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Universitat Politècnica de Catalunya
Teoria del Senyal i Comunicacions

This thesis is submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy (PhD)

Advised by Veronica Vilaplana Besler

Barcelona, September 12, 2024



2



Abstract

Skin cancer, characterized by the uncontrolled growth and spread of abnor-
mal skin cells, remains a significant global health challenge. It predominantly
appears on sun-exposed areas like the face, neck, and arms, though it can also
develop in less exposed regions. Melanoma, the most aggressive form of skin
cancer, is particularly concerning due to its rapid metastasis if not detected
early. This aggressive nature underscores the need for timely diagnosis and
treatment.

While advances have been made in understanding skin cancer mechanisms,
the extensive surface area of the skin, as the body’s largest organ, makes it easy
for lesions to go undetected. However, the advent of prospective databases of
clinical and imaging data has equipped the medical community with highly
sensitive and specific biomarkers for cancer diagnosis. These biomarkers fa-
cilitate early detection and accurate diagnosis through non-invasive methods,
allowing for effective treatment of melanoma before it spreads.

This thesis introduces tools for analyzing melanoma using clinical data and
Whole Slide Imaging (WSI). It focuses on identifying early-stage melanoma
patients through risk grouping and biomarker detection. By applying ad-
vanced survival analysis, pattern recognition techniques, and statistical clus-
tering, we develop predictive and interpretability models aimed at improving
early detection and diagnosis.

The main outcomes of this thesis are five-fold. Firstly, we evaluate var-
ious survival analysis algorithms on cutaneous melanoma datasets, identi-
fying the most effective methods. Our analysis reveals that, to date, tree-
based methods still surpass deep learning models in performance on survival
analysis datasets Secondly, we introduce a Python library, SurvLIMEpy, to
enhance model explainability for time-to-event data, demonstrating its va-
lidity through experiments with both simulated and large-scale melanoma
datasets. Thirdly, our analysis of feature importance in the trained models
reveals that the features identified by SurvLIMEpy align closely with clini-
cally relevant features reported in medical literature. Fourthly, we show that
machine learning models for patient stratification outperform the AJCC stag-
ing system when combined with Quantile-Based Survival Clustering. Finally,
we explore the use of AI to predict biomarker status from WSIs, utilizing self-
supervised feature extractors and Multiple Instance Learning. The concluding
sections discuss the effectiveness of the methodologies employed, their bene-
fits, and their potential impact on the treatment of skin cancer patients while
also outlining future research directions to address this critical medical and
scientific challenge.
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Chapter 1

Introduction

Cancer is a disease characterized by the uncontrolled growth and spread of ab-

normal cells within the body, and it remains one of the leading causes of mor-

bidity and mortality worldwide. According to the World Health Organization, an

estimated 19.3 million new cancer cases and nearly 10 million cancer deaths oc-

curred globally in 2020 [Programme 2021]. A variety of factors, including lifestyle,

environmental exposures, and genetic predispositions, in�uence the global land-

scape of cancer incidence and mortality. Common types of cancer, such as lung,

breast, skin, and colorectal cancer, continue to pose signi�cant health challenges

worldwide. Furthermore, the burden of cancer extends beyond health implica-

tions, having substantial economic impacts. In Europe alone, the economic burden

of cancer is estimated to be approximately   199.000 million [Luengo-Fernandez

et al. 2013], which is comparable to the gross domestic product of Greece. This

enormous economic impact underscores the urgency of advancing cancer research

and improving diagnostic and therapeutic strategies.

In recent years, there has been remarkable progress in understanding cancer's

molecular and genetic underpinnings, leading to the development of targeted ther-

apies and personalized medicine approaches. These advancements are revolution-

izing the way cancer is diagnosed and treated, providing new hope for better pa-

tient outcomes. Integrating Arti�cial Intelligence (AI) and machine learning in

cancer research further enhances our ability to analyze complex data, predict pa-

tient responses, and identify novel therapeutic targets. As a result, the future of

cancer diagnosis and treatment looks promising, with the potential for more effec-

tive and less invasive interventions.

1
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1.1 Skin cancer

Skin cancer, marked by the abnormal proliferation of skin cells, emerges as one

of the most common types of cancer globally [Institute 2024]. It primarily mani-

fests in three forms: basal cell carcinoma (BCC), squamous cell carcinoma (SCC),

and melanoma, each presenting distinct biological behaviours and risks. Under-

standing these types of skin cancer is crucial for developing effective detection,

diagnosis, and treatment strategies, underscoring the need for advanced research

in this area.

The prognosis of skin cancer varies widely depending on the type and stage at

diagnosis [Amin et al. 2017]. BCC, being the most common yet least aggressive, has

a high cure rate and seldom spreads beyond the original tumour site. SCC holds

a greater propensity to metastasize but remains highly manageable when caught

early. On the other hand, melanoma's prognosis can be grim if not detected at

an early stage; it spreads rapidly to different parts of the body, making treatment

more challenging and survival rates signi�cantly lower. Early detection remains

paramount, as the �ve-year survival rate for melanoma detected at a localized

stage is around 99%, but drops sharply to about 25% for distant metastases [Amin

et al. 2017, Barreiro-Capurro et al. 2021]. These statistics highlight the critical role

of early diagnosis in improving patient outcomes.

It is important to note that skin cancer itself does not cause death directly.

Rather, it is the spread of cancer to vital organs such as the lungs, brain, or heart

that can be fatal. This metastatic spread disrupts the normal function of these or-

gans, leading to life-threatening complications. Therefore, preventing metastasis

through early detection and effective treatment is essential in reducing the mortal-

ity associated with skin cancer.

1.1.1 Patient Journey

A skin cancer patient's journey typically begins with a visit to a healthcare provider,

often prompted by the patient noticing new or changing features in their skin. This

could be a new growth, a change in an existing mole, or any unusual skin changes

that raise concerns. During the initial consultation, the dermatologist visually in-

spects the skin to identify any lesions requiring further evaluation.

If needed, the examination progresses with a dermatoscopy, an enhanced ob-

servation technique that allows the dermatologist to view the skin with greater
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magni�cation and detail. This tool is instrumental in evaluating the morphologi-

cal features of the skin lesion that are not visible to the naked eye. Dermatoscopy

not only aids in early skin cancer detection but also helps apply a clinical strati�-

cation system such as the AJCC (American Joint Cancer Committee) [Amin et al.

2017]. This system includes the TNM classi�cation, which stands for Tumour size

and extent (T), Node involvement (N), and Metastasis presence (M). After the der-

matoscopic examination is performed, the clinician assigns the patient a clinical

TNM classi�cation based on these criteria.

If the �ndings from the dermatoscopy raise additional concerns, the next step

often involves confocal microscopy. This noninvasive imaging technique provides

a more detailed look at the skin's cellular structure. Confocal microscopy serves as

an intermediate step before more invasive procedures, offering valuable insights

that can further re�ne the diagnosis.

When these imaging techniques suggest the likelihood of cancer, the pathway

leads to a biopsy. During this procedure, a sample of the skin tissue is removed and

sent to a pathologist for detailed examination under a microscope. This is a deci-

sive step, as the pathologist's evaluation will con�rm whether the cells are cancer-

ous. Advances in Whole Slide Imaging (WSI) have revolutionized this process by

allowing digital scanning of entire tissue slides at high resolution, facilitating more

precise and ef�cient pathological assessments. WSI enhances diagnostic accuracy

and supports the integration of AI tools that can assist pathologists in identifying

malignancies and predicting outcomes.

If the diagnosis of cancer is con�rmed, the pathologist also applies a pathologi-

cal TNM classi�cation to the case. The pathological TNM classi�cation is based on

the examination of tissues removed during surgery, offering a more precise assess-

ment compared to the clinical TNM. Providing detailed information on the depth

and spread of the tumour is crucial for determining the appropriate course of treat-

ment. At this point, if the cancer is suspected to have spread, procedures such as

Sentinel Lymph Node (SLN) biopsies may be conducted to assess the extent of

metastasis and further guide the treatment planning. This involves removing a

small group of lymph nodes from the armpit or groin to check for cancer cells. The

SLN acts as a sentinel, being the �rst node to which cancer cells are likely to spread

if present in the body. A positive SLN biopsy, indicating the presence of cancer

cells, guides treatment planning, including determining the extent of surgery and

the type of radiation therapy to be administered, thereby re�ning the management

of melanoma.
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1.1.2 Sources of Oncological AI Data Used in this Thesis

Several institutions play key roles in advancing AI in oncological research by pro-

viding essential resources, data, and collaboration opportunities. This thesis uti-

lizes data from some of these institutions, presented below, to develop and vali-

date AI models for predicting progression and outcomes in cutaneous melanoma

patients.

The Institut Catal �a de la Salut (ICS) has provided valuable data for oncologi-

cal AI research. ICS is a public enterprise in charge of the health system in Cat-

alonia, Spain, offering healthcare services to the region's population. One of the

datasets managed by ICS is the Xarxa Melanoma (XXMM) database, a collabora-

tive, prospective effort involving 19 local hospitals. This dataset covers a large

portion of the population in Catalonia and includes detailed clinical and demo-

graphic information on melanoma patients. Signi�cant work was conducted itera-

tively with medical practitioners at the Hospital Clinic of Barcelona to compile the

�nal dataset used in this thesis.

The Cancer Genome Atlas (TCGA) is an initiative in cancer research, launched

in 2006 as a collaborative effort between the National Cancer Institute (NCI) and

the National Human Genome Research Institute. While primarily focused on cre-

ating comprehensive genomic maps of cancer, TCGA also provides extensive clin-

ical, biological, and sociological data. These datasets offer insights into cancer

biology and facilitate the development of AI models for targeted therapies and

personalized treatment approaches.

The TCGA presents a vast WSI library composed of thousands of digitized

histopathology slides from various cancer types. These whole slide images of-

fer a rich resource for AI-driven studies that aim to integrate diverse data types to

predict cancer outcomes, identify novel biomarkers, and understand cancer het-

erogeneity. By leveraging WSIs, researchers can apply advanced image analysis

techniques and Deep Learning (DL) models to extract critical features and pat-

terns that correlate with existing diagnostic and prognostic markers. This integra-

tion of WSIs with other clinical and genomic data is pivotal in advancing precision

medicine and improving the accuracy of cancer diagnosis and prognosis.

Finally, the Surveillance, Epidemiology, and End Results (SEER) Program, man-

aged by the NCI, collects and publishes cancer incidence and survival data from

population-based cancer registries covering approximately 34.6% of the U.S. pop-

ulation. SEER is an authoritative source for cancer statistics, providing a rich
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database essential for epidemiological research and developing predictive mod-

els in oncology. The extensive dataset includes information on cancer incidence,

prevalence, survival, and mortality, all presented in tabular form. This data is cru-

cial for tracking trends and outcomes over time.

While ICS, TCGA, and SEER are important sources of data and collaboration for

AI in oncological research, they represent only a portion of the available resources.

Many other institutions and initiatives also make important contributions to this

�eld, though they are not utilized in this thesis.

1.1.3 Fundacio Marato TV3

The Fundació La Marató de TV3, managed by the Catalan Audiovisual Media

Corporation, is an organization in biomedical research funding and public health

awareness in Catalonia. Since 1992, La Marat́o de TV3 has raised funds to increase

public understanding and boost biomedical research on the diseases covered in the

program. The foundation is well known locally for its annual telethon, La Marat ó

de TV3, which raises funds to support research into various diseases. Since its in-

ception, the program has raised over 247.000.000  and �nanced numerous research

projects to advance scienti�c knowledge and improve patient outcomes.

The foundation's mission is to foster and promote high-quality scienti�c re-

search and increase social awareness about the diseases covered in the program.

It achieves this through public participation campaigns, educational events, and

the selection and funding of research projects. The funds raised support research

initiatives led by scientists and research institutions in Catalonia, ensuring a broad

and impactful reach in the medical and scienti�c community.

Notably, the funding for the project in which this thesis is embedded was se-

cured from the proceeds of the 2018 Christmas telethon, which focused on can-

cer research. This project included members of the Hospital Clinic of Barcelona

with expert knowledge in melanoma disease, who provide essential clinical in-

sights and interpret the model outputs. These experts were from the hospital's

Dermatology Department and the Institut d'Investigacions Biomediques August

Pi I Sunyer (IDIBAPS). Additionally, the project included a team of individuals

with technical expertise from the UPC's Image and Video Processing Group (GPI),

a research group of the Signal Theory and Communications (TSC) department,

who work on arti�cial intelligence, computer vision, survival analysis, and other

tools for processing both tabular data and medical images.
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1.2 Contributions

The diverse nature of skin cancer and the differences in acquisition protocols across

various sites require sophisticated modelling techniques. With the growing vol-

ume of data from prospective datasets, we can develop advanced methods utiliz-

ing pattern recognition, AI, and Survival Analysis (SA). Although there are chal-

lenges like accessibility and cost, these analytical techniques hold promise for in-

tegration into standard clinical practice.

In this thesis, we develop frameworks for the study of skin cancer, focusing on

early detection and prognosis. The most important topics in this thesis are survival

analysis, the interpretability of these methods, and clustering of patients. SA is a

branch of statistics heavily used in the medical sciences which studies how long it

takes for an event to occur, such as death or the occurrence of metastasis. Comple-

mentarily, we use computer vision techniques to identify relevant biomarkers. The

techniques developed here are generalizable and can be applied to other studies

as well.

In Chapter 2, we offer a foundational overview to support the subsequent chap-

ters of this thesis. We review the current state of the art in key areas relevant to our

research. First, we explain the foundations of SA. We then delve into the applica-

tion of ML in this �eld, emphasizing the interpretability of these models in clinical

applications and highlighting the signi�cance of patient strati�cation in optimiz-

ing treatment ef�cacy and improving patient care outcomes. Finally, we dedicate

a section to introduce pattern recognition in the �eld of WSI processing using AI,

discussing the inherent challenges and proposed solutions from the literature.

The main contribution of this thesis is presented in the next four chapters, fo-

cusing on the prediction of survival rates for melanoma patients using AI. In Chap-

ter 3, we employ ML and DL algorithms to predict the progression of cutaneous

melanoma patients using data from the SEER and Xarxa Melanoma databases. Sig-

ni�cant work was conducted in collaboration with medical practitioners at the

Hospital Clinic of Barcelona to compile the �nal dataset. This process involved

identifying the most relevant variables for melanoma prognosis and automating

the download of patient data as more cases were added. We evaluate various

algorithms and conduct a thorough performance comparison, highlighting their

strengths and limitations in predicting melanoma progression and survival out-

comes.
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In the following chapter, 4, we emphasize the importance of interpretability

in SA algorithms. We introduce the �rst implementation of the SurvLIME al-

gorithm and apply it to the models trained in the previous chapter. We present

SurvLIMEpy , an open-sourcePython package that allows the computation of fea-

ture importance for survival analysis models. Its implementation is compatible

with standard libraries used in data analysis. Our implementation improves on

the mathematical foundation of SurvLIME to work on a matrix basis, signi�cantly

reducing the computation time of the algorithm. We extensively test this software

with simulated data as well as with the dataset used in the previous chapter. The

results are compared with existing predictive clinical features found in the litera-

ture.

Our study with tabular survival data culminates in Chapter 5, where we are

especially interested in analyzing how groups of patients with similar prognosis

can be clustered into risk groups. By clustering patients into groups with homo-

geneous prognoses, clinical practitioners can guide their handling of each patient

according to their grouped survival risk. Our initial hypothesis is that new risk

groups can be formed which are better than the AJCC that the clinical practi-

tioners use. The motivation for this problem stems from the potential of ML al-

gorithms to help medics more accurately identify patients with poor prognoses

that their current strati�cation system may overlook and, conversely, those with

good prognoses who are currently classi�ed otherwise. Multiple models are com-

pared against the latest (8th ) edition of the AJCC. We also verify that the most clin-

ically relevant features are appropriately distributed across the newly created risk

groups, ensuring that these groupings are meaningful and clinically useful. We

also assess which patients are reclassi�ed from groups with high survival probabil-

ities, as stated by the AJCC, to groups with low survival probabilities, as indicated

by our ML models, and vice versa.

Finally, in Chapter 6 we shift our focus to the application of AI in WSI analysis

and its capacity to detect relevant biomarkers of disease progression. These images

present several challenges, including large �le sizes, inter-slide variability due to

different scanning machines, and limited annotations. Speci�cally, we develop

computer vision pipelines to predict SLN positivity and BRAF mutations from WSI

data. Our approach can be generalized for other classi�cation problems.

We end this thesis by summarizing the main results of this PhD thesis, remark-

ing on the contributions, and suggesting some directions for future work.



Chapter 2

State of the Art

This chapter lays the foundational knowledge necessary for understanding each

topic as they contribute to the overarching goals of this thesis by exploring the cur-

rent state of the art of the subjects at hand. Initially, we provide an overview of the

�eld of survival analysis, which serves as the foundation for the �rst half of the

thesis. Special attention is given to the application of machine learning in survival

analysis and the focus on interpretability within this �eld. Following this, we delve

into patient strati�cation, highlighting its importance in optimizing treatment ef-

�cacy and patient care outcomes. Finally, we transition to a discussion on whole

slide images, emphasizing their role in detailed tissue examination and their use

in predicting important biomarkers.

2.1 Survival Analysis

Survival Analysis (SA), also known as time-to-event analysis, is a branch of Statis-

tics that studies the time until a particular event of interest occurs [Hosmer and

Lemeshow 1999, Kalb�eisch and Prentice 2002]. It was initially developed in biomed-

ical sciences and reliability engineering. Still, nowadays, it is used in a plethora

of �elds [Ward and Bakke 2005, Gepp and Kumar 2008, Box-Steffensmeier et al.

2015, Whetten 2018, Schwartz et al. 2021, Papathanasiou et al. 2023]. Rather than

putting the focus on a probability distribution between different classes or predict-

ing a number (for regression problems), SA is used to predict the probability of the

said event happening in the future.

In SA, each individual is represented by a triplet (x; �; � ), where x = ( x1; x2; : : : ; xp)>

is the vector of features, � (where � 2 R� 0) indicates the time to event or lost to

follow-up time of the individual (assumed to be non-negative and continuous),

8
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and � (where � 2 f 0; 1g) is the event indicator denoting whether the event of inter-

est has been observed or not.

Given a datasetD consisting of n triplets (x i ; � i ; � i ), i 2 f 1; : : : ; ng, where n is the

number of individuals, Survival Analysis aims to construct algorithms, Ĥ : Rp �

R> 0 ! R> 0 that allow estimating the risk of a certain individual x � experiencing

the event at a certain time t. This risk estimator is given by Ĥ (x; t).

2.1.1 Censoring

Censoring occurs when only partial information about individual survival time is

available, but we do not know the exact survival time. This results in the event of

interest not being observed by some of the studied individuals. This might hap-

pen when the event is not observed during the time window of the study, or the

individual dropped out of the study of other unrelated causes. If this occurs, the

individual i is considered censored and� i = 0. Censoring is a central phenomenon

of Survival Analysis; its mathematical framework is built around extracting in-

formation about individuals even though the data is incomplete. The three main

types of censorship are:

• Right-censoring: it is said to occur when, despite continuous monitoring of

the outcome event, the individual is lost to follow-up, or the event does not

occur within the study duration [Prinja et al. 2010].

• Left-censoring: it happens if an individual had been at risk for the event of

interest for a period before entering the study.

• Interval-censoring: it applies to individuals when the exact time of the event

of interest is unknown, but it is known to have occurred within a speci�c

time interval

Of the three, right-censoring, followed by interval censoring, are the two most

common types of censoring. Left censoring is sometimes ignored since an event,

such as an individual's entry into the study, de�nes the starting point. Figure 2.1

provides a visual representation for each type of censoring.

If the event of interest is observed for individual i , then � i = 1 and � i correspond

to the time from the beginning of the study to the event's occurrence, respectively.

This is also called an uncensored observation.

On the other hand, if the instance event is not observed or its time to event

is greater than the observation window, � i corresponds to the time between the
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Figure 2.1: The three types of censoring used in Survival Analysis.

study's beginning and the observation's end. In this case, the event indicator is

� i = 0, and the individual is considered to be censored.

2.1.2 Survival Function

The Survival Function is one of the main concepts in Survival Analysis. It repre-

sents the probability that the time to event is not earlier than time t, which is the

same as the probability that an individual survives past time t without the event

happening. It is expressed as:

S(t) = P(T � t): (2.1)

It is a monotonically decreasing function whose initial value is 1 when t = 0, re-

�ecting that at the beginning of the study, any observed individual is alive; their

event is yet to occur. Its counterpart is the cumulative death distribution function

F (t), which states the probability that the event does occur earlier than time t, and

it is de�ned as:

F (t) = P(T < t ) = 1 � S(t): (2.2)

The death density function, f (t), can also be computed asf (t) = d
dt F (t) = � d

dt S(t):

2.1.3 Hazard Function and Cumulative Hazard Function

The second most common function in Survival Analysis is the Hazard Function or

instantaneous death rate [Hosmer and Lemeshow 1999, Harrell 2006], denoted as

h(t), which indicates the rate of event at time t given that it has not yet occurred
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before time t. It is also referred to as risk score. It is also a non-negative function

that can be expressed as:

h(t) = lim
� t ! 0

P(t � T � t + � tjT � t)
� t

= lim
� t ! 0

F (t + � t) � F (t)
� t � S(t)

=
f (t)
S(t)

= �
d
dt S(t)
S(t)

:
(2.3)

Similar to S(t), h(t) is a non-negative function, but it is not constrained by

monotonicity. Considering that f (t) = � d
dt S(t), the Hazard Function can also be

written as:

h(t) =
f (t)
S(t)

= �
d
dt

[S(t)]
1

S(t)
= �

d
dt

[ln S(t)]: (2.4)

Integrating in both sides of Expression 2.4 from 0 to t, the Cumulative Hazard

Function is obtained and denoted as H (t) =
Rt

0 h(r ) dr. It is related to the Survival

Function by the following equation:

S(t) = exp( � H (t)) : (2.5)

2.1.4 Machine Learning in Survival Analysis

Over time, the Cox Proportional Hazards model (CoxPH) [Cox 1972] established

itself as the most widely used method for survival analysis modelling. This al-

gorithm is akin to a linear regression tailored for censored data, which outputs

a hazard score over time. CoxPH stands as a semi-parametric approach that as-

sumes a baseline hazard ratio over time, common for all patients, and a speci�c

hazard based on the patient's features. However, the Cox model can be limited by

its assumptions about proportionality and linearity. Speci�cally, the proportional-

ity assumption means that the relative risk between different individuals remains

constant over time, while the linearity assumption means that the effects of the co-

variates on the hazard are linear. These assumptions might not hold true in more

complex or heterogeneous datasets, leading to less accurate or biased results. This

algorithm will be further explained in Chapter 3.

To address these limitations and improve model �exibility, the �eld of survival

analysis has seen the introduction of machine learning techniques that do not re-

quire the stringent assumptions of traditional statistical models. One such devel-

opment is the Random Survival Forests (RSF) [Ishwaran et al. 2008], which ex-

tends the Random Forest (RF) algorithm to the setting of right-censored survival

data. Unlike the Cox model, RSF does not assume any speci�c form of the hazard
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function, allowing survival data analysis with more complex relationships and in-

teractions between variables.

Recently, Deep Learning (DL) architectures have signi�cantly expanded the

methods available for Survival Analysis modelling, as demonstrated by models

such as DeepSurv [Katzman et al. 2018] and DeepHit [Lee et al. 2018]. Deep-

Surv, for example, employs a deep feed-forward, multi-layer perceptron (MLP)

designed to predict survival probabilities by estimating time-to-event outcomes.

This model outputs a continuous risk score (Equation 2.4) or a survival probability

(Equation 2.5) for each timestep, which is computed based on the predicted haz-

ard function ĥ� (x), where � are the model's parameters. It utilizes a loss function

derived from the negative log of the partial likelihood, a concept borrowed from

the Cox Proportional Hazards model. In this context, partial likelihood focuses on

the order of events rather than their exact timing. This means it does not fully ac-

count for the precise survival times of all individuals but instead emphasizes the

relative risk between individuals at each event time. This is particularly useful for

handling censored data, where the exact time of the event might not be known for

some individuals.

Conversely, DeepHit [Lee et al. 2018] overcomes the constraints of the propor-

tional hazards assumption by directly modelling the joint distribution of survival

time and events, functioning as a discrete-time hazard model. It employs t out-

put neurons, each corresponding to a discrete-time interval, thereby dividing the

temporal span from � min to � max into t intervals. A key advantage of DeepHit is

its ability to model complex, time-varying relationships between covariates and

the hazard function without assuming constancy over time. By learning the prob-

ability of an event occurring at each discrete time interval directly from the data,

DeepHit provides a more �exible and accurate representation of the survival dis-

tribution.

Further advancements in machine learning for survival analysis have addressed

the limitations of treating event probability estimation as a point-wise prediction

problem. Instead, models like those based on Recurrent Neural Networks (RNNs)

[Ren et al. 2019] leverage sequential data by allowing information from previous

time steps to in�uence future predictions, thus maintaining temporal continuity

across predictions. RNN-based method enhance the prediction of the hazard func-

tion at each time step by using the hidden states from previous steps. More re-

cently, in 2021, Shi Hu et al. introduced a transformer-based model tailored for

survival analysis [Hu et al. 2021], an architecture which has shown great promise
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in �elds like natural language processing. Their approach conceptualizes each pa-

tient's timeline as a ”sentence” with feature embeddings and positional encodings

representing ”words.” This novel analogy helps the model capture temporal dy-

namics more effectively, using an additional loss function designed to improve

model accuracy in predicting survival outcomes.

2.1.5 Interpretability in Survival Analysis

Advanced machine learning models are often seen as black boxes that receive an

input, process it, and output a result without providing any further details on why

such a speci�c output was given. While the technology does not prevent one

from observing its inner state, examining the values of its parameters, identify-

ing which neurons are being activated, or understanding the mathematical opera-

tions being applied, the challenge lies in translating this information into a human-

interpretable format. Ultimately, we observe a set of arithmetic calculations acting

simultaneously, from which behaviour emerges that we perceive as being intelli-

gent. Interpretability of AI models is a vast �eld of active research that seeks to

provide better justi�cation of how these systems operate.

The integration of machine learning algorithms in clinical practice has wit-

nessed remarkable progress, yet the incorporation of these advancements by med-

ical practitioners and public health policymakers remains constrained [Anwar and

Shamim 2011, Bica et al. 2021]. A major barrier to their widespread adoption is the

inherent opaqueness often associated with these models, rendering the rationale

behind their predictions obscure to users. Thus, enhancing the interpretability of

AI models is a necessary step for their acceptance and effective implementation in

healthcare settings.

Recent strides in the realm of Interpretable Machine Learning or eXplainable

Arti�cial Intelligence (XAI) re�ect the pressing need to derive explanations from

machine learning models [Barredo Arrieta et al. 2020]. Frameworks like LIME

[Ribeiro et al. 2016] and SHAP [Lundberg and Lee 2017], which provide localized

explanations for individual predictions, have gained popularity. However, it is

important to note that despite their widespread use [Barr Kumarakulasinghe et al.

2020], their applicability becomes compromised when dealing with time-to-event

data, limiting their relevance in survival-oriented contexts because they do not

consider the time-space to provide explanations. This is because they do not con-

sider the time-to-event and the event indicator in their internal computations to

attribute feature importance.
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One of the early works addressing interpretability in SA is SurvLIME [Kovalev

et al. 2020], an extension of LIME. SurvLIME provides a blueprint for how an ex-

plainable AI algorithm could function in this context by offering localized, tem-

poral explanations for black-box survival models. The algorithm constructs a set

of neighbouring instances, generates corresponding predictions, and �ts a surro-

gate model based on the CoxPH model. The coef�cients of this localized model

are interpreted as a proxy for feature importance. However, SurvLIME has not yet

seen widespread adoption in the �eld. Another advancement came with the in-

troduction of SurvSHAP(t) [Krzyzi ński et al. 2023], a fully-�edged XAI algorithm

for survival analysis. Inspired by the SHAP algorithm [Lundberg and Lee 2017],

SurvSHAP(t) is adapted to explain time-to-event machine learning models, pro-

viding a more comprehensive approach to interpretability in Survival Analysis.

2.2 Patient Strati�cation

While survival probabilities provide some insights in typical clinical settings, they

have limited practical application when examined individually. Identifying which

patient characteristics are protective or hazardous is crucial for developing tar-

geted therapies. The real utility, however, lies in patient strati�cation, which sig-

ni�cantly impacts treatment decisions. This approach allows medical practition-

ers to tailor treatment strategies according to distinct patient groups, enhancing

the effectiveness of interventions. The process of how patients are strati�ed and

the criteria used to de�ne these groups continues to be a critical area of research,

re�ecting its importance in practical medical applications.

The foundational system for staging cutaneous melanoma, developed by the

American Joint Committee on Cancer (AJCC) in 1977 [Beahrs et al. 1977], has been

periodically updated [Amin et al. 2017] to re�ect an enhanced understanding of

the disease. The TNM system, which classi�es melanoma into stages I through IV,

guides treatment strategies from simple surgical removal in early stages to compre-

hensive, multidisciplinary approaches in advanced cases. Early to mid-stage man-

agement may include checking sentinel lymph nodes for better classi�cation and

decision-making [Gershenwald et al. 1999]. For advanced or metastatic melanoma,

treatment involves a combination of therapies, including surgery, radiation, and,

increasingly, targeted immunotherapies such as checkpoint inhibitors. Ongoing

research continues to explore the potential of these therapies across different con-

texts, such as neoadjuvant, adjuvant, and palliative care settings.
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The AJCC staging system primarily utilizes the TNM classi�cation to describe

the extent of cancer, which includes:

• T (Tumour) : Measures the primary tumour's size and invasion into neigh-

bouring tissues.

• N (Nodes) : Indicates the involvement of nearby lymph nodes and the extent

of this involvement.

• M (Metastasis) : Determines whether the cancer has spread to other body

parts.

This system categorizes the progression of melanoma into four main stages,

from Stage I, indicating localized cancer, to Stage IV, signifying advanced cancer

with distant metastasis. Each stage is further detailed into sub-stages (like IIA and

IIB) based on more speci�c criteria to help tailor treatment strategies and assess

patient prognosis. There are two types of TNM classi�cation: clinical and patho-

logical. The clinical TNM (cTNM) is based on information from physical exams,

imaging, and biopsies before treatment. The pathological TNM(pTNM) is deter-

mined after surgery, providing a more precise assessment.

In the realm of personalized medicine, patient strati�cation plays a pivotal role.

It involves organizing patients into groups based on their predicted response to

speci�c treatments or their risk of disease development. This strati�cation method

is fundamental to personalized medicine, enabling healthcare providers to tailor

treatments precisely. By identifying and categorizing patient groups, personalized

medicine facilitates the design of targeted treatment regimens that are more ef�-

cient and effective. Consequently, strati�cation helps to move away from a one size

�ts all or uniform treatment approach, leading to targeted therapies that are better

suited to individual patient pro�les and likely to result in fewer side effects and

better patient prognosis.

Patient strati�cation in medical research is analogous to data clustering, a fun-

damental technique in data analysis. Traditional clustering algorithms primar-

ily focus on patient descriptive variables and do not incorporate the information

found in survival data, which causes them to lack correlation with survival times.

The most utilized clustering algorithm is K-means [MacQueen 1967], which

aims to compute clusters in a self-supervised manner by dynamically computing

K-centroids and assigning the data points to the cluster with the closest centroid.
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These centroids are updated on each iteration until a speci�c criterion has been

met.

Another family of clustering algorithms that can be trained on data without

labels are the Hierarchical Agglomerative Clustering (HAC) algorithms [Lukasov á

1979]. These methods follow a different approach compared to K-means. HAC

operates by grouping data points into clusters based on their similarity. It starts

by treating each data point as a separate cluster and then progressively merges

clusters based on a speci�ed similarity criterion. This process continues until all

points are grouped into a single cluster or until a speci�ed number of clusters is

reached.

Semi-supervised clustering algorithms, integrating survival data, aim to create

clusters that are not only descriptive but also predictive of clinical outcomes. De-

spite the importance of clustering with survival data, this area remains underde-

veloped. Early researchers relied on ML models to identify predictive variables for

clustering [Bhattacharya et al. 2018, Yang et al. 2021], while more recent advance-

ments have utilized deep learning [Kwon et al. 2019]. However, these approaches

often suffer from increased computational demands and decreased transparency.

In the area of cutaneous melanoma, the application of HAC is exempli�ed in

[Yang et al. 2021], where it was used to cluster patients using the TNM features

while adding the age and sex of the patient. The researchers demonstrated that in-

corporating these two straightforward features improved their model's predictive

performance compared to the AJCC's.

2.3 Whole Slide Imaging

A WSI is a digital high-resolution scan of a histopathology slide, which itself is

derived from a biopsy extracted from a patient. When a biopsy is taken from a pa-

tient, it undergoes a meticulous �xation, slicing, and staining process. This process

preserves the biological structure of the tissue and highlights key features neces-

sary for diagnosis. The stained tissue is then mounted on a glass slide and digitized

using specialized scanning equipment to produce a WSI. These digital slides are

capable of displaying detailed cellular and morphological structures across vast

tissue areas, enabling pathologists to examine them on a computer screen with

clarity and precision. Furthermore, WSIs are typically stored in a multi-resolution

pyramid format, allowing users to view different magni�cation levels without los-

ing image quality. An example can be seen in Figure 2.2. This feature is critical for
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Figure 2.2: Example of a WSI and its multi-resolution pyramid format at different
magni�cations

detailed examination at high magni�cations and broader contextual understand-

ing at lower magni�cations.

The analysis of WSI represents the gold standard in modern pathology. These

gigapixel images have transformed pathology into a high-resolution digital do-

main, where detailed examinations of tissue samples are now more ef�cient and

less subjective than traditional microscopy. This digitization signi�cantly enhances

diagnostic practices, especially in cancer diagnosis, by enabling the detailed scrutiny

of morphological and cellular features across expansive tissue areas. Furthermore,

integrating AI and DL technologies has been essential in overcoming historical

challenges associated with the labour-intensive nature of histopathological anal-

ysis [Campanella et al. 2019, Lu et al. 2021, Chen et al. 2021, Wagner et al. 2023].

By automating and standardizing the interpretation processes, these technologies

improve both the accuracy and ef�ciency of diagnoses, paving the way for more

advanced diagnostic tools and methods in pathology.

However, the processing of WSI encounters signi�cant challenges, notably the

variability in staining protocols, imaging equipment, and tissue preparation tech-

niques, which can differ widely within and between hospitals. This variability,

coupled with the vast scale of the images, demands robust computational solu-

tions. It highlights the interplay of medical knowledge and technological innova-

tion.
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Additionally, designing robust deep learning pipelines for digital pathology

requires overcoming the prohibitive computational demands of processing giga-

pixel WSIs. This issue particularly affects medical institutions with limited re-

sources, underscoring the need for ef�cient algorithms that can operate in clini-

cal settings beyond high-resource labs. Moreover, the scale of WSIs complicates

obtaining detailed annotations, which are often restricted to small regions or slide-

level labels, thus limiting the feasibility of end-to-end supervised training.

Given that WSIs exceed the processing capacities of most systems when taken

as a whole, they are typically divided into numerous smaller segments or patches.

A signi�cant challenge arises when these patches, which may number in the hun-

dreds or thousands per WSI, must be analyzed under a single slide-level label.

Multiple Instance Learning (MIL), a variant of weakly supervised learning, has

been increasingly adopted to navigate this issue in WSI analysis [Zhang et al. 2023,

Yao et al. 2020, Laleh et al. 2022, Shao et al. 2021]. Each WSI is conceptualized as

a 'bag' within this framework, with its constituent patches viewed as 'instances.'

This paradigm allows for slide-wide classi�cation based on the collective feature

representation of patches, obviating the need for individual patch labels. This ap-

proach enables the model to identify distinctive patterns within the aggregated

patch representations.

A foundational study in WSI and MIL was conducted by Campanella et al.

[Campanella et al. 2019]. In their extensive research, they analyzed 44,732 slides

from 15,187 patients, focusing on prostate cancer, basal cell carcinoma, and breast

cancer metastases to auxiliary lymph nodes. They achieved areas under the curve

(AUC) above 0.98 for all cancer types. This was accomplished by using ResNet [He

et al. 2016] as a feature extractor and applying a simple MIL method to aggregate

features from all patches. In their approach, a slide is classi�ed as positive if at least

one tile within the slide is predicted to be positive. This slide-level aggregation,

based on the standard multiple instance assumption, is commonly referred to as

max-pooling.

Recent years have seen a surge in the application of attention mechanisms

within MIL [Ilse et al. 2018] to enrich feature aggregation from WSIs, concurrently

offering interpretability by spotlighting the contributory weight of each patch [Chikon-

twe et al. 2020, Tourniaire et al. 2021, Lu et al. 2021]. While efforts like those in

[Wagner et al. 2023] harness advanced attention techniques to heighten model dis-

crimination, methodologies such as ACMIL [Zhang et al. 2023] explore regulariza-
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tion strategies aimed at preventing over�tting, particularly in scenarios of limited

training data.

The variability in WSIs, resulting from differences in scanning protocols and

equipment, poses obstacles as well. Self-supervised learning (SSL) leverages the

intrinsic patterns and structures present in unlabeled data to learn meaningful

representations without the need for extensive labelled datasets [Chen et al. 2020,

Kang et al. 2023]. Researchers have utilized self-supervised contrastive learning

[Chen et al. 2020] to improve the extracted representations [Ciga et al. 2022] in

WSIs, but the �eld is moving towards transformer-based architectures [Wang et al.

2022b, Wessels et al. 2023, Roth et al. 2024]. In this context, Vision Transformers

(ViT) [Dosovitskiy et al. 2020] have been increasingly adopted, with the DINO

framework [Caron et al. 2021, Oquab et al. 2023] representing the forefront of this

transition to attention-based systems. These ViT systems not only yield better re-

sults but also enhance explainability by generating heatmaps that illustrate patch

importance in WSIs, derived from the attention weights of ViT layers.

Domain adaptation is a way to pro�t from data from different tissue types.

This technique is a particular and popular type of transfer learning that facilitates

knowledge transfer from a source domain, normally abundant in labelled data, to

a target domain where labels are sparse or partially available [Guan and Liu 2021,

Wang et al. 2022a]. It plays a crucial role in histopathology analysis due to the

aforementioned variability and scarcity of labelled data found in WSIs. Adapting

models from one tissue type to another can help capture subtle, domain-speci�c

features critical for accurate disease diagnosis and prognosis. The same model can

be used across multiple datasets by using domain adaptation, reducing the need

for large, annotated datasets speci�c to each new domain.



Chapter 3

Survival Analysis for Melanoma
Patients

In this chapter, we explore the �eld of survival analysis, focusing on the training

and comparison of several Machine Learning algorithms: Random Survival Forest,

XGBoost Survival Embeddings, DeepSurv, and DeepHit. We model the progres-

sion of cutaneous malignant melanoma using the public SEER database and the

private XarXa MelanoMa dataset.

The chapter is structured as follows: Section 3.2 describes the models and met-

rics employed in this study. Sections 3.3 and 3.4 introduce the two datasets that

will be analyzed. The results of the study are presented in Section 3.5, followed by

a discussion in Section 3.6. Finally, the chapter concludes with our �nal remarks in

Section 3.7.

3.1 Introduction

Survival Analysis plays a crucial role in medical research, enabling the evaluation

of time-to-event outcomes, which are essential for prognostic assessments and the

formulation of clinical decisions in precision medicine.

Traditional statistical methods have long been used in survival analysis. How-

ever, as medical datasets have increased in both complexity and volume, machine

learning (ML) methodologies have emerged as powerful tools for addressing these

challenges. The predictive capacities of ML survival algorithms like Cox Propor-

tional Hazards model [Cox 1972], Random Survival Forest [Ishwaran et al. 2008]

and DeepSurv [Katzman et al. 2018] enable researchers to model complex interre-

lations between patient attributes and survival outcomes. As these models become

20
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increasingly complex, the issue of interpretability gains prominence. Interpretabil-

ity of ML models is crucial for translating predictions into actionable insights for

clinical practice.

This chapter conducts a thorough evaluation of the performance of �ve sur-

vival analysis algorithms for three speci�c melanoma survival events: Overall

Survival (OS), Speci�c Survival (SS), and Disease-Free Survival (DFS). The evalu-

ation is carried out using the XarXa MelanoMa (XXMM) and a subset of the SEER

dataset, both specializing in cutaneous melanoma. Various metrics are employed

for performance assessment.

3.2 Survival Machine Learning

In the experiments, we employ �ve different machine learning algorithms. These

encompass the Cox Proportional Hazards Model (CoxPH) and Random Survival

Forest (RSF), both from thesksurv package. Additionally, we utilize eXtreme Gra-

dient Boosted Survival Trees (XGBSE) from the xgbse package, along with con-

tinuous and time-discrete deep learning models named DeepSurv and DeepHit,

which are accessible via thepycox package.

In a survival analysis scenario, the data consists of triplets D = f (x j ; � j ; � j )g

j 2 f 1; : : : ; ng where n is the size of the dataset,x j 2 Rp is a p-dimensional feature

vector, � j is the time to event or lost to follow-up time, and � j is the event indicator

(1 means the event occurs and 0 otherwise). Lett1 < � � � < t m be the distinct times

from f � 1; : : : ; � ng.

3.2.1 Cox Proportional Hazards

One of the historically most widely used semi-parametric algorithms for Survival

Analysis is the Cox Proportional Hazards model, published in Cox (1972). The

model assumes a baseline Hazard Function h0(t) which depends only on time,

and a hazard term h(x) = exp( �̂ > x) which depends on the individual's features.

Thus, the Hazard Function h(x; t) in the Cox Proportional Hazards Model is given

by:

h(x; t) = h0(t) exp(�̂ > x); (3.1)

where �̂ = ( �̂ 1; �̂ 2; : : : ; �̂ p)> is the vector of coef�cients for the feature vector x.
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CoxPH is a semi-parametric algorithm as the h0(t) term is unspeci�ed. For two

given individuals, their hazard's ratio is given by:

`
h(x1; t)
h(x2; t)

=
h0(t) exp(�̂ > x1)

h0(t) exp(�̂ > x2)
= exp[�̂ > (x1 � x2)]: (3.2)

The coef�cients �̂ are estimated by maximizing their likelihood with respect to

the data as proposed in Cox (1972). To compute this likelihood, it is necessary to

estimate the product of the probability of each individual that the event occurs at

� i given their feature vector x i , for i 2 f 1; : : : ; ng:

L(� ) =
nY

i =1

�
exp(� > x i )P

j 2 R i
exp(� > x j )

� � i

; (3.3)

where Ri is the set of individuals being at risk at time � i . Note that �̂ is the

vector that maximises Expression 3.3, i.e,�̂ = argmax� L(� ). The Cox Proportional

Hazard algorithm that was used in this study outputs a result for all [t1; tm ].

3.2.2 Tree Based Models

Random survival forests (RSF) [Ishwaran et al. 2008] were introduced to extend

the Random Forest (RF) algorithm to the setting of right-censored survival data.

Implementation of RSF follows the same general principles as RF: (a) Survival trees

are grown using bootstrapped data; (b) Random feature selection is used when

splitting tree nodes; (c) Trees are generally grown deeply, and (d) The survival for-

est ensemble is calculated by averaging terminal node statistics which is a Nelson

Aalen algorithm trained on the terminal node patients [Aalen 1978]. The RSF al-

gorithm utilized in this study produces predictions encompassing all instances of

event occurrences throughout the timespan [t1; tm ] for the t i where � i = 1 .

XGBoost Survival Embedding (XGBSE) [Vieira et al. 2020] represents an ex-

tension of the XGBoost framework [Chen and Guestrin 2016]. It uses XGBoost to

perform feature extraction and then applies Weibull accelerated Failure Time [Ali

et al. 2015] model to compute survival probabilities. Integrating gradient boosting

with survival analysis, it is able to predict time-to-event outcomes by capturing

feature relationships in high-dimensional data. Leveraging specialized objectives

and custom splitting criteria, it optimizes risk modelling within survival events.

To obtain the times in which this model outputs, the implementation of the XGBSE

takes the � min and � max and divides it into a speci�ed number of bins.
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3.2.3 Neural Network Models

DeepSurv [Katzman et al. 2018] emerged as the �rst deep feed-forward multi-layer

perceptron designed for predicting time-to-event outcomes and providing person-

alized treatment recommendations. The architecture consists of fully connected

and dropout layers. The output of the network is a single node with a linear acti-

vation function, which estimates the hazard function ĥ� (x), where � are the model's

parameters, analogous to the Cox proportional hazards model. Unlike the tradi-

tional CoxPH model, which assigns a coef�cient to each feature, DeepSurv learns

the hazard function ĥ� (x) through backpropagation.

To obtain the baseline hazard function h0(t), DeepSurv employs the Breslow

estimator [Lin 2007]. This method allows the model to estimate the baseline hazard

non-parametrically from the data. The overall hazard function for an individual

with covariates x at time t is then given by:

h(tjx) = h0(t) exp(ĥ� (x))

where h0(t) is the baseline hazard function and ĥ� (x) is the predicted hazard

score from the DeepSurv model.

DeepHit [Lee et al. 2018], on the other hand, addresses the limitations of the

proportional hazards assumption by directly modelling the joint distribution of

survival time and events. Unlike DeepSurv, which operates under the proportional

hazards framework, DeepHit functions as a discrete-time hazard model [Suresh

et al. 2022]. This is achieved by incorporating t output neurons, where each neu-

ron corresponds to a discrete-time interval, effectively dividing the temporal span

from � min to � max into t intervals.

The key advantage of DeepHit is that it does not rely on the proportional haz-

ards assumption, which means it can model more complex relationships between

covariates and the hazard function without assuming that these relationships re-

main constant over time. As a result, we do not need to use a baseline hazard

function with this model. Instead, DeepHit learns the probability of an event oc-

curring at each discrete time interval directly from the data, allowing for a more

�exible and accurate representation of the survival distribution.

3.2.4 Model Evaluation Metrics

This section explains the survival evaluation metrics utilized throughout this thesis

and their signi�cance in evaluating survival analysis models. We use the C-index,
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inverse Brier score, ROC-AUC for survival analysis and time-dependent AUC.

3.2.4.1 Concordance Index (C-Index)

The c-index, also known as concordance index, is a goodness-of-�t measure for

time-dependant models. Given two random individuals, it accounts for the proba-

bility that the individual with the lower risk score will outlive the individual with

the higher risk score.

Given individuals i and j (i 6= j ) as well as their risk scores, H i (t) and H j (t),

and times-to-event, � i and � j , this probability is based on the following scenarios:

• If neither is censored, the pair (i; j ) is concordant if � i < � j and H i (� i ) >

H j (� i ). If � i > � j and H i (� j ) > H j (� i ), the pair (i; j ) is discordant.

• If both are censored, the pair (i; j ) is ignored.

• For the scenario where i is not censored and j is censored (i.e., � i = 1 and

� j = 0):

– If � j < � i , the pair (i; j ) is ignored becausej could potentially experience

the event later.

– If � i < � j , meaning i experiences the event �rst, the pair (i; j ) is concor-

dant if H i (� i ) > H j (� i ). Otherwise, it's discordant.

Once all the scenarios are taken into account and considering all pairs (i; j ) such

that i 6= j , the c-index can be expressed as

concordant pairs
concordant pairs + discordant pairs

: (3.4)

An ideal model would yield a c-index of 1, whilst a model making random predic-

tions should produce a value of 0.5. For further details, refer to Harrell et al. (1982)

and Harrell et al. (1996).

3.2.4.2 Integrated Brier Score (IBS)

The Integrated Brier Score quanti�es the accuracy of predicted survival probabil-

ities over a time range. It computes the average squared difference between the

predicted survival probabilities and the observed binary event indicators. Mathe-

matically, it is represented as:

IBS =
1
n

nX

i =1

Z T

0
(Ŝi (t) � IEvent(i; t ))2dt



3.2. SURVIVAL MACHINE LEARNING 25

Where:

• Ŝi (t) represents the predicted survival probability for individual i at time t.

• IEvent(i; t ) is an indicator function that equals 1 if individual i experienced the

event at time t and 0 otherwise.

• n represents the number of individuals in the dataset.

3.2.4.3 ROC-AUC for Survival Analysis

The Receiver Operating Characteristic Area Under the Curve (ROC-AUC) for Sur-

vival Analysis evaluates the performance of survival models in classifying an in-

dividual's survival at a speci�c time point [Heagerty and Zheng 2005]. In order to

compute the survival ROC-AUC two main changes on the classical ROC-AUC are

made:

• Temporal Flexibility: The outcome state of a patient (i.e., event vs. no event)

can change over time. An individual i with time-to-event t i is considered as

not having experienced the event for a time T where T < t i .

• Censorship Handling: The data includes censored subjects — individuals

whose outcome states remain unknown beyond a certain point. These cases

are treated as if they have not experienced the event.

Multiple approaches have been published addressing these issues [Chambless

and Diao 2006, Heagerty et al. 2000]. According to a systematic review, there are at

least 18 different methods for estimating time-dependent ROC curves [Kamarudin

et al. 2017]. We use thecumulative/dynamicROC-AUC as explained in Heagerty

et al. (2000).

The ROC-AUC is represented mathematically as:

ROC-AUC =
1

nEvent � nCensor

X

i 2 Event

X

j 2 Censor

I (Ŝi > Ŝj )

Where:

• nEvent is the total number of individuals who experienced the event.

• nCensor is the total number of individuals who were censored.

• Ŝi is the predicted survival probability for individual i .
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3.2.4.4 Time-Dependent Area Under the Curve (tdAUC)

The Time-Dependent Area Under the Curve (tdAUC) measures the accuracy of a

survival model's predicted survival probabilities at speci�c times. It represents

the area under the time-dependent ROC curve, which evaluates a model's ability

to distinguish between individuals who experience an event before a certain time

t and those who do not [Hung and Chiang 2010].

In the context of the tdAUC, pairs of subjects are compared based on their pre-

dicted risk scores. Speci�cally, the model checks if a subject failing after time t

(denoted as yj > t ) has a higher predicted risk score than a subject failing before

or at time t (denoted as yi � t). Each subject's contribution is adjusted by the in-

verse probability of censoring weight (IPCW), ! i , to mitigate the bias introduced

by censoring. The IPCW is derived from the training data to estimate the censoring

distribution.

The tdAUC can be mathematically represented as:

[AUC(t) =

P n
i =1

P n
j =1 I (yj > t )I (yi � t)! i I (f̂ (x j ) � f̂ (x i ))

(
P n

i =1 I (yi > t ))(
P n

i =1 I (yi � t)! i )
(3.5)

Where:

•
P n

i =1

P n
j =1 denotes the double summation over all pairs of individuals in the

dataset.

• I (yi � t) is an indicator function, equaling 1 if the event time for individual i

is less than or equal to t and 0 otherwise.

• I (yj > t ) is an indicator function, equaling 1 if the event time for individual

j is greater than t and 0 otherwise.

• ! i represents the inverse probability of censoring weight (IPCW) associated

with the �rst individual ( i ).

• I (f̂ (x j ) � f̂ (x i )) is an indicator function, equaling 1 if the predicted risk score

for individual j is less than or equal to that for individual i and 0 otherwise.

This metric captures the model's ability to discriminate between individuals

who experience an event after a given time t and those who do not, while consid-

ering the in�uence of censoring weights and predicted risk scores.
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Variable name Value

ICD-O-3 Hist/behav 8720/3 Malignant melanoma, NOS
Primary Site - labeled starts with `C44'
date from 2004 to 2015
Features used No missing values

Table 3.1: Criteria applied to SEER database to obtain the baseline dataset.

3.3 Surveillance, Epidemiology, and End Results database

The SEER database, launched in 1973, is composed by demographic, clinical and

outcome data on all cancers diagnosed in representative geographic regions. The

event indicator refers to the death (Overall Survival) and the time registered is ei-

ther the time-to-event (when the individual eventually dies) or the censoring time

(the event is not observed), measured in months. For this dataset, we exclusively

predicted the Overall Survival event from the dataset. More information about

SEER is provided in these articles: Duggan et al. (2016), National Cancer Institute,

DCCPS, Surveillance Research Program (2023).

3.3.1 Selection of the Individuals

Following the same selection criteria as in Yu et al. (2023), we obtained the base-

line dataset, which contains 34,929 individuals. Table 3.1 describes all the criteria

applied to obtain it. Speci�cally, the dataset includes cases identi�ed with the ICD-

O-3 code 8720/3 for ”Malignant melanoma, NOS” and primary site codes starting

with 'C44' for skin cancer. We selected cases diagnosed between 2004 and 2015

to ensure relevance to current medical practices. Additionally, only cases with no

missing values were used.

The dataset comprises 17 features in total, with 3 continuous and 14 categorical

features. which are detailed in the following subsection. As speci�ed in Table 3.1,

the missing values were disregarded. Note that the age feature is provided as an

ordinal feature on a yearly basis, with a total of 90 categories: starting at category

`01 years' and ending at category `90+ years'. Therefore, all individuals older than

89 years belong to the same category. Due to this reason, we consider age as a cate-

gorical feature. Similarly, the household income feature, which categorizes income

levels, is also treated as a categorical feature. The event statistics are presented in

Table 3.2. Since the SEER database is updated periodically, the number of individ-

uals may vary across data extraction processes.
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Event Type Event Indicator Time-to-Event (months)

Overall Survival 0:32� 0:47 98:28� 52:19

Table 3.2: Mean and standard deviation for event indicator and time-to-event of
the SEER database.

3.3.2 Dataset Variables Description

The variables in the SEER dataset are organized into the following categories, each

representing different aspects of patient and disease characteristics:

Tumour Characteristics:

• Tumour size: Measurement of the tumour's thickness.

• Tumour extension: Degree to which the tumour has spread to nearby tissues.

• Surgery of primary site: Type and extent of surgery performed on the primary

tumour.

• T derived AJCC: Tumour size and extent based on the American Joint Cancer

Committee (AJCC) staging system.

Patient Demographics:

• Age: Patient's age at the time of diagnosis or last follow-up.

• Sex: Patient's sex (male or female).

• Race: Ethnic background of the patient.

• Marital status: Marital status of the patient at the time of diagnosis.

• Household income: Economic status of the patient, categorized by income lev-

els.

Clinical History:

• Radiation status: Whether the patient received radiation therapy.

• Chemotherapy status: Whether the patient underwent chemotherapy.

• Lymph node dissection after surgery: Indicates if lymph nodes were removed

during surgery.
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• Sequence of radiotherapy: The sequence in which radiotherapy was adminis-

tered in relation to other treatments.

Metastasis Information:

• N derived AJCC: Involvement of regional lymph nodes according to the AJCC

staging system.

• M derived AJCC: Presence of distant metastasis as per the AJCC staging sys-

tem.

• Summary stage: Overall stage of the cancer, summarizing tumour size, lymph

node involvement, and metastasis.

Primary Tumour Site:

• Primary site: Anatomical location where the melanoma �rst appeared.

3.3.3 Data Preprocessing

To encode the features effectively and examine their relationships with the target

variable, we conducted a bivariate analysis on the training dataset (the splits are

further explained in Section 3.5.1). The results are displayed in Table 3.3. The

�rst column, `Total', accounts for the number of individuals per category, `Num

events' counts the number of individuals that have experienced the event, `Rate

events' is the mean value of the event indicator, and `Rate population' is the rate

of population in each category.

We performed dimensionality reduction on the categorical features by group-

ing categories with similar mean values of the event indicator. For example, in-

stead of dealing with 90 age categories, we grouped them into three: `age � 44',

`age 2 (44; 64]', and `age > 64'. These groups were then encoded using the target

encoding technique [Pargent et al. 2022]. Speci�cally, the age feature is encoded as

follows: 0:08 if age � 44, 0:16 if age 2 (44; 64], and 0:53 if age > 64. The encoding

values correspond to those in the `Rate events' column of Table 3.3. The only fea-

ture not using target encoding is sex, which is binary encoded: 1 for female and 0

for male.

We have decided to use this strategy because some works [Pargent et al. 2022]

show an improvement in terms of predictive capacity when target encoding is

used. Additionally, a comparison against traditional one-hot encoding indicated

that target encoding performed better. Regarding continuous features, we only
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transformed tumour size by taking logarithms. Once the features are transformed,

we standardised all 17 features so that each of them has a mean value equal to 0

and a standard deviation value equal to 1.

Table 3.3: Results of the bivariate analysis for the SEER melanoma cohort.

Tumour size Total Num events Rate events Rate population

� 6 6755 1485 0.22 0.28
(6; 10] 7123 1833 0.26 0.29
(10; 16] 4551 1635 0.36 0.19
> 16 6021 2836 0.47 0.25

Tumour extension

� 200 11983 3054 0.25 0.49
(200; 300] 5478 2191 0.40 0.22
> 300 6989 2544 0.36 0.29

Surgery of primary site

� 30 6603 2358 0.36 0.27
(30; 31] 6097 1524 0.25 0.25
(31; 45] 8324 2740 0.33 0.34
> 45 3426 1167 0.34 0.14

Age

� 44 3721 301 0.08 0.15
(44; 64] 9462 1546 0.16 0.39
> 64 11267 5942 0.53 0.46

Sex

Female 9912 2338 0.24 0.41
Male 14538 5451 0.37 0.59

Race

Other 941 167 0.18 0.04
White 23509 7622 0.32 0.96

Marital status

Married 13473 4103 0.30 0.55
Other 10977 3686 0.34 0.45

Primary site

Other 19368 5483 0.28 0.79
First 5082 2306 0.45 0.21

Continued on next page
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Table 3.3 – continued from previous page

Tumour size Total Num events Rate events Rate population

T derived AJCC

T1 16306 3853 0.24 0.67
Other 8144 3936 0.48 0.33

N derived AJCC

N0 21924 6380 0.29 0.90
Other 2526 1409 0.56 0.10

M derived AJCC

M0 23585 7256 0.31 0.96
Other 865 533 0.62 0.04

Summary stage

Localized 21664 6021 0.28 0.89
Other 2786 1768 0.63 0.11

Radiation status

Uncertain 24013 7449 0.31 0.98
Other 437 340 0.78 0.02

Chemotherapy status

No/Unknown 24042 7506 0.31 0.98
Yes 408 283 0.69 0.02

Lymph node dissection

Not 16464 5013 0.30 0.67
Other 7986 2776 0.35 0.33

Sequence of radiotherapy

No 24013 7449 0.31 0.98
Yes 437 340 0.78 0.02

Household income

High 12308 3542 0.29 0.50
Med 6219 2094 0.34 0.25
Low 5923 2153 0.36 0.24

3.4 Xarxa Melanoma Database

Xarxa-melanoma data was obtained from the Catalan melanoma registry, from

2008 to 2023 [Podlipnik et al. 2020]. It is a collaborative prospective database in-
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volving 19 public hospitals, encompassing most of the population of Catalonia,

Spain. For this study, three survival events are considered:

• Overall Survival (OS): time from melanoma diagnosis (via histopathology)

to death from any cause or last follow-up.

• Speci�c survival (SS): duration from melanoma diagnosis (via histopathol-

ogy) to death speci�cally attributed to melanoma or last follow-up.

• Disease-free Survival (DFS): period from melanoma diagnosis (via histopathol-

ogy) to the emergence of metastasis (cutaneous, nodal, or visceral).

3.4.1 Individual Data Aggregation

The Xarxa-melanoma database comprises over 50 regularly updated tables, most

containing multiple entries per patient (all of whom underwent a cutaneous biopsy).

We selected the most signi�cant tumour for each patient and combined its informa-

tion with sociodemographic data to create a consolidated, single-row representa-

tion. We named the �nal dataset XXMM. The following steps outline this process:

1. Tumour Selection: For patients with multiple tumours, the one with the

highest Breslow Index was chosen. In case of a tie, the earliest tumour was

selected. Information includes tumour location, mitotic index, predominant

cell type, associated nevus, histological subtype, neurotropism, satellitosis,

and vascular and lymphatic invasion.

2. Study of Locoregional Involvement: Data from Sentinel Lymph Node Biopsy

(SLNB) and Lymphadenectomy were included for patients who met the es-

tablished criteria for the assessment of locoregional involvement.

3. Metastatic Data: Information on cutaneous, nodal, and visceral metastases

was included. All metastases found within 90 days from the histological

diagnosis of melanoma were considered part of the initial staging.

4. mc1r Mutation: Presence of the wild type mutation of the gene mc1r was

included.

5. Latest Anthropometrics: Height and weight measurements closest to the

time of the cutaneous biopsy were included.

6. Nevus Data: Latest data on nevi count were included.
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7. Sun Exposure: Only entries indicating 'intense' sun exposure were included.

8. Disease-Free Survival Event Indicator: All instances of metastasis occurring

after 90 days post-biopsy were considered for the Disease-Free Survival event

indicator, excluding those concurrent with primary tumour identi�cation.

3.4.2 Dataset Variables Description

The data comprises a variety of variables that are used for modelling cutaneous

malignant melanoma. These variables can be broadly categorized into the follow-

ing groups:

Tumour Characteristics:

• Breslow index: melanoma thickness.

• Mitotic index: number of dividing cells (tumour aggressiveness marker).

• Associated nevus presence: presence of a nevus associated with the melanoma.

• Vascular invasion presence: presence of vascular invasion by the melanoma.

• Regression: signs of tumour shrinking/disappearing (potential immune re-

sponse).

• Lymphatic invasion: presence of melanoma cells in lymphatic vessels (poten-

tial for spread through lymphatic system).

• Neurotropism: melanoma growth along nerve sheaths (more aggressive be-

havior and higher likelihood of recurrence).

• Satellitosis: presence of satellite micro-metastases or small tumour cell clus-

ters near the primary melanoma (increased local recurrence risk and poorer

prognosis).

Metastasis Information:

• Nodal met, Cutaneous met, Visceral met: presence of metastasis in lymph nodes,

skin, or visceral organs.

Patient Demographics:

• Patient sex, eye colour, photo-type, hair colour (black, blond, red): patient demo-

graphics.
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• Age: patient's age at time of last follow-up visit or event occurrence.

Clinical History:

• Family history: melanoma or related conditions in family members.

• mc1r: variant of the melanocortin 1 receptor gene (skin pigmentation and

melanoma risk).

• NCA (Nevus Count Aggregate): total number of moles (risk factor).

• Nevi count: number of nevi (known melanoma risk factor).

• BMI : Body Mass Index (general health indicator).

• Intense sun exposure: signi�cant exposure to sunlight (melanoma risk factor).

Melanoma Location:

• Melanoma location (acral, head and neck, lower limbs, upper limbs, mucosa): anatom-

ical location of the melanoma.

Histological and Cell Type Information:

• Predominant cell type: primary type of cells found in melanoma (e.g., fusocel-

lular, pleomorphic, etc.).

• Histological subtype: melanoma classi�cation based on microscopic appear-

ance (nodular, acral lentiginous, desmoplastic, nevoid, spitzoid, mucosal,

lentiginous malignant or unknown; crucial for treatment and prognosis).

Lymph Node Biopsy Data:

• SLNB total count, SLNB positive count: number of total and infected samples

from sentinel lymph node biopsy.

• Lymph total count, Lymph positive count: number of total and infected samples

from lymph node biopsy.

Table 3.4 summarizes statistics for event indicators and time-to-event/censoring.

While all events have a similar average follow-up time, Speci�c Survival (SS) and

Disease-Free Survival (DFS) events exhibit a notably higher censorship rate (roughly

double) compared to Overall Survival (OS). This suggests a substantial proportion
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of patients have undetermined outcomes for SS and DFS. Table 3.5 provides de-

scriptive statistics for key patient variables.

Figure 3.1 depicts the distribution of events for each type across time. Most

events are recorded within the �rst 5 years, and events become less frequent be-

yond the 20-year mark.

Event type n Occurrence Duration (years) � � �

OS 9036 22.7% 6.54� 5.46
SS 9036 12.4% 6.54� 5.46
DFS 8578 15.8% 6.19� 5.50

Table 3.4: Summary of Event and Duration statistics. n refers to the number of
patients in each event. Occurrence presents the % of individuals who experienced
the event type. Duration indicates the mean and standard deviation of the time-
to-event (in years) for each event type.

Variable � � �

Age 58:54� 17:80
Patient sex (Female=1) 0:52� 0:50
Visceral Metastasis 0:012� 0:109
Breslow Index (mm) 2:25� 4:25

Table 3.5: Statistics (mean and standard deviation) for Selected Clinical and Demo-
graphic Variables. The Breslow Index is reported in millimetres, age is reported in
years, and the mean for visceral metastasis and sex represents the proportion of
patients with a positive feature value.

3.4.3 Data Preprocessing

After extracting the XXMM dataset, several preprocessing steps were undertaken.

Collaboration with medical practitioners at the Hospital Clinic de Barcelona helped

re�ne the categorization of primary tumour locations (e.g., merging uncommon

anatomical subcategories). The process also included removing non-informative

categories, encoding binary variables, imputing missing values using mode or

mean imputation depending on the variable type (categorical or numerical), and

applying ordinal encoding when appropriate. Categorical attributes were con-

verted using one-hot encoding, and variables with exponential behaviours, like

the cutaneous biopsy Breslow and mitotic index, underwent logarithmic transfor-

mations. The transformations we applied are as follows:
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Figure 3.1: Distribution of event counts (y-axis) across duration bins (in years) for
the three events: OS (blue), SS (orange), and DFS (green).

1. Family history: The data was converted into a boolean representation. If a

patient had a relative with a known skin cancer condition, it was encoded as

1; otherwise, it was encoded as 0.

2. Link tumour to parent: To streamline the data, we condensed the informa-

tion about the primary tumour position into more speci�c descriptors. For

example, the ”acral” category was associated with descriptors like 'nail toe',

'toe left', 'toe right', and so forth.

3. Convert categories to NaN: Certain non-informative categories, such as ”other”

in the patient hair color attribute, were converted into NaN values to indicate

their non-informativeness.

4. Sex Encoder: A simple binary encoding was applied where females were

represented as 1 and males as 0.

5. Absent present encoder: Attributes that had values ”absent” and ”present”

were converted into boolean format, with ”present” being 1 and ”absent”

being 0.

6. Imputation of missing variables: Mode or mean imputation was applied to

certain variables. These methods were chosen based on consultations with

the dermatology team at the Hospital Clinic of Barcelona.
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7. Ordinal Encoder: Some attributes were transformed using ordinal encoding,

as detailed in Table 3.7.

8. Categorical encoder: All categorical variables underwent one-hot encoding.

The speci�c categories for each variable are listed in Table 3.6.

9. Exponential transformer: Certain variables like cutaneous biopsy Breslow

and mitotic index displayed exponential behaviors. To linearize their distri-

bution, a logarithmic transformation was applied.

Table 3.6: Categories used for the One Hot Encoding of the categorical variables of
XXMM

Feature Categories

Primary tumour location
trunk, acral, head and neck,
lower limbs, upper limbs, mucosa

Prominent cell type
epitheloid, fusocellular, pleomorphi,
sarcomatoid, small cell, spindle

Histological subtype
super�cial spreading, acral lentiginous,
desmoplastic, lentiginous malignant,
mucosal, nevoid, nodular, spitzoid

Patient hair color black, blond, brown, red

Associated nevus absent, present

Vascular invasion absent, present

Table 3.7: Ordinal encoder variable transformations

Feature Categories Encoded Values

Cutaneous Biopsy Regression absent, partial, extensive 1, 2, 3
Patient Eye Color green, blue, brown, black, other 1, 2, 3, 3, 5
Nevi Count 0, 1-50, 51-100, 101-200, 200+ 0, 1, 2, 3, 4
NCA no, yes 0, 1
Patient Hair Color black, brown, blonde, red, other 1, 2, 3, 4, NaN

3.5 Experiments and Results

In the following subsections, we discuss the results from training the algorithms

on the survival probabilities of the survival events outlined in Section 3.4 for the
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XXMM and the SEER databases.

3.5.1 Survival Analysis of SEER

While the XXMM dataset was being prepared, a smaller analysis was conducted

on the SEER dataset. We trained the CoxPH, RSF, DeepSurv, and DeepHit models.

The data was partitioned with an 80-20% split. A 5-fold cross-validation strategy

was used on the training data to select the best hyperparameter values. After-

wards, a held-out test dataset was used to compute the performance metrics. Ta-

ble 3.8 shows the values obtained for each model. Because we used a held-out test

set, we are not reporting the mean and standard deviation of the c-index values

across the cross-validation folds.

Model C-index Mean t-AUC ROC-AUC 1 year ROC-AUC 3 years ROC-AUC 5 years

CoxPH 0.787 0.838 0.858 0.817 0.819
RSF 0.798 0.853 0.881 0.840 0.838
DeepSurv 0.796 0.847 0.875 0.833 0.832
DeepHit 0.802 0.848 0.878 0.839 0.835

Table 3.8: Performance metrics for different survival models in the SEER database

In addition to the C-index values, the time-dependent AUC curves are com-

puted for all the models. Figure 3.2 shows the time-dependant AUC curves for

the four models, using the test dataset. Finally, Figure 3.3 depicts the ROC AUC

curves at 1, 3 and 5 years for all the models.

3.5.2 Survival Analysis of XXMM

In this analysis, we utilized the same models as with the SEER dataset, and ad-

ditionally incorporated XGBSE. The dataset was randomly split into training and

test sets, following an 80-20% ratio. The process was repeated across �ve iterations.

For hyperparameter optimization, a further subdivision of 80-20% was applied to

the training set to conduct a hyperparameter sweep. The search space details for

each model during the sweep are provided in Appendix A.1.

To evaluate the performance of each model across the different survival events,

we computed the metrics presented in Section 3.2. Table 3.9 shows the resulting C-

Index and Integrated Brier Score values. For the C-Index, higher values indicate a

better ranking of event times for pairs of individuals. Conversely, lower IBS values

imply enhanced predictive accuracy and calibration. Additionally, we computed

the tdAUC and the survival ROC curves for the 1, 3, and 5-year intervals. These
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