
Optimization Techniques for Distributed

Task-based Programming Models

Omar Shaaban Ibrahim Ali

Department of Computer Architecture
Universitat Politècnica de Catalunya

This dissertation is submitted for the degree of
Doctor of Philosophy

Barcelona, July 2024

This page is intentionally left blank.

Optimization Techniques for Distributed
Task-based Programming Models

by
Omar Shaaban Ibrahim Ali

A Dissertation
Presented to the Department of Computer Architecture

at
Universitat Politècnica de Catalunya

in Candidacy for the Degree of
Doctor of Philosophy.

Thesis Advisors:

Paul Carpenter
Barcelona Supercomputing Center, Spain

Prof. Xavier Martorell Bofill
Universitat Politècnica de Catalunya, Spain

Barcelona, July 2024

This page is intentionally left blank.

Optimization Techniques for Distributed
Task-based Programming Models

©2024 Omar Shaaban Ibrahim Ali
Creative Commons Attribution

This page is intentionally left blank.

Abstract

As High Performance Computing (HPC) hardware technology evolves rapidly, it is
essential for applications to be able to fully leverage the potential performance and capa-
bilities of a diverse range of hardware and requirements. Most HPC applications employ
the Message Passing Interface (MPI) model, which requires the explicit specification of
communication, making the development process error-prone and cumbersome. Even
worse, combining MPI with shared memory models such as OpenMP and OmpSs-2
increases complexity and raises the risk of deadlock.

In HPC, task-based models have gained prominence via the adoption of tasks in
OpenMP, as an asynchronous and platform-agnostic high-performance and productive
model by annotating existing code, transforming it into a parallel version. A program
is expressed as a Directed Acyclic Graph (DAG), whose vertices are units of code called
tasks. Edges between tasks represent dependencies between them, and tasks with
no logical relationship can be executed concurrently. The task graph is independent
of the targeted platform architecture, making these models suitable for concurrent
execution on a broad spectrum of platforms such as multi-core SMPs or offloaded to
GPUs, FPGAs, or accelerators.

Several initiatives explore distributed-tasking approaches, which use the task model
to decompose the application across multiple nodes with distributed memory. The
advantage is that the application is expressed in a simple and clean manner that
reflects only the computations and dependencies. Unfortunately, the distributed
tasking approaches suffer from poor efficiency and scalability, which hinder their
adoption by the HPC community. This is mainly due to the overhead of task creation
and dependency graph construction, which are usually sequential. This thesis proposes
two techniques to address this problem.

Our first approach relates to task nesting, which mitigates the sequential bottleneck
by building the full dependency graph in parallel using multiple concurrently executing
parent tasks. A key limitation of task nesting is that a task cannot be created until
all its accesses and its descendants’ accesses are known. Current approaches to work

viii

around this limitation either halt task creation and execution using an explicit taskwait

barrier or substitute dependencies with artificial accesses known as sentinels. We
introduce the auto clause, which indicates that the task may create subtasks that
access unspecified memory regions, or it may allocate and return memory at addresses
that are not yet known. Contrary to taskwait, our approach does not prevent the
concurrent creation and execution of tasks, maintaining parallelism and allowing the
scheduler to optimize load balance and data locality. In addition, all tasks can be given
a precise specification of their own data accesses, unlike sentinels, resulting in a unified
mechanism governing task ordering, program data transfers on distributed memory,
and optimizing data locality, e.g. on NUMA systems. The auto clause, therefore,
provides an incremental path to develop programs with nested tasks by removing
the need for every parent task to have a complete specification of the accesses of its
descendent tasks while reducing redundant information that can be time-consuming
and error-prone to describe.

Our second approach takes advantage of the iterative behaviour of many HPC
applications, such as those that employ iterative methods or multi-step simulations.
Most models construct the full unrolled task graph sequentially despite the fact that
these applications create the same directed acyclic graph of tasks on each timestep.
We define the programming model based on the taskiter clause, a recently introduced
construct in the literature for iterative applications on SMP [1]. We also describe the
full runtime implementation to exploit this information to eliminate the sequential
bottleneck and control messages while retaining the simplicity and productivity of the
existing approach.

In summary, this thesis makes two advances towards making the distributed tasking
approach a viable alternative to MPI + OpenMP. For applications without an iterative
structure, the auto keyword simplifies the use of task nesting, which is the most
powerful way to mitigate the sequential bottleneck. For applications with an iterative
structure, the taskiter approach amortizes the control overhead across all loop iterations,
enabling a performance that matches the best MPI-based approach. We integrate both
techniques into OmpSs-2@Cluster, the distributed tasking variant of OmpSs-2, and
evaluate the performance on the MareNostrum 4 supercomputer.

Keywords: HPC, Runtime Systems, OpenMP, OmpSs-2, Distributed computing,
Task Parallelism.

Resumen

A medida que la tecnología de hardware para la Computación de Alto Rendimiento
(HPC) evoluciona rápidamente, es fundamental que las aplicaciones puedan aprovechar
plenamente el rendimiento y las capacidades potenciales de diversas plataformas de
hardware y requisitos. La mayoría de aplicaciones HPC utilizan el modelo de Interfaz
de Paso de Mensajes (MPI), que exige la especificación explícita de la comunicación,
convirtiendo el proceso de desarrollo en un reto propenso a errores y laborioso. Aún
más, la combinación de MPI con modelos de memoria compartida como OpenMP y
OmpSs-2 incrementa significativamente la complejidad y el riesgo de bloqueo mutuo.

En HPC, los modelos basados en tareas han ganado prominencia adoptando
OpenMP como un modelo de alto rendimiento, productivo, asincrónico y agnóstico
respecto a la plataforma dentro del nodo. Un programa se expresa como un Grafo
Acíclico Dirigido (DAG), cuyos vértices son unidades de código llamadas tareas. Los
arcos entre las tareas representan dependencias entre ellas, y las tareas sin relaciones
lógicas pueden ejecutarse concurrentemente. El grafo de tareas es independiente de la
arquitectura de la plataforma objetivo, haciendo estos modelos adecuados para la eje-
cución concurrente en una amplia gama de plataformas, incluyendo multiprocesadores
y aceleradores.

Diversas iniciativas están explorando enfoques de tareas distribuidas, que utilizan
el modelo de tarea para descomponer la aplicación en varios nodos con memoria dis-
tribuida. La ventaja de este enfoque es que permite expresar la aplicación de manera
simple y clara, reflejando únicamente los cálculos y las dependencias. Desafortunada-
mente, las implementaciones actuales de tareas distribuidas sufren de baja eficiencia y
escalabilidad, lo que dificulta su adopción por parte de la comunidad de HPC. Esto se
debe principalmente al alto costo de creación de tareas y a la construcción del grafo de
dependencias, que generalmente son secuenciales. Esta tesis propone dos técnicas para
solucionar este problema.

Nuestra primera propuesta se centra en la anidación de tareas, que atenúa el
cuello de botella secuencial mediante la construcción paralela del grafo completo de

x

dependencias usando múltiples tareas maestras que se ejecutan concurrentemente. Una
limitación clave de la anidación de tareas es que no se puede crear una tarea hasta
que se conozcan todos los accesos de memoria de la misma y de sus descendientes.
Los enfoques actuales para resolver esta limitación detienen la creación y ejecución de
tareas utilizando una barrera explícita (taskwait) o sustituyendo las dependencias con
accesos artificiales llamados centinelas. Proponemos la cláusula auto, que indica que
la tarea puede crear subtareas que accedan a regiones de memoria no especificadas, o
puede asignar y devolver memoria en direcciones aún desconocidas. A diferencia de
una barrera explícita (taskwait), nuestro enfoque no impide la creación y ejecución
concurrente de tareas, manteniendo el paralelismo y permitiendo al programador
optimizar el balance de carga y la localización de datos. Además, todas las tareas
pueden tener una especificación precisa de sus propios accesos a datos, a diferencia de
los centinelas, resultando en un mecanismo unificado que gobierna el orden de las tareas,
las transferencias de datos del programa en memoria distribuida y la optimización
de la localización de datos, por ejemplo en sistemas NUMA. Así, la cláusula auto
proporciona un camino incremental para el desarrollo de programas de tareas anidadas,
eliminando la necesidad de que cada tarea padre tenga una especificación completa de
los accesos de sus tareas descendientes, reduciendo a su vez la información redundante
que puede ser tediosa y propensa a errores.

Nuestra segunda propuesta aprovecha el comportamiento iterativo de muchas
aplicaciones HPC, como aquellas que utilizan métodos iterativos o simulaciones en
múltiples etapas. A pesar de que estas aplicaciones generan el mismo grafo acíclico
dirigido de tareas en cada paso temporal, la mayoría de los modelos construyen el grafo
completo de tareas de manera secuencial. Definimos el modelo de programación basado
en la cláusula taskiter, una propuesta recientemente introducida en la literatura para
aplicaciones iterativas en plataformas SMP. También describimos la implementación
completa en tiempo de ejecución para aprovechar esta información y eliminar el cuello de
botella secuencial y los mensajes de control, preservando la simplicidad y productividad
del enfoque existente.

Integramos ambas técnicas en OmpSs-2@Cluster, la variante de tareas distribuidas
de OmpSs-2, y evaluamos el rendimiento en el superordenador MareNostrum 4.

En resumen, esta tesis realiza dos avances para mejorar la viabilidad de los modelos
de tareas distribuidas como una alternativa a MPI + OpenMP. Para aplicaciones sin
estructura iterativa, la clave ’auto’ simplifica el uso de la anidación de tareas, que es la
forma más eficaz de mitigar el cuello de botella secuencial. En el caso de aplicaciones
con estructura iterativa, la propuesta basada en el ’taskiter’ distribuye la sobrecarga

xi

de control a través de todas las iteraciones del bucle, posibilitando un rendimiento
equiparable a la mejor aproximación basada en MPI. Los trabajos futuros pueden
continuar desarrollando extensiones a partir de nuestras propuestas.

Resum

A mesura que la tecnologia de maquinari per a la Computació d’Altes Prestacions
(HPC) evoluciona ràpidament, és fonamental que les aplicacions puguin aprofitar
plenament el rendiment i les capacitats potencials de diverses plataformes de maquinari
i requisits. La majoria d’aplicacions HPC utilitzen el model d’Interfície de Pas de
Missatges (MPI), que exigeix l’especificació explícita de la comunicació, convertint
el procés de desenvolupament en un repte propens a errors i feixuc. Encara més, la
combinació de MPI amb models de memòria compartida com OpenMP i OmpSs-2
incrementa significativament la complexitat i els risc de bloqueig mutu.

En HPC, els models basats en tasques han guanyat prominència adoptant OpenMP
com a model d’alt rendiment, productiu, asincrònic i agnòstic respecte a la plataforma
dins del node. Un programa s’expressa com un Graf Acíclic Dirigit (DAG), els
vèrtexs del qual són unitats de codi anomenades tasques. Les arestes entre les tasques
representen dependències entre elles, i les tasques sense relacions lògiques poden
executar-se concurrentment. El graf de tasques és independent de l’arquitectura de la
plataforma objectiu, fent aquests models adequats per a l’execució concurrent en una
àmplia gamma de plataformes, incloent multiprocessadors y acceleradors.

Diverses iniciatives estan explorant enfocaments de tasques distribuïdes, que util-
itzen el model de tasca per descompondre l’aplicació en diversos nodes amb memòria
distribuïda. L’avantatge d’aquest enfocament és que permet expressar l’aplicació de
manera simple i clara, reflectint únicament els càlculs i les dependències. Malaurada-
ment, les implementacions actuals de tasques distribuïdes pateixen de baixa eficiència i
escalabilitat, fet que dificulta la seva adopció per part de la comunitat de HPC. Això
es deu principalment a l’alt cost de creació de tasques i a la construcció del graf de
dependències, que generalment són seqüencials. Aquesta tesi proposa dues tècniques
per solucionar aquest problema.

La nostra primera proposta es centra en la nidificació de tasques, que atenua el
coll d’ampolla seqüencial mitjançant la construcció paral·lela del graf complet de
dependències usant múltiples tasques mestres que s’executen concurrentment. Una

xiii

limitació clau de la nidificació de tasques és que no es pot crear una tasca fins que
no se’n coneguin tots els accessos i els dels seus descendents. Els enfocaments actuals
per a resoldre aquesta limitació detenen la creació i execució de tasques fent servir
una barrera explícita (taskwait) o substituint les dependències amb accessos artificials
anomenats sentinelles. Proposem la clàusula auto, que indica que la tasca pot crear
subtasques que accedeixin a regions de memòria no especificades, o pot assignar i
retornar memòria en adreces encara desconegudes. A diferència de una barrera explicita
(taskwait), el nostre enfocament no impedeix la creació i execució concurrent de tasques,
mantenint el paral·lelisme i permetent al programador optimitzar el balanç de càrrega
i la localització de dades. A més, totes les tasques poden tenir una especificació precisa
dels seus propis accessos a dades, a diferència dels sentinelles, resulta en un mecanisme
unificat que governa l’ordre de les tasques, les transferències de dades del programa en
memòria distribuïda i l’optimització de la localització de dades, per exemple en sistemes
NUMA. Així, la clàusula auto proporciona un camí incremental per al desenvolupament
de programes de tasques niades, eliminant la necessitat que cada tasca pare tingui una
especificació completa dels accessos de les seves tasques descendents, tot reduint la
informació redundant que pot ser tediosa i propensa a errors.

La segona proposta nostra aprofita el comportament iteratiu de moltes aplicacions
HPC, com ara aquelles que utilitzen mètodes iteratius o simulacions en múltiples etapes.
Malgrat que aquestes aplicacions generen el mateix graf acíclic dirigit de tasques en
cada pas temporal, la majoria de models construeixen el graf complet de tasques de
manera seqüencial. Definim el model de programació basat en la clàusula taskiter, una
proposta recentment introduït a la literatura per a aplicacions iteratives en plataformes
SMP. També descrivim la implementació completa en temps d’execució per aprofitar
aquesta informació per eliminar el coll d’ampolla seqüencial i els missatges de control,
preservant la simplicitat i productivitat de l’aproximació existent. Integrem ambdues
tècniques a OmpSs-2@Cluster, la variant de tasques distribuïdes de OmpSs-2, i avaluem
el rendiment al superordinador MareNostrum 4.

En resum, aquesta tesi realitza dos avanços per millorar la viabilitat del models de
tasques distribuïdes com una alternativa a MPI + OpenMP. Per a aplicacions sense
estructura iterativa, la clau ’auto’ simplifica l’ús de la nidificació de tasques, que és la
forma més eficaç de mitigar el coll d’ampolla seqüencial. En el cas d’aplicacions amb
estructura iterativa, la proposta basada amb el ’taskiter’ reparteix la sobrecàrrega de
control a través de totes les iteracions del bucle, possibilitant un rendiment equiparable a
la millor aproximació basada en MPI. Els treballs futurs poden continuar desenvolupant
extensions a partir d’aquest de les nostres propostes.

This page is intentionally left blank.

Contents

Abstract vii

Resumen ix

Resum xii

List of Figures xviii

List of Tables xx

Listings xxi

Acknowledgement xxiv

Acronyms xxvi

Glossary xxviii

1 Introduction 1
1.1 Task Nesting . 2
1.2 Taskiter . 5
1.3 Thesis Outline . 7
1.4 Publication List . 8

2 Background 10
2.1 OmpSs-2 Parallel Programming Model 10

2.1.1 Execution Model . 11
2.1.2 Dependency Model . 12

2.2 OmpSs-2@Cluster . 16
2.3 Runtime Reference Implementation . 18

2.3.1 Nanos6 . 18
2.3.2 Nanos6@Cluster . 19
2.3.3 Memory Model . 21
2.3.4 Tasks, Offloading and Scheduling 22
2.3.5 Control Messages . 23

Contents xvi

2.4 Taskiter . 25
2.5 Task-aware MPI (TAMPI) . 27

3 Related Work 29
3.1 MPI, PGAS and Hybrid Approaches 29
3.2 Distributed Tasking . 30

3.2.1 Implicit task graph creation . 30
3.2.2 Concurrent and duplicated task graph creation 31
3.2.3 Sequential task graph creation 32

3.3 Other Approaches . 32
3.3.1 Frameworks and Libraries . 32
3.3.2 Scripting and Workflows . 33

3.4 Data Access Specifications . 34
3.4.1 Compile-time . 34
3.4.2 Run-time . 34
3.4.3 Automatic . 34

4 Automatic aggregation of data accesses 36
4.1 Introduction . 36
4.2 Motivation . 36

4.2.1 Precise specification of data accesses without taskwaits 36
4.2.2 Productivity and Incremental Path for Nested Tasks 41

4.3 Programmer’s Model . 42
4.3.1 Auto Access Type . 42
4.3.2 None Access Type . 44
4.3.3 Upgrade Rules . 45
4.3.4 Fragmentation . 45
4.3.5 Inheritance of auto and none regions 46

4.4 Implementation . 46
4.4.1 Compiler . 46
4.4.2 Runtime . 47

4.5 Methodology and Benchmarks . 49
4.5.1 Hardware and software platform 49
4.5.2 Benchmarks . 50

4.6 Evaluation and Results . 51
4.6.1 SMP Evaluation . 53
4.6.2 Cluster Evaluation (auto vs. taskwait) 56
4.6.3 Cluster Evaluation (auto vs. manual) 59
4.6.4 Quantifying productivity . 61

4.7 Conclusion . 62

Contents xvii

5 Distributed taskiter 63
5.1 Introduction . 63
5.2 Motivation . 66
5.3 Programmer’s Model . 70
5.4 Implementation . 71

5.4.1 Compilation . 71
5.4.2 Building The Taskiter Graph 71
5.4.3 Partition The Taskiter Graph 72
5.4.4 Creating The Local Taskiter Graph 73
5.4.5 Single Iteration Execution . 79

5.5 Methodology and Benchmarks . 80
5.6 Evaluation and Results . 82

5.6.1 Strong Scalability . 82
5.6.2 Iterations Count Performance 88

5.7 Initial Overhead Analysis . 90
5.8 Quantifying Productivity . 91
5.9 Conclusion . 92

6 Conclusions and Future work 93
6.1 Future Work . 95

6.1.1 auto and none clauses . 95
6.1.2 Combining auto and distributed taskiter 95
6.1.3 Overhead Optimisations . 96
6.1.4 Collective Communications . 96
6.1.5 Dynamic Scheduling and Load Balancing 97
6.1.6 Non-constant Iterations . 97
6.1.7 Loop Unrolling . 97
6.1.8 Summary . 97

References 98

List of Figures

2.1 OmpSs-2 dependency annotations syntax comparison 12
2.2 Ways of specifying dependencies in OmpSs-2. 14
2.3 OmpSs-2 development flow . 19
2.4 OmpSs-2@Cluster architecture . 20
2.5 Nanos6@Cluster local memory model 22
2.6 Nanos6@Cluster distributed memory model 23
2.7 OmpSs-2 control messages . 24
2.8 OpenMP and OmpSs-2 taskiter construct syntax 25
2.9 Example OpenMP program using taskiter 26

4.1 Executiuon trace of the hypermatrix benchmark using taskwait 38
4.2 Semantics of auto access type . 43
4.3 Semantics of none access type . 44
4.4 Proposed OpenMP and OmpSs-2 syntax for auto 45
4.5 Hypermatrix benchmark Extrae/Paraver trace 54
4.6 hypermatrix benchmark SMP performance 55
4.7 matmul-smp benchmark SMP performance 55
4.8 n-body-smp benchmark SMP performance 56
4.9 𝑛-body strong scalability on 1 to 32 nodes. 57
4.10 Extrae/Paraver trace of 𝑛-body benchmark on 4 nodes. 58
4.11 multi-matvec strong scalability on 1 to 32 nodes. 59
4.12 jacobi strong scalability on 1 to 32 nodes. 60
4.13 multi-matmul strong scalability on 1 to 32 nodes. 60
4.14 cholesky strong scalability on 1 to 32 nodes. 61

5.1 Control messages for OmpSs-2@Cluster iterative application. 64
5.2 Distributed taskiter control messages. 65
5.3 Distributed taskiter execution process 71

List of Figures xix

5.4 Top and Bottom map data structures. 74
5.5 Taskiter communication tasks insertion 76
5.6 Single iteration dependency graph of Listing 5.5. 78
5.7 Benchmark: multi-matvec . 83
5.8 Benchmark: multi-matmul . 84
5.9 Benchmark: jacobi . 85
5.10 Benchmark: heat-gauss . 86
5.11 Benchmark: heat-jacobi . 87
5.12 Taskiter overall performance as a function of iterations count 89
5.13 Initial overhead as a function of the number of accesses. 90
5.14 Number of accesses depending on block size. 91

List of Tables

2.1 OmpSs-2 Access upgrade rules . 13

4.1 OmpSs-2 extended access upgrade rules 46
4.2 Auto evaluation benchmarks . 51
4.3 Productivity as a function of number of accesses 62

5.1 Taskiter evaluation benchmarks . 81
5.2 Number of lines of code for the kernels of of the benchmarks. 92
5.3 Number of lines of code for the control code of the benchmarks. 92

List of Listings

2.1 Source code of Figure 2.7 . 24
2.2 Example OpenMP program using TAMPI 28
4.1 Approach with additional synchronisation (taskwait) 37
4.2 Approach with a “fake dependency” (sentinel) 39
4.3 Approach with proposed auto data accesses 40
4.4 Parent task requires a multi-dependency for its children 41
4.5 Parent task with auto clause . 42
4.6 Parent task with auto clause specifying a range 42
4.7 Example of nested tasks with weak dependencies 52
4.8 Example of auto clause for productivity 53
5.1 OmpSs-2@Cluster iterative version of example in Listing 2.1. 63
5.2 Fork–join MPI + OpenMP tasks of Gauss–Seidel 2D heat equation. . . 67
5.3 Asynchronous TAMPI + OpenMP/OmpSs-2 of Gauss–Seidel 2D heat

equation. 69
5.4 OmpSs-2@Cluster taskiter of Gauss–Seidel 2D heat equation. 70
5.5 OmpSs-2@Cluster distributed taskiter example. 72

To the memory of my dear father:
You forever encouraged me, believed in me, and here I am now, where my ambitions
meet your high hopes for me.

To mom, sister, and brother:
Your prayers and wishes reached me thousands of kilometres away. You gave me
reason and purpose. Thank you.

Palestine, you made us all free

Acknowledgements

In the name of ALLAH, the most beneficent, the most merciful, the omniscient, all
praises to ALLAH for the strength and insight into finishing this work.

To Paul Carpenter, my sincerest gratitude. I am fortunate to have you as my
mentor, supervisor, and teacher. This PhD would have never been significant without
your guidance, constant encouragement, and unconditional support. Thank you for
being patient and considerate and for the long and late pair-debugging sessions. Paul
is a good listener; he knows how to shape words into excellent articles, and he is
thoughtful when it comes to others making mistakes.

To my thesis tutor, prof. Xavier Martorell, for his humility and immense knowledge,
thank you for all the support. To Vicenç Beltran, I deeply appreciate your valuable
ideas and suggestions throughout my entire PhD journey.

To my cluster team, Isabel Piedrahita and Juliette Fournis, thank you for all the
meeting time I borrowed from you; I wish you a strong will (and scalability) finishing
your degrees.

To all the reviewers of my thesis, internally: Daniel Jimenez, Jorge Ejarque, and
Sergio Iserte, and externally: Prof. Guido Araujo and Prof. Mark Bull (in alphabetical
order), thank you for your incisive and constructive comments and suggestions. It was
valuable and contributed greatly to my work.

To Petar Radojkovic, thank you for ensuring we checked on life daily and for the
chocolate as well. To the memory team: Mariana Carmin, Pouya Esmaili, Valéria
Soldera, and Victor Xirau, thank you for expanding and taking our desks. I wouldn’t
have had better friends, colleagues, and companionship.

To Jimmy Aguilar, Chenle Yu, Peini Liu, and Felippe Zacarias, your company and
long chats were an indispensable part of my journey here. Thanks to friends that
turned into family, it was all fun and great.

My thanks are extended to Antoni Navarro and Kevin Sala for all the help. Your
time was valuable and much appreciated.

To BSC, thank you all.

Acknowledgements xxv

This research has received funding from the European Union’s Horizon 2020/EuroHPC
research and innovation programme under grant agreement No 754337 (EuroEXA),
LEGaTO (780681), and 955606 (DEEP-SEA). It is supported by the Spanish State
Research Agency - Ministry of Science and Innovation (contract PID2019-107255GB-
C21/MCIN/AEI/10.13039/501100011033 and Ramon y Cajal fellowship RYC2018-
025628-I /MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”),
as well as by the Generalitat de Catalunya (2017-SGR-1414).

Acronyms

API Application Programming Interface.

BLAS Basic Linear Algebra Subprograms.

BSC Barcelona Supercomputing Center.

CUDA Compute Unified Device Architecture.

DAG Directed Acyclic Graph.

DCTG Directed Cyclic Task Graph.

DLB Dynamic Load Balancing.

DTD Dynamic Task Discovery.

FPGA Field Programmable Gate Array.

GCC GNU Compiler Collection.

GPU Graphic Processor Unit.

HFI Host Fabric Adapter.

HPC High Performance Computing.

MKL Math Kernel Library.

MN4 MareNostrum 4.

MPI Message Passing Interface.

NUMA Non Uniform Memory Access.

OpenMP Open Multi-Processing. See Glossary: OpenMP.

Acronyms xxvii

PCIe Peripheral Component Interface Express.

PGAS Partitioned Global Address Space.

PMPI Message Passing Interface (MPI) Profiling Interface.

PTG Parameterized Task Graph.

SMP Shared Memory Multiprocessor System.

StarSs Star Superscalar.

STF Sequential Task Flow.

STG Sequential Task Graph.

STL Standard Template Library.

TAMPI Task-Aware MPI.

TOML Tom’s Obvious, Minimal Language. See Glossary: TOML.

WaW Write-after-Write.

Glossary

Extrae Barcelona Supercomputing Center (BSC)’s package for generation of Paraver
trace files for post-mortem analysis first.

LLVM Collection of modular and reusable compiler and toolchain technologies for-
merly known as the Low Level Virtual Machine.

Mercurium BSC’s Source-to-source compiler used with Nanos++ or Nanos6 to
implement OpenMP and OmpSs/OmpSs-2.

Nanos++ Runtime system that implements the OmpSs-1 programming model.

Nanos6 Runtime system that implements the OmpSs-2 programming model.

Nanos6@Cluster OmpSs-2@Cluster programming model reference implementation.

OmpSs OpenMP Superscalar task-based parallel programming model.

OmpSs-2 The second generation of the OmpSs task-based parallel programming
model.

OmpSs-2@Cluster The distributed memory tasking model extention of the OmpSs-2
task-based parallel programming model.

OpenMP Application Programming Interface (API) for multi-platform Shared Mem-
ory Multiprocessor System (SMP) programming in C, C++ and Fortran.

Paraver BSC’s parallel program trace visualisation and analysis tool.

strong access An access that is not a weak access.

TOML File format used for configuration files.

Glossary xxix

weak access An access that defines a region of memory that is only accessed by
subtasks of the annotated task. A weak access acts as a linking point between
dependency domains, but it does not enforce task ordering or in itself require
data transfers.

weak task A task all of whose accesses are weak.

CHAPTER 1

Introduction

The dominant development approaches in High Performance Computing (HPC) leverage
Message Passing Interface (MPI) + X models, where X denotes a model for shared
memory parallelisation inside a node (e.g. OpenMP [2]). The rapid-progressive nature
of HPC, regarding the underlying hardware and workload, mandates that applications
development also matches this change. Applications that utilise MPI require explicitly
specifying the communications that demand meticulous delineation of sent/received
data. This inherent requirement amplifies the susceptibility to errors and introduces
intricacy in the development workflow. Furthermore, integrating MPI with shared
memory models like OpenMP and OmpSs-2 exacerbates the complexity, increasing the
likelihood of deadlock.

Led by the massive adoption of OpenMP in HPC [3], task-based models stood
out to fit these applications’ requirements as asynchronous and platform-agnostic
high-performance and productive models. Programs are expressed in terms of units of
code called tasks, which are connected together via dependencies to form a Directed
Acyclic Graph (DAG). Edges between tasks represent dependencies between them,
and tasks with no logical relationship can be executed concurrently. The task graph
represents computations independently of the targeted platform architecture, making
it suitable for concurrent execution on a broad spectrum of platforms, ranging from
multi-core Shared Memory Multiprocessor Systems (SMPs), Graphic Processor Units
(GPUs) [4, 5], or Field Programmable Gate Arrays (FPGAs) [6].

In addition, applications can further divide their computations and offload them
to multiple cluster nodes for maximum utilisation of the targeted machine in what
is known as distributed-memory tasking approaches. This has been investigated by
multiple initiatives showing a promising outlook for accelerating (HPC) applications
as shown in related work (Section 3) of this thesis. The single-task graph unifies the

1.1 Task Nesting 2

representation of parallelism across CPU cores, accelerators, and distributed-memory
nodes, and it improves the productivity of MPI + X approaches.

Sequential Task Graph (STG) models, such as OpenMP and OmpSs-2, create the
task graph sequentially, which provides a clear and familiar programming interface,
simplifying development and maintenance and facilitating the porting of existing codes
so that the developer’s code reflects only what needs to be computed.

However, being prominent, distributed-tasking approaches suffer from poor effi-
ciency and scalability [7], which pose challenges hindering their adoption by the HPC
community. Primarily, these challenges stem from the sequential bottleneck for medium
and fine-grained-size tasks, which limits performance and scalability. Unless the tasks
are very large, distributed sequential task graph approaches are not a viable alternative
to MPI + X. This thesis aims to resolve the former issues by proposing two approaches.
However, each approach tackles these inefficiencies as a consequence of different case
scenarios.

In the first scenario, the application task graph exhibits a hierarchical structure
in which some tasks are encapsulated inside other tasks to express parallelism at
its maximum degree and the reduction of synchronisation and contention that are
intrinsic to the application. This is referred to as task nesting and tackled by approach
in (Section 1.1). The second case, introduced by models that construct the task
graph sequentially, imposes a performance bottleneck for medium and fine-grained
size tasks (i.e. larger graphs), limiting the performance by the sequential filtering of
the dependencies between tasks. This is addressed by the approach introduced in
(Section 1.2).

1.1 Task Nesting
As systems scale to larger numbers of cores and accelerators, it becomes infeasible for
one sequential thread to create enough tasks to keep all the cores busy. The natural
solution is to build the full dependency graph in parallel by concurrently executing
multiple parent tasks. This approach is known as task nesting, and it is supported
by OpenMP [8, 9]. In OpenMP, the dependency graphs of different tasks are isolated.
OmpSs-2 improves the situation through its support for fine-grained dependencies
among nesting levels via introducing the weak-dependencies [10] with parent tasks
having weak accesses and their subtasks have strong accesses. A weak accesses imply
that the task itself does not access the data, however its subtasks are accessing it,
and in this case the subtasks will have their dependencies declared as strong accesses.

1.1 Task Nesting 3

The computation of the dependencies from the data accesses is done locally inside a
task so that all fine-grained tasks in the program become part of a single hierarchical
dataflow dependency graph. This allows dependencies to be discovered among subtasks
of different parents simultaneously.

However, a key limitation of the current OpenMP and OmpSs-2 tasking models is
that a task cannot be created until the addresses and sizes of all its accesses are known.
Since the task’s accesses must cover all its descendants’ accesses, all the accesses
of its subtasks, their subtasks, and so on, also need to be inside specified regions.
We illustrate the problem with a hypermatrix multiplication followed by a Cholesky
decomposition described in Section 4.2.1. These task accesses may be unknown prior
to the task creation time because either:

1. The task allocates and returns new memory regions later in future that we do
not have any information regarding it at the present moment.

2. The task creates subtasks that access memory regions (dependencies) defined by
previous tasks in the application. The dependencies are known. However, these
subtasks can not be created until the previous tasks are finished. Hence, we must
maintain the sequential order between tasks before creating any.

3. The task accesses are complicated to determine or express, and the programmer
must give a complete and precise description of the task dependencies, which
in some cases might require manually computing the start and length of each
access, which is an error-borne, fragile, and time-consuming step. Hence, the
programmer decides not to explicitly specify all the accesses on behalf of the task
and its subtasks.

Existing approaches work around this problem in different ways. One way is to add
synchronisation to wait for the earlier tasks to complete, i.e., using a taskwait barrier.
Another way is to substitute the true data access with a fake dependency that implies
the correct task ordering but does not provide correct information for data transfers or
data locality, i.e., using a sentinel such as a pointer to a specific memory region rather
than the data itself.

Chapter 4 of this thesis introduces the auto data access clause that addresses the
performance limitation of existing approaches. The auto clause indicates that a task
may have additional data accesses beyond those listed explicitly in a pragma annotation
of a task.

1.1 Task Nesting 4

While the taskwait approach interrupts the concurrent creation and execution of
tasks, our approach does not, and this maintains parallelism and provides maximum
freedom to the scheduler to optimise any load balancing and data locality operations.
Unlike approaches using sentinels, all tasks can be given precise specifications for strong
data access. The full specification of task data accesses means that a single mechanism
is used to compute the dependencies that enforce ordering among tasks, program data
transfers on distributed memory, and optimise data locality on NUMA and distributed
memory systems. Compared with a version using sentinels, program clarity is improved
since the pragma annotations match the program’s actual data accesses (reflects what
the programmer wants to compute). It avoids the fragility of sentinels, allowing part of
the program to be modified (e.g. change task granularity) without redesigning the use
of sentinels throughout the whole program. By precisely specifying every task’s true
data access, the program is also suitable for task offloading on distributed memory
systems.

The auto data access clause also provides an incremental path to developing programs
with nested tasks. Since auto declares that the data access annotations may not cover
all accesses of descendent tasks, it becomes only necessary to annotate the strong
accesses for the task itself. For some applications, such as dense linear algebra, it may
be straightforward to specify the precise weak accesses, but for applications involving
graphs or trees, this task is more difficult. Moreover, these weak access annotations
are redundant and error-prone.

While the implementation would be complicated and expensive in terms of overhead,
we present a simple approach, with a few key optimisations, that allows efficient task
execution, even in the context of task offloading to other nodes. Since the auto pragma

aggregates information that is already given to the runtime system, there is no need
for sophisticated compiler or instruction-level analysis. In many cases, the overhead is
negligible, though, of course, when auto is used indiscriminately, performance analysis
may show overhead or serialisation that can be avoided by specifying the data accesses
of just a subset of the parent tasks.

1.2 Taskiter 5

1.2 Taskiter
A common approach of distributed-memory tasking as in OmpSs-2@Cluster [7], StarPU-
MPI [11], PaRSEC [12], OMPC [13] and others [14] is expressing an HPC application
using a single graph of tasks with dependencies. The runtime system maps the tasks
to processes and executes them concurrently across the available compute nodes. This
approach avoids the synchronization and deadlock issues of the more common MPI+X
approach [15–17], in addition to the ability to extend them to support transparent
dynamic load naturally balancing [18, 14] and both core-and node-level malleability [19].

The task graph can either be expressed implicitly, such as the Parameterized Task
Graph (PTG) originally used for PaRSEC [20], while the majority use the STG model,
as explained in the previous section, the STG approach provides a clear and familiar
meaning to the program, which simplifies development and maintenance, as well as
facilitates the porting of existing codes.

The major issue with the distributed STG approach is limited scalability for
medium and fine-grained tasks. Taking into consideration the application nature and
task granularity, OmpSs-2@Cluster, for example, the distributed-memory variant of
OmpSs-2 [21], scales to about 16 nodes [19]. At the same time, other STF approaches
that create tasks in parallel, such as OmpSs@cloudFPGA [22] and StarPU-MPI [11]
achieve somewhat better scalability. However, they are still ultimately limited by the
sequential filtering of task dependencies. Moreover, all nodes need to agree on the
same mapping of tasks to nodes independently. This static or deterministic allocation
of tasks to nodes makes it impossible to balance the load across nodes transparently.

A common HPC applications category is implementing iterative methods or multi-
step simulations that create the same Directed Acyclic Graph (DAG) of tasks on each
timestep. A recent work proposed the taskiter directive [1], which declares that a
specific loop creates the same DAG of tasks and accesses on each iteration and that the
program remains valid if the code inside the loop body but outside tasks is executed
a single time. This information allows the runtime to execute the loop body once
to create the tasks and dependencies for a single iteration. Then, the information
that the subsequent iterations follow the same pattern is used to build a cyclic graph
representation that describes the complete computation. This reduces the overheads of
task creation, scheduling and dependency management by incurring these overheads
only for the first iteration and amortizing their cost across all loop iterations.

Taskiter, despite originally designed for SMPs, is especially well-suited for dis-
tributed task-based approaches due to two key factors.

1.2 Taskiter 6

1. While the number of nodes grows, the number of tasks normally grows in
proportion to occupy the computational resources, so the sequential bottleneck
that motivates taskiter scales at least as fast as the number of nodes. Meanwhile,
the wall–clock time for the computation either stays roughly constant (for weak
scaling, i.e., fixed computation per node) or falls within the number of nodes (for
strong scaling, i.e., fixed problem size). The result is that the growing sequential
bottleneck quickly dominates the total execution time.

2. Knowing the full cyclic dependency graph in advance allows the runtime to
precompute all MPI data transfers. However, the common approach is to compute
data transfers dynamically while the graph is being built, resulting in a large
number of control messages between the nodes.

Chapter 5 of the thesis extends the OmpSs-2@Cluster distributed tasking model
to support a distributed form of taskiter and describes the full implementation. Our
approach eliminates control messages to and from the master node, replacing them
with peer-to-peer, non-blocking MPI calls that are transparently integrated into the
application’s task graph . By integrating the MPI communications directly into the
application’s task graph, our approach naturally overlaps computation and communi-
cation, in some cases exposing dramatically more parallelism than fork–join MPI +
OpenMP.

1.3 Thesis Outline 7

1.3 Thesis Outline
This thesis is structured in six chapters, including this one, and it is organised as
follows:

• Chapter 1 introduces, motivates and briefly describes this work in addition to
outlining the general structure of this document.

• Chapter 2 provides an overview of fundamental concepts crucial for comprehend-
ing the core of this thesis, including the OmpSs-2 task-based programming model
and OmpSs-2@Cluster distributed task-based models as well as Nanos6 and
Nanos6@Cluster runtime systems implementation of the aforementioned tasking
models respectively. In addition to the outline, the experimental hardware and
software setup and benchmarks were used in this work.

• Chapter 3 is a review of the literature and state-of-the-art with emphasis on
initiatives related to this thesis.

• Chapter 4 elaborates on the first contribution of this work of: the automatic data
access aggregation via introducing the auto and none clauses as an extensions to
the OmpSs-2@Cluster task-based programming model and implementing it inside
the Nanos6@Cluster runtime references implementation of the OmpSs-2@Cluster
model. This chapter is published in [23].

• Chapter 5 is the second contribution of this thesis, the taskiter directive for
exploiting iterative applications. This chapter is published in [24] and is under
review when writing this thesis.

• Chapter 6 concludes the thesis and suggests potential directions for future
research.

1.4 Publication List 8

1.4 Publication List
This thesis is based in part on the following papers:

1 Omar Shaaban, Jimmy Aguilar Mena, Vicenç Beltran, Paul Carpenter, Eduard
Ayguadé and Jesus Labarta Mancho. “Automatic aggregation of subtask accesses
for nested OpenMP-style tasks”. in IEEE 34th International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), 2022. Doi:
10.1109/SBAC-PAD55451.2022.00042.

This publication presents much of the material of Chapter 4 of the thesis. This
material has also been reported in DEEP-SEA D5.6 (submitted to EC).

2 Omar Shaaban, Juliette Fournis d’Albiat, Isabel Piedrahita, Vicenç Beltran, Xavi
Martorell, Paul Carpenter, Eduard Ayguadé, and Jesus Labarta. “Leveraging
Iterative Applications to Improve the Scalability of Task-Based Programming
Models on Distributed Systems”. Submitted with a major revision at the ACM
Transactions on Architecture and Code Optimization (TACO).

This publication presents much of Chapter 5 of the thesis. This material has also
been reported in DEEP-SEA D5.6 (submitted to EC).

There are two additional publications as second author

3 Jimmy Aguilar Mena, Omar Shaaban, Vicenç Beltran, Paul Carpenter, Eduard
Ayguadé, and Jesus Labarta. “OmpSs-2@Cluster: Distributed memory execution
of nested OpenMP-style tasks”, in European Conference on Parallel Processing
(Euro-Par), 2022.

This paper presents the basic design and implementation of OmpSs-2@Cluster. My
contributions were in the design space exploration of the runtime with a contribution
to the offloaded tasks by providing a more efficient offloading mechanism, which en-
abled the OmpSs-2@Cluster to use complex irregular data structures as dependencies
for offloaded tasks. Part of this process involved the development of the DMRG,
InfOli, smart mirror and 𝑛-body applications case studies for analysis, evaluation,
and performance limitations of the proposed design. The InfOli application was
reported in EuroEXA EU H2020 projectś Deliverable D2.6 [25] and the smart mirror
application was reported in LEGaTO EU H2020 projectś Deliverable D3.4 [26].

1.4 Publication List 9

4 Jimmy Aguilar Mena, Omar Shaaban, Victor Lopez, Marta Garcia, Paul Carpenter,
Eduard Ayguadé, and Jesus Labarta. “Transparent load balancing of MPI pro-
grams using OmpSs-2@Cluster and DLB”, in International Conference on Parallel
Processing (ICPP), 2022.

This paper presents a solution for multi-node dynamic load balancing of MPI +
OmpSs-2 programs using OmpSs-2@Cluster. This publication benefits from the
analysis and performance improvements discussed above, and it uses the 𝑛-body
benchmarks in the evaluation process.

CHAPTER 2

Background

This chapter describes the programming models, runtimes and libraries on which this
PhD dissertation builds. It gives an overview of OmpSs-2 and OmpSs-2@Cluster, as
well as the Nanos6 and Nanos6@Cluster runtime systems. It also describes Task-Aware
MPI (TAMPI), a library that integrates tasking with MPI.

2.1 OmpSs-2 Parallel Programming Model
OmpSs-2 [21] is the second generation of the OmpSs [27] task-based parallel program-
ming model developed by the Programming Models group of the Computer Sciences
department at the Barcelona Supercomputing Center (BSC). OmpSs/OmpSs-2 de-
scends from the design principles of two programming models: Star Superscalar (StarSs)
and OpenMP [9], hence the name OpenMP Superscalar (OmpSs).

The main principles inherited from StarSs are tasking, dependencies and support
for heterogeneity. These are integrated with OpenMP-style compiler directives (known
as pragmas in C/C++), which extend the C/C++ and FORTRAN programming
languages. Sequential code is annotated with pragmas to produce the same code’s
parallel version. A compiler that does not support OmpSs will ignore the annotations
and generate a correct sequential program. This ease of use constitutes OmpSs’s
philosophy as a productive, high-performance programming model, with no need
to redesign the code for a parallel version. Some of the features of OmpSs have
been adopted by OpenMP, including tasking in OpenMP 3.0, task dependencies in
OpenMP 4.0, and the taskloop construct in OpenMP 4.5. OmpSs-2 is considered
an open-source research platform developed to explore and evaluate new features for
potential future standardisation in OpenMP [28]. OmpSs-2 supports multiple parallel

2.1 OmpSs-2 Parallel Programming Model 11

architectures, including multi-core SMPs, GPUs [4], FPGAs [6], and distributed-
memory cluster architectures [7, 18].

2.1.1 Execution Model

OmpSs-2 uses a thread-pool execution model, which implicitly initiates parallel execu-
tion before the application starts executing. This can be contrasted with OpenMP’s
fork–join model, which explicitly outlines the beginning and end of each section of
code to be parallelised.

Being a tasking-based model, OmpSs-2 expresses parallelism via tasks with depen-
dencies between them. In OmpSs-2, all application code is contained in tasks, including
the main function, which is wrapped inside a task. When the main-task executes, it
calls the original main function. OmpSs-2 starts by initiating a pool of threads assuming
that threads will divide into a single master thread and other threads acting as worker
threads. The main-task is added to a queue for ready tasks that are picked up later
by any of the worker threads, while the other worker threads will be waiting for other
tasks to become ready for execution, either tasks created by the main task, or tasks
created by the runtime for management activities. In OmpSs-2, synchronisation is
implied by task data accesses; the task graph is created incrementally for each task
created by checking its dependencies against the previously created tasks. Tasks are
scheduled once all of their predecessors have been executed, and the main-task acts as
the parent of all tasks in the application.

Similarly to OpenMP, OmpSs-2 defines particular tasking constructs, such as
taskloop and task for. A taskloop construct divides the loop space into separate
subtasks according to a grain size selected by the user. All subtasks will collaboratively
execute a portion of the loop, and all subtasks will wait for other subtasks to finish
executing their portion. A task for, which is a work-sharing task builder that can
operate concurrently across multiple threads, much like OpenMP’s parallel for. Unlike
other tasks, task for tasks do not require all threads to work together and do not
impose any barriers. The task for divides the iteration space of a for-loop into chunks
that are then distributed among the collaborating threads.

OmpSs-2 also shares and defines common semantics of the OpenMP taskwait

directive. In OmpSs-2 taskwait, suspend the current task execution until all of its
children (prior to the taskwait) finish execution. However, in OmpSs-2, a taskwait does
not execute at the end of the task’s body; this allows the early finalisation of the task
and the release of its dependencies.

2.1 OmpSs-2 Parallel Programming Model 12

2.1.2 Dependency Model

OmpSs-2 follows an asynchronous data-flow model between tasks. In OmpSs-2, task
data accesses, which define data consumed by a task during execution time, are used
as a single mechanism to compute dependencies that enforce task ordering, determine
data locality, and identify data copies for tasks executing on multiple cluster nodes if
required. Data dependencies are defined by the user in the task construct either by
using depend clause as in Figure 2.1a or the OmpSs short notation as in Figure 2.1b.
Both methods use a comma-separated list of the memory regions or can specify them
individually.

depend(<type > : <memory -region -reference -list >)

(a) OmpSs-2 full notation syntax

<type >(<memory -region -reference -list >)

(b) OmpSs-2 short notation syntax

Figure 2.1 OmpSs-2 dependency annotations syntax comparison

The semantic of depend clause is extended with types in, out, or inout, that defines
input (read), output (write), or input-output (read/write) data dependency over a
user-specific data range. Dependency enforcement between a predecessor and successor
tasks can be summarised according to the following rules:

• For an in dependence type, it imposes a dependency over a predecessor task
that has previously defined either an out or inout dependence type on the same
memory region.

• A task with an out dependence type enforces a dependency over a predecessor
task with either in, out, or inout dependence type on the same memory region.

• The inout dependence type combines both types in and out semantics.

2.1 OmpSs-2 Parallel Programming Model 13

Moreover, OmpSs-2 defines additional types that add an extra degree of freedom
to the dependency model, allowing for more parallelism in special cases:

• concurrent: The concurrent dependence type acts as a special inout which enforces
dependencies between other types but not concurrent relaxing synchronisation
between tasks; hence, it is the developer responsibility, in that case, to verify
that the tasks can run concurrently; otherwise an extra synchronisation will be
needed.

• commutative: The commutative dependence type functions akin to the inout type
to in, out, and inout types. Additionally, it enforces a dependency over tasks that
define a commutative type over the same memory regions. However, they can be
executed in any order (the creation order is still preserved). Any permutation
ordering of those tasks annotated with commutative is acceptable, provided that
one task is executed at a time.

• reduction: is considered a concurrent type with special reduction operation.

The concurrent, commutative, and reduction types are also governed by the same
rules for ordinary types regarding how to resolve the situation when a task has multiple
accesses covering the same memory region, which we refer to as the access upgrade
rules and shown in Table 2.1.

Table 2.1 Access upgrade rules, which define the combined effect of overlapping task
accesses. This is the least restrictive access type that implies all ordering constraints
and data transfers of the constituent accesses.

in out

inout

concurrent

commutative

reduction

in in inout inout inout inout invalid
out - out inout inout inout invalid
inout - - inout inout inout invalid
concurrent - - - conc. comm. invalid
commutative - - - - comm. invalid
reduction - - - - - reduction*

* Non-identical overlapping reductions on the same task are undefined.

2.1 OmpSs-2 Parallel Programming Model 14

Dependencies can expressed in two ways, either as discrete, or fragmented-regions,
which unlike the discrete allow the memory regions overlapping. In both cases, depen-
dencies can be defined either by start address only as in Figure 2.2a, or by precisely
specifying the starting address and length of the memory regions accessed by the tasks
as in Figure 2.2b, which is useful in case of cluster execution to identify the size of
memory copies for offloaded tasks (see Section 2.3.2). All tasks in the application
are linked with dependencies between them into a graph structure that we refer to
as the task dependency graph. A task is considered ready and can start executing
once all of its data dependencies are satisfied, meaning that no other predecessor tasks
accessing this data and/or the data location are known in case tasks are offloaded to
other devices or cluster nodes.

#pragma oss task <type >(<memory -region >[startAddress])

(a) Using starting address only.

#pragma oss task <type >(<memory -region >[startAddress:length])

(b) Using both starting address and length of the access.

Figure 2.2 Ways of specifying dependencies in OmpSs-2.

A common approach for parallelisation is to organise tasks into multiple levels;
this involves breaking down high-level functions into smaller tasks, each representing
a distinct unit of work. Subsequently, these tasks can be refined further by being
decomposed into additional subtasks. OmpSs-2 extends OmpSs and OpenMP to
improve task nesting and fine-grained dependencies across multiple nesting levels
through the weakin, weakinout and weakout access types [10, 29], which indicate a task
does not access the data, but its nested subtasks may do so. Any subtask directly
accessing data needs to specify a dependency with a strong (non-weak) access type.
Any task that delegates access to a subtask must include the data region in at least
the weak variant. Weak accesses provide a link between the dependency domains at
different nesting levels but do not delay parent task execution or require data transfers
on distributed memory. Adding weak accesses exposes more parallelism, allows better
scheduling decisions, and enables parallel instantiation of tasks with dependencies
among them.

The taskwait directive in OmpSs-2 has a similar semantic and description to the
one in OpenMP. Taskwait suspends the current task until all child tasks are generated
before the taskwait is finalised. If the taskwait includes dependencies, the current
task region is suspended until all the child tasks with dependencies on the declared
dependency region are executed entirely.

2.1 OmpSs-2 Parallel Programming Model 15

As we mentioned, the weak parent tasks act as a link between subtasks in task
nesting, meaning that any accesses that are directly accessed by the parent task
which are not accessed by any of the subtasks can be released as the parent task
finishes. At the same time, dependencies appearing in one subtask but not another can
also be released immediately after that subtask finishes execution, allowing for more
parallelism.

Consequently, it is recommended to avoid using taskwait at the end of the body
of a parent task in nested tasks because taskwaits delay the finalisation of subtasks,
hinder the discovery of parallelism and delay the release of all dependencies until all
child tasks finish (even the dependencies not declared by any subtask).

2.2 OmpSs-2@Cluster 16

2.2 OmpSs-2@Cluster
OmpSs-2@Cluster [7, 30] is the flavour of the OmpSs-2 parallel programming model
that leverages multiple distributed memory cluster nodes. A program that has been
written for OmpSs-2 to execute on SMP machine is compatible with OmpSs-2@Cluster.
OmpSs-2@Cluster extends the OmpSs-2 with specific data-flow semantics to match the
execution workflow of a cluster-based system. It can be considered as an alternative to
explicit MPI + OmpSs-2 for small to medium size clusters [7, 24], depending on the
algorithm and problem size. It supports active malleability, interacting with the job
scheduler to request or release compute nodes and then making use of these resources
in a way that is transparent to the programmer [19]. In addition, it can also be used to
provide multi-node dynamic load balancing for MPI + OmpSs-2 programs [18], using
its ability to offload tasks to ensure that each node has an equal amount of work.

The main OmpSs-2@Cluster features can be summarized as:

1. Sequential semantics:
Sequential semantics refers to the behaviour of a system or program where
operations are executed strictly sequentially, following the order specified by the
program logic. OmpSs-2@Cluster program is simply the equivalent sequential
program annotated with #pragmas directives, giving a clear and familiar meaning
to the program, and it simplifies the porting of existing codes at any nesting
levels.

2. Common address space:
All nodes in an OmpSs-2@Cluster program see the same virtual address space
at the same starting address, allowing data allocated on one node to be copied
and accessed at the exact memory location on any other node without any
address translation, and facilitates the use of complex-pointer data structures
used by some irregular applications, and the porting of existing benchmarks into
OmpSs-2@Cluster.

3. Distributed memory allocation:
OmpSs-2@Cluster provide the user with a distributed memory allocation as an
alternative allocator for larger data manipulated by multiple cluster nodes. This
allocation scheme is distinctive in that there is no need to copy the data back
since the distributed data is meant to be used locally on each node, especially
in cases where a two-level nested task is used to distribute tasks over multiple
nodes, which is the comm case encountered in this research. In addition, huge

2.2 OmpSs-2@Cluster 17

allocations usually occur at the beginning of an application and at a non-frequent
pace, making the centralised allocation model employed by OmpSs-2@Cluster
efficient and with marginal overhead. Finally, it provides the user with allocation
affinity hints to exploit specific commons distributions see Section 2.3.3.

4. Minimize overall data transfers:
The default behaviour of the taskwait synchronisation primitive used in a dis-
tributed memory environment may create undesired data transfers. OmpSs-
2@Cluster extend the taskwait with two options to allow more control and
flexibility:

• The taskwait on, which copies back only a specific subset of the tasks’s
local data as specified to the on clause. The on syntax is similar to that used
in any dependency declaration as in Figure 2.1.
• The taskwait noflush, which will not perform any data copy.

5. Control of dependencies release:
Distributed memory systems rely on nested tasks for distributing work execution
(Section 2.3.4); the parent task (first nesting level) must wait for all of the subtask
(inner levels) to finish before it can pass these dependencies to successors in the
task-graph. OmpSs-2@Cluster provide three levels that control the behaviour of
subtasks dependencies release:

• Early release, which releases sub-task dependencies to the parent succes-
sor as soon as the sub-task finishes execution, allowing the parent’s successor
to be ready earlier, even if there are other children subtasks still executing.
• Late release is beneficial in cases where subtasks will end roughly
simultaneously; hence, the early release will be an overhead rather than an
advantage. OmpSs-2@Cluster achieves this via the wait clause that implies
the parent task must wait for all of its children to finish before releasing
their dependencies.
• Auto release, is a hybrid of the early and late approaches. Offloaded
tasks will have early release to successors on the same cluster node executing
that offloaded task and late release for all other tasks.

6. User exposed API and scheduler hints: OmpSs-2@Cluster extends the
existing API to provide the user with more options and system information
that help the development process. In addition, the user is also provided with
scheduling hints for choosing between a set of scheduling policies that can

2.3 Runtime Reference Implementation 18

help with situations which require specific control, such as with some irregular
applications. In addition, the node(node-id) clause is provided to manually set
the executing cluster node indicated by the node-id.

2.3 Runtime Reference Implementation
Nanos6 [31] is the runtime system that implements the OmpSs-2 task-based program-
ming model for SMP architecture. Nanos6@Cluster extend Nanos6 runtime with the
OmpSs-2@Cluster runtime specifications for distributed memory systems, and it is
the OmpSs-2@Cluster reference implementation used in this work. Both Nanos6 and
Nanos6@Cluster rely on the Mercurium [32] C/C++ and Fortran source-to-source
compiler that transforms the high-level user code’s directives (i.e. pragmas) into routine
calls implemented by the Nanos6 and Nanos6@Cluster runtime systems. Nanos6,
Nanos6@Cluster, and Mercurium are all developed by the Programming Models group
of the Computer Sciences department at BSC.

2.3.1 Nanos6

The Nanos6 runtime library provides the essential infrastructure required to execute
applications using OmpSs-2 tasks. This includes fundamental task creation, depen-
dencies computation and registration, and linking different task dependencies into the
task dependency graph. In addition, the runtime provides a scheduler that utilises the
underlying hardware resources while respecting the execution order implied by the task
dependency graph. It also contains other components to manage system resources,
memory allocation, thread creation, and support for other devices and accelerators. In
addition to being used as a runtime library, Nanos6 can also be used as an API for
explicitly and manually handling task creation and submission to the scheduler. It
offers different operation variants that can help the user at different development stages.
This includes the debug variant, variants instrumentation modes such as Extrae [33],
verbose, and linting [34], which can help to visualise the application performance by
generating execution traces with different forms and levels of information. Moreover, it
can be interfaced with external libraries such as DLB for load balancing [18]. Users
can tweak different runtime configurations and options via a configuration TOML file.

A typical OmpSs-2 program flow will start by compiling the code using the Mer-
curium compiler that translates the user #pragmas into Nanos6 API routines as mentioned
in section 2.3 in addition to wrapping the main function inside an implicit task (the

2.3 Runtime Reference Implementation 19

main task 2.1.1) and change the starting address of the actual main to a main-wrapper

function inside the runtime. The main-wrapper will bootstrap the runtime by allocating
the required resources, initiating a pool of worker threads, and adding the main-task

as a ready task to the ready tasks queue part of the runtime scheduler. One of the
worker threads will pick up the main-task and start executing it immediately, which in
turn will start the actual user main. The remaining worker threads will wait for other
ready tasks that can be created by the main-task or other tasks created by main that
are already currently running. Figure 2.3 shows an overview of OmpSs-2 application
development process.

main.c
main.c#pragma .exe

main.c
main.c
Nanos6
API

Source code mcc (mercurium) Intermediate
representation Linker Binary

Figure 2.3 OmpSs-2 development flow

2.3.2 Nanos6@Cluster

The Nanos6@Cluster runtime executes tasks on multiple cluster nodes by providing
a communication layer using an MPI library that is transparent to the user. The
application will execute as a typical MPI + OmpSs-2 application without the need
to manually write any MPI routines. In addition, a program written for Nanos6 can
seamlessly run with Nanos6@Cluster with the only requirement to express the full
dependencies as indicated by the fragmented-regions (section 2.1.2) as it will be used
to calculate data copies required by tasks offloaded to/from other nodes in the cluster.
The cluster mode of Nanos6 is enabled simply by an option in the configuration TOML
file passed to a cluster-compatible build of Nanos6.

Nanos6@Cluster follows the same execution flow of that is in Nanos6 (Section 2.3.1)
with the addition of that each cluster node will instantiate an instance of the runtime
that will run by an MPI process as seen in Figure 2.4. The runtimes coordinate
as peers, with all communication for control messages (see Section 2.3.4) and data
transfers using two-sided MPI point-to-point communications. A dedicated thread
on each cluster node handles the communications. All communication operations are

2.3 Runtime Reference Implementation 20

transparent to the developer by the runtime, and the developer cannot directly use
MPI routines in cluster mode. However, it is possible when the runtime uses the DLB
library [18].

All nodes have the same copy of the runtime; only Node 0 differs in that the node
executes the main-task and manages extra activities such as collative synchronisation
across all nodes required by the distributed memory allocator nanos6_dmalloc (Sec-
tion 2.3.3) or the nanos6_resize routine required by malleability operations [19]. Tasks
are scheduled locally to a node via the Nanos6 SMP scheduler or through the cluster
scheduler for offloaded tasks.

Application (main)

OmpSs-2@Cluster

MPI

Application

Node 1

OmpSs-2@Cluster

MPI

Application

Node N - 1

OmpSs-2@Cluster

MPI

Node 0

Figure 2.4 OmpSs-2@Cluster architecture in which each rank is a peer. The main
function is executed as a task on Node 0. All other tasks may be offloaded for execution
by any other rank.

2.3 Runtime Reference Implementation 21

2.3.3 Memory Model

As indicated in Section 2.2, Nanos6@Cluster employs a common address space on all
nodes in the cluster, which starts at the same virtual memory address on all the nodes as
well. The allocation is done via an mmap [35] call on a specific region that is collectively
agreed upon on all the nodes. The memory allocation size and the starting address
will have a default value. Otherwise, the user can manually set them in the TOML
file. The common address space (which is a virtual memory) is partitioned into two
types of memories, Local Memory and Distributed Memory. The Local Memory, and
Distributed Memory are visible to the developer via nanos6_lmalloc and nanos6_dmalloc

APIs respectively. Fixating the address space across all nodes allows data allocated
on one node can be seamlessly accessed by tasks that execute on any other node [7].
This avoids address translation and allows direct use of existing data structures with
pointers.

The Local Memory intended to be used by all computations within a single task
scope and by input/output arguments of subtasks of the current parent task. As the
name implies, the Distributed Memory is used for data distributed across all nodes. The
Local Memory is further subdivided into regions as many as cluster nodes, and associate
each region with each of the nodes as seen in the Local Memory layout Figure 2.5. The
Distributed Memory also splits the distributed memory and assigns each node a region
similar to the Local Memory. However, the partitioning of the allocated memory will
be based on a user-defined distributed policy such as round-robin, block, or block-cyclic.
Figure 2.6 shows a round-robin policy example of the distributed memory layout.

2.3 Runtime Reference Implementation 22

2.3.4 Tasks, Offloading and Scheduling

The main function executes as a task on the first process, Node 0. All other tasks are
created as subtasks of their parent, initially on the node that executes the parent task.
Top-level tasks are, therefore, initially created on Node 0. If the task is to be executed
locally, it is passed to the host scheduler when it is ready, as usual. Otherwise, an MPI
message is sent to the remote rank since the task will be executed remotely. On receipt,
the remote rank creates a copy of the task, which is scheduled by the host scheduler
on the remote rank. Scheduling is, therefore, done at two levels: the cluster scheduler
of the parent’s rank maps the task to the execution rank, and the host scheduler on
the execution rank schedules the task to run on an available core.

Optimised OmpSs-2@Cluster programs typically have two levels of nested tasks.
The top level has one offloadable task per process to distribute the work across processes,
and the second level has a small number of non-offloadable tasks per core to distribute
the work across the cores on that process. This approach mitigates the sequential task
creation and offloading bottleneck at the cost of some programmer complexity, and
it is responsible for a good part of the scalability of OmpSs-2@Cluster to about 16
nodes [7]. Since the top-level tasks do not themselves perform computation, they can

Lo
ca

l M
em

or
y

Node 0

Local Memory 0

Local Memory 1

...

Local Memory N - 1

Distributed Memory

Local Memory 0

Local Memory 1

...

Local Memory N - 1

Distributed Memory

Node 1 Node N - 1

Local Memory 0

Local Memory 1

...

Local Memory N - 1

Distributed Memory

Figure 2.5 Nanos6@Cluster local memory model

2.3 Runtime Reference Implementation 23

D
is

tr
ib

ut
ed

 M
em

or
y

Node 0 Node 1 Node N - 1

Node 0

Node 1

Node N - 1

St
ar

tin
g

Ad
dr

es
s

Figure 2.6 Nanos6@Cluster distributed memory model

execute and create their subtasks before the data is ready. This is made possible using
weak accesses on the top-level tasks (see Section 2.1.2).

2.3.5 Control Messages

Control messages between nodes are used to offload tasks and maintain data dependen-
cies between these tasks. Listing 2.1 is an OmpSs-2@Cluster program that creates two
tasks, A and B, and offloads them from Node 0 to Node 1 and Node 2, respectively.
These tasks have weak accesses, as discussed above in Section 2.3.4. The task execution
rank is specified for concreteness in these examples by overruling the cluster scheduler
using the node (see Section 2.2). Figure 2.7 shows the sequence of MPI messages, from
top to bottom, involved in the execution. First, Task A and Task B are offloaded to
Node 1 and Node 2, respectively, with two consecutive Task New messages. When
Task A finishes on Node 1, a Task Finished message is sent back to Node 0. This
message releases the output value of x and identifies the location of the latest version
of the data. In turn, Node 0 sends a Satisfiability message to Node 2, which passes
global write permission and the current location of x. Since the data is on Node 1,
Node 2 sends a Data Fetch control message to Node 1, which responds by posting a
point-to-point data transfer containing the data. Finally, when task B is complete,

2.3 Runtime Reference Implementation 24

Node 2 sends a Task Finished message to Node 0. The runtimes collectively enforce
a global ordering of writes, and they send and receive a total of seven messages, all
except one (to offload B) on the critical path. Only one of these messages carries the
actual data.

1 // Task A

2 #pragma oss task node (1) depend(weakout:x)

3 { ... }

4

5 // Task B

6 #pragma oss task node (2) depend(weakin:x)

7 { ... }

Listing 2.1 Source code of Figure 2.7

Node 0 Node 1 Node 2

T
im

e

Task New A

Task New B

Task Finished A and Release x

Satisfiability x for B

Data Fetch x

Data Transfer x

Task Finished B and Release x

1

2

3

4

5

6

7

Critical path message

Data transfer (critical path)

Non-critical path message

Figure 2.7 Large number of MPI messages for OmpSs-2@Cluster. Offloading and
executing these two tasks requires one data transfer message and six control messages.

2.4 Taskiter 25

2.4 Taskiter
The taskiter is an iterative construct that was recently proposed [1] for OmpSs-2 and
OpenMP. The semantics of the taskiter indicate that each iteration of the associated
loop creates the same dependency graph of tasks and accesses which can be created
once and re-used for subsequent iterations. Figure 2.8a and 2.8b show the syntax, for
OpenMP and OmpSs-2 respectively. The loop can be any loop statement, so long as
(a) each iteration of the associated loop creates the same dependency graph of tasks
and accesses at the top level, and (b) the program remains valid if the code inside the
loop body but outside any task is executed just once. Condition (a) restricts only the
top-level dependency graph: top-level tasks may create nested subtasks with different
dependency graphs in different iterations. In addition, the taskiter can be combined
with the optional unroll(n) clause, which enables taskiter to support a loop whose
task graph repeats every 𝑛 iterations.

#pragma omp taskiter [clause [...]] new -line
loop

(a) Taskiter clause (OpenMP)

#pragma oss taskiter [clause [...]] new -line
loop

(b) Taskiter clause (OmpSs-2)

Figure 2.8 OpenMP and OmpSs-2 taskiter construct syntax

An example program using taskiter is shown in Figure 2.9a, where the only modifi-
cation to take advantage of taskiter is the pragma annotation on line 1. Figure 2.9b
shows the regular task graph. When using taskiter, however, the runtime only executes
one iteration of the taskiter’s loop, creating the dependency graph for a single iteration.
It then converts the graph into the Directed Cyclic Task Graph (DCTG) shown in
Figure 2.9c.1 In this figure, the non-cyclic edges between tasks in the same iteration
are shown as solid lines, and the cyclic edges, passing from one iteration to the next,
are shown as dashed curves.

By only creating tasks and computing dependencies for a single iteration, taskiter
significantly reduces the sequential overhead. Moreover, since the DCTG is constant for
all iterations, it is stored simply, without locking or complex lock-free data structures.

1The graph created by the runtime may have additional edges for the Write-after-Write (WaW)
dependencies between consecutive iterations of the same task. These WaW dependencies are implied
by existing paths in the graph and have been omitted from both subfigures.

2.4 Taskiter 26

This also reduces the impact on the execution time of the more powerful but expensive
fragmented regions dependency system [36] since dependency system operations are
only performed for the tasks in a single iteration.

As normal, the tasks can create subtasks. Although the first-level task graph must
be the same for each iteration, their subtasks, if any, may differ in each iteration,
allowing irregularity between iterations at deeper nesting levels.

1 #pragma omp taskiter

2 for(int it=0; it < NUM_ITERATIONS; it++)

3 {

4 // Task 1

5 #pragma omp task depend(in:x,y) depend(out:a)

6 { ... }

7

8 // Task 2

9 #pragma omp task depend(in:a,y) depend(out:b)

10 { ... }

11

12 // Task 3

13 #pragma omp task depend(in:a,b) depend(out:x)

14 { ... }

15

16 // Task 4

17 #pragma omp task depend(in:x,b) depend(out:y)

18 { ... }

19 }

(a) Example OpenMP program using taskiter construct

1

2

3

4

Iteration 0

1

2

3

4

Iteration 1

· · ·a

a

b x
b

x

y

y
a

a

b x
b

(b) Normal task dependence graph without taskiter

1

2

3

4

a
a

b x
b

x

y

y

(c) DCTG with taskiter

Figure 2.9 Example OpenMP program using taskiter. The taskiter annotation on
line 1 of subfigure (a) enables the runtime to replace the normal unrolled task graph
in subfigure (b) with the concise directed cyclic task graph (DCTG) illustrated in
subfigure (c).

2.5 Task-aware MPI (TAMPI) 27

Taskiter does not require a constant runtime number of iterations. If the compiler
cannot determine the number of iterations, then the compiler inserts a special task
known as a control task. The control task depends on every subtask in the current
iteration as well as the control task from the previous iteration. The body of the
control task checks the loop’s condition and it cancels the taskiter when the condition
is false. When the taskiter has the unroll clause, these control tasks are strided by the
unrolling factor, providing a means to overlap tasks from different iterations.

2.5 Task-aware MPI (TAMPI)
Hybrid MPI+X applications are typically structured as alternating fork–join compu-
tation and sequential communication phases. This incurs additional synchronization,
which, as we confirm in our results, hinders inter- and intra-node parallelism. We
evaluate our approach primarily in comparison with fork–join MPI+OpenMP, but since
OmpSs-2@Cluster is naturally asynchronous, we also compare with state-of-the-art
asynchronous TAMPI.

TAMPI [15] is a library that integrates blocking and non-blocking MPI primitives
with task-based programming models. It introduces a new level of MPI threading
support, known as MPI_TASK_MULTIPLE. An application that requests this threading
level can safely use blocking MPI primitives inside tasks without the risk of deadlock.
Without TAMPI, a blocking MPI primitive blocks the task and the underlying thread
that runs it. Even if a normal MPI implementation avoids busy waiting, allowing
the hardware thread to become idle, the task-based runtime cannot discover that the
hardware thread is available. TAMPI uses the MPI Profiling Interface (PMPI) interface
to intercept MPI calls, and it releases any blocking thread to the runtime system to
execute other tasks.

TAMPI also simplifies and optimizes the use of non-blocking MPI primitives by
making their completion visible to the dependency system. This is done using the
new TAMPI_Iwait and TAMPI_Iwaitall calls, as illustrated in Listing 2.2. The task
on line 5 posts the non-blocking MPI_Irecv on line 8 to receive the contents of an
array. It then calls TAMPI_Iwait, on line 9, which informs TAMPI that the given MPI
request is associated with a dependency to the subsequent task (it comprises the output
dependency on 𝑥). TAMPI uses the Nanos6 external events API [16] to delay the
release of the current task’s dependencies. The call to TAMPI_Iwait is non-blocking,
so the task continues, finishing immediately and freeing its data structures and stack.
Later, when the MPI request is complete, it is unnecessary to unblock and re-schedule

2.5 Task-aware MPI (TAMPI) 28

the first task. TAMPI will use the external events API to release its dependencies; at
this point, the task on line 12 can begin execution.

1 double x[10];

2

3 ...

4

5 #pragma omp task depend(out:x)

6 {

7 MPI_Request request;

8 MPI_Irecv (&x, 10, MPI_DOUBLE , other_rank , tag ,

MPI_COMM_WORLD , &request);

9 TAMPI_Iwait(&request , MPI_STATUS_IGNORE);

10 }

11

12 #pragma omp task depend(in:x)

13 {

14 ...

15 }

Listing 2.2 Example OpenMP program using Task-aware MPI’s (TAMPI’s) non-
blocking communication. The call to TAMPI_Iwait makes the completion of the
MPI_Irecv call on line 8 visible to the runtime’s dependency system, simplifying the
code and reducing task scheduling costs.

CHAPTER 3

Related Work

As OpenMP gains popularity in High Performance Computing HPC, task-based
programming models have emerged as versatile, asynchronous approaches, providing
productivity and performance advantages for SMP systems, often combined with
MPI for distributed-tasking across multi-node clusters, prompting investigations into
distributed-tasking’s optimisation, runtime factors, and static parallelisation methods.

In this chapter, we explore the literature for related work and state-of-the-art
solutions of distributed-tasking approaches and ways of dependencies specifications.

3.1 MPI, PGAS and Hybrid Approaches
MPI [37, 38] is by far the most widely used standard for writing HPC applications [39,
40], and it is well supported on all HPC systems. It is based on a distributed memory
model with processes communicating via messages. Partitioned Global Address Space
(PGAS) languages [41–44] and libraries [45, 46] provides a global address space so
that the processes access remote data directly, through language constructs or an API,
rather than communicating via messages. This requires a more advanced understanding
of memory consistency and synchronisation. Both approaches, MPI and PGAS,
place a high burden of data distribution, synchronisation and load balancing on the
programmer.

“MPI + X” models, which combine MPI with shared memory parallelism via
OpenMP [2], OpenACC [47], Compute Unified Device Architecture (CUDA) [48], or
similar, have been under study for at least twenty years [49, 50]. Many applications use a
fork–join approach [51, 52], where processes alternate between sequential communication
and parallel computation phases, which hinders inter- and intra-node parallelism.

3.2 Distributed Tasking 30

Habanero-C MPI (HCMPI) [53] automatically supports fine-grained overlapping of
communication and computation, as it converts each MPI call into an asynchronous
task. TAMPI [15] (see Section 2.5) is a more flexible approach that allows tasks to safely
and efficiently call MPI primitives. All MPI+X approaches suffer from the fundamental
issues of MPI, i.e., the programmer has to handle data distribution, synchronisation
and load balancing, and inserting message sends and receives. They also require the
programmer to split the parallelism between shared and distributed memory models.

DASH [54] provides a C++ template library for distributed memory, which is
based on tasks in a PGAS model. Each process concurrently creates its task dependency
graph. Tasks primarily access local memory, but they can also depend on memory
owned by another rank. Execution is divided into phases, and dependencies between
tasks in different processes are only resolved at the boundaries between phases. Each
rank communicates its non-local dependencies to the rank that owns the data, and the
data values are exchanged as soon as they are available. This model supports tasks in
a global memory space, but the programmer is still responsible for data distribution
and load balancing. It is also necessary to divide the program into phases, during
which there is no inter-node communication.

3.2 Distributed Tasking
Distributed tasking approaches execute tasks with dependencies in a single task graph,
which provides unambiguous dataflow semantics among all tasks of all processes. The
task graph may exist only implicitly, based on a model of the structure of typical
programs, but more commonly, the model uses a Sequential Task Graph (STG)
formulation. In the latter case, the STG is constructed sequentially at runtime based
on annotations or API calls. This may happen concurrently on all processes, creating
a duplicate task graph in each process, or the task graph may be created by a single
process, which distributes work to the other processes. The whole unrolled graph for an
STG program is built task-by-task. However, it typically never exists in its completed
form since tasks are added (constructed) and removed (after execution) concurrently.

3.2.1 Implicit task graph creation

PaRSEC [55, 12] is a distributed task-based model designed for scalability on dis-
tributed heterogeneous architectures. It is the basis for the DPLASMA library for
dense linear algebra, which was the original motivation for PaRSEC. Its original formu-

3.2 Distributed Tasking 31

lation builds a parameterised DAG [20], which algebraically describes the dependencies
between tasks in terms of the iteration variables. This model makes it very complex to
develop programs, and it is not as expressive as other task models, being tailored for
affine loops that are amenable to polyhedral analysis [56]. Our approach also avoids
unrolling the whole dependency graph, but it is simpler and specialised for iterative
applications, and it requires just one pragma to identify such a loop.

3.2.2 Concurrent and duplicated task graph creation

Several approaches build the same task graph, containing all top-level tasks and
dependencies concurrently on all processes. All processes independently determine the
same deterministic mapping of tasks to rank and execute only the tasks mapped to
the current rank. Processes also insert appropriate send and receive primitives to pass
data to and from tasks executed by other ranks.

StarPU-MPI [11] extends StarPU [57] to support distributed memory tasking using
MPI. In this framework, top-level tasks are mapped to nodes using an owner-computes
model. YarKhan’s [58] extension of QUARK [59] (a runtime environment for dynamic
scheduling) uses a deterministic mapping of tasks to rank based on data distribution,
and it also uses MPI for communication. TBLAS [60] takes a similar approach
to target clusters of CPUs, each with multiple GPUs. OmpSs@cloudFPGA [22]
targets clusters of FPGAS with direct FPGA-to-FPGA communication and hardware
acceleration to mitigate the cost of filtering task accesses. DuctTeip builds hierarchical
data structures and task graphs, mitigating the sequential bottleneck through a task
nesting approach. PaRSEC [55, 12] also supports Dynamic Task Discovery (DTD) as
an alternative to the Parameterized Task Graph (DTD). DTD constructs a general
task graph from a sequential program, unrolling the full task dependency graph on
each process. This is similar to the previously described approaches and suffers from
the same bottleneck and flexibility issues.

In all the above approaches, all ranks must independently determine the same
mapping of a task to rank, which makes it impossible to load balance dynamically.
Every rank has to check the dependencies of every top-level task in every iteration,
which limits the scalability for fine- and medium-grained tasks. Our approach has the
advantage that it does not require task nesting with the possibility to support it (if
needed), it is compatible with partitioning and re-partitioning of the cyclic task graph,
and the entire overhead to build and manage the task graph and insert communication
is amortised across all loop iterations. Finally, it interoperates with the fully general
OmpSs-2@Cluster approach, which starts from a single sequential thread.

3.3 Other Approaches 32

3.2.3 Sequential task graph creation

Other approaches build the top-level task graph on a single node, with task offloading
to other nodes. OMPC [13] extends the LLVM OpenMP implementation of the target
library with new target for offloading tasks and introduces the concept of a “remote
device” for offloading tasks to remote nodes.

OmpSs-1@Cluster [61] and its successor OmpSs-2@Cluster (Section 2.2) extend
BSC’s OmpSs programming model to support distributed memory clusters. Both create
the dependency graph on a single core, although OmpSs-2@Cluster has improved
support for task nesting as a way to parallelise the creation of tasks on multiple ranks
to reduce the pressure on the first rank. Our approach is compatible with OmpSs-
2@Cluster, but it avoids all of the control message overhead inside the timesteps of
iterative applications (see Section 2.3.5). We compare our results against OmpSs-
2@Cluster in detail in Section 4.6, and demonstrate that while the existing OmpSs-
2@Cluster approach is a viable alternative to MPI+OpenMP on up to 4 or 8 nodes,
our approach is close to MPI + OpenMP on up to at least 32 nodes.

Legion [62] is a framework for parallel tasking computations on distributed hetero-
geneous systems. Execution begins on a single rank, and tasks are offloaded to other
ranks. It supports task nesting and adopts a data-centric approach, where developers
describe the structure and properties of data so that the scheduler can optimise data
locality. Programs can either use Legion’s native C++ API or the high-productivity
Regent language [63]. It has disadvantages similar to OmpSs-2@Cluster in terms of
scalability and the need to use task nesting to get good performance.

3.3 Other Approaches

3.3.1 Frameworks and Libraries

Charm++ [64] is an asynchronous execution model for HPC, based on migratable
objects known as “chares”. Chares communicate by exchanging messages, resulting in
a form of concurrent and asynchronous execution that has some similarities to task
execution without dependencies. HPX [65] is a C++ library that supports parallel
computations using an interface that aims to be compatible with the C++ Standard
Template Library (STL). It adopts an asynchronous and distributed task-based model
that is expressed using futures and which supports data dependencies among futures.
X10 [66] is an object-oriented programming language for high-productivity program-
ming that spawns asynchronous computations, with the programmer responsible for

3.3 Other Approaches 33

PGAS data distribution. Chapel [67, 68] is a high-productivity HPC programming
language, which allows asynchronous tasks to be spawned and executed on other
distributed-memory nodes. Chapel’s sync qualifier can block tasks until the necessary
data is ready, allowing for coordinated execution order among tasks. Unlike other
tasking models, a task graph is not created in advance of task execution.

Other include The Intel Threading Building Blocks (oneTBB) [69], Microsoft Task
Programming Library (TPL) [70] and Google TensorFlow [71]. The TBB, TPL and
TensorFlow share the goal of optimising parallelism and concurrency in computing
tasks. TBB (for C++ developers) and TPL (for C# developers) are primarily focused
on facilitating parallel execution of tasks by abstracting away low-level threading details,
providing constructs like tasks, parallel loops, and dataflow parallelism. Similarly,
TensorFlow, though primarily known for its role in machine learning, also emphasises
parallelism through its computational graph abstraction and execution engine, enabling
efficient execution of operations across multiple devices like CPUs and GPUs. All three
frameworks aim to enhance performance and scalability by leveraging parallelism and
concurrency, albeit in different domains and contexts.

3.3.2 Scripting and Workflows

Many scripting and workflow frameworks also adopt a distributed tasking approach
with a directed acyclic graph of tasks and dependencies. COMPSs [72] is a Java,
C/C++ and Python framework to run parallel applications on clusters, clouds and
containerised platforms. It is a sequential task-based model similar to OmpSs, but
dependencies are tracked through files or objects rather than the program’s virtual
address space. Pegasus [73] is another workflow management system that uses a DAG
of tasks and dependencies. GPI-Space [74] is a fault-tolerant execution platform for
data-intensive applications. It supports coarse-grained tasks that help decouple the
domain user from the parallel execution of the problem. In all these approaches, the
task granularity is much coarser than that targeted by our approach, with individual
tasks lasting up to hours or days. It is viable for a single master node to manage all
task scheduling and data transfers.

3.4 Data Access Specifications 34

3.4 Data Access Specifications
Data access specification refers to the ways of providing data dependencies information
that implies and ensures correct execution order between computing entities, such
as tasks in the case of the OpenMP and OmpSs-2 models. This information can be
provided at compile-time, which relies on static analysis of the source code, at run-time,
discovers dependencies during the program execution, or via specific analysis tools and
instrumentation, which we refer to as automatic.

3.4.1 Compile-time

Many research efforts target automatic compile-time parallelisation, e.g., Cetus [75],
DawnCC [76, 77], AutoPar [78], Pluto [79] and TaskMiner [80]. These primarily target
data parallelism, and only TaskMiner is specific to tasks. While some overlap with our
work, the purpose is very different. These tools target the conversion of sequential to
parallel code. As they analyse the code at compile time, there is no runtime overhead,
but they typically only support code that follows a particular structure. Our auto clause
does not determine the strong accesses of the subtasks that do the work. Instead, it
aggregates information already known to the runtime so that fine-grained dependencies
can be determined among subtasks that different concurrent parent tasks have created.

3.4.2 Run-time

OpenMP 5.1 [9] introduces omp_all_memory, which matches all accesses of previous
sibling tasks. It is a convenient way to enforce a dependency that serialises with all
prior tasks with specified access. Our proposal does not imply any ordering with respect
to previous tasks. Instead, it is a way to indicate that some of the weak accesses on
behalf of subtasks have not been specified. We are aware that no related work has
solved the same problem.

3.4.3 Automatic

Tareador [81] uses an LLVM compiler stage to instrument all read–write instructions in
a sequential application. This instrumentation can determine the strong data accesses
and help explore potential parallelism strategies. It has been successfully used for this
purpose in undergraduate courses on parallelism. StarSsCheck [82] is a tool based on
Valgrind [83] that verifies the correctness of the strong accesses in a task-based program.

3.4 Data Access Specifications 35

Linter [84, 34] is a runtime dynamic binary instrumentation tool that addresses the
same problem. These tools all introduce enormous performance overhead of at least an
order of magnitude. Our results demonstrate that our approach has a dramatically
smaller overhead by concentrating on determining the weak accesses and assuming
that the strong accesses are correct.

CHAPTER 4

Automatic aggregation of data accesses

4.1 Introduction
Maximising the underlying hardware utilisation requires creating enough work to keep
all processing elements busy (e.g. CPU cores). This is a synonym for creating enough
tasks to keep all the cores busy in task-based programming models. A solution is to
use nested tasks to build a full dependency graph in parallel by concurrently executing
multiple parent tasks. Tasking models such as OpenMP and OmpSs-2, however, restrict
task creation until the addresses and sizes of all its accesses are known. This includes
the parent task accesses, and all the accesses of its subtasks, their subtasks, and so on,
also need to be inside specified regions. This restriction only applies to the dependencies
of the created tasks and not all accesses in the program.

This chapter introduces the auto and none clause, addressing the aforementioned
limitations that have been introduced in more detail in Chapter 1.

4.2 Motivation

4.2.1 Precise specification of data accesses without taskwaits

Listing 4.1–4.3 shows three versions of an example program that performs a matrix
multiplication to calculate the upper triangle of symmetric 𝐶 = 𝐴𝐵 followed by a
Cholesky decomposition of 𝐶. The three matrices are stored as hypermatrices, i.e.,
element A[i][j], B[i][j] or C[i][j] is either NULL or a pointer to the actual block. For
simplicity, only the data accesses involving matrix 𝐶 are shown. We identify tasks
using the OmpSs-2 label clause, which provides a string literal that can be used by a

4.2 Motivation 37

performance or debugger tool to identify the tasks in a human-readable format. In the
spirit of building the dependency graph in parallel, the tasks in each row of matrix 𝐶

are created by a different parent task, labelled row.
Listing 4.1 has a precise specification of the data accesses of the matmul and potrf

tasks, but it requires the taskwait on line 21. There is otherwise no way to connect
the dependency on the actual blocks, written *C[i][j], from matmul to potrf. The
taskwait is needed to ensure that the main program creates the potrf tasks with the
*C[i][j] access at the correct address allocated on line 9, and that these tasks cannot
be executed until the block has been written. The accesses to *C[i][j] are still required
to serialise the matmul tasks that contribute to the same block of 𝐶 and to manage the
dependencies among the tasks performing the Cholesky decomposition (only potrf is
shown).

1 typedef double Block[TS][TS];
2 Block *A[NT][NT], *B[NT][NT], *C[NT][NT];
3 // Matrix multiplication
4 for (int i = 0; i < NT; i++)
5 {
6 #pragma oss task depend(out : C[i][0; NT]) label("row")
7 for (int j = i; j < NT; j++)
8 {
9 C[i][j] = calloc(1, sizeof(Block));

10 for (int k = 0; k < NT; k++)
11 {
12 if (A[i][k] && B[k][j])
13 {
14 #pragma oss task depend(inout : *C[i][j]) label("matmul")
15 dgemm(A[i][k], B[k][j], C[i][j]);
16 }
17 }
18 }
19 }
20

21 #pragma oss taskwait
22

23 // Cholesky decomposition
24 for (int k = 0; k < NT; k++)
25 {
26 if (C[k][k])
27 {
28 #pragma oss task depend(inout : *C[k][k]) label("potrf")
29 potrf(C[k][k]);
30 }
31 // Rest of Cholesky
32 }

Listing 4.1 Approach with additional synchronisation (taskwait)

4.2 Motivation 38

Despite being able to connect the dependencies from matmul to potrf, the taskwait

impedes the concurrent creation and execution of tasks, and parallelism drops to zero
waiting and is limited by the slowest task before the taskwait. Figure 4.1 shows an
execution trace of the Listing 4.1 and how all the matmul must all finish before the
potrf can start executing after the taskwait.

Figure 4.1 Extrae/Paraver trace of example in Listing 4.1. The execution time of
potrf is very short, so these tasks are not visible in the traces.

A workaround might be nesting potrf inside a parent task that has a strong access
on C[i][j]. However, the taskwait cannot be avoided in this case either. While this
would correctly delay the creation of potrf and materialise its access to *C[i][j] at
the right address, it will not enforce any dependencies between matmul and potrf. This
is because these dependencies can only be linked if both their parents, row and the
parent of potrf, have data accesses to *C[i][j] in at least a weak variant. We have
simply moved the original problem, the data access to *C[i][j] at an unknown address,
from potrf to its parent. Adding the wait clause to row, which disables early release,
would work, but it would delay the execution of potrf until a whole row of 𝐶 has been
written. Moreover, it is complex even for this simple example; the dependence is easy
to miss, and the resulting code would be obscure and error-prone.

Listing 4.2 shows a conventional solution using a sentinel. We replace each access
on the block *C[i][j] with an access on the pointer to the block, C[i][j]. Tasks matmul

and potrf have inout accesses on the pointer C[i][j], not because they modify the
pointer but because they modify the block that it points to. Although sentinels are
commonly used this way, this approach has three problems. First, it breaks the idea
that data accesses are a unified method to specify ordering constraints, data affinity

4.2 Motivation 39

and data transfers. Since the data accesses are “fake” and only for correctly enforcing
ordering constraints, the runtime cannot optimise data locality properly. In particular,
the runtime cannot take account of Non Uniform Memory Access (NUMA) affinity
on the block, *C[i][j] when scheduling matmul and potrf. The program also becomes
unsuitable for task offloading via OmpSs-2@Cluster. Secondly, the direct connection
between the pragma annotations and the behaviour of the task is broken, reducing
clarity. Thirdly, if the matmul and/or potrf tasks were decomposed into smaller subtasks,
the use of sentinels would have to be redesigned throughout the whole program to
enable fine-grained dependencies among these subtasks.

1 // Matrix multiplication
2 for (int i = 0; i < NT; i++)
3 {
4 #pragma oss task depend(out : C[i][0; NT]) label("row")
5 for (int j = i; j < NT; j++)
6 {
7 C[i][j] = calloc(1, sizeof(Block));
8 for (int k = 0; k < NT; k++)
9 {

10 if (A[i][k] && B[k][j])
11 {
12 #pragma oss task depend(inout : C[i][j]) label("matmul")
13 dgemm(A[i][k], B[k][j], C[i][j]);
14 }
15 }
16 }
17 }
18 // Cholesky decomposition
19 for (int k = 0; k < NT; k++)
20 {
21 #pragma oss task depend(inout : C[k][k]) label("potrf")
22 if (C[k][k])
23 {
24 potrf(C[k][k]);
25 }
26 // Rest of Cholesky
27 }

Listing 4.2 Approach with a “fake dependency” (sentinel)

Finally, Listing 4.3 shows our proposed solution using auto. The precise semantics
of auto will be described in Section 4.3. The row tasks have an output access on the
pointers, C[i][0;NT], allocated by the task, as well as an auto access to cover all the
data accesses of their matmul subtasks, which are unknown at the time that the row

tasks are created. The none access is an optimisation to enable the row tasks to run
concurrently, and it is described below. The row tasks create the matmul subtasks
that will perform the matrix multiplication, and they finish without waiting for these

4.2 Motivation 40

subtasks to complete. Since the first weakpotrf task has a strong access on the pointer
C[0][0], it can execute and create its subtask as soon as the first row task finishes.
When all the matmul tasks that calculate this block are complete, the first potrf task
can begin execution due to the dependency on *C[0][0].

1 // Matrix multiplication
2 for(int i=0; i<NT; i++) {
3 #pragma oss task depend(out: C[i][0;NT]) depend(auto) depend(none: C[0;NT][0;NT])

label("row")
4 for(int j=i; j<NT; j++) {
5 C[i][j] = calloc(1, sizeof(Block));
6 for(int k=0; k<NT; k++) {
7 if (A[i][k] && B[k][j]) {
8 #pragma oss task depend(inout: *C[i][j]) label("matmul")
9 dgemm(A[i][k], B[k][j], C[i][j]);

10 }
11 }
12 }
13 }
14 // Cholesky decomposition
15 for (int k=0; k<NT; k++) {
16 #pragma oss task depend(in: C[k][k]) depend(auto) label("weakpotrf")
17 if (C[k][k]) {
18 #pragma oss task depend(inout: *C[k][k]) label("potrf")
19 potrf(C[k][k]);
20 }
21 // Rest of Cholesky
22 }

Listing 4.3 Approach with proposed auto data accesses

The none access (see Section 4.3.2) on row is an optimisation to allow concurrent
creation of the full task dependency graph. It does not affect the fine-grained depen-
dencies among the matmul, potrf and similar tasks (not shown) that do the majority of
the work. A none access indicates that no accesses need to be inferred in the region
beyond those explicitly expressed by the other task accesses. In particular, the row

tasks do not create any subtasks that access any elements of 𝐶, except possibly C[i][j].
Without none, the runtime would have to consider this possibility, in which case the
sequential ordering rules would require an ordering dependency between a subtask of
one row task and a later row task. Since this situation remains a possibility until the
earlier row task is completed, the overall effect would be to serialise all the row tasks.
The none clause says that this cannot happen, so all the row tasks can be executed
concurrently to build the dependency graph in parallel.

The version using the auto clause has several advantages. Firstly, the data accesses
unify the information specification needed to enforce task ordering, program data

4.2 Motivation 41

transfers, and optimise data locality. Secondly, the annotations are clear and flexible
because they match the task’s actual accesses. Thirdly, the task dependency graph
can be constructed in parallel and well before task execution, maintaining parallelism
and providing maximum ability for the scheduler to optimise load balance and data
locality.

4.2.2 Productivity and Incremental Path for Nested Tasks

Listing 4.4 shows an example program with nested tasks. Task parent creates several
tasks, each with label child, to do some of its work. In order to be properly nested
according to the OmpSs-2 nesting rules, parent must itself have accesses, in at least the
weak variant, covering all the accesses of its subtasks. This requires the multidependency
on line 1, which burdens the programmer. It is redundant, as it duplicates information
that the runtime can discover, and it is time-consuming and error-prone to write these
annotations for all the parent tasks.

1 #pragma oss task depend(weakin : {a[i][0; len[i]], i = 0; N}) label("parent")
2 {
3 // ...
4 for (int j = 0; j < N; j++)
5 {
6 #pragma oss task depend(inout : a[j][len[j]]) label("child")
7 {
8 // Update a[j][0] ... a[j][len[j]]
9 // ...

10 }
11 }
12 }

Listing 4.4 Parent task requires a multi-dependency for its children

Listing 4.5 shows the same example using the proposed auto dependency clause. It
is clear that this approach allows a functional version to be obtained with much less
effort. In terms of the ordering of the subtasks that do the majority of work, as well
as data locality and data transfers, the behaviour is the same as that of Listing 4.4.
The only cost is a small amount of overhead, which may, if necessary, be incrementally
reduced by refining the task accesses guided by performance analysis.

4.3 Programmer’s Model 42

1 #pragma oss task depend(auto) label("parent")
2 {
3 // ...
4 for (int j = 0; j < N; j++)
5 {
6 #pragma oss task depend(inout : a[j][len[j]]) label("child")
7 {
8 // Update a[j][0] ... a[j][len[j]]
9 // ...

10 }
11 }
12 }

Listing 4.5 Parent task with auto clause

Listing 4.6 is the first step in performance optimisation, where the programmer has
declared that the subtasks of parent have unknown accesses, but they are all known to
be in array a[0;M]. If a later task has strong access on some other region of memory,
then knowing that there can be no ordering constraint that would require it to execute
after a subtask of parent allows the tasks to be executed concurrently.

1 #pragma oss task depend(auto : a[0; M]) label("parent")
2 {
3 // ...
4 for (int j = 0; j < N; j++)
5 {
6 #pragma oss task depend(inout : a[j][len[j]]) label("child")
7 {
8 // Update a[j][0] ... a[j][len[j]]
9 // ...

10 }
11 }
12 }

Listing 4.6 Parent task with auto clause specifying a range

4.3 Programmer’s Model
Our main extension to the programmer’s model is the auto and none clauses. The auto

clause, in fact, is an access type, similar to in, out, inout and so on.

4.3.1 Auto Access Type

The semantics of the auto access type indicate the possible range of the virtual memory
that the auto uses to infer the subtask accesses. Figure 4.2a illustrates this, where

4.3 Programmer’s Model 43

the highlighted green area represents the range from which auto will infer the subtask
accesses. By default, it covers the whole virtual address space from 1 to SIZE_MAX − 1
inclusive.1

In certain cases, automatic aggregation may only be necessary for specific regions.
These regions could include unknown subtask accesses within a known array, memory
allocations within a known memory pool, or memory obtained from specially mapped
memory regions. In such cases, specific regions can be defined for access using the
syntax depend(auto: addr[offset;size]) that narrows down the range of auto to that
specific memory region. An illustration is shown in Figure 4.2b, which limits the
auto range to the memory region M[0;10]. The syntax to achieve this is depend(auto:

M[0;10]).

(a) Default auto range

(b) Using specific region for auto inference range.

Figure 4.2 Semantics of auto access type

1The access starts at 1 because accesses starting at NULL are ignored.

4.3 Programmer’s Model 44

4.3.2 None Access Type

Additionally, it may be known that none of the descendent tasks of a task with the auto

clause will access a specific region of memory, and some analysis show that excluding
this region from the auto range is beneficial for the performance. We introduce none

access type to indicate a region will not accessed by the current task (and/or its
subtasks) and can safely assume that no accesses need to be inferred in that region
beyond those explicitly expressed by the other task accesses. An example scenario is
when a performance analysis shows that a later task that should execute concurrently
is serialised after the current task. It happens when the later task has a strong access
on a memory region and the runtime cannot know if the current task will create a
subtask that accesses the same memory. This subtask would be ordered before the
later task according to the sequential task ordering. Such serialisation can sometimes
be solved by narrowing the scope of the auto access by specifying an access region as a
none access region as indicated by region M[0;10] in Figure 4.3, and the code to achieve
this is depend(none: M[0;10]).

This example was illustrated by the row task in Listing 4.3 in Section 4.2.1. Without
the none clause, the runtime would have to assume that a row task might create
subtasks that access elements of C other than C[i][j]. This assumption would force
the runtime to serialize row tasks to avoid potential conflicts. By specifying none, we
inform the runtime that such conflicts will not occur, allowing row tasks to execute
concurrently.

Figure 4.3 Semantics of none access type

Both auto and none syntaxes is similar to the syntax of usual access types such as in,
out, and inout. The proposed syntax is given in Figure 4.4, which shows OpenMP-style
and OmpSs-2-style data access specifications. A task with an auto clause still requires

4.3 Programmer’s Model 45

strong data accesses for the data that is accessed directly by the task. But it does not,
in principle, require any explicit (weak or strong) accesses on behalf of its subtasks.

#pragma omp task depend(auto: <list >)

(a) Proposed OpenMP-style syntax

#pragma oss task auto
#pragma oss task auto(<region >)

(b) OmpSs-2-style syntax

Figure 4.4 Proposed OpenMP and OmpSs-2 syntax for auto

4.3.3 Upgrade Rules

As described in Section 2.1.2, specific access rules govern multiple accesses covering
the same memory region. Table 2.1 presents the basic upgrade rules for ordinary
types. Table 4.1 specifies how to resolve the situation for auto and none clauses. For
example, a task that has both depend(in: a) (first row) and depend(out: a) (second
column) is equivalent to one with the single access depend(inout: a), since inout implies
all necessary ordering constraints and data transfer requirements and there is no less
restrictive data access type available. The combined access is strong if either access
is strong. We extend to auto accesses by defining that auto is overridden by all other
access types. So, for example, the combined effect of overlapping auto and weakin

accesses is weakin. A none access that overlaps any access type other than auto adds
no additional ordering or data transfer requirements, so it has no effect. But none is a
specific access type that overrides auto type. The upgrade rules are commutative, so the
combined effect of two accesses does not depend on the order in which the programmer
writes them. The table is, therefore, symmetric, and only the upper triangle is shown.
The upgrade rules are also associative, so the order in which the upgrade rules are
applied is insignificant.

4.3.4 Fragmentation

It is valid in OmpSs-2, and therefore OmpSs-2@Cluster, for data accesses of the same or
different tasks to partially overlap. The fragmented linear region dependencies, which
are mandatory in the OmpSs-2 specification and the only supported dependency system
for OmpSs-2@Cluster, will fragment (and unfragment) data accesses accordingly [27].

4.4 Implementation 46

Table 4.1 Extended access upgrade rules of with the new auto and none clauses.

in out

inout

concurrent

commutative

reduction

none

auto

in in inout inout inout inout invalid in in

out - out inout inout inout invalid out out

inout - - inout inout inout invalid inout inout

concurrent - - - conc. comm. invalid conc. conc.

commutative - - - - comm. invalid comm. comm.

reduction - - - - - reduction* red. red.

none - - - - - - none none

auto - - - - - - - auto

* Non-identical overlapping reductions on the same task are undefined.

An auto access may initially cover a large part of the virtual address space, but it may
be decomposed into subregions.

4.3.5 Inheritance of auto and none regions

If a task with the auto clause creates a subtask that, in turn, has one or more auto

clauses, the subtask’s clause will be restricted to cover most of the regions covered by
parent accesses after the upgrade rules (other than none). This means that restrictions
on the scope of analysis of a task and, by implication, its descendants, can be provided
once at the the topmost level of the program, without duplicating this information
throughout the codebase.

4.4 Implementation

4.4.1 Compiler

The only necessary change in the compiler is to add the new auto and none access
types for task accesses. The compiler transformations for these access types are
analogous to those for the existing in, inout, out, concurrent and commutative access
types, the only difference being that an auto dependency is allowed to omit the access
region. These two data access types have also been added to the Nanos6 API. While

4.4 Implementation 47

sophisticated compiler analysis could be used to narrow the scope of the auto access to
reduce overhead and avoid serialisation, we have yet to find it necessary in our first
implementation.

4.4.2 Runtime

4.4.2.1 Baseline Implementation

A strong advantage of this proposal is that there is a simple baseline implementation.
Three things are required. First, the runtime must respect the extended access upgrade
rules in Table 4.1. Secondly, it must remove all regions with auto access-type that are
not part of the parent accesses. It must also downgrade auto accesses inside a parent’s
in access to weakin. It must do this to conform to the programmer’s model and to ensure
proper nesting of data accesses. Thirdly, it must treat any remaining auto accesses like
weakinout. This is a valid implementation of the programming model. There is also no
overhead for programs that do not have auto accesses. The overhead is already low for
SMP (Section 4.2.2), but two optimisations are necessary for OmpSs-2@Cluster.

4.4.2.2 Optimising non-accessed regions when offloading tasks

The job of a parent task with an auto access is typically to create the subtasks that will
do the computations. Most of the auto access(es) will likely not be needed for subtask
accesses. Such regions can be identified when the parent task is completed, which is
generally a long time before the data values are ready and off of the critical path. These
accesses can be recognised as those for which the runtime system has not registered
any subtask in the bottom map, the map from addresses to the currently-last subtask
(if one exists) that is used to build the dependency graph. The OmpSs-2@Cluster
runtime identifies such accesses and sends a message to the offloading node to prevent
an unnecessary eager data send. When the region later becomes ready, there is usually
a message to the remote node to indicate that it is ready and another message back,
passing this information to the next task. As an optimisation, the offloading node
skips this ping-pong, reducing the latency of the critical path.

4.4.2.3 Optimising read-only regions when offloading tasks

In OmpSs-2@Cluster, if a task has an in access, then as soon as it can read the data,
this permission (read satisfiability) is immediately passed to the successor task, even if
the task is offloaded without going via the remote node. It is only necessary to inform

4.4 Implementation 48

back to the offloader when the access has been completed. For an auto read-only access,
this ability is only passed back to a successor on a different node when the access is
complete. The solution is to send a notification similar to the non-accessed notification
of Section 4.4.2.1. On receipt of this notification, the offloader sets a flag to indicate
that read satisfiability can be immediately propagated to the next task.

4.5 Methodology and Benchmarks 49

4.5 Methodology and Benchmarks

4.5.1 Hardware and software platform

1. Programming model:
We draw our study based on OmpSs-2@Cluster task-based parallel programming
model and specifications (Section 2.2). We use Nanos6@Cluster runtime system
as the reference implementation of the OmpSs-2@Cluster programming model
(Section 2.3.2). In addition, the Mercurium source-to-source compiler is used to
translate source code written with OmpSs-2 directives into a parallel taskfied
version of the source code. Both Nanos6 and Mercurium are developed by the
programming models group at BSC.

2. Software tools:
We use Extrae [33] performance instrumentation tool for generating execution
traces for detailed insights into the runtime implementation behaviour and the
benchmark performance. Paraver [85] is the tool we use to analyse and visualise
execution traces by Extrae. The Performance Tools Group developed the two
tools at BSC. GNU Compiler Collection (GCC) 7.2.0 was used to compile all
benchmarks and the modified runtime. The runtime uses Intel MPI 2018.4, which
is the default and supported the implementation of MPI on MareNostrum, which
fully exploits the 100 Gb/s Intel OmniPath network and Host Fabric Adapter
(HFI) Silicon 100 series PCIe adaptor.
The benchmarks use the Basic Linear Algebra Subprograms (BLAS) functions
provided by Math Kernel Library (MKL) 2018.4. In addition, we used a regression
testing framework developed by us, which automated and monitored the perfor-
mance of the benchmarks between each stage of the modified Nanos6@Cluster
runtime development. The Simple Linux Utility for Resource Management
(SLURM) [86] was used as the cluster management and job scheduling system
for handling nodes’s resource allocation on MN4.

3. Hardware equipment:
We evaluated our modified implementation of the Nanos6@Cluster and performed
our experiments on up to 32 nodes of the general-purpose partition of the
MareNostrum 4 supercomputer (MN4) [87]. MareNostrum 4 comprises 3456
compute nodes, each with two 24-core Intel Xeon Platinum 8160 sockets at 2.10
GHz, for a total of 48 cores per node. Each socket has a shared 32 MB L3 cache.

4.5 Methodology and Benchmarks 50

The memory capacity of nodes used have 96 GB physical memory (2 GB per core).
The interconnect is 100 Gb/s Intel Omni-Path with a fat tree.

4.5.2 Benchmarks

Table 4.2 list the benchmarks that were used for evaluation of the auto type. The
benchmarks represent common HPC applications used in the literature and depict
computation patterns known to expose well-known and previously studied OmpSs-
2@Cluster’s performance issues [7, 19, 18]. All experiments reflect the best empirical
blocksize or grainsize collected as a pre-experimenting step. In addition, all benchmarks
are executed in configurations of 2 processes per node (one per NUMA node), following
previous work [7], which found that using one process per socket led to better and less
variable results due to the more effective use of NUMA locality.

All benchmark kernels were in separate source files, identical for all programming
models and compiled with the same compiler flags. Each data point shows the average
and standard deviation across ten runs for auto and five runs in taskitr case. Each run
executes runs in different batch jobs and is confirmed to have different node allocations,
which is essential to capture the randomness and variability in the cluster. In addition,
the same batch job was used to test all programming models using the same node
allocation to ensure fairness, meaning that for a single run, we test all variants of the
same benchmark on the same allocation.

We evaluate the auto clause on SMP for three benchmarks, matrix multiplication
(matmul-smp) and 𝑛-body (𝑛-body-smp) benchmarks are adopted from the examples
in [88] and the hypermatrix adopted from Section 4.2.1.

Since the overhead of our implementation on SMP is low, we also include more
challenging benchmarks using OmpSs-2@Cluster evaluated for the best possible and
similar configurations as Aguilar et al. [7]. multi-matvec is a sequence of identical
dense double-precision matrix–vector multiplications, with the matrix distributed by
rows and without dependencies between iterations. It has fine-grained tasks with
complexity 𝑂(𝑛2) and no inter-node data transfers. multi-matmul is a sequence of
dense double-precision matrix–matrix multiplications, with larger 𝑂(𝑛3) tasks and also
no inter-node data transfers.

jacobi is an iterative double-precision Jacobi solver for dense, strictly diagonally
dominant systems. It is equivalent to repeatedly pre-multiplying a vector by a dense
square matrix. It has the same 𝑂(𝑛2) complexity as multi-matvec, but an all-to-all
communication pattern, making it a particularly good fit for fork–join parallelism.

4.6 Evaluation and Results 51

cholesky is a Cholesky decomposition with a complex execution and dependencies
pattern with complexity 𝑂(𝑛3)/3. This benchmark performs a higher number of smaller
tasks, compared with matmul, and it introduces load imbalance and irregular patterns.
The optimised version uses task for and memory reordering optimisations to reduce
fragmentation and data transfers.

The 𝑛-body code [89] is an OmpSs-2@Cluster tasking implementation of Barnes–
Hut [90]. The baseline implementation has a taskwait between constructing the tree
and updating the particles. The optimised implementation uses an auto clause to
replace the taskwait with a dependency.

Table 4.2 Evaluation benchmarks for the auto approach.

Benchmark Parameters Description

SMP:
hypermatrix 𝑁 = 16384 to 55296 Hypermatrix matrix multiplication followed by Cholesky de-

composition
matmul-smp 𝑁 = 4096 Matrix multiply without BLAS using nested weak and strong

tasks [88]
𝑛-body-smp 𝑁 = 262144 𝑂(𝑛2) 𝑛-body code with two nested loops to determine the

forces on the particles [88]
Distributed memory:

multi-matvec 𝑁 = 65536 Repeated dense matrix–vector multiplication using nested
weak and strong tasks [7]

multi-matmul 𝑁 = 32768 Repeated dense matrix-matrix multiplication using nested
weak and strong tasks [7]

jacobi 𝑁 = 65536 Jacobi iteration with nested weak and strong tasks [7]
cholesky 𝑁 = 65536 Cholesky decomposition with nested weak and strong tasks,

task for, memory reordering and priority [7]
𝑛-body 𝑁 = 1000000 Barnes–Hut using nested weak tasks and strong taskloops

4.6 Evaluation and Results
This section presents the results of the evaluated benchmarks, which are described in
Section 4.5.2 and summarised in Table 4.2. We evaluate a subset of the benchmarks
on SMP and on clusters up to 32 nodes, comparing the performance using auto versus
using taskwait. In addition, we extend the evaluation for three variants on cluster up
to 32 nodes as well: manual, auto (unoptimised), and auto (optimised) that employs
optimisations described in Section 4.4.2. The manual variant is adapted from the original
implementation of [7], which uses nested tasks with the parent using weak dependencies,
and the subtasks use strong dependencies. The auto (unoptimised) version is simply
substituting all weak dependencies in the manual with auto clause, keeping everything

4.6 Evaluation and Results 52

else the same. In some cases, careful performance analysis and the adjusting of some
of the dependencies accordingly can give a better performance representing a way of
using the auto clause for obtaining a first step optimised version in a short time as in
Figure 4.14. Listing 4.7 and 4.8 show part of the cholesky benchmark demonstrating
an example of substituting weak dependencies with auto accesses, which is emphasised
by the highlighted lines in the listing. We remark on the results by evaluating the
productivity of the manual and auto variants as a function of the number of weak
access substituted with auto access in the whole benchmark.

1 #pragma oss task node(node) label("weak_syrk") \
2 weakin({A[idxk0 + i*blocks_per_node; npcols][0;ts][0;ts], i=0; pcols}) \
3 weakinout(A[first; count][0;ts][0;ts]) \
4 {
5 for (size_t i = k + 1; i < nt; ++i) {
6 int nodeii = get_block_node (&info , i, i);
7 if (nodeii == node) {
8 // ...
9 #pragma oss task \

10 in(Aki[0; ts][0; ts]) \
11 inout(Aii[0; ts][0; ts]) \
12 node(nanos6_cluster_no_offload) label("syrk")
13 oss_syrk(ts, Aki , Aii , k, i, i, 0);
14 }
15

16 for (size_t j = k + 1; j < i; ++j) {
17 int nodeji = get_block_node (&info , j, i);
18 if (nodeji == node) {
19 // ...
20 #pragma oss task \
21 in(Aki[0; ts][0; ts]) \
22 in(Akj[0; ts][0; ts]) \
23 inout(Aji[0; ts][0; ts]) \
24 node(nanos6_cluster_no_offload) label("gemm")
25 oss_gemm(ts, Aki , Akj , Aji , k, j, i, 0);
26 }
27 }
28 }
29 }

Listing 4.7 Example showing part of cholesky benchmark manual implementation
using nested tasks.

4.6 Evaluation and Results 53

1 #pragma oss task auto nowait node(node) label("auto_syrk")
2 {
3 for (size_t i = k + 1; i < nt; ++i)
4 {
5 int nodeii = get_block_node (&info , i, i);
6 if (nodeii == node) {
7 // ...
8 #pragma oss task \
9 in(Aki[0; ts][0; ts]) \

10 inout(Aii[0; ts][0; ts]) \
11 node(nanos6_cluster_no_offload) label("syrk")
12 oss_syrk(ts, Aki , Aii , k, i, i, 0);
13 }
14

15 for (size_t j = k + 1; j < i; ++j) {
16 int nodeji = get_block_node (&info , j, i);
17 if (nodeji == node) {
18 // ...
19 #pragma oss task \
20 in(Aki[0; ts][0; ts]) \
21 in(Akj[0; ts][0; ts]) \
22 inout(Aji[0; ts][0; ts]) \
23 node(nanos6_cluster_no_offload) label("gemm")
24 oss_gemm(ts, Aki , Akj , Aji , k, j, i, 0);
25 }
26 }
27 }
28 }

Listing 4.8 Example showing part of cholesky benchmark where the weak accesses
in Listing 4.7 are substituted with auto access.

4.6.1 SMP Evaluation

We start by showing the performance when using auto compared to taskwait for the
hypermatrix example program from Section 4.2.1. The performance is visualised as an
execution trace collected with Extrae tracing tool [33] and visualised with Paraver
performance visualizer tool [85]. Figure 4.5a shows the taskwait, which is similar to the
trace already shown in 4.2.1, and Figure 4.5b shows the auto performance. The trace
is for a problem size of 𝑁 = 30720, which corresponds to an upper triangular matrix of
3.5 GB, on all 48 cores of a single node on the MN4. In Figure 4.5a, we see that all
matmul tasks must be completed before the Cholesky decomposition can start. This
synchronisation is due to the taskwait on line 21 of the program in Listing 4.4. Since
the number of matmul tasks is different for different blocks of the matrix multiplication,
the loads on the cores are not perfectly balanced. The Cholesky decomposition involves
the trsm, gemm, syrk tasks, as well as potrf, which is too small to see, and several weak
tasks, which are also too small to see. In Figure 4.5b, we see the effect of the auto

4.6 Evaluation and Results 54

clause in correctly specifying the precise task dependencies without needing a taskwait
or sentinel. The traces match the motivational example in section 4.2.1. Both traces
use the same 𝑥-axis scale and for the same time duration.

(a) Using taskwait

(b) Using auto clause

Figure 4.5 Extrae/Paraver trace of sparse hypermatrix benchmark. Both variants
have precise data access on all tasks. Subfigure (a) has a taskwait and subfigure (b)
uses the auto clause, which avoids the synchronization after the matrix multiplication.
The execution time of potrf is very short, so these tasks are not visible in the traces.

Figure 4.6 shows the TFLOP/s obtained for hypermatrix, as the problem size is
varied between 𝑁 = 16384 (1 GB) and 𝑁 = 55296 (11.4 GB). All data points use all
48 cores of a single MareNostrum 4 node. They are the average of five executions;
the standard deviation is < 1% in all cases. For the larger problem sizes, there is a
roughly 5% performance increase. While this improvement is not enormous, it does
demonstrate the potential. It is limited by the critical path of the final part of the
Cholesky decomposition and could likely be improved using a better task scheduling
policy.

4.6 Evaluation and Results 55

Figure 4.6 Performance of auto and taskwait versions of sparse hypermatrix on 1
node

Figure 4.7 shows the performance of the matmul-smp. We see that across the whole
range of block sizes, the simpler implementation using auto is always within 19.6% of
the original “manual” version.

Figure 4.7 Throughput of the matmul-smp benchmark on 1 node for the same problem
size with different block sizes. The version with auto to deduce all weak accesses is
within 19.6% of the original manual version.

4.6 Evaluation and Results 56

Similarly Figure 4.8 show the 𝑛-body-smp performance on a single node, reporting
10% of the of the original “manual” version as well

Figure 4.8 Throughput of the n-body-smp benchmark on 1 node for the same problem
size with different block sizes. The version with auto to deduce all weak accesses is
within 10% of the original manual version.

4.6.2 Cluster Evaluation (auto vs. taskwait)

Figure 4.9 shows the performance of the auto clause for 𝑛-body, with strong scaling
on 1 to 32 nodes with 1 process per node. Both versions build the tree of unknown
size, using a taskloop with a commutative dependency on the tree, and another task
calculates the forces and updates the particles using a taskloop. The taskloop is
automatically distributed among the nodes, so the tree size must be correct to avoid
copying too much data. The taskwait version needs a taskwait to obtain the size of the
tree, whereas the auto version encloses the taskloop in a parent task with an auto data
access. We see in Figure 4.9 that the auto version has consistently higher throughput
than the manual version with taskwaits, at 195,000 particles per second on 16 nodes,
compared with 137,000 particles per second on 16 nodes for the manual version with
taskwaits. This is a 1.4 times increase in throughput.

4.6 Evaluation and Results 57

Figure 4.9 Strong scaling of auto and taskwait versions of 𝑛-body on 1 to 32

An execution trace of the 𝑛-body benchmark on 4 nodes is shown in Figure 4.10,
which was collected and visualized similarly to the trace shown in Section 4.6.2. The
trace is for 10 iterations of the same problem size (1M particles) as in the results shown
in Figure 4.9. Both variants are shown starting from the beginning of the same iteration
and for the same duration. Both implementations create the tree locally on node 0;
this is denoted by the insert_body tasks. In addition, both implementations optimize
the memory access by “squash” or flattening the tree structure into a contiguous
array of cells, indicated by the squash_tree task. Finally, the force integration part
(integrate tasks) of the bodies in the tress is done using taskloop iterative construct that
automatically distributed among the node depending on grainsize [9] which controls
the size or amount of work assigned to each task in terms of number of loop iterations.

The taskwait variant uses 3 taskwait indicated by the dashed vertical lines in the
trace Figure 4.10a, after constructing the tree to obtain the size of the tree, and before
integrating the forces for the new iteration to make sure the data is squashed, and
between individual iterations. However, the auto variant does not need any taskwait,
which uses two weak tasks with nested strong subtasks. One weak task allocates the
tree, builds it, and squashes it. The second weak task performs the force integration
also with taskloop similar to the taskwait variant and using the same grainsize. It is
clearly seen that the auto variant can start creating the integration tasks immediately
without waiting as in the taskwait case, allowing for more parallelism.

4.6 Evaluation and Results 58

1
in

se
rt

_
bo

dy
sq

ua
sh

_
tr

ee
in

te
gr

at
e

(a
)

U
sin

g
ta

sk
w

ai
t

(b
)

U
sin

g
au
to

cl
au

se

F
ig

ur
e
4.
10

Ex
tr

ae
/P

ar
av

er
tr

ac
e

of
𝑛

-b
od

y
be

nc
hm

ar
k

on
4

no
de

s
fo

r
th

e
sa

m
e

tim
e

du
ra

tio
n.

4.6 Evaluation and Results 59

4.6.3 Cluster Evaluation (auto vs. manual)

This section shows the performance of the auto clause for the four benchmarks,
multi-matvec, multi-matmul, jacobi, and cholesky, with strong scaling from 1 to 32
nodes. In all of the results, The 𝑥-axis is the number of nodes, each with two processes.
The 𝑦-axis is the aggregate performance in GFLOP/s. As mentioned earlier, we
evaluate the performance for three variants: manual, auto (unoptimised) and auto
(optimised). The manual are the benchmarks in Aguilar et al. [7], which have complete
and precise weak accesses specified manually for each parent task. The auto (unopti-
mised) and auto (optimised) versions both have all of the weak accesses replaced by the
auto clause, with the default region covering the full address space (see Section 4.3.1).

In the manual variants, we were able to fairly closely (within about 4%) reproduce
the results in Aguilar et al. [7] that were initially evaluated for 1 to 16 nodes, and we
extended the evaluation to 32 nodes. In all cases, the auto (unoptimised) results are
within 3% of manual on a single node, but the performance drops significantly on more
than one node. Despite the performance drop, the auto (optimised) results provide a
reasonable scaling level for obtaining the first functional version of a program with
nested tasks in the shortest possible time with minimum effort as a productivity tool.

Figure 4.11 Strong scaling performance for multi-matvec benchmark using OmpSs-
2@Cluster on 1 to 32 nodes.

Figure 4.11 shows 3% performance degradation for multi-matvec on up to 8 nodes,
compared with the manual version. Similarly, Figure 4.12 shows 9% degradation on 8
nodes and 37% degradation on 16 nodes, again compared with the manual version.

4.6 Evaluation and Results 60

Figure 4.12 Strong scaling performance for jacobi benchmark using OmpSs-2@Cluster
on 1 to 32 nodes.

Figure 4.13 show a matching performance of the multi-matmul benchmark for the
manual and auto (optimised) with some variances due to noises indicated by the larger
error-bar.

Figure 4.13 Strong scaling performance for multi-matmul benchmark using OmpSs-
2@Cluster on 1 to 32 nodes.

Figure 4.14 shows the cholesky benchmark scaling only up to 4 nodes. Performance
analysis using Extrae/Paraver showed excessive control message communication before
one of the three offloaded tasks. Adding the true weak accesses to that task enables
scaling on up to 8 nodes with less than 36% degradation from the original “manual”

4.6 Evaluation and Results 61

version. The red curve indicates this result “first step opt” in Figure 4.14 as a first
step optimisation toward more efficient implementation in future.

Figure 4.14 Strong scaling performance for cholesky benchmark using OmpSs-
2@Cluster on 1 to 32 nodes.

4.6.4 Quantifying productivity

Quantifying auto productivity is challenging because the benefits of using auto are not
directly captured by common metrics such as the number of lines of code, which is
easily understandable and independent of the programming language [91]. As a more
convenient metric to the nature of how auto is utilized, in this section, we quantify the
productivity of auto based on the total number of weak accesses substituted by auto

accesses in the entire benchmark.
This approach relies on the fact that manual and auto implementations are similar,

differing only in the weak/auto accesses at the top-level tasks of any nested levels.
Strong accesses are not considered since the canonical form of nested tasks in OmpSs-
2@Cluster requires specifying memory regions accessed directly by top-level tasks as
strong accesses. Hence, both manual and auto implementations will have the same strong
accesses, if any. Table 4.3 summarizes the productivity of all evaluated benchmarks in
this chapter. The table shows the total number of weak accesses present in all tasks of
the manual implementation for each benchmark, as well as the number of auto accesses
required to replace these weak accesses to obtain the auto implementation for the same
benchmark.

4.7 Conclusion 62

Table 4.3 Productivity as a function of number of accesses

Benchmark weak accesses auto accesses
jacobi 9 4
multi-matvec/multi-matmul/matmul-smp 3 1
cholesky 7 4
n-body-smp 3 2

4.7 Conclusion
In this chapter, we propose the auto clause, which indicates that the task annotations
may be incomplete due to unspecified subtask memory accesses or memory allocation.
The auto clause allows a task to be created before the data accesses of the task
and its descendants are known. Existing approaches need to either block using
a taskwait or substitute “fake” accesses known as sentinels. As there is no need
to block, our approach enables concurrent task creation and execution to continue
without interruption, maintaining parallelism and affording maximum freedom to
the scheduler to optimise load balance and data locality. Since task annotations can
match the actual data accesses, a single mechanism controls task ordering, program
data transfers on distributed memory, and optimises data locality. The auto clause
also provides an incremental path to develop programs with nested tasks because
an initial functional implementation can be created without the time-consuming
and error-prone specification of weak accesses on all parent tasks. We present a
straightforward runtime implementation with a few key optimisations. We evaluate
our approach using a hypermatrix multiplication followed by Cholesky decomposition
and a Barnes–Hut 𝑛-body application, which achieves a 1.4 times speedup on 32 nodes.
We evaluate programmer productivity by replacing all weak accesses by auto on two
SMP benchmarks, and four OmpSs-2@Cluster benchmarks show a < 4% slowdown for
three of the benchmarks on 8 nodes.

CHAPTER 5

Distributed taskiter

5.1 Introduction
Iterative data-flow applications employ iterative methods or multi-step simulation
techniques that usually involve dividing the iteration space into a series of tasks, each
executing a subset of the iteration space in parallel. In distributing tasking with
OmpSs-2@Cluster, iterative applications follow the same structure for distributing
work across multiple nodes with the nested tasking approach described in Section 2.3.4.
Listing 5.1 shows an iterative version of the example explained in Section 2.3.5.

1 for (int it = 0; it < NUM_ITERATIONS; ++it) {

2 // Task A

3 #pragma oss task node (1) depend(weakout:x)

4 { ... }

5

6 // Task B

7 #pragma oss task node (2) depend(weakin:x)

8 { ... }

9 }

Listing 5.1 OmpSs-2@Cluster iterative version of example in Listing 2.1.

Figure 5.1 illustrates the MPI control messages between nodes in this case, re-
sembling those of a typical offloaded OmpSs-2@Cluster application described in Sec-
tion 2.3.5. However, these messages are repeated for each executed iteration, resulting

5.1 Introduction 64

in a large number of control messages between the nodes as the number of iterations
increases.

Figure 5.1 Control messages for OmpSs-2@Cluster iterative application.

This chapter utilizes the taskiter iterative construct originally proposed in [1], and
defined in Section 2.4 to eliminate the excessive control messages shown in Figure 5.1
by leveraging the repetitive nature of HPC iterative applications that build the same
DAG at each iteration or timestep in multi-step simulation applications.

The control messages between nodes, in this case, are as follows:

• “Task New” messages for offloading copies of the original taskiter to all nodes in
the cluster.

5.1 Introduction 65

• “Data Transfer” messages for transferring the required data at each iteration.

• “Task Finished” messages sent when an offloaded task completes all iterations,
which are sent back to Node 0 to release the accesses.

We refer to our implementation as “ distributed taskiter ” to distinguish it from
the originally proposed taskiter in [1]. Figure 5.2 illustrates the distributed taskiter

control messages, emphasizing the significant difference between the control messages
in the original OmpSs-2@Cluster iterative application (shown in Figure 5.1) and those
in the taskiter approach. The only message overhead occurs at the beginning of
offloading the taskiter task to all nodes via the “Task New” messages and at the end
of execution via the “Task Finished” messages.

Figure 5.2 Distributed taskiter control messages.

5.2 Motivation 66

5.2 Motivation
This section motivates this part of our work through three variants of a Gauss–Seidel
2D heat equation for three different programming models:fork–join MPI + OpenMP
tasks, asynchronous TAMPI + OpenMP/OmpSs-2 tasks and OmpSs-2@Cluster with
distributed taskiter, shown in Listing 5.2, 5.3, and 5.4 respectively. The benchmark
is an in-place 2D stencil calculation where each element is updated based on the
values above and to the left from the current timestep and the values to the right and
below from the previous timestep. The matrix is a grid of NBY×NBX blocks, each
of size BSY×BSX elements. It is distributed among the processes cyclically by rows,
which is hard-coded in the case of the MPI+OpenMP and TAMPI+OpenMP/OmpSs-2
variants.

Listing 5.2 shows an implementation using fork–join parallelism with MPI and
OpenMP. The local part of the stencil calculation has NBY_LOCAL rows, including
the single-row halos at the top and bottom. The computation is done using tasks with
dependencies (lines 35 to 49 in Listing 5.2) to update all elements using 2D wavefront
parallelism in a timestep. The parallelism rises from zero at the beginning of the
timestep up to a maximum of the number of blocks along the shortest dimension. It
then drops back down to zero at the end of the timestep due to the taskwait on line 50.

5.2 Motivation 67

1 double matrix[NBY_LOCAL][NBX][BSY][BSX];
2 int main(int argc , char **argv)
3 {
4 int provided;
5 MPI_Init_thread(argc , argv , MPI_THREAD_MULTIPLE , &provided);
6 assert(provided == MPI_THREAD_MULTIPLE);
7 ...
8 for (int it = 0; it < NUM_ITERATIONS; it++)
9 {

10 MPI_Request request[NBX * 3];
11 int count = 0;
12 if (rank != 0)
13 {
14 // Send first compute row
15 for (x = 1; x < NBX - 1; x++)
16 {
17 MPI_Isend (& matrix [1][x][0][BSY - 1], BSX , MPI_DOUBLE , rank - 1, bx + it * NBX ,

MPI_COMM_WORLD , &request[count ++]);
18 }
19 // Receive upper border
20 for (x = 1; x < NBX - 1; x++)
21 {
22 MPI_Irecv (& matrix [0][x][0][BSY - 1], BSX , MPI_DOUBLE , rank - 1, bx + it * NBX ,

MPI_COMM_WORLD , &request[count ++]);
23 }
24 }
25 if (rank != rank_size - 1)
26 {
27 // Receive lower border
28 for (x = 1; x < NBX - 1; x++)
29 {
30 MPI_Irecv (& matrix[NBY_LOCAL - 1][x][0], BSX , MPI_DOUBLE , rank + 1, bx + it *

NBX , MPI_COMM_WORLD , &request[count ++]);
31 }
32 }
33 MPI_Waitall(count , request , MPI_STATUSES_IGNORE);
34
35 for (int y = 1; y < NBY_LOCAL - 1; y++)
36 {
37 for (int x = 1; x < NBX - 1; x++)
38 {
39 #pragma omp task \
40 depend(in : matrix[y - 1][x]) \
41 depend(in : matrix[y][x - 1]) \
42 depend(in : matrix[y][x + 1]) \
43 depend(in : matrix[y + 1][x]) \
44 depend(inout : matrix[y][x])
45 {
46 GaussSeidelBlock(matrix , x, y);
47 }
48 }
49 }
50 #pragma omp taskwait
51 if (rank != rank_size - 1)
52 {
53 // Send last compute row
54 count = 0;
55 for (x = 1; x < NBX - 1; x++)
56 {
57 MPI_Isend (& matrix[NBY_LOCAL - 2][x][0], BSX , MPI_DOUBLE , rank - 1, bx + it *

NBX , MPI_COMM_WORLD , &request[count ++]);
58 }
59 MPI_Waitall(count , request , MPI_STATUSES_IGNORE);
60 }
61 }
62 }

Listing 5.2 Fork–join MPI + OpenMP tasks of Gauss–Seidel 2D heat equation.

5.2 Motivation 68

Listing 5.3 shows an asynchronous TAMPI + OpenMP implementation. This
version eliminates the taskwait between timesteps, and it has higher performance due
to 3D wavefront parallelism, which allows concurrent execution of tasks from different
timesteps. The parallelism rises from zero at the beginning of the first timestep, and it
stays at the maximum value until close to the end of the last timestep. The cost is
extra complexity in encapsulating the sends and receives into tasks and using TAMPI’s
non-blocking API.

Listing 5.4 shows the OmpSs-2@Cluster implementation using taskiter. Whereas
most of the MPI + OpenMP and TAMPI + OpenMP versions’ code concerns or-
chestration and micromanagement of data distribution and communication, only two
declarative pieces of information have been introduced to the OmpSs-2@Cluster version.
Firstly, the call to nanos6_set_affinity on line 5 describes the data affinity. This
call does not move data, but it hints to the runtime that the non-readonly rows of
the matrix ought to be distributed cyclically across the ranks. Secondly, the access
to the blocks above and below the current block has been made more precise since
the task only reads a single row of these blocks rather than the whole block.1 The
MPI + OpenMP and TAMPI + OpenMP/OmpSs-2 versions correctly perform data
transfers of a single row of each block, i.e, each of size BSX elements, since that is the
only data accessed by the neighboring rank. Without this change to the distributed
taskiter version, the oversized accesses on the tasks would mislead the runtime, forcing
it to send whole blocks, each of size BSY×BSX elements. We employ the fragmented
regions dependency system [36], enabled by default in OmpSs-2@Cluster, allowing
correct enforcement of dependencies between tasks having accesses to full and partial
blocks.

Overall, the number of lines of code in the OmpSs-2@Cluster version with distributed
taskiter is about one-third that of the TAMPI + OpenMP version and almost all of
the code relates to the actual Gauss–Seidel computation.

1It is unnecessary to increase the precision of the blocks to the left and to the right due to the data
distribution by rows among the nodes. But doing so is straightforward using multidependencies [92]
and would not introduce any overheads during execution.

5.2 Motivation 69

1 double matrix[NBY_LOCAL][NBX][BSY][BSX];
2 int main(int argc , char **argv)
3 {
4 int provided;
5 MPI_Init_thread(argc , argv , MPI_TASK_MULTIPLE , &provided);
6 assert(provided == MPI_TASK_MULTIPLE);
7 ...
8 for (int it = 0; it < NUM_ITERATIONS; it++)
9 {

10 if (rank != 0)
11 {
12 // Send first compute row
13 for (x = 1; x < NBX - 1; x++)
14 {
15 #pragma omp task depend(in : matrix [1][x])
16 {
17 MPI_Request request;
18 MPI_Isend (& matrix [1][x][0][BSY - 1], BSX , MPI_DOUBLE , rank - 1, bx + it *

NBX , MPI_COMM_WORLD , &request);
19 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);
20 }
21 }
22 // Receive upper border
23 for (x = 1; x < NBX - 1; x++)
24 {
25 #pragma omp task depend(out : matrix [0][x])
26 {
27 MPI_Request request;
28 MPI_Irecv (& matrix [0][x][0][BSY - 1], BSX , MPI_DOUBLE , rank - 1, bx + it *

NBX , MPI_COMM_WORLD , &request);
29 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);
30 }
31 }
32 }
33 if (rank != rank_size - 1)
34 {
35 // Receive lower border
36 for (x = 1; x < NBX - 1; x++)
37 {
38 #pragma omp task depend(out : matrix [0][x])
39 {
40 MPI_Request request;
41 MPI_Irecv (& matrix[NBY_LOCAL - 1][x][0], BSX , MPI_DOUBLE , rank + 1, bx + it

* NBX , MPI_COMM_WORLD , &request);
42 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);
43 }
44 }
45 }
46 for (int y = 1; y < NBY_LOCAL - 1; y++)
47 {
48 for (int x = 1; x < NBX - 1; x++)
49 {
50 #pragma omp task \
51 depend(in : matrix[y - 1][x]) \
52 depend(in : matrix[y][x - 1]) \
53 depend(in : matrix[y][x + 1]) \
54 depend(in : matrix[y + 1][x]) \
55 depend(inout : matrix[y][x])
56 {
57 GaussSeidelBlock(matrix , x, y);
58 }
59 }
60 }
61 if (rank != rank_size - 1)
62 {
63 // Send last compute row
64 for (x = 1; x < NBX - 1; x++)
65 {
66 #pragma omp task depend(in : matrix [0][x])
67 {
68 MPI_Request request;
69 MPI_Isend (& matrix[NBY_LOCAL - 2][x][0], BSX , MPI_DOUBLE , rank - 1, bx + it

* NBX , MPI_COMM_WORLD , &request);
70 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);
71 }
72 }
73 }
74 }
75 }

Listing 5.3 Asynchronous TAMPI + OpenMP/OmpSs-2 of Gauss–Seidel 2D heat
equation.

5.3 Programmer’s Model 70

1 double matrix[NBY][NBX][BSY][BSX];
2 int main(int argc , char **argv)
3 {
4 ...
5 nanos6_set_affinity (& matrix [1], (NBY - 2) * NBX * BSY , BSX , nanos6_equpart_distribution , 0,

NULL);
6 #pragma oss taskiter depend(weakinout : matrix)
7 for (int it = 0; it < NUM_ITERATIONS; it++)
8 {
9 for (int y = 1; y < NBY - 1; y++)

10 {
11 for (int x = 1; x < NBX - 1; x++)
12 {
13 #pragma oss task \
14 depend(in : matrix[y - 1][x][BSY - 1]) \
15 depend(in : matrix[y][x - 1]) \
16 depend(in : matrix[y][x + 1]) \
17 depend(in : matrix[y + 1][x][0]) \
18 depend(inout : matrix[y][x])
19 {
20 GaussSeidelBlock(matrix , x, y);
21 }
22 }
23 }
24 }
25 }

Listing 5.4 OmpSs-2@Cluster taskiter of Gauss–Seidel 2D heat equation.

5.3 Programmer’s Model
The programmer’s model for distributed taskiter is the same as taskiter on SMP [1],
except for the rules related to the definition of accesses:

1. Full definition of accesses:

OmpSs-2@Cluster requires all tasks to have a full specification of their accesses [7],
so the runtime can program any necessary data transfers. This requirement is
inherited for taskiters, and it differs from the situation on SMP, where the taskiter
only needs to be given accesses when necessary to enforce ordering with its sibling
tasks. Any data only required by subtasks should be specified as a weak access
(defined in Section 2.1.2). Any data required by the loop body or loop condition
needs to be specified as a strong (i.e., non-weak) access.

2. Precise definition of accesses:

The task accesses give a unified specification of the data accessed by the task,
both for task ordering and to program data transfers. These accesses should
precisely define the data that is needed by the task in order to avoid unnecessary
data transfers (an example was given in Section 5.2).

5.4 Implementation 71

5.4 Implementation
The execution of a distributed taskiter is illustrated in Figure 5.3, which shows a
timeline, from left to right, of the steps, 0 , 1 , 2 , · · · , 6 , executed by each rank.
This figure is intended to give an overview of the process rather than quantifying the
relative durations of these steps, which are not to scale.

Rank 0 Taskiter copy Build task graph

Build task graph

Build task graph
· · ·

Partition Translate

Translate

Translate
· · ·

Fetch data

Fetch data

Fetch data
· · ·

Execute

Execute

Execute
· · ·

Release dependencies
Rank 1

Rank 𝑁 − 1
· · ·

Time

0 1 2 3 4 5 6

Figure 5.3 Illustration of the execution process for a distributed taskiter. This figure
gives an overview of the sequence of steps and where they are executed, but it does
not quantify the relative durations of the steps, which are not to scale.

5.4.1 Compilation

Compilation is done in the same way as taskiter on SMP, as the programmer’s model
in Section 5.3 does not require any changes to the compiler. The compiler encapsulates
the loop body as a task, similar to a taskloop or taskfor. The taskiter task is passed to
the runtime alongside the loop bounds and a flag to identify it as a taskiter.

5.4.2 Building The Taskiter Graph

The taskiter becomes ready following the same condition as any other task, i.e. as
soon as all of its strong accesses, if any, are satisfied. The execution of the taskiter
begins at Step 0 of Figure 5.3. The original node (typically Rank 0) creates and
offloads a parentless copy of the taskiter to each other rank, and then it executes the
taskiter itself. By running the taskiter task, each rank builds a local copy of the full
task dependency graph for a single iteration depicted by Step 1 . When the taskiter
has the unroll clause, this “single iteration” may be more than one iteration of the
underlying loop.

5.4 Implementation 72

1 #pragma oss taskiter depend(weakinout : x, y, a, b)
2 for (int it = 0; it < NUM_ITERATIONS; it++)
3 {
4 // Task 1
5 #pragma oss task depend(in : x, y) depend(out : a) node (0)
6 {
7 ...
8 }
9

10 // Task 2
11 #pragma oss task depend(in : a, y) depend(out : b) node (1)
12 {
13 ...
14 }
15

16 // Task 3
17 #pragma oss task depend(in : a, b) depend(out : x) node (0)
18 {
19 ...
20 }
21

22 // Task 4
23 #pragma oss task depend(in : x, b) depend(out : y) node (1)
24 {
25 ...
26 }
27 }

Listing 5.5 Example OmpSs-2@Cluster distributed taskiter implementation of the
program of Figure 2.9a, with the mapping from task to rank indicated using the “node”
clause.

5.4.3 Partition The Taskiter Graph

Once Rank 0 has finished executing the taskiter task and has created all the sub-
tasks, it performs Step 2 of Figure 5.3, which partitions the dependency graph for
execution by the processes. Our approach can leverage any partitioning algorithm,
and it does not require a fixed or deterministic method, unlike StarPU-MPI [11] and
OmpSs@cloudFPGA [22] (see Section 3). The current prototype uses a static partition
controlled by the node clause.

Listing 5.5 updates the example program of Figure 2.9a to use OmpSs-2@Cluster
with distributed taskiter, and it adds the node clause on each task to indicate the
partition that will be used in the rest of this section. Tasks 1 and 3 are executed on
Rank 0 and Tasks 2 and 4 are executed on Rank 1, enabling wavefront parallelism
across two nodes.

5.4 Implementation 73

5.4.4 Creating The Local Taskiter Graph

Step 3 of Figure 5.3 translates the full dependency graph into the local Directed Cyclic
Task Graph (DCTG) for execution by the current process, and it pre-computes the
MPI data transfers that involve the current process. All ranks do this step concurrently,
as illustrated in Figure 5.3. There are two sub-steps: (1) insert communication tasks
and (2) create the local DCTG.

5.4.4.1 Inserting Communication Tasks

Communication among ranks is done by dedicated tasks to exploit the existing task
graph to control the ordering and overlap of communication and computation. A send
task has an in access over the data to send since the MPI send only needs to read the
latest version. A receive task has an out access since the MPI receive will update its
buffer with the new data version.

The algorithm, implemented in the runtime, to add the send and receive tasks
is shown in Figure 5.5. It starts from the top map, an existing data structure that
maps each region to the first task that accesses it and matches these regions to regions
in the bottom map, which is also a data structure, however, containing the last task
that accessed a specific memory region. The top and bottom maps always use the
fragmented regions dependency system as a link between a task’s predecessors and
subtasks. For the discrete dependency system, it is inherited from the usual SMP
taskiter support. When using the region dependency system, an extra pass is required
to fragment both maps fully to match the finest access granularity. The complexity
of this algorithm is 𝒪(𝑅), where 𝑅 is the sum over tasks of the number of regions
accessed by the task. The value of 𝑅 corresponds to the overall number of iterations of
the while loop on line 8 of Figure 5.5. Figure 5.4 shows the example in Listing 5.5
fully fragmented with mapping the top and bottom map data structures and how the
runtime perceives it.

5.4 Implementation 74

Figure 5.4 Top and Bottom map data structures of the example in Listing 5.5. Solid
arrows refer to the first tasks accessing a region. Accesses linked with horizontal dashed
arrows are accessed by the same task (e.g., x,y, and a are accessed by Task 1). Vertical
dashed arrows indicate the next task accessing a specific region (e.g., the region y is
accessed by Task 1, Task 2, and Task 4).

Figure 5.6a shows the output of the algorithm of Figure 5.5 for Rank 0 of the
partitioned program in Listing 5.5. The tasks that were created locally by the taskiter
parent in Step 1 but will not be executed locally on Rank 0, i.e., Task 2 and Task 4
are greyed out. We assume that the virtual addresses of the variables are in the order
a, b, x, y. The loop on line 3 processes each region in the top map in virtual address
order, in this case starting with a. Next, the while loop on line 8 considers each task
access that contains a, starting with the out access of Task 1. This is the first write to
a (𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟 is none on line 20) so, the empty set of 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟𝑠 is captured on
line 21: since the first access is a write, performing any data transfers for the cyclic edges
will not be necessary. The next access to the same region is the in access of Task 2. This
task reads the data, but it is not yet present on Rank 1 (𝑎𝑐𝑐𝑒𝑠𝑠.𝑟𝑎𝑛𝑘 ∉ 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠

on line 9), so it requires a data transfers from Rank 0, the 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟, to Rank 1,
which executes the task. Since the current rank is Rank 0, a send task is created on

5.4 Implementation 75

line 13. Following the same procedure, Rank 1, creates the matching receive task on
line 15. This completes all the accesses to a, so the loop on line 3 continues for b,
which follows a similar process, except that the current rank, Rank 0, needs to create
a receive task. The process for x is slightly different because the first access to x is
the in access of Task 1, which reads the value from the as-yet-unknown last writer in
the previous iteration. No send–receive pair is created (lines 11 to 15 are skipped),
but Rank 0 is added to 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 on line 17. Later, once all accesses have been
considered, the loop on line 26 will check the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟, rank 0. Since 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟

is also rank 0, no send-receive pair is needed. Finally, considering y, the first access is
the in of Task 0, and the loop on line 26 will also check the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟, Rank 0.
But this time, since the 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟 is Task 4 on Rank 1, there is no copy of this data
on Rank 0, so a receive task for the cyclic read-after-write is created on line 31. This
also means that iteration 0 on the current rank will require a valid copy of the data
before the taskiter. This is recorded by adding the region to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 on line 32.

The algorithm in Figure 5.5 ensures that the iterations of each send and receive
task are always serialized, irrespective of the algorithm used to execute the tasks
(Section 5.4.5, which serializes the iterations of any particular task in any case). Each
receive is serialized due to the write-after-write dependency on its out access. Each
send is serialized due to the write-after-read dependency from the send task (which has
an in access) to the 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟 (defined when the send task is created on line 13) in
the next iteration, which has an out or inout access. MPI sends and receives the same
data in different iterations and are therefore posted one at a time and in order. The
MPI tags for corresponding sends and receives always match since the sending and
receiving ranks follow the same deterministic algorithm on the same task graph. The
MPI tag is given by 𝑚𝑝𝑖𝑇𝑎𝑔, which is initialized to zero on line 1 and incremented on
lines 16 and 33.

5.4 Implementation 76

1: 𝑚𝑝𝑖𝑇𝑎𝑔 ← 0 ⊲ Current MPI tag
2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ← ∅ ⊲ Data that may need fetching for iteration 0
3: for all (𝑟𝑒 𝑔𝑖𝑜𝑛, 𝑎𝑐𝑐𝑒𝑠𝑠) ∈ 𝑡𝑜𝑝𝑀𝑎𝑝𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠 do
4: 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟 ← 𝑛𝑜𝑛𝑒 ⊲ Last writer of 𝑟𝑒 𝑔𝑖𝑜𝑛 by sequential order
5: 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 ← ∅ ⊲ Ranks with valid copy of latest version of 𝑟𝑒 𝑔𝑖𝑜𝑛
6: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 ← ∅ ⊲ Reading ranks of 𝑟𝑒 𝑔𝑖𝑜𝑛 from prev. iteration
7: ⊲ Add send and receive tasks for non-cyclic dependencies ⊳

8: while 𝑎𝑐𝑐𝑒𝑠𝑠 ≠ 𝑛𝑜𝑛𝑒 do
9: if 𝑎𝑐𝑐𝑒𝑠𝑠.𝑡𝑦𝑝𝑒 ≠ 𝑂𝑈𝑇 and 𝑎𝑐𝑐𝑒𝑠𝑠.𝑟𝑎𝑛𝑘 ∉ 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 then

10: ⊲ Task reads data, but it is not yet present locally ⊳

11: if 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟 ≠ 𝑛𝑜𝑛𝑒 then
12: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑎𝑛𝑘 = 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟.𝑟𝑎𝑛𝑘 then
13: Insert send task of 𝑟𝑒 𝑔𝑖𝑜𝑛 with tag 𝑚𝑝𝑖𝑇𝑎𝑔 before 𝑎𝑐𝑐𝑒𝑠𝑠.𝑡𝑎𝑠𝑘

14: else if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑎𝑛𝑘 = 𝑎𝑐𝑐𝑒𝑠𝑠.𝑟𝑎𝑛𝑘 then
15: Insert receive task of 𝑟𝑒 𝑔𝑖𝑜𝑛 with tag 𝑚𝑝𝑖𝑇𝑎𝑔 before 𝑎𝑐𝑐𝑒𝑠𝑠.𝑡𝑎𝑠𝑘

16: 𝑚𝑝𝑖𝑇𝑎𝑔 ← 𝑚𝑝𝑖𝑇𝑎𝑔 + 1
17: 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 ← 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 ∪ 𝑎𝑐𝑐𝑒𝑠𝑠.𝑟𝑎𝑛𝑘

18: if 𝑎𝑐𝑐𝑒𝑠𝑠.𝑡𝑦𝑝𝑒 = 𝑂𝑈𝑇 or 𝑎𝑐𝑐𝑒𝑠𝑠.𝑡𝑦𝑝𝑒 = 𝐼𝑁𝑂𝑈𝑇 then
19: ⊲ Task writes data ⊳

20: if 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟 = 𝑛𝑜𝑛𝑒 then
21: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 ← 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠

22: 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟 ← 𝑎𝑐𝑐𝑒𝑠𝑠.𝑡𝑎𝑠𝑘

23: 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 ← {𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑎𝑛𝑘}
24: 𝑎𝑐𝑐𝑒𝑠𝑠 ← 𝑎𝑐𝑐𝑒𝑠𝑠.𝑛𝑒𝑥𝑡

25: ⊲ Add send and receive tasks for cyclic dependencies ⊳

26: for all 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘 ∈ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 do
27: if 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘 ∉ 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 then
28: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑎𝑛𝑘 = 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒𝑟.𝑟𝑎𝑛𝑘 then
29: Insert send task of 𝑟𝑒 𝑔𝑖𝑜𝑛 with tag 𝑚𝑝𝑖𝑇𝑎𝑔 at end
30: else if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑎𝑛𝑘 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘 then
31: Insert receive task of 𝑟𝑒 𝑔𝑖𝑜𝑛 with tag 𝑚𝑝𝑖𝑇𝑎𝑔 at end
32: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ∪ 𝑟𝑒 𝑔𝑖𝑜𝑛

33: 𝑚𝑝𝑖𝑇𝑎𝑔 ← 𝑚𝑝𝑖𝑇𝑎𝑔 + 1
34: 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 ← 𝑟𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘𝑠 ∪ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑𝑒𝑟𝑅𝑎𝑛𝑘

Figure 5.5 Insertion of communication (send and receive) tasks. Communication
is done by tasks, ensuring asynchronous execution with maximum communication–
computation overlap. This deterministic algorithm runs on all ranks on the same full
task graph, so sends and receives on different ranks will always match.

5.4 Implementation 77

5.4.4.2 Create the local DCTG

The local dependency graph, a sequential graph on task accesses, is converted into the
local Directed Cyclic Task Graph (DCTG). The process is the same as for SMP, and
the result for the example program is shown in Figure 5.6b.

5.4.4.3 Fetch input data

As soon as Step 3 has finished on the current node, Step 4 fetches all of the input
data the taskiter needs. There is no need for a global barrier between Steps 3 and 4 .
The algorithm in Figure 5.5 has already determined, in 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠, all the regions
whose initial version, before the taskiter, is read by the first iteration of at least one
task. These regions will require fetching to this node unless the node already has a
copy of the data. The runtime uses its normal data transfer mechanism, which checks
whether a data transfer is actually needed, merges contiguous data transfers , and
programs the data transfers using non-blocking MPI calls.

5.4 Implementation 78

Taskiter

Task
1

Send
a

Task
2

Recv
b

Task
3

Send
x

Task
4

Recv
y

a b x y

out in in

in

in out in

out

in in out

in

in outin

out

(a) Local dependency graph on Rank 0 after inserting the send and receive tasks. The tasks not
executed on Rank 0, i.e., Task 2 and Task 4, are disabled and colored in gray.

Task
1

Send
a

Recv
y

Task
3

Send
x

Recv
b

a, x

a, x

a
a y

y x
x b

b

(b) Local DCTG on Rank 0.

Figure 5.6 Regular dependency graph for a single iteration and directed cyclic task
graph for Rank 0 of the example program of Listing 5.5.

5.4 Implementation 79

5.4.5 Single Iteration Execution

Once the data transfers in Step 4 , if any, have been completed on the current node,
Step 5 proceeds to execute all iterations of the body of the taskiter. It is not usually
necessary to have a global barrier between Steps 4 and 5 , but we add one in our
experiments in order to cleanly separate the startup overhead and the time per iteration.
This extra barrier has little effect on the total execution time.

The local graph is executed the same way as taskiter on SMP. Communication
tasks are ordinary tasks, except that the task body is implemented inside the runtime
system rather than the user code. The body of the communication task simply posts
the appropriate non-blocking MPI send or receive. The runtime defers the release of
the dependencies to the successor tasks, which would otherwise happen immediately
until the MPI request completes. Completion of MPI requests is periodically tested by
the same dedicated thread that is used for OmpSs-2@Cluster message completion [7].

5.4.5.1 Unroll The Graph

The optional unroll(𝑛) clause enables taskiter to support a loop whose task graph
repeats every 𝑛 iterations, especially for loops with a regular dependency graph. An
example is a loop which has different graph for odd and even iterations means that the
graph will repeat each 2 iterations, hence it would be unrolled with factor of 2.

5.4.5.2 Non-constant Number of Iterations

If the number of iterations is not known before the execution of the loop, then a control
task is inserted in a similar way to the approach on SMP as explained in Section 2.3.5.2

The control task on Rank 0 inherits all the strong accesses of the taskiter, ignoring
the weak accesses. The control task on Rank 0 also depends on the previous iteration
of the control task on the same rank. The control tasks on all the other ranks only
depend on the control task on Rank 0, which is used to copy the value of the condition
to all other ranks. Similarly to the SMP implementation, if the condition is false, the
control task on each rank cancels the rest of the taskiter. If the taskiter has the unroll
clause, then the control task on Rank 0 is studied in the same way as SMP, in order to
support the overlapping of tasks from different iterations.

2Our prototype implementation does not yet support non-constant iteration counts.

5.5 Methodology and Benchmarks 80

5.4.5.3 Releasing Accesses

Once all local tasks on a remote (non-Rank 0) rank have completed all iterations,
then a Task Finished message is sent to Rank 0 in the normal way. Once Rank 0 has
completed its own iterations and received notification from all other nodes, it completes
the taskiter and releases its accesses. Since Rank 0 knows the partitioning of tasks
across ranks (as does every rank), the data locations in the dependency system are
updated to correspond to the rank that executes the last writer. If there is no last
writer, because the data is only read, then the original location remains the same as
before the taskiter

5.5 Methodology and Benchmarks
This part of the thesis evaluated on the MN4 supercomputer and system environment
as the one used for evaluating work in Chapter 4 and described in Section 4.5. All
benchmarks have a tunable block size, which controls the size of each task, and results
are given for the block size that gives the highest performance per iteration.

We test and evaluate the taskiter extended approach with five benchmarks of which
three, the multi-matvec, multi-matmul, and jacobi adopted and described also in
Section 4.5 and summarized in Table 4.2. In addition to two stencil code benchmarks,
the heat-gauss, and heat-jacobi. The full list of benchmarks are summarised in
Table 5.1.

heat-jacobi is the same 2D heat equation with Jacobi updates. This version has
two working arrays and embarrassingly parallel computations inside each timestep to
update the array. It is well suited to fork–join parallelism.

heat-gauss is the Gauss–Seidel variant of the 2D heat equation stencil computation
discussed in heat-jacobi. It exhibits 2D or 3D wavefront parallelism and has the
potential to overlap tasks from multiple iterations, making it a good fit for asynchronous
task parallelism.

5.5 Methodology and Benchmarks 81

T
ab

le
5.
1

Ev
al

ua
tio

n
be

nc
hm

ar
ks

fo
r

th
e
ta
sk
it
er

ap
pr

oa
ch

B
en

ch
m

ar
k

D
es

cr
ip

ti
on

C
ha

ra
ct

er
is

ti
cs

P
ar

am
et

er
s

m
ul

ti-
m

at
ve

c
R

ep
ea

te
d

de
ns

e
m

at
rix

–v
ec

to
r

m
ul

tip
lic

at
io

n
Sm

al
lt

as
ks

an
d

no
co

m
m

un
ic

at
io

n
M

at
rix

siz
e:

32
,7

68
×3

2,
76

8
el

em
en

ts
N

um
be

r
of

ite
ra

tio
ns

:
50

0

m
ul

ti-
m

at
m

ul
R

ep
ea

te
d

de
ns

e
m

at
rix

–m
at

rix
m

ul
tip

lic
at

io
n

La
rg

e
ta

sk
s

an
d

no
co

m
m

un
ic

at
io

n
M

at
rix

siz
e:

32
,7

68
×3

2,
76

8
el

em
en

ts
N

um
be

r
of

ite
ra

tio
ns

:
6

ja
co

bi
Ja

co
bi

ite
ra

tio
n

[7
]

A
ll-

to
-a

ll
co

m
m

un
ic

at
io

n,
go

od
fit

fo
r

fo
rk

–j
oi

n
pa

ra
lle

lis
m

M
at

rix
siz

e:
32

,7
68
×3

2,
76

8
el

em
en

ts
N

um
be

r
of

ite
ra

tio
ns

:
40

0

he
at

-g
au

ss
2D

st
en

ci
lc

om
pu

ta
tio

n
w

ith
G

au
ss

–S
ei

de
lu

p-
da

te
s

N
ea

re
st

-n
ei

gh
bo

r
co

m
m

un
ic

at
io

n,
w

av
e-

fr
on

t
pa

ra
lle

lis
m

su
ite

d
to

as
yn

ch
ro

no
us

ta
sk

s

M
at

rix
siz

e:
32

,7
68
×3

2,
76

8
el

em
en

ts
N

um
be

r
of

ite
ra

tio
ns

:
10

0

he
at

-ja
co

bi
2D

st
en

ci
lc

om
pu

ta
tio

n
w

ith
Ja

co
bi

up
da

te
s

N
ea

re
st

-n
ei

gh
bo

r
co

m
m

un
ic

at
io

n,
go

od
fit

fo
r

fo
rk

–j
oi

n
pa

ra
lle

lis
m

M
at

rix
siz

e:
32

,7
68
×3

2,
76

8
el

em
en

ts
N

um
be

r
of

ite
ra

tio
ns

:
10

0

5.6 Evaluation and Results 82

5.6 Evaluation and Results
This section presents the results of the evaluated benchmarks, which are described in
Section 5.5 and summarized in Table 5.1.

5.6.1 Strong Scalability

In this section, we show the overall results for strong scaling of the five selected
benchmarks described in Section 4.5.2 and 5.5 with two processes per node (one per
socket). We show the initial overhead and the performance per iteration, excluding the
initial overhead. In all plots, the 𝑥-axis is the number of nodes, always with two MPI
processes per node, i.e., one process per socket. Chart (a) gives the initial overhead
(seconds on the 𝑦-axis), which is independent of the number of iterations, and the
chart (b) gives the performance per iteration for the body of the loop (GFLOPS/s on
the 𝑦-axis). The colours distinguish the four programming models: blue for fork–join
MPI + OpenMP, brown for TAMPI + OmpSs-2, red for the original OmpSs-2@Cluster
implementation, and green for the distributed taskiter. All points use the block size
that gives the best performance per iteration for the loop’s body, for that benchmark
and implementation. All data points include error bars, but the error bars are too
small to see in almost all cases.

Figure 5.7a shows the overhead for multi-matvec, which has a maximum value
of just 0.11 seconds on 32 nodes. This overhead corresponds to Steps 1 to 4 and
Step 6 in Section 5.4, and for this benchmark, it scales roughly linearly with the
number of nodes since the optimal block size corresponds to a small number of tasks per
core, and all tasks always have the same number of accesses. Looking at Figure 5.7b,
we see that, after paying this small cost, the distributed taskiter variant achieves similar
scaling behaviour to the baseline fork–join MPI version. There is a slight improvement
over fork–join MPI by 7.0% on 32 nodes, likely because of minor differences between the
OpenMP and Nanos6@Cluster runtimes. This result is a large improvement compared
with the original OmpSs-2@Cluster implementation, which scales to just 8 nodes and
is 6 times slower than fork–join MPI on 32 nodes. This benchmark has no inter-node
communication, so the poor scaling of the OmpSs-2@Cluster implementation is due to
the control message overhead for task offloading and dependency management, which
is entirely eliminated by the distributed taskiter approach. Since there is no inter-node
communication, the asynchronous TAMPI + OmpSs-2 results have been omitted.

5.6 Evaluation and Results 83

(a) Initial overhead

(b) Performance per iteration

Fork–join MPI+OpenMP OmpSs-2@Cluster Distributed Taskiter

Figure 5.7 Benchmark: multi-matvec

Figure 5.8a shows the initial overhead for multi-matmul, which has a maximum
value of just 0.029 seconds on 32 nodes. Again, the overhead scales roughly linearly
with the number of nodes. As seen in Figure 5.8b, all three variants scale similarly for
this benchmark. The drop in scalability beyond 4 nodes is due to unusual behaviour
from the Math Kernel Library (MKL) library, which achieves approximately 3× higher
throughput for block sizes of 256 elements or more. For a 32768 × 32768 matrix, the
optimal block size does not fully use the available compute resources when there are 8
or more nodes.

5.6 Evaluation and Results 84

(a) Initial overhead

(b) Performance per iteration

Fork–join MPI+OpenMP OmpSs-2@Cluster Distributed Taskiter

Figure 5.8 Benchmark: multi-matmul

Figure 5.9a shows that the initial overhead for jacobi grows roughly quadratically
from 1 to 16 nodes. This is due to the benchmark’s all-to-all communication, which
means that the number of tasks and the number of accesses per task both grow roughly
linearly in the number of cores, which combine to cause quadratic growth. Beyond
16 nodes, it is no longer beneficial to subdivide the tasks. The maximum overhead on
32 nodes is 1.1 seconds. In Figure 5.9b, we see that the distributed taskiter approach
matches the fork–join MPI version, within 4.4% on up to 16 nodes, but it drops to 15%
below the fork–join MPI version on 32 nodes. There are two reasons for this. Firstly,
the fork–join MPI version uses collective communication, whereas the distributed
taskiter uses point-to-point communication. Secondly, the distributed taskiter has
asynchronous communication inside the tasks instead of fork–join parallelism. We
see that the results closely match, within 3%, those for the asynchronous TAMPI +

5.6 Evaluation and Results 85

OmpSs-2 version on up to 32 nodes, which also has point-to-point communication
inside tasks. Future work may investigate ways to use collective communication or
merge communication into existing tasks. In any case, the results already greatly
outperform the original OmpSs-2@Cluster, which is 9.6 times slower than fork–join
MPI + OpenMP,

(a) Initial overhead

(b) Performance per iteration

Fork–join MPI+OpenMP Asynchronous TAMPI+OmpSs-2
OmpSs-2@Cluster Distributed Taskiter

Figure 5.9 Benchmark: jacobi

Figure 5.10a shows the overhead for heat-gauss. Because of the 3D wavefront
parallelism is the most efficient method of using the smallest block size with acceptable
performance overheads. The overhead is, therefore, roughly constant, rising from 0.47
seconds on 1 node to 0.74 seconds on 32 nodes. Figure 5.10b shows that the fork–join
MPI + OpenMP version has poor performance, limited by the 2D wavefront parallelism
inside each timestep. By enabling 3D wavefront parallelism, the asynchronous TAMPI

5.6 Evaluation and Results 86

+ OmpSs-2 version achieves much higher performance, reaching performance 11.4 times
faster than fork–join MPI + OpenMP on 32 nodes. The distributed taskiter version
achieves similar performance, at 11.0 times faster than fork–join MPI + OpenMP on
32 nodes. In contrast, the OmpSs-2@Cluster implementation performs even worse than
fork–join MPI + OpenMP, being 2.4 times slower, on 32 nodes.

(a) Initial overhead

(b) Performance per iteration

Fork–join MPI+OpenMP Asynchronous TAMPI+OmpSs-2
OmpSs-2@Cluster Distributed Taskiter

Figure 5.10 Benchmark: heat-gauss

Figure 5.11a shows the overhead for heat-jacobi, the Jacobi version of the 2D heat-
equation stencil computation. Each iteration is embarrassingly parallel, and the optimal
block size is roughly constant from 1 to 32 nodes. The overhead is almost constant,
rising to a maximum of just over 1.0 seconds on 32 nodes. Finally, in Figure 5.11b, all
versions except the original OmpSs-2@Cluster implementation achieves similar scaling
to at least 32 nodes. The distributed taskiter version is within 5.0% of the performance

5.6 Evaluation and Results 87

per iteration of fork–join MPI, which is a dramatic improvement in comparison with
the original OmpSs-2@Cluster implementation, which is 15 times slower than fork–join
MPI.

(a) Initial overhead

(b) Performance per iteration

Fork–join MPI+OpenMP Asynchronous TAMPI+OmpSs-2
OmpSs-2@Cluster Distributed Taskiter

Figure 5.11 Benchmark: heat-jacobi

Overall, these results show that the initial overheads of distributed taskiter are
acceptable, with a maximum of 1.1 seconds. The majority of this time is in the Step 3
graph translation described in Section 5.4.4, which is done by our implementation on
one thread but could easily be parallelized across all 24 threads in each process. After
paying that small cost, the performance-per-iteration matches or exceeds fork–join
MPI + OpenMP, with a slight drop of 15% only for the jacobi benchmark on 32 nodes.
For heat-gauss, which benefits from asynchronous communication, the performance is
similar to asynchronous TAMPI + OmpSs-2, at 11.0 times faster than fork–join MPI +

5.6 Evaluation and Results 88

OpenMP. In four out of the five benchmarks, the performance-per-iteration far exceeds
that of the original OmpSs-2@Cluster, which is up to 15 times slower than fork–join
MPI + OpenMP.

5.6.2 Iterations Count Performance

In this section, we show the overall performance, including all overheads, as a function
of the number of loop iterations executing on 32 nodes (64 processes). The 𝑥-axis is the
number of iterations on a log scale. The 𝑦-axis is the overall performance in GFLOPS/s,
which, unlike the results shown in Section 5.6.1, includes the initial overhead. These
results were observed afresh, not estimated synthetically by combining subfigure-a and
subfigure-b for each of the benchmarks in Figures from 5.7 to Figure 5.11.

We see that in Figure 5.12, including the startup overhead, the distributed taskiter
implementation achieves higher performance for multi-matmul, heat-gauss and heat-
jacobi then the original OmpSs-2@Cluster version from the first iteration (unrolled
by two). In many cases, few iterations are required to achieve performance close to
fork–join MPI + OpenMP. For multi-matvec, it exceeds the original version from
10–100 and 100–1000 iterations, respectively. The distributed taskiter version has
slightly higher performance than fork–join MPI + OpenMP, from 100 or more iterations
for multi-matvec and from the first iteration for multi-matmul (note the zoomed
𝑦-axis for multi-matmul, in order to expose the small differences between versions).
For jacobi, distributed taskiter’s performance steadily increases up to about 15%
below that of fork–join MPI + OpenMP. For heat-gauss, the two versions that allow
an asynchronous overlap of timesteps, i.e., the TAMPI + OmpSs-2 and distributed
taskiter versions, have performance growing over the first approximately 1000 iterations,
due to the increasing ability to overlap tasks from different timesteps through 3D
wavefront parallelism. Finally, for heat-jacobi distributed taskiter reaches close to the
performance of MPI + OpenMP after about 1000 iterations.

It is important to note that the startup overhead has not been optimized in our
current distributed taskiter implementation. As remarked above, most of the overhead
is in the Step 3 graph translation described in Section 5.4.4. This is currently done
by a single thread, but it could be parallelized across all 24 threads in each process.

5.6 Evaluation and Results 89

(a) multi-matvec on 32 nodes (b) multi-matmul on 32 nodes

(c) jacobi on 32 nodes (d) heat-gauss on 32 nodes

Fork–join MPI+OpenMP
Asynchronous TAMPI+OmpSs-2
OmpSs-2@Cluster
Distributed Taskiter

(e) heat-jacobi on 32 nodes

Figure 5.12 Overall performance, including all overheads, as a function of the number of
iterations. We did not provide TAMPI+OmpSs-2 for multi-matvec and multi-matmul
as they have no communications that would benefit from the TAMPI asynchronous
model.

5.7 Initial Overhead Analysis 90

5.7 Initial Overhead Analysis
Figure 5.13 plots the initial overhead in seconds on the 𝑦-axis versus the number of
task access regions on the 𝑥-axis emphasized by individual benchmarks. The number of
access regions is defined in Section 5.4.4.1 as the sum over tasks of the number of regions
accessed by the task, where it is denoted 𝑅. Data points are shown for all benchmarks,
numbers of nodes and a sweep of block sizes (not only the optimal block size used in
Section 5.6.1). There is a small effect from the benchmark, particularly for jacobi,
which features all-to-all communication and more than average communication per
access. Nevertheless, we see a strong linear relationship between the number of accesses
and the initial overhead across four orders of magnitude, with just a few outliers,
justifying the theoretical 𝒪(𝑅) complexity given in Section 5.4.4.1.

Figure 5.13 Initial overhead as a function of the number of accesses.

Figure 5.14 shows how the number of accesses, in turn, depends on the block size.
The 𝑥-axis is the block size, and the 𝑦-axis is the number of accesses, when executed
on a single node. For multi-matvec and multi-matmul, which appear on top of each
other since they have the same number of accesses, the number of accesses is a constant
times the number of tasks, which is inversely proportional to the block size. The other
benchmarks have their number of accesses inversely proportional to the square of the
block size. For jacobi, this is because the number of tasks and accesses per task is
inversely proportional to the block size. For heat-gauss and heat-jacobi, the number
of accesses per task is fixed, but the number of tasks is inversely proportional to the
square of the block size.

5.8 Quantifying Productivity 91

Figure 5.14 Number of accesses depending on block size.

5.8 Quantifying Productivity
Table 5.2 attempts to quantify the productivity of MPI+OpenMP, TAMPI+OmpSs-2
and distributed taskiter, using the commonly-used metric of lines of code. Quantifying
the productivity of a programming system is a well-known problem, as indicated in
Section 4.6.4, and lines of code do not account for complexity, ease of understanding
or the effects of varying programmer skill levels and preferences. It is, however, the
best available metric because it is easily measured and understood.

The kernel code is isolated in a separate source file and is the same for all imple-
mentations under study. The control code counts all source lines in the main loop
of the benchmark, which makes a function call to the kernel code. 3 It excludes
argument processing, memory allocation, initialization, and verification of the result.
For multi-matvec and multi-matmul, which involve no communication among nodes,
there is essentially no difference between the three approaches. For jacobi, the dis-
tributed taskiter version has a similar number of lines of code to MPI, which only
requires a collective MPI_Allreduce, while the TAMPI+OmpSs-2 more than triples the
number of lines of code (+210.7%). For heat-gauss and heat-jacobi, the asynchronous
TAMPI+OmpSs-2 version increases the number of lines by at least a third, while the
distributed taskiter version has just over half as many lines of code.

3There are some small differences between the numbers of lines of code in Table 5.2 and code
present in listings 5.2 to 5.4, as the latter is reformatted for conciseness and clarity.

5.9 Conclusion 92

Benchmark
Kernel

Fork–join TAMPI+ Distributed
MPI+OpenMP OmpSs-2 taskiter

multi-matvec 11 11 (+0%) 11 (+0%)
multi-matmul 18 18 (+0%) 18 (+0%)

jacobi 21 21 (+0%) 21 (+0%)
heat-gauss 40 40 (+0%) 40 (+0%)
heat-jacobi 40 40 (+0%) 40 (+0%)

Table 5.2 Number of lines of code for the kernels of of the benchmarks.

Benchmark
Control

Fork–join TAMPI+ Distributed
MPI+OpenMP OmpSs-2 taskiter

multi-matvec 15 15 (+0%) 16 (+6.67%)
multi-matmul 15 15 (+0%) 16 (+6.67%)

jacobi 28 87 (+210.71%) 27 (-3.57%)
heat-gauss 45 60 (+33.33%) 25 (-44.44%)
heat-jacobi 54 76 (+40.74%) 30 (-44.44%)

Table 5.3 Number of lines of code for the control code of the benchmarks.

5.9 Conclusion
Despite being very productive, distributed Sequential Task Flow (STF) models suffer
from limited performance and scalability for fine- and medium-grained tasks. In this
work, we presented an extension to OmpSs-2@Cluster that addresses this issue for
applications with common iterative patterns while maintaining the productive OmpSs-
2@Cluster programming model. While the existing OmpSs-2@Cluster implementation
scales to only about 4 or 8 nodes with medium-scale tasks, our approach scales to at
least 32 nodes, with a maximum slowdown of 15%, compared with fork–join MPI +
OpenMP. When the application has the potential to overlap iterations, for example, the
2D heat equation stencil calculation with Gauss–Seidel updates, our approach discovers
significantly more parallelism than fork–join MPI + OpenMP. This results in up to
11.0 times higher performance on 32 nodes, which is on-a-par with state-of-the-art
asynchronous TAMPI + OmpSs-2. As such, the model combines the productivity of
STF models with the performance of state-of-the-art MPI+X approaches by exploiting
the iterative nature of scientific applications. It also avoids the synchronization and
deadlock issues of an MPI+X approach.

CHAPTER 6

Conclusions and Future work

Despite being very productive, distributed Sequential Task Flow (STF) models, such
as OmpSs-2@Cluster, suffer from limited performance and scalability for fine- and
medium-grained tasks. This limitation stems from the sequential bottleneck imposed
by the construction of the task dependency graph.

In this thesis, we proposed two approaches to improve the efficiency and scalability
of STF models. The first approach employs task nesting to construct subgraphs of
the dependency graph concurrently. Task nesting is unfortunately rarely used in
production codes, and we identify one issue that increases complexity: tasks can only
be constructed once the addresses and sizes of all its accesses, which must cover all
descendent task accesses, are known. We solve this issue by introducing the auto access
type. An auto access can be used to support tasks that allocate and return new memory
regions and tasks whose subtasks access memory regions defined by previous tasks.
It also provides an incremental path to task nesting by allowing the runtime to infer
the task accesses on behalf of subtasks. Additionally, we introduced the none access
type to complement auto, allowing for finer control over dependency information and
enhancing concurrency between subtasks. We offer a straightforward implementation
and optimizations, while maintaining the existing unified method of specifying task
information to the runtime without begin obscure (e.g. using sentinels), ensuring clarity
and continuity in task creation without introducing barriers (e.g. using a taskwait) or
interruptions.

We evaluate our approach firstly for dependencies without nested tasks. On SMP,
we used a hypermatrix multiplication followed by a Cholesky decomposition benchmark,
which shows the auto potential compared taskwait implementation with 5% performance
increase limited by the final part of the Cholesky decomposition that might need an
improved scheduler. On clusters, we evaluated the strong scalability of Barnes–Hut

94

𝑛-body application on up to 32 nodes, which achieves 1.4 times speedup on 32, and
a maximum of 195K particles per second on 16 nodes compared to 137K for the
manual taskwait code. Secondly, we evaluate task nesting on SMP for matmul-smp and
n-body-smp applications reaching 19.6% and 10%, respectively, of the original manual
version. Lastly, we evaluate nesting on clusters up to 32 nodes with four benchmarks:
multi-matvec, multi-matmul, jacobi, and cholesky. We were fairly within 4% of the
original nesting with weak tasks of results in Aguilar et al. [7] for 1 to 16 nodes and
extend to 32 nodes.

Our second approach exploits the nature of many HPC applications that use iterative
methods or multi-step simulations. These applications create the same task dependency
graph on each iteration. We take advantage of this information to execute the loop
body once and convert the task dependency graph into a DCTG, which is reused
during executing the remaining iterations of the loop. We define the programming
model based on the taskiter construct proposed by Álvarez and Beltran [1]. Knowing
the fact that the DCTG will be the same during the entire execution, we store it in
a simple representation without locking or complex lock-free data structures. The
previous fact also reduces the impact on the execution time of the more powerful
but expensive fragmented regions dependency (see Sections 2.1.2) system [36], since
dependency system operations are only performed for the tasks in a single iteration
and once at the DCTG creation time.

The distributed taskiter approach scales up to a 32 nodes, compared to about 4 or
8 nodes with the existing original OmpSs-2@Cluster implementation in [7] when evalu-
ated for the same benchmarks. It shows a maximum slowdown of 15%, compared with
fork–join MPI + OpenMP. For cases with a higher potential of iterations overlapping,
the distributed taskiter achieved up to 11.0 times higher compared to the fork–join
MPI + OpenMP reaching asymptotic performance with state-of-the-art asynchronous
TAMPI + OmpSs-2.

Both approaches were seamlessly integrated within the Nanos6 runtime implemen-
tation of the OmpSs-2@Cluster model, requiring minimal adjustments to the compiler.
Incorporating the auto, and none access types, which resembled the implementation of
the existing types shown in Table 2.1. Similarly, the taskiter construct was added to
the compiler with no effort, which matches the existing taskloop construct.

In conclusion, this thesis presented solutions to the sequential bottleneck inherent
in the OmpSs-2@Cluster distributed task programming model without compromising
the model’s interface, simplicity, or productivity. We facilitate the development of
applications with nested tasks and provide a simpler approach for users to accelerate

6.1 Future Work 95

the initial development of their code by annotating dependencies that align with the
underlying problem’s functionality. Moreover, the utilization of common iterative
patterns underscores the potential for further scalability.

6.1 Future Work
This thesis opens several avenues of future work, the most important of which are
described below.

6.1.1 auto and none clauses

The current implementation of the auto and none clauses is supported in the fragmented-
regions dependency system (see Section 2.1.2), which allows partial or complete over-
lapping between dependency memory regions. Future work is to support auto and none

in the discrete dependency system so that it is compatible with both OmpSs-2 and
OpenMP models.

6.1.2 Combining auto and distributed taskiter

The two main contributions of this thesis, automatic data access aggregation (Chapter 4)
and distributed taskiter (Chapter 5), are separate contributions targeting different
types of applications, with non-iterative and iterative behaviour, respectively. The
current runtime implementation allows the use of both contributions separately inside
the same application, for example, where part of the program has an iterative structure
and another part of the program does not. This is because both parts of this thesis
have been implemented inside the same branch of the Nanos6@Cluster runtime system
(data access aggregation has already been merged onto the main development branch).

It is, however, possible to integrate these contributions in two ways. Firstly, the
auto keyword can be used to infer all the accesses of the distributed taskiter itself. As
described in Section 5.3, the distributed taskiter must have a full specification of its
accesses, covering the accesses of all top-level tasks in at least the weak variant. This is a
clear use case for automatic inference of weak accesses using the auto keyword. The only
accesses that would still need to be specified explicitly by the programmer are the strong
accesses made outside subtasks by the loop body or loop condition. Implementation is
expected to be straightforward, but it has not been tested or evaluated yet.

Secondly, the top-level tasks inside a taskiter may create subtasks, just like any
other task. These top-level tasks may also, in principle, use the auto keyword to infer

6.1 Future Work 96

their weak accesses. So far, however, we have not seen the need to combine taskiter
and task nesting in the same loop since the main motivation for task nesting is to
address the sequential overhead, which is already amortized across all loop iterations
by distributed taskiter. Moreover, expressing the whole dependency graph at the top
level gives a fine task granularity, so the partitioner has the most freedom to balance
the load across the available resources. A hybrid approach that employs both taskiter
and nesting would only be useful at extreme levels of scaling.

One method to integrate auto and distributed taskiter in the second is to extend
the programming model to declare that each iteration of a top-level task with the auto

keyword generates subtasks that cover the same memory regions. Once the runtime
has executed a single iteration of all top-level tasks, it could infer the accesses of all
top-level tasks using the auto keyword and then use the assumption to infer the accesses
of all iterations of all top-level tasks. It may also be necessary to extend the definition
of communication tasks and the manner of task execution to allow early release (see
Section 2.2).

6.1.3 Overhead Optimisations

Both auto and taskiter can benefit from compiler optimisation and static analysis, such
as discovering dependencies that can help with the overhead of the runtime dependency
filtering, which can be very expensive. In addition, most of the startup overhead of
distributed taskiter can be parallelized across multiple threads and potentially multiple
nodes. This includes the creation of the local Directed Cyclic Task Graph (DCTG),
insertion of communication and the merging of communications. Such optimisations
may be necessary when scaling to large numbers of cores.

6.1.4 Collective Communications

The current implementation uses point-to-point communications, which in some cases
reported lower performance compared to that of similar solutions using collectives (see
Section 5.6.1). Hence, the substitution of collective communications, where possible, in
the place of point-to-point communications is one of the main topics to be investigated
in future.

6.1 Future Work 97

6.1.5 Dynamic Scheduling and Load Balancing

As remarked in Section 5.4.3, our method is compatible with any graph partitioning
algorithm, but we have not yet integrated a graph partitioner or performed an evaluation
of different partitioning algorithms for our use case. The data affinity hints from the
user (see Section 5.2), data transfer costs from the access annotations and estimated
task costs from the Nanos6 monitoring interface [93] are all available to the partitioning
algorithm. An interesting avenue of future work would be to recognise an unexpected
load imbalance and respond by dynamically repartitioning the work in an efficient way.

6.1.6 Non-constant Iterations

Although it might be straightforward, using variable iterations count with taskiter

requires adding extra logic and communication messages between nodes to identify
when the loop ends.

6.1.7 Loop Unrolling

So far, we unroll the loop with a factor of 2 to build the graph; however, by dynamically
adjusting the unrolling factor, it’s possible to optimise task granularity and exploit
available parallelism more effectively.

6.1.8 Summary

In summary, this thesis has identified and built two complementary techniques to
improve the scalability of distributed STF tasking models. We hope that future research
will build on these foundations along the above lines to create robust and productive
distributing tasking models that also deliver high performance and scalability.

References

[1] D. Álvarez and V. Beltran, “Optimizing iterative data-flow scientific applications
using directed cyclic graphs,” IEEE access, 2023. [Online]. Available:
https://doi.org/10.1109/ACCESS.2023.3269902

[2] OpenMP Architecture Review Board, “OpenMP Application Programming
Interface, Version 5.2,” 11 2021, accessed: 2022-04-19. [Online]. Available: https:
//www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

[3] T. Kadosh, N. Hasabnis, T. Mattson, Y. Pinter, and G. Oren, “Quantifying
openmp: Statistical insights into usage and adoption,” in 2023 IEEE High Perfor-
mance Extreme Computing Conference (HPEC). IEEE, 2023, pp. 1–7.

[4] O. Korakitis, S. G. De Gonzalo, N. Guidotti, J. a. P. Barreto, J. C.
Monteiro, and A. J. Peña, “Towards OmpSs-2 and OpenACC interoperation,”
in Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 433–434. [Online]. Available:
https://doi.org/10.1145/3503221.3508401

[5] R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Martorell, R. M.
Badia, E. Ayguadé, and J. Labarta, “Optimizing the exploitation of multicore
processors and GPUs with OpenMP and OpenCL,” in International Workshop on
Languages and Compilers for Parallel Computing. Springer, 2010, pp. 215–229.

[6] J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-González,
C. Álvarez, X. Martorell, E. Ayguadé, and J. Labarta, “Application acceleration
on FPGAs with OmpSs@FPGA,” in 2018 International Conference on Field-
Programmable Technology (FPT), 2018, pp. 70–77.

[7] J. Aguilar Mena, O. Shaaban, V. Beltran, P. Carpenter, E. Ayguadé, and
J. Labarta, “OmpSs-2@Cluster: Distributed memory execution of nested

https://doi.org/10.1109/ACCESS.2023.3269902
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1145/3503221.3508401

References 99

OpenMP-style tasks,” in European Conference on Parallel Processing: Euro-Par
2022, 2022. [Online]. Available: https://doi.org/10.1007/978-3-031-12597-3_20

[8] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang, “The design of OpenMP tasks,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 20, no. 3, pp. 404–418, 2008.

[9] OpenMP Architecture Review Board, “OpenMP Application Program Interface
version 5.1,” Nov. 2020. [Online]. Available: http://www.openmp.org/
mp-documents/spec30.pdf

[10] J. M. Perez, V. Beltran, J. Labarta, and E. Ayguadé, “Improving the integration
of task nesting and dependencies in OpenMP,” in 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2017, pp. 809–818.
[Online]. Available: https://doi.org/10.1109/IPDPS.2017.69

[11] C. Augonnet, O. Aumage, N. Furmento, R. Namyst, and S. Thibault, “StarPU-
MPI: Task programming over clusters of machines enhanced with accelerators,”
in European MPI Users’ Group Meeting. Springer Berlin Heidelberg, 2012, pp.
298–299. [Online]. Available: https://doi.org/10.1007/978-3-642-33518-1_40

[12] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic task discovery in
PaRSEC: a data-flow task-based runtime,” in Proceedings of the 8th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems, 11 2017, pp. 1–8.
[Online]. Available: https://doi.org/10.1145/3148226.3148233

[13] H. Yviquel, M. Pereira, E. Francesquini, G. Valarini, G. Leite, P. Rosso,
R. Ceccato, C. Cusihualpa, V. Dias, S. Rigo, A. Souza, and G. Araujo, “The
OpenMP Cluster programming model,” in Workshop Proceedings of the 51st
International Conference on Parallel Processing, ser. ICPP Workshops ’22. New
York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3547276.3548444

[14] J. Klinkenberg, P. Samfass, M. Bader, C. Terboven, and M. Müller,
“CHAMELEON: Reactive load balancing for hybrid MPI+OpenMP task-parallel
applications,” Journal of Parallel and Distributed Computing, vol. 138, 12 2019.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2019.12.005

[15] K. Sala, X. Teruel, J. M. Perez, A. J. Peña, V. Beltran, and J. Labarta,
“Integrating blocking and non-blocking MPI primitives with task-based

https://doi.org/10.1007/978-3-031-12597-3_20
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://doi.org/10.1109/IPDPS.2017.69
https://doi.org/10.1007/978-3-642-33518-1_40
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1145/3547276.3548444
https://doi.org/10.1016/j.jpdc.2019.12.005

References 100

programming models,” Parallel Computing, vol. 85, pp. 153–166, 2019. [Online].
Available: https://doi.org/10.1016/j.parco.2018.12.008

[16] K. Sala, S. Macià, and V. Beltran, “Combining one-sided communications
with task-based programming models,” in 2021 IEEE International Conference
on Cluster Computing (CLUSTER), 2021, pp. 528–541. [Online]. Available:
https://doi.org/10.1109/Cluster48925.2021.00024

[17] L. Smith and M. Bull, “Development of mixed mode MPI / OpenMP applications,”
Sci. Program., vol. 9, no. 2,3, p. 83–98, aug 2001.

[18] J. Aguilar Mena, O. Shaaban, V. Lopez, M. Garcia, P. Carpenter, E. Ayguadé, and
J. Labarta, “Transparent load balancing of MPI programs using OmpSs-2@Cluster
and DLB,” in 51st International Conference on Parallel Processing (ICPP), 2022.
[Online]. Available: https://doi.org/10.1145/3545008.3545045

[19] J. A. Mena, “Methodology for malleable applications on distributed memory
systems,” Ph.D. dissertation, Universitat Politècnica de Catalunya, 2022. [Online].
Available: http://dx.doi.org/10.5821/dissertation-2117-380814

[20] M. Cosnard and M. Loi, “Automatic task graph generation techniques,” in Pro-
ceedings of the Twenty-Eighth Annual Hawaii International Conference on System
Sciences, vol. 2, 1995, pp. 113–122 vol.2.

[21] Barcelona Supercomputing Center. (2021) OmpSs-2 specification. [Online].
Available: https://pm.bsc.es/ftp/ompss-2/doc/spec/

[22] J. M. de Haro, R. Cano, C. Álvarez, D. Jiménez-González, X. Martorell,
E. Ayguadé, J. Labarta, F. Abel, B. Ringlein, and B. Weiss, “OmpSs@cloudFPGA:
An FPGA task-based programming model with message passing,” in 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2022, pp.
828–838.

[23] O. Shaaban, J. Aguilar, V. Beltran, P. Carpenter, E. Ayguadé, and J. L. Mancho,
“Automatic aggregation of subtask accesses for nested OpenMP-style tasks,” in
2022 IEEE 34th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 2022, pp. 315–325. [Online].
Available: https://doi.org/10.1109/SBAC-PAD55451.2022.00042

[24] O. Shaaban, J. F. d’Albiat, I. Piedrahita, B. Vicenç, P. Carpenter, E. Ayguadé,
and J. Labarta, “Leveraging iterative applications to improve the scalability of

https://doi.org/10.1016/j.parco.2018.12.008
https://doi.org/10.1109/Cluster48925.2021.00024
https://doi.org/10.1145/3545008.3545045
http://dx.doi.org/10.5821/dissertation-2117-380814
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://doi.org/10.1109/SBAC-PAD55451.2022.00042

References 101

task-based programming models on distributed systems,” Available at SSRN
4764389, 2024.

[25] G. Taffoni et al., “EuroEXA D2.6: Final ported application software,” 2022.
[Online]. Available: https://openaccess.inaf.it/bitstream/20.500.12386/33614/1/
EUROEXA_D2.6_v1.1.6.pdf

[26] M. A. Pericàs et al., “LEGaTO D3.4: “report on evaluation and
optimizations in the runtime stack”,” 2020. [Online]. Available: https:
//legato.bsc.es/sites/default/files/uploaded/d3.4.pdf

[27] J. M. Péréz Cáncer, “A dependency-aware parallel programming model,” Ph.D.
dissertation, Universitat Politècnica de Catalunya, 2015. [Online]. Available:
http://dx.doi.org/10.5821/dissertation-2117-95636

[28] Barcelona Supercomputing Center. (2021) Influence in OpenMP - OmpSs-2
specification. [Online]. Available: https://pm.bsc.es/ftp/ompss-2/doc/spec/
introduction/openmp.html

[29] D. Álvarez, K. Sala, M. Maroñas, A. Roca, and V. Beltran, Advanced
Synchronization Techniques for Task-Based Runtime Systems. New York, NY,
USA: Association for Computing Machinery, 2021, p. 334–347. [Online]. Available:
https://doi.org/10.1145/3437801.3441601

[30] Barcelona Supercomputing Center, “OmpSs-2@Cluster releases,” 2022. [Online].
Available: https://github.com/bsc-pm/ompss-2-cluster-releases

[31] ——. (2021) Nanos6. [Online]. Available: https://github.com/bsc-pm/nanos6

[32] ——. (2021) Mercurium. [Online]. Available: https://pm.bsc.es/mcxx

[33] ——. (2024) Extrae instrumentation package. [Online]. Available: https:
//github.com/bsc-performance-tools/extrae

[34] ——. (2024) Ompss-2 linter tool. [Online]. Available: https://github.com/bsc-pm/
ompss-2-linter

[35] “mmap(2) Linux User’s Manual.” [Online]. Available: https://man7.org/linux/
man-pages/man2/mmap.2.html

https://openaccess.inaf.it/bitstream/20.500.12386/33614/1/EUROEXA_D2.6_v1.1.6.pdf
https://openaccess.inaf.it/bitstream/20.500.12386/33614/1/EUROEXA_D2.6_v1.1.6.pdf
https://legato.bsc.es/sites/default/files/uploaded/d3.4.pdf
https://legato.bsc.es/sites/default/files/uploaded/d3.4.pdf
http://dx.doi.org/10.5821/dissertation-2117-95636
https://pm.bsc.es/ftp/ompss-2/doc/spec/introduction/openmp.html
https://pm.bsc.es/ftp/ompss-2/doc/spec/introduction/openmp.html
https://doi.org/10.1145/3437801.3441601
https://github.com/bsc-pm/ompss-2-cluster-releases
https://github.com/bsc-pm/nanos6
https://pm.bsc.es/mcxx
https://github.com/bsc-performance-tools/extrae
https://github.com/bsc-performance-tools/extrae
https://github.com/bsc-pm/ompss-2-linter
https://github.com/bsc-pm/ompss-2-linter
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html

References 102

[36] J. M. Perez, R. M. Badia, and J. Labarta, “Handling task dependencies
under strided and aliased references,” in Proceedings of the 24th ACM
International Conference on Supercomputing, 2010, pp. 263–274. [Online].
Available: https://doi.org/10.1145/1810085.1810122

[37] MPI Forum, “MPI documents.” [Online]. Available: https://www.mpi-forum.org/
docs/

[38] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing interface,”
Supercomputer, vol. 12, pp. 56–68, 1996.

[39] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and N. Sultana,
“A large-scale study of mpi usage in open-source hpc applications,” in Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–14.

[40] A. Hori, E. Jeannot, G. Bosilca, T. Ogura, B. Gerofi, J. Yin, and Y. Ishikawa,
“An international survey on mpi users,” Parallel Computing, vol. 108, p. 102853,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167819121000983

[41] R. W. Numrich and J. Reid, “Co-array Fortran for parallel programming,” in
ACM SIGPLAN Fortran Forum, vol. 17, no. 2. ACM New York, NY, USA, 1998,
pp. 1–31. [Online]. Available: https://doi.org/10.1145/289918.289920

[42] UPC Consortium, “Berkeley UPC – Unified Parallel C,” 2024. [Online]. Available:
https://upc.lbl.gov/

[43] J. Lee, M. T. Tran, T. Odajima, T. Boku, and M. Sato, “An extension of
XcalableMP PGAS lanaguage for multi-node GPU clusters,” in Euro-Par 2011:
Parallel Processing Workshops: CCPI, CGWS, HeteroPar, HiBB, HPCVirt,
HPPC, HPSS, MDGS, ProPer, Resilience, UCHPC, VHPC, Bordeaux, France,
August 29–September 2, 2011, Revised Selected Papers, Part I 17. Springer, 2012,
pp. 429–439. [Online]. Available: https://doi.org/10.1007/978-3-642-29737-3_48

[44] M. De Wael, S. Marr, B. De Fraine, T. Van Cutsem, and W. De Meuter,
“Partitioned global address space languages,” ACM Comput. Surv., vol. 47, no. 4,
may 2015. [Online]. Available: https://doi.org/10.1145/2716320

https://doi.org/10.1145/1810085.1810122
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.sciencedirect.com/science/article/pii/S0167819121000983
https://www.sciencedirect.com/science/article/pii/S0167819121000983
https://doi.org/10.1145/289918.289920
https://upc.lbl.gov/
https://doi.org/10.1007/978-3-642-29737-3_48
https://doi.org/10.1145/2716320

References 103

[45] D. Grünewald and C. Simmendinger, “The GASPI API specification and its
implementation GPI 2.0,” in 7th International Conference on PGAS Programming
Models, vol. 243, 2013, p. 52.

[46] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith,
“Introducing OpenSHMEM: SHMEM for the PGAS community,” in Proceedings
of the Fourth Conference on Partitioned Global Address Space Programming Model,
2010, pp. 1–3. [Online]. Available: https://doi.org/10.1145/2020373.2020375

[47] OpenACC Organization, “OpenACC: Directives for accelerators,” 2011. [Online].
Available: http://www.openacc-standard.org

[48] D. Luebke, “CUDA: Scalable parallel programming for high-performance
scientific computing,” in 2008 5th IEEE international symposium on biomedical
imaging: from nano to macro. IEEE, 2008, pp. 836–838. [Online]. Available:
https://doi.org/10.1109/ISBI.2008.4541126

[49] R. Rabenseifner and G. Wellein, “Comparison of parallel programming models on
clusters of SMP nodes,” in Modeling, Simulation and Optimization of Complex
Processes: Proceedings of the International Conference on High Performance
Scientific Computing, March 10–14, 2003, Hanoi, Vietnam. Springer, 2005, pp.
409–425. [Online]. Available: https://doi.org/10.1007/3-540-27170-8_31

[50] G. Jost, H.-Q. Jin, F. F. Hatay et al., “Comparing the OpenMP, MPI,
and hybrid programming paradigm on an SMP cluster,” in European
Workshop on OpenMP and Applications 2003, 2003. [Online]. Available:
https://ntrs.nasa.gov/citations/20030107321

[51] M. McCool, J. Reinders, and A. Robison, Structured Parallel Programming:
Patterns for Efficient Computation, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2012.

[52] D. Lea, “A java fork/join framework,” in Proceedings of the ACM 2000 conference
on Java Grande, 2000, pp. 36–43.

[53] S. Chatterjee, S. Tasırlar, Z. Budimlic, V. Cavé, M. Chabbi, M. Grossman,
V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism with
MPI,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. IEEE, 2013, pp. 712–725. [Online]. Available:
https://doi.org/10.1109/IPDPS.2013.78

https://doi.org/10.1145/2020373.2020375
http://www.openacc-standard.org
https://doi.org/10.1109/ISBI.2008.4541126
https://doi.org/10.1007/3-540-27170-8_31
https://ntrs.nasa.gov/citations/20030107321
https://doi.org/10.1109/IPDPS.2013.78

References 104

[54] K. Fürlinger, J. Gracia, A. Knüpfer, T. Fuchs, D. Hünich, P. Jungblut,
R. Kowalewski, and J. Schuchart, “DASH: Distributed data structures and
parallel algorithms in a global address space,” in Software for Exascale
Computing-SPPEXA 2016-2019. Springer International Publishing, 07 2020, pp.
103–142. [Online]. Available: https://doi.org/10.1007/978-3-030-47956-5_6

[55] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Luszczek, and
J. Dongarra, “Dense linear algebra on distributed heterogeneous hardware
with a symbolic DAG approach,” Lawrence Berkeley National Lab. (LBNL),
Berkeley, CA (United States), Tech. Rep., 2012. [Online]. Available:
https://www.osti.gov/servlets/purl/1173290

[56] P. Cardosi and B. Bramas, “Specx: a C++ task-based runtime system for hetero-
geneous distributed architectures,” arXiv preprint arXiv:2308.15964, 2023.

[57] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent, and
S. P. Thibault, “Achieving high performance on supercomputers with a sequential
task-based programming model,” IEEE Transactions on Parallel and Distributed
Systems, 2017. [Online]. Available: https://doi.org/10.1109/TPDS.2017.2766064

[58] A. YarKhan, “Dynamic task execution on shared and distributed memory architec-
tures,” Ph.D. dissertation, University of Tennessee, 2012. [Online]. Available: https:
//trace.tennessee.edu/cgi/viewcontent.cgi?article=2774&context=utk_graddiss

[59] A. YarKhan, J. Kurzak, and J. Dongarra, “Quark users’ guide: Queueing and
runtime for kernels,” Tech. Rep. ICL-UT-11-02, 2011-00 2011.

[60] F. Song and J. Dongarra, “A scalable framework for heterogeneous GPU-based clus-
ters,” in Proceedings of the twenty-fourth annual ACM symposium on Parallelism
in algorithms and architectures, 2012, pp. 91–100.

[61] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé,
and J. Labarta, “Productive programming of GPU clusters with OmpSs,” in
IEEE 26th International Parallel and Distributed Processing Symposium, 5 2012.
[Online]. Available: https:doi.org//10.1109/IPDPS.2012.58

[62] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality
and independence with logical regions,” in SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
2012, pp. 1–11. [Online]. Available: https://doi.org/10.1109/SC.2012.71

https://doi.org/10.1007/978-3-030-47956-5_6
https://www.osti.gov/servlets/purl/1173290
https://doi.org/10.1109/TPDS.2017.2766064
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=2774&context=utk_graddiss
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=2774&context=utk_graddiss
https:doi.org//10.1109/IPDPS.2012.58
https://doi.org/10.1109/SC.2012.71

References 105

[63] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken, “Regent: a
high-productivity programming language for HPC with logical regions,” in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015, pp. 1–12. [Online]. Available:
https://doi.org/10.1145/2807591.2807629

[64] Parallel Programming Lab, Dept of Computer Science, University of Illinois.
(2023) Charm++ documentation. [Online]. Available: https://charm.readthedocs.
io/en/latest/index.html

[65] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX: A
task based programming model in a global address space,” in 8th International
Conference on Partitioned Global Address Space Programming Models, 2014.
[Online]. Available: https://doi.org/10.13140/2.1.2635.5204

[66] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: An object-oriented approach to non-uniform
cluster computing,” in Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, ser.
OOPSLA ’05. New York, NY, USA: Association for Computing Machinery, 2005,
p. 519–538. [Online]. Available: https://doi.org/10.1145/1094811.1094852

[67] (2022) The chapel parallel programming language. [Online]. Available:
https://chapel-lang.org/

[68] M. Weiland, “Chapel, fortress and x10: novel languages for hpc,” EPCC, The
University of Edinburgh, Tech. Rep. HPCxTR0706, vol. 1, 2007.

[69] C. Pheatt, “Intel® threading building blocks,” Journal of Computing Sciences in
Colleges, vol. 23, no. 4, pp. 298–298, 2008.

[70] M. Learn, “Task parallel library (tpl) - .net,” Microsoft Learn, 2022. [Online]. Avail-
able: https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/
task-parallel-library-tpl

[71] Google, “Tensorflow,” TensorFlow, 2022. [Online]. Available: https://www.
tensorflow.org/

[72] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez, F. Marozzo, D. Lezzi,
R. Sirvent, D. Talia, and R. M. Badia, “ServiceSs: An interoperable programming

https://doi.org/10.1145/2807591.2807629
https://charm.readthedocs.io/en/latest/index.html
https://charm.readthedocs.io/en/latest/index.html
https://doi.org/10.13140/2.1.2635.5204
https://doi.org/10.1145/1094811.1094852
https://chapel-lang.org/
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://www.tensorflow.org/
https://www.tensorflow.org/

References 106

framework for the cloud,” Journal of grid computing, vol. 12, no. 1, 2014. [Online].
Available: https://doi.org/10.1007/s10723-013-9272-5

[73] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. Berriman, J. Good, A. Laity, and D. S. Katz, “Pegasus: A
framework for mapping complex scientific workflows onto distributed systems,”
Scientific Programming, vol. 13, no. 3, pp. 219–237, Jan 2005. [Online]. Available:
https://doi.org/10.1155/2005/128026

[74] T. Rotaru, M. Rahn, and F.-J. Pfreundt, “MapReduce in GPI-Space,”
in Euro-Par 2013: Parallel Processing Workshops. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 43–52. [Online]. Available: https:
//doi.org/10.1007/978-3-642-54420-0_5

[75] H. Bae, D. Mustafa, J.-W. Lee, H. Lin, C. Dave, R. Eigenmann, S. P. Midkiff et al.,
“The Cetus source-to-source compiler infrastructure: overview and evaluation,”
International Journal of Parallel Programming, vol. 41, no. 6, pp. 753–767, 2013.

[76] G. Souza Diniz Mendonça, B. Campos Ferreira Guimarães, P. R. Oliveira Alves,
F. M. Quintão Pereira, M. M. Pereira, and G. Araújo, “Automatic insertion of
copy annotation in data-parallel programs,” in 2016 28th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), 2016,
pp. 34–41.

[77] G. Mendonça, B. Guimarães, P. Alves, M. Pereira, G. Araújo, and F. M. Q.
Pereira, “DawnCC: automatic annotation for data parallelism and offloading,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 14, no. 2,
pp. 1–25, 2017.

[78] C. Liao, D. J. Quinlan, J. J. Willcock, and T. Panas, “Semantic-aware automatic
parallelization of modern applications using high-level abstractions,” International
Journal of Parallel Programming, vol. 38, no. 5, pp. 361–378, 2010.

[79] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical
automatic polyhedral parallelizer and locality optimizer,” in Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2008, pp. 101–113.

[80] P. Ramos, G. Souza, D. Soares, G. Araújo, and F. M. Q. Pereira, “Automatic
annotation of tasks in structured code,” in Proceedings of the 27th International
Conference on Parallel Architectures and Compilation Techniques, 2018, pp. 1–13.

https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1155/2005/128026
https://doi.org/10.1007/978-3-642-54420-0_5
https://doi.org/10.1007/978-3-642-54420-0_5

References 107

[81] E. Ayguadé, R. M. Badia, D. Jiménez, J. R. Herrero, J. Labarta, V. Subotic, and
G. Utrera, “Tareador: a tool to unveil parallelization strategies at undergraduate
level,” in Proceedings of the Workshop on Computer Architecture Education, 2015,
pp. 1–8.

[82] P. M. Carpenter, A. Ramirez, and E. Ayguadé, “Starsscheck: A tool to find errors
in task-based parallel programs,” in European Conference on Parallel Processing.
Springer, 2010, pp. 2–13.

[83] J. Seward et al. (2023) Valgrind. [Online]. Available: https://valgrind.org

[84] S. Economo, S. Royuela, E. Ayguadé, and V. Beltran, “A toolchain to verify the
parallelization of OmpSs-2 applications,” in Euro-Par 2020: Parallel Processing,
M. Malawski and K. Rzadca, Eds. Cham: Springer International Publishing,
2020, pp. 18–33.

[85] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to visualize
and analyze parallel code,” in Proceedings of WoTUG-18: transputer and occam
developments, vol. 44, no. 1, 1995, pp. 17–31.

[86] S. MD. Slurm workload manager. [Online]. Available: https://slurm.schedmd.
com/overview.html

[87] Barcelona Supercomputing Center, “MareNostrum 4 (2017) System Archi-
tecture,” https://www.bsc.es/marenostrum/marenostrum/technical-information,
2017. [Online]. Available: https://www.bsc.es/marenostrum/marenostrum/
technical-information

[88] ——. (2022) OmpSs-2 examples. [Online]. Available: https://pm.bsc.es/gitlab/
ompss-2/examples

[89] P. Barkman, “Parallel Barnes–Hut algorithm,” https://github.com/barkm/n-body,
2019.

[90] J. K. Salmon, “Parallel hierarchical n-body methods,” Ph.D. dissertation, Califor-
nia Institute of Technology, 1991.

[91] S. Yu and S. Zhou, “A survey on metric of software complexity,” in 2010 2nd IEEE
International conference on information management and engineering. IEEE,
2010, pp. 352–356.

https://valgrind.org
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://pm.bsc.es/gitlab/ompss-2/examples
https://pm.bsc.es/gitlab/ompss-2/examples

References 108

[92] R. Vidal, M. Casas, M. Moretó, D. Chasapis, R. Ferrer, X. Martorell, E. Ayguadé,
J. Labarta, and M. Valero, “Evaluating the impact of OpenMP 4.0 extensions
on relevant parallel workloads,” in OpenMP: Heterogenous Execution and Data
Movements: 11th International Workshop on OpenMP, IWOMP 2015, Aachen,
Germany, October 1-2, 2015, Proceedings 11. Springer, 2015, pp. 60–72. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-24595-9_5

[93] A. Navarro, A. F. Lorenzon, E. Ayguadé, and V. Beltran, “Enhancing
resource management through prediction-based policies,” in European Conference
on Parallel Processing. Springer, 2020, pp. 493–509. [Online]. Available:
https://doi.org/10.1007/978-3-030-57675-2_31

http://dx.doi.org/10.1007/978-3-319-24595-9_5
https://doi.org/10.1007/978-3-030-57675-2_31

	Table of contents
	Abstract
	Resumen
	Resum
	Contents
	List of Figures
	List of Tables
	Listings
	Acknowledgement
	Acronyms
	Glossary
	1 Introduction
	1.1 Task Nesting
	1.2 Taskiter
	1.3 Thesis Outline
	1.4 Publication List

	2 Background
	2.1 OmpSs-2 Parallel Programming Model
	2.1.1 Execution Model
	2.1.2 Dependency Model

	2.2 OmpSs-2@Cluster
	2.3 Runtime Reference Implementation
	2.3.1 Nanos6
	2.3.2 Nanos6@Cluster
	2.3.3 Memory Model
	2.3.4 Tasks, Offloading and Scheduling
	2.3.5 Control Messages

	2.4 Taskiter
	2.5 Task-aware MPI (TAMPI)

	3 Related Work
	3.1 MPI, PGAS and Hybrid Approaches
	3.2 Distributed Tasking
	3.2.1 Implicit task graph creation
	3.2.2 Concurrent and duplicated task graph creation
	3.2.3 Sequential task graph creation

	3.3 Other Approaches
	3.3.1 Frameworks and Libraries
	3.3.2 Scripting and Workflows

	3.4 Data Access Specifications
	3.4.1 Compile-time
	3.4.2 Run-time
	3.4.3 Automatic

	4 Automatic aggregation of data accesses
	4.1 Introduction
	4.2 Motivation
	4.2.1 Precise specification of data accesses without taskwaits
	4.2.2 Productivity and Incremental Path for Nested Tasks

	4.3 Programmer's Model
	4.3.1 Auto Access Type
	4.3.2 None Access Type
	4.3.3 Upgrade Rules
	4.3.4 Fragmentation
	4.3.5 Inheritance of auto and none regions

	4.4 Implementation
	4.4.1 Compiler
	4.4.2 Runtime

	4.5 Methodology and Benchmarks
	4.5.1 Hardware and software platform
	4.5.2 Benchmarks

	4.6 Evaluation and Results
	4.6.1 SMP Evaluation
	4.6.2 Cluster Evaluation (auto vs. taskwait)
	4.6.3 Cluster Evaluation (auto vs. manual)
	4.6.4 Quantifying productivity

	4.7 Conclusion

	5 Distributed taskiter
	5.1 Introduction
	5.2 Motivation
	5.3 Programmer's Model
	5.4 Implementation
	5.4.1 Compilation
	5.4.2 Building The Taskiter Graph
	5.4.3 Partition The Taskiter Graph
	5.4.4 Creating The Local Taskiter Graph
	5.4.5 Single Iteration Execution

	5.5 Methodology and Benchmarks
	5.6 Evaluation and Results
	5.6.1 Strong Scalability
	5.6.2 Iterations Count Performance

	5.7 Initial Overhead Analysis
	5.8 Quantifying Productivity
	5.9 Conclusion

	6 Conclusions and Future work
	6.1 Future Work
	6.1.1 auto and none clauses
	6.1.2 Combining auto and distributed taskiter
	6.1.3 Overhead Optimisations
	6.1.4 Collective Communications
	6.1.5 Dynamic Scheduling and Load Balancing
	6.1.6 Non-constant Iterations
	6.1.7 Loop Unrolling
	6.1.8 Summary

	References

