1 then
pivot← i− 1

end if
end for

until pivot = 1
return Cij sorted correlation matrix126



A.0.1 - Mobility pseudocode

Algorithm 3 Perform an agent-based simulation using the three-state opinion
model and a random walk
Require: Initial set of opinions {Si}initial and initial set of positions {xi}initial
The number of Monte Carlo steps Nsteps. A lower bound tol for the average
velocity v

Ensure: Getting to one of the attractors of the dynamics, given a sufficiently
large Nsteps

set step = 0
repeat

set initial opinion {Si}initial uniformly at random
set initial positions {xi}initial uniformly at random
update agents positions following a random walk with velocity vi for each

agent i, given by each variant of the model
call a Metropolis−Hastings algorithm
if Si = +1 or Si = 0 or Si = −1 then

global consensus = True
Break

else
if 〈vi〉 < tol then

local consensus = True
Break

end if
end if

until step = Nsteps
return {Si}final set of final opinion states and number of steps when the
simulation stops
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APPENDIX B
Bounded Confidence Model

The bounded confidence model represents a widely adopted framework for
modeling opinion dynamics wherein actors have a continuous-valued opinion

(O) and interact and approach their positions in the opinion space only if their
opinions are within a specified confidence threshold. Here, we propose a frame-
work where the confidence bound is determined by a decreasing function of their
emotional arousal, an additional independent variable distinct from the opinion
value. Additionally, our framework accounts for agents’ ability to broadcast mes-
sages, with interactions influencing the timing of each other’s message emissions.
Our findings underscore the significant role of synchronization in shaping consen-
sus formation. Furthermore, we demonstrate that variable confidence intervals
alter the impact of step length when navigating the opinion space, leading to devi-
ations from observations in the traditional Deffuant model [(41; 40; 170; 143; 14)].

B.1

Introduction
Our model is designed to simulate deliberative spaces, involving agents capable
of potential interactions without any specific underlying network topology influ-
encing their interaction patterns, which are solely conditioned by the confidence
interval. In practice this can involve a joint interpretation of the stroboscopic
time and the step longitude, accounting for the average agent displacement after
a round of interactions. Scenarios represented by the model can range from a
debating chamber, representing a deliberation that takes place over a period of
hours with relatively minor displacements between interactions, to discussions ex-
tended over a longer period (e.g., virtual discussions spanning months), allowing
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ample time for interactions among all participants. The latter situation could be
effectively modeled by employing larger alpha values.

We study two different population sizes N = 200 and N = 1000 living in the
same O-EA square with L = 1. Larger initial agent density implies increased
initial opinion diversity and reduced opinion distance among neighbor agents
in the initial state. Since agents are closer they can mediate interactions more
easily, however, this scenario might not be very realistic. There are several reasons
why the initial distribution of opinions may not be uniform across the opinion
space; instead, it might be concentrated around specific areas influenced by past
experiences, culture, and other shared traits among individuals. Hence, lower
densities may represent not just a smaller number of individuals, but rather a
coarse-graining of a larger population initially spread across N positions in the
O-EA plane.

We investigate several limit cases (see Table B.1, which enable us to establish
connections between our model and previous studies in the field. By employing
geometrical reasoning, we derive analytical approximations for the number of final
clusters in the synchronized case.

B.2

The Model
We consider a population of N integrate-and-fire oscillators, which are initially
uniformly and randomly distributed on an O-EA plane represented in Fig. B.1.
Similar to the classical bounded confidence model, opinion is treated as a continu-
ous variable ranging between the two extremes of the x-axis, which, for simplicity
and without loss of generality, are set to 0 and 1. We assign to each agent a
confidence bound that determines the maximum distance along the opinion axis
within which they react to messages from an emitter. Emotional arousal, a con-
tinuous variable, also ranging from 0 to 1 and represented on the y-axis, governs
the width of each agent’s confidence bound through the following relation:

di = 2d · (1− EAi), (B.1)

where d is the basal confidence bound of the model that represents the confidence
bound of an agent with EA = 0. The bounded confidence interval is considered
open, hence an agent with EA = 1 behaves as a zealot and never reacts to a
message, even if the emitter’s opinion is exactly the same. Each oscillator is
assigned an initial internal phase φi, uniformly distributed at random between 0
and 1, except for the pairwise and the synchronized limit cases (see Table B.1).
The phases increase uniformly with a period T until reaching a maximum value
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Table B.1: Table to summarize the variants of the model.

Variants of
the model

Internal
phases

Time step

A. Pairwise Agents have no
internal phases

Two agents, one emitter and one
receiver, are randomly selected.
The receiver moves towards the
emitter if they are within the
receiver’s interaction area.

B. Sequential Initial random
phases
φi ∈ [0, 1].

ε = 0 Sequential firing in a
consistent decreasing phase order.

C. Broadcasted
with local
synchronization

Initial random
phases
φi ∈ [0, 1].

ε 6= 0 Firing in an order dictated by
decreasing phases. Phases increase
upon message reception causing
message cascades and leading to
progressive cluster synchronization.

D. Fully
synchronized

Initial phases
φi = 1 ∀i.

All agents firing at once since the
beginning.

of 1, at which point a firing (communication) event occurs, and the phase is reset
to zero. During a firing event, an oscillator influences other agents within its
confidence area (see Fig. B.1-a) multiplying their phases by a factor (1 + ε).
This mechanism induces local synchronization, which can lead to multiple agents
emitting messages simultaneously, known as a cascade of messages. Once a pair
of oscillators achieve the same phase, they remain synchronized until the end of
the simulation. Following phase updating and firing events, all oscillators move
towards the barycenter formed by the n emitters located within their confidence
bound, following the equation below:

Oj(t+ 1) = Oj(t) +min(α/dCj , 1)
∑n
i=1(Oi −Oj)
n+ 1 , (B.2)

EAj(t+ 1) = EAj(t) +min(α/dCj , 1)
∑n
i=1(EAi − EAj)

n+ 1 ,

where dCj is the distance between the jth oscillator and the barycenter
formed by the n emitters inside their confidence area. The system evolves until
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Figure B.1: (Left) Confidence area: the region within an emitter must be located for
a receiver at a given opinion position Oj to listen to their message. (Right) Affectation
area: the region within which receivers will be affected by emitters at a given opinion
position Oi.

all the interacting oscillators collapse into single points in the O-EA plane. At
the end of the simulation, all agents belonging to the same opinion group fire
synchronously for ε > 0. We define this firing cycle as our time unit, referred
to as a stroboscopic cycle. In the case of pairwise interaction, where there is no
reference agent, we define the unit time as the number of firing events divided by
the system size, enabling comparison with other scenarios. See Appendix B.5.1
for more details about the dynamics implementation.

In line with previous studies on the bounded confidence model, our primary
focus is to investigate the formation of opinion groups, specifically assessing the
number of opinion groups obtained at the end of the simulation, with a particular
interest in consensus and bipartisanship. We define an opinion group as a sub-
group of agents that are connected by interactions, where an agent i is considered
to interact with or be linked to agent j if agent i moves when agent j emits a
message. Due to the variation in confidence interval widths resulting from differ-
ent levels of emotional arousal, the resulting interaction network is directed, as
shown in Fig. B.1. Therefore, we define an opinion group as a weakly connected
component of this directed interaction network.

In certain cases, small groups that separate from the main cluster may appear
for certain parameter values. These small groups, referred to as "wings" in (41),
are excluded from the statistical analysis when counting the final number of
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opinion clusters, unless otherwise specified. To be included in the counting, an
opinion group must be larger than 5% of the size of the largest cluster.

It is worth noting that in our model, opinion groups can break but they
cannot merge. All interactions are attractive, but by definition, two separated
opinion clusters cannot interact and, as a result, they cannot attract each other
to merge. Any agent that could potentially mediate the interaction between
the opinion groups would necessarily be connected to both groups, resulting in
a single weakly connected component instead of two. An exception occurs in
Section B.3.3 where we take into account strongly connected components, which
may potentially merge.

Whenever the final outcome is not consensus, we pay close attention to the
polarization of the system, with a particular focus on the case of bipartisanship.
The measure of polarization used in this study follows the definition provided by
Esteban et al. in (49):

P (π,O) = K
n∑
i=1

n∑
j=1

π1+β
i πj |Oi −Oj |, (B.3)

where the summation is carried out over the n final opinion groups. Here, K
represents a normalization constant that is calculated based on the most polarized
situation possible, which corresponds to two clusters of size N/2 each, located at
the extremes of the opinion segment. The exponent β is numerically determined
in (49) and has a value of 1.6, therefore K = N(N/2)2.6

B.3

Results and Discussion

B.3.1 - Trajectories
We aim to investigate the impact of the different control parameters on the num-
ber of opinion clusters that emerge in the stationary state. Due to the model’s
complex behavior and the non-trivial interplay between these parameters, our ob-
jective is to demonstrate how the step length α, and the synchronization factor ε,
influence the system’s behavior in a particular simulation that leads to consensus.
To ensure consensus is reached, we set a sufficiently large value for the confidence
interval, d = 0.8 and we assign random initial positions to N = 200 agents, veri-
fying that consensus is achieved in all explored cases. Under these conditions, we
track the trajectory of a reference agent for four different combinations of α and
ε, with both small and large values for each parameter (see Fig. B.2). Each dot
represents a displacement associated with a firing event, including any resulting
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cascades. Our observations reveal distinct trajectory lines and equilibrium points
at which the system reaches consensus.

The red line, corresponding to low values of both α and ε, exhibits an almost
vertical displacement in the initial movements. The red agent increases their
emotional arousal, and after a while, they simultaneously start shifting their
opinion toward the left extreme of the opinion space. When the reference agent
reaches the highest point in their trajectory, they suddenly changes the movement
direction for both axes, approaching directly to the consensus point at O = 0.43
and EA = 0.69. The movement of the red agent can be explained by the fact
that dense regions attract agents from less populated areas (77). In fact, the red
agent does not move directly upwards, but rather in a random fashion during a
few initial displacements, since the density of agents is still homogeneous. It is
only after these initial firing events, when the average emotional arousal (EA)
has increased due to the asymmetry in connections that favors the reception of
messages from agents in the upper part of the opinion space, that the movement
becomes steadily upward. The low synchronization factor contributes to the
vertical movement since the emission is almost sequential at the beginning,
therefore the red agent cannot potentially receive several simultaneous messages
from the bulk of central agents that would pull them towards the center, as is
the case when ε is larger (blue agent). The drift towards the left is attributed
to a small group of agents located in the upper left corner of the opinion space,
acting as "zealots". These "zealots" have such a narrow interaction band that
they do not receive messages from the rest of the agents. However, once the
reference agent’s band becomes narrow enough to stop receiving messages from
the "zealots", they start moving toward the rest of the group and eventually
collapse at the consensus point. The group of "zealots" in the upper left corner
ends up separated from the large consensus group, but they represent a very
small percentage of the population and are classified as a wing.

The blue line, corresponding to small α and large ε, exhibits a behavior similar
to the red line in the first few movements when the synchronization factor has
not yet significantly affected the system. However, in these initial movements,
synchronization allows the system to pull the "zealots" who formed the wing in
the previous scenario and connect them to the larger group. Consequently, the
consensus is achieved without wings, resulting in a reduction in the equilibration
time, lower final emotional arousal, and a final opinion closer to the center at
O = 0.5.

Trajectories for a large value of the step parameter α are represented by the
green and purple lines, corresponding to a small and a large synchronization fac-
tor ε, respectively. Both exhibit similar behavior and achieve consensus near the
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Figure B.2: Examples of one-agent trajectories for different step lengths α and synchro-
nization factors ε in the plane formed by the opinion axis (vertical) and the emotional
arousal axis (horizontal) for systems consisting of N = 100 agents with basal confidence
bound d = 0.5.
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center of the opinion space in just a few iterations. Moreover, no wings were ob-
served in these simulations. The green trajectory shows more frequent changes in
direction due to the sequential emission characteristic of low ε values. In contrast,
the purple line represents a scenario where the reference agent is simultaneously
influenced by multiple synchronized emitters. When multiple emitters collec-
tively attract receivers to their barycenter instead of pulling from different points
in each firing event, the resulting overall displacement appears smoother, having
fewer changes of direction.

It is important to highlight that all outcomes shown in Fig. B.2 are signifi-
cantly influenced by the initial conditions, as the position of the first emitter can
dramatically affect the early dynamics, particularly for large values of α. This
strong dependence on the early dynamics has also been discussed elsewhere (89).

In Fig. B.3, we present specific examples that illustrate the effect of synchro-
nization on the entire system. We choose a bounded confidence interval of d = 0.5
for a system of N = 100 agents and set random initial positions and phases. To
facilitate visualization of the agents’ trajectories, we use a smaller value for the
step longitude, α = 0.001, compared to the rest of the sections. However, it is
important to note that the precise value of α is not crucial in this section, as our
aim is to provide qualitative insights into the system’s behavior.

The first row in Fig. B.3 shows the evolution of opinions as a function of time
steps, while the second row depicts the corresponding emotional arousal. The
colors represent the membership to an opinion cluster (weakly connected compo-
nent), and they change over time as the clusters break. It is worth noting that the
chosen bounded confidence interval is much larger than the value corresponding
to the percolation transition, dperc ≈ 0.02. Consequently, there is a single opinion
cluster (red) in all cases at time = 0.

The first column corresponds to the pairwise case, which is similar to the
model proposed by Deffuant et al. (41), with the addition of the emotional
dimension. In the stationary state, the system is fragmented into five clusters,
evenly distributed along the opinion axis due to the symmetric interaction along
this axis. Since the interaction is also attractive the extremes of the segment
O = 0 and O = 1 are devoid of agents. Conversely, along the EA axis, we
observe all clusters accumulated in the upper part with EA > 0.75. Specifically,
the green-colored cluster that concludes the simulation has EA = 1, and its
opinion is close to 0.5. The average initial width of the interaction bands is
approximately 0.25, which corresponds to the consensus transition in the original
model by Deffuant et al. (41). However, since agents with higher levels of EA
receive fewer messages, the overall system’s EA increases over time, and this

136



B.3. Results and Discussion

average width is reduced, resulting in a more fragmented outcome.

The second column corresponds to the purely sequential case, with broad-
casted interactions and a coupling factor ε = 0. This case is similar to the
previous one, but the number of final clusters is reduced to four instead of five
because, thanks to the multi-body interactions, agents can group more easily.
Furthermore, convergence is much faster, requiring only 800 stroboscopic cycles
compared to 20.000 cycles in the pairwise case. Another notable difference is that
with multi-body interactions, the system is unable to merge already separated
clusters, whereas in the pairwise case, opinion groups can both fragment and
reunite. Both in the sequential and the pairwise case fragmentation occurs
during the early steps of the simulation.

The third column exhibits significant differences compared to the previous
two. In the final scenario, bipartisanship is observed, with two large clusters
separated by a distance close to d = 0.5 between them, and positioned at
d/2 = 0.25 from the extremes of the segment, as in the original model by Def-
fuant et al. (41),. However, since the EA of both clusters is approximately 0.5,
their interaction bands at that position are half the width of those in the original
model. The transient regime also differs in this case, as the displacements are
smoother, but the convergence time is similar to the sequential case, indicating
that synchronization does not significantly affect this quantity.

The fourth column corresponds to a high value of ε, resulting in rapid
synchronization of agents’ emissions. The outcome can be considered as a
consensus, with the second cluster, consisting of only 3 agents, classified as a
wing. This wing exhibits high EA and an "extreme" opinion value, close to zero.
For more details on the number and position of wings depending on the model
parameters, refer to the Supplementary Material B.5.2. The main opinion cluster
is located at the center of the opinion space, coinciding with the equilibrium
point for the consensus outcome. The last column presents a limiting case
in which all agents fire simultaneously from the beginning of the simulation,
and ends with a consensus with no wings. Both the convergence time and the
smoothness of the trajectories are similar to the two previous examples with ε > 0.

From these examples, as we witness a gradual decrease in the number of
final clusters with heightened synchronization, we can infer that both multi-body
interactions via broadcasted messages and synchronized emission play important
roles in preventing opinion fragmentation. Furthermore, synchronization also
helps in avoiding an increase in emotional arousal.
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Figure B.3: Examples of agents trajectories for different parameters in the opinion
axis (up) and the emotional arousal axis (down) for systems formed by N = 100 agents,
d = 0.5 and α = 0.001. Colors are tags denoting the belonging to an opinion cluster. We
use the sequence of colors [red, blue, green, yellow, purple] to represent agents belonging
to different opinion groups. All simulations start with a single connected component
colored in red. When a second cluster emerges, it is designated as blue, and so forth.
Agents receive color assignments at each time step, regardless of their previous color.
The grey vertical dashed lines serve as visual guides to aid in identifying the time steps
at which the groups fragment.

Note that in the pairwise case, stroboscopic time defined as number of at-
tempted interactions/firing events over N .

In all cases, we can distinguish between two movement regimes: the first,
characterized by numerous displacements at each time step, and the second, in
which most agents have already collapsed into a few opinion clusters that evolve
slowly until reaching the stationary state.

B.3.2 - Number of clusters

Here, we investigate the number of opinion groups (after filtering out the wings)
for various model parameter values. We perform 300 independent simulations
with different initial positions and phases for each parameter set and present the
results in figure B.4, which illustrates the distribution of different outcomes. We
focus on four distinct stationary states: consensus, bipartisanship, and fragmen-
tation into three or four opinion groups. As expected, the average number of
final opinion groups increases with the parameter d across all parameter combi-
nations. However, the specific transition to consensus or the value of d at which a
particular outcome has the highest probability of occurring depends on the step
size, synchronization factor, and system size.
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Variation on d for different fixed values of the remaining parameters

We observe that increasing α leads to broader and noisier distributions, making
it impossible to ensure consensus in any case for α = 0.5. These effects can be
attributed to a higher sensitivity to initial conditions, which is related to the fact
that agents experience larger movements when they interact. Consequently, the
system tends to break into smaller clusters more easily during the initial steps of
the simulation.

The system size also plays a significant role in the outcome distributions. For
α = 0.01, increasing the system size N decreases the value of the basal confidence
bound d required for the consensus transition, and all the peaks corresponding
to fragmented outcomes shift to the left. Surprisingly, for α = 0.5 and low
ε, we observe the opposite effect, and for α = 0.5 and ε = 0.2, there appears
to be no noticeable effect of the system size. It is worth noting that having a
sharper transition to consensus for smaller N , as depicted in Fig. B.4 - (d), is
not a commonly observed result. The underlying reason is that a higher agent
density amplifies fragmentation caused by sequential firing during the initial steps
of the simulation, as a larger number of receivers are affected by these initial
interactions. From a social perspective, this implies that denser initial groups are
more likely to become fragmented if individuals strongly influence one another
and several agents’ opinions are significantly altered after a single interaction,
without considering alternative viewpoints. However, the study of other values
of N to determine the scaling behavior is out of the scope of this paper.

On the other hand, increasing ε has a smoothing effect on the system,
closing the gap between the N = 200 and N = 1000 curves and reducing the
noise. In terms of the consensus transition, we once again observe differences
depending on α. For α = 0.01, increasing ε subtly enhances the position of the
consensus transition, and shifts to the left the probability peaks corresponding to
fragmented outcomes. However, for α = 0.5, the effect of ε depends on N , with
a more pronounced effect observed in smaller systems. Notably, the transition
to consensus occurs at larger d for ε = 0.05, deviating from the monotonic trend
observed in other cases.

The interplay of the model parameters becomes non-trivial, particularly
when the system undergoes larger changes in each interaction (higher step length
α) and the movement does not involve multiple emitters firing simultaneously
(lower coupling factor ε). In such cases, the dynamics of the system exhibit a
complex behavior and is more sensitive to variations in the initial conditions,
leading to a larger variety of outcomes.
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Figure B.4: Proportion of final scenarios as a function of the parameters. Colors
denote the different outcomes: red for consensus, green for bipartisanship, blue for
fragmentation into three opinion groups, and pink for fragmentation into four opinion
groups. Results obtained for a system of N = 200 agents (thin line) and N = 1000
agents (thick line), running 300 simulations with different initial conditions for each
parameter set.
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The synchronized case

Here we present the simulation results for the synchronized limit case where all
agents emit messages at once at every time step since the beginning. Since this
variant lacks random initial phases and depends only on the initial positions, we
can provide a semi-analytical estimation for the proportion of clusters based on
the following assumptions (see Fig. B.5):

• For each outcome, there exists an equilibrium position in the opinion axis
for the opinion clusters, given by the original model, which corresponds to
Ōi = i/(n+ 1), where n is the number of final clusters.

• Each equilibrium position Ōi has an associated area 2d · L/2 = d that
corresponds to the affecting triangle of an agent placed at this equilibrium
point (L = 1 corresponds to the height of the opinion space).

• The normalized total attraction area associated with all the equilibrium
points of a given outcome is A(n, d) = d/Dn, where Dn = 2/n is twice
the distance between the opinion axis boundary and the first equilibrium
point, representing the maximum base of a triangle that contains only one
equilibrium position.

• The probability of a given outcome is equal to the probability that initially
at least half of the agents lie within the attraction area associated with this
outcome, minus the probability that initially at least half of the agents lie
within the attraction area associated with an outcome with fewer clusters.
Since initial positions are sampled from a uniform distribution, we have:

P (n) =
N∑

k=N/2

A (n, d)k (1−A (n, d))N−k−
n−1∑
η=1

 N∑
k=N/2

(A (η, d))k (1−A (η, d))N−k
 ;n ≥ 1

(B.4)

Based on these assumptions, the probability of achieving consensus is 1 if
at least N/2 agents lie initially inside the affectation triangle whose peak is
at O, EA = L/2, 1, and has a base length L = 1 (see Figure B.5-a)). This
estimation tends to overestimate the value of d for the transition to consensus
and the position of the peaks for the other outcomes, as observed in our
simulations for all parameter values explored. However, it provides a closer
approximation for lower step longitude values (α) as shown in Figure B.6. It is
important to note that this approximation is not influenced by the presence of
wings (which are more abundant for higher α) since not filtering the wings from
the results obtained with the simulations only introduces noise and distorts the
results. But with the wing filtered the probability distributions exhibit no noise,
even for α = 0.5 (Figure B.6-right column), indicating that the sensitivity to
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Figure B.5: Basins of attractions and theoretical equilibrium points of (a) consensus,
(b) bipartisanship, (c) fragmentation in 3 clusters, and (d) fragmentation in 4 clusters
in the synchronized case.
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initial conditions is primarily related to the phases that determine the emitter in
the first time steps. With perfect synchronization from the beginning, a larger
step does not promote system fragmentation but drives it toward consensus at
smaller values of the confidence interval d.

If we modify the lower bound of the sum in Equation B.4, requiring a greater
number of agents to lie initially within the considered attraction area, we can
improve the estimation. Although we see that the analytical expression for this
bound is an increasing function of α and N , the exact formula is beyond the
scope of this paper, however, some approximated corrections to the original es-
timation can be found in Section B.5.3. What occurs is that, while agents may
not be initially within this area, the attractive dynamics lead them to reach it at
earlier times for larger α. Since they do so in a cohesive manner, influenced by all
other agents simultaneously, this does not result in fragmentation. The analyt-
ical approximation captures the shape of the transition, which becomes sharper
for larger N but remains centered around the same d values. Furthermore, it
accurately represents the tendency for the peaks of other outcomes to decrease
and narrow.

The pairwise case

To establish a connection between our results and the classical case involving
pairwise interactions, we conducted additional investigations on our two-
dimensional opinion space with pairwise interactions. Since the pairs can be
chosen in any order, the final outcome can be dramatically affected by the
particular pair selection. For α = 0.01 we observe consensus for certain values of
d when N = 200 (thin lines in Figure B.6-e), but it cannot be guaranteed for
any d ∈ [0.05, 1], resembling the behavior exhibited for α = 0.5 and ε = 0.05
but with broader peaks. However, a non-monotonic behavior in the proportion
of consensus and bipartisanship, unique to this limit case and parameter
combination, emerges for N = 1000 (thick lines). In both cases, two peaks
are observed, with the peak for three opinion clusters being the highest. This
characteristic, with an approximate probability of 90% for having 3 opinion
clusters in the stationary state when d ≈ 0.7, is also exclusive to this specific
parameter combination.

For α = 0.5, the final configuration becomes significantly more fragmented.
The number of opinion groups, which increases with higher N , decreases supra-
exponentially as d varies within the range d = [0.05, 1] (see Fig. Figure B.6-f).
The maximum average number of clusters, corresponding to d = 0.05, is approx-
imately 〈n〉 = 40 for N = 200 and 〈n〉 = 80 for N = 1000. This proportion is
maintained for all d values, reaching a minimum around 〈n〉 = 10 for N = 200
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Figure B.6: Proportion of final scenarios as a function of the basal confidence bound d
for a) synchronized interactions, step longitude α = 0.01 and system size N = 200, (b)
synchronized interactions, α = 0.5 and N = 200, c) synchronized interactions, α = 0.01
and N = 1000, d) step α = 0.5 and N = 1000 and e) pairwise interactions, α = 0.01
and N = 200, 1000. f) Average maximum and minimum number of final clusters as
a function of d for pairwise interactions, α = 0.01 and N = 200, 1000. Results were
obtained for 300 simulations with different initial conditions.
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and 〈n〉 = 20 for N = 1000 at d = 1.0.

A higher overall density implies having more agents in the extremes on the
opinion axis, which could lead to the formation of 3 clusters more easily than
when N is smaller.

The behavior of the pairwise variant, which exhibits significantly more noise,
is attributed to the wide range of confidence intervals associated with randomly
selected interacting pairs. We explain the formation of double peaks for consensus
and bipartisanship when N = 1000 in Section B.3.3.

The most important changes in this limit case are due to the value of α. The
system size also plays a qualitatively significant role in the basins of attraction
for α = 0.01.

Variation on ε for different fixed values of the rest of parameters

Here we conduct a detailed investigation on the impact of the coupling factor ε
within the range [0, 1] (including the sequential limit case ε = 0) for two values
of the maximum confidence interval, d = 0.1 and d = 0.5 (see Fig. B.7). We
compare the results of the sequential limit case at ε = 0 with those obtained for
the pairwise limit case, as well as the results for ε = 1 with the synchronized
limit case. The pairwise and synchronized cases are represented by diamond dots
at ε = 0 and ε = 1, respectively. It is important to note that each value of the
parameter d corresponds to a distinct region of potential outcomes. In the case
of d = 0.5, we separate the results obtained for each system size.

For d = 0.1, we do not expect to observe any of the four focused outcomes.
Therefore, we pay attention to the average number of opinion groups, its
standard deviation, and the maximum and minimum number of clusters for
each value of ε. We clearly distinguish two regimes for both values of α: a
coupling-dependent region for ε below approximately 0.1, and above this value,
a region that is nearly independent of the coupling and exhibits an average
number of opinion groups around n = 10 ± 2 for both system sizes and step
longitudes. The coupling-dependent regime is more extensive for α = 0.5 and
depends on the system size. Specifically, for N = 1000 and α = 0.01, the average
number of opinion groups peaks at ε ≈ 0.02 and shows a relative minimum
around the same value for α = 0.5. On the other hand, for N = 200, there is a
monotonic decay for both values of α. When α = 0.01, 〈n〉, nmin, and nmax are
larger for N = 200 than for N = 1000 for all ε. However, when α = 0.5, these
quantities are more similar for each system size, and their magnitudes depend
on the value of ε. In general, in this fragmented region of parameter space,
higher agent densities and larger coupling factors tend to result in less frag-
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mentation, except for the specific values of α = 0.5 and ε ∈ [0, 0.4], approximately.

When approaching the region where consensus is observed, at d = 0.5, we
again observe non-monotonic behaviors for low values of the coupling factor.
For α = 0.01 (see Fig. B.7 (c) and (e)), the probability of consensus transitions
from a value close to zero for ε → 0 to a finite probability, which is higher for
larger system sizes. The probability of bipartisanship is complementary to the
probability of consensus, as fragmentation into three or four clusters, despite
having some representation at ε → 0, rapidly decays to zero with increasing
coupling factor. The shape of the curves remains unchanged when increasing
N , but the transition to consensus becomes sharper and the bipartisanship peak
becomes narrower and higher. As a result, fragmentation into three or four
opinion groups becomes more residual compared to the smaller system size. At
ε = 0, the sequential limit case yields results that closely resemble those obtained
for the pairwise limit case, particularly when N = 200. On the other hand, when
the coupling factor is 1, the results resemble those obtained for the synchronized
case for both system sizes.

On the contrary, for α = L/2 = 0.5, the pairwise and synchronized limit cases
do not match the results for ε = 0 and ε = 1 (see Fig. B.7 d, f). The probability
curves exhibit more noise due to the larger step length and show a non-monotonic
behavior for low values of ε. The probability of consensus is zero at ε = 0 for
both system sizes and increases linearly with ε until it reaches a value around 0.4.
Consensus also exhibits a narrow peak of height 0.3 approximately at ε = 0.1±0.1
for N = 200. Bipartisanship shows a peak and a minimum at ε < 0.1 for both
system sizes. Concurrent with the minimum for bipartisanship, there are peaks
for the outcomes with 3 and 4 opinion groups, which are higher and occur at
lower values of the coupling factor for larger N . However, the effect of N is only
noticeable for low ε, while in the range ε > 0.2, there are no significant differences
between the two system sizes. In fact, the behavior is similar to the case with
α = 0.01, but with increased fragmentation across the entire range of studied ε
values and a much slower transition to consensus. It is interesting to note that
for this value of the maximum confidence bound d = 0.5, an increase in ε can
promote fragmentation for any system size when the step length is large enough.

B.3.3 - Emotional Arousal and Fragmentation
We have generated ε-d and ε-α phase diagrams to analyze the final average num-
ber of clusters and the average level of emotional arousal 〈EA〉. We observe a
significant correlation between 〈EA〉 and the ratio between the final and initial
average number of strongly connected components 〈n〉fin/〈n〉ini when wings were
not filtered. However, applying the wing filtering process disrupts this correla-
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Figure B.7: Average, maximum, and minimum number of clusters as a function of the
coupling factor ε for different parameters values. Results obtained by performing 300
simulations with different initial conditions for each parameter set, except for the inset
plots in panels c) and d), where 1000 simulations were performed with finer resolution
in parameter values.
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tion. The average level of emotional arousal remained relatively consistent across
all parameter ranges since the wings, being small by definition, do not contribute
significantly to the overall average. Instead, the ratio 〈n〉fin/〈n〉ini could decrease
or remain the same, depending on the number of wings filtered out (it cannot
increase because wings are only defined for the final state). Furthermore, the
presence of wings exhibited a strong dependence on the model parameters, as
discussed in Section B.5.2. Note that in this context we are considering strongly
instead of weakly connected components, therefore the ratio 〈n〉fin/〈n〉ini can be
smaller than one (i. e. groups can merge).

Phase diagram d-ε

We present the results for two values of the step longitude α = 0.01, 0.5 in the
range of d ∈ [0.005, 1.0] and ε ∈ [0, 0.5], and compare them to those obtained for
the synchronized and the pairwise cases (B.8). We first analyze the phase dia-
grams for the average final values of the emotional arousal and the ratio between
initial and final strongly connected components as a function of d and ε (shown
in Fig. B.8-a and c, respectively), obtained for small α, where we can clearly
distinguish four regions:

1. The vertical band on the left corresponds to d < 0.02, marking the percola-
tion transition (see Sec. B.2). In this region, the dynamics have a minimal
effect due to the small confidence interval, resulting in a highly fragmented
situation with small opinion groups scattered across the O-EA plane. Both
magnitudes, 〈EA〉, and 〈n〉fin, remain unchanged from the beginning to
the end of the simulation.

2. The brown region (panel a) and red region (panel b) corresponding to d >
0.02 and low ε. However, there are discrepancies in the shape of the figures
for high d. While 〈EA〉 increases monotonically with d, the behavior of the
ratio of strongly connected components varies.

3. The upper-right area represents the consensus region, where 〈EA〉 and
〈n〉fin ≤ 1. Here 〈EA〉 is approximately equal to the initial value of 0.5.
The reason why 〈n〉fin can be smaller than one is that strongly connected
components can merge, contrarily to the weakly connected components ex-
amined in Sec. B.3.1

4. The transition region, colored in green in both panels. This zone exhibits a
relative maximum along the ε axis at around d ≈ 0.05, just above the per-
colation threshold. In this region, both 〈EA〉 and 〈clusters〉final decrease
with increasing ε towards a saturation value that depends on d. This decay
is faster for larger values of d.
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Overall, these results demonstrate the dependence of the system behavior on
the values of d and ε, revealing distinct regions characterized by different dy-
namics and outcomes. The profiles of both 〈EA〉 and 〈n〉fin/〈n〉ini are generally
similar, except when we are close to the sequential case, in the limit ε → 0 (re-
gion II). In this limit, 〈EA〉 monotonically increases with d (as observed in the
pairwise case), and 〈n〉fin/〈n〉ini exhibits a relative maximum around d = 0.3
and then decays towards 〈n〉fin/〈n〉ini ≈ 2. When we are close to the sequential
case, an increase in d primarily benefits agents located in the upper part of the
O-EA plane. These agents act as "zealots", influencing the rest of the agents and
causing fragmentation into multiple opinion groups with high emotional arousal.
Eventually, with sufficiently high d fragmentation can be reduced, but the aver-
age emotional arousal will keep increasing with the confidence interval, resulting
in narrower confidence bounds. Consequently, a new agent introduced into the
system after reaching the stationary state would face more difficulties in being lis-
tened to by the existing agents. When the coupling factor increases the situation
reverses and both 〈EA〉 and 〈n〉fin decrease monotonically with d.

Since the coupling factor ε leads to synchronization, it is not surprising that
the results tend towards the synchronized limit case for high values of ε. As
previously shown, the outcome in the synchronized case is always consensus for
d > 0.5, therefore the fluctuations observed in this range are only caused by
the different number of strongly connected components in the initial state. We
observe as well an increase in fluctuations around d = 0.5 that corresponds to
the transition to consensus. It is worth noting that highly synchronized systems
tend to have average levels of emotional arousal close to 0.5, even for fragmented
outcomes, whereas systems without synchronization exhibit considerably higher
emotional arousal levels despite having less fragmentation.

Interestingly, the results for ε = 0 tend to resemble those obtained for the
pairwise case, at least in terms of 〈EA〉. However, in terms of the ratio of opinion
groups, the correlation only exists for low values of d. While 〈n〉fin/〈n〉ini starts
decreasing at higher d for ε = 0, it continues to increase until d = 1.0 in the
pairwise case. Filtering the wings does not reverse this tendency but rather
smoothens it (see Section B.5.2), indicating that wings play a more significant
role in the pairwise case compared to the sequential case.

When α = 0.5 (Figure B.8 (b) and (d)) the results are resemblant but with
some differences. Fragmentation and average emotional arousal are, in general,
higher except below the percolation at d = 0.02 (region I), since agents do not
interact, regardless of the step longitude. Only for large values of d and ε, where
we have consensus, 〈n〉fin/〈n〉ini drops to 1. The relative maximum in region
III disappears in the 〈EA〉 heatmap and, above the percolation 〈EA〉 decreases
depending only on ε. The ratio of opinion groups, on the other hand, does
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experiment a decrease with both d and ε when d > 0.02 (regions III and IV).
The most noticeable difference is the overall increase in 〈EA〉, which becomes
independent of d above the percolation and is larger than 0.5, even at d = 1 and
ε = 0.5, where consensus is guaranteed

So, the way agents with a high EA drag up the other agents via their inter-
actions has a direct correlation with the number of final opinion groups, taking
into account the minorities (usually with a high 〈EA〉, as we can see in Sec-
tion B.5.2) Excluding the pairwise case, the highest level of EA is not reached in
either the most fragmented situation or the least one, but in the parameter zone
that corresponds to sequential firing and large basal confidence bound, and is
always larger for larger α. When the set of parameters yields multiple outcomes,
the most fragmented scenario corresponds to the one exhibiting a higher average
emotional arousal 〈EA〉, as we see in Figure B.9. This observation is drawn from
examining the EA distributions for a system of N = 1000 with a step length of
α = 0.01, across two values of the basal confidence bound d. These values result
in a combination of bipartisanship and fragmentation into 3 clusters (d = 0.35),
and a mix of consensus and bipartisanship (d = 0.5).

Phase diagram α-ε

We examine the range of α ∈ [0.005, 0.5], since smaller or larger step longitudes
are not interesting from a social point of view, and α > 0.5 would not be compa-
rable with the classical bounded confidence model.

The system behaviors when varying α and ε are more straightforward, but the
correlation between the final 〈EA〉 and 〈n〉fin/〈n〉ini hold for all the parameter
range explored. The coupling factor always diminishes 〈EA〉 making it tend to
average initial value 0.5, while alpha always increases it. However, when α is
low, decay of 〈EA〉 occurs for ε < 0.05 and is fast, and this transition becomes
smoother as α increases. For d = 0.5 we confirm that 〈EA〉 is higher at low ε
for any α A larger confidence bound implies a higher number of interactions, in
particular with agents that have a higher EA and, since their kout/kin degree
is larger, they are privileged from a communicative point of view. Therefore
a large d leads to a low number of clusters since agents interact among them,
regardless thbasal confidence boundey are far away on the opinion axis. During
the trajectory to a consensus, however, they considerably shrink their confidence
interval and they lose their mediator role.

The fact that these effects are contraposed is the cause of the double peak for
consensus and bipartisanship in the pairwise case for N = 1000 and α = 0.01 (see
Fig. B.6 (e). For instance, in the approximate interval d ∈ (0.6, 0.8) agents have a
basal confidence bound d large enough to ascend rapidly in the O-EA. However,
this parameter it is not large enough to maintain a wide confidence interval,
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Figure B.8: Final values of average emotional arousal 〈EA〉 (upper row) and ratio
between average number of final and initial opinion groups 〈n〉fin/〈n〉ini (lower row),
for a range of basal confidence bound d and coupling factor ε when the step longitude
α = 0.01 (a, c) and alpha = 0.5 (b, d). Results correspond to a system formed by N =
200 agents and are averaged over 100 simulations with different initial conditions. The
inset plot shows a smaller range with more resolution. The upper and lower subpanels in
each subfigure correspond to the synchronized and pairwise cases for the corresponding
set of parameters.
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Figure B.9: Final EA distributions of a system of N = 1000 agents, longitude step
α = 0.01, synchronization factor ε = 0.2 and different values of the basal confidence
bound d for those repetitions that end up in consensus, bipartisanship and 3 clusters.
Results obtained for 300 simulations with different initial conditions for each value set
of parameters.
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Figure B.10: Final values of a) average emotional arousal 〈EA〉 and b) ratio
〈n〉fin/〈n〉ini for a range of the step longitude α and coupling factor ε. Results cor-
respond to a system formed by N = 200 agents and are averaged over 100 simulations
with different initial conditions. The basal confidence bound is set to d = 0.5.

hindering the achievement of consensus. Counterintuitively, a lower value of d
can result in consensus, as the upward movement is not as fast. Synchronization
prevents this from occurring by diminishing the impact of "zealots" (i.e., agents
with high EA). This is because individuals simultaneously consider not only the
viewpoints of highly emotional agents but also the arguments presented by less
emotional individuals.

B.3.4 - Polarization
Polarization reaches its theoretical peak value P = 1 for the bipartisan outcome
when two clusters of size N/2 are positioned at O = 0 and O = 1 (see Eq. B.3).
In our simulations, we observe a maximum average value of 〈P 〉 = 0.5, achieved
in the synchronized scenario for the range of d where the outcome is consistently
bipartisan, regardless of the initial conditions or the step length α. In contrast,
other cases exhibit a mixture of outcomes, resulting in a reduced overall average
polarization.

Low α

For smaller step lengths α, the average polarization exhibits a distinct peak
around d = 0.4 across all synchronization factors ε > 0.1. This aligns with
the region where the system tends to converge towards a bipartisan outcome
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more frequently. Notably, this peak shifts towards higher d values for lower ε,
correlating with a higher tendency for fragmentation as the system approaches
the sequential limit. As highlighted in Section B.3.2, the synchronized case shows
a sharp transition towards consensus, here, we observe a rapid decline in polar-
ization at the value of the basal confidence bound d where this transition occurs.
On the other hand, the pairwise case exhibits more fluctuations and a smoother
decrease in polarization when increasing d.

When analyzing the lower range of ε in detail (refer to Fig. B.11 - inset),
we find a non-monotonic behavior. For instance, following the vertical line at
d = 0.2, we see that the average polarization is 〈P 〉 ≈ 200 for ε = 0, decreases
to a minimum of 〈P 〉 ≈ 75 around ε = 0.02, and rises again to approximately
〈P 〉 ≈ 200 at ε = 0.1. Beyond ε = 0.1, the average final polarization primarily
depends on d only.

For ε > 0.05, the system achieves consensus if d > 0.6, resulting in zero
average polarization. When ε is below this threshold, the average polarization
value 〈P 〉 decreases with both d and ε.

Note that low polarization values at both low d correspond to a highly frag-
mented outcome, while at high d, they indicate a consensus.

High α

For large step length, polarization presents a different behavior, especially notice-
able for low ε and high d, where it exhibits greater values compared to scenarios
with smaller α. For instance, taking the vertical line d = 0.6 (Fig. B.11 (b)), we
observe a peak at ε ≈ 0.05. Additionally, the previously observed non-monotonic
behavior for small ε and 0.1 < d < 0.3 is inverted. In the vertical line at d = 0.3,
we have a peak in the average polarization instead of a valley at a slightly larger
ε ≈ 0.05. The peak across all ε > 0.1 along d = 0.4 persists.

The results in the limit of high ε no longer converge to the synchronized case.
With a larger step length, the initial steps, where the system has not synchronized
yet, become crucial, inducing fragmentation, and thereby increasing polarization.
This effect is prevented only when the system is fully synchronized from the
beginning, leading to consensus.

This transition, more abrupt for the synchronized case, as usual, is absent in
the pairwise scenario."

Polarization peak

As observed, the system’s global polarization peak strongly correlates with the
bipartisan peak. This correlation becomes clearer when we compare Figures B.4
and B.12. With low α, an increase in agent density sharpens this transition,
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Figure B.11: Total average polarization of the system as a function of the basal
confidence bound d and the synchronization factor ε for (a) step length α = 0.01, (b)
α = 0.5. Results obtained for a system of N = 200 agents and 100 simulations with
different initial conditions. The inset plot shows a smaller range with more resolution.
The upper and lower subpanels in each subfigure correspond to the synchronized and
pairwise cases for the corresponding set of parameters.
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as is typical in second-order transitions. When α increases, heightened fluctua-
tions and disruptions in clusters lead to a scenario where N no longer influences
the average total polarization at low ε. Moreover, a larger step smoothens the
transition at high ε.

Polarization per outcome α

When examining average polarization levels based on outcomes (Fig. B.13), the
average polarization 〈P 〉 increases proportionally with the basal confidence bound
d in scenarios where the system fragments into 3 or 4 clusters, in the same way the
system increases the average level 〈EA〉. On the other hand, for the bipartisan
outcome 〈EA〉 maintains the increasing tendency, while 〈P 〉 decreases.

Within the range of d values where systems exhibit the coexistence of 2 and 3-
cluster outcomes, realizations where the system significantly raises the 〈EA〉result
in more significant loss of connections among agents, causing the system to break
into 3 clusters and resulting in decreased average polarization. In contrast, sys-
tems maintaining lower EA levels prevent fragmentation, leading to a bipartisan
outcome and higher polarization levels. The final outcome is solely determined
by initial conditions (position in the plane and first emitter).

At higher ε these tendencies become sharper (see Fig. B.13 (c) and (d)).
Longer steps are not shown in Fig. B.13) because the increased number of fluc-
tuations outgrow the aforementioned behaviors.

B.3.5 - Bipartisanship
In this subsection, we examine the bipartisan outcome, a common scenario in
various social contexts such as presidential elections (e.g., U.S., France) and lead-
ership contests within political parties. In Fig. B.13, we analyze the polarization
levels of realizations ending in 2 clusters depending on the model parameters. Po-
larization hinges on the relative sizes and distances between clusters. Since the
two clusters tend to be similar in size (with fluctuations depending on parameter
ranges), we are focusing on the distance between them.

We present results for a step length α = 0.01 because larger α blurs effects
due to increased fluctuations. For larger steps, the initial messages become cru-
cial, especially when emitters possess high initial EA, since they may draw some
agents upward in the O-EA plane but not others. When d is high this fosters
bipartisanship over consensus, and clusters generally exhibit different EAs, con-
tingent on the first emitters on each side of the opinion space, who attract agents
to each cluster, and their respective EA levels. However, for small α, the vertical
distance on the emotional arousal axis fluctuates around zero, with fluctuations
decaying approximately as 1/

√
N (Fig. B.14 (a) and (b)).
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Figure B.12: Total polarization of the system as a function of the basal confidence
bound d for (a) step α = 0.01 and coupling factor ε = 0.2, (b) α = 0.5 and coupling
factor ε = 0.2, (c) step α = 0.01 and coupling factor ε = 0.02, and (d) α = 0.5 and
coupling factor ε = 0.02. Results obtained for a system of N = 200 agents (thin light
line) and N = 1000 agents (thick dark line) and 300 simulations with different initial
conditions.
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Figure B.13: Average polarization (left) and average final EA (right) of each outcome
system as a function of the basal confidence bound d Results are shown up to 4 clusters
and are obtained for a system of N = 1000 agents, synchronization factor ε = 0.2 (up)
and ε = 0.02 (down), step longitude α = 0.01, and 300 simulations with different initial
conditions.
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On the other hand, the distance on the opinion axis for small α depends on
the synchronization level. In the fully synchronized case (Fig. B.14 (a)), the
distance decreases with the basal confidence bound d as larger confidence bounds
bring clusters closer. In contrast, with pairwise interactions (Fig. B.14 (b)), it
increases with d, because of the increased EA levels reached in this case.

To explore slope changes, we fitted linear regressions to the data for both the
synchronized and the pairwise case, and across various ε values (Fig. B.14 (c)).
Similar to the results we expose in previous sections, sequential case results with
ε = 0 tend to converge to pairwise results, (more accurately for N = 200), while
results for larger ε converge to synchronized case results. The emotional arousal
axis distance maintains a flat slope in all cases, with fewer fluctuations for larger
N .

In contrast, the opinion axis distance undergoes a transition from positive to
negative slopes around an ε transition value of approximately 0.05. The slope
stabilizes for ε > 0.2, matching synchronized case values. Slopes have larger
absolute values and fewer fluctuations for larger N . At the transition value, local
synchronization is achieved fast enough to have entire clusters firing at once early
in the dynamics, when the system still forms a single connected component, which
contributes to a cohesive approach in both the opinion and the EA axis, leading
to lower levels of EA and closer clusters in the bipartisan outcome, so even in
bipartisanship.

B.4

Conclusions
Our study reveals different stationary states for the proposed system, depending
on the parameters set and the initial conditions. In general, we observe that the
dynamics leads to an increment in the average of emotional arousal level of the
system and a fragmentation of the initial number of clusters into several final
opinion groups. However, for some specific set of parameters, a less fragmented
situation is more probable. The synchronization factor ε significantly influences
these aspects, reinforcing their effects when it is small and mitigating their inten-
sity when is large.

Total synchronization emerges as a unifying factor that not only facilitates
consensus and prevents fragmentation at lower basal confidence bound values,
but also eliminates fluctuations, the outcome becoming more predictable, and
sharpens transitions between different outcomes. Fully synchronized systems
even reach consensus at lower confidence bounds for larger step longitudes. How-
ever, this scenario poses challenges in replicating real-world debates effectively.
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Figure B.14: Distance between the two clusters observed in realizations with a bi-
partisan outcome, shown on both the opinion axis O (in light blue) and the emotional
arousal axis EA (in purple), plotted against the basal confidence bound d for both (a)
the synchronized case and (b) the pairwise case. (c) Slopes derived from linear regres-
sions fitted to the O distance (in light blue) and the EA distance (in purple) between
these clusters against d, accompanied by their respective errors, as a function of ε. The
results are based on systems with N = 1000 agents for (a) and (b), and N = 200, 1000
agents in (c), conducting 300 repetitions with different initial conditions for each set of
parameters. Values of d with less the 10 percent of repetitions ending in bipartisanship
were discarded for the linear regression.
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Synchronization, above all factors, appears as the most favorable to consensus
attainment. Furthermore, the position of the consensus cluster has a lower EA
than the initial average 〈EA〉. Additionally, in the synchronized case there is
a narrow range of the basal confidence bound d, around 0.4, within which the
outcome is always bipartisanship regardless of initial conditions, the exact posi-
tion of this d range shifts slightly with N and α towards lower d. Furthermore,
synchronization not only fosters consensus but also diminishes opinion distance
between clusters as d increases in bipartisan outcomes. In contrast, in pairwise
and sequential cases, this distance expands with d.

Phase diagrams for d and ε show more complex profile demonstration a more
intrincate interplay between these two parameters than between α and ε. A larger
α disrupts transitions toward consensus, except for synchronized systems where
in contrast larger α achieve consensus at lower d.

Agent density plays a relevant role in shaping the distribution of the system’s
basins of attraction as well. Having people holding opinions in between other
people builds more links in the system and as a consequence higher agent densities
tend to diminish the final number of opinion groups, particularly within parameter
regions that lead to fragmentation into multiple clusters (low ε, low d, and high
α)

The system is very dependent on the initial positions of the agents in the
O-EA plane and on the relative position of the first emitter.

The emotional arousal dimension enhances the relevance of small opinion
groups, called wings. For instance, the presence of highly emotional minorities,
although filtered, notably impacts final levels of emotional arousal, because they
are capable of triggering a general increase in 〈EA〉 before segregating from the
bigger groups. Small opinion groups, which used to appear only in the extremes
of the opinion segment for the unidimensional model can now emerge in moderate
opinions, especially for large step lengths. They also appear with lower levels of
emotional arousal for small α.

High α and low d scenarios consistently result in highly fragmented situations,
but in general fragmentation is intricately influenced by interaction patterns re-
lated to synchronization and step length per interaction. In practical scenarios,
these magnitudes would reflect intrinsic attributes, different for each agent. How-
ever, as an initial approximation, considering the mean values of participating
agents in the modeled scenario suffices. Navigating the interplay between var-
ious system parameters becomes complex, particularly in promoting consensus
within deliberative spaces. Achieving consensus can be a sensitive endeavor due
to multiple influencing factors.
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Our model, designed to simulate deliberative spaces, involves agents capable of
potential interactions without any specific underlying network topology affecting
their interaction patterns, which are conditioned only by the confidence interval.
the model could be applied to describe opinion formation in debating chambers,
representing hours-long deliberations with presumably short displacements af-
ter a round of interactions. Another potential scenario involves extended online
discussions on media platforms, occurring over months, thus allowing again to
consider a complete underlying graph. Larger alpha values probably model more
effectively the latter situation.

Another viewpoint on interpreting the parameters of the model pertains to the
level of fragmentation or the number of active parties during country elections.
A greater number of parties often correlates with longer step lengths contributing
to opinion fragmentation, except in fully synchronized cases. Similarly, reducing
synchronization or a decline in the basal confidence bound may increase the final
number of opinion groups. The actual scenario likely results from a blend of
multiple contributing factors.

B.5

Supplementary material
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B.5.1 - The algorithm

Algorithm 4 Performs an agent-based simulation using the broadcasting
bounded confidence model with emotional arousal and synchronization dynamics.
Require: Number of agents N . A length step α, a basal confidence bound d

(confidence bound at EA = 0) and a synchronization factor ε. A tolerance µ
to consider stationarity.

Ensure: Getting to one of the stationary attractors of the dynamics, given a
sufficiently large Nsteps

set step = 0
set stepsync = 0
set initial positions {Oi}initial and {EAi}initial uniformly at random in the
range [0, 1]
set initial phases {φi}initial uniformly at random in the range [0, 1] (or
{φi}initial = 1 in the sync. case
repeat

∆φ = 1− φmax
Update all agents phases {φi} = {φi}+ ∆φ
repeat

for all φi φj with i, j ∈ 1, ..., N do
if φi = 1 then

distij =
√

(Oi −Oj)2 + EAi − EAj)2

if distij < d then
c = min{1, α/dist}
Oj = Oj + cOj
EAj = EAj + cEAj
φj = εφj

end if
end if

end for
until {φi 6= 1
step = step+ 1
if φi = φj ∀ i, j ∈ same connected component then

stepsync = stepsync + 1
end if

until {|∆Oi|}, {|∆EAi|} < µ
return {Oi}final and {EAi}final, step and stepsync set of final positions
states, number of steps when the simulation stops and number of step after
local syncronization
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Figure B.15: Number of wings as a function of their opinion and the basal confidence
bound d for a coupling factor ε = 0.2 (upper row) and ε = 0.02 (lower row), system sizes
N = 200 (a, b, e, f) and N = 1000 (c, d, g, h) and step longitude α = 0.01 (a, c, e, g)
and α = 0.5 (b, d, f, h). Results for 300 simulations with different initial conditions.

B.5.2 - Wings
In the one-dimensional model (41), wings were disregarded due to their negligible
role. However, in the model proposed in this study, wings assume greater signifi-
cance, exhibiting a notable dependence on all parameters. Contrary to their mere
appearance at the extremes of the opinion axis, these wings manifest not only
at these endpoints but also emerge across various opinion positions, particularly
prominent for low d values, as shown in Fig. B.15. A larger step longitude accen-
tuates the dispersion of wings along the opinion axis. For a system of N = 200
agents, a small step longitude α, and a high synchronization factor ε (Fig. B.15
(a)), these wings tend to appear near the equilibrium points of clusters within the
range 0.15 < d < 0.3 (refer to Subsection B.3.2). This suggests that these points
are system attractors for the fully synchronized case, extending their significance
beyond their role as preferred positions for the primary clusters.

In our model, wings have typically a large EA, and that’s why they become
isolated from the rest of the system. However, in some cases, wings can also
have lower EA (see Fig. B.16), especially in the parameter region with a clear
predominance of a bipartisan outcome.

B.5.3 - The approximation for the synchronized case
We can improve the estimation for the different outcomes in the synchronized
case if we modify the lower bound of the second sum in Eq. B.4, requiring a
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Figure B.16: Number of wings as a function of their emotional arousal and the basal
confidence bound d for a coupling factor ε = 0.2 (upper row) and ε = 0.02 (lower
row), system sizes N = 200 (a, b, e, f) and N = 1000 (c, d, g, h) and step longitude
α = 0.01 (a, c, e, g) and 0.5 (b, d, f, h). Results for 300 simulations with different initial
conditions.

Table B.2: Table illustrating the minimum number of agents required to initially lie
within each outcome’s affectation area in order to estimate its probability, for different
system sizes N and step lengths α.

N α Sum lower bound
Eq. B.4

200 0.01 N/2

200 0.5 N/2−N/18

1000 0.01 N/2−N/25

1000 0.5 N/2−N/12
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Figure B.17: Proportion of final scenarios as a function of the basal confidence bound
d for a) synchronized interactions, step longitude α = 0.01 and system size N = 200,
(b) synchronized interactions, α = 0.5 and N = 200, c) synchronized interactions,
α = 0.01 and N = 1000, d) step α = 0.5 and N = 1000. Results were obtained for 300
simulations with different initial conditions. Continuous lines correspond to simulations
while dashed lines are for the semi-analytical approximation.
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lower minimum number of agents to lie initially within the considered attraction
area. Although we see that the analytical expression for this bound is an increas-
ing function of α and N . In this Appendix, we present the shifted predictions
obtained by relaxing the summation lower bound as indicated in Table B.2. A
finite size scaling in a broad step length range could give us the exact expression.

B.5.4 - The experiments
A series of ongoing experiments titled Dialoguem! (meaning Let’s talk! in Cata-
lan) aims to validate and potentially calibrate the model in its synchronized vari-
ant. In Dialoguem!, participants are presented with a question via a Telegram
chatbot, and are encouraged to express their opinions anonymously within the
model’s defined opinion segment. Following this, they articulate a sentence to
elucidate their stance. Subsequently, participants engage in reading and rating
all other participants’ sentences, then they assess their inclination to reach an
agreement with the sender of each statement (i.e., if they fall within the model’s
interaction threshold). As the process unfolds, if participants modify their initial
opinions, they adjust their position within the opinion segments. This iterative
process continues until all participants confirm they do not wish to change their
positions within the opinion segments any further. The evaluation of other par-
ticipants’ statements holds significant importance as self-assessment of opinions
tends to be subjective and inconsistent. However, aggregating ratings from all
participants regarding a given opinion yields more accurate predictions of shifts
within the opinion segments between rounds. Nonetheless, it’s noteworthy that
the experiment’s results are still inconclusive from a statistical perspective.
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