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ZE ILLNAMIKIZ NIN EZKAYO 1

What will I keep before I depart?
Will I leave anything about me on this earth?

How shall my heart react?
Is it in vain that we come to live
and just spring above the earth?

Let’s, at least, leave flowers behind
Let’s, at least, leave chants behind

Nezahualcóyotl

1The poem was originally written in Nahuatl. The title translates to "A memory I leave".
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Abstract

With applicability on almost every aspect of our lives, optimization problems are
ubiquitous to a broad range of fields within both scientific research and industrial
environments. As such, these are growing in size and complexity at a fast pace, and
are only expected to continue to do so. Accordingly, the urgency for better methods
that can yield more optimal solutions in shorter times is increasing and, while the
development of quantum computing technologies that are capable of tackling these
problems evolves steadily, it does so too slowly for the challenges that today soci-
ety’s demands represent. Consequently, a lot of effort is being invested in further
developing classical methods and machines that are specially designed to solve op-
timization problems of relevant enough sizes. The present thesis is framed within
this paradigm: classical optimization techniques are studied from various different
perspectives, with the goal of improving their efficiency.

To this end, we first dive into basic concerns related to the physical properties of
the systems that allow for the convenient formulation of industrially-relevant opti-
mization problems, namely spin glasses with quenched disorders. The understanding
of such properties is of utmost importance for the correct designing of the annealing
schedules used by thermally-based optimization methods. We then study the impact
that the hidden correlations of the pseudo random number streams used in their
simulations have in the results by comparing simulations using PRNGs of various
qualities and perfectly random QRNGs. To conclude, we investigate novel ways, in-
spired by quantum-mechanical systems, to efficiently navigate the energy landscapes
of spin glasses in classical algorithms, which has the potential of preventing the
simulations getting stuck into local energy minima and thus reaching more optimal
solutions.
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Resum

Amb aplicacions en gairebé tots els aspectes de les nostres vides, els problemes
d’optimització són omnipresents en un rang molt ample de camps pertanyents tant
a la recerca científica com als ambients industrials. Com a tals, aquests problemes
estan creixent en mida i en complexitat a un ritme accelerat, i no s’espera que deixin
de fer-ho. Així doncs, la urgència per obtenir mètodes capaços de trobar solucions
més òptimes en menys temps no para de créixer i, mentre que el desenvolupament de
les tecnologies de computació quàntica capaces d’afrontar aquests problemes avança
sense pausa, ho fa a un ritme massa lent per als reptes que les necessitats de la soci-
etat actual representen. Conseqüentment, actualment una gran quantitat d’esforços
està essent invertida en millorar els mètodes de resolució clàssics i les plataformes
específicament dissenyades per a executar-los, per tal de poder resoldre problemes
d’optimització de grandàries suficientment rellevants. La present tesi està emmarcada
en aquest paradigma: s’estudien tècniques d’optimització clàssiques des de diferents
perspectives, amb l’objectiu d’incrementar-ne la seva eficiència.

Amb aquesta finalitat, en primer lloc ens endinsem en qüestions relacionades amb
les propietats físiques dels sistemes que permeten formular problemes d’optimització
rellevants des del punt de vista industrial en un llenguatge matemàtic convenient:
els cristalls de spin amb acoblaments fixes. Entendre’n les seves propietats és de
màxima importància per a un disseny apropiat dels procediments de refredament
utilitzats en els algoritmes d’optimització basats en la simulació de processos tèr-
mics. Seguidament s’estudia l’impacte que les correlacions ocultes en les seqüències
de nombres pseudoaleatoris utilitzats en aquestes simulacions tenen en els seus re-
sultats, comparant simulacions que utilitzen generadors pseudoaleatoris de diverses
qualitats i un generador de nombres aleatoris quàntic. Per finalitzar, s’investiguen
nous mecanismes, inspirats en processos de caràcter quàntic, de millorar la forma en
què els algoritmes clàssics naveguen els perfils d’energia dels cristalls d’espín, amb la
finalitat d’evitar que les simulacions quedin atrapades en mínims d’energia locals i
així obtenint solucions més òptimes.
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Chapter 1

Introduction

In an era in which each and every individual holds a device in their pocket that is
capable, within a fraction of a second, of accessing all the information that humankind
has accumulated throughout millennia, it might sometimes be hard to justify that
such powers are not enough. And, still, they are clearly and doubtlessly not. Some
of the most urging and important challenges that our society as a whole will face
in the short- and mid-term future (or that are already facing) demand even more
powerful, faster, more efficient machines. Further, this obstacle is not something
that lays solely on the sometimes esoteric world of pure scientific curiosity, but that
traverses and permeates many aspects of our quotidianity.

In particular, solving optimization problems or, in other words, facing the chal-
lenge of choosing the best, most optimal option from a pool of possible candidates
and subjected to a certain set of constraints [1, 2], is something completely undetach-
able from the inner core of most of not only humanity’s, but all living creatures’ most
basic concerns. One can see this in different polar mammals convergently evolving
towards having a higher volume-to-surface ratio (becoming more spherical) in order
to minimize heat loss, and those inhabiting warm deserts doing exactly the contrary
to maximize it [3]. In bees realizing that hexagonal nests minimize needed building
materials while maximize its structural strengths, and fungi producing both toxic
compounds and high-lighting colours to minimize their probability of being eaten.
In some species of animals killing part of their own offspring in scarce times when
they are too numerous, to ensure that there is enough food for everyone and there-
fore to maximize the number of surviving individuals, and even in some unicellular
organisms being able to change its shape in order to maximize their food supplies
while minimizing their exposure to external hazards [4, 5, 6]. Solving optimization
problems is intimately tangled with nature.

And, when talking about humans, this fact only gets hugely exacerbated. From
distributing the correct amount of water to maximize the crops’ yield while min-
imizing at the same time the water consumption, to building the longest-lasting
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monuments while minimizing the amount of materials and human force, our entire
history has been surrounded by decisions that try to optimize the result of a given
process constrained to some needs or the availability of resources.

Besides the general and maybe abstract mathematical definition of an optimiza-
tion problem, there are two main things that one should emphasize from all these
examples:

• First, that given an optimization problem and a set of constraints to be fulfilled,
there are many different strategies that can yield an optimal solution to the
same problem, even though some of them can be clearly (or only very, very
slightly) better than others.

• Second, and of course related to the fact that there are many different solutions,
that optimization problems are no easy task, at all.

Nowadays, unfortunately, too often our problems are only growing in complexity
and urgency in the need for solutions. We clearly want our firefighters to know the
route to reach a forest wildfire in the minimum time possible. During the COVID19
pandemic, we demanded our politicians to resign if they were not able to optimize the
distribution of vaccines among all the people, as well as to minimize our lockdown
and curfew restrictions subjected to minimizing the spread of the virus. If we want
to fight the current climate crisis, our engineers must distribute wind turbines so
that the extracted energy is maximum [7, 8], and our scientists must discover the
processes that will allow us to build the most efficient solar panels and batteries.
And, when facing all such problems, first of all we would rather avoid suboptimal
solutions, and secondly, to reach them we cannot spend the huge amount of time
that evolution took for bees to learn that hexagonal nests were optimal. We need
the best solutions, and we need them to be obtained as fast as possible.

1.1 The state of the art

In the matter of obtaining the best solutions in the minimum amount of time possible,
the promise of the development of Quantum Technologies in general and Quantum
Computers [9] in particular has sparkled a lot of (often too hyped) hope and ex-
citement in the last decades, with some experiments even claiming the advent of
the so-called quantum advantage [10]. Principally, given their intrinsic suitability
to solve optimization problems [11], Quantum Annealers (QA) [12, 13, 14] often lift
most of the expectations. On the one hand, these (already commercially available)
machines are built with a topology that is specially designed to be able to embed
and solve problems formulated in a Quadratic Unconstrained Binary Optimization
(QUBO) form [15], in which, being NP-complete, any other NP-complete optimiza-
tion problem can be mapped. On the other hand, (an oversimplified statement of)
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the adiabatic theorem guarantees that, given a certain set of conditions, the most op-
timal solution will always be found with probability 1. Always, no matter what. This
somewhat magical theory may sound astonishing. Reality, as always, is nevertheless
more complicated than that.

Although promising results have been obtained lately, quantum annealing ma-
chines still face many problems and challenges. First of all, they pose huge tech-
nological challenges themselves, with open problems such as quantum decoherence
[16, 17], error correction [18], adiabaticity or energy consumption [19, 20, 21]. But
secondly and maybe more importantly, in order to win the race and become the real
go-to solvers for optimization problems, they also must overcome classical comput-
ing in the first place [22, 23, 24]. While it is true that quantum mechanics give QA
some properties (Hilbert space’s size, entenglement and tunneling, for example) that
make them avoid some of the problems that its classical counterpart cannot, it is not
less true that current classical computer’s scalability and speed are (and will most
probably keep being in the mid-term future) still many orders of magnitude above
quantum’s ones.

Even with such huge current available computational power, given the computa-
tional complexity of most of the optimization problems stated above, obtaining good
solutions in an acceptable amount of time is usually far out of reach when considering
big enough system sizes. This fact and their urgent need and industrial relevance has
led, in the last few decades, to many groups from both the academic and the indus-
trial worlds centering their attention on developing and improving classical machines
and optimization algorithms.

On the algorithm side, heuristic algorithms have emerged as one of the main
branches. Many strategies have been proposed, often taking ideas and inspiration
from natural processes (hence the name Nature- or Physics-inspired computation),
among which genetic algorithms [25, 26], neural networks [27, 28], and quantum-
inspired algorithms [29, 30, 31] might be some of the most prominent and paradig-
matic examples. Which one of these approaches yields the highest efficiency still
remains a highly debated question, and might even depend on the inner structure of
the problem at hand in the first place. This new type of computation takes advantage
of the mathematical apparatus that was initially developed for quantum computers,
to solve problems in platforms available today, which translates into a substantial
improvement in both cost and time investments.

To understand how physics-inspired computing works, imagine yourself lying on
the beach with a glass of soda. Even if it looks flat when observed from far away, the
sand’s surface is a chaotic and irregular set of innumerable valleys and peaks. In an
attempt to break such an idyllic situation, you could ask yourself: which is the lowest
valley, and what is its exact depth? The classical solution consists in measuring and
writing down all of the valley’s heights (which will probably differ by indistinguishable
fractions of the precision of your measurement apparatus). However, this approach
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is by no means viable if we want to consider a sand extension larger than the towel
we are lying on.

So if you want to solve this problem within a reasonable amount of time, a new
strategy is mandatory. And here is where physics plays its role: if, according to
thermodynamic principles, every system tends to evolve towards a steady state in
which its energy is minimized, could we pour our soda over the sand in a careful
enough way such that, by gravity’s action, the liquid gets stored in the deepest
valley, in which its potential energy is minimal? In this case, the physical evolution
of the system would do the work for us, and we could continue enjoying our vacation.
Obviously, the answer to this question is yes, even though this ’carefully enough’
(adiabatically) might be a bit difficult to execute. Quantum annealing bases its
functionality on this very same principle, and in classical platforms the idea is to
simulate it with heuristic algorithms.

Heuristic algorithms compensate the lack of computational power with a trade-off
between the time required to find a solution and the quality of the solution itself,
by means of a random-number-assisted search of the solution space. The production
and usage of such random numbers therefore plays a central role in such algorithms,
and one must pay close attention to it. On the one hand, the production of true
random numbers is often the most demanding part of the whole algorithm, ending up
being the principal bottleneck in the simulation’s velocity. However, overcoming this
bottleneck by means of producing fast, slightly correlated pseudo-random numbers
can lead to errors on the solutions obtained [32, 33]. In this regard, one of the
currently more advanced quantum technologies, namely Quantum Random Number
Generators (QRNGs), is already starting to yield considerable enough generation
speeds [34] for them to be used in real world applications. The development of fast
QRNGs that, given its quantum nature, are intrinsically and truly random and thus
lack the drawbacks inherent to classical ones, is already a reality.

On the hardware side, special-purpose computing devices are appearing and
evolving at a fast pace as well. From parallel computing in Graphical Process-
ing Units (GPU) and Field Programmable Gate Arrays (FPGA), to huge clusters
of extremely fast CPUs in supercomputers that can reach the Exaflop range, and
even machines specifically designed to manage the randomized workloads, Random
Processing Units (RPU), different platforms and computing paradigms are being
developed with the aim of increasing the computation’s velocity.

1.2 Specific problems looked at in this thesis

The present thesis is intended to be seen as a holistic approach to the general prob-
lem of optimization within a classical framework. This means that, from a broad
point of view, the main objective will consist in improving the understanding and
functionality of current heuristic optimization algorithms. To this end, we will not
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focus on the development of new algorithms alone, but will rather address aspects
of different nature related to them. These will range from purely theoretical ones
to direct applications on real-world problems. Specifically, the thesis is divided into
four different chapters.

• In the second chapter we present a short review of the necessary concepts and
tools upon which the following ones will be built. We navigate through the basic
definitions of spin glasses and the heurisitc algorithms used to solve them as
well. Finally, we briefly describe the QUBO formalism that enables to connect
them to the industrially-relevant problems that we ultimately desire to solve,
and discuss the parallelization scheme that allows us to efficiently solve such
systems in special purpose hardware such as GPUs and FPGAs.

• In the third chapter we will focus on the study of one of the current hot topics
of statistical physics: the spin glass phase transition. Understanding this phase
transition (even whether it exists at all or not) is crucial for the optimal choice of
the annealing schedules in heuristic algorithms, as they require to simulate the
system at both above and below the critical temperature in order to guarantee
a proper exploration of the configuration space. Specifically, we review the
Haake-Lewenstein-Wilkens (HLW) approach to spin glasses and apply it to the
phase transition of Ising spin systems with non-planar topologies such as the
Edwards-Anderson (EA) lattices in various dimensions. This chapter is based
on the results presented in [35].

• The random exploration of the phase space of the studied systems allows heuris-
tic algorithms to trade off some accuracy on the solution found for a much
greater efficiency. As such, random numbers constitute one of their most im-
portant parts, and correlations in the streams used can yield to sub-optimal
solutions in optimization problems or to wrong values of a given estimated
observable. The fourth chapter is devoted to study how this hidden, difficult-
to-detect correlations can affect the results obtained by these algorithms. To
this end we will measure the dynamic critical exponent of two-dimensional
Ising spin lattices with pseudorandom number generators of various qualities,
to finally compare them with results obtained when using completely uncorre-
lated, purely random number streams output by a quantum random number
generator. This chapter is based on the results presented in [36].

• While most broadly used algorithms (such as Simulated Annealing, Parallel
Tempering and Population Annealing) make use of thermal properties (an-
nealing temperature schedules, thermal fluctuations, etc.) to efficiently explore
the phase space of the studied systems, there is a growing tendency on using
some other nature-inspired processes to this end. Paradigmatic examples are,
on the one hand, genetic algorithms, in which a natural-selection process that
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keeps and reproduces the fittest solutions is simulated; and quantum-inspired
algorithms, on the other one, such as Simulated Quantum Annealing, that
classically simulates the adiabatic transition of a wave function from the initial
state to the ground state of the spin-glass model. In this fifth chapter we de-
vise a quantum inspired modification of Population Annealing that effectively
allows for the realization of non-local moves, which helps the system escape
from local minima and therefore improve the efficiency on finding the global
ground state. This chapter is based on the results presented in [37].



Chapter 2

Basics on solving spin glass
models

As the holistic view of solving optimization problems that this thesis aspires to
represent, many different topics are discussed through its chapters. As different
some of them might appear to be, though, there is some fundamental knowledge
that permeates all of them and that builds up the basic concepts needed in order to
understand their foundations.

In this chapter we present the basic concepts and methodologies from which the
present thesis will be built on, and that are more or less transversal to all chap-
ters. Namely, we review concepts related to spin glass systems, heuristic methods
to solve them, and the QUBO formalism that allows to use them to solve real-world
optimization problems. More in depth theoretical tools needed for each individual
chapter will be discussed in them.

11
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2.1 Spin systems

Through this thesis we will work with a type of models that are usually referred to as
spin systems, which have long been one of the cornerstones of statistical physics since
its beginning. In particular, we will specifically focus on binary (Ising) spin systems
with quenched disorders [38]. These are nothing but mathematical models describing
a set of variables (called spins) that can take binary values (normally either ±1 or
{0, 1}) and that interact between each other with a certain, fixed strength (thus
quenched). Since spins are only allowed to have two values, it is illustrative and
usual to visualize them as arrows pointing either up or down. Further, we will
restrict as well to quadratic models, so only single-spin and two-spin interactions
will be considered. In general, not all spins forcefully need to interact with all of the
rest, in which case a null interaction strength is set.

Mathematically, such systems are usually visualized as graphs in which their
nodes represent the spins and their topology defines the interactions between them,
Fig.2.1. For these graphs to represent realistic physical systems that can be described
by a properly defined Hamiltonian function, we require them to be undirected, so
that the weight Jij of any edge coupling two given nodes i and j is the same in the two
directions, Jij = Jji. Therefore since the energy accounted for in the Hamiltonian
depends only on the relative alignment of the spins, and its direction (up or down)
is conventional, it follows that the inversion of all spins in a given configuration
will yield the same energy, and thus that such a model will have (at least) two
symmetric degenerate ground states. On the other hand, the connectivity between
spins (usually referred to as topology) can be arbitrarily complex and thus they
need not be restricted to planar ones, essentially meaning that the edges within the
graph can cross each other. On top of that, an external field bi can be acting on
each spin i independently, which effectively accounts for the single-spin terms in the
Hamiltonian. The addition of the external field effectively makes spins prefer one
orientation over the other, and thus breaks the up-down degeneracy of the ground
state.

The Hamiltonian describing this kind of model’s physics can hence be written, in
its more general form, as

H = −
∑
(ij)

Jijsisj −
∑
i

bisi, (2.1)

where the first summatory runs over all connected spins, and si are the values of
the spin variables. The negative sign is used for convention: while a positive or a
negative external field makes each spin have a preferred orientation over the other,
once the negative sign is taken into account a positive or negative coupling between
two spins makes them prefer to stay aligned or unaligned, respectively. These two
types of interactions are usually termed ferromagnetic and antiferromagnetic. When,
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due to conflicting interactions, two spins cannot align in a way that minimizes the
energy of the system as given by Eq. (2.1), it is often said that they present spin
frustration. Due to all such complexities, spin systems can exhibit tremendously rich
behaviours, which have eluded physicists for decades. Analytically challenging even
at the mean-field level [39] and numerically hard for non-planar topologies [40], their
study continues to rely mostly on numerical simulations.

Figure 2.1: An undirected, non-planar graph. Spin systems like those described
by Hamiltonian Eq. (2.1) can be visualized as graphs with arbitrarily complicated
topologies. The nodes represent the spin variables si and the edges the couplings Jij
between them, while an external magnetic field can be applied on each individual
node.

Finally, by assigning a 0 value to the couplings between unconnected spins and
to the external fields over spins not presenting linear terms, we can rewrite Eq. (2.1)
in matrix notation

H = −stJs− bts, (2.2)

with the vector s representing the spin configuration. Note that, since as discussed
above, the physicality of the model forces the graph to be undirected, the coupling
matrix J must be symmetric. Further, it must also have null elements on its diagonal.
A certain joint realization of J and b is usually referred to as disorder.



14 CHAPTER 2. BASICS ON SOLVING SPIN GLASS MODELS

2.1.1 The Ising model

Among all spin models found across the literature, one of the most prominent and
celebrated ones is without a doubt the so called Ising model [41]. It was first proposed
by Wilhelm Lenz in 1920 and analytically solved in its one-dimensional version by
his at that time student Ernst Ising in his thesis in 1924. We would have to wait
until 1944 for Lars Onsager to obtain an analytical solution for the two-dimensional
version too, while no solutions for higher dimensions are known to date of the writing
of the present thesis. Its relevance comes not only for being one of the first models
of its kind, but for being the only one presenting a real phase transition for which
an exact solution has been obtained so far. Further, it is also worth noting its
applicability to the study of real physical magnetic systems. Concretely, it was first
designed to model the spontaneous magnetization arising on ferromagnetic materials
such as iron below a certain (finite) critical temperature, based on the idea that the
magnetism of the bulk material comes as a consequence of the combined magnetic
dipole moments of a huge number of tiny spins within it. It has nevertheless been
used to study a plethora of other types of physical systems.

The Ising model describes a lattice of spins with uniform ferromagnetic interac-
tions J , nearest-neighbours only connectivity and an uniform external magnetic field.
Each spin is defined as a small magnet that can either point up or down, and that
interacts with its neighbours consequently: while two neighbouring spins pointing
to the same direction will decrease the total energy of the system a total amount
of J , two unaligned ones will make it increase by that exact same quantity. In one
dimension the spins’ positions form a chain, while in its two- and three-dimensional
versions they are placed in quadratic and cubic lattices, respectively. Its Hamiltonian
thus reads

H = −J
∑
⟨i,j⟩

sisj −B
∑
i

si, (2.3)

where the angle brackets ⟨·⟩ stand for nearest neighbours. In general, periodic bound-
ary conditions are assumed. Being the external magnetic field B uniform across the
whole lattice, its only contribution is defining a preferred direction in the total spin
configuration hence breaking the up-down degeneracy. Thus, without loss of gener-
ality, it is usually assumed to be zero.

The macroscopic magnetization per spin of a given configuration is computed as
the sum of the dipole moments over the whole lattice

m =
1

N

∑
i

si (2.4)

and the average over configurations of its absolute value serves as an order parameter
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Figure 2.2: A two dimensional square Ising system. Each spin (represented by
a point) is only coupled to its nearest neighbours. The couplings to the right and to
the bottom of the lattice represent the periodic boundary conditions.

of the system, often referred to as µ

µ =
1

Z

∑
{s}

|ms|e−βEs , (2.5)

with {s} defining the configuration, Es its corresponding energy, β the inverse tem-
perature and Z the partition function. It reaches non-zero values below the critical
temperature Tc (and its maximum one at exactly T = 0), where the whole magnet
achieves a spontaneous magnetization. Above it, where thermal fluctuations domi-
nate over the Hamiltonian’s interactions and therefore the spins behave randomly,
the average magnetization is zero. Note that in Eq. (2.5) we set kB = 1. This
convention is further adopted throughout the whole thesis.

As given by Onsager’s results [42], the critical temperature in two-dimensional
systems is

Tc =
2

log
(
1 +
√
2
) . (2.6)

In Fig.2.3 the phase transition of two dimensional lattices of the Ising model of various
sizes is shown. Note that, for an increasing number of spins within the system, the
region around Tc for which the phase transition occurs gets sharper, eventually being
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infinitely sharp in the thermodynamic limit.
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Figure 2.3: Magnetization per spin in the 2d Ising model. Using µ as an order
parameter, a phase transition can be observed at Tc (marked by a vertical line). The
transition gets sharper for bigger systems (L corresponds to the side length of the
square lattices, so that the number of spins is Ns = L2).

It is important to clarify that, due to its popularity, the term "Ising lattice" is
many times used across the literature to talk about not the original Ising model itself,
but about any spin model with spins taking binary values. This notation will also
be used sometimes in this thesis.

2.1.2 Spin glass models

While the Ising model distinguishes itself for having allowed physicists to beautifully
study phase transitions by essentially proving that statistical physics was indeed
able to derive them from microscopic principles, it is also still the only one with
an analytical solution for a reason: its (relative) simplicity. The uniformity of the
couplings and the low connectivity clearly simplify its study. One can of course think
of slightly more complicated models for which, for example, the couplings can have
different strengths and more intricate topologies. These more complicated models are
usually referred to as spin glasses [43, 44], in analogy to the huge complexity of the
structure of normal window glass, in which atoms are not arranged in periodic lattices
but form random structures instead. Spin glass behaviour was first experimentally
identified in metal alloys such as AuFe [45] and CuMn [46].
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Strictly speaking, nevertheless, an intricate connectivity between spins is not a
sufficient condition for the system to show spin glass behaviour. Since, as discussed
earlier, positive couplings will do nothing but tend to align the connected spins in the
same direction, a very densely connected graph with only positive-valued couplings
will still tend to present a ferromagnetic configuration. Such system will then not
present any frustration, and the only difference with respect to the Ising model will
reside in that the Hamiltonian’s forces will be overcome by the thermal fluctuations
and hence present a phase transition at a (potentially) different temperature. The
spin glass behaviour is in fact defined by the spin frustration of the ground state
configuration, which requires not only complex enough topologies, but the presence
of both ferro- and antiferromagnetic couplings as well.

Spin glasses are characterized by very rugged energy landscapes [47, 48, 49, 50],
as schematically depicted in Fig. 2.4. The number of local minima wells increases
exponentially with the system’s size, and the energy barriers separating them get
higher and thus more difficult to be overcome. Moreover, the many energy minima
get more and more similar between them, which makes it even harder to distinguish
between local ones and the global ground state, which can potentially be degenerate
as well. While looking for the ground state, it is then very easy to get stuck in
local energy minima within large basins. Finding the ground states of spin glass
systems constitutes one of the most challenging and formidable problems of modern
statistical physics, to which a huge amount of work is devoted [51, 52, 53, 54, 55, 56].

Another characteristic property of spin glasses is the potential existence of a so
called spin glass phase transition. Though fundamentally similar to other phase
transitions such as the ferromagnetic-paramagnetic one discussed above, it presents
some characteristic differences. To begin with, the spin glass phase transition is not
characterized by a change or discontinuity in the specific heat of any type [57], as is
typical of other phase transitions. Furthermore, the presence of spin frustration and
both ferro- and antiferromagnetic couplings makes all feasible configurations present
spins pointing towards any possible direction, which can effectively result in the same
value of the total magnetization at any possible temperature. Therefore, the very
own properties of spin glasses prevent the magnetization µ of serving as an order
parameter for this phase transition.

Contrarily, at the initial stages of the study of spin glass models, Edwards and
Anderson [58] proposed that, should such phase transition exist, it could be identified
by the vanishing of the now so-called Edwards-Anderson order parameter

qEA =
1

N
lim
t→∞

∑
i

⟨si(0)si(t)⟩t (2.7)

where the inner bracket corresponds to a time average. If the system is in a regime
in which the majority of spins do not have any preferred orientation, the two-spin
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{si}

E

Figure 2.4: Spin glasses are characterised by rugged energy landscapes. The
number of wells in the energy landscape of systems showing spin glass behaviour
exponentially increases with its size, which makes finding its ground state extremely
difficult.

products in Eq. (2.7) will vanish on average and yield a null value of the order
parameter. Contrarily, if the system is in a regime in which spins do have a preferred
orientation, the average will not cancel out and thus qEA > 0. Since Eq. (2.7)
basically represents an infinite-time autocorrelation function of the spins in a given
configuration, qEA can consequently distinguish between the paramagnetic phase (in
which spins continuously flip in a random manner), and the spin glass phase (in
which an apparent random configuration is frozen in time).

In order to avoid using time averages, Parisi [59, 60, 61] would later further de-
velop this idea by using the powerful replica method, which results in a redefinition
of the order parameter with a more profound physical interpretation. Consider dif-
ferent independent replicas of the same system (this is, lattices defined by the same
coupling matrix J), labeled by greek indices. The equivalent order parameter is then
redefined as

qαβ =
1

N

∑
i

⟨s(α)i s
(β)
i ⟩ (2.8)

where the average now is taken over all the independent replicas of the system. The
order parameter then takes non-vanishing values when the spin overlap between repli-
cas is high, meaning that their configurations resemble each other, while it vanishes
when they differ. From this perspective, the vanishing values of the order parameter
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arise from the breaking of the replica symmetry.

The Edwards-Anderson model

Among all spin glass models, the Edwards-Anderson [58] one is a noteworthy one
(again, for its relative simplicity) and has been and still is the focus of innumerable
investigations. It consists of spins arranged in a (usually three-dimensional) cubic
lattice of side length L, with nearest neighbours interactions, couplings drawn from
a normal probability distribution, and no external magnetic field. Its Hamiltonian
reads

H = −
∑
⟨i,j⟩

Jijsjsj . (2.9)

In other words, it is a modified Ising model in which Jij = N (0, 1). Even if its
understanding generally lacks analytical results, extensive numerical efforts have been
put to its study. The computational power needed to this end is nevertheless huge,
and confident results for three-dimensional lattices of only up to L = 10 [51] can
be found in the literature, with some others tentatively exploring systems of up to
L = 14 [62]. Whether the Edwards-Anderson model does indeed undergo a spin glass
phase transition or not is still an open question in physics. While it is known and
established that its one-dimensional version does not, non-conclusive results suggest
that such phase transition does occur in three- and higher-dimensional systems [35,
63, 64, 65, 66, 67, 68]. On the other hand, the case in between, namely d = 2, is
thought to not present such behaviour [68].

The Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick (SK) model [69, 70] was proposed in 1975 as an an-
alytically solvable model of a spin-glass, and it can be thought of as a long-range
interaction generalization of the Hamiltonian Eq. (2.9). Its physics are governed by

H =
−1√
N

∑
i ̸=j

Jijsisj , (2.10)

with N the number of spins in the system and the couplings Jij again distributed
according to a Normal distribution. Te SK model, contrarily to the EA model, con-
siders full connectivity, this is, a graph in which all spins interact with each other
in pairs. The

√
N factor makes the energy intensive with the system size. Further-

more, this model is known to present both ferromagnetic and spin-glass phases from
its original conception [69].

While the full connectivity of the SK model eases its mean-field solution, Parisi
developed the Replica Symmetry Breaking (RSB) method to thoroughly study this
model’s properties. His research in this area would led him to be awarded with
the 2021 Nobel prize in physics, "for the discovery of the interplay of disorder and
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fluctuations in physical systems from atomic to planetary scales".

2.2 QUBO formulation of real world problems

We have so far discussed spin systems as what could easily seem to be, to the un-
trained eye, purely theoretical entelechies, closer to abstract constructs than to the
real physical systems they try to be a model of. Actually, nothing could be further
from reality: the mathematical models described in previous sections happen to be
the foundational pillars on which modern day optimization techniques rely. Opti-
mization problems are present in a huge plethora of industrial applications, and thus
solving them efficiently can be of huge advantage. In this section we outline the ideas
beyond the important connection between the theoretical study of spin glass systems
and their industrially relevant applications [15, 71, 72].

It is first crucial to note that the Ising model applied to non-planar graphs (such
as the Edwards-Anderson model in three or more dimensions) is an NP-complete
problem. As such, not only it poses a significant challenge in terms of computational
complexity, but any other problem within the NP family can be translated into it
in polynomial time as well. Concretely, many optimization problems encountered
in real-world applications can be rephrased in a Quadratic Unconstrained Binary
Optimization (QUBO) form. The essence of QUBO mapping lies in designing a con-
venient Hamiltonian function of binary variables with quadratic interactions in such
a way that its ground state or minimum energy configuration encodes the solution to
the original optimization problem. This design involves the careful definition of the
binary variables on the one hand and their couplings and local fields on the other one.
The binary variables (spins) must be defined in such a way that any given configu-
ration of them represents (encodes) a state of the original problem. The couplings
and local fields acting on them, accordingly, must be such that the spin system’s
dynamics reflect the constraints present in the original problem.

The process of finding the optimal solution is then substituted by the one of look-
ing for the ground state of the equivalent spin system, which can be done by the appli-
cation of standard techniques. Once the ground state is obtained, the corresponding
solution to the original problem is obtained by decoding its spin configuration.

Mathematically, a QUBO problem is any optimization problem working with
binary variables involved in quadratic functions and with linear constraints. In its
general form, it can be written as the minimization of the objective function f(x⃗)

min
x⃗

f(x⃗) = min
x⃗

∑
i,j

Qijxixj +
∑
i

Cixi

 , (2.11)

where x⃗ = [x0, x1, .., xN−1] is a vector of binary variables and Qij and Ci stand for
quadratic interactions and linear constraints, respectively. The problem consists then
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in finding the right collection of values in x⃗ such that f(x⃗) reaches its minimum value.
If the maximization of the objective function is desired instead, the minimization of
its negation, −f(x⃗), is performed. Note that the objective function f(x⃗) is formally
equivalent to the Ising Hamiltonian (2.1). While, in the study of spin glasses from
a physical perspective, the spin variables are usually assigned si = {±1} values, in
the QUBO literature it is more recurrent to use σi = {0, 1} instead. One can easily
change from one framework to the other by the simple change of variable

si = 2σi − 1. (2.12)

QUBO formulations of many relevant problems that arise in fields ranging from
protein folding [73, 74] to logistics [75, 76, 77] are given and derived in detail in the
classical reference [78], and an example with a real world application in the field of
telecommunications is discussed and solved in Appendix A.

2.3 Heuristic optimization methods

In practical optimization problems, the time required to obtain a solution is a critical
factor and is often considered as a resource to be optimized along with the primary
objective. This is particularly true in fields such as operations research, logistics,
engineering design, finance, and many others. Essentially, when dealing with opti-
mization problems, the goal is not just to find a solution that satisfies certain criteria
but also to find it within a reasonable amount of time. On top of that, it is usual
for many different sub-optimal solutions to differ with the global minimum in an
exponentially small amount, and thus for the optimization problem to render into
an "optimal stopping" problem in which the goal is to spend the minimum time
possible for a good enough solution to be obtained. In real-world applications, a
properly balanced compromise between the time-to-solution and the quality of the
solution itself arises as an essential need, and therefore the time complexity of the
optimization strategy becomes a crucial consideration.

Let us discuss the scalability properties of a real-world example: the Traveling
Salesman problem (TSP). Being one of the most paradigmatic examples of NP prob-
lems, it consists on finding the shortest route that visits a set of N interconnected
places constrained to the fact that each place must be visited exactly once and that
the path must be closed, so that the starting and the final point must coincide. The
total number of possible paths within the graph representing the problem can be
counted as the number of different permutations of a list of N elements and dis-
carding those that follow the same sequence of points but starting at different initial
places or going in reverse order (as we are considering the "easy", undirected version
of the problem). Thus for such a graph we have a total number of possible np paths
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given by

np =
1

2
(N − 1)!, (2.13)

which yield, for different N , the values given in Table 2.1. Note the rapid explosion

N np

4 3
8 2520
16 6.54 · 1011
32 4.11 · 1033
64 9.91 · 1086

Table 2.1: Order of magnitude of the number of possible paths np in a Traveling
Salesman Problem of different sizes N .

of the size of the solution space: already for 64 points the possible number of paths
is some orders of magnitude greater than the most generous estimations of the total
number of atoms in the universe. The naïve strategy of exploring all possible paths
and computing their length in order to compare them and select the shortest among
the list is hence clearly unfeasible even for small problems. Still, this problem needs
to be solved efficiently in a lot of areas of our everyday life, so alternative strategies
to solve it (and many other problems of similar difficulty) have been devised.

In cases like this, in which finding an absolute optimal solution is computationally
unfeasible within a reasonable amount of time, approximation algorithms such as
heuristic methods are often employed to trade-off solution quality for computational
efficiency. Furthermore, the cost functions of such problems look like the spin-glass
energy landscapes discussed in previous sections, in the sense that the many local
minima differ by sometimes completely inappreciable amounts. Therefore, such local
minima constitute a really good approximation of the global ground state.

2.3.1 Monte Carlo methods

Monte Carlo methods [79, 80] are a collection of tools that allow to solve certain
deterministic problems using probabilistic heuristics, by means of sampling a certain
probability distribution. Using the same example that, according to one of the
inventors of its modern formulation (S. Ulam), led to its envisage, the idea behind
its functioning is as follows. Suppose you are playing the solitaire card game and
you want to compute the probability of wining. Since only one player takes part in
the game, the probability of being successful is entirely determined by the order in
which the cards within the deck have been gambled. The game is rather complex
and, given that the deck consists of a total of 52 cards, the combinatorial problem of
computing that probability is tedious enough so that Ulam himself abandoned the
idea of reaching an exact conclusion. On the other hand, he decided to just play
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the game a large number of times, and then approximate the desired probability by
means of a statistical interpretation of the results.

Analogously, Monte Carlo methods are nowadays used in a broad spectrum of
problems which happen to be very difficult to solve exactly. Paradigmatic examples
are multidimensional integrals in mathematics and the simulation of complex systems
with many coupled degrees of freedom in physics.

The idea behind Monte Carlo methods is thus to generate an appropriate set
of states of the system according to a certain probability distribution, for which
Markov processes [81] are used in most of the cases. The obtained sequence of states
is then referred to as Markov Chain, and the method as Markov Chain Monte Carlo
(MCMC). A Markov process is characterized by a time-independent matrix of tran-
sition probabilities, or Markov matrix, which defines the probabilities of generating
a state ν given the fact that it is fed a state µ, Pµν = P (µ → ν). The transition
probabilities should be chosen such that the Markov chain visits each of the states
of the system with the probability distribution we are interested in sampling, and
thus that the expectation value or the estimator of a given observable of the system
O can be computed as a time average over the visited states:

⟨O⟩ =
∑

µ Oµpµ∑
µ pµ

≈ 1

N

∑
n

Oµn
, (2.14)

where pµ is the (non-normalized) probability of the system being in state µ. The trick
for Eq. (2.14) to work with a low (compared to the usually huge number of possible
states needed to compute the exact expectation in its left hand side) number of
samples is clearly the fact that the states appearing on the time average are not chosen
uniformly, but rather according to a proper probability distribution that generates
the important states more often than the others. This requirement is known as
importance sampling. Moreover, it is intuitive to state that, for this scheme to have
any sense at all, the time average over the Markov chain should asymptotically reach
the exact expectation value in the limit of infinite samples. Thus it is also required for
the Markov process to be ergodic, meaning that the probability of visiting any state
of the system from any other one is non zero, if a long enough chain is considered.
Note that this does not imply that all transition probabilities P (µ→ ν) must be non-
zero (there can indeed be states that are not directly reachable from some others),
but rather that there must at least exist a chain of states that lead from one to any
other one. Finally, the last property that the Markov process is required to have is
that, when equilibrium is reached, the generated probability distribution is indeed
the desired one, which is assured by the detailed balance condition:

pµP (µ→ ν) = pνP (ν → µ). (2.15)
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2.3.2 The Metropolis-Hastings algorithm

Any process following the conditions outlined above will generate a chain of states of
the system that will make it possible to sample it according to the desired probability
distribution and that will thus allow us to measure its desired observables. Neverthe-
less, choosing the right transition probabilities and at the same time assuring that
the algorithm is as efficient as possible does not necessarily have to be trivial. The
Metropolis-Hastings algorithm [82] (usually referred to as Metropolis algorithm, for
short) is a recipe for doing so in the case of systems in contact with a thermal bath,
which happens to be, in the end, the case of interest of the present thesis.

The algorithm starts by considering a system in a state µ. To go around the
difficult question of how to choose the new state ν of the Markov chain, we note that
the transition probability can be split in two terms

P (µ→ ν) = S(µ→ ν)A(µ→ ν), (2.16)

where S(µ → ν) is the probability with which a certain next state is selected, and
A(µ→ ν) is the probability with which the proposed move is accepted. The Metropo-
lis algorithm considers the simple case in which any new state can be proposed with
the same probability at any time, and hence S(µ → ν) = Ω−1 is drawn from a uni-
form distribution, with Ω the number of states of the system (in Ising-like systems
as the ones we are interested in, Ω = 2Nspins). Being uniform, S(µ→ ν) = S(ν → µ)

for all possible states and therefore the detailed balance condition, Eq. (2.15), reads

P (µ→ ν)

P (ν → µ)
=

A(µ→ ν)

A(ν → µ)
=

pν
pµ

. (2.17)

Since we are interested in simulating a system in contact with a thermal bath, the
probability of it being in a given state is proportional to its Boltzmann weight,
pµ ∝ exp [−βEµ] with β the inverse temperature and Eµ the energy corresponding
to the state µ. It then follows that the most efficient acceptance probability that is
in accordance with all the above discussion is [79]

A(µ→ ν) =

e−β(Eν−Eµ) if Eν − Eµ > 0

1 otherwise.
(2.18)

The Metropolis algorithm thus accepts all proposed movements that lower the
energy of the system, and accepts those that increase it with a probability depending
on the temperature and energy difference between the current and the proposed state.
Seen from an optimization perspective, this feature essentially allows the system
escape from local energy minima with the aim of later on falling towards a more
optimal solution. This behaviour is sketched in Fig.2.5. At high temperatures (low
values of β) the algorithm then accepts virtually all movements, while it tends to



2.3. HEURISTIC OPTIMIZATION METHODS 25

stay in the current minimum at low ones (high β).

Figure 2.5: The Metropolis algorithm sometimes accepts new states with
a higher energy. By doing so, the system is allowed to escape from local minima
and reach the global ground state.

2.3.3 Simulated Annealing

Simulated Annealing (SA) is the most broadly known (though not the most efficient)
Markov Chain Monte Carlo method for optimization purposes. It was first introduced
in 1983 by Kirkpatrick [83], and draws inspiration from the annealing process in
metallurgy, in which a piece of a certain metal alloy is cooled down from a high
temperature to a low one in a carefully enough way such that it crystallizes into a
structure without defects and that therefore is as robust as possible. From a physics
perspective, this process minimizes the system’s Gibbs free energy,

F = ⟨E⟩ − TS, (2.19)

with E the internal energy, T the temperature and S the entropy. If the system is
in thermal equilibrium, the states in the canonical ensemble are expected to appear
with a probability proportional to its Boltzmann weight

Pµ =
e−βEµ∑
µ e

−βEµ
, (2.20)

where β = (kBT )
−1 is the reduced inverse temperature, kB is the Boltzmann constant

and Eµ is the energy corresponding to the given state. Thus in case the system is
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properly equilibrated, all states appear with the same probability in the limit of
infinite temperature while only the ground state appears, with probability 1, in
the limit of zero temperature (or with probability N−1

gs , in case the ground state
is Ngs-degenerate). Accordingly, the exploration of the phase space and thus the
equilibration of the system is easier on the former regime and gets more difficult as
the temperature is lowered. The objective of the annealing process is then to ensure
that the system is in thermal equilibrium at a low temperature, and thus that the
ground state can be found. To this end, the process starts in this high-temperature
regime in order to guarantee that the system is equilibrated, and then is slowly cooled
down. Intuitively, if a system is thermalized at a given temperature and it transitions
towards another infinitely close one, the thermal equilibrium should be conserved.
Therefore if the system starts at a high enough temperature and the annealing is
done adiabatically enough, the ground state will be found with high probability.

Simulated Annealing essentially tries to mimic this procedure. It starts by defin-
ing an annealing schedule of decreasing temperatures that the system will sequentially
navigate. At each temperature step, the system produces a Markov chain of states
with the Metropolis algorithm that effectively samples the corresponding Boltzmann
distribution, so that the phase space is properly explored and thus that thermal
equilibrium is reached. The Metropolis algorithm thus looks for the minimum en-
ergy state and, as discussed previously, allows for less energetically favourable ones
to be accepted in order to overcome possible energy barriers.

Note that, if the system presents spin glass behaviour, it will be mandatory for
the annealing schedule to span across temperatures both above and below the cor-
responding spin glass phase transition temperature, to guarantee a good exploration
of the energy landscape at the beginning and that the system gets trapped in the
ground state towards the end.

2.3.4 Parallellizability of the simulations

We have so far described two regimes at which the simulation of spin systems is of in-
terest and around which the present thesis will orbit, namely equilibrium simulations
at the critical temperature and annealing processes for the finding of ground states.
Unfortunately, both of them have the property that, in order for proper results to
be achieved, long simulation times are required [79]. As will be discussed in fol-
lowing chapters, the former presents diverging correlation times that complicate the
measure of statistically independent samples. The later, on the other hand, requires
both adiabatic annealing schedules and long thermalization processes to guarantee a
proper exploration of the phase space and hence the achievement of thermal equilib-
rium, such that the global ground state of the system is confidently reached. Further,
these times will be dramatically increased for larger systems. The simulation of such
physical processes therefore requires huge computational times, and the use of intel-
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ligently enough designed algorithms and of specialized hardware accelerators, such as
Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays (FPGAs),
becomes mandatory.

Luckily, the Ising lattice model with nearest neighbours interactions presented
above allows for the utilization of parallel schemes for its simulation, which can
effectively boost its performance [84, 85]. To this end, consider any of the spins in
the lattice of Fig. 2.2, σi, and note that all of the spins located on its immediate
diagonal sites (usually referred to as "next-to-nearest neighbours"), σn.n.n. to i, are
not connected to it. Contrarily, when proposing an update of spin σi from a state µ

to a state ν, the energy difference associated to such move does not depend on the
state of these next-to-nearest neighbouring spins. From Eq.(2.9) it can be seen that

∆E(σµ
i → σν

i ) = 2σµ
i

∑
j n.n. to i

Jjσ
µ
j ̸= f(σn.n.n. to i), (2.21)

so that the Metropolis algorithm can be run on two next-to-nearest neighbouring
spins independently. A subtle difference in the notation must be stressed: n.n.n. to i
refers to "next-to-nearest neighbours to σi", and n.n. to i refers to "nearest neigh-
bours to σi". Analogously, the same can be done for each of these diagonal spins:
none of their next-to-nearest neighbours directly interacts with them and conse-
quently their update does not depend on the state at which the other spins are at
a given moment. By extending this idea to the whole lattice, we end up with two
sub-lattices containing spins that can be updated independently, in a checkerboard
scheme, Fig. 2.6. It is important to note that, for this scheme to work with periodic
boundary conditions, the size of the lattice L must be even.

Figure 2.6: Checkerboard scheme of a two-dimensional spin lattice with
nearest neighbours interactions. The spins pertaining to each of the black/white
sub-lattices can be updated independently.
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The thermalization of spin lattices is usually carried out for a given number of
Monte Carlo sweeps, which consist on proposing and accepting/rejecting a total of
(usually randomly selected) N spin updates with a Metropolis algorithm, where N

is the total number of spins in the system. In this updating scheme, being the two
sub-lattices independent, the update proposals of all the spins within the same sub-
lattice can be considered in parallel. Consequently, a full Monte Carlo sweep can be
carried out with only two steps, corresponding to the updating of each of the two
sub-lattices.

It is true that there exists a small fundamental difference when comparing this
updating scheme with the standard one. In the later, since the spins proposed
for updating are selected at random, it is not guaranteed that all spins will be
given the chance to be updated in a given MC sweep, while some others can be
proposed more than once. While this one does apparently seem more physically
realistic (the order of the updated spins is random and thus not correlated), both
schemes satisfy ergodicity and no difference is observed in the obtained results [85].
At the same time, a considerable improvement in performance is achieved with the
former parallel version. Furthermore, recall that the generation of (pseudo-) random
numbers usually constitutes one of the main bottlenecks of the simulations, which is
partially avoided as well in this paradigm.

The nearest-neighbours topology is nevertheless quite simple in the sense that
it is a planar graph and thus no hard optimization problems can be embedded in
it. This parallelization scheme, though, can be further extended to consider more
complex topologies. In the case of the next-to-nearest neighbours connectivity, which
is non-planar and NP-complete, one only needs to consider four different sub-lattices
instead of two, see Fig.3.1. Analogously, in this case a complete sweep of the lattice
can be achieved in four steps.

In this system, each spin is connected to eight different neighbours. It therefore
results intuitive to think that for a three-dimensional cubic lattice, in which the spins
are only connected to six nearest neighbours, an analogous scheme of at most four
colours should be possible. Indeed, a Monte Carlo sweep can be performed in a
model with such connectivity with, again, two different sub-lattices: it suffices with
considering regular checkerboard sub-lattices as in the two dimensional case, Fig.2.6,
but displaced at every alternate layer.
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Figure 2.7: Four-coloured parallelization scheme of a spin lattice with next-
to-nearest neighbours connectivity. The spins pertaining to each of the different
coloured sub-lattices can be updated independently.
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Chapter 3

Phase transitions of non-planar
graphs

In this chapter, based on the results presented in [35], we make use of the Haake-
Wilkens-Lewenstein (HLW) approach to spin glasses. This formalism consists on
the evaluation of the probability distribution of configurations of two replicas of the
system, averaged over quenched disorders. In essence, this is related to the Edwards-
Anderson order parameter, qEA, through the definition of an effective system of spins
for which the ferromagnetic transition is related to the spin glass one of the original
one. This allows us to study the phase transition of two-, three- and four-dimensional
EA lattices.

31
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3.1 Introduction

As simple as the general definition of spin-glasses might be, they still represent one
of the biggest and more shady topics in modern statistical physics research [43, 68].
As such, many questions related to them remain open and are the focus of a hot
debate and, even without the need of going further and considering exotic questions
about their behaviour or their quantum version [86, 87, 88], basic concepts such as
whether a spin glass phase transition actually exists at all for certain models still pose
a tremendous, unresolved challenge. Just as in magnetic order in Ising ferromagnetic
metals, the spin-glass phase is defined as a state at which the spins in the system
naturally order themselves and remain frozen, unaltered by thermal fluctuations
since they are completely overcome by the Hamiltonian’s couplings. Contrarily to
ferromagnetic systems, though, and due to the more complex distribution of the
couplings between spins (which effectively yields to their frustration), this phase is
characterized by a configuration that appears to be random. Then since each spin
acquires its own orientation, on average half of them point towards one direction and
the other half towards the other one, effectively resulting in a zero magnetization for
big enough systems. This fact consequently makes µ a useless order parameter to
distinguish these two phases. The Edwards-Anderson order parameter was therefore
introduced in order to identify this postulated spin-glass phase transition [58].

The efforts devoted to the understanding of this phase transition are nonetheless
justified not only from the more fundamental physics part, but from the applied
one too. One of the most crucial parts when designing the annealing schedules of
heuristic algorithms such as Simulated Annealing, Parallel Tempering and Population
Annealing consists of understanding this spin-glass phase transition. Recall that
they are designed to anneal the system from (or, in the case of PT, to introduce
configurations pertaining to) a high enough temperature in which the exploration
of the configuration space is easy but finding the global ground state is difficult (as
big thermal fluctuations allow for the easy escape from local minima) towards a low
enough temperature, at which the exploration becomes harder but, on the other
hand, the probability of laying in the global minimum gets higher. Using annealing
schedules with both the initial and the final temperatures within a range at which the
system stays in the same phase would consequently not meet this required criteria,
and the space exploration would therefore disastrously fail: they definitely need to
use temperatures both above and below the critical one. The existence of this phase
transition is thus not only the focus of a mere academic curiosity, but rather a
question of relevance in environments on which optimization problems are solved by
means of these kind of systems. Studying this spin glass problem hence constitutes
an important cornerstone for improving currently available optimization techniques.
Concretely, most non-planar graphs such as the high-dimensional (3d and beyond)
Edwards-Anderson model still lack thorough analytical solutions that allow us to
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confidentially discriminate whether such phase transition occurs or not. Based on
partial results, though, it is believed that such transition does take place on three-
and four-dimensional EA models, but not in the 2d case.

{si}

E

E kBT1

E kBT2

E kBT3

Figure 3.1: The temperature at which the system is simulated determines
the maximum (within thermal fluctuations) energy that can be explored.
In order to explore the whole configurational space, high enough temperatures must
be used at the start of the annealing process, while low enough ones are required
towards its end to guarantee that the chance of finding the ground state is high.

3.2 The HLW approach

The Edwards-Anderson order parameter for spin glasses, Eq. (2.7), can be understood
from different physical perspectives [58, 59, 61, 89], as discussed in previous chapters.
An equivalent formulation is given by considering the spin overlap function over
two replicas (here labelled α and γ, in order to avoid confusion with the inverse
temperature β) of the same system, averaged over both thermal configurations and
over the distribution of bonds in the disorder

qαγ =
〈〈
σ
(α)
i σ

(γ)
i

〉
T

〉
b
. (3.1)
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The thermal average, ⟨·⟩T , is obtained with the canonical Boltzmann distribution

P ({σ}) = e−βH({σ})

Z(β)
, (3.2)

while the disorder one, ⟨·⟩b is computed according to the distribution that the val-
ues of the couplings between spins follow in a given model. In our case, since we
are considering the EA model, Eq.(2.9), we are interested in Gaussian distributed
couplings, and therefore it shall be computed according to

P (J) =
1√

2π∆2
exp
−J2

2∆2
. (3.3)

Replicas of the same system are defined by the same set of quenched couplings {Jij},
and must therefore share the same partition function which, for brevity, we denote
as Z({Jij}) ≡ Z(J). The thermal average on Eq. (3.1) can thus be computed as

qαγ =

〈 ∑
{σ(α)}

∑
{σ(γ)}

σ
(α)
i σ

(γ)
i exp

[
−βH(σ(α))− βH(σ(γ))− 2 lnZ

]〉
b

, (3.4)

where H is the Edwards-Anderson Hamiltonian introduced earlier, Eq. (2.9).

Note that, since the probability distribution of the couplings is even, the sign of
J can be absorbed into the spin variables. The following gauge transformation of
the couplings can then be considered

Jij = Jijσiσj , (3.5)

which can be used to write the sum of the Hamiltonians for the two replicas in
Eq. (3.4) as∑
⟨i,j⟩

Jijσ
(α)
i σ

(α)
j +

∑
⟨i,j⟩

Jijσ
(γ)
i σ

(γ)
j =

∑
⟨i,j⟩

Jij σ
(α)
i σ

(α)
j σ

(α)
i σ

(α)
j︸ ︷︷ ︸

=1

+
∑
⟨i,j⟩

Jijσ
(γ)
i σ

(γ)
j .σ

(α)
i σ

(α)
j

(3.6)
For any possible orientation of the spins, {±1}, the square of a given spin variable
of the same replica always yields σ

(α)
i σ

(α)
i = 1. Further, the spin overlap variables

can be defined
τi = σ

(α)
i σ

(γ)
i . (3.7)

With all these ingredients, the Edwards-Anderson order parameter reads

qαγ =

〈 ∑
{σ(α)}

∑
{σ(γ)}

τi exp

β∑
⟨i,j⟩

Jij(1 + τiτj)− 2 lnZ

〉
b

. (3.8)

Finally, rearranging some terms and noting that, since both σ and τ are spin vari-
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ables, the summations can be carried out over any of them indistinguishably,
∑

{σ(α)}
∑

{σ(γ)} ≡∑
{σ}
∑

{τ}, one gets

qαγ =
2N

Z2

∑
{τ}

τi

〈
exp

β∑
⟨i,j⟩

Jij(1 + τiτj)

〉
b

. (3.9)

Note that, in this form, the order parameter is reinterpreted as the magnetization of
a system with an effective canonical distribution

qαγ = Z−1
eff

∑
{τ}

τie
−βHeff (τ), (3.10)

with the effective probability distribution of the new variables τ

P (τ) = Z−1
eff e−βHeff (τ) =

〈
2N

Z2(J)
exp

β∑
⟨i,j⟩

Jij(1 + τiτj)

〉
b

, (3.11)

or, equivalently, the disorder-averaged joint probability distribution of configurations
of two replicas, P (σ(α), σ(γ)).

The Haake-Lewenstein-Wilkens approach [90] therefore consists on studying the
spin glass phase transition of the original spin system with the magnetization of an
effective system of variables τ . Correspondingly, we will have:

• Non-zero values of the Edwards-Anderson order parameter in the original sys-
tem, if the spin-overlap variables τ show magnetic order.

• Disordered spin glass phase, characterised by vanishing qEA, if the effective
system shows paramagnetic behaviour.

3.3 Saddle point/steepest descent calculations

For convenience, let us first rescale the couplings with the inverse temperature β and
the variance of their Gaussian distribution ∆. To this end we apply the following
change of variables to define the new couplings κij :

Jij = β∆2κij . (3.12)

Further, we also define the scaled inverse temperature

β̃ = β∆. (3.13)
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The partition function now is

Z(κ) =
∑
{σ}

exp

[
β̃2
∑
⟨i,j⟩

κijσiσj

]
, (3.14)

where we have explicitly included the dependency of Z on the couplings used. On
the other hand, the bond distribution becomes

P (κ) =
1√

2πβ̃−2

exp
−β̃2κ2

2
. (3.15)

And, therefore, the effective probability distribution of the spin-overlap variables τ

finally reads

P (τ) =

〈
2N

Z2(κ)
exp

[
β̃2
∑
⟨i,j⟩

κij(1 + τiτj)

]〉
b

, (3.16)

where the disorder average ⟨·⟩b is now computed according to the bond distribution
Eq. (3.15). The probability distribution is therefore given by the integral

P (τ) =
2N√
2πβ̃−2

∫
dκij Z

−2(κij) exp

[
β̃2
∑
⟨i,j⟩

{
κij(1 + τiτj)−

κ2
ij

2

}
︸ ︷︷ ︸

L(κ,τ,β̃)

]
(3.17)

which we can approximate with the saddle point/steepest descend (SPSD) method.
To this end, we first look for the saddle point of the integrand L(κ, τ, β̃), by equating
to zero the first derivative with respect to κij of its logarithm. The saddle point is
found to be given by

0 = β̃2
[
− κij + 1 + τiτj − 2⟨σiσj⟩T

]
, (3.18)

with the thermal average computed according the distribution Eq.(3.2) with the
properly rescaled couplings, Eq.(3.12):

⟨σiσj⟩T =
1

Z

∑
{σ}

σiσj exp

[
β̃2
∑
⟨i,j⟩

κijσiσj

]
. (3.19)

The probability distribution can be approximated around this point by directly sub-
stituting their SPSD values. Further, we can also consider the second order correction
by computing the Hessian matrix of the second derivatives of the logarithm of the
integrand. This yields

Hµν = −β̃2

[
δµν + 2β̃2 (⟨cµ⟩⟨cν⟩ − ⟨cµcν⟩)

]
, (3.20)
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where we have introduced the shortened notation ⟨σiσj⟩ = cµ. We further note that
the correlation matrix

⟨cµcν⟩ − ⟨cµ⟩⟨cν⟩ = ⟨(cµ − ⟨cµ⟩)(cν − ⟨cν⟩)⟩, (3.21)

i.e. it is explicitly positively semi-definite. In fact, the Hessian matrix:

Ĥ < 0, (3.22)

so that the logarithm of the integrated function considered is a strictly convex func-
tion of many variables. It is therefore expected to have one maximum corresponding
to our SPSD solutions. Note also that eigenvalues of the Hessian matrix are all
negative and will typically be of order α4, and they are bounded in modulus from
below by β̃2. One should thus expect the SPSD method to become, for β̃ → ∞,
asymptotically very precise or even exact.

Let us now study the behaviour of the obtained SPSD solutions. Being Ising
variables, the spin-overlap variables τ can only take on the values ±1, and thus so
can their product τiτj = ±1. The saddle point equation, Eq.(3.18), therefore has
two distinct regimes depending on the value of the spin overlap τiτj :

• τiτj = 1. The corresponding couplings κij are then restricted by

κij = 2 (1− ⟨σiσj⟩T ) > 0, (3.23)

hence it represents a ferromagnetic coupling.

• τiτj = −1. In this case the couplings read

κij = −2⟨σiσj⟩T , (3.24)

so we should in principle have an antiferromagnetic coupling. Contrarily, an
antiferromagnetic coupling between spins located at sites i and j implies, at
low temperatures (alternatively high values of β̃, for which, as discussed above,
these results should be accurate or even exact), a negative correlation between
them, ⟨σiσj⟩T < 0. Eq. (3.24) therefore yields a contradiction, that could
be avoided by setting κij = 0. As we shall see below by solving mean field
equations, this is in fact not needed, but it only represents a manifestation of
the frustration of the system.

Summarizing, the SPSD equation Eq. (3.18) can be interpreted as describing a system
formed by domains of aligned spins coupled with ferromagnetic interactions, κij > 0,
characterized by τiτj = 1. These islands or domains are then limited by domain
walls described by antiferromagnetic couplings, κij < 0, and thus unaligned spins,
τiτj = −1.
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3.4 Thouless argument

We now discuss whether a ferromagnetic phase in τ exists or not and, consequently,
a spin glass phase in σ. As first proposed by Thouless [91, 92, 93], for models
of electron propagation in the presence of disorder, and subsequently adapted to
study Ising models in random magnetic fields [94, 95], and also spin glasses [96], the
existence of a spin glass order can be addressed by studying the sensitivity of the
system to boundary conditions. To this end, we consider a d-dimensional cylindrical
spin lattice of length L and cross section Ld−1. Let us define the probability of all
spins τ being aligned

P+ = P (τi = 1∀i), (3.25)

and the probability of the existence of a domain wall, defined as that of all spins to
its left pointing towards a certain direction and all spins to its right pointing to the
other one:

P− = P (τi = 1∀i ∈ Dl ∩ τi = −1∀i ∈ Dr). (3.26)

Here, i ∈ Dl and i ∈ Dr represent the indices of the spins i to the left and right of
the domain wall, respectively. By comparing these two probabilities we can study
whether the system acquires ferromagnetic order (P+ > P−) or not (P+ < P−). To
this end we define

δ = ln
P+

P−
. (3.27)

Recall now that, in the HLW approach, ferromagnetic order in the τ variables implies
spin glass order in the original spin system of σ variables. Consequently, considering
both the Thouless argument and the HLW perspective of spin systems we can study
its spin glass phase. The system of σ spins will lay in:

• a spin glass phase, if δ > 0,

• a disordered phase, if δ < 0.

The existence of a spin glass phase transition can then be inferred by the crossing of
the δ parameter from negative to positive values.

3.5 Self-consistent SPSD and local mean field solu-

tions

In order to use the Thouless argument presented above to study the spin glass phase
transition of the Edwards-Anderson model, let us consider a d-dimensional hyper-
cubic lattice embedded within a cylinder with L layers of spins and bonds distributed
according to a Gaussian law.
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Using standard mean field theory, we approximate

σi = ⟨σi⟩︸︷︷︸
mi

+δσi, (3.28)

where we have defined the mean field (MF) value of the magnetization of a given
spin, mi. It can be computed to yield

mi = tanh

[
β̃2
∑
⟨i,j⟩

κijσj

]
. (3.29)

Discarding all terms quadratic in the fluctuations, the SPSD equation, Eq. (3.18),
becomes

κij ≈ 1 + τiτj − 2mimj , (3.30)

and thus the MF value of the magnetization reads

mi = tanh

[
β̃2
∑
⟨i,j⟩

(1 + τiτj − 2mimj)mi

]
. (3.31)

Being a hyper-cubic lattice of d dimensions, each spin is coupled to 2d neighbours,
with only two of them in the cylinder’s axis direction. Further, if we assume axial
symmetry in the cylinder, all spins belonging to the same layer will have the same
value mi, where now the index i only labels the layer. Note that not only their
mean field value will be equal, but their exact one too so that its possible values are
restricted to ±1 and thus their square equals one, mimi = 1. On top of that, we
are in the ferromagnetic regime and thus τiτj = 1. Taking all of this into account,
Eq. (3.31) is then interpreted as a chain of layers with magnetization mi, coupled to
the previous and the following layers. Each layer is nonetheless comprised by 2(d−1)
"sub-layers" in the directions perpendicular to the cylinder’s axis, which will each
generate the same equation. The magnetization at each axial layer i in the cylinder
is then

mi = tanhFi(m), (3.32)

where we have defined, for brevity

Fi(m) = β̃2

[
2 (d− 1)κi,imi + κi,i−1mi−1 + κi,i+1mi+1

]
. (3.33)

By continuity, the boundary conditions are

m0 = mL+1 = 0, (3.34)

κ0,1 = κL,L+1 = 0. (3.35)
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The values of κij are given by the SPSD equations, Eq.(3.30), and thus we again
have the two possibilities discussed there, namely τiτj = ±1. When we compute the
magnetization within a ferromagnetic domain, by the discussion of previous sections,
we have τiτj = 1 and thus

κi,j = 2− 2mimj . (3.36)

On the other hand, the magnetization in a domain wall is characterised by τiτj = −1,
such that

κiD,iD+1 = −2miDmiD+1, (3.37)

where iD labels the layer at which the domain wall is encountered. Recall that we
are assuming axial symmetry, and thus the boundaries between domains must be
flat hyper-planes that comprise the whole layer. While there is not a strict physical
restriction in this regard, we are in essence studying effective, averaged-over-disorder
probability distributions of the τ variables, and hence from the construction there
are no reasons for this probability distribution to break the translation symmetry.

Figure 3.2: A spin lattice with nearest neighbours interactions in a cylinder.
Due to the cylinder’s axial symmetry, all spins belonging to the same layer will have
the same magnetization mi.

We now finally have all the necessary ingredients to address the computation of
δ, as given by Eq. (3.27), which will allow us, by the previous’ sections discussions,
to study the spin glass phase transition in our model. We define the logarithm of
the probability distribution

H± = lnP±, (3.38)

and call it "energy", in a somewhat abuse of notation, by an analogy to a Boltzmann
weight, P ∝ exp (−βE). Being an extensive quantity, the energy divided by the
volume in all but one dimensions should be, in the leading order, a linear function
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of the cylinder’s length
H±

Ld−1
= A(β̃)L+B±(β̃). (3.39)

Since the configuration contributing to P− has a domain wall in the middle of the
cylinder and thus a connection between two layers given by a different expression,
Eq. (3.37), both energies will have the same bulk contributions A(β̃) but different
boundary terms, B±(β̃). Thus we will have

δ = B+(β̃)−B+(β̃). (3.40)

Let us now explicitly compute the energies H± from the probability distribution
of the τ spin variables, Eq. (3.17), again with the Laplace method. We find

H± = L ln 2 + β̃2
∑
⟨i,j⟩

{
2κi,j −

κ2
i,j

2

}
− 2 lnZ, (3.41)

The partition function is

Z =
∏
i

2 cosh

{
β̃2
∑
⟨i,j⟩

κijσj

}
(3.42)

with the product over all spins. As discussed previously, all spins within each of the
L (d− 1)-dimensional layers will have the same magnetization. Thus grouping them
and taking the logarithm it translates to

lnZ = Ld−1
L−1∑
i=0

ln (2 coshFi), (3.43)

with Fi as defined in Eq. (3.33) and the sum over all layers. Taking into account the
different conditions for each energy, one finally finds

H+

Ld−1
= L ln 2 + β̃2

{
(d− 1)

L∑
i=1

[
2κi,i −

κ2
i,i

2

]
+

L−1∑
i=1

[
2κi,i+1 −

κ2
i,i+1

2

]}
−

− 2

L∑
i=1

ln

[
2 coshFi(m)

]
(3.44)

for the completely ferromagnetic case, Eq. (3.25), and

H−

Ld−1
= L ln 2 + β̃2

{
(d− 1)

L∑
i=1

[
2κi,i −

κ2
i,i

2

]
+

L/2−1∑
i=1

[
2κi,i+1 −

κ2
i,i+1

2

]
+

+

L/2−1∑
i=1

[
2κi,i+1 −

κ2
i,i+1

2

]}
− 2

L−1∑
i=L/2+1

ln

[
2 coshFi(m)

]
(3.45)
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for the case with two domains separated by a domain wall, Eq. (3.26). Recall that,
in the later case, the condition Eq. (3.37) must be imposed. One could also include
in each case the Gaussian fluctuations around the SPSD solution term, by adding

δH±

Ld−1
= −1

2
ln (det Ĥ±) (3.46)

correspondingly. By approximating the eigenvalues by the diagonal elements of the
Hessian matrix computed previously, Eq. (3.20), one finds

δH±

Ld−1
≈ −1

2

∑
ij

ln

[
β̃2 + 2β̃4(1−m2

im
2
j )

]
, (3.47)

where the SPSD solutions must be computed accordingly for each one of the ± cases.

3.5.1 High β̃ regime

Let us now focus on the study of the high β̃ (low temperature) regime, in which
the extensive parameter of the energies, A(β̃), can be estimated analytically. The
corresponding mean-field (MF) equations in the bulk are

κ = 2(1−m2), (3.48)

m = tanh 2β̃2dκm. (3.49)

It is now useful to define the new variable x = 2β̃2dκ and combine Eq. (3.48) and
Eq. (3.49) into

x = 4β̃2d cosh−2

[
x

√
1− x

4β̃2d

]
(3.50)

from which the limit in the low temperature regime can be extracted

x =
1

2
ln 4β̃2d, (3.51)

which, through the definition of x, yields

κ =
ln 4β̃2d

4β̃2d
. (3.52)

Thus, as should be expected, κ tends to zero in the limit of large β̃ and, using
Eq.(3.49), the magnetization is maximum in the bulk, m = 1. Finally, this leads to

A(β̃) ≃ ln(2)− 1

2
ln(4α2d), (3.53)

i.e. as expected ln(P±) = H± becomes negative at large L (when our analysis makes
sense) and at large β̃ (when SPSD should work well). Furthermore, A(β̃) is seen to
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diverge with β̃, but only in a logarithmic way.
Since in this regime we can then set the local magnetization to mi = 1∀i, the

expression for the energy Eq.(3.44) simplifies to

H+

Ld−1
= L ln(2)− 2α2

[
(d− 1)

L∑
i=1

κi,i +

L−1∑
i=1

κi,i+1

]
, (3.54)

in which the Gaussian corrections have been neglected, according to the results ob-
tained in previous sections when discussing the eigenvalues of the Hessian matrix,
Eq (3.20). Since the numerical analysis in the asymptotic regime is tough, we may
and will use this expression there.

3.5.2 Phase transition at moderate β̃

The solution of the mean field equations presented above can be seen to change
character as the scaled temperature β̃ increases. In the high temperature regime
(low values of β̃), the system is not magnetized and thus mi = 0∀i, and below a
certain transition temperature β̃T the system acquires a spontaneous magnetization,
mi ̸= 0. We can then approximate Eq.(3.32) for temperatures around the critical
point as a series expansion for small mi as

mi ≈ β̃2

[
2 (d− 1)κi,imi + κi,i−1mi−1 + κi,i+1mi+1

]
. (3.55)

To first order, around criticality the magnetization of all the layers should be equal,
mi = m∀i, and by Eq. (3.36) we have κij = 2. Taking into account these consider-
ations into Eq. (3.55) and then imposing it to get trivial at β̃T we finally find the
transition temperature to be

β̃T =
1

2
√
d
. (3.56)

3.5.3 Numerical calculations

After the analytical discussion of the last sections, we shall now address the numerical
computations of the derived equations describing the behaviour of the τ spin system
on the cylinder. We first compute the magnetization, then discuss the domain wall
width separating the two regimes, and finally analyze the crossing of the δ parameter,
Eq.(3.27), to discuss about the spin glass phase transition in the original lattice of σ
spins.

Magnetization over the cylinder

We now solve numerically the system of equations conformed by Eq. (3.32) and the
boundary conditions imposed by the lack of spins in sites i = 0 and i = L + 1,
Eq. (3.34) and Eq. (3.35), respectively, and the condition imposed by the existence
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of a domain wall in the middle of the cylinder, Eq. (3.37). As shown in Fig. 3.3,
the systems in all the considered dimensions show qualitatively the same behaviour
around their corresponding critical temperatures, as given by Eq. (3.56).
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Figure 3.3: Magnetization over a cylinder with L = 500 for different tem-
peratures and dimensions. Both systems (with and without a domain wall) get
magnetized when going from high to low temperatures. Results obtained for tem-
peratures above criticality (blue line), slightly below it (orange line) and far below
it (green line), for a system with (right panel) and without (left panel) domain wall.
Top, middle and bottom panels correspond to systems in d = {2, 3, 4}, respectively.

A closer inspection of the domain walls in all dimensions shows that, rather than
being a sharp jump, they have in fact a finite width ∆D. A numerical exploration
indicates that, at a fixed temperature, the domain wall reaches an L-independent
width limit for large L, as can be seen by the ∆D/L ∝ L−1 behaviour in the right
panel of Fig.3.4. Analogously, for a fixed number of layers L, the domain wall reaches
a temperature-independent width as well for low enough temperatures, left panel of
Fig.3.4.
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Figure 3.4: Domain wall width for fixed L (left panel) and fixed β̃ (right
panel). Numerical explorations show that, in both regimes, the domain wall asymp-
totically reaches a fixed width for large enough values of the independent parameter.

Spin glass phase transition

We have already discussed that the energies of the cylinders divided by its volume
in all but one dimensions, H±L

−d+1, has to be a linear function of the cylinder’s
length L, Eq. (3.39). By solving this same system of equations for various values
of L and at various temperatures, and fitting the results with a linear regression
we can finally compute the functions A(β̃), B±(β̃) and δ(β̃), which effectively tells
whether the original spin system undergoes a phase transition between ordered and
disordered spin glass phases or not. Furthermore, we also take into account the
Gaussian corrections discussed in previous sections. The results show that A(β̃),
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Figure 3.5: A(β̃) for all studied dimensions. The results show a very similar
behaviour of this parameter in all dimensions, both qualitatively and quantitatively.

Fig 3.5, tends to −∞ in a logarithmic way, in accordance to the previous analytic
calculations. They behave very similarly both quantitatively and quantitatively in
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all dimensions. Furthermore, and as expected, the A(β̃) functions for the two studied
situations (with and without a wall domain) are the same since they represent the
bulk energy, which should be only, if at all, slightly affected by the presence of the
domain wall. On the other hand, the contributions of the constant term in Eq. (3.39),
characterised by B±(β̃), do diverge between the systems with and without a domain
wall, as seen in Fig 3.6. While B+(β̃) tends to a positive constant for large β̃ (low
temperatures), B−(β̃) can be seen to tend to infinity for all dimensions. Effectively,
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Figure 3.6: B±(β̃) for all studied dimensions. The results show a very similar
behaviour of this parameter in all dimensions, both qualitatively and quantitatively.
Note that B+(β̃) and B−(β̃) diverge for large values of β̃ (low temperatures).

this results in δ crossing from positive to negative values in all three cases, Fig. 4.1,
thus indicating a spin glass transition at finite temperatures, unfortunately, in all
the studied dimensions.
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Figure 3.7: δ(β̃) for all studied dimensions. The function crossed from positive
to negative values at finite temperatures for all dimensions.

As discussed previously, even though this is still an open question, there is broad
consensus in that this should be the case in three and more dimensions, but not in
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two. We therefore hypothesize about the reasons why the used approach could be
failing in two dimensions.

First, the energy increase for a domain wall competes with boundary effects
more strongly in two dimensions than in the other ones, and thus their local mean
field calculations might be too rough, which could be in effect destroying the order.
Further, it is possible that the SPSD approximation is not precise enough or even
completely incorrect, with many SPSD solutions contributing, when we have only
considered one of them. Still, the results obtained for the Hessian matrix suggest
that this is not the case as the SPSD solution appears to be the single maximum and
is expected to be very precise for large values of β̃, as discussed in previous sections.

3.6 Conclusions

The Haake-Lewenstein-Wilkens (HLW) approach is applied to the study of the Edwards-
Anderson (EA) Ising spin glass model in its two-, three- and four-dimensional ver-
sions. By considering the probability distribution of the spin overlap variables of
two replicas of a system averaged over disorder, this formalism allows for the inves-
tigation of the behaviour of the standard EA order parameter, qEA. The saddle-
point/steepest-descend (SPSD) solutions of the studied system appear to be asymp-
totically very precise and with a single maximum in the low temperature limit, though
a rigorous proof is not explored. Finally, by studying the sensitivity of the SPSD
solutions to our system to boundary conditions, the existence of a spin glass phase
transition is then inferred. The results indicate that this transition does indeed occur
in all the considered dimensions.

The existence of such phase transition in 3 and 4 dimensions agrees with the
common belief within the scientific bibliography, but that of two-dimensional systems
does not. We consequently identify some reasons why the considered approach may
fail in two dimensions. Namely, errors can either arise in the SPSD solutions or
in the mean-field (MF) approximation to the boundary effects. The (not rigorous
enough) study of the Hessian matrix suggests that the former is unlikely. On the
other hand, the competing boundary effects, which are more important in lower-
dimensional systems, could be preventing the MF considerations to be precise.
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Chapter 4

Correlated RN sequences in
MC simulations

In this chapter, based on the results presented in [36], we study how do the corre-
lations present in pseudo random number sequences affect the value of the obtained
dynamic critical exponent, z, of two-dimensional Ising models. To this end, we first
review some needed theoretical concepts related to the generation of pseudo random
numbers, as well as to the physics behind the dynamic critical exponent. We then
study some direct effects that using randomness sources of different qualities have
in the value of z, to finally address its computation by using completely uncorre-
lated, true random streams obtained from Quantum Random Number Generators
(QRNGs). To conclude, the used (pseudo-) randomness sources are tested by means
of standard statistical tests, and the differences between them are compared.

49
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4.1 Introduction

It has been known for decades that some complex deterministic computations can be
carried out by intelligently using random numbers, in a process called Monte Carlo
simulations [80], and with the often negligible caveat of losing some accuracy. One
of the most paradigmatic examples of this type of strategies is the computation of
the irrational number π. For it, one first considers a square of unit side length and
an inscribed circle and notes that the ratio of the areas between the two geometric
figures is Acircle/Asquare = π/4. If one interprets this ratio as the probability of
an (x, y)-point drawn from an uniform probability distribution in the [0, 1] interval,
x, y = U(0, 1), lying within the circle, then the value of π can be estimated by simply
randomly generating a big enough number (Ntotal) of points and counting how many
of them (Ncircle) meet such condition, π ≈ π̃ = 4Ncircle/Ntotal.

Still, what one might naively think to be an easy and straightforward task, namely
the generation of random numbers, happens to be one of the hardest and less trivial
computational problems. From a philosophical perspective, it is actually impossible
to generate true random numbers via algorithmic procedures such as those that can
be implemented in a computer [97], and any attempt on this regard will, sooner
than later, fall into problems such as sequence repetition and detectable correlation.
On the one hand, algorithms producing such apparently random sequences rely on
deterministic mathematical functions that, given a certain amount of previous states,
output a new one, xi = f(xi−1, xi−2, ...). Therefore, and taking into account that
we want our function to output numbers within a certain, finite range and thus
the pool of possible states x is limited, it is guaranteed that, for some (hopefully
large) iteration i the sequence will start over again and repeat itself. On the other
hand, being the output numbers completely deterministic, it is impossible to find a
complete way around the intrinsic correlations between them.

This is the reason why one normally refers to this kind of numbers as pseudo ran-
dom numbers (PRN), and during decades lots of efforts have been put into the im-
provement of both their generation and their similarity to a real randomness source.
Consider again the π’s calculation example and suppose that a pseudo random num-
ber generator (PRNG) is used to this end. Since the statistical interpretation of
the probability is only valid in the limit of large Ntotal, it is clear that, if by some
reason the PRNG’s algorithm produces numbers that differ from a perfect uniform
distribution and, say, tend to slightly accumulate in the center of the square, we will
overestimate the value of π when using a large enough amount of PRN. Consider
yet another example: assume a PRNG with a long enough period of repetition such
that we can in principle approximate π without repeating any sequence, and that
outputs numbers with a distribution that, for our purposes, is completely indistin-
guishable from a true uniform at long enough iterations, but with such correlations
between consecutive numbers such that it tends to begin filling the [0, 1] interval
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from the boundaries to the center. In this case, the number of points laying within
the circle will be lower and, even if our PRNG’s output was supposed to closely
enough resemble a true uniform, the intrinsic time correlations between its numbers
will consequently yield an underestimation of π.
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Figure 4.1: Estimating the value of π with a Monte Carlo method. Left
panel: random numbers are used in numerical calculations such as the calculation of
the irrational number π. Right panel: errors in the estimation of π when using RNGs
of different qualities, as a function of the amount of random numbers consumed.

So it is clear that the quality of the random numbers is of crucial importance
when using them in Monte Carlo (MC) calculations and, while for some applications
PRN might be enough, for some others they might not. Modern scientific problems
that are tackled with MC strategies often demand vast amounts of random numbers,
and therefore one must sometimes completely avoid the problems mentioned above
in order to obtain correct and accurate results. For instance, one might need to rely
on so called true random number generators (TRNG), which extract real entropy
from physical processes such as thermal noise and use it to output numbers. Such
generators, though, are normally very slow. Moreover, they often rely on purely
classical processes, and thus their apparent true randomness comes from the lack
of knowledge of the configuration of a certain system rather than proper and strict
randomness. This can eventually have huge implications, specially when using these
random numbers in fields such as cryptography. As a consequence, quantum random
number generators (QRNG), which randomness can be certified (for example, by
means of a Bell test [98] ), have been proposed as the ultimate and only possible
way to obtain truly unpredictable and uncorrelated randomness. Furthermore, these
machines have been implemented in out-of-the-laboratory gadgets in the last decade,
and are already starting to be able to generate random bits at fast enough speeds
for them to be considered for computing and cryptographic purposes.
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A significant challenge for randomness technologies consists of assuring non-
predictability of RNG outputs, which is usually done with statistical tests [99, 100,
101]. The National Institute of Standards and Technologies (NIST) has collected and
defined a set of tests to measure the quality of PRNGs [102]. These, however, have
serious drawbacks, and it has been observed that the simulation of complex physical
systems can make some hidden correlations in pseudo random sequences arise and
affect their results [32, 33].

Take as an example the dynamic critical exponent z. It is a characteristic con-
stant appearing when studying how do the simulated dynamics of certain systems
slow down when approaching the critical point at which a phase transition occurs.
This phenomenon, usually referred to as critical slowing down, defines the scaling of
the relaxation time with the system size near criticality, and thus effectively measures
how does the time needed to extract two independent measures of a given observable
of the system diverge near the phase transition. The simulation times at criticality
are seen to be huge, and the study of phase transitions via Monte Carlo simulations
consequently becomes dramatically difficult: the demand of computational resources
and, more explicitly, of random numbers consumed by the algorithm, explode. Being
the dynamic critical exponent a feature of phase transitions, it must be computed
exactly at the critical temperature and hence suffers from this severe problem. Con-
sequently, it has been seen to be sensitive to the (usually undetectable) long range
correlations between the pseudo random numbers used to its computation [33].

4.2 Randomness and Technology

To visualize what randomness is one normally imagines gambling, either playing dice
or tossing a coin. For most purposes these are good examples. Strictly speaking, still,
these processes are not random at all: their outcome is, in the end, predictable. Given
a set of initial conditions, classical mechanics allows us to devise its outcome and thus
win the game. They only seem to be random because the lack of knowledge of the
initial conditions and the subsequent chaotic behaviour of the equations governing
their dynamics prevent this in most real-life situations. Yet randomness is not only
present in gambling games, but also exploited, as discussed in previous sections, in
accelerating computations. But if the main purpose is to accelerate them, it is clear
that one has to rely on random numbers that can be generated slightly faster than
the speed at which a coin can be tossed. On the practical side, then, fast random
number generators are needed, and a huge body of technological and scientific effort
has been devoted to this end.
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4.2.1 Pseudo Random Number Generators

For most practical uses, the main approach to generating randomness consists on
lowering one’s expectations and conforming with so called pseudo random numbers.
Pseudo random numbers are nothing but outputs of a given algorithmic process and,
being thus obtained by means of deterministic functions, are completely predictable
if the state of the function at a given time is known. Just as tossing a coin, though,
they appear to be random if only the stream of output numbers is seen. In its most
general form, a pseudo random number generator is a function of the form

xn = f(x⃗n−1), (4.1)

where the vector x⃗n−1, potentially depending on many previous outputs of the func-
tion (i.e. the individual values xn−1, xn−1, etc.), is called the state of the PRNG.
Afterwards, a post-processing of the internal state xn transforms it into the output
random number, r = g(xn).

Ideally, the function g(f(x⃗n−1)) will appear to output uncorrelated numbers on
the short run (where, in reality, short refers to "as long as possible"), while emu-
lating a certain probability distribution on the long one. On a practical side, the
function should be able to reach such properties without compromising performance.
Consequently, it is mandatory for such functions to be implemented in an efficient
manner.

Repetition of sequences and reseeding

Note that, taking into account that we want to be able to code such functions so that
they can be used in computer simulations, the state must be comprised of (at least
at the bit level) discrete values. Also, any realistic implementation of a probability
distribution will inevitably be bound to a certain range of outputs, as those values
whose probability of appearance is lower than the machine’s precision will be assigned
a real probability of exactly zero. Jointly, these two properties that any imaginable
PRNG will have, effectively lead to a very undesired conclusion: a PRNG will always
have a period of repetition as well. This means that, once a certain amount of pseudo
random numbers is output by the function, the stream will reach the same initial
state and thus will exactly repeat itself over again.

This repetition of sequences can be nonetheless avoided by reseeding the genera-
tor. The reseeding operation consists on, at a given frequency (ideally corresponding
to a period shorter than the PRNG’s period of repetition), externally changing the
state with a new random seed. If the seed is truly random, i.e. obtained from a true
random number generator, then the PRNG will have an infinite period of repetition
[33]. Contrarily, if the seed is output by a second PRNG, the first one will then
have an enlarged period of repetition, but it will not be infinite and the sequences
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will repeat themselves over again once the second PRNG reaches its own maximum
amount of different output pseudo random numbers.

Linear Congruential Generators

A Linear Congruential Generator (LCG) [103, 104] is a type of algorithm that outputs
pseudo random number streams following a recurrence relation such that

xn+1 = (axn + c) mod m, (4.2)

where the parameters defining the LCG a, c and m are strictly positive integer
constants called multiplier, increment and modulus, respectively (except for the in-
crement, which can be 0 and in which case the LCG is usually referred to as Lehmer
RNG). The following bounds must hold

0 < m, (4.3)

0 < a < m, (4.4)

0 ≤ c < m. (4.5)

Due to the modulo operation, the output pseudo random numbers may be within
the range

0 ≤ xn < m, (4.6)

and therefore they have a potential period of repetition of at most m. Their easy
general formula makes them fast and efficient to implement in computing devices and
thus are widely used in computer simulations. Further, as their state is comprised by
a single mod m number, the memory required for its storage is relatively low; this is
helpful specially when multiple independent pseudo random streams are needed. On
the other hand, their pseudo randomness quality is seen to be extremely sensitive
on their defining parameters, and thus their selection requires much more care. For
instance, a bad choice of parameters can yield an LCG with a period of repetition
shorter than its modulus.

4.2.2 Quantum Random Number Generators

While numbers output by PRNGs do in principle appear to be random, they are
completely predictable and show correlations between them. The former flaw, pre-
dictability, results fatal when the sequences are intended to be used in cryptographic
environments. The later, on the other hand, can be problematic for sampling prob-
ability distributions as in Monte Carlo simulations. Problems in cryptography are
obvious since one really relies on the unpredictability of the used keys to avoid a
potential attack, while in simulations they can appear to be slightly more subtle.
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To easily visualize them, let us recall the previously presented example of the com-
putation of the number π, and consider a real situation in which we use a stream
of pseudo random numbers that, while being uniform in the long run, does present
correlations in the short one. Say that, for example, the numbers output by such
a PRNG are more concentrated towards the beginning of the [0, 1] interval at some
stages and towards its end on other ones. In this case, depending on the seed used
to initialize the PRNG’s state at the beginning of the simulation, our computation
will yield a value of π greater or lower than the correct one, as more sampled points
will fall within or outside the unit circle.

Based on a huge body of striking experimental evidence, though, quantum me-
chanics offers a way (actually, the only one) to overcome such problems. An impor-
tant part of the efforts put into quantum technologies have so far subsequently been
directed towards obtaining true randomness by exploiting the inherent unpredictabil-
ity of quantum processes. Consequently, QRNGs are currently one of the (if not the
one) most reliable quantum technologies available in the industry. Further, recent
technical progress allows for the construction of faster and more efficient QRNGs,
thus allowing, for instance, the first loophole-free observations of the violation of Bell
inequalities and the test of non-locality of quantum mechanics [105, 106, 107]. These
demonstrations even lead Aspect, Clauser and Zeilinger to be jointly awarded with
the Nobel Prize in Physics 2022, "for experiments with entangled photons, establish-
ing the violation of Bell inequalities and pioneering quantum information science".

Several methods to harness the intrinsic randomness of quantum mechanical
systems have been proposed recently. The so called "certified randomness" [108]
can be obtained by means of device-independent (DIQIP) randomness protocols,
which employ Bell-inequality violation on systems of photons [105, 107], ions [109],
nitrogen-vacancy centres [106], neutral atoms [110] and superconducting qubits [111].
Nevertheless, DIQIP approaches are not particularly efficient, as they often rely on
measuring properties of few-particle systems [112]. For practical reasons, then, it
is useful to measure signals from quantum processes and subsequently extract their
randomness with classical devices. These involve devices to observe the timing of
nuclear decay, [113] electron shot noise in semiconductors, splitting of photons on
beam-splitters, timing of photon arrivals, vacuum fluctuations, laser phase diffu-
sion, amplified spontaneous emission, Raman scattering, atomic spin diffusion, and
others. For a review on the topic, see Ref. [112]. Further developing this idea,
the fastest quantum random number generators available today make use of macro-
scopic traces of processes of a quantum origin. For instance, laser phase diffusion
(PD) QRNGs [34, 114, 115, 116] base their entire functioning on macroscopic optical
signals, Fig.4.2, whose behaviour is understood solely from a quantum-mechanical
perspective [117]. Working with well-established technological tools such as lasers
allows these QRNGs to achieve much better signal-to-noise ratios than other options
as well as faster generation speeds, with the record at the time of writing being
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Figure 4.2: Scheme of Quside’s PD-QRNG used in this work. A laser is
modulated above and below threshold, each time generating a pulse with a random
phase θi. By means of an unbalanced Mach-Zehnder interferometer, each pulse is
interfered with a later generated random phase pulse, turning phase fluctuations into
intensity fluctuations, which are further converted into random numbers by using
conventional photodetectors and electronics. Image taken with permission from [34].

68 Gbps [118].

4.3 The dynamic critical exponent

Understanding the physics behind the dynamic critical exponent z is crucial before
attempting to compute it through Monte Carlo simulations and to study how the
potential correlations within the random number streams used in such task affect its
value. In this section we thus present all the necessary concepts and tools needed to
this end.

4.3.1 The characteristic autocorrelation time

In dynamical simulations of physical systems it is usually very insightful to study the
time-displaced autocorrelation function of some observable. Concretely in Ising-like
spin systems, it is usual to compute this function for the order parameter, i.e. the
magnetization

χ(t, t′) = ⟨[m(t)− ⟨m⟩][m(t′)− ⟨m⟩]⟩. (4.7)

It essentially tells for how long, on average, the magnetization of our system at a
given time t is expected to be correlated with the magnetization at a previous time
t′. A value of χ close to one means that most of the spins point to the same direction
at both times and thus that the configurations {σi(t)} and {σi(t

′)} are correlated,
while a value of χ close to zero means that are statistically independent. The time-
displaced autocorrelation function therefore gives us a measure of the memory effect
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in the system: it tells for how long a configuration obtained by letting the system
evolve (either physically or, in our case of interest, by simulating it with a Markov
chain process) keeps any statistically relevant resemblance to the initial state, and
thus by studying its characteristic time scales we can gain knowledge of the times
needed for our simulations to reach properly thermalized states.

Exponential decay of the time-displaced autocorrelation function

As many physical processes of this kind, it might seem somewhat intuitive to think
that the time-displaced autocorrelation function should follow an exponential decay.
Let us nevertheless discuss this hypothesis [79, 119].

Let w be the vector of probabilities wµ(t), which describe the probability of a given
system to be in state µ at time t. Let P be the Markov matrix, with elements Pµ,ν

the transition probabilities from state µ to ν. In matrix notation, the probabilities
of laying in a particular configuration µ at two consecutive Monte Carlo steps n and
n+ 1 are then related as

w(n+ 1) = Pw(n), (4.8)

so that the state at a time step t can be computed by repeatedly applying the Markov
transition matrix P . Thus

w(t) = P tw(0), (4.9)

where w(0) is the state at which the system is initialized. By writing this initial state
in the eigenbasis of the Markov transition matrix, w(0) =

∑
i aivi, with Pvi = λivi,

we can easily take the exponential of the matrix in the last equation to find

w(t) =
∑
i

aiλ
t
ivi. (4.10)

In general, the expected value of a given observable of interest can be computed
as the sum of the values of the observable at all possible states, weighted by the
probability of the system being in such states. In particular, for the magnetization
m(t) we find its expected value as

m(t) =
∑
µ

wµ(t)mµ, (4.11)

with the sum over all the possible states µ of the system. By defining M as a vector
with elements mµ, in matrix notation we have

m(t) = Mw(t), (4.12)
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and therefore, introducing Eq. (4.10)

m(t) =
∑
i

Mviaiλ
t
i. (4.13)

For the time-displaced autocorrelation function of the magnetization, Eq. (4.7), we
therefore have

χ(t) =
∑
i

∑
j

aiajMviMvjλ
t
i, (4.14)

where the reference time is set to the initial one, t0 = 0, for the sake of simplicity.
Note that, consequently, the eigenvalues corresponding to M(0) are all present to
the 0th power and so all yield one. We can regroup all constants as

bi =
∑
j

aiajMviMvj , (4.15)

so the simple equation holds:
χ(t) =

∑
i

biλ
t
i, (4.16)

and the autocorrelation of the magnetization is seen to be a linear combination of
the eigenvalues of the Markov transition matrix.

Let us now think, for simplicity, of a single spin system that can take values
σi = ±1. The spin is in contact with a thermal bath but no external magnetic field
is present, so that the spin flips randomly at a rate which we denote as 1

2τ (that
may depend on the temperature of the bath) but neither state is found with a higher
probability than the other. Define the probability of the spin being found in the ±1
state at time t as p±(t). The master equations for each of this probabilities are:

d

dt
p+(t) = −

1

2τ
p+(t) +

1

2τ
p−(t) (4.17)

d

dt
p−(t) = −

1

2τ
p−(t) +

1

2τ
p+(t), (4.18)

which of course are not independent but rather related through the normalization
condition at all times, p+(t) + p−(t) = 1∀t. To solve the system of equations we can
therefore combine them by defining a more convenient function

q(t) = p+(t)− p−(t), (4.19)

which, recalling that the spin can take only the values σ = ±1, is equal to the
expected value of the spin at a given time, q(t) = ⟨σ(t)⟩. The new function is thus
defined by the new master equation

d

dt
q(t) = −1

τ
q(t) (4.20)
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which we can easily solve to yield

q(t) = q0e
−t/τ , (4.21)

where q0 is the value at the initial time, q0 = q(0).

Since our system has only one spin, the magnetization is directly given by its
instantaneous value, m(t) = σ(t), and the autocorrelation function is

⟨m(t)m(0)⟩ =
∑
σ

∑
σ′

σpσ(t)σ
′pσ′(0), (4.22)

with the summations over all possible combinations of {σ, σ′} = ±1. From the defi-
nition of q(t), Eq. (4.19), and its solution, Eq. (4.21), we can write the probabilities
of being in a given state as

p±(t) =
1± q0e

−t/τ

2
. (4.23)

Finally, by introducing Eq. (4.23) into Eq. (4.22) we find the autocorrelation function
to be

⟨m(t)m(0)⟩ = q20e
−t/τ . (4.24)

Comparing the autocorrelation functions found for an arbitrary system, Eq. (4.16),
and for a single spin system, Eq.4.24, it makes sense to define the autocorrelation
times of each eigenmode as

τi =
−1

log λi
, (4.25)

and, by introducing them into Eq.4.16, the final autocorrelation reads

χ(t) =
∑
i

bie
−t/τi . (4.26)

The system therefore has an autocorrelation time for each of the possible states. At
long timescales, nevertheless, only the exponential with the largest value of τi will
dominate, and so we normally define the autocorrelation time of the system as that
corresponding to the smallest eigenvalue, which we denote, for simplicity, by τ :

χ(t) ∝ e
−t/τ . (4.27)

It is sometimes also referred to as memory time or decorrelation time. It is therefore
usual to consider two states of the system to be statistically independent from each
other when they are obtained after letting the system evolve for, at least, a time ∆t =

2τ . To avoid correlations when obtaining dynamical measures from a Monte Carlo
simulation it is then important to make sure that they are sampled at a frequency
not greater than the imposed by this ∆t. Consequently, the number of independent
measures nind that can be drawn from a simulation with a total of N time steps is
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on the order of
nind =

N

2τ
. (4.28)

Measurement of τ in Monte Carlo simulations

While independent measures of any observable of the system can only be obtained
between about two full correlation times, in order to compute τ it is obviously manda-
tory to measure the magnetization at a higher frequency, since it is a dynamical prop-
erty of shorter timescales. If the magnetization was measured only with a temporal
spacing of ∆ = 2τ or higher, we would see no correlation between them and thus
we would only be able to state that the correlation time is lower than the maximum
precision achievable by the measurements. A good estimation of the correlation time
often requires to measure the magnetization at every time step.

In order to compute χ(t), we first expand Eq. (4.7) to

χ(t) =

∫
dt′
[
m(t′)m(t′ + t)− ⟨m⟩2

]
. (4.29)

Its discretized version reads

χn =
1

N − n

N−n∑
n′=0

mn′mn+n′ − 1

(N − n)
2

N−n∑
n′=0

mn

N−n∑
n′=0

mn+n′ , (4.30)

where, in order to obtain a good estimation of the autocorrelation time, the N values
of the magnetization are obtained from a simulation spanning a time frame much
bigger than the expected value for τ , T = N∆t ≫ τ . The need for this can be
intuitively seen if we pretend to obtain τ by later fitting χ(t) with an exponential
decay: longer simulations will yield smaller fluctuations on the beginning of the
temporal range, over which we perform the fit. It can also be analytically seen
to be mandatory by simply noting that the multiplicative factors for the sums in
Eq. (4.30) diverge if n → N , which will yield huge errors even if small (though
intrinsically present) fluctuations appear in the magnetization.

Note that the computational cost of Eq.4.30 goes as n2. In our specific case,
we demand our results to be very accurate and statistically relevant, so both large
values of N and a lot of repetitions are required. Therefore, the computation of the
autocorrelation function can be quite challenging. In order to avoid this scaling, it
is useful to consider the Fourier transform of χ(t). In the frequency domain, the
convolution of µ(t) = m(t)− ⟨m⟩ with itself in Eq. (4.29) is easily computed as the
multiplication of the transformed functions µ̃(ω) = F{µ(t)}, and therefore we can
obtain the autocorrelation by inverse-transforming its product

χ(t) = F−1{∥µ̃(ω)∥2}, (4.31)

which can be done with a scaling of O(n log n) by means of a fast Fourier transform
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(FFT) algorithm [120]. We can finally obtain the characteristic correlation time of
the system by linearly fitting logχ(t).

4.3.2 Dependence on the temperature: autocorrelation and
scale invariance

The correlation time can be derived, as has been discussed in previous sections, solely
from the transition probabilities between the different states of the system. It there-
fore constitutes an intrinsic physical property of the system. Clearly, nevertheless,
the transition probabilities may be different at different temperatures. For instance,
one may expect them all to be low, in general, when the system is cooled down to a
very low temperature so that the spins basically appear to be in a frozen state. On
the other hand, the transition probabilities may be close to one when the temperature
is high enough such that the thermal fluctuations dominate over the Hamiltonian’s
couplings, describing an erratic Markov Chain that produces completely random con-
figurations when T → ∞. The system’s dynamics thus depend on its temperature,
and so is seen to do the correlation time.

Another parameter quite related to the correlation time τ is the correlation length
ξ. It measures the length scale at which spins are seen to be, on average, correlated
between each other. In analogy to the discussion of the previous section, the two-
point connected spatial correlation function can be seen to behave exponentially as
well [121]

Gc = ⟨sisj⟩ − ⟨s2⟩ ∝ e
−∆ij/ξ (4.32)

with ∆ij the euclidean distance between spins located at sites i and j. Note that Gc

effectively measures the fluctuations of the magnetization with respect to its mean
value or, in plain words, how far away an island of spins aligned to a given direction
is expected to extend for, within a sea of spins aligned to the opposite direction.

Let us now first grasp some intuition on how does the correlation length behave
with temperature. At low temperatures most of the spins will be aligned, except
for some isolated ones or some small islands of them. On the other hand, at high
temperatures the thermal fluctuations make spins behave in an isolated manner as
well, with interactions going no further than, again, some small islands. In both
limits the characteristic size of the islands, described by the correlation length, is
therefore small. Between these two extreme cases, namely at the system’s critical
temperature Tc, the system undergoes a phase transition and hence understanding
the physical intuition requires a bit more work.

Zooming out

If we did a simulation at a temperature near the critical one, we would see that the
size of the correlated islands increases. We would actually be able to distinguish
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islands of all possible sizes, Fig.4.4.

Let’s think about what happens if we change the scale of observation of these three
scenarios with a pixel analogy [122]. When we zoom out, the scale of observation
gets bigger and the resolution of the details is consequently worse. Effectively, if
we have a box of 2 pixels per side and we increase our length scale by a factor
of two, the old 4-pixel box will become our new unit of pixel. If the pixels can
only take binary values, we will then assign to the new bigger one the value of the
majority of the old, small ones. In case that no value predominates over the other
within the old box, a random value drawn from an uniform distribution is assigned
to the new big pixel, thus ensuring no bias towards any concrete value is introduced.
Statistically, then, this decimation operation (in the language of renormalization
theory) of the pixels that our photographic cameras and our very own eyes perform
on a daily basis when changing the scale of observation of a given picture, effectively
removes the inhomogeneities. Say, for example, that we are looking at an archipelago
from a plane. As we increase our altitude, our resolution of the small details (the
islands) among the homogeneity (the sea) will decrease until the point at which we
are no longer able to see them. Coming back to the spins in our system, in the
two extreme cases (both above and below the critical temperature), zooming out
will have the effect of decreasing the size (and thus the number, by eliminating the
smallest ones) of islands of correlated spins. Since, as discussed earlier, we expect
the system to have smaller and smaller correlation lengths as we increase or decrease
the temperature further away from the critical temperature, the system at the new
amplified scale is physically equivalent to a system at a higher or lower temperature,
Fig. 4.3. Effectively, the change in scale is modifying the physics of the system.

On the other hand we have experimentally seen that (see Fig.4.4), at the imme-
diate vicinity of the critical temperature, the islands of aligned spins can be of all
possible sizes: this is the main point. By zooming out we will then loose the resolu-
tion of the smaller islands but, due to its fractal geometry, we will still keep seeing
islands of all possible sizes. In contraposition to the two extreme cases, then, the
physics at around Tc are not altered by the change of scale operation. This streaking
feature is known as scale invariance.

Recall that, as discussed above, noticing the change in scale is physically equi-
valent to moving away from the critical temperature. Intuitively the change in tem-
perature felt by the system should be greater when the scale invariance assumption
starts to fail, i. e. when we have zoomed out to a scale at which the system can no
longer be considered infinite and thus increasing the scale further effectively starts
eliminating islands of aligned spins. It then follows that the bigger the system, the
more different scales the islands can have and thus the more times we will be able
to zoom out without noticing it. Thus for small systems, which should suffer this
kind of finite size effects earlier (they can be zoomed out a smaller number of times
before the change in scale manifests itself as a change in temperature), the change in
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Figure 4.3: Effects of the change in scale at temperatures away from the
critical point. Since the correlation length ξ is finite at temperatures away from the
critical point, a change in scale is seen to effectively reduce the size of the clusters of
correlated spins. This is equivalent to consider a system further away from criticality.
Top (bottom) panels represent a system at a temperature below (above) the critical
one. From left to right, each panel represents a zooming out by a factor of ×0.5 from
the previous one, thus physically equivalent to even lower (higher) temperatures.
Each colour represents spins pointing to one direction.

temperature should be more dramatic, and therefore the order parameter will have a
smoother transition around the critical point. Only in the thermodynamic limit will
then the system present a completely sharp transition at Tc, as illustrated in Fig.2.3.
Scale invariance is a very characteristic and defining property of phase transitions.

Conclusions: divergence of τ and ξ

By the previous discussion, if at the critical temperature we have autocorrelation
lengths happening at all possible scales, we conclude that it must diverge.

lim
T→Tc

ξ =∞. (4.33)
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Figure 4.4: Scale invariance at the critical temperature. A configuration
thermalized at the critical temperature manifests its scale invariance by presenting
clusters of aligned spins of all possible sizes, and thus ξ diverges. By zooming out and
decimating the image, the system exhibits exactly the same behavior, and therefore
the physics are unaltered. From left to right, each panel represents a zooming out
by a factor of ×0.5 from the previous one. Each colour represents spins pointing to
one direction.

At temperatures around the critical one, the domains of high magnetization in one
direction are gradually destroyed by the effect of thermodynamic fluctuations, and
converted into zones of high magnetization in the opposite direction: islands of all
possible sizes are being created and destroyed at all times. This behaviour is illus-
trated in fig.4.5. Analogously, so does diverge the correlation time τ .

4.3.3 Universality and critical exponents

Now that the intuition behind the scale invariance of phase transitions has been
introduced, and that the divergence of the characteristic time and length has been
deduced, we are ready to discuss exactly how do the characteristic time and length
diverge when approaching the critical point.

Let us define a scale invariant function as that for which a change in the scale of
the argument x 7→ λx only affects its output in a change in scale (that may depend
on λ) too

f(λx) = µ(λ)f(x), (4.34)

such that, by a simple linear rescaling of the axes of the obtained function, we
can recover the initial one. Effectively, this means that the physics of the system
described by f(x) remain unaltered under a change in scale. The objective is then
to obtain a formal definition of a scale-invariant function by solving Eq. (4.34) for
f(x).
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Figure 4.5: 2d Ising model dynamics. For temperatures below the critical tem-
perature, Tc, the system shows ferromagnetic behavior; for temperatures larger than
Tc, the system shows ferromagnetic behavior. At Tc, the system shows a phase tran-
sition and the correlation length and time diverge.

By differentiating both sides of Eq. (4.34) we get

κf(x) =
df(λx)

dx
x, (4.35)

with κ = dµ
dλ a constant. Rearranging terms we find

κ
dx

x
=

df(λx)

f(x)
(4.36)

which, by substituting f(λx) as per the definition of scale invariance, Eq. (4.34), can
be easily integrated to yield

f(x) = axb, (4.37)

with a = e
C/µ , b = κ

µ and C the integration constant. Under the definition given by
Eq. (4.34), then, all scale invariant functions must be of the form given by Eq. (4.37),
i.e. power laws. Both the correlation length and time will therefore diverge as power
laws when approaching the critical temperature.

Let us define the reduced temperature

t =
T − Tc

Tc
, (4.38)

which effectively measures the distance in temperature from the critical point. Given
the scale invariance discussed above, then, the correlation length near the critical
temperature must diverge as

ξ ∝ |t|−ν , (4.39)

where we have used the absolute value of the reduced temperature in order for the
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expression to be valid both at below and above Tc. Note, however, that there is no
restriction in the proportionality constant, which can in general be different at both
sides [79]. Analogously, for the correlation time we have

τ ∝ |t|−νz. (4.40)

We have conveniently defined the exponent as a multiplication between ν (the very
same exponent appearing in Eq. (4.39)) and a second one, z. This does not pose any
restriction on the whole exponent defining the divergence of τ but, as we shall see,
will prove helpful.

Many other properties (specific heat, for example) diverge with power laws near
the phase transition, each with its corresponding exponent. These exponents are
usually referred to as critical exponents.

Critical slowing down: the dynamic critical exponent

By combining Eq. (4.39) and Eq. (4.40) we can write a simple relation between the
two coefficients:

τ ∝ ξz, (4.41)

where we are left with a single exponent z thanks to the conveniently defined critical
exponent of the correlation time. Eq. (4.41) gives us a measure of how rapidly does
the correlation time grow as the correlation length diverges near the critical point.
This property is usually referred to as critical slowing down, and is characterized
by the exponent z, which is known as the dynamic critical exponent. A higher
value of z will indicate that the slowing down of the dynamics of the system when
approaching the critical temperature will be more dramatic, and thus that, in order
to gain statistically relevant results and in virtue of Eq. (4.28), the simulations at
that point will need to run for much longer.

In computer simulations we can nevertheless not work with infinite lattices, and
thus this divergence is translated into the largest wavelength approaching the linear
size of the system, λmax ≈ L. In a cubic lattice of side length L, for instance, we
find

lim
T→Tc

ξ = L. (4.42)

Note that this happens even when using periodic boundary conditions. The critical
slowing down effect is thus described by

τFSS ∝ Lz, (4.43)

where the subscript FFS stands for finite size scaling.
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Universality

Note that, so far, we have not restricted the discussion to any specific model. Ac-
tually, one of the most striking properties of phase transitions is the fact that they
appear to behave in an extremely similar way for systems that have dramatically
different dynamics at finite scales. Due to the scale invariance introduced above,
their behaviour near the critical point becomes increasingly similar among them as
the limit scale is approached. Models that share a scale invariant limit and thus
have the same asymptotic behaviour are then said to form a universality class. This
asymptotic behaviour is manifested through the aforementioned critical exponents.
All models within the same universality class share the same set of critical expo-
nents and they are, for example, exactly the same for two dimensional spin systems
of square and triangular lattices, among others. These do not depend either on the
strengths of the couplings J . On the contrary, they can depend on the dimensionality
of the system.

Universality, as well as the exact power-law scaling functions discussed in previous
sections, are properties that can be thoroughly derived by means of renormalization
theory. The exact values for the critical exponents can also be tackled theoretically
by different techniques (that may yield slightly different values and among which
there is not a current consensus within the literature, see below). This, nevertheless,
already lays outside the scope of the present thesis. The interested reader is referred
to [121, 122].

4.3.4 Values of the dynamic critical exponent in the literature

Over the years, many attempts to give an accurate value of the dynamic critical
exponent z have been carried on with theoretical [123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133], experimental [134, 135, 136, 137, 138], and computational [139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162] approaches. With the aim of illustrating how vastly the
obtained results vary, we present a long, yet non-exhaustive collection of values found
in the literature, for both two- and three- dimensional lattices. Some of the references
presented here give various values corresponding to different types of lattices, in an
attempt to show the postulated universality of z across models pertaining to the same
universality class. We therefore restrict to the so called A class, usually referred to
as time-dependent Ginzburg-Landau models [163, 164]. It is the class to which,
among many others, the two-dimensional, nearest-neighbour Ising model pertains.
We plot in Fig. 4.6 the obtained exponents as a function of the year of its calculation.
Surprisingly, even with the expected improvement of the used methods, there is no
clear tendency, neither in two-, three-dimension, theoretical or MC calculations, and
even the various results obtained in recent years show a wide spreading. The data
is gathered in Tables B.1 and B.2 from Appendix B. For completeness, the value
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Figure 4.6: Values of the dynamic critical exponent z in the literature.
Values of z obtained by theoretical (blue), experimental (green) and Monte Carlo
(orange) approaches. Triangles and squares label two- and three-dimensional lattices,
respectively. The red diamond labels the value obtained in the following sections of
the present thesis.

obtained in the following sections of the present work is shown as well.
Let us now take a closer look at the two most numerous families of results, namely

those obtained via theoretical studies and via Monte Carlo simulations. The later is
also the one we are most interested in as is the one we follow in the present thesis.
We plot in Fig. 4.7 the histograms grouping the theoretical predictions and the MC
ones. While the values obtained by means of theoretical methods do not clearly show
any apparent distribution, the ones obtained with MC calculations can be fitted to a
Gaussian distribution with mean ⟨zMC⟩ = 2.1664, even if a clear convergence along
the years is not observed either.

Given the huge variability of the results found across the literature (specially
among theoretical predictions), it is clear that there is not a widely accepted value
for z, and we therefore do not have a correct value to compare our results against.
In the following sections we assess this calculations with Monte Carlo simulations.

4.4 Results

For the calculation of the critical coefficient, we simulate the two dimensional spin
model with nearest-neighbour interactions described by Hamiltonian Eq. (2.3) for
a time of 1300τ and calculate its magnetization after each MC step. After the
discussion of previous sections, we approximate τ by Lzapprox with zapprox = 2. Note
that ξ, the expected theoretical value of the correlation length, equals L, since τ ∝ ξz

and τFSS(L) ∝ Lz. From these results, the different values of the correlation time



4.4. RESULTS 69

1.95 2.00 2.05 2.10 2.15 2.20 2.25
z

0

1

2

3

4

5

6

co
un

ts

theory
MC

Figure 4.7: Histograms of the dynamic critical exponent z in the literature.
While the values obtained with theoretical approaches (blue) do not clearly show any
apparent distribution, the results of Monte Carlo simulations (orange) do resemble
a Gaussian distribution.

τFSS(L) have been obtained by adjusting the correlation to a decreasing exponential.
Recall that, according to Eq. (4.26), the time-displaced autocorrelation function
can present high non-linearities due to the many correlation times still active at
short timescales. Thus in order to avoid, on the one hand, detecting these initial
undesired correlation times τi, and on the other hand the fluctuations in the tail of
the exponential, we adjust the obtained results within a time interval t ∈ (0.3τFSS,
1.1τFSS), following Ref. [33]. We stress that such a choice is only valid as a result of
performing very long simulations, spanning a huge amount of correlation times.

Finally, in order to measure the dynamic critical exponent describing the critical
slowing down of the algorithm, we compute the autocorrelation time for various
lattice sizes and then fit the obtained values, according to Eq.(4.43), with a power
law. With the aim of approximating the real value of z, it is desirable for τFSS to be
a good estimation of τ , and thus to simulate as big systems as possible.

4.4.1 Consumption of random numbers

Before attempting the actual calculations, let us first consider the amount of random
numbers consumed by such process.

Let α be the fraction of spins that, at a given inverse temperature β, yield a
positive change in energy when proposed as a candidate to be flipped, ∆E > 0.
Following the Metropolis algorithm, they subsequently request a random number in
order to determine whether to be flipped or not, with a probability p = e−β∆E .
Consider a thermalization sweep consisting on proposing and accepting/rejecting L2

spin flips, with L the lattice size. If the spins to be updated are selected at random,
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the total amount of random numbers consumed in such process is

N (seq)
rn = L2(1 + α). (4.44)

In a parallel implementation in which the checkerboard scheme is used, all spins are
proposed as candidates to be flipped and thus no random numbers are used to select
them. On the other hand, in order to optimize the performance and if there is a big
enough availability of computing resources, this implementation requests a random
number per spin prior to knowing whether it will be used or not in the Metropolis
algorithm. Those numbers corresponding to spins whose update proposal yields
∆E < 0 (and thus are directly flipped, without the need of any random number) are
discarded. The randomness consumption of such a parallel-scheme sweep is then

Npar
rn = L2, (4.45)

which equals the lowest possible sequential value. By avoiding the discard of such
L2 (1− α) unused random numbers an optimal consumption of

Nopt
rn = αL2 (4.46)

would be achieved.

As discussed in previous sections, the simulations are run for a total tome of
1300τFSS and, in order to gain statistically relevant results, each computation is
repeated Nit times. In Table 4.1 an estimation of the total random bits consumed
for each lattice size is given.

L MC updates/
simulation Nit

Random bits/
update

Total bits
required (GB)

16 533192 100 512 3.2
24 1285292 100 1152 17.2
32 2399489 100 2048 57.2
48 5784114 100 4608 310.3
64 10798263 100 8192 1029.8
96 26029866 100 18432 5585.4
128 48594709 100 32768 18537.4
256 218687559 100 131072 333690.7
512 984145175 10 524288 600674.5

TOTAL 959905.8

Table 4.1: Estimated randomness consumption.

Given the huge amounts of random numbers consumed to its computation, the
value of the critical dynamic exponent obtained via Monte Carlo simulations is known
to be sensitive to the long-term correlations present within the used pseudo-random
streams.
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Modulus Multiplier Increment
PRNG0 232 − 1 16807 0
PRNG1 225 − 39 12836191 0
PRNG2 223 − 15 422527 0
PRNG3 217 − 1 43165 0

Table 4.2: Parameters used in the Linear Congruential Generators used.

4.4.2 Detecting correlations in PRNG

As stated above, the dynamic exponent z is known to be sensitive to the correlations
of the random numbers employed in its computation. Therefore, in order to study
the effects that such correlations have in our results, we make use of different PRNGs
to simulate our system.

Fundamental tests with PRNGs

Before introducing the calculation with the QRNGs, we address the computation of
the dynamic exponent with four different Linear Congruential Generators (LCGs),
all of them presumably showing low correlations [103]. The modulus, parameter and
increment used for each LCG are resumed in Table 4.2.

With each PRNG and for each lattice size (ranging from L = 4 to L = 512), we
compute the dynamic exponent z with a Monte Carlo simulation. For each point in
the simulation, we run a total number of Nit ≥ 500 iterations in order to extract
statistically relevant results (the number of iterations is restricted to Nit ∼ 10 for
L = 512 lattices, due to long computation times). We fit the obtained curves with
exponential laws in order to obtain τ for different lattice sizes, and then plot them in
a logarithmic scale as a function of the lattice size to obtain the dynamic exponent z.
We then compare them with the theoretical estimate of z obtained by studying the
stochastic matrices governing the physics of our system in the classical Ref. [157], that
is, z = 2.1667± 0.0005, since it is also the most similar one to the mean value found
with MC approaches in the literature, as seen in previous sections. We summarize
our results in Table 4.3, in which we show the obtained dynamic exponents z, as well
as their respective errors relative to the theoretical estimate, ϵr (we take as reference
zref = 2.1667 and approximate ϵr in the fourth decimal).

z ϵr
PRNG0 2.1087 0.0268
PRNG1 2.1159 0.0234
PRNG2 2.1047 0.0286
PRNG3 2.1162 0.0233

Table 4.3: Dynamic exponents z and relative errors with respect to theoretical esti-
mate ϵr, obtained for each PRNG.



72 CHAPTER 4. CORRELATED RN SEQUENCES IN MC SIMULATIONS

All tested PRNG’s yield a reasonable approximation of the dynamic exponent,
as can be seen in Table 4.3, but they differ in their predicted value in the second
significant decimal.

Importantly, the statistical variance of the results poses a considerable caveat
that must be taken into account when interpreting them. For any given PRNG,
once the amount of random numbers consumed by the algorithm exceeds its period
of repetition (modulus in Table 4.2), the sequence repeats itself, introducing a large
amount of correlation at large time scales. We observe that these extra correlations
affect the obtained dynamic exponent by exponentially enlarging the variance be-
tween iterations of the same simulation while keeping its mean value constant. To
quantify these correlations, we define the normalized variance as σ2/µ2, where σ is
the variance of the results and µ their mean value. For this case, the normalized
variance stays more or less constant (around a value of σ2

µ2 ≈ 0.01), until the lattice
reaches a size large enough so that its simulation requires more random numbers
than the generator’s period of repetition. Beyond this point, the variance starts to
increase exponentially with lattice size, as shown in Fig. 4.8. Furthermore, as we
keep increasing L far beyond the variance’s explosion point, the obtained magneti-
zation autocorrelation function χ (t) does no longer resemble an exponential decay,
but instead starts showing a noisy behavior. Therefore one cannot strictly speak of,
nor extract, a reliable value for the dynamic exponent.

Effects of reseeding

The repetition of sequences in the pseudo random streams has dramatic effects in
the obtained results. As discussed previously, nevertheless, the reseeding of a PRNG
yields theoretically infinite periods of repetition, so this behaviour could in principle
be avoided. We now explore this option by reseeding PRNG3 of the previous section.
Concretely, in our reseeding we substitute the entire state of the LCG by a true
random number obtained from the computer’s physical entropy. We reseed it every
κ (m− 1) pseudo-random numbers, where m is the modulus parameter of the LCG,
and we first consider a low frequency reseeding with κ = {1, 2, 4, 8}. Note that, in
this situation, we still have repeating sequences for all values of κ except for the first
one, κ = 1, for which we barely avoid it by exploiting the full period of repetition of
the LCG. As shown in Fig. 4.9, for all cases the variance explosion observed before
is avoided. In this case, the normalized variance does not grow monotonically, but
instead reaches a plateau whose value appears to be proportional to the number of
repetitions introduced in the pseudo-random sequences before the reseeding is carried
out (i.e., the amount of extra correlations introduced in our algorithm, compared to
the infinite-period PRNG).

After these conclusions and in light of the fact that the case κ = 1, (i.e. an
example of an infinite-period pseudo-random number generator), exhibits the lowest
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Figure 4.8: Reduced variance of z. The statistical variance of the dynamic expo-
nent z normalized to its mean value is severely degraded when sequences of PRNG
are repeated in its computations. Results obtained from Nit ≥ 100 iterations for
all points except for L = 512, for which Nit = 30, as a function of lattice size, for
different PRNG’s.
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Figure 4.9: Normalized variance with low-frequency reseeding of PRNG3
as a function of lattice size. Low-frequency physical reseeding of the generator
every (m− 1), 2 (m− 1), 4 (m− 1), 8 (m− 1) random numbers is able to avoid the
variance explosion. PRNG3 without reseeding is shown for comparison.

normalized variance of all presented cases, it then feels somewhat natural to ask
oneself the question of how would a high-frequency reseeding with κ < 1 affect the
obtained results. This scenario minimizes the correlations appearing in the pseudo-
random sequences, approaching a true RNG as κ gets smaller. By doing so (and
thus paying the high computational cost of such a reseeding), we observe that the
variance can still be pushed further down, see Fig. 4.10. This fact allows us to
conclude that the use of PRNG’s, even those showing low correlations and having a
theoretically infinite period, can indeed affect the quality of our results in terms of
variance for the problem at hand. Moreover, as we show here, once κ is fixed, the
variance of the obtained z converges to a plateau and barely changes with L. Hence,
performing longer simulations will not improve the approximation. We tested the
PRNGs using the NIST statistical test suite and observed that, while those having
repeated sequences do not pass it, we are able to decrease the number of failed
tests within the suite until eventually making it pass all of them for sufficiently high
reseeding frequencies. PRNG0 already passed the tests without reseeding, while
PRNG1 and PRNG2 only needed reseeding with κ = 1. On the other hand, PRNG3
needed κ = 1

16 as it was usually failing, out of the more than 200 different tests
within the suite, only one of them after being reseeded with κ = 1 (the FFT test).
Thus, given that all of them pass the NIST tests and we can still see improvement
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Figure 4.10: Normalized variance with high-frequency reseeding of PRNG3
as a function of lattice size. High-frequency physical reseeding of the generator
every 2 (m− 1), (m− 1), (m−1)

2 and (m−1)
4 random numbers improves the variance

obtained by lower frequency reseedings. Beyond κ = (m−1)
4 the error bars do not

allow us to distinguish the results for higher reseeding frequencies.

when further reducing κ, we can conclude that this protocol is able to distinguish
between two pseudo-random sequences containing different amounts of randomness
amplification, this is, that have used more or less extensively the PRNG’s algorithm
(so that their next outcome can be predicted with a higher probability), and to
therefore identify if one is closer to a true RNG than the other one.

Interestingly, the values that the obtained reduced variances reach at the plateaus
show a linear dependence on the reseeding period κ, Fig. 4.11. By means of a
linear fitting, this behaviour can be extrapolated to obtain the reduced variance
that a TRNG would yield, this is, for the case of κ = 0. The obtained value is
σ2

µ2 (κ = 0) ≈ 0.004, which coincides with the initial points of the curves of Figs. 4.9
and 4.10, corresponding to simulations of very small latices for which correlations
between pseudo random numbers are still non-detectable.

Besides the effect on the variance of the estimation of the dynamic exponent, the
reseeding of the PRNG shows an effect on its mean value as well, yielding a more
accurate result as higher reseeding frequencies are considered, see Table 4.4. We
note that, for every case with reseeding, and for every frequency κ implemented, the
relative error to the theoretical value is reduced to about half the one obtained with
the different PRNG’s used in Table 4.3, which were not reseeded. Nevertheless, we
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Figure 4.11: Fit of the reduced variance with κ. Reduced variance for different
values of the reseeding period κ of PRNG3 (dots) and linear fit (line).

cannot reduce this error further. We emphasize that reducing κ reduces the variance,
bringing the result closer to those of a TRNG, but at a larger computational cost for
smaller and smaller κ. The results here point out that in the limit of very small κ,
one should obtain results close to those obtained with a TRNG. Nonetheless, there
is no practical way of testing this due to the large computational cost.

z ϵr
κ = 2 2.1815 0.0068
κ = 1 2.1477 0.0088
κ = 1/2 2.1482 0.0085
κ = 1/4 2.1441 0.0104

Table 4.4: Dynamic exponents z and relative errors with respect to theoretical esti-
mate ϵr, for different reseeding frequencies of PRNG3.

4.4.3 Computing z with a QRNG

Finally, we address the computation of the dynamic critical exponent with Monte
Carlo simulations employing streams of completely uncorrelated numbers, as ob-
tained from QRNGs.

As in previous sections, we performed simulations for different lattice sizes. In
Fig. 4.12 we show the time-delayed correlation of the order parameter (magnetiza-
tion), χ(t), as a function of time. We see the expected exponential decay described
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by Eq. (4.27). By fitting the previous equation, we extract the average value of
the exponent τ for each L. We performed 100 simulations for L up to 256 and 15
simulations for L = 512 due to the large computational cost in this last case (see
discussion below). It is very apparent from last panel in Fig. 4.12 that the results for
L = 512 are more noisy that those obtained for smaller lattice sizes, probably due to
the smaller number of simulations.

Figure 4.12: Determination of the relaxation time as a function of lattice
size. Inset τ values are the decay times associated to the orange curves, which corre-
spond to the averages obtained by the fitting of the multiple repetitions simulated at
each side length. The individual simulations (purple), as well as the variance interval
for all of them (cyan) are also shown in the graphs.

In Fig. 4.13 we represent the average correlation time τ(L) obtained from these
results. Performing a linear fitting of the obtained curve, we find a value of the critical
exponent z = 2.165± 0.039. We emphasize that, from here, there is a clear strategy
to improve this value: performing multiple simulations for bigger lattices would
add more points to the fit, resulting in a better approximation of this coefficient.
However, unlike the case of pseudo-generators, obtaining correlation times for larger
cell sizes is limited by the vast need for random numbers required by the simulation.
Note that, for each step of the simulation, N ∝ L2 random numbers are required.
As the simulations are run for 1300τk = 1300Lz steps, we require on the order



78 CHAPTER 4. CORRELATED RN SEQUENCES IN MC SIMULATIONS

of 1300Lz+2 random numbers. Assuming that each of these numbers has 32-bit
precision, we face a massive consumption of about 41600 ·Lz+2 randomly-distributed
bits. For small cell sizes, these requirements are innocuous; however, the ∼ L4

exponential growth in demand for random numbers is prohibitive. In the case of
Quside’s QRNG apparatus used in our simulations, which reaches quantum random
number generation rates of 400 Mbps, we spend around 12 hours for each simulation
of L = 256. Doubling the size of the network (L =512) requires twenty days for
each simulation; by doubling it again (L = 1024), we estimate a simulation time
of almost six months per simulation. To avoid this computational bottleneck, and
speeding-up the simulation of the L = 512 case, we used an amplification of the
QRNG’s random numbers. This amplification consists on the implementation of a
PRNG on the FPGA, which is reseeded as fast as the QRNG provides new seeds.
This decision introduces some correlations that are not present for smaller lattices.
This fact, along the very low number of repetitions, could potentially be the reason
of the more noisy behaviour observed in the last panel of Fig.4.12, as discussed in the
PRNG section. Nevertheless, due to the small size of the statistical sample at hand,
we cannot conclude which one of them is the predominant reason without additional
simulations.
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Figure 4.13: Critical exponent calculation with a Quantum Random Num-
bers source. Orange: estimated relaxation times (in log10 scale) as a function of
the lattice size (in log2 scale); blue, the linear fitting log2(τ) = z · log2(L) + b associ-
ated. The slope of the fitting z = 2.165± 0.039 corresponds to the critical exponent,
in agreement with theoretical results.
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4.4.4 Offset in the linear fit of the dynamic exponent

As discussed in previous sections, the relaxation time of the system is expected to
have a power-law relation with the lattice size L. In order to obtain the dynamic
exponent z, one usually takes logarithms to both sides of Eq. (4.43) by naively
reducing it to an equality τ = Lz and then makes a linear fit log(τ) = zlog(L). As
a final remark, we finish this chapter by strictly considering the proportional sign
in Eq. (4.43) by stating that τ = τ0L

z, therefore allowing the linear fit to have an
offset, log(τ) = zlog(L) + log(τ0).

We summarize our findings in Table 4.5, in which we compare the offset obtained
by the fitting of the QRNG data against those obtained by the PRNG data. There
are two main things worth noting about the obtained results. First, we observe
that all of them yield a non-zero, negative offset. And, secondly, we note that those
PRNG using reseeding (thus having an infinite period, and therefore being closer to
a TRNG) yield values closer to the one obtained by the QRNG.

log(τ0)
QRNG −0.362

PRNG3 k = 1
2 −0.1701

PRNG3 k = 2 −0.2454
PRNG2 −0.0906
PRNG0 −0.1007
PRNG1 −0.1183

Table 4.5: Results obtained for log(τ0) by using different RNG. These values corre-
spond to the fittings yielding the dynamic exponents shown in previous sections.

4.4.5 Comparison with other standard randomness tests

This chapter finally concludes by taking a look at how the used PRNGs and QRNG
perform under the National Institute of Standard and Technology (NIST) Statistical
Test Suite for Random and Pseudo Random Number Generators NIST SP800-22
[102].

In Fig. 4.14 we show the violin plots of the NIST tests’ results obtained with all
the considered PRNGs with high frequency reseeding and the QRNG, to illustrate
how these are distributed. The ordinate axis labels the percentage of passed tests,
while a wider figure indicates that a bigger proportion of tests obtain results within
that ordinate value when using that particular generator. We observe that PRNG0
and PRNG3 obtain clearly worse results than the other ones, as their violin plots’
tails extend all the way below the expected failure rate α = 0.01. In contrast, PRNG1
and PRNG2 show a distribution that is localized around the expected failure rate.
Moreover, this distribution strikingly resembles that of the QRNG. The bad results
obtained by PRNG3 are easily explained by the fact that, even with a high frequency
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Figure 4.14: Violin plots of the randomness tests passed by all the PRNGs
and the QRNG. While PRNG0 and PRNG3 obtain clearly worse results than the
other ones, PRNG1 and PRNG2 are indistinguishable from the QRNG.

reseeding, its period of repetition is short enough for the NIST tests to catch the inner
correlations. Contrarily, the explanation for the bad results of PRNG0, which has the
longest period of repetition among all of them, is more subtle and can indicate that its
inner correlations are more apparent to the NIST tests than those present in other
generators. While those inner correlations are not seen to affect the computation
of the dynamic exponent as those present in PRNG1, PRNG2 and PRNG3 (see
Fig.4.8), the correlation shown by these first two, which indeed affect the variance
in z, seem to pass unseen under the NIST SP800-22 tests. We thus conclude that
there are certain types of correlations that can be detected with standard methods
but not with the present one, and vice-versa, so that both strategies can be jointly
considered in order to improve the set of randomness tests. Further, it is important
to stress on the fact that the computation of the dynamic exponent is affected by
the correlations present in some generators that are, from the NIST SP800-22 STS
perspective, indistinguishable from a QRNG.

4.5 Conclusions

In this chapter, we have computed the dynamic critical exponent, z, of the two-
dimensional Ising model by means of Monte Carlo simulations. In them, (pseudo-)
random number generators of various qualities have been used, ranging from poor
PRNGs showing lots of correlations and repeating sequences, to high-frequency re-
seeded PRNGs and even a completely and truly random QRNG.

To begin with, an exhaustive review of the literature on the value of z is carried
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on, not showing any convergence to a commonly accepted one. Since its computation
is known to be affected by the quality of the random numbers used in the MC method,
the value obtained with a QRNG given here is expected to be more precise. Further,
this value is seen to closely resemble the mean of the Gaussian-distributed results
obtained with Monte Carlo approaches in the literature.

The ill-behaved PRNGs that output repeating sequences of pseudo-random num-
bers are seen to have a dramatic impact on the computation of z, specifically on
its variance. A high-frequency reseeding version of them, nevertheless, is able to go
around this problem. Furthermore, we have seen that the higher the frequency of the
reseeding (and thus the closer to a true randomness source), the better the results.
An extrapolation of the error in the limit of the highest possible frequency (a TRNG)
is explored and seen to coincide with the error obtained for very small lattices, whose
simulation does not require a high enough amount of random numbers for the corre-
lations to arise and get noticed. This detected error in the variance paves the way to
show the superiority of QRNGs for computing purposes: once QRNGs achieve fast
enough generation throughput and similar tests can be carried on with them, they
might obtain a lower error.

Finally, the comparison of the used PRNGs and the QRNG with the more stan-
dard tests commonly used to detect hidden correlations among pseudo-random se-
quences show that some of the PRNGs are indistinguishable from the QRNG. On
the other hand, some of those performing worst under such standard tests are also
some of the ones obtaining smaller errors in the variance. The new detected error
is therefore seen to be complementary to the standard tests, as none of the two
approaches can clearly, at this point and until further investigation with QRNGs,
unambiguously point out which are the best ones.
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Chapter 5

Defect-driven Population
Annealing

In this chapter, based on the results presented in [37], a quantum-inspired modifi-
cation of Population Annealing is presented. In analogy to the Toric Code, single
bond flips allow for the creation and movement of topological defects within the
lattice and, when these defects collide and are therefore annihilated, the outcome is
equivalent to a non-local move. Further, in two dimensional lattices these non-local
moves are equivalent to cluster updates such as the ones implemented in the Wolff
algorithm.

83
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5.1 Introduction

At the beginning of the second decade of this century, the first analog quantum an-
nealing machines were commercialized by the Canadian company D-Wave Systems
[165, 166]. These were specifically designed to solve NP complete problems with a
discrete solution space and with a spin-glass-like energy landscape, characterized by
a huge number of energy minima. Besides the exponential growth of the Hilbert
space in which the quantum states representing the solutions live, such machines
exploit yet another quantum property that allows them to efficiently navigate the
solution space in search for the ground state of the problem (in which its solution is
encoded): quantum tunneling [167, 168]. Essentially, quantum tunneling is the ca-
pacity of quantum wave functions to pass through a high potential barrier, even when
the classical description prohibits it due to the particle not having a high enough en-
ergy. In the quantum annealing paradigm of solving optimization problems, quantum
tunneling therefore allows the state to escape from local energy minima, and pass
through potential barriers to reach the global ground state without the need of the
thermal excitations used by classical annealing in metallurgy and simulated by the
Metropolis algorithm. Following the discussion of Fig.2.5, the state can be trans-
ferred directly to the deepest well without first having to accept a less energetically
favourable configuration to surmount it, see Fig.5.1.

Figure 5.1: Quantum Annealing exploits quantum tunneling to reach the
global ground state. The question is: is it possible to simulate processes with
similar properties in classical algorithms to avoid the systems getting trapped in
local minima?
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Quantum annealing, nevertheless, is still far from being a plausible solution to
the optimization problems faced today. Even if it has been demonstrated to be
able to effectively solve (relatively) small-scale problems, only classical computation
can nowadays achieve the number of reliable bits needed to tackle problems of an
industrially-relevant size [24]. These facts have led to the design of classical algo-
rithms that draw inspiration of quantum processes in order to improve the capacity
of the simulations of avoiding getting trapped within local minima.

In particular, the usually used thermal-based classical algorithms (Population An-
nealing and Parallel tempering [169, 170], which are in essence equivalently efficient
[51]) for solving spin glass systems sometimes encounter hard disorder instances for
which their capacity of thermalizing the simulated Hamiltonians is severely damaged
[62]. At each temperature step, the system does not reach a proper thermal equilib-
rium and thus the adiabatic assumption over which the annealing process relies to
find the minimum energy state can no longer be applied with enough confidence.

5.2 Population Annealing

Population Annealing [171, 172] is a generalized ensemble extension of SA in which
a family of a total of R0 replicas of the same system are independently simulated
in parallel. PA starts considering all R0 replicas at infinite temperature, at which
equilibration is easy but encountering the global ground state is difficult, and anneals
the population towards a low temperature at which equilibration is difficult but the
probability of finding the ground state is higher. We denote the annealing schedule
as Ξβ = [β0, ..., βNT

], with β the inverse temperature and βi < βi+1 ∀i, where i labels
each resampling and equilibrating step.

Moreover, PA utilizes a resampling step that, taking advantage of the population
of replicas, considerably speeds up the thermalization process. To this end, each
replica is eliminated or replicated according to its ensemble weight, so that the newly
produced population of replicas is kept near statistical equilibrium with respect to
the desired distribution. Specifically in PA, the ensemble distribution targeted by
the resampling step is the Gibbs distribution. Therefore, when resampling from an
inverse temperature β to β′, the statistical normalized weight for each replica is
computed as

τj(β, β
′) =

wj

R−1
β

∑
r wr

= Rβ
e−(β′−β)Ej∑
r e

−(β′−β)Er
, (5.1)

where the index r runs over all replicas within the population, of size Rβ . The
normalization factor is needed to keep the population size at the new temperature β′

close to the previous one, β. Note that the ensemble weight for each replica, w(β, β′),
is proportional to its corresponding energy, and thus lower energy states are more
prompt to be replicated while those far away from the system’s minima will tend to
be eliminated. This process can be somewhat related to the selection part of genetic
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algorithms, in which replicas with lower energy (this is, better fitness if the goal is to
find the ground state of the system) are set to have several offspring, and is known
to enhance the efficiency of the algorithm compared to SA [51]. The resampling step
nevertheless introduces correlations between replicas in the new produced ensemble,
and therefore an equilibration of the population must be performed. Just as in SA,
each replica then undergoes an MCMC method for a number of sweeps Nsweeps.
MCMC methods are know to equilibrate slowly when a system is annealed from one
temperature to the other in the critical region or when dealing with rugged energy
landscapes [79], and thus highly adiabatic processes are usually required.

Essentially, then, PA combines SA’s thermal annealing with a population of in-
dependent replicas of the system under study. Since, for thermally equilibrated and
sufficiently large replicas population, resampling allows to change population tem-
perature in a single step while the population remains approximately equilibrated,
thermal annealing is then significantly sped up by replicas population resampling
procedure done according to the Gibbs distribution.

5.2.1 Resampling protocol

In order to reproduce the desired ensemble distribution at each resampling step, the
expected number of descendants of each replica within the population must be given
by its corresponding statistical weight, Eq. (5.1)

⟨nj⟩ = τj(β, β
′). (5.2)

Several options can be considered to this end [173]. Specifically, instead of a protocol
that keeps the population size fixed to R0, we choose this number of descendants nj

to be computed as

nj =

⌈τj⌉ with probability Pceil = τj − ⌊τj⌋

⌊τj⌋ with probability Pfloor = 1− Pceil.
(5.3)

This choice of probability minimizes the variance of nj and lets the population’s
size vary around a mean value R0 with a fluctuation of

√
R0. This widely used

choice reduces the correlation between replicas in the descendant population [62],
and therefore minimizes the amount of numerical power that must be invested in
MCMC updates in order to decorrelate them.

5.2.2 Free energy estimation

One of the main features of Population Annealing is the fact that it is able to give an
estimate of the free energy of the system at no additional computational cost. To see
it, first note that the ratio between partition functions at two different temperatures,
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β and β′, can be written as

Z(β′)

Z(β)
=

1

Z(β)

∑
γ

e−β′Eγ =

=
1

Z(β)

∑
γ

e−βEγe−(β′−β)Eγ =

= ⟨e−(β′−β)Eγ ⟩β (5.4)

where the index γ runs through all spin configurations. In Population Annealing,
resampling the replica population from β to β′ with the Gibbs distribution produces,
for each replica r, an expected number of descendants given by Eq. (5.1). To this
end, the normalization factor Q(β, β′) must be computed

Q(β, β′) =
1

Rβ

∑
r

e−(β′−β)Er . (5.5)

If the population of replicas is a proper representation of a sufficiently significant
portion of the configuration space, the average in the right hand side of Eq. (5.4) can
then be estimated as a population average over the replicas

⟨e−(β′−β)Eγ ⟩β ≈ Q(β, β′). (5.6)

From the thermodynamic relation between the free energy and the partition function
of a given system we see that

F = −T lnZ = −T ln
Z(β)

Z(β′)
− T lnZ(β′). (5.7)

If the partition function at a given temperature β′ is known, then by introducing
Eq. (5.6) in Eq. (5.7) and rearranging the terms one finds an estimator for the free
energy, F̃ , at temperature β

−βF̃ = − lnZ(β′) + lnQ(β, β′). (5.8)

The partition function, nevertheless, is not an easily accessible function to compute
at any desired temperature. On the other hand, considering an infinite initial temper-
ature (β0 = 0) and thus an equiprobable distribution of configurations, the partition
function in the first term of the right hand side of Eq. (5.8) can be calculated exactly
as Z = Ω−1, with Ω the total number of possible states in the system. In Ising-like
systems with a total number of spins Ns, spins take two different values and thus
Ω = 2Ns . Therefore

−βF̃ = Ns ln 2 + lnQ(β, β′). (5.9)
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Finally, by recursively decreasing temperatures one finds the estimator for the free
energy at any given βk to be

−βkF̃ = Ns ln 2 +

k−1∑
i=0

lnQ(βi, βi+1), (5.10)

assuming that the simulation was started at an infinite temperature.
Let us stress on the fact that Population Annealing already had to compute the

normalization factors Q at each temperature to perform the resampling step, so the
estimation of the free energy comes at no additional cost.

A small numerical consideration for big lattices

Being the total energy of the system extensive, for big enough lattices the computa-
tion of the exponentials appearing in the Boltzmann weights needed for the number
of descendants in the resampling step, Eq. (5.1), becomes numerically challenging
and must be addressed carefully [174]. In order to proceed, we introduce an offset
Eoff that decreases the exponents:

w̃r(β, β
′) = wr(β, β

′)e(β−β′)Eoff = e−(β−β′)(Er−Eoff ), (5.11)

where the energy offset is the same for all replicas and chosen as the minimum energy
among them,

Eoff = min
r

Er, (5.12)

so that all exponents are guaranteed to be negative and therefore numerical overflow
is avoided. Also note that, since all replicas use the same offset, the additional
exponential factor gets canceled out when computing the corresponding expected
number of descendants, and therefore Eq.5.1 remains unchanged. On the other
hand, the free energy estimator must be modified in order to take into account the
introduced offsets:

−βF̃ = Ns ln 2 +

k−1∑
i=0

(βi+1 − βi)E
(i)
off +

k−1∑
i=0

ln Q̃(βi, βi+1). (5.13)

Here, Q̃ now refers to the normalization constant directly given by the population
annealing algorithm, so with the energy offsets already taken into account.

5.2.3 Confidence on the solution found

Due to their heuristic nature, algorithms such as PA or SA may not reach the global,
true ground state of the studied system. On the contrary, the only strategy to
doubtlessly find it consists on exploring the whole configuration space, a task that
becomes intractable for even small lattice sizes due to its exponential growth. On
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the other hand, one has to conform with a measure of the likelihood of the solution
found being the global minimum, or as close as possible to it. Specifically for PA,
this likelihood can be assessed by measuring two different parameters on the final
population of the algorithm’s run, namely the probability of being in the ground
state, and the family entropy.

Probability of being in the ground state

The first considered parameter is the probability of being in the ground state at a
given temperature, g0, which is given by its Boltzmann weight

g0(E0, F ;β) =
2e−βE0

Z(β)
. (5.14)

Here E0 is the ground state energy of the system, Z(β) is the partition function at
inverse temperature β and the factor 2 comes from the up-down degeneracy of the
ground state. Since the partition function is difficult to compute directly but, on
the other hand, as previously discussed, PA yields an accurate estimation of the free
energy, it feels natural to introduce the thermodynamic relation F = −β−1 lnZ into
Eq 5.14 and thus work with the more accessible definition

g0(E0, F ;β) = 2eβ(F−E0), (5.15)

which will prove useful later on. Being N0 a variable counting how many times the
minimum energy state found during the whole process appears among the population
of a total of Rf replicas in the final stage of the simulation, Population Annealing
can easily estimate this probability using a statistical interpretation. Thus, in the
limit of a large population size Rf , we have an independent measure of g0:

g0(N0) =
N0

Rf
. (5.16)

Let us define the ground state and free energies per spin, e0 = E0/N and f = F/N

with N the number of spins, respectively. Since the free energy is always lower than
the internal energy of the system (and, in particular, lower than the ground state
energy), the term f − e0 converges to a negative value that, in the thermodynamic
limit, should be independent of the disorder instance. Equation Eq. (5.15) therefore
yields a probability of being in the ground state that decreases exponentially with
the number of particles of the system. Consequently, in order for the estimation of g0
from the statistical interpretation to be accurate enough, this has to be compensated
by an exponential increase in the number of replicas used in the simulation with the
lattice size.
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Family entropy

The second considered parameter is the effective number of surviving families Neff ,
which measures the number of replicas that have been able to find the lowest energy
state independently. Let us first define a family of replicas as those group of replicas
at a given point in the simulation that descend from the same replica in the initial
population. Note that, at the start of the annealing process, each family is therefore
constituted by one single replica. At each resampling step in PA some families
of replicas will increase or decrease its size, while some might even be completely
eliminated with no chance to appear again on later stages. Let νj be the size of
family j relative to the total population size or, in other words, the fraction of
replicas present in the current population that descend from replica j in the initial
population. The family entropy is hence defined as

Sf = −
∑
j

νj log νj (5.17)

with the index j running over all families, and the effective number of surviving
families can be computed from it as

Neff = exp [Sf ]. (5.18)

Family entropy is a measure of the equilibration or thermalization of the sample [62].

From Eq. (5.1) follows that reducing the temperature differences ∆β = β′−β by
increasing the number of temperature steps in the annealing schedule, implies a lower
dependency between the energy of a given replica and the number of descendants
that it will have in the resampling step. In the limit of very small steps, ∆β → 0, this
expected number of descendants will actually approach 1 and therefore the family
entropy at the end of the annealing process will be maximum, as νj = 1

R∀j and thus
Neff = R. This is of course in agreement with the intuition that, if we take smaller
temperature steps, then it is easier to equilibrate the replicas given that the previous
population was already in equilibrium. Since the initial population is simulated at
an infinite temperature, β = 0, and is therefore guaranteed to be in equilibrium if
the states are initialized randomly, an induction argument suggests that so will be
the final population in such limit. Furthermore, in accordance with the adiabatic
theorem, the whole annealing process is slower and therefore the probability of finding
the ground state is higher, eventually reaching 1 for small enough ∆β. A better
thermalization is therefore exhibited by a higher family entropy.

Concluding, if the number of replicas used is high enough and the population is
properly thermalized, the chances of finding the global ground state of the system in-
crease. Therefore our confidence on achieving such goal is higher when the measured
g0 and Neff at the end of the simulation are higher too [62, 175].
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5.3 Bond representation and TC topological defects

In this section we present the spin glass model we will work with throughout the
whole chapter, which we refer to as Random Field Wall (RFW) model. As we shall
see, it is an adequate three-dimensional extension of the two-dimensional Edwards-
Anderson model that allows for the introduction of Toric Code topological defects
[176].

5.3.1 The 2d Edwards-Anderson model

For simplicity, consider first a standard two-dimensional square lattice with only
nearest-neighbours interactions and with periodic boundary conditions. It is de-
scribed by the Ising Hamiltonian

H =
∑
⟨i,j⟩

Jijs
z
i s

z
j , (5.19)

where ⟨i, j⟩ indicates that the indices run over the nearest neighbours, in this case four
per spin. When the couplings J are distributed according to a Gaussian probability
function, this Hamiltonian corresponds to the 2d Edwards-Anderson model. Let us
now shift to the bond picture by introducing the change of variable σz

b = szi s
z
j . The

Hamiltonian now reads
H =

∑
b

Jbσ
z
b . (5.20)

In the bond picture of a spin lattice the new binary variables σb represent the state
of the bond between two spins, which depends on their relative alignment instead of
that of the spins themselves. The bond is either said to be up (the spins connected
by it have the same value, thus σb = 1), or down (the spins are not aligned and
σb = −1). Note that therefore a bond configuration can be translated into a spin
one with up to a decision of the value of an initial spin, which corresponds to the
up-down degeneracy of the spin picture.

However, in contrast to the spin representation, not all {σz
b}b configurations rep-

resent a physical state, and Hamiltonian Eq.5.20 is not that of a collection of free
particles. Rather, the Hamiltonian must be understood along with the constraints
associated to the set of feasible configurations. To see this, take an elementary closed
path within a given lattice, which we henceforth refer to as plaquette. Arbitrarily
define the value of a first spin and then those of the neighbouring ones. It can be
seen that, in order to be able to unequivocally assign a value to all spins composing
the given plaquette, the product of all the bonds between them must be one, see
Fig.5.2. To account for this we define the plaquette operator

B□ =
∏
b∈□

σz
b , (5.21)
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which is equivalent to TC’s B operator. The notation b ∈ □ indicates the indices of
the bonds pertaining to a given plaquette.

By the definition of the bond variables, if the plaquette operator applied over a
given site yields B□ = −1 one of its surrounding spins must be aligned along two
different directions at the same time and thus can non unequivocally be assigned nei-
ther of them, see 5.2. In such case we say that the site enclosed within the plaquette
contains a defect, as it is not possible to translate it back to a physical configuration
of spins. When considering periodic boundary conditions, nevertheless, assuring that

Figure 5.2: Physical states in the bond representation are characterized by
B□ = 1. When a plaquette yields B□ = −1, spins located on its vertices cannot
be unequivocally determined and therefore the configuration does not represent a
physical state of the Ising model. We thus say it contains a defect.

all plaquettes within a lattice yield B□ = 1 is a necessary but not sufficient condition
for the physicality of its configuration, since the plaquettes conformed by the outer
bonds must also be taken into account. In this scenario one can see that, further
than the plaquette defects, one has to define as well defects over all the straight lines
that cross the lattice, see Fig.5.3. We define the line defect operator as:

B| =
∏
b∈|

σz
b , (5.22)

where the notation b ∈ | indicates the indices of the bonds pertaining to a given line.
Consequently, a line is said to contain a defect whenever there is an odd number of
non aligned bonds in it. When a line is defected, there is at least one spin in it that
can not be unequivocally determined and, analogously to the plaquette discussion
above, the configuration of bonds cannot be translated to a spin configuration.

Summarizing, in order for a lattice in the bond representation to have a proper
translation into spin variables and thus to represent a physical state of the Ising
system, it must fulfill the following conditions:

• All elementary plaquettes yield 1:
∑

□ B□ = Np.

• All straight lines across the lattice (both horizontal and vertical) yield 1:∑
| B| = NL.
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Figure 5.3: If periodic boundary conditions are assumed, physical states
in the bond representation are characterized by B| = 1. When a line yields
B| = −1, spins located on it cannot be unequivocally determined and therefore the
configuration does not represent a physical state of the Ising model. We thus say it
contains a defect.

Any configuration that does not fulfill either of these two conditions has topological
defects and then it is not properly described by Hamiltonian Eq.5.19. In what follows
we refer to such configurations as non-physical. For the case at hand, being L the
side length of the 2d lattice, the total number of plaquettes is Np = L2 and the total
number of lines is NL = 2L.

5.3.2 Defects’ dynamics in 2d: cluster updates

Consider a collection of neighbouring spins within a given lattice, which we will
refer to as cluster. In the leftmost panel of Fig.5.4 a quadratic lattice in its spin
picture is shown, with green and red dots indicating spins pointing to up/down
directions and black lines indicating the nearest-neighbours coupling topology. For
simplicity, consider a ferromagnetic model such that the system’s energy is minimized
when all its spins are aligned. To this end, the cluster of red spins, indicated by a
surrounding blue dashed line, is proposed to be flipped. Let us now switch to the
bond representation of this same configuration, and identify those aligned spins with
a green bond and those not aligned with a red one, center panel of Fig.5.4. Note
that, since all the spins within the cluster are aligned, they are connected by means
of green bonds, and so happens with all the spins outside the defined cluster as
well (a bigger cluster containing all the spins not included in the considered one
could have been defined alternatively). Finally, in the rightmost panel of Fig.5.4
we can see the effect of accepting the proposed move. On the one hand, from the
spin representation’s perspective, accepting the proposed cluster move means that
all spins within it are flipped. On the other hand, from the bond representation’s
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perspective, only those bonds that were coupling the spins defining the frontier of
the cluster to those outside it are flipped.

Figure 5.4: Cluster update in a 2d quadratic spin lattice. In the bond rep-
resentation of a spin lattice, when a cluster of contiguous spins is flipped at a time,
only the bonds connecting its frontier spins with those outside it change its value.

Let us now take a look at the flipping of a given cluster. To this end, first
recall the discussed model described by Hamiltonian Eq.5.20, in which only certain
configurations were allowed in order to preserve its physical meaning. Note that, if
we do not restrict the system to physical states and instead consider an expanded
configuration space, we can introduce topological defects by performing single bond
flips, by means of the operator σx

b . When applied to a bond separating two plaquettes
with B□ = 1, operator σx

b creates a defect in each of them such that afterwards B□ =

−1, Fig.5.5 left panel. Contrarily, if the bond to which σx
b is applied separates two

plaquettes that already hold defects, these will annihilate themselves. On the other
hand, when applied to bonds separating a defected and a non-defected plaquettes it
effectively moves the defect from one to the other, Fig.5.5 center panel. Repeatedly
flipping single bonds therefore creates, moves and annihilates topological defects
within the lattice. Eventually, when the path followed by a pair of defects happens
to close itself, it defines a line through which all bonds have been flipped, Fig.5.5
right panel. This is equivalent to the cluster updates discussed previously, and thus
the spins enclosed within the closed path are effectively flipped as a cluster.

Note that, from this perspective, a single spin flip can now be seen as flipping all
bonds between it and its neighbours, equivalently described by a single spin cluster,
by means of creating a pair of defects, moving them around a given spin and finally
annihilating them, Eq.5.23, which is equivalent to TC’s star operator, As.

sxi =
∏
b∈+i

σx
b , (5.23)

with b ∈ + the indices of the bonds surrounding spin si. In other words, while
standard Metropolis MC simulations performs spin dynamics by applying the TC’s
A operator, we now seek to enhance the thermalization of the system by means of
TC’s B operator. First, however, we must look for a proper 3d model in which such
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dynamics can be performed.

Figure 5.5: The dynamics of the defects in 2d lattices induce cluster moves.
By creating, moving and annihilating defects in a 2d lattice, the spins enclosed within
the closed path followed by the defects are updated as a cluster.

5.3.3 A proper three-dimensional generalization

The extensively studied cubic lattice, this is, the straightforward three-dimensional
generalization of the square lattice discussed above, does not allow for the definition
of equivalent topological defects, since the bonds between spins do not conform an
enclosed cube. Thought of from the perspective of the defect’s dynamics, a bond
connecting two spins in a 3d space does not separate two single sites within which a
defect can be defined, and thus its flip does not move a defect from one to the other.

On the other hand, we can shift to an appropriate 3d extension of such a 2d Ising
model that allows for the introduction of topological defects in bond representation
by considering the Kramers-Wannier dual [177] to the 3d uniform Ising model, which
is the 3d Ising gauge theory model [178]. In it, spins are located on lattice edges and
are subjected to plaquette interactions on each cube face. The latter model can be
represented as a "wall model" where the walls are the new binary variables taking
values of cube face plaquettes, the plaquette interaction J is now a field acting on
walls, and walls are not independent variables but are subjected to the constrain
that in each cube the product of all 6 planes must equal 1. The given configuration
of walls determines energy and represents all 2N gauge-equivalent states (where N

is the number of vertices). Consequently, in this representation entropy is greatly
reduced.

To visualize the 3d wall model, one may consider an extrusion onto the new
dimension of all the elements described so far. This means that we add an extra
dimension to all of them, and therefore degrees of freedom change as

• Spins (points) become edge spins (lines).

• Bonds (lines) become walls (planes).

And with respect to operators (constrains)
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• Plaquettes (which may contain a defect) become cubes (which may contain a
defect).

• Lines (which may contain a defect) become planes (which may contain a defect).

As we previously had a total of 4 spins connected by bonds (each bond connecting
two single spins) and forming a plaquette surrounded by 4 bonds that could have a
defect in it, we now have 12 edge spins connected by walls (each wall connecting four
edges) and all of them forming a cube surrounded by 6 walls that can hold a defect
as well; see Fig.5.6. In this case, the change of variable between edge spin and wall
models is:

ηzw = ezi e
z
je

z
se

z
t (5.24)

where e{i,j,s,t} are the edge spins surrounding wall ηw.

Figure 5.6: The 3d Random Field Wall (RFW) model (right) is a general-
ization of the 2d bond model (left). By extruding an elementary plaquette and
all its elements onto an extra dimension, we obtain a cube surrounded by edge spins
which are 4-to-4 connected by a wall. The site enclosed inside the cube can hold a
defect.

The Hamiltonian of the 3d Ising gauge model in the wall representation, or RFW,
finally reads

H =
∑
w

Jwη
z
w. (5.25)

However, and analogously to Eq. (5.20), this is not a free particle model. Again,
it has to be understood along with the constraints associated to the set of feasible
configurations.

As with the spin flip in the 2d case discussed above, Eq. (5.23), from this per-
spective the edge-spin flip operator, Eq. (5.26), now consists of updating all walls
surrounding a given edge-spin, which can also be seen as creating a pair of defects and
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moving them around a given vertex until they collide and annihilate again, Fig. 5.7:

exµ =
∏

w∈+µ

ηxw. (5.26)

It is important to note here that, in the 3d case, the dynamics of the defects do not
directly yield, as did happen previously, equivalent cluster updates. Being a cluster
now a volume containing a set of spins, the boundary separating it from the rest of
the lattice is a an enclosed surface. Therefore, while it is not strictly impossible, it
indeed is quite difficult that the path followed by the defects, constituted by stripes
of updated walls, fills the whole surface. Still, the importance of the dynamics of the
defects will now fall on the fact that they yield non-local updates.

Figure 5.7: Graphical representation of an edge spin flip as the flipping of
four walls. Green and orange colors label ±1 values for the walls and the edge spin,
while yellow means that there are defects in the adjacent cubes and therefore the
edge cannot be unequivocally determined. It is important to stress that, even if only
one edge spin is shown for clarity, each of the walls is surrounded by (is coupling)
four edge spins and thus the shown defects must be seen as pertaining to a whole
cube (for instance, they could move to the cube on its top instead).

To determine whether a cube or a plane hold defects and thus if a given configu-
ration of a RFW lattice can be unequivocally translated into a physical edge-spin one
or not, we generalize the plaquette and line operators, Eq.. (5.21) and Eq.. (5.22),
to cube and plane ones as

Bc =
∏
w∈c

ηzw, (5.27)

Bp =
∏
w∈p

ηzw, (5.28)

respectively, with w ∈ c the indices of the walls pertaining to cube c and w ∈ p

the indices of the walls pertaining to plane p. The physicality condition of the wall
configuration, and hence the fulfillment of constraints for Eq. (5.25), is now ensured
when

• The cube operator applied over all elementary sites yields 1:
∑

c Bc = Nc.
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• The plane operator applied over all planes across the lattice yields 1:
∑

p Bp =

Np.

Now the total number of cubes and of planes within the lattice are Nc = L3 and
Np = 3L, respectively, and we can thus count the total number of defects that a
given configuration contains as

N (D) =

[(
Nc −

∑
c

Bc

)
+

(
Np −

∑
p

Bp

)]
. (5.29)

To conclude, let us recall that, being the RFW model a 3d generalization of the
2d bond model, one should be able to recover the later from the former. To this end,
first consider a wall lattice with a single layer of cubes on the, say, (x, y)−plane, and
then set an infinite-valued local field to all edge-spins that have its edge pointing in
either x or y directions, effectively freezing their motion. Doing so we restrict the
edge-spin flips to only those whose edge’s direction is perpendicular to the plane of
the lattice, and thus the resulting model is equivalent to the desired 2d bond one
with an additive constant that does not change the physics of the Hamiltonian.

5.3.4 Hardness of the RFW Lattice model

All spin glass models are intrinsically hard to solve, since their energy landscape
is characterized, by definition, by a huge number of wells separated by hard to
overcome barriers. Different topologies yield, nonetheless, different hardnesses, and
even within the same model there can be disorder instances that are harder to solve
than other ones. As a final discussion of the presented RFW model, it is therefore
interesting to study its hardness by comparing it against that of more common
models. Particularly, we find it illustrative to contrast it with the 3d Edwards-
Anderson model, being it a 3d, nearest-neighbours interacting spin lattice as well.
Extensive research has been conducted for this later model, with reliable results
reported for sizes of up to L = 10 [51], or equivalently Ns = 1000 spins. Bigger
lattice sizes have also been explored in the literature, but with a lower degree of
confidence on the quality of the thermalization achieved [62].

As discussed earlier, the RFW model does not correspond to the standard 3d-EA
model but allows for the effective dynamics of topological defects. On the one hand,
since it is well known that multi-spin interacting models (with multi referring to
more than two) can in general be very difficult to sample and optimize, the RFW
model, Eq. (5.25), which is equivalent to 3d random Ising gauge model with four-spin
plaquette interactions, can indeed expected to be difficult. On the other hand, the
form of the interactions depends on the representation (bond or spins) and, for the
case at hand, one could therefore expect the 2d Edwards-Anderson model, Eq. (5.20),
which in the bond representation looks like a free-particle model with four-particle
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constrains, to be hard as well. Contrarily, it is known that the later lacks hard
instances and moreover, considering that the 2d EA model in bond representation
can be seen as a special case of a 3d RFW lattice, the multi-spin nature of the
constrains in the wall representation of the RFW model is not an obvious argument
that it is more difficult to simulate than the already hard 3d EA model. On top of
that, the RFW is not a well studied system and thus the literature results about it
are very scarce.

In order to asses the hardness of the model and to compare it against that of
the 3d EA one, in what follows we present results of the standard PA simulations of
both models, organized in four different lines of argumentation.

Free energy against ground state energy

Let us first take a look at the disorder-averaged free energy as a function of the
temperature. This thermodynamic quantity can be theoretically computed as:

F = ⟨E⟩ − TS, (5.30)

where ⟨E⟩, F and S are the expected value of the energy, the free energy and the
entropy of the system at temperature T = β−1, respectively. Since at sufficiently low
temperatures ⟨E⟩ ≈ E0 being E0 the energy of the global ground state of the system,
from Eq. (5.30) it is straightforward to see that, for decreasing temperatures, the free
energy and the ground-state energy will coincide and thus their ratio will approach
1. Alternatively, a ratio close to 1 serves as a hint that the global ground state has
been found and that the model has been properly thermalized at low temperatures.
The hardness of two different systems can then be compared by studying how fast
this ratio approaches unity with decreasing temperatures, as lower values of the E0/F

ratio will indicate a higher presence of entropy S, and therefore a higher difficulty to
explore a significant and representative portion of its energy landscape.

When studying the disorder averaged ratio of this fraction for different sizes of
EA and RFW lattices with a Population Annealing algorithm utilizing the same set
of parameters and the same amount of computational resources one gets the results
plotted in Fig.5.8. There, the solid lines represent the averaged quantity and the
error bars the standard deviation over different disorder realizations. Their rather
small sizes indicate that there is little variability among instances, while the mean
value clearly indicates that the RFW model yields quite lower values than the EA one
for all of them. Concretely, and in accordance with most of the literature exploring
numerical simulations of EA lattices, an inverse temperature of β = 5 seems to be
more than enough to confidently state that PA has found the global ground state
for both lattice sizes. On the other hand, when annealing RFW systems towards
β = 20 (and therefore using four times as much computation time, since the used
annealing schedule is the same for both models and utilizes equally spaced inverse
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Figure 5.8: RFW models are computationally harder than their EA coun-
terparts. Comparison of the ratio between the minimum energy found and the
estimated free energy, at a given β during a simulation, for EA and RFW models.
Solid lines indicate the average among 100 different disorder realizations and error
bars indicate the standard deviation of such disorders over their average. Lattice
sizes of L = 4 (top panel) and L = 6 (bottom panel).

temperatures), PA still does not yield convincing values of the E0/F ratio.
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Figure 5.9: RFW and EA models have similar MC acceptance ratios when
solved using the PA algorithm. Population Annealing’s acceptance ratios of MC
updates for different disorders of RFW lattices (top panel) and Edwards-Anderson
lattices (bottom panel), as a function of inverse temperature β. Each line is the
result obtained for a different disorder.

The acceptance ratio of Metropolis steps complements these results and sheds
some more light into the differential hardness of the two models. A brief examination
of Fig.5.9, in which this parameter is plotted for various disorder instances of both
RFW and EA models, quickly indicates that, for both of them, at β = 5 the majority
of proposed spin updates are rejected. This fact is actually more noteworthy for
the RFW lattices. Furthermore, we observe that the minimum energy state found
during the whole simulation is, in general, the exact same one that has already been
encountered at stages previous to β = 5, see Fig.5.10. This means that, from then
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on, the only factor improving the results (increasing g0, but potentially decreasing
the family entropy) is the resampling of the population, but not a further exploration
of the system’s energy landscape. Combining the results of Figs.5.8, 5.9 and 5.10
thus yields the conclusion that the increase in E0/F with high values of β observed for
the RFW lattice model can only be due to the decrease of the TS term in Eq.5.30,
which means that this model has much more entropy at lower temperatures. Since,
as discussed previously, the wall representation removed the entropy related to the
gauge freedom of the underlying RFW model, this entropy only indicates that the
phase space of the model at hand is more difficult to explore. We hypothesize that
this larger entropy might be related to the non-ordered nature of the "confining
phase" of the RFW model versus the spin-glass order in the 3d EA one.
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Figure 5.10: Annealing towards β > 5 does not yield lower energy states.
For L = 4 and L = 6 RFW lattices, β = 5 is a sufficiently low temperature such that
no states with lower energy are found beyond this point.

Reduced-frustration disorders

Another way in which the comparably greater hardness of the RFW model emerges
is by looking at disorder instances with reduced frustration. To this end, let us con-
sider disorders with coupling strengths drawn from modified Gaussian distributions.
In particular, we consider distributions with a varying ratio of negative bonds, by
taking their absolute value and then changing the sign of a randomly selected por-
tion of them. Following the intuition behind the embedding process used to solve
densely connected QUBO problems into more restrictive topologies, since a positive-
valued coupling will tend to align the two spins it connects, a portion of the lattice
in which its spins are all coupled by positive bonds will act as a single, big spin at
low enough temperatures. An unaligned spin within such cluster would always be
clearly energetically unfavourable, and thus the number of potential ground state
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configurations is effectively reduced. Therefore the lower the ratio of negative bonds
that the disorder instance has, the lesser the amount of frustrated spins it can poten-
tially have, and thus the easier it will be to find its minimum energy configuration,
eventually reaching the trivial limit of a ferromagnetic disorder. In Fig.5.11 the met-
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Figure 5.11: The hardness of RFW models against EA clearly emerges when
varying the frustration level of the solved lattices. Left panels: histograms
of g0 (top) and Neff/R0

(bottom) obtained for L = 4 RFW lattices of various ratio
of negative bonds, rnb, along with the ones obtained for Edwards-Anderson lattices.
Center panels: mean values and standard deviations of such histograms, as a function
of rnb. Right panels: mean values with standard deviations of the same histograms
but for L = 6 lattices. All simulations are obtained with PA with the same set of
parameters.

rics obtained by a Population Annealing algorithm when solving a large collection of
different disorder instances of RFW lattices with a reduced ratio of negative bonds,
rnb are shown. For a fair comparison, the same set of parameters was used in all the
simulations. In it one can easily appreciate the shifting towards higher values of the
histograms of both metrics with the decreasing values of rnb, and how they compare
against the metrics that regular EA lattices obtain.

We highlight two main consequences from the results shown in Fig.5.11. On the
one hand, we confirm that, as discussed earlier, higher values of g0 and the family
entropy are correlated with higher confidence in the solution found being the global
ground state and, therefore, can be used as a metric to this end. On the other hand,
and as a direct consequence of this first fact, it shows how strikingly harder the
RFW model is compared to typical Edwards-Anderson instances with uncorrelated



5.3. BOND REPRESENTATION AND TC TOPOLOGICAL DEFECTS 103

disorders, obtaining comparable values of g0 only when restricting the frustration of
disorders to a ratio of negative bonds of about 2%, while still getting much worse
values for the family entropy. To improve it, besides reducing the frustration, greater
computational resources should be invested by increasing the adiabaticity of the
annealing process. Looking at the same curves for L = 6, we observe pretty similar
results, bottom panels of Fig.5.11. Although the g0 obtained for the EA model is
approximately equal to the one obtained for RFW with about 2% negative bonds,
the family entropy is still far from it even for such low-frustration cases. It is also
worth noting that, for L = 6, this difference is even greater than for L = 4.

Independent measures of g0 in PA

As previously discussed, PA yields independent measures for g0(N0), estimated from
the final population of replicas, and for F , estimating it in an iterative process during
the simulation. Using Eq. (5.15) with the estimated free energy, the algorithm thus
yields two independent estimations of the probability of being in the ground state.
Therefore in the limit of infinite replicas these two measures should coincide if the
system is really in thermal equilibrium

lim
R→∞

g0(N0) = g0(E0, F ;β). (5.31)

Equivalently, given a certain amount of computational resources, a larger discrep-
ancy between these two measures of g0 indicates a poorer thermalization and thus a
landscape that is more difficult to explore.

In Fig.5.12, the histograms comparing these two measures for several disorder
instances of both the RFW and EA models of L = 4 and L = 6 are shown. While
the measures of g0 for EA lattices are mostly similar in both considered sizes, RFW
lattices yield much poorer results, which are, in all cases, not even comparable by
orders of magnitude. Further, the difference between g0(N0) and g0(E0, F ) appears
to increase for larger RFW lattices but not for EA ones, hinting that the increase in
hardness with size (which, as previously discussed, already demands an exponential
growth of the number of replicas by itself) is more dramatic in the former model.

Bigger lattices

Further, we implement L = 8 RFW lattices with Gaussian disorder (rnb = 0.5),
and attempt to solve them with standard PA using a large amount of computational
resources. For equally large EA lattices, the parameter set (R0, NT , Nsweeps) =

(5 · 105, 200, 10) is reported to be more-than-adequate resources in [51], where R0

is the initial population size, NT is the number of temperatures in the annealing
schedule and Nsweeps is the number of sweeps carried on per temperature (each
sweep consists of attempting Nspins MC updates on the lattice). For comparison,



104 CHAPTER 5. DEFECT-DRIVEN POPULATION ANNEALING

1.5 1.0 0.5 0.0 0.5 1.0
log10(g0)

0
50

100
150
200
250
300

N
[lo

g 1
0(

g 0
)]

EA L=4
g0(N0)
g0(E0, F)

20 15 10 5 0
log10(g0)

0

20

40

60

80

100

120

N
[lo

g 1
0(

g 0
)]

RFW L=4

g0(N0)
g0(E0, F)

3 2 1 0 1
log10(g0)

0

10

20

30

40

50

N
[lo

g 1
0(

g 0
)]

EA L=6
g0(N0)
g0(E0, F)

70 60 50 40 30 20 10 0
log10(g0)

0

50

100

150

N
[lo

g 1
0(

g 0
)]

RFW L=6

g0(N0)
g0(E0, F)

Figure 5.12: RFW models are computationally harder than their EA coun-
terparts. Histograms of the values of g0 obtained with the two discussed indepen-
dent measures, for various disorder instances of EA (left panels) and WRF (right
panels), of sizes L = 4 (top panels) and L = 6 (bottom panels).
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in our simulations we used (R0, NT , Nsweeps) = (2.6 · 105, 500, 20) and repeatedly
solved 20 different disorder realizations in order to see how many times the algorithm
converged to the same minimum energy state. Among all of them, the convergence
ratios between independent runs varied from a minimum of 0% (in 11 out of the 20
studied disorders) to a maximum of 12% (in only three of them).

5.4 Defect-driven Population Annealing

Let us now combine PA’s features with the non-local moves discussed above, in
a modification that we refer to as Defect-driven Population Annealing (DPA). To
this aim, we relax the constraints imposed on the possible configurations of the sys-
tem by including the constraints directly into the Hamiltonian through a Lagrange-
multiplier-like approach. This effectively expands its configuration space by the
addition of non-physical states with topological defects. We nonetheless want this
feature to be a possibility only during the early stages of the simulation, as towards
the end we require the system to encode the solution to a real problem and therefore
to have some physical meaning.

The terms resembling Lagrange multipliers are used to control the presence of
defects, and are introduced through an additional field parameter κ into the Hamil-
tonian, which has the effect of assigning an energy penalty to them. Recalling that
at any time the number of defects present within the lattice can be counted with the
help of the cube and plane operators, Eqs. (5.27) and (5.28), respectively, the final
Hamiltonian reads:

H =
∑
w

Jwη
z
w + κ

[(
Nc −

∑
c

Bc

)
+

(
Np −

∑
p

Bp

)]
. (5.32)

By annealing κ from 0 to a high value the system acquires a lot of defects at the
beginning of the evolution, when they contribute with a minimal energy cost, and gets
rid of the non-physical states towards its end, when their presence implies huge energy
penalties. The method therefore consists on annealing a population of replicas follow-
ing a certain schedule on the two parameter space, Ξβ,κ = [(β0, κ0) , ..., (βNT

, κNT
)],

with βi ≤ βi+1 and κi ≤ κi+1 ∀i. As in regular PA, at each point in the schedule a
resampling step is carried on the population and then the replicas are set to evolve
with an MCMC procedure in order to ensure thermal equilibrium. Note that now
the energy of the system is a function of the varying parameter κ:

E(κ) =
∑
w

Jwηw + κN (D), (5.33)

with the number of defects N (D) defined by Eq. (5.29). Since at each resampling step
(β, κ)→ (β′κ′) both parameters can potentially be updated, the normalized weights
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are now

τj(β, β
′, κ, κ′) = R0

e−[β′Ej(κ
′)−βEj(κ)]∑

r e
−[β′Er(κ′)−βEr(κ)]

. (5.34)

Regarding the MCMC evolution, at each iteration a spin and a wall updates are
proposed, exµ (Eq. (5.26)) and ηxw, respectively, and accepted with the corresponding
probability.

5.4.1 Constant-fraction entropy-loss annealing

As previously discussed, a bad thermalization of a given system in Population An-
nealing is characterized by a low family entropy at the end of the annealing process,
which is reduced every time a resampling procedure is carried on the population.
In order to maximally preserve it, one then could think that the best strategy con-
sists on loosing a constant portion of surviving families at each step, thus following
an exponential decay. On the contrary, when utilizing the standard linear-in-β an-
nealing schedule, widely used in the literature regarding simulations of this type of
systems with PA [51, 62, 175, 179], one finds that the effective number of surviving
families follows a rather sharper decay, see Fig.5.13. However, the difference between
hard and easy disorder cases is manifested in subtle changes in the decay line and,
importantly, its end value. Since the DPA algorithm anneals the system in a two-
parameter space, (β, κ), it allows for a more flexible exploration. Concretely, in order
to maximize the value of the family entropy during the whole simulation and thus its
final value as well, DPA adapts the annealing process such that, at each resampling
step, a constant fraction of the number of surviving families is lost. This way the
family entropy follows an exponential decay towards an objective value, which can
be tuned externally. Ultimately, this allows the user to (try to) push the obtained
final family entropy to a desired value, which can be higher than the one obtained
by PA.

To reach this objective value DPA implements an adaptive step procedure for both
annealing schedules, Ξβ and Ξκ. In it, before each resampling step (β, κ)→ (β′, κ′),
the optimal values of β′ and κ′ are computed such that the portion of families lost
in the resampling is the closest possible to the one needed in order for it to follow
the specified exponential decay

Neff(tn)

R0
=

(
Ndesired

eff

R0

) tn
NT

, (5.35)

where tn is the simulation step, Neff(tn) is the number of surviving families at that
time step, and Ndesired

eff is the objective number of surviving families at the end of
the simulation.



5.4. DEFECT-DRIVEN POPULATION ANNEALING 107

0.0 0.2 0.4 0.6 0.8 1.0
tn
NT

0.0

0.2

0.4

0.6

0.8

1.0

N
ef

f
R 0

PA with -linear
Proposed decay

Figure 5.13: Constant-fraction entropy-loss annealing. Comparison between
the decay in family entropy obtained in PA simulations of L = 4 RFW lattices with
a β-linear annealing schedule (blue lines) and the objective, implemented decay (or-
ange line). Each blue line is the obtained decay for a different disorder. Although
final family entropy may seem very similar in this scale, its fluctuations in PA simu-
lations describe differences between hard and easy disorder cases. The implemented
annealing schedule tries to loose a constant portion of families at each simulation
step, while the classic one loses a larger amount at the beginning.

5.4.2 Remaining defects

As per any spin glass model, the energy landscape of the Wall Lattice is rough and has
an enormous number of difficult to overcome energy barriers. In the example at hand,
nevertheless, this fact can have some additional consequences, as the configuration
space has been enlarged by the introduction of the already discussed Toric Code
topological defects.

For low values of the field parameter κ, the defects start to appear and proliferate,
and since their number is not hardly penalized by the second term in the Hamilto-
nian, Eq. (5.32), the system is allowed to explore non-physical configurations with
energies that can be potentially lower than that corresponding to the physical ground
state. Then, even if a later high value of κ penalizes the existence of defects within
the lattice, it does not guarantee their total elimination but, on the other hand, it is
indeed possible that an adiabatic annealing through the (β, κ)-space yields configura-
tions in which some defects have got stuck within deep energy wells. If this happens
at low temperatures and no other adjacent sites have defects, an increase in κ will
not be able to move and eliminate them by means of regular Metropolis dynamics.
As discussed earlier, these non-physical states do not have an unequivocal translation
back to spin variables, and as we are interested in real life QUBO problems they are
therefore not an acceptable outcome of the simulation.
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In order to address this issue and get rid of the defects that may end up in the
final stages of the simulations, we make use of two different strategies. On the one
hand, we apply a kinetic Monte Carlo algorithm, namely an N-fold way algorithm,
that speeds up their dynamics. On the other hand, we also include an attractive
potential energy term between defects that makes them get closer to each other and
thus collide and annihilate.

Review of the N-fold way algorithm

At very low temperatures, the acceptance probability of any move approaches zero
and therefore the Metropolis algorithm becomes very inefficient at accepting new
states. This is of course in accordance with the idea that, at that point, the current
state should be very similar to the global minimum and thus that no sub-optimal
configurations should be needed in order to overcome energy traps.

The N-fold way algorithm, first proposed by Bortz, Kalos and Lewovitz [180],
is a kinetic Monte Carlo strategy that speeds up the low temperature dynamics
of the simulated system by realizing about the fact that there is in reality a small
number of different classes of possible updates. Consider first a one dimensional Ising
spin system with ferromagnetic couplings, no external magnetic fields and periodic
boundary conditions. As in the Metropolis algorithm, pick a spin to be updated at
random. Whatever the configuration of the system at a given time of the simulation
is, there is only three possible updating energies depending on the state of the two
neighbouring spins with respect to the picked one: either none, one or two spins are
initially aligned with it, and thus the flip of the picked spin will change the energy of
the system with ∆Ec = {−2J, 0,+2J}, respectively. The N-fold way algorithm then
proceeds as:

• Classify all spins according to their corresponding updating energy

• assign to each of the identified classes a probability Pc = e−β∆Ec

• Select a class with probability Pc =
Pc∑
c Pc

• randomly update a spin within the selected class

Note that, since the acceptance probability is now always 1, the evolution of the
system is faster. Just as in the Metropolis algorithm, those spins whose flip is more
energetically favourable will have a higher probability of being updated, and the dif-
ference resides in how the time a spin remains static is computed. In reality, we have
now in some sense computed the expected value of the time that a spin pertaining
to any of the different classes will remain in its current state at temperature β, and
thus one has to consider time steps of length τ = Pc in order to track the thermal
dynamics of the system.
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N-fold way in the RFW model and DPA

When dealing with more complex systems (such as those having higher dimension-
ality or heterogeneous connectivity and coupling strengths), the couplings between
spins will not be the same and therefore the number of different classes will increase.
Then the computations that must be carried on in order to define the probability for
each spin to be selected accordingly grows, and hence it is possible that the kinetic
speed up does not pay off when considering the computational cost. In the case
of Gaussian distributed disorders as those considered in the Edwards-Anderson or
RFW models, the strengths of the couplings are drawn from an infinite set of possible
values. One therefore ends up having a different class for each single spin, which is
the reason why a plain Metropolis algorithm is normally used in spin glass systems,
while the N-fold way strategy is discarded.

Nevertheless, as we have discussed before, when dealing with the Wall Lattice
model we sometimes encounter some disorders for which the defects do not get com-
pletely annihilated by sole Metropolis dynamics. In such cases it is mandatory to
reactivate the defects’ mobility in order to get rid of them. To this end we use a
slightly modified N-fold way algorithm that only considers the possibility to update
those walls surrounding the already present defects. This way, and even if moving
any of the present defects is energetically non-favourable and thus their movement
would be discarded if the creation of new defects was considered, we force them to
move while keeping the number of different classes (and therefore the computational
cost) relatively low.

Attractive potential

Forcing the movement of the remaining defects is still not a synonym of completely
getting rid of them. In low dimensional (1d, 2d) systems the annihilation of all of
them can eventually happen for relatively acceptable time scales, but this is by no
means the case in three dimensions. Contrarily, in three- and higher- dimensional
systems (which are the ones presenting hard instances and thus those we are inter-
ested in) it is much more probable that, in big enough sizes, forcing the defects to
move will only make them travel through the lattice with a ridiculously little chance
of encountering a partner with which to collide against and to get annihilated with.

To avoid this free particle behaviour of the defects and to reward their convergence
and thus annihilation, an attractive potential between them is considered. This can
be done by adding a gravitational term into the Hamiltonian describing the RFW
system, Eq. (5.32):

HG = G

Ndef∑
i=1

i−1∑
j=0

1

Dα
ij

, (5.36)

where G is a negative constant that can be tuned, Ndef is the number of defects
present in the lattice, Dij is the euclidean distance between defects at sites i and j,
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and α can be used to make the interaction potential shorter or longer ranged.

It is important to note that this term has its owns caveats and that has to be
used wisely and with precaution. First of all, one should note that a larger number of
particles within a given gravitational system implies a bigger potential energy. This
can be directly translated into the non-desired fact that, besides the accretion of the
already existing defects, the creation of additional ones, and not their annihilation,
will be instigated by this term. It can indeed be seen that, if the attractive potential
is turn on during early stages of the simulation at which the existence of defects is
not heavily enough penalized yet, for low values of the ratio κ

G the system undergoes
a phase transition in which the lattice gets filled up with defects until their number
reaches the maximum allowed by the system, N (D)

c = Nc. On the other hand, if this
potential term effectively penalizes their annihilation, they will not end up colliding
even if they get side by side.

As a consequence it is important that the attractive potential term is only turned
on under two circumstances:

• The single bond-flip operator, µx
w, works under the modified n-fold way dy-

namics described earlier, such that only those walls surrounding defected sites
are allowed to move and then no new defects are created.

• The ratio between the field parameter and the gravitational constant, κ
G , is

set to a high enough value such that the contribution of the two last terms
of the Hamiltonian (the one penalizing the existence of defects and the one
getting them close to each other) to the total energy of a proposed movement
effectively foments the annihilation of defects.

5.4.3 Free energy estimation in DPA

Let us now give some hints on the derivation of the recipe for the free energy es-
timation in DPA. When resampling from (β, κ) to (β′, κ′), the expected number of
descendants in DPA is given by Eq.5.34, with the normalization factor

Q(β, β′, κ, κ′) =
1

Rβ,κ

∑
r

e−β′Er(κ
′)+βEr(κ), (5.37)

and the energy at a given κ being:

Er(κ) = Ew
r + κNdef

r , (5.38)

where we have defined Ew
r ≡

∑
i Jiwi, the energy due to the wall configuration, and

Ndef
r is the number of defects within the lattice.
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As we did in PA, now the ratio between partition functions is:

Z(β′, κ′)

Z(β, κ)
=

1

Z(β, κ)

∑
γ

e−β′Eγ(κ
′) =

=
1

Z(β, κ)

∑
γ

e−βEγ(κ)e−β′Eγ(κ
′)+βEγ(κ) =

= ⟨e−β′E(κ′)+βE(κ)⟩β,κ, (5.39)

so that we approximate:

⟨e−β′E(κ′)+βE(κ)⟩ ≈ Q(β, β′, κ, κ′). (5.40)

And everything else follows as in PA.
Note that, by allowing single bond (wall) flips and thus the introduction of topo-

logical defects, we are now effectively dealing with a different physical system. This
implies that a different value of the free energy should be expected in the (β, κ) re-
gion of the parameter space in which the expected number of defects present in the
lattices is non zero.

On the other hand, the total number of possible configurations is greatly in-
creased. In order for the ensemble mean approximation in Eq. (5.40) to hold, a
sufficiently significant portion of the configuration space must be represented by the
replica population. Consequently, a much greater population size is required as well
if good estimations are desired.

In conclusion, PA should always be preferred over DPA in terms of free energy
estimation.

5.4.4 Outline of the algorithm

To conclude, in this section we present a pseudo-code of the Defect-driven Population
Annealing method, see Alg. 1.

As in regular PA, the algorithm starts by randomly initializing the configurations
of each replica in the population. The annealing schedules, Ξβ and Ξκ, last a total of
Nβ steps, and then for each annealing step the algorithm estimates the next point in
the schedules, (β′, κ′) such that the family entropy obtained from the resampling fol-
lows the proposed exponential decay. After resampling, each replica r is thermalized
with a total number of sweeps Nsweeps at (β′, κ′). To this end, a number of Nspins

spin updates and wall updates are proposed and accepted with a Metropolis algo-
rithm. In case the simulation is reaching its end (iβ ≥ i

(critic)
β ), and a given lattice

still has sites containing topological defects, the dynamics are accelerated with an
NFoldWay algorithm instead of using a regular Metropolis one, such that no more
defects can be created but only moved around the lattice (with the additional gravi-
tational term, Eq.(5.36)) so that their probability of closing a path and annihilating
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Algorithm 1 Defect-driven Population Annealing
1: for each replica r do
2: r ← initialize
3: for iβ in Nβ do
4: N

(desired)
eff ← ProposedDecay[iβ ]

5: Estimate (β′, κ′) such that Neff [iβ ] ≈ N
(desired)
eff

6: Resample(β, β′, κ, κ′)
7: for each replica r do
8: for sweep in Nsweeps do
9: for n in Nspins do

10: s← U(0,Nspins)
11: Metropolis(r, s, β′, κ′)

12: if iβ < i
(critic)
β then

13: w← U(0,Nwalls)
14: Metropolis(r, w, β′, κ′)
15: else
16: if Ndefects(r) ̸= 0 then
17: NFoldWay(r, β′, κ′)
18: else
19: w← U(0,Nwalls)
20: Metropolis(r, w, β′, κ′)
21: β ← β′

22: κ← κ′

increases. After all replicas are thermalized, the next annealing steps starts until the
schedules reach its maximum length Nβ .

5.5 Comparison between PA and DPA

An important factor to be taken into account when comparing different algorithms
performing the same task is to make sure that an equivalent amount of computational
effort is invested in all of them. In the case at hand, we can define the computational
work W as the total number of MCMC updates attempted during a simulation,
namely

W = Nsweeps

NT∑
i=0

Ri ≈ NsweepsNTR0. (5.41)

A sweep on PA consists on proposing Nspins flips on randomly chosen spins, such that
on average all spins within the lattice are given the chance to be updated at each
sweep. NT is the number of temperatures in the annealing schedule and Ri is the
population size at annealing step i. The last approximation in Eq.5.41 follows from
the fact that, in our concrete implementation, a resampling protocol that minimizes
the fluctuations in population size is used. The computational work due to the
resampling steps is neglected. One of the most computationally-intensive workloads
in Monte Carlo simulations is the generation of (pseudo-)random numbers. Thus
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we note that Eq. (5.41) can be split into two main contributions: the generation of
random numbers and the rest of the computations needed to be carried on in the
updating scheme.

Recall that every time PA proposes one spin to be updated, DPA proposes one
spin and one wall for such task, therefore potentially requiring twice as many random
numbers if the same number of sweeps is used in both algorithms. On the other hand,
as discussed earlier, a spin flip is equivalent to four wall flips and thus a DPA sweep
needs to do five fourths as many computations than a PA one. In order to invest
an equivalent computational work in both algorithms, Eq. (5.41) can therefore be
considered from two different perspectives:

• Scenario I. The generation of random numbers is the bottleneck of the process.
The computational work can therefore be counted as the amount of random
numbers consumed by the algorithm, and a fair comparison between PA and
DPA is given if N (PA)

sweeps = 2N
(DPA)
sweeps .

• Scenario II. The computations needed to process the flips are the bottleneck
of the whole process. The computational work can therefore be counted as the
amount of walls flipped, and a fair comparison between PA and DPA is given
if N (PA)

sweeps =
5
4N

(DPA)
sweeps .

While the most usually encountered scenario corresponds to the generation of random
numbers being the bottleneck, this is not always the case. In fact, fast random
numbers generators are a hot topic in current technology development. In what
follows we therefore study the comparative performance of PA and DPA under both
assumptions. Concretely, we address and compare both scenarios using N

(PA)
sweeps = 10

and N
(DPA)
sweeps = 5 for the first and N

(PA)
sweeps = 10 and N

(DPA)
sweeps = 8 for the second.

5.5.1 L = 4 lattices

We first apply the DPA method to the study of L = 4 RFW lattices and take a
look at the histograms of the parameters g0 and Neff obtained when solving several
disorders, comparing the solutions with those that a normal PA algorithm yields.
The top panels of Fig. 5.14 show the obtained histograms when considering that the
computational bottleneck in the simulations is the generation of the random numbers
(first discussed scenario), while the bottom panels show those same histograms when
a fast enough random number generator is assumed (second scenario). In each row,
the leftmost panels show the histograms for g0 and the center ones the histograms for
Neff . Finally, the rightmost panels relate, for each solved disorder, the values of the
two discussed metrics. In these last panels the disorders that PA finds the hardest
ones to solve are also marked with red crosses, as well as how these same disorders
score when solved by DPA, with black crosses. The hard disorders are identified as
those obtaining the lowest values of family entropy at the end of a PA simulation. In
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a somewhat arbitrary way, we set the limit of hard disorders on PA not being able
to obtain a final effective number of surviving families of Neff = 0.015R0, which is
equivalent to about 2% of the total amount of considered instances.
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Figure 5.14: DPA outperforms PA for L=4 lattices when MCMC process
simulations are the computational bottleneck. Histograms of g0 and Neff/R

obtained by solving, by both PA and DPA, a total of Ndis = 500 different disorders
of L = 4 RFW lattices, with bonds randomly distributed according to a normal
distribution. Simulations using the same amount of random numbers (top panels)
and of MCMC updates (bottom panels). Crosses in the rightmost panels mark these
instances PA finds the hardest (red), and how these same instances score in DPA
(black).

In the first scenario (Fig. 5.14, top panels) we observe a certain trade-off between
parameters (Fig. 5.14, top left and top center panels), resulting in an equivalent
performance of the two methods. The fact that the adaptive steps procedure over
the two control parameter space (β, κ) is able to properly drive the evolution of the
system and set an objective cutoff family entropy is nevertheless noticeable (Fig. 5.14,
top center panel). Also, the fact that the the family entropy is no worse than for
PA is relevant, taking into account that, in this scenario, the total amount of spin
updates is lower and thus one might expect a worse thermalization. With the cut-
off imposed on family entropy, scores on this parameter are increased even for hard
cases, but they seem to lay, generally, in the lower range for DPA as well (Fig. 5.14,
top right panel).
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On the other hand, in the second scenario (Fig. 5.14, bottom panels) we see a
substantial improvement with the DPA method, as the histograms for both measured
parameters seem to be shifted towards bigger values and thus imply better metrics
than those obtained with standard PA (Fig. 5.14, bottom left and bottom center
panels). As can be seen in the bottom right panel, even some of the hard cases’
metrics are improved, as they manage to escape from the lower range of family
entropy without diminishing its g0 score.

In Fig. 5.15 we take a closer look at the results obtained by the two methods, by
comparing the measured parameters obtained by both for each of the solved disorder
realizations. A brighter color indicates a higher density of points and the red straight
line is plotted to indicate the region in which both methods yield the same results
for a given parameter. We also marked those disorder instances classically labeled as
hard for PA with red crosses. Again, the top and bottom panels correspond to the
first and second scenarios, respectively.
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Figure 5.15: DPA provides on average higher family entropies than PA
when solving L = 4 lattices. Comparison of results obtained by PA and DPA
for L = 4 RFW lattices for the three measured parameters. From left to right:
ground state energy, g0 and effective number of surviving families. Simulations using
the same amount of random numbers (top) and of MCMC updates (bottom). Red
crosses mark these instances that PA finds the hardest.

Lastly, let us focus on those cases of disorder realizations that PA finds the hardest
to solve. As previously discussed (recall Eq. (5.1)), a possible way to overcome the
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difficulty of equilibration and improving the final family entropy obtained by PA
is to reduce the differences ∆β = β′ − β by increasing the number of temperature
steps within the same temperature range, thus effectively realizing a more adiabatic
simulation. Following this idea, to further contrast both methods, we now take a
collection of disorders that PA finds difficult to equilibrate and for which a very
similar g0 is obtained for PA and DPA, so that they lay close to the gPA

0 = gDPA
0 red

line in the center panels of Fig. 5.15, and repeatedly solve them several times with
an increasing number of temperature steps in the PA annealing schedule (i.e. more
adiabatically). For the cases at hand, we find that for PA to obtain a family entropy
similar to that obtained by DPA, we would have to invest approximately between
4 and 16 times as much computational power depending on the disorder instance,
Fig. 5.16. Furthermore, one should also note here that, contrary to the addition of
more replicas, that extra computational effort would not be parallelized in PA, since
the annealing schedule must always be followed sequentially.

5.5.2 L = 6 lattices

We now apply the same study to L = 6 RFW lattices. As for the L = 4 case, we
solve several different Gaussian disorders with both PA and DPA considering the
two scenarios discussed above, and plot the obtained histograms in Fig. 5.17. For
the first scenario, (Fig. 5.17, top panels), we again see a certain trade-off between
g0 and Neff . Nevertheless, the gain in family entropy is now more noticeable than
for smaller lattices, as now PA does encounter some hard instances for which it ob-
tains a single surviving family, preventing adequate thermalization. On the contrary,
the entropy-preserving adaptive steps in DPA are capable of driving the population
toward nonzero values, thus ensuring proper thermalization (Fig. 5.17 top center
panel). When considering the computational work limited by the number of MC up-
dates, the g0 obtained with DPA is comparable to that obtained with PA (Fig. 5.17
top left panel), while the gain in family entropy remains the same (Fig. 5.17 top left
panel). Again, those hard instances of PA are properly thermalized under DPA. On
top of that, comparing the results obtained for each individual disorder between the
two scenarios (Fig. 5.17 left panels), we see that, while for PA the hard instances are
more or less evenly distributed along the range of g0 values, they are shifted towards
bigger values, especially for the second scenario.

Looking at the right panels of Fig. 5.18 we again confirm that both methods find
the same ground-state energy for all disorder realizations. Speaking of g0, the hardest
instances are more or less uniformly distributed around their mean in both scenarios
(Fig. 5.18 center panels). They are slightly shifted towards PA when restricted by
the generation of random numbers and centered between the two methods when
restricted by the amount of MC updates.

We finally study in Fig. 5.19, as in the case L = 4, a collection of instances that
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Figure 5.16: Hard cases on PA require more adiabatic annealing processes
to reach an equivalent family entropy to DPA. Study of the amount of compu-
tational power that would have to be invested to solve L = 4 RFW lattices with PA,
in order to obtain a similar final family entropy as with DPA, for hard instance for
which gPA

0 ≈ gDPA
0 . Error bars are standard deviations over Nrep = 100 repetitions

of the same process at each value of NT . Square markers are obtained with DPA
and triangle ones with PA using an increasing number of temperature steps. Each
color indicates a different disorder.

PA finds hard and that obtain a similar value of g0 with both methods. Again, we
use an increasingly adiabatic process in PA to see how much more computational
power would be necessary to get results comparable to those obtained with PA. In
this case, DPA achieves an equivalent performance to PA with about between 2 and
5 more computational investment, depending on the instance. We note a more linear
behaviour of the family entropy with NT than in Fig. 5.19, probably because the
considered values of NT are not big enough. This indicates that L = 6 is on the limit
of our numerical capabilities.
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Figure 5.17: DPA enables thermalization of L = 6 lattices, even when these
are hard for the PA algorithm. Histograms of g0 and Neff/R obtained by solv-
ing, by both PA and DPA, a total of Ndis = 1000 different disorders of L = 6 RFW
lattices, with bonds randomly distributed according to a normal distribution. Sim-
ulations using the same amount of random numbers (left) and of MCMC updates
(right). Crosses in the bottom panels mark these instances PA finds the hardest
(red), and how these same instances score in DPA (orange).
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Figure 5.18: DPA provides on average higher family entropies than PA
when solving L = 6 lattices. Comparison of results obtained by PA and DPA
for L = 6 RFW lattices for the three measured parameters. From top to bottom:
ground state energy, g0 and effective number of surviving families. Simulations using
the same amount of numbers (left) and of MCMC updates (right). Black crosses
mark these instances that PA finds the hardest.
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Figure 5.19: Hard cases on PA require more adiabatic annealing processes
to reach an equivaent family entropy to DPA. Study of the amount of compu-
tational power that would have to be invested to solve L = 6 RFW lattices with PA,
in order to obtain a similar final family entropy as with DPA, for hard instances for
which gPA

0 ≈ gDPA
0 . Error bars are standard deviations over Nrep = 100 repetitions

of the same process at each value of NT . Square markers are obtained with DPA
and triangle ones with PA using an increasing number of temperature steps. Each
color indicates a different disorder.

5.5.3 L = 8 lattices

In order to study hard EA disorders on big lattice sizes for which a proper thermaliza-
tion is not guaranteed, one classically relies on running many times the same instance
independently. We apply this methodology to L = 8 RFW lattices with Gaussian
disorder to test how both algorithms perform. Concretely, we study 20 different
disorder instances and run each of them 50 times with each algorithm, considering
the computational work limited by the amount of MC updates (second discussed
scenario in previous sections). As the systems are not thermalized, we only focus
here on the minimum energies per spin found during the simulations, emin, and not
on the previously discussed metrics. Contrarily to what should be expected from
a thermalized system, none of the algorithms clearly converges to the same energy
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among different runs for a given disorder. In fact, when studying it with PA, for
11 out of the 20 studied cases the same minimum energy was not found in any of
the runs. For 4 of them the minimum energy was found twice, for 2 of them four
times and only for the 3 easiest ones it was repeatedly found six times. We note
that, under this metric, the ratio of disorders labelled as hard is greatly increased in
comparison to smaller lattice sizes. In Fig. 5.20 we show, for one of the three easy
studied instances (top panel) and for one of the 11 hard ones (bottom panel), the
minimum energies found among independent runs by each algorithm.
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Figure 5.20: Both algorithms have a low convergence ratio to the same
minimum energy state among independent runs. Upper panel: example of an
easy case, for which both algorithms find the same solution after running it several
times (both PA and DPA show a convergence ratio of 12%). Bottom panel: example
of a hard case, for which both algorithms completely fail to converge towards any
minimum energy state, and for which DPA finds the best solution between the two.

On the one hand, we observe that the spread of the minimum energies found
among several runs of the same disorder tends to be larger with DPA than with PA.
To illustrate it we compute, for each disorder, the median absolute deviation of the
minimum energies achieved over the runs. In Fig.5.21 the box plots of these medians
obtained with both algorithms are shown. Indicated by a smaller box, clearly all
the medians obtained by PA are closer to zero than those obtained by DPA. This
noticeably larger spread is probably caused by the larger configuration space due
to the introduction of the topological defects. On the other hand, when comparing
the minimum energy found with both algorithms, we observe that DPA generally
performs better, yielding lower energies (see Fig. 5.22, the "tie" cases contain easy
disorders). The fact that DPA generally finds states with lower energies when solving
hard instances for which thermalization is poor (or, equivalently, for which no conver-
gence to the same solution is achieved) indicates that the proposed non-local moves
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Figure 5.21: DPA yields a larger spread of minimum energies. Box plots of
the median absolute deviations of minimum energies achieved by PA and DPA over
many runs of the 20 studied L = 8 RFW disorder instances.

are indeed useful to explore energy landscape in hard disorder instances, effectively
allowing the system escape local minima.

5.5.4 Constant-fraction entropy-loss annealing in PA

To further test the effectivity of the newly introduced non-local moves, we imple-
ment the family constant-fraction entropy-loss annealing in PA. We use the same
parameters used in the simulations of previous sections and find the results shown
in Fig. 5.23 for L = 4 (top panels) and L = 6 (bottom panels). While the adaptive
steps are again able to generally impose a cut-off value on the final family entropy,
the obtained g0 is quite worse than in regular PA. For L = 6 lattices the cut-off
is actually not achieved for some disorders, some of which are even seen as easy
(obtaining a high value of Neff) by PA. This fact suggests that different annealing
schedules may make PA find hard or easy different instances. More noticeably, the
constant-fraction entropy-loss annealing makes PA fail to find the same ground state
than when using the standard annealing schedule in some L = 6 cases. We therefore
conclude that the constant-fraction entropy-loss annealing is not effective by itself
when restricted to a one dimensional annealing space, and thus the non-local moves
must be the reason why DPA is able to improve thermalization of hard instances, as
seen in previous sections.

5.6 Conclusions

In this chapter a quantum-inspired modification of Population Annealing has been
presented and tested in the exploration of rugged energy landscapes of 3d random pla-
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Figure 5.22: DPA finds lower energy states. When studying non-thermalized
RFW L = 8 lattices, DPA is generally able to find lower energies than PA using
the same computational resources (in the same amount of MCMC updates scenario).
Results obtained after solving 20 different disorder instances, 50 times each with each
algorithm.

quette gauge models. The new method, which is inspired on the Toric Code, consists
on performing non-local updates by creating, moving and annihilating topological
defects within the lattices. Moreover, in 2d Ising square lattices these new moves are
equivalent to non-local cluster updates. The defects’ dynamics are controlled by an
extra field parameter in the Hamiltonian, κ, through which the algorithm anneals
the systems along with temperature. A constant-fraction entropy-loss adaptive an-
nealing procedure has been devised to effectively navigate the (β, κ)-space in order
to drive the replica population towards an objective value, thus ensuring a better
thermalization.

The advantages of the new method, which we refer to as Defect-driven Population
Annealing (DPA), are:

• The non-local moves allow the system to overcome high-energy barriers and
thus to escape local minima.

• The defects’ dynamics are still compatible with massively parallel implemen-
tations.

• The annealing in the two-parameter space (β, κ) offers more flexibility, and the
starting temperature can now be arbitrary.

On the other hand, the disadvantages are:

• the phase space is substantially enlarged at the early stages of the simulation,
and thus the estimation of the free energy is poorer.
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Figure 5.23: The entropy-preserving steps are not optimal in standard PA.
For L = 4 (top panels) and L = 6 (bottom panels) RFW lattices the adaptive steps
procedure is not effective when the parameter space is reduced to only temperature.
Red crosses mark the disorders that normal PA finds the hardest to solve.

The application of the developed method to small RFW lattices shows an im-
proved thermalization quality, which enhances the confidence on the solution found
being the global minimum. Moreover, when studying hard cases for which, with
Population Annealing, thermalization is not properly achieved nor the global ground
state is reached, the proposed non-local moves still show an advantage in overcoming
energy barriers and thus yield lower-energy states. It is also worth noting that the
results are greatly improved when fast enough random number generators are used,
such that the Monte Carlo updates themselves constitute the real bottleneck of the
simulations and thus a fair measure of the computational work invested in them.

To conclude, it is important to mention that specialized annealing schedules have
been recently proposed and successfully applied in Population Annealing [172, 175,
181]. The merging of these more optimal schemes with the exploration of the two-
dimensional annealing parameter space leaves room for improvement. This, which is
left as an outlook of the present work, could potentially further increase the spin-glass
solving capabilities of DPA, therefore allowing for the exploration of bigger lattices.



Conclusions

The present thesis explores various ways to improve the Monte Carlo-based strate-
gies for solving optimization problems, which consist in simulating complex physical
systems such as spin glasses. To this end, three main lines of research have been
exploited, each of them intended to improve the understanding and functionality of
different parts of such optimization strategies.

The first one is intended to study the spin glass phase transition of the Edwards-
Anderson (EA) model in two, three, and four dimensions, by means of the Haake-
Lewenstein-Wilkens (HLW) approach. The Saddle-point/steepest-descend (SPSD)
solutions to the system are found to be very precise, and the study of their sensitivity
to boundary conditions indicates a phase transition in all the considered dimensions.
While this is in accordance with the commonly accepted belief in 3d and 4d, it is
not in the 2d case, in which no phase transition is expected. Some reasons that may
lead to this unfortunate result are identified and left as an outlook.

The second line of research focuses on studying how the hidden correlations
present in the pseudo-random numbers used in Monte Carlo simulations can affect
the quality of the obtained solutions. The study reveals that poor pseudo-random
number generators can have a severe impact on the calculation of the dynamic
critical exponent of the two-dimensional Ising model, z. Further, we show that a
high-frequency reseeding of the PRNGs improves the results, thus emphasizing the
superiority of true randomness. On the other hand, we also apply standard tests
for detecting correlations and find that some of the used PRNGs are, from their
perspective, indistinguishable from a QRNG. Consequently, the calculation of z can
detect some correlations that standard tests cannot, which highlights the need for
further investigation with QRNGs in order to determine which is the best choice.
Moreover, as z is known to be sensitive to the quality of the randomness used and
the value assigned to it on the scientific literature varies widely, we contribute as well
by computing it with a QRNG.

To conclude the thesis, we propose a novel type of quantum-inspired non-local
moves that effectively help Population Annealing (PA) navigate the rugged energy
landscape of 3d random plaquette gauge models, and which in 2d square lattices
are equivalent to cluster updates. We show that this method improves the ther-
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malization of small lattices and thus increases the confidence on having found the
global minimum, while its use in harder disorder instances yields lower energy states
than standard PA. As an outlook, we propose to investigate the merging of this new
method with more advanced annealing schedules in PA.

The output of this thesis can be therefore summarized, from a fundamental point
of view, in an improvement of the understanding of the processes used to find the
minimum energy configurations of spin glass systems. And, besides the main, obvious
field of spin glasses, this has potential implications in a broad range of other research
areas. Concretely, many fields related to Machine Learning make use of models that
can be understood, from a physics point of view, as spin glass systems. The difficulty
to train Deep Boltzmann Machines (which are particularly useful for unsupervised
learning), for example, is a direct consequence of the spin frustration arising from
their intricate topology, and can consequently benefit greatly from understanding
spin glass’ physics and the improvement of optimization methods.

On the other hand, examples of direct applicability are numerous as well, and
can be found in many areas of industrial relevance (for an example, see appendix A
or reference [24]). Further, as was discussed in the introduction section, optimization
problems arise not only in industrial environments, but, more importantly, in many
areas of the society as a whole’s concerns as well. These range from the distribution
of resources such as water or vaccines to the optimization of public transport routes
and, quoting the introduction’s words, we need the best solutions, and we need them
to be obtained as fast as possible. The results of the present thesis will, hopefully,
pave the way to this ultimate goal.



Appendix A

A real optimization problem

In this appendix we briefly describe an example of a real QUBO problem. We first
discuss its mapping to an Ising system and then solve it by means of an heuristic
algorithm, with the aim of demonstrating the whole process of optimization.

A.1 The Maximum Covering Problem

The Maximum Covering Problem (MCP) is one of the paradigmatic examples of
optimization problems for which a QUBO formulation is used for addressing real-
world problems of relevance. In an abstract, mathematical formulation, it reads:

Let V = {uj} and T = {αi} be two sets of covered and covering elements, respec-
tively. Find the minimum number of elements of T such that the maximum number
of elements of V are covered.

Additionally, the two following restrictions are usually considered in real-world
applications:

• Only a maximum number T of covering elements can be used

• Each covered element is weighted by an importance factor

This problem can be seen to be NP-hard, and therefore no known polynomial-
time algorithm is able to solve it optimally in the general case. By using its QUBO
formulation, then, it is usual to address it by means of classical algorithms such as
Simulated Annealing.

The MCP finds its relevance in many applications. For example, it is used in the
telecommunication industry when planning the deployment of a new telecommunica-
tion system over a city. In such case, the new antennas can only be placed at certain
sites, and one must find the minimum number of antennas that will provide service
to the maximum area of the city. Furthermore, a given a maximum number of anten-
nas is restricted by the current budget and each neighbourhood has an importance
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weighted by the amount of people living in it. The idea is, as has been previously
discussed, to formulate this problem with an equation of the form of Eq. (2.11).

In order to formulate it in its QUBO form, let us first define the binary (Ising)
variables in which the states of the problem can be encoded.

yj =

1 if element uj is covered

0 otherwise
(A.1)

gjk =

1 if element uj is covered exactly k times

0 otherwise
(A.2)

xi =

1 if element αi is active

0 otherwise
(A.3)

zt =

1 if there is a total of t active covers

0 otherwise
(A.4)

with t ∈ [0, T ], i ∈ [0, N), k ∈ [1, N), and j ∈ [0, n), where n is the number of areas to
be covered, N is the total number of covering elements and T is the maximum number
of them that we are allowed to use. The problem is completed by the definition of
the weight vector dj differentiating the priority of covering each one of the elements
uj , and the covering matrix a, whith elements aij defined as

aij =

1 if the element αi can cover the element uj

0 otherwise
(A.5)

With the binary variables defined above, yj , gjk, xi and zt, Eqs. (A.1) to (A.4), the
Hamiltonian to be minimized is [Lucas]

H = −A
∑
j

djyj +B
∑
j

[∑
k

gjk − yj

]2
+B

∑
j

[∑
k

kgjk −
∑
i

aijxi

]2
+

+ C

[∑
t

zt − 1

]2
+ C

[∑
t

tzt −
∑
i

xi

]2
. (A.6)

where the first term represents the core of the minimization problem (maximize the
number of covered elements), the two following ones represent the minimization of
the number of covering elements used, and the last two ones represent the constraint
on the maximum number of covering elements. The proportionality constants A,
B and C weight the importance of fulfilling each of the constraints in front of the
minimization problem itself, with the condition that 0 < B,C < A in order to make
sure that the ground state of the Hamiltonian does not violate them.
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Expanding Eq. (A.6) the simplified expression of the Ising Hamiltonian reads

H = =
∑

Jjklgjkgjl +
∑

Jjjkyjgjk +
∑

Jihxixh + (A.7)

+
∑

Jjkigjkxi +
∑

Jtpztzp +
∑

Jtiztxi +

+
∑

bjkgjk +
∑

bjyj +
∑

bixi +
∑

btzt,

with the coupling elements computed as

Jjkl = (1− δkl)
B

4
(1 + kl), (A.8)

Jjjk = −B

2
, (A.9)

Jih =
1

4

[
C +B

n∑
j=0

aijahj

]
, (A.10)

Jjki = −
B

2
kaij , (A.11)

Jtp =
C

4
(1 + tp), (A.12)

Jti = −
C

2
t, (A.13)

and the individual external fields as

bjk =
B

2

[
N − 2 + k

N(N − 1)

2
− k

N∑
i=0

aij

]
, (A.14)

bj =
1

2

[
B(2−N)−Adj

]
, (A.15)

bi = −C
T (T + 1)

4
+

B

2

[
CN +

n∑
j=0

aij

(
1− N(N − 1)

2
+

N∑
h=0

(1− δih)ahj

)]
, (A.16)

bt =
C

2

[
T − 1 + t

(
T (T + 1)

2
−N

)]
. (A.17)

A.2 A toy model example

Let us consider a real (small-scale) example now. Suppose a set of antennas αi

must be deployed to cover the telecommunication needs of a set of neighbourhoods
uj within a city. The map of the city along with the possible emplacements of the
antennas and their corresponding covering range are shown in Fig.A.1. Each square
represents a neighbourhood and each circle the covering range that an antenna would
have if installed at position αi. According to the definition above, Eq. (A.5), such



130 APPENDIX A. A REAL OPTIMIZATION PROBLEM

Figure A.1: Map of the city and the covering range of the antennas. Squares
represent different neighbourhoods and circles the covering range of each possible
emplacement of an antenna.

configuration can be described by the covering matrix

a =



1 0 0 0 0

1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 1 1 0

0 1 0 1 1

0 0 0 1 1

0 0 0 0 1


(A.18)

and by a certain weight vector, dj , which we consider homogeneous for simplicity
as it does not alter the discussion of the example. We also set a maximum number
of used antennas to T = 3, which is also seen to not alter the solution because it
is enough to cover all the city. The graph describing all the interactions between
the spin variables is shown in Fig. (A.2), in which each dot represent each of the
Ising variables defined to encode the problem’s states, yj , gjk, xi and zt, Eqs. (A.1)
to (A.4), and the lines between them represent the interactions between them as
given by Eq.(A.7). Furthermore, each line has a different colour depending on the
strength of the coupling, Eqs.(A.8) to (A.13), as well as each dot has a different colour
depending on the strength of the external individual field, Eqs. (A.14) to (A.17).

Finding the ground state of this problem by means of a simulated annealing
algorithm finally yields the optimal distribution of active antennas, Fig.A.3.
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Figure A.2: Graph of the QUBO formulation of the problem. Each dot
represents a spin variable (yj , gjk, xi and zt), and lines between them represent their
connections as given by Eq. (A.7). Colours of the dots and the lines label the external
individual fields’ and couplings’ strengths.

Figure A.3: Optimal distribution of the antennas. The whole city is covered if
antennas are placed in positions α0, α2 and α4.
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Appendix B

Values of the dynamic critical
exponent

In Tables B.1 and B.2 we gather all calculated exponents from the literature in two
and three dimensions, to the best of our knowledge, for theoretical, MC as well as
experimental approaches. This is the data plotted in Fig. 4.6.
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Year Reference Method z
1981 Bausch Theory 2.126
1984 Domany Theory 2
1985 Williams MC 2.13(3)
1987 Ito MC 2.132± 0.008
1987 Tang MC 2.17± 0.04
1988 Ito MC 2.2
1988 Mori MC 2.076± 0.005
1992 Stauffer MC 2.18
1993 Dammann Theory 2.183± 0.005
1993 Wang Theory 2.207± 0.008
1993 Muenkel MC 2.21± 0.03
1995 Grassberger MC 2.172± 0.006
1995 Gropengiesser MC 2.18± 0.02
1995 Li MC 2.1337(41)
1996 Li MC 2.143(5)
1996 Nightingale MC 2.1665(12)
1997 Soares MC 2.16± 0.03
1997 Wang MC 2.168± 0.005
1997 Wang MC 2.180± 0.009, TP
1997 Wang MC 2.167± 0.008, hc
1998 Prudnikov Theory 2.093
1998 Wang Theory 2.2
2000 Nightingale MC 2.1667± 0.0005
2005 Dunlavy Experiment 2.09± 0.06
2006 Krinitsyin Theory 2.0842± 0.0039
2007 Canet Theory 2.16(1)
2007 Lei MC 2.16
2007 Murase MC 2.193(5)
2007 Murase MC 2.198(4), hc
2007 Murase MC 2.199(3), TP
2009 Nalimov Theory 2.020± 0.045
2009 Nalimov Theory 2.023± 0.053
2009 Nalimov Theory 2.026± 0.055
2009 Nalimov Theory 2.100± 0.089
2009 Nalimov Theory 2.105± 0.084
2009 Nalimov Theory 2.104± 0.080
2009 Nalimov Theory 2.127± 0.089
2009 Nalimov Theory 2.132± 0.084
2009 Nalimov Theory 2.130± 0.080

2009 Nalimov Theory 2.037+0.033
−0.0

2009 Nalimov Theory 2.041+0.040
−0.0

2009 Nalimov Theory 2.042+0.041
−0.0

2017 Duclut Theory 2.28
2017 Duclut Theory 2.16
2017 Duclut Theory 2.15
2017 Duclut Theory 2.14
2022 Adzhemyan Theory 2.14(2)

Table B.1: All calculated exponents from the literature in two dimensions, to the
best of our knowledge.
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Year Reference Method z
1987 Wansleben MC 2.03± 0.04
1991 Wansleben MC 2.04± 0.03
1992 Stauffer MC 2.09
1993 Ito MC 2.06(2)
1993 Muenkel MC 2.08± 0.03
1994 Grassberger MC 2.032± 0.004
1995 Gropengiesser MC 2.04± 0.01
1997 Prudnikov Theory 2.017
1999 Jaster MC 2.042(6)
2000 Ito MC 2.055(10)
2002 Livet Experiment 2.2
2006 Krinitsyin Theory 2.0237± 0.0055
2007 Canet Theory 2.09(4)
2007 Murase MC 2.065(25), bcc
2007 Murase MC 2.057(25), fcc
2009 Nalimov Theory 2.011± 0.012
2009 Nalimov Theory 2.013± 0.012
2009 Nalimov Theory 2.014± 0.011
2009 Nalimov Theory 2.021± 0.006
2009 Nalimov Theory 2.022± 0.005
2009 Nalimov Theory 2.022± 0.005
2009 Nalimov Theory 2.023± 0.006
2009 Nalimov Theory 2.024± 0.005
2009 Nalimov Theory 2.024± 0.005

2009 Nalimov Theory 2.013+0.011
−0.0

2009 Nalimov Theory 2.014+0.011
−0.0

2009 Nalimov Theory 2.014+0.011
−0.0

2010 Collura MC 2.020(8)
2015 Livet Experiment 2.28
2015 Niermann Experiment 2.06
2017 Duclut Theory 2.029
2017 Duclut Theory 2.024
2017 Duclut Theory 2.023
2017 Duclut Theory 2.025
2017 Duclut Theory 2.021
2017 Duclut Theory 2.021
2018 Livet Experiment 1.96(11)
2020 Hasenbusch MC 2.0245(15)
2022 Adzheyman Theory 2.0235(8)

Table B.2: All calculated exponents from the literature in three dimensions, to the
best of our knowledge.
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