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Abstract

Water is the most important element of food production, and the easiest and most cost-
efficient way to transport it is through open-channel irrigation systems (OCIS). These
types of systems have a high agricultural and ecological impact. However, most of the
OCIS lack automation at mitigating the economic and environmental costs that the waste
of water in OCIS is causing. Additionally, most automated systems lack control and
estimation strategies that increase the system efficiency. This thesis is devoted to exploring
existing research around modeling, control, and estimation strategies in OCIS, in order to
identify improvement opportunities and propose new modeling, estimation, and control
strategies that increase their efficiency.

First, this dissertation reviews and discusses the existent modeling, estimation, and
control strategies that have been reported in the OCIS field. Throughout the review
process, it has been identified that due to the complexity of the fundamental models that
describe the OCIS dynamics, multiple control-oriented modeling strategies have been
reported. These modeling strategies have been classified and discussed, finding the need
for control-oriented models that include the following:

• potential energy balances along the channels;

• the nonlinear hydraulic dynamics of the OCIS;

• useful to describe the dynamic behavior of interacting OCIS.

In addition, the need for estimation strategies designed from accurate models that
include potential energy balances and nonlinear descriptions of the OCIS dynamics is
identified. Also, it is established that the most common control objective in OCIS is to
maintain a constant depth at the upstream or downstream end of the channels, and this
control objective induces constant losses due to leaks and seepage. From the identified
gaps, two control-oriented modeling strategies have been proposed, which include informa-
tion about potential energy balances along the channels, nonlinear hydraulic dynamics to
describe the OCIS, and are useful to describe the dynamic behavior of interacting OCIS.
The modeling strategies have been validated, obtaining that by using approximated mass
and potential energy balances (M&PEB) an accurate description of the OCIS dynamics
can be reached.

Therefore, the proposed control-oriented modeling strategy designed from approxi-
mated M&PEB is used in the development of deterministic and stochastic strategies for
detection isolation and magnitude estimation of unknown flows such as leaks and seepage.
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The estimation strategies have been designed from the enhancement of a moving horizon
estimation (MHE) approach with the inclusion of detection and isolation mechanisms.

In the control area, the development and implementation of conventional control
strategies for OCIS are explored, and a nonlinear control strategy for interacting chan-
nels is proposed. Finally, the proposed control-oriented modeling strategy designed from
approximated M&PEB is used in the design of an efficient optimization-based control
approach for OCIS. This is a nonlinear model predictive control strategy that takes ad-
vantage of the control-oriented modeling strategy accuracy, and available information of
the users’ demands in the development of an optimization problem with a finite horizon,
which is solved at each time instant with the objective to minimize losses caused by leaks
and seepage while the users demands and operational and hydraulic restrictions of the
OCIS are satisfied.
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Resumen

El agua es el elemento más importante de la producción de alimentos y la forma más fácil
y rentable de transportarla es a través de sistemas de riego de canal abierto (SRCA). Este
tipo de sistemas tienen un alto impacto agŕıcola y ecológico. Sin embargo, la mayoŕıa
de los SRCA carecen de sistemas de automatización que mitiguen los costos económicos
y ambientales acarreados por el desperdicio de agua. Adicionalmente, la mayoŕıa de los
SRCA automatizados carecen de estrategias de control y estimación que aumenten la efi-
ciencia del sistema. Esta tesis está dedicada a explorar investigaciones existentes en torno
a estrategias de modelado, control y estimación en SRCA, con el fin de identificar oportu-
nidades de mejora y proponer nuevas estrategias de modelado, estimación y control que
aumenten la eficiencia de estos. Primero, esta disertación revisa y discute las estrategias
de modelado, estimación y control que se han reportado en el campo de los SRCA. A lo
largo del proceso de revisión, se ha identificado que debido a la complejidad de los modelos
fundamentales que describen las dinámicas de los SRCA, aparecen reportadas múltiples
estrategias de modelado orientadas al control. Estas estrategias de modelado han sido
clasificadas y discutidas, encontrando la necesidad de modelos orientados al control que
incluyan lo siguiente:

• balances de enerǵıa potencial a lo largo de los canales;

• las no linealidades de las caracteŕısticas hidráulicas que describen la dinámica de los
SRCA;

• que puedan ser útiles para describir el comportamiento dinámico de SRCA que
interactúan.

Además, se identifica la necesidad de estrategias de estimación diseñadas a partir de mod-
elos precisos, que incluyan balances de enerǵıa potencial y descripciones no lineales de las
dinámicas de los SRCA. También se identifica que el objetivo de control más común en
los SRCA es mantener una profundidad constante en el extremo aguas arriba o aguas
abajo de los canales, y este objetivo de control induce pérdidas constantes debido a fugas
y filtraciones. A partir de las brechas identificadas, se han propuesto dos estrategias de
modelado orientadas al control, las cuales incluyen información sobre los balances de en-
erǵıa potencial a lo largo de los canales, incluyen las no linealidades de las caracteŕısticas
hidráulicas que describen las dinámicas de los SRCA, y son útiles para describir el com-
portamiento dinámico de SRCA que interactúan. Las estrategias de modelado han sido
validadas, obteniendo que mediante el uso de balances aproximados de masa y enerǵıa
potencial (BM&EP) se puede llegar a una descripción precisa de las dinámicas de los
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SRCA. Por lo tanto, la estrategia de modelado orientada al control propuesta a partir de
BM&EP se utiliza en el desarrollo de estrategias determińısticas y estocásticas para la
detección, el aislamiento, y la estimación de las magnitudes de flujos desconocidos, tales
como fugas y filtraciones, que puedan afectar los SRCA. Las estrategias de estimación
se han desarrollado modificando, mediante la inclusión de mecanismos de detección y
aislamiento, una estrategia de estimación de horizonte móvil (EHM).

En el área de control, se explora el desarrollo e implementación de estrategias de control
convencionales para SRCA y se propone una estrategia de control no lineal para canales
interactivos. Finalmente, la estrategia de modelado orientada al control propuesta a partir
de BM&EP se utiliza en el desarrollo de un enfoque de control eficiente para SRCA. La
estrategia propuesta, es una estrategia de control predictivo no lineal basado en modelo, la
cual aprovecha la precisión de la estrategia de modelado e información sobre las demandas
de los usuarios en el desarrollo de un problema de optimización con horizonte finito, el
cual se resuelve en cada instante de tiempo con el objetivo de minimizar las pérdidas
ocasionadas por fugas y filtraciones al mismo tiempo que se satisfacen las demandas de
los usuarios y las restricciones operativas e hidráulicas propias de los SRCA.
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Chapter 1

Introduction

1.1 Motivation

Through irrigation, it is possible to compensate the amount of water that crops need in dry
seasons and to extend the productive land away from natural water sources. The easiest
and most economical way to transport water in agriculture is through open-channels.
Usually, water is taken from rivers and transported by using intricate networks of channels
to each user. These networks are known as open-channel irrigation systems (OCIS).
Nearly 70% of the water consumed in the world is used for irrigation (OECD, 2018), and
most of the water is transported through open-channels. Moreover, the world population
grows continuously. In 1980, the world population was around 4.4 billion. Now, there
are about 8 billion people and in 2060 the population will likely increase to 10.2 billion
(United Nations Department of Economic and Social Affairs Population Division, 2021).
Consequently, in 40 years food production must increase by 30%.

On the other hand, the irrigation process has a high environmental impact since the
water taken from a river reduces its flow, affecting life in the river and the surrounding
ecosystem. Therefore, as it is highlighted by Lamnabhi-Lagarrigue et al. (2017), it is nec-
essary to develop new approaches to increase food production by increasing the efficiency
of the OCIS, where “efficiency is seen as the ratio of the volume of water delivered to the
users and the volume of water extracted from the source” (Mareels et al., 2005).

This doctoral dissertation is focused on the exploration and proposition of alterna-
tives that let the inclusion of control theory to increase the efficiency of the OCIS. More
specifically, in OCIS, the fields of modeling, estimation, and control have been explored
identifying punctual research gaps, which have been addressed.

In modeling, a rigorous analytical description of the OCIS can be reached by using
the Saint-Venant Equations (SVE). However, due to the complexity of these equations,
their direct use for estimation and control system design is impractical. Therefore, in
the literature there are reports of multiple control-oriented modeling strategies, which are
obtained by simplification of the SVE or by observation and empirical knowledge of the
OCIS. However, in this thesis it has been observed that in OCIS, the control-oriented
models that have been reported in the literature present limitations in the modeling of
interacting channels, and do not include information about potential energy along them.
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Similarly, the development of modeling and estimation strategies, useful for determining
the magnitude and location of unknown flows such as seepage and leaks, appears as
a valuable tool to increase the efficiency of the OCIS. However, it has been identified
that in OCIS, most of the strategies reported on detection, isolation, and magnitude
estimation of unknown flows (DIMEUF) have been developed from linear models that do
not include information about energy balances along the channels, where these balances
are fundamental to distinguish changes of levels due to conduction effects, from changes
of levels due to unknown flows. Finally, in control, most of the OCIS are human-operated
and present losses for overflows and inopportune control action effects.

These problems can be overcome by the inclusion of automatic controllers, which are
usually designed to maintain a constant level at either the upstream or downstream end of
the channels, ensuring water availability for the users. In the literature, multiple control
strategies developed to maintain constant upstream or downstream channel levels have
been reported. However, in OCIS the main source of losses are leaks and seepage, which
are functions of the channels’ levels. In that form, constant upstream or downstream
levels guarantee constant leaks or seepage, reducing the OCIS efficiency.

In this order of ideas, in this doctoral dissertation, modeling, estimation, and control
strategies aimed to cover the exposed research gaps are proposed. In modeling, two
approximated modeling strategies useful for interacting OCIS, which include information
about potential energy along the channels have been proposed. The first modeling strategy
uses mass balances and assumes a constant potential energy difference along the channels,
and the second one uses approximated mass and potential energy balances to improve the
description of the potential energy difference along the channels. Finding that by using the
approximated mass and energy balances, an accurate description of the OCIS dynamics
can be reached.

In estimation, the modeling approach developed from simplified mass and energy bal-
ances is used in the development of deterministic and stochastic DIMEUF strategies,
which can be used to detect, isolate, and estimate the magnitude of leaks and seepage at
the upstream or downstream parts of the channels.

In control, the dissertation starts with an illustrative example that contextualizes
a description of the most popular control-oriented modeling strategy reported in the
literature, which is used in the development of the most common control techniques and
configurations that have been reported in the OCIS control field. Moreover, in order to
deal with the control problem of interacting channels, from the proposed control-oriented
model that assumes a constant potential energy difference along the channels, a nonlinear
model-based control strategy for interacting OCIS that ensures the stability of the closed-
loop controlled scheme despite nonlinearities, internal delays, and channel interactions is
proposed. Finally, with the objective of minimizing losses due to leaks and seepage, it is
proposed a nonlinear model predictive control (NLMPC) strategy designed from simplified
mass and energy balances, which uses previous request information of the users, with the
objective of supplying an appropriate amount of water to the users minimizing losses
due to seepage and leaks. In the development, sufficient controllability and reachability
conditions that guarantee the stability of the closed-loop controlled scheme have been
presented.
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1.2 Research Questions

This dissertation is devoted to the development of modeling, estimation and control strate-
gies that contributes to efficiency maximization in OCIS. The main goal of this thesis is
motivated by the following key research questions:

(Q1) What is the current context of modeling, estimation, and control in OCIS, and what
are the main research gaps in this context that contribute to the OCIS efficiency
increase?

(Q2) What are the decision features to select or design a suitable control-oriented mod-
eling strategy for OCIS?

(Q3) How to design implementable approaches for recursive DIMEUF such as leaks and
seepage in OCIS?

(Q4) How can the optimization-based control techniques contribute to improving the OCIS
efficiency?

Each of these research questions has been addressed through this thesis, and all of them
contribute to the development of modeling, estimation, and control strategies aimed at
efficiency maximization in the OCIS. Question (Q1) is devoted to understand and explain
the process and to the identification of research gaps in modeling, estimation, and control
that contribute to the OCIS efficiency increase. On the other hand, answers to questions
(Q2)-(Q4) are the main contributions of this doctoral thesis.

1.3 Thesis Outline

This dissertation is divided into six chapters, and the main ideas and connections among
chapters are presented in Figure 1.1. The contents of Chapters 2-6 are described next.

Chapter 2: Literature Review

This chapter provides a detailed review of modeling, DIMEUF, and control of OCIS
towards providing useful information in the establishment of the state of the art, the
acceptability of the existent techniques, and the challenges that remain open for future
research. In this regard, the review is developed around a proposed classification for
modeling, estimation, and control approaches. Moreover, a discussion with the aim of
establishing suitable modeling, estimation, and control approaches and the research gaps
that need to be addressed are also established. This chapter answers the research question
(Q1), and is mostly based on the following publication:

• G. Conde, N. Quijano, and C. Ocampo-Martinez, “Modeling and control in open-
channel irrigation systems: A review”, Annual Reviews in Control, vol. 51, pp.
153–171, 2021.
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Chapter 3: Control-Oriented Modeling Approaches for OCIS

This chapter presents the analyses of three control-oriented modeling approaches useful to
describe the nonlinear dynamic behavior of interacting OCIS. The first one is a previously
reported modeling approach that does not include information about potential energy
along the channels. The second one is a proposed approach that assumes a constant
potential energy difference (CPED) along the channels. The latter is another proposed
approach developed from approximated mass and potential energy balances (M&PEB)
along the channels. This chapter answers the research question (Q2), and is based on the
following publications:

• G. Conde, N. Quijano, and C. Ocampo-Martinez, “Modeling and control of inter-
acting irrigation channels,” in Proceedings of the 4th IEEE Colombian Conference
on Automatic Control (CCAC), 2019, pp. 1–6.

• G. Conde, N. Quijano, and C. Ocampo-Martinez, “Control-oriented modeling ap-
proach for open-channel irrigation systems”, in Proceedings of the IFAC 21s World
Congress, 2020, pp. 16630–16635.

Chapter 4: DIMEUF in OCIS

This chapter explores the development of deterministic and stochastic strategies for DIMEUF
in OCIS. The DIMEUF strategies are designed from the proposed control-oriented mod-
eling approach that has been developed from approximated mass and potential energy
balances, obtaining two estimation strategies that take into account the effects of flow
conduction. This chapter answers the research question (Q3), and is based on the follow-
ing publications:

• G. Conde, N. Quijano, and C. Ocampo-Martinez, “An Unknown Input Moving
Horizon Estimator for Open-Channel Irrigation Systems,” in Proceedings of the
European Control Conference (to appear), 2021.

• G. Conde, N. Quijano, and C. Ocampo-Martinez, “Detection, isolation, and magni-
tude estimation of unknown flows in open-channel irrigation systems,” IEEE Access,
vol. 9, pp. 115348–115369, 2021.

Chapter 5: Control Approaches for OCIS

This chapter covers the findings in developed research on control for OCIS. The chapter
starts with an illustrative example that shows a contextualized description of the most
popular control-oriented modeling strategy, and the most common control techniques
and configurations that have been reported in the OCIS control field. Moreover, from
the control-oriented model that assumes a constant potential energy difference along the
channels, a nonlinear model-based control strategy for interacting OCIS that ensures
the stability of the closed-loop controlled scheme despite nonlinearities, internal delays,
and channel interactions is proposed. Finally, an efficient control strategy for OCIS is
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proposed. The strategy is developed with the objective of supplying an appropriate
amount of water to the users minimizing losses due to seepage and leaks. In the design
process, sufficient controllability and reachability conditions that guarantee the controlled
system stability are presented. This chapter answers the research question (Q4), and is
based on the following publications:

• G. Conde, N. Quijano, and C. Ocampo-Martinez, “Modeling and control in open-
channel irrigation systems: A review”, Annual Reviews in Control, vol. 51, pp.
153–171, 2021.

• G. Conde, N. Quijano, and C. Ocampo-Martinez, “Modeling and control of inter-
acting irrigation channels,” in Proceedings of the 4th IEEE Colombian Conference
on Automatic Control (CCAC), 2019, pp. 1–6.

• G. Conde, C. Ocampo-Martinez, and N. Quijano, “An efficient control approach for
open-channel irrigation systems,” Water Resources Research (submitted), 2021.

Chapter 6: Concluding Remarks

This chapter provides some concluding remarks regarding the results obtained and pre-
sented in Chapters 2-5. The key research questions, introduced in Section 1.2, are evalu-
ated. Furthermore, this chapter also suggests some open questions for future research.
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Chapter 2

Literature Review

In most countries, the operation of the OCIS is in charge of user associations, which main-
tain the system under suitable conditions, manage the economic resources, and calculate,
assign, and supply the appropriate amount of water to the users. The water assignment
process can be performed in multiple modes, such as:

Rotational mode: In this mode, the central administration develops the supply policies
and allocates the amount of water and time duration of the flow delivered to each
user.

On-request mode: In this mode, the user must request in advance the amount of hy-
draulic resource that will be used.

On-demand mode: In this mode, the user is free to take water from the system when
it is needed.

According to the assignment process and the hydraulic features of the system, the central
administration must calculate the water levels and flows throughout the OCIS, which are
regulated by gates and weirs. The positions of the gates and weirs are calculated with
the aim of assigning a specific amount of water to each user. Most of the OCIS operate in
rotational and in on-request modes in absence of automatic control systems. Therefore,
each regulation structure is manually adjusted by operators, who must carry out this task
throughout many kilometers of channels and hundreds of regulation structures. In the
normal operation of the OCIS, it is common to find disturbances such as flow variations
at the source, channel obstructions, leaks, overflows, and demand changes. These types of
disturbances lead to water spillages that affect the OCIS efficiency (Litrico and Fromion,
2006a).

In order to promote the implementation of automatic control in OCIS, in the last
three decades, multiple works that review the advances in modeling and control of OCIS
have been reported. For instance, Malaterre (1995) presents an exhaustive characteriza-
tion of regulation methods for OCIS, showing the need to unify definitions and concepts
in a field where there is a convergence of civil, hydraulic, and control engineers. Schu-
urmans (1997) shows basic principles for understanding the control problem in OCIS,
explaining the finite-difference model and proposing the integrator delay (ID) model to
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2.1. PROCESS DESCRIPTION

adjust the real dynamic behavior of OCIS in a simple way. Moreover, in the control
area, Schuurmans (1997) presents the implementation of traditional controllers such as
the linear quadratic regulator (LQR) and the linear quadratic Gaussian regulator (LQG).
Malaterre et al. (1998) review and classify the implemented controllers according to the
variables (controlled, measured, control-action), the logic of control (type and direction),
and design technique. Furthermore, Malaterre and Baume (1998) explore several mod-
eling techniques and control strategies. Mareels et al. (2005) and Cantoni et al. (2007)
discuss some aspects such as infrastructure automation, control objectives, and system
identification. Weyer (2008) shows alternatives in centralized and decentralized control.
Moreover, Malaterre (2008) reviews the main concepts and strategies in the control of
OCIS. Over the last decade, the task committee on recent advances in canal automation
provides a practical guide on OCIS automation (Wahlin and Zimbelman, 2014). This
guide covers topics about supervisory control and data acquisition, as well as fundamen-
tals in the design and implementation of control strategies. Finally, Ding et al. (2018)
provide a review focused on applications of model predictive control in agriculture, where
it can be highlighted that, in agriculture, OCIS is the area that shows more MPC appli-
cations.

As can be seen, the OCIS control problem is an issue of interest, which has been
continuously studied and reported in several works. Equally important, the selection of
an accurate control-oriented model of the system is a key stage that must be addressed
before selecting, designing, and implementing a control strategy. Additionally, the devel-
opment of strategies for detection, isolation, and magnitude estimation of unknown flows
(DIMEUF) such as seepage and leaks appears as a valuable tool to increase the efficiency
of the OCIS. However, it has been identified that in the reported reviews, the topics of
control-oriented modeling and DIMEUF have not been broadly addressed. Therefore, in
the OCIS field, there is a need to:

• Review recent modeling, DIMEUF, and control techniques that have been reported.

• Establish the suitability of existent techniques.

• Report challenges that remain open for future research.

In this way, the motivation of this chapter is to provide a detailed review of modeling,
DIMEUF, and control of OCIS towards providing useful information in the establishment
of the state of the art, the suitability of the existent techniques, and the challenges that
remain open for future research.

2.1 Process Description

In the current framework, an open-channel is a structure used to transport water. Typi-
cally, open-channels present a trapezoidal shape, but there are channels with cylindrical,
parabolic, rectangular, and irregular shapes. In the literature, there is not a unified no-
tation for the inputs, outputs, and state variables of OCIS. In Figure 2.1, the proposed
representation for OCIS is shown. In this case, the channel p

i
is fed by the flow q

i
that

24



2.1. PROCESS DESCRIPTION

Fig. 2.1. Proposed representation for OCIS.

Fig. 2.2. Flow relation for: a) Gate in free flow. b) Gate in submerged flow.

comes from the upstream channel p
i−1

. Besides, mi is a position inside p
i
, from the up-

stream end of the channel, and xmi represents the depth at the mi position. For control
purposes, the most important output variables are the upstream and downstream depths
of a channel, denoted by xupi and xdni , respectively. From the channel p

i
there could be

multiple outflows to other channels or users. In Figure 2.1, the outflows are simplified
into an outlet flow qouti , and the flow that feeds the downstream channel q

i+1
. The most

notorious feature is that, in steady-state, the volume in a channel increases when the
inflow increases, and decreases when the outflow increases. The flow q

i
has an hydraulic

relationship with the regulation structures, and these structures can be divided into gates
(Figure 2.2) and weirs (Figure 2.3), which can be in free flow or submerged flow (Litrico
and Fromion, 2009). In Table 2.1, the most common mathematical relationships for the
discharge through each type of regulation structure are given, where u

i
(m) is the po-

sition of the regulation structure, w
i

(m) the width of the regulation structure, g the
gravity constant, c

i
(with appropriate dimensions) the discharge coefficient. For gates in

free flow, the parameter ι has been included as a modeling-tuning parameter in reason of
some modeling and simulation algorithms use ι = 0 (e.g., Wahlin and Zimbelman 2014),
and other strategies use ι = 0.5 (e.g., Lewis 2017).
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Fig. 2.3. Flow relation for: a) Weir in free flow. b) Weir in submerged flow.

Table 2.1. Flow relation for different categories of regulation structures

Free flow Submerged flow
Gate q

i
= c

i
w
i
u
i

√
2g
√
xdni−1

− ιu
i

q
i

= c
i
w
i
u
i

√
2g
√
xdni−1

− xupi
Weir q

i
= c

i
w
i

√
2g(xdni−1

− u
i
)3/2 q

i
= c

i
w
i

√
2g(xdni−1

− xupi)3/2

2.2 Modeling

A control-oriented model is a mathematical representation of a system that is used for
the description, explanation, and prediction of its behavior, which helps to understand
its dynamics and design control systems with the aim of reaching a desirable perfor-
mance. Obtaining control-oriented models for OCIS is an aspect that has a high number
of alternatives, and there is not a final rule for choosing a modeling methodology. In
1871, Adhemar Jean Claude Barre de Saint-Venant proposed appropriate simplifications
to adjust the Navier-Stokes equations to channels and derived the Saint-Venant equa-
tions (Darrigol, 2006), which describe the dynamics of infinitesimal flow in one direction.
Since then, the Saint-Venant equations (SVE) have been the most used mathematical tool
for modeling open-channels and rivers. The SVE are two non-linear partial differential
equations given by

wmi
∂xmi
∂t

=− ∂qmi
∂m

− smi , (2.1a)

∂qmi
∂t

=− 2β
qmi
ami

∂qmi
∂x

+ βwmi
qmi

2

ami
2

∂xmi
∂x
− |qmi | qmign

2

amirxi
4/3

+ g

(
zsi −

∂xmi
∂x

)
ami ,

(2.1b)

where (2.1a) is related to mass conservation, and (2.1b) is related to momentum conser-
vation. Moreover, wmi is the channel width, smi is a variable associated with leaks, β is
a momentum correction coefficient, ami is the wetted surface, rmi is the hydraulic radius,
zsi is the channel’s slope, and n is the Manning’s resistance coefficient. The variables
xmi and qmi are related to depth and flow, respectively (Chaudhry, 2008; Schuurmans,
1997). The direct use of the SVE for control systems design is impractical (Rabbani
et al., 2010), and this affirmation can be corroborated analyzing the works reported by
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Fig. 2.4. Classification of control-oriented models for OCIS.

Liu et al. (1995) and Dos Santos and Prieur (2008), where the development of control
strategies using the non-linear partial SVE shows unsystematic procedures. Therefore, in
the literature, there are multiple types of control-oriented models that describe the dy-
namics of irrigation channels and, as shown in Figure 2.4, these models can be classified
into two fields: i) models that come from analytical simplifications of the SVE; and, ii)
models that come from approximations, observations, and assumptions of the dynamic
behavior of the OCIS.

2.2.1 Models Obtained from Simplifications of the SVE

These models could be divided into three subgroups. In the first group, for the linearized
and non-linearized SVE, explicit and implicit finite-difference schemes are proposed. Ba-
logun et al. (1988) present an explicit spatial discretization of the SVE where each channel
is divided into sections, and for each section one differential equation for depth and an-
other differential equation for flow are obtained. The weakness of this kind of discretized
models is that their stability depends on the discretization step size. Therefore, in order

27



2.2. MODELING

to obtain a stable control-oriented model, the obtained model has a high order. this mod-
eling strategy is used in several reported works (e.g., Reddy 1990b; Garcia et al. 1992;
Mohan Reddy et al. 1992; Mohan Reddy 1995; Reddy 1996; Mohan Reddy and Jacquot
1999; Durdu 2004, 2006; Lemos et al. 2009; Durdu 2010; Feng and Wang 2011; Shang
et al. 2011; Xu et al. 2012; Breckpot et al. 2013; Soler et al. 2013a; Cen et al. 2017; Bonet
et al. 2017; Lacasta et al. 2018). On the other hand, Malaterre (1998) uses an implicit
Preissmman finite-difference scheme, with the advantage that the stability of the model
does not depend on the discretization step size, and Liu et al. (1998) propose the use
of this scheme in the development of a control strategy based on an inverse solution of
the nonlinear SVE. The use of control-oriented models based on the Preissmman scheme
has been reported in multiple studies (e.g., Pages et al. 1998; Malaterre and Khammash
2003; Figueiredo et al. 2013). Dulhoste et al. (2004) propose the use of an orthogonal
collocation method to obtain a finite-dimensional model. The advantage of this numerical
method relies on its less-computational effort with respect to other numerical methods
in the solution of partial differential equations. However, when the main purpose is to
obtain a control-oriented model, the orthogonal collocation method is not the best option,
since the mathematical synthesis of the method is harder than the spatial discretization
and the Preissmman scheme. Finally, the Lattice Boltzmann method, which has been
proposed to solve partial differential equations such as the SVE, has been also used in
the development of control-oriented models for OCIS. The Lattice Boltzmann method
has shown that is efficient and accurate (Pham et al., 2010; Le-Duy-Lay et al., 2017).
Moreover, Van Thang et al. (2017) establish that the control-oriented models obtained
by using this method are suitable to describe networks of OCIS that are coupled with
diverse kinds of hydraulic regulation structures.

In the second subgroup, the continuous spatial structure is preserved. However, lin-
earizations, transformations, and partial solutions of the linearized SVE are proposed.
Hayami (1951) propose the linearization of the SVE with the intention of analyzing the
flow in rivers. Later, Corriga et al. (1980) propose the Laplace transformation of the lin-
earized SVE with the aim of obtaining analytical solutions that describe the behavior of
the level and flow along the channels. Then, the analytical solutions are evaluated in the
boundary conditions obtaining delayed transfer functions that describe the relationship
between channel inflow and outflow. The modeling strategy proposed by Corriga et al.
(1980) has been adopted by Reddy (1990a) and Qiao and Yang (2010), who perform a
more detailed explanation of the linearization of the SVE. One disadvantage of this strat-
egy is that the model parameters are based on mean values of variables in steady-state
conditions (Schuurmans, 1997). Litrico and Fromion (2004a) show that the linearized
Laplace transform of the SVE are spatial linear ordinary differential equations that are
solved obtaining a transfer function matrix with xup and xdn as outputs, and q

i
and q

i+1

as inputs. This model is called the integrator delay zero (IDZ), which has been contrasted
with the frequency domain response and time response of linearized SVE numerically
solved with a Preissmmann scheme showing a similar behavior (Litrico and Fromion,
2004b). Additionally, Litrico and Fromion (2004c) propose a systematic procedure to use
the IDZ to obtain control-oriented models of OCIS. This modeling strategy shows more
accurate behavior than other techniques in resonant systems (Clemmens et al., 2017),
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and recently, has been used for modeling, control, and estimation purposes (e.g., Horváth
et al. 2014b; Puig et al. 2015; Dalmas et al. 2017; Segovia et al. 2017, 2018c,b). Similar
to the work developed by Litrico and Fromion (2004a), Ouarit et al. (2003) establish a
transfer function matrix, where the flow is also an output of the system, and the inputs
are related to the regulation structures position. The advantage of this model is that
there are not assumptions of uniform regime along the channel, consequently, this model
has been called as an IDZ model in non-uniform regime (Dalmas et al., 2017).

Finally, another reported way to simplify the SVE is to neglect their inertial terms.
This strategy has been reported by Papageorgiou (1983) and Montero et al. (2013). In
the modeling strategy reported by Papageorgiou (1983), a first-order delay differential
equation that describes a relation between the downstream depth and upstream depth
of a channel is obtained. This strategy is reported again by Papageorgiou and Messmer
(1985). On the other hand, in the strategy reported by Montero et al. (2013), a more
complex partial differential equation that needs to be solved using numerical methods
is obtained. It must be highlighted that the simplified modeling strategy proposed by
Papageorgiou (1983) could be useful for obtaining control-oriented models that include
the nonlinear behavior of gates and weirs in submerged and free flows.

Given these models, it is identified that most of the simplified modeling strategies
require operational information of the system. For instance, key parameters of the sim-
plified models proposed by Hayami (1951), Corriga et al. (1980), and Litrico and Fromion
(2004a), need information about mean flow velocity, which can change in the presence of
strong disturbances like obstructions or even with level and/or flow changes. Moreover, in
the cases of finite-difference schemes, models with high order are obtained. These aspects
can be considered as drawbacks in control systems designs. Therefore, in order to avoid
these issues, some researchers have contributed to the development of new approximated
modeling strategies with practical assumptions.

2.2.2 Approximated Models

The approximated models such as the Muskingum model, ID, the grey-box models, and
the black-box models, are models that have been developed from practical assumptions,
using basic physical principles, observations, and empirical knowledge. Even though the
approximated models do not have rigorous physical fundament, the reported works have
shown that the approximated modeling strategies are an important alternative to ob-
tain control-oriented models for OCIS. Therefore, a more detailed description of these
strategies is given next.

The Muskingum model, proposed by McCarthy (1939) from observations of the Musk-
ingum river data, is one of the most widely used models for flow routing analysis. The
Muskingum model has a mass balance per channel and an storage-discharge equation,
which are used to obtain a transfer function that relates the inflow with the outflow of
a channel. This information is not useful when the objective is to control either the
upstream or downstream channel depth. However, it is possible to assume a two-part
channel division, where the first part is described by the Muskingum model, and the sec-
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ond part is a reservoir described by the continuity equation, obtaining a transfer function
that relates the inflow and the downstream level (Horváth et al., 2014b).

In his doctoral thesis, Schuurmans (1997) proposes the ID model, which is inspired
by the modeling strategy proposed by Corriga and includes the phenomenon known as
backwater profile. The characteristic of this phenomenon is that, at the downstream end
of the channel, there is an accumulation of water. In this model, the channel is assumed
to be divided into two parts: the first part corresponds to a uniform flow, and the other
(considered as the backwater), where the system is analyzed as a reservoir. In that form,
the depth along the uniform part is a function of the flow, and the backwater part is
modeled as a mass balance with an inflow delay. The main advantage of this strategy is
the simplicity of the model. Therefore, in the literature, the ID model is one of the most
reported modeling strategy for OCIS, which has been used for control design in multiple
studies (e.g. Wahlin 2004; Litrico and Fromion 2004c,a; Koenig et al. 2005; van Overloop
et al. 2005; Litrico and Fromion 2006b; Litrico et al. 2007; van Overloop et al. 2008a;
Litrico and Fromion 2009; van Overloop et al. 2010a; Horváth et al. 2014b; Bolea et al.
2014c; van Overloop et al. 2014; Horváth et al. 2015b,a; Zheng et al. 2019).

The use of measured data is another important option to obtain control-oriented mod-
els for OCIS. This strategy called identification can be used to obtain models without
physical knowledge of the system (black-box models), or models that present a structure
based on the physical knowledge of the system (grey-box models) (Horváth et al., 2014b).

The black-box or experimental models can only be obtained with measurements from
a real system, and the result does not describe the physical phenomena, (it only describes
the relationship between the measurement input and output data (Roffel and Betlem,
2007)). For example, Begovich et al. (2007) use a matrix of second-order discrete transfer
functions in the identification of four open-channels, where the validation results show
a high correlation between the real system and the obtained model in a variation depth
zone of 0.04m. The parametric identification method can be either batch or recursive.
In the batch identification method, by an experimental procedure, a set of input and
output data is acquired from the system and, with the use of an optimization algorithm,
the parameters of the model are obtained. On the other hand, in the recursive method,
the parameters of the system are obtained during the control process, and the obtained
model could be used in tuning the controller in real-time. One important advantage of
the recursive optimization is that this method is useful to deal with time-variant param-
eter systems (Rivas Perez et al., 2007) and nonlinearities (Diamantis et al., 2011). The
structure selection is another important aspect in the identification process, which can be
outup-error (OE), autoregressive exogenous (ARX), autoregressive moving average with
exogenous inputs (ARMAX), and Box–Jenkins, among others (Roffel and Betlem, 2007).
The most common structure used in systems identification is the ARMAX structure,
since it includes dynamics of the disturbances (Rivas Perez et al., 2007). However, Sepul-
veda (2007) presents a detailed methodology to obtain identification models using ARX
structures in real channels. Another important technique used to obtain control-oriented
models for OCIS is the step response identification, in which from a step stimulus at the
input, a transfer function that describes a similar behavior is adjusted. In OCIS, the
transfer function is usually a second-order delayed function (e.g., Feliu-Batlle et al. 2007,
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2009a; Blesa et al. 2010; Feliu-Batlle et al. 2011; Bolea et al. 2014a) or a first-order delayed
function (e.g., Romera et al. 2013; Bolea et al. 2014b). On the other hand, OCIS that
are deep, short, smooth, and have low flows are expected to be dominated by resonance
behavior. In these cases, the order of the resultant transfer function is higher because
there are resonant characteristics that, in short channels, are more dominant (van Over-
loop et al., 2014). Therefore, van Overloop et al. (2014) propose the integrator resonance
model composed of one integrator and one underdamped second-order transfer function.
This model has the particularity of not having a time delay. The model is validated with
a laboratory channel, which is controlled with predictive controllers designed from ID
model, ID model plus a first-order filter, and the integrator resonance model. The system
controlled with predictive controllers designed from integrator resonance model shows the
best performance.

The use of data-driven modeling tools is also presented in the development of models
that describe the dynamics of OCIS. Tavares et al. (2013) propose a comparison between
models based on neural networks, fuzzy systems, and linear systems. The result shows that
describing the behavior of OCIS, the neural networks are slightly better than the linear and
fuzzy systems. Herrera et al. (2013) use pattern search methods in online identification
of the time-varying delay of OCIS. This strategy, called multi-model scheme, uses a set of
models with diverse and updated time delays, where a pattern search algorithm estimates
the amount of the corresponding time delay. On the other hand, in the field of grey-
box models, Weyer (2001) proposes a control-oriented model based on a simplified mass
balance, assuming that the water volume in the channel is proportional to the water level
and there is a time delay in the channel inflow. Therefore, the model proposed has a
differential equation by channel that describes a mass balance, where the nonlinear flow
relation of the regulation structures is incorporated. This modeling strategy has been
used for control design, and leak detection in multiple works (e.g., Weyer 2002; Zhang
and Weyer 2005; Li et al. 2005; Ooi and Weyer 2005; Mareels et al. 2005; Choy and
Weyer 2006; Weyer 2006; Cantoni et al. 2007; Ooi and Weyer 2008b; Weyer and Bastin
2008; Weyer 2008; Ooi and Weyer 2008a, 2011; Bedjaoui and Weyer 2011). In OCIS, the
reported grey-box models are nonlinear models, and these models are more accurate than
the linear models representing the dynamics of OCIS (Weyer, 2001). Additionally, these
models could be used to test the behavior of linear controllers in presence of nonlinearities
associated with the regulation structures. However, in most of the cases, the grey-box
models have been only used for systems with weir structures in free flow. In these cases,
the flow is only a function of the regulation structure upstream depth. Eurén and Weyer
(2005) use grey-box models in a system with both undershoot and overshoot regulation
structures. However, this work is developed in a single channel, without opportunities to
analyze the configuration of the model when there are channel interactions.

2.3 Control of OCIS

In OCIS, the principal objective is to deliver the appropriate amount of water to each
user. In a well-operated system, the intake water must be equal to the water used or,
in other words, the wastage of water should be reduced to a minimum (Weyer, 2008).
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Fig. 2.5. Example of two channels controlled with a centralized control architecture.

Ideally, this is an easy task when there are no dynamics in the system. However, OCIS
are complex systems with long delays, high channel interactions, intermittent demands,
disturbances, and multiple inputs and outputs. Consequently, the control of OCIS can
be analyzed using multiple approaches, which are complex to classify (Malaterre et al.,
1998). However, these approaches, which have been classified in control architectures,
control objectives, control-action variables, control configurations, and control strategies
are presented next.

2.3.1 Control Architectures

The most common control architecture in OCIS is the centralized control architecture.
As shown in Figure 2.5, in the centralized control architecture (e.g., Begovich et al. 2007;
Nasir et al. 2018; Aydin et al. 2017; Horváth et al. 2015b,a), a central controller uses the
vector of system measurements to compute the vector of control signals (Malaterre, 1995).
On the other hand, as shown in Figure 2.6, in a decentralized architecture (e.g., Gomez
et al. 2002; van Overloop et al. 2005; Segovia et al. 2017; Weyer 2008), only local upstream
or downstream information of a channel is used to compute the control strategy. Finally,
in a distributed architecture (Figure 2.7), the control system computation uses local and
adjacent information establishing cooperation among local controllers (Le-Duy-Lay et al.,
2017).

In centralized architectures, it is possible to reach a better performance than in both
decentralized and distributed architectures. However, a decentralized or distributed con-
trol system offers the opportunity of keeping the system controlled (with a possible per-
formance degradation) even if part of the information is lost. In addition, non-centralized
architectures allow partial implementations in channels according to budget and relevance.

32



2.3. CONTROL OF OCIS

Fig. 2.6. Example of two channels controlled with a decentralized control architecture.

Fig. 2.7. Example of two channels controlled with a distributed control architecture.

Although OCIS are strongly coupled systems, in some cases for decentralized schemes,
each channel is taken as an independent system and the control design only deals with
the problem of controlling a particular channel. This kind of approach can lead to un-
acceptable performance or even instability of the whole system (Schuurmans, 1997). On
the other hand, some authors propose to join the advantage of the centralized and de-
centralized architectures into a hierarchical control architecture. As shown in Figure 2.8,
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Fig. 2.8. Example of two channels controlled with a hierarchical control architecture.

in the hierarchical control architecture, the performance of a system under decentralized
schemes is enhanced with coordination of a centralized controller. In this architecture,
the decentralized controllers keep the system controlled even if the communication is lost,
and in order to enhance the overall performance and even to prevent risks, the centralized
system modifies the targets of the decentralized systems (e.g. Zafra-Cabeza et al. 2011;
Fele et al. 2014; Sadowska et al. 2015a; Farhadi and Khodabandehlou 2016). For the
sake of simplicity, and the need of a centralized controller, in this review, the hierarchical
control architecture is treated as a case of centralized control architecture.

2.3.2 Control Objectives

Usually, in OCIS, a constant depth is set at each channel, and with the position adjustment
of the outlet structure, the discharges are regulated to each user (Cantoni et al., 2007). In
decentralized and distributed control architectures, the use of the terms upstream control
and downstream control is common. As shown in Figure 2.9 in the upstream control,
a fixed level upstream of the cross regulation structure is maintained (e.g., Malaterre
2008; Rijo and Arranja 2010; Clemmens et al. 2017; Figueiredo et al. 2013), while in
the downstream control, as shown in Figure 2.10, the level is maintained downstream
of the cross regulation structure (e.g., Malaterre 2008). Additionally, the upstream and
downstream controllers can be placed close, intermediate, or far away from the regulation
structure. In the literature, there are no reports about the use of intermediate downstream
and upstream control, since this implies measuring the depth in an intermediate part
of the channel and the hardware adequacy far from the cross structures is impractical.
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Fig. 2.9. Examples of close and distant upstream control objectives.

Fig. 2.10. Examples of close and distant downstream control objectives.

Distant upstream control is another infrequent alternative. For instance, Lemos and
Sampaio (2015) establish that this configuration does not guarantee a water level along
the channel. Additionally, Rato et al. (2007) compare the effectiveness of an adaptive
controller implemented in an open-channel, first controlling the upstream level close to the
regulation structure, and second testing the same strategy controlling the upstream level
distant from the regulation structure. In the first configuration, the results of the adaptive
strategy present an appropriate behavior, but in the second configuration, the adaptive
strategy shows oscillations and undesirable performance. Regulate the upstream level
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close to the regulation structure is the most common control method in OCIS (Clemmens
et al., 2017). This method requires a flow control at the intake of the system, where
the intake flow is calculated in order to satisfy the users’ demands. Therefore, excess in
the intake flow will result in spills. In contrast, deficiencies in the intake flow, losses, or
unforeseen demands will result in deficient flow at the system downstream.

In downstream control, each regulator delivers the amount of flow to maintain the level
downstream of the cross structure. Therefore, this is known as a completely automatic
method of controlling water levels (e.g., Wahlin and Zimbelman 2014). In the close
downstream control case, the objective is to maintain a constant level at the upstream
end of the channel, and in the distant case, the level is maintained at the downstream end
of the channel. One advantage of controlling the level at the upstream end of the channel
is that there is always a storage volume to supply rapidly unforeseen demands (Malaterre,
2008). From a control perspective, there are no reports about the advantages or drawbacks
of the distant downstream controllers. However, it is necessary to mention that Malaterre
(1995) points out that when the depth at the downstream end of a channel is controlled,
there are not inconveniences with the slope of the channel, reducing construction costs.

Moreover, the controller can be multivariable and the controlled variables could be: i)
the upstream depth (e.g., Rijo and Arranja 2010; Breckpot et al. 2013); ii) the downstream
depth (e.g., Nasir et al. 2018; Aydin et al. 2017; Le-Duy-Lay et al. 2017; Horváth et al.
2015b,a); iii) the channel inflow or outflow (e.g., Puig et al. 2015; Litrico and Georges
1999); iv) the outlet flow; or v) a combination of depths and flows (e.g., Balogun et al.
1988; Breckpot et al. 2013).

Finally, the accomplishment of the control objectives can be measured by using key
performance indicators. In the reported literature, the most used indicators are proposed
by Clemmens et al. (1998), which are oriented to examine the amount of error in the water
levels, and the excessive position variations that the regulation structures present. As it
is shown by Clemmens et al. (1998), the desirable situation is to maintain a fixed level
along the channel and, with the position adjustment of the regulation structure, deliver
the appropriate amount of water to the users. Moreover, because excessive gates and
flows changes produce mechanical wear and water levels oscillations, to reduce excessive
gates and flows changes is desired. The key performance indicators can be used as a
measure of performance for controlled systems (e.g., Xu et al. 2012; Munir et al. 2012;
Soler et al. 2013a; Bonet et al. 2017; Ke et al. 2018; Zheng et al. 2019), and as a design
criteria in optimal controllers (e.g., Feliu-Batlle et al. 2011; Ke et al. 2018). A relation of
the principal key performance indicators is presented in Table 2.2, where:

• The maximum absolute error (MAE) is the maximum normalized error between the
desired and measured level.

• The integral of the absolute error (IAE) accounts for the cumulative level error along
a time period (T ).

• The steady-state error (StE) is the maximum absolute level error during a time
period when the steady state has been reached.
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Table 2.2. Key performance indicators for error in water levels and changes in flows
and gates, where the level error at the downstream end of the channel is considered and
xdni

= [xdni(0) xdni(1) ... xdni(Nf − 1)]> ∈ RNf is the vector of the level measurements,
xrefi

is considered as a desired level, xrefi
= [xrefi

(0) xrefi
(1) ... xrefi

(N − 1)]> ∈ RNf is
considered as a desired level vector, and x̄dni

is the mean of xdni
.
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• The integral square error (ISE) also accounts for the cumulative level error and
weights large deviations.

• The absolute gate movement (IAW) relates to positions changes of the regulation
structures.

• The integrated absolute discharge change (IAQ) accounts for flow variations.

2.3.3 Control-Action Variables

Certain dynamics could be associated with the movement of the regulation structures
and the necessary instrumentation. In controlled systems, most of these dynamics are
modified with master-slave control configurations, which are shown in Figure 2.11, where
the most usual configurations are presented. In the first case, a position control is shown,
where ZI is a position sensor and ZC is a position control that regulates the voltage
for the servo-motor (Sepulveda, 2007). In the second case, a more elaborated control
scheme is shown, where LI corresponds to the level indicators and FC is a flow control
(Schuurmans, 1997). The inclusion of master-slave flow control is useful to divide the
control problem into sub-problems, where the dynamical and non-linear relations that
there are between flow, regulation structure position, regulation structure mechanism,
and water levels can be overcome. Therefore, assuming that the controlled structure
has zero steady-state error, high damping factor and short time constant, the model of
an open-channel irrigation system could be reduced to a linear model with time delays,
where the system input is a flow instead of a regulation structure position.
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Fig. 2.11. Master-slave configuration examples: a) Aperture gate control. b) Flow
control.

2.3.4 Control Configurations

In OCIS control, choosing between feedback (FB) and feedforward (FF ) control config-
urations or a combination of both (FB + FF ) also is possible. In FB configuration, the
channel inflow or outflow generally changes in order to decrease the error between the
controlled variable and a desired level or flow. In FF configuration, the channel inflow or
outflow changes according to previous information about demands. Each configuration
has its advantages and drawbacks. With FB configuration (e.g., Breckpot et al. 2013; Rijo
and Arranja 2010; Durdu 2010; Weyer 2008; Litrico and Fromion 2006a; Durdu 2006),
the rejection of disturbances and uncertainties such as source-level variations, leaks, un-
expected demands, meteorological fluctuations, and changes in parameters of the system
can be reached. However, improper design of the controller could lead to oscillations or
even instability. On the other hand, in FF configuration, OCIS have fewer fluctuations
and faster response. However, with this configuration, the rejection of disturbances and
uncertainties is unavailable (van Overloop et al., 2008b). Some research works take ad-
vantage of both configurations (FB+FF ), obtaining faster responses and the possibility
to reject disturbances and uncertainties (e.g., Gomez et al. 2002; van Overloop et al. 2014;
Sadowska et al. 2015a; Puig et al. 2015; Horváth et al. 2015a,b; Le-Duy-Lay et al. 2017;
Aydin et al. 2017; Nasir et al. 2018).

2.3.5 Control Strategies

Finally, the control of OCIS could be seen as a problem of multiple inputs or multiple
outputs, with or without disturbances, represented by linear or non-linear models. In this
sense, multiple control strategies have been tested and reported in the literature. Next,
a brief introduction to the most common strategies is presented and some examples are
identified.
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PID Control

Proportional-integral-derivative (PID) control is the most commonly used control algo-
rithm in the industry, as well as in OCIS (Litrico et al., 2007). Several studies that use PID
controllers to maintain a fixed level in the OCIS have been reported. For example, Burt
et al. (1998) establish methods and strategies for tuning upstream PI controllers; Litrico
and Georges (1999) compare the performance of a PID controller with a pole placement
controller with Smith Predictor; Litrico et al. (2003) investigate the convenience between
using a PI controller to maintain a fixed upstream level or a fixed downstream level; van
Overloop et al. (2005) modify a PI controller with a first-order filter with the aim to re-
duce resonant oscillations that are induced from neighbor channels; Lozano et al. (2010)
evaluate the performance between a downstream PI controller and a distant downstream
PI controller; Figueiredo et al. (2013) test a PI downstream controller in a system with
fourth channels; Bolea et al. (2014c), in a real system, assess the behavior of a PI con-
troller designed from a Muskingum model and other from an ID; recently, Arauz et al.
(2020); Ke et al. (2020) present two PI tuning methods, that have been designed using
the ID modeling approach. It is important to realize that the control strategy proposed
by Arauz et al. (2020) has been tested in specialized software (SOBEK), showing that
optimally tuned PI controllers are successful for level regulation of OCIS. Other studies
simply use the PID controllers to compare the performance of more sophisticated con-
trol strategies (e.g., Malaterre and Khammash 2003; Zheng et al. 2019). On the other
hand, the design and structure of the PID controllers have been modified with the aim
of overcoming uncertainties that are associated with the OCIS. These modifications can
be split into two categories: one category is conformed by PID controllers designed in
frequency domain considering the robustness of the controlled system (e.g., Litrico and
Fromion 2006b; Feliu-Batlle et al. 2007, 2009a, 2011). Another one is conformed by the
use of adaptive parameters that must adapt to the controlled system (e.g., Litrico et al.
2007; Bolea et al. 2014a).

LQR and LQG

One of the most popular strategies in the control of OCIS is based on the use of optimal
controllers, where the objective is to find a control law that minimizes a quadratic cost
function formulated from the representation of the system in state-space. This strategy
is known as linear quadratic regulator (LQR), whose advantage is that the control law
is a gain vector that weighs the states of the system, being this vector obtained by a
systematic solution of the Riccati equation (Kirk, 2004). It has been shown that, in
systems modeled by explicit and implicit finite-difference schemes, the use of LQR is
popular because this strategy is practical for controlling systems with a large number of
states (e.g., Balogun et al. 1988; Reddy 1990b; Mohan Reddy et al. 1992; Schuurmans
1997; Mohan Reddy and Jacquot 1999; Durdu 2006, 2004). In the same direction, the
linear quadratic Gaussian (LQG) control, which corresponds to an LQR control with a
Kalman filter as an estimator for the non-measurable states, becomes a popular alterna-
tive when the systems are modeled using explicit and implicit finite-difference schemes
(e.g., Mohan Reddy 1995; Reddy 1996; Schuurmans 1997; Mohan Reddy and Jacquot
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1999; Durdu 2006, 2010). Similarly, the LQR control strategy could be used in either
decentralized or distributed control schemes. For example, Ke et al. (2018) analyze the
behavior of optimally tuned single-input and single-output (SISO) PI controllers designed
from control-oriented models obtained with the ID approach. One drawback is that LQR
are linear controllers designed to have a desired behavior in a region close to an operation
point.

Model Predictive Control (MPC)

Essentially, MPC is a control strategy that has aroused the interest of researchers in
control of OCIS (e.g., Begovich et al. 2007; Sepulveda 2007; van Overloop et al. 2008b;
Lemos et al. 2009; Negenborn et al. 2009; van Overloop et al. 2010a,a; Cembrano et al.
2011; Xu et al. 2012; Breckpot et al. 2013; Figueiredo et al. 2013; van Overloop et al. 2014;
Horváth et al. 2014b; Sadowska et al. 2015a; Puig et al. 2015; Horváth et al. 2015a,b;
Cen et al. 2017; Segovia et al. 2017; Le-Duy-Lay et al. 2017; Aydin et al. 2017; Nasir
et al. 2018; Zheng et al. 2019). This is due to the benefits that MPC offers in terms of
optimality and prediction. Additionally, this kind of controller can be designed from any
control-oriented model previously presented and can be used in centralized, distributed,
and decentralized architectures. This control strategy is composed of four elements: i)
a prediction model; ii) a set of constraints; iii) a cost function; and iv) an optimization
algorithm. The mathematical model of the system must be synthesized in discrete-time,
and can be expressed in state-space or transfer function representations. The prediction
model is developed from a discrete-time model of the system and the current value of
the state variables. The maximum and minimum values that limit the operation range of
the controlled system are incorporated into the constraints set for the system inputs and
state variables, and the cost function synthesizes the performance criteria with a linear
or non-linear combination of the prediction model and the set of constraints. Finally,
the optimization algorithm searches for the optimal control sequence over a prediction
time horizon that minimizes the cost function (Maciejowski, 2002). One drawback of the
MPC is that the behavior of this strategy has a high dependency on the system model,
and when there are disturbances not included in the model, the controller could show
undesirable behaviors (Lemos et al., 2009; Horváth et al., 2015b). This problem can be
overcome with the inclusion of adaptive strategies (Lemos et al., 2009), and the use of
incremental states and incremental actions (Horváth et al., 2015b; Aydin et al., 2017).

Other Control Strategies

PID, LQR, and MPC are the most reported strategies in control of OCIS. However, control
systems is a dynamic field, where multiple control strategies are continuously emerging,
and some of these strategies have been tested in control of OCIS. For instance, when
OCIS are seen as a multi-input multi-output problem or single-input single-output prob-
lem with uncertainties, the H∞ control strategy is a convenient option since it produces
a solution that can explicitly include robust performance in the design procedure, taking
into account explicitly information or assumptions on the uncertainties. In this strategy,
the objective is to find a proper control law that stabilizes the closed-loop system and
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minimizes the H∞ norm of an augmented linear model that takes into account the uncer-
tainties associated with disturbances and operational point changes (Litrico and Fromion,
2003, 2006a; Cantoni et al., 2007).

To the best of the author knowledge, there are only two reported strategies where the
SVE have been used directly as a control-design model: the first one, reported by Liu
et al. (1995), is based on an explicit solution procedure of the SVE, which has been tested
in a simulated OCIS with six channels showing high sensitivity to variations in physical
dimensions of the channels and low sensitivity to variations in coefficients of the regulation
structures; and the second one, reported by Dos Santos and Prieur (2008), where a non-
linear control technique, which uses directly the SVE and is called a boundary control
(BC), is established. The control strategy is tested in a simulated system and in a small
prototype, concluding that the controlled system presents suitable results, even though
the proposed control technique is unsystematic.

Machine learning is a field that has been growing constantly and has been broadly
applied in the solution of complex problems. In the control of OCIS, Hernández and
Merkley (2010a); Shahverdi and Monem (2015); Shahverdi et al. (2016, 2020) use soft-
ware agents that interact with models of the OCIS in order to maximize a reward function
that is related to the regulation structures adjustment and the levels of the system. This
technique, known as reinforcement learning, has been implemented using specialized sim-
ulation software where the OCIS are numerically solved, then, the strategy finds the
optimal operational solution for each regulation structure, and this solution is applied to
the irrigation system (Hernández and Merkley, 2010a). The main advantage is that this
control strategy does not need an explicit model of the system, for this is considered a
model-free strategy (Shahverdi et al., 2016). The OCIS controlled using reinforcement
learning have shown satisfactory performance. However, to the best of the author knowl-
edge, no previous reports exist on the use of machine learning in the control of real OCIS.

Another interesting control technique that has been reported is the linear parameter-
varying (LPV) control, where the OCIS are modeled as parametrized linear systems with
parameters that change with the operation point. Bolea et al. (2014b) propose the de-
scription of the OCIS as an LPV system, and subsequently, establish a PID with a Smith
predictor LPV controller in order to deal with the nonlinearities and variable delays that
describe the OCIS (Bolea et al., 2014a). The LPV controller is implemented in a real
system with successful results. Similarly, adaptive control strategies, where there is a
need to recursively identify the parameters, have been explored (e.g. Diamantis et al.
2011; Herrera et al. 2013).

Finally, the small head loss automatic gates (French acronym: AVIS) and the high
head loss automatic gates (French acronym: AVIO), which are hydro-mechanical down-
stream controllers (Wahlin and Zimbelman, 2014), can be included as another kind of
control strategy for OCIS. The drawback of these regulation structures is that they are
more complex to develop than conventional gates or weir structures. These regulation
structures are developed in France and have been manufactured in other countries, often
unsuccessfully (Wahlin and Zimbelman, 2014).
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2.4 DIMEUF

In OCIS, another important field is conformed with works reported around the field of
fault diagnosis and DIMEUF (Koenig et al., 2005; Bedjaoui et al., 2006; Besançon et al.,
2008; Weyer and Bastin, 2008; Bedjaoui et al., 2008, 2009; Blesa et al., 2010; Bedjaoui
and Weyer, 2011; Pocher et al., 2012; Amin et al., 2013a; Akhenak et al., 2013; Duviella
et al., 2013; Horváth et al., 2014a; Segovia et al., 2018a). These works highlight the
importance in the selection of an appropriate modeling approach, which is fundamental
in the development of strategies for detection and estimation of unknown variables. For
example, as emphasized by Blesa et al. (2010), DIMEUF strategies designed from linear
models (Koenig et al., 2005; Bedjaoui et al., 2006; Besançon et al., 2008; Bedjaoui et al.,
2008; Amin et al., 2013a,b; Akhenak et al., 2013; Duviella et al., 2013; Horváth et al.,
2014a; Segovia et al., 2018a) are only valid close to an operation region. Hence, in order
to increase this region, some works have explored the development of DIMEUF strategies
using non-linear models such as numerical solutions of the Saint-Venant Equations (SVE)
and approximated models. In reported works that have designed DIMEUF strategies using
approximated models (Weyer and Bastin, 2008; Blesa et al., 2010; Bedjaoui and Weyer,
2011; Pocher et al., 2012), it is found that the approximated models do not contemplate
energy balances along the channels, and this could lead to inaccurate DIMEUF. For
example, Bedjaoui et al. (2008) test strategies for magnitude estimation of unknown
flows in a real system, reporting drift in the results, concluding that this drift is due to
the growth of weeds, which affects the flow conduction. Moreover, the OCIS are usually
affected by sedimentation that also changes the resistance and conduction offered along the
channels. Meanwhile, in reported works that design DIMEUF strategies from numerical
solutions of the SVE, the complexity of the algorithm is one of the key aspects. Therefore
the obtained algorithms can be divided as:

• Algorithms that only detect or isolate (e.g., Bedjaoui et al. 2009).

• Algorithms where the estimation process must be performed off-line (e.g., Bedjaoui
and Weyer 2011).

Therefore, in order to increase the DIMEUF accuracy, the development of online DIMEUF
approaches designed directly from the SVE is a highly complex and unpractical strategy,
and new solutions need to be addressed.

2.5 Discussion

As previously stated, modeling and control of OCIS are complex problems with several
choices and constraints that should be taken into account. In OCIS, the most common
and appropriate approaches could be developed around the following questions:

• What are the decision features to select a suitable control-oriented modeling strategy
for OCIS?
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• Which are the requirements for a suitable DIMEUF strategy applied to OCIS?

• Which control approaches might be suitable to increase the efficiency of the OCIS?

• In the field of modeling, DIMEUF, and control of OCIS, which are the research gaps
and challenges that must be addressed?

Next, some ideas that address these questions are discussed.

2.5.1 Selecting a Suitable Control-Oriented Modeling Strategy

Most of the control-oriented modeling strategies have been tested in the designing of
controllers for real systems, showing useful results. For example, Sepulveda (2007), Lemos
et al. (2009), Rabbani et al. (2009a), Figueiredo et al. (2013), van Overloop et al. (2014),
and Horváth et al. (2014b) have shown in real systems the results of the implementation of
controllers designed from simplified modeling strategies. On the other hand, Rivas Perez
et al. (2007), Litrico et al. (2007) Sepulveda (2007), Begovich et al. (2007), Feliu-Batlle
et al. (2007), van Overloop et al. (2008a), Feliu-Batlle et al. (2009a), Feliu-Batlle et al.
(2009b), van Overloop et al. (2010c), Feliu-Batlle et al. (2011), Tavares et al. (2013), Bolea
et al. (2014a), van Overloop et al. (2014), Horváth et al. (2014b), Sadowska et al. (2015a),
and Cescon and Weyer (2017) have shown in real systems the results of the implementation
of controllers designed from approximated models. However, the availability of a real
system to test the behavior of designed control approaches is often unusual. For this
reason, in the reviewed literature, only 25% of the works have reported the implementation
and analysis of control techniques in real systems. In other cases, the control tests are
developed over the control-design model, showing the obtained results as validated data,
even though in OCIS, usually, the control-design models are linear models that do not
describe most of the hydraulic behavior of real OCIS. In order to perform more rigorous
control tests, one alternative could be to test the designed controllers in systems modeled
with the SVE. However, the comprehension, codification and stability analyses of implicit
or explicit numerical algorithms that solve the SVE of OCIS could be seen as complex
tasks.

A second alternative could be the use of specialized hydraulic software such as:

1. The storm water management model (SWMM) software, developed by the Envi-
ronmental Protection Agency of the United States (Lewis, 2017), which is of free
distribution and use but with limited control systems alternatives.

2. The river analysis system developed for the hydrologic engineering center of the U.S.
Army Corps of Engineers (HEC-RAS) is a specialized hydraulic software useful for
modeling rivers and open-channels. The HEC-RAS also is of free distribution and
use, and let the coupling with other softwares such as Matlab (e.g. Leon and Goodell
2016) and Python (e.g. Dysarz 2018).

3. The software for simulation and integration of control for canals (SIC), which has
shown to be suitable for testing control strategies in OCIS (van Overloop et al.,
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Table 2.3. Comparison between reported approaches for detection, isolation, and mag-
nitude estimation of unknown flows in OCIS.
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(Koenig et al., 2005) ID
Linear flow
relation

Bank of unknown-input
observers

! ! !

(Bedjaoui et al., 2006) ID
Linear flow
relation

Bank of unknown-input
observers

! !

(Besançon et al., 2008) Linearized SVE
Linear flow
relation

High gain
observer

! ! !

(Weyer and Bastin, 2008) Grey-box
Nonlinear flow
relation

Discrepancies between
model and real system

! ! !

(Bedjaoui et al., 2008) Linearized SVE
Linear flow
relation

i) Detection of
measurement deviations
ii) Kalman filter

! ! ! !

(Bedjaoui et al., 2009)
Numerical solutions
of the SVE

Linear flow
relation

i) Discrepancies between
model and real system
ii) Bank of linear observers

! ! ! ! !

(Blesa et al., 2010)
Linear parameter
variance

Nonlinear flow
relation

Discrepancies between
model and real system

! ! ! !

(Bedjaoui and Weyer, 2011)
i) Grey-box
ii) Numerical solutions
of the SVE

Nonlinear flow
relation

i) Discrepancies between
model and real system
ii) Extended Kalman filter
iii) Heuristic strategy

! ! ! ! !

2014), and offers a wide number of control alternatives (in this case, this software
needs a license to be used).

4. The integrated software package for river, urban or rural management (SOBEK)
developed by the institute for applied research Deltares, which solves the SVE of
hydraulic systems and lets the online coupling with Matlab, opening the control
alternatives to the multiple control strategies that in Matlab can be developed (this
software also needs a license to be used).

A final alternative is the use of approximated control-oriented models capable of de-
scribing most of the hydraulic behavior of real OCIS, without the intrinsic accuracy of the
SVE. One example is the grey-box model proposed by Weyer (2008), which includes a mass
balance and the non-linear hydraulic description of the regulation structures. However,
most of these models are focused on obtaining control-oriented models for OCIS with weir
regulation structures in free flow, where there is no interaction between adjacent chan-
nels. This aspect is highly relevant, because gates in submerged flow, where the inflow
and outflow are a function of the upstream and downstream depth of the structure, are
the most common discharge structures in OCIS (U. S. Department of the Interior, 2001).
Therefore, the development of new approximated modeling strategies that describe the
behavior of OCIS with different types of regulation structures is a challenge that needs
to be further addressed.
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2.5.2 Selecting a Suitable DIMEUF Approach

In contrast to modeling and control, the field of DIMEUF in OCIS reports few works.
A proposed classification of the reported research around DIMEUF is presented in Table
2.3, where the most relevant characteristics of the proposed approaches are identified. In
this table, it is observed that few works directly use the SVE in the design of estimation
strategies. Most of the estimation strategies prefer the use of simplifications and approxi-
mations of the OCIS dynamics, such as the ID model, grey-box models, and LPV models.
Note that the recent estimation strategies are developed by using nonlinear hydraulic de-
scriptions of the flows. Moreover, it is observed the lack of an estimation strategy useful
to:

• Detect the existence of an unknown flows.

• Establish the localization of the detected unknown flows.

• Estimate the magnitude of the unknown flows.

Similarly, it is highlighted that the online operation of the DIMEUF strategies appears
as a requisite. Additionally, despite the complexity, in order to improve the behavior
of the DIMEUF strategies, the recently reported works have opted for the use of non-
linear models. In this table, it is also highlighted that the DIMEUF strategies designed
from approximated models do not consider conduction conditions of the OCIS, which can
induce drift in the estimation results.

Therefore, in OCIS, the DIMEUF, appears as an open field, where the upcoming
works must be aimed at the design of strategies useful to detect, isolate, and accurately
estimate the unknown flows. In order to obtain accurate unknown flow estimations, the
nonlinearities that characterize the OCIS behavior must be included in the estimation
strategies. Furthermore, in the design of DIMEUF strategies, the inclusion of the OCIS
conduction conditions is an important challenge in order to either reduce or eliminate the
drift on the estimation results that habitual phenomena, such as sedimentation or weeds
growth, can induce.

2.5.3 Selecting a Suitable Control Approach

Along of the review, multiple control approaches have been outlined. Therefore, it is
developed a classification of the available and most common OCIS control approaches
that have been reported in the literature. First, in Figure 2.12 a proposed classification of
the available control approaches for OCIS is shown. In this classification, the sets of OCIS
control alternatives are highlighted. For example, a control approach could be developed
using the following choices:

• as a control architecture, a centralized control architecture;

• as a control objective, maintains a constant depth at the downstream end of the
channels;
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Fig. 2.12. Proposed classification of control approaches for OCIS.

• as a control-action variable, the regulation structures position, which demands the
inclusion of master-slave position controllers;

• as a control configuration, a FB configuration;

• as a control strategy, an MPC controller.

On the other hand, from Figure 2.12, it is also highlighted that a conventional PID control
strategy is not available as centralized control architecture, and that MPC, LQR, and the
other reported control strategies can be used in centralized, decentralized, and distributed
control architectures. Additionally, in this classification (Figure 2.12), the use of a pure
FF configuration has been discarded because this control configuration is no more than
an open-loop operation of the system, and do not offer alternatives to reject disturbance
or model uncertainties. Moreover, in Figure 2.12, it is highlighted the kind of master-slave
control implementation that needs to be developed for each control-action variable. The
proposed classification (Figure 2.12) is an interesting starting point in the identification of
possible control approaches for OCIS. However, if this classification is complemented with
the classification for possible control-oriented modeling alternatives, presented in Figure
2.4, A high number of combinations can be obtained.

In Table 2.4, it is presented a categorization of the available modeling and control
approaches reported in the literature during the last years, where the main OCIS control
choices are identified. In this table, the main aspects such as the control objective, the
control-action variable, and the control-oriented model are included.

From Table 2.4, one of the most important aspects that can be highlighted is that,
in OCIS, the most common control objective is to maintain a constant amount of water
in each channel. Usually, this objective is reached using, as the controlled variable, the
upstream depth or the downstream depth at the end of the channels. On the other hand,
some few works explore the problem of controlling the flow that leaves the channels. One
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Table 2.4. Reported works in control of OCIS, which have been classified according to
the control-objective reported, the control-action variable used, and the control-oriented
model selected.

Controlled
Variable

Control-
Action
Variable

Control-Oriented
Model

Source

xdn
xdni

u
i

ui+1

[u
i
ui+1 · · · ]T

Finite Differences
Lemos et al. 2009, Feng and Wang 2011, Shang et al. 2011,
Soler et al. 2013a, Breckpot et al. 2013, Soler et al. 2013b,
Bonet et al. 2017, Cen et al. 2017

ID Ke et al. 2018

black-box Model
Litrico et al. 2007, Begovich et al. 2007, Feliu-Batlle et al. 2007,
Feliu-Batlle et al. 2009a, Feliu-Batlle et al. 2009b, Lozano et al. 2010,
Feliu-Batlle et al. 2011, Munir et al. 2012

Grey-Box Model
Cantoni et al. 2007, Domingues et al. 2011, Herrera et al. 2013,
Bolea et al. 2014b, Sadowska et al. 2015a, (Horváth et al., 2015a)

qi
qi+1

[qi qi+1 · · · ]T

Finite Differences Xu et al. 2012, Figueiredo et al. 2013, Wagenpfeil et al. 2013, Zeng et al. 2020
SVE Transformations
(IDZ, Hayami model)

Goudiaby et al. 2013, van Overloop et al. 2014, Horváth et al. 2014b,
Janon et al. 2016, Segovia et al. 2017, Segovia et al. 2019

Muskingum Bolea et al. 2014c, Horváth et al. 2014b

ID
Negenborn et al. 2009, van Overloop et al. 2010a, Bolea et al. 2014c,
van Overloop et al. 2014, Horváth et al. 2014b, Nasir et al. 2018,
Zheng et al. 2019, Hashemy Shahdany et al. 2019, Arauz et al. 2020, Ke et al. 2020

Grey-Box Model
van Overloop et al. 2014, Horváth et al. 2015a, Horváth et al. 2015b,
Aydin et al. 2017, Le-Duy-Lay et al. 2017, Tian et al. 2019

xup
xupi

u
i

ui+1

[u
i
ui+1 · · · ]T

SVE Dos Santos and Prieur 2008

Finite Differences
Durdu 2010, Feng and Wang 2011, Breckpot et al. 2013,
Cen et al. 2017, Lacasta et al. 2018

Black-Box Model Hernández and Merkley 2010b, Hernández and Merkley 2010a

qi
qi+1

[qi qi+1 · · · ]T

SVE Transformations
(IDZ, Hayami model)

Segovia et al. 2017, Clemmens et al. 2017

Black-Box Model Tavares et al. 2013
Grey-Box Model Tian et al. 2019

q
i+1

q
i

SVE Transformations
(IDZ, Hayami model)

Rabbani et al. 2009a, Rabbani et al. 2010, Puig et al. 2015

Black-Box Model Diamantis et al. 2011,
Grey-Box Model Bolea et al. 2014a

reason for this trend might be that if the controlled variable is the channel level, the OCIS
can be described with a linear model, which is valid in a small region around the operation
point of the system. Therefore, the controller can be designed in order to maintain the
level of the channel into this region. On the other hand, if the controller only regulates
the outflow, the channel level could be even at a point that does not guarantee the flow
generation, or at a point that can generate overflows. However, most of the reported
works that regulate outflows do not incorporate the feedback of the channel level.

Additionally, Table 2.4 also points out that the level regulation at the downstream
end of a channel is more common than level regulation at the upstream end. This fact is
well-accepted since controlling the level at the downstream end of the channel is easiest to
prevent overflows due to water accumulation at the downstream end of the channel. More-
over, in Table 2.4 it is shown that, in order to maintain a constant level at the downstream
end of the channel, using as a control-action variable the position of the regulation struc-
ture, most authors prefer as control-oriented model the use of finite differences, black-box
models, and grey-box models. On the other hand, in the case of maintaining the constant
level at the downstream end of the channel, using as a control-action variable the channel
inflow, the ID model is the preferred control-oriented modeling strategy. As can be seen,
the information in this table can be useful in the development and implementation of
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Fig. 2.13. Quantification of the modeling and control options reported in the literature.

control strategies for OCIS, since, this table can be used to identify the most common
OCIS control approaches and the sources where these approaches are reported.

In order to discuss about the reported control strategies, in Table 2.5, a chronological
compilation of the reported control strategies for OCIS is presented. From this table, it
can be highlighted that in OCIS, the most reported control strategies are PID and MPC.
On the other hand, Malaterre (1995) shows that between 1980-1995, the LQR control
strategy has been one of the most reported strategies for control of OCIS. However, it
is shown that between 2007-2019, the interest in the research around using LQR for
control of OCIS has been low. Similarly, Table 2.5 shows that there is a low interest
in the exploration of other control strategies applied to OCIS. Another aspect to be
highlighted is that the study around PID strategies for OCIS has been decreasing, and
contrarily, the interest around MPC strategies has been growing. This increasing interest
can be associated with the versatility that in the field of OCIS the MPC strategies offer,
i.e., in Figure 2.12 it is shown that the MPC strategy can be designed for the multiple
control approaches presented in OCIS, let the inclusion of the schedule of the demands
(e.g., Zheng et al. 2019), and offers the alternative of include multiple objectives into the
control problem (e.g., Segovia et al. 2019).

Moreover, in order to quantify the collected information, in Figure 2.13, bar charts
that show the relation of modeling and control options that have been reported in the
literature are presented. From this figure, it can be inferred that:

• Due to the simplicity of the approximated models, most of the researchers (60%)
use these kind of modeling strategies.

• Close to the 90% of the reported works are focused on maintaining a constant depth
in the OCIS, and usually (66%) this objective is reached by a control system that
regulates the level at the downstream end of the channels.

• In the literature, it is reported so far a similar interest around studying centralized
and non-centralized control architectures, and despite that the OCIS are strongly
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Table 2.5. Chronological compilation of reported control strategies for OCIS.

PID MPC LQR
Other Control

Strategies

2007
Litrico et al. 2007,
Feliu-Batlle et al. 2007

Begovich et al. 2007 Cantoni et al. 2007

2008 van Overloop et al. 2008b Dos Santos and Prieur 2008

2009
Lemos et al. 2009,
Feliu-Batlle et al. 2009a,
Feliu-Batlle et al. 2009b

Lemos et al. 2009,
Negenborn et al. 2009

2010
Lozano et al. 2010,
Rijo and Arranja 2010

van Overloop et al. 2010a
van Overloop et al. 2010a,
Durdu 2010

Hernández and Merkley 2010a,
Hernández and Merkley 2010b,
Blesa et al. 2010

2011

Domingues et al. 2011 ,
Feliu-Batlle et al. 2011,
Feng and Wang 2011,
Shang et al. 2011

Feng and Wang 2011 Diamantis et al. 2011

2012 Munir et al. 2012 Xu et al. 2012 Munir et al. 2012

2013 Herrera et al. 2013

Soler et al. 2013a,
Breckpot et al. 2013,
Soler et al. 2013b,
Figueiredo et al. 2013,
Wagenpfeil et al. 2013

Goudiaby et al. 2013

2014 Bolea et al. 2014c
van Overloop et al. 2014,
Horváth et al. 2014b

Bolea et al. 2014a

2015 Sadowska et al. 2015a
Puig et al. 2015,
Horváth et al. 2015a,
Horváth et al. 2015b

Sadowska et al. 2015a

2016

2017 Clemmens et al. 2017

Segovia et al. 2017,
Bonet et al. 2017,
Aydin et al. 2017,
Cen et al. 2017,
Le-Duy-Lay et al. 2017

2018 Nasir et al. 2018 Ke et al. 2018 Lacasta et al. 2018

2019 Zheng et al. 2019 Zheng et al. 2019
Zheng et al. 2019,
Tian et al. 2019,
Segovia et al. 2019

Liao et al. 2019

2020 Ke et al. 2020
Shahverdi et al. 2020,
Zeng et al. 2020

2021 Conde et al. 2021b Conde et al. 2021b
Conde et al. 2021b,
Nasir et al. 2021

coupled systems and the distributed architectures lead to partial implementation
of controllers overcoming the problems that decentralized architectures presents,
distributed control architectures appear as the less popular architecture in OCIS
control research.

• There is a slight preference in the use of the flow than the use of the structure
position as control-action variable.

• Only 30% of the reported works take the advantage of using FB + FF configura-
tions, which can be used to mitigate the delays and strong perturbations due to
programmed outlet flows (Malaterre, 2008).

• In OCIS, the MPC strategy emerges as the most studied control strategy.

49



2.5. DISCUSSION

Finally, it has been mentioned that the OCIS are usually manually controlled by operators,
which can not take immediate action in order to mitigate the effects of disturbances.
Therefore, even the implementation of the most simple and traditional control approaches
can lead to increasing the OCIS efficiency. However, the research in control of OCIS must
be conducted towards new control approaches that increase the efficiency of these systems,
which means control approaches that increase the relation between used and taken water.
However, in this review, it is highlighted that most of the reported research is focused on
the control objective of maintaining fixed levels or volumes into the channels, and there
are not reports that incorporate sources of losses like overflows, leaks, and evaporation
into the control problem. Specifically, losses due to leaks halve the efficiency of the OCIS
(Swamee et al., 2002). This problem has been analyzed from the structural construction of
the channels (Swamee et al., 2002), but the specific challenge of design control algorithms
for transporting water, minimizing losses due to leaks is a problem that has not been
properly addressed so far.

2.5.4 Remaining Gaps

At this point, it has been identified that the development of suitable control-oriented
modeling strategies and new control approaches that increase the efficiency of the OCIS
is an open problem that must be addressed. However, this is not the unique research gap
that in modeling and control of OCIS remains uncover. Therefore, some future directions
from previous literature reviews in control of OCIS, and other identified gaps are listed
next.

• In controlled systems, the flow through the regulation gate structures can change
abruptly when the gate aperture changes close to the water surface, causing un-
damped oscillations in the channels levels. This problem is accentuated in channels
that are short, flat, and deep (van Overloop et al., 2014). This problem was first
identified by Schuurmans (1997). Then, Litrico and Fromion (2004b) analyzed the
problem in the frequency domain, and van Overloop et al. (2014) developed and
evaluated modeling and control strategies for channels sensible to oscillatory effects.
However, more works and validation of multiple control and estimation strategies
for oscillatory OCIS are needed.

• Since the dynamics of the OCIS are non-linear, the exploration of non-linear con-
trollers in OCIS is recommended (Schuurmans, 1997). However, there are few re-
ports around non-linear control techniques for OCIS.

• In order to increase the efficiency in the use of water for agricultural systems, the
integration of control of OCIS with crop behavior is an important challenge that
must be addressed (Lamnabhi-Lagarrigue et al., 2017). This challenge has been
explored by Hassani et al. (2019), with the development of an economic-operational
framework used in a most economically efficient allocation of water, showing that
this kind of development would improve the management of agricultural systems,
improving economic, social, and environmental indicators under drought scenarios.
However, the development of models and control strategies that explicitly account
for static and dynamic interactions between water conveyance and crop behavior is
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a complex task that remains pending. In this direction, the exploration of cropping
systems models such as WOFOST (de Wit et al., 2019), and LINTUL3 (Shibu et al.,
2010) is recommended.

• The problems of detection and identification of failures, and DIMEUF has been
studied in few works (e.g., Weyer and Bastin 2008, Bedjaoui and Weyer 2011, Amin
et al. 2013a, Amin et al. 2013b, Segovia et al. 2018b). Additionally, robbery is one
of the most important problems in OCIS. This problem is well analyzed in (Canute,
1971). However, the development of unknown input estimation strategies able to
distinguish between the dynamical effect of a robbery episode or a leak is a topic
that has not been fully solved.

• The moving horizon estimation (MHE) is a strategy that in recent years has received
high attention. This estimation strategy can be formulated from a comprehensive
description of the system, where the unknown parameters can be associated with
uncertainties instead of residuals (Franze and Famularo, 2018). However, to the best
of the author knowledge, the MHE strategy has not been reported for DIMEUF in
OCIS.

• In OCIS, some operation conditions promote the sedimentation and growth of algae
and bryophytes (Wahlin and Zimbelman, 2014), obstructing the channels. There-
fore, in these systems, the maintenance operations must be frequent. However, to
the best of the author knowledge, only the work developed by Fovet et al. (2013)
has been reported around the use of control strategies to mitigate the algae grown
in OCIS.

• In most cases the OCIS are manually controlled. This fact is basically associated
to cost efficiency and security reasons. In this operation mode, the operator only
uses local information from the point where the actuated gate is located. Therefore,
the behavior of the controlled system is generally far from an optimal operation
condition (van Overloop et al., 2015). This problem has been addressed by Maestre
et al. (2014); Sadowska et al. (2015b); van Overloop et al. (2015) with the inclusion
of human agents in the sensing and actuation of model predictive controllers. This
is an interesting idea that has shown desired results in simulated systems. However,
there are few works around this problem and, to the best of the author knowledge,
there are no reports of the implementation of this control strategy in real systems.

• The development of control algorithms that include uncertainty effects appears as
an interesting field that could increase the performance of the OCIS. The OCIS are
continuously exposed to uncertain demands and meteorological effects. When the
OCIS work on-demand mode, the outlet flows are seen as unknown disturbances
that should be compensated by using a control strategy. However, Reddy (1996);
Mohan Reddy and Jacquot (1999); Nasir et al. (2018) claim that with the use of
historical outlet flows data and/or climatic conditions, it may be possible to describe
these disturbances as uniform random variables, where the predicted average is equal
to the outlet flow and there is a significant disturbance component with statistical
information, which can be included in the control strategy. This is a promising
control strategy. However, there are no descriptions about the algorithms that use
these climatic predictions, and/or historical outlet flows data, in the prediction of
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the users’ demands. On the other hand, due to recent advances in meteorological
effects prediction, the control of systems under meteorological effects is a challenging
problem that is receiving more attention (Maestre et al., 2012). For example, Raso
et al. (2013); Maestre et al. (2012); Raso et al. (2014); Ficch̀ı et al. (2016) report the
use of ensemble forecasting in the design of tree-based model predictive controllers
for drainage water systems and reservoirs. In this control approach, the forecast
uncertainty is used to set up a multistage stochastic problem, with the objective
of finding multiple optimal strategies according to multiple forecast possibilities,
showing that this control approach enhances the adaptivity to forecast uncertainty,
improving the operational performance.

• In OCIS, both water quantity and quality criteria must be addressed. For example,
salinity is a common problem in irrigated coastal areas (e.g., Aydın et al. 2019).
However, the development of control systems that integrate water quantity and
quality is scarce. This problem is broadly addressed by Xu (2013), where two
simplified modeling strategies that relate quality and quantity are proposed, and
the implementation of MPC controllers is evaluated, showing that both, quality
and quantity can be controlled. However, real implementations and more studies
around real-time quality measurement and consideration of uncertainties remain
pending.

• Most of the rivers, lakes, and wetlands are supported by groundwater. Almost all
the consumed freshwater is either groundwater or has been groundwater (Darnault,
2008). Therefore, this is a resource that must be protected, and its contamina-
tion and overexploitation must be avoided. However, as it is reported by Zhang
et al. (2018), due to agricultural activities, nitrogen pollution of groundwater is
growing. On the one hand, the OCIS are a direct recharge source for phreatic wa-
ter. Therefore, the incorporation of measurement and control strategies that avoid
groundwater contamination is an important task that must be addressed. On the
other hand, as it is shown by Hashemy Shahdany et al. (2018), in many irrigation
districts, groundwater is overexploited due to poor operational performance of the ir-
rigation systems, and the groundwater consumption can be drastically reduced with
the incorporation of suitable control strategies. Therefore, the development and im-
plementation of control strategies that reduce groundwater consumption must be
promoted.

• The SVE offers a fundamental and generalized description of the OCIS. However,
due to the SVE complexity, its direct use for control systems design has been avoided.
However, the OCIS are slow systems, and the current technology, as well as current
model-based control algorithms (e.g., non-linear model predictive control), appears
as an implementable strategy that could offer new objectives such as loss minimiza-
tion.

2.6 Summary

This chapter has presented a detailed literature review regarding modeling, magnitude
estimation of unknown flows, and control in OCIS. The review has been developed around
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a proposed classifications for modeling, estimation, and control approaches. Moreover, a
discussion with the aim of establishing suitable modeling, estimation, and control ap-
proaches and the research gaps that need to be addressed also has been established.

From the discussion, it is concluded that most of the simplified and approximated
models reported are an oversimplification of the OCIS dynamics, which are not useful to
test the behavior of the controllers under realistic conditions, and the grey-box models are
an attractive option for control systems design and testing. However, most of the grey-
box models reported are only useful for systems with weir structures in free-flow. This
oversimplification also affects the development and performance of the unknown flows
estimation strategies, where no consideration of conduction conditions can induce drift
in the estimation results. Additionally, in the discussion, a classification of the control
approaches for OCIS is given, and the most common control approaches are presented,
highlighting that the most common control objective is to maintain a constant depth at
the end of the channels. MPC is the control strategy that is getting the highest and
growing attention, and towards increasing the efficiency of the OCIS, the new control
approaches must be focused on increasing the efficiency of the systems reducing losses
due to leaks, evaporation, and overflows.

The identified modeling, estimation, and control problems are the guiding thread in
the development of this thesis. In Chapter 3 two approximated modeling strategies that
consider information about conduction conditions of the channels and can be used in
the dynamic description of systems with undershoot gates in submerged flow are pro-
posed. Moreover, in Chapter 4 the proposed strategy that has shown the most accurate
description of the OCIS is used in the development of a strategy for detection, isolation,
and magnitude estimation of unknown flows that considers potential and energy balances
along the channels. Furthermore, in Chapter 5 the design and implementation of conven-
tional control strategies is explored, the development of a non-linear control strategy for
open-channels with undershoot gates in submerged flows is proposed, and a non-linear
model predictive control strategy designed to reduce losses due to leaks and seepage is
also proposed.

53



Chapter 3

Control-Oriented Modeling
Approaches for OCIS

In OCIS, the incorporation of automatic control strategies is considered as one of the most
reliable way to reduce losses (Zheng et al., 2019). In order to reach the most favorable
behavior of the controlled system, the existence of accurate models for simulation and
control design is essential. As it has been shown in Chapter 2, the direct use of the
SVE for control systems design is impractical. For this reason, in the literature there are
reported the use of simplified and approximated control-oriented modeling approaches.
However, it has been identified the need of new control-oriented modeling approaches that
can be used to:

• Analyse most of the dynamic behavior of the real system, even with adverse condi-
tions, disturbances, noise, parameter variations, etc.

• Obtain models used for control systems design and analyses of performance indices
at an operation region.

• Test the designed controllers in presence of external disturbances and realistic sce-
narios.

• Describe the nonlinear dynamic behavior of open channels that are interconnected
with gates in submerged-flow, where the flow depends on the upstream and down-
stream depths of the regulation structure.

• Include information about potential energy balances along the channels.

Therefore, in this chapter, the analyses of three control-oriented modeling approaches
that could accomplish with the proposed requirements are performed. First, it is analyzed
a simplified modeling approach proposed by Litrico and Fromion (2004a), which is ob-
tained by linearization and Laplace transformation of the SVE. However, in this analysis,
the nonlinear hydraulic relationships of the regulation structures are conserved. Second,
it is proposed a modeling approach that assumes a constant potential energy difference
(CPED), which describes the dynamical behavior of the system by using a mass balance
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and the hydraulic mathematical descriptions of the regulation structures, assuming that
after a time delay and adjusted by a constant, the dynamic behavior at the downstream
end of the channel is similar to the dynamic behavior at the upstream end. Third, it is
proposed a modeling approach that includes the nonlinear hydraulic relationships of the
regulation structures, and mass and potential energy balances (M&PEB) that describe
the dynamical behavior of the OCIS. These approaches are evaluated by using the test
case proposed by Clemmens et al. (1998) that is implemented in EPA-SWMM (reference
model).

3.1 Modeling Approaches

3.1.1 Integrator Delay Zero (IDZ) Modeling Approach

The IDZ modeling approach has been proposed by Litrico and Fromion (2004a) showing
that for an open channel, the linearized Laplace transform of the SVE are spatial linear
ordinary differential equations that are solved obtaining a transfer function matrix with
xup and xdn as outputs, and q

i
and q

i+1
as inputs, where the parameters of the matrix

can be obtained from the physical parameters of the system. For low frequencies, this
modeling approach describes an open channel with two differential equations given by

aupiẋupi(t) =q
i
(t)− q

i+1
(t− τ

i
)− qouti(t− τi)

adniẋdni(t) =q
i
(t− τ

i
)− q

i+1
(t)− qouti(t).

In this approach, the system can be analyzed as two storage units. In the first storage
unit, with area aupi , the channel inflow enters at a time t, and the channel outflow leaves
the storage unit after a time delay τ

i
. In the second storage unit, with area adni , the

channel inflow enters at a time t− τ
i
, and the channel outflow leaves the storage unit at a

time t. In the original form of the IDZ the hydraulic relations of the regulation structures
are linearized in order to obtain a model for control design. In this work, the nonlinear
relations of the flows are conserved in order to obtain a nonlinear description of the OCIS
and validate the IDZ as a control-oriented modeling strategy.

3.1.2 Constant Potential Energy Difference (CPED)

This modeling approach has been proposed by using a mass balance per channel. In this
model, it is assumed that the upper part of the channel i has a depth xupi and the lower
part of the channel has a depth lhixupi(t−τi). That means that after a time delay, the level
at the lower part of the channel is similar to the level at the upper part but attenuated
by a constant lhi associated with a difference of potential along the channel. The mass
balance is described as follows:
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Fig. 3.1. Graphical description for the proposed energy and mass balances.

a
i
ẋupi(t) =

qi (t)︷ ︸︸ ︷
w
i
u
i
(t)
√

2gc
i

√
lhi−1

xupi−1
(t− τi−1)− xupi(t)

−

qi+1 (t)︷ ︸︸ ︷
w
i+1
u
i+1

(t)
√

2gc
i+1

√
lhixupi(t− τi)− xupi+1

(t)

−

qouti (t)︷ ︸︸ ︷
woutiuouti(t)

√
2gcouti

√
lhixupi(t− τi)− 0.5uouti(t) .

It is important to mention that parameters such as area (a
i
), discharge structure width,

and the discharge coefficient can be obtained by structural channel information. Other
parameters such as the time delay and the potential energy difference could be obtained
from experimental data.

3.1.3 Simplified Mass and Potential Energy Balance (M&PEB)

In this modeling approach, the inclusion of potential energy balances in the description
of the dynamical behavior of the OCIS is proposed. In this approximation, the modeling
approach assumes mass balances for two storage units per channel and a transition flow
between each storage unit. The transition flow is obtained from a simplification of the
concept of energy conservation along each channel. Figure 3.1 shows a representation of
the modeling approach, where the mass balance is given by

aupiẋupi(t) = q
i
(t)− qtri(t)

adniẋdni(t) = qtri(t)− qouti(t)− qi+1
(t),

(3.1)

with the flows q
i
(t), q

i+1
(t), and qouti(t) obtained from the flows associated with each

discharge structure. The flow transition (qtri(t)) is obtained from an energy balance given
by
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zupi + xupi +
vupi

2

2g
= zdni + xdni +

vdni
2

2g
+ hli , (3.2)

where the difference between zupi and zdni is the potential energy related to the channel

inclination, vupi and vdni are the upstream and downstream mean flow velocity,
vupi

2

2g
and

vdni
2

2g
are the kinetic energy at the upper and lower part of the channel. Besides, hli is

known as the head loss due to friction, which can be described by the Darcy-Weisbach
equation (U. S. Department of the Interior, 2001) by

hli = fi
l
i
vi

2

dhi2g
,

where fi is the friction factor, l
i

is the channel length and dhi is the hydraulic diameter.
In this model, an equal mean flow velocity along the channel is assumed, therefore the
mean flow velocity could be approximated by vupi = vdni =

qtri
wixupi

. On the other hand, fi
is a function of the Reynolds number, which is a relation between the viscous and inertial
forces in a fluid (Chaudhry, 2008). Therefore, the strongest assumption is to describe the
parameters fi, li , dhi , g, wi

with a unique transition constant ktri that could be obtained

from experimental tests. Then, assuming that hli ≈
q2
tri

ktri
2x2
upi

, and performing the energy

balance (3.2), the flow transition is given by

qtri = ktrixupi
√
xupi − xdni + zupi − zdni . (3.3)

The transition constant ktri can be obtained analysing the system in steady state,
where q

i
= qtri . On the other hand, the values of aupi and adni can be obtained using data

fitting techniques as shown by Ljung (2010).

3.2 Test Case and Experiment Settings

In order to obtain a reference model and analyze the behavior of the modeling approaches,
the test case proposed by Clemmens et al. (1998) is implemented in EPA-SWMM. This
test case is based on the Corning canal in California and has been proposed by the ASCE
Task Committee on Canal Automation Algorithms as a standardized test case on canals
with well-studied and realistic properties, where the variations in the pool lengths of the
channels presents a challenge in modeling and control. The test case is composed by eight
channels with cross regulation structures of the type undershoot gates in submerged flow,
and outlet regulation structures of the same type. The simulation diagram of the system
is shown in Figure 3.2, where the hydraulic dimensions and operational conditions are
given in Table 3.1.

On the other hand, in order to validate the behavior of the presented modeling ap-
proaches in a broad operation region, a variation routine for cross and outlet regulation
structures is proposed, where from the operational conditions of the system, at a time
of 100 hours, the first cross regulation structure (u1) is closed in a 30%, and each 100
hours each regulation structure is changed in a 50%. From the test, it is observed that
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Table 3.1. Hydraulic Characteristics (HC) and Operational Conditions (OC) of the test
case.

p1

HC

l1 7000 (m)

p2

HC

l2 3000 (m)

p3

HC

l3 3000 (m)

p4

HC

l4 4000 (m)
w1 7 (m) w2 7 (m) w3 7 (m) w4 6 (m)
zup1 4,4 (m) zup2 3,29 (m) zup3 2,83 (m) zup4 2,36 (m)
zdn1 3,29 (m) zdn2 2,83 (m) zdn3 2,36 (m) zdn4 1,73 (m)
wc1 7 (m) wc2 7 (m) wc3 7 (m) wc4 6 (m)
wout1 1 (m) wout2 1 (m) wout3 1 (m) wout4 1 (m)

OC

xup1 2,38 (m)

OC

xup2 2,65 (m)

OC

xup3 2,7 (m)

OC

xup4 2,7 (m)
xdn1 2,84 (m) xdn2 2,93 (m) xdn3 3,02 (m) xdn4 3,12 (m)
u1 0,35 (m) u2 1,18 (m) u3 0,95 (m) u4 0,85 (m)
uout1 0,22 (m) uout2 0,22 (m) uout3 0,21 (m) uout4 0,21 (m)

p5

HC

l5 4000 (m)

p6

HC

l6 3000 (m)

p7

HC

l7 2000 (m)

p8

HC

l8 2000 (m)
w5 6 (m) w6 5 (m) w7 5 (m) w8 5 (m)
zup5 1,73 (m) zup6 1,1 (m) zup7 0,63 (m) zup8 0,31 (m)
zdn5 1,1 (m) zdn6 0,63 (m) zdn7 0,31 (m) zdn8 0 (m)
wc5 6 (m) wc6 5 (m) wc7 5 (m) wc8 5 (m)
wout5 1 (m) wout6 1 (m) wout7 1 (m) wout8 1 (m)

OC

xup5 2,83 (m)

OC

xup6 2,78 (m)

OC

xup7 2,66 (m)

OC

xup8 5 (m)
xdn5 3,31 (m) xdn6 3,11 (m) xdn7 2,89 (m) xdn8 2,42 (m)
u5 0,78 (m) u6 0,59 (m) u7 0,53 (m) u8 2,67 (m)
uout5 0,2 (m) uout6 0,2 (m) uout7 0,21 (m) uout8 0,42 (m)

wout9 0,22 (m)
u9 0,13 (m)

Fig. 3.2. Simulation diagram of the implemented simulation in SWMM.

the average constant time of the channels is 50× 103s. Therefore, the reference system
is sampled with a sampled time (τs) of 1× 103s. The obtained data are used to adjust
the parameters of the modeling approaches CPED and M&PEB. In the CPED approach,
the areas (ai) are assumed to be the physical area of each channel. To obtain the lhi
constant, the system is analyzed at the steady-state operation, where xdni = lhixupi . For
each channel, xdni and xupi are obtained from Table 3.1. The delays τ

i
are obtained from

the dynamic behavior of the reference system. In the M&PEB approach, the transition
constants (ktri) are obtained analysing the system steady-state operation (3.1), where
q
i

= qtri . The flows q
i

are obtained using the respective flow relations, and the flows qtri
are obtained using 3.3. The values of the areas aupi and adni are obtained by data fitting,
where it is used the system described by

aupi
xupi(k + 1)− xupi(k)

τs
= q

i
(k)− qtri(k)

adni
xdni(k + 1)− xdni(k)

τs
= qtri(k)− qouti(k)− q

i+1
(k).

Therefore, it is proposed to solve the optimization problem given by
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Fig. 3.3. Behavior comparison of the simulated systems at the downstream level of the
fourth channel.

min
θai

‖φxiθai − yqi‖2

s.t.

aupi + adni = a
i
,

(3.4)

where, for an experiment with n data,

φxi =


xupi (k+1)−xupi (k)

τs

xdni (k+1)−xdni (k)

τs
xupi (k+2)−xupi (k+1)

τs

xdni (k+2)−xdni (k+1)

τs
...

...
xupi (k+n)−xupi (k+n−1)

τs

xdni (k+n)−xdni (k+n−1)

τs
,



yqi =


q
i
(k)− qouti(k)− q

i+1
(k)

q
i
(k + 1)− qouti(k + 1)− q

i+1
(k + 1)

...
q
i
(k + n− 1)− qouti(k + n− 1)− q

i+1
(k + n− 1)

 ,
and θai = [aupi adni ]

>. Here, the constraint aupi + adni = a
i

is included to ensure that
the overall area of the approximated model be equal to the physical system area. In that
form, this modeling strategy guarantees that the overall mass balance of the approximated
model is identical to the overall mass balance of the real system.

On the other hand, the parameters aupi , adni , τupi , and τdni of the IDZ model are
obtained using the equations for uniform flow proposed by Litrico and Fromion (2004c).
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Fig. 3.4. Comparison between ẋdn4 of the reference model and the modeling approaches.

3.3 Results and Discussion

Due to the difficulty of showing analysis data of the 16 depths of the systems, the detailed
comparisons of the dynamic behavior of the simulated systems are performed at an inter-
mediate part of the system. i.e., at the downstream level of the fourth channel. Therefore,
a comparison of the behavior of the simulated systems is shown in Figure 3.3. Addition-
ally, in this figure, a comparison of the normalized error between the reference model and
each modeling approach is shown. From these comparisons, it is possible to establish that
the evaluated modeling approaches offer an accurate description of the reference model,
with normalized errors lower than a 10% of the overall variation of the system. Also, it
is highlighted that the M&PEB modeling approach describes a more accurate behavior
than the CPED approach and than the IDZ approach. In the CPED approach and in the
IDZ approach the error is increased at higher depths. However, it is observed that instead
of this error, the behavior of the modeling approaches has a high dynamical relation with
the reference model. Therefore, in order to only compare the dynamical behavior of the
modeling approaches, in Figure 3.4 a comparison between ẋdn4 of the reference model and
the modeling approaches is presented, where the derivative is approximated using a differ-
ence relation. Additionally, in Figure 3.4, the normalized absolute error between ẋdn4 of
the reference model and the modeling approaches is presented. From these comparisons,
it is observed a high dynamic relation between the reference model and the modeling
approaches. Furthermore, it is observed that the M&PEB modeling approach presents
a more accurate behavior than the other two approaches. On the other hand, at some
times, the IDZ presents a contrary direction of the dynamics; in other words, the IDZ
shows a water level increase when the reference model is showing a water level decreases.

In Figure 3.5, the normalized mean absolute errors between the reference model and
the modeling approaches for all xup, xdn, and the approximations of ẋup, and ẋdn are
presented. From the comparison of the level errors, it is observed that, for the eight
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Fig. 3.5. Normalized mean absolute errors between the reference model and the modeling
approaches for the eight pools.

channels, the M&PEB approach describes with almost three times lowest error than the
other models, the behavior of the reference model. On the other hand, for the eight
channels, the three approaches show extremely low error describing the dynamic behavior
of the reference model, and the M&PEB approach presents the high dynamic relation.

The results of the comparisons show that with the use of the simplified and approx-
imated modeling approaches the dynamical behavior of the OCIS can be described. It
is evident that describing the nonlinear behavior of the OCIS, the M&PEB approach
presents better performance than the other approaches. That is because the IDZ and the
first modeling approach lost the nonlinear relationship that exists between the difference
of potential and the flow along a channel. Finally, the CPED modeling approach could be
presented as the simplest one, because it describes the dynamics of an open channel using
only one differential equation. However, the first approach, and the IDZ approach include
delays that increase the complexity of the simulation and control design strategies.

3.4 Summary

In this chapter, two approximated control-oriented modeling approaches for OCIS have
been proposed. The first approach has been designed assuming of a constant potential
energy difference along the channels, while the second one has been designed by the de-
velopment of approximated mass and potential energy balances for each channel. The
effectiveness of the proposed strategies have been validated against a specialized software
that solves the SVE of hydraulic systems, and against the integrator delay zero, which is a
well-known simplified modeling strategy reported in the literature. The results show that
the dynamic behavior of OCIS with undershoot gates in submerged flow can be described

61



3.4. SUMMARY

by using approximated and simplified modeling strategies. Moreover, the validation re-
sults show that, by the development of approximated mass and energy balances for each
channel, a more accurate description of the OCIS dynamics can be reached. Therefore, in
Chapter 4 the proposed modeling strategy that uses simplified mass and energy balances
for each channel is used in the design of strategies for detection, isolation, and magnitude
estimation of unknown flows.
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Chapter 4

DIMEUF in OCIS

The design of modeling and estimation strategies, useful for determining the magnitude
and location of unknown flows such as seepage and leaks, appears as a valuable tool to
increase the efficiency of the OCIS. However, as it has been identified, in OCIS, most
of the strategies reported on DIMEUF have been designed from linear models that do
not include information about energy balances along the channels, where these balances
are fundamental to differentiate changes of levels due to conduction effects, from changes
of levels due to unknown flows. In this chapter, the development of DIMEUF strategies
designed from the proposed OCIS modeling approach that includes M&PEB is addressed.
The designed strategies are based on an MHE approach, which is known for its inher-
ent capability of handling complex nonlinear systems and let the inclusion of additional
physical information of the system by the use of constraints (Zou et al., 2020). Along the
development of the estimation strategies, it has been identified that:

• In order to obtain accurate estimations of the unknown flow’s magnitude, the MHE
strategy must be enhanced with the addition of detection and isolation mechanisms.

• In the OCIS high inflow or outflow variations produce small level variations of the
system, and the unknown flows can easily be masked into small variations of level
measurements (i.e, measurement noise). Therefore, in the design of strategies for
DIMEUF rigorous noise analysis must be performed.

More specifically, in this chapter a new approach for DIMEUF in OCIS is presented,
which takes into account the effects of flow conduction and is designed by enhancing an
MHE approach with the inclusion of detection and isolation mechanisms. Then, from
the proposed estimation approach, a stochastic DIMEUF strategy that contemplates the
effects of measurement noise is also proposed.

4.1 Problem Statement

In OCIS, leaks can be given by accidental losses of water through orifices. A common
example of a leak is illustrated by Weyer and Bastin (2008), describing a gate letting
water through, even when it is fully closed. Another example can be given when water
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percolates through channel fissures. In these cases, such losses can be modeled as functions
of the level, where these unknown flows are localized, i.e., κmi(t)g(xmi(t)), where xmi is
the level at the mth

i position and κmi is a parameter related to the size of the orifice or
fissures aperture (Harr, 1991). In the following, the hydraulic description of an unknown
flow at the upstream part of the channel i is expressed as

supi(t) = κupi(t)
√
xupi(t), κupi(t) ≥ 0, (4.1)

where κupi(t) is a parameter that could suddenly change and is associated with the up-
stream orifice aperture. The hydraulic description of a leak at the downstream part of
the channel is expressed as

sdni(t) = κdni(t)
√
xdni(t), κdni(t) ≥ 0, (4.2)

where κdni(t) is the parameter associated with the downstream orifice aperture.

Simulation Model

Once the unknown flows have been defined, by using the proposed simplified modeling
strategy that performs mass and energy balances for each channel, the system can be
described by

aupiẋupi(t) = q
i
(t)− qtri(t)− supi(t) (4.3a)

adniẋdni(t) = qtri(t)− qouti(t)− qi+1
(t)− sdni(t) (4.3b)

yupi(t) = xupi(t) (4.3c)

ydni(t) = xdni(t), (4.3d)

where yupi(t) ≥ 0 and ydni(t) ≥ 0 are the measured upstream and downstream levels,
respectively. Flows q

i
(t) ≥ 0, q

i+1
(t) ≥ 0, and qouti(t) ≥ 0 can be obtained by measuring

the levels associated with the respective regulation structure.

Estimation Model

At this point, the OCIS can be modeled using two non-linear differential equations that
describe mass and energy balances for each channel. Now, with the objective to develop
a strategy for DIMEUF, by using an Euler discretization method, the modeling approach
(4.3) is used in the development of a discrete-time estimation model as follows:

x̂upi(k + 1) = x̂upi(k) +
τs
aupi

(q
i
(k)− q̂tri(k)− ŝupi(k)),

x̂dni(k + 1) = x̂dni(k) +
τs
adni

(q̂tri(k)− qouti(k)− q
i+1

(k)− ŝdni(k)),
(4.4)

where τs (s) is the sampling time; x̂upi(k) ≥ 0, x̂dni(k) ≥ 0, q̂tri(k) ≥ 0, ŝupi(k) ≥ 0,
and ŝdni(k) ≥ 0, are considered unknown variables to be estimated. These variables
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correspond to the upstream level, the downstream level, the flow transition, and the
upstream and downstream leaks, respectively. In contrast, the flows q

i
(k) ≥ 0, qouti(k) ≥

0, and q
i+1

(k) ≥ 0 are considered known variables that can be obtained from measurements
of the real system. A compact description of the discrete-time estimation model (4.4) is
given by

x̂
i
(k + 1) = G

i
x̂
i
(k) +H

i
ψ̂
i
(k) +Hfiξi(k),

ŷ
i
(k) = x̂

i
(k),

(4.5)

where the variables correspond to:

The vector of unknown states

x̂
i
(k) = [x̂upi(k) x̂dni(k)]>

The vector of unknown flows to be estimated

ψ̂
i
(k) = [q̂tri(k) ŝupi(k) ŝdni(k)]>

The vector of known flows

ξ
i
(k) = [q

i
(k) qouti(k) q

i+1
(k)]>

The vector of unknown outputs to be estimated

ŷ
i
(k) = [ŷupi(k) ŷdni(k)]>

The state matrix

G
i

=

[
1 0
0 1

]
The unknown flows matrix

H
i

=

[
τs
aupi

− τs
aupi

0

− τs
adni

0 − τs
adni

]

The known flows matrix

Hfi =

[
τs
aupi

0 0

0 − τs
adni

− τs
adni

]

Note that, according to the hydraulic descriptions of the unknown flows given in
(3.3), (4.1), and (4.2), the vector of unknown flows ψ̂

i
(k) can be described as a linear

combination of known or measured variables and unknown parameters as

ψ̂
i
(k) = Ω

i
(k)θ̂

i
(k),
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Fig. 4.1. Graphical description of data over an estimation window.

where Ω
i
(k) ∈ R3×3 is a matrix of hydraulic relations that can be obtained from measure-

ments of the real system by

Ω
i
(k) =

γi(k) 0 0

0
√
yupi(k) 0

0 0
√
ydni(k)

 ,
γ
i
(k) = yupi(k)

√
yupi(k)− ydni(k) + zupi − zdni ,

and θ̂
i
(k) ∈ R3 is a vector of time-varying unknown parameters to be estimated, described

as

θ̂
i
(k) = [k̂tri(k) k̂upi(k) k̂dni(k)]>.

These unknown parameters are associated to real and non-negative physical variables such
as areas and conduction coefficients (i.e., k̂tri(k), k̂upi(k), k̂dni(k) ≥ 0). This is important
information that must be included into the estimation strategies.

In order to estimate the vector of unknown parameters θ̂
i
(k), the MHE strategy is

considered. This is an optimization-based estimation strategy that consists in minimizing
a cost function defined over a receding time window of inputs and outputs data with
fixed length (Alessandri et al., 2008). This technique is known for its inherent capability
of handling complex nonlinear systems with constraints (Zou et al., 2020), showing that
it could be a suitable strategy to deal with the estimation problem in OCIS. However,
following, it is shown that the direct use of the MHE strategy leads to inaccurate esti-
mations of the unknown parameters. As it is shown in Figure 4.1, in the MHE strategy
an estimation window with length Nh that starts in Nhp = k − Nh + 1 and ends in k is
established. Note that the notation ŷ

i
(k | Nhp) indicates that the data ŷ

i
(k) depends on

the conditions at time Nhp. Over this window, the estimation of the model (4.4) is given
by
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Fig. 4.2. Estimation mechanism.

ŷ
i

= Φ
i
x̂
i
(Nhp | Nhp) +B

i
Ω
i
(k)θ̂

i
(k) +Bfiξi(k), (4.6)

where

ŷ
i

= [ŷ
i
(Nhp + 1 | Nhp)

> ŷ
i
(Nhp + 2 | Nhp)

> · · · ŷ
i
(k + 1 | Nhp)

>]>,

Φ
i

= [(G
i
)> (G2

i
)> · · · (GNh

i
)>]>,

B
i

=


H
i

0 · · ·
G
i
H
i

Hi · · ·
...

...
...

GNh−1
i

H
i
GNh−2

i
H
i
· · ·

 ,
Ω
i
(k) =diag(Ω

i
(Nhp | Nhp) Ω

i
(Nhp + 1 | Nhp) · · · Ω

i
(k | Nhp)),

θ̂
i
(k) = [θ̂

i
(Nhp | Nhp)

> (θ̂
i
(Nhp + 1 | Nhp))

> · · · (θ̂
i
(k | Nhp))

>]>

Bfi =


Hfi 0 · · ·
G
i
Hfi Hfi · · ·
...

...
...

GNh−1
i

Hfi GNh−2
i

Hfi · · ·

 ,
ξ
i
(k) = [ξ

i
(Nhp | Nhp)

> (ξ
i
(Nhp + 1 | Nhp))

> · · · (ξ
i
(k | Nhp))

>]>,

with ŷ
i
∈ R2Nh , Φ

i
∈ R2Nh×2, B

i
∈ R2Nh×3Nh , Ω

i
(k) ∈ R3Nh×3Nh , θ̂i(k) ∈ R3Nh , Bfi ∈

R2Nh×3Nh , ξ
i
(k) ∈ R3Nh , and 0 a null matrix with appropriate dimensions.

In order to find the estimated parameters θ̂
i
(k) that minimizes the deviation between

estimated and measured levels, first, the development of a conventional MHE strategy is
formulated. A block diagram of the MHE strategy is shown in Fig. 4.2, where additionally
to the estimation model and the optimization stage, it is taken into account that the
known flow measurements ξ(k) and the known hydraulic relations Ω

i
(k) are obtained

from levels measurements and positions of the regulation structures (Table 2.1). Also,
it is assumed that the level measurements are performed using ultrasound sensors, and
these measurements should be sampled and filtered. Therefore, a low-pass filter stage and
a sampling stage are included. As a result, as long as the noise is sufficiently attenuated
(in the estimation mechanism), the proposed objective function to be minimized can be
given by
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V
i

= ‖y
i
− ŷ

i
‖2
R1i

+ ‖θ̂
i
(k − 1)− θ̂

i
(k)‖2

R2i
, (4.7)

where y
i

is a vector of the measured levels given by

y
i

= [y
i
(Nhp + 1 | Nhp)

> y
i
(Nhp + 2 | Nhp)

> · · · y
i
(k + 1 | Nhp)]

>,

with y
i
∈ R2Nh . In (4.7), the term ‖θ̂

i
(k − 1)− θ̂

i
(k)‖2

R2i
is included as a forgetting fac-

tor that takes into account the influence of past estimations (Baillieul and Samad, 2015),
where θ̂

i
(k− 1) is the sequence of unknown parameters estimated in a previous iteration.

Moreover, R1i ∈ R2Nh×2Nh and R2i ∈ R3Nh×3Nh are diagonal and positive definite weight-
ing matrices that penalize the estimation error and the forgetting factor, respectively.
The constraints inclusion is used to add information to the estimation problem (Rawl-
ings et al., 2017), then, as the unknown parameters must be positive, the minimization
problem is proposed as

min
θ̂
i
(k)

V
i

s.t.

θ̂
i
(k) ≥ 0.

(4.8)

Note that the reachability of suitable sequences of the unknown parameters (θ̂
i
(k)) de-

pends on the convexity of the objective function (4.7). In Lemma 1, it is shown that the
use of a conventional MHE strategy does not guarantee an optimal estimation of θ̂

i
(k).

Lemma 1. From the objective function (4.7), only sub-optimal estimations of θ̂
i
(k) can

be reached.

Proof. A necessary condition for any local minimum to be a global minimum is the con-
vexity of the objective function (4.7). This condition can be reached if the Hessian with
respect to θ̂

i
(k) is positive definite, i.e.,

∇2
θ̂i (k)V i

= Ω
i
(k)>B>

i
R1iBi

Ω
i
(k) +R2i � 0. (4.9)

Since R1i and R2i are positive defined, the condition established in (4.9) is achieved if
Ω
i
(k)>B>

i
B

i
Ω
i
(k) � 0.

A sufficient condition for Ω
i
(k)>B>

i
B

i
Ω
i
(k) � 0 is that the rank of B

i
Ω
i
(k) should

be equal to 3Nh. But, given the dimensions of B
i

and Ω
i
(k), the maximum rank of

B
i
Ω
i
(k) is 2Nh. Therefore, the condition (4.9) and an optimal estimation of θ̂

i
(k) cannot

be reached.
However, by definition, Ω

i
(k)>B>

i
B

i
Ω
i
(k) is positive semi-definite (Bhatia, 2015),

then, the term

Ω
i
(k)>B>

i
R1iBi

Ω
i
(k)

is positive semi-definite.
Therefore, the Hessian ∇2

θ̂i (k)V i
is positive semi-definite and only sub-optimal esti-

mations of θ̂
i
(k) can be guaranteed.
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Fig. 4.3. Proposed detection, isolation, and estimation mechanisms.

A contextualized explanation of the problem can be synthesized in that the mini-
mization of the error between the upstream and downstream levels can be reached with
inaccurate combinations of the estimated unknown flows. Therefore, if only an unknown
flows estimation algorithm is used, inaccurate estimations of the unknown parameters can
be reached.

According to the approximate model order (4.3), the maximum rank of B
i

is 2Nh.
Therefore, if only two unknown inputs are considered, the convexity of the objective func-
tion can be guaranteed. For the two inputs case, H

i
is in R2×2, and the rank of B

i
is still

2Nh. This solution can be reached by estimation of the total amount of the upstream
unknown flows (−qtri(t)−supi(t)) and the total amount of the downstream unknown flows
(qtri(t) − sdni(t)). Then, by direct addition of the upstream and downstream unknown
flows, the total amount of unknown flows that affect an open-channel can be estimated.
This problem is solved in (Conde et al., 2021a) by using an MHE strategy. Other strate-
gies such as unbiased minimum-variance state estimation (Darouach and Zasadzinski,
1997), and state estimators with quadratic boundedness (Alessandri et al., 2006) could
be explored to solve this issue. However, by using the two unknown-inputs considera-
tion, the upstream and downstream origins of the unknown flows cannot be established.
Therefore, as a proposed solution, following, an enhanced strategy that includes detection
and isolation mechanisms is proposed.

4.2 Proposed Approach

In order to overcome the non-convex estimation problem, in Figure 4.3 an enhanced strat-
egy for DIMEUF is proposed, where: i) the detection mechanism uses information about
variations of the known flows (∆ξ

i
(k)) and variations of the measured levels (∆y

i
(k+ 1))

to estimate variations of the unknown flows (∆ψ̂
i
(k)); ii) in the isolation mechanism, the

information about the estimated variations of the unknown flows are used to establish the
origin of the unknown flow, which can be an either upstream or downstream unknown
flow; and iii) in the estimation algorithm, the forgetting factor of the unlikely unknown
flow is penalized in order to estimate the flow transition and the corresponding unknown
flow that minimizes the objective function (4.7).

Next, deterministic and stochastic analyses of the proposed strategies are performed.
The deterministic analysis is developed assuming that the noise can be sufficiently at-
tenuated by the filtering stage. On the other hand, the stochastic analysis is developed
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including information about remaining measurement noise that can affect the detection,
isolation, and estimation processes.

4.2.1 Deterministic Approach

Note that under the assumption that the measurement noise can be sufficiently attenu-
ated, the difference between the estimation mechanisms (Figures 4.2 and 4.3) is that in the
proposed strategy for DIMEUF the weighting matrix that penalizes the forgetting factor
(R2i(k)) is time varying. This weighting matrix is adjusted by the isolation mechanism,
which receives information from the detection mechanism as it is described next.

Detection Mechanism

The proposed detection mechanism is developed using a similar MHE strategy than the
developed for the estimation mechanism, with the difference that in the detection strategy,
the objective is to estimate the variations of the unknown flows. Therefore, from the
proposed estimation model (4.5), a variational estimation model is derived as

∆x̂
i
(k + 1) = G

i
∆x̂

i
(k) +H

i
∆ψ̂

i
(k) +Hfi∆ξi(k)

∆ŷ
i
(k) = ∆x̂

i
(k),

(4.10)

where, ∆x̂
i
(k + 1) = x̂

i
(k + 1) − x̂

i
(k); ∆ψ̂

i
(k) = ψ̂

i
(k) − ψ̂

i
(k − 1); and ∆ξ

i
(k) =

ξ
i
(k)−ξ

i
(k−1). Note that the variational estimation model maintains the same state and

input matrices than the estimation model (4.5). Therefore, over an estimation window,
the variational estimation model is given by

∆ŷ
i

= Φ
i
∆x̂

i
(Nhp | Nhp) +B

i
∆ψ̂

i
(k) +Bfi∆ξi(k),

where

∆ŷ
i

= [∆ŷ
i
(Nhp + 1 | Nhp)

> ∆ŷ
i
(Nhp + 2 | Nhp)

> · · · ∆ŷ
i
(k + 1 | Nhp)

>]>,

∆ψ̂i(k) = [∆ψ̂
i
(Nhp | Nhp)

> ∆ψ̂
i
(Nhp + 1 | Nhp)

> · · · ∆ψ̂
i
(k | Nhp)

>]>.

∆ξ
i
(k) = [∆ξ

i
(Nhp | Nhp)

> ∆ξ
i
(Nhp + 1 | Nhp)

> · · · ∆ξ
i
(k | Nhp)

>]>,

with ∆ŷ
i
∈ R2Nh , ∆ψ̂i(k) ∈ R3Nh , ∆ξi(k) ∈ R3Nh .

In the detection strategy, the objective is to find the vector of variations of the unknown
flows (∆ψ̂

i
(k)) that minimizes the quadratic error between the variations of the measured

levels (∆y
i
) and the variations of the estimated levels (∆ŷ

i
). Therefore, it is proposed

to minimize the cost function given by

J
i

=‖∆y
i
−∆ŷ

i
‖2
D1i

+ ‖∆ψ̂
i
(k − 1)−∆ψ̂

i
(k)‖2

D2i

, (4.11)

where the vector of variations of the measured levels is given by

∆y
i

= [∆y
i
(Nhp + 1 | Nhp)

> ∆y
i
(Nhp + 2 | Nhp)

> · · ·∆y
i
(k + 1 | Nhp)

>]>.

70



4.2. PROPOSED APPROACH

Besides, ‖∆ψ̂
i
(k − 1)−∆ψ̂

i
‖(k)2

D2i

is included as a forgetting factor, and ∆ψ̂
i
(k − 1)

is the vector of variations of unknown flows estimated in a previous iteration. Moreover,
D1i ∈ R2Nh×2Nh and D2i ∈ R3Nh×3Nh are diagonal and positive definite weighting matrices
that penalize the variational estimation error and the forgetting factor, respectively.

Isolation Mechanism

As it is shown in Figure 4.3, the proposed isolation mechanism uses unknown flows es-
timated variations (∆ψ̂i(k)) to establish the possible origin of the unknown flow and
penalizes the corresponding forgetting factor of the unlikely unknown flow. This is devel-
oped under the following assumption.

Assumption 1 (No simultaneous variations of leaks). In an open-channel, upstream and
downstream variations of unknown flows do not coincide at the same time.

Based on Assumption 1, the isolation mechanism can be described as a signal compar-
ison mechanism, where: i) a threshold value (Λ∆i

) is established in order to discriminate
between noise and real variations of unknown flows; ii) the magnitudes of the estimated
upstream and downstream variations of unknown flows are compared in order to establish
the feasible origin of the variation; and iii) in the objective cost function of the estimation
mechanism (4.7), the diagonal weighting matrix that penalizes the forgetting factor (R2i)
is adjusted as
R2i = diag(Rktri Rkupi Rkdni Rktri Rkupi . . . Rkdni), and the isolation mechanism
modifies Rktri , Rkupi , and Rkdni as follows:

• if an upstream unknown flow variation is most likely, then Rktri = αi, Rkupi = αi,
Rkdni = βi;

• if a downstream unknown flow variation is most likely, then Rktri = αi, Rkupi = βi,
Rkdni = αi;

where, if βi >> αi, the change of the unlikely unknown parameter is avoided, and the
minimization of the objective function of the estimation mechanism (4.7) is performed by
ktri(k) and the unknown parameter of the origin of the variation kupi(k) or kdni(k).

Estimation Mechanism

Finally, the information of the isolation mechanism is included in the cost function of the
estimation mechanism as follows:

V
i

=‖y
i
− ŷ

i
‖2

R1i

+ ‖θ̂
i
(k − 1)− θ̂

i
(k)‖2

R2i
(k). (4.12)

The cost function is minimized in order to obtain the magnitudes of the estimated pa-
rameters k̂tri(k) k̂upi(k), and k̂dni(k). Note that the magnitude of leaks and seepage can
be obtained by linear combinations of the estimated parameters and functions of the
upstream and downstream measured levels (4.1).
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4.2.2 Stochastic Approach

Even though the deterministic approach contemplates noise reduction with the inclusion
of a low-pass filter, the remaining measurement noise can affect the detection, isolation,
and estimation processes. Therefore, in this section, mechanisms that maximize the
likelihood detection and likelihood estimation of the unknown flows are designed. The
stochastic approach maintains the same detection, isolation, and estimation sequence
of the deterministic approach (see Fig. 4.3). However, for the sake of simplicity, the
stochastic estimation mechanism is discussed first, and then the stochastic detection and
isolation mechanisms are addressed.

Stochastic Estimation Mechanism

In the stochastic estimation mechanism, the remaining measurement noise after filter-
ing is considered. Moreover, as the known inputs q

i
, qouti , and q

i+1
are obtained from

measurements of the levels (see Table 2.1), the remaining measurement noise can also
affect the model dynamics. Consequently, an estimation model that includes remaining
measurement noise information can be stated by

x̂
i
(k + 1) = G

i
x̂
i
(k) +H

i
ψ̂
i
(k) +Hfiξi(k) + ω

i
(k),

ŷ
i
(k) = x̂

i
(k) + ν

i
(k),

(4.13)

where ω
i
(k) = [ωupi(k) ωdni(k)]> is the process estimation noise, ωupi(k), and ωdni(k)

are normally distributed noise, with zero mean and standard deviation σωupi and σωdni ,
respectively. Similarly, ν

i
(k) = [νupi(k) νdni(k)]> is the remaining measurement noise,

with zero mean and standard deviation σνupi and σνdni , respectively.
In order to consider the remaining measurement noise, and the expected values of the

levels, the estimation is performed under the following assumption.

Assumption 2 (Expected estimated levels). Over an estimation window, the expected
values of y

i
can be estimated from

ˆ̄y
i

= Φ
i
x̂
i
(Nhp | Nhp) +B

i
Ω
i
(k)T

i

ˆ̄θ
i
(k) +Bfiξi(k) +W

i
(k) +N

i
, (4.14)

where ˆ̄y
i
∈ R2Nh is the vector of estimated expected values of the output,

ˆ̄θ
i
(k) = [ˆ̄ktri(k) ˆ̄kupi(k) ˆ̄kdni(k)]> ∈ R3

are the expected values of the unknown parameters, and T
i
∈ R3Nh×3 is a block of identity

matrices such that T
i

ˆ̄θ
i
(k) ∈ R3Nh. Finally, W

i
(k) ∈ R2Nh and N

i
∈ R2Nh are the

corresponding process and measurement noise vectors, respectively.

It is emphasized that additionally to the noise inclusion, the deterministic and stochas-
tic cases (Equations (4.6) and (4.14)), differ in the configuration of the unknown param-
eters. Note that in (4.6), θ̂i(k) ∈ R3Nh is the estimated unknown parameters for each
instant of the estimation window. In contrast, in (4.14), it is considered that the unknown
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parameters (ˆ̄θ
i
(k) ∈ R3) are the same over the entire estimation window. In that form,

in the stochastic estimation mechanism, the objective is to find the unknown parameters

(ˆ̄θ
i
(k)) that makes the vector of measured levels y

i
most likely. For that a likelihood

function must be established, where over an estimation window, the process covariance
can be obtained from the estimation error e

i
= y

i
(k + 1)− ˆ̄y

i
(k + 1), and the covariance

is the expected value given by

P
i
(k + 1) = E

(
e
i
(k + 1)e

i
(k + 1)>

)
. (4.15)

Consequently, if a discrete model of the system is given by

x
i
(k + 1) = G

i
x
i
(k) +H

i
ψ
i
(k) +Hfiξi(k),

y
i
(k) = x

i
(k),

(4.16)

and if the unknown flows (ψ
i
(k)) are considered to be zero or identical to the unknown

estimated flows (ψ̂
i
(k)), by subtraction, from (4.13) and (4.16), the estimated error can

be written as

e
i
(k + 1) = G

i
e
i
(k) + ω

i
(k) + ν

i
(k + 1).

Therefore, from (4.15), the process covariance is given by

P
i
(k + 1) = G

i
P
i
(k)G>

i
+R + S, (4.17)

where

R =

[
σ2
ωupi

0

0 σ2
ωdni

]
, S =

[
σ2
νupi

0

0 σ2
νdni

]
.

Finally, the process covariance (4.17) is given by

Σ
i
(k) = diag[(P

i
(Nhp | Nhp), Pi(Nhp + 1 | Nhp), · · · Pi(k | Nhp))]. (4.18)

The process covariance contains information about the deviation that the expected values
present over an estimation window. Next, the process covariance is included in the devel-

opment of the likelihood function used to find the expected values of ˆ̄θ
i
(k). Then given the

process covariance (4.18) and the estimation process (4.14), a probability density function
(likelihood function) can be formulated as

f(y
i
| ˆ̄θ

i
(k)) =

1

(2π)Nh
∣∣Σ

i
(k)
∣∣1/2 e− 1

2
Υ, (4.19)

where

Υ = (y
i
− ˆ̄y

i
)Σ

i
(k)−1(y

i
− ˆ̄y

i
).

Now, the goal is to find the estimated values ˆ̄θ
i
(k) that makes the measured vector

(y
i
) most likely. Therefore, the probability density function (4.19) must be maximized
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with respect to ˆ̄θ
i
(k). However, as it is shown by Verhaegen and Verdult (2007), for

the sake of simplicity, the logarithm of (4.19) can be maximized leading to the following
minimization problem

minimize
ˆ̄θ
i
(k)

Υ.
(4.20)

Similarly to the deterministic case, in the objective function, in order to retain in-

fluence of past estimations, also the forgetting factor (‖ ˆ̄θ
i
(k − 1)− ˆ̄θ

i
(k)‖2

Rsi
) can be

included, leading to the cost function

V si = ‖y
i
− ˆ̄y

i
‖2

Σi (k)−1 + ‖ ˆ̄θ
i
(k − 1)− θ̄

i
(k)‖

2

Rsi(k)
, (4.21)

where Rsi(k) ∈ R3×3 is used to penalize the forgetting factor. Moreover, if constraints
on the unknown parameters are included, the minimization problem of the estimation
mechanism is formulated as

min
ˆ̄θ
i
(k)

V si

s.t.

ˆ̄θ
i
(k) ≥ 0.

(4.22)

Note that by following a similar analysis as in Lemma 1, the convexity of the stochastic
objective function (4.21) can be reached if the rank of B

i
Ω
i
(k)T

i
is 3Nh, but given the

dimensions of B
i
, Ω

i
(k), and T

i
, the maximum rank B

i
Ω
i
(k)T

i
is 2Nh. Therefore, in

order to obtain accurate estimations of the unknown flows, in the stochastic approach,
stochastic detection and isolation mechanisms must be included.

Stochastic Detection and Isolation Mechanisms

In the stochastic case, by following a similar procedure as employed in the derivation of
the variational estimation model of the deterministic case, from (4.13), the variational
estimation model is given by

∆x̂
i
(k + 1) = G

i
∆x̂

i
(k) +H

i
∆ψ̂

i
(k) +Hfi∆ξi(k) + ω∆i(k)

∆ŷ
i
(k) = ∆x̂

i
(k) + ν∆i(k),

(4.23)

where ω∆i(k) = [ω∆upi(k) ω∆dni(k)]> is related to the remaining process noise, ω∆upi(k)
and ω∆dni(k) are normally distributed noise with zero mean. Similarly, ν∆i(k) = [ν∆upi(k) ν∆dni(k)]>

is related to the remaining measurement noise, where ν∆upi(k) and ν∆dni(k) are normally
distributed noises with zero mean. Similarly to the stochastic estimation mechanism, in
order to consider the expected values of the level variations over an estimation window,
the variational model (4.23) is presented under the following assumption.

Assumption 3 (Expected estimated variations). Over the estimation window, the ex-
pected values of ∆y

i
can be estimated from
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∆ ˆ̄y
i

= Φ
i
∆x̂

i
(Nhp | Nhp) +B

i
T
i
∆ ˆ̄ψ

i
(k) +Bfi∆ξi(k) +w∆i

(k) + n∆i
,

where ∆ ˆ̄y
i
∈ R2Nh is the vector of estimated expected values of the output variations, and

∆ ˆ̄ψ
i
(k) = [∆ˆ̄qtri(k) ∆ˆ̄supi(k) ∆ˆ̄sdni(k)]>

is the vector of expected values of the unknown flows variations. Finally, w∆i
(k) ∈ R2Nh

and n∆i
∈ R2Nh are the corresponding noise vectors.

In the same way as in (4.17), the process covariance can be modeled as

P∆i
(k + 1) = G

i
P∆i

(k)G>
i

+R∆ + S∆,

Note that the measurement and process noises at different time instants are not corre-
lated (i.e., there is no correlation between ω

i
(k) and ω

i
(k − 1), and ν

i
(k) and ν

i
(k − 1)).

Therefore, the noise standard deviations of ω∆upi(k), ω∆dni(k), ν∆upi(k), and ν∆dni(k) are
given by 2σωupi , 2σωdni , 2σνupi , and 2σνdni , respectively. Hence,

R∆ =

[
2σ2

ωupi
0

0 2σ2
ωdni

]
, S =

[
2σ2

νupi
0

0 2σ2
νdni

]
.

As a result, the process covariance (Σ∆i
(k) ∈ R3Nh×3Nh) can be calculated yielding to

a diagonal matrix of the form

Σ∆i
(k) = diag(P∆i

(Nhp | Nhp), P∆i
(Nhp + 1 | Nhp), · · · P∆i

(k | Nhp)). (4.24)

Consequently, following the same procedure to obtain (4.21), the estimation of the
unknown flow variation, can be reached by minimizing the following objective function

Jsi =‖∆y
i
−∆ˆ̄y

i
‖2

Σ∆i
(k)−1 + ‖∆ ˆ̄ψ

i
(k − 1)−∆ ˆ̄ψ

i
(k)‖

2

Dsi
, (4.25)

where Dsi ∈ R3×3 penalize the forgetting factor.
Likewise as in the deterministic case, in the stochastic case, the isolation mechanism

uses the estimation of the expected unknown flow variations to establish the origin of
the unknown flow and to penalize the corresponding forgetting factor of the estimation
mechanism.

4.3 Simulation Test

The proposed deterministic and stochastic strategies are tested using the benchmark based
on the Corning canal in California, which has been presented by Clemmens et al. (1998)
and the ASCE Task Committee on Canal Automation Algorithms as a standardized
testbed on canals with well-studied and realistic properties.
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Fig. 4.4. Case study simulation in EPA-SWMM.

The testbed has been implemented SWMM as it is presented in Figure 4.4. Even
though the testbed is composed by eight channels, since the estimation strategies present
the same structure for any channel, the simulation is limited to only one channel (the first
channel of the testbed in Figure 4.4). This is a rectangular channel with the following
dimensions: length of 7000m, width of 7m, upstream elevation of 4.4m, and downstream
elevation of 3.29m. As it is highlighted in Figure 4.4, in the first channel, in order to
emulate the unknown flows to be detected and estimated, two orifices with variable areas
from 0 to 0.04m2 have been included. A more detailed description of the design and
implementation process follows.

4.3.1 Sampling Time

Although most of the OCIS are large-scale systems with very slow dynamics, it has been
observed that the time response of the system variation can be almost ten times faster
than the system dynamics. Therefore, in order to capture the dynamics of the system
variation, the sampling time has been selected by analysis of the time response level
variation. In this analysis, the classical control rule of choosing a sampling time ten times
smaller than the rise time (Litrico and Fromion, 2009) is used, yielding to a sampling
time of τs = 100s.

4.3.2 Model Areas

The values of the model areas (aupi , and adni) have been obtained by data fitting, where,
if absence of unknown flows and reduced noise measurements is assumed, the unknown
flow transition can be neglected by the addition of the two mass balances that describe
the system (4.3), which, using an Euler method, can be discretized yielding to

aupi
τs

(x̂upi(k + 1)− x̂upi(k)) +
adni
τs

(x̂dni(k + 1)− x̂dni(k)) = q
i
(k)− qouti(k)− q

i+1
(k).

(4.26)
In this case, aup1 = 21864m2, and adn1 = 27136m2. It must be highlighted that in order
to maintain a similar mass balance than in the real system, the data fitting problem has
been forced to aupi + adni = ai, where ai is the channel area of the real system.

4.3.3 Noise and Low-Pass Filter

As it is shown by Wahlin and Zimbelman (2014), there is a close relationship between
the measurement noise standard deviation and the sensor quality. In this case study, it is
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considered that in OCIS, levels are measured with ultrasound sensors, and according to
the quality of the commercial sensors, the measurement noise standard deviation could
be between 1 × 10−3m and 2.5 × 10−3m. Therefore, the deterministic and stochastic
algorithms have been tested with measurements obtained from the testbed implemented in
the SWMM, and the measurements have been contaminated with noise of these standard
deviations.

Moreover, it must be contemplated that in comparison with the system sampling time
(τs), the sensor’s sampling time should be small. This data availability is exploited with
the integration of low-pass filters to reduce the measurement standard deviation. For this
reason, a third-order low-pass filter is included with a cutoff frequency of 0.02Hz. This
frequency is chosen by using the Nyquist-Shannon sampling theorem, and the selected
sampling time of 100s. With the inclusion of the low-pass filter, the standard deviation
of the remaining measurement noise is almost ten times lower than the original.

4.3.4 Weighting Matrices

Detection Weighting Matrices of the Deterministic Mechanism

In the deterministic mechanism, for the sake of simplicity, the detection weighting matrices
of (4.11) can be described as D1i = d1iI2Nh

, and D2i = d2iI3Nh
, where d1i , and d2i are

positive weighting constants and I2Nh
, and I3Nh

are identity matrices with dimensions
2Nh × 2Nh and 3Nh × 3Nh, respectively. In the deterministic case, the relation between
the weighting parameters (d1i , and d2i) has been used as a tuning parameter. In the
tuning procedure:

• the weighting parameter that penalizes the forgetting factor has been chosen as
d2i = 1;

• Monte Carlo tests have been developed, where a key performance indicator (KPI)
has been established in order to find the value of d1i that minimizes the detection
error of the unknown flows.

The KPI (4.27) has been established in order to mitigate the noise detection and give
strong penalization of large detection errors by

KPI =

kf∑
k=1

(∆supi(k)−∆ŝupi(k))4

kf − 1
+

(∆sdni(k)−∆ŝdni(k))4

kf − 1
, (4.27)

where kf is the length of data used in the tests. The tests show that small values of d1i

attenuate the estimation noise, but also increase inaccurate detections. On the other hand,
large values of d1i increase the detection accuracy but also increase the noise detection.
The results of the Monte Carlo tests are shown in Figure 4.5, where it is observed that
d1i values close to 2× 105 offer the lowest detection errors.
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Fig. 4.5. Monte Carlo tests to establish the d1i values that offer the lowest detection
errors.
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Fig. 4.6. Monte Carlo tests to establish the r1i values that offer the lowest estimation
errors.

Estimation Weighting Matrices of the Deterministic Mechanism

Note that in the estimation cost function of the deterministic mechanism (4.7), the weight-
ing matrix that penalizes the forgetting factor R2i is modified by the isolation mechanism.
In this mechanism, the parameters αi and βi have been selected as αi = 1 and βi = 1×106,
where the arbitrary value of βi is higher enough to avoid the change of the unlikely flow.
On the other hand, the weighting matrix R1i has been simplified as R1i = r1iI2Nh

, where
r1i is a tuning constant. In order to find accurate r1i values, Monte Carlo tests have been
performed. In these tests, the r1i values are evaluated in order to minimize the mean
square error (4.28) between the estimated and measured unknown flows by

MSE =

kf∑
k=1

(supi(k)− ŝupi(k))2

kf − 1
+

(sdni(k)− ŝdni(k))2

kf − 1
. (4.28)

As it is shown in Figure 4.6, it has been found that small values of r1i reduce the noise
estimation with an inaccurate estimation of the unknown flows, and large values of r1i

increase the estimation accuracy but also the noise estimation, finding that with r1i values
close to 0.5×105, accurate and readable estimations of the unknown flows can be reached.

Weighting Matrices of the Stochastic Mechanism

Note that in the stochastic mechanism, the penalization matrices Σ
i
(k)−1 and Σ∆i

(k)−1

((4.21) and (4.25), respectively), are obtained from the process covariances (4.18) and
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Fig. 4.7. Monte Carlo tests where the red line correspond to a threshold value of 4.5 times
the maximum standard deviation of the estimated upstream and downstream unknown
flow variations.

(4.24), where the information about the noise standard deviations (σνupi , σνdni , σωupi
and σωdni) is required. All the standard deviations have been obtained from system
measurements at steady state. σνupi , and σνdni have been estimated directly from the
standard deviation of the measured noise. The standard deviations associated to the
flows measurements (σωupi and σωdni) have been estimated using the respective hydraulic
relation presented in Table 2.1, and discretized multiplying by τs

aupi
or τs

adni
as appropriate.

On the other hand, the forgetting penalization matrices (Dsi and Rsi(k)) have been set as
Dsi = I3, and Rsi(k) is modified by the isolation mechanism with αi = 1 and βi = 1×106.

4.3.5 Isolation Mechanism Threshold

For the deterministic and stochastic cases, the threshold value has been adjusted from
tests of the detection mechanisms at steady state, where the standard deviations of the
estimated upstream and downstream unknown flow variations have been used to adjust
the threshold value.

As it is shown in Figure 4.7, by the development of Monte Carlo tests, it has been
found that a threshold value equal to 4.5 times the maximum standard deviation of the
estimated upstream and downstream unknown flow variations avoids false detections and
allows unknown flows detections.

4.3.6 Implementation

Finally, the deterministic and stochastic approaches are implemented by using Algorithms
1, and 2 respectively. In these algorithms, the fl variable has been included to prevent
false triggering of the stochastic and deterministic detection mechanisms.

4.4 Simulation Results and Discussion

In the simulation results, the deterministic and stochastic approaches are contrasted us-
ing filtered measurement noise, where a noise attenuation close to 20dB is obtained.
Therefore, in order to test the approaches in the highest and lowest measurement noise
scenarios, first, the approaches are contrasted with a filtered measurement noise with a
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Algorithm 1 Deterministic estimation algorithm

Define, build, and obtain Nh, Φ
i
, B

i
, Bfi , D1i , D2i , Λ∆i

, βi, αi, and R1i .
while estimation is on do

Acquire and evaluate yupi(k), ydni(k), u
i
(k), ξ

i
(k), ∆yupi(k), ∆ydni(k), ∆ξ

i
(k)

if k > Nh + 1 then
Obtain y

i
, ξi(k), ∆y

i
, ∆ξi(k)

Obtain ∆ψ̂ by minimizing J
i

if |∆ŝupi(k)| < 0.1Λ∆i
and |∆ŝdni(k)| < 0.1Λ∆i

then
fl = 0

end if
if fl = 0 and |∆ŝupi(k)| > Λ∆i

and |∆ŝupi(k)| > |∆ŝdni(k)| then
Rktri = αi, Rkupi = αi, Rkdni = βi

else if fl = 0 and |∆ŝdni(k)| > Λ∆i
and |∆ŝdni(k)| > |∆ŝupi(k)| then

Rktri = αi, Rkupi = βi, Rkdni = αi
end if
Build R2i

Obtain θ̂
i
(k) by minimizing V

i

Obtain the unknown flow ψ̂
i
(k) = Ω

i
(k)θ̂

i
(k)

end if
end while

standard deviation of 1×10−4m; and second, the approaches are contrasted with a filtered
measurement noise with a standard deviation of 2.7× 10−4m.

4.4.1 Evaluation for the Smallest Noise Case

Figure 4.8 shows the performance comparison of the deterministic and stochastic detec-
tion mechanisms, where it is observed that when an unknown flow variation occurs, both
approaches present estimated upstream and downstream unknown flows variations. Also,
as expected, the stochastic mechanism presents the lowest noise amplitude. Additionally,
in both cases, it is observed small false detections that account for the upstream and
downstream levels interactions. Figure 4.9 shows the operation mode of the deterministic
and stochastic isolation mechanisms, where the threshold Λ∆1 is established at six times
the maximum experimental standard deviations between ∆ŝup1 and ∆ŝdn1 . Therefore,
only detections that overcome the threshold value are used to establish the origin of the
unknown flow and change the corresponding forgetting factor. In Figure 4.9, the determin-
istic and stochastic strategies present similar behavior. However, the relations between
the maximum detected variation and the threshold of the deterministic and stochastic ap-
proaches are close to 3.8 and 6.6, respectively. That means that the stochastic detection
mechanism offers a better relationship between the estimated signal and the estimated
noise. Therefore, with the stochastic mechanism, it is most likely to detect unknown flows
from noisy measurements. In Figure 4.10, the behaviors of the deterministic and stochas-
tic estimation mechanisms are shown, where the deterministic mechanism presents more
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Algorithm 2 Stochastic estimation algorithm

Define, build, and obtain Nh, Φ
i
, B

i
, Bfi , Σ∆i

(k), Dsi , Λ∆i
, βi, αi, Rsi(k), ωi(k), ν

i
(k),

and T
i
.

while estimation is on do
Acquire and evaluate yupi(k), ydni(k), u

i
(k), ξ

i
(k), ∆yupi(k), ∆ydni(k), ∆ξ

i
(k)

if k > Nh + 1 then
Obtain y

i
, ξi(k), ∆y

i
, ∆ξi(k)

Obtain ∆ ˆ̄ψ
i
(k) by minimizing Jsi

if |∆ˆ̄supi(k)| < 0.1Λ∆i
and |∆ˆ̄sdni(k)| < 0.1Λ∆i

then
fl = 0

end if
if fl = 0 and |∆ˆ̄supi(k)| > Λ∆i

and |∆ˆ̄supi(k)| > |∆ˆ̄sdni(k)| then
Rktri = αi, Rkupi = αi, Rkdni = βi

else if fl = 0 and |∆ˆ̄sdni(k)| > Λ∆i
and |∆ˆ̄sdni(k)| > |∆ˆ̄supi(k)| then

Rktri = αi, Rkupi = βi, Rkdni = αi
end if
Build Rsi

Obtain ˆ̄θ
i
(k) by minimizing V si

Obtain the unknown flow ψ̂
i
(k) = Ω

i
(k)ˆ̄θ

i
(k)

end if
end while
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Fig. 4.8. Performance comparison of the deterministic and stochastic detection mecha-
nisms.

accurate estimations than the stochastic mechanism. It occurs since the deterministic
estimation mechanism finds the optimal unknown parameters (k̂tr1 , k̂up1 , and k̂dn1) for
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Fig. 4.9. Comparison of the deterministic and stochastic isolation mechanisms, only
detections that overcome Λ∆1 are compared to establish the origin of the unknown flow.
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Fig. 4.10. Performance comparison of the deterministic and stochastic unknown flows
estimators.

each time instant. On the other hand, in the stochastic approach, over the estimation
window, it is found the expected value of the unknown parameters, showing difficulties
for rapid changes response. However, it is observed that the estimations of the stochastic
approach are suitable enough to be used for DIMEUF.

The total amount of the estimated unknown flows and the estimated flow transition
are shown in Figure 4.11, where both, the deterministic and stochastic strategies present
an ideal estimation of the total unknown flows. That means that despite the discrepancies
that the upstream and downstream unknown flows may show, the estimation satisfy the
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Fig. 4.11. Total amount of the estimated unknown flows and the estimated flow transi-
tion.

2

2.1

2.2

2.3

2.4

Le
ve

l (
m

)
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Fig. 4.12. Levels estimation comparison.

overall channel mass balance, and levels and flows discrepancies are compensated with
the flow transition. Note that, in order to compensate rapid changes, the flow transition
of the deterministic approach presents rapid variations.

The level’s estimation of the deterministic and stochastic approaches are similar and
accurate (Figure 4.12). This result corroborates the suitability of the selected modeling
strategy because, despite the downstream level of the reference model changes almost a
meter, the simplified selected strategy describes accurately the behavior of the system.
Moreover, it is highlighted that in the measured and estimated level, the presence of

83



4.4. SIMULATION RESULTS AND DISCUSSION

-2

-1.5

-1

-0.5

0

0.5

1

F
lo

w
 m

3
/s

∆ ŝup1
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Fig. 4.13. Evaluation in presence of highly-noised measurements, where it is highlighted
that the deterministic detection mechanism presents unreadable unknown flow detections.

remaining noise is almost imperceptible. This shows one of the hardest problems in
the estimation of unknown flows in OCIS, where due to the usual large areas that the
OCIS present, even large flow variations can be imperceptible from level measurements,
or can be masked between measurement and process noises. For that, next, the behavior
of the stochastic and deterministic approaches are tested in presence of highly-noised
measurements.

4.4.2 Evaluation for the Highest Noise Case

Figure 4.13 shows the advantage of the stochastic strategy in the detection of unknown
flows. In the deterministic strategy, it is observed that there are unreadable unknown
flow detections, which are masked for the noise estimation. Similarly, in Figure 4.14 it is
shown that the deterministic isolation mechanism is not capable of distinguish between
the estimated noise and all the estimated unknown flow variations. On the other hand,
the stochastic isolation mechanism is capable to accomplish with suitable detections for
all variations.

Figure 4.15, shows how the isolation problems of the deterministic mechanism induce
wrong penalizations and inaccurate estimations of the unknown flows. Conversely, in the
stochastic mechanism, the highest noise induce negative effects to the estimation algo-
rithm. However, in the stochastic mechanism, the estimated unknown flows are accurate
enough to be used for DIMEUF.

In the deterministic case, the isolation mechanism problems also affect the total es-
timation flow (Figure 4.16), and the estimation of the upstream and downstream levels
(Figure 4.17). In contrast, the stochastic mechanism only presents small discrepancies in
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Fig. 4.14. Evaluation in presence of highly-noised measurements, where it is shown that
the deterministic isolation mechanism is not capable of distinguish between the estimated
noise and all the estimated unknown flow variations.
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Fig. 4.15. Evaluation in presence of highly-noised measurements, where the isolation
problems of the deterministic mechanism induce wrong penalizations and inaccurate es-
timations of the unknown flows.

the estimation of the upstream and downstream unknown flows (Figure 4.15), highlighting
the proper performance of the stochastic strategy in presence of noisy measurements.

4.4.3 Unknown Flows Estimation Errors Comparison

In order to summarize the performance comparison among the deterministic and stochas-
tic approaches under the smallest and highest noise scenarios, Fig. 4.18 shows the box
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Fig. 4.16. Evaluation in presence of highly-noised measurements, where it is highlighted
that the isolation mechanism problems of the deterministic case also affect the total flow
estimated.
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ŷdn1
ydn1

0 2 4 6 8 10
Time (s) ×105

2

2.1

2.2

2.3

2.4

Le
ve

l (
m

)
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Fig. 4.17. Evaluation in presence of highly-noised measurements, where it is shown how
the isolation mechanism problems of the deterministic case also affect the estimation of
the upstream and downstream levels.

plots corresponding to distribution data of the upstream plus downstream unknown flows
estimation error, where the red lines are the average error value, and the blue lines are
first and third quartiles (25th percentile and 75th percentile), showing that even tough
the distribution is not normal, in the four cases the error is distributed close to zero.
The black lines represent the upstream and downstream limits that contain about 93%
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Fig. 4.18. Comparison of the upstream plus downstream unknown flows estimation error,
where: a. corresponds to the evaluation for the smallest noise case of the deterministic
approach; b. corresponds to the evaluation for the smallest noise case of the stochastic
approach; c. corresponds to the evaluation for the highest noise case of the deterministic
approach; and d. corresponds to the evaluation for the highest noise case of the stochastic
approach.

of the data, the red marks correspond to the outliers (0.7% of the data). This compar-
ison reveals the advantage of using the stochastic approach (b, d). In the smallest and
highest noise scenarios, the data dispersion of the stochastic approach is smaller than the
data dispersion presented for the deterministic approach. It must be highlighted that,
according to the data distribution, in both scenarios, by using the stochastic approach
the estimation precision is increased almost ten times. This finding justifies the use of the
stochastic over the deterministic approach.

4.4.4 Hydraulic Conditions

Despite the developed test has been performed over a realistic system, and the estimation
strategies have been contrasted against data obtained from a modeling tool that numeri-
cally solves the SVE of the hydraulic systems (obtaining successful results), one question
arises over the operative hydraulic conditions of the proposed DIMEUF strategies. Note
that the selected simplified modeling strategy is the fundamental element of the DIMEUF
approaches. Therefore, the operative hydraulic conditions of the estimation strategies can
be addressed from hydraulic analyses of the different flows that conform the simplified
modeling strategy.

Concerning the known channel inflows and outflows, by using the respective flow
relations, such as the presented in Table 2.1, the modeling strategy can be easily adapted
to multiple types of hydraulic structures. On the other hand, the flow transition in (3.3)
presents a hydraulic condition that must be analyzed. The flow transition only is real if the
head loss due to friction (hLi) is strictly positive. In that way, the proposed estimation
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approaches are only useful in OCIS with a considerable potential decay. In order to
illustrate this claim, the testings of the estimation strategies using a canal inspired on
lateral canal WM of the Maricopa Stanfield Irrigation and Drainage District in central
Arizona, reported by Clemmens et al. (1998) is also proposed. This canal is chosen because
it presents hydraulic characteristics that are highly different from the characteristics of
the Corning canal. The WM canal is a 100m length canal, with upstream elevation of
3.6m, downstream elevation of 3.3m, and width of 1.5m. Moreover, due to the short
length of the WM canal, their potential decay can be easily changed by modification of
the channel roughness.

In this order of ideas, in Fig. 4.19, the performance of a stochastic DIMEUF strategy
over the WM channel is shown. In this case, the WM channel has been simulated in EPA-
SWMM using a Manning roughness coefficient of 0.004 s/m1/3, and the DIMEUF strategy
has been designed following the same procedure that had been exposed to the Corning
canal. Moreover, in Fig. 4.19, the behavior of the head loss due to friction is shown. Note
that despite the head loss due to friction is small, this is always positive and the DIMEUF
strategy reaches an accurate estimation of the unknown flows. On the other hand, in Fig.
4.19, the head loss due to friction behavior of the WM channel with a Manning roughness
coefficient of 0.001 s/m1/3, is shown, where it is observed that the head loss due to friction
is close to zero, and there are sections that show negative values of the head loss due to
friction. This negative values, which could be attained to the equal mean flow velocity
assumption of the approximated model, make impossible the implementation of the de-
veloped DIMEUF strategies. This result, which could be interpreted as a limitation of the
simplified modeling strategy and therefore of the DIMEUF strategies, can be overcome if,
for control and estimation purposes, the channels that have a small head loss due to fric-
tion are modeled as a unique storage unit, with area equal to the channel area and known
inflows modeled by using the hydraulic relation given in Table 2.1. In this case, there is
a limitation on identifying the either upstream or downstream unknown flow origin, and
there is no need to use detection and isolation mechanisms. Another option, which is out
of this work scope, could be to eliminate the modeling assumption of an equal mean flow
velocity along the channel. This solution implies to use of the SVE in order to establish
differential equations that describe the momentum conservation. This information could
be used to identify the instant differences between the momentum conservation of the real
and modeled systems. Therefore, the development of DIMEUF strategies designed from
the SVE have the potential of improving the reached results in this work. However, due
to the complexity of the SVE, and the probable model order increases, this development
is not evident.

4.5 Summary

In this chapter, the proposed control-oriented modeling strategy developed from approx-
imated mass and potential energy balances has been used in the design of two strategies
for DIMEUF. Therefore, the estimation strategies take into account the effects of flow
conduction. These strategies have been designed exploiting the advantages that the MHE
approach shows in dealing with constrained non-linear systems. The proposed strategies
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Fig. 4.19. Head loss due to friction for channel with high roughness coefficient.
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Fig. 4.20. Head loss due to friction for channel with low roughness coefficient.

also take advantage of the forgetting factor, which has been used to overcome the problem
of sub-optimal unknown flow estimations observed with the direct use of an MHE. The
strategies have been designed from deterministic and stochastic points of view, and have
been tested by using two well-known benchmarks with different characteristics. The test
shows that by including information about noise and expected level values the estimation
performance increase, and that the proposed estimation strategies offer an accurate esti-
mation of unknown flows in channels with considerable decay of potential. However, it
is highlighted that channels with small decay of potential can be modeled as reservoirs,
with the corresponding adaptation of the estimation strategies. Note that the accurate
estimations of the unknown flows can be used to take opportune actions in the affected
channels, but also can be used to improve accuracy and considered information in control-
oriented models (i.e., parameters associated with leaks and seepage). In this order of ideas,
knowing that parameters associated with unknown flows such as leaks and seepage can
be estimated, in Chapter 5 multiple control strategies are presented, where one of these
strategies is developed to minimize losses associated with leaks and seepage.

89



Chapter 5

Control Approaches for OCIS

In OCIS, flows and levels are controlled with hydraulic regulation structures, and each
regulation structure position is calculated by an administrator of the irrigation district,
who is the person that assigns the appropriate amount of water to the users. Commonly,
each regulation structure is manually adjusted by operators, whom perform these tasks
throughout kilometers of channels, adjusting hundreds of hydraulic structures. In the
normal operation of the OCIS disturbances are common (e.g., flow variation at the source,
channel obstructions, leaks, and even water robbery), and with this kind of manual system
operation, there are no possibilities of an opportune intervention. These disturbances
might cause overflows, incorrect water supply to the users, and a high environmental
impact. Automatic control strategies might be one technological option in order to deal
with these issues. This chapter presents the developed research on control alternatives
for OCIS.

First, in Section 5.1, an illustrative example is proposed with the objective to show
a contextualized description of the most popular modeling strategy (integrator delay),
and the most common control techniques that have been reported in the OCIS con-
trol field (PID, LQR, and MPC)(Conde et al., 2021b). Moreover, in the illustrative
example, centralized and distributed architectures are described under feedback and feed-
back+feedforward configurations. Some examples dealing with control-action variable
and control objectives are shown. On the other hand, as it has been shown in Chapter
3, the integrator delay and other control-oriented models reported, do not include infor-
mation about channel interactions. Therefore, in order to design control strategies for
interacting OCIS, in Section 5.2, from the proposed control-oriented model that assumes
a constant potential energy difference along the channels, a nonlinear model-based con-
trol strategy for interacting OCIS that ensures the system stability despite nonlinearities,
internal delays, and channel interactions is proposed.

Finally, in Section 5.3, in order to contribute to the waste of water reduction, an
efficient control approach for OCIS capable to reduce the waste of water by up to 50%,
is presented. The proposed approach is a non-linear model predictive control strategy
that operates under request mode and has been designed from a simplified modeling
strategy. In the design of the non-linear model predictive control strategy, sufficient
controllability and reachability conditions that guarantee the controlled system stability
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have been presented. Moreover, the proposed control strategy has been tested using a
well-known testbed proposed in the literature, and the results show that by using this
strategy an appropriate amount of water to the users can be supplied and the waste of
water can be reduced.

5.1 Conventional Control Strategies: An Illustrative

Example

The objective of this section is to show an illustrative example that includes descriptions
of the most popular modeling strategy (ID), and the most common control techniques
that have been reported in the OCIS field (PID, LQR, and MPC). Moreover, in this
example, there are descriptions of centralized and distributed architectures, feedback and
feedback+feedforward configurations, as well as descriptions about control-action variable
and control objective. In this direction, an OCIS with three channels is proposed, where
the control objective is to maintain a constant depth at the downstream end of the
channels, overcoming disturbances and outlet flows. The three channels are modeled using
the ID control-oriented modeling strategy, and at the end of each channel, a permanent
outflow is assumed to be regulated with an undershoot gate. Therefore, the outlet flow of
the channel i is given by kouti

√
xdni , where kouti is a constant. The model of the proposed

system is given by

a1ẋdn1 = −kout1
√
xdn1 + q1(t− τ1)− q2 − qout1

a2ẋdn2 = −kout2
√
xdn2 + q2(t− τ2)− q3 − qout2

a3ẋdn3 = −kout3
√
xdn3 + q3(t− τ3)− qout3 ,

(5.1)

where a1 = 1000m2, a2 = 2000m2, a3 = 1000m2, τ1 = 200s, τ2 = 300s, τ3 = 200s. The kouti
parameters are given by kout1 =

√
2, kout2 =

√
1.5, and kout3 = 1. In the case study, the

three most common control strategies are tested (PID, MPC, and LQR). Consequently,
in order to obtain a design model, the proposed system is linearized at an equilibrium
point given by

0 = −kouti
√
x̄dni + q̄

i
(t− τi)− q̄i − q̄outi , (5.2)

where x̄dn1 = 2m, x̄dn2 = 1.5m, x̄dn3 = 1m, q̄1 = q̄1(t − τ1) = 4.5m3/s, q̄2 = q̄2(t − τ2) =
2.5m3/s, q̄3 = q̄3(t− τ3) = 1m3/s, q̄outi = 0m3/s. Hence, the following linearized model is
obtained:

a1δẋdn1 = −1

2
δxdn1 + δq1(t− τ1)− δq2 − δqout1

a2δẋdn2 = −1

2
δxdn2 + δq2(t− τ2)− δq3 − δqout2

a3δẋdn3 = −1

2
δxdn3 + δq3(t− τ3)− δqout3 ,

(5.3)

where δxdni(t), δqi(t), and δqouti(t) are levels and flow variations around the equilibrium
point. The linearized system describes a highest bandwidth given by ωb = 1/2000 rad/s.
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Therefore, following the recommendations presented by Litrico and Fromion (2009), the
linear system is discretized with 100s sampling time (τs), obtaining the following linear
discrete-time system:

δxdn1(k + 1) = a11δxdn1(k) + a12δq1(k − 2) + b12δq2(k) + bd11δqout1(k)

δxdn2(k + 1) = a44δxdn2(k) + a45δq2(k − 3) + b43δq3(k) + bd42δqout2(k)

δxdn3(k + 1) = a88δxdn3(k) + a89δq3(k − 2) + bd83δqout3(k),

(5.4)

where δxdni(k), δq
i
(k), and δqouti(k) are the levels and flow variations at time instant

k. Moreover, a11 =
(

1− τs
2a1

)
; a12 = τs

a1
;b12 = − τs

a1
; bd11 = − τs

a1
; a44 =

(
1− τs

2a2

)
;

a45 = τs
a2

;b43 = − τs
a2

; bd42 = − τs
a2

; a88 =
(

1− τs
a3

)
; a89 = τs

a3
; and bd83 = − τs

a3
.

5.1.1 LQR Design

With the objective to obtain a classical state-space realization of the linearized discrete-
time system (5.4), the delays are transformed into states. In this direction, the proposed
change of variables is shown in Figure 5.1, where x1(k) = δxdn1(k); x2(k) = δq1(k − 2);
x3(k) = δq1(k − 1); x4(k) = δxdn2(k); x5(k) = δq2(k − 3); x6(k) = δq2(k − 2); x7(k) =
δq2(k − 1); x8(k) = δxdn3(k); x9(k) = δq3(k − 2); x10(k) = δq3(k − 1); and z−1 is the
representation of a discrete time delay. With this change of variables, the discrete linear
system can be described as

x1(k + 1) = a11x1(k) + a12x2(k) + b12δq2(k) + bd11δqout1(k)

x2(k + 1) = x3(k)

x3(k + 1) = δq1(k)

x4(k + 1) = a44x4(k) + a45x5(k) + b43δq3(k) + bd42δqout2(k)

x5(k + 1) = x6(k)

x6(k + 1) = x7(k)

x7(k + 1) = δq2(k)

x8(k + 1) = a88x8(k) + a89x9(k) + bd83δqout3(k)

x9(k + 1) = x10(k)

x10(k + 1) = δq3(k).

(5.5)

Therefore, the discrete-time linear system can be synthesized using a classical state-space
realization of the form x(k + 1) = Ax(k) + Bδq(k) + Bdδqout(k); and y(k) = Cx(k),
where x(k) ∈ R10 is the state vector; δq(k) ∈ R3 the input vector; δqout(k) ∈ R3 the
disturbance vector; A ∈ R10×10 the state matrix; B ∈ R10×3 the input matrix; Bd ∈
R10×3 the disturbances matrix; and C ∈ R3×10 the output matrix such that y(k) =
[x1(k) x4(k) x8(k)]>.

Figure 5.2 shows the proposed structure of a centralized LQR control for OCIS. Note
that as it is shown in the change of variables, z− indicates the states that can be obtained
from time delays of the flow variations, and the integral part is included with the objective
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Fig. 5.1. Graphical description of the delays transformation into states, where ai,j is a
constant at the i, j position of the state matrix, bi,j is a constant at the i, j position of
the input matrix, and bdi,j is a constant at the i, j position of the disturbances matrix.

of having null steady-state error. Therefore, the controller is designed using an augmented
system of the form xA(k + 1) = AAxA(k) + BAδq(k); and yA(k) = CAxA(k), where
xA(k) ∈ R13 is the augmented state vector; AA ∈ R13×13 the augmented state matrix;
BA ∈ R13×3 the augmented input matrix; and CA ∈ R3×13 the augmented output matrix.
In specific,

AA =

[
I C
0 A

]
, BA =

[
0
B

]
, CA =

[
0 C

]
,

where I and 0 are identity and zero matrices with suitable dimensions, respectively.
In Figure 5.2, it is observed that the control law is given by q(k) = q̄+δq. This control

law does not include information about the outlet flows, hence the controlled system has
an FB configuration. Moreover, K ∈ R3×13 is the control matrix. In order to obtain K,
in the LQR controllers, the optimization problem to be solved is to maintain the state
vector close to the origin without an excessive expenditure of control effort (Kirk, 2004).
Then, the objective function to be minimized is given by

J =
∞∑
k=0

(
xA
>(k)QxA + δq>(k)Rδq(k)

)
, (5.6)

where Q, R are diagonal weighting matrices that are used as tuning parameters that
penalize the state and control variables. This test has been developed with diagonal
values of 100 and 1 for Q and R, respectively. The optimal regulation law is a linear
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Fig. 5.2. Proposed structure of an LQR for OCIS.

Fig. 5.3. Proposed structure of an MPC for an OCIS.

combination of the system states of the form δq(k) = −KxA(k), and the matrix K is
obtained through the solution of the Riccati Equation (Kirk, 2004).

5.1.2 MPC Design

Figure 5.3 shows the proposed structure of the MPC, where the integral action is an
essential part of this control strategy, and is added at the input of the system. Therefore,
an augmented description of the discrete-time linear system (5.5) is given by

94



5.1. CONVENTIONAL CONTROL STRATEGIES: AN ILLUSTRATIVE EXAMPLE

x1(k + 1) = a11x1(k) + a12x2(k) + b12δq2(k) + bd11δqout1(k)

x2(k + 1) = x3(k)

x3(k + 1) = x11(k)

x4(k + 1) = a44x4(k) + a45x5(k) + b43δq3(k) + bd42δqout2(k)

x5(k + 1) = x6(k)

x6(k + 1) = x7(k)

x7(k + 1) = x12(k)

x8(k + 1) = a88x8(k) + a89x9(k) + bd83δqout3(k)

x9(k + 1) = x10(k)

x10(k + 1) = x13(k)

x11(k + 1) = x11(k) + ∆q1(k)

x12(k + 1) = x12(k) + ∆q2(k)

x13(k + 1) = x13(k) + ∆q3(k),

(5.7)

then, it is obtained a classical state-space realization of the form xM(k+1) = AMxM(k)+
BM∆q(k) + BdMδqout(k), where xM(k) ∈ R13 is the state vector; AM ∈ R13×13 the aug-
mented state matrix; BM ∈ R13×3 the input matrix; BdM ∈ R13×3 the input disturbances
matrix; and ∆q(k) ∈ R3, the input vector. As shown in Figure 5.3, the MPC has informa-
tion about the outlet flows, hence the centralized controller has FB + FF configuration.
The prediction and control horizons chosen are Hp = Hc = 5. In that way, Maciejowski
(2002) points out that the model for control design, assuming that all states are measur-
able, has the form

y(k + 1) = Ψx(k | k) + Υ∆q(k) + Ωqout(k), (5.8)

where ∆q(k) = [∆q(k | k) ∆q(k + 1 | k) . . . ∆q(k + 5 | k)]>, qout(k) = [qout(k) qout(k +
1) . . . qout(k + 5)]>, Ψ ∈ R15×13, Υ ∈ R15×15, and Ω ∈ R15×15.

The optimization problem to be solved consists of finding the signal control ∆q(k) that
minimizes the deviation of the estimated controlled variable from the upcoming reference
values and minimize the change in the control-action variable (Le-Duy-Lay et al., 2017).
In this sense, the objective function for the MPC-based closed-loop scheme is given by

V(k) = ‖δr(k)−Ψx(k)−Υ∆q(k)− Ωqout(k)‖2
Q + ‖∆q(k)‖2

R, (5.9)

where δr(k) = [δr(1) δr(2) . . . , δr(5)]> is the reference vector, and Q, R are diagonal
weighting matrices. This test has been developed with diagonal values of 10 and 1 for
Q and R, respectively. Assuming that there is a dynamic behavior in the master-slave
flow control, in this problem constraints in maximum flow variations are imposed. The
restrictions are expressed in the form −0.01 ≤ ∆q(k) ≤ 0.01, which means that in one
unit of time the flow can only change by 0, 01m3/s. Finally, the optimization problem
is formulated as a quadratic programming problem (Maciejowski, 2002), which is solved
with the interior-point-convex algorithm (MATLAB, 2019).
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Fig. 5.4. Proposed structure of a PI control + Smith predictor for OCIS.

5.1.3 PI + Smith Predictor Design

Figure 5.4 shows the structure of a PI + Smith predictor control for a channel i, where a
distributed control architecture is proposed. Each PIi(z) controller is designed from the
transfer function that describes the dynamic behavior of the channel, where the linearized
system has output δxdni(k), input δq

i
(k − b τi

τs
e), and the inputs δq

i−1
(k) and qouti are

assumed to be disturbances. The operator b.e indicates the nearest integer, and the

discrete-time delay associated to a transfer function can be denoted by z−b
τi
τs
e. However, in

order to maintain the uniformity of the presented control strategies, z− is used to indicate
the time delay associated with a transfer function. Therefore, the transfer function that
describes the channel i is given by

δxdni(z)

δq
i
(z)

= G
i
(z)z−.

Here, Gi(z) = τs
aiz+τs−1

is used for designing the PIi(z) controller, obtaining a proportional

gain kpi = 1 and an integral gain kii = τs
2Ai

. Moreover, Gi(z)z− is used to build the
predictor with output x̂dni(k) and input δq

i
(k). In this control system, the objective is to

minimize the tracking and prediction error by using the variation of q
i
(k), which classically

includes the PI controller output (δq
i
(k)), and the operation point (q̄

i
). In this design, it

is proposed to compensate the amount of flow required by the neighbor channel δq
i−1

(k)
and outlet flows qouti(k), obtaining a distributed and FB+FF architecture with a control
law given by

q
i
(k) = q̄

i
+ δq

i
(k) + δq

i−1
(k) + qouti(k). (5.10)

5.1.4 Simulation and Results

The tracking behavior of the three approaches, evaluated on the nonlinear system, is
shown in Figure 5.5, where all of them show adequate performance. Additionally, it is
seen that the PI + Smith predictor shows high decoupling behavior for reference changes
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Fig. 5.5. Tracking behavior of the system controlled with MPC, LQR and PI + Smith
predictor. The black dashed lines represent the targets for ydn.
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Fig. 5.6. Disturbances-rejection behavior of the system controlled with MPC, LQR and
PI + Smith predictor.

at upstream channels but low decoupling behavior for reference changes at downstream
channels. This is due to the fact that the control law in (5.10) maintains a mass balance by
the addition of changes at the upstream flow q

i−1
(k). The decoupling behavior of the LQR

and MPC controllers is uniform for references and outlet flows changes at both upstream
and downstream channels. Also, in Figure 5.5, it is observed that the control signals of
the LQR and PI controllers are more aggressive than the control signal computed by the
MPC controller. One advantage of the MPC is the possibility of including constraints in
the control signal, therefore, the MPC shows the less aggressive control signal, obeying
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Table 5.1. Normalized key performance indicators that summarize the disturbances-
rejection behavior of the system controlled with MPC, LQR, and PI + Smith predictor.

p1 p2 p3

MPC LQR PI MPC LQR PI MPC LQR PI
MAE 0.20 0.37 0.82 0.67 0.39 0.99 1.00 0.95 0.52
IAE 0.10 0.11 0.34 0.74 0.18 0.64 1.00 0.25 0.14
StE 0.05 0.01 0.05 0.69 0.10 1.00 0.89 0.02 0.02
IAQ 0.07 0.37 0.93 0.15 0.23 1.00 0.16 0.27 0.96

the flow variation constraint. Moreover, in Figure 5.5 it is possible to see the control
prediction effect, where the control signal starts before the change in the reference signal.
The disturbances-rejection behavior of the system controlled with MPC, LQR, and PI
+ Smith predictor is shown in Figure 5.6, and summarized in Table 5.1. As shown in
Figure 5.6, the disturbances qouti have permanent and normally distributed components.
As it has been previously highlighted, the control law (5.10) of the PI + Smith predictor
produce high decoupling behavior for permanent disturbances at upstream channels but a
low decoupling behavior for permanent disturbances at downstream channels. Moreover,
it must be highlighted that in the PI + Smith predictor case, the third channel presents the
lowest integral absolute error, but this result is reached by inducing high inflow channel
variations. However, this behavior could generate risks for the canal infrastructure. In
most of the cases, the LQR presents the best StE indicators, showing that this could be a
suitable option to reject normally distributed disturbances. On the other hand, the MPC
presents the IAQ better indicators, showing the advantages in the inclusion of constraints
in order to obtain less aggressive control actions.

Moreover, according to the results, the three control strategies have shown appropriate
behavior and can be implemented following systematic procedures. Furthermore, it must
be highlighted that the LQR and MPC strategies also can be performed using distributed
and FF+FB configurations. On the other hand, the use of the ID model as a design model
shows that this strategy is successful in designing conventional control strategies with
multiple control configurations. However, due to the over simplicity of the ID modeling
strategy, in order to assert the suitability of control strategies designed from simplified
models, the development of control strategies comparisons on real systems is necessary.

5.2 Control of Interacting Channels

OCIS with undershoot gates have interactions between channels, and according to the
United States Department of Agriculture (U. S. Department of the Interior, 2001) under-
shoot gates are the most common hydraulic regulation structures in open-channels. This
can be seen in the irrigation districts in Tolima-Colombia, where only undershoot gates
are used to regulate flows and levels along the channels. However, in OCIS, most of the
research has dealt with the problem of modeling and control of OCIS without channel in-
teraction (e.g., Cantoni et al. 2007; Weyer 2008; Rabbani et al. 2009b; Aguilar et al. 2009;
van Overloop et al. 2010b; Nasir and Muhammad 2011; Herrera et al. 2013; Sadowska
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et al. 2015a). Recently, the research around modeling and control of interactive OCIS has
earned significant relevance and some research such as (Le-Duy-Lay et al., 2017; Aydin
et al., 2017; Horváth et al., 2015b; Breckpot et al., 2013) has been developed in the field.
However, these works avoid the nonlinear interaction by linearization such as the work
developed by Le-Duy-Lay et al. (2017), where the desired behavior is restricted around
the equilibrium point, or by the strong assumption that there is a perfect flow control for
each discharge structure (e.g., Aydin et al. 2017; Horváth et al. 2015b; Breckpot et al.
2013). On the other hand, there are nonlinear control techniques that have shown suitable
behavior controlling interactive nonlinear systems with delays but had not been used in
OCIS. In a specific way, the nonlinear control technique known as backstepping has shown
a successful performance over nonlinear systems with delays (Hua et al., 2009), where the
control technique is applied to a two-stage chemical reactor with delayed recycle streams.
The work developed by Mazenc and Bliman (2006) shows a control technique where back-
stepping is used to stabilize nonlinear systems with large delays. Finally, Choi and Yoo
(2016) shows the implementation of backstepping for nonlinear large-scale systems with
delayed interactions. In this section the control-oriented modeling strategy that assumes
a constant potential energy difference along the channels is used in the design of a non-
linear control strategy useful to overcome nonlinearities, delays, and interactions in the
OCIS. The control strategy is tested over a proposed system with two channels, showing
proper performance in the presence of parameter variation.

5.2.1 Nonlinear Control Strategy

In the following, the control-oriented modeling strategy that assumes a constant potential
energy difference along the channels is considered, where each channel can be described
with the following differential equation:

aiẋupi = w
i
u
i

√
2gc

i

√
lhi−1

xupi−1
(t− τ

i−1
)− xupi

− w
i+1
u
i+1

√
2gc

i

√
lhixupi(t− τi)− xupi+1

+ qouti ,
(5.11)

where levels and flows are proposed to be controlled by action of the downstream regu-
lation structures u

i+1
. Note that if the proposed model is used for M channels, a highly

interactive model of M differential equations with M inputs and M outputs will be ob-
tained and could be described by

ẋup = f(xup, xup(t− τ), u), (5.12)

with xup ∈ RM , and u ∈ RM .
In this strategy, the control objective is to maintain a constant depth at the upstream

end of the channel. Therefore, with the aim to ensure zero stationary error for the
controlled system, the open loop system is augmented with an integral action. Then, for
the model that describes a channel in (5.11), with regularization error e

i
= xrefi

− xupi ,

99



5.2. CONTROL OF INTERACTING CHANNELS

Fig. 5.7. Augmented system in cascade configuration.

where xrefi
is the desired depth for the channel i, the system is augmented with η̇

i
= e

i
.

Hence, the resultant system is given by

η̇
i

= xrefi
− xupi , (5.13a)

ẋupi = fa(xupi ,βi
) + fb(xupi(t− τi),βi

)u
i+1
, (5.13b)

where [η
i
, xupi ]

T ∈ R2, η
i
∈ R, and xupi ∈ R are the state variables, u

i+1
∈ R is the control

signal, fa : D → R, fb : D → R, for that the operator
√
. is changed by sgn(.)

√
|.|, and

β
i

is a vector with external variables that can be measured and used for control purpose,
β

i
= (xupi−1

, xupi−1
(t − τ

i−1
), xupi+1

, u
i
). As shown in Figure 5.7, the augmented system

could be seen as a cascade system, where the objective is to find a control strategy u
i+1

that ensures the stability of the origin (η
i

= 0, xupi = 0), for all xrefi
= 0. The control

technique could be seen as a step-by-step method, where:

1. A change of variable xupi = φ
i
(η

i
), φ(0) = 0 is proposed. Then, in (5.13a), φ

i
(η

i
)

is assumed as a control variable with the objective that φ
i
(η

i
) ensures the global

asymptotic stability so that V̇1i < −W1i(η), where W1i(η) is positive definite and
V1i(η) is a known Lyapunov function. The control variable is

φ
i
(η

i
) = xrefi

− λaiηi ,

where (λai ∈ R : λai < 0) is used as a tuning constant. Then, according to the
control law, now (5.13a) is given by η̇

i
= λaiηi , and with V1i(ηi) = 1

2
η
i
2, V̇1i =

λaiηi
2. Hence, the origin of (5.13a) is globally exponentially stable.

2. According to the last assumption, a new variable emerges in the system. This
variable is the error between the control signal φ

i
(η

i
) and the variable xupi ; this

error is denoted by z
i

= xupi − φi(ηi), then the dynamical behavior of the error is
given by ż

i
= fa(xupi ,βi

) + fb(xupi(t− τi+1
),β

i
)u

i+1
− d

dt
[xrefi

− xupi ], then
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ż
i

=
q
i

a
i

+ λaixrefi
− λaixupi

−
w
i
ui(t)
√

2gc
i

√
lhixupi(t− τi+1

)− xupi+1

a
i

+
w
i
u
i
(t)
√

2gc
i

√
lhi−1

xupi−1
(t− τ

i−1
)− xupi

a
i

,

(5.14)

where a feedback law for u
i+1

is now chosen with the objective to ensure the global

asymptotic stability of (5.14). In this case, V̇i(ηi , xupi) < −W
i
(η

i
, xupi), where

W
i
(η

i
, xupi) is positive definite and Vi(ηi , xupi) = Vi,1(η

i
) + 1

2
z
i
2. Hence, the desired

system ż
i

= λbz is proposed, where λbi ∈ R : λbi < 0, is used as a tuning constant
and the control law for u

i+1
is given by

u
i+1

=
1

w
i

√
2gc

i

√
lhixupi(t− τi+1

)− xupi+1

(q
i

+ w
i
u
i

√
2gc

i

√
lhi−1

xupi−1
(t− τ

i−1
)− xupi

+ λaixrefi
a
i
− λaixupiai

− λbixupiai − λbiλaiηiai + λbixrefi
a
i
).

Then, V̇i(ηi , xupi) = λaiηi
2 + λbizi

2. Hence,the origin (η = 0, z = 0) is asymptot-
ically stable and due to the fact that φ(0) = 0, the origin (η = 0, y = 0) is also
asymptotically stable.

3. The dynamical behavior of the controlled system is given by

η̇i = xrefi
− xupi

ẋupi = λaiλbiηi + (λai + λbi)xupi − (λai + λbi)xrefi
,

which is an uncoupled second order system with characteristic polynomial given by
Pi(s) = s2 + s(−λai − λbi) + λaiλbi .

5.2.2 Simulation and Results

In order to validate the control technique performance, an OCIS with two channels is
proposed. The model is simulated in the SWMM software (Lewis, 2017). In this software,
the model is codified by a graphic description of the system as presented in Figure 5.8,
and the most relevant parameters of the simulation are listed in Table 5.2.

Parameters Adjustment and Model Validation

Figure 5.9 shows the dynamic behavior of the depth at the upstream and downstream end
of the channels simulated in SWMM. This test is developed with null initial conditions
and with an intake of 0.6m3/s. The parameters for the proposed model are obtained from
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Fig. 5.8. Simulation diagram of an OCIS with two channels in the SWMM software.

Table 5.2. Most relevant parameters of the two channels system

Junction 1,2 Inflow 0.6m3/s , 0

Channel 1,2

Shape Rectangular
Width 1m
Lenght 1000m
Roughness 0.005

Gate 1,2

Category Orifice
Type Side
Shape Rectangular
Width 1m
Discharge Coeff. 0.9
Height 0.35m, 0.1m
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Fig. 5.9. Dynamic depth behavior in SWMM.

the experimental results shown in Figure 5.9, where lh1 and lh2 are obtained from the
stationary system behavior, with equilibrium points in x̄up1 = 2.58m, lh1x̄up1 = 2.56m,
x̄up2 = 2.35m, and lh2x̄up2 = 2.31m. To obtain τ1 y τ2 , the dynamical behavior is analyzed
as shown in Figure 5.9, where the first intersection corresponds to the value of τ1 ≈ 320s,
and the second is used to obtain the value of τ2 ≈ 1205s −τ1 . Then, the values assigned
to the proposed model are collected in Table 5.3.
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Table 5.3. Values of the parameters assigned to the proposed model

Parameter Value
M 2
a1 ,a2 1000m2,1000m2

lh1 ,lh2 0.99,0.98
q1 ,q2 0.6 m3/s,0 m3/s
u1 ,u2 0.35m,0.1m
w 1m
c
i

0.9
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Fig. 5.10. SWMM vs. proposed model for a step of 0.6m3/s in the intake flow.
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Fig. 5.11. Model simulated in SWMM vs. proposed model for changes in gates 1 and 2.

Figure 5.10 shows the comparison between the model simulated in SWMM and the
proposed model for a step of 0.6m3/s at the intake flow. In this figure, it is observed that
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Fig. 5.12. Level tracking test.

the proposed model presents similar behavior to the model simulated in the specialized
software SWMM. On the other hand, Figure 5.11 shows a comparison between both
systems. In this case, a step variation is made in the height of the first gate (u1) and
the height of the second gate (u2). According to the results of the comparison (Figures
5.10,5.11), the proposed model have similar dynamical and statical behavior than the
model simulated in the specialized software. Additionally, the procedure presented to
obtain the parameters of the proposed model is also suitable to obtain the parameters of
any real system.

Performance of the closed-loop scheme

The backstepping control strategy is implemented in the proposed system. As a result, a
linear system with eigenvalues in λa1 , λb1 , λa2 , and λb2 is obtained. The control system is
tuned with λ = −0.0002 with the purpose of ensuring a constant time close to the open-
loop system in Figure 5.9. In the test, some changes in the references are performed;
Figure 5.12 shows the tracking performance for each channel depth, and each control
signal. This figure reveals that the controlled system presents the expected behavior
with zero-stationary error, time response equal to 1/0.0002, and smooth control signal.
Moreover, the presented overshoot corresponds to the time solution of the closed-loop
system, for λa1 , λb1 , λa2 , λb2 = λ, which is described by a diagonal matrix of identical

transfer functions given by
yup,i(s)

yref,i(s)
=

2s
−λ+1

( s
−λ+1)2 .

Finally, the robustness of the controlled system is tested with an increment of 10%
in the parameters (area, gate width, outtake flow, and delay). Figure. 5.13 shows the
closed-loop system behavior in the presence of these disturbances, where the controlled
system maintains stability and desired dynamical behavior. This shows the robustness of
the control technique, which implies that changes in areas and delays due to diverse events
like sedimentation, cause small disturbances in the performance of the controlled system.
On the other hand, flow changes due to gate width variations, and intake or outtake flow,
cause a significant effort in the control signal. However, the controlled system overcomes
the problem and return to an equilibrium state.

104



5.3. AN EFFICIENT CONTROL APPROACH FOR OCIS

0.8

1

Channels Depth (m)

0,2

0,4

0,6

Gates Height (m)

0.6

0.8

1

0,2

0,6

0,8

0.6

0.8

1

0.2

0.6

0.8

Time (s) ×10
4

0.6

0.8

1

Time (s) ×10
4

0 1 2 3 4 5 6 7 8 9 10 11

0,2

0,4

0,6

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 5.13. Level tracking test with model variations and disturbances.

5.3 An Efficient Control Approach for OCIS

Water scarcity can be seen as one of the most relevant worldwide challenges. Currently,
multiple efforts are focused on either overcoming or mitigating the water shortage, which is
a problem that increases with the imminent global population growth (Niswonger et al.,
2017; Uniyal and Dietrich, 2021). Moreover, the agriculture can be seen as the main
responsible for water scarcity; it is well known that most of the water consumed for
the humanity is used in irrigation process (Zhu et al., 2019; Uniyal and Dietrich, 2021).
Furthermore, additionally to the world population increase and the increasing demand
for water (Loch et al., 2020), there are multiple factors that might contribute to the
future water scarcity, e.g., i) climate change; ii) growing food demands; iii) biophysical,
ecological, and political limits for croplands expansions; iv) water pollution; and v) new
intensive production techniques in agriculture that use irrigated agriculture because this
is more productive than rain-fed agriculture (Zhu et al., 2019). One of the main solutions
to deal with the current/future water scarcity problem is to increase the efficiency of
the crops’ production process (Zhu et al., 2019; Uniyal and Dietrich, 2021), where the
challenge is to increase crop yield using less or almost the same amount of water. Such
a goal can be reached by minimizing water losses along the production process. In this
direction, it is important to realize that most of the water used for agricultural purposes
is transported through networks of open-channel irrigation systems (OCIS), and in these
systems, more than half of water is lost by leaks, seepage, and evaporation (Swamee et al.,
2002).

In OCIS, losses due to leaks and seepage are usually reduced with structural main-
tenance and design. For example, Swamee et al. (2002) propose an optimal structural
design of minimum water loss sections for triangular, rectangular, and trapezoidal canals.
On the other hand, as it has been highlighted by Conde et al. (2021b), to the best of
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the authors’ knowledge, the reduction of losses due to leaks and seepage has not been
studied from a control point of view. Specifically, most of the reported works on control
of OCIS have been developed around the upstream and downstream control objectives of
maintaining a constant depth at either upstream or downstream end of the channels (e.g.,
Segovia et al. (2019); Ke et al. (2020); Shahverdi et al. (2020); Zeng et al. (2020); Arauz
et al. (2020)), and by position adjustment of the outlet structures, the required discharge
is regulated to each user (Cantoni et al., 2007). Moreover, leaks and seepage have a direct
hydraulic relation with the water level at the point where each leak or seepage occurs.
Therefore, the objective of maintaining a constant depth, also ensures permanent losses
in the OCIS. In order to overcome this problem, a new control strategy that accomplishes
the users’ demands minimizing the water levels along the channels is proposed.

The proposed strategy takes advantage from the on-request operational mode of the
OCIS. In such an operational mode, the users must request in advance to the central
administration the amount of hydraulic resource that will be consumed. Then, the pro-
grammed demands and an accurate model of the system are employed in the development
of a nonlinear model predictive control (NLMPC) strategy, which has the objective of de-
livering an appropriate amount of water to the users, maintaining the channels levels
as low as possible, and into an operation range where the overflows and, ecological or
infrastructural damage are avoided.

Therefore, it is presented a proposal to change the conventional control objective of
maintaining constant levels that ensure constant losses, for a new control strategy where
the channel levels and flows can variate to satisfy the users demands, minimizing levels,
and preventing overflows, and ecological or infrastructural damage. In this direction,
three challenges are addressed:

• To choose a modeling strategy that accurately describes the levels and flow dynamics
of the OCIS over different operation conditions.

• To design a receding cost function that delivers the appropriate amount of water to
the users, minimizing levels, and satisfying hydraulic constraints.

• To establish the conditions that avoid the overflows and ecological, or infrastructural
damage.

As a result, the main contribution of this chapter is the development of a new OCIS
control strategy capable of delivering an appropriate amount of water to the users, re-
ducing losses due to seepage and leaks, preventing overflows, and either ecological or
infrastructural damage.

5.3.1 Problem Statement

In OCIS, the conventional upstream and downstream automatic control approaches main-
tain a fix level at the upstream or downstream end of the channels. The use of these auto-
matic control strategies reduces losses due to inopportune responses, or errors in manual
operations. However, these strategies maintain a constant level, which also maintains
constant losses due to leaks and seepage. Note that leaks and seepage are modeled as

106



5.3. AN EFFICIENT CONTROL APPROACH FOR OCIS

Fig. 5.14. Schematic of the control strategy and its implementation into the operation
of the OCIS.

functions of the levels where these losses occur (Harr, 1991; Swamee et al., 2002; Bedjaoui
et al., 2009). In specific, in this thesis, losses at the upstream end of the channels are
modeled as

supi(t) = κupi

√
xupi(t), (5.15)

and losses at the downstream end of the channels are modeled as

sdni(t) = κdni
√
xdni(t), (5.16)

where i is used to identify the ith channel; xupi(t) and xdni(t) are depths at the upstream
and downstream end of the channels; and κupi and κdni are parameters associated to the
physical aspects that produce the leaks or seepage, such as the dimensions and forms of
an orifice that produce a leak. In this order of ideas, in OCIS, leaks and seepage can be
minimized by minimizing the levels of the channels. However, in order to guarantee the
system operativity, this minimization must be performed with the accomplishment of the
users’ demands and the hydraulic constraints that the OCIS presents.

5.3.2 Proposed Approach

The objective of the proposed control approach is to supply the scheduled amount of
water whilst, minimizing losses due to leaks and seepage. In this direction, a control
strategy that operates in on-request mode is proposed. Figure 5.14 shows the schematic
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of the control strategy and its implementation for the operation of the OCIS, where it
is observed that the users demands are evaluated by the central administration of the
system, who is in charge of scheduling the demands (douti) into the control strategy. Such
a strategy is based on the nonlinear model predictive control (NLMPC) approach, where
a dynamic optimization problem is solved to find either an optimal or sub-optimal control
action that accomplishes with the user’s demands while the OCIS levels are minimized. In
the NLMPC strategy, the idea is to recursively use a model of the system to predict and
find the control actions that optimize the future system’s behavior (Grüne and Pannek,
2011), while satisfying some physical and operational constraints.

In order to predict the future behavior of the OCIS, a dynamic behavioral evolution of
the OCIS must be obtained. In NLMPC, the dynamic behavioral evolution is achieved by
discretization and numerical solution of the discretized model along the time. Therefore,
the prediction accuracy depends on the accuracy of both the modeling approach, and
the discretization method. In this direction, the fundamental models that describe the
OCIS are the Saint-Venant Equations (SVE), but the direct use of these equations for
control systems design is impractical (Rabbani et al., 2010). Therefore, in the literature,
multiple types of linear control-oriented models that describe the OCIS dynamics have
been reported (Conde et al., 2021b). The problem is that most of the reported control-
oriented models are suitable when the control objective is to maintain the upstream or
downstream levels close to an operation region. However, in this control approach, the
proposed control strategy finds the optimal flows and levels that accomplish the users’
demands at the same time that water levels along the channels are minimized. This
implies that the controlled OCIS can operate along multiple operation regions (levels).
Therefore, the modeling approach presented in (Conde et al., 2020), which has shown
that is capable to describe the OCIS along a wide operation region, is used1. In the
modeling approach, each channel is described as two storage units and by performing
mass and energy balances for each one of the units, the dynamics of the ith channel can
be described by two nonlinear differential equations as follows:

aupiẋupi(t) = q
i
(t)− qtri(t)− supi(t)

adniẋdni(t) = qtri(t)− qouti(t)− qi+1
(t)− sdni(t),

(5.17)

where the flow transition between the upstream and downstream storage units is obtained
from energy channel balances (Conde et al., 2020). The flow transition is described by

qtri(t) = ktrixupi(t)
√
xupi(t)− xdni(t) + zupi − zdni . (5.18)

In this section, the hydraulic structures that regulate the flows q
i
(t) and qouti(t) are

considered to be gates structures, where the flows can be described by

q
i
(t) = c

i
w
i
u
i
(t)
√

2g
√
xdni−1

(t)− xupi(t), (5.19)

and

qouti(t) = coutiwoutiuouti(t)
√

2g
√
xdni(t), (5.20)

1The model variables have been defined in Chapter 3.
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respectively.
Moreover, to take into account the volume of demanded and delivered water to the

users, the proposed model (5.17) is augmented by the inclusion of cumulative variables
that indicate the volume of delivered and demanded water until a certain instant of time.
Therefore, the augmented model is described by

aupiẋupi(t) = q
i
(t)− qtri(t)− supi(t)

adniẋdni(t) = qtri(t)− qouti(t)− qi+1
(t)− sdni(t)

φ̇outi(t) = qouti(t)

θ̇outi(t) = douti(t),

(5.21)

where douti is the demanded flow profile of the ith user, qouti is the flow of delivered water,
θouti is the volume of demanded water, and φouti is the volume of delivered water.

As shown by Sánchez et al. (2017), in NLMPC, the discretization of nonlinear systems
can be addressed by using different numeric strategies, such as:

• Direct multiple shooting.

• Direct collocation.

• Successive linearizations.

Another alternative could be the use of an Euler discretization method. However, this
method is discarded here since it is not as accurate as the others mentioned before. In
the proposed strategy, the model (5.21) is discretized by using a direct multiple shooting
method. This method is highly intuitive since the system discretization is developed by
the implementation of a 4th order Runge-Kutta (RK4) method, which is one of the most
used and accurate numerical methods to solve ordinary differential equations (ODEs)
(Rawlings et al., 2017).

The augmented model (5.21) is written as a synthesized model, i.e.,

γ̇(t) = f(γ(t),u(t),d(t)), (5.22)

where f(γ(t),u(t),d(t))→ R4M ,

γ(t) = [xup1 xdn1 φout1 ... θoutM ]>, γ ∈ R4M

d(t) = [dout1 dout2 ... doutM ]>, d ∈ RM

u(t) = [u1 uout1 u2 uout2 ... uoutM ]>, u ∈ R2M .

In this strategy, the vector of regulation structures positions u(t) is considered the vector
of control action variables.

The discretization of (5.22) by using the RK4 method leads to

γ(k + 1) = γ(k) +
τs
6

(λ1(k) + 2λ2(k) + 2λ3(k) + λ4(k)) , (5.23)
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where
λ1(k) = f (γ(k),u(k),d(k)) ,

λ2(k) = f
(
γ(k) +

τs
2
λ1(k),u(k),d(k)

)
λ3(k) = f

(
γ(k) +

τs
2
λ2(k),u(k),d(k)

)
λ4(k) = f (γ(k) + τsλ3(k),u(k),d(k)) ,

being τs the sampling time, and k an instant of time.
In the NLMPC strategy, the discretized model is used to predict the behavior of the

OCIS along a certain window ahead in time. Then, the OCIS evolution along a prediction
horizon N can be approximated by

γ(k + 1 | k) = γ(k | k) +
τs
6

(λ1(k | k) + 2λ2(k | k) + 2λ3(k | k) + λ4(k | k))

γ(k + 2 | k) = γ(k + 1 | k) +
τs
6

(λ1(k + 1 | k) + 2λ2(k + 1 | k) + 2λ3(k + 1 | k)

+ λ4(k + 1 | k))

...

γ(k +N | k) = γ(k +N − 1 | k) +
τs
6

(λ1(k +N − 1 | k)

+ 2λ2(k +N − 1 | k) + 2λ3(k +N − 1 | k) + λ4(k +N − 1 | k)).
(5.24)

As shown in Figure 5.14, the behavioral evolution of the system is used to state the
optimization problem, where the objective is to find an either optimal or sub-optimal
control sequence

u∗(k) = [u1(k | k) uout1(k | k) u2(k | k) uout2(k | k) ... uoutM (k | k) u1(k + 1 | k)

uout1(k + 1 | k) u2(k + 1 | k) uout2(k + 1 | k) ... uoutM (k + 1 | k) ...

u1(k +N − 1 | k) uout1(k +N − 1 | k) u2(k +N − 1 | k)

uout2(k +N − 1 | k) ... uoutM (k +N − 1 | k)]>,

(5.25)

which delivers the proper amount of water to the users, minimizing losses due to leaks
and seepage at the same time that the hydraulic operational conditions of the OCIS are
accomplished. Henceforth, next a detailed description of the proposed objectives and
constraints that must be included in the optimization problem are presented.

Objective function

The objective function J(k) is composed of the sum of four terms, which correspond to:
i) the amount of leaks and seepage; ii) the delivery flow error; iii) the control effort; and
iv) the delivery volume error.

In this direction, as shown in (5.15) and (5.16), leaks and seepage are functions of
the channels’ levels. Henceforth, over a prediction horizon, the minimization of leaks and
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seepage is reached by the minimization of the upstream and downstream levels. Therefore,
the first term of the objective function is given by,

J1(k) =
N∑
j=1

‖x(k + j | k)‖2
Rx
,

where x(k + j | k) = [xup1(k + j | k) xdn1(k + j | k) xup2(k + j | k) ... xdnM (k + j |
k)]>, x(k + j | k) ∈ R2M , and Rx ∈ R2M×2M is a diagonal matrix used to prioritize the
respective upstream and downstream levels over the prediction horizon.

Intending to minimize the difference between demanded and delivered flows, the second
term of the objective function is given by

J2(k) =
N−1∑
j=0

‖dout(k + j | k)− qout(k + j | k)‖2
Rd
, (5.26)

where dout(k + j | k) = [dout1(k + j | k) dout2(k + j | k) ... doutM (k + j | k)]>, dout(k + j |
k) ∈ RM , qout(k+j | k) = [qout1(k+j | k) qout2(k+j | k) ... qoutM (k+j | k)]>, qout(k+j |
k) ∈ RM , and Rd ∈ RM×M is a diagonal matrix used to prioritize J2(k) over the prediction
horizon.

Furthermore, strong control actions can induce excessive waves in controlled OCIS
(Weyer, 2006). Therefore, with the aim to reduce these negative effects, the third term
of the objective function is related to the control effort minimization given by

J3(k) =
N−1∑
j=0

‖u(k + j | k)‖2
Ru
,

where u(k + j | k) = [u1(k + j | k) uout1(k + j | k) ... u
M

(k + j | k) uoutM (k + j |
k)]>, u(k+ j | k) ∈ R2M , and Ru ∈ R2M×2M is a diagonal matrix used to prioritize J3(k)
over the prediction horizon.

As mentioned above, in on-request mode, the user must request in advance the amount
of hydraulic resource that will be used. However, in agricultural systems an exact flow
accomplishment of the demanded profile is not necessary. This is due to:

• some users store the delivered water in reservoirs;

• in crops the dynamics of the humidification and absorption processes are character-
ized to be slow.

Therefore, in this control approach, it could be considered that an exact accomplishment
of the demanded profile is not the principal control objective. However, the delivery flow
error minimization is contemplated by (5.26). Under these circumstances, if there is not
an exact accomplishment of the demanded profile, the volume of demanded water, which,
in most cases is used to establish the users’ payment, must be accomplished to satisfy
the users’ requirements. In this direction, the fourth term of the objective function is
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established to reduce the volume error between demanded and delivered water. Note
that, at the kth instant, the error between demanded and delivered water volume of the
ith user can be obtained from

ev(k | 0) = θout(k | 0)− φout(k | 0).

Similarly, over a prediction window, the predicted volume error can be obtained from

ev(k +N | k) = τs

N∑
j=1

dout(k + j | k)− τs
N∑
j=1

qout(k + j | k).

As a result, the fourth term of the cost function is given by

J4(k) =‖ev(k | 0) + ev(k +N | k)‖2
Rv
,

where ev(k | k) = [ev1(k | k) ev2(k | k) ... evM (k | k)]>, ev(k | k) ∈ RM , θout(k | k) =
[θout1(k | k) θout2(k | k) ... θoutM (k | k)]>, θout(k | k) ∈ RM , φout(k | k) = [φout1(k |
k) φout2(k | k) ... φoutM (k | k)]>, φout(k | k) ∈ RM , dout(k | k) = [dout1(k | k) dout2(k |
k) ... doutM (k | k)]>, dout(k | k) ∈ RM , qout(k | k) = [qout1(k | k) qout2(k | k) ... qoutM (k |
k)]>, qout(k | k) ∈ RM , and Rv ∈ RM×M is a diagonal matrix used to prioritize J4 over
the prediction horizon.

Constraints

The optimization problem is formulated into a search space of the decision variables. Such
a search space is defined by constraints, such as manufacturing limits of the regulation
structures, hydraulic conditions of the regulation structures, level limits, and limits in the
delivery flow error, which are discussed next.

The regulation structures can operate into manufacturing limits, which are established
as

0 ≤ u
i
(k + j | k) ≤ umax

i
∀j ∈ [0, N − 1], (5.27a)

0 ≤ uouti(k + j | k)≤ umaxouti
∀j ∈ [0, N − 1], (5.27b)

where umax
i

and umaxouti
are the maximum positions of the discharge and delivery regula-

tion structures, respectively. Moreover, in the regulation structures, the mathematical
descriptions of the flows are valid under specific hydraulic conditions, for example the
mathematical descriptions of submerged gates and weirs are valid if the regulation struc-
tures are submerged. In addition, assuming that in operating conditions of the OCIS, the
level xdni−1

(k) is always greater than xupi(k), and that the outflow point is at the down-
stream end of the channels, then the constraints that guarantee the submerged operation
of the regulation structures are given by

0 ≤ u
i
(k + j | k) ≤ xupi(k + j | k) ∀j ∈ [0, N − 1], (5.28a)

0 ≤ uouti(k + j | k)≤ xdni(k + j | k) ∀j ∈ [0, N − 1]. (5.28b)
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Similarly, in the operation of the OCIS, maximum levels that avoid overflows, and mini-
mum levels that avoid ecological, or infrastructure damage must be established. Therefore,
constraints for the upstream and downstream levels of the channels are included as

xminupi
≤ xupi(k + j | k) ≤ xmaxupi

∀j ∈ [1, N ], (5.29a)

xmindni
≤ xdni(k + j | k) ≤ xmaxdni

∀j ∈ [1, N ]. (5.29b)

Finally, despite the accomplishment of an exact flow demanded profile is not the main
objective of the proposed control strategy, in this approach, limits in the delivery flow error
are included to accomplish with specific users requirements. These limits are included by
using the following constraint:

emindi
(k+j | k) ≤ douti(k+j | k)−qouti(k+j | k) ≤ emaxdi

(k+j | k) ∀j ∈ [0, N−1], (5.30)

where emindi
(k | k) and emaxdi

(k | k) are the established minimum and maximum errors
between demanded and delivered flow, respectively.

Optimization problem

In summary, the open-loop, discrete-time, finite-horizon optimization problem that should
be solved is written as follows:

min
u(k)

J(k) =
4∑
i=1

Ji(k)

s.t. (5.23),

0 ≤ u
i
(k + j | k) ≤ umax

i
∀j ∈ [0, N − 1],

0 ≤ uouti(k + j | k) ≤ umaxouti
∀j ∈ [0, N − 1],

0 ≤ u
i
(k + j | k) ≤ xupi(k + j | k) ∀j ∈ [0, N − 1],

0 ≤ uouti(k + j | k) ≤ xdni(k + j | k) ∀j ∈ [0, N − 1],

xminupi
≤ xupi(k + j | k) ≤ xmaxupi

∀j ∈ [1, N ],

xmindni
≤ xdni(k + j | k) ≤ xmaxdni

∀j ∈ [1, N ],

emindi
≤ douti(k + j | k)− qouti(k + j | k) ≤ emaxdi

∀j ∈ [0, N − 1].

(5.31)

Assuming the feasibility of (5.31), its solution yields the optimal (or suboptimal)
sequence u∗(k) as in (5.25), from which and considering the receding horizon philosophy
behind the NLMPC strategy sets

uMPC(k) = u∗(k)

= [u1(k) uout1(k) u2(k) uout2(k) . . . uoutM (k)]>, (5.32)

and disregards the computed inputs from k = 1 to k = N − 1, repeating the process for
the next time instant k + 1 taking into consideration the feedback information coming
from the system (either measured or estimated states) as initial conditions. Notice that
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Feasible Optimization
Problem

Cost Function

Controllability
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Reachability
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Horizon
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Levels
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Demanded

Flows

Fig. 5.15. Schematic of the feasible optimization problem, where the optimization prob-
lem (5.31) is enhanced with controllability and reachability conditions that guarantee its
feasibility.

(5.32) corresponds with the well-known MPC law, being it the sequence of actions to be
applied to the system at each time instant (Ocampo-Martinez, 2010).

Now, with the purpose of establish operational conditions of the proposed control
approach, the stability conditions that guarantee the proper operation of the controlled
system are presented next.

5.3.3 Operational Conditions of the Proposed Control Approach

Once the optimization problem has been proposed, it is necessary to establish its feasibil-
ity, which is closely related to the hydraulic characteristics, physical behavior, topology,
and management of the OCIS. Therefore, toward to obtain a feasible solution of the op-
timization problem, the physical conditions that must be accomplished are also included
as controllability and reachability conditions. As it is shown in Figure 5.15, the control-
lability conditions are related to obtain solutions that:

• ensure real values of the flows;

• provide levels that can be reached

• guarantee the accomplishment of imposed demands.

On the other hand, the reachability conditions are related to the time interval that the
system expends reaching the operational conditions, which must be used in the establish-
ment of the prediction horizon.

Note that, in NLMPC the feasibility of the optimization problem is related to the sta-
bility of the controlled system, where a stable operation of the controlled OCIS guarantee
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that the channel levels will always belong to the range where the overflows are avoided,
also preventing from ecological and/or infrastructural damage. In the OCIS, levels might
be modified by changes in the hydraulic structures positions u(k) and external actions
or disturbances, such as leaks, seepage and rains. Such external actions could be strong
enough that the controlled system stability cannot be reached by the control actions u∗(k)
in (5.32), and this is a problem that must be solved during the system design. In contrast,
under ideal operation conditions (i.e., small disturbances, and an accurate system mod-
eling) a control sequence u∗(k) that accomplishes with the imposed constraints (5.27) -
(5.30) guarantees the controlled system stability. Therefore, if u∗(k) is a feasible solution
of (5.31), even sub-optimal solutions of u∗(k) guarantee the controlled system stability.
A generalization of this finding has been previously reported by Scokaert et al. (1999),
and its adapted description is presented in Theorem 1.

Theorem 1. Let U ⊂ R2M be the feasible set of control actions in a way of gate positions
as established in (5.27), (5.28), and (5.30), X ⊂ R2M the feasible set of levels established
by (5.28), (5.29), and (5.30), F ⊂ R2M the set of levels for which there exists a control
sequence that satisfies u(k) ∈ U, x(k) ∈ X, and x(k + N | k) ∈W, where W ⊂ R2M is a
subset of F. Then a sub-optimal NLMPC law is asymptotically stabilizing with a region
of attraction W.

The corresponding proof of Theorem 1 has been addressed by Scokaert et al. (1999).
Therefore, assuming that under feasible conditions the proposed problem has feasible
solutions, the stability of the controlled OCIS can be guaranteed by establishing the
corresponding controllability and reachability conditions.

Controllability Conditions

According to Yuan et al. (2011), the controllability has been defined from several points of
view. In this thesis, adopting the concept given by Kalman (1960), the state controllability
of the OCIS is given by using Definition 1.

Definition 1 (Controllability). The levels x(k + N | k) of the OCIS are controllable if
there are feasible control sequences u(k), i.e., a feasible sequence of gate positions, such
that the levels x(k | k) can be driven to x(k +N | k) during a finite time interval.

As a result, the controllability of the OCIS can be established by analyzing the simpli-
fied model (5.17), which shows that each channel is an affine system, and for each channel,
the upstream and downstream levels receive a direct influence of u

i
(t) and uouti(t), respec-

tively. However, in OCIS there are multiple hydraulic conditions that must be included
to establish the system controllability.

In this order of ideas, a set of controllability conditions is proposed, which is developed
under Assumption 4.

Assumption 4 (xmax ∈ F). It is assumed that the maximum levels xmax are established
such that a feasible control sequence u∗(k) ∈ U exists, then that x(k | k) can be driven to
x(k +N | k) = xmax even in the maximum water demand operation.
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Remark 1. Into the optimization problem, levels xmaxupi
and xmaxdni

have been defined as the
maximum upstream and downstream levels that avoid overflows. Therefore, the upstream
and downstream maximum levels can be obtained from the physical dimensions of the
OCIS. However, to guarantee the stability of the controlled system, even the controllability
of xupi and xdni to reach xmaxupi

and xmaxdni
must be guaranteed. Note that OCIS under

maximum water demand presents the lowest levels. Therefore, to establish controllable
values of xmaxupi

and xmaxdni
, a steady-state analysis of the OCIS in the highest water demand

case, where uouti = xmaxdni
is recommended.

Once the maximum upstream and downstream levels are assumed to be controllable,
by analyzing the hydraulic descriptions of the flow transition (5.18), the channel inflow
(5.19), and the user’s outflow (5.20), which must exist and be real, and by including
the operative levels conditions of the systems, a set of controllable conditions can be
established as

xdni−1
(k + j | k)− xupi(k + j | k) > 0 ∀j ∈ [1, N ], (5.33a)

xupi(k + j | k) > 0 ∀j ∈ [1, N ], (5.33b)

xupi(k + j | k)− xdni(k + j | k) + zupi − zdni ≥ 0 ∀j ∈ [1, N ], (5.33c)

xdni(k + j | k) > 0 ∀j ∈ [1, N ], (5.33d)

xupi(k + j | k) ≤ xmaxupi
∀j ∈ [1, N ], (5.33e)

xdni(k + j | k) ≤ xmaxdni
∀j ∈ [1, N ], (5.33f)

where (5.33a)-(5.33d) ensure real values of the flows q
i
, qtri , and qouti . On the other hand,

(5.33e) and (5.33f) guarantee that, under Assumption 4, the levels xupi(k) and xdni(k) can
be reached by a feasible control sequence u∗(k) in (5.25).

As a result, aiming to guarantee the system controllability, also the initial conditions
and the minimum levels must be included into the set of controllable conditions, that is

xdni−1
(0)− xupi(0) > 0 (5.34a)

xupi(0) > 0 (5.34b)

xupi(0)− xdni(0) + zupi − zdni ≥ 0 (5.34c)

xdni(0) > 0 (5.34d)

xupi(0) ≤ xmaxupi
(5.34e)

xdni(0) ≤ xmaxdni
, (5.34f)

and

xmindni−1
− xminupi

> 0 (5.35a)

xminupi
> 0 (5.35b)

xminupi
− xmindni

+ zupi − zdni ≥ 0 (5.35c)

xmindni
> 0 (5.35d)

xminupi
≤ xmaxupi

(5.35e)

xmindni
≤ xmaxdni

. (5.35f)

116



5.3. AN EFFICIENT CONTROL APPROACH FOR OCIS

Moreover, note that in order to accomplish with the maximum error limits in the
delivery flow (5.30), the demanded flow must not exceed the maximum capacity of the ith

outflow regulation structure, establishing that

douti(k + j | k) ≤ qmaxouti
− emaxdi

∀j ∈ [0, N − 1], (5.36)

with
qmaxouti

= coutiwoutiu
max
outi

√
2gxmaxdni

. (5.37)

The controllability conditions can be used in the establishment and schedule of the
users’ demands. However, note that the proposed controllability conditions, which have
been established by analysis in steady state, are highly conservative. Therefore, these
controllability conditions are sufficient but not necessary.

Reachability Conditions

In the reachability case, as opposed to the controllability, the feasibility is analyzed during
a finite interval. Schürmann et al. (2018) have defined reachability as stated next.

Definition 2 (Reachability). A feasible solution of u(k) exists if x(k+N | k) is feasible,
and N is large enough such that x(k | k) can be driven to x(k + N | k) during the time
interval associated to N .

A clear example of infeasibility in terms of reachability is an immediate outflow demand
with a downstream level insufficient to accomplish such a demand. This kind of sudden
requirements are outside the controllable conditions set (5.30). Note that, intending to
accomplish this requirement, the time that the system takes to reach a requested level must
be considered. Therefore, if the initial conditions of the OCIS are into the controllable
conditions set, the demands must be scheduled taking into account the OCIS dynamics,
in order to guarantee reachability. For example, the reachability conditions could be
obtained from the time that the OCIS takes to satisfy the most time-expensive requests,
by analyzing the time intervals that each channel spends to reach the maximum operation
capacity. This reachability condition is established in the next lemma.

Lemma 2. Under controllable conditions (5.33)-(5.37), let N
i

be the elapsed time to
drive the downstream level of the ith channel from initial conditions x(k | k) = xmin to
the maximum level of the ith channel xdni(k + N

i
| k) = xmaxdni

, where N
i
< N

i+1
< N

M
.

Then, if the prediction horizon is established such as N ≥ N
M

and all the demands douti
are scheduled after the longest elapsed time N

M
, the constraint associated to the limits in

the delivery flow errors (5.30) can be accomplished.

Proof. The maximum demanded flows can be accomplished by driving the OCIS to xmaxdni

(5.37). Under controllable conditions (5.33)-(5.37), there exists a feasible control sequence
u(k) such that the OCIS can be driven to xmaxdni

during a finite time (see Assumption 4).
Then, by analytical or experimental procedures, this time can be found. Under the fact
that to drive the farthest channel to maximum levels takes more time than to drive
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the other channels to maximum levels (i.e., N
M
> N

i
), any channel can be driven to

xmaxdni
during the associated time N

M
. Therefore, there exists a feasible control sequence

u(k), which during an associated time N
M

can accomplish even the maximum demanded
flow.

Similar to the controllability conditions, the reachability condition presented in Lemma
2 is sufficient but not necessary, and to schedule the demands after the longest elapsed
time N

M
is highly conservative. Then, the development of a demand schedule strategy

that guarantees the system stability appears as an interesting future direction that is out
of the scope of this thesis.

Reformulated Optimization Problem

In summary, the open-loop, discrete-time, finite-horizon optimization problem that in-
cludes both reachability and controllability conditions, and guarantees the closed-loop
system stability is now written as follows:

min
u(k)

J(k) =
4∑
i=1

Ji(k)

s.t. The accurate OCIS discretized model in (5.23),

The physical/operational constraints in (5.27)-(5.30),

The controllability conditions in (5.33)-(5.37),

The reachability condition N = N
M
.

(5.38)

Now, the optimization problem in (5.38) should be used to find the control actions in
(5.32) to be applied to the OCIS and then closing the proposed NLMPC-based controlled
loop.

5.3.4 Simulation Test

The proposed NLMPC strategy is tested by using the two first channels of a benchmark
based on the Corning canal in California. This benchmark has been presented by Clem-
mens et al. (1998) and the ASCE Task Committee on Canal Automation Algorithms as
a standardized testbed on OCIS with well-studied and realistic properties. The channel
characteristics are shown in Table 5.4.

As shown in Figure 5.16, the testbed has been implemented in the storm water man-
agement model (SWMM), and used as a reference model to tune and validate the ap-
proximated model variables. Then, the validated model has been used in the design and
testing of the control strategy.

As a matter of fact, the principal parameter that must be obtained is the sampling
time τs, which is acquired from experimental analyses over the model. Following the
recommendations proposed by Litrico and Fromion (2009), the obtained sampling time is
τs = 1000s, which corresponds to a value ten times smaller than the rising time of xdn1 .

As shown by Conde et al. (2020) in the modeling and validation of the Corning canal,
the approximated model areas aupi , and adni have been obtained by using data fitting,
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Table 5.4. Physical characteristics of the case study.

Source Level 0.7 m

Channel 1

Length 7000 m

Channel 2

Length 3000 m
w1 7 m w2 7 m
c1 0.65 c2 0.65
zup1 4 m zup2 3.3 m
zdn1 3.3 m zdn2 2.8 m
κup1 0.2 m6/s κup2 0.2 m6/s
κdn1 0.2 m6/s κdn2 0.2 m6/s
wout1 1 m wout2 1 m
cout1 0.65 cout2 0.65

Fig. 5.16. Case study implementation in EPA-SWMM.

where data from the reference model are used. Hence, the obtained areas are: aup1 =
21864m2, adn1 = 27136m2, aup2 = 12086m2, and adn2 = 8914m2.

Similarly, the transition constants (ktri) are obtained analyzing the system (5.17) in
steady-state operation using flow and level data from the model. The obtained transition
constants are ktr1 = 6, and ktr2 = 9.

Moreover, in order to implement the control strategy, the multiple parameters that
guarantee stability and the desired performance of the controlled system are established,
where the maximum upstream and downstream levels are obtained from steady-state
analysis of the system (5.17) under the maximum water demand case. In this analysis,
it has been assumed that the physical limits of the regulation structures are higher or
equal to the maximum levels under the maximum water demand case. Therefore, toward
accomplish with the hydraulic conditions of the regulation structures (5.28), the highest
water demand can be supplied by the maximum outflow, which is given with umaxouti

= xmaxdni
,

and this maximum outflow can be accomplished with a maximum channel inflow, which
is given by umax

i
= xmaxupi

. As a result, by performing the respective substitutions in (5.17),
which is analyzed in the steady-state regime, the obtained upstream and downstream
maximum level values are given by xmaxup1

= 0.59m, xmaxdn1
= 0.57m, xmaxup2

= 0.53m, and
xmaxdn2

= 0.79m. Note that the obtained maximum levels are consistent with the hydraulic
conditions presented in (5.33) ensuring that the corresponding flows q

i
, qtri , and qouti are

real values.
Furthermore, as in a well dimensioned systems, the maximum physical limits of the

regulation structures have been chosen equal than the associated upstream or downstream
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maximum levels. In that form, umax
1

= 0.59m, umaxout1
= 0.57m, umax

2
= 0.53m, and

umaxout2
= 0.79m.

Additionally, in order to guarantee the accomplishment of the conditions presented in
(5.33), (5.34), and (5.35), the minimum levels have been chosen as 1% of the maximum
levels, and the initial conditions have been chosen as 10% of the maximum levels.

With the purpose of find a prediction horizon N , and the minimum time to schedule
the respective demands, a simulation with u1 = umax

1
, uout1 = umaxout1

, u2 = umax
2

, and
uout2 = umaxout2

is performed, obtaining that xmaxdn1
is reached in 5× 104s, and xmaxdn2

is reached
in 6×104s. Therefore, the prediction horizon is chosen as N = 60, and the time restrictions
to schedule the respective demands are established asN1 = 50, andN2 = 60. Furthermore,
to establish magnitudes for the upstream and downstream demands, the maximum outflow
capacity and the limits in the delivery flow are presented. From (5.37), the maximum
outflow demands are given by qmaxout1

= 1.24m3/s, and qmaxout2
= 2.02m3/s. On the other

hand, the limits in the delivery flow error are parameters that the users impose. In this
case, a limit of ten percent of the demanded flow is established.

Even though the penalization parameters can be used as tuning parameters that im-
prove the performance of the controlled system, for sake of simplicity, in the proposed
test, the parameters have been set as normalization parameters that balance the mul-
tiple terms of the total cost function. Specifically, the penalization parameters have
been set as: Rupi = (1/xmaxupi

)2, Rdni = (1/xmaxdni
)2, Rdi = (1/dmaxouti

)2, Rui = (1/umaxi )2,
Rvi = (1/θouti(N))2, where dmaxouti

is the maximum demand of the ith channel, and θouti(N)
is the demanded volume of the ith user. However, as a future direction, more tests and
sensitive analyses around the influence of the penalization parameters can be performed.

Finally, the optimization problem is solved by using CasADi, which is an open-source
tool designed to deal with optimization problems. This tool includes multiple solvers
for optimal control problems. In this test, the IPOPT (interior-point optimizer) solver
is used, which solves large-scale nonlinear programming problems by using a nonlinear
interior point method (Andersson et al., 2019).

5.3.5 Simulation Results and Discussion

In the simulation results, the performance of the controlled system is analyzed in two
scenarios:

• Supplying demands that are into the reachable set.

• Supplying demands that are not into the reachable set.

Finally, losses due to leaks and seepage are contrasted with the amount of leaks and
seepage that could be obtained by using a conventional control strategy that maintains a
fixed level at the downstream end of each channel.

Demands Inside the Reachable Set

Figures 5.17(a) and 5.17(b) show the performance of the controlled system in presence of
reachable demands, where it is observed that the demands are successfully accomplished
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according to the users’ constraints. Moreover, it is observed that there is not a perfect
tracking of the demanded outflow, and in most of the cases the upstream and down-
stream outflows follow the lower outflow allowed, and the delivered volume difference is
compensated by delivering flow at instants where the demand has not been scheduled.

The downstream levels behaviors of the two channels are presented in Figures 5.17(c)
and 5.17(d). Moreover, in these figures, the respective behavior of the outflow discharge
structures is included. From these figures, it is highlighted that the downstream levels
and the outflow regulation structures accomplish with the maximum avoided levels and
apertures, satisfying the imposed constraint (5.27). Moreover, it is observed that the
regulation structures apertures are always lower than the downstream levels, satisfying
the hydraulic constraint given in (5.28). Also, it is observed how the downstream levels
are maintained as low as can, and before of the scheduled demands, the levels start to
increase to accomplish the respective demands.

Figures 5.17(e) and 5.17(f) show the upstream levels and inflow regulation structures
positions of the controlled system. These figures also corroborate the accomplishment of
the constraints, note that: the upstream levels and regulation structures always are lower
than the maximum allowed; the positions of the regulation structures are always lower
than the upstream levels; and iii) the upstream level is always bigger than the minimum
allowed.

The total demanded and delivered volumes are described in Figure 5.18, where a
difference between demanded and delivered volumes lower than 3% is observed. In a real
operation of the system, this difference could be compensated with the users’ payment for
the service. Moreover, if this difference is considered excessive, the respective penalization
parameter can be adjusted to modify the undesired behavior.

Figure 5.19, shows the quantitative relationship between losses using the proposed
NLMPC strategy and using a conventional control strategy that maintains a constant level
at the downstream end of the channel. The corresponding losses of using a conventional
control strategy have been obtained by the assumption of maximum constant levels in
the leaks and seepage descriptions given by Equations (5.15) and (5.16). The result
evidences that, with the proposed strategy, 50% of the losses could be reduced. In the
same direction, an efficiency performance indicator pe is evaluated, where, for OCIS, the
efficiency is the ratio of volume of delivered water to volume of water extracted from
the source (Mareels et al., 2005). With the aim of compare the efficiency between the
proposed strategy and a conventional control strategy that maintains a constant level at
the downstream end of the channel, the efficiency performance indicator is established as

pe =
τs
∑kf

k=0

∑M
i=1 qouti(k)

τs
∑kf

k=0

∑M
i=1 qouti(k) + supi + sdni

, (5.39)

where kf is the length of data associated to the simulation time. In the comparison, it
is obtained that by using a conventional control strategy, the efficiency of the controlled
system is close to 18%. In contrast, by using the proposed control strategy in this thesis,
the efficiency of the controlled system is close to 31%, corroborating the advantages in
the use of the proposed control strategy.
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(a) Demanded and delivered outflow be-
havior at the first channel, where the ac-
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straints is observed.
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(b) Demanded and delivered outflow be-
havior at the second channel, where the
accomplishment of the demands and con-
straints are observed.
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(c) Downstream levels and outflow regula-
tion structures behavior of the first channel,
where it is observed that the downstream
levels and the outflow regulation structures
apertures accomplish with the maximum
and minimum avoided levels and apertures.
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(d) Downstream levels and outflow regula-
tion structures behavior of the second chan-
nel, where it is observed that the down-
stream levels and the outflow regulation
structures apertures accomplish with the
maximum and minimum avoided levels and
apertures.
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(e) Upstream levels and inflow regula-
tion structures behavior of the first chan-
nel, where the accomplishment of the con-
straints is observed.
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(f) Upstream levels and inflow regulation
structures behavior of the second chan-
nel, where the accomplishment of the con-
straints is observed.

Fig. 5.17. Controlled system performance for demands that are into the reachable set.

A key aspect in the implementability of the control strategy is the time that the solver
spends finding a feasible solution. Figure 5.20, shows the elapsed time that the solver
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Fig. 5.18. Demanded and delivered total volume of the first and second channels, where
a difference lower than 3% is observed.
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Fig. 5.19. Comparison between losses using the proposed strategy and using a con-
ventional control strategy that maintains a constant level at the downstream end of the
channel, where it is highlighted that by using the proposed strategy, 50% of the losses
could be reduced.

spends to find an appropriate solution. There, it is important to mention that this test
has been performed on a computer with an Intel i7 processor running at 2.7 MHz using 16
GB of RAM. In this figure, it is highlighted that the mean elapsed time is 2.56s and that
the maximum elapsed time is close to 7s. Therefore, due to the OCIS are slow systems,
where for control purpose long sampling-times are used, the use of NLMPC strategies is
totally possible.
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Fig. 5.20. Elapsed time to solve each optimization problem, note that the average
elapsed time is 2.56s and that the maximum elapsed time is close to 7s.

Demands Outside the Reachable Set

Figures 5.21(a) and 5.21(b) show the performance of the controlled system in presence of
an unreachable demand over the second channel. In this case, dout2 is an instantaneous
demand bigger than qmaxout2

. Figure 5.21(a) shows that despite the unreachable demand
dout2 , the outflow constraints of the first channel are accomplished. Conversely, in the
second channel (Figure 5.21(b)) the demand is not accomplished. However, it is observed
that qout2 recovers the desired behavior.

Similarly, Figure 5.21(d) shows that the downstream level of the second channel
presents problems in the accomplishment of the constraints. Meanwhile, the problems
reported in the first channel (Figure 5.21(c)) are imperceptible.

Figures 5.21(e) and 5.21(f) show that the demand affects the upstream constraints of
both channels. In the first channel, in order to accomplish this sudden demand, the inflow
regulation structure aperture exceeds the channel level. However, when this suddenly
demand is finished, both channels recover the desired behavior.

Respecting to the total demanded and delivered volume (Figure 5.22), the unreachable
demand presents a high difference between the demanded and delivered water. On the
other hand, the demands in the first channel are well accomplished.

Finally, it is important to realize that when the sudden demand is finished, the con-
trolled system recovers the desired behavior without the affectation of posterior events.
This is also an important finding because it confirms that the proposed stability condi-
tions are sufficient but not necessary. However, a depth analyses of this phenomenon is
proposed for future directions. Moreover, the real system implementation, the exploration
of different objective functions, and constraints alternatives are also proposed as future
directions.
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(a) Demanded and delivered outflow be-
havior at the first channel, where the reach-
able demand, and the imposed constraints
are accomplished.
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(b) Outflow behavior at the second chan-
nel, where the reachable demand cannot be
accomplished. However, the flow qout2 re-
covers the desired behavior.
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(c) Downstream levels and outflow regula-
tion structures behavior of the first channel,
where it is observed the accomplishment of
the constraints.
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(d) Downstream levels and outflow regula-
tion structures behavior of the second chan-
nel, where there are problems in the accom-
plishment of the imposed constraints.
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(e) Upstream level and inflow regulation
structure behavior of the first channel,
where it is observed that the sudden de-
mand also affects the accomplishment of
the constraints. However, when the sud-
den demand is finished, this channel recov-
ers the desired behavior.
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(f) Upstream level and inflow regulation
structure behavior of the second channel,
where it is observed that the sudden de-
mand affects the accomplishment of the
constraints. However, when the sudden de-
mand is finished, this channel recovers the
desired behavior.

Fig. 5.21. Controlled system performance for demands that are not into the reachable
set.
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Fig. 5.22. Demanded and delivered total volume of the first and second channels, where
it is observed that unreachable demands also affects the demanded total volume of the
second channel.

5.4 Summary

This chapter addresses the problem of control in OCIS. In Section 5.1, an illustrative
example is used to explain conventional modeling and control approaches that are used
in OCIS. In Section 5.2, a nonlinear control technique for interacting OCIS has been pre-
sented, showing that with the proposed strategy it is possible to guarantee in a broad
operation region null steady-state error, to adjust the speed response, and to overcome
the problems of non-linearities, the interaction between channels, and internal delays.
Finally, in Section 5.3, an efficient control strategy for OCIS is proposed. The strategy
is developed with the objective of supplying an appropriate amount of water to the users
minimizing losses due to seepage and leaks. In the design process, sufficient controllabil-
ity and reachability conditions that guarantee the controlled system stability have been
presented. The results show that by using this strategy an appropriate amount of water
to the users can be supplied and that the waste of water could be reduced by up to 50%.
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Chapter 6

Concluding Remarks

6.1 Contributions

In this thesis, the design and evaluation of modeling, control, and estimation strategies
for OCIS that contribute to the mitigation of losses due to leaks and seepage, are ad-
dressed. Thus, as the first contribution of this thesis, a detailed classification of the
reported control-oriented models for OCIS has been presented in Chapter 2. Based on
this classification, it is identified the need for control-oriented models useful to describe
interacting OCIS, and that include information about nonlinear hydraulic flow relations
and potential energy difference along the channels. Therefore, as the second contribu-
tion, a nonlinear control-oriented modeling approach that assumes delays and a CPED
along the channels has been proposed and validated in Chapter 3. The validation results
show that this control-oriented modeling approach offers an accurate description of the
system in a broad operation region. However, it is observed that the potential energy
difference cannot be constant, depends on the upstream and downstream levels of each
channel. Hence, as a third contribution, in Chapter 3, a nonlinear control-oriented mod-
eling approach designed from approximated M&PEB has been proposed and validated.
This modeling approach does not contemplate delays, instead, contemplates the division
of the channel into two storage units connected by a flow transition, where the areas of
the storage units can be adjusted by experimental data, subject to the addition of the
model areas must be equal to the total area of the real system. This requirement ensures
that the global mass balance of the model must be equal to the global mass balance of
the real system. Moreover, in this modeling strategy, the flow transition is obtained by
using an approximated potential energy balance and simplifications over a hydraulic de-
scription of the head loss due to friction, obtaining a description of the flow transition
that can be adjusted by experimental data and is a function of the channels levels. The
validation results show the accuracy of the proposed control-oriented modeling strategy.
Some qualities of the proposed strategy designed from approximated M&PEB are:

• An exact overall mass balance for each channel can be guaranteed.

• The dynamic behavior of the real system can be adjusted by adjusting the upstream
and downstream areas with real data.
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• The upstream and downstream channel levels can be used in the nonlinear hydraulic
description of inflows and outflows of interacting channels.

• The flow transition obeys a potential energy balance and can be adjusted with real
data.

• The modeling strategy offers an accurate channel description in a broad operation
region.

It is important to realize that in Chapter 4, it is shown that this modeling strategy is
not useful to describe systems with small or inexistent head loss due to friction (e.g., a
short and wide channel). And this is logical because the dynamic behavior of these type
of systems is close to the dynamic behavior of a water storage unit.

Based on the proposed modeling strategy, in Chapter 4 the problem of DIMEUF in
OCIS has been addressed, as a result, the fourth contribution of this thesis is the design of
two strategies for detection isolation and magnitude estimation of unknown flows, which
take into account the effects of flow conduction. These strategies have been designed
exploiting the advantages that the MHE approach shows in dealing with constrained
nonlinear systems. However, in the design of the strategies, the problem of obtaining
suboptimal estimations of the unknown flow has been shown, and this problem has been
overcome by using detection and isolation mechanisms that enhance the MHE strategy.
The estimation approaches have been designed from deterministic and stochastic points of
view, showing that including information about noise and expected level values increase
the estimation performance. The estimation strategies have been validated by using
two well-known benchmarks, which have been implemented in SWMM, showing that
although the strategies have been designed by using a simplified modeling approach, they
are capable of accurately estimate the channel behavior and unknown flows in broad
operation regions.

In this thesis, the problem of control in OCIS has been addressed first, by the revision,
analysis, and implementation of the conventional control strategies that are reported in
the literature. At this point, it is identified that the most common control objective is to
maintain a constant depth at the upstream or downstream end of the OCIS. Moreover, it
is identified that most of the control-oriented models and conventional control strategies
are useful for noninteracting OCIS. Therefore, a nonlinear control strategy designed from
the control-oriented modeling strategy that assumes delays and CPED along the channels
has been proposed. At this point, a nonlinear model-based control strategy for interact-
ing OCIS, which ensures the system stability despite nonlinearities, internal delays, and
channel interactions has been obtained. In this case, the nonlinear model-based control
strategy has as control objective to maintain a constant depth at the upstream end of the
channels, reaching the desired results. However, it is found that a constant depth at the
upstream or downstream end of the channels maintains constant losses due to leaks and
seepage.

Therefore, as a fifth contribution, an NLMPC strategy with the objective of supplying
an appropriate amount of water to the users minimizing losses due to seepage and leaks
has been proposed. This control strategy takes advantage of information about profiles
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of user’s requirements, and the control-oriented modeling approach designed from ap-
proximated M&PEB, which has shown accurate performance in a broad operation region.
The main idea is to maintain the upstream and downstream levels as low as possible.
However, in order to accomplish the users’ demands, the respective level must reach an
operation condition. As a result, the evolution of the control-oriented model is used in the
development of an online optimization problem over a finite time horizon, where the ob-
jective is supplying an appropriate amount of water to the users minimizing losses due to
seepage and leaks, at the same time that hydraulic constraints are accomplished. In this
control strategy, the operative conditions that ensure the system stability are deduced,
and the simulation results have shown that these operative conditions ensure a desired
performance of the controlled OCIS. Moreover, the simulation results show that in OCIS
this control strategy could minimize 50% of losses due to leaks and seepage.

6.2 Answering the Research Questions

The conclusions are synthesized by answering the key research questions presented in
Chapter 1 as follows:

(Q1) What is the current context of modeling, estimation, and control in OCIS, and what
are the main research gaps in this context that contribute to the OCIS efficiency
increase?

In Chapter 2 it has been shown that despite the abundance of research around the
control in OCIS, and the environmental relevance of these systems, most of the OCIS
operate manually. Therefore, modeling, estimation, and control in OCIS is an open
problem where all the contributions are relevant. Moreover, as it has been shown in
Chapter 2, in modeling, the reported simplified and approximated models present
limitations in the dynamic descriptions of interacting channels and the descriptions
of the potential energy difference along the channels. In this thesis, these limitations
have been overcome by the proposing of two control-oriented modeling approaches
described in Chapter 3. The opportune DIMEUF in OCIS appears as a valuable
tool to increase the efficiency of the OCIS. In estimation, most of the strategies
for DIMEUF have been designed from control-oriented models that do not contem-
plate potential energy balances along the channels, and this can induce drift in the
results. In Chapter 3 a DIMEUF strategy designed from a control-oriented that
contemplates mas and energy balances along the channels has been proposed. In
control, in most of the reported works, the main objective is to maintain a constant
depth at the downstream or upstream end of the channels. This objective ensures
constant leaks and seepage. Therefore, in Chapter 5 an NLMPC approach with
the objective of supplying an appropriate amount of water to the users minimizing
losses due to seepage and leaks has been proposed.

(Q2) What are the decision features to select or design a suitable control-oriented mod-
eling strategy for OCIS?
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Chapter 2 evidences that due to the SVE complexity, the direct use of these equa-
tions for control systems design is impractical. Therefore, in the literature, there
are reported the use of simplified and approximated control-oriented modeling ap-
proaches, but as it is shown in Chapter 2, the need for new control-oriented modeling
approaches has been identified, and the requirements for these models are described
next:

• The control-oriented model must be useful to describe most of the dynamic
behavior of the real system, even adverse conditions, disturbances, noise, pa-
rameter variations, etc.

• The model must let the development of tests of the designed controllers in
presence of external disturbances and realistic scenarios.

• The control-oriented model must be able to describe the nonlinear dynamic
behavior of interacting open-channels with gates in submerged-flow, where the
flow depends on the upstream and downstream depths of the regulation struc-
tures.

• The modeling strategy must include information about potential energy bal-
ances along the channels.

In this direction, in Chapter 3 two control-oriented modeling approaches have been
proposed and validated, showing that by using approximated M&PEB accurate
descriptions of the OCIS can be reached. Moreover, in Chapters 4, and 5 it has
been shown that this control-oriented modeling strategy is useful in the description
and controlled system validations in presence of adverse conditions, disturbances,
noise, and parameter variations. Also, in these chapters, it has been shown that
in this modeling strategy, the nonlinear descriptions of different kinds of regulation
structures can be included and that the dynamic and static effects of the potential
energy balances along the channels can be included in this control-oriented modeling
strategy.

(Q3) How to design implementable approaches for recursive DIMEUF such as leaks and
seepage in OCIS?

In instrumented OCIS the most commonly measured variables are the upstream and
downstream levels at the end of the channels. Therefore, the design of strategies
for DIMEUF must be developed from these measured variables and models devel-
oped from previous system information. Therefore, the development of strategies for
DIMEUF must deal with measurement uncertainties (i.e, measurement noise), and
model uncertainties (discrepancies between real system and model). In DIMEUF,
the measurement uncertainties treatment is a key aspect, note that in OCIS high
inflow or outflow variations produce small level variations of the system, and the
unknown flows can easily be masked into measurement noise. Note that, in estima-
tion, the noise treatment can be addressed in the instrumentation process and/or
by including noise information into the estimation strategy. In Chapter 4, the noise
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treatment is developed first by the inclusion of filtering strategies, taking advan-
tage of the slow dynamics that characterize the OCIS, and second by designing an
stochastic DIMEUF strategy that contemplates the effects of measurement noise.
On the other hand, the model uncertainties can be minimized by using an accu-
rate model of the real system. At this point, the use of the SVE appears as the
first option, but the complexity of the SVE leads to complex estimation strategies
with hard online implementation. Conversely, the reported simplified and approxi-
mated models do not include information about potential energy along the channels
and most of them do not include the nonlinear descriptions that characterize the
hydraulic behavior of the OCIS. Therefore, in order to minimize the model uncer-
tainties, in Chapter 4 the problem of design a DIMEUF strategy from the proposed
modeling approach that assumes approximated M&PEB and has shown an accurate
description of the OCIS in a broad operation region has been addressed. The results
showed that the proposed DIMEUF strategy can accurately estimate the channel
behavior and unknown flows in a long operation region, overcoming measurement
and model uncertainties.

(Q4) How can the optimization-based control techniques contribute to improving the OCIS
efficiency?

As it has been presented in Chapter 2 in OCIS the most common control strategy
is to maintain a constant depth at the upstream or downstream end of the channel,
and by action in the outlet hydraulic structure, the flow is regulated at each user.
Therefore, in most of the control strategies, the key performance indicators account
for the error between the desired and controlled systems level, and most of the
reported literature offers control alternatives to improve this kind of performance
indicator. However, in a real system, the upstream or downstream level can present
considerable deviations with respect to the desired level, and these deviations must
be compensated with the hydraulic outlet structure. Therefore, in real OCIS a
rigorous level tracking could be not the main objective. Instead, the levels of the
OCIS must be into operation regions that avoid overflows and ensure the water
user’s availability. This operation principle for OCIS can be seen as a starting
point in the design of optimization-based control techniques oriented to improve the
OCIS efficiency. From this point, In Chapter 5 the development of an optimization-
based control approach has been proposed, where an accurate model of the system
and knowledge about future user’s demands is used in the formulation of a finite-
horizon optimization problem. Then the optimization problem is solved to find
optimal or sub-optimal control actions that accomplish the user’s demands at the
same time that leaks and seepage are minimized, and physical limits, as well as
hydraulic conditions, are included as constraints. The simulation results show that
with this control strategy losses due to leaks and seepage can be halved at the same
time that the user’s demands are accomplished. In conclusion, in OCIS the use of
optimization-based control techniques appears as a promising control alternative to
reduce losses as long as the traditional control objective of maintaining a constant
upstream or downstream level evolves to efficiency maximization objectives.
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6.3 Directions for Future Research

Chapter 1 identifies some problems that in this dissertation have been addressed by devel-
oping new control-oriented modeling approaches, new strategies for DIMEUF, and a new
high-efficiency control approach. However, other identified research gaps remain opens
and are summarized next:

• Control of OCIS integrated with crop dynamics.

• Water robbery detection in OCIS.

• Inclusion of human agents in the sensing and actuation of optimization-based control
strategies.

• Inclusion of climate forecast into optimization-based control strategies.

• Integration of water quality objectives into the control problem.

• Integration of sustainable objectives such as groundwater protection.

On the other hand, the developed research also points out new open problems for future
directions, which are outline below:

• The control-oriented modeling approach developed from approximated M&PEB as-
sumes the division of each channel into two storage unities, where the storage unities
areas are obtained by using data fitting. The accuracy and usefulness of this control-
oriented modeling strategy could be improved by assuming more than two storage
units for each channel description, but the challenge of identify more than two areas
from the upstream and downstream end level measurements appears as an open
problem.

• The proposed estimation strategies are useful for DIMEUF at the upstream and
downstream ends of the channels. However, in long channels, a precise DIMEUF
at an specific point along the channels could be helpful to take opportune actions
regarding loss mitigation. Therefore, the design of new DIMEUF strategies for
precise localization of unknown flows appears as an important future direction.

• The NLMPC strategy proposed in Chapter 5 is a centralized control strategy that
had reached desired results. However, as it has been shown in Chapter 2, decen-
tralized or distributed control approaches offer the possibility of keeping the system
controlled (with a possible performance degradation) even if part of the information
is lost. In addition, non-centralized architectures allow partial implementations in
channels according to budget and relevance. Therefore, the development of dis-
tributed and decentralized control strategies focused on increase system efficiency
appears as the next step in matters of efficient control approaches.
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• Chapter 5 addresses stability conditions for OCIS under an efficient control ap-
proach, where the stability is deduced from highly conservative controllability and
reachability conditions. However, the simulation results have shown that the con-
trolled system can be stable even under unreachable demands. This phenomenon
can be used in the improvement of the implemented control strategies and deserves
to be analyzed for future applications.

• In this dissertation, the simulation results of the proposed modeling, estimation, and
control strategies, have been obtained by using models validated against specialized
software. However, the real implementation could present challenges not contem-
plated. Therefore, the real implementation of the estimation and control strategies
is identified as an important future direction.

• Most of the approximated and simplified modeling strategies proposed by different
authors are parametrized from the hydraulic characteristics of the OCIS, and these
modeling strategies parametrized from experimental data might improve its perfor-
mance. Therefore, the use of experimental data into a rigorous analysis intending to
identify the best simplified or approximated modeling structure for OCIS appears
as an interesting future work.
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Horváth, K., Galvis, E., Rodellar, J., Valent́ın, M., 2014b. Experimental comparison of
canal models for control purposes using simulation and laboratory experiments. Journal
of Hydroinformatics 16, 1390–1408.
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αi ∈ R Parameter used to avoid
the change of the unlikely unknown flow

β
i

Vector of measured variables
βi ∈ R Parameter used to avoid the change of the

unlikely unknown flow
ˆ̄y
i
∈ R2Nh Vector of estimated expected values of the output

θ̂
i
(k − 1) ∈ R3Nh Sequence of unknown parameters estimated in a

previous iteration

θ̂i(k) ∈ R3Nh Vector of unknown parameters to be estimated
ŷ
i
∈ R2Nh Vector of estimated outputs

Ω
i
(k) ∈ R3Nh×3Nh Estimation matrix of hydraulic relations

Φ
i
∈ R2Nh×2 State estimation matrix

Σ∆i
(k) ∈ R2Nh×2Nh Process detection covariance

Σ
i
(k) ∈ R2Nh×2Nh Process covariance

ξ
i
(k) ∈ R3Nh Vector of known inputs

T
i
∈ R3Nh×3 Block of identity matrices

B
i
∈ R2Nh×3Nh Unknown flows estimation matrix

Bfi ∈ R2Nh×3Nh Known inputs estimation matrix
J
i
∈ R Detection cost function

n∆i
(k + 1) ∈ R2Nh Process measurement noise vector

n
i
(k + 1) ∈ R2Nh Measurement noise vector

u(k) ∈ R2MN Optimal or sub-optimal control sequence
V

i
∈ R Estimation cost function

V si ∈ R Stochastic estimation cost function
w∆i

(k) ∈ R2Nh Process detection noise vector
w

i
(k) ∈ R2Nh Process noise vector

y
i
∈ R Vector of measured levels

∆ξi(k) ∈ R3Nh Vector of the known inputs variation
∆ŷ

i
(k + 1) ∈ R2 Vector of estimated variation of the outputs

∆ξ
i
(k) ∈ R3 Vector of variations of known inputs

∆ψ̂
i
(k − 1) ∈ R3Nh Sequence of variations of the unknown flows

estimated in a previous iteration

∆ψ̂i(k) ∈ R3Nh Vector of the estimated variations of the
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unknown flows
∆ŷ

i
∈ R2Nh Vector of the estimated variations of the outputs

∆y
i
∈ R2Nh Vector of the measured variations of the outputs

∆ψ̂
i
(k) ∈ R3 Vector of estimated variations of the inputs

∆x̂
i
(k) ∈ R2 Vector of estimated variation of the states

∆x̂
i
(Nhp | Nhp) ∈ R2 Initial estimated variations of the states

η
i

(ms) Error integral
ˆ̄kdni(k) ∈ R Expected value of the estimated downstream

unknown flow parameter
ˆ̄ktri(k) ∈ R Expected value of the estimated

transition parameter
ˆ̄kupi(k) ∈ R Expected value of the estimated upstream

unknown flow parameter

ψ̂
i
(k) ∈ R3) Vector of estimated unknown flows

θ̂
i
(k) ∈ R3 Vector of unknown parameters to be estimated

x̂dni(k) ∈ R (m) Estimated downstream level
x̂upi(k) ∈ R (m) Estimated upstream level

k̂dni(k) ∈ R Estimated downstream unknown flow parameter

k̂tri(k) ∈ R Estimated transition parameter

k̂upi(k) ∈ R Estimated upstream unknown flow parameter
q̂tri(k) ∈ R (m3/s) Estimated flow transition
ŝdni(k) ∈ R Estimated downstream unknown flow parameter
ŝupi(k) ∈ R Estimated upstream unknown flow parameter
x̂
i
(k) ∈ R2 Vector of estimated states

x̂
i
(Nhp | Nhp) ∈ R2 Initial estimated states over the estimation window

ŷ
i
(k + 1) ∈ R2 Vector of estimated outputs

κdni(t) ∈ R (m2.5/s) Downstream unknown flow parameter
κupi(t) ∈ R (m2.5/s) Upstream unknown flow parameter
Λ∆i
∈ R2 Threshold value

λ
i
∈ R Tuning constant

d ∈ Z Number of disturbances
n ∈ Z Number of states
u ∈ Z Number of inputs
y ∈ Z Number of outputs
x̄dni

∈ R (m) Mean of xdni

Ω ∈ RHpd×Hpd Matrix used in MPC formulation
Ψ ∈ RHpy×n Matrix used in MPC formulation
Υ ∈ RHpu×Hpu Matrix used in MPC formulation
V

i
Lyapunov function

xrefi
∈ RNf Desired level vector

xdni
∈ RNf Vector of Nf level measurements

D1i ∈ R2Nh×2Nh Detection weighting matrix
D2i ∈ R3Nh×3Nh Detection weighting matrix

152



NOMENCLATURE

Q ∈ Rn×n Diagonal weighting matrix
R ∈ Ru×u Diagonal weighting matrix
R1i ∈ R2Nh×2Nh Estimation weighting matrix
R2i ∈ R3Nh×3Nh Estimation weighting matrix
Rkdni ∈ R Estimation weighting parameter related

to downstream unknown flows
Rktri ∈ R Estimation weighting parameter related

to the flow transition
Rkupi ∈ R Estimation weighting parameter related

to upstream unknown flows
∇2 ∈ R2 Hessian operator
ν∆i(k) ∈ R2 Measurement detection noise
ν
i
(k) ∈ R2 Remaining measurement noise

νdni(k) ∈ R Downstream remaining measurement noise
νupi(k) ∈ R Upstream remaining measurement noise
ω∆i(k) ∈ R2 Process detection noise
Ω
i
(k) ∈ R3×3 Matrix of hydraulic relations

ω
i
(k) ∈ R2 Process estimation noise

ωdni(k) ∈ R Normally distributed downstream process noise
ωupi(k) ∈ R Normally distributed upstream process noise
φxi ∈ Rn×2 Matrix of n measured levels variations
σνdni ∈ R Standard deviation of the downstream

measurement noise
σνupi ∈ R Standard deviation of the upstream

measurement noise
σωdni ∈ R Standard deviation of the downstream

process noise
σωupi ∈ R Standard deviation of the upstream

process noise
τ
i
∈ R (s) Time delay

τs ∈ R (s) Sampling time
θai ∈ R2 Vector of upstream and downstream areas
γ ∈ R4M Augmented state vector
ˆ̄θ
i
(k) ∈ R3 Vector of the unknown parameters

expected values
ξ
i
(k) ∈ R3 Vector of known inputs

e
i
(k + 1) ∈ R2Nh Estimation error

P
i
(k + 1) ∈ R2×2 Process covariance

P∆i
(k + 1) ∈ R2×2 Process detection covariance

d ∈ RM Disturbances vector
G
i
∈ R2×2 State matrix

H
i
∈ R2×3 Unknown flows matrix

Hfi ∈ R2×3 Known inputs matrix
u ∈ R2M Inputs vector
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A ∈ Rn×n State matrix
a
i
∈ R (m2) Channel area

adni ∈ R (m2) Area of the downstream part of the channel
ami ∈ R (m2) Area of an mi part of the channel
aupi ∈ R (m2) Area of the upstream part of the channel
B ∈ Rn×u Input matrix
Bd ∈ Rn×d Disturbances matrix
Bd ∈ Ry×n Output matrix
c
i
∈ R Discharge coefficient

couti ∈ R Discharge coefficient of the outlet
dout Vector of users demands
ed Error between demanded and delivered flow
ev Volume error between demanded

and delivered water
fi Friction factor
g ∈ R (m/s2) Gravity constant
hli ∈ R (m) Head loss due to friction
Hc Control horizon MPC
Hp Prediction horizon MPC
i ∈ Z Stage number

(e.g., i = 1 denotes the first channel)
J(k) Cost function component
K ∈ Ru×n Control matrix
ktri(t) ∈ R ∈ R (m2/s) Transition parameter
l
i

(m) Channel length
lhi ∈ R Constant associated with a difference of

potential along the channel
M ∈ Z Amount of channels
N Prediction horizon NMPC
Nhp ∈ Z Initial position of the estimation window
Nh ∈ Z Estimation window length
p
i

ith channel
q
i
∈ R (m3/s) p

i
inflow

qouti ∈ R (m3/s) Outflow to the users
qmi ∈ R (m3/s) Flow at mi position
qtri(t) ∈ R (m3/s) Flow transition
R ∈ R2×2 Process variance
R Penalization matrix
R∆ ∈ R2×2 Process detection variance
rmi ∈ R (m) Hydraulic radius at an mi position
S ∈ R2×2 Measurement variance
S∆ ∈ R2×2 Process detection covariance
smi ∈ R (m3/s) Leak or seepage at an mi position
u
i
∈ R (m) Regulation structure position
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NOMENCLATURE

vdni ∈ R Downstream mean flow velocity
vupi ∈ R Upstream mean flow velocity
W

i
Positive defined function

wmi ∈ R (m) width at an mi position
x ∈ R2M Vector of upstream and downstream levels
xrefi

(m) desired depth for the ith channel
xdni ∈ R (m) Downstream depth
xdn ∈ RM Vector of downstream levels
xmi ∈ R (m) Depth at an mi position
xupi ∈ R (m) Upstream depth
xup ∈ RM Vector of upstream levels
yqi ∈ Rn Vector of inflows and outflows
zdni ∈ R (m) Downstream elevation
zsi ∈ R Channel’s slope
zupi ∈ R (m) Upstream elevation
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