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Chapter? RESULTS FOR 3D PEC
BODIES

7.1 VERIFICATION OF THE THEORETICAL CONCLUSIONS IN
ACCORDANCE WITH THE PLANAR APPROACH

In Chapter 6, there have been presented the conditions to yield the consistent
electromagnetic solution over a polyhedron. In regard with the patch-based operators, the
conclusions are: (i) PeC-EFEE(#WG,JRWG) is as well-defined as the condition number low
is, (ii) P&C-MFIE(RWG,unxRWG) has a low and stable condition number and the
electromagnetic requirement is well-accomplished, (iii) PeC-MFIE(unxRWG,RWG) has a
low and a stable condition number and the electromagnetic requirement is as well-
accomplished as ñ uniform is.

Another issue of discussion, which has been out of the scope of the theoretical discussion
in Chapter 6, is if the solution of the polyhedron approaches the real solution in the body
before the discretization. That is, one has to assess if the polyhedron with a low-order
current expansion -RWG and unxRWG- is a good model for the electromagnetic behaviour
of the physical body.

In general terms, as mentioned in Chapter 2, there are two important sources of error when
solving the mathematical problem. The expansion of the current and the expansion of the
surface interface where the boundary conditions are posed. One must not ever forget that a
constraint of the polyhedron is the planar modelling of the geometry. Therefore, in order to
check the theoretical conclusions of. Chapter 6, it is reasonable to choose objects with no
curvature, which correspond to physical polyhedrons. One ensures so that the error is only
due to the insufficient low-order expansion of the current. This study is included in 7.4.

In curved objects, the verification of the theoretical study up from the results is not
straightforward since the effect of the wrong modelling of the surface also takes part. Of
course, the dissimilarity between the results due to the different operators must include the
study of the polyhedron properties developed in Chapter 6 but the curvature effects
condition the results as well. In any case, some results are commented for spheres, cones
and cylinders in section 7.5.

In section 7.6, some corrections to improve the performance of the operators are given. It is
provided a heuristic procedure to diminish the inherent error in PeC-
MFLE(unxRWG,RWG). It is also supplied a way to decrease the effect of the curvature on
the operators for small frequencies.
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7.2 NUMERICAL COMPUTATION OF THE OPERATORS

In the theoretical reasoning of section 6.5, it has been assumed that the computation of the
source and field integrals was carried out accurately for both PeC-EFIE and PeC-MFiB.
The PeC-MFIE integrand presents a l / / ? 3 -dependence in its highest order term; the PeC-
EFIE operator presents a smoother IIR -dependence at most. As shown in the first half of
this Dissertation Thesis, this has been so critical in the development of the BoR operators
that the PeC-MFIE could not be in practice carried out beyond a certain bound. For the 3D-
operators, being the patch much more reduced and always restricted to a small portion of
the wavelength, this accuracy requirement for the PeC-MFIE must be better managed.

The high-order terms of the PeC-MFIE operator are especially critical for those impedance
terms linked to steep transitions of the surface curvature -cubes, cylinders or cones-. In
Chapter 6, along the description of the PeC-MFIE operators, it has been reasoned in detail
that the integration of these high-order terms tend to zero over smooth-varying surfaces. So
as to achieve the maximum accuracy, the high-order terms have been computed
analytically in any case.

For the operators PeC-EFIECRWG,WG) and PeC-MFlE(unxRWG,RWG), where it is
undertaken firstly the source integration, the low-order source terms and the field integrals
have been computed preferably with four gaussian points. The self-terms are obtained with
four testing points. Moreover, in the PeC-MFTE(RWG,unxRWG), which tackles firstly the
field-integration, the low-order field terms are computed with four gaussian points -it is
assumed so by the default-. The self-term, which corresponds to the integration of the
singularity, is obtained with four testing points too.

7.3 CONDITIONING OF THE MATRICES

In all the examples tested, the condition number is lower for PeC-MFIE(RWG,unxRWG)
and PeC-MF1E(unxRWG,RWG') than for the PeC-EFIE^iyG.WG). Furthermore, the
PeC-EFIE(#WG,/?WG) grows together with the degree of meshing; on the other hand, the
PeC-MFIE(/?WG,««xRWG) keeps a low and stable condition number when yielding the
discretization finer. All this confirms the theoretical reasoning in the section 6.5.

In accordance with the computer capabilities, which do not allow the computation of
condition numbers of too big matrices, some low-frequency results are shown in Table 7.1
and Table 7.2 to confirm this, respectively for a cube and a sphere.

N. of triangles
48

192
300
432
588
768

Cond. Number - PeC-EPlE(RWG,RWG)
164
611
871

1235
1700
2446

Cond. Number - PeC-MRE(/?WG,unxRWG)
9

11
11
11
11
13

Table 7.1 Condition number of a cube with side of 0.1 A
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N. of triangles
48

120
360
440
528
624
728

Cond. Number - PeC-EFIE(/?WG(JRWG)
84

299
1984
2860
4001
5458
7284

Cond. Number - PeC-MFïE(RWG,unxRWG)
6
1

14
17
20
13
26

Table 7.2 Condition number of a sphere with radius of 0.1/L

In view of these tables, the condition number for the PeC-EFJE(RWG,RWG) gets to be
even two orders of magnitude higher than for the PeC-MFLE(RWG,unxRWG), which is
very stable in any case. For electrically bigger bodies, although one cannot assess it
directly through the tables -the required amount of memory to compute the condition
number is too big-, one can accordingly infer that the condition number can grow much.
Indeed, it is well-known that the inverting iterative algorithms demand for the PeC-
EFIE(RWG,RWG) gradually more and more iterations as the dimensions of the object and
the degree of discretization grow.

The condition number of PeC-MFLE(unxRWG,RWG) has not been presented in the tables
above. Anyway, since the P&C-MFlE(unxRWG,RWG) matrix is very similar in numerical
terms to the matrix resulting from PeC-MFiE(RWG,unxRWG) -the impedance terms
corresponding to the Cauchy principal value are transposed-21, the condition numbers of
both are alike.

It must be noted that the very advantageous condition numbers of the PeC-MFIE operators
rely very much on the accuracy when computing the impedance elements. It is especially
important to compute precisely the integration of the singularity, which corresponds to the
PeC-MFIE self-terms. As a matter of fact, as shown in Chapter 6, since it is required a
power-two field-integration, it can be undertaken exactly. Indeed, in the above-shown
tables, four field-integrating points have been imposed, which must be enough.

Some examples have been found where an inaccurate computation of the singularity in the
PeC-MFIE has led to high condition numbers. For example, the sphere of radius 0.1/1
analysed with the PeC-MFLE(unxRWG,RWG) with 48 edges and one testing point has led
to condition numbers of about lelo. Similarly, the cube of side 0.1/1 undertaken by the
PeC-MFIE(RWG,unxRWG) with 72 edges and one testing point has led to condition
numbers over 200. Particularly, for the particular case of 6 source-integrating points, the
condition number yields 3104. In this case, if the singularity is computed with four testing
points and the Principal Cauchy value remains still with one field-integrating point, the
condition number declines to 8. In consequence, henceforth, the PeC-MFIE computation
will be always assumed with the singularity computed exactly. The change on the number
of testing points will thus affect the computation of the Cauchy principal value.

Finally, it is interesting to point out how the condition number is more variable for PeC-
MFIE(RWG,unxRWG) for the sphere than for the cube. This makes sense if we consider
that a change of the discretization for the cube corresponds still to the same physical

21 The condition number for a given matrix and its transposed is the same
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polyhedron. On the other hand, every change on the discretization of the sphere yields a
different polyhedron.

7.4 PHYSICAL POLYHEDRONS

Some results are shown for simple polyhedrons such as a cube, a pyramid of square basis
or an octahedron. It is the aim of this section to prove the predicted error in PeC-
MFlE(unxRWG,RWG) when compared with PeC-MFlE(RWG,unxRWG). Note than on a
physical polyhedron the dissimilarity between the results of both operators must come
from the physical edges, since it is the only part of the body where the direction of the
normal vectors at both sides is different. It is hence good to present low-frequency objects
to assess the error -the influence of the physical edge is comparatively more important-.

In this section, it is also wanted to assess the goodness of PeC-EFIECRMj,/?WG)
compared to PeC-MFLE(RWG,unxRWG). According to Table 7.1, the order of the
condition number is Ie3, which does not seem to condition the robustness of the solution.
Indeed, one expects that PeC-EFIE(RWG,RWG) results can also be taken as reference. It is
actually widely assumed that the PeC-EFlE(RWG,RWG) results are robust for low-
frequency objects; they are often taken as reference.

One must not ever forget that the chosen approach forces an expansion of the current of
low-order. Therefore, the solutions for the current due to PeC-EFIE(RWG,RWG) and PeC-
MHE(RWG,unxRWG) correspond to the low-order part of the current with respectively
normal or tangential continuity across the edge. This means that both solutions, even being
robustly defined, are not to be coincident. A way to yield a comparatively higher-order
expansion is to overdiscretize the body so that at a certain point one expects that the
solutions due to both operators will be coincident. Indeed, augmenting the
overdiscretization must yield a solution of increasingly higher order so that the whole
unique solution of the physical polyhedron would be practically attained by means of both
operators.

Four different examples of low-frequency conducting physical polyhedrons are presented
right away. The bistatic RCS under an impinging axial wave for several increasingly fine
discretizations is presented for each example and for each operator: PeC-
EFÌE(RWG,RWG), P&C-MHE(RWG,unxRWG) and PeC-MFIE(unxRWG,RWG). Results
are presented for the PeC-MFlE(unxRWG,RWG~) with one or four testing points (nf=l or
nf=4) regarding the Cauchy principal contribution.

* Pyramid:

Three different discretizations are employed to analyse the pyramid -see Fig. 7.1-: 4
segments per physical edge (128 triangles), 8 segments per physical edge (512
triangles) and 10 segments per physical edge (800 triangles). The corresponding RCS
results are presented in Fig. 7.2, Fig. 7.3 and Fig. 7.4.
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0.07A
0.04/1

Fig. 7.1 Pyramid with 4 and 8 segments per physical edge
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Fig. 7.2 RCS for the pyramid with 128 triangles
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Fig. 7.3 RCS f or the pyramid with 512 triangles
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Bistatic RCS, E plane Bistatic RCS, H plane
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Fig. 7.4 RCS f or the pyramid with 800 triangles

Cubes

Four different discretizations are employed to analyse the cube: 2 segments per
physical edge (48 triangles), 4 segments per physical edge (192 triangles), 5 segments
per physical edge (300 triangles) and 8 segments per physical edge (768 triangles).

Fig. 7.5 Cube with 2, 4, 5 and 8 segments per physical edge

Firstly, in Fig. 7.6, Fig. 7.7, Fig. 7.8 and Fig. 7.9, results for increasingly finer
meshings are shown for a cube with a side of 0.1/1.
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Fig. 7.6 RCS for a cube of side 0,1/1 with 48 triangles
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Fig. 7.7 RCS for a cube of side 0. l/l with 192 triangles
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Fig. 7.8 RCS for a cube of side 0.1/1 with 300 triangles



165 Results for 3D-PeC bodies
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Fig. 7.9 RCS f or a cube of side 0.1Awif/i 768 triangles

The evolution of the RCS is analogous for a bigger cube with side of 0.2A, as it is
shown in Fig. 7.10, Fig. 7.11, Fig. 7.12 and Fig. 7.13
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Fig. 7.10 RCS for a cube of side 0.2/1 with 48 triangles
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Fig. 7.11 RCS for a cube of side 0.2/1 with 192 triangles
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Fig. 7.12 RCS for a cube of side 0.2/1 with 300 triangles
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Fig. 7.13 RCS for a cube of side 0.2 A with 768 triangles
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4 Octahedron

Two different discretizations are employed to analyse the regular octahedron in Fig.
7.14: 3 segments per physical edge (72 triangles) and 7 segments per physical edge
(392 triangles). The results are respectively presented in Fig. 7.15 and in Fig. 7.16.

O.U

Fig. 7.14 Octahedrons with 3 and 7 segments per physical edge
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Fig. 7.15 RCS for the octahedron with 72 triangles
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For all the different physical polyhedrons presented, the evolution of the results is alike. As
the discretization becomes finer, PeC-MFIE(RWG,unxRWG) and PeC-EFIECKWG,/?WG)
yield the same result. The P&C-MFlE(unxRWG,RWG) operator, on the other hand, lets a
solution that remains at a certain distance of the other two in all the cases. This bias in the
solution of PeC-MFlE(unxRWG,RWG') must be due to the inherent error of this operator,
described in the last section of Chapter 6.

In Fig. 7.4, Fig. 7.9, Fig. 7.13 and Fig. 7.16, the PeC-MFIE(RWG,unxRWG) and PeC-
EFIE(RWGJIWG) results merge. This confirms that for a high-order expansion of the
current, which happens for these so overdiscretized polyhedrons, they both lead to the
same solution. However, the PeC-MFlE(unxRWG,RWG) shows still an appreciable error
even for this case of so fine meshing, which, according to the theory in Chapter 6, must be
attributed to the effect of the physical edges, where the normal vectors at both sides are not
parallel.

These results show also that the increase of testing points of the Principal value
contribution in PeC-MFIE(unxRWG,RWG) -those contributions corresponding to different
field and source triangles- approach the result to the reference results, PeC-
EFTE(RWG,RWG) and PeC-MFlE(RWG,unxRWG); still an error remains though. For PeC-
EFIE(RWG,RWG) and PeC-MFlE(RWG,unxRWG) four testing points for the terms linking
different source and field triangles have been taken; in any case, as the discretization
becomes finer, taking one or four points makes no difference for the results.

From the observation of the results one can see that for the physical polyhedrons the PeC-
EFIE(RWG,RWG) results turn out more stable when increasing the degree of discretization
than the PeC-MFlE(RWG,unxRWG) ones. This means that PeC-EFIECRWG,WG) reaches
a better expansion of the field and current magnitudes for the same number of unknowns
than PeC-MFIE(RWG,unxRWG). That is, an expansion of higher order is attained through
PeC-EFlE(RWG,RWG).

7.5 CURVED OBJECTS

The results for curved objects when analysed by the PeC-operators, which assume a planar
approach, must include the effect of the wrong modelling of the curved surface. This effect
affects differently the PeC-operators.

In any case, the results must allow for the considerations inferred from the study of the
conducting polyhedron, which have been proved in the previous section. One cannot
expect now that the PeC-EFlE(RWG,RWG) and P&C-MHE(RWG,unxRWG)^ results
coincide so well as they did before when the discretization became very fine. Indeed, when
yielding an increasingly fine discretization for a curved body, the corresponding physical
polyhedron changes accordingly, which did not happen in the examples of section 7.4.
Therefore, when analysing a curved body with different degrees of discretization, a
relatively low-order solution is obtained for different physical polyhedrons -with different
number of edges-. So, the results for PeC-MFlE(RWG,unxRWG) and PeC-
EFLE(RWG,RWG) are not to be identical although they are expected to be similar. Of
course, one could yield an increasingly similar performance of both operators by
increasing the order of expansion of the current for a given polyhedron derived from the
discretization of a curved body. According to the procedure developed in section 7.4, one
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should discretize every facet in even more little triangles. Of course, this makes no sense
since what it is really wanted to obtain is the results that approach best the performance of
the original curved body not of the corresponding polyhedron of work.

Four different examples of low-frequency conducting physical curved bodies are presented
below. The bistatic RCS under an impinging axial wave for several increasingly fine
discretizations is presented for each example and for each operator: PeC-
EFIE(RWGJRWG), PQC-MFIE(RWG,unxRWG) and PeC-MHE(unxRWG,RWG). To assess
the behaviour of the PeC-operators, one must resort to some reference results. For spheres,
it is taken the Mie solution; for cones and cylinders, in view of their symmetry of
revolution, it is used the PeC-EFIE BoR-operator presented in Chapter 3. All the operators
employ now four points -it is assumed so by default- or six points in the numerical
integration for the lower-order terms of the inner integral and for the outer integral.

* Sphere

Four examples of electrically small spheres with radius of 0.05/1 -Fig. 7.18, Fig. 7.19-,
O.U-Fig. 7.20, Fig. 7.21-, 0.2 A-Fig. 7.22 and Fig. 7.23- and 0.25A-Fig. 7.24- are
presented. Both meshes shown in Fig. 7.17 are used for the smallest spheres of radius
0.05/landO.lA. The discretization with 32 triangles cannot be used for the bigger
spheres -the edge size is over A 710-, whereby the sphere with radius 0.2/1 is meshed
with 128 and 512 triangles and the sphere with radius 0.25A, with 128 triangles.

Fig. 7.17 Sphere discretized with 32 and 128 triangles
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Fig. 7.18 Sphere of radius 0.05 A with 32 triangles
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Fig. 7.19 Sphere of radius 0.05 A with 128 triangles
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Fig. 7.24 Sphere of radius 0.25/1 with 128 triangles

Cone

The RCS results for the cone in Fig. 7.25 under an axially incident plane wave are
shown in Fig. 7.26.
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Fig. 7.25 Cone discretized with 360 triangles

-15

-20

-25

Bistatic RCS, E plane

dB
-30

-35

-40

-45

-50

x EFIE(RWG.RWG)
» MFIE(RWG.unXRWG)

BoR-EFIE
MFIE(unxHWG.RWG)

-17

-18

-19

-20

-21

-22

-23

-24

Bistatic RCS, H plane

EFIE(RWG.RWG)
MFIE(RWG.unxRWG)
BoR-EFJE
MFIE(unxRWG.RWG)

°00

0 20 40 60 BO 100 120 140 160 180 Q 20 40 60 80 100 120 140 160 180
V \|)

Fig. 7.26 Cone of radius 0.1 A and height 0.2/1 with 360 triangles
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Cylinder

The RCS results for the cylinder in Fig. 7.27 with radius 0.1/1 and height 0.2/1 under
an axially incident plane wave are shown in Fig. 7.28.

Fig. 7.27 Cylinder discretized with 400 triangles
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In all the results, the operator PQC-MFlE(unxRWG,RWG) shows the worst behaviour,
which is in agreement with its inherent bad definition explained in Chapter 6. Note that for
the entirely curved objects, the discrepancy with the references is even more evident than
for the physical polyhedrons. While the misbehaviour of the PeC-MFIE(imxRWG,RWG)
for the physical polyhedrons relies on the presence of the physical edges and can be
therefore diminished by overdiscretizing the faces, for the objects entirely curved the
normal vector is non uniform all over the surface and so keeps being when effectuating the
discretization.

The results for the spheres are best to assess the influence of the planar modelling of the
curvature on the solution for the well-behaving operators, PeC-E¥E(RWG,RWG) and PeC-
MFlE(RWG,unxRWG). According to the results, above all in the coarse meshings, the
performance of PeC-MFIE(RWG,unxRWG) is closer to the Mie solution than the solution
due to PeC-EFIE(RWG,RWG). This can be explained by resorting to the behaviour of both

60 80 Q 100 120 140 160 180
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operators for the physical polyhedrons -section 7.4-. In that case, the PeC-
EFLE(RWG,RWG) attains a solution closer to the complete solution for a given degree of
discretization. In consequence, resulting the planar modelling of the sphere in a
polyhedron, it is reasonable that the PeC-EFIE(WG,.RWG) yields the solution that
approaches more accurately the solution of the polyhedron. Unfortunately, this is not the
solution towards which one wants to head; indeed, one wants to obtain the solution of the
original body, before being discretized.

Furthermore, the fact of P&C-EFIE(RWG,RWG) expanding better the solution of the
polyhedron implies that it is able to carry out a higher-order expansion of the solution. One
can understand -at least intuitively- that the physical edges represent space discontinuities
and therefore demand a higher-order behaviour of the magnitudes -current and field-.
However, the PeC-MFIE(RWG,unxRWG) showed in the previous section a slower
approach to the complete solution, which implies effectively a lower-order expansion of
the current. That is why its performance turns out more accurate for modelling the
behaviour over a curved surface; indeed, it yields a low-order solution. That is, it remarks
less than the PeC-EFIE(RWG,RWG) on the high-order constraints of the physical edges,
which, as a matter of fact, only appear in the curved objects because of the planar
modelling of the curvature. More comments are given about this issue in 7.5.1, where it is
given a genuine explanation that accounts for the different sensitivity of PeC-
EFIE(RWG,RWG) and PeC-MFIE(RWG,w-ixRWG) with regard to the physical edges.

In all the results presented -either physical polyhedrons or curved bodies-, the PeC-
EFIE(RWG,RWG) results are very consistent. For the case of the physical polyhedrons, the
results turn out in general more accurate for a given discretization than those due to PeC-
MFIE(RWG,unxRWG), which provides a better condition number. This means that the
worse condition number of the matrix does not affect in practice the uniqueness of the
solution. In other words, the range of ambiguity of the PeC-EFlE(RWG,RWG) for these
problems is so low that it is not even noticed.

Finally, it must be pointed out that in the results due to the PeC-MFIE(RWG,unxRWG)
more precision in computing the results is demanded. One can see in Fig. 7.22, Fig. 7.23
and Fig. 7.24 how an increase in the number of gaussian points when numerically
integrating either the outer integral or the low-order terms of the inner integral yields a
clear variation only for PeC-MFlE(RWG,uwcRWG). However, PeC-EFIE(/?WG,^WG)
shows a similar behaviour. This must be attributed to the higher order R-dependence in the
integrand of PeC-MFIE.

7.5.1 Higher-order expansion in PeC-EFIE(RWG,RWG) than in
PeC-MFIE(RWG,unxRWG)

The previous results have shown that a relatively high density of physical edges imposes a
higher-order expansion of the magnitudes -current and field-. One can easily understand
this idea by analysing the opposite case. Over a wide conducting area -with the physical
edges far away-, as it is well known from the physical optic theory and the Snell law, the
induced current is directly proportional to the projection of the incident plane wave on the
surface. This implies that the induced current must have a uniform vector distribution,
which involves actually an expansion of very low order. Logically, by bringing the edges
closer, the current and field distribution must become increasingly variable, whereby a
higher-order expansion is accordingly required.
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This high-order expansion has turned out to be better accomplished by PeC-EFIE since its
behaviour is better for physical polyhedrons. For objects entirely curved, on the other hand,
the PeC-MFIE appears more suitable because it takes less into consideration the effect of
the physical edges due to the unavoidable planar discretization.

The author of this Dissertation Thesis has elaborated a reasoning that accounts for the
physical edge-sensitive behaviour of PeC-EFIE(/?WG,/?WG), and the curvature-sensitive
behaviour of PeC-MHE(RWG,unxRWG). Strictly speaking, to undertake a complete
expansion of the unknown-, one should resort to the sets of all the orders enclosed in the
curl-conforming and divergence-conforming bases groups. In practice, one achieves a
finite-order solution through the low-order sets R WG and unxRWG and with the help of the
overdiscretization -when required, for example in electrically small objects, where the
high-order influence of the physical edges is remarkable-.

The physical solution for a physical polyhedron presents total continuity across the edges.
The solution obtained only ensures continuity of one component but, thanks to the high-
order expansion, one can head for the continuity of the other component. Indeed, with an
infinite-order expansion -that is; resorting to all the curl- or divergence-conforming sets-
the total continuity would be ensured. However, being this of course unachievable, one can
obtain a finite expansion of high enough order that yields an accurate expansion of the
physical magnitude in practical terms -this is the case in Fig. 7.4, Fig. 7.9, Fig. 7.13 and
Fig. 7. 16-. I name this solution as the complete solution.

The boundary conditions over the interface surface for the PeC-MFIE and the PeC-EFIE
stand for

nxH = J (7.1)

0 (7.2)

The most accurate expansion of the physical magnitudes -the complete solution- is
obtained whenever (7.1) -PeC-MFIE- and (7.2) -PeC-EFIE- are ensured over the edges for
a high enough order of expansion. The reason why (7.2) -PeC-EFIE- is more easily
achieved is that the right-hand side term of the equality is constant and independent of the
discretization -coincident thus with the imposition in the continuous case-. It is hence
reasonable that an increase on the degree of discretization heads faster towards the
complete solution of the polyhedron. The PeC-MFIE boundary condition in (7.1), on the
contrary, relates two differently expanded magnitudes J and H . It makes thus sense that
they need a higher degree of discretization to provide the complete solution of the
polyhedron.

The presented PeC-MFIE approach assumes the solid angle value to be Q.0 = 2K , because

it is applied on planar facets. A historical subject of discussion when building any PeC-
MFIE operator has been the solid angle value choice. According to all the results shown,
the slightly worse behaviour of PeC-MFiE(RWG,unxRWG) for electrically small objects
with the important presence of physical edges does not come from a wrong choice of the
solid angle value but from a low-order expansion of the magnitudes.
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7.6 IMPROVEMENT OF THE BEHAVIOUR OF THE OPERATORS
In this section, another original contribution of this Dissertation Thesis, procedures to
correct the misbehaviour of the operators are presented. In 7.6.1, a heuristic correction for
PeC-MFlE(unxRWG,RWG) is supplied. In 7.6.2, it is provided a procedure to improve the
performance of PeC-EFIE(A WG,R WG) for coarsely meshed spheres.

7.6. 1 Solid angle correction for PeC-MFIE(unxRWG,RWG)

As it has been predicted theoretically in Chapter 6, it has been shown with examples in this
Chapter the misbehaviour of PeC-MHE(wixRWG,RWG). By trial and error, a modified
PeC-MFlE(unxRWG,RWG) operator has been found that yields a more accurate RCS. In
this modified PeC-MFIE(unxRWG,RWG) operator it is effectuated the testing of the
Cauchy principal contributions with one point and it is imposed a new value for the solid
angle on every triangle.

Fig. 7.29 Local estimate of the solid angle

The new equivalent solid angle value Qe¡¡ over any triangle has been defined as the

weighted average of the local solid angles over each edge of the triangle -see Fig. 7.29-

_~ (7.3)

Although the modified P&C-MFlE(unxRWG,RWG) improves the performance in any case,
the improvement is especially noticeable in the cases where the discrepancy is most
important22. Indeed, it is shown right away how the modified PeC-MFlE(unxRWG,RWG)
approaches the PeC-EFÍE(RWG,RWG) for the dimensionally small physical polyhedrons
of 7.4 -see Fig. 7.30, Fig. 7.31 and Fig. 7.32- and the PeC-MHE(RWG,unxRWG) for the
coarsely meshed spheres in 7.5 -see Fig. 7.33 and Fig. 7.34-.

22 An article about this issue has been submitted in August 2000 to IEEE Transactions on Antennnas and
Propagation, with title "On the Testing of the Magnetic Field Integral Equation with RWG basis functions in
Method of Moments".
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Fig. 7.33 RCS for the sphere of radius 0.05/1 with 32 triangles
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Fig. 7.34 RCS for the sphere of radius 0. l/l with 32 triangles

7.6.2 PeC-EFIE(RWG,RWG) post-correction for coarsely meshed
spheres

It has been shown and discussed in detail in 7.5 the relative worse performance of PeC-
EFIE(RWGJRWG) compared to PeC-MFIE(RWG,unxRWG) for entirely curved objects.
This must happen because the PeC-EFIE yields a solution closer to the physical
polyhedron adopted to model the curved surface.

Another original contribution of this dissertation Thesis is a correction for the specific case
of a sphere on the value of the current obtained through PeC-EFIE(/?WG,/?V7G) that
approaches the PeC-MFlE(RWG,ujvcRWG) behaviour and thus the Mie solution. This
procedure takes advantage of a specific discretization of the sphere to effectuate a
parabolic current interpolation from the RWG current distribution obtained through the
operator PeC-EFIE(fliyG,flWG).
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The discretization adopted for the sphere is such that, as the rnesh becomes finer, the size
of the triangles is maintained more or less uniform over the surface -see Fig. 7.17 -. The
discretization is undertaken in an iterative way so that at every step the amount of triangles
becomes multiplied by four -see Fig. 7.35-.
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Fig. 7.35 Discretization of the sphere

In this particular discretization for any degree of iteration one finds a basic structure of
four triangles; that is, six vertices. Note that this basic structure coincides with the
disposition of the nodes of the basic element in a triangular parabolic nodal interpolation -
see Fig. 2.12 in Chapter 2-.

In the procedure for improving the PeC-EFÍE(RWG,RWG), one must obtain first the RWG
current value over the vertices by weighting the contribution of all the triangles shaping in.
After, it must be effectuated a parabolic nodal interpolation over the sphere up from the
current distribution expanded by the RWG set on the vertices. This new expansion of the
current allows for a parabolic curvature but assumes that the nodal values of the current are
accurate enough. Indeed, PeC-EHE(RWG,RWG) is the operator that can best fulfil this
requirement since its current expansion resembles most the complete solution of the
physical polyhedron.

The procedure behaves well as long as the sphere is coarsely meshed. When the
dimensions of the sphere increase, the required discretization, derived from the imposition
for the size of the patch of 0.1JI, reduces much the curvature error. Some results are
provided below for the improved PeC-EFIE(/?WG,/?WG) compared to the original PeC-
EFIE(RWG,RWG) and the PeC-MHE(RWG,unxRWG) for the spheres in 7.5.
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Fig. 7.36 RCS for the sphere of radius 0.05/1 with 32 triangles
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Fig. 7.37 RCS for the sphere of radius 0.1Â with 32 triangles
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Fig. 7.38 RCS for the sphere of radius 0.2A with 128 triangles
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Fig. 7.39 RCS for the sphere of radius 0.25A with 128 triangles
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Chapter 8 RWG BASED METHOD OF
MOMENTS FOR DIELECRIC
3D BODIES

Three dielectric operators appear in the dielectric case: EFIE, MFIE and PMCHW -see
Chapter 2-. They respectively enforce the electric boundary condition, the magnetic
boundary condition or both over the interface surface S. The integral expressions
corresponding to the dielectric operators in terms of the basic PeC-operators stand for

EFIE: Ês+

MFIE : Hs

re s* rei*
(8.1)

PMCHW: s . s - S - _ (8.3)

It is well known from the theorem of equivalence that the solution is unique all over S .
Indeed, two field conditions are posed relying on two source magnitudes:

J+=-J- M+=-M~ (8.4)

8.1 DIELECTRIC POLYHEDRON

The study of the dielectric polyhedron -a singular contribution of this dissertation Thesis-
is developed in the next subsections. In 8.1.1, the electric and magnetic charge conditions
are provided. In 8.1.2, it is given a description of the field and current spaces of the EFIE
and MFIE dielectric operators. It is shown again the fact that, after the discretization, the
solution is not unique anymore, whereby the condition number of the matrix augments
with the discretization. In section 8.1.3, the operators that come from a linear combination



183 RWG based method of moments for Dielectric 3D bodies

of EHE and MFIE are presented and it is discussed their validity; the most outstanding
approaches are the PMCHW and the CFTE. Finally, in 8.1.4 it is provided a discussion
about the effect of the adopted low-order expansion of the current -RWG and unxRWG- on
the dielectric operators. It is shown how it becomes especially critical for the EFIE, MFIE
operators.

8.1.1 Charge condition

Over the dielectric polyhedron one must consider thé continuity conditions of the electric
and magnetic currents. According to the development in 6.5.1 for the perfectly conducting
polyhedron, one can analogously yield for this case

rea, rea,
(8.5)

rea,.

<8-6)

where if and T„,+ correspond respectively to the electric and magnetic linear charge

densities over the two sides of an arbitrary edge 9,± of the polyhedron. Although four

charge equations appear -two at each side of the surface-, they are really only two -one per
side- because J* = -J~ and M+ = -M~, which compels

T:

whereby four independent source magnitudes appear in the polyhedron: M* and J±-
associated to the theorem of equivalence- and T*, T* -due to the discretization-.

The charge conditions must be kept always in mind when developing the dielectric
operators. They have to be accomplished along with the field requirements across the
edges for the three operators. Note that, being the magnetic charge non-null, the MFIE
operator must rely on the charge condition as well. As it will be shown later, this fact
makes that the dielectric MFIE cannot preserve anymore the advantageous properties with
regard to the condition number of the PeC-MFIE. Indeed, in the dielectric case, the EFIE
and the MFIE must allow for the same and dual requirements.

8.1.2 Electric and magnetic field boundary conditions: EFIE-MFIE

The study of the dielectric polyhedron represents the generalisation of the study of the
perfectly conducting polyhedron carried out in Chapter 6. It is thus undertaken through the
verification of the boundary conditions of the fields over the edges in the equivalent
problems corresponding to the two regions.

The boundary conditions of the electric and magnetic flux densities are the ones that lead
to the outstanding operators PeC-EFIE(RWG,RWG) and PeC-MFlE(RWG,unxRWG). Since
the other boundary conditions are either not possible -PeC-EFIE- or show some inherent
error -PeC-MFIE-, they are dismissed to develop the dielectric operators. Therefore, the
boundary conditions that must be accomplished in the dielectric case become
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feS,

Tedi

(8.8)

(8.9)

In the dielectric polyhedron, the EFIE and the MFIE become dual approaches that are
influenced by the same factors. Therefore, now one cannot expect anymore the advantages
of the PeC-MFIE in front of the PeC-EFIE described in Chapter 6. The dielectric EFIE and
MFIE must behave then in a similar way.

According to (8.8), the ruling boundary conditions at both sides of an arbitrary edge D( for

the operator EFIE must be

(8.10)
Ted,

which, according to the parameters in Fig. 6.8, is readily expressed as

- ± A

«cj •#! (8.11)

The integration of V, -Êover a portion of surface -AS —»0- around a point on the edge -

re 3,-- with the length of the transversal side tending to zero -A?—»0-see Fig. 6.9-, as

shown in 6.5.2.2 for the PeC-EFIE, leads to

ma,
= — !— (nc ,* - J,1 + nc 2* - 72* )|

, -joe* v ' ' 'lr«a,
(8.12)

Evidently, to merge (8.10) and (8.12) in one condition, it must be accomplished

- ± v - ± 7 ±
•->• (8.13)

which is the condition for the electric current to yield the electric field boundary condition
over the edge. Note that it is coincident with the electric charge condition. This is very
important because the two conditions regarding the electric current -the charge condition
and the electric field condition- are the same.

On the other hand, from the theorem of equivalence, it is well-known that

*
its, (8.14)

which readily yields

(8.15)
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When introduced in (8.11), one obtains a condition for M at both sides of the surface

rî - I.1± ^x J^r±
"c,l (8.16)

In the expressions (8.13) and (8.16), there have been presented the conditions that must be

accomplished by the source magnitudes J±, M* and T/ to fulfil the electric field

condition on an arbitrary edge 3,. There are, hence, two field-conditions -corresponding to

the two dielectric regions- relying on three independent source magnitudes: J±, M*, T/ .

This corresponds to an ambiguous or undetermined problem with one degree of freedom
per edge -as in the PeC-EFŒL(RWG,RWG)-. In any case, the degree of ambiguity in the
dielectric EFIE must be bigger than in the PeC-EFIE because it is less consistent to have
ambiguously defined two magnitudes per edge than one.

Following the reasoning developed for PeC-EFÎE(RWG,RWG), T/ represents a source of

ambiguity in the EFEE approach that is not present in the original problem -before the
discretization-. In the same terms expounded for the PeC-EFIE(/?WG,/?iyG), it has to be

imposed no electric charge accumulation -Te = 0- to find a solution, which can be

satisfied in objects with a density of edges not very high.

So, according to the required imposition re =0, the ruling boundary conditions for the

electric field over an arbitrary edge 3; at both sides of a polyhedron become

- ± r- ±
= 0

re3,

which is accomplished by means of the updated electric current condition of (8.13)

.Jr
I
±+»Ci2

±./2
±)| =0

/

and the corresponding magnetic current condition of (8.16)

(8.17)

(8.18)

(8.19)

which can be easily rewritten as

Mf
Tea,

•r- (8.20)

The expressions (8.17) and (8.18) involve continuity of the normal component of
respectively E± and 7* across an arbitrary edge 3,., whereby a suitable set of basis

functions for both magnitudes is RWG -in general, a divergence-conforming set-. The
expression (8.20), on the other hand, demands continuity of the tangential component of
M* over the edges; it is then fit to choose unxRWG - in general, a curl-conforming set- as
basis function. Both RWG and unxRWG effectuate a low-order expansion.
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For the MFIE operator, which corresponds to the dual problem of the EFIE operator, in
view of (8.9), the expressions to be accomplished are

(8.21)

Again an ambiguity associated to Tm appears in the MFIE in the same terms as in the

EFIE. It is thus required the imposition tn~ — 0 , which yields for each side of an arbitrary
edge of the polyhedron

By means of the duality properties, the development of the MFIE operator is
straightforward. In accordance with the magnetic charge condition and resorting to the
well-known expression

J
{.12} (8.23)

the ruling conditions across the edges for J± and M* accordingly become

•/* (8-24)
8,.

Lr0 (8.25)

whereby it is suitable to use RWG - or any divergence-conforming set- as weighting set
and expanding set of M± , and unxRWG -or any curl-conforming set- as expanding set of

According to the definitions in (8.1) and (8.2), the dielectric EFIE and MFIE operators
must result from the combination of the well behaving operators PeC-EFIE(/?WG,.RWG)
and PeC-MFlE(RWG, unxRWG). One can equivalently reach this conclusion through the
superposition of the compatible PeC-spaces described in Chapter 6 that ensure normal
continuity of the basic Es

PeC and Hs
PeC . Indeed, these PeC-operators are best defined and

yield the same results when analysing physical polyhedrons -see the results on Chapter 7-.
It is also important to remark that J± and M± are expanded in orthogonal sets, RWG and
unxRWG, for both EFIE and MFIE, which agrees with the physical notion of
electromagnetic coupling.

The presented EFIE formulation is already present in literature [15][30] for PeC-dielectric
composite geometries. The MFIE is a contribution of this dissertation Thesis. The EFIE is
normally more advantageous than the MFIE because it allows the analysis of structures
with conducting open surfaces, such as, for example, the microstrip antennas; that is why it
is more often chosen.
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8.1.3 Linear combination of the electric and the magnetic field
conditions: CHE, PMCHW

In the continuous case -in the step previous to the discretization-, some linear combination
of the EFIE and MFIE conditions at both sides of the interface surfaces are valid as well.
The PMCHW results from the subtraction of the inner and outer EHE and MFIE
conditions. The CFIE comes from the addition of the inner EFIE and MFIE and the outer
EFIE and MFIE.

So as to let the field and current spaces perfectly defined, in all these approaches one has to
provide at the same time the electric and the magnetic field boundary conditions over the
edges, (8.17) and (8.22). According to the analysis carried out for the EFIE, J* and M1

must accomplish

M '2 763, reS?
= 0 (8.26)

and the analysis for the MFIE accordingly yields

,*•'* (8.27)
r±

1 re3?

where of course it is imposed the necessary restriction of no electric and magnetic charge
accumulation. In consequence, (8.26) and (8.27) enforce the continuity of both
components of J* and M*. This problem in general has no solution since through two
field conditions one cannot enforce four different source conditions over the edges. Indeed,
one can understand this when compared with EFIE and MFIE -section 8.1.2-, where two
field conditions are automatically well satisfied with two source conditions. Indeed, a
linear combination of EFIE and MFIE cannot be developed in general since the required
expanding functions for J± and M * are different in both cases.

Despite everything, some formulations for the CFIE - X. Sheng et al. [44]- and for the
PMCHW - K. Umashankar et al. [25]- have been carried out using the RWG set. These
formulations are advantageous because they yield a solution free of the interior resonance
corruption; indeed, it is widely known that the EFIE and MFIE approaches cannot supply
an accurate solution in this case. In the development of these formulations, though, the
field and the magnetic conditions at the edges can not be accomplished completely. This
involves that their use may be restricted to particular and simple cases where the
performance of these operators can be acceptable. Indeed, this can be the case of a single
penetrable sphere -without interior resonances-.

It is shown in the following sections -8.1.3.1 and 8.1.3.2- a thorough study for the
PMCHW operator, which was presented by Umashankar and Taflove [25] for the case of
homogeneous lossy dielectric objects. In 8.1.3.1, it is shown the field condition enforced
over the edges, which makes the field and current requirements compatible. In 8.1.3.2, it is
analysed the capacity of this field constraint on the edges to approach the electromagnetic
requirements on the polyhedron. It is reasoned the range of problems with satisfactory
behaviour for the PMCHW, which, on the other hand, embraces a significant variety of
problems, but of course not all.
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8.1.3.1 Field conditions on the edges to yield a compatible problem in
PMCHW

According to the structure of the operator shown in (8.3), the field conditions enforced
across the edges can be the subtraction of the magnetic and electric field conditions at both
sides of the edges -see (8.10) and (8.21)-; that is,

n.(Ê;-É+}\ -n.(Ê--Ë-}\ =
V ' 2 Ate, v ' 2 Ate, e

+

rea..

(8.28)

(8.29)

rea,

In view of (8.7), the previous expressions become

(8.30)

(8.31)

In an analogous way as in PeC-EFIE, and the dielectric EFIE and MFIE, the field
expressions show a dependence on the linear charge densities on r e d¡, which yields an

ambiguity. In this case, there are two independent sources of ambiguity, T* and T*. Since
there are two field conditions, (8.30) and (8.31), and four independent source magnitudes -
/*, M±, if and T*- there are two degrees of freedom per edge, which involves that the
PMCHW is more undetermined than the EFIE and MFIE. Therefore its condition number
must be accordingly higher. Similarly, the rate of growth of the condition number as the
discretization becomes finer must also be steeper.

It is thus required the imposition T* = 0 and T* = 0 to find a solution, which is as robust as
low the condition number is. The ruling field conditions over the edges then become

=0

ñ.(H--H- =0
V ' 2

.(8.32)

(8.33)

Furthermore, in view of (8.12) and its corresponding dual condition, the left-hand side
terms of (8.32) and (8.33) become

fea, rea, rea,.

1 /„ + 7+ _ + 7 + \ | 1 /- -
= - r K I '^1 +nc2 -J2 ) -- : - \ncl -

-JCÛE+ V ' • 'i™, -j(UE~ V ''

-.
+"c 2

•

(8.34)
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— + rr +

Te3,

which, resorting to (8.4), become

z + £•+-E -H, —• — j-t«-n,, -E,
?€3,

c,2

1 1 1 V. + + - + +

(8.35)

Te3,

(8.36)

?e3; ?e3,

(8.37)

Evidently, to merge (8.32) and (8.36) in one condition regarding the source magnitudes, it
must be accomplished

(8.38)

and, analogously, for (8.33) and (8.37),

ir ed i
= 0 (8.39)

which are the conditions for the electric and the magnetic current to yield the electric and
magnetic field boundary conditions (8.36) and (8.37) over an arbitrary edge. Note that they
are coincident with the electric and magnetic charge conditions with the assumed required
imposition T* = T* = 0.

Furthermore, from the theorem of equivalence and the well-known expressions

¿•± _ A* v M± H*
•*-Tii«1 '»T.i-il S\ IrJ- fii^l /ll̂ l (8.40)

introduced in the left-hand side terms of the field conditions (8.32) and (8.33), one can
write

<8'4"
(8-42)

If it is taken into account that «+ =-«+, ñ* = ñ¡ and (8.4), (8.41) and (8.42) yield zero, as

imposed in (8.32) and in (8.33), irrespective of the values of the current. This means that
the only two necessary source conditions to fulfil the field conditions (8.32) and (8.33) are
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the electric and magnetic charge conditions (8.38) and (8.39). This is advantageous
because, being the two new field requirements over the edges accomplished through two
source conditions, the problem becomes well posed. That is, there is a solution for J* and
M± capable to fulfil the field boundary conditions on the edges (8.32) and (8.33).

However, the field boundary conditions (8.32) and (8.33) do not correspond to the required
field boundary conditions to settle the dielectric polyhedron solution according to the
Maxwell equations. That is, as it also happened when describing the PeC-
MNE(unxRWG,RWG), the enforced field boundary conditions do not correspond exactly
to the electromagnetic boundary conditions derived from the Maxwell equations, although
they approach. Indeed, PMCHW ensures the subtraction of the electric and magnetic field
boundary conditions at the two sides of an arbitrary edge. On the other hand, the field
boundary conditions deducted from the Maxwell equations demand the separate
accomplishment of the electric and magnetic field boundary conditions at each side of the
edge. Of course, if the conditions are ensured at both sides, so is the subtraction; but one
cannot say so if one enforces only the subtraction. Therefore, the PMCHW operator must
only give an appropriate solution whenever the adopted and less stringent field boundary
conditions accomplish the required continuity separately at both sides.

The proof of the fact that the field conditions (8.32) and (8.33) do not enforce the
electromagnetic solution of the polyhedron can be shown falling back on (8.30) and (8.31).
If one applies again the expressions in (8.40) relating fields and currents, one obtains

(8-43)

red,

¡l ß

(ü-44)

If one applies on the left-hand side terms the relation of the expressions at both sides -
n* = —n~ , n* = n~ and (8.4)-, it is obtained a zero on the left side, which compels

= 0
fe3,

lüL.

V+

(8-45)

fe 3,

This is absurd because it disagrees with the electromagnetic expressions in (8.3), which, in
turn, derive from the application of the theorem of equivalence on the dielectric
polyhedron and thus assume that M+ = -M~ and J+ = -J~. Note that this is another proof
that the PMCHW cannot be well set because of the discretization; indeed, T* and T* only

appear in the polyhedron.

The previous analysis for the PMCHW confirms the formulation presented by Umashankar
and Taflove [25]. Indeed, since the required conditions for the electric and magnetic
current over the edges -(8.38) and (8.39)- demand continuity of the normal component,
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RWG is a low-order suitable set to expand M * and J*. Similarly, since the adopted field
boundary conditions on the edges demand normal continuity across the edges for the

magnitudes (E+ -E~} and ÍH+ -H~\, it is also justified the use of RWG as weighting

set.

8.1.3.2 Discussion about the resemblance of the solution given by PMCHW
with the Maxwell-consistent solution of the polyhedron

The electric and magnetic field conditions ensured by the PMCHW are less stringent than
the Maxwell requirements. It is assessed in this section the range of validity of the
PMCHW approach, which relies on the capacity to fulfil the complete electromagnetic
requirement.

One can equivalently understand the dielectric operators through the revision of each of the
valid PeC operators shown in Chapter 6. In view of the expression of PMCHW in terms of
the PeC-operators -see (8.3)-, the Umashankar and Taflove choice enforces the use of the
basic PeC-operators PeC-EHE(RWG,RWG) and PeC-MFlE(RWG,RWG). According to
Chapter 6, the part of the PMCHW operator relying on PeC-EPlE(RWG,RWG) is well
defined, which makes sense because the chosen conditions correspond to the electric and
magnetic charge conditions. However, the PeC-MFÍE(RWG,RWG) is not at all well
defined because the magnetic field due to RWG on the perfectly conducting polyhedron
presents continuity of the tangential component, which disagrees with the space spanned
by RWG as weighting set, with continuity of the normal component. Therefore, PeC-
MFÍE(RWG,RWG) must account for the presumable misbehaviour of PMCHW. It is very
important to assess hence in which terms this part of the operator is relevant for the
solution.

As the PMCHW operator results from the subtraction of the magnetic and electric fields at
both sides, the operators that must be actually taken into account are the subtraction of
PeC-EFTE and PeC-MFIE updated with the corresponding dielectric constants at both sides

-see (8.3)-. That is, Es
PeC

result in

-E
s -
PeC ,#.PeC -H s -

PeC . Allowing for (8.4), they

-E s -
PeC

?ei*

reS*

(8.46)

(8.47)

According to the general integral expressions presented in Chapter 2, both integral
operators rely on two terms: the Cauchy principal value contribution and the integration of
the singularity. The Cauchy principal values are computed by means of the discretization
of the space and depend on the dielectric parameters, 77* and &*. That is why in general
they do not sum to zero. Moreover, even with the same dielectric characteristics at both
sides, they add in phase.

The integration of the singularity is only non-null for PeC-MFIE and is carried out
analytically through the solid angle value £1* and the unitary normal vectors n+ = -n~. In
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accordance with the planar characteristic inside the facets of the polyhedron, £1* = IK
must be taken. Falling back on the analytical expression for this term presented in Chapter
2, one sees that the sum is identically null. Indeed,

H 5 •>
PeC + H

sing.reS

5 '
PeC

sing,îeS*
(8.48)

This fact implies that through the subtraction in (8.3), a very important part of the rank of
the original PeC-MFIE can be ignored.

Therefore, the development of PMCHW, which imposes the use of PeC-
MFIE(RWG,RWG), has to allow only for the Cauchy principal value contribution. This
term is ill-defined since its rank ensures the tangential component of the field to be
continuous but the space spanned by the weighting functions space presents continuity of
the normal component. This does not necessarily imply that the inner-product between
both spaces is null. Indeed, in general, the corresponding impedance terms are non-null.
Logically, according to the MoM theory, the solution will present a minimum norm-error
with the weighting space. Note that the cancellation of the terms due to the integration of
the singularity is very advantageous since, as shown in (8.48), their analytical expression
does not only ensure continuity of the tangential component -as corresponds to PeC-
MFÏE(RWG)- but it is orthogonal to the Weighting space, whereby not even a minimum
norm-error solution could ever be attained.

An inherent error in the PMCHW has to be assumed in any case. However, the importance
of this error relies on the relevance of the contribution of PeC-MFIE in the particular
dielectric problem. Note that the presence of this error is equivalent to the impossibility for
the PMCHW operator to accomplish the normal continuity of the field components at both
sides Indeed, as the PeC-MFlE(RWG,RWG) terms become more important, the normal
field components across the edges at both sides become more discontinuous and therefore
the electromagnetic requirements are less well satisfied. So, this PMCHW operator must
provide good results as long as the PeC-MFIE contribution in the operator for that specific
problem is insignificant in comparison to the PeC-EFIE contribution.

In Chapter 6, the formal structure of the PeC-MFIECRM?) operator is presented. It is
remarkable the fact that the influences between nearly coplanar facets tend to zero. Indeed,
when r ' —> r, VG (r - r ') °= (r - r ') is nearly coplanar with p '*, whereby the core of the

PeC-MFIE operator [VG(r-r ')xp'*l tends to be normal to the surface and thus

perpendicular to the weighting vector. Therefore, when involving near facets, which are
those that present the most important contribution, the PeC-MFIE contribution must be
comparatively much less important than the PeC-EFIE one. It must be pointed out that the
PeC-MFIE operator relies in this case much on the integration of the singularity. However,
as above-mentioned, this contribution is irrelevant for the PMCHW operator. Hence, in
bodies where the most important influences coming from the PeC-MFIE operator involve
facets that are coplanar or nearly coplanar, the inherent error associated to PMCHW must
be least remarkable. This is the case, for instance, of single bodies.

In other problems, though, there appear important influences between facets that are not on
the same surface. It is outstanding in this case the PeC-MFIE influence between near
triangles facing each other in parallel planes. Indeed, as shown in Fig. 8.1, being
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VG(r — r ' )oc (r — r1) perpendicular to both the source and field vectors, p'* and pf ,

rVG(r-r ' )xp '*J lies in the weighting domain of pf . Hence, the PeC-MFIE influence

is now most enhanced in comparison with the PeC-EFTE one.

VG(r- r ' ) °c( r - r ' )

Fig. 8.1 The PeC-MFIE influence is relevant on facets facing each other

This error must become especially critical for structures with a conducting and a penetrable
region facing each other with a small gap between. The physical solution for the magnetic
current on the penetrable side must tend to zero because it is indeed null on the conducting
side. Therefore, the fields on the penetrable side must rely essentially on the electric
current contribution. This implies that the magnetic field definition on the penetrable side
cannot be well satisfied because it depends mostly on the PeC-MFIE term.

8.1.4 Influence of the low-order expansion of the current on the
performance of EFIE-MFIE

With the imposition of no charge accumulation, the solution for J± and M1 is fixed. That
is, among all the possible solutions associated to the inherent ambiguity of the problem, it
is chosen a solution with rf and T* identically null. Of course, as long as the condition
number is low enough -the system is little undetermined-, there is very little difference
among the different solutions and the fixed solution can be taken in practice as the unique
solution of the physical polyhedron. This is the case for the conducting bodies shown in
Chapter 7. The previous sections 8.1.1, 8.1.2 and 8.1.3 have to assume a well-determined
solution for J± and M± to build the current and field edge requirements.

In the PeC-polyhedron, the edge requirements are to be ensured for only one field
magnitude, either the electric or the magnetic field. Indeed, since for the perfectly
conducting case the surface component of the total electric field is zero, the magnetic
current must be zero. Therefore, one has to enforce the boundary condition for one field
magnitude -either the electric or the magnetic field- and for one source magnitude -the
electric current-.
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In the dielectric case, though, one has to ensure the correct definition of both the electric
and magnetic fields since one disposes of two independent source magnitudes, M* and
J1. Moreover, as shown in the previous sections, PMCHW, EF1E and MFIE ensure the
normal continuity across the edges respectively of the pairs of magnitudes (È* —È~\\

(H+-H~}, Ê+\Ê~ and H+\H~. It is surprising the fact that the EFIE and MFIE

approaches do not demand any continuity requirement respectively for the magnetic and
the electric field if they both implicitly depend on the good definition of these magnitudes.

Indeed, the integral expressions of the scattered fields Es and Hs depend on J± and
M ~ , which in turn are univocally related with H±and E± through (8.15) and (8.23).

The theoretical reasoning in 8.1.2 assumes a complete expansion of the current, which
leads to the -in practice- unique solution for J± and M±. This implies that, as long as the
source magnitudes are completely expanded, the ignored field requirements in the EFIE
and in the MFIE, respectively the magnetic and the electric field, become automatically
incorporated. This accounts for the apparent contradiction in the paragraph above because
with the complete expansion one achieves the continuous expression of J* and M±,
whereby the dual field edge requirements are not needed anymore and can be thus indeed
ignored.

The sets of any order belonging to the curl-conforming and the divergence-conforming
functions groups ensure the continuity of one component. So as to achieve a complete
expansion of a magnitude, the continuity of the other component must be enforced as well.
This can only be effectuated through an infinite series grouping together the terms of all
the orders belonging to the same fundamental group of expanding functions -curl- or
divergence-conforming-. Evidently, the total continuity for the expanded magnitude will
only be ensured in the limit when embracing all the contributions, which is of course in
practice unachievable. One has to make do with a high enough expansion that, in any case,
performs often satisfactorily.

For the PeC-operators and the dielectric PMCHW, the currents and the fields correspond to
a low-order expansion of the physical fields and currents. For the dielectric EFIE and
MFIE, though, the situation is particularly different. The theoretical study in 8.1.2 shows
that the field requirements can rely only on one field magnitude as long as the expansion of
the source magnitudes J± and M* is accurate enough. Therefore, the relevance of the
error relies on the capacity of the chosen expansion to expand precisely the physical
current. If a too low-order expansion for the current is assumed, the dual field requirements
cannot in general be ignored, and thus the problem may be badly posed. The importance of
this error in the performance of EFTE-MFIE depends on the characteristics of the physical
currents for a given problem. One can intuitively asses that it must be especially critical in
bodies with small electrical dimensions because in that case the influence of the physical
edges becomes very important. It is reasonable that for electrically larger bodies a low-
order expansion through patches of size 0.1A¿ can be satisfactory. Increasing the order of
the expansion of the current can diminish this error. For example, in physical polyhedrons,
this can be done through the overdiscretization of the planar faces.

Similarly, this misbehaviour of EFIE-MFIE must be most important in any structure with
only penetrable regions -preferably with regions of small electrical dimensions-. For
problems with some conducting region, though, the effect of this error must be lessened
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since over the conducting surface, only one field condition is required -the dual condition
is indeed ignored-. Therefore, the EFIE and MFIE become robust throughout the interface
surface with the conducting region. Indeed, the evident improvement relies on the good
definition of the PeC-EFIE and the PeC-MFIE.

8.1.5 Conclusions

1. An increasingly fine discretization applied in a dielectric polyhedron produces an
increasing condition number for any operator. In an analogous way as shown for the
PeC-EFIE, one has to impose the constraint of no electric and magnetic charge
accumulation to define the current -J±, M± - and field spaces. Of course, the problem
will always carry an inherent ambiguity, which can be satisfied as long as the
discretization is not very fine. In order to obtain the definition of the rank and domain
spaces it has been assumed if - 0 for EFIE, ?„* = 0 for MFIE and T* = Tm

± = 0 for
PMCHW.

2. For all the dielectric operators -EFIE, MFIE and PMCHW-, the system is inherently
ambiguously defined. The EFIE and MFIE dielectric operators must behave in a
similar way in regard to the value of the condition number -the same accuracy and
degree of discretization-. The PMCHW operator must present worse condition number
as the discretization becomes finer because it disposes of two degrees of freedom to
accomplish the edge flux density continuity conditions. On the other hand, EFIE-MFIE
dispose of one degree of freedom, which represents a lower degree of ambiguity. At
last, PeC-EFIE, with only one degree of freedom and one source magnitude
ambiguously defined per edge must yield a lower condition number for the same
number of edges.

3. To develop the different dielectric operators for an arbitrary dielectric polyhedron,
different boundary conditions over the edges must be enforced. EFIE and MFIE must
respectively ensure the continuity of the normal component of the electric and the
magnetic flux density across the edges. It is impossible to find a solution for PMCHW
enforcing at the same time the edge requirements of EFIE and MFIE, which are
antagonistic. However, it is possible to build consistently the PMCHW operator by
enforcing the continuity of the normal component of the subtraction of the electric and
magnetic fields at both sides of the interface surface.

4. The PMCHW operator in general does not accomplish the electromagnetic
requirements. This is due to the bad definition of the PeC-MFIE(/?WG,/?WG), which
enforces continuity of the tangential component of the fields. However, this inherent
error associated to the PMCHW operator must be less important whenever the PeC-
MFIE contribution is very little compared to the PeC-EFIE one. This, happens in
isolated penetrable bodies, where the uppermost PeC-MFIE influences are due to
coplanar or nearly coplanar facets. In more complex structures, such as multilayered
bodies or groups of disjoint bodies in proximity, this error is more important because
there can be facets facing each other in parallel surfaces, where the PeC-MFIE
contribution becomes important. In case there is a conducting and penetrable region
facing closely each other, this error must become much more relevant. Indeed, since
the magnetic current is close to zero along the side of the penetrable region, the
magnetic field is most influenced by the badly posed PeC-MFIE contribution.
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5. All the requirements to define J1 and M1 properly demand no charge accumulation.
The EPIE and the MFIE demand respectively no electric and no magnetic charge
accumulation, meanwhile the PMCHW demands both. That is why the use of patch-
based functions, which focus on the patches and ignore the edges, is suitable. In
consequence, the use of approaches based on node-based finite elements to undertake
the dielectric operators must turn out in general less accurate. Indeed, they cannot
provide the necessary imposition of no charge accumulation.

6. In an analogous way as in the PeC case, this study has focused on the necessary
conditions for the field and the current across the edges. The chosen RWG and
unxRWG sets represent low-order expanding bases over the triangle subdomain. The
higher-order bases enclosed in the wide families of the divergence-conforming and
curl-conforming bases -where RWG and unxRWG respectively belong- stand for
suitable bases as well. One has to assume thus in the results of this work the error due
to the low-order expansion of the current, which must be different for each operator.
Note that the expansion of the source magnitudes, J± and M±, is effectuated by
means of different sets for each operator. Indeed, the electric current is expanded by
RWG in EFIE and PMCHW and by unxRWG in MFffi. Similarly, the magnetic current
is expanded by RWG in MFIE and PMCHW and by unxRWG in EFffi.

7. The error due to the low-order expansion of the current is particularly critical for the
EFIE and MFIE operators. The EFIE and MFIE approaches enforce either the magnetic
or the electric field requirements and ignore the dual ones. All their theoretical
behaviour and therefore their properties rely on an accurate enough expansion of the
current because only in this case the ignorance of the dual field requirements is
justified. The relevance of this error depends on the capacity of the chosen expansion
to resemble the physical solution; in electrically small objects -with an important
density of edges-, this error must be more evident. For electrically larger bodies, one
expects that the usual choice for the subdomain size of 0.1Ad can be sufficient. The
effect of the low-order expansion for the EFIE and MFIE operators can be lessened by
overdiscretizing the facets on the physical polyhedrons, which implies actually
increasing the order of the discretization. In objects with conducting regions, the
importance of this error must decrease since over the conducting interfaces only one
field condition is required and thus the dual field requirement is implicitly ignored.

8.2 RESULTS FOR BODIES WITH TWO REGIONS SHAPING THE
INTERFACE SURFACE

The implications of the theoretical study for the dielectric polyhedron are shown in the
following subsections. It is shown first in 8.2.1 the values of the condition number for
EFIE, MFIE and PMCHW. Secondly, in 8.2.2, the performance of the dielectric operators
in electrically small structures with only penetrable regions is shown. It is assessed the
relevance of the MFIE and EFIE error for electrically small physical polyhedrons. It is also
presented in detail the improvement of the behaviour when undertaking the
overdiscretization of the polyhedron, which corresponds effectively to a higher order
expansion. In 8.2.3, some reference results are presented for electrically bigger bodies with
penetrable regions, where it can be well assessed the fact that for regions of bigger
slectrical dimensions the EFIE-MFIE misbehaviour practically disappears. Finally, in
8.2.4, the performance of the dielectric operators in structures with the presence of a
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conducting region is shown. In this case the error due to the less stringent field
requirements in PMCHW becomes more noticeable and the EFIE and MFIE error declines
since the operators are well defined on the conducting surface.

The particularisation of the PMCHW operator to this case can only yield the E-PMCHW
operator -see Chapter 2-. This means that the EFIE is applied on the conductor. Note that,
in accordance with the field requirements, which demand the use of R WG as weighting and
expanding set, only the PeC-EFIECRWG^WG) can be used. Therefore, the theoretical
alternative H-PMCHW must be dismissed since PeC-MFlE(RWG,RWG) is very ill-
defined.

The dielectric EFIE and MFIE operators have been undertaken through the precise
computation of the basic PeC-EFTE(RWG,RWG} and PeC-MFlE(RWG,unxRWG) in the
terms mentioned in Chapter 7. The PMCHW operator relies also on the accurate
development of PeC-EFÍE(RWG,RWG) and PeC-MFIE(RWG,RWG). That is, the terms of
higher-order are analytically integrated and a four-point Gaussian quadrature rule is
employed for the low-order terms. The self-terms have been computed very precisely
through the application of a four-point quadrature rule in the outer integral.

The PeC-MHE(RWG,RWG) operator has been dismissed in Chapter 6 because it yields a
null integration of the singularity. Therefore, one needs to concentrate only on the
computation of the Cauchy principal contributions, which is straightforward because the
source-integration is the same as the one shown in Chapter 6 for PeC-
MFIE(unxRWG,RWG).

8.2.1 Conditioning of the matrices

In Table 8.1 the condition numbers of the impedance matrices associated to the dielectric
operators EFIE, MFIE and PMCHW are shown for a homogeneous dielectric cube with
side 0.05^ = 0.1^ -er = 4-.

N. of triangles
48

192
300
432

Cond. Number - EFIE
506

1879
2641
3796

Cond. Number - MFIE
351

1340
1847
2657

Cond. Number - PMCHW
633

4317
19515
31828

Table 8.1 Condition number of a cube with side of 0. \Kand Sr = 4

In view of this table, the MFIE and EFIE values turn out to be of the same order of
magnitude. The PMCHW values, though, show a steeper increase, as predicted; there is
indeed an order of magnitude of difference from the 300 triangles on. It is also indicative
the comparison of these values with the condition numbers of the PeC-EFIE for a cube of
the same electrical dimensions in Table 7.1. Indeed, EFIE and MFIE show a faster
progression than the PeC-EFIE, which confirms the inherent bigger ambiguity reasoned
before.

In Chapter 2 it is presented the definition of the condition number as a ratio between the
source and the field magnitudes. In the PeC case, the source magnitudes and the field
magnitudes are the same for each operator. All the dielectric operators, though, present two
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different source magnitudes: J and M ; furthermore, the PMCHW presents even two
different field magnitudes: H and Ê. Therefore, in order to compare the condition
numbers of the different dielectric approaches, it is indispensable to normalise the field and
source magnitudes so as to make them dimensionally compatible. Otherwise, the values of
the condition number are enhanced according to the dimensional incompatibility. As
shown in the duality properties in Chapter 2, one can pass from the magnetic dimensions to
the electric ones -current and field- by means of a product by 7]0, the wave-impedance in
the vacuum. The condition numbers shown in Table 8.1 correspond to matrices that take
this change into account.

8.2.2 Electrically small bodies with only penetrable regions

In 8.2.2.1 it is verified explicitly the existence of the EHE and MFIE error due the low-
order expansion of the current -explained in detail in 8.1.4-. It is also valued the relative
smaller importance of the error in PMCHW. In 8.2.2.2 it is shown the reduction of the
error of EFIE and MFIE on electrically small physical polyhedrons by carrying out a
higher-order expansion of the current, which is fulfilled through the overdiscretization of
the planar faces. It is accordingly confirmed that the PMCHW operator shows a much
better performance. This implies that the error due to the less stringent field requirements
in PMCHW is unimportant compared to the EFIE and MFIE low-order error for bodies
with penetrable regions. In 8.2.2.3 some results for electrically small spheres are shown,
where the effect of the physical edges becomes important with a coarse discretization.

8.2.2.1 Relevance of the EFIE-MFIE low-order error

It is effectuated the comparison of the results for two problems -with pretty small electrical
dimensions- that theoretically provide the same solution for each of the three general
approaches: EFIE, MFIE and PMCHW. It is thus proved the existence of the errors in the
dielectric operators and their different relevance in the solution is compared. Indeed, the
RCS for a single dielectric body and the RCS of a structure of two bodies, where one is the
same as the first dielectric body and the other has er = 1 -the constant of the free-space-,
must be theoretically the same. By checking the performance for each of the dielectric
operators, one can verify the importance of the inherent errors of the operators.

The bistatic RCS with an axial impinging plane wave are presented for two different pairs
of disjoint objects -two cubes and a cone and a cylinder-.

Two cubes

The evolution of the bistatic RCS for the pair of disjoint cubes in Fig. 8.2 for the
values of d = le - 5Á,0 and d - O.OS/^ is presented for the three possible operators
EFIE, MFIE and PMCHW -Fig. 8.3, Fig. 8.4 and Fig. 8.5-.
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The evolution of the bistatic RCS for the cone and the cylinder in Fig. 8.6 for the
values of d = le — 5À,0 and d = 0. l/lg is presented for the three possible operators EFIE,

MFffi and PMCHW -Fig. 8.7, Fig. 8.8 and Fig. 8.9 -.
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The two dielectric structures demonstrate an analogous behaviour. The EFIE and MFIE
results with the two bodies show a much more evident dissimilarity in comparison to the
corresponding results of the single body; this fact has to be attributed to the expected error
in the dielectric EFIE and MFIE described in 8.1.4.

According to the results, the error associated to PMCHW tuns out much less important
than the error in EFIE-MFIE. Moreover, the reasoning presented in 8.1.3.2 is confirmed by
the PMCHW results in the two cases. For the cubes, the PeC-MFIE(/?WG) impedance
contributions are relatively less important because there are many influences between
coplanar functions, which yield a null PeC-MFIE contribution. For curved objects, on the
other hand, there is always some PeC-MFIE influence between an element an its
neighbouring elements. That is why the dissimilarity between the results with the single
reference for the bigger value of d is more important for the cone and cylinder- Fig. 8.9-
than for the cubes -Fig. 8.5-. When setting the value of d = \e-5^ for the cubes, the
PMCHW error becomes more important because there are many near elements in parallel
planes facing each other -in this case the PeC-MFIE contribution becomes more important-
. The cone and the cylinder allow also for this contribution and so the d = \e — 5\ results

turn out even worse than those due to d = 0. l/l„.

It has just been presented a relative analysis because the results are compared with
reference results that are biased by the same sources of error. In any case, the conclusions
can be extended to the robustness of the results for the single bodies. According to the
bigger robustness of PMCHW in front of the EFIE and MFIE in all the results, one can
infer that the PMCHW approach is more reliable in the analysis of these electrically small
structures with only penetrable regions. Furthermore, one can also conclude that the
PMCHW behaviour is especially good for cubes -and therefore for regular polyhedrons-.

20 40 60 80 100 120 140 160 180
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8.2.2.2 Physical polyhedrons

The previous section has shown the importance of the error in the EFIE and MFIE
approaches that the author of this dissertation Thesis attributes to the unsatisfactory
expansion of the current. This misbehaviour must accordingly decrease as the order of the
expansion J± and M± increases. For physical polyhedrons, the order of the expansion can
be augmented without changing the modelling of the surface by overdiscretizing the planar
facets with low-order expanding functions -as effectuated in the PeC-results of Chapter 7-.
Furthermore, the previous section has shown the robustness of the PMCHW approach in
the analysis of regular penetrable polyhedrons. The bistatic RCS for fine discretizations for
the three dielectric operators on the electrically small physical polyhedrons of Chapter 7
are presented.
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A pyramid -see Fig. 7.1- with height 0.03/lg, basis side 0.04/Ì0 and £r = 3 is analysed

with five different discretizations -3, 4, 5, 6 and 7 segments per edge-, which
correspond respectively to 72, 128, 200, 288 and 392 triangles. The RCS results are
presented in Fig. 8.10, Fig. 8.11 and Fig. 8.12.
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Fig. 8.12 RCS for the pyramid -£r = 3 - with 288 and 392 triangles

Cube:

A cube -see Fig. 7.5- with side O.OS/lg and er = 4 is analysed with three different
discretizations -2, 4 and 5 segments per edge-, which correspond respectively to 48,
192 and 300 triangles. The RCS results are presented in Fig. 8.13, Fig. 8.14 and Fig.
8.15.
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Octahedron:

A regular octahedron -see Fig. 7.14- with height of 0.07/ln and £r = 2 is analysed
with three different discretizations -3, 5, 6 and 7 segments per edge-, which
correspond respectively to 72, 200, 288 and 392 triangles. The RCS results are
presented in Fig. 8.16 and Fig. 8.17.
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Fig. 8.17 RCS for the octahedron - er = 2 - with 288 and 392 triangles

In view of the results for the pyramid, the cube and the octahedron, one can confirm that
the EFIE and the MFIE operators require overdiscretization to improve their behaviour.
Indeed, for all the polyhedrons, the EFIE and the MFIE results approach each other as the
discretization becomes finer. According to the theoretical reasoning presented in 8.1.4,
both MFIE and EFIE must merge for a high enough order of expansion.

The PMCHW operator, on the other hand, is extremely robust and does not need any finer
discretization to improve its performance. Indeed, the results are nearly the same from the
coarsest to the finest mesh in all the polyhedrons. PMCHW excels as a stable result, to
which EFIE and MFIE seem to tend when yielding the mesh finer. Note that the inherent
error of PMCHW is not even noticed because it is inside the range comprised in the
evolution of the results of EFIE and MFIE. This is again a proof of the much smaller
relevance of the PMCHW error compared with the EFIE-MFIE one in penetrable bodies -
for these objects of electrically small dimensions-.
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Note that these results are in agreement with the behaviour in the conducting physical
polyhedrons. In that case, when overdiscretizing the facets, Pe,C-EFlE(RWG,RWG) yields
more stable results than PeC-MFTE(RWG,unxRWG'). It is thus reasonable that the operators
that depend on PeC-MFÌE(RWG,unxRWG) in the dielectric case -EFIE and MEDE- provide
a less stable performance for finely meshed physical polyhedrons than PMCHW.

8.2.2.3 Curved objects

PMCHW excels as the operator that yields the most stable and accurate behaviour in
regard with the electrically small physical polyhedrons. For the curved objects, which are
analysed through a planar modelling, the PMCHW must yield the most accurate
description of the corresponding polyhedron -compared to EFIE and MFIE-. In
consequence, an appreciable error must appear for coarsely meshed spheres, in an
analogous way as it happens for the PeC-EFlE(RWG,RWG) for conducting spheres -see
Chapter 7-.

EFIE and MFIE have shown a low-order misbehaviour too evident for the electrically
small polyhedrons. They cannot hence make up for the curvature effect so well as PeC-
MFlE(RWG,unxRWG) can do for the entirely curved conducting bodies -see Chapter 7-.
In consequence, EFIE and MFIE cannot improve the PMCHW performance appreciably,
although they partially do succeed.

Bistatic RCS results for a sphere with radius O.OS/lg er = 2and e r =4 under an axially
incident plane wave are presented -Fig. 8.18 and Fig. 8.19- for the three operators. As the
discretization becomes fine, logically the curvature error must decline -Fig. 8.19-.
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Fig. 8.18 RCS for the sphere -£r = 2 - with radius 0.05/10 and 32 triangles
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Fig. 8.19 RCS for the sphere -£r =4 - with radius 0.05^ and 128 triangles

8.2.3 Electrically bigger bodies with only penetrable regions

Since all the examples presented in the previous sections are electrically pretty small -the
cube provides the longest physical edge with O.lAy -, the influence of the physical edges
must be remarkable, which implies a pretty important high-order presence in the physical
solution -see 7.5.1-. One can see how those physical polyhedrons with a higher density of
physical edges -pyramid and octahedron- or the sphere more coarsely meshed show more
dissimilarity between the PMCHW and the EFIE-MFIE behaviour. One expects that for
bodies with bigger electrical dimensions the influence of the EFEE-MFIE error -directly
dependent on the relative presence of physical edges- will be decreasingly important and
the contribution incorporated in a patch size choice of O.lAy can be enough. Some
examples in this section confirm this.

The bistatic RCS results under an impinging axial wave for some electrically bigger
penetrable bodies are presented for EFIE, MFIE and PMCHW. The behaviour for a sphere
considerably bigger than Fig. 8.18 and Fig. 8.19 is compared with the Mie solution. The
behaviour for some cubes is compared with a solution obtained using the volumetric
equivalence theorem [16]. The solution for a half-sphere is compared with the null-field
approach of S. Ström and W. Xheng [21]. Finally, results are shown for a cylinder and a
group of a cone and a cylinder.
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4 Sphere:

Bistatic RCS for a sphere with radius 0.2^ and er =4 with 512 triangles.
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Fig. 8.20 RCS for the sphere -£r=4- with radius 0.2J^, and 512 triangles

4 Cubes:
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Bistatic RCS for two cubes with side 0.2/lg and respectively £ r =4 -see Fig. 8.21-
and er = 9 -see Fig. 8.22-.
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Bistatic RCS, E plane

-10

-15

dB"20

•25

-30

-35

-40

-8

-9

-10

-11

dB
-12

-13

-14

-15

-IR

»••e» •»•-'»»

•-.,e
«
•
•

) 20 40 60 8

Bistat

«?SîÇ
*«?«,

'"•,-Vi; p " "
*BÏO

*

tt

V

<

ï

d

" EF1E
o MFIE
» PMCHW

V
9

»'

»

»

9 .

W

e-9»-»«

0 100 120 140 160 18

c RCS, H plane

V '\??,
»í\, . ïo

• EFIE
» MFIE

. * PMnHW

Js
*9??

N*s??v
O 10 20 30 40 SO 00 70 M 90 100 110 IZO 130 140 130 10O ITO IM

"O 20 40 60 80 „ 100 120 140 160 180
O

Fig. 8.22 RCS for the cube -£r = 9- with radius 0.2A^ and 768 triangles

Half-sphere

Bistatic RCS for a half-sphere with radius 0.477 \ and er =4 with 512 triangles - see

Fig. 8.23-

Fig. 8.23 Half- sphere with 512 triangles
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4 Cylinder:

The RCS results for the cylinder in Fig. 8.26 with radius 0.1^, height 0.2 ,̂ and

£r = 2 under an axially incident plane wave are shown in Fig. 8.27 .

£ =2

Fig. 8.26 Cylinder discretized with 320 triangles
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4 Cone and cylinder

The cone with er = 3 of Fig. 8.6 and the cylinder with er = 2of Fig. 8.26 are

juxtaposed as shown in the structure of Fig. 8.6 with d = 0.02/io.
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All these results confirm that, as the electromagnetic dimensions increase, the EFIE and
MFIE behaviour follow more closely the PMCHW result, which, in accordance with the
behaviour for smaller objects, is maintained as reference. Indeed, the results for the half-
sphere, with perimeter of 5/1,,, -see Fig. 8.23-, for the cube of er = 9, with perimeter

2.5/lj, - see Fig. 8.22 -, and for the sphere of er =4 , with perimeter 2.5/ly-see Fig. 8.20-,

resemble best. This behaviour is in agreement with the theory expounded in 8.1.4 for the
influence of the physical edges -associated to either the physical polyhedron or to the
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modelling of the curved surface- declines. Therefore, a lower-order expansion of the
current through a patch size of about 0.08/ly is satisfactory to expand the physical solution.

It must be noted that in the results of the cylinder -see Fig. 8.27- the disagreement is still
noticeable because the electric dimensions are comparatively rather low, with perimeter
1.1ÂJ-. This makes sense because the decrease of the low-order error associated to EFIE
and MFIE must be gradual. In any case, it can be verified in Fig. 8.27 that the error at this
point is rather small, mainly compared with the small physical polyhedrons in 8.2.2.2.

Finally, the results for the structure in Fig. 8.28 show again that the less stringent field
requirements in PMCHW are not noticeable in front of the low-order EFIE and MFIE
misbehaviour, which in any case at this point is small. This fact is interesting because even
for a structure with such a small gap between - d = 0.02^, - the PeC-MFIE influences

between elements facing each other turn out comparatively unimportant.

8.2.4 Bodies with perfectly conducting and dielectric regions

The misbehaviour of PMCHW -explained in detail in 8.1.3.2- due to the fact that the
imposed magnetic and electric field requirements are less stringent than the necessary
electromagnetic field requirements must be important in structures with important
conducting regions facing closely dielectric interfaces. Indeed, since the magnetic current
value is close to zero over the conducting interfaces, the badly defined PeC-
MFLE(RWG,RWG) contributions become really important to define the magnetic field.
Furthermore, in this case, the EFIE and MFIE operators improve remarkably their low-
order misbehaviour for electrically small objects thanks to the application of the robust

and PeC~MF1E(RWG,urucRWG} over the conducting interfaces.

8.2.4.1 Relevance of the PMCHW error due to the less stringent
electromagnetic requirements

Some RCS results for an axially incident plane wave are presented for pairs of disjoint
objects -conductor and dielectric- with a small gap d between.

4 Two cubes:

It is shown for EFIE, MFIE and PMCHW the bistatic RCS for two cubes with side
0.2/lfl -PeC and er = 4 -, both discretized with 192 triangles, for the values d = le -5/lg

and d =0.01^, -see Fig. 8.29 and Fig. 8.30-.
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Fig. 8.30 RCS for the two cubes -£r=4, PeC- both with 192 triangles and d = 0.

4 A cone and a cylinder:

A cone-cylinder group with d = le-5ÀQ is presented. The cone -radius 0.3%$, height

0.6/1,) and er = 2- over a PeC-cylinder -radius 0.3/lg and height 0.6Ag- respectively

discretized with 250 and 500 triangles -see Fig. 8.31-. It is compared with a MoM-
BoR reference in [30].
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Fig. 8.31 RCSfor the cone-cylinder structure -Er=2, PeC- with 250 and 500 triangles and

8.2.4.2 Reference results

In the previous section, the PMCHW operator has been set aside for tiny values of d,
which dismisses its use on the analysis of composite conducting and penetrable bodies -see
section 8.3-. However, PMCHW can be used, along with EHE and MFIE, for the case of
disjoint objects as long as d is not very small -see the examples below-

+ Two cubes:

The two cubes presented in Fig. 8.29 and Fig. 8.30 for tiny values of d are shown
now for d = 0.3^
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4 Concentric spheres:

The bistatic RCS of two concentric spheres in Fig. 8.33 with axial incidence is shown
in Fig. 8.35 and it is compared with a Kishk and Shafai reference [6] - Fig. 8.34-

Fig. 8.33 Concentric spheres discretized with 128 and 512 triangles

— Mie series
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-16

Fig. 8.34 RCS f or the concentric spheres obtained by Kishk and Shafai [6]
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8.3 GENERALISATION TO BODIES WITH MORE THAN TWO
REGIONS SHAPING THE INTERFACE SURFACES

In the previous section all the possible problems with one region shaping the interface
surfaces have been presented -single bodies, layered bodies or groups of disjoint objects-
For the sake of generality, the problems with more than two regions shaping the interface
surfaces have to be considered as well.

A composite structure -with dielectric and conducting regions attached- belongs to this
group. Note that it is pretty important since it embraces important types of antennas, such
as the microstrip antennas, with a conducting ground plane and a dielectric slab put
together.

The author of this dissertation Thesis considers the composite bodies as a group of disjoint
bodies with d = 0. In the previous section, several problems with groups of disjoint bodies
separated by minuscule distances - d = le—5^- have been presented -see Fig. 8.3, Fig. 8.4,

Fig. 8.5, Fig. 8.7, Fig. 8.8, Fig. 8.9, Fig. 8.29, Fig. 8.31- and confirmed with reference
results.

Since the physical magnitudes are indeed continuous, it is reasonable that the physical
solution for these problems but with an identically null distance -composite bodies- must
be the same as the solution assuming d = le — 5. Moreover, since the dielectric operators
result from the combination of the PeC-operators, one has to assess if the basic PeC-
operators can accomplish the physical continuity of the fields when d —» 0 according to
the particular choice of expanding and weighting functions. This aspect is analysed in
detail for each of the dielectric operators right away.

* EFIE-MFIE:

These operators rely on the basic PeC-EFSE(RWG,RWG) and PeC-
MHE(RWG,unxRWG). It has been proved analytically in Chapter 6 that RWG as
weighting functions expand the rank space of PeC-EFIECRWG) and of PeC-
MFHL(unxRWG). Therefore, the continuity of the expanded magnitudes when d —» 0 is
maintained, which allows EFIE and MFIE to obtain the same results for minuscule
values of d as for d = O in any case -approaching either dielectric or PeC-dielectric
regions-.

+ PMCHW:

This operator relies on P&C-EFIE(RWG,RWG) -continuous as reasoned above when
d -> 0- and on PeC-MFlE(RWG,RWG). It has been repeatedly mentioned that PeC-
MFIE depends on the contribution of two terms: the integration of the singularity and
the Cauchy principal value. Note that when d ^ 0 the principal value is in general non
null but when d is identically null it becomes zero. Since the term due to the
integration of the singularity is only then non-null, the continuity can be maintained.
However, PeC-MFIE(/?WCr,/?WCj) ignores the contribution of the integration of the
singularity because RWG is orthogonal to this part of the rank space, whereby
PMCHW cannot yield accurate results for d = O in any case. The PMCHW operator
must then rely only on the Cauchy principal contribution of PeC-MFIE when d is tiny
enough but non zero.
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Note that this fact does not necessarily imply that the results are precise because it still
remains the inherent bad definition of PeC-MFïE(RWG,RWG) linked to the
enforcement, of the continuity of the tangential component. As long as the associated
error due to this is unimportant, the PMCHW can be taken into account. This is the
case for penetrable bodies facing each other closely because the PeC-
EFIE(RWG,RWG) contributions are much more relevant -see Fig. 8.5, Fig. 8.8 and
Fig. 8.28-. Unfortunately, this cannot be satisfied for pairs of close enough conducting
and dielectric regions -see Fig. 8.29, Fig. 8.30 and Fig. 8.31-.

In continuation, it is shown the degradation of the PMCHW performance and the
robustness of EFIE and MFIE with d = 0 compared to minuscule values of d . A pair of
dielectric cubes -er =2, £r = 4- with side Q.Q5ÂQ are chosen. Note that since they are
electrically pretty small, the EFIE-MFIE low-order error must be evident -each cube is
discretized with 108 triangles-.
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Obviously, the computer assumes a zero whenever d overpasses the accuracy of the
machine. That's why the PMCHW performance is still acceptable for d = 5e~ 15, which is
slightly over 2.2e-16, the precision of MATLAB.

Finally, the bistatic RCS under +z directed axial incidence for the case of a composite body
that consists of a dielectric cone -height O.o/lo, radius 0.3/lg and er = 2- lying over a

conducting disk -radius O-S/lg- is presented -see Fig. 8.37-. Since the disk stands for an
open surface, the MFIE operator cannot be used. Only the EFIE and E-PMCHW
approaches are then employed. Again, the E-PMCHW results in Fig. 8.38 are unacceptable
when compared with the BoR-reference [30], which agrees with the theory in 8.1.3.2.
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e =2

PeC

d=0

Fig. 8.37 Cone-disk structure-£r = 2 ,PeC- with respectively 288 and 144 triangles
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8.4 CONCLUSIONS

The existence of the errors theoretically discussed in 8.1 associated to the dielectric
operators EFIE-MFIE and PMCHW have been shown with examples.

The EFIE-MFIE misbehaviour is evident for problems with physical currents with a
considerable high-order contribution. That is, electrically small penetrable bodies, where
the influence of the physical edges is important. As the dimensions of the body increase,
this error becomes decreasingly evident. Similarly, for problems with conducting regions
this error diminishes because only one field condition -PeC-EFIE, PeC-MFIE- is required
and thus the dual field condition can be ignored.

The PMCHW behaviour has shown to be more satisfactory for all the cases involving
problems with two penetrable regions shaping the interface surfaces. This implies that in
these cases the well defined PeC-EFÎE(RWG,RWG) part is much more relevant than the
PeC-MFIE(/?WrG,.KWG!) erroneous contribution. However, for groups of disjoint objects
with a conducting and a dielectric region separated by a tiny distance, this error becomes
remarkable.

In the PeC case, through the imposition M = 0 one must only meet the continuity across
the edges of the magnitudes in the same region and ignore the field continuity across the
edges of the fields in the two media -see Fig. 8.39-. Indeed, the dielectric constants in the
conducting region become superfluous because the electric and magnetic fields inside are
zero. In the dielectric case, on the other handj the continuity across the edges of the fields
inside each region -as in the PeC case- and of the fields at each side of the surface -in both
regions- must be ensured at the same time -see Fig. 8.39-.

fri [£']>

[Et\H,l=[E,\H,l
fcl

Field continuity in one region Field continuity in two regions

Fig. 8.39 Continuity in the dielectric polyhedron

Note that the errors associated to EFIE-MFIE and PMCHW correspond to two possible
strategies to overcome this difficulty. The EFIE-MFIE approaches enforce the continuity
of the electric-magnetic field in one region -Fig. 8.39-. As the dual field requirement is
ignored, they cannot satisfy the continuity of the fields across the edges through the two
regions -unless the order of the current expansion is accurate enough-. The PMCHW, on
the contrary, does ensure the interface continuity but, due to the discontinuity of the
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tangential field component in each region, it has to assume an error -unimportant for
problems with only penetrable regions23-.

Finally, the composite structures can be considered as a group of disjoint bodies with null
distances of separation. The continuous transition from d increasingly small to d null can
only be carried out by EHE and MFIE. PMCHW cannot maintain the performance because
PeC-MFIE(RWG,RWG) ignores the term due to the integration of the singularity, which is
responsible for the continuous transition to d null.

23 In Chapter 5, for the case of penetrable bodies with symmetry of revolution it was reasoned that the BoR-
PMCHW, due to its balanced structure, excels as the dielectric operator that can best manage the BoR PeC-
MHE misbehaviour thanks to the well-behaving BoR PeC-EHE. Now, in the 3D case, the PMCHW shows
again this capacity.



Chapter 9 EFFICIENT METHODS

9.1 INTRODUCTION

The MoM is considered a brute-force method since the inversion of the resulting dense
matrix requires excessive memory resources and computation time for electrically large
problems. The LU decomposition -Gaussian elimination- calls for o(N3) operations and
o(N2) memory storage -N denotes the matrix dimensions-. Solutions for all the excitations
can be provided.

For such electrically large problems, it is thus recommended the use of iterative inverting
techniques, such as the Conjugate Gradient -CG- or the Biconjugate Gradient -BiCG-
methods. In this case, an approximation of the solution is obtained

I(k <- [Z]7(*-' (9.1)

where o(N2) operations per iteration are required -the most costly step is the matrix-vector
multiply-. CG guarantees monotonous convergence to error zero in N iterations. BiCG, in
contrast, does not guarantee the convergence but usually requires less iterations for a
reasonable error. The solution is supplied for only one excitation.

The recent phenomenal growth in computer technology, together with the development of
fast algorithms with reduced computational complexity and memory requirements, have
made a rigorous numerical solution of the problem of scattering from electrically large
objects feasible [47]. In all these fast techniques the direct inversion is ignored since it is
too demanding in computational terms.

One strategy to improve the computational efficiency is to reduce the number of iterations
to achieve the solution. The preconditioning stands for the multiplication at both sides of
the linear system -the solution is thus maintained- by a matrix dependent on the
characteristics of [Zj. This matrix, so-called preconditioner -see 2.8.3.2-, resembles the
inverse matrix of the original matrix, whereby the product of both becomes close to the
identity matrix. This is very useful because it reduces the condition number of the system,
which, as it is widely known, implies the decrease of the number of iterations to reach a
given error.

Many researchers have also attempted to reduce the complexity of the MoM by reducing
the computational requirements of the pertinent matrix-vector multiplies in the iterative
methods. In this work, two strategies have been carried out, the PeC 3D IE-MEI [53] and
the Fast Multipole Method -FMM-[45] and Multilevel FMM -MLFMM- [44] [46][48] [49]
for dielectrics.
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9.2 IE-MEÏ

The Measured Equation of Invariance -MEI- was carried out by K. Mei et al. [51]. This
method adopts a formulation in finite differences to find efficiently the solution for a 2D
PeC problem. Juan Manuel Rius extended this 2D procedure to an integral formulation -IE-
MEI- [52].

The IE-MEI imposes a measured equation between the electric and magnetic fields over a
set of adjacent weighing functions -Q -.

__ ..„ (9-2)
fen v ' /en * '

Moreover, it is obligatory to expand the current with the same expanding set. In 3D
problems, RWG is chosen -it is actually the only possible set because unxRWG is not
allowed in the PeC-EFIE-. From the study in Chapter 6, the required weighting sets can
only be: RWG for the PeC-EFIE and unxRWG for the PeC-MFTE. Therefore, (9.2) becomes

(9.3)

•en ' ' ' /en

which, in accordance with the boundary conditions on the PeC surface, can be finally
expressed as

fen fen ' ' fen

y
which stands for an alternative matrix integral expression for the traditional MoM
impedance matrix

The coefficients {a¡,b¡} are obtained through the inversion of an overdetermined linear

system locally defined over each set of weighting functions £i .

[M][W]\& = 0 (9.6)

where [W] stands for the field impedance matrix over the subdomain spanned by

W = ££c(w,(I),:) - £ftc(w,(II),:) Hs
PtC(w,w,:) .. //^c(w/(/1),:
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The matrix \M ] denotes the métrons, a set of vectors that allows for the enforcement of a
specific property of the current coefficients. The efficient behaviour of the MEI method
relies on the good choice of the set of métrons.

Note that the number of coefficients {a¡,b¡} needs to be small enough in order to make the

IE-MEI really efficient. Indeed, if the set of coefficients is reduced, [A] and [B] stand for
sparse matrices and can thus compensate the unavoidable preliminary search of the
coefficients by means of the later efficient matrix-vector multiply.

In 2D PeC structures, complex exponential functions are used as métrons. This choice
enables a fast determination of the coefficients since the Fast Fourier Transform -FFT- is
effectuated in (9.6). Moreover, a set of six local coefficients {a¡,b¡} is enough in many

problems. However, the generalization to 3D [53] lessens the 2D IE-MEI advantages
because the exponential complex functions are not valid anymore and because more
coefficients {#,,&,} are needed, which yields comparatively fuller matrices.

9.2.1 Quasi-continuous métrons

In view of the well-behaving 2D harmonic métrons [51] [52], this work has focused on the
search of a good set of métrons for the 3D PeC-case relying on the use of the PeC-
operators PeC-EFlE(RWG,RWG) and PeC-MFlE(unxRWG,RWG) -see (9.2)-.

Since the harmonic métrons have not worked for the 3D case, one has had to make do in
principle with a trivial set of métrons: the identity matrix -so-called delta métrons-. The
author of this dissertation Thesis has found a group of métrons that reduces the required
number of coefficients {a¡,b¡} -in comparison with the delta métrons- for the objects tested

-spheres and cubes-. I have named this new set of métrons, a singular contribution of this
work, quasi-continuous.

The full-expansion of the field space -MoM- guarantees the little discontinuity of the fields
across the edges. Indeed, PeC-EFlE(RWG,RWG) and PeC-MFïE(unxRWG,RWG) ensure
the continuity of one component -see 6.5-, respectively the normal and the tangential
component. As the PeC-CFIE results from the linear combination of PeC-EFIE and PeC-
MFIE, the little discontinuity of the field must be maintained for a given degree of
discretization. The solution of the IE-MEI with a large set of coefficients {a¡,b¡}

approaches the PeC-CFIE solution and can thus fulfil the continuity requirements across
the edges. However, in an implementation of the IE-MEI with a small set of coefficients
{a¡,b¡}, the little discontinuity of the fields can not be ensured in principle over the reduced

portion of the field space embraced by Q.. This implies that the little discontinuity for the
current across the edges cannot be ensured either.

The quasi-continuous métrons enforce the little discontinuity of the current across the
edges. This allows a better definition of the subdomain field space and therefore a smaller
set of coefficients {a¡,b¡} is required to achieve the same precision on the current solution.

These métrons have been found heuristically by ensuring the continuity of the tangential
component of the current at two points of each edge -the normal continuity is provided
implicitly through the expansion in terms of RWG-. This obviously leads to an
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overdetermined system of dimensions 2N x N. The set of quasi-continuous métrons forms
thus a matrix - dim([M ]) = N x N - where each row is the least squares solution of the

overdetermined system by compelling the current coefficient associated to the
corresponding edge to one.

The relative current error -compared with the CF1E reference- for an increasing number of
coefficients is shown for both sets of métrons -delta and quasi-continuous- for a cube of
side 0.3/1 and 192 triangles -Table 9.1- and a sphere of radius 0.25/1 and 128 triangles -
Table 9.2-.

««='%
11
15
21
25
27
31
37
39
41
45
47
53

error (%) - Delta

Ie3
464

72
108
56
70
41
24
13
21
13
9

error(%) - Quasi-continuous

162
247

14
15
49
18
11
10
9

11
8
8

Table 9.1 Evolution of the IE-MEI error respect to CFIE, for a cube with side 0.3A

na=nb

6
1
8
9

10
12
14
18
20
23
26
30
40

error (%) - Delta

185
245
214
116
92
53
40
22
8.2

6.25
5.8
4.6
4.3

error(%) - Quasi-continuous

17
16
16
15
16
19
15
10

3.2
3.9
3.1
2.9
2.4

Table 9.2 Evolution of the IE-MEI error respect to CFIE, for a sphere with radius 0.25/1

In view of the results -Table 9.1 and Table 9.2- the improvement with the quasi-continuous
métrons is remarkable since a reasonable error is reached with a smaller set of coefficients.
However, this option is dismissed in practice because the matrix of métrons must be pre-
computed for each specific case and because an extra full-matrix multiplication is required
in (9.6).
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9.3 FAST MULTIPOLE METHOD

The FMM is based on the division of the object in non-overlapping subdomains of
expanding functions. For the sake of simplicity, cubical boxes are chosen -see Fig. 9.1 -.
For PeC bodies, it is recommended a size of the box D of at least 0.25 A.

Level 0 Level 1

Level 2 ' Level 3
Fig. 9.1 Boxes enclosing the body in different levels

The FMM sorts out the electromagnetic interaction between the basis functions through the
interaction of near field boxes and far field boxes -see Fig. 9.2-. The electromagnetic
coupling between basis functions on the near field boxes embraces the influences with the
same box or with touching boxes -see Fig. 9.2-.

Far field boxes Near field boxes

Fig. 9.2 Near and Far field boxes

The electromagnetic interactions between functions in the near field boxes are computed
directly through MoM, which involves Nm • Nn operations. The electromagnetic influence
between the functions in the far field boxes is computed through the FMM. This makes
sense because such interactions have actually a number of degrees of freedom lower than
the total combination of the possible interactions between the functions in both boxes -
N.-N-.
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R.
Field box

Source box

Fig. 9.3 Far box interaction

The far box interaction relies on the Plane Wave Expansion -PWE- of the free-space
Green's función -see Fig. 9.3-

Rc+dn-dm = ZA fe-^
4n J

(9.8)

where

(9.9)
/=0

denotes the translation operator, which computes the field radiated by a plane wave of
current. This field is also a plane wave.

The FMM relies on the truncation of the summation in (9.9) so that only the L+l first
terms in (9.9) are kept. L has been empirically estimated as

(9-10)

where D stands for the box size and P denotes the precision parameter -it is very critical
because it increases rapidly the CPU time-. L gives a measure of the minimum distance
between boxes for the FMM to be valid -Rmn = L/ k-. Likewise, L determines the number
of directions K required in the discretization of the plane wave expansion; that is, -see
(9.8)-

J/(*) (9.11)

The K directions must be sufficient to give a quadrature rule that is exact for all spherical
harmonics of order /<2L. A simple method to accomplish this is to pick polar angles 6
that they are zeros of Pt(cos0), and azimuthal angles <j> to be 2L equally spaced points,

which leads to K = 2L2 [45].
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The FMM implementation must compute the total electromagnetic interaction relying
partially on (9.8), which affects actually only the Kernel. Therefore, the current in the
source box is expanded

e,,(r)/n (9.12)
n=I

where Nn and /„ denote respectively the number of expanding functions in the source box

and the current coefficients; {£„ j stands for the chosen set of expanding functions.

If we define

e-^df (9.13)

the -electric or magnetic- field contribution Sm on the field box due to the source box
become

n=l

where w stands for the contribution due to the weighting procedure in the field box,

which, in an analogous way as in (9.13), becomes

(9.15)

where {?„} stands for the weighting set.

According to the study developed in Chapters 6, 7 and 8, the relations between the
expanding and weighting sets must be in agreement with the requirements of the operators.
Since PeC-EFIE requires RWG for both sets, -see 6. 1 . 1-

(9.16)

The chosen PeC-MFTE operator uses the RWG and unxRWG respectively as weighting and
expanding sets and the -see 6.1.2-

= i(^x")n(F) e~fk'rd7

(9.17)
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Furthermore, the PeC-MFIE choice requires the modification of the translation operator in
(9.14) in accordance with the Kernel in this case. Note that the combination of both PeC-
operators enables a further development to the dielectric case.

Therefore, the collection of the near box and far box field contributions yields

(9.18)

where all the matrices are very sparse and are pre-computed and stored in RAM memory
or hard disk. In regard with the efficiency properties, it is optimum to subdivide the object
with "JÑ boxes, which leads to o(N3/2) operations per iteration.

9.3.1 MLFMM

The MLFMM is a refinement of FMM that takes advantage of the subdivision of boxes at
L different levels -see Fig. 9.1- to yield a more efficient computation of the far field
interactions

/ /

Level L Level L-l

Fig. 9.4 Transition from level L to level L-l

First, the PWE of the expanding functions at level-L that are contained in the source box
must be computed. The next step is the iterative computation of the PWE of the expanding
functions at level L-l from the PWE at the level L -see Fig. 9.4- which implies

1. to shift the PWE from the centers of the boxes in level-L to the centers of the boxes in
level-L-1 -see Fig. 9.3-.

2. as the electrical dimensions of the box increase, the expansion in level-L-1 needs more
plane wave directions -see (9.11), the value for K rises-. Therefore, the level-L PWE
must be interpolated from the level-L-1 PWE.

Once the lowest level is reached, the PWE of the expanding functions must be translated
from source box to field box to obtain the PWE of the field -see (9.8)-. Next, the iterative
process must reversed to obtain the PWE of the field radiated by the source box at the
finest level L in the field box.

It must be noted that the transition from a level to a lower level is only possible as long as
the FMM conditions can be accomplished at the new level. Indeed, one must check, in
accordance with the new box size value, if the distance between boxes at the new level is
over /?min = L / k. The MLFMM excels as an improvement of the FMM that fastens the
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computation of the far box field contributions. Indeed, the computational complexity per
iteration can be reduced in practice to o(MogfJVj).

In 9.3.2, some results are presented for the development of the MLFMM for penetrable
bodies by using the RWG and unxRWG expanding sets.

9.3.2 MLFMM for penetrable bodies

According to the study in Chapter 8, the dielectric EFD5-MFIE operators have been chosen
to develop the MLFMM. Indeed, since the low-order misbehaviour of EFIE-MFIE is
evident for penetrable objects of electrically small dimensions, this misbehaviour must be
unnoticeable for electrically large objects -those involved in the fast techniques-.
Furthermore, EFIE-MFIE have shown a lower condition number than PMCHW for the
same problem and discretization -see 8.2.1-. This is very advantageous when working with
inverting techniques since less iteration steps are required to reach a certain bound of error.
Finally, a PMCHW implementation would preclude any further development for PeC-
dielectric composite structures.

Alex Heldring -who is pursuing the Doctorate in the department- has developed a
MLFMM PeC-EFIE(RWG,RWG) and MLFMM PeC-MFffi(iinxRWG^WG) code. The
author of this dissertation Thesis has adapted this work first to the operator PeC-
MFIE(RWG,unxRWG), which is straightforward because the far field interactions are
transposed -see Chapter 6-. After, he has developed the dual dielectric MLFMM EFIE-
MFIE from the pertinent combination -see Chapter 8- of the MLFMM PeC-
EFIE(RWG,RWG) and the MLFMM PeC-MFIE(RWG,unxRWG).

The MLFMM has been encoded together with the BiCG iterative method with
preconditioning. The adopted preconditioner relies on the LU decomposition of a matrix
that keeps the biggest impedance terms per row of the original matrix and sets the rest to
zero. An incomplete LU decomposition is usually enough since no high accuracy for the
preconditioner is required. This is advantageous since it fastens the pre-computation of the
preconditioner.

The implementation of the MLFMM for a penetrable body is based on the application of
the MLFMM on each region in accordance with the corresponding values of the dielectric
constants -kd, hd-. Therefore, the MLFMM provides different parameters for each region,
which obviously results in a different distribution of boxes for the study of the
electromagnetic interactions of the body in both regions.

Some penetrable spheres have been analysed with the MLFMM EFIE. Since the computer
capabilities in the JRC allowed high memory storage but little hard disk space, the
electrical dimensions undertaken have turned out slightly low for a MLFMM approach. X.
Q. Shing et al. [44] recommend that the edge length of the finest cube is about half the
wavelength in dielectrics. In this work, penetrable spheres with radius not over 0.7/ly have
been analysed; that is why it has not been possible to assess all the capabilities of the
MLFMM performance.

In Fig. 9.5, Fig. 9.6 and Fig. 9.7, the bistatic RCS for spheres with respectively radius
0.3ÁQ -er = 3-, Q.5AQ-£r = 2 - and 0.3^-e,. = 2 - are shown. The results are compared with
the Mie solution of the sphere.
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Some comments must be presented about the computation of the RCS for these spheres

1. It has turned out impossible to apply the FMM to both media -inside and outside- at the
same time. The results in Fig. 9.5, Fig. 9.6 and Fig. 9.7 have been applied with FMM in
the outer medium -the free-space-. The interactions in the inner medium are directly
computed through MoM.

2. The size and the number of boxes for each case are D = 0.2^,, 26 boxes -Fig. 9.5-,

D = 0.48V 20 boxes -Fig- 9-6 - and D = 0.2^0, 26 boxes -Fig. 9.7-. The chosen values
for D are the minimum that have enabled the convergence. Note that for Fig. 9.5 and in
Fig. 9.7, the number of boxes is optimum in regard with to the computational time
because 26 = v768.

3. For these cases, according to the not big enough electrical dimensions of the objects,
the Multilevel implementation -MLFMM- could not be applied.

4. The parameters chosen are P = 1.5 in all the cases and K = 16 for Fig. 9.5 and Fig. 9.7
K = 56 for Fig. 9.6, which makes sense because the box is comparatively bigger.

5. In comparison with the performance of FMM in the PeC cases, the pre-computation of
the preconditioner has had to be done much more accurately. Indeed, the incomplete
LU decomposition has required a drop tolerance much smaller -about le-5- and the
number of elements per row chosen has not been lower than 300. This makes sense
because the condition number of the original matrix is bigger in the dielectric case.
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Chapter 10 CONCLUSIONS

The conclusions of this dissertation Thesis are presented in continuation for the main areas
of study. The first half of this dissertation Thesis is based on the study of the bodies of
revolution -BoR- -Chapters 3, 4 and 5-.

* Bodies of revolution:

The PeC-EFIE operator -with the implementation of S. D. Gedney and R. Mittra [12]-
has shown a much better performance than the PeC-MFIE operator, where the same
ideas regarding the analytical recurrent formulation for the higher-order terms and the
EFT transformation for the low-order terms have been adopted. This PeC-MFIE
misbehaviour has to be attributed to the inaccurate computation of the electromagnetic
interactions between the near annuii. This error becomes increasingly important as one
heads for the low-frequency terms in the modal expansion of the current.

Whenever the /?"J-dependent terms in PeC-MFIE are integrated differently so that an
analytical equivalent expression relying on ^''-dependent terms is employed, the PeC-
MFIE performance improves. Two corrections regarding the R~3-terms of the integrand
dependent on 9Q/30 and on sin£3()/3« enable the complete expression of the
submatrices with £-odd behaviour -[Z^ ] and [Z,,J- in terms of R'1-terms. However,
the submatrices with ¿;-even behaviour -[Z ,̂/ ] and [Z,,$\- show still dependence on R'3-
terms that can only be partially corrected through the substitution of the sinCdQ/dR
terms. Therefore, an error remains in the PeC-MFIE operator but the improvement due
to the corrections is noticeable in any case. One can well assess this in Chapter 4 for a
sphere and a cylinder with generating arc of length \\. This PeC-MFIE misbehaviour
is present in the literature since no valid PeC-MFIE formulation has ever been
published -to my knowledge-.

The construction of a consistent BoR dielectric formulation from the PeC-EFIE and
PeC-MFIE formulations is undertaken in Chapter 6. The unbalanced characteristics of
the used expanding functions [13] only allow the use of the PMCHW dielectric
approach. Indeed, the dielectric EFIE and MFIE yield a singular matrix for the mode
zero. Furthermore, in view of the publications for dielectric BoR in literature either for
a balanced set [19] [20] [31] or for an unbalanced set [13], the PMCHW operator
seems to turn out more robust to the PeC-MFIE misbehaviour than the dielectric EFIE
and MFIE. This has been attributed in this work to the formal structure of the
PMCHW operator which, unlike EFIE and MFIE, distributes the influence of the well-
behaving PeC-EFIE and of the erroneous PeC-MFIE to the two unknowns, the electric
and the magnetic current. Some results show to some extent acceptable performance
of PMCHW for this formulation.
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The most outstanding contribution of this dissertation Thesis -Chapters 6, 7 and 8- is the
study of the appropriate conditions to develop correctly the SD-operators -PeC and
dielectric- so as to yield accurate results for any structure. Since the discretization implies a
break on the continuity properties of the physical magnitudes, the valid 3D-operators must
ensure the physical electromagnetic requirements in the discretized surface. In
mathematical terms, these requirements set the rank -field- and domain -current- spaces,
which essentially require the enforcement of the continuity across the edges of either the
tangential or the normal component of the expanded magnitudes.

The electromagnetic field requirements over the edges are the boundary conditions in the
2D case, derived from the Maxwell equations. The formulations that yield a compatible
system -as many source conditions as field conditions- when ensuring the field
requirements across the edges are well posed.

t PeC 3D arbitrary bodies:

The operator PeC-EFIE(RWG,RWG) [28] enforces the continuity of the normal
component of the electric field across the edges. This operator can only be defined as
long as the charge accumulation across the edges is imposed to be null, which makes
sense because it corresponds to the physical -continuous- performance. The normal
continuity of the current across the edges -charge condition- stands for the source
condition compatible with the field condition. Therefore, a suitable set of expanding
and weighting functions is RWG or, in general, any divergence-conforming set.

The linear charge density that appears in the electric field requirement across the edges
shows that the system is undetermined. There must be hence some ambiguity in the
solution for the current associated to the required imposition of null charge
accumulation. When the degree of discretization is low, the ambiguity must be low
because a small amount of edge conditions are incorporated. However, as the
discretization becomes increasingly fine, the ambiguity must become more important.
That is why the condition number of PeC-EFIE(RWG,RWG) accordingly grows when
the discretization becomes finer for a given problem. In any case, in all the objects
analysed in Chapter 7 -with pretty small electrical dimensions-, no evidence of
ambiguity in the solution has been encountered.

The operator PeC-MFlE(RWG,unxRWG) ensures the continuity of the normal
component of the magnetic field across the edges. The tangential continuity of the
current represents the corresponding compatible source condition. Therefore, the sets
RWG and uwcRWG -in general, any divergence-conforming and curl-conforming set-
stand for appropriate weighting and expanding sets. The alternative operator PeC-
MFlE(unxRWG,RWG) [11] ensures the continuity of the tangential component of the
magnetic field across the edges. The corresponding compatible source condition
comes now from enforcing the normal continuity of the current. Hence, the sets RWG
and unxRWG -in general, any divergence or curl-conforming set- are accordingly fit as
expanding and weighting sets. Both PeC-MFIE approaches, unlike the PeC-
E¥IE(RWG,RWG), are unambiguously posed. Therefore, their condition number turns
out low and stable for any degree of discretization.
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PeC-MFïE(unxRWG,RWG), unlike the other two operators, does not ensure a field
condition that coincides with the required magnetic field condition -derived from the
Maxwell equations-. Therefore, there must be some inherent error in the performance
of PeC-MFÍE(unxRWG,RWG). This error diminishes whenever the directions of the
normal vectors at both sides of the edge approach. Indeed, only in case the normal
vectors at both sides are parallel, the tangential continuity of the magnetic field across
the edges coincides with the corresponding electromagnetic requirement.

The operators PeC-EFIE(WG,flWG) and PeC-MF1E(RWG,unxRWG) have shown a
better performance than PeC-MFÍE(unxRWG,RWG) in any case. A heuristic procedure
to improve the behaviour of PeC-MFlE(unxRWG,RWG) has been provided in Chapter
7 by defining a new solid angle value as the result of the weighted average of the solid
angles on the edges shaping the triangle.

For physical polyhedrons, the operator PeC-EFIE(RWG,RWG) yields more accurate
results for a lower degree of discretization. This implies a higher-order behaviour
because it is more sensitive to the effect of the edges -particularly important on objects
with electrically small dimensions-. The PeC-MFÎE(RWG,unxRWG), on the other
hand, requires a finer discretization to yield the same performance for the physical
polyhedron, which means that its solution is of lower-order. In any case, for a
sufficient degree of discretization the performances of both operators merge. This is
reasonable because, as both operators are well posed in electromagnetic terms, they
must lead to the complete solution of the physical polyhedron for a sufficient order of
expansion.

Nevertheless, for entirely curved objects -mainly if coarsely meshed- the behaviour of
PeC-MFlE(RWG,unxRWG) turns out more accurate than the PeC-EFIE(RWG,RWG).
This must be due to the fact that it ignores more the effect of the edges -as explained in
the previous paragraph-. Note that the edges associated to the discretization of a
curved body are fictitious since they only appear because of the unavoidable planar
modelling of the curvature. A correction is provided in Chapter 7 for the PeC-
EFÍE(RWG,RWG) behaviour in these cases by effectuating a parabolic interpolation of
the current over the surface of the sphere, which is reasonable because the solution due
to the PeC-EFIE(RWG,RWG) must be closer to the solution of the physical polyhedron
derived from the coarse modelling of the curvature.

The accurate development of the presented operators PeC-EFSE(RWG,RWG), PeC-
MFIE(RWG,unxRWG) and P&C-MFYE(unxRWG,RWG) relies on an analytical source-
integration for the high-order terms [9] and on a numerical gauss quadrature rule for
the source-low order terms and the testing. Since the PeC-EFIE operator supplies an
integrand with a .^''-dependence its performance varies less with the numerical
parameters of integration.

+ Dielectric 3D arbitrary bodies

In the PeC case, through the imposition of no magnetic sources, one must only meet
the continuity across the edges of the magnitudes in the same region and ignore the
field continuity across the edges of the fields in the two media. Indeed, the dielectric
constants in the conducting region become superfluous because the electric and
magnetic fields inside are null. In the dielectric case, however, the continuity across
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the edges of the fields inside each region -as in the PeC case- and the continuity across
the surface of the fields must be ensured at the same time.

This cannot be accomplished in general because one cannot ensure the two field
requirements across the edges from four source conditions -the two PeC-conditions
correct in electromagnetic terms for PeC-EFIE(RWG,RWG) and PeC-
MFIE(RWG,unxRWG) become now four since they involve the two source
magnitudes, the electric and the magnetic current-. All the dielectric operators relying
on an integral formulation derived from the surface theorem of equivalence must show
then an inherent misbehaviour when analysing penetrable objects.

The operators EFIE and MFIE stand for dual approaches to undertake the analysis of
an arbitrary penetrable body. They enforce the continuity of the normal component,
respectively, of the electric and the magnetic field in each region separately and ignore
the field requirement for the dual magnitude, respectively, the magnetic and the
electric field. The weighting sets of EFIE and MFJE must be RWG -or any
divergence-conforming set- since the normal continuity is ensured. The sets RWG and
unxRWG are used to expand the dual source magnitudes of each operator EF1E-MFIE;
that is, respectively, the electric-magnetic current and the magnetic-electric current.
Note that EFIE and MFIE rely on the combination of the well-behaving PeC-
EHE(RWGJIWG) and PeC-MFTE(RWG,unxRWG).

Only when the expansion of the source magnitudes is complete, the inherent ignorance
in EFIE-MFIE of the dual field requirement can be actually assumed. Hence, the
EFIE-MFIE misbehaviour is evident for problems with physical currents with a
considerable high-order contribution -the low-order expansion in terms of RWG and
unxRWG is not sufficient-. That is, for example, electrically small penetrable bodies,
where the influence of the physical edges is important. As the dimensions of the
penetrable body increase, this low-order misbehaviour becomes decreasingly evident.
Similarly, for problems with conducting regions, the relevance of this error diminishes
thanks to the fact that one field condition on the conducting interfaces is enough to
pose correctly the problem -the dual field condition can be indeed ignored-.

The PMCHW operator ensures the normal continuity of the subtraction of the electric
and magnetic fields at both sides of the surface. The source conditions compatible with
these field conditions are the electric and magnetic charge conditions; that is, the
enforcement of the normal continuity of the electric and the magnetic current.
Therefore, RWG -or any divergence-conforming set- excels not only as a suitable
weighting set but as an appropriate expanding set of both source magnitudes, the
electric and the magnetic current. The PMCHW operator relies then in the
combination of the well-behaving PeC-EFlE(RWG,RWG) and the badly defined PeC-
MFIE(RWG,RWG). This implies that the normal continuity across the edges of the
magnetic and the electric field separately on each region cannot be accomplished,
which represents a less stringent field requirement than the requirements derived from
the Maxwell equations.

However, the PMCHW behaviour has shown to be more satisfactory than the
performance of EFIE-MFIE for all the problems involving problems with two
penetrable regions shaping the interface surfaces. This implies that the badly defined
PeC-MFIEC/?WG,/?WG) contribution becomes unimportant compared to the robust
PeC-EFIE(/?WG,WG) term. Indeed, since the PeC-MFIE influence on the PMCHW
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operator relies only on the principal value contribution, it is irrelevant that the
weighting carried out by RWG cancels the integration of the singularity. Moreover, on
single bodies, the PeC-MFIE interactions between near facets -the most relevant ones-
become less important than the PeC-EHE ones because these facets are co-planar or
nearly co-planar. Note that, as mentioned for the BoR case, this is again a proof of the
importance of the balanced structure of the PMCHW that puts stress on the well-
behaving PeC-EFIE to compensate any presumable misbehaviour in PeC-MFIE.

Nonetheless, for groups of disjoint objects with a conducting and a dielectric region
separated by a tiny distance, the PMCHW error becomes remarkable and the
performance compared to EFIE-MFIE worsens considerably. This is reasonable
because in this case the magnetic current over the dielectric interface tends to zero,
whereby the PeC-EFIE contribution on the magnetic field becomes negligible in front
of the badly defined PeC-MFIE contribution.

Note that the errors associated to EFIE-MFIE and PMCHW correspond to the two
possible strategies to overcome the inherent difficulty of the surface equivalence
theorem to set -at the same time- the surface continuity of the fields and the continuity
across the edges separately at each region. Indeed, the EFIE-MFIE approaches enforce
the continuity of the electric-magnetic field in each region. As the dual field
requirement is ignored, they cannot satisfy the surface continuity -unless the order of
the current expansion is accurate enough-. The PMCHW, on the contrary, does ensure
the interface continuity but, because of the discontinuity of the tangential field
component in each region, it has to assume an error -unimportant for problems with
only penetrable regions-.

All the dielectric operators must provide the charge condition across the edges
together with the field requirements. Meanwhile the dual EFIE and MFIE supply
respectively the electric and magnetic charge condition, PMCHW has to provide both.
This implies that the systems can only be posed for all the operators by imposing the
charge accumulation null. Therefore, now, unlike the PeC-MFIE, EFIE, MFIE and
PMCHW must assume some ambiguity in their solution -insignificant for a small
degree of discretization-. In particular, the PMCHW operator shows a higher condition
number than the dual EFIE-MFIE because it has to impose two magnitudes -the
electric and the magnetic linear charge density- to zero, which yields a more
undetermined system.

Finally, the composite structures can be considered as a group of disjoint bodies with
null distances of separation -d-. The continuous transition from d increasingly small to
d null can only be carried out by EFIE and MFIE, because they rely on the continuous
basic operators PeC-EFIE(WG,,RWG) and PeC-MFIE(RWG,unxRWG). PMCHW, on
the other hand, cannot maintain the performance for composite structures because
PeC-MFlE(RWG,RWG) ignores the term due to the integration of the singularity,
which is responsible for the continuous transition to a null distance of separation.
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In Chapter 9, efficient methods -IE-MET and MLFMM- relying on the SD-operators of
Chapters 6 and 8 are presented

f Efficient methods:

The IE-MEI method [53] when applied on 3D PeC bodies cannot maintain the
advantages present in the 2D case since the harmonic métrons are not valid in the 3D
case. A new set of métrons, so-called quasi-continuous because they ensure little
discontinuity of the current across the edges, is presented instead. This is advantageous
because the little discontinuity of the magnitudes -field and current- cannot be ensured
directly through a small amount of coefficients -over a small field subdomain-. It is
shown with examples how the required amount of coefficients to attain a given error
decreases with the quasi-continuous métrons. However, these métrons must be
dismissed in practice since they must be pre-computed for each body and involve an
extra multiplying matrix in the process of search of the coefficients.

With regard to the dielectric MLFMM [45] implementation, the EFIE and MFIE are
suitable operators since for electrically large dielectric bodies -involved in the fast
techniques- the low-order misbehaviour disappears. Furthermore, EFIE-MFIE have
shown a lower condition number than PMCHW for the same problem and
discretization, which must enable a smaller time of convergence. Also, a PMCHW
implementation would preclude any further development for PeC-dielectric composite
structures. The dual dielectric EFIE-MFIE operators are developed from an existing
PeC-MLFMM package. Some examples of penetrable spheres with moderate electrical
dimensions have been shown, where it is remarked the required bigger precision to
effectuate the incomplete LU decomposition in the preconditioning.
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APPENDIX A

The elementary integrals Ia stand for
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where K( )andl?( )stand respectively for the widely known complete elliptic integrals of
first and second kind.
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which is a recurrent relation for the integration along ^ = 0 - 0' Va > 4.

APPENDIX B

The elementary integrals Na stand for
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= --LT
«2 J "

-dç

ír/2

1 [l + ft! sin ! «>]"2 /2

(1U8)

where /£"( ) and#( ) are respectively the widely known complete elliptic integrals of first
and second kind.

Na , for a > 4 , can be obtained by means of a recurrent relation. Starting from

cos" çdç _' cos

" Jo [l + A2 sin2 f í Ll + A2sin2<?>J [l + A2 sin2 ç]'2

and according to

cos" (p _ cos"

N„ becomes

l '
« ~ «2 J

' 2 cos-2 ep ' 2! + '
«2 J

By resorting to Fa (<p] in (11.7) along with the partial integration

cos«
|I/2

11/2

n / 2

allow (11.21) to be expressible as

N=—ï=
. 02l 1 / 2 + J F, ni • 2 T/2

[l + jB,2 sin2 yj

(l + A2);

(11.19)

(11.21)

(11.22)

(11.23)

Analogously, by substituting a by a - 2 in (11.23), one has
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F^.(t/2) '2
J A

in2?]'2sn

The subtraction of ((a - 3)/(a - 2)}Na_2 to Na entitles to

(11.24)

'a-3
a-2 'a-2

r sin (p coscp(Fa_2 ((p}-((a - 3)/(o? - 2))Fa_4
12

« -2 'a-4

(11.25)

which, in accordance with the equalities in (l 1.12) and (11.13), yields

'a-3'
a-2

" " - *1 eos"-* y -cos« y

a-2

J(p

9

a-3
a-2

'a-3'

fo-4

'a-4

a-3
a-2 'a-4

(11.26)

Finally,

a-4 (11.27)

which is a recurrent relation for the analytical integration along Ç = 0 - 0' Va > 4.
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