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Abstract

Phylogenetic trees are diagrams that represent the evolutionary relationships among

various entities, such as biological species, based on the similarities and differences

in their characteristics. In these diagrams, nodes represent individual elements or

taxa, while branches represent the evolutionary connections between them. In this

context, specific distance-based methods need to be defined or analyzed to determine

how they create a phylogenetic tree and understand the evolutionary history they

provide.

This thesis has two main goals. The first is to investigate different distance -based

algorithms applied in the creation and analysis of phylogenetic trees, focusing on the

implications of ties in proximity that can lead to ambiguities in binary phylogenetic

tree structures. We analyze how these inexact trees affect our understanding of evo-

lutionary relationships. The analysis developed in this thesis demonstrates that ties

in proximity hinder the accurate representation of evolutionary histories, potentially

misleading interpretations of phylogenetic relationships. Additionally, we propose a

new method for generating phylogenetic trees that effectively addresses the ties in

proximity problem, thereby enhancing the reliability of evolutionary inference.

The second focus of the thesis is the interpretability of Graph Convolutional Net-

works (GCNs), which are advanced deep learning models for graph-structured data.

Despite their efficacy, GCNs are often criticized for their ”black box” nature, posing

challenges in transparency and trust, especially in critical applications like health-

care. Saliency map generators (SMGs) offer post-hoc explanations for GCNs deci-

sions by highlighting key features in the input data. We investigate the effectiveness
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of these saliency maps and propose metrics to evaluate their performance, thereby

enhancing the interpretability of GCNs.
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This thesis presents two different topics: one is diverse algorithms applied to phy-

logenetic tree creation and analysis, and the other one is the use of saliency maps

and saliency evaluation metrics in graph represented data.

Phylogenetics studies rely on phylogenetic trees to accurately represent evolutionary

relationships among elements. A unique phylogenetic tree is crucial for correctly

understanding these relationships. However, distance-based methods that produce

phylogenetic trees, such as the Unweighted Pair-Group Method with Arithmetic

Mean (UPGMA) and Neighbour-joining (NJ), often generate non-unique trees due

to tied distances, leading to multiple possible phylogenetic trees for the same data.

This lack of a single representation can result in ambiguity and misinterpretations

in published research, which affects subsequent studies. Understanding both the

impact of tied distances that lead to the creation of non-unique phylogenetic trees

and developing methodologies to address these issues is essential. The aim of this

thesis is to improve the accuracy and reliability of tree reconstruction algorithms to

better handle tied distances, ensuring more consistent results, and to quantify the

impact of non-unique phylogenetic trees in published research.

The first topic of this thesis is explained in Chapters 2 to 5. First of all, details about

UPGMA and NJ and other fundamental concepts that are needed to understand

the next three chapters of the manuscript are explained in Chapter 2. In the next

two following chapters, we describe two methods for analyzing the impact of tied

elements in phylogenetic trees using hierachical clustering algorithms. Chapter 3

focuses on the UPGMA method, while Chapter 4 examines the NJ algorithm. In

Chapter 5, we present a new method using the NJ algorithm that effectively handles

tied distances.
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Simultaneously, Graph Convolutional Networks (GCNs) are powerful deep neural

networls for learning representations from graph-structured data. However, their

decision-making processes are often considered a ”black box” due to the intricate

and multi-layered nature of their internal operations, which results in a lack of

transparency and direct interpretability. This complexity makes it challenging to

deduce, understand, and trust how the model arrives at specific decisions or predic-

tions, particularly in real-world contexts that demand a high level of accountabil-

ity and understanding such as healthcare. Saliency map generators (SMGs) have

emerged to address these challenges by providing post-hoc explanations for GCNs.

By highlighting the most important features in the input data, SMGs shed light on

the decision-making processes of GCNs, improving trust in their predictions. The

second aim of this thesis is to analyze the interpretability of graph-based neural

networks using saliency maps, SMGs and metrics to evaluate the performance of

SMGs.

The second topic of this thesis is explained in Chapters 6 and 7. The details about

saliency maps, and other fundamental concepts that are needed to understand Chap-

ter 7 are explained in Chapter 6. In Chapter 7, we describe a method to evaluate

the faithfulness of the saliency maps explanations using evaluation metrics created

for graph regression data.

At the end of the manuscript, Chapter 8 provides a summary of the overall conclu-

sions for the thesis, and Chapter 9 shows a list of the publications produced during

the progress of this thesis.
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2
Methods in phylogeny

2.1 Introduction

The study of phylogeny involves understanding the evolutionary relationships be-

tween species using various methods. In this chapter we present an overview of the

key techniques used in this field, focusing on molecular markers and distance-based

clustering algorithms. Molecular markers, which are DNA sequence fragments, such

as microsatellites, are highlighted for their effectiveness in identifying genetic varia-

tion. These markers provide the data needed to calculate genetic distances, which

are then used to construct phylogenetic trees. Distance-based clustering methods,

including the Unweighted Pair-Group Method with Arithmetic Mean (UPGMA)

and the neighbour-joining (NJ) algorithm, are fundamental for building these trees.

Additionally, it addresses the challenge of ties in proximity values, which can result

in multiple possible phylogenetic trees, and explores advanced algorithmic solutions

4

UNIVERSITAT ROVIRA I VIRGILI 
Advanced methods and applications in phylogenetic tree generation and model interpretability 
Natàlia Segura Alabart 



to address this issue.

2.2 Molecular markers in phylogenetic studies

Molecular markers are powerful tools to study genetic diversity. They can be used

to identify and characterize the genetic variation (different genotypes) within and

between species and populations (Ismail et al., 2016). Numerous molecular genetic

markers are available for genetic variation studies: isozyme, directed amplification

of minisatellite DNA (DAMD), random amplified polymorphic DNA (RAPD), am-

plified fragment length polymorphism (AFLP), inter-simple sequence repeat (ISSR),

restriction fragment length polymorphism (RFLP) and microsatellite markers (Is-

mail et al., 2016; Williams et al., 1990; Powell et al., 1996). Among the different

molecular markers in this manuscript, we will define and utilize microsatellite mark-

ers.

Microsatellites, also known as Short Tandem Repeats (STR) or Simple Sequence

Repeats (SSR), are short fragments of DNA, between 2 to 6 base pairs, repeated in

tandem and randomly inside the genome (Tautz, 1989). They are commonly used

because they are highly reproducible, co-dominant and multiallelic molecular mark-

ers. Their highly polymorphism allows for precise discrimination between closely

related genotypes, and they can be analyzed by a polymerase chain reaction (PCR)

assays (Brondani et al., 1998; Ellegren, 2004; Vieira et al., 2016). Microsatellites

have been used for clustering tasks, mainly in the Eukaryota domain, from animals

(Ebrahimi et al., 2017; Aziz et al., 2020) to plants (Hormaza, 2002)) and fungi (Ates

et al., 2019), and in the bacteria domain (Mohammad et al., 2017).

More specifically, microsatellite markers are used to measure the dissimilarity or

distance between genotypes as a function of the proportion of shared alleles. Alleles

are different forms of a gene found at the same locus (or location) on a chromosome.

These markers are successful genetic tools due to the large number of alleles at

a specific locus. Therefore, it often happens that different pairs of genotypes are

separated by the same distance. For any of these clustering tasks, hierarchical

clustering and distance-based methods are frequently used.
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2.3 Distance-based methods for phylogenetic trees

Distance-based methods are techniques that utilize the proximity matrix of pairwise

similarities or distances between elements to infer evolutionary relationships (Nei,

1978). In evolutionary studies, the graphical structure is represented as a phyloge-

netic tree to illustrate the evolutionary relationships of the species under study.

In the case of microsatellite markers, the similarity between any two genotypes is

measured as the proportion of shared alleles, which can be computed using alter-

native distances susch as one minus the proportion of shared alleles or minus the

logarithm of the proportion of shared alleles. Understanding these genetic similari-

ties is essential for grouping organisms into taxa (singular: taxon), which are defined

as groups of populations classified together based on shared characteristics and evo-

lutionary relationships. For example, in a phylogenetic study of mammals, taxa

could include species such as Homo sapiens (humans) and Oryctolagus cuniculus

(rabbits).

These distance-based methods are categorized into two main types: hierarchical

clustering methods and optimization methods (Lemey et al., 2009). Hierarchical

methods like the Unweighted Pair-Group Method with Arithmetic Mean (UPGMA)

construct trees by iteratively merging taxa based on average distances, while op-

timization methods such as neighbour-joining (NJ) seek to minimize evolutionary

distances between taxa iteratively to construct phylogenetic trees (Han et al., 2010;

Backeljau et al., 1996; Lance and Williams, 1966; Saitou and Nei, 1987; Gascuel and

Steel, 2006). More details on UPGMA and NJ will be explained in section 2.3.2 and

section 2.3.3, respectively.

2.3.1 Ties in proximity

In exploring genetic distances, it is notable that the number of shared alleles typically

ranges between zero and the total number of alleles, but this number is usually

relatively small. Consequently, it is not uncommon for distinct pairs of genotypes to

have identical distance values. When there are identical similarity values between

different pairs, either in the original distances or during the agglomeration process,

6
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Figure 2.1. Example of two possible NJ phylogenetic trees for the same

distance matrix.

phylogenetic tree reconstruction methods can generate more than one structurally

different phylogenetic trees.

This problem arises because traditional algorithm creates internal nodes that are

always dichotomies. An internal node of a phylogenetic tree is a dichotomy when

the tree is rooted and the node is linked to two child subtrees, or when the tree

is unrooted and three branches are connected to the node. If more branches are

connected to an internal node, then we have a polytomy.

In all these cases in which multiple phylogenetic trees are possible, the reproducibil-

ity of the results is more difficult and their interpretation may be biased towards one

of several possible solutions (McTavish et al., 2017; Podani, 1997; Segura-Alabart

et al., 2022). This algorithmic property is known as the ties in proximity problem

(Backeljau et al., 1996; Leal et al., 2016; Hart, 1983; MacCuish et al., 2001). For

instance, Figure 2.1 shows an example where more than one phylogenetic tree is

possible when the same distance separates genotype A from genotype B, as well as

genotype B from genotype C ; in this case, genotype B can cluster with either geno-

type A or genotype C. Additional ties may also appear due to the limited resolution

(number of decimal digits) used to store the proximity matrix.
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2.3.2 UPGMA algorithm

The UPGMA method is a hierarchical clustering approach that combines step-by-

step the closest two clusters or elements into a higher-level cluster, a process also

referred as agglomerative clustering. The distance between the new cluster and

any other cluster is calculated as the arithmetic mean distance between elements in

different clusters (Backeljau et al., 1996; Lance and Williams, 1966).

There are several options to perform hierarchical clustering, developed in different

programming environments that return one of the possible binary phylogenetic trees.

For instance, in R, there are the hclust (hierarchical clustering) function from the

stats package (R Core Team, 2021b), and the agnes (agglomerative nesting) function

from the cluster package (Maechler et al., 2021). In Python, there are the Agglom-

erativeClustering class from the scikit-learn package (Pedregosa et al., 2011), and

the linkage function from the scipy package (Virtanen et al., 2020). And in Matlab,

there is the linkage function (MATLAB, 2010).

UPGMA explained

The UPGMA algorithm builds a phylogenetic tree from a matrix of evolutionary

distances, Dij, between each pair of taxa i, j under study. In a phylogenetic tree,

any taxon at a leaf and any internal node is referred to as an operational taxonomic

unit (OTU).

The UPGMA algorithm operates iteratively to construct the phylogenetic tree. At

each iteration, it selects the two taxa i, j with minimal Dij from the distance matrix.

These two taxa are considered to be the most similar or closely related at that

iteration.

Let I = {i, j} be a pair of selected OTUs with minimal Dij. Then, the taxa i and j

are clustered together to form a new internal node u. This new node represents the

most recent common ancestor of i and j.

The distance between the new node u and any other OTU k ̸= i, j is calculated as

follows:
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Duk =
|xi|Dik + |xj|Djk

|xi|+ |xj|
, (2.1)

where |xi| and |xj| are the number of elements in the cluster i and j, respectively.

This weighted average calculation ensures that the new distances take into account

the sizes of the clusters being merged. Note that if more than one pair of OTUs

have the smallest Dij, only one pair can be selected.

After computing the distances for the new node u, the algorithm updates the dis-

tance matrix by removing the distances associated with taxa i and j, and adding the

new distances involving node u. This step effectively reduces the size of the distance

matrix by one.

The process is repeated iteratively until all OTUs have been merged into a single

cluster, resulting in the completion of the phylogenetic tree.

UPGMA variants

It exists several alternative versions of the UPGMA algorithm to try to solve the

ties in proximity problem. To name a few, the use of a variable-group algorithm for

agglomerative hierarchical clustering that yields a graphical representation known

as multidendrogram, where more than two elements or clusters can be grouped

when ties occur (Fernández and Gómez, 2007); the exploration of all possible binary

phylogenetic trees to create a single phylogenetic tree that considers all possible

combinations of elements, clustering them based on these combinations (Arnau et al.,

2005); the use of pyramidal clustering, which allows cluster overlapping to create a

unique solution by considering multiple levels of aggregation (Diday, 1987; Bertrand,

1995; Nicolaou et al., 2000); or the measure of the likelihood of clusters by counting

cluster frequencies in the set of all possible binary phylogenetic trees resulting from

ties (Leal et al., 2016).
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Figure 2.2. Representation of the multidendrogram derived from the data

presented in Figure 2.1.

Multidendrogram

The multidendrogram is a variation of the UPGMA algorithm designed to address

the ties in proximity problem by merging more than two elements or clusters simul-

taneously when ties occur during the clustering process.

Suppose that, in a specific iteration, two pairs of OTUs, i1, i2 and i2, i3, have the

smallest Dij; that is, Di1i2 = Di2i3 = Dmin. In this case, the multidendrogram

generates a new internal node u joining the set of three OTUs I = {i1, i2, i3}.

More generally, let I = {i1, i2, . . . , iP} be a set of OTUs to be clustered together,

generating a new internal node u. The distance between the new OTU u and any

other OTU k /∈ I is:

Duk =

∑
i∈I |xi|Dik∑

i∈I |xi|
. (2.2)

This equation generalizes the distance calculation from Equation(2.1) used in the

standard UPGMA algorithm to handle multiple OTUs simultaneously.

When two new internal nodes u and v join two sets of OTUs I = {i1, i2, . . . , iP}
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and J = {j1, j2, . . . , jQ}, respectively, the distance between the two clusters is:

Duv =
1

|XI | |XJ |
∑
i∈I

∑
j∈J

|xi| |xj|Dij, (2.3)

where |XI | and |XJ | are the number of elements in the sets I and J , respectively.

This formulation allows the multidendrogram algorithm to effectively address the

ties in proximity problem by merging multiple OTUs at once, ensuring that the

clustering process is not biased by the order of input data. As a result, the multiden-

drogram approach provides a more robust and consistent method for phylogenetic

tree reconstruction when ties in distances are present.

A graphical representation of a multidendrogram is shown in Figure 2.2. The shad-

owed region between heights 0.2 and 0.3 represents the interval between the respec-

tive values for the clusters. In this example, genotype B has the same minimal dis-

tance to both genotype A and genotype C. However, the distance between genotype

A and genotype C is not minimal (also visible in Figure 2.1). This hetereogene-

ity of distances within the same cluster creates an area with varying heigth values.

The mininum value corresponds to the smallest distance among all OTUs, while the

maximum value corresponds to the distance separating genotype A from genotype

C.

2.3.3 Neighbour-Joining (NJ) algorithm

The NJ algorithm is a distance-based method for building phylogenetic trees (Saitou

and Nei, 1987; Studier and Kepplter, 1988). NJ is a greedy algorithm that combines

the two closest clusters or elements into a parent cluster. When a given distance

matrix satisfies the four-point condition, the NJ algorithm finds the correct tree for

that distance matrix (Studier and Kepplter, 1988; Durbin et al., 1998; Buneman,

1974; Steel, 1992; Jiang et al., 2001; Cilibrasi and Vitányi, 2005). The four-point

condition states that for any four taxa A, B, C, and D, dAB + dCD ≤ max(dAC +

dBD, dAD + dBC). Even when a given distance matrix does not satisfy the four-

point condition, NJ is considered to return a good approximate tree (Atteson, 1999).
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Therefore, the NJ algorithm is used by the scientific community to build phylogenetic

trees, mainly due to its good accuracy for small to medium sets (Mailund and

Pedersen, 2004).

NJ explained

The NJ algorithm constructs a phylogenetic tree based on a matrix of distances

between each pair of taxa (organisms or groups). The process begins with all taxa

arranged in a starlike tree, assuming no clusters. In each iteration, a score is calcu-

lated for each pair of taxa to determine their proximity. This score helps identify

the pair of taxa that should be clustered together in the tree in that iteration.

Once the closest pair of taxa is identified, they are grouped together to form a

new node. The distances from this new node to all other remaining taxa are then

updated. This iterative process continues, with the two closest taxa being removed

from the matrix and the new node being added, until only three taxa remain.

When the algorithm reaches the final three taxa, it connects them to complete the

phylogenetic tree. This approach allows the NJ algorithm to construct a tree that

reflects the evolutionary relationships between the taxa under study, based on their

calculated distances. A more detailed explanation will be provided in Chapter 5.

NJ variants

Over the last years, the scientific community has developed several alternative ver-

sions of the NJ algorithm. To name just a few, there are algorithms that use heuris-

tics to reduce their running time, making them suitable for large-scale applications:

QuickTree (Howe et al., 2002), QuickJoin (Mailund and Pedersen, 2004), relaxed

neighbor joining (Evans et al., 2006), and fast neighbor joining (Elias and Lager-

gren, 2009). Some algorithms try to recover the minimum evolution tree keeping

track of several partial solutions along the execution of the algorithm and, thus, ex-

ploring a greater part of the tree space: generalized neighbor joining (Pearson et al.,

1999), neighbor-joining maximum likelihood (Ota and Li, 2000), and multineigh-

bor joining (Silva et al., 2005). And other possibilities include BIONJ (Gascuel,
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1997) and weighted neighbor joining (Bruno et al., 2000), which consider differently

long genetic distances than short ones, and MJOIN (Levy et al., 2005), which uses

estimates of phylogenetic diversity rather than pairwise distances in the tree.

In order to allow for polytomies, one could use phylogenetic networks that, in spite

of no longer trees, can present a unique network for a matrix of evolutionary dis-

tances (Bryant and Moulton, 2004). Another possibility could be to modify the

NJ algorithm accordingly. As a matter of fact, the NJ algorithm itself is based on

the simultaneous partitioning method by (Saitou, 1986), which considers all pos-

sible partitions of N OTUs into two clusters with m and n OTUs respectively

(m+n = N ;m,n ≥ 2), and selects the best one. Unfortunately, considering all pos-

sible partitions into two clusters has the problem of combinatorial explosion (Saitou,

2018).

Several variants of the NJ algorithm can be used to avoid the ties in proximity

problem. Live neighbor-joining (Telles et al., 2018) and extended neighbor-joining

(Hong et al., 2021) both allow clusters with up to three elements.
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3
Nonunique UPGMA phylogenies of

microsatellite markers
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3.1 Introduction

This chapter examines the occurrence of proximity ties in published UPGMA phy-

logenetic trees constructed using microsatellite markers, which can result in non-

unique phylogenetic trees with multiple possible configurations. Binary phyloge-

netic trees, constrained to grouping elements in pairs, face challenges when tied

distances occur between two or more elements. In these cases, these trees initially

group two of the tied elements together, which leads to the other tied elements to

be added in a posterior step or grouped in another cluster. In this way, the real

genetic relationship between genotypes is not properly reflected in the phylogenetic

tree. The presence of UPGMA binary phylogenetic trees with non-unique solutions

in published articles can impact not only on the direct conclusions obtained in these

publications, but also indirectly on the works based on these original publications.

We analyze the data in publications that had used the UPGMA method in phyloge-

netic studies on molecular markers using multidendrograms to detect tied distances

and count the number of articles where more than one phylogenetic tree was pos-

sible. The analysis explained in this chapter has been presented in Segura-Alabart

et al. (2022).

This chapter is organised as follows. Firstly, the proposed method is presented and

explained in Section 3.2. Secondly, we show the experiments in Section 3.3 and, in

the end, we present the conclusions of the chapter in Section 3.4.
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3.2 The proposed method

We carried out the analysis of the articles in three steps. First, we set the search

strategy by obtaining the population dataset of articles that used the UPGMA clus-

tering method to classify microsatellite markers. Then we selected a sample dataset

by filtering and analyzing a subset of the publications searching for specific features

in them. Finally, we checked whether the selected articles had ties in their phyloge-

netic trees and counted the number of articles where the possible phylogenetic trees

were non-unique.

3.2.1 Search strategy

We looked for scientific publications that used the UPGMAmethod on microsatellite

markers, up to 2021, in the Scopus database. The search query used to retrieve

the titles of articles was: ‘UPGMA’ AND (‘microsatellite*’ OR ‘simple sequence

repeat*’ OR ‘SSR’ OR ‘short tandem repeat*’ OR ‘STR’), where AND and OR

are the standard boolean operators. We added the symbol * to some words to

include the plural form of these words. We limited the search to words of the query

present in the title, abstract or keywords, and the publication year up to 2021. We

collected the following bibliometric information: document title, journal and year

of publication. A total of 2255 articles had been published from 1995 to 2021 (27

years) and a total of 2239 articles remained after removing 16 duplicated records.

That was the population dataset subject of this study.

3.2.2 Sample dataset

Figure 3.1 shows the flowchart of the dataset. We downloaded all bibliometric

information corresponding to the selected articles and randomized the dataset to

prevent a bias towards a specific year, subject area or alphabet order. Given the

large number of publications included in the dataset (n = 2239), we selected a subset

containing 20% of them. As a result, the initial sample dataset was composed of 454

articles. We excluded 62 articles not available. The remaining subset was composed
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Scopus search criteria results:

2255

Eligible for analyses:

2239

Duplicated records:

16

Initial sample:

454

Randomly selected:

20%

Articles analized:

392

Dendrogram and proximity 

matrix available:

102

Articles with ties:

47

Articles not available:

62

Figure 3.1. Flowchart of the elaboration of the dataset.

of 392 publications to analyze. From this subset, we only selected the articles that

contain a phylogenetic tree and a matrix of proximity data, either similarities or

distances, or a table describing the genetic profiles of all genotypes. In the cases

where the table with the genetic profiles was provided, we computed a matrix with

the proportion of shared alleles using the adegenet package (Jombart, 2008; Jombart

and Ahmed, 2011) in R version 4.1.0 (R Core Team, 2021a). We rejected articles

for further analysis if the proximity data matrix and the phylogenetic tree did not

contain the same genotype information. In the end, we came up with a final sample

dataset containing 102 articles (The complete list of articles, along with additional

information, can be found in Segura-Alabart et al. (2022)).

3.2.3 Non-unique phylogenetic trees

We used the mdendro package in R to analyze the existence of ties in proximity and

to create the corresponding multidendrograms (Fernández and Gómez, 2007, 2020).

This package shows the location of any tie in a multidendrogram as a coloured

rectangle that represents the variability or range between the minimum and the

maximum distances separating any two of the constituent clusters, since it is possible

17

UNIVERSITAT ROVIRA I VIRGILI 
Advanced methods and applications in phylogenetic tree generation and model interpretability 
Natàlia Segura Alabart 



that not all elements in a tie are separated by the same distance (Figure 3.2 A).

We also used Radatools 5.2 (Gómez and Fernández, 2021) to count the number

of possible binary phylogenetic trees corresponding to a given matrix of proximity

data. Radatools has the option of computing all possible binary phylogenetic trees

as well as the unique multidendrogram. We chose the former option as we wanted

to calculate the number of binary phylogenetic trees a specific article can have when

there are tied clusters.
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Figure 3.2. Phylogenetic tree of genetic distances between 10 individuals of

Lathyrus sativus (Wang et al., 2015). (A) Multidendrogram created with the

mdendro package, showing in gray the tied cluster grouping L. clymenum,

L. ochrus, L. sylvestris, L. latifolius and L. pratensis, with a range band

between the minimum distance (1.0459 units) and the maximum distance

(1.1112 units) between all elements that compose the tie in proximity. (B,

C) The two possible binary phylogenetic trees, where the last five elements

are grouped differently.
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3.3 Experiments

This section is divided as follows. First, we quantify the amount of publications that

include at least one tie in their clustering process to reconstruct the corresponding

phylogenetic tree, and we also asses the potential number of binary phylogenetic

trees each article with ties can generate. Then, we examine the yearly number of

articles published containing a UPGMA tree of microsatellite markers. We proceed

by presenting the subject areas into which the articles are classified. Finally, we

show two case studies illustrating different scenarios in binary phylogenetic trees

generation: one yielding two possibilities and another yielding over 2.5 million pos-

sibilities.

3.3.1 Proportion of articles with ties in proximity

To count the number of publications that had at least one tie in the resulting phylo-

genetic tree, we took the proximity data from all the articles in our sample dataset

and computed the corresponding multidendrogram. We found that in 47 out of the

102 articles analyzed there was more than one possible binary phylogenetic tree.

This value corresponds to 46% of the articles, with a 95% confidence interval (CI)

between 36% and 56%. Extrapolating this percentage to the total population of

2239 articles gives an estimate of 1032 articles (95% CI 816 – 1248 articles) with

alternative solutions in the form of different binary phylogenetic trees. In such

cases, employing a single arbitrary resolved phylogenetic tree out of the different

possibilities can be misleading.

We were also interested in exploring the distribution of the number of binary phy-

logenetic trees resulting from the articles that had at least one tie in the resulting

phylogenetic tree, see Figure 3.3. Most articles with ties had between 2 and 10 dif-

ferent binary phylogenetic trees (66%, i.e., 31 of all the articles with ties), followed

by articles having between 11 and 100 different binary phylogenetic trees (13%, i.e.,

six of all the articles with ties). Remarkably, 11% of all the articles with ties (i.e.,

five articles) had more than 10000 different binary phylogenetic trees. These re-

sults are in good agreement with previous studies reporting that the occurrence of
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Figure 3.3. Distribution of the number of binary phylogenetic trees resulted

from the articles that had at least one tie in the resulting phylogenetic tree

(n = 47).

ties was responsible for more than one hundred thousand dendrograms (Leal et al.,

2016), or even more than seven hundred million dendrograms (Gómez et al., 2013).

3.3.2 Analysis of publications per year

The publication year of the articles in our population dataset ranged from 1995 to

2021 (Figure 3.4). The majority of them were published after year 2000. Since 2009,

more than 100 articles have been published yearly; and 2016 is the year with more

published articles (n = 158) and for the last 10 years the number of publications has

stabilized around 140 articles per year. Overall, the number of published articles

shows a steady increase since the 2000s, indicating that this research area started

to gain considerable attention. The reason for this increase may be 2-fold: on the

one side, the existence of next-generation sequencing technologies that started a

new era of genomics research with high throughput sequencing data and cheaper

sequencing costs (Park and Kim, 2016), and on the other side, software packages to

run phylogenetic tree algorithms in general, and the UPGMA method in particular,

started to be more readily available at that time.

We are aware that this is just an underestimation of the real number of publications
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Figure 3.4. Number of articles published in Scopus from 1995 to 2021.

that contain an UPGMA tree of microsatellite markers. This is so because we

did not take into consideration articles published in journals outside the Scopus

Indexed Journal List. Also, because there are other articles in the Scopus database

that contain an UPGMA tree of microsatellite markers, but they do not contain in

their title, abstract or keywords, any of the words that we used as search criteria.

3.3.3 Distribution of subject areas

The 2239 articles were classified into 22 different subject areas. The two most

common subject areas were Agricultural and Biological Sciences (46%), followed by

Biochemistry, Genetics and Molecular Biology (29%) in second place (Figure 3.5).

These two subjects constitute 75% of the total number of articles. It was expected

that most of the articles were related to biological sciences or similar research areas

as STR and SSR are tools frequently used in these areas. We grouped the 13 subject

areas that constitute <1% of the total number of articles each into a category named

‘Other’ in Figure 3.5. For instance, Computer Science (Grishin and Grishin, 2002),

Mathematics (Hariri et al., 2017) or Social Sciences (Li et al., 2020) are examples

of research areas that are quite distinct from the previous ones. Such a variety of

subject areas indicates that the clustering of microsatellite markers by UPGMA is

widely used in many areas of scientific knowledge.
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Figure 3.5. Articles classified by subject area. There are 13 subject areas

that constitute less than 1% each, and they have been grouped together in

the category named “Other”.

3.3.4 Case studies

Among the 102 articles that we have analyzed from our sample dataset, we have

selected two opposite cases to demonstrate how it is possible to obtain multiple dif-

ferent phylogenetic trees from the same dataset using the same clustering algorithm

(UPGMA). The first example describes a case that generates 2 different binary phy-

logenetic trees, whereas the second example describes a case that generates more

than 2.5 million different binary phylogenetic trees.

In the first case study, the authors analyze the genetic diversity among Lathyrus

sativus (grasspea), also known as L. sativus, from its cultivated and wild relatives

(Wang et al., 2015). The study has a total of 10 taxa, the number of microsatellite

loci used is 30, and the distance matrix values have an accuracy of four decimal

digits. The distance matrix values range from 0 to 2. The original data presents a

tie between L. pratensis and two clusters of grasspea: one formed with L. clymenum
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and L. ochrus, and the other with L. sylvestris and L. latifolius. The corresponding

multidendrogram is shown in Figure 3.2A, where the minimum and maximum dis-

tances between all cluster elements are 1.0459 and 1.1112, respectively. This tie is

responsible for two different binary phylogenetic trees using the UPGMA method.

We can describe this tie as happening in the middle of the phylogenetic tree as it

is formed by taxa already in clusters. After its formation, the tied cluster will be

grouped with the other five elements in the phylogenetic tree. This case clearly

shows that tied distances can happen in any step of the clustering process.

In Figure 3.2B, we can observe one of the two possible binary phylogenetic trees,

clustering first L. pratensis with the pair formed by L. sylvestris and L. latifolius.

Then, a second cluster formed with L. clymenum and L. ochrus is added to the

previous cluster containing three elements. This binary phylogenetic tree shown in

Figure 3.2B is exactly the same that the authors of the study gave in their article

in Wang et al. (2015). In Figure 3.2C, it is depicted the other possible binary

phylogenetic tree for the same input data, where L. clymenum and L. ochrus are

clustered first with L. sylvestris and L. latifolius. A fifth element, L. pratensis, is

added then to the previous cluster containing four elements.

In the second case study, the authors analyze the genetic diversity of 22 chillies

(Capsicum annuum L.) germplasm using four microsatellite markers (Hossain et al.,

2014). The article provides a proximity matrix of similarity values with an accu-

racy of three decimal digits. The similarity matrix values range from 0 to 1. The

original data presents three ties along with the resulting multidendrogram (see Fig-

ure 3.6A). These three ties are responsible for more than 2.5 million different binary

phylogenetic trees using the UPGMA method (to be exact, 2655193 different binary

phylogenetic trees). This second case study is a clear example that multiple ties can

occur in the same phylogenetic tree. Note that the larger the data set, the more

likely it is to have different binary phylogenetic trees (MacCuish et al., 2001).

In Figure 3.6, we can also observe two possible binary phylogenetic trees for the

22 chillies among the more than 2.5 million possibilities. The two selected phyloge-

netic trees have several remarkable differences between them. One clear difference,

for instance, is that in Figure 3.6B Comilla is first clustered with Sada gol, and the

24

UNIVERSITAT ROVIRA I VIRGILI 
Advanced methods and applications in phylogenetic tree generation and model interpretability 
Natàlia Segura Alabart 



resulting cluster is merged with Ruma. On the contrary, in Figure 3.6C Comilla is

first clustered with Dhani, and the resulting cluster is merged with Sada gol. An

even more outstanding difference is found between clusters (Angoor, Shada) and

(Boro, BD.2025 ), that are directly clustered together in Figure 3.6C, whereas they

only join at the root of the phylogenetic tree (minimum ultrametric similarity) in

Figure 3.6B.
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Figure 3.6. Phylogenetic tree of genetic similarity between 22 individuals of

Capsicum annuum L. Hossain et al. (2014). (A) Multidendrogram showcasing

the three different ties as a line joining more than two clusters, instead of a

range band, for the sake of clarity. (B, C) Two possible binary phylogenetic

trees among the more than 2.5 million available.
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3.4 Conclusions

The method presented in this chapter analyzes the impact of tied elements in phy-

logenetic trees using the UPGMA algorithm.

The experimental validation shows that the 46% of the articles have at least one

alternative solution to the published binary phylogenetic tree. In the dataset of

2239 articles, this would correspond to 1032 articles having at least one tie.

The potential implications that this finding uncovers need to be taken seriously into

consideration because between one-third and up to one-half of the articles under

consideration are affected by the ties in proximity problem.

While most articles with at least one tie had between 2 and 10 possible binary

phylogenetic trees, there are instances where the number can exceed 10000 and even

reach up to 2.5 million different binary phylogenetic trees.

The existence of articles containing UPGMA binary phylogenetic trees that are not

unique solutions can have consequences not only on the direct conclusions obtained

in these publications, but also indirectly on the works based on these original pub-

lications.

Ties in proximity affect more fields than the one analyzed here. We have shown that

ties are not exclusive of biological sciences or similar research areas; instead, they can

also occur in completely different research areas. Thus, such a wide range of research

topics affected by ties is not exclusive of microsatellite data and experiments. Note

that this problem is inherent in the methodology used to obtain binary phylogenetic

trees.
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A practical study of the proportion of

non-unique neighbour-joining trees of

microsatellite markers
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4.1 Introduction

This chapter examines the non-uniqueness of the NJ algorithm when there are tied

distances in the data. As mentioned before, NJ is an algorithm for reconstructing

binary phylogenetic trees, which clusters two elements in each step, independently

of whether there are more than two elements with the same distance. As a result, it

cannot return multiple binary phylogenetic trees despite their possible existence, as

it solely produces a single phylogenetic tree. This limitation went unnoticed by the

authors of the publications in question. Consequently, the results and conclusions

in published scientific papers that present a single phylogenetic tree generated by

the NJ method may be biased or limited in scope.

We quantify the magnitude of the ties in proximity problem by conducting a sta-

tistical study of publications that contained NJ phylogenetic trees of microsatellite

markers. The analysis presented in this chapter is similar to the one detailed in

Chapter 3, but it differs by analyzing the ties in proximity problem using a different

phylogenetic tree reconstruccion algorithm.

This chapter is organised as follows. Firstly, the proposed method is explained in

Section 4.2. Secondly, we show the experiments in Section 4.3 and, in the end, we

present the conclusions of the chapter in Section 4.4.
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4.2 The proposed method

We conducted the examination of the articles in a three-step process. In the first sec-

tion, we describe the search strategy implemented to acquire the population dataset

of articles utilizing the NJ algorithm for microsatellite marker classification. Af-

terwards, we explain the procedure for generating the sample dataset. In the last

section, we expound upon the analysis of ties within the phylogenetic trees and de-

tail the methodology employed for quantifying the occurrences of non-unique binary

phylogenetic trees across articles.

4.2.1 Search strategy

We analysed the scientific literature on microsatellite markers that used the NJ

algorithm. We conducted a search for articles in the Scopus database up to the year

2022. The query used was similar to the one specified in Chapter 3. The search

query employed to obtain the articles was: (”microsatellite” OR ”microsatellites”

OR ”simple sequence repeat” OR ”simple sequence repeats” OR ”SSR” OR ”short

tandem repeat” OR ”short tandem repeats” OR ”STR”) AND (”neighbor joining”

OR ”neighbour joining” OR ”neighbor-joining” OR ”neighbour-joining”), where

AND and OR are the standard boolean operators. We expanded the search scope

by including plural forms and multiple word variations. We limited the search to

include only the terms from the query found in the title, abstract, or keywords.

We gathered bibliometric data, including the document title, journal name, year of

publication and subject area. In total, we retrieved 1245 articles ranging from the

year 1994 to year 2022 (29 years). After eliminating three duplicated records, the

dataset analyzed in this study consisted of 1242 articles.

4.2.2 Sample dataset

Figure 4.1 describes the screening process of the articles included in the analysis.

We downloaded the selected articles and randomized the dataset to prevent bias

towards any of the collected bibliometric data, including specific years, subject areas,
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344
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13

Articles not available:

9

Figure 4.1. Flowchart detailing the screening process of the articles included

in the dataset.

or alphabetical order. We worked with an initial subset of 353 articles, comprising

roughly 30% of the dataset publications (n = 1242). We removed nine unavailable

articles, leaving a subset of 344 publications. Within this subset, we specifically

selected articles that contained either a phylogenetic tree and a matrix of proximity

data (either similarities or distances), or a phylogenetic tree and a table detailing the

genetic profiles of all genotypes, provided there were more than three genotypes. In

those cases where only the genetic profile table was available, we calculated a matrix

indicating the proportion of shared alleles using the Adegenet package (Jombart and

Ahmed, 2011) in R version 4.1.0 (R Core Team, 2021a). We excluded articles if the

proximity data matrix, whether given or calculated, did not match the genotype

information in the phylogenetic tree, if the phylogenetic tree was not generated

using the NJ algorithm, or if the provided information was incomplete.

Out of 344 articles analysed, only the 29% of them (100 articles) contained the nec-

essary data to be reproducible (the complete list and additional information can be

found at ASCLEPIUS-URV (2024)). Therefore, we had a final sample data set of

100 articles published in over 50 distinct journals. These journals adhere to varying
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data archiving guidelines, ranging from none to mandatory submission with accom-

panying documentation. This lack of standardised and mandatory data archiving

policies across journals hinders data accessibility, reproducibility and restricts col-

laboration opportunities as well as scientific progress (Vines et al., 2013; Roche

et al., 2014; McTavish et al., 2017). The issue of inadequate data availability is also

discussed in Chapter 3, where statistical analysis reveals that approximately 26% of

the analyzed articles featured correct data availability.

4.2.3 Tie analysis in phylogenetic tree reconstruction

We used the MultiFurcating Neighbour-Joining (MFNJ) algorithm to analyse and

count the presence of ties. A detailed explanation of the MFNJ algorithm will

be provided in Chapter 5; in essence, it efficiently groups any number of elements

simultaneously, ensuring the generation of an unique phylogenetic tree.

We used the R packages mphylo to reconstruct the phylogenetic trees (Fernández,

2023), and ggtree to plot trees (Yu, 2020).

4.3 Experiments

This section is divided as follows. First, we quantify the amount of publications

having at least one tie in their clustering process to reconstruct the correspond-

ing phylogenetic tree. Then, we examine the yearly number of articles published

containing a NJ tree of microsatellite markers, and we compare it with another ag-

glomerative clustering algorithm such as UPGMA. We continue showing the topics

that the articles are classified into. Finally, we show an example of a case study that

yields two different binary phylogenetic trees.

4.3.1 Proportion of articles with ties

In order to count the publications with ties in their phylogenetic trees, we utilized

the proximity data matrix extracted from every article in our sample dataset. Sub-
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sequently, we calculated their corresponding phylogenetic tree employing the NJ

method and used the MFNJ algorithm to assess and quantify the occurrence of ties.

We found that there was more than one possible binary phylogenetic tree in 13 out

of the 100 articles analysed. That is the 13% of the articles, with a 95% CI ranging

from 6% to 20%. Extending this percentage to the entire population, it yields an es-

timate of 161 articles (95% CI 74 – 248 articles) that may have alternative solutions

in the form of different binary phylogenetic trees. The presence of multiple potential

trees in a significant proportion of analyzed articles raises important considerations

for downstream analyses. In such instances, relying on a single binary phylogenetic

tree might be misleading.

4.3.2 Publications per year

Articles in our population dataset ranged from the year 1994 to the year 2022, see

Figure 4.2. The search strategy utilised in this study might have unintentionally

excluded some relevant articles. We acknowledge that this represents a conservative

estimate of the overall count of publications featuring a NJ tree of microsatellite

markers. This limitation arises from not incorporating articles published in journals

beyond the Scopus Indexed Journal List. Moreover, there is a possibility that other

articles within the Scopus database utilize an NJ tree with microsatellite markers,

but they do not incorporate the specific terms we employed as search criteria within

their titles, abstracts, or keywords.

We compare, under the same search strategy, the number of scientific publications

utilizing both the NJ method and the UPGMA method, analysed in Chapter 3,

because they are both agglomerative clustering methods. Although we observed a

greater use of the UPGMA method over the years compared to the NJ method, both

clustering methods have shown a steady increase since 2000 and reached a plateau in

the number of publications in the last ten years. Approximately 70 articles have been

published yearly for the NJ method and 100 articles for the UPGMA method. In the

case of the NJ method, 2018 was the year with the highest number of publications

(n = 84).
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Figure 4.2. Comparison of the number of scientific publications in the

Scopus database that used the NJ and the UPGMA methods on microsatellite

markers from 1994 to 2022.

4.3.3 Publications per subject areas

The 1242 articles belong to 21 distinct subject areas. The predominant fields are

Agricultural and Biological Sciences, comprising 42%, and Biochemistry, Genetics,

and Molecular Biology, constituting 30% (Figure 4.3). Together, these two subjects

account for 72% of the total article count. It was anticipated that a majority of

the articles would pertain to life sciences or analogous subject areas, given the

prevalent use of STR and SSR as tools within these fields. Subject areas with

minimal representation, each contributing less than 1% to the total article count,

have been grouped into a category labeled ”Other” in Figure 4.3. We can find

examples in areas that differ significantly from the previous ones, such as Chemical

Engineering (Ditta et al., 2018), Neuroscience (Li et al., 2018) and Computer Science

(Chapal-Ilani et al., 2013).

4.3.4 Case study

We have selected a single case from the 100 articles analysed in our sample dataset

to demonstrate how it is possible to generate distinct binary phylogenetic trees from

the same data using the NJ algorithm. This example illustrates a scenario that
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Figure 4.3. Articles classified by subject areas. The category named

”Other” groups together 14 subject areas that constitute less than 1% each.

produces two distinct binary phylogenetic trees.

The authors of this study, Moiana et al. (2012), analysed the genetic diversity and

population structure of the cultivated upland cotton (Gossypium hirsutum L.) (Fig-

ure 4.4). The study includes 20 taxa in total, assessing 27 microsatellite markers.

The values in the distance matrix range from 0 to 0.73, with a precision of two dec-

imal places. It exists a tie between cultivar 53 (depicted in red in Figure 4.4) and

two clusters. The first cluster, referred to as subcluster 1, is formed by cultivars 49,

52, 55, 56, 57, 58, 59, 60, 61, 62, 63 and 64 (portrayed in purple in Figure 4.4). The

second cluster, referred to as subcluster 2, is formed by cultivars 45, 46 and 47 (de-

picted in green in Figure 4.4). The cultivar names corresponding to the numbered

identifiers are as follows: 45-BRS PEROBA, 46-BRS 7H, 47-ITA90, 48-BRS 8H, 49-

BRS ARAÇÁ, 50-BRS PRECOCE, 51-BRS SUCUPIRA, 52-BRS 336, 53-BRS IPÊ,

54-BRS 286, 55-BRS CAMAÇARI, 56-ITA96, 57-BRS 335, 58-BRS ANTARES, 59-

BRS 201, 60-BRS FACUAL, 61-BRS PRECOCE, 62-BRS CEDRO, 63-GIBANGA

and 64-IMA CD05-8221.

Figure 4.4A represents one of the possible binary phylogenetic trees for the same

data, where subclusters 1 and 2 are grouped together first. Figure 4.4B showcases
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A

B

Figure 4.4. Phylogenetic trees of the genetic distances between 20 cultivars

of upland cotton Moiana et al. (2012) using the NJ method. Distinct colours

are employed to represent tied elements across the phylogenetic trees.
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another binary phylogenetic tree for the same data, wherein subcluster 2 is first

grouped with cultivar 53.

A notable difference between the two phylogenetic trees is the addition of cultivar

53. In Figure 4.4A, is clustered at the last step, while in Figure 4.4B, it is grouped

with subcluster 2 in the middle of the phylogenetic tree.

4.4 Conclusions

The method presented in this chapter quantifies how frequently ties in proximity

appear in published articles with microsatellite markers where the phylogenetic tree

is generated using the NJ method and only show a binary phylogenetic tree.

The comparative analysis of scientific publications using the NJ and UPGMA meth-

ods reveals a notable historical preference for the UPGMA method in the context

of microsatellite markers to study genetic diversity.

The majority of articles analyzed belonged to biological sciences, such as Agriculural

and Biological Sciences and Biochemestry, Genetics and Molecular Biology.

The experimental validation shows that the 13% of the articles (95% CI 6 – 20%)

possess at least one alternative binary phylogenetic tree to the published one. This

corresponds to approximately 161 articles with at least one tie (95% CI 74 – 248

articles) in our dataset of 1242 articles. This result indicates that up to a fifth of

the articles considered could be affected by the issue of ties in proximity.
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5
The MultiFurcating Neighbor-Joining

algorithm for reconstructing polytomic

phylogenetic trees
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5.1 Introduction

The motivation behind this study stems from addressing two significant challenges

in distinct yet related fields: phylogenetic tree creation and the interpretability

of graph-based neural networks. In phylogenetics, accurately representing evolu-

tionary relationships is crucial, yet methods like UPGMA and Neighbour-Joining

(NJ) often produce non-unique trees due to tied distances. These ambiguities can

lead to misinterpretations in published research, affecting subsequent studies. This

research aims to refine these algorithms, making them more robust and reliable,

thus providing clearer insights into evolutionary patterns. Simultaneously, the rise

of Graph Convolutional Networks (GCNs) in handling complex, graph-structured

data has highlighted a critical need for understanding their decision-making pro-

cesses. The inherent complexity and opacity of GCNs’ mechanisms pose a barrier

to their broader application and acceptance.

The aim of this thesis is to develop advanced methodologies to tackle these chal-

lenges, thereby enhancing both fields. For phylogenetics, this involves improving

the accuracy and reliability of tree reconstruction algorithms to better handle tied

distances and provide more consistent results. For GCNs, the focus is on employing

saliency maps to demystify their decision-making processes, making these powerful

tools more interpretable and trustworthy. The convergence of these aims not only

advances theoretical knowledge but also delivers practical solutions that can be ap-

plied in real-world scenarios, enhancing both the precision of phylogenetic studies

and the transparency of machine learning models.

In Chapter 2, we explored various alternative versions of the NJ algorithm, designed
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to enhance runtime efficiency, explore diverse tree spaces, and notably, address ties

in proximity. Specifically, the variant addressing the ties in proximity problem only

permits clusters with up to three elements, which limits their applicability in cases

where clustering larger groups is necessary. This limitation and some discrepancies

with the formulas used there motivated the development of a new NJ variant that

generalizes the NJ algorithm.

This chapter introduces the multifurcating neighbour-joining (MFNJ) algorithm, de-

veloped during this thesis, that facilitates the simultaneous grouping of any number

of elements. Additionally, the method enables the generation of a phylogenetic tree

that can group multiple elements within the same cluster or across multiple clusters

concurrently. This eliminates the need to run NJ multiple times with varing input

orders to explore different potential phylogenetic trees. The method explained in

this chapter has been presented in (Fernández et al., 2023).

This chapter is organised as follows. Firstly, Section 5.2 provides a detailed ex-

planation of the NJ algorithm. Secondly, the proposed method is introduced and

explained in Section 5.3. Thirdly, the experimental results are presented in Sec-

tion 5.4. Finally, the conclusions are summarized at the end of the chapter in

Section 5.5.

5.2 Background

In Chapter 2, we provided a general overview of the NJ algorithm. In this Sec-

tion, we look into a more detailed explanation of the entire process, including its

mathematical formulation.

5.2.1 The NJ algorithm

The NJ algorithm builds a phylogenetic tree from a matrix of evolutionary distances,

Dij, between each pair of taxa i, j under study.

Initially, the entire set of taxa is taken as the starting set of OTUs, arranged in a
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Figure 5.1. A starlike tree with no hierarchical structure.

starlike tree as in Figure 5.1, assuming that there is no clustering of OTUs. In each

iteration of the algorithm, the values Sij are calculated for each pair of OTUs i, j

as follows:

Sij = (N − 2)Dij −Ri −Rj, (5.1)

where N is the current number of OTUs, and Ri is the sum of distances between

OTU i and all the other OTUs:

Ri =
∑
k

Dik. (5.2)

Note that Equation(5.1) is the one in Studier and Kepplter (1988), and minimizing

it is equivalent to minimizing the sum of branch lengths of Saitou and Nei (1987)

(Gascuel, 1994).

A pair of OTUs for which Sij is the smallest is selected. Note that if more than one

pair of OTUs have the smallest Sij, only one pair is randomly selected. Let I ={i1,

i2} be a pair of selected OTUs that minimize Sij. Then, i1 and i2 are clustered

together generating a new internal node u (Figure 5.2), and the distance between

the new node u and any other OTU k ̸= i1, i2 is calculated as follows:
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Figure 5.2. A tree with OTUs I = {1, 2} joined to new node u.

Duk =
Di1k +Di2k

2
− Di1i2

2
. (5.3)

Equation (5.3), cited from Studier and Kepplter (1988), is equivalent to the one in

Saitou and Nei (1987), both of which reconstruct the same tree (Gascuel, 1994).

This equivalence holds despite their differing sources.

Finally, the length of the new branch linking i1 and u is calculated as follows:

Li1u =
Di1i2

2
+

Ri1IC

N − 2
− RIIC

2(N − 2)
, (5.4)

where IC is the complement of I, RiIC is the sum of distances between an OTU i ∈ I

and all the other OTUs k /∈ I:

RiIC =
∑
k/∈I

Dik, (5.5)

and RIIC is the sum of distances between all the OTUs i ∈ I and all the other OTUs

k /∈ I:

RIIC =
∑
i∈I

∑
k/∈I

Dik, (5.6)

Li2u can be obtained in the same way or simply subtracting Li1u from Di1i2 .
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In each iteration, the two selected OTUs, i1 and i2, are removed from the distance

matrix, D, and a new internal node u is added. The procedure ends when the current

number of OTUs is equal to three, and there is only one possible unrooted tree. The

branch length for each one of the last three OTUs, i1, i2 and i3, is calculated as

follows:

Li1u =
Di1i2 +Di1i3 −Di2i3

2
. (5.7)

5.3 The proposed method

5.3.1 MultiFurcating Neighbour-Joining

The method we propose, the MFNJ algorithm, generalizes the NJ algorithm. Both

algorithms use Equation (5.1) to compute Sij in the same way, where the two algo-

rithms diverge is in the procedure for joining OTUs.

Suppose that, in a specific iteration, two pairs of OTUs, i1, i2 and i2, i3, have the

smallest Sij; that is, Si1i2 = Si2i3 = Smin. In this case, the NJ algorithm can only

join one of these pairs of OTUs, i1, i2 or i2, i3, to generate a new internal node

u, which pair is selected has consequences for the next steps of the NJ algorithm.

In the MFNJ algorithm, given that both pairs of OTUs, i1, i2 and i2, i3, have i2

in common, we propose to generate a new internal node u joining the set of three

OTUs I = {i1, i2, i3}.

Distance between an internal node and an OTU

More generally, let I = {i1, i2, . . . , iP} be a set of OTUs to be clustered together

generating a new internal node u. The distance between any OTU i ∈ I and any

other OTU k /∈ I can be separated in two parts (Figure 5.2):

Dik = Liu +Duk. (5.8)
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Taking this equality for all the OTUs i ∈ I, the distance between the new node u

and any OTU k /∈ I can be averaged as follows:

Duk =
1

|I|
∑
i∈I

(Dik − Liu), (5.9)

where |I| is the number of OTUs to be joined to the internal node u. Now, using

the equality given by Saitou and Nei (1987) for the sum of branch lengths of a

star-shaped tree with central node u:

∑
i∈I

Liu =
RII

|I| − 1
, (5.10)

where RII is the sum of distances between all the OTUs in I:

RII =
∑
i∈I

∑
i′∈I
i′>i

Dii′ , (5.11)

we finally propose to generalize Equation (5.3) for the calculation of the distance

Duk between the new node u and any other OTU k /∈ I as follows:

Duk =
RIk

|I|
− RII

|I| (|I| − 1)
, (5.12)

where RIk is the sum of distances between all the OTUs in I and OTU k /∈ I:

RIk =
∑
i∈I

Dik. (5.13)

Distance between two internal nodes

As a matter of fact, there may be cases where more than one set of OTUs can

be clustered during the same iteration of the algorithm, being these sets of OTUs

disjoint sets. In these cases, when there are two new internal nodes u and v joining

two disjoint sets of OTUs I = {i1, i2, . . . , iP} and J = {j1, j2, . . . , jQ} , respectively,
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the distance between any OTU i ∈ I and any other OTU j ∈ J can be separated in

three parts (Figure 5.3):

Dij = Liu +Duv + Ljv. (5.14)

Taking this equality for all the OTUs i ∈ I and j ∈ J , the distance between the

new nodes u and v can be averaged as follows:

Duv =
1

|I| |J |
∑
i∈I

∑
j∈J

(Dij − Liu − Ljv), (5.15)

which, using Equation (5.10), can be expressed as follows:

Duv =
RIJ

|I| |J |
− RII

|I| (|I| − 1)
− RJJ

|J | (|J | − 1)
, (5.16)

where RIJ is the sum of distances between pairs of OTUs in I and J :

RIJ =
∑
i∈I

∑
j∈J

Dij, (5.17)

and RII and RJJ are calculated using Equation (5.11).

Branch length when the complement of I is not empty

To generalize Equation (5.4), let u be a new internal node joining all the OTUs in

I = {i1, i2, . . . , iP}. Given any OTU i ∈ I, when IC is not empty we can sum the

equality in Equation (5.8) for all the OTUs k /∈ I:

∑
k/∈I

Dik = (N − |I|)Liu +
∑
k/∈I

Duk. (5.18)

Using the definition given in Equation (5.5) and substitutingDuk with the expression

in Equation (5.12), we obtain:
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Figure 5.3. A tree with OTUs I = {1, 2} joined to a new node u, and OTUs

J = {3, 4, 5} joined to another new node v, during the same iteration of the

algorithm.

RiIC = (N − |I|)Liu +
∑
k/∈I

(
RIk

|I|
− RII

|I| (|I| − 1)
). (5.19)

Now, we can use the definition given in Equation (5.6) and divide everything by

N − |I|, obtaining:

RiIC

N − |I|
= Liu +

RIIC

|I| (N − |I|)
− RII

|I| (|I| − 1)
, (5.20)

which, rearranging terms, finally yields:

Liu =
RII

|I| (|I| − 1)
+

RiIC

N − |I|
− RIIC

|I| (N − |I|)
, (5.21)

where RII , RiIC , and RIIC are defined in Equations (5.11), (5.5), and (5.6), respec-

tively.
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Branch length when the complement of I is empty

In case that all the remaining OTUs are clustered together in the same set I and,

therefore, the set IC is empty, then the new internal node u joins all the remaining

OTUs, and the distance between any OTU i ∈ I and any other OTU i′ ∈ I, i′ ̸= i,

can be separated as follows:

Dii′ = Liu + Li′u. (5.22)

Summing this equality for all the OTUs i′ ∈ I, i′ ̸= i, we obtain:

RiI = (|I| − 1)Liu +
∑
i′∈I

Li′u − Liu, (5.23)

where RiI is the sum of distances between OTU i ∈ I and all the other OTUs i′ ∈ I,

i′ ̸= i:

RiI =
∑
i′∈I
i′ ̸=i

Dii′ . (5.24)

Now, if we use Equation (5.10) for the sum of branch lengths of a starlike tree, we

see that Equation (5.23) is equivalent to:

RiI = (|I| − 2)Liu +
RII

|I| − 1
, (5.25)

which, rearranging terms and dividing everything by |I| − 2,

Liu =
RiI

|I| − 2
− RII

(|I| − 1)(|I| − 2)
. (5.26)

It is important to note here that both Equations (5.21) and (5.26) satisfy Equation

(5.10) for the sum of branch lengths of a starlike tree.

In each iteration, all the OTUs in I are removed from the distance matrix, and
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the new node u is added. The procedure ends when all the remaining OTUs are

clustered in the same set I and the set IC is empty. If there are no polytomies, this

will happen for sure when the number of remaining OTUs is equal to three. In this

case, Equation (5.26) reduces exactly to Equation (5.7). As a matter of fact, when

there are no polytomies, the MFNJ algorithm reconstructs the same phylogenetic

trees as the NJ algorithm.

To the best of our knowledge, there are only two methods that addresss the ties

in proximity problem: the live neighbour-joining and the extended neighbor-joining

algorithms. Nevertheless, the formulas proposed in the extended neighbor-joining

algorithm do not satisfy Equation (5.10) for the sum of branch lengths of a starlike

tree. Both the live neighbor-joining and the extended neighbor-joining methods are

limited in their ability to join only up to three OTUs to a new internal node. In

contrast, the MFNJ algorithm is more versitale because Equations (5.12), (5.16),

(5.21), and (5.26) can accommodate any number of OTUs.

5.4 Experiments

This section shows an example of the differences between the phylogenetic trees

reconstructed by the NJ and the MFNJ algorithms using a specific distance matrix.

In the case of the NJ algorithm, two possible phylogenetic trees are reconstructed.

In the case of the MFNJ algorithm, only one phylogenetic tree is possible.

To do so, we used as input for both algorithms the matrix of distances given in Table

5.1. It is composed of the pairwise differences among mitochondrial DNA sequences

of nine brown bears (Ursus arctos L.). We selected this case study because it had

been previously used in one of the first articles that described the ties in proximity

problem (Backeljau et al., 1996).

After four iterations of the NJ algorithm, Kodiak, Captive-3, Captive-5, Grizzly, and

Polar -2 are clustered together in a subtree that we call Subtree-4 (colored in blue

in Figure 5.4), and the other four bears remain nonclustered. At the fifth iteration

of the algorithm, there is a tie between the pairs Captive-4 and Subtree-4, and

Subtree-4 and Black, because their Sij values are equal and the smallest. Since the
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NJ algorithm cannot cluster three OTUs in a single step, two distinct phylogenetic

trees are possible depending on the criterion used to break the tie. If Captive-4 and

Subtree-4 are clustered first, then the phylogenetic tree in Figure 5.4A is obtained.

However, if Subtree-4 and Black are clustered first, then the phylogenetic tree in

Figure 5.4B is obtained.

A

B

C

Figure 5.4. Phylogenetic trees obtained for the matrix of distances among

bears given in Table 5.1. The trees have been plotted as rooted trees for

convenience of comparison, where the longest branch has been placed at the

root of each tree. At the fifth iteration of the algorithm, there is a tie between

Black, Captive-4, and the subtree in blue. The bears in red are clustered

during the last iterations of both the NJ and the MFNJ algorithms. A, B

Two different dichotomic phylogenetic trees are possible when using the NJ

algorithm. C A unique phylogenetic tree is possible when using the MFNJ

algorithm, where a polytomy joining more than two subtrees can be observed.

When the MFNJ algorithm is used with the same dataset, the first iterations are

identical to the NJ algorithm, until the tie is found at the fifth iteration. Then, the

MFNJ algorithm clusters Captive-4, Subtree-4, and Black at the same time forming

49

UNIVERSITAT ROVIRA I VIRGILI 
Advanced methods and applications in phylogenetic tree generation and model interpretability 
Natàlia Segura Alabart 



a polytomy. Figure 5.4C shows the complete phylogenetic tree reconstructed by the

MFNJ algorithm. This multifurcating tree is uniquely determined, which guarantees

the reproducibility of any study on it.
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Table 5.1. Pairwise percentage differences among mitochondrial DNA se-

quences of nine brown bears (Randi et al., 1994).

Abruzzo Pyrenees Kodiak Captive-3 Captive-4 Captive-5 Grizzly Polar-2

Pyrenees 1.3
Kodiak 4.3 4.3
Captive-3 4.3 4.3 0.7
Captive-4 2.7 2.3 5.0 5.0
Captive-5 3.0 3.0 1.3 1.3 3.7
Grizzly 1.7 1.7 2.7 2.7 2.3 2.0
Polar-2 2.0 2.0 3.0 3.0 2.7 2.3 0.3
Black 8.7 8.0 10.0 10.0 10.0 8.7 9.0 9.4
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5.5 Conclusions

We proposed the multifurcating neighbor-joining (MFNJ) algorithm for agglomer-

ative hierachical clustering, which addresses ties in proximity problem. This algo-

rithm is a generalization of the standard neighbor-joining (NJ) method.

We have generalized the definitions of distance between a cluster and any new OTU,

as well as the distance between two clusters. Additionally, we have generalized the

calculation of branch lengths linking new cluster elements.

Ties in the agglomerative process in phylogenetic trees can be visualized as lines

connecting all clustered elements.

When there are no ties distances, MFNJ produces the same results as the NJ algo-

rithm. However, when ties are present, MFNJ consistently yields a unique phyloge-

netic tree, regardless of the order of input data.
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6
Methods in saliency maps

6.1 Introduction

Understanding the decision-making processes of Graph Convolutional Networks (GCNs),

particularly in graph-structured data, remains a challenging yet crucial pursuit.

While GCNs excel in learning meaningful representations from graphs, their decision-

making processes are complex and not easaly interpretable. Saliency map genera-

tors (SMGs) have emerged to address these challenges. SMG are post-hoc expla-

nation methods to understand the decision-making process of GCNs. Originally

developed for image classification, SMGs like Grad-CAM and Grad-CAM++ have

been adapted to uncover the importance of nodes and edges in GCNs. This chap-

ter presents an overview of the basic concepts related to graphs, GCNs and the

methodologies and metrics involved in using SMGs to enhance the interpretability

of GCNs, shedding light on their decision-making processes and improving trust in
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their predictions.

6.2 Graphs

A graph is a mathematical data structure used to represent pairwise relationships

between objects. These graphs are made up of nodes (also known as vertices)

connected by edges (also known as links) (Figure 6.1). Graphs are used to model a

wide array of structures such as computer networks, social networks, characters and

letters, pixels in images, road maps, and chemical structures. In this manuscript, we

will focus on and study graphs in the context of representing chemical structures.

The chemical structure of a molecule is its spatial arrangement of its atoms and their

chemical bonds. Molecules can be represented as graphs, where nodes represent the

chemical atoms and edges represent the chemical bonds (Figure 6.2).

10

9
8

7

6 5

12

13

0

1

2

3

4

11

Figure 6.1. Example of a graph with 14 nodes and 15 edges.

54

UNIVERSITAT ROVIRA I VIRGILI 
Advanced methods and applications in phylogenetic tree generation and model interpretability 
Natàlia Segura Alabart 



Figure 6.2. A graph representation of a chemical molecule, where nodes

denote atoms and edges represent chemical bonds. Different colors indicate

various elements: black for Carbon, red for Oxygen, and blue for Nitrogen.

The graph is the same as the one in Figure 6.1.

6.3 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) are deep neural

models renowned for their ability to extract meaningful features in prediction tasks

where data is represented by graphs.

We define a graph with attributes as a combination of a node feature matrix X ,

and an adjacency matrix A of dimensions RNxN , where N is the number of nodes

in the graph.

The graph is represented as G = (X,E), where |X| = N is the number of nodes and

|E| ≤ NE is the number of edges in the graph. The adjacency matrix A ∈ RNxN

captures the relationships between nodes in the graph. Each entry Aij indicates the

presence or absence of an edge between nodes i and j. The propagation in a GCN

is defined by the equation:

X l+1 = f(ÂX lW l) (6.1)
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Where X l represents the node features at layer l, W l is the weight matrix of the

hidden layer, f(·) represents an activation function, typically a non-linear function

such as the rectified lienar unit (ReLU), and Â is the normalized adjacency matrix,

defined as:

Â = D̃− 1
2 ÃD̃− 1

2 (6.2)

Where Ã is the identity matrix of the adjacency matrix A and D̃− 1
2 is the inverse

of the diagonal degree matrix of Ã.

6.4 Saliency Map Generators: Post-hoc Explana-

tion Methods

Saliency map generators (SMG) are techniques initially applied to image classifica-

tion, which indicate the areas of the input data that played an important role in the

model decision (Gomez and Mouchère, 2023; Zhang et al., 2020). These areas are

called saliency maps. Thus, they have become indispensable tools for interpreting

the predictions of deep neural models (Bhambra et al., 2022). SMG, when adapted

to GCNs, can be used for the interpretation of nodes and edges in regression or

classification applications where the data is characterised by graphs (Pope et al.,

2019; Kensert et al., 2021).

SMG are methods encompassed in post-hoc explanation methods, which are gen-

eral approaches to generate explanations of the decisions made by any prediction

model without requiring retraining. Specifically, for SMG, Class Activation Mapping

(CAM) (Zhou et al., 2016) and its successors, such as Grad-CAM (Selvaraju et al.,

2017) and Grad-CAM++ (Chattopadhay et al., 2018) are some of the most popular

methods. Interestingly, Grad-CAM was adapted to generate the saliency maps for

prediction models based on GCN in Pope et al. (2019). In the next subsections, we

describe Grad-CAM and Grad-CAM++ in detail.
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6.4.1 Grad-CAM

Grad-CAM also known as Gradient-weighted Class Activation Mapping is a SMG

based on deep convolutional neural networks. Nevertheless, this method deduces

the saliency map taking into consideration only the last layer of the classification

model, in a similar way as CAM.

Formally, for any class c within a dataset, the gradient of the score for class c,

yc (prior to a softmax or any activation function), is calculated with respect to

the activation of feature maps in a convolutional layer k, Ak. Subsequently, these

resulting gradients are global average pooled across the width and height dimensions

of the data (denoted as i and j, respectively). The weigths wc
k for a feature map Ak

and class c are:

wc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(6.3)

where Z is the number of elements in the feature map Ak. Finally, a weighted

combination of wc
k with Ak is performed to obtain the class-specific saliency map,

Lc
ij:

Lc
ij = ReLU(

∑
k

wc
kA

k) (6.4)

6.4.2 Grad-CAM++

Grad-CAM++ is a generalization of the Grad-CAM algorithm to improve the han-

dling of multiple occurrences of a localized object in an image and improve the

localization accuracy. The main difference is how the weights wc
k for a feature map

Ak and class c are computed. First, the gradient weights αkc
ij are computed as:

αkc
ij =

∂2Y c

(∂Ak
ij)

2

2 ∂2Y c

(∂Ak
ij)

2 +
∑

a

∑
bA

k
ab

∂3Y c

(∂Ak
ij)

3

(6.5)

where (i,j) and (a,b) are iterators over the same Ak to avoid confusion. Then, the
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weights wc
k are reformulated from Equation (6.3) as:

wc
k =

∑
i

∑
j

αkc
ij ReLU(

∂Y c

∂Ak
ij

) (6.6)

Finally, the weighted combination of wc
k with Ak is used to obtain the class-specific

saliency map Lc
ij, as defined by Equation (6.4).

6.5 Single Step Metrics for classification

Understanding the decision-making processes of deep learning models is a difficult

task. This is because they are typically characterised by multiple layers of non-linear

transformations, wherein the mapping between input and output is complex and not

readily interpretable.

Various metrics exist to measure the correlation between the saliency map expla-

nation from SMG and the model’s prediction abilities given an image (Gomez and

Mouchère, 2023; Chattopadhay et al., 2018; Jung and Oh, 2021). These metrics

compare the model’s predictions using the original input data to those using mod-

ified input data. The modifications are based on the saliency map generated from

the original input data through a process known as masking.

The quality of the output depends on which part of the input data has been modified.

If the modified data corresponds to the areas highlighted by the saliency map as

important, the decrease in output quality should be more significant compared to

modifications in areas deemed unimportant by the saliency map. The input data

masking can be executed either in a single step or iteratively. This chapter focuses

on the former case, known as Single Step Metrics (STM) (Gomez and Mouchère,

2023).

STM are evaluation metrics designed to assess the correctness of saliency maps

generated by a SMG, such as Grad-CAM. These metrics are based on applying a

usually slight modification to the input data and later measuring the consequential

impact on the final prediction.
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Figure 6.3. STM in image classification. ML stands for Machine Learning,

SMG refers to the Saliency Map Generator, U denotes Upsampling and Nor-

malization, and PM represents Performance Metrics.

Figure 6.3 provides an overview of the STM process for an image classification

model. The process begins with creating the saliency map Lc using the SMG based

on the input data or image i, a class c, and the model’s trained weights. Next, with

the input data or image and Lc, the explanation map Ec is computed. Ec involves

a masking operation, where the saliency maps are point-wise multiplied with the

original image I. This operation is defined as:

Ec = s(u(Lc)) ◦ I (6.7)

Where u(·) indicates the upsampling into the original data dimensions, s(·) is the

min-max normalization function and ◦ is the Hadamard product. Ec only preserves

the information of I in the pixels that are considered important and reduces the

ones that are not. Then, using this modified image a new classification score Oc for

a class c is predicted using the trained ML model. A higher value of Oc is expected

to correspond to an increased confidence in the model’s prediction of the image

belonging to a specific class.

An inverse masking operation is also performed on I. This involves creating an inverse

explanation map Ec
inverse for a given class c, calculated by point-wise multiplication

of the inverse of the saliency maps with the original image I, as follows:

Ec
inverse = [1− s(u(Lc))] ◦ I (6.8)

In this case, Ec
inverse preserves the information in the pixels of I that are not consid-

ered important for the final classification and reduces the information in the pixels
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that are important (i.e. deletion). Using this modified image, a new classification

score, Dc, is predicted using the trained ML model.

Consequently, there are three different classification scores for the same image, de-

pending on the masking applied: Y c for no masking, Oc for direct masking, and

Dc for inverse masking. Finally, these scores are used to evaluate the STM us-

ing specific performance metrics. The three performance metrics are Average drop

percentage (AD), Increase in Confidence (IC), and Average Drop in Deletion per-

centage (ADD) (Chattopadhay et al., 2018; Jung and Oh, 2021), which are explained

in section 6.6.

6.6 Performance metrics

6.6.1 Average drop (AD)

AD is the average percentage drop in the model’s confidence for a given class c in

an image classification value when comparing it to Oc, defined as:

AD =
1

N

N∑
n=1

max(0, Y c
i −Oc

i )

Y c
i

× 100 (6.9)

We use max to handle cases where Y c
i is higher than Oc

i and N denotes the number

of elements in the dataset. In case of equal output values, it can be deduced that

the saliency map is insensitive to the model-learned parameters. The AD value is

computed per image and then averaged over the entire dataset. A lower AD value

indicates better performance.

6.6.2 Increase in Confidence (IC)

IC is complementary to the previous metric, AD. IC measures the number of times

in the entire dataset that Oc
i is higher than Y c

i . In other words, IC indicates how

often the predicted classification value Oc
i is higher than the predicted value Y c

i .

This suggests that the model’s learned parameters for classification using SMG are
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effective and relevant to the actual classification task. We define IC as follows:

IC =
1

N

N∑
n=1

1[Y c
i <Oc

i ]
× 100, (6.10)

where 1x is an indicator function that returns 1 when the argument is true, Y c
i < Oc

i .

The IC value is computed per image and then averaged over the entire dataset. A

higher IC value indicates better performance.

6.6.3 Average Drop in Deletion (ADD)

ADD modifies AD within a specific context by an inverse operation, Ec
inverse, to

compute the classification score, Dc
i . It evaluates the average percentage drop in the

model’s confidence caused by the inverse masking on the final prediction. ADD can

be defined as:

ADD =
1

N

N∑
n=1

Y c −Dc

Yc

× 100 (6.11)

The ADD value is computed per image and then averaged over the entire dataset.

A higher ADD value indicates better performance.
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7
Saliency maps in graph regression models
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7.1 Introduction

Deep learning models are capable of making highly accurate predictions, but un-

derstanding how they arrive at these predictions and which parts of the input data

are key to that prediction is challenging due to the intricate and layered nature of

their structure. This lack of transparency makes it difficult to trust and validate the

model’s decisions, especially in critical applications such as healthcare, finance, and

autonomous systems.

To address this issue, Saliency Map Generators (SMG) have been developed as a

means to enhance the interpretability. SMG produces saliency maps that highlight

the most important features in the input data that contribute to the model’s pre-

dictions. By identifying these key features, saliency maps provide insights into the

decision-making process of the model, making it easier to understand why certain

predictions are made.

However, understanding saliency maps often requires additional analysis and domain-

specific knowledge. Therefore, while saliency maps offer a valuable tool for improving

model interpretability, their effective use depends on the user’s expertise and the

context in which they are applied.

This chapter introduces Single Step Metrics (STM) designed for graph inputs, with

a focus on graph regression, to evaluate the performance of SMG. By comparing

performance metrics with the insights provided by the saliency maps, we assess the

efficacy of two SMG, Grad-CAM and Grad-CAM++, across various datasets. These

metrics measure the effectiveness of the SMG in identifying the importance of each
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node in the regression results.

This chapter is organised as follows. Firstly, the proposed method is explained in

Section 7.2. Secondly, we show the experiments in Section 7.3 and, in the end, we

present the conclusions of the chapter in Section 7.4.

7.2 The proposed method

7.2.1 Model architecture

Figure 7.1. Model architecture.

The GCN model’s architecture begins with an input layer that accepts graph struc-

tures. This is followed by two Graph Convolutional layers, which capture local

neighbourhood information. A readout layer aggregates the graph-level informa-

tion, which is then passed through three Fully Connected layers (Figure 7.1). The

final output is a single value representing the regression value. Weights in the model

are randomly initialized. The training process involves minimizing the mean squared

error (MSE) between the predicted and actual global property using the Adam op-

timizer.

7.2.2 Single Step Metrics for graph regression

STM were initially designed for assessing image classification models, but they can

be adapted to work with graph regression models.

Figure 7.2 provides an outline of the STM process for a graph regression model.

This process is very similar to the one explained in Chapter 6 but two modifications

have been incorporated. The first one involves the use of graphs as input data

instead of images, while the second one implies the use of STM in regression models.

Accordingly, we define the explanation map, Ei, for a given graph as the point-wise
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Figure 7.2. STM in graph regression. ML stands for Machine Learning,

SMG refers to the Saliency Map Generator, B denotes Broadcasting and

Normalization, Ri refers to the real value, and PM represents Performance

Metrics.

multiplication of the saliency maps Li with the node features of the original graph

Xi:

Ei = b(|s(Li)|) ◦Xi (7.1)

where |s(·)| represents the normalization function applied to the saliency map val-

ues, transforming them to a range between 0 and 1 before being transformed into

their absolute values, b(·) represents the broadcasting function into the original di-

mensions of Xi. In this way, each element of Ei represents the importance of a

node, instead of a pixel. And the inverse explanation map Ei
inverse as the point-wise

multiplication of the inverse of the saliency maps with Xi as:

Ei
inverse = [1− b(|s(Li)|)] ◦Xi (7.2)

Note that if we change the b(·) function into a u(·) function we can work with image

data as Ec and Ec
inverse of STM for image classification in Chapter 6 (Equations (6.7)

and (6.8)).

Another change is the use of the absolute difference between the real value Ri and

the predicted values for Yi, Oi, and Di (Ȳi, Ōi,D̄i, respectively), defined as follows:

W̄i = |Ri −Wi| (7.3)

where Wi represents the predicted score. The reason is that in the context of clas-
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sification models, a higher value of Wi is expected to correspond to an increased

confidence in the model’s prediction of the data belonging to a specific class. Con-

trarily, in regression models, the objective is to achieve a prediction the closest to the

actual value. Therefore, using the actual predicted value to compare its performance

is not meaningful.

7.2.3 Performance metrics

The performance metrics have been adapted to accommodate regression, and we

have introduced a fourth metric, Drop in Confidence (DC). In each of these metrics,

the goal is to attain higher values, indicating enhanced performance. Additionally,

each metric is computed individually for every graph and subsequently averaged

across the entire dataset.

Average drop (AD)

AD is the average increase in the model’s confidence for the prediction value, Ȳi

when comparing it to Ōi, defined as:

AD =
1

N

N∑
n=1

|Ȳi − Ōi|
max(Ȳi, Ōi)

(7.4)

We use max to handle cases where Ȳi is less than Ōi, as well as when Ȳi equals Ōi.

Increase in Confidence (IC)

IC quantifies the frequency with which Ōi is lower than Ȳi across the entirety of the

dataset, defined as:

IC =
1

N

N∑
n=1

1[Ȳi>Ōi] (7.5)

where 1x is an indicator function that returns 1 when the argument is true, Ȳi > Ōi.
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Average Drop in Deletion (ADD)

ADD is the comparison of the prediction value, Ȳi, to D̄i, defined as:

ADD =
1

N

N∑
n=1

max(0, D̄i − Ȳi)

D̄i

(7.6)

We use max to handle cases where Ȳi is higher than D̄i, as well as when Ȳi equals

Ōi.

Drop in Confidence (DC)

DC is a new STM evaluation metric that complements ADD. This metric is designed

to provide additional information similar to how IC complements AD. DC quantifies

the frequency in the entire dataset where Ȳi is lower than D̄i. We define DC as:

DC =
1

N

N∑
n=1

1[Ȳi<D̄i] (7.7)

where 1x is an indicator function that returns 1 when the argument is true, Ȳi < D̄i.

7.3 Experiments

7.3.1 Datasets

To validate our approach, we applied it to three distinct chemical datasets, which

were defined to test models that predict the retention time of various molecules.

Each dataset consists of chemical compounds represented as graphs, derived from

SMILE strings. In these graphs, nodes represent atoms and edges represent chemical

bonds. The datasets used to validate our approach were obtained from Kensert et al.

(2021).

Retention time refers to the time a compound remains in the stationary phase of a

chromatography system before being detected, indicating its identity and concentra-
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tion (Bouwmeester et al., 2019). The datasets used in this experiment are HILIC,

RIKEN and SMRT. HILIC stands for Hydrophilic Interaction Liquid Chromatogra-

phy, RIKEN refers to RIKEN plant specialized metabolome annotation, and SMRT

stands for Small Molecule Retention Time. Both the RIKEN and SMRT datasets

were acquired under Reversed-Phase Liquid Chromatography (RPLC) conditions.

A summary of the three dataset characteristics including the number of molecules,

the number of nodes and the retention time ranges in minutes is shown in Table 7.1

Table 7.1. Summary of dataset characteristics.

Database Number of Molecules Graph sizes Retention time (min)
HILIC 1400 4-91 0.89-10.28
RIKEN 862 8-100 1.52-10.40
SMRT 77980 8-50 5.67-24.53

7.3.2 Architecture configuration

The input data, consisting of SMILE strings, was first converted into graph repre-

sentations. In our experiments, we used two GCNs, each with 256 neurons, residual

connections, and ReLU activation functions, followed by a readout layer. After

that, three Fully Connected dense layers were employed, comprising 1024, 1024,

and 1 neuron, respectively, all utilizing ReLU activation functions (Figure 7.1).

The training occured over 50 epochs for the HILIC and RIKEN datasets, and over

150 epochs for the SMRT dataset, utilizing batch sizes of 32 for the HILIC and

RIKEN datasets, and 128 for the SMRT dataset. The training and validation was

done using 90% of the data, with approximately 90% of that subset used for training

and the remaining 10% for validation. The remaining 10% of the data was reserved

for testing. We used the Adam optimizer and a learning rate scheduler that reduced

the learning rate by a factor of 0.1 upon plateauing of validation loss, with a min-

imum learning rate of 10−6. Early stopping was employed to halt training when

no improvement in validation loss was observed for 10 consecutive epochs, with the

best weights restored.
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7.3.3 Predictive performance

To evaluate the overall performance of the model, the MSE, and coefficient of de-

termination (R2) were calculated on all datasets for both the training and testing

sets, detailed in Table 7.2. The RIKEN dataset achieved a training MSE of 0.64

and a testing MSE of 0.70, indicating robust model performance in terms of MSE.

In terms of R2 values, both RIKEN and SMRT datasets indicate strong predictive

capabilities. Specifically, the RIKEN dataset achieved an R2 of 0.84 for training

and 0.80 for testing, while the SMRT dataset achieved an R2 of 0.88 for training

and 0.84 for testing. The HILIC dataset also showed consistent performance, with

a training MSE of 2.14 and a testing MSE of 2.11, and R2 values of 0.71 and 0.69

for training and testing, respectively. Figure 7.3 shows the comparison between the

predicted and actual retention time values across the entire dataset for each of the

three datasets.

Table 7.2. MSE and R2 of training and testing sets.

Dataset MSE R2

HILIC
Train 2.14 0.71
Test 2.11 0.69

RIKEN
Train 0.64 0.84
Test 0.70 0.80

SMRT
Train 0.94 0.88
Test 1.34 0.84

7.3.4 STM evaluation

We selected two molecules to visualize the saliency maps. As shown in Figure 7.4,

the Grad-CAM SMG method for the HILIC dataset (graphs a and g) show inverted

red and green regions compared to the other datasets (graphs b, c, and h, i) in

the same row. Specifically, graph a and g highlights a positive contribution of the

more polar atoms, whereas the other graphs in the same rows (RIKEN and SMRT

datasets) show a negative contribution from these polar atoms. The remaining

shared molecules exhibit the same behavior.

These findings align with the chemical insights derived from the saliency maps.

This is because the chromatographic mechanism (RPLC) for the RIKEN and SMRT
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A HILIC B RIKEN

C SMRT

Figure 7.3. Comparison of predicted retention time (vertical axis) against

real retention time (horizontal axis) for the HILIC, RIKEN, and SMRT

datasets. The red dotted line represents the regression line of the data.

datasets operate on similar principles, while HILIC operates on opposite principles

as such, polar functional groups will contribute positively to retention in HILIC.

In contrast, Grad-CAM++ highlights only the important regions, all shown in green,

without indicating the direction of their importance. Grad-CAM++ was originally

created to improve Grad-CAM in image recognition involving multiple objects in the

same image. However, when Grad-CAM++ is applied to single chemical graphs, its

perfmorance does not surpass that of Grad-CAM.

Understanding the predictions generated by deep learning models is crucial for their

practical application in real-world contexts. Visualizations of saliency maps hold

promise in improving model interpretability, but understanding these maps often

requires additional analysis and domain-specific knowledge. By comparing the per-

formance metrics with the insights provided by the saliency maps, we assess the ef-
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ficacy of Grad-CAM and Grad-CAM++ across various datasets. Table 7.3 presents

the evaluation metrics for the HILIC, RIKEN, and SMRT datasets using Grad-CAM

and Grad-CAM++ SMGmethods. The results indicate that Grad-CAM is generally

more sensitive in capturing significant features across the datasest, as illustrated by

the saliency maps. This consistency between the visual saliency maps and the SMG

performance metrics provides an additional layer of analysis. Specifically, Grad-

CAM exhibits higher IC, DC, and ADD values in the RIKEN and SMRT datasets.

In contrast, for the HILIC dataset, Grad-CAM++ demonstrates a higher IC value,

while the DC and ADD values are similar on the two methods.

Table 7.3. SMG performance metrics.

Database SMG IC AD DC ADD

HILIC
GradCAM 0.14 0.72 0.63 0.39
GradCAM++ 0.41 0.49 0.64 0.42

RIKEN
GradCAM 0.17 0.74 0.97 0.80
GradCAM++ 0.02 0.82 0.79 0.56

SMRT
GradCAM 0.14 0.72 0.97 0.82
GradCAM++ 0.09 0.77 0.85 0.64
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Figure 7.4. Saliency maps generated using Grad-CAM (first and third row)

and GradCAM++ (second and fourth row) methods for HILIC (first col-

umn), RIKEN (second column), and SMRT (third column). The green re-

gions indicate positive contributions and the red regions indicating negative

contributions. The number of contour lines indicates the extent of influence,

with a maximum of 10 contour lines per node. The first and second rows de-

pict the molecule CS(=O)CCCCN=C=S, while the third and fourth rows de-

pict the molecule CC1C(C(C(C(O1) OCC2C(C(C(C(O2)OC3=C(OC4=CC

(=CC(=C4C3=O)O)O)C5= CC=C(C=C5)O)O)O)O)O)O)O.
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7.4 Conclusions

The four Single Step Metrics (STM) presented in this chapter quantitatively evaluate

the performance of Saliency Map Generators (SMG) in graph regression tasks. STM

uniquely applies to regression studies, whether involving image or graph data.

The experimental validation shows that the results extracted from the STM are sim-

ilar to the insights obtained from SMGs. This validation underscores the reliability

of STM in assessing the performance of SMGs.

The comparison of Grad-CAM and Grad-CAM++ across three chemical datasets

using STM demonstrates that Grad-CAM is more suited for analyzing graph-based

chemical data, supported by evaluations from both SMG and STM.

From a practical point of view, these metrics offer the advantage of facilitating post-

hoc analysis with minimal domain-specific knowledge required. This accessibility

enhances their utility in interpreting model outputs in various applications.
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8
General Conclusions

The general conclusions of this thesis are as follows:

The accurate representation of evolutionary relationships using phylogenetic trees

is essential for clear and visual understanding of the elements under study.

Distance-based methods such as Unweighted Pair-Group Method with Arithmetic

Mean (UPGMA) and Neighbour-joining (NJ) are widely used to generate phylogen-

tic trees in various scientific fields, including biological and evolutionary sciences.

Both UPGMA and NJ suffer from the ties in proximity problem, which can lead

to non-unique phylogenetic trees from a distance data matrix. This problem affects

the reliability and interpretation of phylogenetic trees.

The issue of tied distances is not limited to biological sciences but extends to other

research fields where distance-based methods are used.
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The presence of non-unique phylogenetic trees can lead to ambiguities and misinter-

pretations in published research, impacting not only the conclusions of the original

studies but also subsequent research based on these publications.

Experimental validation indicated that 46% of articles using the UPGMA method

and 13% of articles using the NJ method had at least one alternative solution to the

published binary phylogenetic tree. This indicates that a substantial proportion of

scientific research is affected by te tied distances problem.

The development of the Multifurcating Neighbor-Joining (MFNJ) algorithm, a gen-

eralized version of NJ, addresses the tied distances problem in phylogenetic tree

construction, ensuring consistent and unique tree outputs regardless of input order.

Graph Convolutional Networks (GCNs) excel in learning from graph-structured data

by using node features and connections. This capability extends the utility of Deep

Convolutional Networks beyond traditional data formats to graphs, allowing them

to model complex relationships inherent in various fields.

In chemistry, GCNs facilitate predictive modeling and analysis by interpreting molec-

ular structures as graphs.

Saliency Map Generators (SMGs), integrated with GCNs, play a key role in enhanc-

ing model interpretability by highlighting influential features like specific atoms

or bonds in chemical structures, helping in understanding model predictions and

decision-making processes.

Advances in SMGs, such as Grad-CAM and Grad-CAM++, have improved the

interpretability of GCN outputs by visualizing feature importance in graph-based

data, bridging the gap between model performance and actionable insights.

Single Step Metrics (STM) provide a robust quantitative assessment of SMGs in

graph regression tasks, applicable to both image and graph data.

STM’s minimal domain-specific knowledge requirement enhances its practical utility

for interpreting deep learning model outputs across diverse applications.
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Salerno, Italy.

https://link.springer.com/book/10.1007/978-3-031-42795-4

• Use of saliency maps in chemestry graph regression models.
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Moiana, L., Filho, P., Gonçalves-Vidigal, M., Lacanallo, G., Galván, M., De Car-

valho, L., Maleia, M., Pacheco, C., Ribeiro, T., Neto, H., and Coimbra, G. (2012).

Genetic diversity and population structure of cotton (Gossypium hirsutum L. race

latifolium H.) using microsatellite markers. Afr J Biotechnol, 11(54):11640–11647.

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a

small number of individuals. Genetics, 89(3):583–590.

Nicolaou, C., MacCuish, J., and Tamura, S. (2000). A new multi-domain clustering

algorithm for lead discovery that exploits ties in proximities. In Proceedings from

the 13th European Symposium on Quantitative Structure–Activity Relationships,

pages 486–495. Prous Science, Barcelona.

Ota, S. and Li, W.-H. (2000). Njml: a hybrid algorithm for the neighbor-joining and

maximum-likelihood methods. Molecular Biology and Evolution, 17(9):1401–1409.

Park, S. and Kim, J. (2016). Trends in next-generation sequencing and a new era

for whole genome sequencing. Int Neurourol J, 20(2):76–83.

Pearson, W. R., Robins, G., and Zhang, T. (1999). Generalized neighbor-joining:

more reliable phylogenetic tree reconstruction. Molecular Biology and Evolution,

16(6):806–816.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:

machine learning in Python. J Mach Learn Res, 12(Oct):2825–2830.

Podani, J. (1997). On the sensitivity of ordination and classification methods to

variation in the input order of data. J Veg Sci, 8:153–156.

Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., and Hoffmann, H. (2019). Ex-

plainability methods for graph convolutional neural networks. In 2019 IEEE/CVF

85

UNIVERSITAT ROVIRA I VIRGILI 
Advanced methods and applications in phylogenetic tree generation and model interpretability 
Natàlia Segura Alabart 



Conference on Computer Vision and Pattern Recognition (CVPR), pages 10764–

10773.

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., and Rafal-

ski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite)

markers for germplasm analysis. Mol Breed, 2:225–238.

R Core Team (2021a). R: a language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. R version 4.1.0.

R Core Team (2021b). The R stats package. R package version 4.2.0.

Randi, E., Gentile, L., Boscagli, G., Huber, D., and Roth, H. (1994). Mitochondrial

dna sequence divergence among some west european brown bear (ursus arctos l.)

populations. lessons for conservation. Heredity, 73:480–489.

Roche, D., Lanfear, R., Binning, S., Haff, T., Schwanz, L., Cain, K., Kokko, H.,

Jennions, M., and Kruuk, L. (2014). Troubleshooting public data archiving: sug-

gestions to increase participation. PLoS Biol, 12(1):e1001779.

Saitou, N. (1986). Theoretical studies on the methods of reconstructing phylogenetic

trees from DNA sequence data. PhD thesis, University of Texas. Health Science

Center at Houston. Graduate School of Biomedical Sciences.

Saitou, N. (2018). Introduction to Evolutionary Genomics. Springer, Cham.

Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol, 4(4):406–425.
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