

Improving autonomous driving systems with

CPU extensions for point cloud processing

Pedro Henrique Exenberger Becker

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. No
s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing).
Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En
la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No se
autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un
sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana
o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al resumen de
presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es
obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions: Spreading
this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) and the
cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading nor availability
from a site foreign to the UPCommons service. Introducing its content in a window or frame foreign
to the UPCommons service is not authorized (framing). These rights affect to the presentation
summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s
obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Improving Autonomous Driving
Systems with CPU Extensions for

Point Cloud Processing

Pedro Henrique Exenberger Becker

Advisors: Dr. José-Maria Arnau
Prof. Antonio González

Department of Computer Architecture
Universitat Politècnica de Catalunya

This dissertation is submitted for the degree of
Doctor of Philosophy

July 2024

Acknowledgements

When I was around twelve - for reasons I do not remember - I thought it would be cool
to design computers. And ever since, this has been my plan. Seventeen years later, I am
defending my PhD in Computer Architecture. And I am quite happy about it.

Many times since college, however, I worried of failing or not knowing enough. I would
sometimes re-read random chapters in the Patterson and Hennessy book just to keep it
fresh, a seminal paper with concepts I wish I had more clear, or even some very informative
Wikipedia entries. Research changed it all, however. From the time I was introduced to
research, still as an undergrad student in Brazil around 2015, until now, I figured out it was
impossible to know everything. Even better, I learned knowledge evolves. And it was a
relief. As long as I could (re-)learn something, I found, it would be fine. And this is why I
am very happy and proud about the thesis that comes in the following pages. Apart from
the scientific discoveries we present, which I truly believe are relevant contributions to the
field, it is also a proof to myself that I can learn new concepts, tools, and related work to
find open problems and potential solutions. It is a indication to my twelve-year-old self
that I am going in the right direction.

For the aforementioned reasons I would like to thank my advisors Prof. Antonio
González and Dr. José-Maria Arnau, for their guidance throughout these four and a half
years of PhD. They many times guided my focus to where it was relevant, while also giving
me space to come up with my own ideas. This thesis would not exist without their devoted
time for meetings, improvement suggestions, and technical discussions. Also, thank you
for trusting in me. In my opinion, the trust of the advisors is the most important thing for a
PhD student, and I feel I always had your trust to explore ideas, experiments, tools, related
work, and that was the main motivation for my PhD journey.

I would also like to thank the "lab mates" with whom I shared the ARCO group at UPC
for all these years. Albert, Andreas, Aurora, Bahareh, David, Dennis, Diya, Franyell, Ignacio,
Imad, Jorge, Marc, Martí, Mehdi, Mojtaba, Mohammad, Nicolas, Nitesh, Puria, Pratyush,
Raúl, Rodrigo. Particular thanks for Franyell, Marc, and Raúl for our almost daily coffee at

iv

10 in the morning, where a surprisingly high amount of our PhD problems would be solved
with each others help.

I would also like to thank my parents Raquel and Denis for their lovely support 24/7.
Somehow you managed to make me feel safe and cared for even if living overseas. I always
felt like you would catch the next plane and come for me if I needed to. That was never
necessary, thankfully, but I am sure you would if needed, and that is much much more
than I could ever ask you to. Thanks to my brothers as well, Thales and Augusto, for also
supporting me and giving advice whenever I needed it.

Thank you to all my friends who did not even know they were helping but whose
friendship was heartwarming. Particularly, thank you, Bruno and Gustavo, for being my
best friends since the time I first dreamed about study computers, and for coming to Spain
to visit. Thank you Brunno for the almost daily conversations about everything, any time.
Thank you Arthur and Gustavo for the amazing friendship we built in a bit more than a
year here in Barcelona.

Finally, thank you Míriam for your infinite amount of support, care, and love. Meeting
you was the best part of these years in Barcelona. I love you.

Funding Acknowledgements

This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s Horizon
2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under
grants PID2020-113172RB-I00 and TIN2016-75344-R (AEI/FEDER, EU), the Catalan Agency
for University and Research (AGAUR) under grant 2021SGR00383, the ICREA Academia
program, and the FPI-UPC 2020 grant.

Abstract

Autonomous Driving Systems (ADS) are at the cusp of large-scale adoption, promising
accident reduction and market potential. However, the complex software and sensor data
pressure for better hardware support in this safety-critical scenario, where high performance
is mandatory to meet latency deadlines. Additionally, energy efficiency, cost, and volume
must also be first-class for market feasibility, calling computer architects into action.

To enrich hardware support for ADS, we carry out a performance and power charac-
terization of Autoware.ai, a state-of-the-art ADS software stack. We find significant time
spent processing Light Imaging Detection and Ranging (LiDAR) sensor data, which are
widely used by ADS. LiDAR captures Three Dimensional (3D) point clouds for tasks such
as segmentation, localization, and object detection.

Despite its importance, hardware support for LiDAR has only recently gained traction.
Further, while most point cloud processing algorithms run on Central Processing Units
(CPUs), recent works propose costly hardware accelerators. Instead, we aim to use existing
general-purpose hardware and software for point cloud processing with minor CPU aug-
mentations. For that, we introduce a small set of CPU instructions targeting point cloud
neighbor search based on k-d trees, a key operation used in various algorithms.

The first technique we propose is K-D Bonsai, which reduces data movement during the
neighbor search by compressing k-d tree leaves in execution time, exploiting value similarity.
K-D Bonsai further compresses the data using a reduced floating-point representation,
exploiting the physically limited range of point cloud values collected with LiDAR. We
implement K-DBonsai through a small set of newCPU instructions to compress, decompress,
and operate on points. To maintain baseline accuracy, we carefully craft the instructions to
detect precision loss due to compression, allowing re-computation in full precision to take
place if necessary. Therefore, K-D Bonsai reduces data movement, improving performance
and energy efficiency while guaranteeing baseline accuracy and programmability. K-D
Bonsai improves the end-to-end latency of the segmentation task of Autoware.ai by 9.26%
on average, 12.19% in tail latency, and reduces energy consumption by 10.84%. Unlike the

viii

expensive accelerators proposed in related work, K-D Bonsai improves neighbor search
with minimal area increase (0.36%).

In the second technique, we found that consecutive neighbor search queries are often
similar, visiting k-d tree nodes with considerable resemblance. We leverage this observation
to cheaply speed up neighbor search with the available CPU Vector Processing Unit (VPU).
We propose a hardware/software co-design called Caravan. At the software level, Caravan-
SW exploits search similarity, gathering consecutive queries to search for their neighbors in
parallel with Single Instruction Multiple Data (SIMD) instructions. Yet, when the navigation
of queries diverges, particularly in the deeper levels of the k-d tree, Caravan-SW faces
sparsity and the VPU lanes are underutilized. We tackle this with Caravan-HW, adding
two new instructions that re-index valid vector elements and allow fast operand shuffling
and dense SIMD operations to take place, suppressing the hard-to-predict runtime sparsity
of Caravan-SW. With AVX512, Caravan-SW speeds up neighbor search by 4.05× (1.85×
end-to-end) in Autoware.ai point cloud segmentation. With the additional Caravan-HW
support, the leaf processing part of neighbor search can be further optimized, boosting gains
to 5.19× (1.97× end-to-end), with minimal area costs. Our programmable and minimally
intrusive solution has end-to-end benefits comparable to accelerators.

Table of Contents

List of Figures xiii

List of Tables xvii

Acronyms xix

1 Introduction 1
1.1 Applications and Benefits of Autonomous Vehicles 1
1.2 Computer System for Autonomous Vehicles 3

1.2.1 Functional Requirements . 3
1.2.2 Architectural Challenges . 5
1.2.3 Help Wanted: Computer Architects for LiDAR’s Point Cloud Pro-

cessing . 8
1.3 Problem Statement, Objectives, and Contributions 11

1.3.1 Characterizing a State-of-the-Art Software Stack for Autonomous
Vehicles . 13

1.3.2 Improving Support for LiDAR’s Point Cloud Processing on CPU . . 14
1.4 Thesis Organization . 17

2 Measuring the Problem 19
2.1 AVs Overview . 19

2.1.1 External Data . 20
2.1.2 Computing . 21

2.2 Characterization Methodology . 26
2.2.1 Autoware Execution Environment 26
2.2.2 Characterization Procedures . 28
2.2.3 Methodology Limitations . 29

2.3 Characterization Analysis . 30

x Table of Contents

2.3.1 Latency Characterization . 30
2.3.2 Power Characterization . 33

2.4 Chapter Takeaways . 34

3 Point Cloud Processing for Autonomous Vehicles 37
3.1 Background . 38

3.1.1 LiDAR and Point Clouds . 38
3.1.2 Searching Neighbors in Point Clouds 39
3.1.3 Efficient Neighbor Search with K-D Trees 42

3.2 Related Work and State-of-the-art Hardware Support for Point Cloud Pro-
cessing . 44

3.3 Chapter Takeaways . 46

4 K-D Bonsai: Reducing Data Movement in Point Cloud Search 47
4.1 Compressing Point Clouds on K-D Trees for Radius Search 48

4.1.1 Compression Based on Value Similarity 48
4.1.2 Compression Via a Smaller Representation 50
4.1.3 How to Keep Accuracy Despite a Smaller Representation 51

4.2 Proposed Design . 53
4.2.1 Hardware Support for K-D Tree Compression 53
4.2.2 Changing the CPU . 55
4.2.3 Software Impact . 57

4.3 Results . 60
4.3.1 Evaluation Methodology . 60
4.3.2 Performance Analysis . 62
4.3.3 Area and Power Analysis . 65
4.3.4 Energy Analysis . 65

4.4 Chapter Takeaways . 66

5 Caravan: Maximizing SIMD Efficiency in Point Cloud Search 67
5.1 Caravan . 69

5.1.1 Exploiting Similarity in Subsequent Queries 70
5.1.2 Caravan-SW . 71
5.1.3 Implications of Caravan-SW . 74
5.1.4 Caravan-HW . 76

5.2 Results . 82
5.2.1 Evaluation Methodology . 82

Table of Contents xi

5.3 Synthesis Analysis . 85
5.3.1 Performance Analysis . 86

5.4 Chapter Takeaways . 88

6 Conclusions 91
6.1 Conclusions . 91
6.2 Future Work . 93

References 95

List of Figures

1.1 The computation pipeline for the Autonomous Driving (AD) task. Au-
tonomous Vehicle (AV) typically performs four major steps: sensing, scene
recognition, planning, and control. 4

1.2 Use cases of ARMProcessors and Intellectual Propertys (IPs) for Automotive,
adapted from [8]. The higher the processing power the higher the aid from
the computer platform in the driving task, from indicators to the drivers,
to driving assistance, and finally fully AV. In the figure Central Processing
Units (CPUs) can be A-class (high performance), M-class (energy-efficient),
or R-time (real-time). 5

1.3 An example of a point-cloud obtained with Light Imaging Detection and
Ranging (LiDAR). Data from [67]. 9

1.4 Strengths and Weaknesses of Camera and LiDAR for Autonomous Driving
Systems (ADS). Adapted from [163]. 10

1.5 The share of execution time devoted to neighbor search in two key LiDAR-
based algorithms used in AD. Measured on an Intel®Core™i5-10210U CPU. 12

2.1 A high-level description of the Autoware architecture. Sensor data and
pre-existing high-definition maps feed the software stack. 20

2.2 The publisher-subscriber scheme for node communication in Robot Operat-
ing System (ROS). A node publishes its output into a memory space, called
topic. Multiple nodes can subscribe to a topic, being notified by ROS when
new messages (data) are published on it. 22

2.3 The experimental setup. Preexisting files for sensor data and point-cloud
map provide real-life inputs. Profiling tools collect characterization data. . 26

xiv List of Figures

2.4 The latency measurements accounted for in our experimentation. Single
node process time corresponds to the processing inside a node, excluding
communication overheads. End-to-end process time measures the latency
since a frame (e.g., camera image, LiDAR point-cloud) enters the system
until its final contribution to the AVs’ perception. 29

2.5 Autoware’s single node latency for different nodes. Experimentation in-
cludes different image detector nodes. 31

2.6 Autoware’s end-to-end perception latency. Experimentation considers the
usage of different image detector nodes. 33

3.1 The Velodyne HDL-64E is an example of LiDAR sensor used for AD. It has
a 360º horizontal Field of View (FoV), and a 26.8º vertical FoV. Adapted
from [52]. 38

3.2 A LiDAR mounted on a vehicle. The sensor is typically placed on top of the
vehicle to avoid occlusion and exploit its full range of operation. Adapted
from [154]. 39

3.3 The range view of the Velodyne Ultra Puck. At each angle θ (horizontal
FoV), multiple laser beams cover an aperture φ (vertical FoV) capturing the
distance ρ to a reflective surface. The collected point cloud can be seen as a
range image (right). Reproduction from [85]. 39

3.4 A visual example of the neighbor search operation on a point cloud. 40
3.5 The k-d tree splits the data in two, at the median value of the coordinate

with the higher spread, which is stored at the node. During the search, a
query q uses this value to decide how to descend on the tree. 43

4.1 Nearby points in space are often held by the same k-d tree leaf, creating
opportunity to compress data due to value similarity. Particularly, the sign
and exponent fields frequently repeat within each point’s coordinate. . . . 49

4.2 Visual representation of Equation 4.9. 54
4.3 The new components added to the baseline CPU and how they interact

with pre-existing ones. 55
4.4 Compressing points in a leaf node. Load the points into the ZipPts Buffer.

Find coordinates with same < sign, exponent > pairs, e.g., x coordinate
(setting cX to 1). Reorder bits in the ZipPts Buffer and set the compres-
sion encoding. Store compressed data in the memory (cmprsd_strct_array),
adding a reference to it in the leaf node for future look-up. 56

List of Figures xv

4.5 Details of the FU for square of the difference with error computation (Equa-
tion 4.5). 57

4.6 Vector square of the differences FUs. 58
4.7 (a) Hardware metrics during the execution of the extract kernel of eu-

clidean clustering considering the baseline code and the proposed Bonsai-
extensions. Average across all executed frames. (b) Number of loaded bytes
to fetch points from the first frame of the data-set during radius search
(traversal). 63

4.8 Accesses on different levels of the memory hierarchy. 64
4.9 The distribution of the end-to-end latencies for the euclidean cluster algo-

rithm. The dashed line indicates the mean value. Half the values are within
the box limits. 64

4.10 The distribution of the energy consumption for the extract kernel in the
euclidean cluster algorithm. The dashed line indicates the mean value. Half
the values are within the box limits. 66

5.1 Histogram of the distance between consecutive points collected by a Velo-
dyne LiDAR [67]. 68

5.2 Subsequent queries Qi and Qi+1 share most of their visited nodes, and can
traverse the k-d tree together. 68

5.3 Packed queries can disagree on the next sub-tree to visit. 72
5.4 The number of visited nodes for the neighbor search operation in a segmen-

tation algorithm. Caravan-SW successfully exploits search locality to avoid
visiting redundant nodes. 73

5.5 Total neighbor searches performed, with a category breakdown in the
segmentation task with Caravan-SW. 74

5.6 The percentage of valid queries on Caravan-SW with varying QPsizes in a
segmentation task. 75

5.7 The number of steps to perform all-to-all comparisons between two sparse
vectors. For a traditional CPU, it is necessary to choose one vector to iterate
and broadcast, while fixing the other one, leading to Vector Processing Unit
(VPU) underutilization. With Caravan-HW support, vectors can be shuffled
to fully occupy the SIMD lanes, increasing VPU efficiency. 78

5.8 The leaf node sparsity varies at runtime. Sometimes, we have less valid
queries than valid points, sometimes the opposite. Results for aMinQPsize of
16 queries. 78

xvi List of Figures

5.9 Example code on how to use EDIRE and EDIRS instructions along with ex-
isting x86 instructions. In the example, two sparse vectors A and B compare
their elements all-to-all to check which are closer than the thr_dist.
The Caravan-HW instructions reduce the loop iterations. 81

5.10 The permutexvar instruction from Intel Intrinsics [64] that, in our case,
consume the indices vectors generated by EDIRE and EDIRS instructions to
arrange valid elements from sparse vectors into new vectors to maximize
Single Instruction Multiple Data (SIMD) efficiency. Adapted from [64]. . . 82

5.11 End-to-end speedup from Caravan-SW and Caravan-HW for Autoware’s
segmentation. 83

5.12 Speedup from Caravan-SW and Caravan-HW considering only the neighbor
search. 84

5.13 Caravan-HW end-to-end speedup is close to the Theoretical Maximum. . . 85
5.14 Required steps on leaf processing to vectorly compute all-to-all iterating

on different variables with a Min QPsize of 16. 87

List of Tables

1.1 Levels of automation based on SAE J3016 [139]. 6

2.1 Summary of important Autoware nodes. 25
2.2 Environment hardware and software platforms. 28
2.3 Computation paths description. 32
2.4 CPU and GPU mean power dissipation. 34

4.1 Classification error of radius search for euclidean clustering using smaller
floating-point representations. 50

4.2 The proposed bonsai-extension instructions. 59
4.3 Sub-sampling error. 61
4.4 Baseline CPU model. 62
4.5 Area and power for baseline CPU and K-D Bonsai. 65

5.1 Synthesis data for area and power required by the instructions added with
Caravan-HW. 86

Acronyms

kNN K-Nearest Neighbors.

2D Two Dimensional.

3D Three Dimensional.

AD Autonomous Driving.

ADS Autonomous Driving Systems.

ASIC Application Specific Integrated Circuit.

AV Autonomous Vehicle.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

DARPA Defense Advanced Research Projects Agency.

DNN Deep Neural Network.

EN Euclidean Neighbors.

FoV Field of View.

FP Floating-Point.

FPGA Field-Programmable Gate Array.

FPS Frames per Second.

FU Functional Unit.

xx Acronyms

GNSS Global Navigation Satellite System.

GPU Graphics Processing Unit.

HBM High Bandwidth Memory.

HD High-Definition.

IMU Inertial Measurement Unit.

IP Intellectual Property.

ISA Instruction Set Architecture.

LiDAR Light Imaging Detection and Ranging.

LSB Least Significant Bit.

ML Machine Learning.

NHTSA National Highway Traffic Safety Administration (US).

OoO Out-of-Order.

PAPI Performance Application Programming Interface.

PCL Point-Cloud Library.

R&D Research & Development.

RAPL Running Average Power Limit.

ROS Robot Operating System.

SAE Society of Automotive Engineers.

SIMD Single Instruction Multiple Data.

SoC Systems on Chip.

TPU Tensor Processing Unit.

UKF Unscented Kalman Filter.

Acronyms xxi

VL Vector Length.

VPU Vector Processing Unit.

VR Virtual Reality.

WHO World Health Organization.

1
Introduction

“ The future of this new technology is so full of promise. It’s
a future where vehicles increasingly help drivers avoid
crashes. It’s a future where the time spent commuting is
dramatically reduced, and where millions more—including
the elderly and people with disabilities–gain access to the
freedom of the open road. And, especially important, it’s a
future where highway fatalities and injuries are
significantly reduced. ”National Highway Traffic Safety Administration

US Department of Transportation [103]

1.1 Applications and Benefits of Autonomous Vehicles

The expectation for Autonomous Vehicles (AVs) to take the streets as real-life products
took decades, but it is finally starting to happen [14, 17, 42, 98, 106, 108, 144, 159]. While
the concept of an automatically driven vehicle – and the associated benefits – has been
idealized for long, only recently has the technology started to reach the huge computation
capabilities that are required for Autonomous Driving (AD) [86, 125, 156].

The applications are several, ranging from personal use [42, 144] to vehicle-sharing
services [16, 42, 159], delivery [106], or smart cities [124], the technology that allows
machines to navigate autonomously has the power to revolutionize society [75]. Arguably,
its main appeal is the expected, and needed, reduction in fatal traffic accidents. According
to the World Health Organization (WHO) [164], traffic accidents account for 1.2 million

2 Introduction

deaths and from 20 to 50 million injuries, with many incurring a disability, worldwide
every year. It is also the leading cause of death for children and young adults aged 5–29
years. Meanwhile, according to the US Department of Transportation, 94% of fatal crashes
in the US are due to human error [103]. This puts pressure on finding solutions to vanish
traffic accidents with technology help. In this regard, AVs are expected to play a vital role.
Equipped with multiple sensors, these vehicles continuously capture massive data from
the driving scene, perceiving every detail with a 360º Field of View (FoV). The sensed data
is then processed by a combination of algorithms that aim to make the driving decisions
as accurate as possible. The final goal is not only to drive as well as humans, but much
better than them, removing human error factors, and significantly reducing fatalities and
injuries [103].

In fact, the track record of AVs safety is promising. In a recent article [78], Waymo, one
of the pioneer companies in the field, compared crashes data between their AV solution
against human drivers. They consider more than 7 million miles driven by Waymo vehicles,
and declared an 85% reduction in crashes with some injury reported, and a 57% reduction
in crashes that needed to be reported to the police. Although their study is limited i) to
the cities where they operate; ii) to scenarios with a maximum speed of 50 mph (around 80
km/h); and iii) not including severe weather conditions (e.g., thick fog or heavy rain), it
shows the potential AVs have to drastically reduce accidents.

While the safety benefits by themselves already incur aggregated value, AVs have other
features that also enhance their commercial appeal. Particularly, the absence of a human
driver is a key advantage, as the target market enlarges. Anyone can benefit from door-
to-door journeys, with no license needed. Night trips can be carried without a concern
that the driver will fall asleep. The time to find a parking spot is no longer a passenger’s
problem. These and other improvements on mobility motivate multiple companies to work
on making AVs a reality, including Baidu [17], Cruise [42], Daimler [43], Mobileye [98],
NVIDIA [108], Tesla [144], TierIV [147], and Waymo [159], to name a few.

These companies focus on applying AVs technology to improve existing services and
people’s lives. For example, different companies such as Alphabet’s Waymo [159], Baidu’s
Apollo [16], and General Motors’ Cruise [42] have started to operate robotaxis, a neologism
to describe ride-hailing services operated with AVs. By using AVs, they can reduce opera-
tional costs, optimize resource allocation, and even reduce environmental impact [48, 77].
This in turn can convert into lower fares and standardized user experience, resulting in
better service for customers. Removing the driver also brings unexpected but positive
side-effects such as higher passenger safety. In 2020, for example, 998 Uber drivers were

1.2 Computer System for Autonomous Vehicles 3

reported for sexual assault in the United States, according to a recent safety report by
Uber [150].

Expanding the examples, the AV technology can also be employed for delivery. The
company Nuro [106] targets last-mile distribution and converts the needless passenger seats
into storage volume, maximizing the utility of the vehicle’s space for their services. For
long-distance delivery, Daimler Trucks [43] expects AD systems to improve their logistic
performance by enabling trucks to operate continuously. With a less obvious application,
a start-up [124] is embedding AV technology to automatize cities’ waste collection. They
projected waste containers embedded with AD capabilities. Containers that are full self-
drive to the waste center, and a new one self-drives to replace the former. This avoids the
inconveniences of traditional waste collection with garbage trucks such as full containers
waiting to be replaced, noise, and traffic jams.

1.2 Computer System for Autonomous Vehicles

AVs depend on computers to perform the driving. Following, we provide a brief overview
of the workloads they need to execute, followed by a number of computer architecture
challenges associated with it. We then briefly narrow the discussion to Light Imaging
Detection and Ranging (LiDAR) sensors, a sensor used by AVs, and how processing its
sensed data is key for AVs, requiring better hardware support.

1.2.1 Functional Requirements

The concept of Autonomous Driving Systems (ADS) evolved since its early years of research
(1980’s). At that time, some researchers pursued the development of automated highway
systems, in which vehicles depend significantly on the highway infrastructure to guide
them [2]. In the 2000s, however, there was a convergence towards enabling the vehicles to
individually make their driving decisions, revoking external infrastructure support. This
allows an organic adoption of AVs, which can incrementally share the road with human
drivers. It also lowers market risks as adapting vehicles to the current cities is more likely
to be accepted than adapting the cities for them. When this was shown to be a possibility,
particularly after the proof of concept in the Defense Advanced Research Projects Agency
(DARPA) challenges [24, 151], the AV technology faced a new horizon whose chase led to
the scenario we have today: we are in the cusp of AD adoption [2, 75].

In this paradigm, we need embedded computer systems in the vehicle to performAD. Just
like a human driver, therefore, the system needs to sense the environment, understand

4 Introduction

① The vehicle’s sensors collect

data from the environment.

② Scene recognition process sensed data

to identify and track traffic elements, and

localize the vehicle.

③ Predictions, destination, and traffic

rules guide planning algorithms to

calculate upcoming route and speed.

④ The computer maneuvers the

vehicle, adjusting the steering wheel and

throttle position so it drives according to

the computed decisions.

LiDAR

Camera Steering wheel

Acceleration

Figure 1.1 The computation pipeline for the AD task. AV typically performs four major
steps: sensing, scene recognition, planning, and control.

it, plan, and control the vehicle. Figure 1.1 illustrates these steps. All we have to do,
therefore, is to transpose this human task to a computer task, hereby referred to as the
AD computing pipeline. Easier said than done. We nevertheless try to break down this
transposition following. In time, we indicate that a broader and deeper explanation of an AV
system can be found in Chapter 2, with a dissected real-life example. For now, we provide
a high-level explanation to motivate the discussion. While most companies do not share
their implementation details, we base ourselves on a structure typically reported by the
contemporary literature and state-of-the-art open-source projects [4, 68, 86, 88, 168, 169,
172].

Getting started with our transposition analogy, the ADS needs to sense the environment
(step 1⃝ in Figure 1.1). For this, they are equipped with multiple sensors including cameras,
LiDAR, radar, Global Navigation Satellite System (GNSS), and Inertial Measurement Unit
(IMU). This rich data collection is the starting point for the subsequent step, scene recogni-
tion, where a complex chain of algorithms perform, among others, object detection and
localization (step 2⃝ in Figure 1.1). For object detection, algorithms identify static traffic
elements (e.g., roads and traffic lights) and dynamic traffic participants (e.g., a pedestrian, a
car, etc), classifying them according to their role in the traffic scene, and adding semantics
to the perceived environment. Subsequently, other algorithms are used to track each of
these participants, inferring their position and speed, and predicting their route for the
near future. Concurrently, the vehicle utilizes sensed data to determine its own position.
The outcomes of the different algorithms are then fused into a unified representation of
the driving scene. Afterward, the ADS can utilize planning algorithms (step 3⃝ in Figure
1.1) to perform short-term decisions (e.g., avoid an obstacle) and long-term decisions (e.g.,
optimize the route to destination). Finally, the planned decisions are converted into actions
through control commands (step 4⃝ in Figure 1.1), such as turning the steering wheel or
activating the throttle.

1.2 Computer System for Autonomous Vehicles 5

Figure 1.2 Use cases of ARM Processors and IPs for Automotive, adapted from [8]. The
higher the processing power the higher the aid from the computer platform in the driving
task, from indicators to the drivers, to driving assistance, and finally fully AV. In the
figure Central Processing Units (CPUs) can be A-class (high performance), M-class (energy-
efficient), or R-time (real-time).

The more advanced the implemented driving features are, the more situations the AV
can handle. Figure 1.2 illustrates this concept based on use cases for Arm processors and
Intellectual Property (IP) targeting automotive [8]. These ’driving skills’ are referred to as
the Level of Autonomy, which is a relevant metric to indicate how mature a given ADS
is, and also to compare the proficiency of different AD solutions. A standard taxonomy
to categorize ADS is maintained by the Society of Automotive Engineers (SAE) [139],
which is adopted by relevant government traffic agents guidelines such as the National
Highway Traffic Safety Administration (US) (NHTSA) policy framework [103]. Table 1.1
summarizes the six possible categories for driving automation defined by SAE. It varies
from no autonomy (level 0) to full autonomy (level 5). The latter is the target level of
automation for AVs, where the vehicles may not even have a steering wheel given that the
ADS can completely handle all driving scenarios, at all times and conditions. However, as
we discuss next, achieving the highest levels of autonomy (4 or 5) is a defiant goal.

1.2.2 Architectural Challenges

Coping with all possible driving scenarios is very challenging as even skilled human drivers
are susceptible to accidents. Notwithstanding, AVs need to surpass human driving skills

6 Introduction

Table 1.1 Levels of automation based on SAE J3016 [139].

Automation Level Description

0 - No Automation Human driver is in complete control of all aspects of driving.

1 - Driver Assistance Vehicle assists with either steering or acceleration, but not
both simultaneously, and the driver still performs most of
the driving.

2 - Partial Automation Vehicle can control both steering and acceleration simultane-
ously under certain conditions, but the driver must remain
engaged and monitor the environment.

3 - Conditional Automation Vehicle can perform all driving tasks under certain condi-
tions, but the driver must be prepared to take over when
requested.

4 - High Automation Vehicle can perform all driving tasks under certain condi-
tions, without any human driver intervention.

5 - Full Automation Vehicle can perform all driving tasks under all conditions,
without any need for human intervention.

to be justified and gain public acceptance [73], which requires a lot of processing power
from their embedded computers [63]. For example, a work on the speed of processing
in the human visual system [145] had shown that the fastest reaction time of a human
is around 150 ms. Consequently, studies generally pose a reaction time constraint of 100
ms for AVs [39, 86], a tight interval to encompass the driving pipeline from sensing to
acting. Different studies – including contributions from this thesis – have found high-end
platforms to be incapable of meeting such constraints at all times [19, 69, 172]. Hence,
reducing latency to compute AD algorithms is paramount.

There is also substantial pressure for higher performance considering ADSs are increas-
ingly adopting sensors to enhance their perception abilities and achieve higher levels of
autonomy (e.g., level 5). In 2020, Waymo gave details about their vehicles’ sensors [158],
reporting the use of 29 cameras, 5 LiDARs, and 6 radars in a single vehicle. This directly
impacts the amount of data to process, pressuring the hardware for greater computation
power. In the same trend, a white paper by Huawei [156] stated that computer performance
is the limiting factor for AD, forecasting a necessary improvement of 10× to transition
from level 4 to level 5 autonomy.

However, despite industry progress, no company or academic study has reported achiev-
ing level 5 autonomy yet. Notwithstanding, this should motivate research since previous
advancements in autonomy levels were obtained through industry and academia efforts for

1.2 Computer System for Autonomous Vehicles 7

improving sensors, algorithms, and hardware. Particularly, hardware improvements were
important enablers for advances in ADS so far. Indeed, due to the importance of building
and optimizing the computing system, some AVs companies reported spending around 50%
of their Research & Development (R&D) budget on it [168], placing computer architects
and hardware engineers as a mainstay for assuring well-suited hardware for AD.

Waymo, for instance, discussed how a 10× boost in their CPU performance, from 2012
to 2017, allowed them to cut-through levels of autonomy [125]. They also affirm that
improving computer performance is required to drive fully autonomously on complex city
streets and for a smoother and more robust driving experience. Similarly, Mobileye recently
announced their new Systems on Chip (SoC) EyeQ6H, tailored for AD [97]. According
to them, the EyeQ6H boosts the computing power against its predecessor EyeQ5H by
3×. Such improvement was one of the pillars for Mobileye to move from level 2 driving
assistance to level 4 AD. Consonant, Nuro announced a partnership with Arm, to leverage
recent Arm CPUs targeting AD [8, 9]. These CPUs are designed specifically to execute AVs
applications, hence to be employed on upcoming, improved versions of the Nuro Driver™.

While increasing the performance of the computing platform is a top priority, other
relevant facets must also be accounted for. Energy consumption, for instance, is another
critical design concern. If energy consumption is too high, the operational range of the
vehicle will be reduced [86, 88, 156]. This is particularly problematic for electric vehicles,
which gained traction due to their reduced carbon footprint, but which are also known to
struggle with battery limitations [32]. On the other hand, because of the strict performance
requirements, current AD solutions rely on power-hungry hardware, including a combina-
tion of high-end CPUs and Graphics Processing Units (GPUs) [69, 125, 168]. Thus, not only
do they harm battery duration on their own, but also incur power dissipation that adds
extra cooling necessities, further increasing energy consumption [86, 156].

Notwithstanding, achieving energy efficiency is not the only challenge that computer
architects need to cope with when designing performing hardware for AVs. Simplistic solu-
tions such as adding more hardware increase cost and occupied volume, which are relevant
concerns in some cases. Last-mile delivery vehicles [82], for example, are constrained by
size as they are generally smaller than those carrying passengers [30]. In general, consider-
ing the aforementioned constraints, it is necessary to find ways of improving performance
with minimal overheads in other hardware requirements.

One potential approach for this is to utilize hardware accelerators. In this case, one
can map software that executes on a general-purpose CPU to a more specific hardware
such as GPUs or custom Application Specific Integrated Circuits (ASICs). Let’s take the
realm of Deep Neural Networks (DNNs) to exemplify. We will see that different hardware

8 Introduction

accelerators have been proposed in recent years [114], surpassing performance and/or
energy-efficiency of CPU and even GPU counterparts, for tasks such as object detection in
images. However, adopting application-specific hardware in the computing system platform
leads to integration and development challenges.

For example, the latency overheads for off-loading tasks to the accelerator should
be less than the reduced computation time, which is not always the case [59, 69, 168].
Moreover, GPU acceleration is only suitable when the target application can benefit from
parallelism [1, 80, 113]. On the other hand, ASICs cannot serve any other purpose other
than what was taped out in the chip. This reduces their adaptability to new problems,
which is still common on AD domain, where algorithms and requirements are subject
to change [168]. Alternatively, updating ASIC hardware with a new one hurts time-to-
market [96], and also incurs significant expenses since the costs for taping out silicon chips
are enormous [115]. Also, due to their lack of generality, hardware accelerators need to be
very well justified since they can occupy even more silicon area than a CPU [18], while
attending much fewer use cases. Therefore, although a good alternative to having up one’s
sleeve, hardware accelerators are suited for well-defined problems, where they are known
to be a long-term solution.

Otherwise, employing general-purpose hardware such as CPUs provides a more flexible
solution, covering different uses and reducing development risks. With them, adjusting
to a new algorithm is as simple as compiling a new code. This adaptability also allows
the CPU to execute different tasks across the AD computing pipeline, one after the other,
maximizing silicon utilization. However, as we discuss in Chapter 2 of this thesis, CPUs are
sometimes insufficient to execute some AD tasks [148]. Nevertheless, we believe there is
potential to refine them for the AD domain, as the industry appears to be doing [8], to take
advantage of its virtues as a whole.

1.2.3 Help Wanted: Computer Architects for LiDAR’s Point Cloud
Processing

The open challenges for ADSs have a root in the need to process a high amount of sensor
data with complex algorithms. In the early days, meeting the functional requirements was
the main goal. Solutions were tested with big computing prototypes at low speed [12, 15],
and the main problem was to make sure the algorithms were computing the right thing,
and driving as expected [63]. As functional requirements became more mature, concerns
shifted towards meeting the non-functional requirements such as latency, energy, power,
area, and cost. For that, the AV problem became more interdisciplinary, requiring attention

1.2 Computer System for Autonomous Vehicles 9

Figure 1.3 An example of a point-cloud obtained with LiDAR. Data from [67].

from computer architects to identify their main bottlenecks and come up with solutions for
them.

Contemporary literature – including contributions from this thesis – has found that
from all steps in the AD computing pipeline, perception is the most time and resource-
consuming one [19, 172]. To aid perception, the ADS rely on data captured by sensors,
processing them to detect and interpret the elements of the traffic scene, such as pedestrians,
cars, traffic signs, etc. Although different sensors exist, cameras and LiDAR are the most
commonly used as they are powerful and versatile. Given their importance, we briefly
explain them following.

Starting with the best-known, cameras are passive sensors that capture images. For
such, they have lens to project incident light into a grid of light-sensitive diodes [31]. The
diodes measure the intensity of red, green, and blue lights from source light rays to set
the resulting color in each image position (pixel). Differently, a LiDAR is an active sensor
capable of collecting a Three Dimensional (3D) representation of the environment (see
Figure 1.3), featuring accurate depth information that is not featured in its Two Dimensional
(2D) counterparts (e.g., images from cameras). Their working principle is to shoot laser
beams around andmeasure the round trip time for the beam to reflect back to the sensor [85].
In the absence of sensing noise, each sensed point belongs to a surface in the real world (of
a wall, a car, a tree, etc.) within the sensor range. The set of collected points is referred to
as a Point Cloud.

As illustrated in Figure 1.4, each different sensor has its particular advantages for
the driving task. For this reason, they are generally combined to cover up each other’s

10 Introduction

Figure 1.4 Strengths and Weaknesses of Camera and LiDAR for ADS. Adapted from [163].

deficiencies and improve overall perception accuracy [121, 148, 169]. Cameras, for instance,
have excellent resolution and range but struggle in very dark or very bright situations.
Nevertheless, they are cheap and can be used in generous quantities to capture as much
detail as possible from the driving scene [158]. Their low price comes from their popularity
since their use is broader than just on AV [137]. Because of the widespread usage of
cameras, hardware support for image-based algorithms has been extensively studied and
even precedes AVs [18, 33, 36–38, 61, 66, 70, 91, 99, 102]. Therefore, system designers have
a plethora of hardware and software options to choose to perform image-based AD tasks
(e.g., object detection).

On the other hand, LiDARs afford accurate 3D representation of the environment, wide
FoV, high angular resolution, and independence from light conditions, with drawbacks of
struggling under heavy rain, snow, or fog, and also beingmore expensive than cameras [171].
Nevertheless, LiDAR sensors are essential for AD being widely employed for some of its
major perception tasks such as segmentation, 3D object detection, and localization [4, 13,
27, 28, 53, 54, 71, 79, 93, 105, 129]. Given their accuracy and versatility, they play a key role
in achieving higher levels of autonomy. This can be observed as AVs equipped with LiDAR
report higher levels of autonomy compared to AVs that do not use them. To the best of
our knowledge as of the writing of this document, all AVs with level 4 autonomy employ
LiDAR sensors. On the contrary, camera-only approaches, are arguably falling behind [76].

Before found to be indispensable for AVs, however, LiDARs had niche applicability.
They were far from their current spotlight, with little permeability to the general public
usage, instead being used, for example, on aerial mapping or atmospheric aerosols stud-
ies [128]. Differently from AD, these LiDAR applications had more relaxed constraints and
arguably lower market appeal. Therefore research on improving performance to achieve

1.3 Problem Statement, Objectives, and Contributions 11

safety-critical or real-time requirements for LiDAR processing was limited if existent, par-
ticularly from the computer architecture community. But this changed with the rise of
ADS, where LiDAR processing needs to be first-class regarding performance and energy
efficiency. At the same time, recent works have found that modern systems cannot achieve
the desired non-functional requirements, especially latency, for processing LiDAR point
clouds [19, 69, 172]. As a consequence, better hardware support for LiDAR processing
gained importance recently, and some works in computer architecture targeting point
clouds started to appear [35, 49, 87, 116, 140, 165, 167].

Notwithstanding, there is still a great imbalance between hardware support for camera
versus LiDAR-based applications. Existing related works for the latter mostly propose
custom ASICs, with solutions that hurt development costs and programmability. Controver-
sially, the industry favors less experimental approaches to accelerate tasks in their real-life
solutions, preferring traditional general-purpose options [114]. Nevertheless, very few
works put effort into tailoring general-purpose architectures, such as CPUs, to ameliorate
LiDAR’s point cloud processing. We believe this is a missing opportunity. CPU’s are ubiq-
uitous and versatile, and currently the main hardware platform employed for LiDAR-based
AD algorithms [53, 54]. In this sense, finding ways of tuning CPUs for LiDAR’s point cloud
processing can have a great impact in upcoming AVs technology, especially if the solution
is minimally intrusive, performing, energy efficient, and programmable.

1.3 Problem Statement, Objectives, and Contributions

The future of ADS depends on hardware progress. Foremost, performance improvements
are necessary to reduce reaction time and to cope with more sophisticated algorithms
increasing safety and achieving higher levels of autonomy. The refinements also need to
consider other constraints such as energy efficiency, for a longer operation range, low area,
for minimal silicon cost andmaximal space utilization, and programmability, for adaptability
to new algorithms and time-to-market. All these requirements must be contemplated to
unleash next-generation AVs technology.

Acknowledging these constraints, this Ph.D. thesis contributes with novel computer
architecture findings, helping the development of the AV technology. For this, we first
identify relevant research paths for computer architecture in the ADS domain. Through
literature review and hands-on characterization of a real-life software stack for AD (Chapter
2), we identify that improving LiDAR’s point cloud processing is a key research topic. The
point clouds captured by these sensors are the input for a multitude of AD algorithms,
some of which account for significant execution time and computing resources, being the

12 Introduction

Euclidean Cluster
(Segmentation)

NDT Matching
(Localization)

0%

20%

40%

60%

80%

100%

Sh
ar

e
of

 E
xe

cu
tio

n
Ti

m
e

[%
]

61%
51%

Neighbor Search Other

Figure 1.5 The share of execution time devoted to neighbor search in two key LiDAR-based
algorithms used in AD. Measured on an Intel®Core™i5-10210U CPU.

main bottleneck of the computing system. Hence, we advocate for improving LiDAR-based
applications that process point clouds. By investigating it further, we found point cloud
processing to heavily depend on the neighbor search sub-task. As we detail in Chapter 3,
this is a crucial part of point cloud processing that searches for nearby points with respect
to a query point. Cumulatively, neighbor search takes over half of the point cloud processing
execution time for crucial LiDAR-based algorithms such as segmentation and localization,
as shown in Figure 1.5. As we also explain in Chapter 3, the used data structures and
characteristics of neighbor search justify why point cloud processing is typically performed
on CPUs, as we mentioned in the previous section.

In this context, the main objective of this thesis is to identify areas of improvement and
enhance current computer architectures for AD tasks, tailoring hardware platforms for
better performance and energy efficiency. Specifically, we narrow our focus to LiDAR’s
point cloud processing aiming to fill research gaps for such a relevant part of ADS that,
in our view, has been under-explored. For such, our objective is to deeply understand the
key neighbor search operation that is widely used in LiDAR-based AD applications. We
aim to exploit its characteristics to fine-tune general-purpose hardware for point cloud
processing. Particularly, we focus on exploring (micro)architectural improvements upon
contemporary CPUs to enhance point cloud processing with reduced execution time and
energy consumption, hold programmability, and be as minimally intrusive as possible on
existing CPUs, making our proposals appealing for next-generation CPUs for ADS.

1.3 Problem Statement, Objectives, and Contributions 13

Following, we detail the contributions of this thesis while pursuing the aforementioned
objectives. They were submitted for peer review, in the form of three conference articles
and two poster presentations, as indicated in each subsection.

1.3.1 Characterizing a State-of-the-Art Software Stack forAutonomous
Vehicles

We start by presenting a thorough characterization of an AD solution, detailing open
problems in current software and hardware for future research on AVs. The investigation
is performed with a modern and fully open-sourced solution, namely Autoware [10, 14],
which is built upon cutting-edge algorithms for AVs. We stimulate Autoware’s software
stack with real-life sensor data and profile several of its traits. The measurement includes
the individual computation latency of different modules, the end-to-end latency from
sensor data collection up to complete scene recognition, and the power and energy required
for those tasks. It also encompasses data from architectural hardware counters such as
instruction mix, branch misprediction, and cache miss ratio that are discussed to understand
how the different algorithms stress the computing platform. Some of the contributions are
the following.

• We provide a didactic overview of typically employed algorithms for AVs.

• We discover that LiDAR-related components, which are key to driving the car safely,
are important contributors to end-to-end latency, showing execution times in the
order of tens of ms.

• We find that Autoware cannot guarantee real-time perception on a modern computer
with a high-end GPU, as its end-to-end latency frequently exceeds time requirements
by more than twofold.

• We observe that camera-based applications such as object detection DNN make
significant use of the GPU, which prevents the GPU to be employed in other tasks
such as LiDAR-based ones.

• We observe that GPUs consume significantly more power than CPUs, which should
make system designers prefer the latter when considering the energy constraints of
ADS.

These findings can also be found in the following works.

14 Introduction

• Pedro H. E. Becker, José-María Arnau, and Antonio González. Demystifying Power
and Performance Bottlenecks in Autonomous Driving Systems. In Proceedings - 2020
IEEE International Symposium on Workload Characterization, IISWC 2020, pages 205–
215. IEEE, oct 2020. ISBN 9781728176451. doi: 10.1109/IISWC50251.2020.00028. URL
https://ieeexplore.ieee.org/document/9251251/

• Pedro H. E. Becker, José-María Arnau, and Antonio González. Characterizing Self-
driving Tasks in General-purpose Architectures. In ACACES 2021 Poster Abstracts,
pages 117–120. HiPEAC, the European Network of Excellence on High Performance
Embedded Architecture and Compilation., 2021. ISBN 978-88-905806-8-0

1.3.2 Improving Support for LiDAR’s Point Cloud Processing on
CPU

Motivated by the findings reported in the previous Section 1.3.1, and the discussion in
Section 1.2.3, we narrow our efforts into improving CPUs support for LiDAR’s point cloud
processing. As we detail in Chapter 3, the point cloud processing heavily depends on the 3D
neighbor search operation [117, 130], which dominates its execution time [22, 165]. In short,
3D neighbor search is the process of finding points (with coordinates x, y, z) in a point
cloud, subject to neighborhood criteria w.r.t. a query point. The neighborhood criteria can
be, for example, all points within a distance (also known as the Euclidean Neighbors (EN)),
or the k closest points (also known as the K-Nearest Neighbors (kNN)).

However, the safety-critical nature of AD [86, 88] using point clouds - of which neighbor
search is a critical part - imposes low latency requirements. This is challenging to achieve
given the tens of thousands of points found on point cloud frames sensed with LiDARs [152].
For this reason, performing neighbor search with an exhaustive search is prohibitive, and
instead, a search-friendly data structure is necessary. Among different data structures,
k-d trees [26, 51] are widely used in practice as they are efficient for pruning the search
space on low-dimensional data such as LiDAR-acquired ones. The k-d tree recursively
sub-divides the space, separating the points in one coordinate at a time and creating a leaf
node whenever the subspace has less than N points. When searching the k-d tree later, a
query can reach the sub-spaces (leaves) where potential neighbors may exist, and verify its
distance to them.

While deeper background will be provided later, in Chapter 3, we use this brief ex-
planation so the reader can grasp the contributions of this thesis regarding point cloud
processing and neighbor search, targeting better ADS. For this, two main contributions are
described following.

https://ieeexplore.ieee.org/document/9251251/

1.3 Problem Statement, Objectives, and Contributions 15

Reducing Data Movement

We start by reducing pressure in the memory system while performing point cloud process-
ing. For this, we propose K-D Bonsai, a technique to compress point clouds to reduce data
movement during point cloud’s neighbor search execution, improving its performance and
energy efficiency. The technique is based on a set of observations that allow compression
to take place. We first observe that LiDARs have physical limitations on their range of
operation, setting an upper-bound value for the coordinates of the collected points. Second,
we observe that k-d trees [26, 51], the typical data structure used for efficient point cloud
searches, contain points with similar values in their leaves. As a consequence, the sign
and exponent fields (in IEEE 754 Floating-Point (FP) representation [138]) are frequently
repeated across leaf points and can be merged. Third, we observe that it is also possible to
reduce the size of the mantissa field, and still compute a large percentage of neighbor search
without losing search precision. More importantly, we show how to cheaply identify any
precision loss at run-time, and re-issue full-precision computation to keep baseline accuracy
with minimal overheads. In summary, K-D Bonsai reduces data movement, improving per-
formance and energy efficiency while guaranteeing baseline accuracy and programmability.
Some of the contributions are the following.

• We identify redundancy on bit-fields of FP representation in point cloud data stored
in k-d trees.

• We verify that k-d tree neighbor search, a critical operation for point cloud-based
algorithms in AVs, tolerates reduction in format representation.

• We derive a mathematical equation to verify whether or not the reduction in format
representation could harm the accuracy of the neighbor search operation, which will
trigger re-computation with baseline precision if necessary.

• We propose K-D Bonsai, a compression technique to exploit data redundancy and
reduction in format representation. K-D Bonsai reduces data movement during
neighbor search, improving performance and energy efficiency.

• We implement K-D Bonsai through new CPU instructions, namely Bonsai-extensions,
demonstrating that our scheme could be easily adopted on next-generation processors
for AD.We also validate the proposed scheme using a state-of-the-art and open-source
software stack for AD.

These findings can also be found in the following work.

16 Introduction

• Pedro H. E. Becker, José-María Arnau, and Antonio González. K-D Bonsai: ISA-
Extensions to Compress K-D Trees for Autonomous Driving Tasks. In Proceedings
of the 50th Annual International Symposium on Computer Architecture (ISCA), pages
1–13, New York, NY, USA, jun 2023. ACM. ISBN 9798400700958. doi: 10.1145/3579371.
3589055. URL https://dl.acm.org/doi/10.1145/3579371.3589055

Maximizing Single Instruction Multiple Data (SIMD) Efficiency

Orthogonal, we exploit ways of increasing computation throughput during the neighbor
search, leveraging the Vector Processing Unit (VPU), and making use of this formerly
unused CPUs part. For this, we identify that consecutive neighbor searches experience
query similarity, which leads to similar k-d tree navigation between consecutive neighbor
searches. To exploit it, we propose Caravan: a hardware (Caravan-HW) and software
(Caravan-SW) co-design. Caravan packs consecutive (and generally similar) queries to
traverse the k-d tree together while reducing computing costs. To leverage query similarity,
Caravan first actuates at the software level (Caravan-SW) by gathering multiple queries
and employing the VPU to perform several k-d tree searches in parallel. However, the
VPU faces vector sparsity when the queries diverge, particularly in the deeper levels of
the k-d tree, causing VPU lanes to be underutilized. To amortize this, Caravan actuates at
the hardware (Caravan-HW) by means of two new instructions that allow fast operand
shuffling to suppress the runtime and hard-to-predict sparsity found in Caravan-SW. In
summary, Caravan is able to reduce execution time with a programmable solution, while
being minimally intrusive to the CPU. Some of the contributions are the following.

• We identify that consecutive neighbor searches experience query similarity, which
leads to similar k-d tree navigation between searches.

• We propose to group multiple queries at the software level to search multiple queries
at once, making use of the VPU, and reducing instruction count.

• Despite the benefits of a software-only approach, we observe run-time sparsity in the
VPU operands, particularly on the k-d tree leaves, due to query divergence caused by
the small differences between queries.

• We design a technique to re-arrange elements in the VPU operands to reduce sparsity
and maximize useful operations, reducing execution time further.

• We implement such re-arrangements in hardware with new and minimal architectural
features, in the form of two instructions that allow for maximal vector lane utilization
during leaf processing.

https://dl.acm.org/doi/10.1145/3579371.3589055

1.4 Thesis Organization 17

These findings can also be found in the following works.

• Pedro H. E. Becker, Franyell Silfa, José-María Arnau, and Antonio González. Caravan:
A Hardware/Software Co-Design for Efficient SIMD Neighbor Search on Point Clouds.
In Under Review, 2024

• Pedro H. E. Becker, José-María Arnau, and Antonio González. Boosting Point Cloud
Search with a Vector Unit. In RoboARCH @ MICRO, 2023

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides an explanation
of state-of-the-art AD, including typically employed sensors, algorithms, and hardware.
Further, it provides a characterization of multiple algorithms and how they perform on
existing architectures, identifying research opportunities. For instance, it identifies the need
for better support of point cloud applications that handle data acquired from LiDAR sensors.
Chapter 3 further details the importance of LiDAR for AD, also describing how its data is
generally employed and processed. Moreover, it discusses related work on hardware support
for point cloud processing, pointing out their strengths and weaknesses. Chapters 4 and 5
detail novel techniques to improve point cloud processing. They show how to reduce data
movement with K-D Bonsai, and how to achieve high-efficient SIMD processing of point
clouds with Caravan. These solutions focus on improving performance and energy with
minimal impact on programmability and area. Finally, Chapter 6 presents the conclusions
and open questions for future research.

2
Measuring the Problem

“ First, we have to understand the problem; we have to see
clearly what is required. ”How to solve it (1945)

George Pólya

Before proposing novel solutions to improve the current computing platforms for AD,
we need a diagnostic of their main problems. Although some works present an analysis
on individual AD algorithms [69, 86, 148], the full picture (i.e., multiple tasks executing
concurrently) of AV and their most challenging tasks is necessary, so we put effort where
it is needed the most. This chapter aims at obtaining this diagnostic, characterizing a
state-of-the-art and open-source software stack for AVs, running in contemporary and
high-end hardware. We first deepen the explanation of the software tasks, expanding the
quick background given in the Introduction. Following, we measure and discuss the latency
of relevant AD modules and the required power from the computing platform to execute
them, seeking potential points of improvement from the architectural perspective.

2.1 Autonomous Vehicles Architecture Overview

To carry out this investigation we leverage Autoware.ai [14], a representative open-source
project for AVs. Hereinafter interchangeably referred to as Autoware, it was first introduced
in 2015 [68], and has been constantly improved by the open-source community, with
contributions from industry and academia [13]. In 2023, its main maintainer company, Tier
IV [147], got certified in level 4 AD [146] in Japan, employing Autoware software. Although
Autoware is not the only open-source project available, it has the largest AD community

20 Measuring the Problem

Camera LiDAR GNSS IMU

S
e
n

so
rs

Point-Cloud Road SignsLanes Traffic LightH
D

M
a
p

Detection Tracking

Lc¹

Localization

Lcn Dt¹ Dtn Tr¹ Trn

Prediction

Pr¹ Prn

Planning Motion ActuationDecision

P
e
rc

e
p
ti

o
n

A
c
tu

a
ti

o
n

C
o

m
p

u
ti

n
g

E
x

te
rn

a
l

D
a

ta

Pl¹ Pln Dc¹ Dcn Mo¹ Mon Act¹ Actn

Figure 2.1 A high-level description of the Autoware architecture. Sensor data and pre-
existing high-definition maps feed the software stack.

on GitHub, and it does not impose limitations as other projects in the same tier of maturity
and complexity. For instance, Baidu’s Apollo project [4], which is also open-source, has
some vital parts of the code, such as DNN models for visual detection, released as black-box
libraries [4]. On the contrary, Autoware software is open-source, and all the used libraries
or third-party applications are also open-source. Thus, we can always inspect some of its
parts with more detail, without concern that we might end up with proprietary code, which
sometimes can lead to research dead ends.

At a high level, Autoware can be divided into a set of layers that interact and collaborate
to perform self-driving, as we depict in Figure 2.1. The next subsections detail the modules
that compose each of these layers.

2.1.1 External Data

Capturing the real-world is the first concern for any AD solution. Following, we explain
the external data that feeds Autoware’s computing system, such as sensor data and High-
Definition (HD) maps.

Sensing

A mandatory layer in AVs platforms is composed of the vehicle sensors [88], whose data
will be further processed to characterize the driving scene. Although different companies

2.1 AVs Overview 21

use different sets of sensors, a list of common sensors includes i) one or more cameras,
which capture images for object detection; ii) LiDAR, that measures the distance from the
car to surrounding objects through laser scan. LiDAR capture point clouds, which are
used for fine-grain localization, segmentation, and object detection; iii) RADAR, for better
robustness across weather conditions compared to LiDAR, but with lower precision; iv)
GNSS, to provide an approximate initial position to the localization algorithms; v) IMU,
which provides data such as linear velocity, useful to refine estimations obtained with other
sensors.

Although Autoware has modules to interface with all previously mentioned sensors,
only LiDAR appears in Autoware.ai’s minimum requirements [11]. This is due to the
versatility of LiDAR generated point clouds, that can be used for multiple scene recognition
algorithms, as we explain soon. Still, adding more sensors enlarges the number of scenarios
Autoware can cope with. For instance, cameras are required to recognize traffic lights.

HDMap

Relying on GNSS and commodity map applications (e.g. Google Maps) is not enough for
AVs [88]. Instead, they require HD Maps [133, 134] to localize themselves with centimeter-
level precision. The creation of an HD map is often performed by specialized companies.
They contain a static point cloud of the complete region where the vehicle can drive. The
point cloud is combined with cartographic and traffic details such as the disposition of
the lanes, the allowed ways to drive, speed limits, 3D position of traffic lights, road signs,
and zebra crossings. Later on, this information helps the ADS to improve its surroundings’
perception and actuation. In time, we note that the point cloud inside of an HD map is static
and collected a priori. It differs from the dynamic point clouds collected by the vehicle’s
LiDAR, although both are necessary for vehicle localization.

2.1.2 Computing

The Autoware software stack is built upon the Robot Operating System (ROS) [120]. ROS
is a middleware collection of libraries, tools, and underlying infrastructure that increases
productivity on robot systems development. Typically, a ROS project is divided into multiple
software modules, named nodes, whose purpose is to individually solve a task (e.g., detect
an object) while globally collaborating towards a major goal (e.g., successfully self-drive a
vehicle). The nodes communicate through a publish-subscribe arrangement: nodes publish
their outputs into a sharedmemory space, referred to as a topic in ROS jargon, to which other
nodes subscribe, as we depict in Figure 2.2. When new messages are published, all subscriber

22 Measuring the Problem

nodex

nodey

nodez

nodew

topic

publish subscribe

Figure 2.2 The publisher-subscriber scheme for node communication in ROS. A node pub-
lishes its output into a memory space, called topic. Multiple nodes can subscribe to a topic,
being notified by ROS when new messages (data) are published on it.

nodes are notified, being able to read and process the data. This simple arrangement allows
nodes to consume inputs, process them, and assign the output data for upcoming nodes to
carry further processing.

Additionally, each ROS topic specifies an interface for message publication. Therefore,
different nodes implementations can subscribe or publish to a given topic, as long as the
interface is respected. This allows nodes to be easily substituted by different ones speeding
up the testing of different implementations without major changes in the software structure.
For example, Autoware has multiple nodes that perform image-based object detection. Some
are faster, and lighter in memory consumption, some are slower but more accurate. Users
can select the best-suited one from a pool of image detector nodes, according to their needs.

Following, we review themost relevant nodes from the Autoware software stack. Readers
can find a summary in Table 2.1.

Perception

Prior to performing driving actions, self-driving vehicles must first understand the scene
they are in. This is done through perception algorithms. As we depict in Figure 2.1, the
perception layer contains different modules, as we explain as follows.

• Localization is one of the major tasks AV perform. In Autoware, the localization
starts with a GNSS estimation, and then it is refined via LiDAR data processing.
For this, Autoware first down-samples the input point cloud through a node called
voxel_grid_filter1 [117], reducing the number of points to speed up further processing.
The filtered point cloud is then processed by the ndt_matching [28, 93] node. This
node tries to maximize the overlap between the sensed (LiDAR) and the reference
(HD map) point clouds, in a process also known as registration. Employing Newton’s
optimization method, the algorithm searches for a transformation matrix that trans-
lates and rotates the sensed point cloud so that it optimally aligns with the reference
point cloud. The obtained transformation tells where the origin of the sensed data

2.1 AVs Overview 23

(i.e., the LiDAR sensor) is with respect to the origin of the reference frame (i.e., the
origin of the HD map). This relative pose pinpoints the vehicle in the map, typically
localizing it with centimeter-level precision. To speed up the optimization, the GNSS
is used for an initial guess of the pose. Additionally, the IMUmay be used to anticipate
where the subsequent positions are likely to be.

• Detection must identify objects in the environment, classify them (e.g., a car, a pedes-
trian), and find their relative pose to the vehicle. In Autoware, object detection can
be performed with LiDAR and camera sensors. For LiDAR, the point cloud is first
filtered by the ray_ground_filter which separates the source point cloud into two
groups: the ground points (which we can drive over) and the non-ground points
(which we should avoid hitting). Afterward, it provides the non-ground points to the
euclidean_cluster [129] node, which performs point cloud segmentation, clustering
points near each other to perceive them as a single entity, extracting their shape. For
that, it repeatedly searches for neighbor points in the sensed point cloud, applying
transitivity to cluster them [129, 170]. The algorithm also calculates the clusters’
centroids to stipulate how distant the objects are from the vehicle. For camera-based
object detection, Autoware provides support for SSD [90] and YOLO [122] DNNs.
They rely on trained data to find and label relevant objects captured by the camera.
They output the type of each found object and the coordinates where they appear
in the image. After detecting and classifying objects in the images, the output is
fused with the LiDAR findings. This task is carried by the range_vision_fusion node,
which uses camera and LiDAR calibration data to fuse coordinates into the same
space domain. The fusion provides several benefits to detection. On the one hand,
LiDAR obtained data adds 3D features to the image-based detection, giving a sense of
volume to the object and also localizing them in the map. On the other hand, image
detection adds semantics to the objects, labeling the type of a given entity, e.g., a car,
a truck, or a pedestrian.

• Tracking aims at keeping a consistent identification of different objects across con-
secutive frames, to determine how they are moving. In Autoware, the tracking task
requires the list of detected objects from the Detection task, after fusion. The tracking
must cope with several challenges since detected objects may experience occlusion,

1There are other down-samplers available. We do not try out an exhaustive combination of all possible
implementations, but rather, use the recommended algorithms accordingly with Autoware documentation [10].
This also holds for other tasks, whenever there is a consensus on a given solution. When the best algo-
rithm/implementation is not clear or incurs considerable trade-offs (e.g. object detection DNNs) we experiment
with the different possibilities.

24 Measuring the Problem

dissimilar motion patterns, and clutter [143]. To cope with these problems, Autoware
implements the imm_ukf_pda_tracker node, which is inspired in previous works
[121, 132] that combines different filters algorithms to overcome the challenges (e.g.,
the Unscented Kalman Filter (UKF) for non-linear estimation [155]). The tracking
then publishes the list of tracked objects with information such as position, velocity,
and associated identification.

• Prediction takes place after tracking updates the status of the objects. This module
utilizes each tracked object’s position, velocity, and direction to stipulate the path
they are likely to follow in the near future. In the version used in this work (1.12),
Autoware.ai only considered the objects to have constant velocity (both when driving
straight and when turning), hence the prediction node name naive_motion_predict. In
any case, the velocity is updated on each frame (at a rate of 10Frames per Second (FPS)),
making the approximation less harmful. Finally, the tracked objects associated with
predicted paths, and the LiDAR ground points, feed the costmap_generator_obj node.
This node determines the drivable areas for the vehicle, i.e., not occupied by objects
or to be occupied in the near future, based on the trajectory predictions. This is key
for finding the possible trajectories the AV can take.

Actuation

Once the vehicle has a broad comprehension of the current traffic scenario and its partici-
pants, it can plan and execute driving actions through the following components:

• Planning determines the trajectory for the vehicle. In Autoware, it is divided into two
parts: global and local planning [45], respectively implemented by op_global_planner
and op_local_planner nodes [44]. The global planner defines a high-level route to
reach the target destination. Meanwhile, the local planner details how the route will
be followed depending on the perception outcome. For instance, the local planner
decides whether the vehicle should stop for a pedestrian, accelerate in a free lane, or
change lanes to avoid an obstacle while considering the high-level route defined by
the global planner.

• Motion modules generate the control output to maneuver the vehicle in order to
follow the planned path. Autoware implements the pure pursuit algorithm [136]
(pure_pursuit node) to calculate the linear and angular velocity the vehicle should
perform. These velocity values are submitted to a low-pass filter (twist_filter node),

2.1 AVs Overview 25

Table 2.1 Summary of important Autoware nodes.

Node Description

voxel_grid_filter Downsample an input point-cloud, reducing the amount of
points to simplify further computations.

ndt_matching Localize the vehicle bymatching LiDAR acquired point-cloud
with a region of the HD map point-cloud.

euclidean_cluster Cluster LiDAR acquired points nearby each other, segment-
ing it into volumes that can be perceived as objects.

YOLO / SSD DNN-based nodes used to detect and classify objects (e.g.,
vehicles, pedestrians) from images.

range_vision_fusion Combine LiDAR and image-based detected objects into the
same coordinates, improving objects perception.

ray_ground_filter Separate an input point-cloud in two: points that compose
the ground, and points above the ground level.

imm_ukf_pda_tracker Track objects by assigning them an identification and keep-
ing it coherent among subsequent frames.

naive_motion_prediction Extrapolate the current trajectory of different objects to pre-
dict where they will be in the future.

costmap_generator Determine drivable areas in the map, i.e., with no objects at
the time or predicted to be in the near feature.

op_planner Global and local path planning based on the current scene
and target location.

pure_pursuit Calculate the necessary motion (linear and angular accelera-
tion and velocity) to follow the desired path.

twist_filter A low-pass filter applied over motion control to smooth the
vehicle driving.

26 Measuring the Problem

used to smooth the driving actions. Finally, Autoware interfaces with the vehicle
through a drive-by-wire system, sending the control to perform the driving actuation.

2.2 Characterization Methodology

In this section, we present the methodology for the Autoware characterization. We detail
tools, configurations, and steps to acquire the data.

2.2.1 Autoware Execution Environment

Prior to characterizing Autoware, we need to prepare its execution environment. While it
would be captivating to set up Autoware in an actual vehicle, doing so is costly, arguably
dangerous, and, more important to our analysis, hinders the experiments’ reproducibility.
Instead, we evaluate it in a controlled, simulated setting. For that, we rely on real-life data
collected beforehand with sensors during a vehicle drive, and a set of ROS tools to provide
trustworthy data input to the Autoware software stack. Therefore, pre-recorded data is
input to Autoware, which runs on a high-end computing platform while also being profiled.
Figure 2.3 illustrates the arrangement.

ROSBAG

(Sensor Data)

Point-Cloud

Map

AutowareAutoware

node node

node

topic

node

node

node

topic

node

node

node

topic

topic

topic

topic

node node

node

topic

node

node

node

topic

node

node

node

topic

topic

topic

topic

Profiling Power Data

Performance Data

Figure 2.3 The experimental setup. Preexisting files for sensor data and point-cloud map
provide real-life inputs. Profiling tools collect characterization data.

The external data (Section 2.1.1) used in our experiments was collected from an 8-minute
drive, recorded in the city of Nagoya in Japan, obtained from the Autoware Data [67]
repository. The data was released in the form of a .bag file, a typical file type used by the
ROS community for data logging, allowing users to record datasets, visualize, label, and
store them for future use [126]. A .bag file may contain multiple topics, each with its data

2.2 Characterization Methodology 27

and headers. For instance, it has consecutive point cloud frames captured by the LiDAR
installed in the vehicle, along with their timestamp with a rate of 10 FPS. Likewise, it also
has camera frames with a rate of 15 FPS.

We can use the rosbag tool [127], released with ROS, to replay the .bag file, publishing
messages in the topics specified in the file into the ROS subscribe-publish mechanism. When
running Autoware within the same ROS environment, it will capture these messages, by
subscribing its nodes to the topics of interest. This means that we can use sensor data as
input as if Autoware was receiving the data from the sensors from a vehicle in real time.
More importantly, we can re-run the same .bag file to stimulate Autoware as many times as
needed. Hence, we can experiment with Autoware with multiple combinations of nodes,
metrics, and profiling tools, always using the same input, improving reproducibility, and
easing further data analysis.

To completely stimulate the Autoware stack we also need an HD map, particularly to
perform localization. However, the .bag does not come with an HD map, nor could we find
one for that specific region (HD maps are often proprietary and crafted for small parts of
the globe). To overcome this, we use an Autoware utility (ndt_mapping), which creates a
point cloud map based on the LiDAR data from the .bag file. This, however, only generates a
point cloud map, useful to stimulate the localization nodes, but does not contain the whole
HD map with annotations (speed limit, traffic light poles, etc.). We discuss the limitations
of this process later on.

The specific hardware and software are detailed in Table 2.2. We note that most of the
software versions presented in the Table are required by Autoware, for compatibility reasons.
As for the different knobs to configure the nodes, we use the predetermined configuration
released with Autoware. The image-based nodes that perform object detection (which
we refer to as vision_detection) run in the GPU as set in Autoware’s default configuration.
We also followed the Autoware guidelines to download the pre-trained weights for the
vision_detection. We experiment with SSD [90] (SSD 300 and SSD 512, with data from [89])
and YOLO [122] (YOLO v3-416 model and pre-trained weights from [123]) models. We also
set the euclidean_cluster to run in the available GPU changing the default configuration
to run it on the CPU. Execution of it in CPU and GPU was found to be similar regarding
execution time by previous works [69], so here we take the chance to see how the GPU
behaves when it is used by multiple algorithms (euclidean_cluster and vision_detection).
All other evaluated algorithms are single-thread and run on the CPU, again following the
default configuration of Autoware.ai.

28 Measuring the Problem

Table 2.2 Environment hardware and software platforms.

CPU GPU

H
ar
dw

ar
e Model Intel i7-7700K NVIDIA GeForce GTX 1080

Architecture Kaby Lake Pascal

Frequency 4.2 GHz 1.6 GHz

Cores 4 (8 Threads) 2560

L1 Cache (I/D) 32 KB (8-Way) -

L2 Cache (Unified) 256 KB (4-Way) 4 MB

L3 Cache (Unified) 8 MB (16-Way) -

Main Memory 64 GB DDR4 8 GB GDDR5X

So
ftw

ar
e

Operating System Ubuntu 16.04 x86_64

Kernel 4.15.0-96-generic

ROS Kinetic

Autoware Autoware.ai 1.12

CUDA 9.0

2.2.2 Characterization Procedures

Latency Measurement. We leverage the C++ chrono library to instrument Autoware’s
code and measure two latency values: single node latency, and perception end-to-end latency,
as illustrated in Figure 2.4. Single node latency measures the time a node takes to process
the input. Measurement starts immediately after the input is read from the source topic
until immediately before the output is written to the destination topic. This measurement
aims to identify latency-hungry nodes, which are potential bottlenecks for AD.

We also assess end-to-end latency for perception, encompassing the latency for a chain
of multiple nodes to process an input frame, which we call computation paths. Each
computation path corresponds to a sequence of nodes that process one after another,
transforming the sensor inputs into a precise perception of the surroundings. Therefore
the end-to-end latency includes the latency of multiple single nodes plus the communication
costs of the ROS subscribe-publish mechanism. Figure 2.4 depicts this situation. The
sequence of nodes in different computation paths used by Autoware can be found in Table
2.3, together with the discussion of results.

Differently from previous works (e.g., [69, 86]), we analyze a broader number of compu-
tation paths, hence enlarging the identification of performance bottlenecks. Also, while
they simply sum the individual latency of the nodes to measure end-to-end latency, our
measurements encompass contention and communication overheads since we profile Au-
toware with multiple ROS nodes running in parallel. We track the messages since the
sensors’ data is given to the first Autoware node. We use message timestamps to track

2.2 Characterization Methodology 29

node1 node2topic1

publish

node4topic2 topic4

End-to-end process time

Single node process time

node3 topic3

Computation path 3-4

Computation path 1-4

Figure 2.4 The latency measurements accounted for in our experimentation. Single node
process time corresponds to the processing inside a node, excluding communication over-
heads. End-to-end process time measures the latency since a frame (e.g., camera image,
LiDAR point-cloud) enters the system until its final contribution to the AVs’ perception.

the end-to-end latency. The timestamp stays untouched in the messages’ headers and it is
passed along from input messages to output messages, serving as an identifier tag that can
be used to backtrack their end-to-end processing time.

Power Consumption Complementary to the latency assessment we also gather overall
information regarding CPU and GPU power consumption. The goal is to quantify the
associated power and energy costs used by each of these two platforms. This could help us
understand when each of them is more suitable, depending on the performance and power
consumption trade-off. We use Intel’s Running Average Power Limit (RAPL) [46, 160] to
measure power consumption in the CPU, and the nvidia-smi [110] tool to measure power
in the GPU.

2.2.3 Methodology Limitations

As aforementioned, the lack of an HD map with rich annotation imposes a few limitations.
Since we do not have the annotation for traffic light poles’ position, we cannot perform
traffic light detection algorithms. Also, since there is no specification of roads, allowed lanes,
and speed limits, we cannot stimulate control and motion algorithms, namely op_planning,
pure_pursuit, and twist_filter. It is possible to use game-engine-based simulators (e.g., the
LGSVL [81] or CARLA [47] simulators), which provide this information in a rendered traffic
environment. However, such simulators demand high CPU and GPU utilization. Given the
considerable overheads introduced to the system, these simulators are more suited to verify
functionalities instead of profiling. Finally, the profiling focuses on perception nodes, as
they represent the vast majority of the execution time [69, 86].

30 Measuring the Problem

2.3 Characterization Analysis

2.3.1 Latency Characterization

Single node latency. Figure 2.5 presents the latency distribution for Autoware nodes.
Three sub-figures display results according to the use of different image detection algorithms:
(a) SSD 512, (b) SSD 300, and (c) YOLO v3. Each position in the x-axis corresponds to an
individual node from Autoware (described in Table 2.1). A box plot shows the distribution of
the latency values for each node in the y-axis. The distributions comprise multiple individual
measurements for processing the input messages, one at a time. In a box plot [149], each
box (colored rectangle) contains 50% of the values, from the first quartile (25%) to the third
quartile (75%). A horizontal line marks the second quartile (50%), i.e., the median value
of the distribution. Whisker lines indicate how the data spreads, marking maximum and
minimum measured values up to a limit of 1.5× the height of the box. Values beyond these
limits are shown separately, as outliers.

From the figure, when a big DNN model such as the SSD 512 (Figure 2.5a) is used, the
image-based object detection is the most time-consuming node, taking around 80 ms to
execute. If we consider 100 ms as the target reaction time, as in previous works [39, 86], we
are devoting 80% of it to finding the objects in the camera images. This is a high number
considering that other tasks need to execute after that. When we consider other models
such as SSD 300 (Figure 2.5b) and YOLO v3 (Figure 2.5c), inference time roughly drops by
half, being under 40 ms, making them a better choice performance-wise. However, although
latency plays a major role in choosing the image detector for AVs, we acknowledge that
assessing the most propitious image detector is out of the scope of this work since other
metrics that are not evaluated here (e.g. accuracy) also need to be taken into account.

While Autoware appears to have a single bottleneck regarding camera-based processing,
it has a handful of LiDAR-based algorithms with significant latency. Not rarely nodes
such as ndt_matching, euclidean_cluster, ray_ground_filter, and costmap_generator_obj (all
LiDAR dependent) take 20-40 ms to execute. This is even more concerning since LiDAR
processing generally relies on a chain of nodes, as we explained in Section 2.1.2, thus adding
up individual computation times as we discuss in the upcoming subsection. Although
needed, to improve them might be difficult. Since these nodes perform different tasks, it is
challenging to find a one-fits-all manner of accelerating them.

In time, the range of values is another relevant observation from Figure 2.5. We can
see a considerable distance between the maximum and the minimum values in the re-
ported latency values. Particularly, we see outliers appearing in the upper parts of the

2.3 Characterization Analysis 31

co
st

m
ap

_g
en

er
at

or
_o

bj
co

st
m

ap
_g

en
er

at
or

_p
oi

nt
s

eu
cl

id
ea

n_
cl

us
te

r
fu

si
on

_r
an

ge
fu

si
on

_v
is

io
n

im
m

_u
kf

_p
da

na
iv

e_
m

ot
io

n_
pr

ed
ic

t
nd

t_
m

at
ch

in
g

ra
y_

gr
ou

nd
_f

ilt
er

vi
si

on
_s

sd
_d

et
ec

tio
n

vo
xe

l_
gr

id
_f

ilt
er

0

20

40

60

80

100

120

La
te

nc
y

tim
e

[m
s]

(a) With SSD 512

co
st

m
ap

_g
en

er
at

or
_o

bj
co

st
m

ap
_g

en
er

at
or

_p
oi

nt
s

eu
cl

id
ea

n_
cl

us
te

r
fu

si
on

_r
an

ge
fu

si
on

_v
is

io
n

im
m

_u
kf

_p
da

na
iv

e_
m

ot
io

n_
pr

ed
ic

t
nd

t_
m

at
ch

in
g

ra
y_

gr
ou

nd
_f

ilt
er

vi
si

on
_s

sd
_d

et
ec

tio
n

vo
xe

l_
gr

id
_f

ilt
er

(b) With SSD 300

0

20

40

60

80

100

120

co
st

m
ap

_g
en

er
at

or
_o

bj
co

st
m

ap
_g

en
er

at
or

_p
oi

nt
s

eu
cl

id
ea

n_
cl

us
te

r
fu

si
on

_r
an

ge
fu

si
on

_v
is

io
n

im
m

_u
kf

_p
da

na
iv

e_
m

ot
io

n_
pr

ed
ic

t
nd

t_
m

at
ch

in
g

ra
y_

gr
ou

nd
_f

ilt
er

vi
si

on
_d

ar
kn

et
_d

et
ec

tio
n

vo
xe

l_
gr

id
_f

ilt
er

(c) With Yolo v3

Figure 2.5 Autoware’s single node latency for different nodes. Experimentation includes
different image detector nodes.

box plots, indicating that some frames take considerably more time to execute than they
normally do. These higher measurements belong to the tail latency and occur in special-
case frames. For example, nodes with many outliers such as costmap_generator_objand
imm_ukf_pda_tracker highly depend on the number of objects in the scene. This is expected
since themore driving players, the higher the time to track each of them (imm_ukf_pda_tracker),
and project their occupancy in the world (costmap_generator_obj). Therefore, when the AV
is in a crowded street, the collected frames (e.g., point cloud) will have more data, and their
execution time will rise beyond the usual. These outliers cannot be neglected since they can
cause the system to miss a time deadline for a frame, hurting reaction time and introducing
a safety flaw. Thus, when considering tail latency, the performance improvement concerns
become even more evident.

Figure 2.5 also shows another interesting finding: the tail latency of some relevant
nodes is highly affected by the other components running in parallel. For example, the
euclidean_cluster has a tail latency of 36 ms when running alongside the SSD 300, but it
increases to 46 ms when using the SSD 512. This increase of 28% in the tail latency can
happen since both algorithms compete for resources (e.g., the GPU). The bigger the DNN
model used for vision_detection, the higher the GPU usage, and the less resource available
for the euclidean_cluster. Other nodes also see a fluctuation in their tail latency depending
on the image detection module employed.

32 Measuring the Problem

End-to-end latency. The AD task depends on the collaboration of multiple nodes, as
introduced in Section 2.1. We now examine different computation paths that Autoware
relies on to perceive the environment. We verify the end-to-end time from sensor input
until final localization and road occupation. Since road occupation (costmap_generator_obj)
can be updated by three different computation paths, we measure each of them individually.
For example, both camera and LiDAR findings can update the occupation. The set of nodes
and topics that compose each computation path are described in Table 2.3. The latency of
these four computation paths is presented in Figure 2.6.

Table 2.3 Computation paths description.

Computation Path Path description (/topic→ node)

localization /points_raw→ voxel_grid_filter→ /filtered_points→ ndt_matching

costmap_points /points_raw → ray_ground_filter → /points_no_ground →
costmap_generator

costmap_vision_obj_* /image_raw → vision_ssd_detection → /detec-
tion/image_detector/objects → range_fusion_01 → /detec-
tion/fusion_tools/objects → imm_ukf_pda_01 → /detec-
tion/object_tracker/objects → ukf_track_relay → /detection/objects
→ naive_motion_predict→ /prediction/motion_predictor/objects→
costmap_generator

costmap_cluster_obj /points_raw → ray_ground_filter → /points_no_ground → li-
dar_euclidian_cluster_detect → /detection/lidar_detector/objects
→ range_fusion_01 → /detection/fusion_tools/objects →
imm_ukf_pda_01 → /detection/object_tracker/objects →
ukf_track_relay → /detection/objects → naive_motion_predict
→ /prediction/motion_predictor/objects→ costmap_generator

As depicted in the figure, some computation paths can take hundreds of milliseconds.
Further, regardless of the chosen image detector algorithm, the worst case among all
computation paths always surpasses 200 ms to compute when considering tail latency.
Thereby, there are moments during the AV driving where the system takes more than
twice the time commonly stipulated to drive safely (100 ms). This is an interesting finding
considering our measurements are over a mature self-driving project. Notwithstanding,
we highlight our computing platform (see Table 2.2) is a high-end computer. Such a
big computing arrangement may not even be an option for AVs due to size and energy
consumption constraints. We can use our data and extrapolate that smaller and less
aggressive hardware would yield even worse results, being impractical in reality, and
reinforcing the need for improving computing platforms so they meet the AD constraints.

2.3 Characterization Analysis 33

co
st
m
ap
_c
lu
st
er
_o
bj

co
st
m
ap
_p
oi
nt
s

co
st
m
ap
_v
is
io
n_
ob
j_
ss
d

lo
ca
li
za
ti
on

0
20
40
60
80
100
120
140
160
180
200
220
240
260

L
at
en
cy
ti
m
e
[m
s]

0
20
40
60
80
100
120
140
160
180
200
220
240
260

(a) With SSD 512

co
st
m
ap
_c
lu
st
er
_o
bj

co
st
m
ap
_p
oi
nt
s

co
st
m
ap
_v
is
io
n_
ob
j_
ss
d

lo
ca
li
za
ti
on

(b) With SSD 300

co
st
m
ap
_c
lu
st
er
_o
bj

co
st
m
ap
_p
oi
nt
s

co
st
m
ap
_v
is
io
n_
ob
j_
yo
lo

lo
ca
li
za
ti
on

(c) With Yolo v3

Figure 2.6 Autoware’s end-to-end perception latency. Experimentation considers the usage
of different image detector nodes.

The most demanding computation paths are those that extract semantics, with image
object detection or point cloud clustering followed by tracking and prediction. If SSD 512 is
used (Figure 2.6a), then the path with the vision_detection, namely costmap_vision_obj_ssd,
holds the worst average latency. When faster vision detection algorithms are used, e.g., SSD
300 (Figure 2.6b) or YOLO (Figure 2.6c), the worst average latency relies on the computing
path with the euclidean_cluster, namely costmap_cluster_obj. The computation path for
localization appears to be the quickest one. Part of this is because it only encompasses
two nodes (voxel_grid_filter and ndt_matching). Still, end-to-end latency sometimes of-
ten reaches 60 - 80 ms. Since our dataset is far from stressing all possible corner cases
for localization, we cannot discard optimizations in this path. Revisiting the single node
latency analysis and combining it with the end-to-end latency analysis, we conclude that
vision_detection, euclidean_cluster, ray_ground_filter, and ndt_matching are the most impor-
tant nodes where optimization efforts should focus. These nodes are time-consuming, and
on belong to different critical paths of end-to-end latency.

2.3.2 Power Characterization

Following the latency analysis, we briefly present power consumption data during the
execution of Autoware. Measurements are reported in Table 2.4. First of all, we see that
GPUs consume considerably more power than the CPU, even though they were configured

34 Measuring the Problem

Table 2.4 CPU and GPU mean power dissipation.

CPU GPU Total

With SSD512 44.90 W 122.14 W 167.05 W
With SSD300 42.63 W 67.08 W 109.71 W
With YOLO 42.35 W 116.73 W 159.08 W

to run only two nodes (vision_detection and euclidean_cluster) while the CPUs executed
more than ten. When using the SSD 512 model, the power consumption gap between
CPU and GPU is 2.7×, with the GPU accounting for more than 70% of the total power
consumption, which is a high amount. Using simpler models, such as the SSD 300, can
decrease GPU power consumption by 45%, greatly reducing its gap to the CPU counterpart
to a lower, but still concerning 1.57×. Therefore, finding simpler but effective models should
be considered when designing novel DNNs for object detection. At the same time, the
high power consumption of GPUs also explains the increasing interest in energy-efficient
alternatives for image-based DNNs, with accelerators such as Google’s Tensor Processing
Unit (TPU) [70], and others as we discussed in the Introduction Chapter.

Finally, this energy gap between CPUs and GPUs should also guide the decision on
where to execute a given node. For example, related work [69] has found euclidean_cluster to
perform similarly (performance-wise) in the CPU and the GPU. In these cases, and ac-
knowledging the difference in power consumption between the two platforms, running it
in the CPU to achieve better energy efficiency is most suitable. GPUs, otherwise, should be
employed only if they consistently outperform CPU latency times, as for vision_detection al-
gorithms.

2.4 Chapter Takeaways

AVs are a timely problem. Because they are incipient, however, they lack a clear list
of improvement points. To fill this gap we characterized a state-of-the-art AD solution,
Autoware.ai [13], and described it in this Chapter. By inspecting its software architecture,
i.e., the employed algorithms and how they collaborate, together with latency and power
data, we could take hints for research directions.

First of all, we found that the high end-to-end latency of Autoware does not meet
latency constraints, confirming the need for software and hardware improvements. Upon
that, multiple individual nodes take considerable time to compute and are combined in
different computation paths. Moreover, their objectives and computations are varied.
Therefore there is no silver bullet for ADS. The most time-consuming algorithms should be

2.4 Chapter Takeaways 35

inspected individually. At the same time, we saw that using a GPU is very power-consuming,
although necessary to guarantee the performance of some nodes such as vision_detection.
For algorithms that do not considerably benefit from it like the euclidean_cluster [69], using
CPUs is a better choice for energy efficiency reasons. Targeting hardware improvements,
and acknowledging the drawbacks of specialization (see Section 1.2.2), we can try to find
commonalities between different nodes, to encounter generic solutions. Particularly, the
dominance of CPU usage and LiDAR point cloud processing in nodes’ execution suggests
we go deeper into that research line. Accordingly, we narrow our study into improving
CPU support for point cloud processing.

3
Point Cloud Processing for Autonomous Vehi-
cles

“ By emitting invisible lasers at incredibly fast speeds,
LiDAR sensors can paint a detailed 3D picture from the
signals that bounce back instantaneously. These signals
create ’point clouds’ that represent a three-dimensional
view of the environment, allowing LiDAR sensors to
provide the visibility, redundancy and diversity that
contribute to safe automated and autonomous driving. ”A Sense of Responsibility: Lidar Sensor Makers Build on

NVIDIA DRIVE [107]
NVIDIA Blog (2021)

As discussed in previous Chapters, point clouds collected by LiDAR are fundamental
for AVs. They are used for several AD algorithms and take considerable resources and
execution time. At the same time, their use in safety-critical applications is considerably
under-investigated compared to other sensors such as cameras. Due to their importance,
the remaining of this thesis narrows the scope into LiDAR-based tasks for AV. Following,
we provide background on LiDAR functioning and point cloud generation, introduce the
key neighbor search operation for point clouds, and then we present state-of-the-art related
works that also try to improve LiDAR point clouds processing.

38 Point Cloud Processing for Autonomous Vehicles

3.1 Background

3.1.1 LiDAR and Point Clouds

Light Imaging Detection and Ranging (LiDAR) sensors are active sensors based on light
emission. They beam laser lights and capture their reflection back in the sensor to create
point clouds of the environment. Based on the direction of each beamed laser and the
elapsed time for it to return, the sensor calculates the 3D position (x, y, z) of each reflected
point. Optionally other attributes such as intensity and color can also be collected. LiDAR
sensors [25] are commonly employed for collecting point clouds in real-time given their
accuracy, relatively small size, and sampling rate [85, 153], being a critical technology for
AVs to see the world they are navigating [4, 68, 85, 169].

Among different variants of LiDAR, those based on Mechanical Spinning are the most
popular ones [85]. Figure 3.1 exemplifies a Mechanical Spinning LiDAR produced by the
company Velodyne [154]. These sensors are composed of a set of laser emitters and receivers
that beam and capture laser pulses at different angles. The emitters and receivers are placed
on top of a spinning base, which is rotated with a motor, allowing the LiDAR to scan the
complete surroundings. Figure 3.2 depicts how these sensors are typically installed in a
vehicle.

Figure 3.1 The Velodyne HDL-64E is an example of LiDAR sensor used for AD. It has a 360º
horizontal FoV, and a 26.8º vertical FoV. Adapted from [52].

Figure 3.3 shows how the horizontal and vertical FoV are covered. At fixed angular steps,
the sensor shoots a column of laser beams, thus collecting a column of points, repeating
the process for the next angular step. After a complete revolution, the sensor has a point
cloud frame ready to be sent to the computing platform of the AV, such as the one depicted

3.1 Background 39

Figure 3.2 A LiDAR mounted on a vehicle. The sensor is typically placed on top of the
vehicle to avoid occlusion and exploit its full range of operation. Adapted from [154].

Figure 3.3 The range view of the Velodyne Ultra Puck. At each angle θ (horizontal FoV),
multiple laser beams cover an apertureφ (vertical FoV) capturing the distance ρ to a reflective
surface. The collected point cloud can be seen as a range image (right). Reproduction
from [85].

in Figure 1.3. Depending on the resolution, these point clouds can have up to hundreds of
thousands of points [152].

Therefore, each point cloud framed sensed by the LiDAR contains a collection of points
in the 3D space with coordinates (x, y, z), with the origin at the LiDAR sensor. With proper
calibration, these coordinates can be translated with respect to some other origin (e.g., of
a camera, or the center of the vehicle) so that multiple sensors collaborate in the same
coordinate system. Therefore, each point in the 3D set belongs to a surface of the real world,
providing a discrete (yet detailed) representation of it, that can be used for AD perception.

3.1.2 Searching Neighbors in Point Clouds

After the LiDAR collects a point cloud frame, the CPU takes place to process it, as we
explained in Section 2.1. Now, although different AD algorithms have different high-level

40 Point Cloud Processing for Autonomous Vehicles

(a) The query point submitted for neighbor
search, highlighted in magenta.

(b) The found neighbor points, highlighted in
green.

Figure 3.4 A visual example of the neighbor search operation on a point cloud.

goals, they sometimes share common processing building blocks. We inspected nodes in
Autoware with tools such as valgrind [104] and Performance Application Programming
Interface (PAPI) [162] to search for such important building blocks. We found that point
cloud processing heavily depends on the neighbor search operation. In Autoware.ai, for
example, neighbor search accounts for more than half of the execution time of segmentation
and localization, as we reported in Figure 1.5. Out of the Autoware scope, neighbor search is
used for other point cloud tasks such as normal estimation and 3D DNNs.

The neighbor search operation obtains the neighbor points of a requested coordinate
in the point cloud, also known as the query point q = (xq, yq, zq). Figure 3.4 illustrates a
query point (Figure 3.4a, in magenta), and a set of neighbor points (Figure 3.4b, in green).
The user specifies a criteria to define which points are neighbors, and which are not. Typical
implementations (see next subsection) include support for Euclidean Neighbors (EN) or
its K-Nearest Neighbors (kNN). The EN considers any point within a distance r to be a
neighbor of the query point. The kNN adds a restriction upon the EN, sorting the results of
EN and selecting only the closest k points as neighbors.

Neighbor search allows the program to inspect the point cloud by parts, which happens
to be useful for many applications. In fact, support for neighbor search is common in well-
known libraries for point cloud processing such as the Point-Cloud Library (PCL) [117, 130],
and Open3D [173]. But before explaining the mathematical details and data structures used
for neighbor search, we motivate its usage in some applications below.

3.1 Background 41

Segmentation

Autoware’s segmentation module euclidean_cluster [129], for example, utilizes neighbor
search to cluster points. In the beginning, the whole point cloud is to be segmented.
One point from the point cloud is chosen and used as query for neighbor search. The
found neighbors and query are labeled as part of the same cluster. Additionally, each
found neighbor is subsequently used as a query for a new neighbor search. The found
neighbor points are cumulatively included as part of the same cluster. When the neighbor
search cannot find any new point (i.e., a point that was not already found), the cluster is
complete. From that, another unprocessed point from the point cloud is chosen, and the
process repeats until the whole point cloud is segmented into different clusters.

Localization

The neighbor search is also used for localization. In Autoware’s ndt_matching [93], for
example, the point cloud map (also known as the reference point cloud) is broken down in a
grid of 3D cells (also known as voxels). The points contained by each cell in the map are used
to build a normal distribution, and the centroids (spatial average) of the points in each cell are
used to build a new, filtered, reference point cloud. each centroid point has a reference to the
voxel information. Later, the sensed LiDAR points perform neighbor search in the reference
point cloud to find neighbor centroids and retrieve voxel information. The coordinates of
the sensed points are compared against the normal distribution of the voxels of interest.
This comparison returns a score, being maximum at the peak of the distribution, which
intuitively indicates how aligned the point is with the expected distribution of points in
that region. The scores of the points feed an optimization algorithm that tries to maximize
the alignment between the sensed point cloud and the reference one. For this, it rotates and
translates the point cloud, improving its alignment. The steps repeat until the alignment
error is below a threshold.

Normal Estimation

Normal Estimation is another typical algorithm for point clouds in applications such as
surface reconstruction and computer graphics [111]. The goal is to infer the direction of the
normal vector anywhere in the point cloud. This is useful to, for example, infer supporting
planes of the surfaces and apply light reflections if building a 3D model. In this case, the
neighbor search retrieves the neighbor points of the coordinates where the normal is to be
found. The neighbors are used to build a covariance matrix, upon which the eigenvectors
and eigenvalues are used to obtain the normal. Mathematical details can be found in [129].

42 Point Cloud Processing for Autonomous Vehicles

3D DNNs

The success of Machine Learning (ML) for image processing motivated works in studying
DNN for 3D data as well. Although the initial implementations such as PointNet [118]
and PointNet++ [119] were not very performing, they showed that it was possible to train
models to perform classification and segmentation with ML over point cloud data. However,
DNNs require regions from the input to assemble a feature matrix that captures local
structures. In 2D images, these matrices are filled with neighbor pixels, which are regularly
distributed in the image. In LiDAR point clouds, however, neighbor points are not well
structured in memory. Thus, it is necessary to perform neighbor search to find the neighbors
and fill the input matrices before the DNN layers take place.

3.1.3 Efficient Neighbor Search with K-D Trees

Point clouds obtained with LiDAR sensors are not organized in any manner. Instead, points
are usually pushed to an unsorted array as they are collected by the sensor. Thus spatial
locality does not imply memory locality, and neighbors can be anywhere in the list of points.
Given the low latency requirements of AD computations, exhaustively searching within
the tens of thousands of points found on point cloud frames is prohibitive. Instead, a search-
friendly data structure is necessary. Among different data structures, k-d trees [26, 51] are
widely used in practice (e.g., PCL [117, 130] and Open3D [173]) as they are efficient for
pruning the search space on low-dimensional data such as LiDAR-acquired point clouds.

A k-d tree [26, 51] is a binary tree used for partitioning k-dimensional spaces. During
its building process, the k-d tree recursively splits the data space into two subspaces,
separating the data in one coordinate. The splitting coordinate is typically the one with the
higher spread, and it takes place in its median value, as exemplified in Figure 3.5 (in 2D for
simplicity). The splitting process continues recursively in each subspace until it contains
≤ N elements. This terminal subspace is represented by a leaf node in the k-d tree and will
point to up to N elements of the indexed data.

Later, a query point q with coordinates (x, y, z) can efficiently search its neighbors using
the k-d tree. At each visited node, starting from the root, the query checks the splitting
coordinate and its value. Based on it, it calculates which subspace it belongs to and descends
into the corresponding sub-tree. This is shown in pink in Figure 3.5. This navigation policy
aims to quickly reach the leaf with the best potential neighbors for the query. In the leaf,
we calculate the distance between the query q and each point pi | i ≤ N held by the leaf.
In 3D, the distance is calculated as shown in Equation 3.1.

3.1 Background 43

Space

x spread

y
sp

re
ad

median x value
x'

q

qx

qx

x ≤ x' x > x'

k-d tree

>? split in x!

Figure 3.5 The k-d tree splits the data in two, at the median value of the coordinate with
the higher spread, which is stored at the node. During the search, a query q uses this value
to decide how to descend on the tree.

d(q, pi) =
√

(qx − pix)2 + (qy − piy)2 + (qz − piz)2 (3.1)

To avoid performing the square root, a common optimization is to calculate the squared
Euclidean distance.

d2(q, pi) = (qx − pix)2 + (qy − piy)2 + (qz − piz)2 (3.2)

With the distance at hand, it is possible to classify a point as a neighbor or not, and
if so, add it to the list of neighbors for the query q. For the EN, a point pi is a neighbor
if it satisfies d(q, pi) ≤ r (where the distance r is a search parameter), as shown in Equa-
tion 3.3. For the kNN, the list of neighbors is limited to k elements (where k is also a
search parameter), sorted by distance. Therefore, for the kNN, a point pi must also satisfy
d(q, pi) < list_of_neighbors[k − 1] to enter the list of neighbors of q.

classification(q, pi) =

neighbor, if d2 <= r2

not neighbor, if d2 > r2
(3.3)

When the recursion unwinds, the query decides if it is necessary to visit the other
sub-tree or not. It will if the other sub-tree is sufficiently close in the splitting coordinate so
that q might find neighbors there. Otherwise, it unwinds and repeats the test in the upper
levels. Whenever it visits the other sub-tree it descents with the same policy as explained
before, until it reaches a leaf and repeats the leaf processing. Therefore, a query might visit
multiple leaves to find all of its neighbors.

44 Point Cloud Processing for Autonomous Vehicles

3.2 Related Work and State-of-the-art Hardware Sup-
port for Point Cloud Processing

As we saw in this and previous chapters, there is increasing use of LiDAR in 3D applications
such as AD, and also others out of the scope of this thesis such as Virtual Reality (VR).
This motivated recent works on improving point cloud processing. We hereby cover
state-of-the-art proposals that, like us, saw the need for better point cloud processing.

To improve point cloud neighbor search several ASICs were proposed. One of the first
accelerators for EN and kNN was proposed by Heinzle et al. [62]. Their key idea is to
search slightly more points than necessary (e.g., with a greater k or r), and search in this
pool of neighbors for subsequent, spatially closed queries. The accelerator is prototyped
in an Field-Programmable Gate Array (FPGA), and achieves 68% of the CPU performance.
According to the manuscript, this slowdown is caused by the low frequency of the FPGA.
Since their measurements do not include transfer costs between the CPU and the FPGA,
end-to-end performance is likely to be even worse. Tigris [165] accelerates the neighbor
search targeting the localization task. The accelerator has multiple recursion units to search
multiple independent queries in parallel. It also has a pool of processing elements to
calculate the distance between the query and points during leaf processing. Tigris also has
a scheme to search on previously obtained neighbors, employing approximation, losing
some accuracy for the sake higher of performance. EdgePC [167] proposes data structure
changes to accelerate sampling and searching points for 3D deep learning analytics with a
GPU. They structure the point cloud with Morton code and use approximation to speed
up the search. They do DNN re-training to minimize the accuracy drop caused by their
approximate search to find features.

Another work, QuickNN [116], also proposes an accelerator for neighbor search. They
implement it in an FPGA platform and focus on optimizations to decrease external memory
bandwidth. Optimizations include a write-gather cache, to accumulate similar accesses
before accessing external memory, and caches for the k-d tree nodes. A more recent work,
ParalellNN [35], also proposes an accelerator for neighbor search. They rely on a High
BandwidthMemory (HBM) to reduce the bandwidth burden between the accelerator and the
memory system. Differently from the previously mentioned accelerators, they index their
point cloud in an octree data structure. The accelerator has ASICmodules to build and search
the octree in parallel. To simplify the hardware, they do not perform backtracking (i.e.,
when a query unwinds the recursion and visits the other sub-tree for potential neighbors),
introducing approximation in their result. The Crescent accelerator [50] divides the tree
into a top tree and a set of sub-trees. They allow backtracking to happen only inside a

3.2 Related Work and State-of-the-art Hardware Support for Point Cloud Processing 45

sub-tree to avoid conflicts when accessing memory. The approximation incurred by limited
backtracking is also amortized during re-training, as they target 3D DNNs applications. In
another recent work, the geometric similarity in Convolutional Neural Networks (CNNs)’
point cloud analytics was exploited [34]. A completeASIC for 3D CNN is proposed, with
optimizations including the neighbor search. For that, they voxelize the point cloud limiting
neighbor search to perform only on adjacent voxels of the query. Inside each voxel, however,
comparisons are comprehensive. In time, there are accelerators for point cloud DNNs [49,
87, 140] with no specific proposals or techniques to improve neighbor search. While they
do perform neighbor search, improving it is not their main goal.

While accelerators can be very efficient and provide considerable speedup for neighbor
search, typical point cloud processing algorithms interleave neighbor search with other
operations. However, both QuickNN [116] and ParalellNN [35] evaluate their accelerators
with a workload that only performs neighbor searches across multiple points from the
KITTI [55] dataset. Therefore, their reported speedups of 19× (QuickNN) and 107.7×
(ParalellNN) against the PCL on a CPU may aggressively decrease when used in a real
scenario application (Amdahl’s law). Out of the mentioned works, two [165, 167] report
end-to-end gains and confirm this behavior. Tigris [165] reports a speedup of 392.2× for the
search only, which converts into 1.86× end-to-end speedup for a localization application
running in a Xeon CPU. EdgePC, reports a 3.68× speedup for sample and neighbor search,
which converts into a 1.55× speedup in end-to-end inference over a Volta GPU. Also,
they can incur significant silicon costs (and thus also money). Let us look at the Tigris
accelerator [165] as an example since it only performs neighbor search (other accelerators
embed support for some complete task, e.g., DNN execution). Tigris requires more than
8 MB for buffers, and a total area of 15.57mm2. To put in perspective, the Arm-based
Samsung Exynos CPU M6 has 4 MB in their L3 Cache [58].

At the same time, some previous works also tried to improve neighbor search in a CPU.
The work in [3] exploits CPU SIMD hardware for neighbor search. However, it targets high
dimensional spaces and the corresponding data structure for that. In their case, they use
Asymmetric Distance Computation (ADC) to index the searchable data. A US patent from
2018 [57] describes a way to use SIMD operations to update the list of neighbors in kNN,
avoiding iterations to find the correct position of the new neighbor in the ordered list. This,
however, applies to a small part of the neighbor search.

Finally, some works exploited GPUs to improve point cloud processing. The Buffer k-d
tree [56] proposes nearest-neighbor search using a buffer to delay the processing of queries
of the same leaf until enough work is gathered. RTNN [174] proposes to formulate neighbor
search into a ray tracing problem. It then exploits contemporary ray tracing hardware in

46 Point Cloud Processing for Autonomous Vehicles

GPUs to improve the search. Thework, however, shows to be effective on point clouds orders
of magnitude (hundreds of thousands to millions of points) bigger than those generally
processed in one LiDAR frame (thousands of points), as data transfer overhead shows to be
increasingly relevant as the point cloud size decreases. Nguyen et al. [105] focus on the
software perspective, implementing the euclidean_cluster task with different data structures
and observing their efficiency in the GPU hardware. Nonetheless, evaluation of Autoware.ai
algorithms had shown that using the GPU for the euclidean_cluster performs similarly
to an Out-of-Order (OoO) CPU due to the GPU communication overheads [69]. Indeed,
Autoware.ai uses the CPU instead of the GPU to run it by default [13]. The GPU is reserved
for image-based object detection DNNs where its benefits are much less debatable [69].

3.3 Chapter Takeaways

In this Chapter, we detailed the functioning of LiDAR sensors and their use for AD. More-
over, we detailed the neighbor search operation, a backbone for point cloud processing,
exemplifying its application in four different use cases. We also explained how k-d trees
work and how it allows efficient search. We also provided a discussion on relevant state-of-
the-art, with a focus on computer architecture and hardware proposals. We saw, for example,
that most of the recent works focus on ASIC solutions. We highlighted concerns with this
approach such as communication overheads, lack of programmability, and hardware costs.
In the following two Chapters, we present two new proposals for augmenting CPUs for
point cloud processing. Our approach intend to balance performance improvement, while
offering programmability and low hardware cost. For that, we will leverage properties from
LiDAR and k-d trees that we covered in this Chapter.

4
K-D Bonsai: Reducing Data Movement in Point
Cloud Search

“ The information content of a message is the measure of
how much the recipient is surprised. ”Claude Shannon

In the previous Chapters, we saw the importance of point cloud processing and the
neighbor search operation for AD. We advocated for better CPU support for it. In this
Chapter, we propose K-D Bonsai, a technique to compress point clouds stored in k-d trees
used in Euclidean Neighbors (EN) search (also known as radius search, or ball query search).
The compression reduces data movement between the CPU and the memory hierarchy
when inspecting the leaves of the k-d tree, improving performance and energy efficiency of
EN search.

To perform the compression, we first observe that LiDARs have a physically limited
range of operation, defining an upper-bound value for the distance of collected points,
and hence, an upper-bound for each of its coordinates (x, y, z). For example, the Velodyne
HDL-64E [152] - a typically employed LiDAR sensor - has a maximum operation range in
the order of 120 m. By consequence, the FP exponent fields of the collected points have a
roof. This allows some bits of the exponent to be ignored without information loss. Second,
we observe that tree leaves of k-d trees [26, 51], intrinsically hold points with similar values.
As a consequence, the sign and exponent fields (in IEEE 754 FP representation [138]) are
frequently repeated across different points in the same leaf. The repeated values can be
merged, again with no information loss. Third, we observe that it is also possible to reduce
the bits of the mantissa field, losing information in a bounded manner, and still computing

48 K-D Bonsai: Reducing Data Movement in Point Cloud Search

a large percentage of EN without losing correctness. More importantly, we show how to
cheaply identify any correctness loss at run-time, and re-issue full-precision computation
to keep baseline accuracy with minimal overheads.

The mechanism is implemented through Instruction Set Architecture (ISA) extensions,
which we named Bonsai-extensions, requiring minimal extra hardware in a traditional CPU.
We use the Bonsai-extensions to compress the k-d tree during its construction phase and to
read and operate over compressed data during the search phase. The Bonsai-extensions
reduce the number of necessary bytes to find the EN, decreasing the number of memory
accesses, energy consumption, and execution time. The CPU modifications are punctual,
incrementing over existing hardware. Moreover, our solution provides flexibility, since
improvements are exposed as new CPU instructions. Thus, with minimal software changes,
existing applications can immediately leverage the benefits of our proposal. In contrast
with expensive and hard-to-program out-of-core accelerators, K-D Bonsai is a much less
intrusive option to enhance next-generation ADS.

4.1 Compressing Point Clouds on K-D Trees for Radius
Search

In this section, we explain how k-d-trees can be compressed when used for EN search in
AD tasks, reducing the number of bytes needed to fetch the points during leaf inspection.
We discuss a twofold compression approach that uses both value similarity and a smaller
representation. Finally, we discuss the errors introduced (by a smaller representation; value
similarity does not introduce any error) and our approach to detecting and correcting them,
guaranteeing the baseline accuracy.

4.1.1 Compression Based on Value Similarity

When the k-d tree is built (as explained in section 3.1.3), the point cloud space is subdivided
in a way that nearby points end up together in the leaf nodes. Hence, the coordinates of the
points are similar to each other. This scenario is illustrated in Figure 4.1, in two dimensions
for simplicity.

Figure 4.1a exemplifies a situation where spatially close points are held by the same k-d
tree leaf node. The origin of the coordinate system is in the vehicle (where the LiDAR sensor
is), and the distance to the points is given in meters. Figure 4.1b lists the coordinates of the
points (x and y in this example), exposing their internal FP representation (in 32-bit IEEE
754 [138]). We depict the sign (s), exponent (e), and mantissa (m) fields of FP representation

4.1 Compressing Point Clouds on K-D Trees for Radius Search 49

0
x

y

-4
-8

-12
-16

4 8 12 16

in space in k-d tree

(a) Nearby points mapped to the same k-d
tree leaf node.

pt
0

x
s e m
0 130 ···

1
2
3
4

<1><8> <23>

(8.2, -4.8)
0
0
0
0

130
130
130
130

···
···
···
···

(9.7, -8.5)
(12.4, -6.0)
(12.9, -3.9)
(14.7, -2.5)

1 129 ···
1
1
1
1

130
129
128
128

···
···
···
···

s e m
y

Same sign and exponent (9 bits)

(b) Floating-point fields for each point.

Figure 4.1 Nearby points in space are often held by the same k-d tree leaf, creating oppor-
tunity to compress data due to value similarity. Particularly, the sign and exponent fields
frequently repeat within each point’s coordinate.

separately. Following the IEEE 754 standard, the stored value is given by the following
equation.

value = −1sign × 1.mantissa× 2exponent−bias (4.1)

When points are close in space, their coordinates are likely to have the same sign (i.e.,
they all belong to the same quadrant in the coordinate system), and exponent (i.e., values
are within the same power of 2). For example, all points in Figure 4.1 have their x coordinate
between 8.0 and 16.0, hence yielding the same exponent field value of 1301.

To check the applicability of this observation, we verified how often sign and exponent
fields are the same for a given coordinate across all points in a leaf node (as it is the case
for coordinate x in Figure 4.1a). We inspected a set of point clouds spanning more than 37
million points that feed the euclidean cluster node in Autoware.ai [13, 68] (details about
data-set can be found in Section 4.3). We identified that 78% of leaf nodes have the same
exponent and sign for the x coordinate, and 83% for the y coordinate.

Therefore, value similarity in internal fields of FP representation of point clouds is very
common and a suitable compression source for k-d tree data. If the sign and exponent
are the same in a coordinate across all points in a leaf, we can store them only once, and
reconstruct the values inside the CPU, only when computation takes place (details in Section
4.2).

1For 32-bit FP (single precision), the bias is 127, resulting in a final exponent of 130− 127 = 3.

50 K-D Bonsai: Reducing Data Movement in Point Cloud Search

Table 4.1 Classification error of radius search for euclidean clustering using smaller floating-
point representations.

of bits Misclassified points
Sign Exponent Mantissa

IEEE-754 32-bits 1 8 23 0% (baseline)
IEEE-754 16-bits 1 5 10 0.076%
bfloat 16 1 8 7 0.61%
Custom float 24 1 5 18 0.0003%

4.1.2 Compression Via a Smaller Representation

Compressing the sign and exponent of FP representation fields (Section 4.1.1) yields a
maximum compression ratio of 9 out of 32 bits per coordinate when 32-bit is used - the
default in Autoware.ai and PCL, and the baseline considered in this work. To improve
the compression ratio further, we need to work over the remaining 23 bits of the FP
representation which belongs to the mantissa.

The problem here is that the mantissa field hardly repeats across the points in a leaf.
Therefore, compression due to value similarity will not be fruitful for the mantissa bits. We
can, however, reduce the size of the FP representation at the cost of precision. Table 4.1
depicts the error in classification (Equation 3.3) using different FP formats with less than
32-bits. We use the same set of point clouds as in Section 4.1.1. We experimented with two
common 16-bit FP representations: IEEE-754 16-bit (IEEE half-precision format [138]), the
bfloat 16 (used for machine learning applications, and e.g., supported by CUDA [109]); and
also a custom 24-bit representation, for a midway reference in our comparison.

Overall, we found that both 16-bit and 24-bit FP representations yield less than 1%
classification error. This is a good indication that reducing the representation can be
effective for compression, introducing few mistakes. Notice that for IEEE-754 16-bit and the
Custom float (24 bits) representations the exponent field size is also reduced, affecting the
range of representable numbers. However, point cloud data obtained from sensors such as
LiDAR have limited range. For example, the Velodyne HDL-64E [152] (a typically employed
LiDAR sensor) has a maximum cover range of 120 m. Indeed, none of the errors depicted in
Table 4.1 are due to the lack of range to represent numbers. Hence, reducing exponent bits
in our case is not a problem, but something to take advantage of2.

2Lack of range representation due to fewer exponent bits could be a problem when the coordinate system
of the point cloud does not have the origin on the sensor itself and is, otherwise, far away. For example, when
point cloud maps [133, 134] are created, several point clouds are combined to represent a region. Hence,

4.1 Compressing Point Clouds on K-D Trees for Radius Search 51

Going further, we evaluate the involved trade-offs of the different representations to
select a good fit for our compression scheme. We noticed that IEEE-754 16-bit has the same
size as bfloat, but balances better the use of exponent bits (for range) and mantissa bits
(for precision), being more accurate by an order of magnitude. Also, the 8 extra bits in our
Custom (24 bits) float for increased precision do not pay off since the 16-bit formats already
hold decent (<1% error) accuracy. Finally, the IEEE-754 16-bit is already partially supported
by nowadays CPUs (e.g., for storage on Arm [7]) hence being less intrusive on existing
architectures than a new custom format. For these reasons, we choose the IEEE-754 16-bit
to represent the points of k-d tree leaves, and over that apply compression due to value
similarity (Section 4.1.1).

Our main conclusions about using a smaller representation in k-d tree radius search
are two-fold: i) the mantissa bits can be reduced with low accuracy loss; ii) AD algorithms
consume points that are near the vehicle, hence the exponent bits can be reduced and still
represent the point cloud values.

4.1.3 How to Keep Accuracy Despite a Smaller Representation

So far, we have discussed two different ways to reduce the size of points searched by k-d
trees, with the side effect of introducing classification errors. However, since AD systems are
safety-critical, introducing mistakes is not desirable [63] and pose consequences which are
hard to test [74]. Hence, we propose an approach to detect possible mistakes in classification,
and re-compute them with baseline accuracy. For this, we assume to have access to both
the original points and the compressed points. The idea is to use the compressed points,
alleviating memory usage, and exceptionally lookup for the original 32-bit values if a
possible misclassification is detected.

Let B be a number in 32-bits IEEE-754 format that we want to represent in the 16-bit
IEEE-754 format, at the cost of an error δB associated with the loss of precision. Let B′

denote the resulting value of B in 16-bit representation.

B′ = B + δB (4.2)

For the default rounding mode in the IEEE-754 Standard, the Least Significant Bits (LSBs)
of the mantissa are dropped, and the resulting number is rounded up or down, towards the
nearest number. For values whose exponent can be stored equally in both representations
(our case, see Section 4.1.2), the rounding in the mantissa is the single source of error. In

points can be more distant to the origin than the sensor range. A possible solution for this case is to translate
the origin to a more convenient position. This could be done offline or when the map of the region is loaded.

52 K-D Bonsai: Reducing Data Movement in Point Cloud Search

this case, the 11th to 23rd mantissa bits will be used to round the number to its nearest
value, adjusting the 10th bit of the 16-bit resultant number.

Since we can round up or down to the nearest number, the maximum mantissa error
will be half the value of the 10th bit, while the maximum value error will also depend on
the exponent, since 2exponent−bias multiplies the mantissa to form the FP number (Equation
4.1). In these conditions, the maximum error δ for rounding a number B when converting
it from 32-bit to 16-bit IEEE-754 FP is given by:

max(δB) = 2exponent−bias × 2−10

2 = 2exponent−bias × 2−11 (4.3)

The takeaway here is that using only the exponent one can infer the maximum rounding
error. Thus, with B′ at hand, there is no need to lookup B, as the exponent value is
representable in both B′ and B according to our assumptions.

Now, let’s proceed to find the error in the squared difference between a value A, in
32-bit, and a value B′, in 16-bit. We start looking at the subtraction, applying Equation 4.2.

A−B′ = (A)− (B + δB) = (A−B)− δB (4.4)

Where −δB is the associated error. We can proceed and evaluate the error for the square
operation (A−B′)2 applying Equation 4.2, Equation 4.4, and Newton’s binomial theorem.

(A−B′)2 = [(A−B)− δB]2

= (A−B)2 − 2(A−B)δB + δB2

= (A−B)2 − 2[A− (B′ − δB)]δB + δB2

= (A−B)2 − 2(A−B′ + δB)δB + δB2

= (A−B)2 − 2[(A−B′)δB + δB2] + δB2

= (A−B)2 − 2(A−B′)δB − 2δB2 + δB2

= (A−B)2 − 2(A−B′)δB − δB2

(4.5)

Where−2(A−B′)δB−δB2 is the associated error of the square of the differences operation
(ϵsd). Notice that δB can be either positive or negative, depending if the numberwas rounded
up or down. At run-time, however, we will not know which case it was because that would
require fetching and inspecting the LSBs of the original value, which we are trying to avoid.
Instead, we can be pessimistic and calculate the worst case magnitude of ϵsd, using the
max(δB) (Equation 4.3) instead of δB.

max(ϵsd) = 2 · |A−B′| · |max(δB)|+ max(δB)2 (4.6)

4.2 Proposed Design 53

Again, notice that the max(δB) and max(δB)2 can be directly obtained with the
exponent of B′. Finally, we can compute the approximate square differences of form
(A−B′)2 for each coordinate, and sum to get the approximate euclidean distance squared
d′2.

d′2(q, p′
i) = (qx − p′

ix)2 + (qy − p′
iy)2 + (qz − p′

iz)2 (4.7)

Likewise, we can sum the maximum error of the squared differences in each coordinate
and get a total error Tϵsd

Tϵsd = max(ϵsd)x + max(ϵsd)y + max(ϵsd)z (4.8)

We can finally use Eqs. 4.7 and 4.8 to perform the classification (with p′
i instead of pi).

classification′2(q, p′
i) =

neighbor, if d′2 <= r2 − Tϵsd

not neighbor, if d′2 > r2 + Tϵsd

use Eq. 3.3, otherwise

(4.9)

In other words, we can use the worst-case error Tϵsd to confirm the correctness of the
classification with p′

i. We do so by defining a shell around r2 with values r2 − Tϵsd and
r2 + Tϵsd, as depicted in Figure 4.2. Whenever d′2 falls outside the shell, the classification
is the same as the baseline, computed by Equation 3.3. For instance, a point inside the
radius but outside the shell cannot be outside the radius even if we add Tϵsd to d′2. On the
other hand, when d′2 falls inside the shell, the error could be large enough to change the
classification, and cannot be guaranteed to be the same as the baseline. In this case, we
propose to fetch the original point pi, and re-do the classification with the full-precision,
using Equation 3.3.

4.2 Proposed Design

In this section, we motivate and explain the design decisions of K-D Bonsai. We explain the
hardware structures and how to use them through new instructions, the Bonsai-extensions.

4.2.1 Hardware Support for K-D Tree Compression

After deriving a compression scheme (Section 4.1), hereby referred to as K-D Bonsai, it
is of our interest to use it in tasks that perform radius search. A naive approach would
be to (de)compress points with a software-only solution. However, iteratively inspecting
and re-ordering bits in software slows down radius search in the order of 7× (data-set

54 K-D Bonsai: Reducing Data Movement in Point Cloud Search

r-Tεsd
r+Tεsd

r

q

inside radius

outside radius
unkown, re-compute
 with 32-bit

Figure 4.2 Visual representation of Equation 4.9.

and experimentation platform in Section 4.3.1), undermining the compression benefits.
Alternatively, it is possible to add hardware to support K-D Bonsai effectively.

Two main options arise to implement K-D Bonsai in hardware: i) with an out-of-
core accelerator; or ii) in the CPU through ISA-extensions. In this work, we stand with
the latter as we justify next. First, the CPU would have to transfer data in and out to
communicate with the accelerator. However, the leaf processing done by K-D Bonsai is a
fine grain task, requiring only a handful of cycles to complete (implementation details in
Section 4.2.2). Thus, using proper hardware inside the CPU to perform (de)compression
and classify points avoids communication costs [135]. Alternatively, (de)compression
operations could be coalesced to amortize communication costs. However, accelerators
are likely to be more expensive (see Section 3.2). At the same time, leaf processing is only
a fraction of the point cloud handling, limiting the maximum performance improvement
(Amdahl’s law), and jeopardizing accelerator adoption. Nevertheless, industry favors less
experimental approaches to accelerate tasks in their real-life solutions, rarely employing
accelerators [114].

On the other hand, while new instructions yield more conservative performance
gains, they are a much simpler solution from the hardware standpoint. Additionally, ISA-
extensions are easier to integrate and to program, facilitating K-D Bonsai implementation
in existing platforms. For example, Arm releases new (sometimes optional) ISA-extensions
yearly [6]. Also, some Arm processors support to-be-defined custom instructions [40]. Both
alternatives exemplify the use of ISA-extensions to specialize CPUs for relevant scenarios,
such as AD. Support for custom instructions is also a key feature of the RISC-V ISA [157].

4.2 Proposed Design 55

Load Store
Unit

Slice
ZipPts Buffer

Compress/Decompress Logic

Vector Register
File

(A-B')²
FU

Logic
Storage

Added to the
baseline CPU

Figure 4.3 The new components added to the baseline CPU and how they interact with
pre-existing ones.

This set of reasons motivates us to propose specific instructions in the CPU to implement
K-D Bonsai effectively.

4.2.2 Changing the CPU

A main advantage of the ideas discussed in Section 4.1 is how easily and cheaply they can
be carried out in the hardware. Indeed, the set of new functionalities required is small: i)
we need to compress the data; ii) decompress the data; and iii) support computation of the
squared differences (and associated error) in the form (A−B′)2 (Equation 4.5).

Figure 4.3 depicts the two components that we add to the CPU, and how they inter-
act with the existing hardware. The first added component we discuss is the Compres-
sion/Decompression unit, at the top of the figure. The unit is divided into two parts: a
buffer, named ZipPts Buffer, and a Compress/Decompress Logic.

ZipPts Buffer. The ZipPts Buffer is designed to hold both compressed and uncom-
pressed 16-bit points, being the source and destination operand for compression and
decompression operations. In our implementation, we restrict the ZipPts Buffer size to hold
a maximum of 16 points (the number of points per leaf in the PCL is 15 by default). We
also reserve space for 3 bits in the buffer, to encode whether x, y, and z coordinates are
compressed.

The buffer has two 128-bit ports to interface with the Vector Register File and one 128-bit
port to interface with the Load Store Unit. Hence, data is exchanged in chunks of 128-bit,
which we refer to as a ZipPts Buffer slice. When less than 128-bits must be transferred (e.g.,
the last chunk of a compressed data), we pad data with zeroes. The width of the ports
equals the ones that already exist in our baseline CPU (see Section 4.3), for example in the
Vector Register File. Hence, we can load and store data from/to memory directly to the

56 K-D Bonsai: Reducing Data Movement in Point Cloud Search

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

original points
pointed by leaf

points & num_pts

cmprsd_strct_array

bi
ts

 r
eo

rd
er

in
g

original points
pointed by leaf

compressed points
pointed by leaf

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

one <sign, exp> copy for all x coordinates

compression encoding: 100

idx, len

100 ...

ZipPts Buffer

p'0
pix<sign, exp>

✔

piy<sign, exp>

piz<sign, exp>
=

p'1 p'9…

cX
✗

ZipPts Buffer

=
cY

✗

=
cZ

xm0ym0100 zm0…xm9ym9 zm9 ys,e0 zs,e0…ys,e9 zs,e9xs,e

Figure 4.4 Compressing points in a leaf node. Load the points into the ZipPts Buffer. Find
coordinates with same < sign, exponent > pairs, e.g., x coordinate (setting cX to 1).
Reorder bits in the ZipPts Buffer and set the compression encoding. Store compressed data
in the memory (cmprsd_strct_array), adding a reference to it in the leaf node for future
look-up.

ZipPts Buffer. In summary, we can load points into the buffer to be compressed, store the
compressed data back in the memory, and load compressed data to be decompressed. Also,
we can write values from the ZipPts Buffer into the Register File, exposing them to the
Functional Units (FUs). The ZipPts Buffer is tightly coupled with the Compress/Decompress
Logic, which is responsible for re-arranging the data bits, discussed as follows.

Compress/Decompress Logic. This unit re-arranges the data in the ZipPts Buffer
compressing and decompressing points from a k-d tree leaf. In both cases, the number of
points must be provided to the logic. During compression, this unit reads and compares the
tuple < sign, exponent > on each coordinate of the points in the ZipPts Buffer, see Figure
4.4. If they are the same across all points, only one copy of < sign, exponent > will appear
in the resulting compressed data. Each coordinate has a compression bit flag (cX , cY , cZ)
to indicate whether or not its < sign, exponent > is compressed. During decompression,
this unit reads the compression bit flags, re-organizing the data and re-creating the multiple
instances of the single copy of < sign, exponent > across all values.

To exemplify, Figure 4.4 details the compression flow and the organization of the
compressed data. First, the mantissa values are directly bypassed to the buffer as they are
not compressed. Then, the compressed tuples of < sign, exponent > are placed in the
ZipPts Buffer, followed by the remaining non-compressed tuples of < sign, exponent >.
The three compression bits are placed at the very beginning of the buffer.

Approximate Square of Differences Functional Unit. When compressed points
are fetched from memory and decompressed into 16-bit values, they can be moved from
the ZipPts Buffer to the Vector Register File. At this point, the FU for the square difference
with error computation can take place. The unit implements Equation 4.5, and can be used
successive times (for each coordinate) to compute Equations 4.7 and 4.8 to perform the
classification. Figure 4.5 details the internal scheme of the FU. It has two input operands,

4.2 Proposed Design 57

A

A-B'

(A-B')²

-

 ²

B'A

2·|max(δB)| max(δB)²

part error mem

×
+

max(εsd)

ext
op1 op2

exponent

(A-B')²
FU

Figure 4.5 Details of the FU for square of the difference with error computation (Equa-
tion 4.5).

A is a 32-bit value (e.g., a coordinate of the query point), and B’ is a 16-bit value (e.g., the
same coordinate of one of the points in the leaf), which is then extended to 32-bit (without
changing the value of B′) so computation takes place in 32-bit hardware, preventing 16-bit
errors to be magnified. The square of the differences proceeds with conventional subtraction
and square operations.

The calculation of the worst case error (max(ϵsd), Equation 4.6) has more operations
than the square of the differences itself. Fortunately, we can take advantage of some
observations to simplify its computation. First, since the max(δB) depends only on the
exponent of B′, and there are only 25 = 32 possible exponents, we can pre-compute the
values of 2 · |max(δB)| and |max(δB)|2 and store them in a small (32 lines) lookup table.
This small table (named part error mem in Figure 4.5) is looked up with the exponent of B′

in the beginning of the operation. Also, the term |A−B′| computed for the square of the
differences can be borrowed to compute the worst-case associated error max(ϵsd).

Since decompression outputs multiple points at once, they are simultaneously available
for computation. To leverage this, we instantiate multiple approximate squares of difference
FUs (Figure 4.6), to compute them in a vector manner. In each FU we compute the square
of the differences and the associated error at the same time, each working on a part of the
input vectors vA and vB′. For the EN classification, a coordinate of the query q is loaded
into all indices of vA, while the same coordinate of multiple points is loaded into vB′.

4.2.3 Software Impact

Now we discuss how to use the new hardware from the software. We expose the new
hardware functionalities mentioned in Section 4.2.2 as new CPU instructions. The set of
new instructions, which we refer to as Bonsai-extensions, is described in Table 4.2. We

58 K-D Bonsai: Reducing Data Movement in Point Cloud Search

(A-B')²
FU

(A-B')²
FU

(A-B')²
FU

(A-B')²
FU

16b

vA

v_sq_diff

vB' 32b

x0

x x x xq

p'
0..7

high/low

x1 x2 x3 x4 x5 x6 x7

Logic

Vector
Register

32b

32b

(qx - pix)²

max(εsd)xv_error

Figure 4.6 Vector square of the differences FUs.

divide the Bonsai-extensions into three instruction categories: compress, decompress, and
computation. Some instructions trigger multiple micro-operations, as we explain together
with their usage following.

When the leaf node is created during the k-d tree construction, we can use the compress
instructions over the leaf points we have at hand (Figure 4.4). For such we have to load
the points, one by one, into the ZipPts Buffer using the LDSPZPB instruction. The load
converts the original 32-bit into 16-bit before placing the coordinates in the buffer. We
can further compress the data in the ZipPts Buffer, looking for sign and exponent sharing,
with the CPRZPB instruction. At this point, we have a compressed structure in the ZipPts
Buffer and the resulting size in bytes (length). We can proceed and store the compressed
data with the STZPB instruction, indicating the amount of ZiptPts Buffer slices that must
be stored in memory. The decoder will generate one store micro-operation for each slice,
storing them in consecutive addresses.

In our modified PCL code, we create an extra array of bytes, cmprsd_strct_array, to
store the compressed structures consecutively as we visit and compress leaf nodes during
the tree construction. Also, we keep track of the starting address and length of the com-
pressed structure placed in the cmprsd_strct_array in the k-d tree, so that we can fetch the
compressed data later, during the radius-search (tree traversal). We use C unions to re-use
fields of the tree that are not used on leaf nodes (e.g., the splitting coordinate and distances
to children), to store this information. Hence, we hold auxiliary compression information
without increasing the size of the k-d tree. In the PCL code, we also keep track of the next
free index in the array, to be occupied by the next compressed structure.

Later, when we do the radius search we can use the LDDCP instruction to load and
decompress the compressed structure into registers, whenever we reach a tree leaf. This

4.2 Proposed Design 59

Table 4.2 The proposed bonsai-extension instructions.

Instruction Description

Co
m
pr
es
s

LDSPZPB
r_index, [r_addr]

LoaD Single-float Point into ZipPts Buffer - Loads one 3D point in single-
float from address [r_addr], converts it to 16-bit, and place it on the ZipPts
Buffer at position [r_index].

CPRZPB
r_size, r_num_pts

ComPRess ZipPtsBuffer - Compress the 16-bit points from the ZipPts
Buffer, exploiting the value similarity concept (Section 4.1.1). The number
of points is informed in r_num_pts. The result of the compression is the
ZipPts Buffer itself. The size in bytes of the resulting compressed structure
is placed in r_size.

STZPB
[r_addr], #ZipPtsSlices

STore ZipPtsBuffer - Stores the ZipPts Buffer in the memory. Due to port
size limitations, the ZipPts Buffer will be stored in slices through several
store micro-operations (in a total of #ZipPtsSlices).

D
ec
om

pr
es
s

LDDCP
v_base, r_num_pts,
[r_addr], #ZipPtsSlices

LoaDDecompressingCompressed Points - Load the compressed structure
from memory into the ZipPts Buffer, in slices, through several load micro-
operations (in a total of #ZipPtsSlices). Decompress the ZipPts Buffer on
itself with one micro-operation. Writes-back the points to vector registers,
per coordinate, from v_base up to v_base + 5, with 3 micro-operations.
Since two 128-bit registers can hold up to sixteen 16-bit values (enough
for one coordinate), we write-back to six (two at a time) 128-bit registers
to hold forty-eight 16-bit values (enough for three coordinates).

Co
m
pu

ta
tio

n

SQDWEL
v_sq_diff, v_error,
vA, vB’

SQuare Difference With Error Low part - Performs a vector operation in
the form (Ai −B′

i)2 with error calculation (see Eq. 4.5). The four values
in the low part of vB’ will be extended from 16-bit to 32-bit when pushed
in the units (see Figures 4.5 and 4.6). The square difference will be placed
in v_sq_diff, and the associated error in v_error.

SQDWEH
v_sq_diff, v_error,
vA, vB’

SQuare DifferenceWith Error High part - Same as SQDWEL, but using
the high part of vB’.

instruction is broken down by the decoder into a sequence of micro-operations. First it
loads the compressed structure into the ZipPts Buffer. For this we need the address and
size of the compressed data in the cmprsd_strct_array, which is kept in the tree leaf, to
indicate how many slices (chunks of 128-bits) must be brought from memory, starting
from the provided address. The decoder use the indicated number of slices to generate an
equivalent number of load micro-operations from memory to the ZipPts Buffer. Once the
whole compressed structure is inside the ZipPts Buffer, a decompression micro-operation
takes place, reading the compression encoding and reordering the bits into 16-bit points
accordingly. Finally, write-back micro-operations are issued to move the value of the points
into the vector register file. In this case, we write back the decompressed points from the
ZipPts Buffer into six vector registers. We need two vector registers for each coordinate

60 K-D Bonsai: Reducing Data Movement in Point Cloud Search

since each vector register can hold up to eight 16-bit values, and we support up to sixteen
16-bit values per coordinate.

Finally, when we have decompressed the 16-bit values of the coordinates in the vector
arrays, we can use the square of the differences FUs (Figure 4.6). For such, we perform
instructions SQDWEL and SQDWEH, calculating the square of differences for points with
a vector of the query point, for each coordinate. The coordinate values of the query point
can be loaded into vector registers using existing vector instructions. Since we have four
32-bit lanes in the baseline CPU SIMD unit (Arm Neon, details in Section 4.3.1), but eight
values on each coordinate (16-bit computed in 32-bit in the FUs, Figure 4.5), we split the
values in two groups of four values, the low part and the high part, and compute them one
at a time in the four lanes (details in Figure 4.6). The result, per point index, is available in
two vector registers, one holding the calculated square of the differences, and another one
with the maximum error (max(ϵsd)). Thereafter, it is possible to accumulate the distances
for each index on each coordinate, using existing instructions, and compare it with r2,
performing the classification (Equation 4.9). If the result is inconclusive (inside the white
shell in Figure 4.2), one can proceed with the baseline code, i.e., read the 32-bit point and
compute the 32-bit distance. This should be rare to guarantee good performance, otherwise
compression/decompression will consume time with no real benefit.

Finally, we highlight that, for AD tasks, the tree is generally built once for each frame,
in the beginning, and then searched multiple times, during the frame processing. This is
important because compressing the leaf node points represents an overhead during tree
creation. However, the compression benefits will appear during the search, when we load
fewer data from the memory. For example, we verified an average of 52 visits for each
created leaf node during the radius search for one of the input frames. Thus, the expectation
is that loading less data, multiple times, amortizes the initial overhead.

4.3 Results

In this section, we explain the evaluation methodology and obtained results for K-D Bonsai.

4.3.1 Evaluation Methodology

From the software perspective, we rely on Autoware.ai [68] to experiment with our idea.
Autoware is a state-of-the-art and open source software stack for AD, built with contri-
butions from both academia and industry companies [13]. It has several algorithms to
perform AD, from sensor processing and perception to actuation. In this work, we choose

4.3 Results 61

Table 4.3 Sub-sampling error.

Mean Standard
Error for Latency

IPC Relative
Error

L1- D Cache Miss
Ratio Difference

Branch Mispred.
Difference

2.94% 4.68% 0.10% 0.03%

a representative algorithm from Autoware, namely euclidean cluster [129] to verify the
benefits of our proposal in k-d tree radius search, although other algorithms are also subject
to our optimizations (e.g., Autoware’s localization algorithm [93]).

The euclidean cluster algorithm is a vital part of the perception pipeline of Autoware.ai.
The algorithm clusters points of a source point cloud, useful for inferring objects’ shape,
geometry, and distance. Notably, it has been reported by previous works as one of the tasks
with higher latency in the Autoware.ai pipeline [19]. Importantly, the euclidean cluster
extensively performs the radius search operation to find nearby points that should belong
to the same cluster.

We stimulate the euclidean cluster algorithm with a subset of point cloud frames from
an eight-minute car driving sequence [67]. Because our cycle-accurate simulator (details
next) executes several orders of magnitude slower than real hardware, we used systematic
sub-sampling (fixed-size samples equally spaced in time) to select the subset of point cloud
frames. The idea was inspired by previous work [5] and yields good results if the parameters
(interval amount and length) are properly chosen. We experimented with several parameters
finally settling on 20 samples of 300 milliseconds each – adding up to six seconds of real-life
data and handling a total of 60 frames. Table 4.3 details sub-sampling errors, evidencing it
as a fast and accurate proxy to the code behavior.

We implemented the Bonsai-extensions (Table 4.2) in the gem5 simulator [29, 92],
targeting an OoO CPU with the Arm’s AArch64 ISA. We base our model (see Table 4.4)
on the pre-defined big CPU in gem5, adjusting parameters such as the frequency to match
technology scaling, to replicate an Arm Cortex A72 behavior. Although our solution is ISA-
agnostic, we used Arm as a representative ISA for AD (e.g., used by NVIDIA DRIVE [108]).
We modified the PCL [117] version 1.10 and its auxiliary library FLANN [94] version 1.9.2,
using our instructions during the radius search, as explained in Section 4.2.3. We did not
modify the compiler but instead wrote our instructions directly with byte-code using the
.inst directive in Arm asm inside the library. We expose a Boolean variable in PCL so that
users can activate the use of the new instructions for radius search. When the variable is
true, the code uses the Bonsai-extensions, otherwise, it uses the baseline code. The search
result is the same in both cases.

62 K-D Bonsai: Reducing Data Movement in Point Cloud Search

Table 4.4 Baseline CPU model.

Parameter Value
CPU OoO ARM v8 64-bit @3GHz, Fetch Width: 3, Issue Width: 8,

Int Physical Reg.: 90, Float/Vector Physical Reg.: 256, ARM v8
NEON (128-bit SIMD operations)

Memory System L1: 32KB (I) 2-way + 32KB (D) 2-way, L2: 1MB 16-way, Main
Memory: 8GB DDR3-1600

We execute Autoware’s euclidean cluster algorithm in gem5, running in Full System
mode (Ubuntu 18.04). We use gem5 fast-forwarding capabilities with KVM hardware virtu-
alization [60, 131] to reach the regions of the sub-sampled frames. For energy results, we
model the CPU in McPAT [83, 84] in a 32 nm technology, and use gem5 reported statistics
to feed the McPAT power model. We estimate the area and power of the new FUs (com-
pression/decompression, and square of the differences with associated error) synthesizing
Verilog descriptions on Synopsys Design Compiler [41] with a 14 nm technology [95]. To
unify results in a single technology we scale the baseline CPU data reported byMcPAT using
the methodology described by Stillmaker et al. [142] (from 32 nm to 14 nm technology).

4.3.2 Performance Analysis

Figure 4.7a presents key performance metrics for the execution of the extract kernel of
euclidean clustering, both for the baseline with and without the Bonsai-extensions. This
is the main kernel of the algorithm and accounts for 90% of its execution time (measured
with Valgrind [104]), and where both k-d tree build and search are performed. Since each
metric has different scales, we normalized each of them w.r.t. the baseline code. We can see
that the Bonsai-extensions reduce the number of memory instructions, by 23% for loads
and 18% for stores.

Figure 4.7b gives intuition for this improvement, depicting a great reduction in the
number of required bytes to bring the points from memory during the search on one frame.
When we load compressed points using the Bonsai-extensions, we load a fraction (37%) of
the bytes we would normally need in the baseline code. Although this value is for the first
frame of the data set, the behavior is similar across all frames.

This reduction in memory usage converts into several benefits. First, it decreases the
number of committed instructions by 16%, ultimately indicating that our Bonsai-extensions
cut computation costs and increase efficiency on radius search processing. Second, it reduces
accesses to L1 D-cache by 14%, making the application less memory-bound, which also

4.3 Results 63

Ex
ec

ut
io

n
Ti

m
e

C
om

m
itt

ed
In

st
ru

ct
io

ns

C
om

m
itt

ed
Lo

ad
s

C
om

m
itt

ed
St

or
es

L1
 D

-C
ac

he
A

cc
es

se
s

L1
 D

-C
ac

he
M

is
se

s

(a)

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
C

ha
ng

e

-1
2%

-1
6%

-2
3% -1

8% -1
4%

+8
%

(b)

B
yt

es
 to

 lo
ad

po
in

ts
 fr

om
 fr

am
e

#1

4.85 MB

1.77 MB

Baseline
Bonsai-extensions

Figure 4.7 (a) Hardware metrics during the execution of the extract kernel of euclidean
clustering considering the baseline code and the proposed Bonsai-extensions. Average
across all executed frames. (b) Number of loaded bytes to fetch points from the first frame
of the data-set during radius search (traversal).

increases efficiency in the use of the CPU. Third, due to both former reasons, it decreases
the execution time of the extract kernel by 12%. Latency, as we further discuss, is a major
concern for AD algorithms [86]. Nevertheless, this is particularly significant when we
observe that benefits come from the addition of only five new instructions to the ISA.

Figure 4.7a also indicates K-D Bonsai increases L1 D-cache misses. Although the Bonsai-
extensions load compressed points from the cmprsd_strct_array, which is contiguous in
memory, it also accesses the original list of points when classification is inconclusive
(white shell in Figure 4.2). These infrequent accesses to another data structure are the
main cause for misses in higher levels of the memory hierarchy. In absolute numbers,
however, this is not a concern. Since the L1 cache is accessed 47× more than L2 and 300×
more than main memory we still see the benefits in execution time. Figure 4.8 puts the
number of memory accesses in perspective, according to the different memory hierarchy
levels. This phenomenon highlights the importance of choosing the appropriate reduced FP
representation, as we discussed in Section 4.1.2, Table 4.1, to minimize overheads of issuing
32-bit re-computation. In our experimentation, only 0.37% of the classifications had to rely
on the baseline computation. If we were not careful in selecting the representation, errors
would not be as infrequent, and the K-D Bonsai benefits could be compromised.

Next, we evaluate end-to-end latency for euclidean cluster processing of frames. This is
important because the extract kernel, evaluated so far, is a subset of the algorithm’s work.
Other tasks such as point cloud pre-processing and labeling the points into their respective

64 K-D Bonsai: Reducing Data Movement in Point Cloud Search

L1 Cache Accesses L2 Cache Accesses Main Mem Accesses
0

1

2

3

4

5

6
D

at
a

M
em

or
y

A
cc

es
s

1e7

-14%

+11% +8%

Baseline
Bonsai-extensions

Figure 4.8 Accesses on different levels of the memory hierarchy.

Baseline Bonsai-extensions
40
45
50
55
60
65
70
75
80
85

En
d-

to
-e

nd
 la

te
nc

y
tim

e
[m

s] Baseline
Bonsai-extensions

Figure 4.9 The distribution of the end-to-end latencies for the euclidean cluster algorithm.
The dashed line indicates the mean value. Half the values are within the box limits.

clusters must also be performed. Figure 4.9 depicts two box plots with the distribution
of the euclidean cluster end-to-end processing time for all sub-sample frames. As in any
standard box plot, the boxes contain 50% of the values. We indicate the mean value of each
distribution (not the median, typical of box plots) with a white circle and auxiliary dashed
lines. The use of Bonsai-extensions speeds up the average end-to-end latency by 9.26%. In
the context of AD, reducing the end-to-end latency translates into reducing the reaction
time of the vehicle, hence actuating faster, and increasing overall safety. At this point, we
recall that K-D Bonsai benefits come with the same baseline accuracy (Section 4.1.3). Also,
since the euclidean cluster is generally a perception bottleneck [19, 69, 172] K-D Bonsai
improvements are directly converted into overall AD improvements.

4.3 Results 65

Table 4.5 Area and power for baseline CPU and K-D Bonsai.

Area (mm2) Dynamic
Power (W)

Static
Power (W)

Processor (L2 included) 14.26 1.86 1.15

K-D
Bonsai

Compression
Decompression
FU

0.0191 0.0095 6.29E-06

4x (A-B’)2 FU 0.0320 0.0144 4.55E-06

Total 0.0511 0.0240 1.08E-05

Relative change 0.36% 1.29% 0.001%

Another important aspect for AD algorithms is their end-to-end tail latency. Different
from the average, the tail latency assesses the performance of the algorithm in situations
where computation takes the most (e.g., in the euclidean_cluster, when point clouds have a
higher number of points to be processed). K-D Bonsai again proves to be advantageous
considering the 99th percentile tail latency, speeding it up by 12.19%. Hence, K-D Bonsai
improves performance when it is needed the most.

4.3.3 Area and Power Analysis

Let us now examine the hardware costs of implementing our technique. Table 4.5 presents
area and power overheads introduced to support K-D Bonsai, according to the methodology
explained in Section 4.3.1. Overall, the hardware to support the new instructions is simple,
increasing area by 0.051 mm2, which represents an increase of 0.36% w.r.t the baseline.
Likewise, supporting K-D Bonsai increases dynamic power by 24 mW (+1.29% w.r.t the
baseline). These results reinforce how non-intrusive our solution is. In the context of AD,
introducing minimal overheads in power and area is particularly important for meeting
cooling constraints [86] and design of small autonomous vehicles (e.g., for delivery [106]),
respectively.

4.3.4 Energy Analysis

Finally, we go through K-D Bonsai energy consumption results in the extract kernel of the
euclidean_cluster. Figure 4.10 depicts a box plot (in the same fashion we did for end-to-end
latency, Figure 4.9). The reduction in energy consumption is driven by a reduction in
execution time, number of instructions, and number of memory accesses, which pays off

66 K-D Bonsai: Reducing Data Movement in Point Cloud Search

Baseline Bonsai-extensions
0.02

0.07

0.12
En

er
gy

 C
on

su
m

pt
io

n
[J

] Baseline
Bonsai-extensions

Figure 4.10 The distribution of the energy consumption for the extract kernel in the euclidean
cluster algorithm. The dashed line indicates the mean value. Half the values are within the
box limits.

the small increase in dynamic power (Table 4.5). On average, the use of Bonsai-extensions
reduces energy consumption by 10.84%. K-D Bonsai successfully improves energy efficiency,
which is a concern on AV so the computational platform does not reduce driving range [86,
88] (e.g., on battery-powered vehicles).

4.4 Chapter Takeaways

In this Chapter, we proposed K-D Bonsai, a novel approach to improve leaf processing
during k-d tree radius search, a key operation in modern point cloud processing algorithms
for AVs. K-D Bonsai reduces memory operations with a (de)compression scheme that
takes advantage of value similarity and precision reduction tolerance in the points of k-d
tree leaves, without harming baseline accuracy. Unlike from previous works that rely
on out-of-core accelerators, K-D Bonsai is implemented in the form of ISA-extensions
(Bonsai-extensions) in an OoO CPU, and validated with state-of-the-art software for AV
in a the gem5 simulator in full-system mode. Our solution, K-D Bonsai, is very efficient
in reducing both end-to-end latency and energy consumption while incurring minimal
overheads in area and power. Besides, it requires only incremental hardware modifications
on commodity CPUs while being simple to be used by the programmer (setting a flag in
PCL), hence being a hands-down solution for next-generation AV systems.

5
Caravan: Maximizing SIMD Efficiency in Point
Cloud Search

“ We call it MMX: Media Enhancement Technology. You’ll
call it fun. ”Intel’s TV advertising on the MMX extensions, the first family

of SIMD instruction in Intel processors.

In the previous Chapter, we exploited similarity in the points of the k-d tree leaves to
reduce the data movement between the CPU and the memory hierarchy during neighbor
search. However, as we explain next, we can also find similarities within the queries that
search on the k-d tree, which we hereby exploit for improving neighbor search.

In this Chapter we present Caravan: a hardware (Caravan-HW) and software (Caravan-
SW) co-design to exploit the similarity in k-d tree navigation among subsequent queries.
Caravan packs similar queries to traverse together while reducing computing costs. Caravan
first acts at the software level (Caravan-SW), gathering similar queries, leveraging the VPU,
and guaranteeing correct execution even if queries face some divergence when searching
on the k-d tree. Then, it acts at the hardware level (Caravan-HW) by means of two new
instructions that generate dense valid indices, allowing fast operand shuffling to suppress
runtime and hard-to-predict SIMD sparsity that arises from Caravan-SW.

The spatial locality (in the Euclidean space) held by consecutive LiDAR-sensed points
is the cornerstone observation for our proposal. Figure 5.1 exemplifies the observation.
Because LiDAR devices scan the 3D space by rotating its laser emitters [85, 153], consecutive
collected points tend to be near, along the same surface. Thus, a new point that is pushed
to the sensed point cloud is likely to have similar coordinates (x, y, z) to the previous one.

68 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

0.5 m 1 m 2 m 5 m 10 m 20 m 50 m
0%

20%

40%

60%

80%
Pe

rc
en

ta
ge

 o
f

oc
cu

re
nc

ie
s

Figure 5.1 Histogram of the distance between consecutive points collected by a Velodyne
LiDAR [67].

Leaf holds
up to N points

Searching Query Qi Searching Query Qi+1 Searching Query (Qi, Qi+1)

Figure 5.2 Subsequent queries Qi and Qi+1 share most of their visited nodes, and can
traverse the k-d tree together.

This later results in similar k-d tree traversal among subsequent searches, as illustrated in
the leftmost and center drawings in Figure 5.2.

Caravan-SW exploits this behavior at the application level. When consuming the list of
sensed points to process, we pack consecutive points to search on the k-d tree together. Thus,
the search operations that were formerly done by a single query are now performed jointly
by all queries in the pack. Figure 5.2 also illustrates this concept, with two consecutive
queries packed to search together. In practice, we pack more queries, up to the CPU’s
Vector Length (VL), to take the most out of our SIMD approach. This way, Caravan-SW
avoids re-visiting nodes and re-loading k-d tree metadata, benefiting from the similarity to
reduce computation costs. More importantly, this approach allows SIMD instructions to
take place during neighbor search, drastically decreasing the instruction count. Modifying
the code of the widely used PCL [117, 130] with Caravan-SW improves end-to-end latency
of point cloud segmentation by 1.85×.

Despite its benefits, Caravan-SW faces runtime and hard-to-predict sparsity, which leads
to sub-optimal utilization of SIMD resources and, thus, fails to achieve peak performance.
The origin for runtime sparsity is two-fold. First, the number of points in the visited leaves
often do not perfectly fit the CPU’s VL. Forcing leaves to contain VL points would harm

5.1 Caravan 69

the balancing properties of the k-d tree, worsening search complexity [72]. Second, packed
queries are similar but not equal, and thus sometimes have to follow different paths in the
k-d tree. Therefore, visited nodes are not always of interest to all queries in the pack.

The deeper the search goes in the tree, the higher the chances for queries to diverge,
as the subspaces get ever more restrictive, being worse in the leaf nodes. The sparsity in
leaves is particularly concerning since leaf processing has extra computation compared to
regular nodes of the k-d tree. Particularly, we have to compare the valid queries against the
points held in that leaf. From an SIMD point of view, this means placing two structures A

(e.g., the queries) and B (e.g., the points) in SIMD lanes, where each element of A has to be
compared with each element of B. We call this an all-to-all SIMD pattern. The standard
SIMD approach to solve it requires, for example, broadcasting the elements of A one by
one into an auxiliary vector A′. Then, iteratively perform vector-wise operations between
A′ and B. Naturally, if the operations are commutative, A and B are interchangeable.

This approach works well if A and B are dense vectors. If they are sparse, however, the
vector-wise operations will under-utilize the SIMD lanes. In the previous example, even
though A′ will be dense (with one valid element from A), B will be sparse. To overcome
this, we propose Caravan-HW, two new SIMD instructions to maximize SIMD efficiency
for sparse all-to-all SIMD patterns. The instructions serve to generate a dense combination
of the indices of valid elements between two vectors (in this case, the packed queries and
the leaf points). The combination is used to permute elements from the original vectors,
shuffling them in a way that all vector lanes are utilized. This greatly improves the SIMD
efficiency and reduces the number of iterations to identify neighbors in the leaves. Caravan-
HW improves leaf processing and when combined with Caravan-SW pushes end-to-end
performance improvements from 1.85× to 1.97×.

5.1 Caravan

In this section, we detail the functioning of Caravan, our hardware and software co-design
that exploits the similarity in k-d tree navigation among subsequent queries. We first
discuss why subsequent queries are similar, and how we can leverage that to improve
neighbor search on spatial data structures, such as k-d trees. We then explain how we
change the software (Caravan-SW) to take advantage of such similarities, followed by an
evaluation that identifies limitations due to sparsity. Finally, we propose hardware support
(Caravan-HW) to deal with the SIMD sparsity with a programmable solution, in the form
of two new instructions.

70 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

5.1.1 Exploiting Similarity in Subsequent Queries

The typical pipeline for real-time 3D vision applications includes: i) sensing the point cloud,
ii) indexing it in a search-friendly data structure such as a k-d tree, iii) performing neighbor
searches, and then iv) post-processing the found neighbors to increase the abstraction and
infer semantics from the scene. Steps (i) and (ii) happen only once for a given point cloud
frame, and step (iv) changes for each application. The neighbor search step (iii), however,
not only is performed many times but is also of general use across different applications,
often being their main bottleneck [22, 165]. Thus, being a key target for improvement.

Before performing neighbor searches, applications need the list of pending queries,
whose neighbors are to be found. The list of pending queries depends on the algorithm. A
typical case is when we need to search the neighbors of each point from the sensed point
cloud independently. This happens, e.g., in the localization algorithm. In this case, the raw
list of LiDAR collected points can be seen as the list of pending queries. One by one, the
queries from the pending list are consumed to perform the neighbor search. Similarly, 3D
CNN (see Section 3.1.2) can also search neighbors of points from the sensed point cloud in
the order they come from the sensor.

In other algorithms, the list of pending queries is constructed on the fly. In segmentation,
for example, we consume one point from the point cloud, find its neighbors, and set these
neighbors as the list of pending queries. One by one, the queries from the pending list are
consumed to perform the neighbor search, and the found neighbors are pushed to the end
of the same list. This process repeats until no new neighbors are found and no pending
queries exist, meaning we segmented a part of the point cloud. The process starts again
with another point from the point cloud, which has not been processed yet, to segment
another part of the point cloud. The algorithm finishes when all points in the point cloud
have been assigned to a segment (also known as a cluster).

Regardless of which of these two methods, however, subsequent queries in the pending
list are likely to be close in the Euclidean space. Figure 5.1 illustrates the case when we
directly use the raw list of points sensed by the LiDAR. Also, we can trivially expect
similarity between subsequent queries in the pending list when we search within a list of
neighbors of a query, as the query’s search criteria will constrain them.

Now, because of the spatial properties of k-d trees, if subsequent queries are similar
in space, they are likely to be close in the k-d tree as well. Therefore we can expect great
overlap in the visited nodes of a k-d tree among similar queries. This behavior is illustrated
in Figure 5.2. We hereby refer to this as search locality, and it is a main observation for our
proposal. Caravan exploits search locality to reduce computation costs and improve overall
neighbor search performance. This is achieved by packing multiple similar queries together

5.1 Caravan 71

in a query pack (QP), and searching their neighbors in the same k-d tree inspection. The
benefits of doing that are many-fold. For explanation purposes, let us assume a perfect case,
where the packed queries are exactly the same. In that case, the visited nodes will also be
the same, meaning that we reduce recursion costs (variables to the stack, function calls,
etc.) by the number of packed queries. Also, the metadata (the splitting axis, its value, the
pointers to the next node) of each visited node is read once, and applicable to all queries in
the pack, instead of being re-loaded on separate searches. Moreover, the points in a leaf
can be loaded once and used to be compared against all queries in the pack. Finally, since a
pack can now leverage SIMD instructions, the instruction count drops proportionally to
the number of packed queries.

5.1.2 Caravan-SW

Below we explain how to convert the observed search locality benefits into Caravan-SW, a
practical software implementation. We derive our ideas upon the neighbor search imple-
mentation in the PCL, the most popular open-source library [130] for point cloud processing,
employed as the baseline software for recent related works as well (e.g., [22, 35, 165, 166]).

Caravan-SW extends the PCL, adding code to perform the search with multiple queries
simultaneously. The user determines whether to use such a feature, by calling the appropri-
ate overloaded methods. While the baseline PCL neighbor search requires only one query
point, Caravan-SW requires a QP . In C++ terms, a QP is as simple as an array of queries.
The pack size is defined at compile-time in our implementation, up to a maximum of the
CPU’s VL size, as we want to leverage SIMD instructions. For the latest Intel processors (the
case study for our work), users can pack up to 16 points, which underneath are processed
with AVX512 [64]. A similar implementation can be achieved with other ISAs, e.g., Arm’s
SVE [141].

The main changes proposed by Caravan-SW happen inside the library, thus being
transparent for the final user. Particularly, the baseline single-query recursion (Section
3.1.3) needs to be adapted. The first goal is to visit the same set of nodes we would with
multiple baseline searches, so the functionality is maintained. Additionally, we want to visit
each necessary node only once, to leverage the benefits of search similarity (e.g., metadata
reuse). Formally, let QP be the query pack with queries {q1, q2, ..qn}, and N (q) the nodes
visited by q during its neighbor search. We wantN (QP) = N (q1)∪N (q2)∪ . . . N (qn). If
we are not careful in the design of Caravan-SW, however, this requirement may not happen.
Due to divergence (i.e. the need of queries in the QP to take different directions in the
k-d tree), naive solutions could either visit unnecessary nodes, or re-visit nodes multiple

72 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

y

x

other side?

1

2

3

4

y'

query
pack

Figure 5.3 Packed queries can disagree on the next sub-tree to visit.

times. Following, we explain mechanisms to ensure that we only visit necessary nodes, and
exactly one time.

To exemplify, let us assume that a QP with four queries {q1, q2, q3, q4} have been
descending the k-d tree with no divergence, until it reaches a node at k-d tree level L, as
shown in Figure 5.3. Level L splits the space in the y coordinate (at value y′). On each query
in the figure, we also indicate a distance range that queries take into account to decide
whether they have to visit the other side (see Section 3.1.3). By inspecting the figure, we can
infer that q1 needs to visit the left sub-tree, q2 and q3 have to visit both, and q4 needs to visit
the right sub-tree. Therefore, there is no consensus on what is the next sub-tree to visit,
which we call search divergence. Still, we have to visit both sides to ensure functionality,
even though each visited sub-tree will be relevant to a portion of the QP .

The order in which these visits happen will be explained soon, and for now let us assume
that we start visiting the left sub-tree, attending q1, q2, and q3. From this left sub-tree (at
level L + 1) and below, q4 is known to be irrelevant. Still, it belongs to the QP , which is
part of the recursion arguments. Therefore, we need a way of ignoring q4 when deciding
the next sub-tree to visit (from level L + 1 to level L + 2), otherwise, it might diverge again
from queries q1, q2, and q3, forcing the algorithm to descend into an unnecessary sub-tree
(until reaching a leaf, as explained in Section 3.1.3). This can happen in any subsequent
level, even though q4 is known to be irrelevant since the left sub-tree was taken in level L.

For this reason, we enhance the recursion with an extra valid mask parameter. It
contains one bit per element in the query pack, indicating the valid queries (e.g., q1, q2,
and q3 in the example), and the invalid queries (e.g., q4 in the example). The lack of such a
valid mask could make the number of visited nodes |N (QP)| explode to a number much

5.1 Caravan 73

Baseline 4 8 16

QP size

0.0

200.0

400.0

600.0

800.0

V
is

it
ed

N
o
d

es
[M

il
li

on
s]

69%

66%
65% 66%

31%

34%

35%
34%

831.4

282.2

180.3
134.6

Non-leaf nodes

Leaf nodes

Figure 5.4 The number of visited nodes for the neighbor search operation in a segmentation
algorithm. Caravan-SW successfully exploits search locality to avoid visiting redundant
nodes.

higher than the multiple baseline searches, |N (QP)| > |N (q1)|+ |N (q2)|+ . . . + |N (qn)|,
harming Caravan-SW potential.

Also, when queries diverge we need to re-think the way of visiting sub-trees. Let us
again use Figure 5.3 to exemplify. If we directly apply the decision policy explained in
Section 3.1.3, q2 would visit the left sub-tree first, and q3 would visit the right sub-tree
first. When unwinding the recursion, they would find they have to go to the other side
as well, causing the search to descend twice on each sub-tree. This again could cause
|N (QP)| > |N (q1)|+ |N (q2)|+ . . . + |N (qn)|.

In Caravan-SW we first find the distance of each query against the splitting coordinate.
With this, we know what is the best sub-tree to visit for any of them. Also, we anticipate
the calculations to check if going to the other sub-tree is necessary, instead of waiting for
the recursion to unwind and thus avoiding the problem of re-visiting a node. With this, we
can group queries that have to visit the left sub-tree and the queries that have to visit the
right sub-tree. At the same time, we can update the recursion parameters depending if they
are visiting the best sub-tree or the other sub-tree (as the calculations are different). At the
implementation level, we do this with the help of a pivot query. The pivot query is simply
one valid element from the QP . In our implementation, we find the pivot query with a
bit-scan along the valid mask, choosing the first valid query we can find. We use this pivot
query to create an order when visiting the sub-queries. First, we visit the best sub-tree for

74 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

Baseline 4 8 16

QP size

0.0

5.0

10.0

15.0

20.0

T
ot

al
S

ea
rc

h
es

[M
il
li
on

s]

21.5

6.0

3.9 3.4

15%

85%

35%

65%

64%

36%

Single-point query

Multiple-point query

Figure 5.5 Total neighbor searches performed, with a category breakdown in the segmenta-
tion task with Caravan-SW.

the pivot query and all other queries that also have to visit that sub-tree (setting the valid
mask accordingly). And later, we visit the other sub-tree (also adjusting the valid mask), if
any queries need to visit it. The pivot query will generally agree with others, thus being an
efficient approach regardless of whether divergence happens or not.

Finally, to avoid loops when calculating the decision of each query, we leverage the VPU
of the CPUs. With this, we broadcast the values that are common to all queries (for example,
the position of the splitting coordinate) and do vector-wise calculations at once, greatly
reducing the instruction count. Likewise, when processing the leaves, SIMD instructions
can also take place to compute the distances.

5.1.3 Implications of Caravan-SW

We now take a brief moment to inspect the consequences of Caravan-SW, to understand the
behavior of the modified code. Particularly, we are interested in verifying if our hypothesis
of search locality holds when used in practice with real-life data (details in Section 5.2.1).
Apart from that, we also want to identify possible points of improvement.

The major goal of grouping queries in a pack to perform the neighbor search is to
avoid visiting redundant nodes, and therefore reduce the search costs. Figure 5.4 depicts
the number of visited nodes for neighbor searches performed during a segmentation task.
The figure shows data for the baseline PCL code and Caravan-SW with different fixed

5.1 Caravan 75

4 8 16

QP size

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

V
al

id
Q

u
er

ie
s

[%
]

All nodes

Leaf nodes

Figure 5.6 The percentage of valid queries on Caravan-SW with varying QPsizes in a
segmentation task.

QP sizes, whenever there are enough pending queries available. It also breaks down the
visited nodes into leaf and non-leaf nodes, which is relevant because leaf processing adds
extra computation as explained in Section 3.1.3.

The first observation is that Caravan-SW effectively reduces the number of visited
nodes. For example, from the baseline code to Caravan-SW with a 4 queries in the QP , we
see a 66% decrease in visited nodes. This reduction directly converts into fewer operations
to perform the neighbor search, such as instructions to manage the stack for the recursion,
and to load metadata in the nodes including points stored in the leaves. The reduction
reaches a maximum of 83% for Caravan-SW with a QP of size 16, compared to the baseline.
Therefore, our search locality hypothesis has proven true. More importantly, all the benefits
so far come only from data pattern observation and appropriate algorithm adjustments.

Although the benefits are good, it is relevant to look at how the idea scales. Since the
VL size of CPU vector units has been increasing in the last decade [64, 141], new solutions
should make the best use of such a size increase, to pay off the hardware cost they require.
If we look at the number of visited nodes and how they vary as we double the elements in
theQP (from 4 to 8, and then from 8 to 16), we do not see a perfectly proportional reduction.
From a QP of 4 queries to 8, the reduction is 36%, and from 8 to 16, 25%.

To understand this behavior, it is necessary to look deeper into the application. First,
we remind the reader that the segmentation searches incrementally, fetching queries from
a previously found list of neighbor points, as explained in Section 5.1.1. Not always this list
will have enough queries to fill up theQP . This is shown in Figure 5.5 with a breakdown of

76 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

how many searches were performed with Caravan-SW (multiple queries), and how many
with baseline (single query). The more queries in the QP , the fewer times we employ
Caravan-SW. We still reduce the total number of searches because each search contains
more queries, but certainly, this limits Caravan-SW benefits. In practice (Section 5.2), we set
a threshold of minimum queries, and allow the size of the QP to vary from this threshold
up to the VPU’s VL.

Another concern is the under-utilization of the VPU lanes, caused by search divergence.
As we increase the size of QP , we reduce the probability of all queries descending into the
same sub-tree. Figure 5.6 quantifies this behavior, indicating the average number of valid
queries we have in the QP throughout neighbor searches. While a QPwith 4 queries has
79% of valid queries on average, it decays to 67% with 8 queries, and 55% with 16 queries.
This can compromise the benefits of Caravan-SW (the Turquoise bar in Figure 5.5). In
the worst case, if we have only 1

QP size
valid queries per visited node, it means we have

to visit the same number of nodes as QP size baseline searches, but with Caravan-SW
overheads (e.g., bookkeeping the valid mask). Although the found percentages are far
from this catastrophic example, they are still relevant in understanding how Caravan-SW
benefits scale with the number of queries.

We also indicate the average valid queries for the leaf nodes (dashed line) in Figure 5.6.
The percentage is worse than the overall, because as previously explained, the deeper the
search goes, the more restrictive the subspace is, causing even small coordinate differences
between queries in the QP to diverge in the next sub-tree decision. Note that divergence
in the leaves is particularly concerning due to extra computations for leaf processing, i.e.,
comparing the Euclidean distance between the queries and the points, and pushing the
found neighbors to the list of neighbors of the corresponding query. Therefore, although
Caravan-SW is capable of reducing visited nodes on its own, it is under-utilizing the SIMD
hardware available in CPUs, which prevents it from reaching maximum benefits.

5.1.4 Caravan-HW

The sparsity in Caravan-SW threatens the efficiency of the SIMD operations executing
in the VPU. In this context, the tree leaves are the most affected, as they face the worst
sparsity (Figure 5.6) while also executing a higher number of SIMD operations compared
to regular nodes. Therefore, suppressing the sparsity for leaf processing is crucial to avoid
SIMD drawbacks in Caravan-SW.

Algorithm 1 provides a high-level description of the leaf processing steps with a tradi-
tional CPU. We iterate on each query from the QP , and check if they are valid. If they are,
we broadcast the query into a vector (replicating the query in all SIMD lanes) to perform

5.1 Caravan 77

Algorithm 1 SIMD Leaf Processing
Require: QP , leaf_points, valid_mask, neighbors_list
1: for idx, q in enumerate(QP) do
2: if !(valid_mask[idx]) then
3: continue
4: end if
5: q_vec← broadcast(q)
6: dist_vec← simd_euclidean_dist(q_vec,leaf_points)
7: neighbor_mask← simd_less_than(dist_vec,MAX_DIST)
8: neighbors_list[idx].simd_append(leaf_points,neighbor_mask)
9: end for

SIMD Euclidean distance against the leaf_points held by the leaf. Although abstracted
in the algorithm, the Euclidean distance computes the summation of the square of the
differences between the query and the points in coordinates x, y, z. This is similar to the
definition in Equation 3.1, but performed vector-wise. Also, comparisons are performed
with the square distance, to avoid performing the costly square root. Points fitting the
neighborhood criteria (e.g., are closer than the MAX_DIST) are vectorially stored in the
list of neighbors of the query.

In the example of Algorithm 1, the broadcasted queries fill the q_vec, but still, there is
SIMD sparsity since theleaf_points vector does not necessarily have VL elements, and
instead, vary depending on how the subspaces are divided during the k-d tree construction
(see Figure 3.5). Forcing the leaves to hold exactly VL points would harm the tree balance,
which is not desired as it harms the search complexity [72]. Alternatively, we could swap
the variable roles, and iterate on each point from the leaf_points, broadcast them
into a vector, and do SIMD operations against theQP . However, sparsity would also appear
in this case, since queries in QP diverge, as shown in Figure 5.6.

Therefore, regardless of the variable we choose to iterate and broadcast (either queries
or points), leaf processing will underutilize the VPU. The left and center columns of Figure
5.7 depict this behavior. We have two vectors A and B that need to perform SIMD all-to-all
operations, as in the leaf processing. In the example figure, the valid elements of vector A

are {0, 1, 3, 6, 7}, while the valid elements of vector B are {0, 1, 2}.
From the figure, we can see that it is best to iterate and broadcast on the sparser vector

(the Broadcast B center column in Figure 5.7) while maintaining the denser vector fixed.
This reduces the number of steps and increases the SIMD utilization to perform all-to-all
comparisons with respect to the alternative (Broadcast A option). However, hard-coding
this pattern in the algorithm is a pitfall, as the best vector to iterate and broadcast will vary.
Figure 5.8 shows a comparison of valid queries versus points during leaf processing for

78 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

Broadcasting B

0 1 3 6 7

22 2 2 2 2 2 2

0 1 3 6 7

11 1 1 1 1 1 1

0 1 3 6 7

00 0 0 0 0 0 0

Broadcasting A

10 2S
te

p
0

0 0 0 0 00 0 0(0 0 0 0 00 0 0

10 2S
te

p
1

0 0 0 0 00 0 0(1 1 1 1 11 1 1

10 2S
te

p
2

0 0 0 0 00 0 0(3 3 3 3 33 3 3

10 2S
te

p
3

0 0 0 0 00 0 0(6 6 6 6 66 6 6

10 2S
te

p
4

0 0 0 0 00 0 0(7 7 7 7 77 7 7

With Caravan-HW

3 6 6 76 7 7

02 1 2 0 1 2 0

10 2 0 1 2 0 1

0 0 0 0 00 0 00 0 1 3 30 1 1

Vector B 10 2

Vector A

Sparse all-to-all SIMD pattern

0 1 3 6 7

Figure 5.7 The number of steps to perform all-to-all comparisons between two sparse
vectors. For a traditional CPU, it is necessary to choose one vector to iterate and broadcast,
while fixing the other one, leading to VPU underutilization. With Caravan-HW support,
vectors can be shuffled to fully occupy the SIMD lanes, increasing VPU efficiency.

our experimentation (details in Section 5.2.1). Sometimes we have fewer valid queries than
points, sometimes the opposite. This will depend on the QP we have and the leaves they
visit. In any case, whenever a lane from either A or B is not valid, we are underutilizing the
VPU capabilities. In both cases (Broadcasting A or Broadcasting B) we have some degree
of underutilization if A and B are sparse. So even if we choose the best-suited variable to
iterate, we would still not leverage the full capabilities of the VPU.

We propose Caravan-HW to provide hardware support to densify SIMD vectors, and
maximize VPU utilization. The goal of Caravan-HW is to allow the programmer to fill

0% 20% 40% 60% 80% 100%

63% 32% 5%

Queries < Points Points < Queries Queries = Points

Figure 5.8 The leaf node sparsity varies at runtime. Sometimes, we have less valid queries
than valid points, sometimes the opposite. Results for a Min QPsize of 16 queries.

5.1 Caravan 79

sparse lanes with valid elements from the sparse vectors. The right column of Figure 5.7
illustrates the idea. To achieve this, we need to re-arrange the valid elements of the vectors,
so that lanes have maximal effective computation. In other words, we need to place the
pairs of valid elements from A and B consecutively, without invalid values in between.

In our example, we would like to compute the pairs {(A0, B0), (A0, B1), (A0, B2),
(A1, B0), (A1, B1), (A1, B2), (A3, B0), (A3, B1), (A3, B2), (A6, B0), (A6, B1), (A6, B2),
(A7, B0), (A7, B1), (A7, B2)}. As shown in Figure 5.7, these pairs would then be split
in chunks of size VL, so it could be executed by the VPU, in two steps for a V L = 8 as
shown in the figure. Notice that for a V L = 16 all computations could be done in one step
for this example. Modern ISAs, however, do not provide an instruction to arrange dense
pairs from sparse vectors. Instead, the dense vectors have to be generated with multiple
instructions. While this can be a solution if the same vector lane configuration is used for
many SIMD instructions, it will take too much time for smaller code snippets, such as a
leaf processing iteration.

Caravan-HW proposes a pair of instructions to solve this: Extract Dense IDs Re-
peating Sequence (EDIRS), and Extract Dense IDs Repeating Element (EDIRE).
Algorithms 2 and 3 detail their behavior. By looking at the desired pairs, we can see that
one vector needs to consecutively repeat the sequence of valid indices (vector B in the
example, with B0, B1, B2, B0, . . .), while the other (vector A in the example) repeats one
element at a time (e.g., A0, A0, A0, A1, . . .), for as many times as the size of the other’s
sequence.

Algorithm 2 Extract Dense IDs Repeating Sequence
Require: valid_mask, step, seq_size
Ensure: dense_sequence_ids
1: indices← [0 .. VL]
2: compressed_indices← broadcast(−1)
3: compressed_indices← compress(indices, valid_mask)
4: for i in range(VL) do
5: src_idx← ((step× VL) + i) mod seq_size
6: dense_sequence_ids[i]← compressed_indices[src_idx]
7: end for
8: return dense_sequence_ids

To perform the EDIRS and EDIRE instructions, we need the mask with valid elements
and the size of the repeating sequence. In the context of Caravan-SW and point cloud
neighbor search, we have the valid mask at hand for the QP (see Section 5.1.2), and we
can easily build a mask for the points, using the available information of how many points
there are in the leaf. Also, since the list of pairs can be bigger than VL, we need to inform

80 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

Algorithm 3 Extract Dense IDs Repeating Element
Require: valid_mask, step, seq_size
Ensure: dense_elements_ids
1: indices← [0 .. VL]
2: compressed_indices← broadcast(−1)
3: compressed_indices← compress(indices, valid_mask)
4: for i in range(VL) do
5: src_idx← ((step× VL) + i)÷ seq_size
6: dense_sequence_ids[i]← compressed_indices[src_idx]
7: end for
8: return dense_elements_ids

the instruction which iteration step we are to generate a corresponding window of the
list of pairs with size VL.

The list of indexes to process a given iteration step is generated by the instructions,
according to algorithms 2 and 3. As from the algorithms, each output is independent from
the others. Therefore, we can compute all outputs together, outputting a SIMD vector of
indices. For each output element, we multiply the step value with the VL. Then we divide
(EDIRE) by the sequence size or compute the modulo (EDIRS) to obtain the element for the
corresponding position in that step. A functional unit for each instruction can be directly
derived from Algorithms 2 and 3, each requiring three integer source registers, and one
SIMD destination register. For the hardware implementation, multiplying by VL can be
a simple shift, since VL is typically a power of 2. Also, since the steps has a maximum
value of 16, dividers are 5-bits only. This allows the hardware implementation of the two
instructions to be cheap, as we show in the Results, Section 5.2.

Therefore, both instructions generate a list of indices from one of the sparse vectors.
One repeats the whole sequence, while the other repeats the elements by the former’s
sequence size. When combined, they act as the desired list of valid pairs. We synergically
use the list of indexes with existing instructions in modern ISAs. Figure 5.9 exemplifies
with a simplified code snippet. For example, in x86, the permutexvar class of intrinsic
instructions [64] (Figure 5.10) is able to shuffle the elements of an input vector, placing them
in an output vector according to a third vector that indicates the source position for each
output element. The permutexvar instructions are generally used for shuffling the input
vector with a shuffling pattern known at compile-time. For Caravan-SW, however, this is
not enough since the QP will have a different number of valid elements (and their position
within the pack) potentially varying in every visited leaf, which in turn will also have a
different number of points. Nevertheless, Caravan-HW can overcome this unpredictable
behavior, quickly generating a dense list of indices to be used at runtime.

5.1 Caravan 81

__mm512 vec_A, vec_B, vec_C;
uint16_t mask_A, mask_B;
__mm512i vec_A_dense_ids, vec_B_dense_ids;
float thr_dist;
int vec_A_valids, vec_B_valids, tot_comb;
size_t num_steps;

void baseline_example(){
thr_dist = 3.14;
for(i=0; i<VL; i++){

bool is_valid_A_elem = mask_A & (0x01 << i);
if(!is_valid_A_elem)

continue;
vec_A_brdcst = _mm512_set1_ps(vec_A[i]);
vec_C = _mm512_sub_ps(vec_A_brdcst, vec_B);
vec_C = _mm512_mul_ps(vec_C, vec_C);
cond_mask_dist = _mm512_cmplt_ps(vec_C, thr_dist);

}
}

void caravan_hw_example(){
thr_dist = 3.14;
vec_A_valids = _mm_popcnt_u32(mask_A);
vec_B_valids = _mm_popcnt_u32(mask_B);
tot_comb = vec_A_valids * vec_B_valids;
num_steps = tot_comb/VL + (tot_comb % VL !=0);

for(step_i=0; step_i < num_steps; step_i++){
vec_A_dense_ids = EDIRE(mask_A, step_i, vec_B_valids);
vec_B_dense_ids = EDIRS(mask_B, step_i, vec_B_valids);
vec_A_dense = _mm512_permutexvar_ps(vec_A_dense_ids, vec_A);
vec_B_dense = _mm512_permutexvar_ps(vec_B_dense_ids, vec_B);
vec_C = _mm512_sub_ps(vec_A_dense, vec_B_dense);
vec_C = _mm512_mul_ps(vec_C, vec_C);
cond_mask_dist

. . .

. . .

= _mm512_cmplt_ps(vec_C, thr_dist);

}
}

New instructions

Preparing inputs with
existing instructions

More computations
e.g., other coordinates

More computations
e.g., other coordinates

Fewer iterations

Figure 5.9 Example code on how to use EDIRE and EDIRS instructions along with existing
x86 instructions. In the example, two sparse vectors A and B compare their elements
all-to-all to check which are closer than the thr_dist. The Caravan-HW instructions
reduce the loop iterations.

In summary, we use Caravan-HW instructions to generate the list of indices, and then
we use existing instructions to shuffle the elements according to the lists. For the distance
computation during leaf processing, for example, we can use the same shuffling pattern
(indices list) to assign the different coordinates of points and queries to the same lanes. On
each iteration step, we can perform the different operations for distance calculation in each
coordinate, and accumulate in the end. Then, we can retrieve the respective queries and
points accounted for in a lane with an indirection to the list of indices. For example, in
Figure 5.7, the computation with Caravan-HW at lane 7 and step 0, refers to (A_3, B_1). If
A and B are queries and points, respectively, we could append point1 to the list neighbors
of query3 if the calculated distance indicates so.

82 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

Figure 5.10 The permutexvar instruction from Intel Intrinsics [64] that, in our case, consume
the indices vectors generated by EDIRE and EDIRS instructions to arrange valid elements
from sparse vectors into new vectors to maximize SIMD efficiency. Adapted from [64].

5.2 Results

In this section, we explain the evaluation methodology and associated results for Caravan.

5.2.1 Evaluation Methodology

We explain our methodology in parts. First, we discuss how we implement Caravan-SW
and Caravan-HW. Then we detail how we evaluate Caravan benefits in a state-of-the-art
AV software, and the computing platform used.

Caravan-SW.Weuse the PCL [117, 130] version 1.10 and its auxiliary library FLANN [100,
101] version 1.9.2 as our baseline software for performing neighbor search. These libraries
are widely used for point cloud processing and serve as baseline software for recent related
works as well (e.g., [22, 35, 165, 166]). We implement the Caravan-SW relying on AVX512
from Intel Intrinsics [64]. The internal implementation is abstracted from the user of the

5.2 Results 83

4 8 12 16

Min QP size

0.0

20.0

40.0

60.0

80.0

100.0

120.0

E
n

d
-t

o-
en

d
C

y
cl

es
[M

il
li
on

s]

Baseline PCL

Caravan-SW

Caravan-HW

Figure 5.11 End-to-end speedup from Caravan-SW and Caravan-HW for Autoware’s seg-
mentation.

library, who only has to provide a vector of queries (theQP) and a vector of list of neighbors
(where the found neighbors will be pushed). During leaf processing, we choose to broadcast
and iterate on queries, calculating their distance to multiple points at once per iteration.
This allows multiple points to be pushed to the query’s list of neighbors with a vector store.
If we iterate and broadcast points, we would find the same neighbors but would have to
perform more stores. We compile the library with the -O3 flags.

Caravan-HW. We perform software emulation to implement the behavior of the
Caravan-HW instructions EDIRS and EDIRE, through multiple SIMD instructions. We
account for data preparation (e.g., mask generation and vector initialization) and adapt the
software to use the generated indices with Intel’s permutxvar instructions. When in a leaf,
we pre-generate the indices for each step and store them in an auxiliary software structure.
We measure the time to generate the indices following Intel’s manual on accurate cycle
measurement for Intel CPUs [112]. Later, to perform the leaf processing, we fetch the pre-
generated indices for each iteration step with two SIMD loads, that behave as EDIRS and
EDIRE instructions. In the end, we substitute the software emulation costs (to pre-generate
the indices) by the latency obtained with synthesis (Section 5.3) to have the final estimation
of the execution cycles of the application with Caravan-HW. Since our instructions are
well-behaved and predictable (e.g., no memory references or control involved) we believe
this methodology is fair. It also allows us to run real-life applications, instead of micro-

84 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

0

1

2

3

4

5

6

7

N
ei

gh
b

or
S

ea
rc

h
S

p
ee

d
u

p
[×

]

1.00×

4.05×

5.19×

Baseline

Caravan-SW

Caravan-HW

Figure 5.12 Speedup from Caravan-SW and Caravan-HW considering only the neighbor
search.

benchmarks or fractions of applications typically employed on CPU simulators. Also, since
we use a commercial CPU, we prevent errors from assuming CPU parameters which is
sometimes needed in simulators as well. To estimate instruction latency, area, and power,
we describe the hardware of both instructions with Verilog, considering a VPU unit with
16x32-bit lanes (as in AVX512). The approach is similar to the one described in Section
4.3.1. The behavior is verified functionally, with Icarus Verilog [161], and the hardware is
synthesized with Design Compiler [41], using a 14 nm node technology library [95], the
same technology node of Intel Xeon W2155 used for our experiments [65].

Application and Dataset. We evaluate Caravan potential with Autoware.ai [13, 68], an
open-source software for AD. Autoware.ai provides a complete set of algorithms to perform
AD, from sensor processing and perception to actuation. In this work, we test Caravan
implementation in Autoware’s point cloud segmentation module [129]. The segmentation
module is responsible for clustering points, separating the point cloud into labeled objects.
Later, Autoware consumes the segmented objects, to either extract their size and distance,
or to perform 3D object classification. Notably, point cloud segmentation yields the highest
latency across typical point cloud perception modules employed in AD [19, 69, 172], thus
being a timely and relevant use-case to experiment Caravan on.

We stimulate Autoware with an eight-minute LiDAR sequence, collected with a vehicle
with a sampling frequency of 10 Hz and released by Autoware [67]. In Autoware, the
point cloud is pre-processed before the Segmentation. Ground points are removed, and

5.3 Synthesis Analysis 85

0

1

2

3

4

E
n

d
-t

o-
en

d
S

p
ee

d
u

p
[×

]
1.97×

2.56×

Caravan-HW

Theoretical Max.

Figure 5.13 Caravan-HW end-to-end speedup is close to the Theoretical Maximum.

the remaining points are down-sampled with a voxel grid filter [117]. We compile the
code with gcc/g++ version 13.1 and run it on an Intel Xeon W-2155 fixing the frequency
at 2.5GHz to reduce measurement variation, with 256 GB, and Ubuntu 20.04. The Xeon
supports AVX512, thus being able to perform up to 16 float operations in parallel (i.e.,
VL=16).

5.3 Synthesis Analysis

While Caravan-SW has zero hardware cost (completely software approach), Caravan-HW
does require additional hardware for the new instructions. Table 5.1 presents synthesis
results for the functional units for EDIRE and EDIRS (see Methodology details in Sec-
tion 5.2.1). Caravan-HW instructions incur an almost negligible area cost (0.03175 mm2
per core), even when accounted for in the 10 cores available in the Intel Xeon W-2155
(0.31747mm2). Comparatively, even though Intel does not report area per core for the
Xeon Models, it does report an area of 45 mm × 52.5 mm = 2362.5 mm2 for the whole
package [65]. While we acknowledge that the area for the cores is a fraction of the package
area, showing how little extra area is required to support Caravan-HW. Likewise, intel does
not provide a breakdown of power consumption per core or functional units. However,
we know from the measurements in Section 2.3.2, that an intel i7 core running Autoware

86 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

Table 5.1 Synthesis data for area and power required by the instructions added with Caravan-
HW.

Area
(mm2)

Dynamic
Power (W)

Static
Power (W)

Latency @2.5GHz
(cycles)

EDIRE 0.01570 0.0012392 9.18E-10 9
EDIRS 0.01604 0.0011936 1.07E-09 9
Total per Core 0.03175 0.0024328 1.99E-09 -
Total for 10 Cores 0.31747 24.328 1.99E-08 -

tasks would require around 40 W (see Table 2.4). On the other hand, Caravan-HW adds
only 2.43 mW dynamic per core, i.e., four orders of magnitudes lower. In general, since our
overheads are constrained inside specific new functional units, we can leverage most of the
baseline CPU infrastructure (e.g., the VPU registers), to provide performance benefits at
low cost in area and power. Finally, latency-wise the new SIMD instructions are also in
pair with existing Intel Intrinsics [64], each taking 9 cycles to execute.

5.3.1 Performance Analysis

In Section 5.1, we set different fixed QPsizes to show how they reduce the number of
visited nodes (Figure 5.4). The larger theQP , the higher the reduction. However, increasing
the QP size reduces the chances of using Caravan (Figure 5.5) because the list of pending
queries for segmentation might not have enough elements to fill theQP . Also, more queries
increase the divergence likelihood (Figure 5.6).

Thus, to maximize the benefits of Caravan, we allow the search to occur with a variable
number of elements, increasing the chances of using our SIMD approach. However, allowing
SIMD searches with too few elements in the QP can harm Caravan’s benefits. For example,
if there is only one query pending to be searched, it is naturally better to search with the
baseline PCL code. Thus, to use Caravan one must account for the overheads of initializing
vectors and the heavier recursion costs that come with multiple-query variables. We
thus use a threshold Min QPsize, and use Caravan only when the QP has at least Min
QPsize elements. If we have fewer elements, we perform baseline searches until enough
neighbors are found and placed in the list of pending queries, when Caravan can be used
again. This control is performed at the software level.

Considering this, Figure 5.11 shows the end-to-end number of cycles for the Segmen-
tation application in Autoware.ai. The chart contains data for i) the baseline code; ii)
Caravan-SW (i.e., PCL + existing AVX512 instructions exploiting search similarity observed

5.3 Synthesis Analysis 87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0%
5%

10%
15%
20%
25%

Fr
eq

ue
nc

y

Average 7.65Iterate queries

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0%
5%

10%
15%
20%
25%

Fr
eq

ue
nc

y

Average 9.99Iterate points

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0%
5%

10%
15%
20%
25%

Fr
eq

ue
nc

y

Average 5.16Caravan-HW

Figure 5.14 Required steps on leaf processing to vectorly compute all-to-all iterating on
different variables with a Min QPsize of 16.

in Section 5.1.1); and iii) and Caravan-HW (i.e., Caravan-SW + architectural support with
two new instructions EDIRS and EDIRE, see Section 5.1.4). It shows results for different
Min QPsizes, being best with a Min QPsize of 8. The value of 8 can balance good usage
of the VPU and the percentage of searches with multiple-point queries while being large
enough to avoid overheads. From this point on we discuss results for thisMinQPsize value.

Regardless of the chosen Min QPsize, Caravan proves to be very effective in reducing
end-to-end latency for the segmentation. By exploiting query similarity observations
(Section 5.1.1) with Caravan-SW, we can greatly improve the baseline code, by up to 1.85×
with a Min QPsize of 8. The end-to-end benefits come directly from the neighbor search
improvement. As shown in Figure 5.12, Caravan-SW improves the neighbor search by
4.05×. Notice these benefits can be directly applied in today’s CPUs, since all we did
was exploit data similarity to unleash SIMD parallelism during k-d tree search, leveraging
available VPUs for an application formerly hard to vectorize.

However, Caravan-SW encounters sparsity, particularly in the leaf nodes as we discussed
in Section 5.1.2. Yet, with the architectural support of Caravan-HW, the leaf processing
sparsity can be greatly mitigated. Figure 5.14 illustrates how. The upper two histograms

88 Caravan: Maximizing SIMD Efficiency in Point Cloud Search

plot the distribution of valid queries and points found in the k-d tree leaves. This empirical
data correlates with the left and center columns of Figure 5.7. As shown in Figure 5.7, if
we want to compare all elements of A with all elements of B (as queries and points during
leaf processing), we need to iterate and broadcast element by element of either A or B. In
the context of neighbor search (Figure 5.14), this means iterating query by query, with an
average of 7.65 iterations to compare against all points, or iterating point by point, with an
average of 9.99 iterations to compare against all queries. In either case, with sparsity.

Caravan-HW instructions break the sparsity barrier that held back maximum VPU
utilization. With the use of the new instructions (Section 5.1.4), the VPU unused lanes can
be filled with useful operators, anticipating calculations and reducing the average number
of iterations to 5.16 in average. Notice that in Caravan-SW we iterate by queries as it
incurs fewer iterations, and also to leverage locality when writing to the list of neighbors
of queries.

Caravan-HW improves VPU utilization and, by doing so, boosts end-to-end speedup to
1.97×. If looking at the neighbor search only, the benefits are more than 5-fold. The non-
SIMD portion of the code (for example, the function calls that perform recursion) limits the
benefits from reaching the maximum 16× possible with AVX512. In any case, Caravan-HW
has its end-to-end speedup limited by the fraction of the application it can accelerate, as
shown in Figure 1.5. Still, Caravan-HW delivers end-to-end speedups that are not that far
from the theoretical maximum (i.e., neighbor search taking 0 cycles to execute) with 1.97×
versus 2.56×. It is very important to acknowledge the fraction subject to acceleration of the
target applications (Amdahl’s law) to avoid very aggressive and hardware-hungry solutions
that in the end would reach similar end-to-end gains as Caravan (see Section 3.2). In
summary, we show that a modern CPU with two new instructions and appropriate software
adaptation can be a very effective approach to improve neighbor search. These benefits can
directly translate into faster 3D computer vision algorithms, which are fundamental for
safety-critical and real-time applications such as AD.

5.4 Chapter Takeaways

In this Chapter, we presented Caravan, a hardware/software co-design to maximize SIMD
efficiency on point cloud neighbor search. Caravan exploits similarity between consecutive
queries, which translates into search similarity in k-d trees. Caravan-SW exploits this
behavior at the software level, by packing multiple queries together. When a visited
node is of common interest for multiple queries, they benefit from sharing node metadata,
including subspace divisions that guide k-d tree navigation, and leaf points, the potential

5.4 Chapter Takeaways 89

neighbors to be found. Internally, Caravan-SW utilizes SIMD instructions, to exploit data-
level parallelism and restraint instruction count, and speeds up the code by 1.85×. The
small differences in the queries, however, cause search divergence, particularly in leaf nodes.
The divergence causes traditional SIMD code to underutilize the VPU lanes. Caravan-HW
provides architectural support to mitigate this. With two new instructions, the programmer
can obtain a pair of dense elements indices, and use it to shuffle the vectors so that VPU
lanes are occupied with valid operators. The co-design is capable of improving neighbor
search performance by 5.19×, and end-to-end point cloud segmentation by 1.97×. Its
end-to-end performance improvement, therefore, is comparable to ASIC accelerators, while
maintaining programmability and requiring only two new simple instructions.

6
Conclusions

“ Success means being successful, not just having the
potential for success. ”The Book of Disquiet (1982)

Fernando Pessoa

After presenting the thesis contributions in detail in the previous Chapters, we now
summarize the ideas with the conclusions. We also point out some research problems for
future work.

6.1 Conclusions

The rollout of AVs promises important societal advances, with increased safety and a
world of market possibilities. But designing the computer systems for ADS is challenging.
Different requirements must be balanced including performance, energy efficiency, volume,
and cost. In this context, providing appropriate hardware support for AD is key to pushing
advances while accounting for these constraints.

In this thesis, we confronted this challenge. From a computer architecture point of view,
we started by understanding the AD workloads. For that, we characterized a state-of-the-art
AD software stack, to understand how the different algorithms work, and how demanding
they were for the underlying hardware. With this characterization, we could identify which
tasks require higher attention. At the same time, looking at a real-life solution shed light
on the important role of AV’s sensors, and how costly it is for the computing platform
to cope with their generated data. Looking closer, we found LiDAR processing to be a
relevant problem for future AD, as multiple algorithms rely on their collected point clouds.

92 Conclusions

Particularly, the neighbor search operation stood out, accounting for the majority of the
execution time of segmentation and localization, but also relevant in many other scenarios
such as 3D DNNs.

From this point, we proposed two techniques to enhance the hardware support for
the neighbor search. We focused on extending the CPU, considering they are the typical
execution platform for this operation. Additionally, CPUs provide several benefits compared
to alternatives like hardware accelerators, including programmability, ease of integration,
and lack of communication overheads.

Most of the insights for our techniques came from understanding the use of k-d trees –
the de facto data structure used for neighbor search – and LiDAR sensors functioning. For
example, the first technique, K-D Bonsai, observed and exploited value similarity among
points stored in k-d tree leaves to tackle a particular case of a long-known problem for
computer architects: accessing memory. We proposed new CPU instructions to compress
leaf points, sharing the sign and exponent FP fields, reducing their representation consid-
ering the LiDAR range of operation, and also shrinking the mantissa field. Additionally,
instructions were added to decompress leaf points and to account for worst-case errors
during distance calculation to detect potential errors. This technique significantly reduced
data movement to fetch k-d tree leaves, improving the average end-to-end latency of point
cloud segmentation by 9.26% on average, with little area and power cost.

Following, in a second technique, Caravan, we observed and exploited similarities
among subsequent searches to pursue data-level parallelism by employing and increasing
the efficiency of SIMD operations. The approach was implemented through a hardware
and software co-design. As we observed, subsequent queries had similar coordinates,
incurring similar tree traversals that could operate in a SIMD fashion. The software was
responsible for adapting the k-d tree traversal code to support SIMD instructions, grouping
subsequent queries together, and handling divergences. The hardware part consisted of
two new instructions to cope with the sparsity in the leave’s SIMD vectors. Combined, the
new instructions generate the list of indices to shuffle valid elements from source SIMD
vectors, such that SIMD efficiency is maximized. This technique achieved 97% speedup for
end-to-end latency of point cloud segmentation on average, also being cheap in area and
power budgets.

Overall, this thesis showed ways for adapting CPU designs to the AVs challenges ahead.
We believe our ideas can be adopted in next-generation CPUs, in the form of ISA extensions.
By leveraging the rock solid CPU programming model and existing hardware structures, our
incremental CPU changes allow for a programmable way of improving hardware support
for AD. On the one hand, the reduction in latency achieved by our techniques can directly

6.2 Future Work 93

serve to reduce reaction time, aiding safety. Alternatively, the time slack created by our
solutions can be spent to perfect other stages on the AD pipeline to, for example, increase
the quality of perception algorithms. Finally, the modifications are minimally intrusive,
incurring minimal area and power overheads. Also, since they are constrained in specific
functional units, they do not affect general CPU structures, hence not interfering in the
CPU performance in other use cases.

6.2 Future Work

Due to time and workforce limitations, a PhD thesis cannot explore all research opportuni-
ties. Yet, we try to list potential future work for the reader interested in the topics presented
in this document. The list is by no means exhaustive.

For point clouds, generalizing the presented ideas in different domains and devices
would be valuable. For example, VR glasses rely on point cloud processing, having their
own particularities and constraints. In indoor uses, the point clouds can be denser, and
with points much closer (less distance for angular aperture to place them apart). Although
requiring further study, this can boost similarities in either points and queries, which we
exploited with K-D Bonsai and Caravan.

Also, porting the ideas to devices such as GPUs could be worth investigating, particularly
on integrated ones that are less power-hungry (a concern for AD). These devices have
higher SIMD capabilities than CPUs, but less cache space per core, making them a good
target platform to extend Caravan and K-D Bonsai techniques. This also aligns with the
crescent use of 3D DNNs, which commonly rely on GPU execution for convolutions. While
neighbor search proceeds and complements the convolution step, it does not have the
embarrassingly parallel characteristic of the other. This pressures for efficient neighbor
search in the solutions as well.

Complementary ideas to ours could also be carried out. For example, while our instruc-
tions were manually added to the PCL and used by the application, providing compiler
support would significantly increase their chances of adoption. One challenge here is to
know whether locality (in queries or points) holds for the target usage. In our case, this
was discovered with profiling, but identifying it at compile time seems harder. A possible
solution is a scheme that allows for run-time adjustments based on hardware counters to
choose whether or not to use our instructions.

Similarities in search navigation could also be exploited to adjust major CPU structures,
such as the prefetcher and the branch prediction units. One way of exploiting that would be
to pass context to these structures (e.g., the current node and query values). The challenge

94 Conclusions

would be not to hurt baseline CPU performance running other algorithms, where this
scheme may not be useful.

Moving to a broader view, on architectures for AD, we believe there are several open
research areas as well. For example, other algorithms in the software stack could also
benefit from a deeper look as we did for segmentation (and to some extent, localization). In
the SoC level, hardware to pre-adjust point clouds in different structures could be valuable.
For example, some algorithms organize point clouds on k-d trees, but others organize them
in voxels, others in radial slices, and so on. A central unit to organize and filter point
clouds for these different uses in advance could be advantageous. In a more aggressive
specialization, hardware support for 3D registers could also be studied. For example, direct
3D operations could be used to reduce instruction count even further.

References

[1] Tor M. Aamodt, Wilson Wai Lun Fung, and Timothy G. Rogers. General-Purpose
Graphics Processor Architectures. Synthesis Lectures on Computer Architecture, 13(2):
1–121, may 2018. ISSN 19353243. doi: 10.2200/S00848ED1V01Y201804CAC044. URL
https://www.morganclaypool.com/doi/10.2200/S00848ED1V01Y201804CAC044.

[2] James Anderson, Nidhi Kalra, Karlyn Stanley, Paul Sorensen, Constantine Samaras,
and Oluwatobi Oluwatola. Autonomous Vehicle Technology: A Guide for Policymakers.
RANDCorporation, 2016. ISBN 9780833083982. doi: 10.7249/RR443-2. URLwww.rand.
org/giving/contributehttp://www.rand.org/pubs/research_reports/RR443-2.html.

[3] Fabien André. Exploiting Modern Hardware for High-Dimensional Nearest Neighbor
Search. 2017. URL http://arxiv.org/abs/1712.02912.

[4] ApolloAuto/Apollo. An open autonomous driving platform, 2021. URL https://github.
com/ApolloAuto/apollo.

[5] Ehsan K. Ardestani and Jose Renau. ESESC: A fast multicore simulator using Time-
Based Sampling. In Proceedings - International Symposium on High-Performance
Computer Architecture, pages 448–459, 2013. ISBN 9781467355858. doi: 10.1109/
HPCA.2013.6522340.

[6] ARM. Understanding the Armv8.x extensions. page 15, 2019.

[7] ARM. ARMArchitecture Reference Manual - Armv8, for A-profile architecture. pages
1–1138, 2021. ISSN <null>.

[8] Arm. ArmAutomotive Enhanced –Arm®, 2024. URL https://www.arm.com/products/
silicon-ip-cpu/automotive-enhanced.

[9] Arm. Arm and Nuro Partner to Deliver AI-first Autonomous Technology for
Commercial Scale - Arm Newsroom, 2024. URL https://newsroom.arm.com/news/
arm-nuro-autonomous-partnership.

[10] Autoware. Autoware.AI · GitLab, . URL https://gitlab.com/autowarefoundation/
autoware.ai.

[11] Autoware. Autoware Wiki, . URL https://github.com/Autoware-AI/autoware.ai/wiki/
Overview.

[12] Autoware. Autonomous Valet Parking 2020, 2020. URL https://autoware.org/
autonomous-valet-parking-2020/.

https://www.morganclaypool.com/doi/10.2200/S00848ED1V01Y201804CAC044
www.rand.org/giving/contribute http://www.rand.org/pubs/research_reports/RR443-2.html
www.rand.org/giving/contribute http://www.rand.org/pubs/research_reports/RR443-2.html
http://arxiv.org/abs/1712.02912
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://www.arm.com/products/silicon-ip-cpu/automotive-enhanced
https://www.arm.com/products/silicon-ip-cpu/automotive-enhanced
https://newsroom.arm.com/news/arm-nuro-autonomous-partnership
https://newsroom.arm.com/news/arm-nuro-autonomous-partnership
https://gitlab.com/autowarefoundation/autoware.ai
https://gitlab.com/autowarefoundation/autoware.ai
https://github.com/Autoware-AI/autoware.ai/wiki/Overview
https://github.com/Autoware-AI/autoware.ai/wiki/Overview
https://autoware.org/autonomous-valet-parking-2020/
https://autoware.org/autonomous-valet-parking-2020/

96 References

[13] Autoware. Autoware.AI · GitHub, 2023. URL https://github.com/Autoware-AI.

[14] Autoware Foundation. The Autoware Foundation - Open Source for Autonomous
Driving, 2024. URL https://www.autoware.org/.

[15] Baidu. Releases · ApolloAuto/apollo · GitHub. URL https://github.com/ApolloAuto/
apollo/releases?page=1.

[16] Baidu. Apollo Go Robotaxi: Baidu’s autonomous ride-hailing service provider, 2022.
URL https://en.apollo.auto/robotaxi.

[17] Baidu. Apollo, 2022. URL https://en.apollo.auto/.

[18] Pete Bannon, Ganesh Venkataramanan, Debjit Das Sarma, and Emil Talpes. Computer
and Redundancy Solution for the Full Self-Driving Computer. In 2019 IEEE Hot Chips
31 Symposium (HCS), pages 1–22. IEEE, aug 2019. ISBN 978-1-7281-2089-8. doi: 10.
1109/HOTCHIPS.2019.8875645. URL https://ieeexplore.ieee.org/document/8875645/.

[19] Pedro H. E. Becker, José-María Arnau, and Antonio González. Demystifying Power
and Performance Bottlenecks in Autonomous Driving Systems. In Proceedings -
2020 IEEE International Symposium on Workload Characterization, IISWC 2020, pages
205–215. IEEE, oct 2020. ISBN 9781728176451. doi: 10.1109/IISWC50251.2020.00028.
URL https://ieeexplore.ieee.org/document/9251251/.

[20] Pedro H. E. Becker, José-María Arnau, and Antonio González. Characterizing Self-
driving Tasks in General-purpose Architectures. In ACACES 2021 Poster Abstracts,
pages 117–120. HiPEAC, the European Network of Excellence on High Performance
Embedded Architecture and Compilation., 2021. ISBN 978-88-905806-8-0.

[21] Pedro H. E. Becker, José-María Arnau, and Antonio González. Boosting Point Cloud
Search with a Vector Unit. In RoboARCH @ MICRO, 2023.

[22] Pedro H. E. Becker, José-María Arnau, and Antonio González. K-D Bonsai: ISA-
Extensions to Compress K-D Trees for Autonomous Driving Tasks. In Proceedings
of the 50th Annual International Symposium on Computer Architecture (ISCA), pages
1–13, New York, NY, USA, jun 2023. ACM. ISBN 9798400700958. doi: 10.1145/3579371.
3589055. URL https://dl.acm.org/doi/10.1145/3579371.3589055.

[23] Pedro H. E. Becker, Franyell Silfa, José-María Arnau, and Antonio González. Caravan:
A Hardware/Software Co-Design for Efficient SIMDNeighbor Search on Point Clouds.
In Under Review, 2024.

[24] Reinhold Behringer, Sundar Sundareswaran, Robert Daily, David Bevly, Brian Gre-
gory, Richard Elsley, Bob Addison, and Wayne Guthmiller. The DARPA grand chal-
lenge - development of an autonomous vehicle. In IEEE Intelligent Vehicles Symposium,
pages 226–231. IEEE, 2004. ISBN 0-7803-8310-9. doi: 10.1109/IVS.2004.1336386. URL
http://ieeexplore.ieee.org/document/1336386/.

[25] Behnam Behroozpour, Phillip A. M. Sandborn, Ming C. Wu, and Bernhard E. Boser.
Lidar System Architectures and Circuits. IEEE Communications Magazine, 55(10):
135–142, oct 2017. ISSN 0163-6804. doi: 10.1109/MCOM.2017.1700030. URL http:
//ieeexplore.ieee.org/document/8067701/.

https://github.com/Autoware-AI
https://www.autoware.org/
https://github.com/ApolloAuto/apollo/releases?page=1
https://github.com/ApolloAuto/apollo/releases?page=1
https://en.apollo.auto/robotaxi
https://en.apollo.auto/
https://ieeexplore.ieee.org/document/8875645/
https://ieeexplore.ieee.org/document/9251251/
https://dl.acm.org/doi/10.1145/3579371.3589055
http://ieeexplore.ieee.org/document/1336386/
http://ieeexplore.ieee.org/document/8067701/
http://ieeexplore.ieee.org/document/8067701/

References 97

[26] Jon Louis Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517, sep 1975. ISSN 0001-0782. doi:
10.1145/361002.361007. URL https://dl.acm.org/doi/10.1145/361002.361007.

[27] Paul J. Besl and Neil D. McKay. A Method for Registration of 3-D Shapes. In
Paul S. Schenker, editor, Sensor Fusion IV: Control Paradigms and Data Structures,
volume 1611, pages 586–606, apr 1992. doi: 10.1117/12.57955. URL http://proceedings.
spiedigitallibrary.org/proceeding.aspx?articleid=981454.

[28] Peter Biber. The Normal Distributions Transform: A New Approach to Laser Scan
Matching. In IEEE International Conference on Intelligent Robots and Systems, volume 3,
pages 2743–2748. IEEE, 2003. ISBN 0-7803-7860-1. doi: 10.1109/iros.2003.1249285.
URL https://www.researchgate.net/publication/4045903http://ieeexplore.ieee.org/
document/1249285/.

[29] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,
Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A.
Wood. The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
aug 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718. URL https://doi.org/10.
1145/2024716.2024718.

[30] Brian Bushard. Driverless Food Deliveries Grow: Uber Eats Launching In Calif.,
Texas This Fall, 2022. URL https://www.forbes.com/sites/brianbushard/2022/09/08/
driverless-food-deliveries-grow-uber-eats-launching-in-calif-texas-this-fall/.

[31] Canon Inc. Canon Technology | Canon Science Lab | Photographs. URL https:
//global.canon/en/technology/s_labo/light/003/01.html.

[32] Tomislav Capuder, Danijela Miloš Sprčić, Davor Zoričić, and Hrvoje Pandžić. Review
of challenges and assessment of electric vehicles integration policy goals: Integrated
risk analysis approach, 2020. ISSN 01420615. URL https://doi.org/10.1016/j.ijepes.
2020.105894.

[33] Lukas Cavigelli and Luca Benini. Origami: A 803 GOp/s/W Convolutional Network
Accelerator. arXiv, dec 2015. doi: 10.1109/TCSVT.2016.2592330. URL http://arxiv.
org/abs/1512.04295http://dx.doi.org/10.1109/TCSVT.2016.2592330.

[34] Cen Chen, Xiaofeng Zou, Hongen Shao, Yangfan Li, and Kenli Li. Point Cloud
Acceleration by Exploiting Geometric Similarity. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2023, pages 1135–
1147, New York, NY, USA, oct 2023. ACM. ISBN 9798400703294. doi: 10.1145/3613424.
3614290. URL https://doi.org/10.1145/3613424.3614290https://dl.acm.org/doi/10.1145/
3613424.3614290.

[35] Faquan Chen, Rendong Ying, Jianwei Xue, Fei Wen, and Peilin Liu. ParallelNN: A
Parallel Octree-based Nearest Neighbor Search Accelerator for 3D Point Clouds.
In Proceedings - International Symposium on High-Performance Computer Archi-
tecture, volume 2023-Febru, pages 403–414, 2023. ISBN 9781665476522. doi:
10.1109/HPCA56546.2023.10070940.

https://dl.acm.org/doi/10.1145/361002.361007
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=981454
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=981454
https://www.researchgate.net/publication/4045903 http://ieeexplore.ieee.org/document/1249285/
https://www.researchgate.net/publication/4045903 http://ieeexplore.ieee.org/document/1249285/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://www.forbes.com/sites/brianbushard/2022/09/08/driverless-food-deliveries-grow-uber-eats-launching-in-calif-texas-this-fall/
https://www.forbes.com/sites/brianbushard/2022/09/08/driverless-food-deliveries-grow-uber-eats-launching-in-calif-texas-this-fall/
https://global.canon/en/technology/s_labo/light/003/01.html
https://global.canon/en/technology/s_labo/light/003/01.html
https://doi.org/10.1016/j.ijepes.2020.105894
https://doi.org/10.1016/j.ijepes.2020.105894
http://arxiv.org/abs/1512.04295 http://dx.doi.org/10.1109/TCSVT.2016.2592330
http://arxiv.org/abs/1512.04295 http://dx.doi.org/10.1109/TCSVT.2016.2592330
https://doi.org/10.1145/3613424.3614290 https://dl.acm.org/doi/10.1145/3613424.3614290
https://doi.org/10.1145/3613424.3614290 https://dl.acm.org/doi/10.1145/3613424.3614290

98 References

[36] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. DianNao. In Proceedings of the 19th international conference
on Architectural support for programming languages and operating systems, pages
269–284, New York, NY, USA, feb 2014. ACM. ISBN 9781450323055. doi: 10.1145/
2541940.2541967. URL http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2541940.
2541967https://dl.acm.org/doi/10.1145/2541940.2541967.

[37] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE
Journal of Solid-State Circuits, 52(1):127–138, jan 2017. ISSN 0018-9200. doi: 10.1109/
JSSC.2016.2616357. URL http://ieeexplore.ieee.org/document/7738524/.

[38] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tian-
shi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. DaDianNao: A Machine-
Learning Supercomputer. In 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 609–622. IEEE, dec 2014. ISBN 978-1-4799-6998-2. doi:
10.1109/MICRO.2014.58. URL http://ieeexplore.ieee.org/document/7011421/.

[39] Hiroyuki Chishiro, Kazutoshi Suito, Tsutomu Ito, Seiya Maeda, Takuya Azumi, Kenji
Funaoka, and Shinpei Kato. Towards heterogeneous computing platforms for au-
tonomous driving. 2019 IEEE International Conference on Embedded Software and
Systems, ICESS 2019, (December 2018), 2019. doi: 10.1109/ICESS.2019.8782446.

[40] Lauranne Choquin and Staff Information Developer. Arm Custom Instructions:
Enabling Innovation and Greater Flexibility on Arm. Technical Report February,
2020. URL https://developer.arm.com/documentation/102891/0100.

[41] Design Compiler. Design Compiler. URL https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html.

[42] Cruise LLC. Cruise Self Driving Cars | Autonomous Vehicles | Driverless Rides &
Delivery, 2024. URL https://getcruise.com/.

[43] Daimler Truck. Autonomous Driving. URL https://www.daimlertruck.com/en/
innovation/autonomous-driving.

[44] Hatem Darweesh, Eijiro Takeuchi, Kazuya Takeda, Yoshiki Ninomiya, Adi Sujiwo,
Luis Yoichi Morales, Naoki Akai, Tetsuo Tomizawa, and Shinpei Kato. Open Source
Integrated Planner for Autonomous Navigation in Highly Dynamic Environments.
Journal of Robotics and Mechatronics, 29(4):668–684, aug 2017. ISSN 1883-8049. doi:
10.20965/jrm.2017.p0668. URL https://www.fujipress.jp/jrm/rb/robot002900040668.

[45] Hatem Darweesh, Eijiro Takeuchi, Kazuya Takeda, Yoshiki Ninomiya, Adi Sujiwo,
Luis Yoichi Morales, Naoki Akai, Tetsuo Tomizawa, and Shinpei Kato. Open source
integrated planner for autonomous navigation in highly dynamic environments.
Journal of Robotics and Mechatronics, 29(4):668–684, 2017. ISSN 18838049. doi:
10.20965/jrm.2017.p0668. URL https://www.researchgate.net/publication/319201866.

[46] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian
Le. RAPL: Memory power estimation and capping. In Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design, pages 189–194, 2010. ISBN
9781450301466. doi: 10.1145/1840845.1840883.

http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2541940.2541967 https://dl.acm.org/doi/10.1145/2541940.2541967
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2541940.2541967 https://dl.acm.org/doi/10.1145/2541940.2541967
http://ieeexplore.ieee.org/document/7738524/
http://ieeexplore.ieee.org/document/7011421/
https://developer.arm.com/documentation/102891/0100
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://getcruise.com/
https://www.daimlertruck.com/en/innovation/autonomous-driving
https://www.daimlertruck.com/en/innovation/autonomous-driving
https://www.fujipress.jp/jrm/rb/robot002900040668
https://www.researchgate.net/publication/319201866

References 99

[47] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio López, and Vladlen
Koltun. CARLA: An Open Urban Driving Simulator.

[48] Daniel J. Fagnant and Kara M. Kockelman. The travel and environmental implications
of shared autonomous vehicles, using agent-based model scenarios. Transportation
Research Part C: Emerging Technologies, 40:1–13, 2014. ISSN 0968090X. doi: 10.
1016/j.trc.2013.12.001. URL https://www.sciencedirect.com/science/article/abs/pii/
S0968090X13002581.

[49] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough, and Yuhao Zhu. Mesorasi:
Architecture support for point cloud analytics via delayed-aggregation. In Proceedings
of the Annual International Symposium on Microarchitecture, MICRO, volume 2020-
Octob, pages 1037–1050, 2020. ISBN 9781728173832. doi: 10.1109/MICRO50266.2020.
00087. URL https://github.com/horizon-research/efficient-deep-.

[50] Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu. Crescent: Taming
Memory Irregularities for Accelerating Deep Point Cloud Analytics. In Proceedings -
International Symposium on Computer Architecture, volume 1, pages 962–977. ACM,
2022. ISBN 9781450386104. doi: 10.1145/3470496.3527395. URL https://doi.org/10.
1145/3470496.3527395.

[51] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An Algorithm
for Finding Best Matches in Logarithmic Expected Time. ACM Transactions on
Mathematical Software, 3(3):209–226, sep 1977. ISSN 0098-3500. doi: 10.1145/355744.
355745. URL https://dl.acm.org/doi/10.1145/355744.355745.

[52] Péter Gáspár, Zsolt Szalay, and Szilárd Aradi. Highly Automated Vehicle Systems.
(January 2018):187, 2014. URL http://www.mogi.bme.hu/TAMOP/jarmurendszerek_
iranyitasa_angol/index.html.

[53] Andreas Geiger, Philip Lenz, and Raquel Urtasun. The KITTI Vision Benchmark
Suite - 3D Object Detection Evaluation 2017, . URL https://www.cvlibs.net/datasets/
kitti/eval_object.php?obj_benchmark=3d.

[54] Andreas Geiger, Philip Lenz, and Raquel Urtasun. The KITTI Vision Benchmark Suite
- Visual Odometry / SLAM Evaluation 2012, . URL https://www.cvlibs.net/datasets/
kitti/eval_odometry.php.

[55] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the KITTI vision benchmark suite. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 3354–3361, 2012. ISSN
10636919. doi: 10.1109/CVPR.2012.6248074. URL http://www.cvlibs.net/publications/
Geiger2012CVPR.pdf.

[56] Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d
trees: Processing massive nearest neighbor queries on GPUs. In 31st International
Conference on Machine Learning, ICML 2014, volume 1, pages 312–320, 2014. ISBN
9781634393973.

[57] Amos Goldman. SIMD K-nearest-neighbors implementation, U.S. Patent 10042813,
2018.

https://www.sciencedirect.com/science/article/abs/pii/S0968090X13002581
https://www.sciencedirect.com/science/article/abs/pii/S0968090X13002581
https://github.com/horizon-research/efficient-deep-
https://doi.org/10.1145/3470496.3527395
https://doi.org/10.1145/3470496.3527395
https://dl.acm.org/doi/10.1145/355744.355745
http://www.mogi.bme.hu/TAMOP/jarmurendszerek_iranyitasa_angol/index.html
http://www.mogi.bme.hu/TAMOP/jarmurendszerek_iranyitasa_angol/index.html
https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/publications/Geiger2012CVPR.pdf
http://www.cvlibs.net/publications/Geiger2012CVPR.pdf

100 References

[58] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell, Daniel A. Jimenez,
Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas Sinha, and
Ankit Ghiya. Evolution of the Samsung Exynos CPU Microarchitecture. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
pages 40–51. IEEE, may 2020. ISBN 978-1-7281-4661-4. doi: 10.1109/ISCA45697.2020.
00015. URL https://ieeexplore.ieee.org/document/9138988/.

[59] Chris Gregg and Kim Hazelwood. Where is the data? Why you cannot debate CPU vs.
GPU performance without the answer. In ISPASS 2011 - IEEE International Symposium
on Performance Analysis of Systems and Software, pages 134–144. IEEE, apr 2011. ISBN
9781612843681. doi: 10.1109/ISPASS.2011.5762730. URL http://ieeexplore.ieee.org/
document/5762730/.

[60] Irfan Habib. Virtualization with KVM. Linux Journal, 2008(166):8, 2008.

[61] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen,
Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Darkroom: Compil-
ing High-Level Image Processing Code into Hardware Pipelines. ACM Transactions
on Graphics, 33(4):1–11, jul 2014. ISSN 0730-0301. doi: 10.1145/2601097.2601174. URL
https://dl.acm.org/doi/10.1145/2601097.2601174.

[62] Simon Heinzle, Gaël Guennebaud, Mario Botsch, and Markus Gross. A hardware
processing unit for point sets. In Proceedings of the SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 21–31, 2008. ISBN 9783905674095.

[63] Rasheed Hussain and Sherali Zeadally. Autonomous Cars: Research Results, Issues,
and Future Challenges. IEEE Communications Surveys and Tutorials, 21(2):1275–1313,
2019. ISSN 1553877X. doi: 10.1109/COMST.2018.2869360.

[64] Intel. Intel® Intrinsics Guide, 2023. URL https://www.intel.com/content/www/us/
en/docs/intrinsics-guide/index.html.

[65] Intel Corp. Intel Xeon W2155 Processor 13.75M Cache 3.30 GHz Product Specifi-
cations, 2023. URL https://ark.intel.com/content/www/us/en/ark/products/125042/
intel-xeon-w-2155-processor-13-75m-cache-3-30-ghz.html.

[66] Tatsuki Inuzuka, Toshiaki Nakamura, Shinichi Shinoda, and Yasuyuki Kojima. Image
signal processing apparatus, 1993.

[67] Tier IV. Autoware Data. URL https://data.tier4.jp/.

[68] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda,
and Tsuyoshi Hamada. An open approach to autonomous vehicles. IEEE Micro, 35(6):
60–68, 2015. ISSN 02721732. doi: 10.1109/MM.2015.133.

[69] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi,
Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya
Azumi. Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems.
Proceedings - 9th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS
2018, (April):287–296, 2018. doi: 10.1109/ICCPS.2018.00035.

https://ieeexplore.ieee.org/document/9138988/
http://ieeexplore.ieee.org/document/5762730/
http://ieeexplore.ieee.org/document/5762730/
https://dl.acm.org/doi/10.1145/2601097.2601174
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://ark.intel.com/content/www/us/en/ark/products/125042/intel-xeon-w-2155-processor-13-75m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/125042/intel-xeon-w-2155-processor-13-75m-cache-3-30-ghz.html
https://data.tier4.jp/

References 101

[70] Kaz Sato, Cliff Young, and David Patterson. An in-depth look at Google’s first Tensor
Processing Unit (TPU) | Google Cloud Blog, 2017. URL https://cloud.google.com/
blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu.

[71] Klaas Klasing, Dirk Wollherr, and Martin Buss. A clustering method for efficient
segmentation of 3D laser data. In 2008 IEEE International Conference on Robotics
and Automation, pages 4043–4048. IEEE, may 2008. ISBN 978-1-4244-1646-2. doi:
10.1109/ROBOT.2008.4543832. URL http://ieeexplore.ieee.org/document/4543832/.

[72] Donald E Knuth. The art of computer programming, volume 3: (2nd ed.) sorting
and searching. Addison Wesley Longman Publishing Co., Inc., USA, 1998. ISBN
0201896850. doi: 10.5555/280635.

[73] Lukas König, Christian Heinzemann, Alberto Griggio, Michaela Klauck, Alessandro
Cimatti, Franziska Henze, Stefano Tonetta, Stefan Küperkoch, Dennis Fassbender,
and Michael Hanselmann. Towards Safe Autonomous Driving : Model Checking a
Behavior Planner during Development. 30th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), 2024.

[74] Philip Koopman and Michael Wagner. Challenges in Autonomous Vehicle Testing
and Validation. SAE International Journal of Transportation Safety, 4(1):15–24, 2016.
ISSN 23275634. doi: 10.4271/2016-01-0128.

[75] KPMG LLP and Research Center for Automotive. Self-driving cars: The next revolu-
tion. Technical report, 2012. URL https://www.cargroup.org/wp-content/uploads/
2017/02/Self_driving-cars-The-next-revolution.pdf.

[76] Ian Krietzberg. What’s stopping Tesla from achieving Level 3 self-
driving - TheStreet, 2023. URL https://www.thestreet.com/technology/
whats-stopping-tesla-from-achieving-level-3-self-driving.

[77] Rico Krueger, Taha H Rashidi, and John M Rose. Preferences for shared autonomous
vehicles. Transportation Research Part C: Emerging Technologies, 69:343–355, aug 2016.
ISSN 0968090X. doi: 10.1016/j.trc.2016.06.015. URL http://dx.doi.org/10.1016/j.trc.
2016.06.015https://linkinghub.elsevier.com/retrieve/pii/S0968090X16300870.

[78] Kristofer D Kusano, John M Scanlon, Yin-Hsiu Chen, Timothy L. McMurry, Ruoshu
Chen, Tilia Gode, and Trent Victor. Comparison of Waymo Rider-Only Crash Data
to Human Benchmarks at 7.1 Million Miles. dec 2023. URL http://arxiv.org/abs/2312.
12675.

[79] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. Pointpillars: Fast encoders for object detection from point clouds. Technical
report, 2019. URL https://github.com/nutonomy/second.pytorch.

[80] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100X GPU vs.
CPU myth. In Proceedings of the 37th annual international symposium on Computer
architecture, pages 451–460, New York, NY, USA, jun 2010. ACM. ISBN 9781450300537.
doi: 10.1145/1815961.1816021. URL https://dl.acm.org/doi/10.1145/1815961.1816021.

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
http://ieeexplore.ieee.org/document/4543832/
https://www.cargroup.org/wp-content/uploads/2017/02/Self_driving-cars-The-next-revolution.pdf
https://www.cargroup.org/wp-content/uploads/2017/02/Self_driving-cars-The-next-revolution.pdf
https://www.thestreet.com/technology/whats-stopping-tesla-from-achieving-level-3-self-driving
https://www.thestreet.com/technology/whats-stopping-tesla-from-achieving-level-3-self-driving
http://dx.doi.org/10.1016/j.trc.2016.06.015 https://linkinghub.elsevier.com/retrieve/pii/S0968090X16300870
http://dx.doi.org/10.1016/j.trc.2016.06.015 https://linkinghub.elsevier.com/retrieve/pii/S0968090X16300870
http://arxiv.org/abs/2312.12675
http://arxiv.org/abs/2312.12675
https://github.com/nutonomy/second.pytorch
https://dl.acm.org/doi/10.1145/1815961.1816021

102 References

[81] LG Electronics Inc. LGSVL Simulator: An Autonomous Vehicle Simulator, 2019. URL
https://www.lgsvlsimulator.com/.

[82] Bai Li, Shaoshan Liu, Jie Tang, Jean Luc Gaudiot, Liangliang Zhang, and Qi Kong.
Autonomous Last-Mile Delivery Vehicles in Complex Traffic Environments, 2020.
ISSN 15580814.

[83] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. The McPAT framework for multicore and manycore architectures:
Simultaneously modeling power, area, and timing. Transactions on Architecture and
Code Optimization, 10(1), 2013. ISSN 15443566. doi: 10.1145/2445572.2445577.

[84] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and
Norman P. Jouppi. The McPAT framework for multicore and manycore architectures:
Simultaneously modeling power, area, and timing. Transactions on Architecture and
Code Optimization, 10(1), 2013. ISSN 15443566. doi: 10.1145/2445572.2445577. URL
http://dx.doi.org/10.1145/2445572.2445577.

[85] You Li and Javier Ibanez-Guzman. Lidar for Autonomous Driving: The Principles,
Challenges, and Trends for Automotive Lidar and Perception Systems. IEEE Sig-
nal Processing Magazine, 37(4):50–61, jul 2020. ISSN 15580792. doi: 10.1109/MSP.
2020.2973615. URL http://www.hesaitech.com/en/autonomous_driving.htmlhttps:
//ieeexplore.ieee.org/document/9127855/.

[86] Shih Chieh Lin, Yunqi Zhang, Chang Hong Hsu, Matt Skach, Md E. Haque, Lingjia
Tang, and Jason Mars. The architectural implications of autonomous driving: Con-
straints and acceleration. ACM SIGPLAN Notices, 53(2):751–766, 2018. ISSN 15232867.
doi: 10.1145/3173162.3173191.

[87] Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang, and Song Han. PointAcc:
Efficient point cloud accelerator. In Proceedings of the Annual International Sym-
posium on Microarchitecture, MICRO, volume 13, pages 449–461. ACM, 2021. ISBN
9781450385572. doi: 10.1145/3466752.3480084. URL https://doi.org/10.1145/3466752.
3480084.

[88] Liangkai Liu, Sidi Lu, Ren Zhong, Baofu Wu, Yongtao Yao, Qingyang Zhang, and
Weisong Shi. Computing Systems for Autonomous Driving: State of the Art and
Challenges. IEEE Internet of Things Journal, 8(8):6469–6486, apr 2021. ISSN 2327-4662.
doi: 10.1109/JIOT.2020.3043716. URL https://ieeexplore.ieee.org/document/9288755/.

[89] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng Yang Fu, and Alexander C. Berg. SSD: Single Shot MultiBox Detector -
GitHub. URL https://github.com/weiliu89/caffe/tree/ssd.

[90] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C. Berg. SSD: Single Shot MultiBox Detector. arXiv, dec 2016.
doi: https://doi.org/10.48550/arXiv.1512.02325. URL http://arxiv.org/abs/1512.02325.

[91] Volker Lohweg, Carsten Diederichs, and Dietmar Müller. Algorithms for hardware-
based pattern recognition. Eurasip Journal on Applied Signal Processing, 2004
(12):1912–1920, sep 2004. ISSN 11108657. doi: 10.1155/S1110865704404247/

https://www.lgsvlsimulator.com/
http://dx.doi.org/10.1145/2445572.2445577
http://www.hesaitech.com/en/autonomous_driving.html https://ieeexplore.ieee.org/document/9127855/
http://www.hesaitech.com/en/autonomous_driving.html https://ieeexplore.ieee.org/document/9127855/
https://doi.org/10.1145/3466752.3480084
https://doi.org/10.1145/3466752.3480084
https://ieeexplore.ieee.org/document/9288755/
https://github.com/weiliu89/caffe/tree/ssd
http://arxiv.org/abs/1512.02325

References 103

METRICS. URL https://link.springer.com/articles/10.1155/S1110865704404247https:
//link.springer.com/article/10.1155/S1110865704404247.

[92] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestel-
horst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-Farahani,
Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, An-
thony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris,
Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika
Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kan-
noth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, TommasoMarinelli,
Christian Menard, Andrea Mondelli, Miquel Moreto, Tiago Mück, Omar Naji, Kr-
ishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh
Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sand-
berg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur,
Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, William Wang,
Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and
Éder F. Zulian. The gem5 Simulator: Version 20.0+. Technical report, 2020. URL
http://arxiv.org/abs/2007.03152.

[93] Martin Magnusson. The Three-Dimensional Normal-Distributions Transform —
an Efficient Representation for Registration, Surface Analysis, and Loop Detec-
tion, volume 10. Örebro universitet, Örebro, 2008. ISBN 978-91-7668-696-
6. URL http://www.aass.oru.se/Research/Learning/publications/2009/Magnusson_
2009-Doctoral_Thesis-3D_NDT.pdf.

[94] Marius Muja and David Lowe. FLANN - Fast Library for Approximate Nearest
Neighbors User Manual. 2013. URL http://www.cs.ubc.ca/research/flann/.

[95] Vazgen Melikyan, Meruzhan Martirosyan, Anush Melikyan, and Gor Piliposyan.
14nm educational design kit: Capabilities deployment and future. In Small Systems
Simulation Symposium, 2018.

[96] Ashutosh Mishra, Hyunbin Park, Shiho Kim, and Jaekwang Cha. Artificial In-
telligence and Hardware Accelerators. 2023. ISBN 9783031221705. doi: 10.1007/
978-3-031-22170-5.

[97] Mobileye. Meet EyeQ®6: Our Most Advanced Driver-Assistance Chips Yet | Mobileye
Blog, 2024. URL https://www.mobileye.com/blog/eyeq6-system-on-chip/.

[98] Mobileye. Mobileye Drive™ Enabling autonomous mobility, 2024. URL https://www.
mobileye.com/future-of-mobility/.

[99] Ali Mosleh, Avinash Sharma, Emmanuel Onzon, Fahim Mannan, Nicolas Robidoux,
and Felix Heide. Hardware-in-the-Loop End-to-End Optimization of Camera Image
Processing Pipelines. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7526–7535. IEEE, jun 2020. ISBN 978-1-7281-7168-5. doi:
10.1109/CVPR42600.2020.00755. URL https://ieeexplore.ieee.org/document/9156332/.

https://link.springer.com/articles/10.1155/S1110865704404247 https://link.springer.com/article/10.1155/S1110865704404247
https://link.springer.com/articles/10.1155/S1110865704404247 https://link.springer.com/article/10.1155/S1110865704404247
http://arxiv.org/abs/2007.03152
http://www.aass.oru.se/Research/Learning/publications/2009/Magnusson_2009-Doctoral_Thesis-3D_NDT.pdf
http://www.aass.oru.se/Research/Learning/publications/2009/Magnusson_2009-Doctoral_Thesis-3D_NDT.pdf
http://www.cs.ubc.ca/research/flann/
https://www.mobileye.com/blog/eyeq6-system-on-chip/
https://www.mobileye.com/future-of-mobility/
https://www.mobileye.com/future-of-mobility/
https://ieeexplore.ieee.org/document/9156332/

104 References

[100] Marius Muja and David Lowe. FLANN - Fast Library for Approximate Nearest
Neighbors, 2021. URL https://github.com/tkircher/flann.

[101] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with auto-
matic algorithm configuration. In VISAPP 2009 - Proceedings of the 4th International
Conference on Computer Vision Theory and Applications, volume 1, pages 331–340,
2009. ISBN 9789898111692. doi: 10.5220/0001787803310340.

[102] Toshio Nakakuki. IMAGE SIGNAL PROCESSOR, 2003.

[103] National Highway Traffic Safety Administration and US Department of Transporta-
tion. Automated driving systems: a vision for safety 2.0. Technical report, National
Highway Traffic Safety Administration US Department of Transportation, 2017. URL
https://www.nhtsa.gov/sites/nhtsa.gov/files/13069a-ads2.0_090617_v9a_tag.pdf.

[104] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. ACM SIGPLAN Notices, 42(6):89–100, 2007. ISSN
15232867.

[105] Anh Nguyen, Abraham Monrroy Cano, Masato Edahiro, and Shinpei Kato. Fast
euclidean cluster extraction using GPUS. Journal of Robotics and Mechatronics, 32(3):
548–560, 2020. ISSN 18838049. doi: 10.20965/jrm.2020.p0548.

[106] Nuro. Delivering Safety: Nuro’s Approach. Technical report, Nuro, 2018.

[107] NVIDIA. Leading Lidar Sensor Makers Build on NVIDIA DRIVE. URL https://blogs.
nvidia.com/blog/lidar-sensor-nvidia-drive/.

[108] NVIDIA. The Journey to Zero Accidents - NVIDIA Drive. Technical report, Nvidia,
2019. URL https://www.nvidia.com/en-us/self-driving-cars/.

[109] NVIDIA. CUDA Math API API Reference Manual. 2022. URL https://docs.nvidia.
com/cuda/pdf/CUDA_Math_API.pdf.

[110] NVIDIA. System Management Interface SMI | NVIDIA Developer, 2024. URL https:
//developer.nvidia.com/nvidia-system-management-interface.

[111] Daoshan OuYang and Hsi-Yung Feng. On the normal vector estimation for point cloud
data from smooth surfaces. Computer-Aided Design, 37(10):1071–1079, sep 2005. ISSN
00104485. doi: 10.1016/j.cad.2004.11.005. URL www.elsevier.com/locate/cadhttps:
//linkinghub.elsevier.com/retrieve/pii/S001044850400226X.

[112] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel ® IA-32 and
IA-64 Instruction Set Architectures. Intel Manual, (September):1–37, 2010.

[113] David A. Patterson and John L. Hennessy. Computer architecture a quantative approach
v6. 2019. ISBN 978-0-12-811905-1. doi: 10.1016/B978-0-12-811905-1.

[114] Biagio Peccerillo, Mirco Mannino, Andrea Mondelli, and Sandro Bartolini. A survey
on hardware accelerators: Taxonomy, trends, challenges, and perspectives. Journal of
Systems Architecture, 129:102561, aug 2022. ISSN 13837621. doi: 10.1016/j.sysarc.2022.
102561. URL https://doi.org/10.1016/j.sysarc.2022.102561https://linkinghub.elsevier.
com/retrieve/pii/S1383762122001138.

https://github.com/tkircher/flann
https://www.nhtsa.gov/sites/nhtsa.gov/files/13069a-ads2.0_090617_v9a_tag.pdf
https://blogs.nvidia.com/blog/lidar-sensor-nvidia-drive/
https://blogs.nvidia.com/blog/lidar-sensor-nvidia-drive/
https://www.nvidia.com/en-us/self-driving-cars/
https://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
www.elsevier.com/locate/cad https://linkinghub.elsevier.com/retrieve/pii/S001044850400226X
www.elsevier.com/locate/cad https://linkinghub.elsevier.com/retrieve/pii/S001044850400226X
https://doi.org/10.1016/j.sysarc.2022.102561 https://linkinghub.elsevier.com/retrieve/pii/S1383762122001138
https://doi.org/10.1016/j.sysarc.2022.102561 https://linkinghub.elsevier.com/retrieve/pii/S1383762122001138

References 105

[115] Salvatore Pennisi. The Integrated Circuit Industry at a Crossroads: Threats and Op-
portunities. Chips, 1(3):150–171, oct 2022. ISSN 2674-0729. doi: 10.3390/chips1030010.
URL https://www.mdpi.com/2674-0729/1/3/10.

[116] Reid Pinkham, Shuqing Zeng, and Zhengya Zhang. QuickNN: Memory and Per-
formance Optimization of k-d Tree Based Nearest Neighbor Search for 3D Point
Clouds. In Proceedings - 2020 IEEE International Symposium on High Performance Com-
puter Architecture, HPCA 2020, pages 180–192. Institute of Electrical and Electronics
Engineers Inc., feb 2020. ISBN 9781728161495. doi: 10.1109/HPCA47549.2020.00024.

[117] Point Cloud Library. Point Cloud Library | The Point Cloud Library (PCL) is a
standalone, large scale, open project for 2D/3D image and point cloud processing.,
2020. URL https://pointclouds.org/.

[118] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep learning
on point sets for 3D classification and segmentation. In Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-
Janua, pages 77–85, 2017. ISBN 9781538604571. doi: 10.1109/CVPR.2017.16.

[119] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural Information
Processing Systems, volume 2017-Decem, pages 5100–5109, 2017.

[120] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source Robot Operating
System. Technical report. URL http://stair.stanford.edu.

[121] Arya Senna Abdul Rachman. 3D-LIDARMulti Object Tracking for Autonomous Driving:
Multi-target Detection and Tracking under Urban Road Uncertainties. PhD thesis, 2016.

[122] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018. URL
http://arxiv.org/abs/1804.02767.

[123] Joseph Redmon and Ali Farhadi. YOLO: Real-Time Object Detection, 2018. URL
https://pjreddie.com/darknet/yolo/.

[124] Ursa Robotics. Ursa Robotics, 2023. URL https://ursa.ai/.

[125] Daniel L. Rosenband. Inside Waymo’s self-driving car: My favorite transistors. In
IEEE Symposium on VLSI Circuits, Digest of Technical Papers, volume 3, pages C20–
C21. IEEE, jun 2017. ISBN 9784863486065. doi: 10.23919/VLSIC.2017.8008500. URL
http://ieeexplore.ieee.org/document/8008500/.

[126] Ros.org. Bags - ROS Wiki, . URL http://wiki.ros.org/Bags.

[127] Ros.org. rosbag - ROS Wiki, . URL http://wiki.ros.org/rosbag.

[128] Santiago Royo and Maria Ballesta-Garcia. An Overview of Lidar Imaging Systems
for Autonomous Vehicles. Applied Sciences, 9(19):4093, sep 2019. ISSN 2076-3417. doi:
10.3390/app9194093. URL https://www.mdpi.com/2076-3417/9/19/4093.

https://www.mdpi.com/2674-0729/1/3/10
https://pointclouds.org/
http://stair.stanford.edu
http://arxiv.org/abs/1804.02767
https://pjreddie.com/darknet/yolo/
https://ursa.ai/
http://ieeexplore.ieee.org/document/8008500/
http://wiki.ros.org/Bags
http://wiki.ros.org/rosbag
https://www.mdpi.com/2076-3417/9/19/4093

106 References

[129] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments. KI - Kunstliche Intelligenz, 24(4):345–348, 2010. ISSN 16101987.
doi: 10.1007/s13218-010-0059-6.

[130] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In
2011 IEEE International Conference on Robotics and Automation, volume 74, pages
1–4. IEEE, may 2011. ISBN 978-1-61284-386-5. doi: 10.1109/ICRA.2011.5980567. URL
http://ieeexplore.ieee.org/document/5980567/.

[131] Andreas Sandberg, Nikos Nikoleris, Trevor E. Carlson, Erik Hagersten, Stefanos
Kaxiras, and David Black-Schaffer. Full speed ahead: Detailed architectural simulation
at near-native speed. In Proceedings - 2015 IEEE International Symposium on Workload
Characterization, IISWC 2015, pages 183–192. Institute of Electrical and Electronics
Engineers Inc., oct 2015. ISBN 9781509000883. doi: 10.1109/IISWC.2015.29.

[132] Matthias Schreier, Volker Willert, and Jürgen Adamy. Compact Representation of
Dynamic Driving Environments for ADAS by Parametric Free Space and Dynamic
Object Maps. IEEE Transactions on Intelligent Transportation Systems, 17(2):367–384,
2016. ISSN 15249050. doi: 10.1109/TITS.2015.2472965.

[133] Brent Schwarz. Mapping the world in 3D. Nature Photonics, 4(7):429–430, jul 2010.
ISSN 1749-4885. doi: 10.1038/nphoton.2010.148. URL http://www.nature.com/articles/
nphoton.2010.148.

[134] Heiko G. Seif and Xiaolong Hu. Autonomous Driving in the iCity—HDMaps as a Key
Challenge of the Automotive Industry. Engineering, 2(2):159–162, 2016. ISSN 20958099.
doi: 10.1016/J.ENG.2016.02.010. URL http://dx.doi.org/10.1016/J.ENG.2016.02.010.

[135] Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei, and
David Brooks. Co-designing accelerators and SoC interfaces using gem5-Aladdin. In
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
volume 2016-Decem, pages 1–12. IEEE, oct 2016. ISBN 978-1-5090-3508-3. doi:
10.1109/MICRO.2016.7783751. URL http://ieeexplore.ieee.org/document/7783751/.

[136] N.A. Shneydor. Chapter 3 - Pure Pursuit. In Missile Guidance and Pur-
suit, number January, pages 47–76. Elsevier, 1998. ISBN 978-1-904275-37-4.
doi: 10.1533/9781782420590.47. URL https://linkinghub.elsevier.com/retrieve/pii/
B9781904275374500083.

[137] Sanman Singh Brar and Neeru Jindal. Camera Based Wearable Devices: A Strategic
Survey from 2010 to 2021. Wireless Personal Communications, 133:667–681, 2023. doi:
10.1007/s11277-023-10787-5. URL https://doi.org/10.1007/s11277-023-10787-5.

[138] IEEE Computer Society. IEEE Std 754™-2008 (Revision of IEEE Std 754-1985), IEEE
Standard for Floating-Point Arithmetic, volume 2008. 2008. ISBN 978-0-7381-5752-
8. doi: 10.1109/IEEESTD.2008.4610935. URL https://ieeexplore.ieee.org/document/
4610935.

[139] Society for Automotive Engineers. SAE J3016 - Taxonomy and Definitions for
Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE
International, 4970(724):41, 2021.

http://ieeexplore.ieee.org/document/5980567/
http://www.nature.com/articles/nphoton.2010.148
http://www.nature.com/articles/nphoton.2010.148
http://dx.doi.org/10.1016/J.ENG.2016.02.010
http://ieeexplore.ieee.org/document/7783751/
https://linkinghub.elsevier.com/retrieve/pii/B9781904275374500083
https://linkinghub.elsevier.com/retrieve/pii/B9781904275374500083
https://doi.org/10.1007/s11277-023-10787-5
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

References 107

[140] Zhuoran Song, Heng Lu, Gang Li, Li Jiang, Naifeng Jing, and Xiaoyao Liang. PRADA:
Point Cloud Recognition Acceleration via Dynamic Approximation. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), number 62202288, pages
1–6. IEEE, apr 2023. ISBN 9798400702334. doi: 10.23919/DATE56975.2023.10137301.
URL https://ieeexplore.ieee.org/document/10137301/.

[141] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Giacomo
Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael Premil-
lieu, Alastair Reid, Alejandro Rico, and Paul Walker. The ARM Scalable Vector Exten-
sion. IEEE Micro, 37(2):26–39, mar 2017. ISSN 0272-1732. doi: 10.1109/MM.2017.35.
URL http://ieeexplore.ieee.org/document/7924233/.

[142] Aaron Stillmaker and Bevan Baas. Scaling equations for the accurate prediction of
CMOS device performance from 180 nm to 7 nm. Integration, 58:74–81, jun 2017.
ISSN 01679260. doi: 10.1016/j.vlsi.2017.02.002. URL https://linkinghub.elsevier.com/
retrieve/pii/S0167926017300755.

[143] Muhammad Sualeh and Gon Woo Kim. Dynamic Multi-LiDAR based multiple object
detection and tracking. Sensors (Switzerland), 19(6), 2019. ISSN 14248220. doi:
10.3390/s19061474.

[144] Tesla. Autopilot | Tesla, 2024. URL https://www.tesla.com/autopilot.

[145] Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of processing in the human
visual system. Nature, 381(6582):520–522, 1996. ISSN 00280836. doi: 10.1038/381520a0.

[146] TIER IV Inc. TIER IV certified in Level 4 autonomous driving: Sharing its de-
sign and process with partners. URL https://tier4.jp/en/media/detail/?sys_id=
1dWp9ReZIYKHvP0ZtCKeVF&category=NEWS.

[147] TIER IV Inc. TIER IV, 2024. URL https://tier4.jp/en/.

[148] Alessandro Toschi, Mustafa Sanic, Jingwen Leng, Quan Chen, Chunlin Wang, and
Minyi Guo. Characterizing Perception Module Performance and Robustness in
Production-Scale Autonomous Driving System. In Xiaoxin Tang, Quan Chen, Pradip
Bose, Weiming Zheng, and Jean-Luc Gaudiot, editors, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 11783 LNCS, pages 235–247, Cham, 2019. Springer Interna-
tional Publishing. ISBN 9783030307080. doi: 10.1007/978-3-030-30709-7_19.

[149] John Wilder Tukey. Exploratory data analysis, volume 2. Springer, 1977.

[150] Uber Technologies Inc. US Safety Report. Technical report, Uber Technologies Inc.,
San Francisco, CA, USA, 2020. URL https://www.uber.com/us/en/about/reports/
us-safety-report/.

[151] Chris Urmson and William Whittaker. Self-driving cars and the Urban challenge.
IEEE Intelligent Systems, 23(2):66–68, 2008. ISSN 15411672. doi: 10.1109/MIS.2008.34.

[152] Velodyne Lidar Inc. Product guide.

[153] Velodyne Lidar Inc. HDL-64E User’s Manual, 2007.

https://ieeexplore.ieee.org/document/10137301/
http://ieeexplore.ieee.org/document/7924233/
https://linkinghub.elsevier.com/retrieve/pii/S0167926017300755
https://linkinghub.elsevier.com/retrieve/pii/S0167926017300755
https://www.tesla.com/autopilot
https://tier4.jp/en/media/detail/?sys_id=1dWp9ReZIYKHvP0ZtCKeVF&category=NEWS
https://tier4.jp/en/media/detail/?sys_id=1dWp9ReZIYKHvP0ZtCKeVF&category=NEWS
https://tier4.jp/en/
https://www.uber.com/us/en/about/reports/us-safety-report/
https://www.uber.com/us/en/about/reports/us-safety-report/

108 References

[154] Velodyne Lidar Inc. Velodyne LiDAR HDL-64E | High Definition Real-Time 3D Li-
DAR, 2016. URL https://pdf.directindustry.com/pdf/velodynelidar/hdl-64e-datasheet/
182407-676099.html.

[155] E. A. Wan and R. Van Der Merwe. The unscented Kalman filter for nonlinear
estimation. In IEEE 2000 Adaptive Systems for Signal Processing, Communications,
and Control Symposium, AS-SPCC 2000, pages 153–158, 2000. ISBN 0780358007. doi:
10.1109/ASSPCC.2000.882463.

[156] Yige Wang. Putting the brain in driverless vehicles with MDC. Huawei Communicate,
1(86):42–45, 2019. URL https://www.huawei.com/uk/about-huawei/publications/
communicate/86/driverless-vehicles-with-mdc.

[157] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual. RISC-V
Foundation, I, 2017. URL https://riscv.org/technical/specifications/.

[158] Waymo LLC. Designing the 5th-generation Waymo Driver. URL https://waymo.com/
blog/2020/03/designing-5th-generation-waymo-driver/.

[159] Waymo LLC. TheWorld’s Most Experienced Driver™, 2024. URL https://waymo.com/.

[160] Vince Weaver. Reading RAPL energy measurements from Linux. URL https://web.
eece.maine.edu/\simvweaver/projects/rapl/.

[161] Stephen Williams. Icarus Verilog, 2008. URL http://iverilog.icarus.com/http:
//sourceforge.net/projects/iverilog/.

[162] Frank Winkler. Redesigning PAPI’s High-Level API. Technical report, 2020.

[163] Thomas Wong. Autonomous Driving and Sensor Fusion SoCs - GSA -
Global Semiconductor Alliance, 2019. URL https://www.gsaglobal.org/forums/
autonomous-driving-and-sensor-fusion-socs/.

[164] World Health Organization. Road safety, 2024. URL https://www.who.int/
health-topics/road-safety/.

[165] Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. Tigris: Architecture and algorithms for
3d perception in point clouds. In Proceedings of the Annual International Symposium
on Microarchitecture, MICRO, pages 629–642, 2019. ISBN 9781450369381. doi: 10.
1145/3352460.3358259. URL http://horizon-lab.org.

[166] Ziyu Ying, Shulin Zhao, Sandeepa Bhuyan, Cyan Subhra Mishra, Mahmut T. Kan-
demir, and Chita R. Das. Pushing Point Cloud Compression to the Edge. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 282–299.
IEEE, oct 2022. ISBN 978-1-6654-6272-3. doi: 10.1109/MICRO56248.2022.00031. URL
https://ieeexplore.ieee.org/document/9923794/.

[167] Ziyu Ying, Sandeepa Bhuyan, Yan Kang, Yingtian Zhang, Mahmut T. Kandemir, and
Chita R Das. EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge
Devices. In Proceedings of the 50th Annual International Symposium on Computer
Architecture, pages 1–14, New York, NY, USA, jun 2023. ACM. ISBN 9798400700958.
doi: 10.1145/3579371.3589113. URL https://dl.acm.org/doi/10.1145/3579371.3589113.

https://pdf.directindustry.com/pdf/velodynelidar/hdl-64e-datasheet/182407-676099.html
https://pdf.directindustry.com/pdf/velodynelidar/hdl-64e-datasheet/182407-676099.html
https://www.huawei.com/uk/about-huawei/publications/communicate/86/driverless-vehicles-with-mdc
https://www.huawei.com/uk/about-huawei/publications/communicate/86/driverless-vehicles-with-mdc
https://riscv.org/technical/specifications/
https://waymo.com/blog/2020/03/designing-5th-generation-waymo-driver/
https://waymo.com/blog/2020/03/designing-5th-generation-waymo-driver/
https://waymo.com/
https://web.eece.maine.edu/$\sim $vweaver/projects/rapl/
https://web.eece.maine.edu/$\sim $vweaver/projects/rapl/
http://iverilog.icarus.com/ http://sourceforge.net/projects/iverilog/
http://iverilog.icarus.com/ http://sourceforge.net/projects/iverilog/
https://www.gsaglobal.org/forums/autonomous-driving-and-sensor-fusion-socs/
https://www.gsaglobal.org/forums/autonomous-driving-and-sensor-fusion-socs/
https://www.who.int/health-topics/road-safety/
https://www.who.int/health-topics/road-safety/
http://horizon-lab.org
https://ieeexplore.ieee.org/document/9923794/
https://dl.acm.org/doi/10.1145/3579371.3589113

References 109

[168] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu, and Yuhao Zhu. Building the
computing system for autonomous micromobility vehicles: Design constraints and
architectural optimizations. In Proceedings of the Annual International Symposium
on Microarchitecture, MICRO, volume 2020-Octob, pages 1067–1081. IEEE Computer
Society, oct 2020. ISBN 9781728173832. doi: 10.1109/MICRO50266.2020.00089.

[169] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A Survey of
Autonomous Driving: Common Practices and Emerging Technologies. IEEE Access,
8:58443–58469, 2020. ISSN 21693536. doi: 10.1109/ACCESS.2020.2983149.

[170] Dimitris Zermas, Izzat Izzat, and Nikolaos Papanikolopoulos. Fast segmentation of
3D point clouds: A paradigm on LiDAR data for autonomous vehicle applications. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pages 5067–
5073. IEEE, may 2017. ISBN 978-1-5090-4633-1. doi: 10.1109/ICRA.2017.7989591.
URL https://www.researchgate.net/publication/318325507http://ieeexplore.ieee.org/
document/7989591/.

[171] Fuquan Zhao, Hao Jiang, and Zongwei Liu. Recent development of automotive LiDAR
technology, industry and trends. In Xudong Jiang and Jenq-Neng Hwang, editors,
Eleventh International Conference on Digital Image Processing (ICDIP 2019), volume
11179, page 178. SPIE, aug 2019. ISBN 9781510630758. doi: 10.1117/12.2540277. URL
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11179/2540277/
Recent-development-of-automotive-LiDAR-technology-industry-and-trends/10.
1117/12.2540277.full.

[172] Hengyu Zhao, Yubo Zhang, Pingfan Meng, Hui Shi, Li Erran Li, Tiancheng Lou,
and Jishen Zhao. Driving Scenario Perception-Aware Computing System Design in
Autonomous Vehicles. In Proceedings - IEEE International Conference on Computer
Design: VLSI in Computers and Processors, volume 2020-Octob, pages 88–95, 2020.
ISBN 9781728197104. doi: 10.1109/ICCD50377.2020.00031.

[173] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A Modern Library for 3D
Data Processing. 2018. URL http://www.open3d.http://arxiv.org/abs/1801.09847.

[174] Yuhao Zhu. RTNN: Accelerating Neighbor Search Using Hardware Ray Tracing. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP, pages 76–89, New York, NY, USA, apr 2022. ACM. ISBN
9781450392044. doi: 10.1145/3503221.3508409. URL https://dl.acm.org/doi/10.1145/
3503221.3508409.

https://www.researchgate.net/publication/318325507 http://ieeexplore.ieee.org/document/7989591/
https://www.researchgate.net/publication/318325507 http://ieeexplore.ieee.org/document/7989591/
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11179/2540277/Recent-development-of-automotive-LiDAR-technology-industry-and-trends/10.1117/12.2540277.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11179/2540277/Recent-development-of-automotive-LiDAR-technology-industry-and-trends/10.1117/12.2540277.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11179/2540277/Recent-development-of-automotive-LiDAR-technology-industry-and-trends/10.1117/12.2540277.full
http://www.open3d. http://arxiv.org/abs/1801.09847
https://dl.acm.org/doi/10.1145/3503221.3508409
https://dl.acm.org/doi/10.1145/3503221.3508409

	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Applications and Benefits of Autonomous Vehicles
	1.2 Computer System for Autonomous Vehicles
	1.2.1 Functional Requirements
	1.2.2 Architectural Challenges
	1.2.3 Help Wanted: Computer Architects for LiDAR's Point Cloud Processing

	1.3 Problem Statement, Objectives, and Contributions
	1.3.1 Characterizing a State-of-the-Art Software Stack for Autonomous Vehicles
	1.3.2 Improving Support for LiDAR's Point Cloud Processing on CPU

	1.4 Thesis Organization

	2 Measuring the Problem
	2.1 AVs Overview
	2.1.1 External Data
	2.1.2 Computing

	2.2 Characterization Methodology
	2.2.1 Autoware Execution Environment
	2.2.2 Characterization Procedures
	2.2.3 Methodology Limitations

	2.3 Characterization Analysis
	2.3.1 Latency Characterization
	2.3.2 Power Characterization

	2.4 Chapter Takeaways

	3 Point Cloud Processing for Autonomous Vehicles
	3.1 Background
	3.1.1 LiDAR and Point Clouds
	3.1.2 Searching Neighbors in Point Clouds
	3.1.3 Efficient Neighbor Search with K-D Trees

	3.2 Related Work and State-of-the-art Hardware Support for Point Cloud Processing
	3.3 Chapter Takeaways

	4 K-D Bonsai: Reducing Data Movement in Point Cloud Search
	4.1 Compressing Point Clouds on K-D Trees for Radius Search
	4.1.1 Compression Based on Value Similarity
	4.1.2 Compression Via a Smaller Representation
	4.1.3 How to Keep Accuracy Despite a Smaller Representation

	4.2 Proposed Design
	4.2.1 Hardware Support for K-D Tree Compression
	4.2.2 Changing the CPU
	4.2.3 Software Impact

	4.3 Results
	4.3.1 Evaluation Methodology
	4.3.2 Performance Analysis
	4.3.3 Area and Power Analysis
	4.3.4 Energy Analysis

	4.4 Chapter Takeaways

	5 Caravan: Maximizing SIMD Efficiency in Point Cloud Search
	5.1 Caravan
	5.1.1 Exploiting Similarity in Subsequent Queries
	5.1.2 Caravan-SW
	5.1.3 Implications of Caravan-SW
	5.1.4 Caravan-HW

	5.2 Results
	5.2.1 Evaluation Methodology

	5.3 Synthesis Analysis
	5.3.1 Performance Analysis

	5.4 Chapter Takeaways

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	References

