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Carlos, Marcel, Andreu, Carla, Mireia, i molts més. Gràcies Toni per ser tan crack, i gràcies
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experiència fos molt més agradable i divertida. Les bromes, els memes, les pizzes al Majestic,
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etcètera. Us trobaré molt a faltar a Würzburg, encara que trobi amb qui jugar a la botifarra.
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Resum

Aquesta tesi presenta dos temes rellevants dins el camp de la f́ısica teòrica d’altes energies,

les teories de gravetat amb derivades superiors i els models món-brana, des d’una perspectiva

hologràfica.

La Part I de la tesi tracta sobre teories de gravetat amb derivades superiors. En primer

lloc, estudiem teories de curvatura superior en espaitemps de tres dimensions. Presentem les

seves equacions del moviment i n’analitzem l’espectre de pertorbacions lineals en espaitemps

màximament simètrics. També identifiquem totes les teories tridimensionals que satisfan un

teorema-c hologràfic, aix́ı com totes les gravetats quasitopològiques generalitzades en tres dimen-

sions. A continuació, estudiem un cas més general, el de les gravetats amb derivades superiors

arbitràries en espaitemps de qualsevol dimensió. Caracteritzem l’estructura de les seves equa-

cions lineals en espaitemps màximament simètrics i n’analitzem l’espectre lineal en espaitemps

de Minkowski.

A la Part II de la tesi presentem els models món-brana, en què una brana de codimensió-

1 talla un espaitemps Anti-de Sitter a prop de la seva frontera. Revisem resultats coneguts

anteriorment sobre la localització la gravetat a la brana, i els ampliem, generalitzant-los a

dimensió arbitrària, per tots tres tipus de branes màximament simètriques. Interpretem els

resultats obtinguts des de dues perspectives diferents, tant des de l’estudi de pertorbacions

gravitatòries a l’interior d’Anti-de Sitter, com des de la seva reinterpretació hologràfica: a

la brana, hi tenim una teoria efectiva de gravetat amb derivades superiors acoblada a una

teoria quàntica de camps efectiva. A continuació, afegim un terme DGP a l’acció de brana, i

definim quins valors pot prendre la seva constant d’acoblament, més enllà dels quals la teoria

és patològica.

La Part III de la tesi combina els dos temes descrits anteriorment per obtenir nous resultats

sobre les propietats de la teoria de gravetat indüıda a la brana. En primer lloc, ensenyem com

calcular els termes amb derivades superiors de la teoria indüıda. Posteriorment, procedim a

estudiar-la per si sola, desacoblant-la de la teoria quàntica a la brana. Demostrem que, a cada

ordre en derivades, la teoria compleix un teorema-c hologràfic. Finalment, n’estudiem l’espectre

de pertorbacions lineals en espaitemps de Minkowski, tenint en compte tota la sèrie completa

de termes amb derivades superiors. A part del gravitó sense massa usual, hi descobrim una

torre infinita de part́ıcules fantasma massives de spin-2.

Els nostres resultats permeten entendre millor l’holografia en mons-brana i les seves aplica-

cions com a model de gravetat semiclàssica dins del marc de la correspondència AdS/CFT.
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Abstract

This thesis explores and combines, through the lens of the holographic correspondence, two

relevant topics in the field of gravitational high-energy theory: higher-derivative theories of

gravity and brane-world models.

Part I of the thesis deals with higher-derivative gravities. First, we focus on three-dimensional

higher-curvature gravities. We present their equations of motion and study their spectrum when

linearized around maximally symmetric spacetimes. We also identify all three-dimensional

higher-curvature gravities satisfying a holographic c-theorem, and all three-dimensional Gen-

eralized Quasitopological Gravities. Then, we move on to the more general case of studying

arbitrary higher-derivative gravities in spacetimes with any number of dimensions. We uncover

the structure of their linearized equations in maximally symmetric spacetimes and describe their

spectrum of gravitational perturbations in Minkowski space.

In Part II, we introduce Karch-Randall brane-world models, in which a codimension-one

brane sits near the boundary of an AdS bulk. We review and extend previously known results

on the localization of gravity on the brane, both from the study of bulk metric perturbations

and from their reinterpretation through brane-world holography —an induced higher-derivative

theory of gravity coupled to a cut-off CFT on the brane. We then add a DGP term on the

brane action and establish bounds for its coupling constant, beyond which the theory presents

pathologies.

Part III of the thesis draws from both previous topics and combines them to derive new

results describing the properties of the induced gravity theory on the brane. First, we show how

to calculate the higher-derivative terms of the induced theory, and then, we proceed to study it

on its own, decoupling it from the cut-off CFT on the brane. We prove that, at each curvature

order, the theory satisfies a holographic c-theorem. Finally, we study its linearization around

Minkowski space, taking into account the full series of higher-derivative terms. Besides the

presence of the usual massless graviton, we uncover an infinite tower of massive spin-2 ghosts.

Our findings shed light on brane-world holography and its applications as a model for semi-

classical gravity within AdS/CFT.
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Preface

This is a manuscript-style thesis, mostly based on previously published papers, some parts

of which have been included here almost verbatim. The author names in the publications are

ordered alphabetically. The thesis also contains a substantial amount of unpublished work.

In Part I, Chapter 1 is an adapted version of P. Bueno, P. A. Cano, Q. Llorens, J. Moreno, G.

van der Velde, “Aspects of three-dimensional higher-curvature gravities”, Class. Quant. Grav.

39.12 (2022), p. 125002 [1]; while the results in Chapter 2 were published in S. E. Aguilar-

Gutiérrez, P. Bueno, P. A. Cano, R. A. Hennigar, Q. Llorens, “Aspects of higher-curvature

gravities with covariant derivatives”, Phys. Rev. D 108.12 (2023), p. 124075 [2]. Some results

in which the author did not contribute directly have been removed from both chapters.

Part II of this thesis is unpublished work. Chapter 3 presents an original review on brane-

world models, along with an extension and improvement of known results. Chapter 4 is un-

published, original work done by the author alone, although it has considerably benefited from

conversations with R. Emparan —who proposed this research idea— and D. Neuenfeld.

In Part III, Chapters 5 and 6 are composed mostly of results from P. Bueno, R. Emparan, Q.

Llorens, “Higher-curvature gravities from braneworlds and the holographic c-theorem”, Phys.

Rev. D 106.4 (2022), p. 044012. [3], while Chapter 7 is again mostly based on the last section

of [2].
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Introduction

General Relativity (GR) is one of the most successful theories in the history of physics, both

theoretically and experimentally [4–8]. Yet, we know that it cannot describe gravity at its most

fundamental level, since it does not agree with the principles of quantum mechanics. In GR,

“spacetime tells matter how to move, matter tells spacetime how to curve” [9]. However, in

quantum mechanics, particles do not have a well-defined position in spacetime. Instead, they

are described by a superposition of the many possible positions that the particle could take.

What is the imprint of this superposition onto the geometry of spacetime? Should we also

consider spacetime as being in a superposition of possible geometries?1 And if so, how?

After all, GR is a classical field theory, so we could try to canonically quantize it, just as

one does with electromagnetism. The quantum field theory of gravitons —small fluctuations

of spacetime— on a fixed background is consistent and can be used to make predictions for

low-energy physics [10, 11], but it breaks down at high energies, since the theory can be shown

to be perturbatively non-renormalizable [12].

One could then consider GR to be a low-energy effective field theory (EFT), with the

Einstein-Hilbert term being the first of an infinite series of operators involving a growing num-

ber of derivatives of the metric [13]. Through dimensional analysis, their couplings would be

controlled, up to O(1) factors, by the cut-off of the theory, perhaps at an energy scale lower

than the Planck scale. From this point of view, it seems relevant to characterise the features

of classical gravity in regimes in which GR is expected to receive higher-derivative corrections

[14, 15].

This is the field of higher-derivative gravity, which we will study in Part I of this thesis. We

will consider diffeomorphism-invariant theories whose action is built from the metric and its

derivatives. A first step might be considering theories whose Lagrangian is built from arbitrary

contractions of the metric and its Riemann tensor,

IHCG =
1

16πGN

∫
dDx

√
−gL(gab, Rabcd) . (I.1)

We will call these theories higher-curvature theories of gravity (HCGs), and we will study them

in detail, for D = 3, in Chapter 1. Since the Riemann tensor is second order in derivatives of

the metric, the equations of motion of these theories are, in general, of quartic order.

However, in the spirit of generality, we can —and from an EFT perspective, we should—

also consider Lagrangians built from general contractions of the metric, its Riemann tensor,

and its Levi-Civita covariant derivative.

IHDG =
1

16πGN

∫
dDx

√
−gL(gab, Rabcd,∇a) . (I.2)

1Yes.
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We will call these —more general— theories higher-derivative theories of gravity (HDGs).2

Although their equations of motion can now be of arbitrary order in derivatives, we will still be

able to make some progress, as we will show in Chapter 2 of this thesis. A longer introduction

into the field of general higher-derivative gravities is given at the beginning of this same chapter.

In both chapters of Part I, we will first derive general results, valid for any HCG or HDG

theory, respectively. Then, we will study two particular cases of higher-derivative gravities:

theories satisfying a simple holographic c-theorem [16, 17], and Generalized Quasi-topological

gravities (GQTs) [18–21]. Theories satisfying a holographic c-theorem, also known as Cosmo-

logical Gravities [22], are theories which admit FRLW-like solutions whose equation for the

scale factor is second order in derivatives. GTQs are higher-derivative theories of gravity which

admit static and spherically symmetric metrics solutions characterized by only one function,

gttgrr = −1. In this thesis, we will characterise all three-dimensional theories which fulfil either

requirement, and also those which (trivially) satisfy both requirements.3 We will prove that all

GQTs propagate only the massless spin-2 graviton around maximally symmetric spacetimes,

and we will also show the first known examples of four-dimensional GQTs with explicit covariant

derivatives of the Riemann tensor in the Lagrangian.

In studying these particular sets of higher-derivative theories, we will put the EFT per-

spective on the side and study them mostly for their mathematical significance, rather than

their relevance in our quest for quantum gravity. However, it has been proven that any higher-

curvature gravitational effective action is equivalent, via metric redefinitions, to some GQT

[21, 23]. It is not clear whether that is also true for all higher-derivative gravitational effective

actions, but evidence suggests that this may also be the case.

Although the study of higher-derivative theories of gravity allows us to explore what may

happen at energies somewhat higher than with simply GR, the EFT description must still break

down at —or before— the Planck scale. There, we expect the appearance of new degrees of

freedom which UV-complete the theory. For example, Fermi’s theory of the weak interaction,

which was also perturbatively non-renormalizable, only had predictive power up to some energy

scale, where new physics appeared —in that case, the W± and Z gauge bosons [24].

One possibility could be that the graviton might be composite, and that we should resolve

it into two spin-one gauge bosons. This possibility, however, was ruled out long ago by the

Weinberg-Witten theorem [25] —assuming that the graviton lives in the same spacetime as its

parent gauge bosons [26].

Another route to explore might be considering that gravity is not fundamental and need not

be quantized, but that it emerges as a mean field approximation of a quantum field theory on

an arbitrary background. This is the idea behind induced gravity, put forward by Sakharov in

1967 [27, 28], in which classical GR emerges as the 1-loop effective action of a quantum field

theory on an arbitrary geometry.

There are many other approaches to quantum gravity, but perhaps the most famous and

fruitful one has been the possibility of resolving the graviton and its interactions —as well

as all other particles and fundamental interactions— into extended objects: strings. String

theory was first proposed as a theory for the strong interaction, but it was soon discovered

2This distinction is not widespread within the community, but we will make it in this thesis, since we will be

considering both cases.
3It has recently been shown that there exist HCG theories which non-trivially fulfil both the Cosmological

and the GQT requirements for D ≥ 4 and at any order in curvature [22].
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that its spectrum contained a massless spin-2 mode, a graviton [29]. The field has massively

evolved since then, and it is now understood that there are other extended objects in the theory,

with different dimensionality, such as D-branes, on which fundamental strings can end [30]. It

has also been shown that there are five consistent string theories containing both bosons and

fermions, superstring theories [29, 31], all regarded to be different limits of a yet unknown theory

called M-theory [32, 33]. Their low-energy effective actions indeed show higher-derivative terms

weighted by powers of the inverse string tension [28, 34, 35].

One of the phenomenological problems of these superstring theories is that, in order for them

not to have quantum anomalies, they must live on ten-dimensional (or eleven-dimensional)

spacetimes [31]. Gravity must necessarily feel all dimensions, since it is a geometric theory.

Therefore, six of the spatial dimensions in superstring theory need to be hidden away in order

to explain a four-dimensional world like ours. One way of doing so is by making the extra

dimensions compact and small. But we could also consider the case in which the Standard Model

particles are confined to a four-dimensional subspace —a brane— within the ten-dimensional

theory. One would then need a mechanism to confine gravity as well. Besides compactification,

it is possible to localize gravity on the brane either thanks to the higher-dimensional geometry,

or by adding an explicit Einstein-Hilbert term on the brane.

The first proposal goes back to Randall and Sundrum (RS) [36]. They considered a four-

dimensional flat brane sitting on a five-dimensional Anti-de Sitter (AdS) bulk, close to its

asymptotic boundary, and realized that, thanks to the bulk warping factor, a bulk graviton

zero-mode localizes on the brane. This is the topic of brane-world models, which we will consider

in Part II of this thesis. The second proposal was put forth by Dvali, Gabadadze, and Porrati

(DGP) [37], and consists in placing a four-dimensional flat brane, with an Einstein-Hilbert term

in its action, in a five-dimensional Minkowski bulk. The RS model reproduces four-dimensional

gravity on the brane at long distances but not at high energies, while the DGP model does the

opposite [38, 39]. In Chapter 3, we will examine RS brane-worlds and their generalization to

(A)dS branes, known as Karch-Randall (KR) brane-worlds [40]. In the subsequent Chapter 4,

instead of reconsidering the original DGP set-up, we will investigate the case of DGP branes

sitting on an AdS bulk, as an extension of the KR framework. In both cases, we will study the

localization of gravity on the brane, and we will use these results to put bounds on the allowed

DGP coupling on KR branes. A more complete introduction to both topics can be found at the

beginning of their respective chapter.

This mismatch between the observed number of dimensions of our Universe and the required

spacetime dimensions of superstring theories is not the only challenge that these theories are

facing. Even though they help clarify some of their qualities, even string theory struggles in

fully describing GR’s most simple and fascinating solutions: black holes (BHs).

The classical laws of BH mechanics [41, 42], when compared to the laws of thermodynamics,

suggest that BHs have an entropy proportional to their area and a temperature proportional

to their surface gravity [43–45]. If BHs have a temperature, they must radiate, which seems

to contradict their classical definition as regions of spacetime from which nothing —not even

light— can escape. Fifty years ago, however, through semiclassically studying quantum fields

around the event horizon of a BH, Hawking showed that this is indeed the case: BH horizons do

radiate, with a perfect black-body spectrum at a temperature TH [46, 47]. Moreover, Hawking
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showed that BHs have an entropy and a temperature precisely given by

SBH =
A

4GN
, (I.3)

TH =
κ

2π
, (I.4)

where A and κ are the area and surface gravity of the event horizon, respectively, GN is

Newton’s constant, and we are using units in which c = ℏ = kB = 1. A couple of years later,

Gibbons and Hawking rederived these formulas using a semiclassical saddle-point approximation

on the gravitational path integral, in which one considers the path integral of Euclidean metrics

fulfilling the required boundary conditions of the problem [48]. Moreover, they showed that

these formulas also apply to other kinds of horizons in GR, such as cosmological [49]. Indeed,

even acceleration horizons present such a temperature [50]. Therefore, eq. (I.4) is an equation

about QFT in curved spacetime. But eq. (I.3) is our first formula of quantum gravity, and it

has been shaping most of the research in the field ever since, as it raises several fundamental

questions.

One issue that arises from interpreting both equations is that, since BHs radiate, they lose

energy, and so they eventually evaporate and disappear [46]. The laws of quantum mechanics

tell us that no information is lost in unitary time evolution, but the black-body radiation of

a BH can only contain information about its temperature [51]. What happens then to the

information of whatever objects that may have fallen into a BH? This paradox is known as the

Black Hole Information Problem. Nowadays, there is strong evidence that information must

eventually leak out of the evaporating BH [52], as we will explain later. It seems that quantum

entanglement and some form of non-locality play an important role in the physics behind this

process [53], but the precise details of the mechanism which resolves the paradox are still not

known.

Another conceptual problem that stems from these formulas is the fact that, in statistical

mechanics, entropy describes the number of microstates available to a given thermodynamic

macrostate. In classical GR, however, black holes are described by just a handful of parameters,

the famous No-Hair Theorem [54, 55]. From which microscopical degrees of freedom does the

BH entropy come from? What are the possible microstates of a BH? In string theory, it is

possible to account for the microstates of some extremal, supersymmetric BHs [56], but not

of the four-dimensional Kerr BH, for example, which is believed to describe all BHs in our

Universe.4 And, most importantly, in most thermodynamic set-ups, the entropy of a system

scales with its volume, and not its area. Do the microscopic degrees of freedom describing a

BH live only on its event horizon, and not its interior? And if so, why?

Now, consider a spherical region in spacetime with area A, within which there are quantum

fields with some energy, and with some entropy greater than A/4G. If we were to collapse all

this energy into a BH, its horizon area would be smaller than the original area A, and so we

would violate the second law of thermodynamics. Thus, the maximum entropy that quantum

fields can have in some region of space is the entropy of a BH of that same size [60, 61].

4Recently, it has been shown that the entropy of many kinds of BHs can be accounted for by an infinite

family of microstates semiclassically described by dust shells in the BH interior. One then finds the correct

dimensionality of the Hilbert space through a Euclidean path integral calculation, which yields the desired result

if one takes into account subleading wormhole saddles [57–59]. These microstates, however, are non-generic, so

there is still much to be understood from this issue.
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Since this bound is proportional to the area of the spacetime region, one may conjecture

that, in fact, any fundamental description in quantum gravity of a region of spacetime must

be encoded in some degrees of freedom at the boundary of the region. This is known as the

holographic principle, pioneered by ’t Hooft and Susskind [62–64].

The holographic principle became concrete in 1997, when Maldacena posited the AdS/CFT

correspondence [65], which asserts that quantum gravity —string theory— on a (d+1)-dimensional

AdS spacetime is equivalent to a d-dimensional conformal field theory (CFT) living on a space-

time with no gravity, at the conformal boundary of the AdS bulk. The correspondence provided

the first non-perturbative definition of string theory —previously, there were only definitions of

string theory that were perturbative in the string coupling.

The gauge/gravity duality has grown beyond its initial form within string theory into one of

the most active and fruitful fields within theoretical physics. Nowadays, it is understood that

the duality is more general, and that many non-Abelian quantum field theories, not necessarily

fully conformal, describe gravitational effective field theories in asymptotically AdS spacetimes

[26, 66, 67]. Conversely, one may also think about using, through AdS/CFT, holographic higher-

derivative gravities as toy models of conformal field theories. Indeed, universal properties valid

for completely general CFTs have been discovered through such explorations [68–76].

The duality has many far-reaching consequences. It was suggested by Ryu and Takayanagi

[77, 78], and later proven by Lewkowycz and Maldacena [79], that the entanglement entropy

of boundary subregions of the CFT can be computed by the area of an extremal bulk surface

homologous to the boundary subregion through a formula that has the same form as the entropy

of BHs. This result suggests that spacetime itself may emerge from quantum entanglement.

Another consequence of the AdS/CFT duality is that, a priori, it solves the BH Information

Paradox: since the boundary theory is a perfectly unitary non-gravitating QFT, the BHs in

AdS dual to their thermal states must also evolve unitarily. However, it was not until 2019 that

precise calculations showed how to reproduce a unitary Page curve for evaporating large AdS

black holes [52]. The key was realizing that the correct way of computing entropies in semi-

classical gravity is by using quantum extremal surfaces [80–85], in what has become known as the

island formula, which consists in taking into account additional subleading saddles —spacetime

Euclidean wormholes— to the Euclidean gravitational path integral.

Many of the clues that led to these recent breakthroughs were inspired [81, 86] by what is

known as brane-world holography. It turns out that one can also apply the holographic duality

to brane-worlds: the AdSd+1 bulk ending on an end-of-the-world (EOW) brane is dual to an

effective d-dimensional gravitational theory coupled to a cut-off CFTd on the brane [87, 88].

Since the brane is at a finite distance from the asymptotic boundary, we can think of brane-world

models as imposing a UV cut-off to the dual CFT. Doing so, we obtain a holographic realization

of Sakharov’s aforementioned induced gravity proposal [27], as the gravitational theory on the

brane is induced by integrating out the CFT degrees of freedom above the cut-off.

As we will explain in detail in Chapters 3 and 5, the induced gravity theory on the brane is

not simply Einstein gravity but a higher-derivative theory of gravity. In Part III of this thesis,

we will use the mathematical tools for higher-derivative theories developed in Part I, and insight

on brane-worlds from Part II, to thoroughly study the higher-derivative theory of gravity on

the brane.

We hope that our results from this thesis will provide insights into the inner workings of

brane-world holography, allowing us to expand and clarify its uses as a model for semi-classical
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gravity within AdS/CFT.

Summary of this thesis. Let us end this introduction with a summary of this thesis. It

consists of three main parts. The first two are disjoint from each other, and can be read in any

order, while the third combines results from both previous parts and should be read at the end.

Part I deals with higher-derivative theories of gravity. In Chapter 1, we present new results

involving general higher-curvature gravities in three dimensions. The most general Lagrangian

of that kind can be written as a function of R,S2,S3, where R is the Ricci scalar, S2 ≡ R̃b
aR̃

a
b ,

S3 ≡ R̃b
aR̃

c
bR̃

a
c , and R̃ab is the traceless part of the Ricci tensor. First, we provide a general

formula for the exact number of independent order-n densities, #(n). This satisfies the identity

#(n − 6) = #(n) − n. Then, we show that, linearized around a general Einstein solution, a

generic order-n ≥ 2 density can be written as a linear combination of Rn, which by itself would

not propagate the generic massive graviton, plus a density which by itself would not propagate

the generic scalar mode, Rn−12n(n−1)Rn−2S2, plus #(n)−2 densities which contribute trivially

to the linearized equations. Then, we provide a recursive formula as well as a general closed

expression for order-n densities which non-trivially satisfy a holographic c-theorem, clarify their

relation with Born-Infeld gravities and prove that the scalar mode is always absent from their

spectrum. We show that, at each order n ≥ 6, there exist #(n − 6) densities which satisfy

the holographic c-theorem in a trivial way and that all of them are proportional to a single

sextic density Ω(6) ≡ 6S2
3 −S3

2 . Next, we show that there are also #(n− 6) order-n Generalized

Quasi-topological (GQT) gravities in three dimensions, all of which are “trivial”, since they do

not contribute to the metric function equation. Remarkably, the set of such densities coincides

exactly with the one of theories trivially satisfying the holographic c-theorem. We comment on

the meaning of Ω(6) and its relation to the Segre classification of three-dimensional metrics.

In Chapter 2, we study, in arbitrary dimensions, higher-derivative theories of gravity built

from contractions of the metric, its Riemann tensor, and its Levi-Civita covariant derivative,

L(gab, Rabcd,∇a). We show the structure of the linearized equations of these theories on max-

imally symmetric backgrounds, and we characterise their linearized spectrum on Minkowski

space. Then, we study GQTs involving covariant derivatives of the Riemann tensor. We argue

that they always have second-order linearized equations on maximally symmetric backgrounds,

and that they display an Einsteinian spectrum. Focusing on four spacetime dimensions, we

present the first examples of densities of this type, involving eight and ten derivatives of the

metric.

In Part II, we introduce Karch-Randall brane-world models, in which a d-dimensional brane

sits near the boundary of an AdSd+1 bulk. In Chapter 3, we start by reviewing the localization

of gravity on the brane. We linearly perturb the bulk and show how a bulk zero-mode localizes

on the brane. We extend the known results by presenting them in a new formulation that

allows one to deal with the three different maximally symmetric brane geometries at once, and

by generalizing them to an arbitrary number of dimensions d ≥ 3. For the case of AdS branes,

we improve on the formula of the graviton mass as a function of the brane position, and present

new formulas describing the mass of the higher overtones. Finally, in section 3.4, we reinterpret

these results through brane-world holography. We integrate the bulk to obtain an effective

description of the brane dynamics in terms of brane variables as a higher-derivative theory of

induced gravity coupled to a cut-off CFT on the brane.

In Chapter 4, we then add a DGP term —an explicit Einstein-Hilbert term— on the brane
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action. We extend the results from the previous chapter to study how the localization of gravity

on the brane changes with the presence of this extra term. This allows us to establish bounds for

the DGP coupling constant, beyond which the theory presents pathologies: either the position

of the brane ceases to be well-defined, or its spectrum presents a tachyonic mode. We again

perform brane-world holography to reinterpret these results from the brane perspective.

Part III of the thesis combines results from both previous parts of the thesis to describe the

properties of the higher-derivative theory of induced gravity on the brane. In Chapter 5, we show

how to compute the higher-derivative gravitational densities that are induced from holographic

renormalization in AdSd+1. In the previous brane-world construction, these densities define

the d-dimensional higher-derivative gravitational theory on the brane. Inevitably, there is some

redundancy between Chapters 3 and 5 concerning the definition of the induced gravity theory on

the brane, but we have chosen not to remove it so that each chapter can be read independently.

In Chapter 6, we show that the CFTd−1 dual to the d-dimensional induced gravity theory

satisfies a holographic c-theorem in general dimensions, since at every order in derivatives, the

densities in the action satisfy c-theorems on their own. We find that, in these densities, the terms

that affect the monotonicity of the holographic c-function are algebraic in the curvature, and

do not involve covariant derivatives of the Riemann tensor. We examine various other features

of the holographically induced higher-curvature densities, such as the presence of reduced-order

traced equations, and their connection to Born-Infeld-type gravitational Lagrangians.

Finally, in Chapter 7, we study the linearized spectrum on flat space of these induced

brane-world gravities. We show that the effective quadratic action for the full tower of higher-

derivative terms in the induced gravity action can be written explicitly in a closed form in

terms of Bessel functions. We use this result to compute the propagator of metric perturbations

around Minkowski and its pole structure in various dimensions, always finding infinite towers

of ghost modes, as well as tachyons and more exotic modes in some cases.
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Notation

We use units such that c = ℏ = kB = 1, our metric sign convention is (−+ · · ·+).

If we are doing brane-world holography, we use d to denote the number of spacetime di-

mensions of the brane, while the bulk is a (d + 1)-dimensional asymptotically AdS spacetime.

Otherwise, we use D as our number of spacetime dimensions.

We generally use g to denote our spacetime metric. However, if we are doing (brane-world)

holography, we use G as our bulk metric and g as our induced metric on the brane.

We use abstract index notation. Capital Latin indicesM,N, ... denote bulk tensor equations,

while early-alphabet indices a, b, c, ... denote brane tensor equations, or otherwise general tensor

equations in chapters in which we are not doing brane-world holography. These equations

are valid in any basis. We use Greek indices µ, ν, ... to denote bulk tensor components with

respect to some bulk basis, while middle-alphabet indices i, j, k, ... denote brane or general

tensor components with respect to some basis.

BH Black Hole.

GR General Relativity

(A)dS (Anti-)de Sitter spacetime.

GN Newton’s constant.

g Determinant of the metric gab.

EOW End-of-the-world (brane).

RS Randall-Sundrum (brane-world).

KR Karch-Randall (brane-world).

DGP Dvali-Gabadadze-Porrati (term).

RT Ryu-Takayanagi (holographic entanglement entropy).

GQT Generalized Quasi-topological (gravity).
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Chapter 1

Three-Dimensional

Higher-Curvature Gravities

1.1 Introduction

Gravity becomes simpler when we go down to three dimensions. Firstly, the Weyl tensor

vanishes identically, implying that all curvatures are Ricci curvatures. This means that all

solutions of three-dimensional Einstein gravity are locally equivalent to maximally symmetric

backgrounds and that no gravitational waves propagate. In spite of this, global differences be-

tween spacetimes do appear and prevent the theory from being “trivial”, even at the classical

level. In particular, in the presence of a cosmological constant, the theory admits black hole

solutions [89, 90] which, despite important differences with their higher-dimensional counter-

parts, do share many of their properties —including the existence of event and Cauchy horizons,

thermodynamic properties, holographic interpretation, etc.

The local equivalence of all classical solutions allows for a characterization of the phase

space of the theory [91]. In addition —up to non-negligible details— three-dimensional Einstein

gravity is classically equivalent to a Chern-Simons gauge theory [92]. From a holographic point

of view [65–67], these qualitative changes with respect to higher dimensions are manifest in the

distinct nature of conformal field theories in two dimensions. In fact, while the observation that

the symmetry algebra of AdS3 spaces is generated by two copies of the conformal algebra in two

dimensions [93] is often considered to be a precursor of AdS/CFT, the nature of the putative

holographic theory —or ensemble of theories— dual to pure Einstein gravity is still subject of

debate [94–99].

The above simplifications also affect higher-curvature modifications of Einstein gravity. In

particular, all theories can be constructed exclusively from contractions of the Ricci tensor,

which reduces the number of independent densities drastically. Similarly, the usual arguments

for considering higher-curvature corrections —which involve their appearance in the form of

infinite towers of terms coming from stringy corrections— do not make much sense in three-

dimensions. This is because all non-Riemann curvatures can be removed via field redefinitions,

and hence one is left again with Einstein gravity —plus cosmological constant and a possible

gravitational Chern-Simons term [100]. However, there is a different reason to consider higher-

curvature gravities with non-perturbative couplings in three dimensions. This is the fact that,

as opposed to Einstein gravity, they can give rise to non-trivial local dynamics. This appears
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in the form of a massive graviton and/or a scalar mode —see e.g. [101].

By far, the best known higher-curvature modification of Einstein gravity in three dimen-

sions is the so-called “New Massive Gravity” (NMG) [102]. At the linearized level, the theory

describes a massive graviton with the same dynamics of a Fierz-Pauli theory. In addition,

the theory is distinguished by possessing second-order traced equations [103], by admitting a

holographic c-theorem [16], and by admitting a Chern-Simons description [104]. Unfortunately,

demanding unitarity of the bulk theory spoils the unitarity of the boundary theory and viceversa

[105], a problem which has been argued to be unavoidable for general higher-curvature theories

sharing the spectrum of NMG [106].

Moving from quadratic to higher orders, one can use some of the above criteria to select

special theories. One possibility is to demand that the corresponding theories admit a holo-

graphic c-theorem [16, 17]. Alternatively, one can look for additional theories which admit a

Chern-Simons description [107–109]. A different route involves considering special D → 3 limits

of higher-dimensional theories with special properties [110]. Often, the densities resulting from

these different approaches coincide with each other. Alternative routes include [111–118].

While higher-curvature modifications of three-dimensional Einstein gravity have been stud-

ied extensively by now, most of the results are only valid for the lowest curvature orders or

for particular theories —see e.g. [17, 119, 120] for exceptions. In this chapter, we present a

collection of new results for general-order higher-curvature theories. Without further ado, let

us summarize them.

• In Section 1.2, we obtain a formula for the exact number of independent order-n densities,

#(n). This is given by

#(n) =
⌈n
2

(n
6
+ 1
)
+ ϵ
⌉
, (1.1)

where ⌈x⌉ is the usual ceiling function and ϵ is any positive number such that ϵ≪ 1. The

function #(n) satisfies the interesting recursive relation #(n− 6) = #(n)− n, which says

that the number of order-n densities minus n equals the number of densities of six orders

less.

• In Section 1.3, we present the equations of motion for a general higher-curvature gravity

and the algebraic equations these reduce to when evaluated for Einstein metrics. We also

make a few comments about single-vacuum theories.

• In Section 1.4, we obtain the linearized equations of a general higher-curvature gravity

around an Einstein spacetime as a function of the effective Planck length and the masses

of the new spin-2 and spin-0 modes generically propagated. Formulas for such physical

parameters are obtained for a general theory. Using these results, we show that the most

general order-n density can be written as

L(n) = αnR
n + βn[R

n − 12n(n− 1)Rn−2S2] + Gtrivial
(n) , (1.2)

where: the first term is a density which by itself does not propagate the massive spin-2

mode but which does propagate the scalar one (for n ≥ 2), the second term is a density

which by itself does not propagate the scalar mode but which does propagate the spin-2

mode, and the third term, Gtrivial
(n) —which involves #(n)−2 densities— does not contribute

at all to the linearized equations.
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Chapter 1 Three-Dimensional Higher-Curvature Gravities

• In Section 1.5, we study higher-curvature theories which satisfy a holographic c-theorem.

First, we provide a recursive formula for densities which satisfy it in a non-trivial fashion

—i.e. they contribute non-trivially to the c-function. This is given by

C(n) =
4(n− 1)(n− 2)

3n(n− 3)

(
C(n−1)C(1) − C(n−2)C(2)

)
, (1.3)

which allows one to obtain an order-n density of that kind from the two immediately

lower order ones. Then, we solve the recurrence explicitly and provide a general explicit

formula for C(n). We argue that there are #(n) − (n − 1) densities of order n which

satisfy the holographic c-theorem. Of those, #(n) − n are trivial in the sense of making

no contribution to the c-function. These start appearing for n ≥ 6. We show that all such

“trivial” densities are proportional to the sextic density

Ω(6) ≡ 6S2
3 − S3

2 , (1.4)

so that the most general order-n density satisfying the holographic c-theorem can be

written as

Lc−theorem
(n) = αnC(n) +Ω(6) · L

general
(n−6) , (1.5)

where Lgeneral
(n−6) is the most general linear combination of order-(n−6) densities. In addition,

we show that if a theory satisfies the holographic c-theorem, then it does not include the

scalar mode in its spectrum. Finally, we study the relation of C(n) with the general term

obtained from expanding the Born-Infeld gravity Lagrangian of [121].

• In Section 1.6, we explore the possible existence of Generalized Quasi-topological gravities

in three dimensions. We show that there exist #(n) − n theories of that kind, and that

all of them are “trivial” —in the sense of making no contribution to the equation of the

black hole metric function— and again proportional to the same sextic density Ω(6) that

appeared in the previous section.

• In Section 1.7, we make some comments on the relation between Ω(6) and the Segre

classification of three-dimensional spacetimes. We explain why the prominent role played

by this density in the identification of “trivial” densities of the types studied in the previous

two sections could have been expected —at least to some extent.

Notation and conventions: Throughout this chapter we consider higher-curvature theories

constructed from contractions of the Ricci tensor and the metric. When referring to generic

Lagrangian densities, we use the notation L ≡ L(gab, Rab), and we express the gravitational

constant in terms of the Planck length ℓP ≡ 8πGN . We choose to work always with a neg-

ative cosmological constant, which we denote in terms of the action length scale L, so that

−2Λ ≡ 2/L2. The Anti-de Sitter3 (AdS3) radius is denoted by L⋆, and sometimes we use the no-

tation χ0 ≡ L2/L2
⋆, so that χ0 = 1 for Einstein gravity. We will often consider Lagrangians which

involve an Einstein gravity plus cosmological constant part, plus a general function of the three

basic densities which span the most general higher-curvature invariants in three-dimensions.

Those three invariants can be alternatively chosen to be {R,R2 ≡ Rb
aR

a
b ,R3 ≡ Rb

aR
c
bR

a
c} or

{R,S2 ≡ R̃b
aR̃

a
b ,S3 ≡ R̃b

aR̃
c
bR̃

a
c}, where R̃ab is the traceless part of the Ricci tensor. Conse-

quently, we will often consider general functions of either set of densities, which we will denote

17
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respectively by F ≡ F(R,R2,R3) and G ≡ G(R,S2,S3). The different invariants are often

classified attending to their curvature order n, corresponding to the number of Ricci tensors

involved in their definition. Generic order-n densities are denoted L(n) and the most general

linear combination of order-n densities is denoted Lgeneral
(n) . We use the notation GX ≡ ∂G/∂X,

GX,X ≡ ∂2G/∂X2 and so on to denote partial derivatives. Expressions with a bar denote eval-

uation of the invariants on an Einstein background metric, X̄ ≡ X(R̄, R̄2, R̄3). In the case

of terms which require taking derivatives with respect to some of the arguments, it is under-

stood that the derivatives are taken first, and the resulting expression is then evaluated on the

background. Hence, for instance, F̄R ≡ [∂F/∂R]|R=R̄,R2=R̄2,R3=R̄3
.

1.2 Counting higher-curvature densities

In this section, we compute the exact number of independent densities of order n constructed

from arbitrary contractions of the Riemann tensor and the metric. The vanishing of the Weyl

tensor in three dimensions reduces the analysis to theories constructed from contractions of

the Ricci tensor and the metric, L (gab, Rab). Additionally, the existence of Schouten identities

implies that the most general higher-curvature action can be written as [17, 119]

S(R) =
1

2ℓP

∫
d3x
√
|g|L(R) , L(R) ≡

2

L2
+R+ F (R,R2,R3) , (1.6)

where we chose a negative cosmological constant and we defined

R2 ≡ Rb
aR

a
b , R3 ≡ Rb

aR
c
bR

a
c . (1.7)

Often we will assume F (R,R2,R3) to be either an analytic function of its arguments, or a

series of the form

F (R,R2,R3) =
∑
i,j,k

L2(i+2j+3k−1) αijkR
iRj

2R
k
3 , (1.8)

for some dimensionless coefficients αijk.

As we just mentioned, the “Schouten identities” drastically reduce the number of indepen-

dent densities of a given order, leaving eq. (1.6) as the most general case. Those identities take

the form [17]

δa1...anb1...bn
Rb1

a1R
b2
a2 · · ·R

bn
an = 0 , for n > 3 , (1.9)

where δa1...anb1...bn
is the (totally antisymmetric) generalized Kronecker delta. These identities rely

on the fact that totally antisymmetric tensors with ranks higher than 3 vanish identically in

D = 3. From eq. (1.9), it follows that the cyclic contraction of n > 3 Riccis can be written in

terms of lower-order densities, and hence the generality of eq. (1.6). One finds, for instance

Rb
aR

c
bR

d
cR

a
d =

1

6
R4 +

4

3
RR3 +

1

2
R2

2 −R2R
2 , (1.10)

Rb
aR

c
bR

d
cR

e
dR

a
e =

1

6
R5 +

5

6

(
R3R2 +R3R

2 −R2R
3
)
, (1.11)

Rb
aR

c
bR

d
cR

e
dR

f
eR

a
f =

1

12
R6 +R3R2R+

1

3
R3R

3 − 1

4
R2R

4 − 3

4
R2

2R
2 +

1

4
R3

2 +
1

3
R2

3 . (1.12)

It is often convenient to use a basis of invariants involving the traceless part of the Ricci

tensor,

R̃ab ≡ Rab −
1

3
gabR . (1.13)
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Then, we can define

S2 ≡ R̃b
aR̃

a
b = R2 −

1

3
R2 , S3 ≡ R̃b

aR̃
c
bR̃

a
c = R3 −RR2 +

2

9
R3 , (1.14)

and alternatively write the most general theory replacing F (R,R2,R3) by G (R,S2,S3) in

eq. (1.6) [119], namely

S(S) =
1

2ℓP

∫
d3x
√
|g|L(S) , L(S) ≡

2

L2
+R+ G (R,S2,S3) . (1.15)

We will write the polynomial version of G as

G(R,S2,S3) =
∑
i,j,k

L2(i+2j+3k−1) βijkR
iSj

2S
k
3 . (1.16)

While eq. (1.6) feels like a more natural choice from a higher-dimensional perspective, it turns

out that many formulas simplify considerably when expressed in terms of R̃ab instead. We will

try to present most of our results in both bases.

Let us consider the case in which the theory is a power series of the building blocks R,R2,R3

as in eq. (1.8) (or, alternatively, R,S2,S3 as in eq. (1.16)). The order n of a certain combination

of scalar invariants is related to the powers of the individual components through n = i+2j+3k.

One finds the following possible invariants at the first orders,

R , for n = 1 , (1.17)

R2 , R2 , for n = 2 , (1.18)

R3 , RR2 , R3 , for n = 3 , (1.19)

R4 , R2R2 , RR3 , R2
2 , for n = 4 , (1.20)

R5 , R3R2 , R2R3 , RR2
2 , R2R3 , for n = 5 , (1.21)

R6 , R4R2 , R3R3 , R2R2
2 , RR2R3 , R3

2 , R2
3 , for n = 6 , (1.22)

and so on. Then, the function #(n) counting the number of invariants of order n takes the

values #(1) = 1, #(2) = 2, #(3) = 3, #(4) = 4, #(5) = 5, #(6) = 7.

In order to find the explicit form of #(n) as a function of n, we can proceed as follows. If

we understand the number of elements constructed from powers of R alone up to order n as the

coefficients of a power series, we can define the generating function f (R)(x) as

f (R)(x) ≡ 1

1− x
∼ 1 + x+ x2 + x3 + . . . , (1.23)

i.e. such that the right-hand-side, which is the Maclaurin series of the left-hand-side, has

coefficient 1 for all powers. This is because at every order n there is a single density we can

construct with R alone, namely, Rn. Now, if we want to do the same for R2, we need to take

into account that the corresponding coefficients should be 1 when n is even, and 0 otherwise.

We define then

f (R2)(x) ≡ 1

1− x2
∼ 1 + x2 + x4 + x6 + . . . (1.24)

Following the same reasoning for R3, we define

f (R3)(x) ≡ 1

1− x3
∼ 1 + x3 + x6 + x9 + . . . (1.25)
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Now, we can obtain #(n) as the coefficient of the Maclaurin series corresponding to the gen-

erating function which results from the product of the three generating functions previously

defined, namely

f (R)(x)f (R2)(x)f (R3)(x) =
1

(1− x)(1− x2)(1− x3)
∼
∑
n

#(n)xn . (1.26)

The result can be written explicitly as

#(n) =
1

72

[
47 + (−1)n9 + 6n(6 + n) + 16 cos

(
2nπ

3

)]
. (1.27)

This gives the exact number of independent three-dimensional order n densities. It is easy to

verify that this yields the same values obtained above for the first n’s. Note that #(n) is not

an analytic function, but it is still easy to see that, for n≫ 1, it goes as

#(n) ∼ n

2

(n
6
+ 1
)
. (1.28)

The fact that #(n) scales with ∼ n2 for large n had been previously observed in [17].

It can be shown that #(n) can be alternatively written exactly (for integer n, which is the

relevant case) as

#(n) =
⌈n
2

(n
6
+ 1
)
+ ϵ
⌉
, (1.29)

where ⌈x⌉ ≡ min {k ∈ Z | k ≥ x} is the usual ceiling function and ϵ is any positive number such

that ϵ≪ 1. For instance, at order n = 1729, one has #(1729) = 249985 independent densities,

as one can easily verify both from eq. (1.27) or eq. (1.29).

The function #(n) satisfies several relations which connect its values at different orders. A

particularly suggestive one is the recursive relation

#(n− 6) = #(n)− n , (1.30)

which connects the number of densities of a given order with the number of densities of six

orders less. This follows straightforwardly from the general expression of #(n) in eq. (1.29).

We will use this relation in Sections 1.5 and 1.6 to prove a couple of results concerning the

general form of densities which trivially satisfy a holographic c-theorem and of densities which

belong to the Generalized Quasi-topological class.

1.3 Equations of motion and Einstein solutions

The equations of motion of a general higher-curvature theory constructed from arbitrary

contractions of the Ricci scalar and the metric can be written as [122]

Eab ≡ P c
aRbc −

1

2
gabL −∇(a∇cP

c
b) +

1

2
Pab +

1

2
gab∇c∇dP

cd = 0 , (1.31)

where

P ab ≡ ∂L
∂Rab

∣∣∣∣
gcd

. (1.32)
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In our three-dimensional case, when written as in eq. (1.6), the explicit form of these equations

reads

E(R)
ab ≡+Rab(1 + FR)−

1

2
gab

(
R+

2

L2
+ F

)
+ (gab −∇a∇b)FR

+ 2FR2R
c
aRcb + 3FR3R

c
aRcdR

d
b + gab∇c∇d

(
FR2R

cd +
3

2
FR3R

cfRd
f

)
+

(
FR2Rab +

3

2
FR3R

c
aRcb

)
− 2∇c∇(a

(
Rc

b)FR2 +
3

2
Rd

b)R
c
dFR3

)
= 0 ,

(1.33)

In the R,S2,S3 basis, the equations of motion read instead [119]

E(S)
ab ≡+

(
R̃ab +

1

3
gabR

)
− 1

2
gab

(
R+

2

L2
+ G

)
+ 2GS2R̃

c
aR̃cb + 3GS3R̃

c
aR̃cdR̃

d
b

+

(
gab −∇a∇b + R̃ab +

1

3
gabR

)
(GR − GS3S2) + gab∇c∇d

(
GS2S

cd +
3

2
GS3S

cf R̃d
f

)
+

(
+
2

3
R

)(
GS2R̃ab +

3

2
GS3R̃

c
aR̃cb

)
− 2∇c∇(a

(
R̃c

b)GS2 +
3

2
R̃d

b)R̃
c
dGS3

)
= 0 .

(1.34)

Solutions of Einstein gravity plus cosmological constant can be easily embedded in the

general higher-curvature theory eq. (1.6) or eq. (1.15). These include, for instance, pure AdS3

and the BTZ black hole. Indeed, consider Einstein metrics of the form

R̄ab = − 2

L2
⋆

ḡab . (1.35)

In that case, one has

R̄ = − 6

L2
⋆

, R̄2 =
12

L4
⋆

, R̄3 = − 24

L6
⋆

, S̄2 = 0 , S̄3 = 0 . (1.36)

Hence, eq. (1.35) satisfies the equations of motion eq. (1.33) provided

6

L2
− 6

L2
⋆

[
1− 2F̄R +

8

L2
⋆

F̄R2 −
24

L4
⋆

F̄R3

]
+ 3F̄ = 0 , (1.37)

is satisfied. In the alternative formulation in terms of traceless Ricci tensors, the analogous

equation is considerably simpler and reads [119]

6

L2
− 6

L2
⋆

[
1− 2ḠR

]
+ 3Ḡ = 0 . (1.38)

For Einstein gravity, this simply reduces to L2 = L2
⋆, which just says that the AdS3 radius

coincides with the cosmological constant scale. In general, eq. (1.37) and eq. (1.38) are equations

for the quotient χ0 ≡ L2/L2
⋆. If the series form (1.8) is assumed, then eq. (1.37) takes the form

1− χ0 +
∑
n

anχ
n
0 = 0 , where an ≡ (−1)n6n−1(3− 2n)

∑
j,k

αn−2j−3k,j,k

3j+2k
. (1.39)

Similarly, eq. (1.38) takes the form

1− χ0 +
∑
n

bnχ
n
0 = 0 , where bn ≡ (−1)n6n−1(3− 2n)βn00 , (1.40)

where observe that terms involving S2 and S3 make no contribution to the equation.
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On general grounds, the above polynomial equations will possibly have several positive

solutions for χ0, so the corresponding theories will possess several AdS3 vacua. Finding higher-

curvature theories with a single vacuum in three and higher dimensions has been subject of

study of numerous papers —see e.g. [123–125] and references therein. In the present case, a

complete analysis of the conditions which lead to a single vacuum can be easily performed in a

case-by-case basis, but not so much for a completely general theory, so we will not pursue it here.

Let us nonetheless make a couple of comments. First, observe that all extensions of Einstein

gravity with terms involving either S2 and/or S3 will have a single vacuum, since for those, the

Einstein gravity solution χ0 = 1 will be the only one. A different possibility for single-vacuum

theories would correspond to an order-n degeneration of the solutions of the above polynomial

equations, i.e. to the cases in which these become(
1− χ0

n

)n
= 0 . (1.41)

Observe that this involves n−1 conditions for a theory containing densities of order n and lower

and these will necessarily mix couplings of different orders. In particular, for a theory written

in the {R,S2,S3} basis involving densities of order up to n, these read

βi00 =

(
n

i

)
1

ni6i−1(3− 2i)
, i = 2, . . . , n . (1.42)

Hence, a Lagrangian of the form

Lsingle vac.
(n) =

2

L2
+R+

n∑
i=2

(
n

i

)
L2(i−1)

ni6i−1(3− 2i)
Ri + S2h2(R,S2,S3) + S3h3(R,S2,S3) , (1.43)

where h2,3 are any analytic functions of their arguments will have a single AdS3 vacuum.

1.4 Linearized equations

The linearized equations of motion around maximally symmetric backgrounds of higher-

curvature gravities involving general contractions of the Riemann tensor and the metric were

obtained in [126, 127] —see also [128, 129]. The resulting expression was expressed in terms of

four parameters, a, b, c and e, and a simple method for computing such coefficients for a given

theory was also provided, along with the connection between them and the relevant physical

parameters —namely, the effective Newton constant and the masses of the additional modes.

In this section, we apply this method to a general higher-curvature theory in three dimensions

and classify theories according to the content of their linearized spectrum.

Let gab = ḡab+hab where the background metric is an Einstein spacetime satisfying eq. (1.35)

and hab ≪ 1, ∀a, b = 0, 1, 2. Then, restricted to a general three-dimensional higher-curvature

gravity of the form eq. (1.6), the equations of motion of the theory read, at leading order in the

perturbation [127]

1

4ℓP
EL
ab ≡

[
e+ c

(
¯ +

2

L2
⋆

)]
GL

ab + (2b+ c)
(
ḡab ¯ − ∇̄a∇̄b

)
RL − 1

L2
⋆

(4b+ c) ḡabR
L =

1

4
TL
ab ,

(1.44)

where we included a putative matter stress-tensor for clarity purposes and where the linearized

Einstein and Ricci tensors, and Ricci scalar read

GL
ab= RL

ab −
1

2
ḡabR

L +
2

L2
⋆

hab , (1.45)
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RL
ab= ∇̄(a|∇̄ch

c
|b) −

1

2
¯hab −

1

2
∇̄a∇̄bh− 3

L2
⋆

hab +
1

L2
⋆

hḡab , (1.46)

RL = ∇̄a∇̄bhab − ¯h+
2

L2
⋆

h . (1.47)

In higher dimensions, there is an additional parameter —denoted “a” in [127]— appearing in

the linearized equations. However, this turns out to be non-zero only for densities which involve

Riemann curvatures, and so we have a = 0 for all three-dimensional theories. For a generic

higher-curvature theory in that case, eq. (1.44) describes three propagating degrees of freedom,

corresponding to a massive ghost-like spin-2 mode plus a spin-0 mode. The parameters e, c

and b above can be related to the effective Planck length ℓeffP and the masses (squared) of such

modes, which we denote m2
g and m2

s, as

ℓeffP =
1

4e
, m2

g = −e
c
, m2

s =
e+ 8

L2
⋆
(3b+ c)

3c+ 8b
. (1.48)

In subsection 1.4.3 we explain how to compute these parameters for a general higher-curvature

theory and do this explicitly in our three-dimensional context.

In terms of the physical quantities, the linearized equations read

ℓeffP
ℓP
m2

g · EL
ab ≡+

(
m2

g −
2

L2
⋆

− ¯
)
GL

ab −
1

L2
⋆

(
m2

g +m2
s − 2

L2
⋆

2(m2
s − 3

L2
⋆
)

)
ḡabR

L

+

(
m2

g −m2
s +

4
L2
⋆

4(m2
s − 3

L2
⋆
)

)
(ḡab ¯ − ∇̄a∇̄b)R

L = ℓeffP m2
g · TL

ab .

(1.49)

1.4.1 Physical modes

From what we have said so far, it is not obvious that eq. (1.49) describes the aforemen-

tioned modes of masses ms, mg. In order to see this, it is convenient to decompose the metric

perturbation as

hab = ĥab +
∇̄⟨a∇̄b⟩h(
m2

s − 3
L2
⋆

) +
1

3
hḡab , (1.50)

where ⟨ab⟩ denotes the traceless part, and ĥab is transverse and traceless, satisfying

ḡabĥab = 0 , ∇̄aĥab = 0 , (1.51)

where the second condition is imposed using gauge freedom. Let us note that this decomposition

fails in the special case m2
s =

3
L2
⋆
. In that situation, it is not possible to decouple the trace and

traceless parts of hab. However, from eq. (1.48), it follows that in this case m2
g = −1/L2

⋆, so

the spin-2 mode is a tachyon. Hence, we will assume that m2
s ̸= 3

L2
⋆
to avoid this problematic

situation.

Then, the trace and the traceless part of the linearized equations become, respectively, [127]

2

L2
⋆

(
1 + 1

m2
gL

2
⋆

)
(
m2

s − 3
L2
⋆

) ( ¯ −m2
s)h = ℓeffP TL , (1.52)

1

2m2
g

(
¯ +

2

L2
⋆

)(
¯ +

2

L2
⋆

−m2
g

)
ĥab = ℓeffP TL,eff

⟨ab⟩ , (1.53)
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where TL ≡ ḡabTL
ab and

TL,eff
⟨ab⟩ ≡ TL

⟨ab⟩ −
L2
⋆

2

(
¯ + 1

L2
⋆
−m2

g

)
(
m2

g +
1
L2
⋆

) ∇̄⟨a∇̄b⟩T
L . (1.54)

Eq. (1.52) describes a spin-0 mode corresponding to the trace of the perturbation. On the other

hand, eq. (1.53) can be further rewritten by defining

ĥab ≡ ĥ
(m)
ab + ĥ

(M)
ab , where ĥ

(m)
ab ≡ − 1

m2
g

[
¯ +

2

L2
⋆

−m2
g

]
ĥab , ĥ

(M)
ab ≡ 1

m2
g

[
¯ +

2

L2
⋆

]
ĥab ,

(1.55)

as

−
(
¯ +

2

L2
⋆

)
ĥ
(m)
ab = ℓeffP TL,eff

⟨ab⟩ , (1.56)(
¯ +

2

L2
⋆

−m2
g

)
ĥ
(M)
ab = ℓeffP TL,eff

⟨ab⟩ . (1.57)

These describe two traceless spin-2 modes which couple to matter with opposite signs. However,

as opposed to higher dimensions, only the massive one is propagating in D = 3. The would-be

massless spin-2 mode is pure gauge (whenever TL
ab = 0) in this number of dimensions —see

e.g. [130–133].1 Hence, the relevant equations are eq. (1.52) and eq. (1.57), which describe

a maximum of three degrees of freedom —one from the scalar mode and two from the spin-2

one— propagated around Einstein solutions by higher-curvature gravities in the most general

case.

When ℓeffP > 0, the massive graviton is a ghost and the scalar mode has positive energy, but

since there is no massless graviton, one could also consider ℓeffP < 0, so that the massive graviton

has positive energy and the scalar is a ghost. As we will see below, there are theories that only

propagate either the scalar mode or the massive spin-2 mode, and these can be made unitary

by taking ℓeffP > 0 or ℓeffP < 0, respectively. An example of the latter is NMG, as introduced in

[102], in which the Ricci scalar appears with the “wrong” sign in the action, hence implying

ℓeffP < 0.

1.4.2 Identification of physical parameters

Given a higher-curvature theory, one can linearize its equations and deduce the values of

the parameters b, c, e (and consequently ℓeffP ,m2
g,m

2
s) by comparing them with the above general

expressions. A much faster way of performing this identification was proposed in [127], which

we adapt here to our three-dimensional setup. One starts by replacing all Ricci tensors in the

Lagrangian by

Raux
ab = − 2

L2
⋆

gab + α(x− 1)kab , (1.58)

where x is an arbitrary integer constant and the symmetric tensor kab is defined such that

kaa ≡ x and kbak
c
b = kca. Then, the parameters can be unambiguously extracted from the general

formulas [127]

∂L(Raux
ab )

∂α

∣∣∣∣
α=0

= 2e x(x− 1) ,
∂2L(Raux

ab )

∂α2

∣∣∣∣
α=0

= 4x(x− 1)2(c+ bx) . (1.59)

1Massless and massive gravitons in D dimensions propagate D(D−3)
2

and (D+1)(D−2)
2

degrees of freedom,

respectively, which means 0 and 2 degrees of freedom respectively for D = 3.
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It is straightforward to do this for our general three-dimensional actions. When the theory is

expressed in terms of the traceless Ricci tensor as in eq. (1.15), the resulting parameters take a

particularly simple form

e =
1

4ℓP
[1 + ḠR] , b =

1

4ℓP

[
1

2
ḠR,R − 1

3
ḠS2

]
, c =

1

4ℓP
ḠS2 , (1.60)

where recall that we are using the notation GX ≡ ∂G/∂X, GX,X ≡ ∂2G/∂X2 and the bar

means that we are evaluating the resulting expressions on the background geometry, which is

implemented through eq. (1.36). If we assume that the Lagrangian allows for a polynomial

expansion, it is useful to decompose G in the following way,

G(R,S2,S3) = f(R) + S2g(R) + Gtriv , (1.61)

where

Gtriv ≡ S2
2h(R,S2) + S3l(R,S2,S3) (1.62)

includes all terms which do not contribute to the linearized equations around any constant

curvature solution. That is the case of any density involving any power of S2 greater or equal

than two and any power of S3 (different from zero). With the Lagrangian expressed in this way,

the background equation, eq. (1.38), reduces to

6

L2
− 6

L2
⋆

[1− 2f̄R] + 3f̄ = 0 , (1.63)

and using eq. (1.48) we find the physical quantities of the linearized spectrum,

ℓeffP =
ℓP

[1 + f̄R]
, m2

g = − [1 + f̄R]

ḡ
, m2

s =
[1 + f̄R] +

12
L2
⋆
f̄R,R

4f̄R,R + 1
3 ḡ

. (1.64)

When expressed explicitly in terms of the gravitational couplings in an expansion of the form

(1.16) these read

ℓeffP =
ℓP

[1 +
∑

i βi00i(−6χ0)i−1]
, m2

g = −
[
1 +

∑
i βi00i(−6χ0)

i−1
]

L2
⋆

∑
i βi10(−6)i

,

m2
s =

[
1−

∑
i βi00i(2i− 3)(−6χ0)

n−1
]

4L2
⋆

∑
i(−6χ0)i−2[(i− 1)iβi00 + 3βi10]

.

(1.65)

With the above expressions at hand, it is straightforward to classify the different theories

according to the presence or absence of the massive graviton and scalar modes in their spectrum.

Before doing so, let us present in passing the expressions analogous to eq. (1.64) when the

analysis is performed for a theory expressed in the {R,R2,R3} basis instead. In that case, the

equations become more involved and a decomposition of the form (1.61) is not available. We

have

ℓeffP =
ℓPL

4
⋆

L4
⋆(1 + F̄R)− 4L2

⋆F̄R2 + 12F̄R3

, m2
g =

L4
⋆(1 + F̄R)− 4L2

⋆F̄R2 + 12F̄R3

6L2
⋆F̄R3 − L4

⋆F̄R2

,

m2
s =

3

L2
⋆

+
[
L8
⋆

(
1 + F̄R

)
− 5L6

⋆F̄R2 − 18L4
⋆F̄R3

]
/
[
3L8

⋆F̄R2 − 18L6
⋆F̄R3 + 4L8

⋆F̄R,R

−32L6
⋆F̄R,R2 + 96L4

⋆F̄R,R3 − 384L2
⋆F̄R2,R3 + 4L8

⋆F̄R,R + 64L4
⋆F̄R2,R2 + 576F̄R3,R3

]
.

(1.66)

The polynomial form is straightforward to obtain from these expressions (and as ugly as one

may anticipate).
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1.4.3 Classification of theories

The decomposition (1.61) and eq. (1.64) make it very simple to classify all theories depending

on the mode content of their linearized spectrum. The three sets of theories we consider are:

theories which are equivalent to Einstein gravity at the linearized level, theories which do not

propagate the massive graviton, and theories which do propagate the scalar mode.

Einstein-like theories

A first group of densities are those for which m2
g,m

2
s → ∞, namely, densities in whose

spectrum both the massive graviton and the scalar mode are absent. These are theories which,

at the level of the linearized equations, are identical to Einstein gravity —up to, at most, a

change in the effective Planck length. As we mentioned earlier, a large set of densities do not

contribute whatsoever to the linearized equations. These are given by

G|trivial linearized equations = S2
2h(R,S2) + S3l(R,S2,S3) . (1.67)

It is not difficult to see that there are #(n)−2 densities of this kind at order n. Namely, all order-

n densities but those of the forms Rn and S2R
n−2 contribute trivially to the linearized equations.

While there are no “trivial” densities for n = 1, 2, they start to proliferate for n ≥ 3, becoming

the vast majority at higher orders. As it turns out, these “trivial” densities are the only

Einstein-like theories which exist beyond Einstein gravity itself. The reason is that removing

both the massive graviton and the scalar from the spectrum amounts at imposing c = b = 0,

which implies ḡ = f̄R,R = 0. These are on-shell conditions, but if we want to avoid relations

between densities of different orders, we must force them to hold for any value of R̄. Hence,

the conditions become g(R) = fR,R(R) ≡ 0, whose only non-trivial solution besides eq. (1.67)

is Einstein gravity plus a cosmological constant. Hence, most higher-curvature densities have

in fact trivial linearized equations.

It is a remarkable —and exclusively three-dimensional— fact that Einstein gravity is unique

in this sense. Observe that starting in four dimensions and for higher D there are generally

several Einstein-like densities with non-trivial linearized equations at each curvature order.

Examples are Lovelock [134, 135] and some f(Lovelock) densities [136], Einsteinian cubic gravity

[126], Quasi-topological [137–140] and Generalized quasi-topological gravities [14, 18, 19, 141],

among others [125, 142, 143].

Theories without massive graviton

Theories for which m2
g → ∞ do not propagate the massive graviton. In terms of our

parameters e, b and c, this condition is given by c = 0. From eq. (1.64) it is clear that this set of

theories are those with ḡ ≡ g(R̄) = 0. Again, in order to impose this condition at each curvature

order we must demand g(R) ≡ 0. Hence, the most general (polynomial) density which makes a

non-trivial contribution to the linearized equations and which does not propagate the massive

graviton in three-dimensions is f(R) gravity

G|no massive graviton = f(R) , (1.68)

Obviously, at order n there is 1 such density, corresponding to Rn. Of course, one can obtain

more complicated densities satisfying the m2
g → ∞ condition by combining some of the trivial
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Einstein-like densities with the f(R) ones. Hence, there are actually #(n) − 1 independent

densities which do not propagate the massive graviton at order n.

For comparison, observe that in D ≥ 4 there is a large set of higher-curvature theories

which do not have the massive graviton in their spectrum. This is the case, in particular, of all

f(Lovelock) theories [136] —the set also includes all the Einstein-like theories mentioned in the

last paragraph of the previous subsubsection.

Theories without scalar mode

The condition for the scalar mode to be absent from the spectrum, m2
s → ∞, reads instead

3c + 8b = 0, which is satisfied by theories for which 12f̄R,R + ḡ = 0. From this we learn that

the most general class theories of this kind contributing non-trivially to the linearized equations

reads

G|no scalar mode = f(R)− 12fR,R(R)S2 , (fR,R(R) ̸= 0) . (1.69)

Again, there is a single order-n density of this kind, corresponding to

G(n)|no scalar mode = Rn − 12n(n− 1)Rn−2S2 , (1.70)

= [1 + 4n(n− 1)]Rn − 12n(n− 1)Rn−2R2 . (1.71)

For n = 2, the above density is nothing but the New Massive Gravity one [102]. Once again,

we can combine the above order-n densities with the #(n) − 2 “trivial” densities to obtain

additional densities which do not propagate the scalar mode. There are then #(n)−1 densities

which do not propagate the scalar mode at each order.

Another property of NMG is that it fulfils a holographic c-theorem. In the following section,

we will see that, in D = 3, all higher-curvature theories which fulfil a simple holographic c-

theorem do not propagate the scalar mode.

In higher dimensions, a prototypical example of a theory which satisfies this condition (as

well as trivially satisfying a hologarphic c-theorem) is conformal gravity [127, 144], which can

be thought of as a natural D-dimensional extension of NMG.

In sum, in D = 3, at any order n ≥ 2 we can always decompose the most general linear

combination of higher-curvature densities as a sum of a term which by itself would not propagate

the massive graviton, plus a term which by itself would not propagate the scalar mode, plus

#(n)− 2 densities which do not contribute to the masses of any of them.

1.5 Theories satisfying a holographic c-theorem

Interesting extensions of Einstein and New Massive Gravities to higher orders can be ob-

tained by demanding that the corresponding densities satisfy a simple holographic c-theorem

[16, 17]. This set of theories is defined by the property that they yield second-order equations

when evaluated on the ansatz

ds2 = dρ2 + a(ρ)2[−dt2 + dx2] . (1.72)

Supplementing the action with an appropriate stress-tensor, the metric can be made to interpo-

late between two asymptotic AdS3 regions [145, 146] which, from the CFT point of view, would

represent IR and UV fixed points. Intermediate values of the holographic coordinate are then

interpreted as representing the RG flow between both CFTs.
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The idea behind the holographic c-theorem2 involves constructing a function c(ρ) which

decreases monotonously along the RG flow, as we move from the UV to the IR. In the present

holographic context, the fixed points can be chosen to be ρUV = +∞ and ρIR = −∞, so a

function satisfying

c′(ρ) ≥ 0 ∀ ρ , (1.73)

does the job. Now, the usual holographic c-theorem construction involves considering a function

c(ρ) such that c′(ρ) is proportional to the combination of stress-tensor components T t
t − T ρ

ρ .

Then, imposing that the stress-tensor satisfies the null energy condition, such combination has

a sign, namely,

T t
t − T ρ

ρ

NEC

≤ 0 . (1.74)

Therefore, any c(ρ) such that c′(ρ) ∝ −(T t
t − T ρ

ρ ), up to an overall positive-definite constant,

satisfies the requirement.

For theories of the type considered above, it is straightforward to construct an appropriate

c-function such that [71, 145, 149]

c′(ρ) = − a2

8Ga′2
[T t

t − T ρ
ρ ] . (1.75)

This can be obtained from the Wald-like [150] formula [16, 149]

c(ρ) ≡ πa

2a′
∂L

∂Rtρ
tρ
, (1.76)

where the Lagrangian derivative components are evaluated on eq. (1.72). By construction, c(ρ)

coincides with the Virasoro central charges of the fixed-point theories.

As argued in [17], demanding second-order equations for the ansatz eq. (1.72) for a set of

order-n densities amounts at imposing n − 1 conditions. The idea is to consider the on-shell

evaluation of the corresponding Lagrangian densities and impose that neither terms involving

derivatives of a(ρ) higher than two nor terms involving powers of a′′(ρ) higher than one appear

in the resulting expression. This enforces the corresponding equations of motion to be second-

order and that a simple c-function can be defined from the above formulas.

As we have shown, there are #(n) independent densities at order n, which means that there

are #(n)− (n− 1) independent order-n densities which satisfy a simple holographic c-theorem.

Hence, for n = 1, . . . , 5, there is a single such density at each order, but degeneracies start

to appear at order six. As observed in [17], it is always possible to write the corresponding

linear combination of order-n densities satisfying a simple holographic c-theorem as a single

density which has a non-trivial on-shell action when evaluated on eq. (1.72), plus densities

which simply vanish when evaluated on such ansatz. Hence, we learn that there are #(n) − n

independent order-n densities which are trivial on the eq. (1.72) ansatz. Remarkably, as we

show below, all such densities of arbitrary orders turn out to be proportional to a single sextic

density, which identically vanishes on the metric (1.72). As for the densities which contribute

non-trivially to the holographic c-function we find a new recursive formula which allows for the

construction of the corresponding order-n density from the order-(n− 1), the order-(n− 2), the

Einstein gravity and the NMG densities. The recurrence can be solved explicitly, and so we

are able to provide an explicit formula for a general order density which non-trivially satisfies

2The c-theorem for general 2d CFTs has been proven in [147, 148].
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the holographic c-theorem. Finally, we explore the relation between such general order density

and the one resulting from the expansion of previously proposed Born-Infeld gravities which

also satisfy the holographic c-theorem. Naturally, the relation always involves densities trivially

satisfying the holographic c-theorem.

1.5.1 Recursive formula

As we have mentioned, at each order there is a single possible functional dependence on

a(ρ) of the on-shell action of theories satisfying the holographic c-theorem. Then, up to terms

which do not contribute when evaluated on eq. (1.72), there is a unique such density at each

curvature order. The on-shell expressions for R,S2,S3 read

R|a = −2(a′2 + 2aa′′)

a2
, S2|a =

2(a′2 − aa′′)2

3a4
, S3|a =

2(a′2 − aa′′)3

9a6
. (1.77)

As observed in [17], the on-shell Lagrangian of densities satisfying the holographic c-theorem in

a non-trivial fashion follows the simple pattern

C(n)
∣∣
a
=

(
a′

a

)2(n−1)
[
a′′

a
+

3− 2n

2n

(
a′

a

)2
]
. (1.78)

With this choice of normalization, the first three densities read

C(1) = −1

4
R , (1.79)

C(2) = +
3R2

16
− R2

2
(1.80)

= +
R2

48
− S2

2
, (1.81)

C(3) = −17R3

48
+

3RR2

2
− 4R3

3
(1.82)

= − R3

432
+
RS2

6
− 4S3

3
. (1.83)

Now, an easy way to prove that instances of non-trivial densities actually exist at arbitrarily

high orders is by finding a recursive relation. Since, essentially, these densities are defined by

the form of their on-shell Lagrangian on the RG-flow metric (1.72), we can try to derive such

recursive relations by using eq. (1.78). We find the particularly simple relation,

C(n) =
4(n− 1)(n− 2)

3n(n− 3)

(
C(n−1)C(1) − C(n−2)C(2)

)
. (1.84)

This expression allows us to generate holographic c-theorem satisfying densities of arbitrary

orders once we know C(1), C(2) and C(3), which are given above. Since C(4) and C(5) are unique,

this formula should give precisely those densities. This is indeed the case, and we find

C(4) = +
41R4

384
− 3R2R2

8
+

2RR3

3
− R2

2

2
(1.85)

= +
R4

3456
− R2S2

24
+

2RS3

3
− S2

2

2
, (1.86)

and

C(5) = +
61R5

960
− 7R3R2

12
+

2R2R3

15
+

7RR2
2

5
− 16R2R3

15
(1.87)
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= − R5

25920
+
R3S2

108
− 2R2S3

9
+
RS2

2

3
− 16S2S3

15
, (1.88)

which agree with the results previously reported in [16, 17]. On the other hand, for n ≥ 6, the

recursion produces a single representative non-trivial density. For example, for n = 6 —which

is the order at which degeneracies start to appear due to the existence of densities trivially

satisfying the holographic c-theorem— we find from the recursive formula

C(6) = −1103R6

20736
+

115R4R2

288
− 19R3R3

81
− 71R2R2

2

108
+

8RR2R3

9
− 10R3

2

27
(1.89)

= +
R6

186624
− 5R4S2

2592
+

5R3S3

81
− 5R2S2

2

36
+

8RS2S3

9
− 10S3

2

27
. (1.90)

1.5.2 General formula for order-n densities

Interestingly, it is possible to solve the two-term recurrence relation (1.84) analytically and

obtain an explicit expression for the order-n density non-trivially satisfying the holographic

c-theorem. The result, which takes a simpler form in terms of the {R,S2,S3} set, reads,

C(n) =
3(−1)n

4 · 6nn

{(
R+

√
24S2

)n−1 (
R− (n− 1)

√
24S2

)(
1−

√
6

S3

S3/2
2

)

+
(
R−

√
24S2

)n−1 (
R+ (n− 1)

√
24S2

)(
1 +

√
6

S3

S3/2
2

)}
.

(1.91)

Even though this expression may look odd because it depends in a non-polynomial way on the

densities, it does reduce to a polynomial expression when we evaluate it for any integer n ≥ 1.

One can check this by expanding the
(
R±

√
24S2

)n−1
terms using the binomial coefficients. In

particular, note that this formula is even under the exchange S1/2
2 → −S1/2

2 , and therefore S1/2
2

always appears with even powers (i.e., there are no square roots). Explicitly, the result of this

expansion reads

C(n) =
3(−1)n

2 · 6nn

{ ⌊n
2
⌋∑

k=0

(24S2)
kRn−2k

[(
n− 1

2k

)
− (n− 1)

(
n− 1

2k − 1

)]

− 288S3

⌊n−3
2

⌋∑
k=0

(24S2)
kRn−3−2k

[(
n− 1

2k + 3

)
− (n− 1)

(
n− 1

2k + 2

)]}
,

(1.92)

which is valid whenever n ∈ N.
Interestingly, the density (1.91) can also be applied for non-integer n, since it always yields

the result (1.78) when evaluated on the metric (1.72), and therefore it yields second-order

equations for the RG-flow metric. Hence, these Lagrangians provide a generalization of the

holographic c-theorem-satisfying densities for arbitrary real values of n.

1.5.3 All densities with a trivial c-function emanate from a single sextic

density

For the first five curvature orders, there exists a single density which satisfies the holographic

c-theorem condition. Now, for n = 6, there exists an additional density,

Ω(6) ≡ 6S2
3 − S3

2 (1.93)
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=
1

3

[
R6 − 9R4R2 + 8R3R3 + 21R2R2

2 − 36RR2R3 − 3R3
2 + 18R2

3

]
, (1.94)

with the property of being identically vanishing when evaluated on the c-theorem metric (1.72)

and which therefore does not contribute to the equations of motion for that ansatz.

An immediate consequence is that any product of Ω(6) with any other density also satisfies

the holographic c-theorem trivially. Therefore, for n ≥ 6 we have, at least, the following set of

densities which satisfy the holographic c-theorem

Lc−theorem
(n) = αnC(n) +Ω(6) · L

general
(n−6) , (1.95)

where Lgeneral
(n−6) is the general Lagrangian of order n− 6 in the curvature. Remarkably, these are

all the densities of this type that exist.

This can be proven as follows. First, observe that there exist #(n − 6) densities of order

n− 6. Hence, there exists the same number of order-n densities in the set Ω(6) · L
general
(n−6) . Now,

as observed earlier, there exist #(n)− (n − 1) independent order-n densities which satisfy the

holographic c-theorem, one of which does so in a non-trivial fashion. The latter can be chosen to

be C(n) and we are left with #(n)−n independent densities which trivially satisfy the holographic

c-theorem. Now, invoking the result in eq. (1.30), we observe that this number exactly matches

the number of densities in the set Ω(6) · L
general
(n−6) .

In sum, Lc−theorem
(n) as defined above is the most general higher-curvature order-n density

satisfying the holographic c-theorem and all densities satisfying it in a trivial fashion emanate

from the sextic density Ω(6). This is a rather intriguing result which suggests that there may

be something more fundamentally special about this density. As a matter of fact, this will not

be the last time we encounter it.

1.5.4 Absence of scalar mode in the spectrum

An immediate consequence of eq. (1.95) is that none of the densities trivially satisfying the

holographic c-theorem contributes to the linearized equations around an Einstein metric. This

is because all densities involved take the form Ω(6) · L
general
(n−6) and therefore belong to the set

G|trivial linearized equations as defined in eq. (1.67), since Ω(6) can be written in terms of only S2

and S3 as seen in eq. (1.93).

On the other hand, we can use our previous results to prove that densities which satisfy

the holographic c-theorem in a non-trivial fashion do not incorporate the scalar mode in their

spectrum. This latter property seems to have been observed in certain particular cases [107]

but we have found no general proof in the literature.

We saw in section 1.4 that the condition for the absence of the scalar mode in the linearized

spectrum, m2
s → ∞, was satisfied by theories of the form

G(R,S2,S3) = f(R) + S2g(R) + Gtriv , (1.96)

for which

12f̄R,R + ḡ = 0 . (1.97)

For theories where G(R,S2,S3) is a polynomial, as the ones we are considering, this cancel-

lation must occur order by order. At any given order n, the only possible forms of f and g are
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f(n)(R) = λ(n)R
n and g(n)(R) = µ(n)R

n−2 for some constants λ(n) and µ(n). Therefore, at any

order n, condition (1.97) reads

12n(n− 1)λ(n) + µ(n) = 0 , (1.98)

where λ(n) = βn00 is the coefficient in front of the Rn term and µ(n) = β(n−2)10 is the coefficient

in front of the S2R
n−2 term in the series expansion of G(R,S2,S3) given in eq. (1.16).

Now, it is easy to see that our C(n) densities fulfil this condition. Expanding eq. (1.92) and

keeping only the terms with k = 0, 1 in the first sum, we see

C(n) =
3(−1)n

2 · 6nn

{
Rn − 12n(n− 1)S2R

n−2 + · · ·
}
, (1.99)

and so

λ(n) =
3(−1)n

2 · 6nn
, µ(n) = −12n(n− 1)

3(−1)n

2 · 6nn
, (1.100)

which clearly fulfil condition (1.98). This proves that all theories satisfying the holographic

c-theorem have a linearized spectrum which does not include the scalar mode.

1.5.5 Born-Infeld gravity

It was proposed in [121] that New Massive Gravity could also be extended through a Born-

Infeld gravity theory with Lagrangian density

LBI-NMG =

√
det
(
δba +

σ

m2
Gb

a

)
−
(
1− Λ

2m2

)
, (1.101)

where Gab = Rab − 1
2gabR is the Einstein tensor and σ = ±1. This theory reproduces NMG

when expanded to quadratic order in the curvature. Then, after [16] proved that both NMG

and the cubic order term of eq. (1.101) admitted a holographic c-function, it was soon proven in

[151] that the full theory also satisfied a simple holographic c-theorem of the same kind as the

one described in the previous subsections. The cancellations on the on-shell evaluation of these

theories required by the c-theorem construction occur order by order, and so the theory defined

by eq. (1.101) generates an infinite number of higher-curvature densities which non-trivially

fulfil a holographic c-theorem at any truncated order [152].

Now, in view of our results, it would be interesting to know whether the terms generated

by the expansion of (1.101) order by order, which we shall call B(n), are the same ones as the

non-trivial densities C(n) generated by the recursive formula (1.84). Following what we have

just learned in the previous section, that should indeed be the case for n = 1, . . . , 5. For n ≥ 6

we expect both sets of densities to coincide up to “trivial” densities, and we find that to be the

case.

Let us expand the density (1.101). We set σ = 1 and m2 = 1 for simplicity, as they can be

easily restored by dimensional analysis. In 3 dimensions the determinant of any matrix can be

computed as

det(A) =
1

6

[
(Tr(A))3 − 3Tr(A) Tr(A2) + 2Tr(A3)

]
. (1.102)

In our case, we have A = 1+ g−1G, which gives

det(1+ g−1G) = 1 +
−1

2
R+

1

4
T2 +

1

24
T3 , (1.103)
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where we have defined

T2 ≡ R2 − 2R2 =
1

3
R2 − 2S2 , (1.104)

T3 ≡ R3 − 6RR2 + 8R3 =
−1

9
R3 + 2RS2 + 8S3 . (1.105)

We can now simply Taylor expand the square root,
√
1 + x =

∑∞
m=0

(
1/2
m

)
xm, with x = det(1+

g−1G) − 1 and then collect the relevant terms at each order n to build B(n). The result is the

following,

B(n) =
∑̂(

1/2

i+ j + k

)
(i+ j + k)!

i!j!k!

(
−1

2
R

)i(1

4
T2
)j ( 1

24
T3
)k

, (1.106)

where the sum is performed over the indices i, j, k that fulfil the integer partition n = i+2j+3k.

The lowest order densities given by the formula above are

B(1) = C(1) , B(2) =
1

2
C(2) , B(3) = −1

8
C(3) , B(4) =

1

16
C(4) , B(5) = − 5

128
C(5) , (1.107)

which are indeed proportional to the densities C(n) found previously through the recursion

relation (1.84), as expected. At the next orders, however, eq. (1.106) gives a different non-

trivial density than the one given by the recursion relation (1.84). Following eq. (1.95), we see

that the relationship between the densities B(n) and C(n) at orders n ≥ 6 is given by

B(n) = (−1)n
(2n− 5)!!

(2(n− 1))!!
C(n) +Ω(6) · L(n−6) , (1.108)

for some particular densities L(n−6). For example,

B(6) =
7

256
C(6) −

1

432
Ω(6) , (1.109)

B(7) = − 21

1024
C(7) −

R

576
Ω(6) , (1.110)

B(8) =
33

2048
C(8) −

11R2 + 24S2

13824
Ω(6) . (1.111)

Hence, both C(n) and B(n) provide sets of order-n densities which non-trivially satisfy the holo-

graphic c-theorem. While the C(n) are distinguished by the property of satisfying the simple

recurrence relation (1.84), the B(n) have the property of corresponding to the general term in the

expansion of the Born-Infeld theory (1.101). Both sets are equal up to terms which identically

vanish in the holographic c-theorem ansatz which, as we have seen, are all proportional to the

density Ω(6).

Another Born-Infeld theory has been proposed as a non-minimal extension of NMG [152],

with Lagrangian density

LnM-BI =

√
det

(
δba −

2

m2
P b
a +

1

m4
P c
aP

b
c

)
−
(
1− Λ

2m2

)
, (1.112)

where P b
a = Rb

a − 1
4δ

b
aR is the Schouten tensor. The full theory also allows for a holographic

c-function. However, when expanded order by order using a similar method as the one de-

scribed above, we see that it does not produce an infinite number of higher-curvature densities

which non-trivially fulfil a holographic c-theorem. At order n = 2 and n = 3 we obtain terms

proportional to C(2) and C(3), as expected, but the terms with n ≥ 4 all trivialize due to the
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Schouten identities described in section 2. Therefore, the density (1.112) is equivalent to the

much simpler density

L = R− 2Λ +
2

m2

(
R2 −

3

8
R2

)
+

1

m4

(
17

48
R3 − 3

2
RR2 +

4

3
R3

)
. (1.113)

1.6 Generalized Quasitopological gravities

A different classification criterion which has attracted a lot of attention in higher dimensions

entails considering higher-curvature theories which admit generalizations of the D-dimensional

Schwarzschild black hole characterized by a single function, i.e. satisfying gttgrr = −1. Theories

of this kind have been coined “Generalized quasitopological gravities” (GQTs) [18, 19, 141], and

include Quasitopological [137–140, 153] and Lovelock gravities [134, 135] as particular cases.

Given a D-dimensional higher-curvature gravity with Lagrangian density L(Rabcd, g
ef ), let

Lf be the effective Lagrangian obtained from the evaluation of
√
|g|L in the ansatz

ds2 = f(r)dt2 +
dr2

f(r)
+ dr2dΩ2

(D−2) . (1.114)

Then, we say that L is a GQT gravity if

∂Lf

∂f
− d

dr

∂Lf

∂f ′
+

d2

dr2
∂Lf

∂f ′′
= 0 , (1.115)

namely, if the Euler-Lagrange equation of f(r) identically vanishes [19]. This is equivalent to

requiring that Lf is a total derivative, i.e.

Lf =
dF0

dr
, for some function F0 ≡ F0[r, f(r), f

′(r)] . (1.116)

Theories satisfying these requirements satisfy a number of interesting properties, such as ad-

mitting non-hairy generalizations of the Schwarzschild AdSD solution characterized by a single

function or possessing a linearized spectrum around maximally symmetric backgrounds iden-

tical to the Einstein gravity one. For a more detailed summary of the properties satisfied by

GQTs see e.g. [23]. In the same reference it has been proven that any gravitational effective

action in D ≥ 4 can be mapped via field redefinitions to a GQT.

Here we are interested in exploring the possible existence of GQTs in three dimensions. In

order to do that, we need to determine the set of densities for which eq. (1.115) holds, if any.

As a first step, we need to evaluate our fundamental building-block densities on such ansatz.

Defining the quantities

A ≡ f ′′

2
, B ≡ − f ′

2r
, ψ ≡ 1− f

r2
, (1.117)

which are the only functional dependences on f(r) appearing in the Riemann tensor, we find

R
∣∣
f
= −2A+ 4B , S2

∣∣
f
=

2

3
(A+B)2 , S3

∣∣
f
=

2

9
(A+B)3 , (1.118)

and

R2

∣∣
f
= 2(A2 − 2AB + 3B2) , R3

∣∣
f
= −2(A3 − 3A2B + 3AB2 + 5B3) . (1.119)
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We immediately observe the absence of ψ in these expressions, which means that three-dimensional

on-shell Lagrangians do not depend on the function f(r) explicitly, but only on its first and

second derivatives. Hence, in this case the GQT condition (1.115) becomes simpler, namely,

∂Lf

∂f ′
=

d

dr

∂Lf

∂f ′′
+ c , (1.120)

where c is an integration constant.

Evaluating on-shell a general order-n density in the {R,S2,S3} basis, we find

L(n),f = rL2(n−1)
∑
j,k

βn−2j−3k,j,k
(−1)n−2j−3k

6j36k

[
f ′′ +

2f ′

r

]n−2j−3k [
f ′′ − f ′

r

]2j+3k

(1.121)

= rL2(n−1)
∑

j,k,l,m

cjklmf
′′(l+m)

[
f ′

r

]n−m−l

, (1.122)

where L(n),f ≡ √
gL(n)|f and where we used the binomial expansion twice in the second line

and defined the constants

cjklm ≡
βn−2j−3k,j,k

6j+2k
(−1)n−m2n−2j−3k−l

(
n− 2j − 3k

l

)(
2j + 3k

m

)
. (1.123)

The combination l + m takes integer values from 0 to n, and hence L(n),f can be written as

a linear combination of terms with different powers of f ′′ taking such values. Now, in order

for L(n),f to be a total derivative as required by eq. (1.116), we need to impose that all terms

involving powers of f ′′ higher than one vanish. This implies imposing n − 1 conditions on the

coefficients βn−2j−3k,j,k. Once this is done, we are left with

L(n),f = g1[r, f
′(r)] + g2[r, f

′(r)]f ′′(r) , (1.124)

where

g1 ≡ rL2(n−1)
∑
j,k

cjk00

[
f ′

r

]n
, g2 ≡ rL2(n−1)

∑
j,k

(cjk10 + cjk01)

[
f ′

r

]n−1

. (1.125)

However, the fact that L(n),f is linear in f ′′(r) does not guarantee that L(n),f is a total derivative.

In order for this to be the case, we need to impose the additional condition given by eq. (1.120)

which, in terms of g1 and g2 becomes

∂g1
∂f ′

=
∂g2
∂r

. (1.126)

Explicitly, this condition becomes

n
∑
j,k

cjk00 = (n− 2)
∑
j,k

(cjk10 + cjk01) , (1.127)

which in terms of the original βijk coefficients reads,∑
j,k

βn−2j−3k,j,k

6j+2k
2n−2j−3k−1[2− n+ 6j + 9k] = 0 . (1.128)

Adding this to the n−1 conditions imposed earlier, we find a total of n conditions to be imposed

to L(n),f in order for it to be a GQT density. Hence, we have #(n)−n = #(n−6) GQT densities

at order n.
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1.6.1 All GQT densities emanate from the same sextic density

Interestingly, the number of order-n GQT densities exactly coincides with the number of

densities trivially satisfying the holographic c-theorem. More remarkably, the two sets of den-

sities are, in fact, identical: the special sextic density Ω(6) defined in eq. (1.93) as the source of

all densities trivially satisfying the holographic c-theorem turns out to be also the source of all

GQT densities. Indeed, it is not difficult to see that

Ω(6)

∣∣
f
= 0 , (1.129)

which means that all densities involving Ω(6) identically vanish and are therefore “trivial” GQT

densities —in the sense that they make no contribution to the equation of f(r). Since there

are #(n− 6) of such densities, we learn that in fact all GQT densities in three dimensions are

“trivial” and proportional to Ω(6),

LGQT
(n) = Ω(6) · L

general
(n−6) , (1.130)

where Lgeneral
(n−6) is the most general order-(n− 6) density.

In sum, we learn that, in three dimensions, there exist no non-trivial GQTs. This situation

is very different from higher-dimensions: in D = 4 there exists one independent non-trivial GQT

density for every n ≥ 3 whereas for D ≥ 5 there actually exist n − 1 independent inequivalent

GQT densities for every n —namely, there exist n− 1 densities of order n each of which makes

a functionally different contribution to the equation of f(r) [20]. As a matter of fact, the

triviality of the three-dimensional case unveiled here is not so surprising given that all higher-

curvature theories admit the BTZ solution (since it is locally AdS3) —as opposed to non-trivial

GQTs in higher dimensions, which admit modifications of Schwarzschild as solutions, but not

Schwarzschild itself.

1.7 A “mysteriously” simple sextic density

We have seen that all GQT densities as well as all densities trivially satisfying the holographic

c-theorem emanate from a single sextic density, Ω(6), defined in eq. (1.93). The reason for such

occurrence can be understood as follows. As we saw earlier, when evaluated on-shell on eq. (1.72)

and eq. (1.114) respectively, the densities R,S2,S3 read3

R|a = −2(a′2 + 2aa′′)

a2
, S2|a =

2(a′2 − aa′′)2

3a4
, S3|a =

2(a′2 − aa′′)3

9a6
. (1.131)

R|f = −1

r

(
rf ′′ + 2f ′

)
, S2|f =

1

6r2
(
rf ′′ − f ′

)2
, S3|f =

1

36r3
(
rf ′′ − f ′

)3
. (1.132)

Observe that S2 and S3 have in both cases the same functional dependence on f(r) and a(ρ),

respectively, up to a power, whereas R has a different dependence from the other two densities

in both cases. Now, for n ≤ 5, there is no way to construct linear combinations of the various

order-n densities such that the resulting expression identically vanishes. This is not the case for

3As a matter of fact, these two ansätze have been previously considered simultaneously before in the four-

dimensional case [15, 154, 155] in a cosmological context. The reason is that the condition for demanding a

simple holographic c-theorem can be alternatively understood as the condition that the equations of motion for

the scale factor in a standard Friedmann-Lemâıtre-Robertson-Walker ansatz are second order [156].
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n = 6. In that case, S3
2 and S2

3 have exactly the same functional dependence on f(r) and a(ρ)

respectively, and a particular linear combination of them can be found such that it identically

vanishes. This combination is precisely Ω(6) in both cases,

Ω(6) = 6S2
3 − S3

2 , Ω(6)

∣∣
a
= Ω(6)

∣∣
f
= 0 . (1.133)

It is obvious that any density multiplied by Ω(6) will similarly vanish for these two ansätze.

One could wonder what happens for other values of n such as n = 12, 18, . . . , for which there is

again a match in the functional dependence of the seed densities to the corresponding powers.

It is however easy to see that in those cases the combinations which vanish are precisely the

ones given by powers of Ω(6).

It is natural to wonder whether Ω(6) may actually vanish identically for general metrics.

This is however not the case. For instance, for a general static black hole ansatz

ds2 = −N2(r)f(r)dt2 +
dr2

f(r)
+ r2dϕ2 , (1.134)

one finds that Ω(6) is a complicated function of f(r) and N(r).

As it turns out, the particular linear combination 6S2
3 − S3

2 appearing in Ω(6) is, in fact,

connected to the Segre classification of three-dimensional spacetimes [157, 158]. This classi-

fication consists in characterizing the different types of metrics according to the eigenvalues

of the traceless Ricci tensor R̃ab. There exist three large sets of metrics which are precisely

characterized by the relative values of 6S2
3 and S3

2 , namely [119, 159, 160]:

Group 1 : 6S2
3 = S3

2 = 0 , [Type-O, Type-N, Type-III] , (1.135)

Group 2 : 6S2
3 = S3

2 ̸= 0 , [Type-Ds, Type-Dt, Type-II] , (1.136)

Group 3 : 6S2
3 ̸= S3

2 , [Type-IR,Type-IC] . (1.137)

The first group, which in the —perhaps more familiar— Petrov notation includes Type-O,

Type-N and Type-III spacetimes corresponds to spacetimes such that both S3 and S2 vanish.

The second group, which includes Type-D and Type-II spacetimes is the one corresponding to

metrics which have non-vanishing 6S2
3 and S3

2 but such that they are equal to each other, i.e.

such that Ω(6) = 0. Finally, spacetimes of Type-I have a non-vanishing Ω(6).

Metrics of the Group 1 have traceless Ricci tensors which can be written as

R̃ab = 0 , [Type-O] , (1.138)

R̃ab = sλaλb , [Type-N] , (1.139)

R̃ab = 2sξ(aλb) , [Type-III] , (1.140)

where

gabλaλb = 0 , gabξaξb = 1 , gabλaξb = 0 , s = ±1 . (1.141)

On the other hand, for metrics of the Group 2 we have

R̃ab = p(xa)

[
gab −

3

σ
ξaξb

]
, [Type-Ds,t] , (1.142)

R̃ab = p(xa)

[
gab −

3

σ
ξaξb

]
+ sλaλb , [Type-II] , (1.143)
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where p(xa) are scalar functions and

gabλaλb = 0 , gabξaξb = σ = ±1 , gabλaξb = 0 , s = ±1 . (1.144)

Finally, metrics of the Group 3 satisfy

R̃ab = p(xa) [gab − 3ξaξb]− q(xa)[λaλb + νaνb] , [Type-IR] , (1.145)

R̃ab = p(xa) [gab − 3ξaξb]− q(xa)[λaλb − νaνb] , [Type-IC] , (1.146)

where p(xa) and q(xa) are scalar functions (such that q ̸= ±3p for Type-IR) and where

gabλaλb = 0 , gabξaξb = 1 , gabνaνb = 0 , gabλaξb = gabλaνb = 0 , gabλaνb = −1 .

(1.147)

For the single-function black hole metric and the holographic c-theorem metric, one finds

that the traceless Ricci tensor satisfies eq. (1.142) with

p(r) =
f ′(r)− rf ′′(r)

6r
, ξa = rδaϕ , and p(ρ) =

a′′(ρ)a(ρ)− a′(ρ)2

3a(ρ)2
, ξa = δar , (1.148)

respectively. Hence, both spacetimes are of Type-Ds and from eq. (1.136) it follows that Ω(6) = 0

in both cases.

From this we learn that the appearance of Ω(6) as a distinguished density was to be expected

for the classes of metrics considered here, and that a similar phenomenon is likely to occur for

all metrics of the Types D and II.4 Still, the fact that all densities satisfying the holographic

c-theorem in a trivial fashion and that all GQTs are proportional to this density was far from

obvious in advance.

We believe it would be interesting to further study the properties of Ω(6), understood as

a higher-curvature density. Its equations of motion can be easily computed using expression

(1.34), and read

EΩ(6)

ab

3
=− 1

6
gab
(
6S2

3 − S3
2

)
− 2S2

2 R̃
c
aR̃bc + 12S3R̃

c
aR̃cdS

d
b

− 4

(
gab□−∇a∇b + R̃ab +

1

3
gabR

)
S2S3 − gab∇c∇d

(
S2
2 R̃

cd − 6S3R̃
cf R̃d

f

)
−
(
□+

2

3
R

)(
S2
2 R̃ab − 6S3R̃

c
aR̃bc

)
+ 2∇c∇(a

(
R̃c

b)S
2
2 − 6R̃d

b)R̃
c
dS3

)
. (1.149)

These are identically satisfied by all metrics belonging to the Groups 1 and 2, but not for Type-I

metrics. It would be then within such set that non-trivial solutions would arise.

1.8 Final comments

In this chapter, we have presented several new results involving general higher-curvature

gravities in three dimensions. A summary of our findings can be found at the end of Section

1.1. Let us close with a couple of possible directions which would be in the spirit of the results

presented here.

4For various papers classifying and obtaining explicit solutions of the Groups 1 and 2 for three-dimensional

higher-curvature gravities, see [119, 159–165].
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In [110] it was shown that removing the terms involving Weyl tensors of the D-dimensional

Lovelock densities and taking the D → 3 limit in the remainder Ricci parts, one is left with

three-dimensional densities which precisely match the ones satisfying a holographic c-theorem

[16, 17]. The procedure is applied to the n = 2, 3, 4 densities, for which no “trivial” densities

exist. It would be interesting to explore which particular combination of non-trivial densities is

selected by this procedure for higher-order densities and what their relation is with the densities

C(n) and B(n) identified here.

In this paper we have shown that no non-trivial GQT gravities exist in three dimensions. The

situation changes when matter fields are included in the game. Following higher-dimensional

inspiration [166], in [167] they found a family of non-trivial theories linear in the Ricci tensor

coupled to a scalar field which becomes a total derivative when evaluated in eq. (1.114) with

a magnetic ansatz for the scalar. These “electromagnetic quasi-topological gravities” possess

solutions which are continuous extensions of the BTZ black hole —some of which describe

regular black holes without any fine-tuning of parameters. In this context, we expect that more

theories of the “electromagnetic generalized quasi-topological” class should exist when terms

involving more Ricci curvatures are considered.

Another venue involves the problem of finding theories with reduced-order traced equations.

As we mentioned in the introduction, this was explored in [103], where it was shown that NMG

is the only quadratic and/or cubic density which has traced equations of second order. Within

the same group of densities, it was shown that CabcC
abc, where Cabc is the Cotton tensor, is

the only one which has third-order traced equations. The condition is essentially related to the

vanishing of the terms involving two explicit covariant derivatives in the field equations (1.31).

For theories involving no explicit covariant derivatives in the action —as in eq. (1.6) — the

trace of the equations (1.33) reads

−1

2
R− 3

L2
− 3

2
F +RFR + 2R2FR2 + 3R3FR3 +∇a∇bY

ab = 0, (1.150)

where

Y ab ≡ RabFR2 +
3

2
RacRb

cFR3 + gab
(
2FR +RFR2 +

3

2
R2FR3

)
. (1.151)

Hence, theories with traced equations of second order would be those for which the rank-two

symmetric tensor Y ab is conserved. As it turns out, for n = 2 the only theory of this kind is

NMG, precisely because Y ab ∝ Gab, with Gab the Einstein tensor. The question of whether there

is any higher order gravity other than NMG with second order traced equations of motion is that

of whether it is possible to build a conserved tensor Y ab at n ≥ 3. A natural candidate would

be the tensor appearing in the equations of motion of the most general theory of order n − 1,

which is automatically conserved. However, the analysis of [103] shows that the only possibility

for n = 3 would be the CabcC
abc density, which involves explicit covariant derivatives in the

action and is therefore excluded from the analysis. Since Y ab itself does not involve explicit

covariant derivatives, the same question in n = 4 would necessarily require the existence of

densities of order n = 3 whose equations of motion are free from explicit covariant derivatives.

The analysis of [103] disproves this possibility and therefore the only chance would be that

some other divergence-free rank-two symmetric tensor cubic in curvatures —not corresponding

to the equations of motion of any covariant density— exists. We believe that such a tensor does

not exist —which would mean that no other theories with reduced-order traced equations exist

among L(gab, Rab) theories— but we have not found a proof of this fact.
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Chapter 2

D-Dimensional Higher-Derivative

Gravities

2.1 Introduction

Despite the spectacular list of experimental successes of general relativity, there are good rea-

sons to explore alternatives to Einstein’s theory. Firstly, it is expected that the Einstein-Hilbert

action is the first in an infinite series of terms involving an increasing number of derivatives of

the metric [13]. This can be seen explicitly within the string theory framework, where the new

terms appear weighted by powers of the inverse string tension [28, 34, 35]. Additionally, holo-

graphic higher-derivative gravities can be used, through AdS/CFT [65, 67], as toy models of

conformal field theories (CFTs) which, being inequivalent from their Einsteinian counterparts,

can sometimes be used to unveil new universal properties valid for completely general CFTs

[68–76].

From a different perspective, it is important to characterise the possible existence (or lack

thereof) of universal features of classical gravity in regimes in which the Einsteinian descrip-

tion is expected to receive higher-derivative corrections [14, 15]. In order to do this, it is

often convenient to consider particular classes of higher-derivative gravities displaying certain

special properties. The list includes: quadratic [168, 169], Lovelock [134, 135, 170, 171], Quasi-

topological [137–140, 172] and Generalized Quasi-topological gravities (GQTs) [18–21], among

others [125, 136, 142, 173]. All of these belong to the subset of theories built from contractions

of the Riemann tensor and the metric, which we call higher-curvature gravities. In particular,

GQTs —which are characterised by admitting “single function” static and spherically symmetric

solutions (see Section 2.3) as well as possessing second-order equations on maximally symmetric

backgrounds — have been shown to provide a basis for general gravitational effective actions

built from general contractions of the Riemann tensor and the metric: any L(gab, Rabcd) theory

can be mapped order by order, via a field redefinition, to certain GQTs [23].

Although seemingly less likely, it is also possible that deviations from Einstein gravity are

eventually measured in unexpected situations (e.g. beyond the effective field theory regime) and

it is important to have alternative predictions which can be tested [174]. Along this direction,

there have been numerous attempts at constructing alternatives to general relativity which

are compatible with all current observations and internally consistent. This includes again

quadratic theories [175–177], f(R) models [178], as well as non-local gravities which, by including
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an infinite number of derivatives in the action, can be made free of ghosts [179–186]. Non-

local gravities are particular instances of the general set of theories which will be the subject

of study in the present chapter, namely, diffeomorphism-invariant theories constructed from

general contractions of the Riemann tensor and its covariant derivatives,

I =
1

16πGN

∫
dDx

√
−gL(gab, Rabcd,∇a) . (2.1)

We call these —more general— theories higher-derivative gravities. As a matter of fact, terms

involving covariant derivatives of the Riemann tensor generically appear in gravitational effective

actions [187, 188]. A scenario in which this is apparent corresponds to the so-called brane-world

gravities [36, 40, 189], which we will study in detail in Part III of this thesis. These are

effective gravitational theories defined on the world volume of codimension-one branes inserted

on higher-dimensional Anti-de Sitter spacetimes. Originally introduced with phenomenological

motivations, they have received a lot of attention recently in the holographic context —see e.g.

[84, 85, 190].

In this chapter, we present the first examples of GQT gravities with covariant derivatives.

Analogously to their “polynomial” counterparts, we show that they have second-order linearized

equations on maximally symmetric backgrounds1 and that they admit black hole solutions

characterized by a single function, gttgrr = −1. Focusing on four dimensions, we find that the

lowest-order instances of GQT densities involve eight derivatives of the metric. However, we

observe that all such theories admit the Schwarzschild metric as a solution, and therefore do

not give rise to new solutions when considered as corrections to general relativity. The first

GQT density with covariant derivatives which does correct the Schwarzschild solution occurs

at tenth order in derivatives of the metric —see eq. (2.100) below for its explicit form.

The analysis of the linearized spectrum of GQTs is performed after obtaining some gen-

eral results on the linearization of general higher-derivative theories with covariant derivatives

around maximally symmetric spacetimes. We present general formulas which allow for the

computation of the linearized equations around flat space of a given general higher-derivative

theory from its effective quadratic action. Using these results, we show that GQTs belong to

the family of theories which do not include scalar modes in their linearized spectrum. Indeed,

in Subsection 2.3.2, we prove a stronger result: GQTs have an Einsteinian spectrum around

maximally symmetric backgrounds. Later, in Chapter 7, we will see that brane-world gravities

do not propagate scalar modes either, but they do propagate massive spin-2 modes.

The structure of the chapter is the following. Section 2.2 contains some comments on

the structure of the linearized equations of general higher-derivative gravities with covariant

derivatives on general maximally symmetric backgrounds, a characterization of the structure

of poles of the metric propagator on Minkowksi spacetime. In Section 2.3 we construct the

first GQTs with covariant derivatives in four spacetime dimensions. We conclude in Section

2.4 with some comments on future directions. Appendix A contains the complete list of the

higher-derivative invariants at each order in derivatives up to eight, as well as a non-exhaustive

set at order ten, which we have used in Section 2.3 of this chapter.

1This provides a counterexample to the conjecture of [191] regarding the absence of theories with covariant

derivatives of the curvature possessing an Einsteinian spectrum.
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2.2 Linearized higher-derivative gravities with covariant deriva-

tives

In this section we analyse the structure of the linearized equations for a general theory of

the form (2.1) in general dimensions. We derive their general form on a maximally symmetric

background and then, focusing on the Minkowski case, we identify the precise relation between

the effective quadratic action and the linearized equations, classifying the different theories

according to the modes propagated. In particular, we identify a set of generalisations of a

particular type of quadratic density involved in the definition of the so-called “critical gravities”

—which have the peculiarity of propagating no scalar modes. This set of theories will include, as

particular instances, both the new GQTs theories, presented in Section 2.3, and the brane-world

theories, as we will show in Chapter 7.

Before starting, let us point out that many of the results presented in this section have

appeared in different forms in previous literature. For example, the linearization on maximally

symmetric backgrounds of general L(gab, Rabcd,∇a) theories has been studied in-depth for the

four-dimensional case in [192–198].

We are interested in gravity theories of the form (2.1). Sometimes it is convenient to split

the Lagrangian as follows

L(gab, Rabcd,∇a) =
(D − 1)(D − 2)

ℓ2
+R+ LR(g

ab, Rabcd) + L∇(g
ab, Rabcd,∇a) , (2.2)

where we included an explicit Einstein-Hilbert plus (negative) cosmological constant piece, LR

includes terms which do not involve covariant derivatives, and L∇ includes terms which contain

at least one covariant derivative of the Riemann tensor. The equations of motion for this theory

can be written as [199]

Eab ≡ Ta
cdeRbcde −

1

2
gabL − 2∇c∇dTacdb = 0 , (2.3)

where

T abcd ≡
[

∂L
∂Rabcd

−∇a1

∂L∇
∂∇a1Rabcd

+ · · ·+ (−1)m∇(a1 . . .∇am)
∂L∇

∂∇(a1 . . .∇am)Rabcd

]
. (2.4)

In the case of maximally symmetric backgrounds with metric ḡab, the Riemann tensor is

R̄abcd = − 2

ℓ2⋆
ḡa[cḡd]b , (2.5)

where ℓ2⋆ has dimensions of length2 and it is a positive number in the case of an AdSD back-

ground, a negative number in the case of dSD, and infinite for Minkowski. In order for ḡab to

be a solution of L(gab, Rabcd,∇a), the equations of motion impose the algebraic equation [127]

1− χ+
ℓ2

(D − 1)(D − 2)

[
LR(χ)−

2χ

D
L′
R(χ)

]
= 0 , (2.6)

where χ ≡ ℓ2/ℓ2⋆, LR(χ) stands for the on-shell evaluation of the corresponding Lagrangian

on the maximally symmetric background, and L′
R(χ) ≡ dLR(χ)/dχ is also evaluated on-shell.

Observe that the piece of the Lagrangian involving covariant derivatives of the Riemann tensor

makes no contribution to this equation, which follows from ∇̄aḡbc = 0. Naturally, for Einstein

gravity, the above equation simply imposes the condition χ = 1. For a Lagrangian built from

polynomials of the Riemann tensor involving densities up to order n in the curvature, the

above equation is an order-n algebraic equation for χ, which will in general have many possible

solutions, depending on the values of the corresponding higher-derivative couplings.
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2.2.1 Linearized equations

Let us now consider the linearized equations of a general theory of the form given by eq. (2.1)

around a maximally symmetric background. We expand the metric as

gab = ḡab + hab , (2.7)

where hab is a small perturbation. Every relevant object built from the metric can then be

expanded to the desired order in the perturbation as T = T (0) + T (1) + T (2) +O(h3).

Given a particular theory, we have two routes to derive its linearized equations. On the one

hand, we can take the full non-linear equations and expand each of the terms to linear order in

the perturbation. Alternatively, we can expand the action to second order in the perturbation

and derive the linearized equations from the first variation. As we have seen, the full non-linear

equations (2.3) of a theory like (2.1) have a rather complicated form. However, it is not difficult

to argue that the most general form of the linearized equations is much simpler. To see this, we

start by characterizing all possible terms that may arise in the linearized equations. Doing this

amounts to classifying all symmetric tensors of 2 indices built from R
(1)
abcd, ḡab and ∇̄a which are

linear in the metric perturbation.

Let us start with a few observations. First, observe that the linearized Riemann tensor R
(1)
abcd

is linear in hab, and therefore all possible terms will have a single Riemann tensor, possibly acted

upon with covariant derivatives and with various indices contracted. Another observation is that

all terms must necessarily contain an even number of covariant derivatives, since ∇a is the only

available object with an odd number of indices. In addition, note that all Riemann tensors will

actually appear in the form of Ricci tensors. This is because: a) any term involving exclusively

metrics and Riemann tensors reduces to Ricci tensors or vanishes, since at most two of the

indices can remain uncontracted; b) any term involving covariant derivatives and Riemann

tensors reduces to covariant derivatives and Ricci tensors. Indeed, when only two indices are

left uncontracted, a tensor of the form

∇a∇bR
(1)
cdef , (2.8)

reduces to one of the following four possibilities: ∇c∇dR
(1)
cadb, □R

(1)
ab , ∇a∇bR

(1), 0. In addition,

using the second Bianchi identity it follows that the first possibility can only give rise to a

linear combination of the second and the third, plus higher-order terms in hab. We therefore

conclude that the most general possible term will come from contracting all but two indices in

an expression of the form

□l∇c1∇c2 . . .∇c2m−1∇c2mR
(1)
ab , (2.9)

where ci ̸= cj ∀i ̸= j. Contracting 2m of the indices, we immediately see that the only three

possibilities are in fact

ḡab□
lR(1) , ∇a∇b□

lR(1) , □lR
(1)
ab . (2.10)

We then conclude that the linearized equations of a general L(gab, Rabcd,∇a) theory around

maximally symmetric backgrounds will always take the form

Eab ≡
∑
l=0

ℓ2l
[
αl□̄

lG
(1)
ab + βl□̄

lR(1)ḡab + γl+1ℓ
2□l[ḡab□̄− ∇̄a∇̄b]R

(1)
]
= 0 , (2.11)

for certain dimensionless constants αl, βl, γl which will be related to the gravitational couplings,

and where we rearranged some of the terms for later convenience. Implicitly, we have assumed
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that the theory involves a polynomial dependence on the covariant derivatives. Relaxing this

requirement, would yield the more general form

Eab ≡
[
f1(ℓ

2□̄)G
(1)
ab + f2(ℓ

2□̄)R(1)ḡab + f3(ℓ
2□̄)[ḡab□̄− ∇̄a∇̄b]R

(1)
]
= 0 , (2.12)

for certain functions f1, f2, f3. The form of the equations can be further constrained by noting

that the tensor Eab must be divergence-free, that is, ∇̄aEab = 0. By commuting ∇̄a and □̄, one

can show that the divergence reads

∇̄aEab =

{
f2
(
ℓ2□̃

)
+
D − 1

D

[
f3
(
ℓ2□̃

)
□̃− f3

(
ℓ2□̂

)(
□̄− 1

ℓ2⋆

)]

+
2−D

2D

[
f1
(
ℓ2□̃

)
− f1

(
ℓ2□̂

)]}
∇̄bR

(1) ,

(2.13)

where

□̂ = □̄− D + 1

ℓ2⋆
, □̃ = □̄+

D − 1

ℓ2⋆
. (2.14)

Therefore, the function f2 is not free, but it depends on f1 and f3 by

f2
(
ℓ2□̄

)
=
D − 2

2D

[
f1
(
ℓ2□̄

)
− f1

(
ℓ2□̄+ 2Dχ

) ]
+
D − 1

Dℓ2

[
f3
(
ℓ2□̄+ 2Dχ

) (
ℓ2□̄− χD

)
− f3

(
ℓ2□̄

)
ℓ2□̄

]
,

(2.15)

where we recall that χ = ℓ2/ℓ2⋆. Observe that in the case of flat space, f2 vanishes.

In the case of theories which do not involve covariant derivatives, it is known that the most

general form of the linearized equations is captured by a general quadratic action in the Riemann

tensor. Something similar happens for a general L(gab, Rabcd,∇a) theory. Indeed, in that case,

the most general quadratic action reads

Leff = λ

[
(D − 1)(D − 2)

ℓ2
+R+ ℓ2RF1(ℓ

2□̄)R+ ℓ2RabF2(ℓ
2□̄)Rab + ℓ2RabcdF3(ℓ

2□̄)Rabcd

]
,

(2.16)

for certain functions F1, F2, F3. It is then possible to relate these functions to the f1 , f2 , f3

of the linearized equations (2.12). Such relations are quite cumbersome in the case of (A)dS

backgrounds, as we illustrate in Subsection 2.2.3 for the simple case of Fi ∝ □. However, they

simplify greatly in the case of Minkowski backgrounds, which we analyse now.

2.2.2 Minkowski background

First, let us note that, if we are considering linearization around flat space, then the term

Rabcd□nRabcd in eq. (2.16) is not independent of the other two quadratic terms. Indeed, inte-

grating by parts and using the Bianchi identities, one can show that the following relation is

true up to a total derivative [191],

Rabcd□R
abcd ∼= 4Rbd□Rbd −R□R+O(R3

abcd) . (2.17)

A similar calculation follows for any number n of box operators, since the remaining □n−1

operators simply introduce extra O(R3
abcd) terms upon commutation. Therefore, for all n ≥ 0,

R□nR− 4Rab□nRab +Rabcd□nRabcd = Total Derivative +O(R3
abcd) . (2.18)
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Since the O(R3
abcd) terms do not contribute to the linearized equations on Minkowski space,

we could redefine out F3 in Leff without loss of generality. However, we will not do so, since

given any general Lagrangian L(gab, Rabcd,∇a), finding its effective quadratic action Leff for

linearized perturbations around flat space will just consist in dropping all terms cubic or higher

in curvature.

The linearized equations around Minkowski space for the quadratic Lagrangian (2.16) read

λ

2

{[
1 +

[
4F3(ℓ

2□̄) + F2(ℓ
2□̄)

]
ℓ2□̄

]
G

(1)
ab

−ℓ2
[
2F1(ℓ

2□̄) + F2(ℓ
2□̄) + 2F3(ℓ

2□̄)
]
[∇̄a∇̄b − ḡab□̄]R(1)

}
= 0 . (2.19)

where

G
(1)
ab = −1

2
□̄hab + ∇̄(a|∇̄chc|b) −

1

2
∇̄a∇̄bh− 1

2
ḡabR

(1) , (2.20)

R(1) = ∇̄a∇̄bhab − □̄h , (2.21)

are the linearized Einstein tensor and Ricci scalar, respectively. These linearized equations

can be obtained immediately using the result found in [127] for theories which do not involve

covariant derivatives of the Riemann tensor. The idea is to use the same relations between the

quadratic action couplings and the constant parameters (a, b, c, e) appearing in such equations,

but now promoting the constants to functions of ℓ2□̄.

The trace of the equations reads

−λ
4

[
(D − 2)− ℓ2□̄

[
4F3(ℓ

2□̄) +DF2(ℓ
2□̄) + 4(D − 1)F1(ℓ

2□̄)
]]
R(1) = 0 , (2.22)

and their traceless part is given by

λ

2

{[
1 +

[
4F3(ℓ

2□̄) + F2(ℓ
2□̄)

]
ℓ2□̄

]
R

(1)
⟨ab⟩

−ℓ2
[
2F1(ℓ

2□̄) + F2(ℓ
2□̄) + 2F3(ℓ

2□̄)
]
∇̄⟨a∇̄b⟩R

(1)
}
= 0 . (2.23)

Observe now that for theories satisfying the condition

4F3(ℓ
2□̄) +DF2(ℓ

2□̄) + 4(D − 1)F1(ℓ
2□̄) = 0 , (2.24)

the trace equation becomes second order and simply reads

−λ
4
(D − 2)R(1) = 0 , (2.25)

which is nothing but the Einstein gravity result. In the case in which Fi = ci are constants,

this condition (2.24) selects a linear combination of quadratic terms which appear in the so-

called “critical gravities” in general dimensions—see e.g. [102, 144, 200–204]. In particular, the

quadratic action reduces in that case to

Leff = λ

[
(D − 1)(D − 2)

ℓ2
+R+ ℓ2c3X4 + ℓ2(c1 − c3)

(
R2 − 4(D − 1)

D
RabR

ab

)]
, (2.26)

where X4 ≡ R2 − 4RabR
ab + RabcdR

abcd is the Gauss-Bonnet density, and the second term can

be written as a linear combination of X4 and the Weyl tensor squared. For this theory, the

linearized spectrum on a general maximally symmetric background is known to involve the
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usual massless graviton and the massive one, but not the scalar mode. This is also the case for

theories satisfying eq. (2.24) with non-constant functions. As we will see later, both Generalized

Quasi-topological and brane-world gravities belong to that class.

In order to study the physical modes propagated by the metric perturbation, let us now fix

the harmonic gauge, which amounts to setting

∇̄ahab =
1

2
∇̄bh . (2.27)

Then, the linearized Einstein tensor and Ricci scalar become

G
(1)
ab = −1

2
□̄hab +

1

4
ḡab□̄h , R(1) = −1

2
□̄h . (2.28)

For theories satisfying eq. (2.24), the trace equation (2.25) imposes □̄h = 0. Using the residual

gauge freedom hab → hab +∇(aξb), with □ξa = 0, we can set h = 0. Therefore, the trace of the

perturbation has no dynamics and indeed there are no scalar modes. On the other hand, the

traceless part of the equations becomes

−λ
4

[
1 +

[
4F3(ℓ

2□̄) + F2(ℓ
2□̄)

]
ℓ2□̄

]
□̄h⟨ab⟩ = 0 . (2.29)

By performing the Fourier transform in this expression, which amounts to □ → −k2, we can

read off the propagator

P (k) =
4

λk2 [1− ℓ2k2 (4F3(−ℓ2k2) + F2(−ℓ2k2))]
. (2.30)

Poles of the propagator inform about the degrees of freedom of the theory. For each pole,

k2 = −m2 indicates the mass. Thus, imaginary poles correspond to massive modes, while real

poles are tachyonic modes. On the other hand, the residue of each pole tells us about the energy

carried out by the corresponding mode. A positive residue —like the massless graviton one,

k2 = 0— corresponds to positive energy, and viceversa for a negative residue. For constant

functions, Fi = ci, we have the poles

m2 = 0 , m2
g = − 1

(4c3 + c2)ℓ2
, (2.31)

corresponding to the anticipated massless and massive graviton, respectively, and in agreement

with the result of [127, 205]. The next to simplest case corresponds to Fi(ℓ
2□̄) = ci + biℓ

2□̄.

For that, one finds

m2 = 0 , m2
± = −

(c2 + 4c3)±
√
(c2 + 4c3)2 − 4(b2 + 4b3)

2(b2 + 4b3)ℓ2
, (2.32)

which correspond, in addition to the usual massless graviton, to two new massive gravitons.

An additional simplification occurs for theories such that, besides eq. (2.24), also satisfy the

condition F3(ℓ
2□̄) = −F2(ℓ

2□̄)/4. Those two conditions can then be rewritten as

F1(ℓ
2□̄) = F3(ℓ

2□̄) = −F2(ℓ
2□̄)/4 , (2.33)

and, in that case, the linearized equations reduce to

λ

2
G

(1)
ab = 0 , (2.34)
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namely, to the usual linearized Einstein equation. Hence, for theories whose effective action

satisfies the pair of conditions (2.33), the linearized equations on Minkowski space are identical to

the Einstein gravity ones —or, in other words, the higher-derivative densities do not contribution

at all to the linearized equations. This fact was expected from eq. (2.18) and our discussion

at the beginning of this subsection, but it is good to see that it holds even when the functions

Fi cannot be written as a series expansion. Gauss-Bonnet gravity is a particular instance of

this kind of gravities, which corresponds to setting all functions equal to constants, but the

set of higher-derivative theories with this property contains infinitely many densities with an

arbitrarily large number of covariant derivatives. We will see later that Generalized Quasi-

topological gravities fall within this category (not so brane-world gravities).

2.2.3 AdS background

Here we present the explicit linearized equations of motion around an AdS background for

the simplest examples of the theories of the form L(gab, Rabcd,∇a). We will see that there is no

straightforward relation between the functions Fi in the effective quadratic Lagrangian (2.16),

and the functions fi in the linearized equations (2.11).

First, we consider the effective quadratic theory arising from purely polynomial theories,

L(0) = λ (R− 2Λ0) + α(0)R
2 + β(0)RabR

ab + γ(0)RabcdR
abcd . (2.35)

For this theory, the linearized equations were computed in [127] and read

E(1)
ab =

[
λ

2
− 2

ℓ2⋆

(
D(D − 1)α(0) + (D − 2)β(0) + (D − 3)(D − 4)γ(0)

)
+ β(0)□̄

]
G

(1)
ab

+
[
2α(0) + β(0)

] [
ḡab□̄− ∇̄a∇̄b

]
R(1) − 1

ℓ2⋆

[
2(D − 1)α(0) + β(0)

]
ḡabR

(1) . (2.36)

Now, let us consider the effective action involving one d’Alembertian acting on curvature,

L(1) = α(1)R□R+ β(1)Rab□R
ab + γ(1)Rabcd□R

abcd . (2.37)

For this theory, we see that the linearized equations of motion take the form

E(1)
ab =

[
− 8

ℓ4⋆
γ(1)(D − 3)D +

2

ℓ2⋆
(β(1) + 2γ(1)(5−D))□̄+ (β(1) + 4γ(1))□̄

2

]
G

(1)
ab

+
(
2α(1) + β(1) + 2γ(1)

) [
ḡab□̄− ∇̄a∇̄b

]
□̄R(1) +

2(D − 2)(4γ(1) + β(1))

ℓ2⋆
∇̄a∇̄bR

(1)

−
(D − 1)(2α(1) + β(1) + 2γ(1))

ℓ2⋆
ḡab□̄R

(1) − 4(D − 2)(D − 3)

ℓ2⋆
γ(1)ḡabR

(1) . (2.38)

Note that the linearized field equations of this six-derivative action involves terms with two,

four, and six derivatives.

Therefore, we see that there is a mixing of orders that prevents us from writing an easy

relation between the coefficients of the effective quadratic action and the coefficients of the

linearized equations. It may be that the linearized equations can be simplified in alternative

gauges, e.g., [198], but we have not pursued this any further.
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2.3 Generalized Quasi-topological gravities

In this section, we present the first examples of (four-dimensional) Generalized Quasi-

topological (GQT) densities involving covariant derivatives of the Riemann tensor. In D = 4,

in the absence of covariant derivatives, it has been shown that there exists a unique non-trivial

GQT density at each curvature order. Here we show that the landscape of GQT theories is

modified considerably by allowing covariant derivatives of the Riemann tensor to appear in the

action. In particular, while we find no new densities at four- and six-derivative(s of the metric)

orders, we obtain four new inequivalent GQTs at eight-derivative order. Of these, only one

possesses an integrated equation for f(r) which is of second order in derivatives, two of them

have third-order equations, and the remaining one has an integrated fourth-order equation for

the metric function. In all cases, we find that the Schwarzschild solution is also a solution of

these theories. As a consequence, coupling Einstein gravity to these theories does not give rise

to new spherically symmetric black hole solutions. Extending the analysis to ten-derivative

order, we find new examples which do not admit Schwarzschild as a solution. For those, the

coupling to Einstein gravity does produce new non-trivial modifications of the Schwarzschild

black hole.

2.3.1 Definition

Let us start by recalling the basic definition and properties of GQTs. Consider a general

static and spherically symmetric (SSS) spacetime parametrized by two functions, N(r) and

f(r),

ds2N,f = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , (2.39)

where dΩ2
(D−2) is the (D− 2)-dimensional sphere metric. The following comments extend, with

minor modifications, to the cases in which the horizon is hyperbolic or planar instead. The

expressions below will incorporate those cases through a parameter denoted k which will take

the values +1, 0,−1, respectively for the spherical, planar and hyperbolic cases.

For a given higher-derivative invariant of order 2m in derivatives of the metric and involving

p covariant derivatives of the Riemann tensor, R(2m,p), let SN,f and LN,f be, respectively, the

effective on-shell action and Lagrangian resulting from the evaluation of
√
|g|R(2m,p) in the

ansatz (2.39), namely,

LN,f ≡ N(r)rD−2R(2m,p)

∣∣
N,f

, SN,f ≡ Ω(D−2)

∫
dt

∫
drLN,f , (2.40)

where we performed the trivial integral over the angular directions, Ω(D−2) ≡ 2π
D−1
2 /Γ[D−1

2 ].

We denote by Lf ≡ L1,f and Sf ≡ S1,f the expressions resulting from setting N = 1 in LN,f .

Now, solving the full nonlinear equations of motion for a metric of the form (2.39) can be shown

to be equivalent to solving the Euler-Lagrange equations of SN,f associated to N(r) and f(r)

[14, 206–208], namely,

Eab
∣∣∣
N,f

≡ 1√
|g|

δS

δgab

∣∣∣∣∣
N,f

= 0 ⇔
δSN,f

δN
=
δSN,f

δf
= 0 . (2.41)
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We say that R(2m,p) is a GQT density if the Euler-Lagrange equation of f(r) associated to Sf

is identically vanishing, namely, if

δSf
δf

= 0 , ∀ f(r) . (2.42)

This condition is equivalent to asking Lf to be a total derivative,

Lf = T ′
0 , (2.43)

for a certain function T0(r, f(r), f
′(r), . . . , f (p+1)).

Thus, the variation with respect to f(r) of the on-shell action Sf determines whether a given

density is of the GQT class. When that is the case, the full non-linear equations of R(2m,p)

reduce to a single equation for f(r) which can be integrated once. This integrated equation can

be obtained from the variation of LN,f with respect to N(r) as

δSN,f

δN

∣∣∣∣
N=1

= 0 ⇔ equation of f(r) . (2.44)

Let us see this in more detail. As explained in [19], whenever eq. (2.43) holds, the effective

Lagrangian LN,f takes the form

LN,f = NT ′
0 +N ′T1 +N ′′T2 + · · ·+N (p+2)Tp+2 +O(N ′2/N) , (2.45)

where T1, T2, . . . , Tp+2 are functions of f(r) and its derivatives (up to f (p+2)), and O(N ′2/N) is

a sum of contributions which are all at least quadratic in derivatives of N(r). Integrating by

parts, one finds

SN,f = Ω(D−2)

∫
dt

∫
dr

N
T0 + p+2∑

j=1

(−1)jT
(j−1)
j

′

+O(N ′2/N)

 . (2.46)

Therefore, we can write every term involving one power of N(r) or its derivatives as a certain

product of N(r) and a total derivative which depends on f(r) alone. Then, eq. (2.44) equates

this total derivative to zero. Integrating it once, we are left with [19]

FR(2m,p)
≡ T0 +

p+2∑
j=1

(−1)jT
(j−1)
j =

M

Ω(D−2)
, (2.47)

where the integration constant was written in terms of the ADM mass of the solution [209–212].

In sum, given some linear combination of GQT densities, the equation satisfied by f(r) can

be obtained from LN,f as defined in eq. (2.40) by identifying the functions T{j} from eq. (2.45).

The order of the integrated equation FR(2m,p)
is at least two orders less than the one of the

equations determining f(r) and N(r) in the most general case, namely,

FR(2m,p)
= FR(2m,p)

(r, f, f ′, . . . , f (2p+2)) . (2.48)

In particular, when p = 0, corresponding to the case without covariant derivatives of the

Riemann tensor, the integrated equation is at most second-order in derivatives of f(r). In that

case, one can see that the integrated equations are either of order 0 in derivatives —these are

called simply “Quasi-topological” theories [137–140, 172], which includes Lovelock theories [134,
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135] as particular cases— or, alternatively, of order 2. As we will see in a moment, the actual

order of the integrated equations that we will find in our new GQT densities with covariant

derivatives will be considerably lower than the 2p+ 2 upper bound.

We will say that two GQT densities {RI
(2m,p),R

II
(2m,p)} are “inequivalent” (as far as SSS

solutions are concerned) whenever the quotient of their respective integrated equations is not

constant, namely,

RI
(2m,p) inequivalent from RII

(2m,p) ⇔
FRI

(2m,p)
(r, f, f ′, . . . , f (2p+2))

FRII
(2m,p)

(r, f, f ′, . . . , f (2p+2))
̸= constant . (2.49)

Otherwise we will call them “equivalent”. Two equivalent densities differ by densities which

make no contribution whatsoever to the integrated equation of f(r). Those densities are “trivial”

as far as SSS solutions are concerned.

In the p = 0 case, it has been argued that: there exist no (non-trivial) GQTs in D = 3

[1]; there exists a single inequivalent GQT density at each curvature order m in D = 4 whose

integrated equation is a differential equation of order 2 [21]; there exists a single inequivalent

Quasi-topological density at each curvature order m in D ≥ 5 whose integrated equation is

algebraic [20]; there exist (m− 2) inequivalent GQT densities at each curvature order in D ≥ 5

whose integrated equation is a differential equation of order 2 [20, 21].

2.3.2 Linear spectrum

A remarkable property of all GQTs built from polynomial curvature invariants is that their

linear spectrum on maximally symmetric backgrounds is devoid of ghosts. In fact, the linearized

equations of motion are proportional to those of Einstein gravity on the same background. For

polynomial GQTs, the second-order nature of the linearized equations was first verified explicitly

in case-by-case examples —see e.g. [18, 126, 137, 138, 172]. It was subsequently proven that

the single-metric-function condition that defines GQTs also implies the linearization is second-

order in general [19] —c.f. page 102 of [213] for the most up-to-date version of this proof.

Here, we show that this result in fact holds for all GQTs, including those that contain covariant

derivatives of the curvature (and hence have equations of motion of order greater than four).

The idea behind the proof consists in considering a metric perturbation within the single-

function static spherically symmetric ansatz. Thus, we start by considering the metric (2.39)

with N(r) = 1. For convenience, let us rewrite this metric as

ds2 = −f(r)du2 − 2drdu+ r2dΩ2
(D−2) , (2.50)

where u = t + r∗, with r∗ being the tortoise coordinate, defined by dr∗ = dr/f(r). One can

show that, in this coordinate system, the GQT condition (2.42) is equivalent to the vanishing

of the rr component of the equations of motion, that is,

Err = 0 , ∀f(r) . (2.51)

We can then take f(r) to be

f(r) = 1 +
r2

ℓ2⋆
+ h(r) , h(r) ≪ 1 , (2.52)
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corresponding to a maximally symmetric vacuum plus a small perturbation hab given by

huu = h(r) . (2.53)

Then, the idea is to impose the condition (2.51) at the level of the linearized equations by using

this perturbation. We know that, in general, the linearized equations are given by (2.11) for

certain coefficients αl, βl and γl. Let us for instance assume that our theory has sixth-order

equations of motion — so that only the coefficients with l ≤ 2 are nonzero — and let us set

D = 4. We get, after a direct evaluation of (2.11) on (2.53),

E(1)
rr = α1ℓ

2

(
−4h

r4
+

2h′′

r2

)
+ γ1ℓ

2

(
−12h

r4
+

6h′′

r2
− 4h(3)

r
− h(4)

)

+ α2ℓ
4

(
h

(
−32

r6
+

56

L2r4

)
+

32h′

r5
+

(
−16

r4
− 28

L2r2

)
h′′ +

16h(3)

L2r
+

(
4

L2
+

4

r2

)
h(4)

)

+ γ2ℓ
4

(
h

(
−80

r6
+

120

L2r4

)
+

80h′

r5
+

(
−40

r4
− 60

L2r2

)
h′′ +

40h(3)

L2r
+

(
− 20

L2
+

10

r2

)
h(4)

+

(
−6

r
− 12r

L2

)
h(5) +

(
−1− r2

L2

)
h(6)

)
.

(2.54)

Then, the GQT condition (2.51) implies that this expression above must vanish for any choice

of h(r). Clearly, this only happens if α1 = α2 = γ1 = γ2 = 0, since all terms are linearly

independent. The same conclusion follows in general dimensions and if the theory has higher-

order equations of motion. In the latter case, eq. (2.54) will include αl- and γl-terms with higher

l, but these are all linearly independent because they contain different numbers of derivatives

of h and/or different radial dependence.

In conclusion, (2.51) implies the vanishing of all the αl and γl except for α0, corresponding to

the coefficient of the linearized Einstein tensor. Finally, the relation (2.15) implies the vanishing

of the βl coefficients. Therefore, the linearized equations must be proportional to the linearized

Einstein tensor.

In the next subsection, we will obtain some explicit new GQTs in four dimensions. Following

our results from Subsection 2.2.2, one can easily obtain their effective quadratic Lagrangians by

dropping all but curvature-squared terms. It is then easy to see that they all fulfil conditions

(2.33), thus confirming that they have an Einsteinian spectrum, at least around flat space.

2.3.3 Classification of four-dimensional theories

In this subsection, we will classify all possible GQT Lagrangians in D = 4, based on the

number of derivatives of the metric appearing in the action. In the case of four and six deriva-

tives, the result is in line with previous considerations [18, 19, 137, 138]: nothing new beyond

those theories constructed from the polynomial invariants is found. However, the cases of eight

and ten derivatives reveals new features not seen before.

Let us briefly summarize the methodology. At a given derivative order, we construct the

most general Lagrangian density by performing a linear combination of all higher-derivative

invariants that appear at that order:

L(2m) =
∑
i

c
(2m,p)
(i) R(i)

(2m,p) . (2.55)
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Here, 2m refers to the number of derivatives of the metric appearing in the term, while the

c
(2m,p)
(i) ’s are constants. The densities R(i)

(2m,p) involve contractions of the Riemann tensor and

its covariant derivatives. In appendix A we present a generating set of these invariants for up

to eight derivatives of the metric. The action is then evaluated on a single-function SSS metric

ansatz and we impose eq. (2.42), namely, that the Euler-Lagrange equation for f(r) vanishes.

This leads to constraints on the c
(2m,p)
(i) ’s such that the resulting theory is of the GQT type.

Let us make a few further comments regarding the densities involving derivatives of the

curvature. In general it is possible to reduce the number of invariants that make non-trivial

contributions to the equations of motion by integrating by parts and utilizing the Bianchi

identities. However, we have not pursued this option here. The reasons are simply because,

at high-order in derivatives, there are so many terms that it would be impractical to do so.

Furthermore, as will be obvious below, it is not necessary to do this to understand the effects of

these terms. Therefore, in constructing our actions at the four, six, and eight-derivative levels,

we include all possible terms at a given order (as listed in the appendix). On the other hand,

in the case of ten-derivative theories our analysis will not be exhaustive.

Two-derivative actions

For completeness, we include here the two-derivative sector, which is simply Einstein gravity,

L(1)
(2,0) = R . (2.56)

The integrated equation for the metric function is given by

F (1)
(2,0) = −2r(f − k) . (2.57)

Four-derivative actions

There are no non-trivial four-derivative GQT actions in four-dimensions.

Six-derivative actions

There is a single non-trivial six-derivative GQT action in four-dimensions. The action for this

theory may be taken to be that of Einsteinian Cubic Gravity [126]

L(1)
(6,0) = +12R c d

a b R
e f
c d R a b

e f +Rcd
abR

ef
cdR

ab
ef − 12RabcdR

acRbd + 8Rb
aR

c
bR

a
c , (2.58)

whose integrated equation for the metric function f(r) reads [214, 215]

F (1)
(6,0) = − 4

r2

[
rff ′′

(
rf ′ + 2(k − f)

)
− f ′

3

(
r2f ′2 + 3rkf ′ + 6f(k − f)

) ]
. (2.59)

Eight-derivative actions

There are five non-trivial eight-derivative GQTG actions in four-dimensions. The first of these

possibilities may be taken to be that given by the standard polynomial invariants —see e.g.

[14]. However, the additional four theories require terms involving covariant derivatives of

the Riemann tensor. Of these, a single combination can be formed such that the integrated

equations are second-order, while the remaining three involve higher-derivatives of the metric
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function. As examples of actions that give rise to each of the new sets of GQTGs, the following

choices may be made:

L(1)
(8,0) =+RpqrsR t u

p r R
v w
t q Ruvsw − 13

5
RpqrsR tu

pq R v w
r t Rsvuw − 1

8
RpqrsR tu

pq R vw
tu Rrsvw

+
1

5
RRpqrsR t u

q s Rtpur , (2.60)

L(2)
(8,2) =+RpqrsRt u ;v

p r Rtqus;v −Rpq;rRst u
p Rstqr;u + 2RpqrsR tuv

p Rqtru;sv +RpqRrs;tRrtsp;q

− 2Rpq;rR s;t
p Rqsrt +Rpq;rsRt u

p rRtqus −RpqRrs
;pRrs;q −

1

2
R;pRqr;sRpqrs

+RpqRrs t
;q Rprst −

1

2
□RpqRrst

pRrstq , (2.61)

L(3)
(8,4) =+ 21Rpq;rstRprqs;t − 12□Rpq□Rpq − 12RpqRrsRpq;rs + 153RpqRrs;tRrtsp;q + 6R;pq□Rpq

+
33

4
Rpqrs;tuRpqrs;tu + 6R;pqRrst

qRrstp −
21

2
□RpqRrst

pRrstq + 36Rpq;rsRt u
p rRtqus

+ 183RpqrsR tuv
p Rqtru;sv − 51RpqRrs

;pRrs;q −
177

2
R;pRqr;sRpqrs − 81Rpq;rR s;t

p Rqrst

− 93Rpq;rR s;t
p Rqsrt − 60Rpq;rRst u

p Rstqr;u + 33RpqrsRtuv
p;qRtuvr;s

− 27RpqrsRtuv
p;rRtuvq;s − 63RpqrsRt u ;v

p r Rtqus;v + 6R;pq□Rpq , (2.62)

L(4)
(8,4) =+ 52RpqRrs;tRrtsp;q + 8Rpq;rstRprqs;t − 4□Rpq□Rpq − 20Rpq;rR s;t

p Rqsrt

− 24Rpq;rRst u
p Rstqr;u − 4Rpq;rRs tu

p Rsqtr;u + 12RpqrsRtuv
p;qRtuvr;s

− 10RpqrsRtuv
p;rRtuvq;s − 20RpqrsRt u ;v

p r Rtqus;v + 2R;pq□Rpq + 3Rpqrs;tuRpqrs;tu

+ 72RpqrsR tuv
p Rqtru;sv − 8RpqRrs

;pRrs;q − 22R;pRqr;sRpqrs − 36Rpq;rR s;t
p Rqrst ,

(2.63)

L(5)
(8,4) =+ 1178RpqRrs;tRrtsp;q + 171Rpq;rstRprqs;t − 95□Rpq□Rpq − 76RpqRrsRpq;rs

− 646Rpq;rR s;t
p Rqsrt − 475Rpq;rRst u

p Rstqr;u + 228Rpq;rRs tu
p Rsqtr;u

+ 266RpqrsRtuv
p;qRtuvr;s − 209RpqrsRtuv

p;rRtuvq;s − 494RpqrsRt u ;v
p r Rtqus;v

+
95

2
R;pq□Rpq +

133

2
Rpqrs;tuRpqrs;tu + 38R;pqRrst

qRrstp + 228Rpq;rsRt u
p rRtqus

+ 1520RpqrsR tuv
p Rqtru;sv − 342RpqRrs

;pRrs;q − 646R;pRqr;sRpqrs

− 646Rpq;rR s;t
p Rqrst . (2.64)

The integrated equations for each of these densities read, respectively,

F (1)
(8,0) = −12f ′

5r3

[
rff ′′

2

(
rf ′ + 2(k − f)

)
− f ′

3

(
3r2f ′2

8
+
rf ′

2
(f + 2k) + 3f(k − f)

)]
, (2.65)

F (2)
(8,2) = −4f2

r5
α2 , (2.66)

F (3)
(8,4) = +

3f2

2r5
(5α2 − 2rαα′ + r2α′2) , (2.67)

F (4)
(8,4) = −2f2

r5
α(4α− α′′r2) , (2.68)

F (5)
(8,4) = +

19f2

4r5
(4(α− α′r)β + α′′r2(α+ β)) , (2.69)

54



Chapter 2 D-Dimensional Higher-Derivative Gravities

where we defined the functions2

α(r) ≡ 2(k − f(r)) + r2f ′′(r) , β(r) ≡ 2(k − f(r)) + 2rf ′(r)− r2f ′′(r) . (2.70)

From the densities involving covariant derivatives, while the first three exclusively depend on

α(r) and its derivatives, the fourth one also includes a dependence on β(r) —which can not be

expressed in terms of α(r) and its derivatives.

Observe that α(r) and β(r) identically vanish when evaluated for a maximally symmetric

background. Namely, if we set

f(r)|(A)dS ≡ r2

L2
⋆

+ k ⇒ α(r)|(A)dS = β(r)|(A)dS = 0 , (2.71)

and therefore

F (2)
(8,2)|(A)dS = F (3,4,5)

(8,4) |(A)dS = 0 , (2.72)

or, in other words, the equations of motion of the new GQTs identically vanish for maximally

symmetric backgrounds. Furthermore, it is easy to see that the usual Schwarzschild-(A)dS

solution satisfies the equations of the new densities. This follows from the fact that

α(r)|Sch-(A)dS = 0 , β(r)|Sch-(A)dS =
12M

r
, (2.73)

where

f(r)|Sch-(A)dS ≡ r2

L2
⋆

+ k − 2M

r
. (2.74)

Since all terms appearing in F (i=2,3,4,5)
8 are proportional to α(r) or its derivatives, it follows

that

F (2)
(8,2)|Sch−(A)dS = F (3,4,5)

(8,4) |Sch−(A)dS = 0 . (2.75)

This implies that if we couple the new densities to Einstein gravity, the Schwarzschild solution

will not receive corrections from such terms.

Ten-derivative actions

To the best of our knowledge, a full classification of higher-derivative invariants at ten-derivative

order has not been undertaken. Therefore, our analysis in this section is necessarily incomplete

but, as we shall see, interesting.

To study ten-derivative actions we do the following. We construct all possible combinations

of ten-derivative actions built from lower-order densities —for example, by multiplying all six-

derivatives densities by the four-derivative ones, and so on. In addition to this, we include

20 additional terms that are explicitly order ten in derivatives. We list the ones used for this

purpose in appendix A. However, it is particularly relevant that our set contains the contraction

of five Weyl tensors and the following density,

CabcdC
abcdCefrs;uC

efrs;u . (2.76)

As discussed in [187, 188], in four space-time dimensions there are four non-trivial parity-

preserving contributions to the effective field theory of gravity at the ten-derivative level. Two

2The functions α(r) and β(r) are directly proportional to the non-trivial components of the traceless Ricci

tensor and Weyl tensor for the single-function static, spherically symmetric background, respectively.
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of them involve the square of a dual Riemann tensor and hence they vanish identically on spher-

ically symmetric spacetimes. We thus are left with two contributions that modify spherically

symmetric solutions. The first contribution can be taken, as usual, to be a contraction of five

Weyl tensors. The density appearing above is a particular choice for the second non-trivial

contribution.

The ten-derivative action is the first instance where more than one non-trivial contribution to

the EFT appears. Moreover, it is the first instance where terms involving covariant derivatives

of the metric play an essential role —i.e. cannot be removed by field redefinitions. For these

reasons, we expected to find novel GQT theories at this order that explicitly modify the solutions

to vacuum Einstein gravity, corresponding to the two possible non-trivial effective field theory

contributions. This expectation will be borne out.

From the entire set of ten-derivative invariants that we construct, there turn out to be 21

independent contributions. This represents notable growth compared to the eight-derivative

case where there were five independent contributions. Of the 21 independent ten-derivative

GQT theories, only two of these are non-trivial when evaluated on the Schwarzschild solution

—corresponding to F (1)
(10,0) and F (9)

(10,4) below— and hence will give raise to deformations of

the Schwarzschild solution [2]. Of the 21 theories, 5 have second-order integrated equations, 7

have third-order, 6 have forth-order, 2 have fifth-order, and 1 has sixth-order. As we have not

included all possible 10 derivative densities in our starting action, these numbers are likely to be

incomplete. However, we expect that any additional GQTs, should they exist, will not correct

the solutions of vacuum general relativity. The list of 21 inequivalent integrated equations reads

F (1)
(10,0) =+

f ′2

r2

[
f ′3

5
+

2(f + k)f ′2

4r
− 2f(f − k)f ′

r2
− ff ′′

r

(
rf ′ + 2(k − f)

) ]
, (2.77)

F (2)
(10,4) =+

f2α2(f − k)

r7
, (2.78)

F (3)
(10,4) =+

f2α(α+ β)2

r7
, (2.79)

F (4)
(10,4) =+

f2α
(
8α(f − k) + α2 − β2

)
r7

, (2.80)

F (5)
(10,4) =+

f2α2 (6(k − f)− α)

r7
, (2.81)

F (6)
(10,4) =+

f2(α+ β)2 (rα′ − 2α)

r7
, (2.82)

F (7)
(10,4) =+

f2α(α+ β) (rα′ − α+ β)

r7
, (2.83)

F (8)
(10,4) =− f2αβ (rα′ − α+ β)

r7
, (2.84)

F (9)
(10,4) =+

1

r7

[
48f2r3

(
−r2f ′′ + 2rf ′ + 2(k − f)

)
(k − f)f ′′′

+ f
(
2 (65f + 16k) rf ′ + 4 (2k − 65f) (k − f)

)(rf ′
2

+ k − f

)
r2f ′′ − 4kr4f ′4

− 3
(
3k2 + 4kf + 121f2

)
r3f ′3 − 2

(
2k2 + 38kf + 1271f2

)
(k − f)r2f ′2

− 40rf(k + 122f) (k − f)2 f ′ − 3448f2(k − f)3
]
, (2.85)

F (10)
(10,4) =+

f2

r7

[
4r2(k − f)α′2 − 2r (4(k − f) + α+ β)αα′ − α(α+ β)(β − 3α)

]
, (2.86)
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F (11)
(10,4) =+

f2

r7

[
r2 (4(k − f)− α− β)α′2

− 2r
(
(4(k − f) + β)α+ β2

)
α′ + 3α(α+ β)2

]
, (2.87)

F (12)
(10,4) =+

f2

r7

[
2r2 (2(k − f)− α)α′2 − 2r (4(k − f) + 3β − α)αα′ (2.88)

+ α
(
α2 + 6αβ − 3β2

) ]
, (2.89)

F (13)
(10,4) =+

f2

r7

[
r2(k − f)(α+ β)α′′ − r

(
α2 + αβ + 4β(k − f)

)
α′

+
(
2α2 − α (4(k − f)− 2β) + 4β(k − f)

)
α

]
, (2.90)

F (14)
(10,4) =+

f2

r7

[
r2(α+ β) (8(k − f)− α− β)α′′ − 4r

(
α2 + β (8(k − f)− β)

)
α′

+ 8(β − α) (4(k − f)− α− β)α

]
, (2.91)

F (15)
(10,4) =+

f2α

r7

[
r2(k − f)α′′ − (α+ β)

(
rα′ − α+ β

) ]
, (2.92)

F (16)
(10,4) =+

f2

r7

[
r2
(
−α2 + (6(k − f)− β)α+ 2β(k − f)

)
α′′ − 2r

(
α2 + αβ + β(k − f)

)
α′

+ 4
(
α2 − (2(k − f)− β)α+ 2β(k − f)

)
α

]
, (2.93)

F (17)
(10,4) =+

f2α

r7

[
r2 (4(k − f)− α)α′′ − 4

(
rα′ − α+ β

)
β

]
, (2.94)

F (18)
(10,4) =+

f2

r7

[
+ 16r2 (3α+ 3α+ 4f − 9k)α′2

r2
(
−4r (3α+ 3β + 4f − 12k)α′ + 4

(
3α2 + 4fα− 12kα− 3β2 − 4fβ + 4kβ

))
α′′

− 2r
(
47α2 − αβ + 92fα− 28kα− 48β2 − 32fβ + 32kβ

)
α′

+
(
5α2 − 178αβ + 176fα+ 464kα− 183β2 − 64fβ + 64kβ

)
α

)]
, (2.95)

F (19)
(10,4) =+

f2

r7

[
96fr3αα′′′ − 32r2

(
−rfα′ + (19f − 9k)α+ β(k − f)

)
α′′ + 64r2 (3k − 2f)α′2

+ 4r
(
−163α2 + (−148k − 76f − 163β)α+ 32β(k − f)

)
α′

− 2
(
−722α2 − 2 (35β + 248f + 392k)α+ β (64(k − f) + 291β)

)
α

]
, (2.96)

F (20)
(10,4) =+

f2

r7

[
6r3f

(
rα′ − 2α

)
α′′′ + 6fr4α′′2

− 4
(
4rfα′ + (18k − 13f)α+ 5β(k − f)

)
r2α′′

− 4 (3k + 14f) r2α′2 + 80

(
α2

16
+

(
23k

20
+

41f

20
+
β

16

)
α+ β(k − f)

)
rα′

− 80

(
7α2

32
+

(
−13k

10
+

23f

10
+

5β

16

)
α+ β

(
k − f +

3β

32

))
α

]
, (2.97)

F (21)
(10,4) =− 3f2

r7

[
− 1

3

(
−α′fr − 9α2

2
+

(
4k + 2f − 9β

2

)
α+ β(k − f)

)
r2α′′
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− r4fαα′′′′

6
+ r3

(
−β
4
+ k +

f

3
− α

4

)
αα′′′ + 2

(
k − 2f

3

)
r2α′′2

+
4

3

(
−163α2

32
−
(
77k

8
+

21f

8
+

163β

32

)
α+ β(k − f)

)
rα′

− 4α

3

(
β′fr

4
− 361α2

64
−
(
69k

4
+ 8f +

35β

32

)
α+ β

(
k − 3f

4
+

291β

64

))]
. (2.98)

As we can see, all densities but F (1)
(10,0) and F (9)

(10,4) involve linear combinations of terms pro-

portional to either α(r), or β(r), or their derivatives. Hence, for all those, the Schwarzschild

metric solves the corresponding equations of motion. The explicit form of the covariant densi-

ties is rather complicated in general, so we have preferred not to include the full list here. The

corresponding expressions for F (1)
(10,0) and F (9)

(10,4) read, respectively,

L(1)
10,0 =+

1

2160

[
5R5 + 132R

(
RabR

ab
)2

+ 18R
(
RabcdR

abcd
)2

− 272R2R b d
a c R

e f
b d R a c

e f

+ 10R2R cd
ab R ef

cd R ab
ef − 30R3RabR

ab − 102RRabR
abRcdefR

cdef

+ 552RijR
ijR b d

a c R
e f
b d R a c

e f − 156RijklR
ijklR b d

a c R
e f
b d R a c

e f

]
, (2.99)

L(9)
10,4 =− 1113943

20864
CabcdC

abcdCefgh;iCefgh;i +
19309071

39446
Ra

bR
b
cR

cd
ae R ef

gh R gh
df

+
2168502179

4733520
Ra

cR
b
dR

cd
ef R ef

gh R gh
ab − 23092199

10758
Ra

bR
bc

ad R de
fh R fg

ci R hi
eg

+
7605694303

4733520
Ra

bR
bc

de R de
cf R fg

hi R hi
ag +

2051116779

788920
R ab

cd R cd
eg R ef

ai R gh
fj R ij

bh

− 6886022969

2366760
R ab

ce R cd
af R ef

gi R gh
bj R ij

dh +
176696887

215160
R ab

ce R cd
fg R ef

hi R gh
aj R ij

bd

+
237411

7172
RabR

abRpqrs;tRpqrs;t −
388530029

11360448
RabcdR

abcdR;pR;p +
649013

7824
RabcdR

abcdRpq;rRpq;r

+
472435

43032
RabcdR

abcdRpq;rRpr;q −
1802455

57376
RabcdR

abcdRpq;rsRprqs

− 1065937721

2840112
RpqrsR

pqrsR c d
a b R

e f
c d R a b

e f +

[
1535482063

22720896
R;aR;a −

34589843

631136
Rpq;rRpq;r

− 90238183

946704
Rpq;rRpr;q +

21168615

2524544
Rpqrs;tRpqrs;t +

315857975

1893408
R;pqRpq −

6185788187

17040672
Rb

aR
c
bR

a
c

− 939340

177507
R c d

a b R
e f
c d R a b

e f − 26416471

516384
R cd

ab R ef
cd R ab

ef

]
□R

+

[
1612029697

1893408
RpqRr

p□Rqr +
74535679

118338
RpqRrsRpq;rs +

48934355

236676
Rpq;rsRt u

p rRtqus

+
23734313

59169
RpqRrs;qtRprst +

35456237

946704
RpqRrstuRrstu;pq −

44597992

59169
RpqRrsRpr;qs

− 619200179

1420056
R;pqRrsRprqs −

315857975

1893408
Rpq∇q∇p□R+

90238183

473352
Rpq;r∇q□Rpr

− 21168615
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Rpq;rstRprqs;t +

293954069

2840112
R;pq□Rpq +

1588811801

5680224
RRpq;rsRprqs

+
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Rpq□RrsRprqs +

1535482063

11360448
R;pqR;pq +

90238183

473352
Rpq;rsRpr;qs

+
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R;pqRr

pRqr +
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− 333105233

315568
Rpq;rR s;t

p Rqsrt +
17765777

86064
Rpq;rRst u

p Rstqr;u − 425439281

946704
Rpq;rRs tu

p Rsqtr;u

+
16960493

187776
R2□R+

421946281

315568
RpqrsRtuv

p;qRtuvr;s −
21168615

1262272
Rpqrs;tuRpqrs;tu

+
238362363

631136
RpqrsRtuv

p;rRtuvq;s −
9210385

315568
RpqrsRt u ;v

p r Rtqus;v

+
298907053

1893408
RmnrsR d g

m r R
c i

d g Rncsi −
298907053

7573632
RmnrsR dg

mn R ci
dg Rrsci

]
R . (2.100)

2.4 Conclusions

A summary of the main findings of this chapter can be found in the introduction. Let us

close with some remarks regarding open questions and future work.

In this chapter, we have initiated the study of GQTs with covariant derivatives. Our anal-

ysis has been restricted to four dimensions and to the first few curvature orders. It would be

interesting to pursue a full classification of GQTs with covariant derivatives in general dimen-

sions as well as for arbitrary curvature orders, similar to the one achieved for polynomial GQTs

in [20, 21].

Additionally, it would be interesting to prove that any gravitational effective action can be

mapped to a GQT. This is established for general polynomial densities [23], but the proof for

terms involving covariant derivatives is thus far limited to theories with up to eight derivatives

of the metric and also for theories with any number of Riemann tensors and two covariant

derivatives.

On a different front, it would be interesting to characterise the generalized symmetries of

general linearized higher-derivative gravities with covariant derivatives along the lines of [216],

where such analysis was performed for L(gab, Rabcd) theories.
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Brane-Worlds
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Chapter 3

Gravity on Brane-Worlds

3.1 Introduction

Even though the possibility that we —the Standard Model fields— live in a four-dimensional

subspace of a higher-dimensional spacetime had been around since the eighties [217, 218], it was

not until Randall and Sundrum proposed brane-worlds in an AdS bulk [36, 189] that the field

gained momentum. Before their work, it was widely believed that the only way to obtain

an effective four-dimensional description of our Universe from higher-dimensional theories of

quantum gravity, such as 10-dimensional superstring theories or 11-dimensional M theory, was

by making the extra dimensions compact and sufficiently small [219]. This is because one can

confine matter fields to a lower-dimensional subspace, but gravity is geometry, and so it must

necessarily feel all dimensions.

Indeed, in general, spacetimes with D large non-compact dimensions present a potential

that behaves as 1/rD−3 around point-like masses. By compactifying and shrinking the extra

dimensions to microscopic size, gravity will only feel them at such small scales, thus recovering

the usual Newtonian potential 1/r at large distances.

Following this reasoning, Arkani-Hamed, Dimopoulous, and Dvali had previously proposed

a model [220] in which, by confining the Standard Model fields to a four-dimensional brane,

the compact dimensions could reach the millimetre scale, but that was as big as one could

go to avoid conflicts with known results from high-energy collider experiments. Instead, the

solution proposed by Randall and Sundrum allowed for a large, non-compact, extra dimension.

In particular, it consisted of embedding a four-dimensional brane with flat geometry into a

five-dimensional AdS bulk spacetime.

Due to the curvature of the bulk, a massless graviton mode becomes localized on the brane.

Although there is also a continuum of Kaluza-Klein modes with arbitrarily small mass, their

wave function is suppressed on the brane. Thus, gravity on the brane becomes effectively four-

dimensional at low enough energies, and indeed it displays a Newtonian potential at large scales

[38]. However, at high energies, that is, at distances smaller than the curvature radius of the

AdS bulk, gravity feels the true high-dimensional nature of the bulk.

Through the holographic duality [221], it is possible to reinterpret the effects of this large

extra dimension as CFT radiation on the brane [222–225]. Alternatively, since the brane is at

some finite distance from the asymptotic boundary, we can think of this model as imposing

a UV cut-off to the dual CFT, and then coupling it to dynamical gravity on the brane. This
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Figure 3.1: The three possible maximally symmetric brane-world models, in global AdS. The branes are

denoted with a black dashed line in the bulk, or with a dark blue line where they meet the asymptotic

boundary. The part of the bulk spacetime that in lighter blue is removed from the set-up. Left: (Karch-

Randall) AdS brane. Center: Randall-Sundrum flat brane. Right: dS brane.

gravitational theory is induced by integrating out the CFT degrees of freedom above the cut-off,

in the same spirit as in Sakharov’s induced gravity proposal [27].

In order to force the brane to have a flat geometry, Randall and Sundrum had to fine-tune

its tension to a critical value. This requirement was relaxed by Karch and Randall [40] soon

afterwards. A brane tension smaller than the critical value allows the brane to have an AdS

geometry, while the brane gets a dS geometry if its tension is larger than critical. Nevertheless, if

the value of the tension is close enough to criticality, then the brane sits close to the asymptotic

boundary of the AdS bulk and one recovers almost-flat four-dimensional gravity on the brane.

Even though non-flat geometries had already been considered, either in the context of cos-

mology [226, 227] or black hole physics [228], Karch and Randall were the first to show that

gravity still localizes on the brane without the need of a second IR brane or a critical tension.

Moreover, they showed that the effective gravitational theory on AdS branes is not Einstein

gravity but massive gravity.

As in the original Randall-Sundrum model, it is also possible to reinterpret these gen-

eral Karch-Randall brane-world models through the holographic duality, as an effective four-

dimensional gravitational theory coupled to cut-off CFT radiation dual to the five-dimensional

AdS bulk [229]. Again, this effective brane picture is clearest when the brane is close to the

asymptotic boundary, since the cut-off scale of the CFT is related to the distance from the brane

to the boundary. However, we will argue that this interpretation can be extended beyond the

cut-off, since the bulk picture provides a somewhat well-defined UV-completion of the system,

up to the scale of the brane thickness, or the bulk string or Planck scales.

It should also be mentioned here that the effective gravitational theory on the brane is not

simply Einstein gravity, but a higher-derivative theory of gravity [88, 225]. As we will show in

Chapter 5 of this thesis, the terms in the expansion can be computed algorithmically from the
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bulk theory [3], following the same standard procedure that allows one to find the counterterms

for holographic renormalization [225, 230–232]. Again, the expansion parameter that controls

the higher-curvature operators in the gravitational effective action is related to the distance from

the brane to the asymptotic boundary. We will study some properties of this higher-derivative

gravity on the brane in Part III of this thesis.

Brane-world proposals were met with great interest, especially by cosmologists and phe-

nomenologists, since they were not directly ruled out by existing data but nonetheless offered a

way to test novel predictions to general relativity inspired by M theory (see e.g. [233–235] and

references therein). For example, brane-worlds offered new ways of looking at the cosmological

constant problem [236]. Instead of wondering why our Universe seems to have such a small

vacuum energy density on large scales, if we were to live on a Karch-Randall brane-world, we

should ask why the brane tension is fine-tuned to being almost critical.

One should be careful, however, when considering predictions from brane-worlds as robust

outcomes of string theory. Although there exist some top-down constructions (see e.g. [223,

237–240]), most brane-world constructions are bottom-up models in which the brane is infinitely

thin and purely tensional, with no other charges. From an EFT perspective, the brane tension

is only the first term of a series expansion describing the brane action, so we could consider

adding higher-order operators, as we will do in the following chapter.

Our interest in brane-world models, however, does not stem from cosmology or phenomenol-

ogy, but from their relevant applications in holography and black hole physics. As we have

mentioned before, from the brane perspective, brane-worlds describe dynamical gravity coupled

to a cut-off CFT. Moreover, this description is under control, since the effective theory on the

brane is regulated by the distance of the brane to the boundary. Consequently, they can be the

perfect theoretical laboratory in which to study black holes coupled to quantum matter or test

the black hole information paradox.

Recently, brane-worlds have been used to show that one can indeed recover a unitary Page

curve for evaporating large AdS black holes [52]. These models suggest that the correct way

of computing entropies in semi-classical gravity is by using quantum extremal surfaces [80–85],

in what has become known as the island formula. In brane-worlds, this recipe corresponds to

simply using the usual Ryu-Takayanagi prescription [77] in the dual bulk picture, while allowing

the RT surface to end on the brane.

Brane-worlds have also been used to study (quantum) black holes interacting with strongly

coupled CFTs, thanks to the use of the many versions of the C-metric [59, 190, 228, 241–245].

Although the C-metric allows for BHs in flat and even dS brane-worlds, most of these works

rely on the case of AdS Karch-Randall brane-worlds, which are qualitatively different from their

flat or dS counterparts. The main reason behind these dissimilarities is the fact that, for AdS

branes, the brane only cuts off part of the asymptotic boundary, as opposed to the other two

cases, in which the asymptotic boundary is completely removed from the set-up. This is shown

in Figures 3.1, 3.2, 3.3, and 3.4.

In dual terms, this means that AdS brane-worlds are not only dual to a cut-off CFT living

on the dynamically gravitating brane geometry, but that this CFT is also coupled to a CFT

living on the fixed geometry of the asymptotic boundary. Both CFTs are connected through

transparent boundary conditions at the defect where the brane reaches the asymptotic boundary.

That is the main reason why AdS brane-worlds are often used in the context of the BH

information problem: they provide a model of a BH coupled connected to a non-gravitating
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Figure 3.2: The three different perspectives of brane-world holography in d + 1 dimensions with an

AdSd brane. Top pictures are of a horizontal time slice of the system, while the bottom ones are in

Poincaré-like coordinates, zooming in where the brane meets the asymptotic boundary. From left to

right: (a.) Boundary perspective: BCFTd. A CFTd living on a d-dimensional fixed spacetime (black)

with a boundary (blue dots), where it couples to a CFTd−1. (b.) Brane perspective: It consists of a

CFTd living on the fixed geometry of the asymptotic boundary (black), plus an effective CFTd with

a UV cut-off coupled to (massive) gravity (with higher-curvature corrections) on the brane geometry

(blue). There are transparent boundary conditions between the two CFTs at the defect where the brane

meets the asymptotic boundary. (c.) Bulk perspective: Einstein gravity in an AdSd+1 spacetime (blue),

containing an AdSd Karch-Randall brane as an end-of-the-world brane (dotted line).

bath, and so they are useful as models of BH evaporation, since they allow for a clean separation

between the BH and radiation degrees of freedom.

The first consequence of having brane-world models with an AdS brane is that the bulk

graviton mode that localizes on the brane is not massless but massive [40, 246, 247]. From the

bulk perspective, the graviton mode localized on the brane gets a mass because it is a mixture

of a normalizable and a non-normalizable mode1 [88], as opposed to the flat and dS brane

cases, in which the brane graviton is massless since it comes from a purely non-normalizable

bulk mode. From the brane perspective, the graviton on the brane acquires a mass due to

its interaction with the CFT radiation, which has transparent boundary conditions at infinity,

where the brane meets the boundary. This is, in fact, a general feature of gravity coupled to

matter in AdS with transparent boundary conditions at infinity. If CFT radiation is allowed

to leak out of an AdS spacetime (the brane, in our case), then the graviton acquires a mass

through a Higgs-like mechanism [248, 249].

Secondly, in the case of AdS brane-worlds, the Kaluza-Klein modes do not form a continuum

as in the flat or dS cases, but a discrete spectrum [40]. This is due to bulk modes being sensitive

both to the Dirichlet boundary conditions on the boundary and the Neumann-like boundary

conditions on the brane, and so they feel as if they were trapped in a potential well.

1Both modes are normalizable, since the brane sits at a finite distance from the boundary. However, if there

were no brane, one of the modes would diverge, while the other would not, and so we still use this distinction.
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Figure 3.3: The different perspectives of brane-world holography with a Minkowski brane. Top pictures

are of a horizontal time slice of the system, while the bottom ones are in Poincaré-like coordinates,

zooming in far from where the brane meets the asymptotic boundary. From left to right: (a.) Boundary

perspective (not seen in the picture, see Fig. 3.1): Unclear. Might be interpreted as a null defect at the

(d−1)-dimensional null hypersurface where the bulk brane meets the asymptotic boundary, but it is not

known what kind of theory lives on the defect. (b.) Brane perspective: Effective cut-off CFTd coupled

to gravity (with higher-curvature corrections) on the brane geometry (blue). This view is only valid far

from the boundary null defect. (c.) Bulk perspective: Einstein gravity in a subregion of an AdSd+1

spacetime (blue), containing a d-dimensional Randall-Sundrum flat brane as an end-of-the-world brane

(dotted line).

Finally, there is a third unique way to interpret AdS Karch-Randall brane-worlds, obtained

by dualizing the whole bulk, brane included. The fully dual picture is that of a BCFT, that

is, a CFT living on a d-dimensional geometry with a boundary, where it couples to a CFTd−1.

The nature of this third boundary interpretation for flat or dS brane-worlds is not clear. The

BCFT picture for AdS Karch-Randall brane-worlds was already proposed by the original authors

themselves in [250], and later refined by [251]. The fact that the brane graviton is massive

translates, in the BCFT perspective, to the fact that, even though the stress-tensor of the full

BCFT system is conserved, the stress-energy tensor of the CFTd−1 defect is not, and so it gets

an anomalous dimension [252].

This AdS/BCFT correspondence was later independently proposed by Takayanagi et al.

[253, 254], with a different philosophy, but technically similar methods. Besides proposing

the dictionary between the AdS bulk and the BCFT description, one of the key results of

Takayanagi was proving a holographic g-theorem. As we mentioned before, tuning the brane

tension amounts to moving the position of the brane in the bulk. As we move the brane

deeper into the bulk by decreasing its tension, its curvature also decreases. In CFT terms, this

translates to the fact that flowing to the IR reduces the number of degrees of freedom that are

dual to the brane. Alternatively, the closer the brane is to the boundary, the more degrees of

freedom has its dual CFT.

From this result, one might be tempted to say that the brane, containing gravity plus a cut-
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Figure 3.4: The different perspectives of brane-world holography with a dS brane. Top pictures are of

a horizontal time slice of the system, while the bottom ones are in Poincaré-like coordinates, zooming

in on the brane. From left to right: (a.) Boundary perspective (not seen in the picture, see Fig. 3.1):

Unclear. Might be interpreted as spatial defects at the two (d− 1)-dimensional spacelike hypersurfaces

where the bulk brane meets the asymptotic boundary. The brane is created at some global time T

on one of these defects, and ceases to exist on the other one, some period later, at T + π [243]. It is

not known what kind of theory lives on the defects, or if the boundary picture corresponds to some

non-local operator insertions at those two instances of time. (b.) Brane perspective: Effective cut-off

CFTd coupled to gravity (with higher-curvature corrections) on the brane geometry (blue). (c.) Bulk

perspective: Einstein gravity in a subregion of an AdSd+1 spacetime (blue), containing an d-dimensional

dS brane as an end-of-the-world brane (dotted line).

off CFT, in the intermediate picture, is exclusively dual to the defect CFTd−1 in the boundary

description. Consequently, AdS Karch-Randall brane-world models have also become known

as doubly-holographic models, since one may naively think that by dualizing once, we can go

from the AdS bulk description to the intermediate brane picture, and then we can dualize again

the AdS brane to get the BCFT picture. But that is not exactly the case, as some top-down

constructions show [239, 240] that we should be careful when making such identifications. The

AdS/BCFT dictionary is well-described [254, 255], as well as an approximate dictionary between

the bulk and the brane pictures [88], but, so far, the dictionary between the intermediate brane

perspective and the BCFT description is far from clear. Even more so, it has been shown that

BCFTs which have a holographic dual with a localized gravitating end-of-the-world brane are,

in fact, not generic [256]. We can put this discussion aside, however, since we will not explore

the BCFT interpretation in detail anywhere in this thesis.

In this chapter, we will redo and expand the original works of Randall, Sundrum, and Karch

[36, 40]. We will present the computations in a simplified way, generalizing them to any number

of spacetime dimensions, while also dealing simultaneously with all three possible maximally

symmetric brane geometries. We will refine the formula of the graviton mass as a function of the

brane location for the case of AdS branes, and give new expressions for the mass of the higher

harmonics. We will also discuss how to reinterpret these results from the brane perspective [88].
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Even though we will study all three brane cases, we will only give a detailed discussion of the

AdS Karch-Randall case, since it is the one that is more relevant for holography.

First, we will introduce the basic ingredients of our set-up in section 3.2, namely a d-

dimensional brane with maximally symmetric geometry embedded in a (d+1)-dimensional AdS

bulk. Then, in section 3.3, we will linearly perturb the bulk and show how a bulk mode localizes

on the brane, effectively describing d-dimensional gravity on the brane. Finally, in section 3.4,

we will describe the effective brane picture, by integrating the bulk into the aforementioned

CFT radiation. We will comment on the dictionary that relates both perspectives [88], but will

leave a detailed study of the higher-derivative gravitational theory on the brane for following

chapters.

3.2 Set-up

Our starting point is the action

I = Ibulk + Ibrane , (3.1)

consisting simply of Einstein-Hilbert gravity in a (d+ 1)-dimensional asymptotically AdS bulk

M which ends on a co-dimension one brane with tension τ ,

Ibulk =
1

16πGN

[∫
M

dd+1x
√
−G (R[G]− 2Λ) + 2

∫
∂M

ddx
√
−g K

]
, (3.2)

Ibrane = −
∫
∂Mb

ddx
√
−g τ , (3.3)

where G denotes the bulk metric, g is the induced metric on the brane, GN is the bulk Newton’s

constant, and Λ is the bulk AdSd+1 cosmological constant, with curvature radius L. The

boundary of M is ∂M ⊇ ∂Mb, where we have included the Gibbons-Hawking-York boundary

term explicitly to correctly get the desired boundary conditions for our set-up.

Since the bulk spacetime ends at the brane, we will sometimes refer to it as an end-of-the-

world (EOW) brane. From now on, when we speak about the boundary, we will generally only

mean the asymptotic boundary at infinity, and not the EOW brane. In the original brane-world

articles [36, 40], as well as in many others, they did not consider the brane to be an EOW

brane and instead imposed bulk Z2 symmetry, with the brane being the axis of symmetry. This

symmetry only introduces an extra factor of 2 in some equations that is not relevant to our

discussion.

3.2.1 EOMs and Junction Condition

Varying the action (3.1) with respect to the bulk metric GMN , while imposing Dirichlet

boundary conditions on the boundary and Neumann-like boundary conditions on the brane, we

obtain the usual bulk AdSd+1 Einstein equations,

RMN [G]− 1

2
GMNR[G] + ΛGMN = 0 , (3.4)

plus the Israel junction condition on the brane [257]

Kab −Kgab = −8πGNτgab , (3.5)
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where Kab is the extrinsic curvature on the brane, defined as the Lie derivative of the metric in

the direction normal to the brane,

Kab =
1

2
Lngab . (3.6)

and K = gabKab is its trace.

Taking the trace with respect to the induced metric gab, we see that we must place the brane

so that the trace of its extrinsic curvature is constant and proportional to its tension,

K = 8πGNτ
d

d− 1
. (3.7)

Plugging this result back into eq. (3.5), the junction condition now reads

Kab =
8πGNτ

d− 1
gab . (3.8)

This greatly restricts the geometry of the brane and its location; the brane is forced to sit on a

totally umbilic hypersurface.

3.2.2 Background Solution

Our ansatz for the bulk metric in Poincaré-like coordinates takes the form

ds2d+1 = Gµν(x, z)dy
µdyν =

L2

(f(z))2
[
dz2 + ĝij(x)dx

idxj
]
, (3.9)

where the d-dimensional metric ĝij(x) is either flat, or an (A)dSd metric with unit curvature

radius. This metric slices the bulk in slices of constant z where the geometry is that of a d-

dimensional maximally symmetric spacetime. See also Appendix B for more information on

this metric and its curvature tensors.

The radial coordinate z starts at the position of the brane at z = zb (see Fig. 3.5). We

will usually work in the limit of small zb, that is, in the limit in which the brane is close to the

boundary at z = 0. For AdS branes, the z coordinate goes up to z = π, while for dS and flat

branes, the z coordinate goes all the way to the horizon at z = ∞. In the case of flat branes,

this horizon is the usual Poincaré horizon of the bulk. For dS branes, however, the horizon is

Rindler horizon, present because the brane must be accelerated in order not to fall deep into

the AdS bulk.

The function f(z) is a function which behaves as f(z) ∼ z for small values of z, and whose

specific form depends on the brane geometry,

f(z) =


sin(z) for AdS branes,

z for flat branes,

sinh(z) for dS branes.

(3.10)

It is easy to check that these metrics indeed fulfil the bulk Einstein Equations (3.4).

Notice that the induced metric on constant z slices is

gij(x, z) =
L2

(f(z))2
ĝij(x) . (3.11)

Therefore, for (A)dS branes, the actual curvature radius of the induced brane geometry is

l2 =
L2

(f(zb))
2 . (3.12)
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Figure 3.5: (a.): For AdS branes, the z coordinate goes from z = zb to z = π. (b.): For dS and Flat

branes, the z coordinate goes from z = zb to the horizon at z = ∞. In both cases, we will work in the

limit where the brane is close to the boundary, zb → 0.

Since the metric is block diagonal, the unit normal vector to the brane at z = zb is simply

given by

∂n = −f(z)
L

∂z , (3.13)

where the minus sign comes from the fact that we want to pick our unit normal vector to be

outward directed [85]. In our case, since we’re excising the part of the spacetime behind the

brane, with 0 < z < zb, we need the minus sign so that n points towards decreasing values of z.

The extrinsic curvature for constant z slices is

Kij =
f ′(z)

L
gij , (3.14)

where the prime denotes the derivative with respect to the holographic coordinate z.

Now, it is easy to see that the Israel junction condition (3.5) for the brane at z = zb is

fulfilled provided that

τ = τcf
′(zb) , (3.15)

where we have defined

τc =
d− 1

8πGNL
. (3.16)

Since cos(zb) < 1, we must have τ < τc for AdS branes, while τ > τc corresponds to dS branes,

with cosh(zb) > 1. For flat branes, the tension of the brane becomes critical τ = τc, and we can

place it on any value of z.

It will be useful for later to rewrite the above metrics in a Fefferman-Graham fashion,

ds2d+1 =
L2

4ρ2
dρ2 +

L2

ρ
g̃ij(ρ, x)dx

idxj , (3.17)

where

g̃ij(ρ, x) = F (ρ)ĝij(x) , (3.18)

with

F (ρ) =



(
1+ρ
2

)2
for AdS branes,

1 for flat branes,(
1−ρ
2

)2
for dS branes.

(3.19)

The necessary changes of variables can be found by solving the following ODE

dρ

2ρ
=

dz

f(z)
, (3.20)
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which gives

ρ =


tan2

(
z
2

)
for AdS branes,

z2 for flat branes,

tanh2
(
z
2

)
for dS branes.

(3.21)

Alternatively,

f(z) =


sin z =

2
√
ρ

1+ρ for AdS branes,

z =
√
ρ for flat branes ,

sinh z =
2
√
ρ

1−ρ for dS branes.

(3.22)

Notice that the coordinate ρ starts at a value ρb close to the boundary at ρ = 0. For the

AdS case, we find the other side of the asymptotic boundary at ρ = ∞ corresponding to z = π,

while we find the horizon at ρ→ ∞ and ρ = 1 for the flat and dS cases, respectively.

3.3 Locally Localized Gravity - The Bulk Perspective

Now, let us perturb our previous metric (3.9) with a linear axial transverse and traceless

perturbation (δGµz = 0, ĝijδĝij = 0, ∇̂iδĝij = 0),

ds2d+1 =
L2

(f(z))2
[
dz2 + (ĝij(x) + δĝij(x, z)) dx

idxj
]
, (3.23)

We are interested in transverse and traceless perturbations since they are the ones that look

like gravitons from the brane perspective. Moreover, the other modes can be shown to be

non-dynamical [258].

Taking this metric (3.23) and plugging it into the AdSd+1 bulk Einstein Equations (3.4),

and using the fact that the brane itself is a d-dimensional maximally symmetric spacetime, one

obtains the following equation[
∂2z − (d− 1)

f ′(z)

f(z)
∂z +

(
□̂− 2σ

)]
δĝij(x, z) = 0, (3.24)

where □̂ = ∇̂i∇̂i, with ∇̂ being the Levi-Citiva connection of the unperturbed ĝij brane metric,

and we have defined

σ =


−1 for AdS branes,

0 for flat branes,

+1 for dS branes.

(3.25)

We can also substitute our perturbed metric (3.23) into the Israel junction condition (3.5) to

find its boundary condition on the brane, with Kij and K being, to linear order in perturbation,

δKij =
Lf ′

f2
δĝij −

f

2L
δĝ′ij , δK = 0 . (3.26)

Then, using the unperturbed junction condition (3.15) to simplify our calculations, we are

simply left with the Neumann boundary condition

[∂zδĝij(x, z)]z=zb
= 0 . (3.27)
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Notice that indeed the trace of the extrinsic curvature has remained constant, and that the

brane still lies on a totally umbilic hypersurface, as equations (3.7) and (3.8) dictate.

Finally, assuming that the perturbation fulfils the following separation ansatz,

δĝij(x, z) = H(z)hij(x) , (3.28)

and introducing the constant E2, equation (3.24) above separates into[
∂2z − (d− 1)

f ′(z)

f(z)
∂z

]
H(z) = −E2H(z) , (3.29)(

□̂− 2σ
)
hij(x) = E2hij(x) , (3.30)

and the boundary condition (3.27) simply becomes

H ′(zb) = 0 . (3.31)

Details for these calculations can be found in Appendix B.

3.3.1 The Brane Equation

Let us first have a look at eq. (3.30). This equation describes the behaviour of δĝij(x, z) on

the hypersurfaces of constant z. The separation constant E2 is an eigenvalue of this Lichnerowicz

operator (□̂− 2σ). Now, at z = zb, we can rescale eq. (3.30) to see that, from the point of view

of the induced brane metric, this equation is(
□− 2σ

l2

)
hij(x) = m2hij(x) , (3.32)

where now □ = ∇i∇i, with ∇ being the Levi-Citiva connection of the unperturbed induced

metric on the brane gij , the radius l is the actual curvature radius of the induced brane geometry

defined at eq. (3.66), and

m2 =
(f(zb))

2

L2
E2 . (3.33)

As we saw in Part I of this thesis —see e.g. eq. (1.57)—, equation (3.32) describes a spin-

2 massive mode in an empty maximally symmetric spacetime of radius l. Therefore, from

the perspective of the brane metric, indeed these hij(x) perturbations look like massive spin-2

gravitons with mass m2. We will be able to find the allowed masses m2 by studying the radial

equation (3.29).

3.3.2 The Radial Equation

Let us now study the radial equation (3.29) with boundary condition (3.31) on the brane.

This equation describes the behaviour of δĝij(x, z) along the holographic direction z.

We will further impose Dirichlet boundary conditions on the asymptotic boundary on the

other side of the spacetime

H(z = π) = 0 , (3.34)

for AdS branes, and regularity at the horizon at z → ∞ for dS and flat branes.

There are many ways to solve this equation. We shall illustrate a couple of them here, and

leave the rest for Appendix C.
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The Volcano Potential

To gain some intuition before crunching the numbers, let us have a look at the original way

[36, 40] of solving equation (3.29). It consists in redefining the radial function H(z) as

H̃(z) =

(
L

f(z)

) d−1
2

H(z) , (3.35)

to obtain a classical time-independent Schrödinger equation[
−∂2z + V (z)

]
H̃(z) = E2H̃(z) , (3.36)

with potential

V (z) =
d2 − 1

4

1

(f(z))2
+ σ

(d− 1)2

4
.

Figure 3.6: Left: Flat-brane potential V (z) for d = 3 and zb = 1/2. Right: Z2 symmetric flat-brane

potential V (z) for the same values.

Figure 3.7: Left: dS-brane potential V (z) for d = 3 and zb = 1/2. Right: Z2 symmetric dS-brane

potential V (z) for the same values.

Borrowing insight from undergraduate quantum mechanics, it is easy to see from the shape

of the potentials V (z) that the spectrum of eigenvalues will be continuous in the case of flat and

dS branes, since their potentials fall off at infinity (Figures 3.6 and 3.7). On the other hand,

the spectrum will be discrete in the case of AdS branes, since the potential looks like a well

(Figure 3.8).
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Figure 3.8: Left: AdS potential V (z) for d = 3 and zb = π/8. Right: Same potential with Z2

symmetry, to illustrate the name “volcano potential”. Notice how the potentials diverge as we approach

the asymptotic boundary.

Moreover, after this redefinition, the boundary condition on the brane has become

H̃ ′(zb) +
d− 1

2

f ′(zb)

f(zb)
H̃(zb) = 0 , (3.37)

which acts as a delta function pointing downwards on the potential at z = zb. This ensures that

there exists a lowest-lying mode whose wavefunction is localized on the brane.

For flat and dS branes, the lowest-lying eigenvalue is exactly massless, that is, there exists

a solution to equation (3.36) with E2 = 0. We will show this explicitly, as well as the localized

radial profile of these modes, in the next subsection. Moreover, we can see that the potential

falls off to zero at infinity, V (z → ∞) → 0, for flat branes, while V (z → ∞) → (d − 1)2/4

for dS branes. That means that there’s no mass gap between the lowest-lying eigenvalue and

the continuum modes for flat branes, but that there’s a mass gap for dS branes, since the first

excited state needs a minimum energy of E2
gap = (d − 1)2/4. In any case, we will see that all

these excited modes are not localized on the brane.

For AdS branes, one can find the solutions to the Schrödinger equation (3.36) using standard

techniques from quantum mechanics. The lowest-lying mode is almost massless [40, 88, 246,

247], with its mass going to zero as the brane gets closer to the boundary as

E2
0 ≃ d− 2

2d−1

Γ(d)

(Γ(d/2))2
zd−2
b . (3.38)

We will provide the details on how to compute the whole spectrum analytically and numerically

in the next subsection, where we solve the original equation (3.29) directly.

Solving It Directly

Now that we have a flavour of the problem at hand, let us try to solve it directly. We will

first study the case of flat and dS branes, and leave the (more interesting) AdS case for later.

First, we will look for the massless mode on flat and dS branes. Solving the radial equation

(3.29) for H(z) while imposing E2
0 = 0 and the boundary condition (3.31) gives a constant value

for H(z), both for the dS and flat brane cases. Notice however, from our definitions of the bulk

perturbations, that once we take the warp factor into account, the actual radial profile of the

bulk modes is

ψ(z) =
L2

(f(z))2
H(z) . (3.39)
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Therefore, the radial profile of the zero mode goes as ψ0(z) ∼ L2/z2 for flat branes, and as

ψ0(z) ∼ L2/ sinh z2 for dS branes, and so indeed the massless modes are localized on the brane

(see Fig. 3.9).

Figure 3.9: Left: Normalized radial profile for the massless mode on a flat brane at zb = 1/2, with

d = 3. Right: Normalized radial profile for the massless mode on a dS brane at zb = 1/2, with d = 3.

For the flat brane case, we can solve equation (3.29) for the excited states of energy E2 to

find

H(z) = c1z
d/2Jd/2(Ez) + c2z

d/2Yd/2(Ez) , (3.40)

where the functions J and Y are the usual Bessel functions of the first and second kind, respec-

tively, and c1 and c2 are arbitrary constants.

For the dS brane case, equation (3.29) can be similarly solved, to find that the radial function

of the excited states can be written as a linear combination of two hypergeometric functions

which have the hyperbolic tangent as their argument,

H(z) = c1
(sinh(z))d

(cosh(z))1+ν+ 2F1

(
1 + ν+

2
, 1 +

ν+
2
; 1 +

d

2
; tanh2(z)

)
(3.41)

+ c2
(sinh(z))d

(cosh(z))1+ν− 2F1

(
1 + ν−

2
, 1 +

ν−
2
; 1− d

2
; tanh2(z)

)
. (3.42)

where again c1 and c2 are some arbitrary complex numbers, and ν± are defined as

ν± =
±d− 1 +

√
(d− 1)2 − 4E2

2
. (3.43)

In both flat and dS cases, imposing the boundary condition (3.31) on the brane fixes the

ratio of the constants c1/c2 as a function of the position of the brane zb, i.e. the boundary

condition simply chooses a specific combination of the two independent solutions.

The solution to equation (3.29) for AdS branes is

H(z) = c1(sin z)
d
2P d/2

ν (cos z) + c2(sin z)
d
2Qd/2

ν (cos z) , (3.44)

where P
d/2
ν and Q

d/2
ν are associated Legendre polynomials, ν is defined as

ν =
−1 +

√
(d− 1)2 + 4E2

2
, (3.45)

and c1 and c2 are complex arbitrary constants [88]. Imposing the Dirichlet boundary condition

at the asymptotic boundary, H(z = π) = 0, we find that the ratio between c1 and c2 must be

c2
c1

=
2

π
cot
(
πν +

π

2

)
, (3.46)
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Figure 3.10: Left: Normalized radial profiles on a flat brane at zb = 1/2, with d = 3, for E2 = 0,

E2 = 1, and E2 = 4. Right: Normalized radial profiles on a dS brane at zb = 1/2, with d = 3, for

E2 = 0, E2 = 1, and E2 = 4.

so we can write

H(z) = (sin z)
d
2

[
P d/2
ν (cos z) +

2

π
cot
(
πν +

π

2

)
Qd/2

ν (cos z)

]
. (3.47)

Further imposing the boundary condition (3.31) on the brane discretizes the spectrum. This

can be done numerically, or analytically in the limit zb → 0. In any case, it is easier to do so

after switching from the coordinate z to the Fefferman-Graham ρ, using the change of variables

(3.22) from the previous subsection. In these coordinates, the boundary condition on the brane

also reads

[∂ρH(ρ)]ρ=ρb
= 0 . (3.48)

For convenience, we will study the eigenvalues E2 as a function of the position of the brane ρb,

and not its tension τ < τc. Recall that both quantities are directly related to one another by

eq.(3.15), and that tuning the tension close to its critical value, τc → τ , brings the brane closer

to the boundary, ρb → 0.

Analytically, in the limit ρb → 0, we find

E2
(n,d) ≃ n(n+ d− 1) +

1

2
(d− 2)(2n+ d− 1)

Γ(n+ d− 1)

Γ(n+ 1)(Γ(d/2))2
ρ
d/2−1
b , (3.49)

where n = 0, 1, 2, . . . . We can see that as the brane is sent to the boundary, that is, as ρb → 0,

we recover the usual eigenvalues for the graviton modes of global AdSd+1,

E2
(n,d)(ρb = 0) = n(n+ d− 1) . (3.50)

This is due to the brane becoming stiffer as it is sent to the boundary, so the Neumann-like

boundary condition (3.31) for the radial equation becomes a Dirichlet boundary condition at

infinity. Physically, we can think of it this way: the brane is allowed to fluctuate, but as we

send it to the boundary by increasing its tension, it becomes stiffer, and so it’s harder to wiggle

it around. In the limit where the brane is sent all the way to the boundary, it is as if the

brane were infinitely stiff, and so we recover the usual Dirichlet boundary conditions used in

standard AdS/CFT. Mathematically, this is due to the way (3.47) behaves close to z = 0 with

(half-)integer ν, since

ν(ρb = 0) =
d

2
+ n− 1 , (3.51)
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and imposing both H(π) = 0 and ∂zH(0) = 0 also implies H(0) = 0, since then, P
d/2
ν (cos z)

goes to zero while the cotangent multiplying Q
d/2
ν (cos z) also vanishes, or vice versa, depending

on the parity of the number of brane dimension d. Notice also that equation (3.50) is only valid

for n = 1, 2, . . ., and not n = 0. Having Dirichlet boundary conditions on both sides of the

spacetime kills this zero-mode, since it is now non-normalizable.

To find the analytical expansion (3.49) above, we derived H(ρ), and then we expanded it in

terms of u =
√
ρ around u = 0 to (d− 2) order. Afterwards, we expanded the expression again,

now in terms of E2
(n,d) around n(n + d − 1) to linear order, and only then did we impose the

boundary condition (3.48) to find an analytic approximation for E2
(n,d).

With this method, we have been able to find a better approximation for the d = 3 eigenvalues,

namely

E2
(n,d=3) ≃

n(n+ 2)π + (n2 + 2n+ 4)
√
ρb

π − 3
√
ρb

. (3.52)

We have also constructed similar expressions for d = 5 and d = 7 case by case in n, but we have

not been able to find an improved general formula for all (n, d). These results can be found in

Appendix C.
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Figure 3.11: Lowest-lying eigenvalues E2
n for d = 3 as a function of the position of the brane ρb. The

red dots are numerical results, the blue line corresponds to the analytical approximation shown in (3.52),

while the gray dashed line corresponds to (3.49). Top-left: almost-massless mode, with n = 0. Top-right:

first excited mode, with n = 1. Bottom-left: second excited mode, with n = 2. Bottom-right: third

excited mode, with n = 3.

Now, in the limit ρb → 0, following (3.22), we have 2
√
ρb ≃ zb. Therefore, as seen from the

brane, the graviton masses (3.33) are

m2
(n,d) ≃ n(n+ d− 1)

z2b
L2

+
(d− 2)(2n+ d− 1)

2d−1

Γ(n+ d− 1)

Γ(n+ 1)(Γ(d/2))2
zdb
L2

. (3.53)
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In particular, the mass of the lowest-lying mode, with n = 0, is

m2
(0,d) ≃

(d− 2)

2d−1

Γ(d)

(Γ(d/2))2
zdb
L2

, (3.54)

which agrees with the results found in [88].

Again, one can easily check that the lowest-lying mode is localized on the brane, since its

radial behaviour goes mainly as ψ0(z) ∼ 1/ sin2(z) for |z − zb| ≪ 1 and when the brane is

close to the boundary, zb ≪ 1 (see Fig. 3.12). This is due to the mode being a mixture of a

non-normalizable —would-be divergent if there were no brane— mode, behaving as ψdiv
0 (z) ∼

1/ sin2(z) for z close to the brane, and a normalizable mode, behaving as ψnorm
0 (z) ∼ sind−2(z).

When d is odd, the non-normalizable term ψdiv
0 (z) corresponds to the one proportional to the

Legendre polynomial P
d/2
ν (cos z) in equation (3.47), and the normalizable term ψnorm

0 (z) is

proportional to Q
d/2
ν (cos z). As the brane is sent to the boundary, zb → 0, the lowest-lying

eigenvalue goes to zero, and so the ratio between c2 and c1 goes to zero following (3.46) and

we are left with the non-normalizable term ψdiv
0 (z) dominating the almost-massless mode. An

analogous discussion follows for the case of even d, where now the divergent polynomial is

Q
d/2
ν (cos z), while P

d/2
ν (cos z) is perfectly normalizable. This discussion will become relevant in

the following Section 3.4, in which we will reinterpret these results from the dual brane picture.

Figure 3.12: Left: Normalized radial profile for the almost-massless mode on an AdS brane at zb = π/8,

with d = 3. Right: Normalized radial profiles on an AdS brane at zb = π/8, with d = 3, for n = 0,

n = 1, and n = 2.

3.3.3 Gravity on the Brane

So far, we have shown that we can recover an effective d-dimensional description of linearized

gravity on the brane. But one needs to do some more work to show that indeed we recover d-

dimensional gravity on the brane at the non-linear level. A first step is reproducing the desired

Newtonian potential in non-relativistic scenarios, by studying the behaviour of the graviton

modes on the brane.

For the flat brane case and d = 4, Randall and Sundrum already showed that the con-

tribution of the massless mode to the gravitational potential, VN ∼ h00/2, gave the correct

four-dimensional result VN (r) ∝ r−1, at a distance r on the brane away from a point-like mass.

Then, taking the effect of the continuum of Kaluza-Klein modes into account, Garriga

and Tanaka [38] proved that indeed, on four-dimensional Randall-Sundrum brane-worlds, these
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models reproduce a Newtonian potential at a distance r around a point-like massM of the form

V (r) =
GN,effM

r

(
1 +

2L2

3r2

)
, (3.55)

for r ≫ L, and where

GN,eff =
2

L
GN . (3.56)

Again, the factor of 2 missing between their definition of GN,eff and ours is simply because we

are not orbifolding our space-time along the brane with a Z2 symmetry.

Therefore, at sufficiently low energies, gravity on the brane becomes four-dimensional, ex-

hibiting the desired Newtonian potential at large scales. However, gravity experiences the

higher-dimensional character of the bulk at high energies, i.e. at distances shorter than the

AdS bulk’s curvature radius L.

Later on, by rearranging the bulk five-dimensional Einstein Equations, Shiromizu, Maeda,

and Sasaki [259] proved that one can covariantly obtain the full four-dimensional Einstein

Equations on the brane. Their approach, however, might be misleading if not interpreted

with care. There is a term that appears on the matter side of the four-dimensional Einstein

Equations, which corresponds to a projection of the bulk Weyl tensor on the brane and cannot

be neglected. It captures the corrections from the effects of five-dimensional gravity, and it is

the non-linear generalisation of the Kaluza-Klein modes we have found in our linearized study.

From the perspective of an observer on the brane, these KK effects are non-local, since they

come from the full five-dimensional bulk, and therefore cannot be determined purely from data

on the brane.

Using the holographic duality, we will reinterpret these non-local terms on the matter side

of the four-dimensional Einstein Equations as the CFT radiation dual to the AdS bulk.

Finally, let us just add that these results can be easily generalized to any number of spacetime

dimensions, now taking

GN,eff =
d− 2

L
GN , (3.57)

and to the case of AdS and dS branes, provided that they sit close enough to the asymptotic

boundary. The generalization to (A)dS branes relies on the fact that the behaviour of the linear

graviton modes is dominated by the warp factor 1/ (f(z))2 for z ≪ 1, and that f(z) behaves as

f(z) ∼ z for small values of z regardless of the brane geometry.

3.4 Induced Gravity on the Brane - The Brane Perspective

Up to this point, we have been exploring brane-worlds from the bulk perspective. We will

now make use of the holographic duality to get an understanding of the brane physics solely

in terms of brane quantities. However, as we learned in the previous subsection, we will have

to give up locality if we only want to use brane variables [259]; from the point of view of the

brane, bulk effects are non-local.

We will use the holographic duality to encode the bulk as the stress-energy tensor of a

strongly coupled CFT [87]. As in standard AdS/CFT, this quantity is proportional to a par-

ticular coefficient of the bulk metric written in a Fefferman-Graham expansion [88]. Therefore,

we will only be able to compute it directly if the bulk metric is known. Alternatively, given a

metric on the brane, we can define the CFT stress-energy tensor as the right-hand-side of the
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Einstein’s Equations on the brane. But this can only be made consistently if one then solves the

bulk boundary problem to show that indeed there is a bulk metric fulfilling the bulk Einstein

Equations with the required boundary conditions on the brane. Realistically, this can only be

done if the bulk metric is known beforehand, as it is done in the C-metric papers describing

quantum black holes on branes (see e.g. [59, 190, 243–245]).

3.4.1 The Brane Effective Action

Let us now proceed with this reinterpretation. As we will explain in detail in Chapter 5, we

can integrate the bulk following a “finite” holographic renormalization prescription [3, 88, 225,

231] to obtain an effective description of the brane dynamics written purely in brane variables.

The result is the following effective action on the brane,

Ieff = Ibgrav + IUV
CFT . (3.58)

On the one hand, the term IUV
CFT describes a holographic CFT with a UV cut-off, and it is the

dual of the AdSd+1 bulk. The fact that this holographic CFT has a UV cut-off is directly related

to the fact that the bulk ends at the EOW brane, at some finite distance from the boundary.

On the other hand, the term Ibgrav is an effective higher-derivative theory of gravity on the

brane,

Ibgrav =
1

16πGN,eff

∫
ddx

√
−g
[
R− 2Λeff +

L2

(d− 4)(d− 2)
(RabRab −

d

4(d− 1)
R2) + · · ·

]
,

(3.59)

where all curvature tensors are built from the induced metric on the brane, and

GN,eff =
d− 2

L
GN , Λeff = −(d− 1)(d− 2)

L2

(
1− τ

τc

)
. (3.60)

Notice how indeed the effective Newton’s constant GN,eff on the brane coincides with the one

that appears in equation (3.55) for the brane Newtonian potential [38].

This term Ibgrav is generated when the bulk Einstein equations are solved in the near-

boundary region excluded by the EOW brane. In dual terms, this translates to the fact that

integrating out the ultraviolet degrees of freedom of the CFT above the cut-off induces gravi-

tational dynamics on the brane.

Let’s make this statement more precise. How does the full effective action (3.58) arise? To

answer this question, we need to review the standard holographic renormalization procedure,

with no EOW brane present. In Chapter 5, we will present it explicitly, but for now, we only

need a qualitative understanding of it.

In conventional AdS/CFT, the bulk partition function diverges, since the AdSd+1 asymp-

totics dictate that bulk distances and volumes diverge near the boundary. These divergences

are long-distance (IR) divergences from the perspective of the bulk, but they correspond to UV

divergences on the CFT side of the duality. In order to remove these divergences and obtain a

useful, finite, partition function which we can equate to the CFT partition function, one must

add counterterms,

Ifinbulk = Ibulk + Ict . (3.61)

These counterterms can be written in terms of local curvature tensors of the boundary metric

[87, 230–232], and we will show how to compute them in detail in Chapter 5.
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Now, since our spacetime ends on the brane at some finite distance zb from the boundary, the

on-shell action no longer diverges.2 If the brane is sufficiently close to the boundary, however,

the dependence of Ibulk with zb has the same structure as the counterterms Ict, since they are

just a reflection of the AdS asymptotics. We collect these structured finite “counterterms” under

Izbct . The terms at order n < d in derivatives of the metric would diverge as the brane is sent to

the boundary, while the terms at order n > d in derivatives would vanish as zb → 0. The term

at order n = d would give rise to the trace anomaly in standard AdS/CFT [260] for spacetimes

with an even number of dimensions. However, since the brane sits at a finite distance from the

boundary, all terms are finite, so Izbct contains an infinite tower of higher-derivative terms. It is

then useful to add and subtract these finite “counterterms” Izbct , to write our initial action (3.1)

as [88]

Ibulk + Ibrane = (Ibulk + Izbct ) + (Ibrane − Izbct ) . (3.62)

We can now identify the first term as IUV
CFT,

IUV
CFT = Ibulk + Izbct , (3.63)

a CFT with a UV cut-off given by the distance of the brane to the boundary. Indeed, if we

were to push the brane all the way to the boundary, this first term would become Ifinbulk, as seen

in eq. (3.61), which we would translate into the CFT partition function using the holographic

dictionary.

The remaining term then becomes the effective gravitational action for the brane dynamics,

Ibgrav = Ibrane − Izbct , (3.64)

with its explicit expression given in (3.59) above. Izbct contains the full tower of higher-derivative

operators seen in eq. (3.59), which have the structure of the standard counterterms, while Ibrane

is simply the tension on the brane (3.3), which tunes the cosmological constant Λeff to the value

shown in eq. (3.60). Notice that Ibgrav is large when zb is small, since it is mostly −Izbct , whose
first terms would diverge as zb → 0. This shows the strong localization of gravity on the brane.

If τ < τc, the cosmological constant on the effective action is negative, so we will have AdS

asymptotics on the brane, while if τ > τc, then the effective cosmological constant is positive,

and so the brane will have dS asymptotics. As excepted, the cosmological constant becomes

zero when τ = τc. This is in accordance with our results from the previous section.

We can rewrite the brane effective cosmological constant given in eq. (3.60) as

Λeff = σ
(d− 1)(d− 2)

2ℓ2
, (3.65)

where σ again denotes the sign of the cosmological constant, and we have defined the effective

curvature radius ℓ as

ℓ2 =
L2

2

∣∣∣∣1− τ

τc

∣∣∣∣−1

. (3.66)

For (A)dS branes, in the limit τ → τc, if we define the small parameter ε as

ε =
1

2

∣∣∣∣1− τ

τc

∣∣∣∣ , (3.67)

2In the case of AdS branes, the bulk reaches the asymptotic boundary on the side of the spacetime far from

the brane, at z = π. There the on-shell action diverges, and we must add the usual counterterms.
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we have
L2

ℓ2
= 2

∣∣∣∣1− τ

τc

∣∣∣∣ = 4ε . (3.68)

This makes it clearer that indeed the action (3.58) is an effective action, with each higher-

curvature term parametrically smaller than the previous one [190, 243].

Although ℓ looks very similar to the brane curvature radius l defined in the previous sections,

they only match to linear order in ε. Indeed, for (A)dS branes, we can use eq. (3.15) and the

Pythagorean trigonometric identity for f(z), to write the curvature radius l defined in eq. (3.12)

as

l2 =
L2∣∣∣∣1− ( τ

τc

)2∣∣∣∣ , (3.69)

which in the limit τ → τc exactly reads

L2

l2
= 4ε+ 4ε2 . (3.70)

Making use of equations (3.15) and (3.22), it is easy to see that the position of the brane is

also controlled by this same parameter ε. In Poincaré-like coordinates (3.9), it is

zb = (f ′)−1 (τ/τc) ≃ 2
√
ε +O(ε) , (3.71)

while in Fefferman-Graham coordinates (3.17), we have

ρb =

∣∣∣∣τc − τ

τc + τ

∣∣∣∣ ≃ ε +O(ε2) . (3.72)

3.4.2 Graviton Mass from the Brane Perspective

We will now reinterpret our results from the previous section from the brane perspective. In

particular, we will explain in detail the brane graviton on AdS branes acquires its mass, which

may not be clear from the point of view of the effective action on the brane (3.58). One might

be tempted to say that the mass of the graviton, and similarly, the mass of all the Kaluza-Klein

modes, comes from the higher-derivative operators on the brane. After all, we saw in Part I

how higher-derivative terms induce massive modes in the spectrum, when linearizing around

a maximally symmetric spacetime. Moreover, the first higher-curvature correction in equation

(3.58), at quadratic order, is precisely a term known for generating theories of massive gravity;

in d = 3, it precisely coincides with the term in “New Massive Gravity” [102, 105].

We will now see, however, that the mass of the lowest-lying graviton on AdS branes does

not come from the higher-derivative terms, but from the interaction between the gravity and

CFT on the brane. To do so, we will linearize the equations of motion of the full effective action

on the brane (3.58), and then relate each side of the equations to bulk quantities, to make use

of our results from the previous section 3.3. That is, we will not find a new way to compute

the mass of the graviton, but a way to reinterpret the bulk results from the brane perspective.

We will closely follow [88] in this subsection.

Varying the brane effective action (3.58), we obtain

Rab −
1

2
Rgab + Λeff gab + · · · = 8πGN,effT

CFT
ab , (3.73)
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where TCFT
ab is the stress-energy tensor obtained from varying IUV

CFT with respect to the induced

brane metric gab, and the ellipses denote the equations of motion of the higher-derivative terms

in Ibgrav.

Since we know that IUV
CFT is given by equation (3.63), we can adapt our knowledge of standard

AdS/CFT to this new set-up to argue that, to leading order, the CFT stress-energy tensor on

the brane is [88]

⟨TCFT
ij ⟩ = εd/2−1

(
dL

16πGN
g̃
(d)
ij +X

(d)
ij

[
g̃(0)
])

, (3.74)

where g̃
(0)
ij and g̃

(d)
ij are the terms that appear, respectively, at order ρ0 and ρd/2 in the Fefferman-

Graham expansion of the bulk metric on the brane,

Gij(ρ, x) =
L2

ρ

(
g̃
(0)
ij (x) + g̃

(2)
ij (x)ρ+ · · ·+ g̃

(d)
ij (x)ρd/2 + h̃

(d)
ij (x)ρd/2 log(ρ) +O(ρd/2+1)

)
.

(3.75)

The term X
(d)
ij in eq. (3.74) and the coefficient h̃

(d)
ij (x) above only appear when d is even [261].

Through the bulk Einstein Equations, they are fixed in terms of g̃
(0)
ij , and give raise to the trace

anomaly of ⟨TCFT
ij ⟩. Again, we will give more details on this computation in Chapter 5.

In the limit τ → τc, one can check that the brane Einstein Equations (3.73), including the

first few order-n curvature terms, are solved by a vacuum AdSd metric with curvature radius l

up to order εn+1, even though we saw that the curvature radii ℓ and l only coincide to order ε.

Upon perturbing the brane metric gij → gij + δgij about this AdSd spacetime of radius l,

we obtain (
□+

2

l2
+ · · ·

)
δgij = −16πGN,eff δT

CFT
ij . (3.76)

But this CFT stress-energy tensor is not an arbitrary stress-energy tensor, but the one that

comes from integrating out the bulk, as explained before. In particular, it is proportional to the

g̃
(d)
ij coefficient of the bulk metric expressed in Fefferman-Graham coordinates. Similarly, the

induced metric on the brane, to leading order, is proportional to the g̃
(0)
ij term of the bulk metric

in the FG expansion. Therefore, we can relate δgij and δTCFT
ij , making use of the expansion

(3.75) and the following expressions for the brane metric perturbations

δgij(x) = δGij(ρb, x) =
L2

ρb
H(ρb)hij(x) , (3.77)

to write [88],  g̃
(d)
ij (x) = B0hij(x)

δgij(x) =
L2

ρb
A0hij(x) +O(ρb)

 =⇒ g̃
(d)
ij (x) ≃ ρb

L2

B0

A0
δgij(x) , (3.78)

where B0 is the coefficient of the term ∝ ρd/2 and A0 is the coefficient of the term ∝ ρ0 of

H(ρ) when expanded close to ρ→ 0. Finally, substituting all these results into eq. (3.76), and

relating again the bulk and brane Newton’s constant through eq. (3.60), we obtain [88](
□+

2

l2
+ · · ·

)
δgij = −d(d− 2)

B0

A0

εd/2

L2
δgij + · · · . (3.79)

Ignoring the higher-curvature terms, we see that this equation above is an equation for a

massive graviton, and is, in fact, a rescaled version of equation (3.32), if we identify

m2
0 = −d(d− 2)

B0

A0

εd/2

L2
. (3.80)
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Therefore, we will be able to find the mass of the graviton on AdS branes if we can expand the

bulk metric à la Fefferman-Graham and find the coefficients A0 and B0.

Indeed, in the previous section, we found that the radial profile of bulk perturbations ψ(ρ)

could be written as a superposition of associated Legendre polynomials,

ψ(ρ) =
∑
n

L2

ρ
Hn(ρ) . (3.81)

In the FG coordinates given in eq. (3.17), near the brane at ε→ 0, these Legendre polynomials

can be expanded into [262],

Hn(ρ) ≃


−2d/2

[
(−1)

d−1
2

π cos(νπ)
2Γ(1−d/2) +

π sin(νπ)Γ(ν+d/2+1)
2Γ(d/2+1)Γ(ν−d/2+1)ρ

d/2

]
+ · · · for odd d,

− sin(πν)
π 2d/2

[
Γ(d/2) + (−1)d/2 cos(νπ)Γ(d/2−ν)Γ(d/2+ν+1)

Γ(d/2+1) ρd/2
]
+ · · · for even d,

(3.82)

where ν is defined in eq. (3.45). Notice how the terms related to the trace anomaly play no

role at the linearized level, so their absence from eq. (3.79).

We can now read A0 and B0 from this equation (3.82). We see,

Bn

An
=

(−1)
d−1
2 sin(νπ)Γ(d/2−ν)Γ(d/2+ν+1)

Γ(d/2)Γ(d/2+1) , for odd d,

(−1)d/2 cos(νπ)Γ(d/2−ν)Γ(d/2+ν+1)
Γ(d/2)Γ(d/2+1) , for even d,

(3.83)

where we have used the relation

Γ(ω)Γ(1− ω) =
π

sin(πω)
. (3.84)

Now, since the lowest-lying eigenvalue behaves as E2
0 → 0 as ε → 0, we have, from equation

(3.45), that ν → d
2 − 1, and so we see that, regardless of the parity of our number of brane

dimensions d,
B0

A0
≃ −2

d

Γ(d)

(Γ(d2))
2
. (3.85)

Plugging this into equation (3.80) for m2
0, we finally obtain

m2
0 =

2(d− 2)Γ(d)

(Γ(d2))
2

εd/2

L2
, (3.86)

which coincides with our results from the previous section, as seen in equation (3.54) with

2
√
zb ≃ ε. This argument is not perfect but slightly circular, since we are assuming that E2

0

is small and goes to zero as the brane is sent to the boundary to expand the quotient (3.85)

around ν ≃ d
2 − 1 + O(E2

0), and then finding that this is indeed the case. However, we may

argue that we already knew that E2
0 went to zero with ε from our numerical studies, and then

this approximation is justified in order to get an analytical formula.

Finally, a word on why the graviton of the flat and dS brane cases is massless. Recall that

the zero mode for the flat and dS branes had constant H(z), and so it had radial profile,

1

ρ
H(ρ) ∼ 1

ρ
, (3.87)

which means that the zero mode contains only a non-normalizable piece. Therefore, it does

not contribute to the brane CFT stress-energy tensor, agreeing with the fact that it is massless

following a discussion along the same lines as the one above for the AdS case.
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3.5 Conclusions

In this chapter, we have reviewed and generalized the original brane-world constructions of

Randall, Sundrum and Karch [36, 40]. We have presented detailed calculations showing the

localization of (linearized) gravity on the brane from the bulk perspective. In particular, we

have shown how to compute all eigenvalues for bulk graviton modes, both analytically and

numerically, and shown their radial profile.

We have then used the holographic duality to reinterpret brane-world models from the brane

perspective. We have shown how the bulk can be dualized into a UV-cut-off CFT, and how

the mass of the AdS brane graviton can be understood as coming from the interaction between

gravity and CFT on the brane. It would be interesting to see if one can also reinterpret the

mass of the excited Kaluza-Klein modes from the brane perspective.

In the following chapter, we will redo and expand the analysis on this chapter, but now with

an explicit Einstein-Hilbert term on the brane.
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Chapter 4

Brane-Worlds with DGP Terms

In this chapter, we will study Karch-Randall brane-worlds with a DGP term —an explicit

Einstein-Hilbert term on the brane action—, constraining the allowed range of the DGP cou-

pling. It is based entirely on new, unpublished results.

4.1 Introduction

Soon after the original brane-world papers, Dvali, Gabadadze and Porrati [37] presented an

alternative way to obtain a four-dimensional description of gravity on a brane lying in a five-

dimensional spacetime. They wanted to recover 4-dimensional gravity from a 5-dimensional

flat and infinite bulk, so instead of considering a purely tensional brane in an AdS bulk, they

considered a flat brane with an explicit Einstein-Hilbert term sitting on a Minkowski bulk,

IDGP =
1

16πGN

(∫
d5x

√
−G R[G] + λ

∫
d4x

√
−g R

)
, (4.1)

where λ is some length scale.

Unlike the original Randall-Sundrum and Karch-Randall models, however, their work recov-

ers four-dimensional gravity at short scales but not at distances larger than the scale λ [263]. In

fact, gravity leaks off the brane into the bulk at large scales. Then, generalizing DGP models to

allow for a FLRW geometry on the brane [264], this weakening of gravity at low energies induces

an accelerated expansion of the four-dimensional brane [233]. This attracted much attention

from cosmologists, since supernovae observations had just reported an accelerated expansion of

our Universe [265, 266], and this model offered an alternative to the cosmological constant.

However, as cosmological measurements improved, along with a deeper understanding of

DGP models, it soon became clear that observations were in tension with the model’s predictions

[233]. To make things worse, [267, 268] later discovered that the model is theoretically unstable,

since the scalar sector of gravitational perturbations contains an infrared ghost. It seems unlikely

that an infrared issue can be resolved by a UV completion of these models within string theory,

so the original DGP construction was ruled out as a model for our Universe [233]. Nevertheless,

DGP brane-worlds have remained a useful playground for testing modified gravity models, and

we will draw inspiration from them to study the physics of new brane-world models.

Again, however, we are interested in holography, not cosmology or phenomenology, so we

will consider DGP Karch-Randall branes sitting on an AdS bulk and not Minkowski space.

From an EFT point of view, after the brane tension, the DGP term is the next natural term in
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an effective expansion of the brane action, and so this model is a logical generalisation of the

brane-world models studied in the previous chapter. Nevertheless, we will depart from an EFT

perspective, sometimes considering unnaturally large DGP couplings in order to characterise

their possible effects.

Set-ups similar to this one have already been studied, but with an emphasis on other topics.

For example, [39] explored how to recover a four-dimensional Newtonian potential around static,

spherically symmetric masses on the brane. Their model allowed for a non-zero cosmological

constant in the bulk, but the brane tension was tuned to the critical value, fixing the brane

geometry to be flat. Indeed, they showed that at very large scales, the model presented a

four-dimensional Newtonian potential due to the Randall-Sundrum mechanism, while it also

displayed four-dimensional gravity at short scales due to the DGP term. At intermediate scales,

however, gravity remained five-dimensional.

From a more modern perspective, Karch-Randall brane-world models with an explicit DGP

term have been used to explore the black hole information problem [84]. From the bulk perspec-

tive, the DGP term on the brane simply alters the boundary conditions for the bulk equations.

When using the bulk Ryu-Takayanagi presctiption to compute the generalized holographic en-

tanglement entropy of brane subregions, this change in the boundary conditions translates into

changes in the way RT surfaces attach to the brane. In the standard case, RT surfaces attach

to the brane at a ninety-degrees angle, as they are extremal. Adding a DGP term on the brane

changes this angle [269]. Moreover, imposing well-known properties of holographic entangle-

ment entropies, it is possible to constrain the allowed value of the DGP coupling, as was done

in [270]. Their results qualitatively match ours, although they may not directly apply to our

set-up; they considered a model of wedge holography [271], with two AdS branes cutting out

the entirety of the bulk asymptotic boundary.

In this chapter, we will consider an AdS bulk containing a Karch-Randall brane with a DGP

term, in addition to the brane tension. We will allow for all three possible brane maximally

symmetric geometries, and study the brane location as a function of the DGP coupling. Then,

we will follow the steps of the previous chapter to explore how the localization of gravity on

the brane changes due to the presence of the DGP term.1 In particular, we will look for the

presence of inconsistencies or pathologies in the theory, which will put a bound on the allowed

values for the DGP coupling. We will see that positive values for the DGP coupling are always

allowed, as well as a small enough negative coupling. However, we cannot have large negative

DGP couplings, or the whole construction breaks down. In Section 3.4 we will again reinterpret

these results from the perspective of the dual brane picture. Throughout the whole chapter, our

emphasis will be on the AdS brane case, since it is the one most relevant for holographic studies.

We will end this chapter peeking into the possibility of adding the next natural higher-derivative

operators on the brane.

4.2 Set-up

Our set-up is the same as in the previous chapter, namely, a (d+ 1)-dimensional AdS bulk

with radius L ending on a co-dimension one brane, as described in the action (3.2), except that

1Recently, [272] explored the issue of localized gravity on AdS Karch-Randall brane-worlds, as we will do

in this chapter. However, their procedure and results are unclear to us, and so we will proceed independently,

without comparing our results to theirs.
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we now add an explicit Einstein-Hilbert term on the brane. The brane action reads

Ibrane =

∫
∂Mb

ddx
√
−g
(
−τ +A

L

8πGN (d− 2)
R

)
, (4.2)

where R is the Ricci scalar built from the brane induced metric gab, and we have chosen to

normalize the DGP coupling constant A in this way for simplicity in future calculations.

Since the DGP term is only present on the brane, the bulk Einstein equations (3.4) remain

unchanged. However, the Israel junction condition on the brane now reads

Kab −Kgab = −8πGNτgab +A
L

d− 2
(Rgab − 2Rab) , (4.3)

where all tensors are built from the induced metric on the brane gab.

Again, our ansatz for the background solution is an AdSd+1 metric written in slicing coor-

dinates, as in eq. (3.9). We can substitute into eq. (4.3) our results from Appendix B to find

that the Israel junction condition now reads

−d− 1

L
f ′(zb) = −8πGNτ + σA

(d− 1)

L
(f(zb))

2 , (4.4)

where again σ denotes the sign of our spacetime, as defined in eq. (3.25). Therefore, the position

of the brane will now depend not only on the brane tension τ but also on the value of the DGP

coupling A. Notice how the brane position is unaffected in the flat case, where σ = 0, so τ = τc

and the position of the brane remains free.

For the (A)dS cases, we can relate f ′(zb) and f(zb) through

(f(zb))
2 = σ

(
(f ′(zb))

2 − 1
)
, (4.5)

since the functions f(z) are trigonometric functions. Substituting this Pythagorean relation

into (4.4), we can write the following equation, which explicitly relates the position of the brane

zb with its tension and the DGP coupling A,

A(f ′(zb))
2 + f ′(zb)−

(
A+

τ

τc

)
= 0 . (4.6)

Solving for f ′(zb), we find

f ′(zb) =
−1 +

√
1 + 4A(A+ τ/τc)

2A
, (4.7)

where we must choose the plus sign in the quadratic formula, since we want zb to be close to

the asymptotic boundary at z = 0 for τ → τc and small values of A, in order to match with our

results from the previous chapter. Expanding for small values of A, we obtain

f ′(zb) ≃
τ

τc
+

(
1− τ2

τ2c

)
A +O(A2). (4.8)

From this equation, we can see that turning on a positive DGP coupling will bring the brane

closer to the boundary, both for the AdS and dS cases, as shown in Fig. (4.1). This behaviour

remains true for larger values of A, since one can easily see that the full equation (4.7) is

monotonous in A. Physically, this is due to the brane having a maximally symmetric geometry,

and so the Ricci scalar R is constant and acts as an extra tension term on the brane.
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Figure 4.1: Brane position zb as a function of A, for positive values of A. This shows that a positive

DGP coupling always moves the brane closer to the boundary. Left: zb for an AdS brane with τ/τc = 0.9

(blue dashed), τ/τc = 0.99 (black), τ/τc = 0.999 (red dashed). Right: zb for a dS brane with τ/τc = 1.1

(blue dashed), τ/τc = 1.01 (black), τ/τc = 1.001 (red dashed).

If we choose a negative DGP coupling, however, things can change drastically. For a small

negative DGP coupling, the brane simply moves slightly away from the boundary, up to ap-

proximately A ∼ −1/2. This behaviour is true for both (A)dS cases, as shown in Fig. 4.2.

Now, what happens at larger negatives values of A? For AdS branes with fixed τ , the

position of the brane as a function of A is continuous, from zb → π as A → −∞, to zb → 0 as

A→ +∞. For values of τ close to τc, the brane remains close to the boundary up to some value

Amin ≳ −1/2, when it rapidly jumps to the other side of the bulk spacetime, with zb > π/2.

For dS branes, there is a limit on how negative A can get before the position of the brane turns

complex,

Amin = −1

2

(
τ

τc
−

√
τ2

τ2c
− 1

)
≥ −1

2
. (4.9)

Therefore, it makes no sense to consider DGP couplings with A < −1/2 in either case, since

then, the position of the brane is either far from the asymptotic boundary at z = 0 or not even

well-defined.

Figure 4.2: Brane position zb as a function of A, for negative values of A. The vertical line corresponds

to A = −1/2 on both graphs. Left: zb for an AdS brane with τ/τc = 0.9 (blue dashed), τ/τc = 0.99

(black), τ/τc = 0.999 (red dashed). Notice how the brane moves to the other side of the spacetime at

A ≃ −1/2. Right: zb for a dS brane with τ/τc = 1.1 (blue dashed), τ/τc = 1.01 (black), τ/τc = 1.001

(red dashed). The brane position has no solution for A ≲ −1/2.
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In the following section, however, we will usually work with the position of the brane zb and

the DGP coupling A as free parameters, and instead tune the brane tension to be

τ = τc

[
f ′(zb) + σA (f(zb))

2
]
. (4.10)

As seen in Figure 4.3, it is possible to have AdS (dS) branes close to the asymptotic boundary

with A < −1/2 if we allow for a supercritical (subcritical) brane tension. Nevertheless, in the

following section, we will see that these branes will also show pathological behaviour.

Figure 4.3: Normalized brane tension τ/τc as a function of the brane position zb, following eq. (4.10),

for four different values of A. The horizontal line corresponds to the critical tension τ = τc on both

graphs. Left: τ/τc for an AdS brane with A = −1 (blue dashed), A = −1/2 (cyan dashed), A = 0

(black), and A = 1 (red dashed). Notice how we need supercritical tensions to have AdS branes close to

the boundary with A < −1/2. Right: τ/τc for a dS brane with A = −1 (blue dashed), A = −1/2 (cyan

dashed), A = 0 (black), and A = 1 (red dashed). Notice how we need subcritical tensions to have dS

branes close to the boundary with A < −1/2.

4.3 Locally Localized Gravity with DGP

Let us now perturb the bulk metric with axial transverse and traceless perturbations, as

defined in (3.23), following the same procedure as in the previous chapter. Again, we will

assume that the perturbed equations (3.24) separate through some separation constant E2 by

writing δĝij(x, z) = H(z)hij(x).

Since the bulk Einstein equations are unchanged, we obviously obtain the same equations

for hij(x) and H(z) as before, eqs. (3.30) and (3.29), respectively. Now, however, the boundary

condition on the brane will have changed.

Substituting our results from Appendix B for the perturbed metric (3.23) into the new Israel

junction condition (4.3), we find

H ′(zb)hij(x) +
2Af(zb)

d− 2
H(zb)

(
□̂+ 2σ

)
hij(x) = 0 . (4.11)

We can now factor out hij(x) using the brane equation (3.30), to trade the Lichnerowicz operator

for the eigenvalue E2. Then, the boundary condition for the radial equation reads

H ′(zb) +
2Af(zb)

d− 2
E2H(zb) = 0 . (4.12)

How will the spectrum of the eigenvalues E2 change after this change of boundary conditions?
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On the one hand, the spectrum will not change much for flat and dS branes. First, notice

that the massless mode remains totally unchanged in both cases, since we recover the previous

H ′(zb) = 0 boundary condition for E2 = 0.

Then, one could easily argue, following the volcano potential argument in Subsection 3.3.2,

that the continuum of excited eigenvalues will qualitatively have the same properties as if the

DGP term were not there. That is, there will be no mass gap for flat branes, while there will

be a mass gap of E2
gap = (d− 1)2/4 for dS branes.

Moreover, since bulk equations remain unchanged, the solutions to (3.29) are still the same

linear combination of Bessel functions (3.40) for the case of flat branes, and the same linear

combination of hypergeometric functions (3.41) for dS branes. Upon imposing the new boundary

condition (4.12), the only thing that will change is the ratio between the two constants c1/c2

appearing in the solutions, which now not only depends on the position of the brane zb, but

also on the DGP coupling A.

On the other hand, for AdS branes, the discrete spectrum of eigenvalues E2
(n,d) changes. As

advertised before, we will study it as a function of the DGP parameter A and the position of

the brane zb (or equivalently ρb, given by the change of variables in eq. (3.22)), and not the

tension τ , which we will assume to be given by eq. (4.10).

First, it is easy to see that the solution to equation (3.29) for AdS branes still must be (3.44).

We are still imposing Dirichlet boundary conditions on the asymptotic boundary H(z = π) = 0,

which fixes the linear combination of the two independent solutions to be the one shown in (3.47).

Further imposing the boundary condition (4.12) on the brane discretizes the spectrum, but this

discretization now depends on the DGP coupling.

Analytically, following the same procedure as in the previous chapter, in the limit ρb → 0,

we find

E2
(n,d)(A) ≃ n(n+ d− 1) +

1

2
(d− 2)(2n+ d− 1)

Γ(n+ d− 1)

(Γ(d/2))2Γ(n+ 1)

ρ
d/2−1
b

(1 + 2A)
. (4.13)

Notice how the only change comes from a (1 + 2A) factor on the denominator of the ρ
d/2−1
b

term. We were also able to find an improved expression for the case of d = 3,

E2
(n,d=3)(A) ≃

n(n+ 2)(1 + 2A)π + (n2 + 2n+ 4)
√
ρB

(1 + 2A)π − 3
√
ρB

. (4.14)

As shown in Fig. 4.4, we see that for positive values of A, the term proportional to ρ
d/2−1
b

becomes smaller, so E2
(n,d) moves closer to n(n + d − 1), while we get the opposite effect for

negative values of A up to A ∼ −1/2, when the expression blows up. Numerically, we observe

this same behaviour. Moreover, we can see that for A ≲ −1/2, the eigenvalues E2
(n,d) jump from

being slightly larger than n(n+ d− 1) to approaching the next level (n+1)(n+ d) from below,

as shown in Fig. 4.5.

These results match our previous findings, even though we are now tuning the tension as

we change A to keep the position of the brane fixed. Turning on a positive DGP coupling, the

eigenvalues E2
(n,d) become closer to the ones of empty global AdS. One can also check that the

almost-zero mode becomes more strongly localized on the brane as we turn up A, while the

opposite is true for the higher overtones.

Turning on a small, negative DGP coupling has a small effect on the eigenvalues, moving

them a bit further away from the ones of empty global AdS. Therefore, we see that a positive
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Figure 4.4: Lowest-lying eigenvalues E2
n for d = 3 as a function of the position of the brane ρb, for

different values of A. The dots show the numerical results, and the lines correspond to the improved

approximation shown in equation 4.14. Green colour corresponds to A = −0.3, while the value of A for

the other colours is shown next to the corresponding data. Notice how A has more effect on the excited

eigenvalues than on the almost-massless mode. Top-left: almost-massless mode, with n = 0. Top-right:

first excited mode, with n = 1. Bottom-left: second excited mode, with n = 2. Bottom-right: third

excited mode, with n = 3.

or small enough negative DGP couplings are allowed, and we still obtain d-dimensional gravity

localized on the brane.

However, if the negative DGP is large enough, A ≲ −1/2, eigenvalues jump away from their

value close to n(n+ d− 1) and we lose the almost-massless mode. Therefore, gravity no longer

localizes on the brane for large negative DGP couplings.

Moreover, numerically and for negative values of the DGP coupling A, we have found a mode

with negative mass E2
t < 0 in the spectrum. For small values of negative A, this eigenvalue is

complex, with a large (negative) mass and a tiny imaginary part. From an EFT perspective, it

is way beyond the energy scale at which one should trust the theory, and so we . But again,

for A ≲ −1/2, the mass of this tachyonic mode becomes real and of O(1), signalling at an

instability of the theory, which agrees with all our previous discussions.

4.4 Induced Gravity on the Brane with DGP

Let us now dualize the bulk to reinterpret these results from the brane perspective. Following

the same procedure for “finite” holographic renormalization described in 3.4, the brane effective

action now reads

Ieff =
1

16πGN,eff

∫
ddx

√
−γ [−2Λeff + (1 + 2A)R+ · · · ] + IUV

CFT, (4.15)
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Figure 4.5: Numerical results in log-scale of the lowest-lying eigenvalues E2
n for d = 3 as a function of

the position of the brane ρb, for different values of A. The value of A is shown next to the corresponding

data. Notice how A has more effect on the excited eigenvalues than on the almost-massless mode. Notice

how for A ≲ −1/2 the value of the n-th eigenvalue jumps closer to the next one, (n + 1)(n + 3), from

below. Top-left: almost-massless mode, with n = 0. Top-right: first excited mode, with n = 1. Bottom-

left: second excited mode, with n = 2. Bottom-right: third excited mode, with n = 3.

where, as before,

GN,eff =
d− 2

L
GN , Λeff = −(d− 1)(d− 2)

L2

(
1− τ

τc

)
. (4.16)

The only change with respect to the effective action written in eq. (3.58) is the coefficient

in front of the Einstein-Hilbert term.

It is interesting to see how for A < −1/2 the Einstein-Hilbert term picks up a minus sign,

which again signals to an instability of the theory, since, upon linearization, the graviton picks

up the wrong kinetic sign and becomes a ghost. This once more agrees with our discussion in

previous sections, where we saw that for A < −1/2 the brane moves far away from the boundary

at z = 0 for the AdS case, while it simply ceases to have a well-defined position for the dS case.

4.5 Conclusions

In this chapter, we have studied Karch-Randall branes with a DGP term, exploring all three

possible maximally symmetric brane geometries.

We have investigated how the existence of the DGP term affects the localization of gravity

on the brane, searching for pathologies or inconsistencies of the theory. This has allowed us

to put bounds on the values of the DGP coupling on the brane. Positive couplings are always
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Figure 4.6: Tachyon mode mass, in d = 3, as a function of ρb for different values of A, labelled next

to the respective data. These results have been computed numerically. Left: Linear plot. Right: Log

scale on the vertical axis. Notice how we have flipped the signs of both axes, to avoid problems with the

logarithm.

permitted, and sufficiently small negative couplings are allowed too. Nevertheless, we have

discovered that the model is unstable for large negative DGP couplings.

If we keep the brane tension fixed while we change A, we have observed that, as the DGP

coupling A becomes more negative than −1/2, the position of the brane ceases to be well-

defined. For AdS branes, it jumps to the other side of the bulk spacetime, close to z = π. For

dS branes, its position turns complex, meaning that there cannot be dS branes with A < −1/2,

since we cannot find a totally umbilic hypersurface in the AdS bulk which can support them.

If instead we keep the position of the brane fixed while changing A, we have found that

gravity no longer localizes on the brane for AdS branes with A < −1/2. The almost-zero mode

is lost, and instead we get a tachyon in the spectrum with a negative small mass of O(1).

These results are consistent with the effective action of the dual brane picture, in which the

Einstein-Hilbert term picks up the wrong sign if A < −1/2.

We have also been exploring whether one can use these brane-world models with a DGP

term to study models of holography with dynamical gravity at the boundary [273–275]. The

idea would consist in sending the DGP Karch-Randall brane to the boundary while rescaling

its tension and DGP coupling so that these operators remain finite at the boundary. Now,

however, since we are going all the way to the boundary, we need to add counterterms so that

ICFT does not diverge. Usually, counterterms are added on a regulating hypersurface at some

finite ε distance from the boundary, and then the limit ε→ 0 is taken. It seems natural, then,

to add these counterterms on the brane, which is itself a regulating surface at some distance

ρb → 0. The problem is that, seen as operators on the brane, the first few counterterms are

precisely a critical tension τc and a DGP term with coupling with A = −1/2, where we saw that

the DGP Karch-Randall construction breaks down. This could either mean that holographic

models with dynamical boundary are pathological, or that DGP Karch-Randall brane-worlds

cannot be used as a way to study them, or simply that we have not been able to take the limit

zb → 0 properly. Therefore, we have been unable to find conclusive results on this topic, and

we have thus decided not to include it in this thesis.
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4.6 Going Further

From an EFT point of view, the brane tension and the DGP term are only the first of a series

expansion of the brane action. The next natural terms would be terms quadratic in curvature.

Let us now consider a Karch-Randall model with bulk action (3.2), and brane action

Ibrane =

∫
∂Mb

ddx
√
−g
[
−τ +A

L

8πGN (d− 2)
R+

1

8πGN

(
β1R

2 + β2RabR
ab + β3RabcdR

abcd
)]

.

(4.17)

Varying it, we find the usual AdS bulk Einstein Equations, and that the Israel junction condition

on the brane now reads

Kab −Kgab = −8πGNτgab +A
L

d− 2
(Rgab − 2Rab) + β1E

(1)
ab + β2E

(2)
ab + β3E

(3)
ab , (4.18)

where the E
(k)
ab are simply the equations of motion of these curvature-squared terms, times (-2),

E
(1)
ab = gabR

2 − 4RabR+ 4∇a∇bR− 4gab□R , (4.19)

E
(2)
ab = gabRcdR

cd − 4RcdRacbd + 2∇a∇bR− 2□Rab − gab□R , (4.20)

E
(3)
ab = gabRcdefR

cdef − 4Ra
cdeRbcde − 8RcdRacbd + 8Ra

cRbc + 4∇a∇bR− 4□Rab . (4.21)

Again, considering a maximally symmetric ansatz written in slicing coordinates (3.9), the

junction condition becomes

−d− 1

L
f ′(zb) =− 8πGNτ + σA

(d− 1)

L
(f(zb))

2

+ [d(d− 1)β1 + (d− 1)β2 + 2β3]
(d− 1)(d− 4)

L4
(f(zb))

4 . (4.22)

Through the Pythagorean identity (4.5), this would become an algebraic equation of fourth

order for f ′(zb). Out of the four possible solutions, we would need to choose the one that

coincides with eq. (4.7) when βk → 0 for all k = 1, 2, 3.

One might be worried that upon linearization, due to the complicated appearance of the

E(k)ab, we cannot longer factor out hij(x) from the boundary condition on the brane. However,

since we are only considering axial transverse traceless perturbations, the linearized junction

condition can be all written in terms of powers of the box operator acting on hij(x). Therefore,

we can still use the brane equation (3.30) to get a boundary condition for the bulk radial

equation that only depends on H(z) and its first derivative, evaluated on the brane. The

resulting boundary condition for eq. (3.29) is

H ′(zb) +
2Af(zb)

d− 2
E2H(zb)

+
[
β1C1(E

2) + β2C2(E
2) + β3C3(E

2)
] f(zb)3

L3
H(zb) = 0 , (4.23)

where

C1(E
2) = d(d− 1)

(
4 + d(d− 5)− E2

)
, (4.24)

C2(E
2) = (d− 4)(d− 1)2 − 2(d− 1)− 2E2 + E4 , (4.25)

C3(E
2) = 2

(
(d− 1)(d− 4) + 2(d− 4)E2 + 2E4

)
. (4.26)

We postpone the exploration of the allowed values of these couplings for future work.
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Chapter 5

Computing Counterterms

5.1 Introduction

The quantum fluctuations of a field in a curved spacetime give rise to ultraviolet divergences

that take the form of invariants of the metric and curvature in the quantum effective action.

For holographic conformal field theories dual to Anti-de Sitter spacetime in d + 1 dimensions

with radius L, the form of this action is [87, 232, 276]

Idiv =
L

16πGN (d− 2)

∫
∂M

ddx
√
−g
[
2(d− 1)(d− 2)

L2
+R

+
L2

(d− 2)(d− 4)

(
RabR

ab − d

4(d− 1)
R2

)
+ . . .

]
. (5.1)

Here gab is the metric induced near the AdS boundary ∂M, and the divergences arise because

gab grows infinitely large as the asymptotic boundary is approached. After regularization,

counterterms are added with the same structure as (5.1) in order to renormalize the theory.

The effective action expansion in (5.1) can be systematically derived from the bulk Einstein

equations in asymptotically AdS spacetimes [230, 277–280]. In this chapter, we will review this

procedure, known as holographic renormalization, for asymptotically AdS spacetimes with no

matter content. We will present two different ways to perform this computation: the original

one devised by Skenderis et al. [87, 231, 260], based on the Fefferman-Graham expansion of the

bulk metric [261], and the algorithm of Kraus, Larsen, and Siebelink [230], based on iteratively

integrating the Gauss constraint on radial hypersurfaces. Both methods are conceptually very

similar, and have in fact be shown to be equivalent [277–279]. We will expand their work, and

give the explicit curvature invariants of (5.1) up to quintic order for general dimension d, and

to sextic order for d = 3.

The coefficients of each of the individual curvature invariants reflect the ultraviolet structure

of holographic CFTs,1 and although they have been known for many years, their specific form

appears to have received little attention. In the following chapters we will investigate some of

their properties from a point of view that directly connects them to (i) higher-derivative theories

of gravity, and (ii) holographic c-theorems.

For this purpose, we will introduce a brane near the boundary of the AdS bulk [36, 40], as

explained in Chapter 3. The brane effectively acts as a cut-off that renders the action (5.1) finite,

1Even though it is not known whether non-trivial CFTs exist in arbitrary d, holography suggests that their

leading planar limit exists (at least for generalized free fields).

99



Chapter 5 Computing Counterterms

Figure 5.1: Brane-world gravity and holography. The bulk is described by Einstein-AdSd+1 gravity.

The black region is excluded by the introduction of a brane, where a gravitational theory with higher-

derivative terms is induced. When the brane geometry is asymptotically AdSd (as in the figure), this

higher-derivative gravitational theory can be dualized to a CFTd−1 at its boundary (red dots). This

leads to a doubly-holographic construction of boundary CFT, but this view will not be prominent in our

article, where we regard the higher-derivative theory (and its dual CFTd−1) on its own, regardless of its

coupling to a CFTd dual to the AdSd+1 bulk.

and furthermore, it makes the metric gab dynamical. Then, (5.1) is interpreted as the effective

action of the gravitational theory that is induced on the d-dimensional brane, with a Newton’s

constant GN,eff = (d−2)GN/L, and with the brane tension adding to the cosmological constant

term [225].2 In effect, the Einstein-Hilbert term and all the higher-derivative operators in the

effective action are generated when the bulk Einstein equations are solved in the region near the

boundary excluded by the introduction of the brane. In dual terms, gravitational dynamics is

induced from the integration of the ultraviolet degrees of freedom of the CFT above the cut-off.

As a result, we obtain a holographic realization of ‘induced gravity’ (figure 5.1).

In this manner, we can view the brane-world construction as a means of generating a specific

theory of higher-derivative gravity, which we will denote as Ibgrav. This d-dimensional action

must be regarded as an effective theory with an infinite series of terms, each naturally smaller

than the previous one. Since the (d + 1)-dimensional Einstein bulk theory is well-defined, we

expect that this good behaviour is inherited by the d-dimensional effective theory—at least for

the entire series. However, one may also attempt to truncate the expansion at a finite order, and

hope that the higher-derivative gravitational theory that results is, if not completely well-defined

by itself, at least special in some respects. That is, we are proposing the holographic brane-

world perspective as an appealing rationale motivating a class of higher-derivative theories with

distinctive properties, which we shall investigate in the following chapters.

In this chapter, we will focus on showing how this induced higher-derivative theory of gravity

on the brane originates. First, we will show how to compute the divergent action (5.1) à la

Skenderis et al. [231]. Then, we will argue that we can push this computation beyond the

divergent terms, to obtain the full gravitational effective action on branes at a finite distance

from the boundary Ibgrav, whose properties we will study in the following chapters. Finally, we

will present the KLS algorithm [230] to compute the terms in Ibgrav and give the explicit results

up to fifth order in curvature for general d, and up to sixth order for d = 3.

2See Section 3.4 or e.g. [85, 88] for more details. If we consider the brane to be two-sided, then (5.1) will

contribute twice to the effective action. Since we are only interested in the structure of the curvature terms, these

considerations will be immaterial for us.
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5.2 Holographic Renormalization and Induced Gravity

5.2.1 Review of Holographic Renormalization

We begin with a sketch of how the action (5.1) arises, following [231]. The starting point is

the gravitational bulk action for a (d+ 1)-dimensional asymptotically AdS spacetime,

Ibulk =
1

16πGN

[∫
M

dd+1x
√
−G

(
R[G] +

d(d− 1)

L2

)
+ 2

∫
∂M

ddx
√
−gK

]
. (5.2)

Near the asymptotic boundary at ρ = 0, we can write the bulk metric in a Fefferman-Graham

expansion as [261]

Gµν(ρ, x)dy
µdyν =

L2

4ρ2
dρ2 +

L2

ρ
g̃ij(ρ, x)dx

idxj , (5.3)

where

g̃ij(ρ, x) = g̃
(0)
ij (x) + g̃

(2)
ij (x)ρ+ · · ·+ g̃

(d)
ij (x)ρd/2 + h̃

(d)
ij (x)ρd/2 log(ρ) +O(ρd/2+1) . (5.4)

The term containing h̃
(d)
ij is only present when d is even.

In this metric, the Einstein Equations read

(ij) : ρ
[
2g̃′′ij − 2g̃′ikg̃

klg̃′lj + g̃klg̃′klg̃
′
ij

]
+ R̃ij − (d− 2)g̃′ij − g̃klg̃′klg̃ij = 0 , (5.5)

(iρ) : g̃kl∇̃ig̃
′
kl −∇kg̃′ki = 0 , (5.6)

(ρρ) : g̃klg̃′′kl −
1

2
g̃klg̃

′
lmg̃

mng̃′nk = 0 , (5.7)

where the prime now denotes the partial derivative with respect to ρ, ∇̃ is the Levi-Civita

covariant derivative of g̃ij(x, ρ), and R̃ij is its Ricci tensor.

We then solve the Einstein equations, order by order in ρ, in terms of the ‘renormalized

metric’ g̃
(0)
ij and its derivatives [87]. The coefficients g̃

(n)
ij with n < d, as well as h̃

(d)
ij for even

d, can all be rewritten in terms of g̃
(0)
ij and its derivatives. In particular, one can show that

all terms with odd n < d identically vanish. That is why we did not even include them in eq.

(5.4). The equations also force g̃
(d)
ij to be symmetric and covariantly conserved, and also fix the

value of its trace g̃(d), but they do not determine it entirely.

The following terms g̃
(n)
ij with n > d can then be entirely determined by g̃

(0)
ij and g̃

(d)
ij , and

they are non-vanishing both for even and odd n. Two tensors are needed because the Einstein

Equations are second order. The tensor g̃
(0)
ij corresponds to the metric at the boundary, while

g̃
(d)
ij is proportional to the dual CFT stress-energy tensor.

This series solution is then plugged into the bulk on-shell action, and, after introducing a

cut-off at ρ = ε, the bulk coordinate ρ is integrated between ε and a finite value of ρ > ε. The

result is a series expansion where the first terms diverge as ε→ 0 in the form

Idiv =
L

16πGN

∫
ddx

√
−g̃(0)

(
ε−d/2L̃(0) + · · ·+ ε−1L̃(⌈d/2⌉−1) − log(ε)L̃(d/2)

)
+O(ε0) . (5.8)

Here the L̃(i) are invariants of g̃
(0)
ij and its intrinsic curvature, but do not depend on g̃

(d)
ij .

The logarithmic term is present only in even d, due to the holographic Weyl anomaly [260].

This means any given d only the terms that diverge as ε → 0 are uniquely determined by the

boundary metric. In dual terms, they are fixed by the definition of the theory in the ultraviolet,

and are independent of the state of the CFTd.
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We can rewrite these divergent invariants in terms of the (physical) metric induced at ρ = ε,

gij(x, ε) =
L2

ε
g̃ij(x, ε) , (5.9)

which gives a divergent action of the form3

Idiv =
1

8πGN

∫
ddx

√
−gL , where L ≡ L(0) + · · ·+ L(⌈d/2⌉−1) − log(ε)L(d/2) , (5.10)

and where again the logarithmic term is present only in even d (more about it below). The

first three terms of Idiv were presented in (5.1), and a few following ones will be computed in

Section 5.3.

Then, holographic renormalization is performed by adding a counterterm action Ict = −Idiv
to (5.2) in order to render the action finite when ε→ 0. The action that results is the quantum

effective action of the CFTd, and its variation with respect to the renormalized metric g̃
(0)
ij

generates the expectation value of the renormalized stress tensor of the CFTd. Adding to

the action higher curvature terms that are finite when ε → 0 corresponds to changing the

renormalization scheme.

5.2.2 “Finite” Renormalization on the Brane

Our framework will, however, be different than that of holographic renormalization. Instead

of regarding ρ = ε as a regularization device to be eventually removed, we will keep it finite

and non-zero, taking it to correspond to the location of a physical brane, and, as in Chapter 3,

adding to the action (5.2) a purely tensional term for the brane,

Ibrane ∝ −τ
∫
ρ=ε

ddx
√
−g . (5.11)

Since the action is finite when ε ̸= 0, no counterterms need to be added, and our theory will

be completely well-defined by (5.2) and (5.11), without any other boundary terms.4

Neglecting g̃(d)ij , the expansion (5.10) can then be continued to arbitrarily high orders,

producing additional densities L(n) which only depend on the metric on the brane gij and its

curvature. This expansion now includes terms that would not diverge when ε → 0. Such

terms are necessary in order to correctly reproduce the dynamics of the brane in the bulk,

which is determined by the Israel junction conditions [257] derived from the brane action (5.11)

[225]. The infinite series of these terms constitute an effective gravitational action Ibgrav in d

dimensions, and the fact that the action (5.10) is large for small ε reflects the strong localization

of gravity on the brane.

In practice, one obtains all the gravitational terms L(n) in Ibgrav in a unique manner by

deriving them as terms of Idiv for arbitrary d, without regard to whether they are finite or

divergent in any specific dimension d, as we will do in the next section.

Now the entire action, when evaluated on a generic bulk solution, will be

Ibulk + Ibrane = Ibgrav + IUV
CFT . (5.12)

3Notice that we have absorbed a factor of L/2 in L, in order to match the conventions in [230], which we will

follow in the next subsection.
4This is the case for de Sitter or Minkowski branes, but in Karch-Randall models infinite renormalization

must still be performed at the asymptotic boundary not removed by the brane. It will become clear that, for our

purposes, we need not concern ourselves with this.
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We can think of IUV
CFT as the finite-ε counterpart of the bulk contribution that is not entirely

determined by the boundary metric, but depends on g̃
(d)
ij . Thus, IUV

CFT accounts for the state

of the CFTd on the brane, but some care must be exercised. The left-hand side of (5.12) is

the action of a finite gravitational system with Einstein-Hilbert dynamics, plus a brane, in

d+1 dimensions. The right-hand side recasts it in the form of a higher-derivative gravitational

theory in d dimensions, coupled to a cut-off CFTd. This CFTd backreacts on the metric gij ,

so once the cut-off is introduced and the gravitational theory Ieff is defined, there is no more

‘renormalization scheme dependence’ of the CFTd.

Note that the effective action Ibgrav is unambiguously determined (up to total derivatives)

by the exact theory that it is derived from. This is not typically the case with effective theories,

which can be subject to field redefinitions that change their form. For instance, the metric in

an effective gravitational theory may be redefined as gij → gij + εαRij + O(ε2), with some

arbitrary coefficient α.5 However, in our case the metric gij(x, ε) is exactly determined for finite

ε by its bulk definition (5.9), and moreover its dynamics is also exactly specified by the Israel

junction conditions in the bulk. So the effective gravitational theory for gij(x, ε) is free from

such ambiguities. A minor subtlety remains in even d for the anomaly term L(d/2), which we

will discuss in the next subsection.

Then, in (5.12), the terms Ibulk, Ibrane and Ibgrav are well-defined, but the action of the CFTd

is only specified through (5.12).6 That is, the value of the CFTd action IUV
CFT, and of any other

magnitude derived from it (stress tensor, entropy, etc), is obtained as the difference between

the bulk action Ibulk + Ibrane and the d-dimensional action Ibgrav, when these are evaluated on

any solution of the theory.

All of these considerations simply set the stage for our statement that, in the following two

chapters, we will not be concerned with IUV
CFT, but only with the gravitational action Ibgrav.

7 It

is interpreted as the effective action of the gravity theory that is induced on the brane through

the integration of the bulk degrees of freedom in the region 0 ≤ ρ ≤ ε. In dual terms, we

integrate the ultraviolet degrees of freedom of the CFTd at energy scales above the cut-off.

Once we have obtained it this way, we will later study the effective gravitational theory on its

own.

5.3 Algorithm for Counterterms

The method of computing the effective action described in the previous section is cumber-

some, but there exist iterative algorithms that greatly simplify the calculations [230, 277, 280].

Here we will follow [230].

Let us define Πab as the stress-energy tensor associated to the full effective action Ibgrav,

with Lagrangian L ≡ L(0) + L(1) + · · · ,

Πab ≡ 2√
−g

δ

δgab

∫
ddx

√
−gL , (5.13)

5Field redefinitions that involve the conformal fields reduce to the previous ones by using the lower-order

effective equations of motion.
6That is, unless we work in some specific version of AdS/CFT where the CFT is independently defined. We

will not be assuming this.
7This is in contrast with our viewpoint in Chapters 3 and 4 of this thesis, where we need IUV

CFT to properly

describe the physics from the dual brane picture.
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and Π as its trace, Π ≡ gabΠab.

The Gauss-Codazzi equations starting at the boundary are equivalent to the bulk Einstein

equations in a Fefferman-Graham expansion. The Gauss scalar constraint is

1

d− 1
Π2 −ΠabΠ

ab =
d(d− 1)

L2
+R , (5.14)

where R is the scalar curvature of the boundary metric gab. We will solve this equation order

by order in the curvature, and then integrate (5.13) to find the corresponding order-n effective

Lagrangian, L(n).

Two key observations were made in [230]. First, that we can start by taking

Πab
(0) =

d− 1

L
gab , (5.15)

since at the leading order the terms that are proportional to the curvature can be neglected,

implying that Πab
(0) must be proportional to the metric. Second, by studying the behaviour of

the counterterms under Weyl rescalings, [230] found that the integration of (5.13) must simply

be

L(n) =
1

d− 2n
Π(n) , (5.16)

up to total derivatives. This procedure then generates the corresponding order-n term in the

effective Lagrangian, and it can be iterated to compute the counterterms.

The final algorithm is the following. We start from

Πab
(0) =

d− 1

L
gab, Π(0) =

d(d− 1)

L
, L(0) =

d− 1

L
, (5.17)

and then we follow these steps iteratively:

1. Knowing all Π(i) and Πab
(i) of order less than n, solve for Π(n) using (5.14).

2. Compute L(n) using (5.16).

3. Vary L(n) to find Πab
(n).

In step 1, it is important to notice that at each order n, equation (5.14) involves terms of the

form Π(n)Π(n−i) and Π
(i)
abΠ

ab
(n−i), with i ≤ n. Since Πab

(0) is proportional to g
ab, the term Π

(0)
ab Π

ab
(n)

is proportional to Π(n), and so indeed we find an equation for Π(n). Moreover, for all orders

n ≥ 2, there are no other terms on the right-hand side of (5.14), so we can directly solve for

Π(n) to find

Π(n≥2) = −L
2

n−1∑
i=1

[
1

d− 1
Π(i)Π(n−i) −Π

(i)
abΠ

ab
(n−i)

]
. (5.18)

Notice that when d is even, the algorithm seems to break down for n = d/2 due to the

divergence in (5.16). The reason for this is the following. Even if, in our context, for ε ̸= 0

the action Ibulk + Ibrane is finite, when we expand it in powers of ε, there appears a logarithmic

term. It reflects the fact that the integration of conformal degrees of freedom produces non-local

terms, and in the effective theory it shows up as the trace anomaly [260]. In the algorithmic

approaches to the computation of counterterms, it was shown in [277] that one must effectively

replace 1/(d − 2n) → log ε. Therefore, in a brane-world construction where ε is finite, the

104



Chapter 5 Computing Counterterms

apparent divergence in L(d/2) for even d is an artifact. A similar argument would also work for

the divergences appearing in L(n) for n ≥ d/2.

For our purposes in this final Part III of the thesis, we will not concern ourselves with these

effects. On the one hand, the overall coefficients of each of the L(n) terms will not play a role

in our discussion in Chapter 6, except in Sec. 6.5.2 of the following chapter, where we consider

them in d = 3 where there is no anomaly. On the other hand, in Chapter 7, we will be able

to resum the whole tower of L(\) to quadratic order in perturbation around flat space, and the

resulting expression will show no such problems.

The iterative procedure explained above gives for the first terms, already presented in [230],

the result

L(0) =
d− 1

L
, (5.19)

L(1) =
L

2(d− 2)
R , (5.20)

L(2) =
L3

2(d− 2)2(d− 4)

[
RabR

ab − d

4(d− 1)
R2

]
, (5.21)

L(3) = − L5

(d− 2)3(d− 4)(d− 6)

[
3d+ 2

4(d− 1)
RRabR

ab − d(d+ 2)

16(d− 1)2
R3

− 2RabRacbdR
cd +

d− 2

2(d− 1)
Rab∇a∇bR−Rab□Rab +

1

2(d− 1)
R□R

]
. (5.22)

Since we are computing the brane effective action and not its counterterms, our results differ

from those in [230] by an overall minus sign.

Using the Mathematica packages xAct [281, 282], we have been able to extend these results

to quartic and quintic order for general dimension d, and to sextic order for d = 3. For general

dimension, the quartic term reads

L(4) = − L7

(d− 2)4(d− 4)(d− 6)(d− 8)[
13d2 − 38d− 80

8(d− 1)(d− 4)
RabR

abRcdR
cd +

−15d3 + 18d2 + 192d+ 64

16(d− 4)(d− 1)2
RabR

abR2

+
d(5d3 + 10d2 − 112d− 128)

128(d− 4)(d− 1)3
R4 +

5d2 − 16d− 24

(d− 1)(d− 4)
RabRcdRRacbd

− 12Ra
cRabRdeRbdce + 8RabRcdRac

efRbdef − 8RabRcdRa
e
c
fRbedf

− 2(d− 6)

d− 4
RabRcdRa

e
b
fRcedf +

d2 + 4d− 36

2(d− 4)(d− 1)
RbcR

bc∇a∇aR

+
−7d2 + 22d+ 32

4(d− 4)(d− 1)2
R2∇a∇aR+

4

d− 1
Rbc∇aRbc∇aR− d+ 8

4(d− 1)2
R∇aR∇aR

+
3d− 8

d− 1
Rab∇aR

cd∇bRcd +
d(d− 6)

8(d− 4)(d− 1)2
∇a∇aR∇b∇bR

+
1

d− 1
R∇b∇b∇a∇aR− (d− 4)(d+ 2)

4(d− 1)2
Rab∇aR∇bR+

d− 4

d− 1
Ra

cRbc∇b∇aR

− 5d3 − 38d2 + 64d+ 16

4(d− 4)(d− 1)2
RabR∇b∇aR+

3d2 − 20d+ 28

(d− 1)(d− 4)
RcdRacbd∇b∇aR

− (d− 6)(d− 2)2

8(d− 4)(d− 1)2
∇b∇aR∇b∇aR+

d− 4

d− 1
Rbc∇aR∇cRab − 8Rab∇eRacbd∇eRcd
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+
5d2 − 6d− 64

2(d− 1)(d− 4)
RabR∇c∇cRab +

(d− 2)(d− 6)

2(d− 1)(d− 4)
∇b∇aR∇c∇cRab

+
(d− 2)

d− 1
Rab∇c∇c∇b∇aR+

5

d− 1
R∇cRab∇cRab + 12RabRcd∇d∇bRac

+
11d− 6

d− 1
RabRcd∇d∇cRab −

d− 6

2(d− 4)
∇c∇cRab∇d∇dRab − 2Rab∇d∇d∇c∇cRab

− 4Rab∇bRcd∇dRa
c + 4Rab∇cRbd∇dRa

c +
2(5d− 22)

d− 4
RabRacbd∇e∇eRcd

]
. (5.23)

The quintic and sextic terms are too large to present here, and so we include them in Appendix

D.

To finish, let us mention that the algorithm of [230] was improved in [277] into the dilatation

operator method using a Hamiltonian formulation. This allowed to include matter fields, prove

the equivalence of these algorithmic techniques to the holographic renormalization method of

[87], and rigorously recover the trace anomaly. The method has been further explored [278,

279], and a practical implementation that circumvents the Hamiltonian framework has been

presented in [280].

5.4 Conclusions

In this chapter, we have reviewed holographic renormalization and its reinterpretation for

brane-world holography, and we have also implemented the algorithm of [230] in Mathematica

to obtain the quartic and quintic counterterms for pure AdSd+1 gravity.

It would be interesting to see if the methods of [277, 280] allow for an easier computation of

the higher-order counterterms, or if the calculations can be simplified by writing the algorithm

in a different basis of curvature invariants.

The theory of gravity Ibgrav that is induced on the brane may admit solutions that are

asymptotically AdS, and indeed, this can always be achieved with a brane tension τ below a

critical value. In this case, the theory may be thought of as putatively dual to a CFTd−1 (at

least at planar level). A necessary condition for this theory to be well-defined is that it satisfies

a c-theorem. The goal of our next chapter will be to show that, not only the CFTd−1 dual to

the theory Ibgrav satisfies this condition, but also that all the higher-derivative terms in this

effective action separately do so.
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Brane-World Gravities and the

Holographic c-Theorem

6.1 Introduction

Brane-worlds can have, as we have seen in Chapter 3, an induced cosmological constant

on the brane theory that can be positive, negative or zero [40]. The three cases give valid

higher-derivative effective theories Ibgrav, as shown in eq. (3.59) and explained in the previous

chapter. However, when the cosmological constant is negative, and the geometry on the brane

is asymptotically AdSd, we can perform one more holographic dualization. Namely, we can

envisage that the gravitational theory on the brane is itself dual to a CFTd−1 at its boundary.

The usual interpretation of this doubly-holographic setup is in terms of a duality to a

boundary CFT (BCFT), that is, a CFTd in a space with a boundary where a CFTd−1 lives [40,

253]. However, we will not adopt this view in this chapter. Now that we have obtained the

gravitational theory Ibgrav, we will be considering it on its own, without regard to its possible

coupling to the holographic cut-off CFTd on the brane. If the theory is on AdSd, then it may

be thought of as putatively dual to a CFTd−1 (at least at planar level). This CFTd−1 to which

our gravitational theory is dual will be different from the one that resides at the boundary of

the CFTd in doubly-holographic setups. In other words, for us, the holographic construction is

simply a means of generating a specific class of higher-derivative gravitational theories which

are plausibly dual to conformal field theories, but these are not necessarily coupled to any other

system.

In this chapter, we will prove that these holographic CFTd−1 possess a basic property of well-

defined conformal theories, namely, they satisfy c-theorems. Holographic theories incorporate

renormalization group flows as bulk solutions that interpolate between two asymptotically AdS

regions [145, 146]. These act as the UV and IR fixed points, while the bulk radial coordinate

parametrizes the flow. Holographically, one expects that the c-function should be a rough

measure of the curvature radius of the geometry, such that it monotonously decreases along the

flow from the boundary into the bulk.

We will actually find a stronger result: the higher-derivative theories that are defined by

the Lagrangian densities at each order in the expansion (5.1) separately satisfy holographic

c-theorems. Although this might not be unexpected given the good behaviour of the “parent

theory” that gives rise to them, it is not a direct consequence of the c-theorem of the holographic

107



Chapter 6 Holographic c-Theorem

CFTd. Neither is it the same as the g-theorem for holographic boundary CFTs in [254] since,

as we mentioned above and will discuss later in more detail, our CFTd−1 are differently defined,

and our method of proof and bulk interpretation of the result are also very different.

The proof of these holographic c-theorems relies on particularities of the d-dimensional order-

n densities, but not in a very detailed way. Further examination of their structure, up to the

highest order we have computed them, reveals finer features. In particular, we can decompose

each order-n density L(n) appearing in the brane effective action Ibgrav into a linear combination

of a term Sn, which gives a non-trivial c-function, and a term Tn that does not contribute to

it, since it identically vanishes on the renormalization group flow geometry. We find evidence

that this decomposition can always be made in such a way that all the Sn are algebraic in the

Riemann tensor, with no derivatives of it. That is,

L(n) ∝ Sn[Rabcd] + Tn[Rabcd,∇a] . (6.1)

We have proven that this is possible for all n in d = 3, and strong evidence suggests that it

should hold for all n and d.

Using the decomposition (6.1), we have then looked for other special properties of these

densities. In most cases, we do not have proofs that apply to all orders and dimensions, but

instead we have identified particular features by direct inspection of the terms that we have

explicitly generated.

A first observation follows directly from the form of the first three orders in the effective

action, shown in (5.1). In any dimension d, we have

T0 = T1 = T2 = 0 . (6.2)

In particular, in d = 3 the only quadratic order term is, up to an overall factor,

S2 = RabR
ab − 3

8
R2 , (6.3)

which, as noted in [190], is the same density as in the New Massive Gravity (NMG) of [102].

At the next, cubic order, the Tn make appearance in every d (see eq. (5.22) in the previous

chapter). In d = 3, up to an overall factor, we find

S3 = Rb
aR

c
bR

a
c +

17

64
R3 − 9

8
RRabR

ab , (6.4)

and

T3 =
1

2
CabcC

abc , (6.5)

where Cabc is the Cotton tensor. Both these densities have featured in earlier literature: S3 was

proposed in [16] as a cubic generalization of NMG that satisfies a holographic c-theorem, and

T3 defines the only cubic theory whose equations of motion have a third-order trace [103].

The appearance of (6.3) and (6.4) might point to a stronger link between the three-dimensional

massive gravity theories of Karch-Randall brane-worlds and the generalized higher-curvature

theories that satisfy holographic c-theorems [17]. Remember, however, that the origin of the

graviton mass in Karch-Randall brane-worlds is tightly linked to its coupling to the dual CFT

[88], as we saw in Section 3.4, which is in general absent in NMG and its generalizations.1

1Note also that the coefficient of the Einstein-Hilbert term in NMG is negative [102], opposite to the ‘normal’

sign it has in the brane-world, as seen in (3.59).
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For general higher dimensions, the cubic densities S3 and T3 are also special in similar ways.

We find that S3 can be identified with a linear combination of the cubic Quasi-topological

gravity density [103, 283, 284], which has second-order traced equations, plus a density which

contributes trivially to the c-theorem. On the other hand, T3 turns out to be given by an-

other previously identified combination [103], distinguished, just like in three dimensions, by

possessing third-order traced equations.

The reduced-order property of the traced equations is a rather stringent feature, but in

holographically induced gravities it does not seem to generally hold beyond cubic terms. Indeed,

the quartic term T4 already does not satisfy it in d = 3.

Finally, also in three dimensions, we have found an intriguing connection between the full

tower of counterterms and the Born-Infeld-like extension of NMG presented in [121]. At present,

we do not know whether this finding is fortuitous, or instead it has a deeper meaning.

The remainder of this chapter proceeds as follows. First, we review the holographic c-

theorem construction for general higher-derivative gravities, and also present a few new obser-

vations on the topic. Then, in section 6.4, we prove that all the terms in the effective action

separately fulfil a holographic c-theorem. In sections 6.5 and 6.6 we study the structure of

each order-n density in (5.1), in d = 3 and in general dimensions, respectively. We end with

comments on possible future directions.

6.2 RG Flow Geometry and c-Function

In this chapter, we review the holographic proof of the c-theorem, and the characterization of

higher-derivative gravities which satisfy it. Most of the content here is a compilation of previous

results, but we also make a few observations which do not seem to have appeared explicitly in

the literature before.

The holographic c-theorem involves a domain-wall type ansatz

ds2 = e2A(r)
[
−dt2 + dx2

]
+ dr2 , (6.6)

which, in the presence of a matter stress-energy tensor Tab satisfying the null energy condition

(NEC), produces a profile for A(r) which makes the solution interpolate between two asymp-

totically AdSd regions [145, 146]. From the dual CFT perspective, these correspond to UV and

IR fixed points, where the metric function is asked to behave as

A(r → +∞) =
r

LAdSUV

, A(r → −∞) =
r

LAdSIR

, (6.7)

where LAdSUV
, LAdSIR characterize the AdS curvature radii at each end of the geometry. Since

the central charge of a holographic CFT is in general proportional to a power of the AdS

curvature radius measured in Planck units, these geometries appear to adequately represent

holographic RG flows when going from r → +∞ to r → −∞.

The idea of the holographic c-theorem2 is then to construct a function c(r)—the RG mono-

tone or ‘c-function’—which monotonously decreases along the flow. A weak version of the

theorem would require that cUV > cIR, whereas a strong one (which we will aim for) demands

monotonicity along the entire flow,

c′(r) ≥ 0 ∀ r . (6.8)

2Here we will use the term ‘c-theorem’ to refer to monotonicity theorems in general dimensions, often called

the ‘c-theorem’, ‘F-theorem’ and ‘a-theorem’ in two-, three- and four-dimensional CFTs [147, 148, 285, 286].
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A natural way of constructing a candidate c(r) is to find an expression for c′(r) that is

proportional to the combination T t
t − T r

r . Then, if the matter stress-tensor satisfies the NEC,

this combination is negative semidefinite,

T t
t − T r

r

NEC

≤ 0 , (6.9)

and hence any c′(r) ∝ −(T t
t − T r

r ) with a non-negative proportionality constant does the job.

In this chapter, we will always assume that matter is minimally coupled to gravity, and so the

NEC does not involve any curvature terms.

If we denote the equations of motion of a given higher-derivative theory with Lagrangian

L (gab, Rabcd,∇a) by

Eab ≡
1√
−g

δ

δgab

∫
ddx

√
−g L , (6.10)

then the combination E t
t − Er

r evaluated on (6.6) will in general be a complicated combina-

tion of terms involving A(r) and its higher-order derivatives, making the identification of c(r)

cumbersome (or directly impossible).

An important simplification occurs for theories with equations of motion that become

second-order in derivatives of A(r) and are at most linear in A′′(r) when evaluated on eq. (6.6).

This condition can be most easily implemented, for general families of higher-derivative theories,

at the level of the action [17]. Indeed, let

I[A] =

∫
ddx

√
−gL [A] (6.11)

be the on-shell action from the evaluation of the corresponding higher-derivative action on the

metric eq. (6.6). It is easy to show that the Euler-Lagrange equation of A(r) is proportional to

the tt component of the field equations evaluated on (6.6), namely,

δI[A]

δA
= −2(d− 1)e(d−1)A(r) E t

t

∣∣
A
. (6.12)

Thus, whenever I[A] is second-order in derivatives of A(r) and linear in A′′(r), so is E t
t .

The additional independent equation, corresponding to Er
r , is related to E t

t by the Bianchi

identity

∂r Er
r |A + (d− 1)A′(r) Er

r |A = (d− 1)A′(r) E t
t

∣∣
A
. (6.13)

This immediately implies that Er
r does not contain terms involving derivatives of A(r) higher

than one (since it is the scalar constraint3) and that the combination E t
t −Er

r is second-order in

derivatives and linear in A′′(r). Throughout the paper, when speaking about theories satisfying

the holographic c-theorem, we will be referring to theories that satisfy these reduced-order

properties.4

For this kind of theories, it is straightforward to construct a function c(r) such that [71, 145,

149]

c′(r) = − π
d−3
2

8Γ
[
d−1
2

]
GN

T t
t − T r

r

A′(r)d−1
, (6.14)

3The explicit form of the equation Er
r can be obtained from the on-shell action of ds2 = e2A(r)

[
−dt2 + dx2

]
+

N(r)2dr2 by varying with respect to the lapse function N(r) [15].
4These requirements are identical to the ones satisfied by higher-curvature gravities which produce generalized

Friedman equations of second order for the scale factor when evaluated on a Friedmann-Lemâıtre-Robertson-

Walker ansatz with flat spatial slices—see e.g. [15, 22, 154–156, 287].
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where, as required, the right-hand side is positive semidefinite, including for even d [149]. As

observed in [16, 149], c(r) can be obtained for these theories from the Wald-like [150] formula

c(r) ≡ π
d−1
2

2Γ[d−1
2 ]A′(r)d−2

∂L
∂Rtr

tr
, (6.15)

where the Lagrangian derivative components are evaluated on eq. (6.6). By construction, c(r)

coincides at the fixed points with the holographic central charges c.

6.3 Constraints on Theories

When trying to construct theories that satisfy simple holographic c-theorems, Lovelock

gravities [134, 135, 171] are natural candidates, as they have second-order equations on general

backgrounds. The n-th order Lovelock density is

L(n)
Lovelock ≡ X2n ≡ (2n)!

2n
δ[b1a1 δ

b2
a2 · · · δ

b2n]
a2n R

a1a2
b1b2

· · ·Ra2n−1a2n
b2n−1b2n

. (6.16)

When d is even, the density with n = d/2 is a topological invariant. All the higher order

densities (with n > (d−1)/2 when d is odd, and with n > d/2 when d is even) vanish identically.

Hence, Lovelock theories are too restricted to provide a non-trivial family of order-n densities

in arbitrary dimensions.

A different set can be obtained using the Schouten tensor

Sab =
1

d− 2

[
Rab −

1

2(d− 1)
gabR

]
(6.17)

as a building block. The general relation

Rabcd = Cabcd − 2(ga[cSd]b + gb[dSc]a) , (6.18)

and the fact that the Weyl tensor vanishes on the RG flow ansatz eq. (6.6), since it is a

conformally flat metric, suggests considering the family [112]

P(n) = δ[b1a1 δ
b2
a2 · · · δ

bn]
an S

a1
b1

· · ·San
bn
. (6.19)

This vanishes for n > d because the totally antisymmetric product of Kronecker deltas is

identically zero in that case, but it has been shown that a simple limiting procedure5 can be

applied to P(n), which gives non-trivial densities for additional orders and dimensions [110] (see

also [109, 288]).

One may also systematically consider all the densities of a given curvature order for fixed d,

with arbitrary relative coefficients, and identify the combinations that satisfy the aforementioned

conditions. At quadratic order, this selects the Gauss-Bonnet density

X4 = R− 4RabR
ab +RabcdR

abcd , (6.20)

and the Weyl-squared term CabcdC
abcd, which identically vanishes on eq. (6.6). The cubic case

was studied in [149] for general d. At that order, there exist eight independent densities (there

5The idea involves computing P(n) for some d̄ greater than the dimension of interest d, dividing by (d̄ − d)

and then taking the limit d̄ → d of the resulting expression.
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are fewer for low enough d), and the holographic c-theorem imposes two constraints on them,

leaving six independent densities that satisfy all the requirements.

Hence, in general, for fixed d and n there will be several independent densities satisfying the

holographic c-theorem. However, it is natural to expect that the functional on-shell dependence

on A(r) for fixed d and n is unique—in particular, given j order-n densities satisfying the

c-theorem,
∑

j αjLj , we would have

E t
t |A − Er

r |A =

(∑
j

cjαj

)
· Fn(A,A

′, A′′) , (6.21)

where the dependence on the gravitational couplings fully factorizes. This always allows us to

change the basis of densities so that a single one of them contributes non-trivially to E t
t−Er

r , while

all the others produce a vanishing contribution—e.g. the Weyl-squared density at quadratic

order.

As for the explicit form of E t
t , Er

r and Fn(A,A
′, A′′) when evaluated on eq. (6.6) for individual

non-trivial densities, a quick inspection of various cases strongly suggests that these are always

given by

E t
t

∣∣
A
∝ A′(r)2(n−1)

[
(d− 1)A′(r)2 + 2nA′′(r)

]
, Er

r |A ∝ (d− 1)A′(r)2n , (6.22)

up to an overall factor, and

Fn(A,A
′, A′′) = 2nA′(r)2(n−1)A′′(r) , (6.23)

for general n and d. The functional dependence of the c-function is then c(r) ∝ A′(r)2n−d.

Indeed, we proved in Section 1.5 of Chapter 1 that this sort of ‘uniqueness’ holds for general

curvature orders in d = 3, as initially hinted by [17].

Several other properties have been observed to hold for gravities in three dimensions that

satisfy a c-theorem, as discussed in depth in Section 1.5. At quadratic order, the resulting

theory is the New Massive Gravity of [102]—more on this below. At higher curvature orders,

theories of this kind arise from an order-by-order expansion [1, 121, 151] of a Born-Infeld-type

gravity [121], which in turn satisfies the holographic c-theorem by itself [151, 152]. In addition,

it has been found that certain theories that satisfy the holographic c-theorem—some of which

involve explicit covariant derivatives—are equivalent to Chern-Simons gravities [107]. More

recently, theories of this kind have been related to truncations of certain infinite-dimensional

Lie algebras [109]. Finally, recall that we saw that theories of this kind never propagate the

scalar mode that is present in the linearized spectrum of generic higher-derivative theories [1].

This feature is likely valid for general d.

6.4 Holographic c-Theorem for Induced Gravity

We will now prove one of our main results of this chapter: all the densities in the action of

holographically induced gravity, at arbitrary order n and in general dimension d, belong to the

class of theories whose dual CFTs satisfy a holographic c-theorem.

Before we proceed, let us emphasize that this is not the same as the monotonicity theorem—

the g-theorem—for the theory that is dual to the brane in the doubly-holographic construction.

The latter is dual to the entire system of the induced gravity on the brane plus the cut-off CFTd
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coupled to it. The holographic g-theorem proven for this system in [254] amounts to showing

that, as the brane moves deeper into the bulk, its curvature decreases—in CFT terms, flowing

to the IR reduces the number of degrees of freedom that are dual to the brane. This is not what

we are doing. After deriving the induced gravitational action Ibgrav, we take this theory on its

own and disregard its coupling to the CFTd. Then, our proof of a c-theorem for the putative

dual CFTd−1 is no longer related to the properties of the brane moving in the bulk.

To prove the c-theorem we shall assume that our gravitational theory is coupled to a matter

sector that satisfies the NEC and that this condition can be readily translated, via the field

equations, into a condition on the curvature terms as shown in the previous section. For this

purpose, we assume that matter is minimally coupled to gravity, so that no curvature terms enter

the NEC. This assumption is consistent but technically unnatural, and it could be interesting

to investigate if it can be relaxed.

That the entire theory Ibgrav might satisfy a holographic c-theorem might not be unexpected,

given its origin in a ‘good’ theory (Einstein-AdS in d+1 dimensions, plus a brane) but it is less

obvious that the separate order-n densities should also do it.

We will give two proofs of this result, the first one applying an induction method to the algo-

rithm described in Sec. 5.2, and the second one using the counterterms adapted for conformally

flat boundaries obtained in [289].

6.4.1 Inductive algorithm proof.

An examination of the terms L(n) obtained in Section 5.2, evaluated on the RG-flow metric

(6.6), suggests that the following expression may be valid for general orders and dimensions,

L(n)

∣∣
A
= −Cn

d− 1

d− 2n
(A′)2(n−1)

[
d(A′)2 + 2nA′′] , where Cn ≡ L2n−1 (2n− 3)!!

(2n)!!
. (6.24)

Remarkably, this expression, if correct, directly implies that each and all of the L(n) satisfy a

holographic c-theorem. Recall that if L(n)

∣∣
A

is second-order in derivatives of A(r) and linear

in A′′(r), so is E t
t |A − Er

r |A, and then we can easily build a monotonous c-function, as shown in

the previous section. We will now prove that (6.24) is indeed correct.

We proceed by induction. We assume that (6.24) is true for all orders k < n, and then we

perform the KLS algorithm described in Section 5.2 to see that it is also valid for order n.

From (5.16), the induction hypothesis implies that, for all k < n, we have

Π(k)

∣∣
A
= −Ck(d− 1)(A′)2(k−1)

[
d(A′)2 + 2kA′′] . (6.25)

Then, following equations (6.12) and (6.13), with Eab = Πab/2, we obtain

Πtt
(k)

∣∣
A
= −Cke

−2A(A′)2(n−1)
[
(d− 1)(A′)2 + 2nA′′] = −Πxixi

(k)

∣∣
A
, (6.26)

Πrr
(k)

∣∣
A
= Ck(d− 1)(A′)2n. (6.27)

Now, using equations (5.16) and (5.18) we can compute L(n)

∣∣
A
. The result reads

L(n)

∣∣
A
=

1

d− 2n
Π(n)

∣∣
A

(6.28)

= − L

2(d− 2n)

n−1∑
k=1

[
1

d− 1
Π(k)Π(n−k) −Π

(k)
ab Π

ab
(n−k)

]
A

(6.29)
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= − d− 1

d− 2n
(A′)2(n−1)

[
d(A′)2 + 2nA′′] L

2

n−1∑
k=1

CkCn−k . (6.30)

Finally, using the identity

L

2

n−1∑
k=1

CkCn−k =
L2n−1

2

n−1∑
k=1

(2k − 3)!!(2(n− k)− 3)!!

(2k)!!(2(n− k))!!
= L2n−1 (2n− 3)!!

(2n)!!
= Cn , (6.31)

it follows that L(n)

∣∣
A
indeed reduces to the form eq. (6.24), which means that all the order-n

Lagrangians appearing in the effective action Ieff satisfy holographic c-theorems.

It would appear that the proof breaks down at n = d/2 for even d, but as discussed in

Sec. 5.3, these divergences are easily avoided artifacts.

6.4.2 Proof with conformally flat counterterms.

As we have seen in Section 6.2, the proof of the holographic c-theorem relies on the evaluation

of each density L(n) on the conformally flat metric (6.6) on the brane. Instead of computing

the general brane effective action, and then evaluating it on the conformally flat metric (6.6),

we may choose to compute the effective action directly for a conformally flat brane. For this,

we can use (minus) the counterterms for an AdSd+1 bulk with a conformally flat boundary,

recently obtained in [289].6 For n ≤ d/2 these are

L(n)|c.flat = (−1)nL2n−1 (2n− 3)!!(d− n)!

(d− 2)!(d− 2n)
P(n), (6.32)

where P(n) is the product of Schouten tensors defined in (6.19), along with the necessary

dimensional regularization prescription for the n = d/2 term.

Since we have seen in the previous section that the P(n) satisfy the holographic c-theorem,

(6.32) directly proves our result. Indeed, when evaluated on the metric (6.6), the expression

above coincides with (6.24), since

P(n)|A =
(−1)n+1

(2n)!!

(d− 1)!

(d− n)!
(A′)2(n−1)

[
d(A′)2 + 2nA′′] . (6.33)

For n > d/2, the limiting procedure of [110], described in the previous section, gives non-

trivial densities when applied to P(n). When we evaluate these densities on (6.6), they also

match our results above.

6.5 Counterterm Densities in Three Dimensions

Now we have a closer look at the explicit structure of the densities L(n) for n ≥ 2 that

appear on the brane effective action Ibgrav. Recall that the explicit expressions for the densities

L(n) with n ≤ 4 can be found in eqs. (5.21)—(5.23) of the previous chapter. We shall first

study them for d = 3, making use of the results obtained in Chapter 1, and then, in the next

section, we will move to d ≥ 4.

6We are grateful to I. Papadimitriou for bringing these results to our attention.
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6.5.1 Structure of Counterterm Densities, Order by Order

As argued in e.g. [1, 17, 119] and in our first chapter, in d = 3 the most general higher-

curvature density constructed from contractions of the metric and the Riemann tensor is a

function of the three densities7

R ≡ gabRab , R2 ≡ RabR
ab , R3 ≡ Rb

aR
c
bR

a
c . (6.34)

This follows from the fact that all Riemann curvatures are Ricci curvatures due to the vanishing

of the Weyl tensor, along with the existence of Schouten identities which relate terms involving

higher-order contractions of the Ricci tensor to the ones above. In three dimensions, conformal

flatness is equivalent to the vanishing of the Cotton tensor,

Cabc ≡ 2∇[cRa|b] +
1

2
∇[b|Rga|c] . (6.35)

Then, the metric eq. (6.6) used for holographic RG flows has Cabc = 0.

Quadratic Order

As mentioned in the introduction of this chapter, in d = 3 the density L(n) coincides, up to

an overall factor, with the quadratic term in the New Massive Gravity [102]. This is given by

L̄2 = RabR
ab − 3

8
R2 , (6.36)

where the overbar in L̄ simply indicates that we remove the overall factors containing L from

the expressions in (5.21)–(5.23). NMG is known to satisfy a holographic c-theorem [16]. An

additional property of L̄2 is that, when linearized around maximally symmetric backgrounds,

it propagates no scalar mode. Moreover, the equations of motion of L̄2 have second-order trace

[103].

Cubic Order

To cubic order, and up to an overall factor, (5.22) gives

L̄3 =
11

8
RR2 −

15

64
R3 − 2RacRbdRabcd +

1

4
Rab∇a∇bR−Rab□R

ab +
1

4
R□R . (6.37)

Integrating by parts and substituting the three-dimensional Riemann tensor in terms of Ricci

tensors, this can be rewritten as

L̄3
∇
= −29

8
RR2 + 4R3 +

49

64
R3 +

3

8
R□R−Rab□R

ab , (6.38)

where we have introduced the notation

∇
= : equal up to total derivatives . (6.39)

If we use that

CabcC
abc ∇

= −2Rab□R
ab +

3

4
R□R+ 6R3 − 5RR2 +R3 , (6.40)

7In [17], the notation R2, R3 is used for the same contractions as in eq. (6.34) but with the Ricci tensor

replaced by its traceless part.
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then (6.38) can be further rewritten as

L̄3
∇
= S3[Rab] + T3[Cabc · · · ,∇a] , (6.41)

where

S3[Rab] ≡ R3 +
17

64
R3 − 9

8
RR2 , (6.42)

and

T3[Cabc · · · ,∇a] ≡
1

2
CabcC

abc . (6.43)

On the one hand, S3 is the cubic generalization of NMG identified in [16] as the most general

density of that order —not involving covariant derivatives of the Ricci tensor— which satisfies a

holographic c-theorem. On the other hand, T3 involves explicit covariant derivatives of the Ricci

tensor. However, since it is proportional to the Cotton tensor, which identically vanishes on

(6.6), it has no effect on the holographic RG flow. Then, L̄3 satisfies a holographic c-theorem.

As it turns out, this density has interesting additional properties. On the one hand, as

observed in [107], the criterion that cubic extensions of NMG do not propagate a scalar mode

usually present in the spectrum of higher-curvature gravities, and that they admit a Chern-

Simons formulation, restricts them to a general linear combination of S3 and T3. Hence, L̄3

satisfies these two requirements—the first one is in fact implied when the holographic c-theorem

is required, as shown in Section 1.5.

On the other hand, T3 had been previously singled out in [103] using yet a different criterion:

it is the cubic density with the lowest-order traced field equations in three dimensions. Indeed,

it is the only cubic theory whose equations of motion have a trace which only contains terms

involving up to three derivatives of the metric.8

Quartic Order

At quartic order, evaluating (5.23) for d = 3 gives

L̄4 =− 83

16
R2

2 − 17RR3 +
1155

64
R2R2 −

3635

1024
R4

− 31

4
R2□R+

57

16
R2□R− 10Rbc∇aRbc∇aR+

53

16
R∇aR∇aR

+
1

2
Rab∇aR

cd∇bRcd +
9

32
□R□R+

1

2
R□2R+

5

16
Rab∇aR∇bR

− 11

2
Ra

cRbc∇b∇aR+
61

16
RabR∇b∇aR− 3

32
∇b∇aR∇b∇aR

− 1

2
Rbc∇aR∇cRab −

47

4
RabR∇c∇cRab +

3

4
∇b∇aR□Rab +

1

2
Rab□∇b∇aR

− 11

2
R∇cRab∇cRab + 12Rab Rcd∇d∇bRac −

27

2
RabRcd∇d∇cRab

− 3

2
□Rab□Rab + 28Ra

cRab□Rbc − 2Rab□2Rab − 4Rab∇bRcd∇dRa
c

+ 4Rab∇cRbd∇dRa
c + 16Rab∇dRbc∇dRa

c . (6.44)

Again, when we decompose it as

L̄4
∇
= S4[Rab] + T4[Cabc · · · ,∇a] , (6.45)

8Note that S3 does not have equations of motion with a reduced-order trace, which means that the c-theorem

property and the reduced-order trace one are not directly connected, even though there are cases in which they

do coincide, such as NMG itself and the T3 density.
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where

S4[Rab] ≡
5

4
R3R− 15

16
R2

2 −
45

64
R2R2 +

205

1024
R4 , (6.46)

and

T4[Cabc · · · ,∇a] ≡ +RCabcC
abc − 11

2
Ra

bCaefC
bef +

23

4
RacRbd∇aCbcd

− 17

2
RebR

e
c∇aC

bac +
5

2
RRbc∇aC

bac − 5

4
CbcdR

ac∇aR
bd − 11

2
Re

cC
bac∇aRbe . (6.47)

Similarly to the cubic case, we find that S4 is the quartic generalization of NMG—algebraic

in the curvature—which non-trivially satisfies a holographic c-theorem [16, 17]. On the other

hand, we see that T4 is a linear combination of terms which always involve at least one Cotton

tensor and therefore identically vanish when evaluated on the RG-flow metric (6.6). Again, this

makes evident that L̄4 satisfies a holographic c-theorem.

Motivated by the cubic case, we have tried to express T4 as one of the theories identified in

[107] by the criterion that they admit a Chern-Simons description, but we have not succeeded

in doing so. It seems that such identification only works for the quadratic and cubic terms.

Similarly, while T3 had the property of possessing a reduced order for the trace of its equations

of motion, this is no longer the case for T4, whose traced equations are of order six.

Higher Orders

It seems, then, that of all the special properties that we identified for S3 and T3 in d = 3, only

those that refer to the holographic c-theorem extend to higher orders. Of course we have already

given a general proof that all the L(n) satisfy this theorem, but we can aim at distinguishing a

finer structure of how this happens.

We decompose the L̄n into terms Sn and Tn such that the Sn contain all of the non-vanishing

contribution to the c-function, and the Tn vanish identically on the RG-flow metric (6.6). For

the lowest orders we have seen that this separation can be performed in such a way that Sn is

algebraic in the curvature, that is,

L̄n
∇
= Sn[Rab] + Tn[∇a, Rab] . (6.48)

In fact, in d = 3 this decomposition can be performed in all n. This follows from the results in

Section 1.5, which show that, at every n, there always exists a density Cn[Rab] which non-trivially

satisfies the c-theorem.

For the cubic and quartic terms, we have found that the Tn are proportional to the Cotton

tensor. It is unclear whether this is the case also for the quintic term, since the expressions are

exceedingly complicated. On the other hand, the structure of Sn[Rab] is uniquely constrained

not only in n = 3, 4, as we have seen, but also in n = 5. Up to that order, there is a single

order-n algebraic density Cn which non-trivially satisfies the holographic c-theorem [17], and so

Sn[Rab] must be proportional to it. The proportionality constant can be found by evaluating

both L̄n and Cn on the RG-flow metric (6.6). For the quintic case, we obtain S5 =
5
64C5, where

C5 =
61R5

960
− 7R3R2

12
+

2R2R3

15
+

7RR2
2

5
− 16R2R3

15
. (6.49)

However, degeneracies start to appear at order 6. From that order on, there exist densities

that are algebraic in the Ricci tensor and which trivially satisfy the holographic c-theorem [17].
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These have been characterized in a precise manner. As shown in Sections 1.5 and 1.7 of our

first chapter, there is a unique sextic density of this type,9

Ω(6) =
1

3

[
R6 − 9R4R2 + 8R3R3 + 21R2R2

2 − 36RR2R3 − 3R3
2 + 18R2

3

]
, (6.50)

with the important property that, at any order n ≥ 6, all the densities algebraic in curvature

that vanish on the RG flow geometry are proportional to Ω(6). Then, by taking Lgeneral
n−6 to be

the most general density that is algebraic in the curvature, we have that Lgeneral
n−6 · Ω(6) is the

most general density of that type at order n that vanishes on RG flows.

This implies that the characterization of the terms in eq. (6.48) is ambiguous for n ≥ 6,

since we can redefine

S ′
n = Sn + Ln−6Ω6 , T ′

n = Tn − Ln−6Ω6 , (6.51)

where Ln−6 is an arbitrary order-(n− 6) density algebraic in the curvature. Still, it is possible

that a particular separation exists such that Tn≥6 does not involve any Ω6 and vanishes exclu-

sively due to the presence of Cotton tensors in all its terms. If that is the case, one can use this

criterion to give a unique definition for Sn≥6.

As far as we know, there are two different proposals for special order-n densities that non-

trivially satisfy the holographic c-theorem. The first results from the expansion of the Born-

Infeld-like extension of NMG presented in [121], and in the following subsection we find hints that

this may indeed coincide with Sn≥6 as defined by the above criterion. The second corresponds

to a basis of densities selected by the fact that they satisfy a simple recursive formula which

relates the order-n representative to the order-(n−1) and order-(n−2) ones described in Section

1.5.

6.5.2 Born-Infeld Gravities and Counterterms

An interesting generalization of NMG with a Born-Infeld-type Lagrangian was proposed in

[121]. The Lagrangian is

LBI-NMG = α
√
det (δba + βGb

a) , (6.52)

where Gab is the Einstein tensor and α, β are constants. This theory satisfies the holographic c-

theorem [151], and when expanded at low curvatures it also generates higher-derivative densities

which non-trivially satisfy it at any truncated order [152]. As we have seen, this property is

shared by the effective gravitational action induced on the brane-world.

Following our results in Chapter 1, we can expand LBI-NMG order by order, to find higher-

curvature densities B(n) which, on the RG flow metric (6.6), give

B(n)[α, β]
∣∣
A
= α (−β)n (2n− 5)!!

(2n)!!
(A′)2(n−1)

[
3(A′)2 + 2nA′′] . (6.53)

Remarkably, if we take α = 2/L and β = −L2, then this result coincides, for all n, with the RG

flow of the order-n brane-world density (6.24) in d = 3, namely

L(n)

∣∣
A
= B(n)[2/L,−L2]

∣∣
A
. (6.54)

9This is more easily written in terms of contractions of the traceless Ricci tensor R̃2 ≡ R̃b
aR̃

a
b , R̃3 ≡ R̃b

aR̃
c
bR̃

a
c ,

where R̃ab ≡ Rab − 1
3
gabR, namely, Ω(6) = 6R̃2

3 − R̃3
2.
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This result is highly non-trivial, since the coincidence occurs also for the relative factors between

the different order-n Lagrangians, and not only for the functional dependence in A and its

derivatives, which might have been expected. It is then natural to conjecture that the d = 3

counterterm Lagrangian may be resummed as

L =
2

L

√
det (δba − L2Gb

a) + T [Cabc · · · ,∇a], (6.55)

where again

T [Cabc · · · ,∇a]
∣∣
A
= 0. (6.56)

An even stronger conjecture would be that the whole tower of counterterms (including T ) could

be written as a Born-Infeld-like action. The idea that Born-Infeld type actions may act as

suitable AdS counterterms has been considered before in [290–292].

6.6 Structure of Counterterm Densities in Higher Dimensions

Let us now move to d ≥ 4. The expressions become considerably more involved than in three

dimensions, but we can still infer a similar general structure based on the lowest orders. For

the following discussion, it will be useful to keep in mind that the Weyl tensor Cabcd identically

vanishes on the RG-flow geometry eq. (6.6).

Quadratic Order

Up to an overall factor, the quadratic term reads

L̄2 = RabR
ab − d

4(d− 1)
R2 , (6.57)

which is the d-dimensional generalization of NMG. Since it can be rewritten as a linear combi-

nation of the Weyl tensor squared and the quadratic Lovelock density, namely,

L̄2 =
d− 2

4(d− 3)

[
CabcdC

abcd −X4

]
, (6.58)

it is easy to see why it also fulfils a holographic c-theorem. Similar to the d = 3 case, L̄2

propagates no scalar mode when linearized around maximally symmetric backgrounds [127,

144]. Moreover, L̄2 also belongs to the set of quadratic theories which have the property of

possessing equations of motion whose trace is second-order, since for d ≥ 4, that set is given by

an arbitrary linear combination of CabcdC
abcd and the quadratic Lovelock density X4 [103, 131,

283].

Cubic Order

The cubic density was written in eq. (5.22) above. Observe first that integrating by parts

this can be rewritten as

L̄3
∇
=+

3d+ 2

4(d− 1)
RRabR

ab − d(d+ 2)

16(d− 1)2
R3 − 2RabRacbdR

cd

− d

4(d− 1)
∇aR∇aR+∇cRab∇cRab . (6.59)
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Now, following inspiration from the three-dimensional case, we can try to rewrite L̄3 as a linear

combination of densities with special properties. We find that, indeed, L̄3 can be written for

general d ≥ 4 as

L̄3 =
d− 2

16(d− 3)
N6 + Ξ+∆ , (6.60)

where N6, Ξ and ∆ are distinguished for different reasons. On the one hand, N6, which is

defined as

N6 ≡− 24RabcdRcdbeR
e
a −

3(d+ 2)

d− 1
RRabcdRabcd −

24d

d− 2
RabcdRacRbd (6.61)

− 16d(d− 1)

(d− 2)2
RabRbcR

c
a +

12(d3 − 2d2 + 6d− 8)

(d− 2)2(d− 1)
RRabRab

− d4 − 3d3 + 10d2 + 4d− 24

(d− 2)2(d− 1)2
R3 ,

is the cubic Quasi-topological density [103, 283, 284]. This satisfies a number of interesting

properties. Firstly, it can be written as

N6 =
d− 2

d− 5
[4W1 + 8W2 −X6] , (6.62)

where W1 ≡ Cab
cdC

cd
efC

ef
ab, W2 ≡ CabcdC

ebcfCa
ef

d and X6 is the cubic Lovelock density.

This expression makes manifest that N6 satisfies the holographic c-theorem [149]. N6 identically

vanishes in d = 4 but it is non-trivial for d ≥ 5. It is in fact the term involving N6 (actually

X6) the one which makes L̄3 be non-trivial when evaluated on eq. (6.6) for d ≥ 5 (d ≥ 6). In

addition, N6 is one of the few cubic densities which possess second-order traced equations for

general d ≥ 5 [283].10 Finally, N6 only propagates the usual massless graviton when linearized

around maximally symmetric backgrounds and it admits particularly simple black hole solutions

[283, 284].

On the other hand, Ξ is the piece which contains the terms involving explicit covariant

derivatives. It is explicitly given by

Ξ ≡ (d− 2)2

4(d− 3)(d− 6)

[
Σ+

2(d− 3)

3(d− 2)2
Θ

]
, (6.63)

where Σ and Θ were previously identified again in [103] as the two only densities which possess

field equations whose trace is third-order in derivatives for d ≥ 4. They are given, respectively,

by11

Σ =− 3d− 2

2
RabcdRcdefR

ef
ab +

8d

3
Rab

cdR
ce
bfR

df
ae +

4d

d− 2
RabcdRacRbd (6.65)

+
4(d− 4)

d− 2
RabRbcR

c
a −

2d

3(d− 1)2
R3 − d(d− 3)

(d− 2)(d− 1)
∇aR∇aR

10For d = 5, 6 there are two independent densities which possess second-order traced equations whereas for

d ≥ 7 there exist three.
11Similarly to the case of N6 in d = 5, the combination inside the brackets in eq. (6.63) vanishes identically in

d = 6, and then one finds

Ξ|d=6 ≡+
2

9
RabcdRcdefR

ef
ab − 8

9
RabcdRacRbd − 4

3
RabcdRacRbd +

10

9
RabRbcR

c
a (6.64)

+
1

450
R3 − 3

10
∇aR∇aR+∇aRbc∇aRbc .
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+
4(d− 3)

d− 2
∇aRbc∇aRbc ,

and

Θ =+ 2(d2 − 4)RabcdRcdefR
ef
ab − 4(d2 − 4)Rab

cdR
ce
bfR

df
ae − 12(d− 2)RabcdRacRbd (6.66)

− 16RabRbcR
c
a +

d2 − d+ 2

(d− 1)2
R3 +

6d

d− 1
∇aR∇aR− 24∇aRbc∇aRbc .

Both Σ and Θ non-trivially fulfil the holographic c-theorem when evaluated on eq. (6.6). How-

ever, the combination appearing in the density Ξ trivially satisfies the holographic c-theorem

for general d, as it becomes a total derivative when evaluated on eq. (6.6).

Finally, ∆ is a density which does not involve explicit covariant derivatives, which is trivial

when evaluated on the holographic c-theorem ansatz for general d and which does not satisfy

any additional special property involving a reduced order for its traced equations. It is given

by

∆ ≡ 1

d− 3

[
(d− 10)(d− 2)

24
RabcdRcdefR

ef
ab +

36− d(10 + 7d)

4(d− 2)(d− 1)
RRabRab (6.67)

+
3(d− 2)

2
RabcdRcdbeR

e
a +

3(d− 2)(d+ 2)

16(d− 1)
RRabcdRabcd +

d+ 8

2
RabcdRacRbd

+
11d− 16

2
RabRbcR

c
a +

2(d− 2)

3
Rab

cdR
ce
bfR

df
ae +

−28 + d(21d− 16)

24(d− 2)(d− 1)2
R3

]
.

As mentioned earlier, the general set of cubic theories constructed from arbitrary contractions of

the metric and the Riemann tensor satisfying the holographic c-theorem property was obtained

in [149]. ∆ is one of the 5 independent densities which contribute trivially to the c-function.

In view of the three-dimensional case, it is natural to wonder whether all terms appearing

in Ξ and ∆ may be rewritten in a simplified way in terms of the Weyl tensor—so that the fact

that they vanish when evaluated on eq. (6.6) becomes manifest.

An alternative decomposition of L̄3, found in [289], is

L̄3 = Sab

(
Scd +

1

d− 3
∇c∇d

)
Cacbd + 3(d− 4)P(3). (6.68)

Since the Weyl tensor and P(3) are explicit in this form, it makes manifest that L̄3 satisfies the

holographic c-theorem.

Higher Orders

Going to higher orders complicates the expressions considerably. We presented the result

for the general-d quartic density in eq. (5.23). We have verified that, analogously to the d = 3

case, it is also possible to write L̄4 as a sum of a term which does not involve explicit covariant

derivatives and which non-trivially satisfies the c-theorem, plus another one which does contain

covariant derivatives and is trivial when evaluated on eq. (6.6). It is then natural to expect that

the n-th order density in d dimensions can always be written as

L̄n = Sn[Rabcd] + Tn[Rabcd,∇a] , (6.69)

where Sn[Rabcd] is linear in A′′(r) when evaluated on eq. (6.6) and does not involve higher-

derivative terms, and where Tn[Rabcd,∇a] vanishes (or it is a total derivative) for the same

ansatz.
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6.7 Conclusions and Outlook

In this chapter, we have proven that the higher-derivative densities L(n) that are induced

from a brane-world construction fulfil a simple holographic c-theorem, and we have explored

some of their other properties at low-enough order-n.

Let us close with a few observations and possible future directions.

Structure of Counterterms. We have just seen that some properties of the invariants L(n)

are more easily seen if they are written in terms of Weyl and Schouten tensors since, in particular,

the Weyl tensor vanishes for the c-theorem ansatz (6.6). Formulating the algorithm described

in the previous Chapter 5 on a basis of Weyl and Schouten tensors will perhaps allow us to

push it to higher orders, or it may also reveal finer structures in the counterterms.

Higher-curvature gravities in the bulk. We have seen that starting from Einstein gravity

in the (d+1)-dimensional bulk, the effective d-dimensional higher-derivative theories induced on

the brane satisfy holographic c-theorems. What would happen if the bulk gravitational theory

were itself a higher-curvature theory? It seems likely that the c-theorem we have proven is an

imprint of the healthy dynamics of bulk Einstein gravity: good parents raise good children. In

that case, we would expect it to fail for a general higher-curvature bulk theory. Natural excep-

tions to be expected are Lovelock gravities [134, 135], which also have second order equations.

In fact, it has been suggested in [293] that in that case the counterterm at a given order is a

linear combination of the same Einstein gravity-induced counterterm plus a new piece propor-

tional to the d-dimensional Lovelock density of the corresponding order. Hence, for instance,

L3 would be a linear combination of eq. (5.22) plus the cubic Lovelock density X6, and so on. It

would then follow that these modified brane actions also satisfy holographic c-theorems, since

the Lovelock terms satisfy the required conditions—namely, second-order on-shell action and

linearity in A′′(r) when evaluated on the eq. (6.6) ansatz.

Counterterms as Born-Infeld gravities in higher-dimensions? In Section 6.5.2, we

showed that the order-n counterterm Lagrangian Ln coincides, when evaluated on the holo-

graphic c-theorem metric ansatz eq. (6.6), with the general term resulting from the expansion of

the Born-Infeld-type generalization of NMG [121]. This suggests that the full three-dimensional

counterterms Lagrangian might be rewritten in such a Born-Infeld form plus a possible term

which would vanish when evaluated on the RG-ansatz metric eq. (6.6). A possible d-dimensional

generalization of these observations is far from obvious at the moment, but a quick inspection

of some low-dimensional cases suggests that the modified Born-Infeld-like Lagrangian

L(d)
BI = α

[
det
(
δba + βGb

a

)] 1
d−1

(6.70)

also fulfils a simple holographic c-theorem. Moreover, when eq. (6.70) is evaluated on-shell

(on eq. (6.6)) and expanded order by order, we find densities B(n)|A with the same functional

dependence on A as in the on-shell counterterm Lagrangians (6.24). We have found, however,

no straightforward way to define α and β such that the relative (overall) coefficients match our

findings in equation (6.24). It would be interesting to analyse this possibility in more detail

and, more generally, to study the properties of the Lagrangian defined by eq. (6.70).
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Holographic c-theorem gravities and scalar modes. We have seen that the counterterm

Lagrangians of the lowest orders often satisfy additional properties besides the holographic

c-theorem. One of them is the absence of the scalar mode that generically appears in the

linearized spectrum around maximally symmetric backgrounds of higher-derivative theories—

see e.g. [127]. Many higher-curvature theories which satisfy the holographic c-theorem also

seem to share this property. In fact, we have proven in Section 1.5 that, in d = 3, all the higher-

curvature theories that satisfy a holographic c-theorem propagate no scalar mode. It would

be interesting to prove or disprove this for d ≥ 4. Observe that the class of theories which

do not propagate the scalar mode is larger than the class of theories that admit a holographic

c-theorem, so the question is whether the latter class is fully contained within the former.

In the case considered in this work, it seems natural that the higher-derivative gravities

holographically induced on the brane should propagate no scalar mode when linearized around

maximally symmetric backgrounds. This fact is true in d = 3 to all orders, as we have just said,

and in general d at least for n = 2. After all, these theories are induced from Einstein gravity

in AdSd+1. And from the bulk perspective and to linear order, it was shown already in [40]

that one can choose an axial TT gauge for the (massless spin-2) d+ 1-dimensional graviton to

induce an almost massless spin-2 d-dimensional graviton on the brane, plus an infinite tower of

massive spin-2 modes. We will prove that this is indeed the case in the following chapter, at

least when Ibgrav is linearized around flat space.
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Chapter 7

The Spectrum of Brane-World

Gravities

In this chapter, we will study the linearization of the induced gravity on the brane Ibgrav

around flat space, making use of our results from Chapter 2. We will first obtain its effective

quadratic action to all orders in derivatives, which we will be able to resum into a compact

expression. we will then obtain the linearized equations of motion. Finally, we will characterize

the pole structure of the metric propagator in various dimensions.

7.1 Introduction

Recall that the effective gravitational action induced on the brane world volume is given by

[1, 3, 230, 232, 276–278, 280, 289]

Ibgrav =
1

16πGN,eff

∫
ddx

√
−g
[
R+

L2

(d− 2)(d− 4)
Rab

(
Rab −

d

4(d− 1)
gabR

)
+ . . .

]
, (7.1)

where L is the AdSd+1 radius of the ambient spacetime. Notice that we have chosen Λeff = 0,

since we will be interested in studying the linearization of Ibgrav in flat space. Starting at sixth

order in derivatives, all the higher-derivative densities involve terms with covariant derivatives

of the Riemann tensor, as seen in eq. (5.22) and eq. (5.23) of Chapter 5, and so they fall into

the kind of higher-derivative theories that we have studied in Chapter 2.

In this chapter, we will show that the effective curvature-squared action of the full brane-

world gravity —including the infinite tower of terms with covariant derivatives—, which fully

specifies the linearized theory around flat space, can be written as

I
(2)
bgrav =

1

16πGN,eff

∫
ddx

√
−g
[
R+ L2RabFd

(
L2□

)(
Rab −

d

4(d− 1)
gabR

)]
, (7.2)

where

Fd(L
2□) ≡ d(d− 2)

L4□2
− 1

L2□
−

(d− 2)Y d+2
2

(
L
√
□
)

L3□3/2Y d
2

(
L
√
□
) , (7.3)

and Yk are Bessel functions of the second kind. Using this expression, we will study the linearized

spectrum of the theory on Minkowski spacetime in various dimensions. Generically, the metric
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perturbations propagator includes poles of the form

Pd(L
2k2) ∼ 1

L2k2
, Pd(L

2k2) ∼ − 2

(d− 2)L2[k2 +m2
j ]
, (7.4)

where the first is the usual Einstein gravity massless spin-2 mode, and the second corresponds

to infinite towers of massive spin-2 modes (labelled by j) which always have negative kinetic

energy. Depending on the dimension, some of those modes have positive squared masses, some

of them have negative squared masses and some of them have imaginary squared masses. In

our case, we will prove that brane-world gravities do not propagate a scalar mode, since their

effective quadratic action fulfils condition (2.24). Moreover, we will see that they always present,

besides the usual massless graviton, an infinite tower of spin-2 ghosts.

Recall that in Chapter 5 we saw how to compute Ibgrav algorithmically, by integrating the

Gauss radial constraint. Since we are interested in studying the spectrum of Ibgrav around flat

space, we can fix the brane tension to be critical so that the theory has a vanishing cosmological

constant. The radial constraint reads, in this case,

Π =
L

2

[
R+ΠabΠ

ab − 1

d− 1
Π2

]
. (7.5)

Again, assuming that the Lagrangian allows for a derivative expansion of the form

L =
∞∑
n=1

L2n−1L(n) , (7.6)

the new algorithm that solves eq. (7.5) is

Π(1) =
R

2
, (7.7)

Π(n) =
1

2

n−1∑
i=1

[
Π(i) abΠ

ab
(n−i) −

1

d− 1
Π(i)Π(n−i)

]
, n ≥ 2 , (7.8)

along with [230]

Π(n) = (d− 2n)L(n) + total derivative . (7.9)

Since the total derivatives are irrelevant for the Lagrangian, this allows us to get L(n) from the

trace of the equation of motion Π(n). Thus, we get

L(1) =
R

2(d− 2)
, Π(1) ab = − 1

d− 2
Gab . (7.10)

In a similar fashion, this process allows us to generate all the Lagrangian densities L(n).

Observe that all of these Lagrangians can be written in the form,

L = L(Rab,∇cRab,∇c∇dRab, . . .) , (7.11)

since Riemann curvature appears nowhere in the process.1

1Obviously, the same thing is true for our the general algorithm in Chapter 5. There, however, we chose to

commute some covariant derivatives to simplify expressions and match with known results in the literature.
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7.2 Quadratic Action

We are interested in studying the linearized equations of these theories around the Minkowski

vacuum. As we saw in Chapter 2, the only higher-derivative terms that contribute to the

linearized equations are those quadratic in the curvature (but with an arbitrary number of

covariant derivatives) and, therefore, the only possible quadratic Lagrangians are R□nR and

Rab□nRab. Thus, at order 2n in derivatives, we will necessarily have

L(n) = αnR□
n−2R+ βnR

ab□n−2Rab +O(R3) . (7.12)

Our goal is to determine the coefficients αn and βn, for which we will use eq. (7.8). First of all,

in order to evaluate the left-hand-side of eq. (7.8), we use eq. (7.9), so that we get

Π(n) = (d− 2n)
(
αnR□

n−2R+ βnR
ab□n−2Rab

)
+ . . . . (7.13)

Now we must evaluate the right-hand-side. The case n = 2 must be considered independently,

and it yields

Π(2) =
1

2

[
Π(1) abΠ

ab
(1) −

1

d− 1
Π2

(1)

]
= − d

8(d− 1)(d− 2)2
R2 +

1

2(d− 2)2
RabRab , (7.14)

so that we identify

α2 = − d

8(d− 1)(d− 2)2(d− 4)
, β2 =

1

2(d− 2)2(d− 4)
. (7.15)

Now, for n ≥ 3 we have

Π(n) = Π(1) abΠ
ab
(n−1) −

1

d− 1
Π(1)Π(n−1) +

1

2

n−2∑
i=2

[
Π(i) abΠ

ab
(n−i) −

1

d− 1
Π(i)Π(n−i)

]

= −
RabΠ

ab
(n−1)

d− 2
+

RΠ(n−1)

2(d− 1)(d− 2)
+

1

2

n−2∑
i=2

[
Π(i) abΠ

ab
(n−i) −

1

d− 1
Π(i)Π(n−i)

]
. (7.16)

In order to evaluate this expression we need the equations of motion Π(n) ab. Notice that we

will compare the resulting expression with eq. (7.13), which is quadratic in the curvature. Now,

eq. (7.16) is already quadratic in the equations of motion, and this means that, in order to

obtain the terms that are quadratic in the curvature we only need to obtain the terms in the

equations of motion that are linear in the curvature. Fortunately, all of these come from the

term

−4∇c∇ePacbe ⊂ Π(n) ab , where Pacbe =
δL

δRabcd
. (7.17)

For a theory that only depends on Ricci curvatures this can be expressed as

Π(n) ab = −2gab∇c∇ePce − 2□Pab + 4∇c∇(aPb)c + . . . , where Pab =
δL
δRab

. (7.18)

Thus, for the Lagrangians (7.12) we get

Π(n) ab = −(4αn + βn)gab□
n−1R+ 2(2αn + βn)∇a∇b□

n−2R− 2βn□
n−1Rab + . . . , (7.19)

Π(n) = − (4(d− 1)αn + dβn)□
n−1R+ . . . (7.20)
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Then, we can use these expressions to evaluate eq. (7.16), and after some simplifications we find

Π(n) = 2

(
− d

4(d− 1)
R□n−2R+Rab□n−2Rab

)[
βn−1

(d− 2)
+

n−2∑
i=2

βiβn−i

]
+ . . . , (7.21)

where the ellipsis also contain total derivatives that arise when rearranging the derivatives.

Therefore, comparing with eq. (7.13), we conclude that

αn = − d

4(d− 1)
βn , (7.22)

while βn satisfies the recursive relation

βn =
2

(d− 2n)

[
βn−1

(d− 2)
+

n−2∑
i=2

βiβn−i

]
. (7.23)

We can transform this recursive relation into a differential equation by introducing the gener-

ating function

f(x) =
∞∑
n=2

βnx
2n−d . (7.24)

By taking the derivative and using the recursive relation for βn≥3, we have

f ′(x) =

∞∑
n=2

(2n− d)βnx
2n−d−1 = (4− d)β2x

3−d + 2

∞∑
n=3

[
βn−1

d− 2
+

n−2∑
i=2

βiβn−i

]
x2n−d−1

= (4− d)β2x
3−d − 2

d− 2
xf(x)− 2xd−1f(x)2 .

(7.25)

Now, the action can in fact we written in terms of this function. The full action (at quadratic

order) reads

I
(2)
eff =

1

16πGd+1

∫
ddx

√
−g

[
L

2(d− 2)
R+

∞∑
n=2

βnL
2n−1

(
Rab□n−2Rab −

d

4(d− 1)
R□n−2R

)]

=
1

16πGd

∫
ddx

√
−g
[
R+ L2RabF

(
L2□

)
Rab −

d

4(d− 1)
L2RF

(
L2□

)
R

]
, (7.26)

where

F (L2□) = 2(d− 2)
∞∑
n=2

βn
(
L2□

)n−2
, (7.27)

and Gd = 2(d− 2)Gd+1/L. We see that this F is related to f in eq. (7.24) by

f(x) =
1

2(d− 2)
x4−dF (x2) . (7.28)

Thus, F (x) satisfies the equation

F ′(x) = (d− 4)
F (x)− F (0)

2x
− 1

2(d− 2)

(
2F (x) + xF (x)2

)
, (7.29)

where

F (0) = 2(d− 2)β2 =
1

(d− 2)(d− 4)
. (7.30)

128



Chapter 7 The Spectrum of Brane-World Gravities

Remarkably, this differential equation allows for a general solution in terms of Bessel functions.

We find that the appropriate solution, that corresponds to the summation of the series eq. (7.27),

is given by

Fd(x) =
d(d− 2)

x2
− 1

x
−

(d− 2)Y d+2
2

(
√
x)

x3/2Y d
2
(
√
x)

, (7.31)

where Yk are the Bessel functions of the second kind. Inserting Fd(L
2□) in eq. (7.26) we obtain

our final expression for the quadratic action of the brane-world theory in general dimensions.

Despite the singular appearance of this function at x = 0, it is actually analytic around

that point for odd d. In fact, for odd d, Fd can actually be written in terms of trigonometric

functions. We have

F3(x) = − sin (
√
x)

x sin (
√
x) +

√
x cos (

√
x)

≈ −1 +
2x

3
− 7x2

15
+

34x3

105
+ . . . , (7.32)

F5(x) =
cos (

√
x)

(3− x) cos (
√
x) + 3

√
x sin (

√
x)

≈ 1

3
− 2x

9
+
x2

27
+

2x3

405
+ . . . , (7.33)

F7(x) = −
√
x sin (

√
x) + cos (

√
x)

(x− 15)
√
x sin (

√
x) + 3(2x− 5) cos (

√
x)

≈ 1

15
+

2x

75
− 13x2

1125
+

22x3

16875
+ . . . ,

(7.34)

where we included the first terms in the expansions around x = 0. On the other hand, in even

d ≥ 4, the expansion around x = 0 contains logarithmic divergences, which are the counterpart

of the 1/(d − 2n) divergences in the definition of these theories. For instance, for d = 4 one

finds

F4(x) =
8

x2
− 1

x
− 2Y3(

√
x)

x3/2Y2(
√
x)

≈ 1

4
[−2γE − log(x/4)]+

1

8
[−1 + γE + log(x/4)]x+ . . . , (7.35)

where γE is the Euler-Mascheroni constant. Finally, the d = 2 case is a bit different, as it simply

yields

F2(x) = −1

x
, (7.36)

which means that the corresponding quadratic action is proportional to the Polyakov induced-

gravity action [294] —see also [85].

7.3 Linearized Equations and Modes

It is obvious from eq. (7.26) that the brane-world theory belongs to the class of theories which

satisfy the no-scalar condition (2.24), as in this case we have F1 = F , F2 = −d/(4(d − 1))F ,

F3 = 0. As a consequence, the linearized equations of the theory impose the condition (2.25),

namely,

−(d− 2)

64πG
R(1) = 0 , (7.37)

so the trace of the equation has no dynamics and we are left with

1

32πG

[
1 + F (L2□̄)L2□̄

]
G

(1)
ab = 0 . (7.38)

By going to the Lorentz gauge as in Section 2.2.2, one finds

− 1

64πG

[
1 + F

(
L2□̄

)
L2□̄

]
□̄h⟨ab⟩ , (7.39)
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and the corresponding propagator is given by

Pd(k) =
64πGd

(d− 2)

[
iLkY d+2

2
(iLk)

Y d
2
(iLk)

− d

]−1

. (7.40)

Using this we can analyze the pole structure in various dimensions.

Three dimensions

In d = 3 the propagator becomes

P3(k)

64πG3
=

1

L2k2
− Lk tanh(Lk)

L2k2
. (7.41)

Studying its pole structure we find a massless mode as well as an infinite tower of massive

gravitons. The massless mode is the same as the one appearing in the pure Einstein gravity

spectrum and it is pure gauge in three dimensions. On the other hand, the massive gravitons

have masses

mn =
π

2L
(2n− 1) , n = 1, 2, . . . , (7.42)

and all of them have negative kinetic energy. This can be seen by expanding the propagator

around each of the poles and comparing the overall sign with the one of the positive-energy

would-be massless mode. For this, one has

P3(k
2 → 0)

64πG3
=

1

L2k2
+O(1) . (7.43)

For the new modes one finds, instead,

P3(k
2 → −m2

n)

64πG3
= − 2

L2[k2 +m2
n]

+O(1) . (7.44)

Hence, all the new modes are ghosts.

Four dimensions

In d = 4, the analysis of the propagator becomes more cumbersome. To begin with, there

is no simplified way to write down the propagator in terms of trigonometric functions. Instead,

are left with
P4(k)

64πG4
=

iY2(iLk)

2LkY1(iLk)
. (7.45)

Again, we find the Einstein-like massless graviton and an infinite tower of massive ghost gravi-

tons, with masses

mn ≈ π

L
(0.69937, 1.72832, 2.73619, 3.73987, 4.742, 5.74339, 6.74437, 7.7451, . . . ) . (7.46)

In this case, the masses are not equispaced, but the difference between pairs of modes tends to

π/L as n→ ∞. Indeed, the mn tend to π
L (n− 1/4) as n→ ∞. Moreover, we now find a tower

of modes with complex squared masses which are conjugate of each other,

mn,± ≈ π

L
(±0.1790 + 1.220i,±0.1762 + 2.233i,±0.1755 + 3.238i, · · · ) . (7.47)

These tend to π
L(±0.17485 + (n + 1/4)i) as n → ∞. Again we find that all massive modes,

including the complex ones, have negative kinetic energy, namely,

P4(k
2 → −m2

j )

64πG4
= − 1

L2[k2 +m2
j ]

+O(1) , (7.48)

∀j ∈ {n,±} so again they are all ghosts.
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Five dimensions

In d = 5 one finds
P5(k)

64πG5
=

1

L2k2
+

1

3− 3Lk tanh(Lk)
, (7.49)

In addition to the Einstein-like massless graviton, we again find an infinite tower of massive

gravitons with masses

mn ≈ π

L
(0.89075, 1.9485, 2.9660, 3.9746, 4.9797, 5.9831, 6.9855, . . . ) . (7.50)

Now, however, there is only one tachyonic mode with imaginary mass

m2
t ≈ −1.43923

L2
. (7.51)

Once again, we find that all the massive modes have negative kinetic energy, namely,

P5(k
2 → −m2

j )

64πG5
= − 2

3L2[k2 +m2
j ]

+O(1) , (7.52)

∀j ∈ {n, t}, so they are all ghosts.

Six dimensions

The case of d = 6 is similar to the four-dimensional case. The propagator reads

P6(k)

64πG6
=

iY3(iLk)

4LkY2(iLk)
, (7.53)

and again, we find the Einstein-like massless graviton, an infinite tower of massive ghost gravi-

tons, with masses

mn ≈ π

L
(1.077, 2.163, 3.191, 4.205, 5.214, 6.220, 7.224, . . . ) , (7.54)

which tend to π
L (n+ 1/4) as n→ ∞; and a tower of modes with complex squared masses which

are conjugate of each other,

mn,± ≈ π

L
(±0.3382+0.4711i,±0.1877+1.636i,±0.1795+2.680i,±0.1773+3.699i, · · · ) . (7.55)

These tend to π
L(±0.17485+ (n− 1/4)i) as n→ ∞. Moreover, we find an extra conjugate pair,

m0,± ≈ π

L
± 0.4716− 0.1503i . (7.56)

As before, all massive modes are ghosts, including the complex ones, since

P6(k
2 → −m2

j )

64πG6
= − 1

2L2[k2 +m2
j ]

+O(1) , (7.57)

∀j ∈ {n,±}, so they all have negative kinetic energy.

131



Chapter 7 The Spectrum of Brane-World Gravities

Seven dimensions

Finally, in d = 7, one finds

P7(k)

64πG7
=

1

15
+

1

L2k2
− L2k2

15(3 + L2k2 − 3Lk tanh(Lk))
, (7.58)

Again, we find the Einstein-like massless graviton, and an infinite tower of massive ghost gravi-

tons with masses

mn ≈ π

L
(1.2604, 2.3719, 3.4109, 4.4314, 5.4442, 6.4529, 7.4593, . . . ) , (7.59)

with the difference between pairs of modes tending to π/L as n→ ∞. Now, there are only two

extra modes with complex squared masses which are conjugate of each other, namely,

m2
± ≈ −2.01933± 3.19512i

L2
. (7.60)

Once more, we find that all the massive modes, including the ones with complex squared-masses,

have negative kinetic energy, namely,

P7(k
2 → −m2

j )

64πG7
= − 2

5L2[k2 +m2
j ]

+O(1) , (7.61)

∀j ∈ {n,±} so they are all ghosts.

7.4 Conclusions

We have found that, regardless of the number of dimensions, there are always pathological

modes appearing in the linearized spectrum of these brane-world gravities, with squared masses

of order ∼ 1/L2. Since the bulk theory is Einstein gravity, which is perfectly well-defined, the

appearance of these pathological modes on the gravitational effective theory induced on the

brane might seem worrisome at first. The bulk, however, is dual to this induced theory on the

brane plus a cut-off CFT, which we have neglected in this analysis. The CFT cut-off is precisely

∼ 1/L2, and so it is not surprising that pathologies might appear at this order.

Indeed, when one takes the coupling between this cut-off CFT and the induced gravity on

the brane into account, the observed pathologies disappear, as we saw in Chapter 3 from the

perspective of the bulk. In a sense, coupling the induced action to the cut-off CFT allows one

to “UV-complete” the theory by making it dual to the perfectly defined Einstein gravity in the

bulk. It would be interesting, however, to perform this computation directly, without having to

explain it through the dual bulk picture.
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Conclusions

A detailed summary of the results in this thesis can be found at the end of each chapter, so

let us just highlight the most important ones, and the connections between them.

In Chapter 1, we presented the equations of motion for general higher-curvature gravities

in three-dimensional spacetimes, and we fully characterized their linear spectrum on maximally

symmetric spacetimes. We also identified all three-dimensional higher-curvature gravities which

satisfy a holographic c-theorem. Then, in Chapter 2, we studied the structure of the linearized

equations of general higher-derivative gravities on maximally symmetric spacetimes of arbitrary

dimension, and described the spectrum of gravitational perturbations around flat space.

In Chapter 3, we gave a review on brane-worlds, and generalized and expanded the previously

known results, both from the bulk perspective and the dual brane perspective. In Chapter 4,

we then added a DGP term on the brane, and put bounds on the values of its coupling.

In Chapter 5, we explicitly computed the first few terms of the higher-derivative theory

of gravity that is induced on the brane, which we then studied in detail in the following two

chapters, neglecting its coupling to the cut-off CFT on the brane. In Chapter 6, we proved

that, at each curvature order, the terms of this theory fulfil a holographic c-theorem. Lastly, in

Chapter 7, we studied the linearization of the induced gravity theory around flat space, while

accounting for the full tower of higher-derivative terms. Besides the usual massless graviton,

we found that there is always a tower of massive spin-2 ghosts.

Throughout this thesis, combining the study of higher-derivative theories of gravity with

that of brane-world models, we have investigated the properties of the theory of gravity that is

induced on the brane, which in turn reflect the UV structure of holographic CFTs. Although

the theory inherits some good properties from the well-defined Einstein bulk, such as fulfill-

ing a holographic c-theorem, we have seen that it is not fully free of pathologies, presenting

ghosts in the spectrum of linearized metric perturbations around flat space. Therefore, we have

shown that brane-world holography is an interesting way of generating an appealing class of

higher-derivative theories, but that one should be careful when considering them on their own,

disregarding their coupling to the brane CFT and holographic origin. Moreover, the results in

this thesis allow us to better understand brane-world holography, and we hope that it will help

expand and clarify their use as models for semiclassical gravity within AdS/CFT.





Future Directions

As it is often the case with scientific research, this thesis brings more questions than an-

swers. A first, natural question to ask is whether the induced brane-world gravity theory fulfils

any other remarkable qualities, which could tell us more about the properties of brane-world

holography. Perhaps a rewriting of the algorithm generating the higher-derivative terms in the

induced action, in terms of the Schouten tensor, could reveal new, undiscovered, structures. For

example, saw that all theories that fulfil a holographic c-theorem in three-dimensions propagate

no scalar mode when perturbed around maximally symmetric spacetimes, and we showed that

the theory of induced gravity on the brane fulfils a holographic c-theorem and does not propagate

a scalar mode when linearized around flat space. An obvious next step would be proving that

indeed the induced gravity on the brane propagates no scalar mode on all maximally symmetric

spacetimes. It would be even more interesting to prove that all higher-derivative theories which

fulfil a holographic c-theorem have no scalar mode in their spectrum on maximally symmetric

spacetimes.

On another front, one can think of extending the brane-world constructions in different

directions. One possibility would consist on studying brane-world holography with higher order

operators on the brane beyond the DGP term, as we started doing at the end of Chapter 4.

But one could also consider brane-world holographic models in which the bulk theory is not

Einstein gravity but a higher-curvature theory of gravity. A different route would be considering

alternative boundary conditions on the brane, such as conformal boundary conditions. Lastly,

we still intend to further study brane-world models with a DGP term in the limit in which

the brane is sent to the boundary, in order to understand models of AdS/CFT with dynamical

boundary.

Finally, it would be interesting to extend the original holographic renormalization compu-

tation including the terms that do not diverge as the cut-off is removed. Then, keeping the

cut-off finite, we would clearly understand the separation between matter and geometric de-

grees of freedom in brane-world holographic models, and we would have an expression for the

cut-off CFT on the brane in terms of the bulk metric in Fefferman-Graham coordinates. These

results could then be used to double-check the known properties of C-metric brane black holes

interacting with strongly coupled CFTs.
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Appendix A

Basis of higher-derivative invariants

We present here a complete list of the curvature invariants at each order in derivatives. The

same list can be found in [295]. Our ordering also follows [295]: The invariants are ordered

by the number of covariant derivatives acting on individual curvature tensors. We begin with

those invariants that involve the largest number of derivatives acting on curvature, and end with

the polynomial curvature invariants (those built exclusively from contractions of the Riemann

tensor).

Four derivatives

There are four possible terms involving four derivatives of the metric:

R(1)
4 = □R , R(2)

4 = R2 , R(3)
4 = RpqRpq , R(4)

4 = RpqrsRpqrs . (A.1)

Six derivatives

There are 17 terms involving six derivatives of the metric:

R(1)
6 = □R2 , R(2)

6 = R□R , R(3)
6 = R;pqR;pq , R(4)

6 = Rpq□Rpq , R(5)
6 = Rpq;rsRpqrs ,

R(6)
6 = R;pR;p , R(7)

6 = Rpq;rRpq;r , R(8)
6 = Rpq;rRpr;q , R(9)

6 = Rpqrs;tRpqrs;t , R(10)
6 = R3 ,

R(11)
6 = RRpqRpq , R(12)

6 = RpqR r
p Rqr , R(13)

6 = RpqRrsRprqs , R(14)
6 = RRpqrsRpqrs ,

R(15)
6 = RpqRrst

pRrstq , R(16)
6 = RpqrsR tu

pq Rrstu , R(17)
6 = RpqrsR t u

p r Rqtsu . (A.2)

Eight derivatives

There are 92 terms involving eight derivatives of the metric:

R(1)
8 = □3R , R(2)

8 = R□2R , R(3)
8 = Rpq□R

;pq , R(4)
8 = Rpq□2Rpq , R(5)

8 = Rpq;rsRprqs ,

R(6)
8 = R;p□R;p , R(7)

8 = Rpq;rRpq;r , R(8)
8 = Rpq;r□Rpq;r , R(9)

8 = Rpq;r□Rpr;q ,

R(10)
8 = Rpq;rstRprqs;t , R(11)

8 = (□R)2 , R(12)
8 = R;pqR;pq , R(13)

8 = R;pq□Rpq ,

R(14)
8 = □Rpq□Rpq , R(15)

8 = Rpq;rsRpq;rs , R(16)
8 = Rpq;rsRpr;qs , R(17)

8 = Rpq;rsRrs;pq ,

R(18)
8 = Rpqrs;tuRpqrs;tu , R(19)

8 = R2□R , R(20)
8 = RR;pqRpq , R(21)

8 = □RRpqRpq ,

R(22)
8 = RRpq□Rpq , R(23)

8 = R;pqR r
p Rqr , R(24)

8 = RpqR r
p □Rqr , R(25)

8 = RpqRrsRpq;rs ,

R(26)
8 = RpqRrsRpr;qs , R(27)

8 = R;pqRrsRprqs , R(28)
8 = RRpq;rsRprqs , R(29)

8 = Rpq□RrsRprqs ,
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R(30)
8 = RpqR r;st

p Rqsrt , R(31)
8 = RpqRrs t

;q Rprst , R(32)
8 = □RRpqrsRpqrs , R(33)

8 = R;pqRrst
qRrstp ,

R(34)
8 = □RpqRrst

pRrstq , R(35)
8 = Rpq;rsRtu

prRtuqs , R(36)
8 = R;pqrsRt u

p qRtrus ,

R(37)
8 = Rpq;rsRt u

p rRtqus , R(38)
8 = RpqRrstuRrstu;pq , R(39)

8 = RpqrsR tuv
p Rqtru;sv ,

R(40)
8 = RR;pR;p , R(41)

8 = R;pR;qRpq , R(42)
8 = RRpq;rRpq;r , R(43)

8 = RRpq;rRpr;q ,

R(44)
8 = R;pRqrRqr;p , R(45)

8 = R;pRqrRpq;r , R(46)
8 = RpqR r;s

p Rqr;s , R(47)
8 = RpqR r;s

p Rqs;r ,

R(48)
8 = RpqRrs

;pRrs;q , R(49)
8 = RpqRrs

;pRrq;s , R(50)
8 = R;pRqr;sRpqrs ,

R(51)
8 = Rpq;rR s;t

p Rqrst , R(52)
8 = Rpq;rR s;t

p Rqsrt , R(53)
8 = Rqr;pRst

;pRqsrt ,

R(54)
8 = Rpq;rRst

;pRqsrt , R(55)
8 = RpqRrs;tRprqs;t , R(56)

8 = RpqRrs;tRrtsp;q ,

R(57)
8 = R;pRqrstRqrst;p , R(58)

8 = RRpqrs;tRpqrs;t , R(59)
8 = RpqRrstu

;pRrstu;q ,

R(60)
8 = RpqRrstu

;pRrstq;u , R(61)
8 = Rpq;rRst u

r Rstpq;u , R(62)
8 = Rpq;rRst u

p Rstqr;u ,

R(63)
8 = Rpq;rRs tu

p Rsqtr;u , R(64)
8 = RpqrsRtuv

p;qRtuvr;s , R(65)
8 = RpqrsRtuv

p;rRtuvq;s ,

R(66)
8 = RpqrsRt u ;v

p r Rtqus;v , R(67)
8 = R4 , R(68)

8 = R2RpqRpq , R(69)
8 = RRpqR r

p Rqr ,

R(70)
8 = (RpqRpq)

2
, R(71)

8 = RpqR r
p R

s
q Rrs , R(72)

8 = RRpqRrsRprqs , R(73)
8 = RpqRrsR t

r Rpsqt ,

R(74)
8 = R2RpqrsRpqrs , R(75)

8 = RRpqRrst
pRrstq , R(76)

8 = RpqRpqR
rstuRrstu ,

R(77)
8 = RpqR r

p R
stu

qRstur , R(78)
8 = RpqRrsRtu

prRtuqs , R(79)
8 = RpqRrsRt u

p qRtrus ,

R(80)
8 = RpqRrsRt u

p rRtqus , R(81)
8 = RRpsrsR tu

pq Rrstu , R(82)
8 = RRpqrsR t u

p r Rqtsu ,

R(83)
8 = RpqR r s

p q R
tuv

rRtuvs , R(84)
8 = RpqRrstuR v

rs pRtuvq , R(85)
8 = RpqRrstuR v

r tpRsvuq ,

R(86)
8 = (RpqrsRpqrs)

2
, R(87)

8 = RpqrsR tu
pq R vw

tu Rrsvw , R(88)
8 = RpqrsR tu

pq R vw
tu Rrsvw ,

R(89)
8 = RpqrsR tu

pq R vw
rt Rsuvw , R(90)

8 = RpqrsR tu
pq R v w

r t Rsvuw , R(91)
8 = RpqrsR t u

p r R v w
t u Rqvsw ,

R(92)
8 = RpqrsR t u

p r R v w
t q Ruvsw . (A.3)

Ten derivatives

The number of independent invariants grows rapidly with an increasing number of derivatives. To

the best of our knowledge, a complete classification of terms involving more than eight-derivatives of the

metric has not been completed. However, for example, at ten-derivative order it is known that there

are 668 invariants. The set of ten-derivative invariants we have used consists of 180 = 20 + 92 + 4× 17

elements, and so it is necessarily very incomplete. Out of the 180 densities that we use, only 20 are not

built from products of lower-order densities. These are

R(1)
10 = CabcdC

abcdCefgh;iCefgh;i

R(2)
10 = Ra

bR
b
dR

c
fR

de
ag R fg

ce , R(3)
10 = Ra

bR
b
dR

c
fR

de
cg R fg

ae , R(4)
10 = Ra

bR
b
cR

cd
ae R ef

gh R gh
df ,

R(5)
10 = Ra

bR
b
cR

cd
ef R ef

gh R gh
ad , R(6)

10 = Ra
bR

b
cR

cd
eg R ef

ah R gh
df , R(7)

10 = Ra
cR

b
dR

cd
ab R ef

gh R gh
ef ,

R(8)
10 = Ra

cR
b
dR

cd
ae R ef

gh R gh
bf , R(9)

10 = Ra
cR

b
dR

cd
ef R ef

gh R gh
ab , R(10)

10 = Ra
cR

b
dR

cd
eg R ef

ah R gh
bf ,

R(11)
10 = Ra

cR
b
eR

cd
af R ef

gh R gh
bd , R(12)

10 = Ra
bR

bc
ad R de

fh R fg
ci R hi

eg , R(13)
10 = Ra

bR
bc

de R de
cf R fg

hi R hi
ag ,

R(14)
10 = Ra

bR
bc

df R de
ac R fg

hi R hi
eg , R(15)

10 = Ra
bR

bc
df R de

ah R fg
ei R hi

cg , R(16)
10 = Ra

bR
bc

df R de
gh R fg

ei R hi
ac ,

R(17)
10 = R ab

cd R cd
eg R ef

ai R gh
fj R ij

bh , R(18)
10 = R ab

ce R cd
af R ef

gi R gh
bj R ij

dh ,

R(19)
10 = R ab

ce R cd
ag R ef

bi R gh
fj R ij

dh , R(20)
10 = R ab

ce R cd
fg R ef

hi R gh
aj R ij

bd . (A.4)
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AdS Slicing Metric

This appendix includes some explicit results necessary to follow Chapter 3. We start by

writing our AdSd+1 spacetime in slicing Poincaré-like coordinates,

ds2d+1 = Gµν(x, z)dx
µdxν = e2A(z)

[
dz2 + ĝij(x)dx

idxj
]
, (B.1)

where the d-dimensional metric ĝij is either flat, or an (A)dSd metric with unit curvature radius.

To match with the expressions in Chapter 3, we will simply take

eA(z) =
L

f(z)
, (B.2)

where L is the bulk AdS radius. In the following, primes will denote z derivatives, tensors with

no hats will be built from the bulk metric Gµν , and tensors with hats from the metric ĝij(x).

Background Tensors

Metric components:

Gij = e2Aĝij , Gzz = e2A ,

Gij = e−2Aĝij , Gzz = e−2A . (B.3)

Christoffel Symbols:

Γk
ij = Γ̂k

ij , Γz
zz = A′ ,

Γz
ij = −A′ĝij , Γk

zz = 0 ,

Γk
iz = A′δ̂ki , Γz

iz = 0 . (B.4)

Ricci Tensor:

Rij = R̂ij −
(
(d− 1)(A′)2 +A′′) ĝij ,

Rzz = −dA′′ . (B.5)

Background Einstein Equations

The bulk AdSd+1 Einstein Equations are

Rµν =
2

d− 1
ΛGµν , (B.6)
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where the bulk cosmological constant is

Λ = −d(d− 1)

2L2
. (B.7)

Substituting in the results from the previous section, we find that the background equations are

R̂ij −
(
(d− 1)(A′)2 +A′′) ĝij = 2

d− 1
e2AΛĝij , (B.8)

−dA′′ =
2

d− 1
e2AΛ. (B.9)

Recall that the brane is a maximally symmetric spacetime with unit curvature radius, so

R̂ij =
2

d− 2
Λ̂ĝij , (B.10)

with

Λ̂ = σ
(d− 1)(d− 2)

2
, (B.11)

where

σ =


−1 for AdS branes ,

0 for flat branes ,

+1 for dS branes .

(B.12)

It is now easy to see that the bulk Einstein Equations are fulfilled, using (B.2) and

f(z) =


sin(z) for AdS branes ,

z for flat branes ,

sinh(z) for dS branes .

(B.13)

Notice also that we can factor out the metric ĝij from equation (B.8) to get the following

relation, which will be useful later,

2

d− 2
Λ̂−

(
(d− 1)(A′)2 +A′′) = 2

d− 1
e2AΛ . (B.14)

Brane Hypersurface

If we now put a brane at z = zb and excise the part of the spacetime with 0 < z < zb, the

induced metric on the brane is

gij = e2Aĝij , (B.15)

evaluated at z = zb. Since the metric is block diagonal, the outward-directed unit normal metric

to the brane is

∂n = −e−A∂z . (B.16)

Then, the extrinsic curvature metric on the brane is

Kij =
1

2
∂ngij = −1

2
e−A∂z

(
e2Aĝij

)
= −A′eAĝij = −A′e−Agij , (B.17)

and its trace,

K = −dA′e−A . (B.18)
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Linear Perturbations

We now perturb the metric in the following way,

ds2d+1 = e2A(z)
[
dz2 + (ĝij(x) + δĝij(x, z)) dx

idxj
]
, (B.19)

that is, we have chosen an axial gauge with δGµz = 0. We raise and lower indices using the

unperturbed brane metric ĝij , and denote its Levi-Civita covariant derivative as ∇̂.

Metric components:

δGij = e2A(z)δĝij(x, z) , δGzz = 0 ,

δGij = −e−2A(z)δĝij(x, z) , δGzz = 0 . (B.20)

Christoffel Symbols:

δΓk
ij =

1

2
ĝkl
[
∇̂iδĝlj + ∇̂jδĝil − ∇̂lδĝij

]
, δΓz

zz = 0 ,

δΓz
ij = −

[
A′δĝij +

1

2
δĝ′ij

]
, δΓk

zz = 0 ,

δΓk
iz =

1

2
δĝ′ki δΓz

iz = 0 . (B.21)

Ricci Tensor:

δRij =
1

2

[
∇̂k∇̂iδĝkj + ∇̂k∇̂jδĝik − ∇̂k∇̂kδĝij − ∇̂i∇̂jδĝ

]
−
[
1

2
δĝ′′ij +

d− 1

2
A′δĝ′ij + (A′′ + (d− 1)(A′)2)δĝij +

1

2
A′δĝ′ĝij

]
,

δRiz =
1

2

[
∇̂kδĝ′ik − ∇̂iδĝ

′
]
,

δRzz =− 1

2

[
δĝ′′ +A′δĝ′

]
. (B.22)

Linearized Einstein Equations

The linearized Einstein Equations are

δRµν =
2

d− 1
ΛδGµν , (B.23)

therefore,

δRij =
1

2

[
∇̂k∇̂iδĝkj + ∇̂k∇̂jδĝik − ∇̂k∇̂kδĝij − ∇̂i∇̂jδĝ

]
−
[
1

2
δĝ′′ij +

d− 1

2
A′δĝ′ij + (A′′ + (d− 1)(A′)2)δĝij +

1

2
A′δĝ′ĝij

]
=

2

d− 1
e2AΛδĝij , (B.24)

δRiz =
1

2

[
∇̂kδĝ′ik − ∇̂iδĝ

′
]
= 0 , (B.25)

δRzz =− 1

2

[
δĝ′′ +A′δĝ′

]
= 0 ⇐⇒ (eAδĝ′)′ = 0 . (B.26)
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Using the relation (B.14), we can rewrite the (ij) equation (B.24) as

1

2

[
∇̂k∇̂iδĝkj + ∇̂k∇̂jδĝik − ∇̂k∇̂kδĝij − ∇̂i∇̂jδĝ

]
−
[
1

2
δĝ′′ij +

d− 1

2
A′δĝ′ij +

1

2
A′δĝ′ĝij

]
− 2

d− 2
Λ̂δĝij = 0 . (B.27)

Furthermore, using the Ricci identity and the fact that the background metric ĝij on the slice

is a maximally symmetric metric with unit curvature radius, we can write

∇̂k∇̂iδĝkj = ∇̂i∇̂kδĝkj + σdδĝij − σĝijδĝ, (B.28)

and similarly the term with i ↔ j. Substituting these into (B.27), trading Λ̂ for σ, and

regrouping, we obtain

1

2

[
∇̂i∇̂kδĝkj + ∇̂j∇̂kδĝik − ∇̂k∇̂kδĝij − ∇̂i∇̂jδĝ

]
−
[
1

2
δĝ′′ij +

d− 1

2
A′δĝ′ij +

1

2
A′ĝijδĝ

′
]
+ σδĝij − σĝijδĝ = 0. (B.29)

From equations (B.25) and (B.26) one can argue that the only dynamical degrees of freedom

are the transverse and traceless perturbations [40, 258], i.e. perturbations fulfilling

δĝTT = ĝijδĝTT
ij = 0 , ∇̂iδĝTT

ij = 0 . (B.30)

Then, the (iz) and (zz) Einstein equations (B.25) and (B.26) vanish identically, and equation

(B.29) becomes, after multiplying by a (-2) factor,[
∂2z + (d− 1)A′∂z +

(
□̂− 2σ

)]
δĝTT

ij = 0, (B.31)

where □̂ = ∇̂k∇̂k.

Linear Perturbations on the Brane Hypersurface

On the brane at z = zb, the perturbation on the induced metric is

δgij = e2Aδĝij . (B.32)

Then, the perturbation on the extrinsic curvature reads

δKij = −A′eAδĝij −
1

2
eAδĝ′ij . (B.33)

Notice that its trace it zero for transverse and traceless perturbations,

δKTT = 0 . (B.34)
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Brane-World Graviton Modes

Here is an extended list of our results from Chapters 3 and 4.

AdS Brane

We write our background bulk metric as

dŝ2d+1 = Gµν(z, x)dy
µdyν =

L2

sin2(z)

[
dz2 + ĝij(x)dx

idxj
]
, (C.1)

and perturb it with a separable linear perturbation

Gµν(x, z) = L2χ(z)hµν(x) , (C.2)

that is transverse and traceless, and where we have chosen an axial gauge,

hµz = 0 , ∇ihij = 0 , ĝijhij = 0 , (C.3)

where ĝij(x) is the background brane metric, which is an AdSd spacetime with unit curvature

radius, and ∇̂ is its covariant derivative.

After imposing the bulk Einstein Equations, we find the following.

Brane equation

(□+ 2)hij(x) = E2hij(x) . (C.4)

Radial equation

There are many ways to write down the radial function,

L2χ(z) =
L2

sin2 z
H(z) =

(
sin z

L

) d−5
2

H̃(z) =
L2

ρ
H(ρ) . (C.5)

The resulting radial equations are

−E2χ(z) =
[
∂2z − (d− 5) cot(z)∂z +

(
2(d− 3)− 2(d− 2) csc2(z)

)]
χ(z) , (C.6)

−E2H(z) =
[
∂2z − (d− 1) cot(z)∂z

]
H(z) , (C.7)

−E2H̃(z) =

[
∂2z −

(
d2 − 1

4
csc2(z)− (d− 1)2

4

)]
H̃(z) , (C.8)

−E2H(ρ) =

[
ρ(1 + ρ)2∂2ρ +

1

2
(1 + ρ) (2− d+ (2 + d)ρ) ∂ρ

]
H(ρ) . (C.9)
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Junction conditions

Imposing the Israel junction condition on the brane relates the position of the brane and

the brane tension as

τ =
d− 1

8πGL
cos(zb) , (C.10)

and fixes the brane boundary condition for the radial equations to be

0 = χ′(zb) + 2 cot(zb)χ(zb) , (C.11)

0 = H ′(zb) , (C.12)

0 = H̃ ′(zb) +
d− 1

2
cot(zb)H̃(zb) , (C.13)

0 = H ′(ρB) . (C.14)

Junction conditions with DGP

When we add a DGP term on the brane, the brane tension is given by

τ =
d− 1

8πGL

[
cos(zb)− α

(d− 2)

L
sin2(zb)

]
, (C.15)

while the boundary conditions for the radial equation become

0 = χ′(zb) + 2 cot(zb)χ(zb) +
2α

L
E2 sin(zb)χ(zb) , (C.16)

0 = H ′(zb) +
2α

L
E2 sin(zb)H(zb) , (C.17)

0 = H̃ ′(zb) +
d− 1

2
cot(zb)H̃(zb) +

2α

L
E2 sin(zb)H̃(zb) , (C.18)

0 = (1 + ρ2B)H
′(ρB) +

4α

L
E2H(ρB) . (C.19)

Eigenvalues

For small values of ρb and A, we find

E2
(n,d) ≃ n(n+ d− 1) +

1

2
(d− 2)(2n+ d− 1)

Γ(n+ d− 1)

(Γ(d/2))2Γ(n+ 1)

ρ
d/2−1
B

(1 + 2A)
, (C.20)

where

A =
α(d− 2)

L
. (C.21)

In odd dimensions, we were able to find improved expressions. For d = 3 we found a general

expression, even with the presence of the DGP term, while for d = 5 and d = 7 we were only

able to find them case-by-case in the case with no DGP term.

d = 3

E2
n =

n(n+ 2)(1 + 2A)π + (n2 + 2n+ 4)
√
ρB

(1 + 2A)π − 3
√
ρB

. (C.22)

E2
0 ≃ 0 +

4
√
ρB

(1 + 2A)π − 3
√
ρB

≃ 0 +
4

(1 + 2A)π

√
ρB , (C.23)
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E2
1 ≃

3(1 + 2A)π + 7
√
ρB

(1 + 2A)π − 3
√
ρB

≃ 3 +
16

(1 + 2A)π

√
ρB , (C.24)

E2
2 ≃

8(1 + 2A)π + 12
√
ρB

(1 + 2A)π − 3
√
ρB

≃ 8 +
36

(1 + 2A)π

√
ρB , (C.25)

E2
3 ≃

15(1 + 2A)π + 19
√
ρB

(1 + 2A)π − 3
√
ρB

≃ 15 +
64

(1 + 2A)π

√
ρB . (C.26)

d = 5 (A = 0)

E2
0 ≃ 0 +

192ρ
3/2
B

3π + 12πρB − 100ρ
3/2
B

≃ 0 +
64

π
ρ
3/2
B , (C.27)

E2
1 ≃

5π + 70πρB − 16ρ
3/2
B

π + 14πρB − 80ρ
3/2
B

≃ 5 +
384

π
ρ
3/2
B , (C.28)

E2
2 ≃

36π + 1008πρB − 1392ρ
3/2
B

3π + 84πρB − 436ρ
3/2
B

≃ 12 +
1280

π
ρ
3/2
B , (C.29)

E2
3 ≃

63π + 2898πρB − 4848ρ
3/2
B

3π + 138πρB − 688ρ
3/2
B

≃ 21 +
3200

π
ρ
3/2
B . (C.30)

d = 7 (A = 0)

E2
0 ≃ 0 +

7680ρ
5/2
B

15π + 20πρB + 295πρ2B − 3136ρ
3/2
B

≃ 0 +
512

π
ρ
5/2
B . (C.31)

dS Brane

We write our background bulk metric as

dŝ2d+1 = Gµν(z, x)dy
µdyν =

L2

sinh2(z)

[
dz2 + ĝij(x)dx

idxj
]
, (C.32)

and perturb it with a separable linear perturbation

Gµν(x, z) = L2χ(z)hµν(x) , (C.33)

that is transverse and traceless, and where we have chosen an axial gauge,

hµz = 0 , ∇ihij = 0 , ĝijhij = 0 , (C.34)

where ĝij(x) is the background brane metric, which is an dSd spacetime with unit curvature

radius, and ∇̂ is its covariant derivative.

After imposing the bulk Einstein Equations, we find the following.

Brane equation

(□− 2)hij(x) = E2hij(x) . (C.35)
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Radial equation

There are many ways to write down the radial function,

L2χ(z) =
L2

sinh2 z
H(z) =

(
sinh z

L

) d−5
2

H̃(z) =
L2

ρ
H(ρ) . (C.36)

The resulting radial equations are

−E2χ(z) =
[
∂2z − (d− 5) coth(z)∂z −

(
2(d− 3) + 2(d− 2) csch2(z)

)]
χ(z) , (C.37)

−E2H(z) =
[
∂2z − (d− 1) coth(z)∂z

]
H(z) , (C.38)

−E2H̃(z) =

[
∂2z −

(
d2 − 1

4
csch2(z) +

(d− 1)2

4

)]
H̃(z) , (C.39)

−E2H(ρ) =

[
ρ(ρ− 1)2∂2ρ +

1

2
(ρ− 1) (d− 2 + (d+ 2)ρ) ∂ρ

]
H(ρ) . (C.40)

Junction conditions

Imposing the Israel junction conditions relates the position of the brane and the brane

tension as

τ =
d− 1

8πGL
cosh(zb) , (C.41)

and gives the following boundary condition on the brane for the radial equations

0 = χ′(zb) + 2 coth(zb)χ(zb) , (C.42)

0 = H ′(zb) , (C.43)

0 = H̃ ′(zb) +
d− 1

2
coth(zb)H̃(zb) , (C.44)

0 = H ′(ρB) . (C.45)

Junction conditions with DGP

When we add a DGP term on the brane, the brane tension is given by

τ =
d− 1

8πGL

[
cosh(zb) + α

(d− 2)

L
sinh2(zb)

]
, (C.46)

while the boundary conditions for the radial equation become

0 = χ′(zb) + 2 coth(zb)χ(zb) +
2α

L
E2 sinh(zb)χ(zb) , (C.47)

0 = H ′(zb) +
2α

L
E2 sinh(zb)H(zb) , (C.48)

0 = H̃ ′(zb) +
d− 1

2
coth(zb)H̃(zb) +

2α

L
E2 sinh(zb)H̃(zb) , (C.49)

0 = (1− ρ2B)H
′(ρB) +

4α

L
E2H(ρB) . (C.50)
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Flat Brane

We write our background bulk metric as

dŝ2d+1 = Gµν(z, x)dy
µdyν =

L2

z2
[
dz2 + ηij(x)dx

idxj
]
, (C.51)

and perturb it with a separable linear perturbation

Gµν(x, z) = L2χ(z)hµν(x) , (C.52)

that is transverse and traceless, and where we have chosen an axial gauge,

hµz = 0 , ∂ihij = 0 , ηijhij = 0 , (C.53)

where ηij(x) is the background flat brane metric, ∂ is its (covariant) derivative.

After imposing the bulk Einstein Equations, we find the following.

Brane equation

∂k∂khij(x) = E2hij(x) . (C.54)

Radial equation

There are many ways to write down the radial function,

L2χ(z) =
L2

z2
H(z) =

( z
L

) d−5
2
H̃(z) =

L2

ρ
H(ρ) . (C.55)

The resulting radial equations are

−E2χ(z) =

[
∂2z − (d− 5)

1

z
∂z + 2(d− 2)

1

z2

]
χ(z) , (C.56)

−E2H(z) =

[
∂2z − (d− 1)

1

z
∂z

]
H(z) , (C.57)

−E2H̃(z) =

[
∂2z −

d2 − 1

4z2

]
H̃(z) , (C.58)

−E2H(ρ) =
[
4ρ∂2ρ − 2(d− 2)∂ρ

]
H(ρ) . (C.59)

Junction condition

Imposing the Israel junction condition on the brane we see that the brane tension must be

fixed at

τ =
d− 1

8πGL
, (C.60)

and that the boundary condition on the brane for the radial equations is

0 = χ′(zb) +
2

zb
χ(zb) , (C.61)

0 = H ′(zb) , (C.62)

0 = H̃ ′(zb) +
d− 1

2zb
H̃(zb) , (C.63)

0 = H ′(ρB) . (C.64)
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Junction condition with DGP

When we add a DGP term on the brane, this does not affect the brane tension, which

remains at

τ =
d− 1

8πGL
, (C.65)

but the boundary conditions on the brane change, becoming

0 = χ′(zb) +
2

zb
χ(zb) +

2α

L
E2zχ(zb) , (C.66)

0 = H ′(zb) +
2α

L
E2zH(zb) , (C.67)

0 = H̃ ′(zb) +
d− 1

2
cot(zb)H̃(zb) +

2α

L
E2zH̃(zb) , (C.68)

0 = (1− ρ2)H ′(ρB) + 4
α

L
E2H(ρB) . (C.69)
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Counterterm Results

The first terms in the gravitational effective action on the brane, which were already known

in the literature before this work [87, 230, 232], read

L(0) =
d− 1

L
, (D.1)

L(1) =
L

2(d− 2)
R, (D.2)

L(2) =
L3

2(d− 2)2(d− 4)

[
RabR

ab − d

4(d− 1)
R2

]
, (D.3)

L(3) = − L5

(d− 2)3(d− 4)(d− 6)

[
3d+ 2

4(d− 1)
RRabR

ab − d(d+ 2)

16(d− 1)2
R3

− 2RabRacbdR
cd +

d− 2

2(d− 1)
Rab∇a∇bR−Rab□Rab +

1

2(d− 1)
R□R

]
. (D.4)

The quartic term, first computed by the author in [3], is

L(4) = − L7

(d− 2)4(d− 4)(d− 6)(d− 8)[
13d2 − 38d− 80

8(d− 1)(d− 4)
RabR

abRcdR
cd +

−15d3 + 18d2 + 192d+ 64

16(d− 4)(d− 1)2
RabR

abR2

+
d(5d3 + 10d2 − 112d− 128)

128(d− 4)(d− 1)3
R4 +

5d2 − 16d− 24

(d− 1)(d− 4)
RabRcdRRacbd

− 12Ra
cRabRdeRbdce + 8RabRcdRac

efRbdef − 8RabRcdRa
e
c
fRbedf

− 2(d− 6)

d− 4
RabRcdRa

e
b
fRcedf +

d2 + 4d− 36

2(d− 4)(d− 1)
RbcR

bc∇a∇aR

+
−7d2 + 22d+ 32

4(d− 4)(d− 1)2
R2∇a∇aR+

4

d− 1
Rbc∇aRbc∇aR− d+ 8

4(d− 1)2
R∇aR∇aR

+
3d− 8

d− 1
Rab∇aR

cd∇bRcd +
d(d− 6)

8(d− 4)(d− 1)2
∇a∇aR∇b∇bR

+
1

d− 1
R∇b∇b∇a∇aR− (d− 4)(d+ 2)

4(d− 1)2
Rab∇aR∇bR+

d− 4

d− 1
Ra

cRbc∇b∇aR

− 5d3 − 38d2 + 64d+ 16

4(d− 4)(d− 1)2
RabR∇b∇aR+

3d2 − 20d+ 28

(d− 1)(d− 4)
RcdRacbd∇b∇aR

− (d− 6)(d− 2)2

8(d− 4)(d− 1)2
∇b∇aR∇b∇aR+

d− 4

d− 1
Rbc∇aR∇cRab − 8Rab∇eRacbd∇eRcd
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+
5d2 − 6d− 64

2(d− 1)(d− 4)
RabR∇c∇cRab +

(d− 2)(d− 6)

2(d− 1)(d− 4)
∇b∇aR∇c∇cRab

+
(d− 2)

d− 1
Rab∇c∇c∇b∇aR+

5

d− 1
R∇cRab∇cRab + 12RabRcd∇d∇bRac

+
11d− 6

d− 1
RabRcd∇d∇cRab −

d− 6

2(d− 4)
∇c∇cRab∇d∇dRab − 2Rab∇d∇d∇c∇cRab

− 4Rab∇bRcd∇dRa
c + 4Rab∇cRbd∇dRa

c +
2(5d− 22)

d− 4
RabRacbd∇e∇eRcd

]
. (D.5)

The quintic term is too large, so we have decided to reduce the font size. It reads,

L5 =

(
l9

(D − 2)5(D − 4)(D − 6)(D − 8)(D − 10)

)
[
(−80 − 38D + 13D2)RabR

abRc
eRcdRde

4 − 5D + D2
+

(−352 + 3772D − 880D2 + 129D3 − 24D4 + D5)RabR
abRcdR

cdR

16(−4 + D)(−1 + D)2

+
(64 + 192D + 18D2 − 15D3)Ra

cRabRbcR
2

4(−4 + D)(−1 + D)2
+

(−384 − 1920D − 1044D2 + 84D3 + 35D4)RabR
abR3

32(−4 + D)(−1 + D)3

+
D(768 + 1248D + 252D2 − 56D3 − 7D4)R5

256(−4 + D)(−1 + D)4
+

(72 + 108D + 7D2 − 5D3)RabRcdR2Racbd

(−4 + D)(−1 + D)2

+
6(−48 − 22D + 7D2)Ra

cRabRdeRRbdce

(−4 + D)(−1 + D)
+

(96 + 24D − 8D2)RabRcdRRac
efRbdef

4 − 5D + D2

− 24Ra
c
R

ab
Rd

f
R

de
Rbecf +

8(−12 − 3D + D2)RabRcdRRa
e
c
fRbedf

(−4 + D)(−1 + D)
− 72Ra

c
R

ab
Rb

d
R

ef
Rcedf

+
2(−88 − 24D + 7D2)RabR

abRcdRefRcedf

4 − 5D + D2
+

(−68 − 44D + 7D2)RabRcdRRa
e
b
fRcedf

4 − 5D + D2
+ 64Ra

c
R

ab
R

de
Rbd

fg
Rcefg

− 64Ra
c
R

ab
R

de
Rb

f
d
g
Rcfeg +

24(−8 + D)RabRcdRefRacb
gRdefg

−4 + D
−

16(−6 + D)Ra
cRabRdeRb

f
c
gRdfeg

−4 + D

+
16(−8 + D)RabRcdRa

e
b
fRce

ghRdfgh

−4 + D
−

16(−8 + D)RabRcdRa
e
b
fRc

g
e
hRdgfh

−4 + D

−
(−8 + D)(−6 + D)(−4 + D)(−2 + D)R(Rab)

2(Rab)2

16(−1 + D)2
+

(−104 − 6D + 7D2)Rb
dRbcRcd∇a∇aR

4 − 5D + D2

+
(1488 + 1012D + 368D2 − 199D3 + 13D4)RbcR

bcR∇a∇aR

8(−4 + D)(−1 + D)2
−

(1216 + 896D + 1204D2 + 76D3 − 153D4 + 15D5)R3∇a∇aR

32(−4 + D)(−1 + D)3

+
2(−58 − 24D + 7D2)RbcRdeRbdce∇a∇aR

4 − 5D + D2
−

(−6 + D)(−2 + D)2RcdR
cd∇a∇b∇b∇aR

2(−4 + D)(−1 + D)2

+
(16 + 6D − 3D2)R2∇a∇b∇b∇aR

8(−1 + D)2
+

(−2 + D)(−14 + 3D)R∇a∇b∇c∇c∇b∇aR

4(−4 + D)(−1 + D)
+

(−132 − 76D + 23D2)RbcRbdce∇aR
de∇aR

4 − 5D + D2

−
(−2 + D)(−14 + 3D)Rb

dRcd∇a∇c∇b∇aR

2(−4 + D)(−1 + D)
+

(−12 + 112D − 61D2 + 8D3)RbcR∇a∇c∇b∇aR

4(−4 + D)(−1 + D)2

−
(−2 + D)(−14 + 3D)Rbd∇a∇d∇c∇c∇b∇aR

2(−4 + D)(−1 + D)
+ 16R

ab
R

cd
Rbcdf∇a∇eR

ef
+

2(−58 + 13D)RabRRbcde∇a∇eRcd

−4 + D

+
(688 + 748D + 542D2 − 270D3 + 23D4)RbcR∇aRbc∇aR

4(−4 + D)(−1 + D)2
+

2(−24 − 16D + 5D2)Rb
dRbc∇aRcd∇aR

4 − 5D + D2

+
(60 + 56D + 7D2 − 5D3)RbcR

bc∇aR∇aR

(−4 + D)(−1 + D)2
−

(832 − 64D + 1096D2 + 128D3 − 153D4 + 15D5)R2∇aR∇aR

16(−4 + D)(−1 + D)3

+
(−68 − 84D + 23D2)RbcRde∇aRbdce∇aR

4 − 5D + D2
+

(224 + 1228D − 410D2 + 22D3 + D4)R∇a∇b∇bR∇aR

8(−4 + D)(−1 + D)2

+
(−80 − 52D + 65D2 − 32D3 + 5D4)R∇a∇c∇bR

bc∇aR

2(−4 + D)(−1 + D)2
+

(−4 + D)Rbc∇a∇c∇dRb
d∇aR

−1 + D

+
(56 − 156D + 74D2 − 9D3)Rbc∇a∇c∇bR∇aR

4(−4 + D)(−1 + D)2
+

(−68 − 84D + 23D2)Rbc∇a∇d∇dRbc∇aR

2(4 − 5D + D2)

+
(−144 + 848D + 208D2 − 157D3 + 15D4)R2∇aR∇bRa

b

4(−4 + D)(−1 + D)2
−

(176 + 92D + 234D2 − 116D3 + 13D4)RabR∇aR
cd∇bRcd

2(−4 + D)(−1 + D)2

+
(28 − 20D + 3D2)Rcd∇a∇b∇aR∇bRcd

4 − 5D + D2
+

(−88 − 102D − 98D2 + 29D3)Ra
bRcd∇aR∇bRcd

(−4 + D)(−1 + D)2

+
(96 + 64D − 20D2)RbcRadce∇aR∇bR

de

4 − 5D + D2
+

(184 − 44D)RabRcedf∇aR
cd∇bR

ef

4 − 5D + D2

+
(168 + 156D − 44D2)RabRcd∇aR

ef∇bRcedf

4 − 5D + D2
−

4(−2 + D)(−14 + 3D)Rab∇a∇f∇eRcd∇bRcedf

(−4 + D)(−1 + D)

+
(−64 + 1088D + 64D2 − 138D3 + 15D4)R3∇b∇aR

ab

16(−4 + D)(−1 + D)2
−

4(14 − 59D + 10D2)RabRcdRcedf∇b∇aR
ef

4 − 5D + D2
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+
(−56 − 428D + 342D2 − 81D3 + 6D4)R∇aR∇b∇a∇bR

8(−4 + D)(−1 + D)2
+

(28 − 20D + 3D2)RcdR
cd∇b∇a∇b∇aR

4 − 5D + D2

+
(64 − 368D + 270D2 − 65D3 + 5D4)R2∇b∇a∇b∇aR

8(−4 + D)(−1 + D)2
−

(112 + 34D − 35D2 + 5D3)R2∇b∇a∇c∇cRab

2(4 − 5D + D2)

−
(−2 + D)(42 − 23D + 3D2)R∇b∇a∇c∇c∇b∇aR

4(−4 + D)(−1 + D)
+

(112 − 256D + 280D2 − 100D3 + 11D4)RabR∇b∇a∇d∇cR
cd

2(−4 + D)(−1 + D)2

+
(−28 + 20D − 3D2)Rab∇b∇a∇d∇c∇e∇eRcd

4 − 5D + D2
+ (−11 + 5

2
D)R∇b∇a∇d∇

d∇c∇c
R

ab

+
(−56 + 40D − 6D2)RabRcedf∇b∇a∇f∇eRcd

4 − 5D + D2
+

(−256 − 844D + 1624D2 − 369D3 + 4D4 + 2D5)R∇a∇aR∇b∇bR

16(−4 + D)(−1 + D)3

−
D(−64 + D2)∇aR∇aR∇b∇bR

8(−4 + D)(−1 + D)3
+

(328 + 52D + 126D2 − 57D3 + 5D4)R∇aR∇b∇b∇aR

8(−4 + D)(−1 + D)2

+
(168 − 180D + 7D3)RcdR

cd∇b∇b∇a∇aR

2(−4 + D)(−1 + D)2
+

(288 + 640D − 242D2 + 19D3)R2∇b∇b∇a∇aR

8(−4 + D)(−1 + D)2

+
(4 − 36D + 8D2)Rcd∇aRcd∇b∇b∇aR

4 − 5D + D2
+

(−16 − 84D + 21D2)RabR2∇b∇cRa
c

4 − 5D + D2
−

(62 + 68D − 40D2 + 5D3)R∇aR∇b∇c∇cRa
b

4 − 5D + D2

+
(34 − 7D)RabR∇b∇c∇d∇dRa

c

−4 + D
+

(14 + 23D − 15D2 + 2D3)Rac∇aR∇b∇c∇bR

(−4 + D)(−1 + D)2
+

(−60 + 36D − 5D2)Ra
dRcd∇b∇c∇b∇aR

2(4 − 5D + D2)

+
(−44 + 160D − 79D2 + 10D3)RacR∇b∇c∇b∇aR

4(−4 + D)(−1 + D)2
+ 6R

ab
R∇b∇d∇a∇cR

cd
+

5(−4 + D)DR∇aR
ab∇b∇d∇cR

cd

−1 + D

+
(16 + 64D − 38D2 + 5D3)Ra

b∇aR∇b∇d∇cR
cd

(−4 + D)(−1 + D)2
+ (20 − 6D)R

ab
R∇b∇d∇c∇aR

cd − 4R
ab

R∇b∇d∇c∇d
Ra

c

−
4(−4 + D)Rab∇aR

cd∇b∇d∇eRc
e

−1 + D
+ 8R

ab
R

cd∇b∇d∇e∇cRa
e −

(−2 + D)(−14 + 3D)Rad∇b∇d∇c∇c∇b∇aR

2(−4 + D)(−1 + D)

−
4(−40 + 5D + D2)Rab∇a∇eRcd∇b∇eRcd

(−4 + D)(−1 + D)
−

4(−4 + D)Rab∇a∇cR
cd∇b∇eRd

e

−1 + D

+
(252 − 42D − 4D2)Rab∇aR

cd∇b∇e∇eRcd

4 − 5D + D2
−

8(−2 + D)(−14 + 3D)Rab∇a∇eRcd∇b∇fRced
f

(−4 + D)(−1 + D)

−
4(−2 + D)(−14 + 3D)Rab∇aR

cd∇b∇f∇eRc
e
d
f

(−4 + D)(−1 + D)
+

24(−8 + D)RabRcdRcedf∇b∇fRa
e

−4 + D

−
8(−6 + D)Ra

cRabRcdef∇b∇fRde

−4 + D
+

(−56 − 64D − 22D2 + 9D3)Ra
cRbc∇aR∇bR

(−4 + D)(−1 + D)2

+
(544 − 288D + 320D2 + 540D3 − 204D4 + 15D5)RabR∇aR∇bR

8(−4 + D)(−1 + D)3
−

(−8 + D)(2 + D)RcdRacbd∇aR∇bR

2(−1 + D)2

+
(−8 + D)(−2 + D)(2 + D)∇aR∇b∇aR∇bR

8(−1 + D)3
+

(−104 − 6D + 7D2)Rcd∇bRcd∇b∇a∇aR

4 − 5D + D2
+

(80 + 16D − 8D2)Ra
cRb

dRcd∇b∇aR

4 − 5D + D2

+
D(−464 − 54D + 39D2)RabRcdR

cd∇b∇aR

4(−4 + D)(−1 + D)2
+

(−168 + 62D − 115D2 + 26D3)Ra
cRbcR∇b∇aR

(−4 + D)(−1 + D)2

+
(640 − 224D + 648D2 + 910D3 − 377D4 + 30D5)RabR

2∇b∇aR

16(−4 + D)(−1 + D)3
+

(−176 + 104D − 194D2 + 87D3 − 10D4)RcdRRacbd∇b∇aR

2(−4 + D)(−1 + D)2

+
4(−2 + D)(−19 + 3D)Rc

eRcdRadbe∇b∇aR

(−4 + D)(−1 + D)
+

8(15 − 8D + D2)Rb
cRdeRadce∇b∇aR

(−4 + D)(−1 + D)
+

(96 + 64D − 20D2)Ra
cRdeRbdce∇b∇aR

4 − 5D + D2

−
4(−8 + D)(−2 + D)RcdRa

e
c
fRbedf∇b∇aR

(−4 + D)(−1 + D)
+

8(−8 + D)(−2 + D)RcdRa
e
c
fRbfde∇b∇aR

(−4 + D)(−1 + D)

+
4(−8 + D)(−2 + D)RcdRa

e
b
fRcedf∇b∇aR

(−4 + D)(−1 + D)
+

(−120 − 60D + 72D2 − 16D3 + D4)R∇a∇bR∇b∇aR

8(−4 + D)(−1 + D)2

+
(−44 + 36D − 15D2 + 2D3)R∇a∇cRb

c∇b∇aR

4(−4 + D)(−1 + D)
−

(−2 + D)(−14 + 3D)Rcd∇a∇dRbc∇b∇aR

2(−4 + D)(−1 + D)

−
2(6 − 6D + D2)Rb

c∇a∇dRc
d∇b∇aR

(−4 + D)(−1 + D)
−

(−8 + D)(−2 + D)(−8 + 3D)∇aR
cd∇bRcd∇b∇aR

2(−4 + D)(−1 + D)2

+
(72 + 92D − 158D2 + 29D3)Rcd∇b∇aRcd∇b∇aR

2(−4 + D)(−1 + D)2
+

(−1056 + 632D + 120D2 + 244D3 − 111D4 + 10D5)R∇b∇aR∇b∇aR

16(−4 + D)(−1 + D)3

+
(−372 + 368D − 119D2 − 53D3 + 16D4)R∇b∇cRa

c∇b∇aR

4(−4 + D)(−1 + D)2
+

(−2 + D)(−40 + 4D + D2)Rac∇b∇cR∇b∇aR

4(−4 + D)(−1 + D)2

+
(−188 + 124D − 13D2)Rcd∇b∇dRac∇b∇aR

2(4 − 5D + D2)
+

(−60 + 36D − 5D2)Ra
c∇b∇dRc

d∇b∇aR

4 − 5D + D2

+
(−320 + 188D − 268D2 + 57D3)RbcR∇aR∇cRab

2(−4 + D)(−1 + D)2
+

(−184 + 252D − 114D2 + 3D3 + 3D4)R∇b∇b∇aR∇cRa
c

2(−4 + D)(−1 + D)2

+
2(−6 + 11D)Rab∇b∇e∇dR

de∇cRa
c

−1 + D
− 32R

ab
R

cd∇bRde∇cRa
e
+

(−16 − 84D + 21D2)R2∇aR
ab∇cRb

c

4 − 5D + D2

+
(40 − 32D + 5D2)R∇a∇b∇aR∇cRb

c

8 − 10D + 2D2
+

(−88 + 194D − 265D2 + 53D3)Ra
bR∇aR∇cRb

c

(−4 + D)(−1 + D)2

+
(−496 + 132D + 21D2 − 6D3)R∇b∇a∇aR∇cRb

c

2(4 − 5D + D2)
−

4(−4 + D)Rab∇b∇a∇eRd
e∇cR

cd

−1 + D
− 12R

ab∇b∇d∇eRa
e∇cR

cd

+ 8R
ab∇b∇e∇aRd

e∇cR
cd − 16R

ab∇b∇e∇dRa
e∇cR

cd
+

2(−22 + 5D)Rab∇b∇e∇eRad∇cR
cd

−4 + D
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+
4(−18 + 5D)RabRbedf∇aR

cd∇cR
ef

−4 + D
+

(−668 + 180D + 77D2 − 20D3)R∇b∇aR∇c∇aRb
c

4(−4 + D)(−1 + D)
− 4R

ab∇b∇eRd
e∇c∇aR

cd

+
4(−62 + 15D)RabRcdRbedf∇c∇aR

ef

−4 + D
+

(−4 + D)(−3 + D)R∇aR∇c∇a∇bR
bc

2(−1 + D)
−

(64 + 192D + 18D2 − 15D3)RabR2∇c∇bRa
c

4(−4 + D)(−1 + D)2

+
8(−7 + D)(−6 + D)Ra

cRab∇bR
de∇cRde

(−4 + D)(−1 + D)
+

(196 − 156D + 43D2 − 4D3)R∇b∇aR∇c∇bRa
c

4(4 − 5D + D2)

+
(240 − 396D + 118D2 − 9D3)R∇a∇aR∇c∇bR

bc

2(−4 + D)(−1 + D)2
+

4(79 − 19D)DRa
cRabRde∇c∇bRde

(−4 + D)(−1 + D)
−

5(−8 + D2)R∇aR∇c∇b∇aR
bc

2(−1 + D)

+
(12 − 7D + D2)R∇aR∇c∇b∇cRa

b

2 − 2D
+

4(−4 + 16D − 8D2 + D3)Rbc∇aR∇c∇b∇dRa
d

(−4 + D)(−1 + D)2
+

(70 + 5D − 5D2)RabR∇c∇b∇d∇dRa
c

4 − 5D + D2

+
2(−6 + 11D)Ra

cRab∇c∇b∇e∇dR
de

−1 + D
+

2(−22 + 5D)Rab∇c∇b∇e∇e∇d∇dRa
c

−4 + D

+
(1088 + 1528D + 142D2 − 195D3 + 20D4)RabR2∇c∇cRab

8(−4 + D)(−1 + D)2
−

(−8 + D)(2 + D)∇aR∇bR∇c∇cRab

4(−1 + D)2

+
(−256 + 268D − 304D2 + 84D3 − 5D4)R∇b∇aR∇c∇cRab

4(−4 + D)(−1 + D)2
+

(−6 + D)(−3 + D)(−2 + D)2R∇c∇c∇a∇b∇b∇aR

4(−4 + D)(−1 + D)2

+
2(−16 + 11D − 2D2 − 4D3 + D4)R∇aR∇c∇c∇bRa

b

(−4 + D)(−1 + D)2
+

(−96 − 28D + 56D2 − 31D3 + 5D4)R2∇c∇c∇b∇aR
ab

4(−4 + D)(−1 + D)2

−
(−8 + D)(−2 + D)2∇b∇aR∇c∇c∇b∇aR

2(−4 + D)(−1 + D)2
+

(−8 + D)D∇a∇aR∇c∇c∇b∇bR

2(−4 + D)(−1 + D)2

−
(−40 + 60D − 16D2 + D3)R∇c∇c∇b∇b∇a∇aR

2(−4 + D)(−1 + D)2
+

(−2 + D)(9 − 7D + D2)Rab∇aR∇c∇c∇bR

(−4 + D)(−1 + D)2

+
4(11 − 7D + D2)Ra

dRbd∇c∇c∇b∇aR

4 − 5D + D2
+

(−256 + 104D − 16D2 − 21D3 + 6D4)RabR∇c∇c∇b∇aR

4(−4 + D)(−1 + D)2

+
5(−6 + D)(−2 + D)RdeRadbe∇c∇c∇b∇aR

(−4 + D)(−1 + D)
+

8(−4 + 16D − 8D2 + D3)Rb
c∇b∇aR∇c∇dRa

d

(−4 + D)(−1 + D)2

−
2(16 − 66D + 15D2)Ra

cRabR∇c∇dRb
d

4 − 5D + D2
+

(−4 + D)Rbc∇a∇aR∇c∇dRb
d

−1 + D
+

(−4 + D)Ra
c∇b∇aR∇c∇dRb

d

−1 + D

+
(28 − 20D + 3D2)R∇b∇aR∇c∇dRa

c
b
d

8 − 10D + 2D2
+ 8R

ab
R∇c∇d∇b∇

d
Ra

c
+

(48 + 32D − 10D2)Rbc∇aR∇c∇d∇dRab

4 − 5D + D2

+
(48 − 10D)R∇aR

ab∇c∇d∇dRb
c

−4 + D
+

(20 + 52D − 13D2)Ra
b∇aR∇c∇d∇dRb

c

4 − 5D + D2
+ 6R

ab
R∇c∇d∇

d∇bRa
c

+
(6 − 11D)RabR∇c∇d∇d∇cRab

2(−1 + D)
+

4(−6 + D)Ra
cRab∇c∇d∇e∇eRb

d

−4 + D
+ 56R

ab∇b∇eRd
e∇c∇d

Ra
c

+ 32Ra
c
R

ab
R

de∇c∇eRbd + 56R
ab∇b∇

d
Ra

c∇c∇eRd
e
+

2(−6 + 11D)Rab∇bRa
c∇c∇e∇dR

de

−1 + D

+
(28 − 6D)RabRRadbe∇c∇eRcd

−4 + D
−

8(−6 + D)Ra
cRabRde∇c∇fRbde

f

−4 + D
− 8(−4 + D)R

ab
RRa

cde∇c∇fRb
f
de

− 16R
ab

R
cd

Rbdef∇c∇f
Ra

e − 16R
ab

R
cd

Rbedf∇c∇f
Ra

e
+

(12 − 22D)Rab∇c∇e∇dR
de∇cRab

−1 + D

+ 8(−4 + D)R∇b∇a∇dRc
d∇c

R
ab

+ 2R∇b∇c∇dRa
d∇c

R
ab − 18(−4 + D)R∇b∇d∇aRc

d∇c
R

ab

+ 4(−2 + D)R∇b∇d∇cRa
d∇c

R
ab

+ 2R∇b∇d∇
d
Rac∇c

R
ab

+
(184 + 226D + 24D2 − 40D3 + 5D4)R2∇cRab∇cRab

2(−4 + D)(−1 + D)2

−
(144 + 26D − 35D2 + 5D3)RRadbe∇cR

de∇cRab

4 − 5D + D2
+

(2 + 6D + 4D2)R∇c∇b∇dRa
d∇cRab

1 − D

+ (−38 + 6D)R∇c∇d∇bRa
d∇c

R
ab −

(336 + 154D − 105D2 + 12D3)R∇c∇d∇dRab∇cRab

2(4 − 5D + D2)

−
2(−2 + D)(42 − 23D + 3D2)R∇c∇e∇dRa

d
b
e∇cRab

(−4 + D)(−1 + D)
+ (42 − 12D)R∇b∇dRc

d∇c∇aR
ab

−
2(4 + D + D2)R∇c∇dRb

d∇c∇aR
ab

−1 + D
−

(104 + 220D − 62D2 + D3)Rbc∇b∇aR∇c∇aR

4(−4 + D)(−1 + D)2

+
(16 + 64D − 38D2 + 5D3)Rbc∇aR∇c∇a∇bR

4(−4 + D)(−1 + D)2
+

(−2 + D)(−14 + 3D)RbcR∇c∇a∇b∇aR

4(−4 + D)(−1 + D)

+
(14 + 23D − 15D2 + 2D3)Rac∇b∇aR∇c∇bR

(−4 + D)(−1 + D)2
+

(−160 − 146D + 43D2)Rac∇aR∇c∇b∇bR

2(−4 + D)(−1 + D)2

+
(124 − 100D + 25D2 − 2D3)RacR∇c∇b∇b∇aR

4(4 − 5D + D2)
−

(248 + 212D − 90D2 + 5D3)Rbc∇a∇aR∇c∇bR

4(−4 + D)(−1 + D)2

−
2(−8 + D)(−2 + D)∇aRbc∇aR∇c∇bR

(−4 + D)(−1 + D)2
−

(−8 + D)(−2 + D)∇aR∇cRab∇c∇bR

2(−1 + D)2

+
(−112 − 128D + 14D2 + 5D3)Rbc∇aR∇c∇b∇aR

4(−4 + D)(−1 + D)2
+

(104 + 6D − 7D2)Rb
dRcd∇c∇b∇a∇aR

4 − 5D + D2

+
(320 − 732D + 112D2 + 39D3 − 7D4)RbcR∇c∇b∇a∇aR

4(−4 + D)(−1 + D)2
−

5(−8 + D2)R∇aRbc∇c∇b∇aR

2(−1 + D)

+
(28 − 20D + 3D2)Rc

d∇aRbd∇c∇b∇aR

8 − 10D + 2D2
+

(20 + 52D − 13D2)Rb
d∇aRcd∇c∇b∇aR

4 − 5D + D2
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+
(20 − 9D + D2)R∇bRac∇c∇b∇aR

2 − 2D
+

(−4 − 4D + D2)Rc
d∇bRad∇c∇b∇aR

2(−4 + D)(−1 + D)

+
(−28 + 20D − 3D2)Ra

d∇bRcd∇c∇b∇aR

4 − 5D + D2
+

(−288 + 284D − 146D2 − 21D3 + 11D4)R∇cRab∇c∇b∇aR

4(−4 + D)(−1 + D)2

+
(−4 + D)Rb

d∇cRad∇c∇b∇aR

−1 + D
+

(56 − 40D + 6D2)Rde∇cRadbe∇c∇b∇aR

4 − 5D + D2

+
(−4 + 80D − 41D2 + 5D3)Rc

d∇c∇b∇aR∇dRab

(−4 + D)(−1 + D)2
+

(80 + 16D − 8D2)Rb
dRbc∇aR∇dRac

4 − 5D + D2

−
(−2 + D)(−14 + 3D)Rcd∇b∇b∇aR∇dRac

2(−4 + D)(−1 + D)
−

(−6 + D)2Rb
d∇c∇b∇aR∇dRac

2(−4 + D)(−1 + D)

+
(96 − 72D − 61D2 + 17D3)RbcR

bc∇aR∇dRa
d

(−4 + D)(−1 + D)2
+

(28 + 32D − 23D2 + 3D3)Rbc∇c∇b∇aR∇dRa
d

2(−4 + D)(−1 + D)2

−
(−2 + D)(−14 + 3D)Rcd∇a∇b∇aR∇dRbc

2(−4 + D)(−1 + D)
+

(48 + 32D − 10D2)Ra
bRcd∇aR∇dRbc

4 − 5D + D2

+
(104 + 6D − 7D2)Rcd∇b∇a∇aR∇dRbc

4 − 5D + D2
+

(28 − 20D + 3D2)Ra
d∇c∇b∇aR∇dRbc

8 − 10D + 2D2

−
2(16 − 66D + 15D2)RabR∇cRa

c∇dRb
d

4 − 5D + D2
−

(−2 + D)(−14 + 3D)Rac∇c∇b∇aR∇dRb
d

2(−4 + D)(−1 + D)
− 16R

ab
R

cd∇cRa
e∇dRbe

−
2(6 − 6D + D2)Rb

c∇a∇b∇aR∇dRc
d

(−4 + D)(−1 + D)
+

(32 + 96D − 24D2)Ra
bRb

c∇aR∇dRc
d

4 − 5D + D2
+

2(46 − 11D)DRabR∇bRa
c∇dRc

d

4 − 5D + D2

−
4(11 − 7D + D2)Ra

c∇b∇b∇aR∇dRc
d

(−4 + D)(−1 + D)
+

(104 + 6D − 7D2)Rb
c∇b∇a∇aR∇dRc

d

4 − 5D + D2

−
(248 + 322D − 143D2 + 13D3)RabR∇cRab∇dRc

d

4 − 5D + D2
+

(72 − 48D + 7D2)Rab∇c∇b∇aR∇dRc
d

4 − 5D + D2

+ 8R
ab

R
cd∇bRa

e∇dRce −
8(−6 + D)RabRaebf∇cR

cd∇dR
ef

−4 + D
+

(140 + 128D − 79D2 + 10D3)RbcR∇aR∇dRabc
d

4 − 5D + D2

−
2(112 + 34D − 35D2 + 5D3)R2∇cRab∇dRacb

d

4 − 5D + D2
+

(28 − 20D + 3D2)R∇c∇b∇aR∇dRacb
d

2 − 2D

+
(28 − 20D + 3D2)R∇c∇b∇aR∇dRa

d
bc

2 − 2D
− 16(−4 + D)RRa

def∇c
R

ab∇dRbcef +
8(−46 + 11D)RabRcd∇aR

ef∇dRbecf

−4 + D

+
(48 + 32D − 10D2)Rcd∇b∇aR∇d∇aRbc

4 − 5D + D2
+

(48 + 32D − 10D2)Rb
c∇b∇aR∇d∇aRc

d

4 − 5D + D2
−

14(−16 − 2D + D2)RabRcdR∇d∇bRac

4 − 5D + D2

+
(4 − D)Rcd∇b∇aR∇d∇bRac

−1 + D
+ (60 − 16D)R∇a∇c

R
ab∇d∇bRc

d
+ (−94 + 26D)R∇c∇aR

ab∇d∇bRc
d

+ 18(−4 + D)R∇c
R

ab∇d∇b∇aRc
d − 6(−3 + D)R

ab
R∇d∇b∇a∇cR

cd − 8(−5 + D)R∇c
R

ab∇d∇b∇cRa
d

− 12(−4 + D)R∇aR
ab∇d∇b∇cR

cd
+

(−4 + D)Ra
b∇aR∇d∇b∇cR

cd

−1 + D
− 2(−6 + D)R

ab
R∇d∇b∇c∇aR

cd

+ 4(−3 + D)R
ab

R∇d∇b∇c∇d
Ra

c − 12R
ab

R
cd∇d∇b∇c∇eRa

e − 2(−7 + D)R∇c
R

ab∇d∇b∇
d
Rac

− 24R
ab∇cR

cd∇d∇b∇eRa
e − 4R

ab∇aR
cd∇d∇b∇eRc

e − 16R
ab

R
cd∇d∇b∇e∇cRa

e
+

2(−22 + 5D)RabRcd∇d∇b∇e∇eRac

−4 + D

+
(304 − 392D − 472D2 + 174D3 − 13D4)RabRcdR∇d∇cRab

2(−4 + D)(−1 + D)2
+

(−64 + 144D − 67D2 + 7D3)Rcd∇b∇aR∇d∇cRab

(−4 + D)(−1 + D)2

−
(−6 + D)2Rb

c∇b∇aR∇d∇cRa
d

2(−4 + D)(−1 + D)
+

(104 + 6D − 7D2)Rbc∇a∇aR∇d∇cRb
d

4 − 5D + D2

+ 4R∇a∇c
R

ab∇d∇cRb
d
+

(28 − 20D + 3D2)Ra
c∇b∇aR∇d∇cRb

d

8 − 10D + 2D2
+ 2(−2 + D)R∇c∇aR

ab∇d∇cRb
d

+
(336 − 40D − 562D2 + 185D3 − 13D4)RabR

abR∇d∇cR
cd

4(−4 + D)(−1 + D)2
−

(−6 + D)(−4 + D)R∇b∇aR
ab∇d∇cR

cd

2(−1 + D)

+
(−72 + 208D − 102D2 + 13D3)Rab∇b∇aR∇d∇cR

cd

2(−4 + D)(−1 + D)2
−

(112 + 34D − 35D2 + 5D3)RabR2∇d∇cRa
c
b
d

4 − 5D + D2

+
(84 − 88D + 29D2 − 3D3)R∇b∇aR∇d∇cRa

c
b
d

8 − 10D + 2D2
+

(48 + 32D − 10D2)Rbc∇aR∇d∇c∇aRb
d

4 − 5D + D2
+

(4 − D)Rbc∇aR∇d∇c∇bRa
d

−1 + D

− 6(−3 + D)R∇c
R

ab∇d∇c∇bRa
d
+ 6(−4 + D)R∇aR

ab∇d∇c∇bR
cd

+ 14(−4 + D)R
ab

R∇d∇c∇b∇aR
cd

− 8(−3 + D)R
ab

R∇d∇c∇b∇
d
Ra

c −
2(−4 + D)RabRcd∇d∇c∇b∇eRa

e

−1 + D
+

(4 − D)Rbc∇aR∇d∇c∇dRab

−1 + D

+
(−4 + D)(1 + 4D)R∇cRab∇d∇c∇dRab

−1 + D
+ 2(−5 + D)R∇aR

ab∇d∇c∇d
Rb

c − 6(−3 + D)R
ab

R∇d∇c∇d∇bRa
c

+
(18 − 39D + 11D2)RabR∇d∇c∇d∇cRab

2(−1 + D)
− 12R

ab∇aR
cd∇d∇c∇eRb

e
+

(92 + 20D − 9D2)RabRcd∇d∇c∇e∇eRab

4 − 5D + D2

+
(44 − 10D)Ra

cRab∇d∇c∇e∇eRb
d

−4 + D
+

(16 − 6D + D2)RabR
ab∇d∇c∇e∇eRcd

4 − 5D + D2
+ (−6 + D)R

ab
R∇d∇c∇e∇e

Ra
c
b
d

+
(−56 + 40D − 6D2)RabRcd∇d∇c∇f∇eRa

e
b
f

4 − 5D + D2
−

(292 + 288D − 137D2 + 14D3)R∇c∇cRab∇d∇dRab

4(4 − 5D + D2)

+
(−8 + D)(−2 + D)∇c∇c∇b∇aR∇d∇dRab

(−4 + D)(−1 + D)
+

(28 − 20D + 3D2)Rb
c∇b∇aR∇d∇dRac

8 − 10D + 2D2
− 4R

ab∇b∇eRc
e∇d∇

d
Ra

c
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+
(8 − 102D + 24D2)Ra

cRabR∇d∇dRbc

4 − 5D + D2
+

(220 − 206D − 70D2 + 21D3)Rbc∇a∇aR∇d∇dRbc

2(−4 + D)(−1 + D)2

+
(126 − 55D + 6D2)R∇a∇cRab∇d∇dRbc

−4 + D
+

4(−8 + D)∇aR
bc∇aR∇d∇dRbc

(−4 + D)(−1 + D)

+
(132 + 60D − 21D2)Ra

c∇b∇aR∇d∇dRbc

8 − 10D + 2D2
+

(−8 + D)∇aR∇cRa
b∇d∇dRbc

−1 + D
+

(2 + 9D + 10D2 − 3D3)R∇c∇aR
ab∇d∇dRbc

4 − 5D + D2

+
(−24 − 16D + 5D2)Rbc∇aR∇d∇d∇aRbc

4 − 5D + D2
+ (16 − 6D)R∇c

R
ab∇d∇

d∇bRac +
(84 − 88D + 29D2 − 3D3)R∇d∇d∇b∇a∇c∇cRab

8 − 10D + 2D2

−
(−2 + 7D + D2)RabR∇d∇d∇b∇cRa

c

−1 + D
+

(−4 + D)Rbc∇aR∇d∇d∇cRab

−1 + D
− 10R

ab
R∇d∇

d∇c∇bRa
c

+
(−464 + 268D − 68D2 + 7D3)R∇cRab∇d∇d∇cRab

2(4 − 5D + D2)
−

2(4 + D + D2)R∇aR
ab∇d∇d∇cRb

c

−1 + D

+
(4 − D)Ra

b∇aR∇d∇d∇cRb
c

−1 + D
−

(320 + 76D − 54D2 + 5D3)RabR∇d∇d∇c∇cRab

2(4 − 5D + D2)
+

(−8 + D)(−2 + D)∇b∇aR∇d∇d∇c∇cRab

(−4 + D)(−1 + D)

+
(28 − 20D + 3D2)Rab∇d∇d∇c∇c∇b∇aR

8 − 10D + 2D2
+ 48Ra

c
R

ab
Rb

d∇d∇eRc
e
+

(16 − 22D)RabR
abRcd∇d∇eRc

e

−1 + D

−
6(−2 + D)Rab∇b∇aR

cd∇d∇eRc
e

−1 + D
− 4R

ab∇b∇
d
Ra

c∇d∇eRc
e
+

(52 − 10D)RabRcdR∇d∇eRacb
e

−4 + D
+ 8R

ab∇aR
cd∇d∇e∇bRc

e

− 16R
ab∇aR

cd∇d∇e∇cRb
e −

4(−6 + D)Rab∇cR
cd∇d∇e∇eRab

−4 + D
+

(44 − 10D)Rab∇aR
cd∇d∇e∇eRbc

−4 + D

+
4(−6 + D)Rab∇cRa

c∇d∇e∇eRb
d

−4 + D
+

2(−22 + 5D)Rab∇bRa
c∇d∇e∇eRc

d

−4 + D
−

4(−6 + D)Rab∇cRab∇d∇e∇eRc
d

−4 + D

+ 2(−6 + D)R∇c
R

ab∇d∇e∇e
Racb

d − 16Ra
c
R

ab
Rbecf∇d∇

f
R

de
+

(−64 − 84D + 22D2)RabR∇bRcd∇dRa
c

4 − 5D + D2

+
(56 − 12D)RabRcedf∇bR

ef∇dRa
c

−4 + D
− 12R

ab∇b∇c∇eRd
e∇d

Ra
c − 16R

ab∇b∇e∇cRd
e∇d

Ra
c
+ 8R

ab∇b∇e∇dRc
e∇d

Ra
c

+
(44 − 10D)Rab∇b∇e∇eRcd∇dRa

c

−4 + D
+

2(−8 + D)(−2 + D)∇bRcd∇b∇aR∇dRa
c

(−4 + D)(−1 + D)
+

(96 + 44D − 14D2)RabR∇cRbd∇dRa
c

4 − 5D + D2

−
2(−8 + D)(−2 + D)∇b∇aR∇cRbd∇dRa

c

(−4 + D)(−1 + D)
+

8(−6 + D)RabRbedf∇cR
ef∇dRa

c

−4 + D

+ 56R
ab∇c∇b∇eRd

e∇d
Ra

c − 16R
ab∇c∇e∇dRb

e∇d
Ra

c
+

4(−6 + D)Rab∇c∇e∇eRbd∇dRa
c

−4 + D
+ 28R

ab
R∇dRbc∇

d
Ra

c

− 32R
ab

Rbecf∇dR
ef∇d

Ra
c − 4R

ab∇d∇b∇eRc
e∇d

Ra
c
+ 24R

ab∇d∇c∇eRb
e∇d

Ra
c − 16R

ab∇d∇e∇bRc
e∇d

Ra
c

+ 32R
ab∇d∇e∇cRb

e∇d
Ra

c
+

(140 + 128D − 79D2 + 10D3)RRabcd∇aR∇dRbc

4 − 5D + D2
+

5(−8 + D)D∇a∇aR∇dRbc∇dRbc

2(−4 + D)(−1 + D)2

− 12R
ab∇c∇eRd

e∇d∇bRa
c
+ 8R

ab∇d∇eRc
e∇d∇bRa

c − 24R
ab∇b∇eRd

e∇d∇cRa
c
+ 24R

ab∇d∇eRb
e∇d∇cRa

c

− 56R
ab∇d∇eRc

e∇d∇c
Rab −

(112 + 34D − 35D2 + 5D3)R2Racbd∇d∇cRab

4 − 5D + D2
− 8(−4 + D)RRac

ef
Rbdef∇d∇c

R
ab

+ 8(−4 + D)RRa
e
c
f
Rbedf∇d∇c

R
ab

+ 2(−6 + D)RRa
e
b
f
Rcedf∇d∇c

R
ab

+ 4(−4 + D)R∇b∇aRcd∇
d∇c

R
ab

+ 16R∇b∇cRad∇
d∇c

R
ab

+ (6 − 2D)R∇b∇dRac∇d∇c
R

ab
+

(26 − 9D + 3D2)R∇c∇dRab∇d∇cRab

2 − 2D
+ (10 − 6D)R∇d∇bRac∇d∇c

R
ab

+
(−440 + 218D − 57D2 + 7D3)R∇d∇cRab∇d∇cRab

2(4 − 5D + D2)
−

4(−2 + D)(42 − 23D + 3D2)R∇d∇eRacb
e∇d∇cRab

(−4 + D)(−1 + D)

−
(−8 + D)(−2 + D)2Racbd∇b∇aR∇d∇cR

(−4 + D)(−1 + D)2
+

(−6 + D)(−2 + D)2Rcd∇d∇c∇a∇b∇b∇aR

2(−4 + D)(−1 + D)2

+
(−32 + 46D − 9D2)Rcd∇d∇c∇b∇b∇a∇aR

2(−4 + D)(−1 + D)2
+

(−60 + 36D − 5D2)RadRbc∇d∇c∇b∇aR

2(4 − 5D + D2)

−
(−2 + D)(−14 + 3D)RacRbd∇d∇c∇b∇aR

2(−4 + D)(−1 + D)
+

(−44 + 112D − 55D2 + 7D3)RabRcd∇d∇c∇b∇aR

(−4 + D)(−1 + D)2

+
(84 − 88D + 29D2 − 3D3)RRacbd∇d∇c∇b∇aR

8 − 10D + 2D2
+

(28 − 20D + 3D2)RRadbc∇d∇c∇b∇aR

8 − 10D + 2D2

+
(−28 + 20D − 3D2)Rc

eRadbe∇d∇c∇b∇aR

4 − 5D + D2
+

(−28 + 20D − 3D2)Rc
eRaebd∇d∇c∇b∇aR

4 − 5D + D2

+ 48Ra
c
R

ab∇dRb
d∇eRc

e
+ 8R

ab
R

cd∇bRac∇eRd
e
+

4(59 − 14D)DRabRcd∇cRab∇eRd
e

(−4 + D)(−1 + D)

+ 48Ra
c
R

ab∇cRb
d∇eRd

e
+

(16 − 22D)RabR
ab∇cR

cd∇eRd
e

−1 + D
− 72Ra

c
R

ab∇d
Rbc∇eRd

e

+
(248 − 60D)RabRbcdf∇aR

cd∇eR
ef

−4 + D
− 16R

ab
Radbf∇cR

cd∇eR
ef −

4(−2 + D)RabRcd∇dRacbf∇eR
ef

−4 + D

+ 64R
ab

Rbdcf∇d
Ra

c∇eR
ef − 32R

ab
Rbfcd∇

d
Ra

c∇eR
ef

+
4(−24 − 16D + 5D2)RbcRde∇aR∇eRabcd

4 − 5D + D2

+
(−28 + 20D − 3D2)Rde∇c∇b∇aR∇eRacbd

4 − 5D + D2
−

2(−2 + D)(42 − 23D + 3D2)R∇d∇d∇cRab∇eRacb
e

(−4 + D)(−1 + D)

+
(−28 + 20D − 3D2)Rde∇c∇b∇aR∇eRadbc

4 − 5D + D2
+

4(76 − 30D + 3D2)RabR∇cR
cd∇eRadb

e

−4 + D
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+
(−28 + 20D − 3D2)Rc

d∇c∇b∇aR∇eRadb
e

4 − 5D + D2
+ (−88 + 20D)R∇d∇c∇c

R
ab∇eRadb

e

+
(−28 + 20D − 3D2)Rc

d∇c∇b∇aR∇eRa
e
bd

4 − 5D + D2
−

4(−6 + D)(5 − 15D + 3D2)RabR∇aR
cd∇eRbcd

e

(−4 + D)(−1 + D)

+
2(−20 − 52D + 13D2)Ra

bRcd∇aR∇eRbcd
e

4 − 5D + D2
+ 4(−8 + 3D)R

ab
R∇d

Ra
c∇eRbdc

e

+ 32R
ab

Rc
efg∇aR

cd∇eRbdfg + 4(−8 + 3D)R
ab

R∇d
Ra

c∇eRb
e
cd −

4(−2 + D)RabRcdRbcdf∇e∇aR
ef

−4 + D

+
(76 − 18D)Rab∇d∇dRa

c∇e∇bRc
e

−4 + D
+ 8R

ab∇c∇aR
cd∇e∇bRd

e − 16R
ab∇c∇d

Ra
c∇e∇bRd

e

− 12R
ab∇d∇cRa

c∇e∇bRd
e − 4R

ab∇cR
cd∇e∇b∇aRd

e − 40R
ab∇d

Ra
c∇e∇b∇cRd

e
+ 56R

ab∇cR
cd∇e∇b∇dRa

e

− 24R
ab∇cRa

c∇e∇b∇dR
de

+ 56R
ab

R
cd∇e∇b∇d∇cRa

e − 4R
ab∇cR

cd∇e∇b∇
e
Rad +

5(2 + D)Rab∇aR
cd∇e∇b∇eRcd

−1 + D

+ 12R
ab∇d

Ra
c∇e∇b∇

e
Rcd + 72Ra

c
R

ab
R

de∇e∇cRbd − 40R
ab∇b∇

d
Ra

c∇e∇cRd
e − 16R

ab∇d∇bRa
c∇e∇cRd

e

+ 32R
ab∇d∇c

Rab∇e∇cRd
e
+ (−88 + 20D)R∇d∇c

R
ab∇e∇cRadb

e − 12Ra
c
R

ab∇e∇c∇b∇dR
de − 16R

ab∇d
Ra

c∇e∇c∇dRb
e

− 12R
ab∇bRa

c∇e∇c∇dR
de − 16Ra

c
R

ab∇e∇c∇d∇bR
de

+ 8Ra
c
R

ab∇e∇c∇d∇
e
Rb

d − 72Ra
c
R

ab
R

de∇e∇dRbc

− 16R
ab∇c∇d

Ra
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+ 32R
ab

R
cd∇gRbdef∇g

Rac
ef −

8(−6 + D)RabRcd∇dRcefg∇gRa
e
b
f

−4 + D

−
8(−6 + D)RabRcd∇gRcedf∇gRa

e
b
f

−4 + D
− 32R

ab
R

cd∇dRbefg∇
g
Ra

e
c
f − 32R

ab
R

cd∇gRbedf∇g
Ra

e
c
f

]
.

Finally, we have also been able to compute the sextic term in d = 3,

Ld=3
6 = l11

[
66221
630

Ra
cRabRb

dRc
eRd

fRef − 75289
420

RabR
abRc

eRcdRd
fRef + 3341

210
Ra

cRabRbcRd
fRdeRef

+ 8719951
181440

RabR
abRcdR

cdRefR
ef − 9485

54
Ra

cRabRb
dRc

eRdeR+ 23476
189

RabR
abRc

eRcdRdeR

+ 1218857
5040

Ra
cRabRb

dRcdR
2 − 143105771

1451520
RabR

abRcdR
cdR2 − 4344349

30240
Ra

cRabRbcR
3

+ 158445797
2322432

RabR
abR4 − 76476541

10321920
R6 + 4461

70
Rb

dRbcRc
eRde∇a∇aR

− 1187537
45360

RbcR
bcRdeR

de∇a∇aR− 1510507
15120

Rb
dRbcRcdR∇a∇aR+ 29250587

362880
RbcR

bcR2∇a∇aR

− 1637179
96768

R4∇a∇aR+ 1184999
9072

RbcR2∇aRbc∇aR− 1667051
7560

Rb
dRbcR∇aRcd∇aR

+ 12399
70

Rb
dRbcRc

e∇aRde∇aR− 1948411
22680

RbcR
bcRde∇aRde∇aR− 1123331

30240
Rb

dRbcRcd∇aR∇aR

+ 587839
8640

RbcR
bcR∇aR∇aR− 592223

17920
R3∇aR∇aR+ 977

1008
Rb

dRcd∇a∇c∇bR∇aR

− 6539
6720

RbcR∇a∇c∇bR∇aR+ 799
630

RbcRde∇a∇e∇cRbd∇aR− 6679
7560

RbcRde∇a∇e∇dRbc∇aR

− 158213
6720

RabR2∇aR
cd∇bRcd − 42253

432
Ra

bRcdR∇aR∇bRcd + 287527
30240

Rcd∇a∇bR∇aR∇bRcd

+ 659161
7560

Ra
bRc

eRcd∇aR∇bRde − 1193
7560

Rbc∇a∇cRde∇aR∇bR
de + 235829

51840
RcdR

cd∇a∇aR∇b∇bR

− 3694613
967680

R2∇a∇aR∇b∇bR+ 129511
12960

Rcd∇aRcd∇aR∇b∇bR− 1341997
241920

R∇aR∇aR∇b∇bR

+ 3877
420

RcdR
cd∇aR∇b∇b∇aR− 567577

60480
R2∇aR∇b∇b∇aR− 3503

630
Rc

eRcdRde∇b∇b∇a∇aR

+ 1187
168

RcdR
cdR∇b∇b∇a∇aR− 15517

6720
R3∇b∇b∇a∇aR+ 53915

3024
RcdR∇aRcd∇b∇b∇aR
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Appendix D Counterterms

− 285
14

Rc
eRcd∇aRde∇b∇b∇aR− 68

945
Rcd∇a∇d∇cR∇b∇b∇aR+ 3197

1890
Rcd∇a∇e∇eRcd∇b∇b∇aR

− 133261
15120

Ra
cRb

dRcd∇aR∇bR− 507149
25920

RabRcdR
cd∇aR∇bR− 1621

252
Ra

cRbcR∇aR∇bR

+ 6912181
290304

RabR
2∇aR∇bR+ 212879

90720
Rbc∇a∇cR∇aR∇bR+ 3037

2592
∇aR

cd∇aR∇bRcd∇bR

− 7081
20736

∇aR∇aR∇bR∇bR+ 293383
90720

Rcd∇aR∇b∇aRcd∇bR− 60373
11520

R∇aR∇b∇aR∇bR

+ 114157
45360

Rcd∇aR∇b∇dRac∇bR− 8221
756

Ra
cRb

dRc
eRde∇b∇aR+ 7703

630
RabRc

eRcdRde∇b∇aR

− 46087
4536

Ra
cRbcRdeR

de∇b∇aR+ 3409
720

Ra
cRb

dRcdR∇b∇aR− 114133
20160

RabRcdR
cdR∇b∇aR

+ 213629
25920

Ra
cRbcR

2∇b∇aR− 806107
483840

RabR
3∇b∇aR+ 173797

30240
R∇aR

cd∇bRcd∇b∇aR

− 3133
270

Rcd∇aRc
e∇bRde∇b∇aR+ 25307

1680
RcdR∇b∇aRcd∇b∇aR− 19373

1260
Rc

eRcd∇b∇aRde∇b∇aR

+ 423289
120960

RcdR
cd∇b∇aR∇b∇aR− 4274441

967680
R2∇b∇aR∇b∇aR− 103

2160
Rcd∇b∇a∇d∇cR∇b∇aR

− 177467
11340

Ra
cRde∇b∇cRde∇b∇aR+ 134567

45360
Ra

dRcd∇b∇cR∇b∇aR+ 559
144

RacR∇b∇cR∇b∇aR

+ 143071
15120

RcdR∇b∇dRac∇b∇aR+ 11
2160

∇aRcd∇b∇d∇cR∇b∇aR− 35293
3780

Rc
eRcd∇b∇eRad∇b∇aR

− 74159
11340

Ra
cRde∇b∇eRcd∇b∇aR+ 10599509

181440
RbcR2∇aR∇cRab +

112963
2520

RabRcdR∇bRde∇cRa
e

− 397
108

Rcd∇aRde∇b∇aR∇cRb
e + 12503

210
Ra

bRb
cRde∇aR∇cRde + 7813

840
Ra

cRabR∇bR
de∇cRde

− 4297
3780

Rbc∇a∇aR∇bR
de∇cRde − 7

9
∇aR

bc∇aR∇bR
de∇cRde − 2771

756
Ra

cRde∇b∇b∇aR∇cRde

− 223
42

Ra
c∇bR

de∇b∇aR∇cRde − 99871
1260

Ra
cRabRde∇bRd

f∇cRef + 14453
7560

Ra
cRabRdeR∇c∇bRde

− 628
945

Rbc∇aR
de∇aR∇c∇bRde + 20646151

362880
RabR3∇c∇cRab − 83981

181440
R∇aR∇bR∇c∇cRab

− 212647
120960

R2∇b∇aR∇c∇cRab − 523
4320

∇a∇aR∇b∇bR∇c∇cR+ 201191
181440

Rab∇aR∇bR∇c∇cR

− 1081
2880

∇aR∇b∇bR∇c∇c∇aR− 1
80

∇aR∇b∇aR∇c∇c∇bR− 1691
3360

R∇b∇a∇aR∇c∇c∇bR

− 11
2592

∇aR∇bR∇c∇c∇b∇aR− 5743
6480

R∇b∇aR∇c∇c∇b∇aR− 3401
5670

R∇a∇aR∇c∇c∇b∇bR

− 23
288

∇aR∇aR∇c∇c∇b∇bR− 13
21

R∇aR∇c∇c∇b∇b∇aR+ 1229
3780

RdeR
de∇c∇c∇b∇b∇a∇aR

− 619
3024

R2∇c∇c∇b∇b∇a∇aR+ 929
945

Rde∇aRde∇c∇c∇b∇b∇aR− 379
945

Ra
dRbd∇aR∇c∇c∇bR

+ 2963
1080

RabR∇aR∇c∇c∇bR− 2731
1890

Ra
dRb

eRde∇c∇c∇b∇aR+ 10523
11340

RabRdeR
de∇c∇c∇b∇aR

+ 3709
2520

Ra
dRbdR∇c∇c∇b∇aR− 162049

181440
RabR

2∇c∇c∇b∇aR+ 1
36

∇aR
de∇bRde∇c∇c∇b∇aR

+ 8297
5670

Rde∇b∇aRde∇c∇c∇b∇aR− 149
810

Rde∇b∇eRad∇c∇c∇b∇aR+ 8987
5670

Ra
cRde∇b∇aR∇c∇eRbd

+ 7
36

∇aR∇bR
de∇cRde∇cRa

b + 2957
135

R3∇bRac∇cRab + 13031
576

R3∇cRab∇cRab

+ 77
864

∇aR∇bR∇cRab∇cR+ 1
1080

∇b∇aR∇c∇bR∇c∇aR+ 99367
45360

Rb
dRcd∇a∇aR∇c∇bR

− 306737
60480

RbcR∇a∇aR∇c∇bR− 14377
5040

R∇aRbc∇aR∇c∇bR+ 48541
11340

Rb
d∇aRcd∇aR∇c∇bR

− 9973
8640

Rbc∇aR∇aR∇c∇bR− 41
560

R∇aR∇cRab∇c∇bR+ 39443
90720

Rb
d∇aR∇cRad∇c∇bR

+ 6985
6048

Ra
d∇aR∇cRbd∇c∇bR− 277

2160
∇a∇aR∇c∇bR∇c∇bR+ 17

1728
∇aR∇c∇b∇aR∇c∇bR

+ 383
360

RdeR
de∇cRab∇c∇b∇aR− 3965

3024
R2∇cRab∇c∇b∇aR+ 9173

3780
Ra

dR∇cRbd∇c∇b∇aR

− 5429
3780

Ra
dRd

e∇cRbe∇c∇b∇aR− 74
63

Ra
dRb

e∇cRde∇c∇b∇aR+ 53
504

RabR
de∇cRde∇c∇b∇aR

+ 802
945

Rde∇c∇b∇aRde∇c∇b∇aR− 7663
30240

R∇c∇b∇aR∇c∇b∇aR+ 13
30240

Rad∇c∇b∇dR∇c∇b∇aR

− 8
45

Rde∇c∇b∇eRad∇c∇b∇aR+ 101
1890

Rde∇c∇e∇dRab∇c∇b∇aR+ 11
35

Ra
d∇c∇e∇eRbd∇c∇b∇aR

− 81544
945

Rb
dRbcR∇aR∇dRac +

239123
90720

Rcd∇aR∇b∇bR∇dRac +
967
1512

RcdR∇b∇b∇aR∇dRac

− 1
27

∇b∇d∇cR∇b∇aR∇dRac +
160541
90720

Rb
d∇aR∇c∇bR∇dRac − 76631

2520
Ra

bRcdR∇aR∇dRbc

+ 2759
4320

Rcd∇a∇bR∇aR∇dRbc +
4477
3360

Ra
d∇aR∇c∇bR∇dRbc +

4037
3024

Ra
dR∇c∇b∇aR∇dRbc

+ 199939
1512

RabRcdR∇cRa
e∇dRbe − 881

1890
Rcd∇b∇aR∇cRa

e∇dRbe − 206819
3780

Ra
cRabRde∇cRef∇dRb

f

− 26777
210

RabRcdR∇bRa
e∇dRce + 2369

1260
Rcd∇bRa

e∇b∇aR∇dRce + 54317
1890

RabRcdRef∇cRab∇dRef

+ 91
18

Ra
cRabRb

d∇cR
ef∇dRef + 25315

1512
RabR

abRcd∇cR
ef∇dRef + 527977

22680
RabRcdR2∇d∇bRac

− 4189
1260

Rab∇aR
cd∇cR

ef∇d∇bRef + 1396
945

RabRcd∇c∇aR
ef∇d∇bRef − 2400491

181440
RabRcdR2∇d∇cRab

+ 20297
30240

Rcd∇aR∇bR∇d∇cRab +
5417
5040

RcdR∇b∇aR∇d∇cRab +
3352
315

Ra
cRabRb

dRef∇d∇cRef

+ 2339
3780

RabRcd∇b∇aR
ef∇d∇cRef + 689

315
RabRcd∇aR

ef∇d∇c∇bRef + 871561
181440

R2∇c∇cRab∇d∇dRab

+ 1
20

∇aR∇c∇c∇bR∇d∇dRab − 2833
11340

R∇c∇c∇b∇aR∇d∇dRab − 67
2160

∇b∇aR∇c∇bR∇d∇dRac

− 64048
405

Ra
cRabR2∇d∇dRbc +

451139
22680

RbcR∇a∇aR∇d∇dRbc +
6551
567

R∇aR
bc∇aR∇d∇dRbc

+ 43951
6048

Rbc∇aR∇aR∇d∇dRbc +
881
3240

Ra
c∇aR∇bR∇d∇dRbc +

193577
45360

Ra
cR∇b∇aR∇d∇dRbc

+ 68069
11340

R∇aR∇cRa
b∇d∇dRbc − 307

1440
∇a∇aR∇c∇bR∇d∇dRbc − 17

432
∇aR∇c∇b∇aR∇d∇dRbc

+ 42229
2160

RbcR∇aR∇d∇d∇aRbc − 439
2160

∇aR∇c∇bR∇d∇d∇aRbc − 121
1512

Rbc∇aR∇d∇d∇a∇c∇bR

+ 5486
945

R2∇cRab∇d∇d∇bRac − 331
11340

Rac∇b∇aR∇d∇d∇b∇cR+ 1153
504

RbcR∇aR∇d∇d∇cRab

+ 14197
1512

R2∇cRab∇d∇d∇cRab +
13
360

∇aR∇c∇bR∇d∇d∇cRab − 239
1260

R∇c∇b∇aR∇d∇d∇cRab

+ 1
648

∇c∇b∇a∇aR∇d∇d∇c∇bR+ 53527
6480

RabR2∇d∇d∇c∇cRab +
11
648

∇aR∇bR∇d∇d∇c∇cRab
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− 514
2835

R∇b∇aR∇d∇d∇c∇cRab − 1
216

∇b∇b∇a∇aR∇d∇d∇c∇cR− 563
5670

Rab∇b∇aR∇d∇d∇c∇cR

+ 7
2160

∇b∇aR∇d∇d∇c∇c∇b∇aR− 7
720

∇a∇aR∇d∇d∇c∇c∇b∇bR− 17
1890

R∇d∇d∇c∇c∇b∇b∇a∇aR

+ 73
1512

Rab∇aR∇d∇d∇c∇c∇bR+ 389
1890

Ra
eRbe∇d∇d∇c∇c∇b∇aR− 2171

15120
RabR∇d∇d∇c∇c∇b∇aR

+ 589
30240

Rac∇b∇b∇aR∇d∇d∇cR+ 5
216

∇bRac∇b∇aR∇d∇d∇cR− 43
216

∇b∇aR∇cRab∇d∇d∇cR

− 4001
22680

Rbc∇a∇aR∇d∇d∇c∇bR− 19
216

∇aRbc∇aR∇d∇d∇c∇bR+ 2
81

∇aR∇cRab∇d∇d∇c∇bR

− 19
126

R∇cRab∇d∇d∇c∇b∇aR+ 296
945

Ra
e∇cRbe∇d∇d∇c∇b∇aR+ 1

8
∇cR

ef∇cRab∇dRef∇dRab

− 8552
135

RabR2∇bRcd∇dRa
c − 163

324
∇aR∇bRcd∇bR∇dRa

c + 1721
540

R∇bRcd∇b∇aR∇dRa
c

− 53567
1080

RabR2∇cRbd∇dRa
c + 49

1296
∇aR∇bR∇cRbd∇dRa

c + 6203
7560

R∇b∇aR∇cRbd∇dRa
c

− 1043363
7560

RabR2∇dRbc∇dRa
c − 215

1296
∇aR∇bR∇dRbc∇dRa

c + 4937
1890

R∇b∇aR∇dRbc∇dRa
c

− 3481
1890

Rab∇c∇bRef∇dR
ef∇dRa

c − 2473
1260

Rab∇cR
ef∇d∇bRef∇dRa

c − 4993
1260

Rab∇bR
ef∇d∇cRef∇dRa

c

+ 39
8
R∇a∇aR∇cRbd∇dRbc − 23

36
∇aR∇aR∇cRbd∇dRbc + 2887

360
R∇aR∇c∇aRbd∇dRbc

+ 8203
3780

R∇aR∇c∇bRad∇dRbc + 150629
30240

R∇a∇aR∇dRbc∇dRbc + 437
288

∇aR∇aR∇dRbc∇dRbc

+ 7412
945

R∇aR∇d∇aRbc∇dRbc + 1601
630

R∇aR∇d∇cRab∇dRbc + 13
1008

R2∇b∇aRcd∇d∇cRab

+ 45629
7560

R2∇d∇bRac∇d∇cRab + 42251
15120

R2∇d∇cRab∇d∇cRab − 1819
6480

RacRbd∇b∇aR∇d∇cR

− 27263
60480

RabRcd∇b∇aR∇d∇cR+ 1
48

∇b∇aR∇d∇bRac∇d∇cR− 217
1440

∇b∇aR∇d∇cRab∇d∇cR

− 4747
7560

RabRcd∇aR∇d∇c∇bR− 13
240

∇a∇aR∇dRbc∇d∇c∇bR+ 583
1890

Ra
eRbeRcd∇d∇c∇b∇aR

− 5359
30240

RabRcdR∇d∇c∇b∇aR− 19
189

R∇d∇cRab∇d∇c∇b∇aR+ 64
315

Ra
e∇d∇cRbe∇d∇c∇b∇aR

− 1
35

Ra
e∇d∇eRbc∇d∇c∇b∇aR− 49831

756
RabRcdRef∇dRbf∇eRac +

8731
180

Rb
dRbcRc

e∇aR∇eRad

− 118577
22680

RbcR
bcRde∇aR∇eRad + 151

252
Rc

eRcd∇b∇b∇aR∇eRad − 19
270

Rde∇c∇c∇b∇b∇aR∇eRad

− 673
1890

Ra
dRd

e∇c∇b∇aR∇eRbc − 1
35

Ra
e∇d∇d∇c∇b∇aR∇eRbc +

39253
756

Ra
bRc

eRcd∇aR∇eRbd

− 63059
1260

Ra
bRb

cRde∇aR∇eRcd − 4901
3780

Ra
cRde∇b∇b∇aR∇eRcd − 1859

756
Rcd∇bRa

e∇b∇aR∇eRcd

+ 3481
3780

Ra
dRb

e∇c∇b∇aR∇eRcd + 103
189

RabR
de∇c∇b∇aR∇eRcd − 389317

3780
Ra

cRabRde∇dRb
f∇eRcf

+ 118537
630

Ra
cRabRde∇cRb

f∇eRdf − 4661
1260

Rbc∇aR∇bR
de∇e∇aRcd − 563

315
R∇cR

de∇cRab∇e∇bRad

+ 7781
7560

Rbc∇aR∇bR
de∇e∇cRad − 81292

945
Ra

cRabRdeR∇e∇cRbd + 15329
5670

RbcRde∇a∇aR∇e∇cRbd

+ 6247
2835

Rbc∇aR
de∇aR∇e∇cRbd − 878

945
Rc

eRcd∇b∇aR∇e∇dRab +
167
3780

Rde∇c∇c∇b∇aR∇e∇dRab

+ 12137
3780

R∇cR
de∇cRab∇e∇dRab − 667

1512
Rbc∇aR∇bR

de∇e∇dRac +
289399
7560

Ra
cRabRdeR∇e∇dRbc

+ 25409
11340

RbcRde∇a∇aR∇e∇dRbc +
223
810

Rbc∇aR
de∇aR∇e∇dRbc +

1601
1260

Ra
cRde∇b∇aR∇e∇dRbc

+ 493
378

RbcRde∇aR∇e∇d∇cRab +
24977
15120

RcdR
cd∇b∇aR∇e∇eRab − 7

540
∇d∇d∇c∇c∇b∇aR∇e∇eRab

+ 8459
7560

Rbc∇aR∇cRb
d∇e∇eRad − 4253

1512
Rbc∇aR∇dRbc∇e∇eRad − 276181

11340
RabR∇d∇dRa

c∇e∇eRbc

+ 187
540

∇b∇aR∇d∇dRa
c∇e∇eRbc +

7
9
∇a∇aR∇d∇dRbc∇e∇eRbc − 39953

11340
Ra

cRc
d∇b∇aR∇e∇eRbd

+ 3319
5670

Ra
d∇c∇c∇b∇aR∇e∇eRbd − 8681

2520
R∇aRc

d∇cRab∇e∇eRbd − 60919
3780

R∇cRa
d∇cRab∇e∇eRbd

− 18023
1890

R∇cRab∇dRac∇e∇eRbd + 9609
35

Ra
cRabRb

dR∇e∇eRcd − 1037579
9072

RabR
abRcdR∇e∇eRcd

− 138283
5670

Rb
dRbc∇a∇aR∇e∇eRcd − 65647

2268
Rbc∇aRb

d∇aR∇e∇eRcd − 93997
22680

Rbc∇aR∇bRa
d∇e∇eRcd

− 1145
189

Ra
b∇aR∇bR

cd∇e∇eRcd + 31411
7560

RabR∇b∇aR
cd∇e∇eRcd + 341

315
Rcd∇b∇b∇a∇aR∇e∇eRcd

+ 43
54

∇aR
cd∇b∇b∇aR∇e∇eRcd − 2297

1134
Ra

cRb
d∇b∇aR∇e∇eRcd + 15937

2520
RabR

cd∇b∇aR∇e∇eRcd

+ 83
135

∇b∇aR
cd∇b∇aR∇e∇eRcd + 4

27
∇bRa

d∇c∇b∇aR∇e∇eRcd − 27697
22680

Rbc∇aR∇dRab∇e∇eRcd

+ 829
540

R∇cRab∇dRab∇e∇eRcd − 11
540

∇c∇b∇aR∇dRab∇e∇eRcd − 5
54

∇b∇b∇aR∇dRa
c∇e∇eRcd

− 1891
7560

Ra
b∇aR∇dRb

c∇e∇eRcd + 14606
2835

RabR∇d∇bRa
c∇e∇eRcd − 73

540
∇b∇aR∇d∇bRa

c∇e∇eRcd

− 27781
22680

RabR∇d∇cRab∇e∇eRcd + 1
60

∇b∇aR∇d∇cRab∇e∇eRcd − 53
1890

Rab∇d∇c∇b∇aR∇e∇eRcd

+ 439
540

∇aR∇d∇dRbc∇e∇e∇aRbc − 19462
945

Rb
dRbc∇aR∇e∇e∇aRcd − 152

945
R∇d∇c∇cRab∇e∇e∇bRad

− 37
315

RabR∇aR
cd∇e∇e∇bRcd − 380

63
Ra

bRcd∇aR∇e∇e∇bRcd + 47
540

∇aR
cd∇b∇aR∇e∇e∇bRcd

− 2087
252

RabR∇dRa
c∇e∇e∇bRcd − 2

15
∇b∇aR∇dRa

c∇e∇e∇bRcd + 1243
840

Rcd∇b∇aR∇e∇e∇b∇aRcd

+ 43
945

R∇d∇cRab∇e∇e∇b∇aRcd − 7
30

Rcd∇b∇aR∇e∇e∇b∇dRac − 13
90

∇aR∇d∇dRbc∇e∇e∇cRab

− 110
21

RabR∇dRa
c∇e∇e∇cRbd + 4

135
∇b∇aR∇dRa

c∇e∇e∇cRbd − 1
5
∇a∇aR∇dRbc∇e∇e∇cRbd

+ 223
210

R∇d∇c∇cRab∇e∇e∇dRab − 343
108

Rb
dRbc∇aR∇e∇e∇dRac − 269

1890
Rcd∇b∇b∇aR∇e∇e∇dRac

− 6619
945

RabR∇aR
cd∇e∇e∇dRbc +

26
105

Ra
bRcd∇aR∇e∇e∇dRbc − 1

9
∇aR

cd∇b∇aR∇e∇e∇dRbc

− 1
28

Ra
d∇c∇b∇aR∇e∇e∇dRbc − 174163

3780
RabR∇dRa

c∇e∇e∇dRbc +
32
45

∇b∇aR∇dRa
c∇e∇e∇dRbc

+ 143
180

∇a∇aR∇dRbc∇e∇e∇dRbc +
1783
630

RabRcdR∇e∇e∇d∇bRac − 10
27

R∇d∇cRab∇e∇e∇d∇bRac

− 611
504

RabRcdR∇e∇e∇d∇cRab +
61

2520
Rcd∇b∇aR∇e∇e∇d∇cRab +

115
63

R∇d∇cRab∇e∇e∇d∇cRab

+ 1483
1134

R∇c∇cRab∇e∇e∇d∇dRab − 34753
1890

Ra
cRabR∇e∇e∇d∇dRbc +

943
840

Rbc∇a∇aR∇e∇e∇d∇dRbc

163



Appendix D Counterterms

+ 29
81

∇aR
bc∇aR∇e∇e∇d∇dRbc +

1093
2835

Ra
c∇b∇aR∇e∇e∇d∇dRbc − 1

9
∇aR∇cRa

b∇e∇e∇d∇dRbc

− 1
81

∇c∇b∇a∇aR∇e∇e∇d∇dRbc +
1913
1890

Rbc∇aR∇e∇e∇d∇d∇aRbc − 44
189

R∇cRab∇e∇e∇d∇d∇bRac

− 269
1890

Rbc∇aR∇e∇e∇d∇d∇cRab +
1237
945

R∇cRab∇e∇e∇d∇d∇cRab +
2929
3780

RabR∇e∇e∇d∇d∇c∇cRab

− 7
540

∇b∇aR∇e∇e∇d∇d∇c∇cRab − 17
1890

Rab∇e∇e∇d∇d∇c∇c∇b∇aR− 1
70

RabRcd∇e∇e∇d∇c∇b∇aR

+ 229603
7560

RabRcdR∇dRce∇eRab − 5401
1890

Rcd∇b∇aR∇dRce∇eRab − 11684
135

RabRcdR∇eRcd∇eRab

+ 6479
1890

Rcd∇b∇aR∇eRcd∇eRab − 457
3780

Rcd∇bRde∇b∇aR∇eRac +
848657
7560

RabRcdR∇dRbe∇eRac

− 229
135

Rcd∇b∇aR∇dRbe∇eRac +
158275
1512

RabRcdR∇eRbd∇eRac − 2197
756

Rcd∇b∇aR∇eRbd∇eRac

+ 641
2520

Rbc∇aR∇c∇bRde∇eRa
d − 2

27
∇bRde∇c∇c∇b∇aR∇eRa

d − 3817
1890

R∇cRab∇d∇bRce∇eRa
d

− 52327
22680

Rbc∇aR∇d∇cRbe∇eRa
d + 514

315
R∇cRab∇d∇cRbe∇eRa

d + 4
27

∇c∇c∇b∇aR∇eRbd∇eRa
d

− 11069
4536

Rbc∇aR∇e∇cRbd∇eRa
d − 4139

270
R∇cRab∇e∇cRbd∇eRa

d − 973
3240

Rbc∇aR∇e∇dRbc∇eRa
d

− 3908
315

R∇cRab∇e∇dRbc∇eRa
d − 1759

315
Rbc∇a∇cRde∇aR∇eRb

d − 301
36

Rbc∇a∇dRce∇aR∇eRb
d

− 1103
70

Rbc∇a∇eRcd∇aR∇eRb
d + 510409

7560
Ra

cRabR∇cRde∇eRb
d − 10439

3780
Rbc∇a∇aR∇cRde∇eRb

d

+ 56
27

∇aR
bc∇aR∇cRde∇eRb

d + 1481
1890

Ra
c∇b∇aR∇cRde∇eRb

d − 7
27

∇aR∇cRde∇cRa
b∇eRb

d

+ 36227
504

Ra
cRabR∇dRce∇eRb

d − 16151
3780

Rbc∇a∇aR∇dRce∇eRb
d − 43

105
Ra

c∇b∇aR∇dRce∇eRb
d

− 793
420

Rbc∇aR∇d∇cRae∇eRb
d + 528379

2520
Ra

cRabR∇eRcd∇eRb
d − 16007

1260
Rbc∇a∇aR∇eRcd∇eRb

d

− 112
27

∇aR
bc∇aR∇eRcd∇eRb

d − 4154
945

Ra
c∇b∇aR∇eRcd∇eRb

d + 28
27

∇aR∇cRa
b∇eRcd∇eRb

d

− 3179
2520

Rbc∇aR∇e∇cRad∇eRb
d − 36779

7560
Rbc∇aR∇e∇dRac∇eRb

d − 1513
756

Ra
c∇bRde∇b∇aR∇eRc

d

− 7
27

∇aR∇bRde∇cRa
b∇eRc

d − 661
420

R∇b∇aRde∇cRab∇eRc
d − 1709

1260
R∇cRab∇d∇bRae∇eRc

d

− 3013
540

R∇cRab∇e∇bRad∇eRc
d + 211

63
R∇cRab∇e∇dRab∇eRc

d + 2
135

∇b∇a∇dRce∇b∇aR∇eRcd

− 1
270

∇b∇a∇eRcd∇b∇aR∇eRcd − 2
135

∇b∇d∇cRae∇b∇aR∇eRcd − 383
540

Rab∇b∇aRdf∇cRe
f∇eRcd

− 59069
1890

RabR
abR∇dRce∇eRcd − 2

27
∇b∇b∇a∇aR∇dRce∇eRcd + 1187

3780
Rab∇b∇aR∇dRce∇eRcd

− 443
1512

Ra
b∇aR∇d∇bRce∇eRcd − 1727

1260
RabR∇d∇b∇aRce∇eRcd + 1387

1080
Ra

b∇aR∇d∇cRbe∇eRcd

+ 2809
3780

RabR∇d∇c∇bRae∇eRcd − 54491
1260

RabR
abR∇eRcd∇eRcd + 19

108
∇b∇b∇a∇aR∇eRcd∇eRcd

+ 223
216

Rab∇b∇aR∇eRcd∇eRcd + 1123
378

Rab∇b∇aRdf∇eRc
f∇eRcd − 18383

3780
Ra

b∇aR∇e∇bRcd∇eRcd

− 41
40

RabR∇e∇b∇aRcd∇eRcd − 2183
7560

Ra
b∇aR∇e∇dRbc∇eRcd + 583

135
RabR∇e∇d∇bRac∇eRcd

− 463
7560

RabR∇e∇d∇cRab∇eRcd − 2
135

∇b∇aR∇e∇d∇cRab∇eRcd + 1931
3780

RabR∇d∇bRce∇e∇aR
cd

+ 2
135

∇b∇aR∇d∇bRce∇e∇aR
cd − 1957

420
RabR∇e∇bRcd∇e∇aR

cd + 1
270

∇b∇aR∇e∇bRcd∇e∇aR
cd

+ 11
14

RabR∇c∇bRde∇e∇dRa
c − 2

135
∇b∇aR∇c∇bRde∇e∇dRa

c − 188
9

RabR∇e∇bRcd∇e∇dRa
c

− 8
135

∇b∇aR∇e∇bRcd∇e∇dRa
c − 3713

420
RabR∇e∇cRbd∇e∇dRa

c + 4
135

∇b∇aR∇e∇cRbd∇e∇dRa
c

− 61391
3780

RabR∇e∇dRbc∇e∇dRa
c + 32

135
∇b∇aR∇e∇dRbc∇e∇dRa

c − 2
135

∇a∇aR∇c∇bRde∇e∇dRbc

− 2
135

∇a∇aR∇e∇cRbd∇e∇dRbc + 13
54

∇a∇aR∇e∇dRbc∇e∇dRbc + 64
945

R∇e∇b∇aRcd∇e∇d∇cRab

− 32
135

R∇e∇d∇bRac∇e∇d∇cRab + 106
189

R∇e∇d∇cRab∇e∇d∇cRab − 1
70

Rab∇eRcd∇e∇d∇c∇b∇aR

− 30713
756

RabRcdRef∇eRac∇fRbd + 56176
945

RabRcdRef∇bRac∇fRde + 16679
3780

RabRcdRef∇cRab∇fRde

− 87427
1890

Ra
cRabRde∇cRb

f∇fRde + 292
945

Rab∇cRe
f∇eRcd∇f∇bRad − 683

105
Rab∇eRc

f∇eRcd∇f∇bRad

+ 173
135

Rab∇dR
ef∇dRa

c∇f∇bRce − 457
1890

Rab∇aR
cd∇cR

ef∇f∇bRde − 1721
1890

Rab∇cR
ef∇dRa

c∇f∇bRde

+ 1447
18

Ra
cRabRd

fRde∇f∇cRbe + 524
189

Rab∇dR
ef∇dRa

c∇f∇cRbe − 347
210

Rab∇bR
ef∇dRa

c∇f∇cRde

− 284
945

Rab∇cRe
f∇eRcd∇f∇dRab +

2434
945

Rab∇eRc
f∇eRcd∇f∇dRab +

383
630

Rab∇aR
cd∇cR

ef∇f∇dRbe

+ 1423
378

Rab∇cR
ef∇dRa

c∇f∇dRbe − 3Ra
cRabRb

dRef∇f∇dRce + 3314
2835

RabR
abRcdRef∇f∇dRce

+ 1033
1890

Rab∇bR
ef∇dRa

c∇f∇dRce − 3029
1890

RabRcd∇aR
ef∇f∇d∇bRce + 32

189
RabRcd∇aR

ef∇f∇d∇cRbe

− 12451
630

Ra
cRabRd

fRde∇f∇eRbc − 2014
315

Rab∇dR
ef∇dRa

c∇f∇eRbc +
1171
378

Rab∇aR
cd∇cR

ef∇f∇eRbd

− 169
630

Rab∇cR
ef∇dRa

c∇f∇eRbd − 65537
1890

Ra
cRabRb

dRef∇f∇eRcd + 180017
22680

RabR
abRcdRef∇f∇eRcd

− 191
252

Rab∇aR
cd∇bR

ef∇f∇eRcd + 659
1890

Rab∇bR
ef∇dRa

c∇f∇eRcd − 4387
1890

RabRcd∇aR
ef∇f∇e∇bRcd

+ 23
30

RabRcd∇aR
ef∇f∇e∇dRbc − 20

189
RabRcdRef∇f∇e∇d∇bRac +

53
420

RabRcdRef∇f∇e∇d∇cRab

− 3407
1890

Rab∇dRce∇eRcd∇f∇fRab − 30217
3780

Rab∇eRcd∇eRcd∇f∇fRab +
42191
2835

RabRcd∇e∇eRac∇f∇fRbd

− 128
135

∇c∇cRab∇e∇eRa
d∇f∇fRbd − 2701

1890
Rab∇aR

cd∇dRc
e∇f∇fRbe − 1571

126
RabRcd∇d∇cRa

e∇f∇fRbe

+ 160
21

Rab∇cRd
e∇dRa

c∇f∇fRbe + 11296
315

Rab∇dRc
e∇dRa

c∇f∇fRbe + 2
945

Rab∇aR
cd∇eRcd∇f∇fRbe

+ 835
378

Rab∇dRa
c∇eRcd∇f∇fRbe − 27611

2520
RabRcd∇e∇eRab∇f∇fRcd + 83177

2835
Ra

cRab∇e∇eRb
d∇f∇fRcd

− 37493
7560

RabR
ab∇e∇eRcd∇f∇fRcd + 944

315
Rab∇bRd

e∇dRa
c∇f∇fRce + 2186

135
Rab∇dRb

e∇dRa
c∇f∇fRce

+ 787
945

Rab∇dRa
c∇eRbd∇f∇fRce − 28045

126
Ra

cRabRb
dRc

e∇f∇fRde + 38804
405

RabR
abRc

eRcd∇f∇fRde

+ 22691
378

Ra
cRabRbcR

de∇f∇fRde + 4559
630

Rab∇aR
cd∇bRc

e∇f∇fRde + 9169
1260

Rab∇bRa
c∇cR

de∇f∇fRde

164
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− 7502
2835

RabRcd∇c∇bRa
e∇f∇fRde − 88

945
Ra

cRab∇c∇bR
de∇f∇fRde − 14653

1260
Rab∇cR

de∇cRab∇f∇fRde

+ 64
15

Rab∇bRc
e∇dRa

c∇f∇fRde + 2587
630

Rab∇dRa
c∇eRbc∇f∇fRde − 2843

189
Rab∇bRa

c∇eRc
d∇f∇fRde

+ 121
27

Rab∇cRab∇eRc
d∇f∇fRde − 39241

5670
RabRcd∇e∇bRac∇f∇fRde + 28

135
∇c∇cRab∇e∇bRa

d∇f∇fRde

+ 1621
405

RabRcd∇e∇cRab∇f∇fRde − 26
9
Ra

cRab∇e∇cRb
d∇f∇fRde − 31

270
∇c∇cRab∇e∇dRab∇f∇fRde

− 145
189

Ra
cRab∇e∇dRbc∇f∇fRde + 8

135
∇c∇b∇aRde∇cRab∇f∇fRde + 8

135
∇cRab∇e∇b∇aRcd∇f∇fRde

− 8
135

∇cRab∇e∇d∇bRac∇f∇fRde + 2
135

∇cRab∇e∇d∇cRab∇f∇fRde + 4
9
∇cRab∇e∇eRc

d∇f∇f∇bRad

− 16
135

∇cRab∇e∇eRa
d∇f∇f∇bRcd − 26

135
Rab∇e∇e∇aR

cd∇f∇f∇bRcd + 76
105

Rab∇e∇d∇dRa
c∇f∇f∇bRce

+ 12989
1890

RabRcd∇cRa
e∇f∇f∇bRde − 26

315
Rab∇e∇eRcd∇f∇f∇b∇aRcd − 128

45
∇cRab∇e∇eRa

d∇f∇f∇cRbd

− 52
315

Rab∇e∇d∇dRa
c∇f∇f∇cRbe − 4841

1890
Ra

cRab∇bR
de∇f∇f∇cRde + 3949

630
Ra

cRab∇eRb
d∇f∇f∇cRde

+ 8
105

Rab∇e∇d∇bRa
c∇f∇f∇cRde + 701

945
Ra

cRabRde∇f∇f∇c∇bRde + 8
105

Rab∇e∇dRa
c∇f∇f∇c∇bRde

− 47
135

∇cRab∇e∇eRc
d∇f∇f∇dRab +

8
15

∇cRab∇e∇eRa
d∇f∇f∇dRbc +

3571
270

RabRcd∇cRa
e∇f∇f∇dRbe

+ 2543
945

RabRcd∇eRac∇f∇f∇dRbe − 893
54

RabRcd∇bRa
e∇f∇f∇dRce + 1637

210
RabRcd∇eRab∇f∇f∇dRce

+ 4843
945

Ra
cRab∇eRb

d∇f∇f∇dRce − 1346
315

RabR
ab∇eRcd∇f∇f∇dRce − 8

105
Rab∇e∇b∇aR

cd∇f∇f∇dRce

+ 16
45

Rab∇e∇eRcd∇f∇f∇d∇bRac − 52
315

Rab∇e∇aR
cd∇f∇f∇d∇bRce − 4

45
Rab∇eRcd∇f∇f∇d∇b∇aRce

+ 23
1890

Rab∇e∇eRcd∇f∇f∇d∇cRab +
4
45

Rab∇e∇aR
cd∇f∇f∇d∇cRbe + 4

45
Rab∇eRcd∇f∇f∇d∇c∇bRae

− 592
189

Rab∇e∇d∇dRa
c∇f∇f∇eRbc +

274
315

RabRcd∇cRa
e∇f∇f∇eRbd + 3026

135
RabRcd∇eRac∇f∇f∇eRbd

+ 7052
945

RabRcd∇bRa
e∇f∇f∇eRcd + 2503

945
Ra

cRab∇bR
de∇f∇f∇eRcd − 33329

1890
RabRcd∇eRab∇f∇f∇eRcd

+ 15518
315

Ra
cRab∇eRb

d∇f∇f∇eRcd − 509
63

RabR
ab∇eRcd∇f∇f∇eRcd − 88

945
Rab∇e∇b∇aR

cd∇f∇f∇eRcd

+ 136
945

Rab∇e∇d∇bRa
c∇f∇f∇eRcd + 8

63
Rab∇e∇d∇cRab∇f∇f∇eRcd − 44

189
Rab∇e∇aR

cd∇f∇f∇e∇bRcd

+ 128
189

Rab∇e∇dRa
c∇f∇f∇e∇bRcd − 518

135
Ra

cRabRde∇f∇f∇e∇cRbd − 152
315

Rab∇e∇dRa
c∇f∇f∇e∇cRbd

+ 79
945

Ra
cRabRde∇f∇f∇e∇dRbc +

524
945

Rab∇e∇aR
cd∇f∇f∇e∇dRbc − 4672

945
Rab∇e∇dRa

c∇f∇f∇e∇dRbc

+ 44
945

Rab∇eRcd∇f∇f∇e∇d∇bRac +
4
35

Rab∇eRcd∇f∇f∇e∇d∇cRab +
2
81

∇d∇d∇c∇cRab∇f∇f∇e∇eRab

− 11852
2835

Rab∇d∇dRa
c∇f∇f∇e∇eRbc − 16

27
∇cRa

d∇cRab∇f∇f∇e∇eRbd + 8
27

∇cRab∇dRac∇f∇f∇e∇eRbd

+ 902
45

Ra
cRabRb

d∇f∇f∇e∇eRcd − 19721
2835

RabR
abRcd∇f∇f∇e∇eRcd − 101

630
Rab∇b∇aR

cd∇f∇f∇e∇eRcd

− 1
9
∇cRab∇dRab∇f∇f∇e∇eRcd + 892

2835
Rab∇d∇bRa

c∇f∇f∇e∇eRcd − 7
405

Rab∇d∇cRab∇f∇f∇e∇eRcd

− 319
945

Rab∇aR
cd∇f∇f∇e∇e∇bRcd + 508

945
Rab∇dRa

c∇f∇f∇e∇e∇bRcd − 52
315

Rab∇dRa
c∇f∇f∇e∇e∇cRbd

+ 56
135

Rab∇aR
cd∇f∇f∇e∇e∇dRbc − 3392

945
Rab∇dRa

c∇f∇f∇e∇e∇dRbc +
20
189

RabRcd∇f∇f∇e∇e∇d∇bRac

− 43
1890

RabRcd∇f∇f∇e∇e∇d∇cRab +
7

135
∇c∇cRab∇f∇f∇e∇e∇d∇dRab − 236

189
Ra

cRab∇f∇f∇e∇e∇d∇dRbc

+ 34
945

Rab∇f∇f∇e∇e∇d∇d∇c∇cRab − 649
945

RabRcd∇d∇c∇bRef∇fRa
e − 403

90
RabRcd∇e∇d∇bRcf∇fRa

e

− 67
270

RabRcd∇e∇d∇cRbf∇fRa
e + 2

45
RabRcd∇f∇d∇bRce∇fRa

e + 1051
630

RabRcd∇f∇d∇cRbe∇fRa
e

+ 47
35

RabRcd∇f∇e∇bRcd∇fRa
e − 149

42
RabRcd∇f∇e∇dRbc∇fRa

e − 13591
945

Ra
cRabRde∇eRdf∇fRbc

+ 227713
1890

Ra
cRabRde∇fRde∇fRbc − 5623

189
Ra

cRabRde∇cRef∇fRbd − 78469
1260

Ra
cRabRde∇eRcf∇fRbd

− 46624
315

Ra
cRabRde∇fRce∇fRbd + 4

9
∇cRab∇dRef∇dRac∇fRb

e + 4148
945

Rab∇dRa
c∇e∇dRcf∇fRb

e

+ 32
9
∇cRa

d∇cRab∇fRde∇fRb
e − 32

9
∇cRab∇dRac∇fRde∇fRb

e + 1348
135

Rab∇dRa
c∇f∇dRce∇fRb

e

+ 11873
945

Rab∇dRa
c∇f∇eRcd∇fRb

e − 1597
945

Rab∇b∇aRef∇eRcd∇fRcd + 991
189

Rab∇eRcd∇f∇bRae∇fRcd

− 16909
3780

Rab∇eRcd∇f∇eRab∇fRcd + 503
945

Rab∇b∇aRdf∇eRcd∇fRce + 1
126

Rab∇d∇bRaf∇eRcd∇fRce

− 11077
1890

Rab∇eRcd∇f∇bRad∇fRce − 1949
1890

Rab∇eRcd∇f∇dRab∇fRce − 40601
1260

Ra
cRabRb

d∇dRef∇fRc
e

+ 383
63

RabR
abRcd∇dRef∇fRc

e + 1508
945

Rab∇aR
cd∇d∇bRef∇fRc

e − 2
3
∇cRab∇dRef∇dRab∇fRc

e

− 1354
945

Rab∇d∇bRef∇dRa
c∇fRc

e − 6469
140

Ra
cRabRb

d∇eRdf∇fRc
e + 124

21
RabR

abRcd∇eRdf∇fRc
e

− 2054
945

Rab∇aR
cd∇e∇bRdf∇fRc

e + 2308
945

Rab∇dRa
c∇e∇bRdf∇fRc

e − 409
189

Rab∇aR
cd∇e∇dRbf∇fRc

e

+ 7804
945

Rab∇dRa
c∇e∇dRbf∇fRc

e − 28187
189

Ra
cRabRb

d∇fRde∇fRc
e + 16630

189
RabR

abRcd∇fRde∇fRc
e

+ 4
3
∇cRab∇dRab∇fRde∇fRc

e + 12007
945

Rab∇aR
cd∇f∇bRde∇fRc

e − 113
135

Rab∇dRa
c∇f∇bRde∇fRc

e

+ 443
189

Rab∇aR
cd∇f∇dRbe∇fRc

e + 23188
945

Rab∇dRa
c∇f∇dRbe∇fRc

e + 328
105

Rab∇aR
cd∇f∇eRbd∇fRc

e

+ 1360
189

Rab∇dRa
c∇f∇eRbd∇fRc

e + 4
9
∇bRef∇cRab∇dRac∇fRd

e + 58
135

Rab∇c∇bRef∇dRa
c∇fRd

e

+ 3197
945

Rab∇dRa
c∇e∇bRcf∇fRd

e + 2
315

Rab∇dRa
c∇e∇cRbf∇fRd

e + 6803
945

Rab∇dRa
c∇f∇bRce∇fRd

e

+ 4148
945

Rab∇dRa
c∇f∇cRbe∇fRd

e + 3334
945

Rab∇dRa
c∇f∇eRbc∇fRd

e + 595
27

Ra
cRabRbc∇eRdf∇fRde

− 8
27

∇bRac∇cRab∇eRdf∇fRde + 38
27

∇cRab∇cRab∇eRdf∇fRde + 367
210

Rab∇bRa
c∇e∇cRdf∇fRde

− 14429
1890

Rab∇cRab∇e∇cRdf∇fRde + 409
135

Ra
cRab∇e∇c∇bRdf∇fRde − 713

630
Rab∇bRa

c∇e∇dRcf∇fRde

− 11
70

Rab∇cRab∇e∇dRcf∇fRde + 17
945

Ra
cRab∇e∇d∇cRbf∇fRde + 36073

1890
Ra

cRabRbc∇fRde∇fRde

− 361
216

∇cRab∇cRab∇fRde∇fRde + 26333
3780

Rab∇bRa
c∇f∇cRde∇fRde − 29837

3780
Rab∇cRab∇f∇cRde∇fRde
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− 3337
945

Ra
cRab∇f∇c∇bRde∇fRde − 26539

1890
Rab∇bRa

c∇f∇eRcd∇fRde + 737
210

Rab∇cRab∇f∇eRcd∇fRde

+ 335
189

Ra
cRab∇f∇e∇cRbd∇fRde − 2516

945
Ra

cRab∇f∇e∇dRbc∇fRde − 8
135

∇c∇cRab∇e∇bRdf∇f∇aR
de

− 2
135

∇c∇cRab∇f∇bRde∇f∇aR
de − 83

270
RabRcd∇d∇cRef∇f∇bRa

e − 6449
5670

RabRcd∇e∇dRcf∇f∇bRa
e

− 71081
5670

RabRcd∇f∇dRce∇f∇bRa
e + 149

90
Ra

cRab∇e∇cRdf∇f∇bR
de − 9481

1890
Ra

cRab∇f∇cRde∇f∇bR
de

− 3484
945

RabRcd∇d∇bRef∇f∇cRa
e − 4477

1890
RabRcd∇e∇bRdf∇f∇cRa

e + 874
945

RabRcd∇e∇dRbf∇f∇cRa
e

+ 5687
630

RabRcd∇f∇bRde∇f∇cRa
e + 44419

1890
RabRcd∇f∇dRbe∇f∇cRa

e − 769
756

RabRcd∇d∇cRef∇f∇eRab

+ 34259
5670

RabRcd∇f∇dRce∇f∇eRab − 135181
22680

RabRcd∇f∇eRcd∇f∇eRab − 107
135

RabRcd∇d∇bRef∇f∇eRac

+ 5426
315

RabRcd∇f∇dRbe∇f∇eRac +
2392
315

RabRcd∇f∇eRbd∇f∇eRac +
8

135
∇c∇cRab∇d∇bRef∇f∇eRa

d

+ 32
135

∇c∇cRab∇f∇bRde∇f∇eRa
d − 16

135
∇c∇cRab∇f∇dRbe∇f∇eRa

d − 128
135

∇c∇cRab∇f∇eRbd∇f∇eRa
d

+ 223
210

Ra
cRab∇d∇cRef∇f∇eRb

d + 383
30

Ra
cRab∇f∇cRde∇f∇eRb

d + 4618
945

Ra
cRab∇f∇dRce∇f∇eRb

d

+ 14836
945

Ra
cRab∇f∇eRcd∇f∇eRb

d + 227
3780

RabR
ab∇d∇cRef∇f∇eRcd − 89

1890
Rab∇d∇c∇b∇aRef∇f∇eRcd

− 6991
1890

RabR
ab∇f∇dRce∇f∇eRcd + 17

945
Rab∇f∇d∇b∇aRce∇f∇eRcd + 8

105
Rab∇f∇d∇c∇bRae∇f∇eRcd

− 6481
3780

RabR
ab∇f∇eRcd∇f∇eRcd − 17

378
Rab∇f∇e∇b∇aRcd∇f∇eRcd + 8

315
Rab∇f∇e∇d∇bRac∇f∇eRcd

+ 8
105

Rab∇f∇e∇d∇cRab∇f∇eRcd − 89
1890

Rab∇d∇c∇bRef∇f∇e∇aR
cd + 17

945
Rab∇f∇d∇bRce∇f∇e∇aR

cd
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1890

Rab∇f∇e∇bRcd∇f∇e∇aR
cd + 8

105
Rab∇f∇c∇bRde∇f∇e∇dRa

c + 8
21

Rab∇f∇e∇bRcd∇f∇e∇dRa
c

− 16
105

Rab∇f∇e∇cRbd∇f∇e∇dRa
c − 256

189
Rab∇f∇e∇dRbc∇f∇e∇dRa

c + 26
35

Rab∇aR
cd∇bR

ef∇f∇dRce

]
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