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Logic takes care of itself; all we have to do is to look and see how it does it.
Ludwig Wittgenstein





Foreword

Dear reader,

The story of this thesis starts with a call for an industrial PhD position in Barcelona, a kind of

position I was not aware of at the time. This position was a collaboration between the University of

Barcelona and Formal Vindications S.L., with the following stated goals: development and verification

of legal software in Coq, formalization of parts of logic/mathematics, and research on topics related

with ordinal analysis via modal logic and reflection principles.

Even though my understanding of Coq at the time consisted of “it’s a proof assistant built on the

Curry-Howard isomorphism,” and my familiarity with the other research topics amounted to “this looks

like proof theory,” it did seem fascinating, and so I applied and was accepted for the position.

What followed were several years vaguely guided by the above goals, which led to research in

vastly different subjects. I was right that it would be fascinating, and also weird and frustrating and

exciting. Verification of software requires a clear picture of what the software is supposed to do,

which is surprisingly hard to obtain with legal software in particular. This led to the formal analysis of

some European regulations, which is one of the subjects of this thesis. On the other hand, and quite

independently, I spent a significant amount of time doing proof theoretical research, which focused

mostly on provability logic. Finally, I did end up formalizing both legal software and mathematics, and

found it very satisfying.

Thus I present to you a thesis that is simultaneously about provability logic, formal analysis of

European regulations, and formalization. I hope you find as much joy in it as I did.

Ana Borges
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Abstract

This thesis explores various aspects of logic, encompassing provability logic, logical analysis of

law, and formalization of both mathematics and software. We are particularly interested in the as-

pect of suitability, both in the sense of finding expressible and tractable fragments of certain logical

systems, and in the sense of finding appropriate formal systems for describing certain legal texts.

In the domain of provability logic, we introduce two novel calculi: the Worm Calculus (WC) and

the Quantified Reflection Calculus with one modality (QRC1). Both WC and QRC1 are inspired by the

Reflection Calculus (RC), introduced by Dashkov in 2012. All three logics are strictly positive prov-

ability logics, with WC and RC being propositional and polymodal, while QRC1 features a quantified

language with a single modality.

Worms are words in a numerical alphabet that have many possible readings, particularly as it-

erated consistency statements. Although the language of worms is very simple, it is remarkably

expressive, and known to fully describe the closed fragment of RC. The Worm Calculus is a calculus

in the language of worms that illustrates this power: RC is shown to be conservative over WC.

Vardanyan showed in 1986 that the quantified provability logic of Peano Arithmetic (QPL(PA)) is

Π0
2-complete, and in particular not recursively axiomatizable. We investigate the strictly positive frag-

ment of QPL(PA), showing that QRC1 is a decidable axiomatization of that fragment. In the process,

we prove soundness and completeness of QRC1 with respect to Kripke semantics and two flavors of

arithmetical semantics. We also see that QRC1 is the strictly positive fragment of QK4 and of QGL,

and of any logic in between those.

In the realm of law and inspired by a collaboration with industry, we focus on two European trans-

port regulations, examining certain articles with curious mathematical properties. Then we identify

fragments of Monadic Second-order Logic capable of expressing specific segments of one of these

regulations, and show how other fragments are less suitable. This effort illustrates some issues with

the way the current regulations specify algorithms, and it hints at the role of model checking as a

useful legal tool.

Lastly, we delve into the formal verification of both mathematics and software using Coq, present-

ing two case studies. The first case study involves the formalization of modal logical results on QRC1.

We describe the overall formalization strategy, focusing on the difficulties and adaptations of both def-

initions and proofs helpful for the formalization. Due to this process, we were able to identify a small

number of improvements to the original proofs.

The formalization of software is somewhat different from the formalization of mathematics, al-
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though they share many particularities. We use a general framework for software formalization that

starts by writing a basic specification for each function, which is then iteratively refined with better

algorithms, data structures, and error handling, culminating in extraction to OCaml. Our case study is

the formalization of UTC calendars, particularly functions to translate between human-readable times

and timestamps, as well as functions to perform time arithmetic. This is a first step towards the for-

malization of laws that depend on time keeping, of which there are many, including the ones studied

here.

Keywords

Modal logic, provability logic, strictly positive logic, quantified modal logic, feasible fragments,

monadic second order logic, formal analysis of law, formal verification, Coq
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Resumen

Esta tesis en lógica formal abarca la lógica de demostrabilidad, el análisis lógico del derecho, y la

formalización de las matemáticas y del software.

Se introducen dos nuevos cálculos de demostrabilidad estrictamente positivos inspirados en el

Reflection Calculus (RC): el Worm Calculus (WC) y el Quantified Reflection Calculus con una modali-

dad (QRC1). Tanto RC como WC son lógicas proposicionales y polimodales, mientras que QRC1 tiene

un lenguaje cuantificado con una sola modalidad.

Los “worms” son palabras en un alfabeto numérico con múltiples interpretaciones, en particular

como enunciados de consistencia iterada. El Worm Calculus es un cálculo en el lenguaje de los

“worms” que describe la totalidad del fragmento cerrado de RC.

Vardanyan demostró que la lógica cuantificada de demostrabilidad de la Aritmética de Peano

(QPL(PA)) es Π0
2-completa y, en particular, no axiomatizable de manera recursiva. Esta tesis investiga

el fragmento estrictamente positivo de QPL(PA) y presenta QRC1 como una axiomatización decidible

de ese fragmento. Se demuestra la corrección y completitud de QRC1 mediante semántica de Kripke

y dos semánticas aritméticas, y que QRC1 es el fragmento estrictamente positivo de las lógicas entre

QK4 y QGL, inclusive.

Asimismo, la tesis incluye un estudio aplicado al ámbito del derecho en el que se examinan

dos regulaciones de transporte europeas con remarcables propiedades matemáticas. Se identifican

fragmentos de Lógica Monádica de Segundo Orden capaces de expresar segmentos específicos, y

otros menos adecuados, sugiriendo que la verificación de modelos puede ser una herramienta legal

útil.

Se estudia la verificación formal de matemáticas y software utilizando Coq a través de dos ejemp-

los. Se describe la formalización de resultados lógicos modales sobre QRC1, abordando los desafíos

y adaptaciones en definiciones y pruebas, e identificando mejoras a las pruebas originales.

Para la formalización del software se emplea un marco general comenzando con una especifi-

cación básica de funciones, refinándola de manera iterativa con mejores algoritmos, estructuras de

datos y manejo de errores, culminando con extracción a OCaml. Se formaliza el calendario UTC,

incluyendo funciones de traducción entre tiempos y timestamps junto con aritmética del tiempo. Este
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es un primer paso para la formalización de leyes dependientes del tiempo.

Palabras clave

Lógica modal, lógica de demostrabilidad, lógica estrictamente positiva, lógica modal cuantificada,

fragmentos factibles, lógica monádica de segundo orden, análisis formal de leyes, verificación formal,

Coq
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1.1 Preamble

This thesis is the product of several years of curiosity and research in the broad field of logic. A

common theme is suitability: which logic, or formalism, or strategy is best for a given purpose? Or if

not provably best, then at least better than the previously available ones? In particular, we consider

(more specific versions of) the following questions:

1. Is it possible to axiomatize a fragment of a logic within that fragment? (Chapter 3)

2. Is it possible to restrict the language of a given intractable logic and obtain a weaker but still

useful and tractable version? (Chapters 4 and 5)

3. Is it possible to express certain legal texts within certain logical systems? (Chapter 8)

4. What is a good way of translating certain systems to a computer-readable and checkable for-

mat? (Chapters 10 and 11)

We have not explored the above questions in their full generality. Instead, we chose specific ex-

amples of logics, regulations, and systems that seemed particularly interesting, relevant, or amenable

to study. In the process, we branched out into some related questions or tasks, and this document is

the end result.

This thesis is split into three parts, which mimic three clusters suggested by the questions above.

Part I is dedicated to provability logics, and presents our positive answers to the first two questions.

Part II is inspired by certain European road transport regulations, where we explore some logical

shortcomings of those regulations (Chapter 7), as well as how certain articles are either expressible

or not (reasonably) expressible in fragments of Monadic Second-order Logic (Chapter 8). Finally,

Part III describes Coq formalizations of one of the two systems described in Part I (Chapter 10), as

well as of UTC calendars with leap seconds (Chapter 11), which are a pre-requisite for formalizing

the regulations studied in Part II. Each part includes an introductory chapter describing the relevant

state of the art as well as some background knowledge (Chapters 2, 6, and 9, respectively).

The remainder of this general introduction focuses on each part by itself, ending with a list of

references of our contributions.

1.2 Provability

The concept of “provable in a theory T ” can be defined as a predicate □T within sufficiently strong

theories of arithmetic such as Peano Arithmetic (PA). This provability predicate enjoys certain prov-

able structural properties, such as distributivity:

□T (φ→ ψ)→ (□Tφ→ □Tψ).

This distributivity property expresses modus ponens within T : if φ→ ψ is provable in T and φ is also

provable in T then ψ is provable in T . Such structural properties can be studied via modal logic by

abstracting the definition of □T to the modality □ and endowing it with relevant properties via modal
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logical axioms. The standard provability logic is GL [49], which has well-studied fragments as well as

extensions. One such extension is GLP [139], which instead of a single □ modality includes several,

written [α] for some ordinal α. These different modalities represent different provability strengths, such

as provability under oracles.

The Reflection Calculus (RC) [78] is the strictly positive fragment of GLP, whose language is made

up of ⊤, propositional symbols, conjunctions, and diamonds ⟨α⟩. The diamonds can be read as

consistency statements, where ⟨α⟩φ is stronger than ⟨β⟩φ when α > β.

We focus on the closed fragment of RC, denoted by RC0. In particular, we are interested in studying

worms, which are the conjunction-free formulas of RC0, i.e., the formulas built only from diamonds and

⊤. The interplay between the several diamonds of RC0 leads to remarkable expressivity, and in fact

every closed formula of RC is equivalent to a worm [136]. This motivates our first question:

1. Is it possible to axiomatize the worm fragment of RC0 using worms?

The answer is yes. We introduce the Worm Calculus (WC) in Chapter 3 and show that it has the

same expressive power as RC0. We also investigate universal models for WC, and see that a large

class of such models inherits much of the complexity of Ignatiev’s model [135], a well-known universal

model for GLP0.

The next topic tackled in Part I pertains to quantified provability logic. In its full generality, the

quantified provability logic of PA (QPL(PA)) is not recursively axiomatizable [203], which leads us to

ask:

2. Is it possible to restrict the language of QPL(PA) and obtain a weaker but still useful and tractable

version?

The answer is positive again. We introduce the Quantified Reflection Calculus with one modality

(QRC1) in Chapter 4, which is shown to axiomatize the strictly positive fragment of QPL(PA) in Chap-

ter 5. In fact, our results are more general: QRC1 is the strictly positive quantified provability logic of

any sound computably enumerable (c.e.) extension of Elementary Arithmetic (EA) and the quantified

reflection logic of any sound c.e. extension of EA plus Σ0
1 collection. As pre-requisites, we see that

QRC1 is sound and complete with respect to Kripke sheaf semantics, and furthermore enjoys the finite

model property. Thus, QRC1 is decidable, a remarkable drop in complexity when compared with the

Π0
2-complete QPL(PA). Finally, QRC1 is the strictly positive fragment of the standard extension of GL

to a first-order setting (QGL).

The concepts introduced above are properly defined, contextualized, and explained during Chap-

ter 2, which serves as a more complete introduction to Part I.

1.3 Temporal laws

Some regulations specify algorithms. These algorithms are implemented as software and used

to make decisions on the legality of certain circumstances. However, there is often a mismatch be-

tween the regulated specification and its implementation. Sometimes this is unavoidable, because
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the specification failed to account for corner cases or would require unfeasible amounts of memory or

computation.

We focus on two European regulations on the road transport of people and goods, namely Regula-

tion (EU) 2016/799 [90] and Regulation (EC) 561/2006 [88] (see Section 6.2). These are of particular

interest to Formal Vindications S.L. and Guretruck S.L., which sponsored and motivated part of this

thesis. One particularity of these regulations is that they concern themselves with time-based events,

some of which pegged to the UTC calendar. Furthermore, they include several informal descriptions

of algorithms, which are implemented both in tachographs (devices installed in vehicles that record

the driver’s activity) and in specialized software used to produce legal decisions.

For example, drivers must not spend too much consecutive time driving without a rest, and there

are a number of restrictions on the minimum amount of consecutive time to be spent resting each day

and week (easily analogized to nights and weekends). Since the drivers’ activities are recorded in the

tachograph’s logs, one can check these restrictions by analyzing those logs, which in practice is done

automatically.

However, we find some discrepancies between our immediate intuitive interpretations of certain

parts of these regulations and our updated interpretations after a second (or fifth!) reading. We show

that a part of Regulation (EU) 2016/799 [90] describes an inductive algorithm lacking an appropriate

base case, that the choice of calendar (for example, with or without leap seconds) radically changes

outcomes in some cases, and that parts of Regulation (EC) 561/2006 [88] are non-local. These

findings are described in Chapter 7.

Be that as it may, after fixing reasonable interpretations we are interested in expressing them within

some mathematical formalism. This has two clear advantages: first, it is a much more robust way of

describing restrictions and algorithms; second, for some formalisms we already have solvers or model

checkers, avoiding the need for purpose-built tools. To that end, we focus on Monadic Second-order

Logic (MSO) and its fragments, in particular Linear Temporal Logic (LTL), described in Chapter 6.

Thus our question can be stated as:

3. Is it possible to express parts of Regulation (EC) 561/2006 [88] within fragments of MSO?

The answer depends on the parts in question and on the specific fragments of MSO. Regulations

have many aspects and we do not attempt to implement them in their full generality. However, some

parts have more or less clear embeddings in MSO and then the task reduces to finding smaller

fragments on which they are expressible. In Chapter 8 we see how to describe two specific articles of

Regulation (EC) 561/2006 [88] within LTL and the Σ1
1 fragment of MSO, respectively. Then we show

how the language of LTL without the “until” modality is not enough for either, and that even with “until”

one of the articles is not expressible via low-complexity formulas.

1.4 Formalization

Formalization is the process of translating some informally presented statement (be it a definition,

a theorem, a proof, or something else) into a formal system with clear and well-defined rules. For
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example, a proof of φ → φ might be omitted during an informal argument, whereas a formalization

would need to settle the language to which φ belongs and the system in which φ→ φ is to be proved,

complete with an axiomatization or enough results with which to otherwise deduce the goal, and then

describe how to do so in detail.

Formalizing proofs can be tedious and in many contexts it is pointless. One may find mistakes

while trying to formalize wrong results, but it is not necessarily easier to check a formalized result by

hand than it is to check an informal and well-written proof, mainly due to the increased size typical of

formalizations.

This changes with access to proof assistants. Proof assistants, also known as interactive theorem

provers, are software tools that aid the process of formalization. They provide an interface between

the user and full formalizations, permitting a level of informal reasoning through automation and pro-

viding complex record-keeping beyond what people are usually capable of.

Formalization through proof assistants is then useful to check one’s (or others’) work, specially

when there are reasons for doubt. It is also a worthwhile exercise even if there is no real question of

correctness, because formalizing a result forces one to understand it at a level beyond what is usually

needed to informally prove it, and often leads to simplified statements or proofs.

It is also possible to formalize software, which usually starts with either the software to be for-

malized or a specification thereof. In this context it is common for the correctness results to not be

informally stated or proved anywhere before being formalized.

The formalizations described in Part III use the Coq proof assistant [66]. More details on computer-

aided formalization in general and Coq in particular can be found in Chapter 9.

We now restate the question for this part:

4. What is a good way of formalizing RC0, WC, QRC1, and UTC in Coq?

The difficulty lies in choosing the right abstractions and proofs, which are not always the ones

used in informal presentations. Even then, each formalization may be very time-consuming, specially

if the matter at hand relies on a large body of previous mathematical knowledge or has an implicit

formalization very different from the typical informal presentation.

Symbolic logic is an easy formalization target in general, as it typically starts with simple languages

and axiomatizations. Thus, formal representations of RC0, WC, and QRC1 can readily be obtained and

used to prove simple RC0, WC, or QRC1 theorems. More complex systems such as PA can also be

formalized [179, 103], but proving facts within PA can quickly become tedious when compared with

informal proofs that do not detail each step in a Hilbert-style proof.

We focus on formalizing the main modal logical results of Chapters 3 (RC0 and WC) and 4 (QRC1),

and leave formalizations of the remaining results as future work. Since the formalization of the results

pertaining to RC0 and WC is rather straightforward, we do not describe it in this thesis and instead

refer the reader to the source code and its documentation [3].

The formalization of the modal results on QRC1 is described in Chapter 10. We focus on interesting

design decisions and the difficulties that led to different and simplified proofs.
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On a somewhat different register, we delve into software verification in Chapter 11. We formalize

UTC calendars with leap seconds and without time zones. The main functions are translations be-

tween times in a year-month-day-hour-minute-second format and timestamps. We also include basic

time arithmetic functions. Representing moments in time and knowing how to add and subtract times

and durations is a necessary prerequisite for the formalization of the regulations discussed in Part II.

1.5 Contributions

Most of the results described here have been published in stand alone documents, many of which

with co-authors. They are as follows, roughly in order of appearance in this thesis:

[12] de Almeida Borges, A., & Joosten, J. J. (2018). The Worm Calculus. In G. Bezhanishvili,

G. D’Agostino, G. Metcalfe, & T. Studer (Eds.) Advances in Modal Logic 12, (pp. 13–27). College

Publications.

URL http://www.aiml.net/volumes/volume12/deAlmeidaBorges-Joosten.pdf

[13] de Almeida Borges, A., & Joosten, J. J. (2020). Quantified Reflection Calculus with one modality.

In N. Olivetti, R. Verbrugge, S. Negri, & G. Sandu (Eds.) Advances in Modal Logic 13, (pp. 13–

32). College Publications.

URL http://www.aiml.net/volumes/volume13/deAlmeidaBorges-Joosten.pdf

[14] de Almeida Borges, A., & Joosten, J. J. (2022). An escape from Vardanyan’s Theorem. The

Journal of Symbolic Logic, (pp. 1–26).

URL https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/a

n-escape-from-vardanyans-theorem/03E13D4C282563F918AF77CF6E2830DA

[9] de Almeida Borges, A., Conejero Rodríguez, J. J., Fernández-Duque, D., González Bedmar, M.,

& Joosten, J. J. (2019). The second order traffic fine: Temporal reasoning in European transport

regulations. In J. Gamper, S. Pinchinat, & G. Sciavicco (Eds.) 26th International Symposium

on Temporal Representation and Reasoning (TIME 2019), vol. 147 of Leibniz International Pro-

ceedings in Informatics (LIPIcs), (pp. 6:1–6:16). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

URL http://drops.dagstuhl.de/opus/volltexte/2019/11364

[10] de Almeida Borges, A., Conejero Rodríguez, J. J., Fernández-Duque, D., González Bedmar,

M., & Joosten, J. J. (2021). To drive or not to drive: A logical and computational analysis of

European transport regulations. Information and Computation, 280.

URL https://www.sciencedirect.com/science/article/pii/S0890540120301243

[4] de Almeida Borges, A. (2022). Towards a Coq formalization of a quantified modal logic. In

C. Benzmüller, & J. Otten (Eds.) Proceedings of the 4th International Workshop on Automated

Reasoning in Quantified Non-Classical Logics (ARQNL 2022), (pp. 13–27). Haifa, Israel: CEUR.

URL https://ceur-ws.org/Vol-3326/ARQNL2022_paper1.pdf
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2.1 Introduction

In this chapter we present an overview of the state of the art regarding the study of formalized

provability in theories of arithmetic through the modal logical lens. It was from the state of affairs

described here that we obtained the motivation to study the several topics of Part I. We tried to make

this thesis reasonable self-contained, and thus go into some detail on particularly relevant definitions.

We also mention many related topics with less detail, which are nevertheless part of the picture.

We start with the arithmetical context and motivation in Sections 2.2 and 2.3, followed by four

sections on different kinds of modal logic. In each of these sections, we start by describing the

particular kind of logic at hand, highlighting relevant examples, and then dwell on both relational and

arithmetical semantics. Section 2.4 describes propositional modal logic, which sets the stage for the

remaining kinds of modal logic. Section 2.5 goes into quantified modal logic and Section 2.6, which

is independent from the previous one, goes into (propositional) polymodal logic. Finally, Section 2.7

describes strictly positive logic, which is ubiquitous during the rest of Part I.

2.2 Arithmetic

The language of arithmetic Larith is that of First-order Logic (FOL) together with the symbols

{0, 1,+,×, exp, <,=} with their usual arities (see [122, 30] for details on this section and the next).

The terms of arithmetic are either variables (of which we assume countably-many are available), 0,

1, or built up from other terms using the binary +, the binary ×, or the unary exp. Terms of the form

1+1+ · · ·+1 are called numerals, and typically abbreviated as n; for example, 2 is the numeral 1+1.

When no confusion is possible, we omit the ·. There is a so-called standard model for arithmetic,

N = {0, 1, 2, . . .}, where 0 is interpreted as 0, 1 as 1, + as addition, × as multiplication, exp as base-2

exponentiation, < as less-than, and = as equality. Theories of arithmetic for which the standard model

is a model are said to be sound. There are also other models of arithmetic not isomorphic to N, which

are said to be non-standard.

We use standard notation for the language of FOL, with ¬ representing negation, ∧ representing

conjunction, ∨ representing disjunction, ∀ representing universal quantification, ∃ representing ex-

istential quantification, → representing implication, and ↔ representing equivalence. Quantification

typically binds stronger than implication, so ∀xφ→ ψ is read as (∀xφ)→ ψ.1

The notation ∀x < tφ is shorthand for ∀x (x < t→ φ) and ∃x < tφ is shorthand for ∃x (x < t∧φ),

where x is a variable, t is a term, and φ is a formula in the language of arithmetic. When x does not

appear in t we say that these quantifiers are bounded. Formulas that have only bounded quantifiers

(and in particular quantifier-free formulas) are said to be elementary. Nested non-bounded quantifiers

lead to a measure of formula complexity and to the arithmetical hierarchy.

Definition 2.2.1 (Arithmetical hierarchy, ∆0
0,Π

0
n,Σ

0
n). A formula is said to be ∆0

0 if it is elementary.

Then the classes of formulas Σ0
n and Π0

n are defined as the smallest classes such that:

1In Part III this is sometimes not the case, because Coq uses the opposite convention. We use a comma after the quantifier
to distinguish that case, so ∀x, φ→ ψ is read as ∀x (φ→ ψ).
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• Σ0
0 := Π0

0 := ∆0
0;

• if φ ∈ Σ0
n then ∀xφ ∈ Π0

n+1;

• if φ ∈ Π0
n then ∃xφ ∈ Σ0

n+1.

We say that a formula φ is Π0
n in T (respectively, Σ0

n in T ) if there is a formula ψ ∈ Π0
n (respectively,

ψ ∈ Σ0
n) such that T ⊢ φ ↔ ψ, where T is a theory of arithmetic. A formula is ∆0

n in T if it is

both Σ0
n in T and Π0

n in T . Usually T is omitted, because in sufficiently strong classical theories

such as the ones we consider here all formulas have a fixed minimum complexity. It is only when

dealing with a weaker setting, such as intuitionistic logic or very weak classical theories of arithmetic,

that this distinction is relevant. Via coding of pairs of variables, which is available in every theory of

arithmetic considered here, we can see that ∀x ∀ y φ has the same complexity as ∀ y φ, and similarly

for consecutive existential quantifiers.

The arithmetical hierarchy is a useful measure of complexity. The decidable formulas are precisely

the ∆0
0 ones, while Σ0

1 represents the semi-decidable2 ones. On the other hand, genuine Π0
1 formulas

(for example, Π0
1 formulas which are not simultaneously ∆0

0) already represent undecidable sets. A

set Γ is said to be arithmetical if there is some formula γ(x) in the language of arithmetic such that

N ⊨ γ(n) if and only if n ∈ Γ.

The weakest theory of arithmetic we consider here is Elementary Arithmetic (EA). It includes

axioms for First-order Logic, equality, and arithmetical symbols (0, 1, +, ×, exp and<). It also includes

an induction axiom schema restricted to elementary formulas, which justifies its name.

Definition 2.2.2 (Induction axiom schema, IAΓ). Let Γ be a set of formulas. The induction axiom

schema restricted to Γ is:

IAΓ := φ(0) ∧ ∀n (φ(n)→ φ(n+ 1))→ ∀nφ(n),

where φ(n) ∈ Γ is a formula with possibly other free variables besides n. The full induction schema

IA is as above with unrestricted φ.

Stronger theories are easily defined by considering stronger induction schemas. For example, IΣn

is EA+ IAΣ0
n
. Including an unrestricted induction schema leads to Peano Arithmetic (PA).

We briefly mention the collection principle, as it is used in Chapter 5.

Definition 2.2.3 (Collection principle, COLLΓ). Let Γ be a set of formulas and φ(y, z) ∈ Γ be a formula

without x or w as a free variable but possibly other free variables not mentioned here. The collection

principle restricted to Γ is:

COLLΓ := ∀ y < x ∃ z φ(y, z)→ ∃w ∀ y < x ∃ z < wφ(y, z).

The full collection principle COLL is as above with unrestricted φ.
2Also known as computably enumerable (c.e.) or recursively enumerable (r.e.).
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One way to interpret the collection principle is to think of φ(y, z) as describing the graph of a

(multi-valued) function. Then, ∀ y < x ∃ z φ(y, z) can mean “for every input y < x there is (at least)

an output z such that f(y) = z, where f is the function described by φ”. The consequent of the

principle states that we can bound the outputs of this function (for inputs smaller than x) by some

number w, obtaining a collection of all possible outputs. However intuitive this observation may be,

the collection principle is not provable in every theory of arithmetic. In fact, we have the following

relationship between induction and collection.

Lemma 2.2.4 ([122]). In the following, the notation T ⊢ X where X is a collection of formulas is meant

to be interpreted as “T proves every instance of X.”

• EA+ IAΣ0
n+1
⊢ COLLΣ0

n+1
;

• EA+ COLLΣ0
n+1
⊢ IAΣ0

n
.

2.3 Formalized provability

An interesting feature of arithmetic is that sufficiently strong theories such as EA can introspect,

i.e., reason about themselves. One important tool for doing so is the coding of arithmetical formulas

into numbers, known as Gödel numbering. We do not go into details here (see [92], and [185] for the

EA version). Suffice it to say that there is a Gödel number ⌜φ⌝ representing each arithmetical formula

φ so that for each syntactic operation such as ψ∧δ there is an easily computable arithmetical function

such as conj(·, ·) that translates the Gödel numbers of two formulas into the Gödel number of their

conjunction (in symbols, conj(⌜ψ⌝, ⌜δ⌝) = ⌜ψ ∧ δ⌝). When φ(x) has a free variable x, we write ⌜φ(ẋ)⌝

to represent a pseudo-term3 for a function that maps a number n to the number ⌜φ(n)⌝. We can code

other things, such as sequences of numbers (and thus sequences of formulas). These codes allow

us to express statements such as “n is the code of a sequence”, “n is the code of an axiom”, “n is the

code of a Σ0
m formula”, and so on. We can also quantify over formulas by quantifying over numbers

that represent formulas.

Thus, with Gödel numbers we can define formulas representing the axiomatizations of simple

theories of arithmetic such as EA and its common extensions. When we have a formula τ(u) with

a single free variable u that is true in the standard model if and only if u is the Gödel number of an

axiom of T , we say that τ(u) is an axiomatization of T . Theories with an elementary axiomatization

are said to be elementary presented.

We can now define Gödel’s provability predicate □τ⌜φ⌝ for a given axiomatization τ of a theory of

arithmetic as ∃ pProofτ (p, ⌜φ⌝), where:

Proofτ (p, n) := sequence(p) ∧ p|p|−1 = n ∧

∀ k < |p| (τ(pk) ∨ ∃ i < k ∃ j < kMP(pi, pj , pk) ∨ ∃ i < kGen(pi, pk)).

3A pseudo-term as defined by Boolos [49] is a formula ψ(x, y) such that ∀x∃! y ψ(x, y) is provable. Pseudo-terms represent
functions which can be reasoned about in arithmetic, even if they cannot be denoted by arithmetical terms.
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Roughly, □τ⌜φ⌝ states that there is a Hilbert-style proof of φ in the theory axiomatized by τ , that

is, a finite sequence of formulas ψ0, . . . , ψm such that ψm is φ and each ψk is either an axiom in

the sense of τ or follows from previous elements of the sequence through either modus ponens or

generalization.

Note that, except for τ , all the functions used in the definition of Proofτ can be naturally defined as

elementary formulas in EA, and thus the complexity of Proofτ is determined by the complexity of τ .

The theories of arithmetic we care about all have computably enumerable (i.e., Σ0
1) axiomatizations,

and by Craig’s trick [75, 92], these theories have an equivalent elementary axiomatization.

Theories can have many different axiomatizations, but in general we assume an elementary ax-

iomatization AxT has been fixed for each theory T considered here. When we do not wish to highlight

the chosen axiomatization, we write ProofT and □T instead of ProofAxT and □AxT . Thus, ProofT is

assumed to be an elementary formula, which implies that □T ⌜φ⌝ is a Σ0
1 formula (regardless of the

complexity of φ; remember, ⌜φ⌝ is just a number). In Chapter 5 we sometimes need to refer to a

specific c.e. axiomatization τ of a theory, and in that case Proofτ may become a Σ0
1 formula instead

of an elementary one. However, □τ is still Σ0
1 in that case.

In the remainder of this thesis, we mostly omit Gödel numbers. Thus, we write □Tφ instead

of □T ⌜φ⌝, □Tφ(ẋ) instead of □T ⌜φ(ẋ)⌝ when we wish to highlight free variables, and we further

write ♢Tφ as shorthand for ¬□T¬φ, which represents the consistency of T + φ (and similarly when

specifying the axiomatization τ ).

The provability predicate as defined above behaves like our intuitive notion of provability, namely

we have that, if T is a c.e. extension of EA, then φ is provable in T if and only if □Tφ is satisfied by

the standard model:

T ⊢ φ ⇐⇒ N ⊨ □Tφ. (2.1)

Furthermore, it is possible to formalize well-known results about provability, such as the deduction

theorem.

Theorem 2.3.1 (Formalized deduction [92]). Let T be a c.e.. extension of EA and φ be a formula of

arithmetic with free variables y. Then:

EA ⊢ ∀ θ(x) ∀x,y
(
□T+φ(ẏ)θ(ẋ)↔ □T (φ(ẏ)→ θ(ẋ))

)
.

We now list some other properties of the provability predicate, which make a reappearance in

the next section when we talk about provability logic. We start with the Hilbert-Bernays-Löb deriv-

ability conditions, whose name comes from the observation that any predicate □T that fulfills them

is sufficient to prove Gödel’s second incompleteness theorem [120] about a sufficiently strong and

consistent theory of arithmetic T .

Lemma 2.3.2 (Hilbert-Bernays-Löb derivability conditions [161, 49, 30]). Let T be a c.e. extension of

EA and φ,ψ be arithmetical formulas. Then:

1. if T ⊢ φ, then EA ⊢ □Tφ;

2. EA ⊢ □T (φ→ ψ)→ (□Tφ→ □Tψ);
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3. EA ⊢ □Tφ→ □T□Tφ.

Above, the formula φ may have free variables, which under the box shall appear dotted (i.e., □Tφ(ẋ)).

The third derivability condition is a corollary of provable Σ0
1-completeness.

Lemma 2.3.3 (Provable Σ0
1-completeness [193, 122]). Let T be a c.e. extension of EA and σ(x) be a

Σ0
1 formula with free variables x := x0, . . . xn−1. Then, EA ⊢ σ(x)→ □Tσ(ẋ).

Another important result pertaining to the provability predicate is Löb’s theorem.

Theorem 2.3.4 (Löb [161]). Let T be a c.e. extension of EA and φ be a sentence of arithmetic. Then:

T ⊢ □Tφ→ φ ⇐⇒ T ⊢ φ.

We can easily obtain Gödel’s second incompleteness theorem if we take φ to be ⊥ (or 0 = 1) in

Löb’s theorem: T ⊢ ¬□T⊥ if and only if T ⊢ ⊥, i.e., T proves its own consistency if and only if T is

inconsistent.

As we’ve seen, there are several notable properties of the provability predicate, and so it makes

sense to design a system that collects all such properties without needing to focus on the specific

implementation of □T . The language L□ of propositional modal logic is optimally suited for this

purpose.

2.4 Modal logic

The language of propositional modal logic L□ is obtained from the language of propositional logic

by extending it with a unary □ (box) symbol:

L□ ::= ⊥ | p | φ→ φ | □φ,

where p ∈ PROP is a propositional variable (PROP being the set of propositional variables), and φ is

an L□ formula. We use the typical abbreviations for propositional logic, such as ¬φ := φ → ⊥, and

♢ (diamond) as the dual modality to □, i.e., ♢φ := ¬□¬φ. The modal symbols bind stronger than the

binary propositional symbols, so for example □φ→ ψ is a different formula from □(φ→ ψ).

Modal logic is used as a tool in numerous fields, each reading the modalities in different ways

(see [129, 106] for a thorough study of modal logic in general, and detailed explanations of the topics

mentioned in this section). Typically the □ has a flavor of necessity and the ♢ a flavor of possibility. In

the provability case, the one used in this part of the thesis, □φ reads as “φ is provable in T ” and ♢φ as

“φ is consistent with T ”, where T is a theory of arithmetic such as the ones described in Section 2.2.

In Linear Temporal Logic, which we use in Part II, □φ means “φ holds forever” and ♢φ means “φ holds

at some future moment.”

The following modal statements have a relevant interpretation under the provability lens:

• □(φ→ ψ)→ (□φ→ □ψ) (K or distribution);

• □φ→ □□φ (4 or transitivity);
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• □(□φ→ φ)→ □φ (Löb);

When read through a provability lens, K states that if an implication is provable and its antecedent

is provable, then so is the consequent. In other words, distribution is formalized modus ponens, one of

the Hilbert-Bernays-Löb derivability conditions. In the same vein, 4 states that if a formula is provable

then this fact is also provable, and it is another derivability condition. Finally, Löb is the formalized

Löb’s theorem.

We briefly mention some other modal statements that are relevant in the modal logic literature but

not directly connected to provability:

• □φ→ φ (T or reflection);

• ♢φ→ □♢φ (5 or Euclidity);

• □(φ ∧□φ→ ψ) ∨□(ψ ∧□ψ → φ) (.3 or connectedness).

Note that T clashes with the provability reading, since under that reading it states that everything

that is provable is true. However, it holds under the truth interpretation, i.e. when □φ is read as “φ is

true in the standard model of arithmetic”.

There are many modal logics built by taking some specific modal logic as a base and adding one

or more axiom schemas to it. The typical base modal logic, called K, is also the minimal normal modal

logic.

Definition 2.4.1 (Normal modal logic, K). A logic L in the language L□ is called normal if:

• L proves all classical propositional tautologies in L□ (for example, L ⊢ □p ∨ ¬□p);

• L proves all instances of K;

• L is closed under modus ponens (if L ⊢ φ→ ψ and L ⊢ φ then L ⊢ ψ);

• L is closed under necessitation (if L ⊢ φ then L ⊢ □φ);

• L is closed under substitution (for example, if L ⊢ p→ □p then L ⊢ φ→ □φ for any formula φ).

K is defined as the minimal normal modal logic.

We can now define a number of well-known normal modal logics, via extending a given normal

modal logic with one or more axiom schemas:

• K4 := K+ 4;

• K4.3 := K4+ .3;

• GL := K+ Löb;

• GL.3 := GL+ .3;

• T := K+ T;

• S4 := T+ 4;

• S4.3 := S4+ .3;

• K5 := K+ 5;

• S5 := T+ 5.
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Although we don’t directly use or study any of the above logics in this thesis, the work here is very

much inspired by the previous study of GL and related logics, so we say some more words about it

(see also [49]). The name GL stands for Gödel–Löb, alluding to the status of GL as a provability logic,

about which we go into more detail on Section 2.4.2. The logic GL is sometimes defined as K4+Löb,

but the definitions are equivalent, since we can derive all instances of 4 in K+ Löb.

There are also some important non-normal modal logics, particularly GLS, whose axioms are all

the theorems of GL and the axiom schema T, with modus ponens as the single rule (so it is not closed

under necessitation). The theorems of GLS are precisely the always-true modal sentences, as we’ll

see in Section 2.4.2.

All of the above modal logics (GLS included, see Boolos [49]) are decidable [106, 205]. We go into

detail on their complexity in Table 2.1 on page 33, where we also list some of their strictly positive

(and less complex) fragments.

2.4.1 Relational semantics

The typical semantics used for modal logics is relational or Kripke semantics. We briefly describe

it in this section; refer to Hughes and Cresswell [129] for details.

Definition 2.4.2 (Kripke frame, Kripke model). A Kripke frame is a tuple ⟨W,R⟩ where W is a non-

empty set of so-called worlds and R ⊆ W ×W is a binary relation on worlds, which we think of as

accessibility (we write wRu instead of ⟨w, u⟩ ∈ R). In other words, a Kripke frame is simply a directed

graph.

A Kripke model is a Kripke frame together with a valuation function V : PROP → ℘(W ), determin-

ing which propositional symbols hold at which worlds.

Definition 2.4.3 (Satisfiability). Given a Kripke modelM = ⟨W,R, V ⟩, the notion of satisfiability of a

formula φ at a world w, writtenM, w ⊩ φ, is defined recursively on the formula as follows:

• M, w ̸⊩ ⊥;

• M, w ⊩ p if and only if w ∈ V (p), where p ∈ PROP;

• M, w ⊩ φ→ ψ if and only if eitherM, w ̸⊩ φ orM, w ⊩ ψ;

• M, w ⊩ □φ if and only if for every u such that wRu we haveM, u ⊩ φ.

If M, w ⊩ φ for every world w ∈ W , we say that φ is valid in M and write M ⊨ φ. If ⟨F , V ⟩ ⊨ φ for

every valuation V , we say that φ is valid in F and write F ⊨ φ.

Since ♢φ is just a notation for ¬□¬φ, we can easily check that M, w ⊩ ♢φ if and only if there is

a world u ∈ W such that wRu and M, w ⊩ φ. Thus, this notion of semantics reads □φ as “φ holds

everywhere accessible from here” and ♢φ as “there is an accessible world where φ holds”.

K is sound and complete with respect to Kripke semantics.

Lemma 2.4.4. Let φ be a modal formula. Then, K ⊢ φ if and only if φ is valid in every Kripke model.
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The simple notion of Kripke model above does not suffice for other modal logics such as K4 though,

since we can easily build a model not satisfying instances of 4 such as □p → □□p, as described in

Figure 2.1.

a : {} b : {p} c : {}

Figure 2.1: A graphical representation of a Kripke model where □p→ □□p does not hold. Each node
includes a label (a, b, or c) and the set of propositional variables that hold at that world. An arrow
between two worlds means that the second is accessible from the first. We see that a ⊩ □p because
b is the only world accessible from a, but a ̸⊩ □□p because c, where p does not hold, is accessible in
two steps.

However, every model based on a transitive frame satisfies all instances of 4, and every formula

not provable in K4 has a transitive counter-model. For this reason, we say that transitivity is a frame

condition for K4 (which justifies referring to 4 as the transitivity axiom schema) and that K4 is frame

complete.

Many modal logics have well-known frame conditions, which we summarize as follows (see [106]):

• K4 is sound and complete for transitive (if wRu and uRv then wRv) frames;

• K4.3 is sound and complete for transitive and weakly connected (if wRu and wRv, then either

uRv, vRu, or u = v) frames;

• GL is sound and complete for transitive and Noetherian (R−1 is well-founded, i.e. there are no

infinite paths w0Rw1Rw2R · · · ) frames;

• GL.3 is sound and complete for transitive, Noetherian, and weakly connected frames;

• T is sound and complete for reflexive (wRw for all w ∈W ) frames;

• S4 is sound and complete for reflexive and transitive frames (i.e., when R is a preorder);

• S4.3 is sound and complete for reflexive, transitive, and weakly connected frames;

• K5 is sound and complete for Euclidean (if wRu and wRv then uRv) frames;

• S5 is sound and complete for reflexive, transitive, and symmetric (wRu implies uRw) frames

(i.e., when R is an equivalence relation).

Note that we can still build non-transitive models satisfying all instances of 4, and analogously

for the other formulas and frame conditions. However, frame completeness is a useful property for a

modal logic to have.

2.4.2 Arithmetical semantics

We’ve been informally talking about interpreting the modal symbols in a provability sense. Here we

make that more precise, by introducing the notion of arithmetical realization. The idea is to translate

formulas in the modal language into formulas in the arithmetical language. Each different realization
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may interpret propositional symbols as different arithmetical sentences, but Boolean connectives in

the modal language are always mapped to their arithmetical counterparts, and □ is always mapped

to the provability predicate of a chosen arithmetical theory.

Definition 2.4.5 (Arithmetical realization for L□, ·∗, ·∗T ). An arithmetical realization ·∗ is a function

from PROP to sentences in the language of arithmetic.

Given a c.e. theory T extending EA, and an arithmetical realization ·∗, we define ·∗T on modal

formulas as follows:

• ⊥∗T := (0 = 1);

• p∗T := p∗, where p ∈ PROP;

• (φ→ ψ)∗T := φ∗T → ψ∗T ;

• (□φ)∗T := □Tφ∗T .

We can now discuss provable structural properties, i.e., the provable properties that do not de-

pend on the chosen realization. For example, we have EA ⊢ (□(p → q) → (□p → □q))∗EA for any

realization ·∗, because EA ⊢ □EA(p
∗ → q∗) → (□EAp

∗ → □EAq
∗) for any arithmetical formulas p∗ and

q∗ (Lemma 2.3.2). The collection of these properties for a given theory T is called the provability logic

of T .

Definition 2.4.6 (Provability logic, PL). If T is a c.e. extension of EA, the provability logic of T is

defined as:

PL(T ) := {φ ∈ L□ | for any ·∗, we have T ⊢ φ∗T }.

Via (2.1) we know that (T ⊢ φ∗T for any ·∗) if and only if (N ⊨ □Tφ∗T for any ·∗) for c.e. theories T

extending EA. Clearly, φ∗T only depends on the value of ·∗ for the finitely many propositional variables

that occur in φ, and so the universal quantifier “for any ·∗” can be coded and made internal, making

it possible to characterize PL(T ) by {φ ∈ L□ | N ⊨ ∀ ·∗□Tφ∗T }. Since □Tψ∗T is a Σ0
1 formula, this

means that PL(T ) has a Π0
2 definition.

Interestingly, PL(PA) has a much simpler, decidable definition: the theorems of GL. This result

is due to Solovay and justifies labeling GL as a provability logic. It was shown later by de Jongh et

al. [79] that this also holds for theories as weak as EA.

Theorem 2.4.7 (Solovay [194]). Let T be a c.e. Σ0
1-sound4 extension of EA and φ ∈ L□. Then:

GL ⊢ φ ⇐⇒ for any ·∗T ,we have T ⊢ φ∗T .

In other words, GL = PL(T ).

We can define the set of true structural principles analogously to how we defined the set of struc-

tural provable principles.
4A theory is Γ-sound if all formulas in Γ provable in the theory are valid in the standard model N.
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Definition 2.4.8 (Truth logic, TPL). If T is a c.e. extension of EA, the truth logic of T is defined as:

TPL(T ) := {φ ∈ L□ | for any ·∗, we have N ⊨ φ∗T }.

A priori, TPL(PA) falls outside the arithmetical hierarchy due to Tarski’s [200] result on the unde-

finability of arithmetical truth. However, Solovay also simplified this logic by showing that TPL(PA) is

described by the theorems of GLS, and consequently decidable.

Theorem 2.4.9 (Solovay [194]). Let T be a c.e. Σ0
1-sound extension of EA and φ ∈ L□. Then:

GLS ⊢ φ ⇐⇒ for any ·∗T ,we have N ⊨ φ∗T .

In other words, GLS = TPL(T ).

2.5 Quantified modal logic

The language of modal logic can be extended to a first-order setting in the natural way. We

describe a simple version with no equality nor function symbols, L□∀. Fix a signature Σ, which in this

case is simply a set of relation symbols RELΣ and their respective arity (we sometimes omit specific

mention of Σ). Then:

L□∀ ::= ⊥ | S(x) | φ→ φ | ∀xφ | □φ,

where φ represents an L□∀-formula, S ∈ RELΣ is a relation symbol with arity n, x is an n-tuple of

variables, and x is a variable. We use the typical notations, including ∃xφ := ¬∀x¬φ. The quantifiers

bind stronger than the binary propositional symbols, so for example ∀xφ → ψ is a different formula

from ∀x (φ→ ψ).

The free variables of a formula φ are defined as usual, and denoted by fv(φ). The expression

φ[x←y] denotes the formula φ with all free occurrences of the variable x simultaneously replaced by

the variable y. We say that y is free for x in φ if no occurrence of y becomes bound in φ[x←y].

Given a propositional modal logic L, we define its quantified version QL as described by Hughes

and Cresswell [129]:

• QL proves all substitution instances of theorems of L in the language L□∀;

• QL proves all instances of ∀xφ→ φ[x←y], with y free for x in φ (∀E);

• if QL ⊢ φ→ ψ, then QL ⊢ φ→ ∀xψ, with x /∈ fv(φ) (∀I);

• QL is closed under modus ponens;

• QL is closed under necessitation.

This leads to the straightforward definition of logics such as QK4 and QGL.
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2.5.1 Relational semantics

There have been several proposals for relational semantics for quantified modal logics, from

Kripke [145] to many others. Overviews can be found in [129, 107, 110]. The idea of the Kripke

models for propositional modal logic described in Section 2.4.1 is to glue together several proposi-

tional models (worlds) through an accessibility relation R. Similarly, the idea with quantified modal

logic is to glue together several first-order models. However, the precise way in which to do it can

vary, due to different ways to interpret the relationship between quantifiers and modal symbols, as

well as with the first-order domains. A simple choice is to fix a domain for the full model, leading to

so-called constant domain models. An alternative is to allow each world to have a specific domain,

and possibly set some restrictions on the relationships between these domains. Different quantified

modal logics are sound and complete for different choices of domain restrictions.

Consider the formula ∀x♢P (x). When interpreted at a world w with naive Kripke semantics, it

reads “for every domain element x, there is an accessible world u where P (x) holds.” However,

assuming this is not a constant domain model, the immediate question is: which domain does the

quantification “for every domain element” range over?

In the possibilist reading of quantifiers, it is stipulated that a quantification always ranges over the

full domain of the model (i.e., the union of the domains of the individual worlds). We do not use this

interpretation here; see [129] for details. The alternative, called actualist interpretation, is to say that

a quantifier only ranges over the domain of the world in which it is being interpreted. But then a

problem still needs to be solved: what should the interpretation of P (x) at world u be when x is taken

to represent a domain element that is not part of the domain of u? One can assign truth values to

the interpretation of P (x) when x represents a non-existing domain element, forbid such cases, or

even say that there is no truth-value at all, i.e., that the statement is undefined. An exploration of the

various different ways around this issue can be found in [129]. Regardless, these kinds of models

for QK and its extensions require inclusive (also known as increasing or expanding) domains, i.e.,

domains where wRu implies that the domain of w is a subset of the domain of u.

In this thesis, we use a different, although related, notion of relational semantics, called Kripke

sheaf [107].5 The idea is that between any two worlds w and u such that wRu, there is a compatibility

function ηw,u translating the domain elements of w into domain elements of u. This ensures that

we always know what a domain element in one world corresponds to in an accessible world. As

we see below, this side-steps the inclusiveness requirement, although the essence of the idea of

inclusiveness remains.

Definition 2.5.1 (Kripke sheaf). A Kripke sheaf S is a tuple ⟨W,R, {Mw}w∈W , {ηw,u}wRu⟩ where:

• W is a non-empty set (the set of worlds, where individual worlds are referred to as w, u, v, etc);

• R is a binary relation on W (the accessibility relation);
5Even though a sheaf is a different mathematical concept (which inspired the notion of Kripke sheaf), we sometimes omit

the “Kripke” prefix in this thesis, where non-Kripke sheaves are never considered.
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• each Mw is a non-empty set (the domain of the world w, whose elements are referred to as

d, d0, d1, etc);

• if wRu, then ηw,u is a function from Mw to Mu.

Furthermore, we require two conditions on the compatibility functions:

• if wRu, uRv, and wRv, then for every d ∈Mw we have ηu,v(ηw,u(d)) = ηw,v(d);

• if wRw then ηw,w is the identity function on Mw.

We say that a sheaf is finite if both W and the domains Mw for every w ∈ W are finite, and that it

is constant domain if all the Mw coincide and all the ηw,u are the identity function.

The definition of sheaf is not that different from the definition of frame in a first-order context, and

in particular a sheaf is trivially reduced to a frame when constant domains are considered.

Definition 2.5.2 (First-order Kripke model). Given a signature Σ, a first-order Kripke model M is a

tuple ⟨W,R, {Mw}w∈W , {ηw,u}wRu, {Jw}w∈W ⟩ where S := ⟨W,R, {Mw}w∈W , {ηw,u}wRu⟩ is a Kripke

sheaf and for each w ∈W the interpretation Jw assigns a set of tuples SJw ⊆ ℘((Mw)
n) to each n-ary

relation symbol S ∈ RELΣ. In this case, we say that the modelM is based on the sheaf S.

In order to define the notion of satisfiability, we need one more ingredient, namely a way to interpret

free variables. For this, we use assignments. Given a world w, a w-assignment g is a function from

the set of variables to the domain Mw. Any w-assignment can be seen as a u-assignment as long

as wRu, by composing it with ηw,u on the left. We write gu to shorten ηw,u ◦ g when w is clear from

context.

Two w-assignments g and h are Γ-alternative, written g ∼Γ h, if they coincide on all variables other

than the ones in Γ. When Γ = {x}, we write x-alternative and g ∼x h.

We are finally ready to define the notion of satisfiability.

Definition 2.5.3 (Satisfiability). LetM = ⟨W,R, {Mw}w∈W , {ηw,u}wRu, {Jw}w∈W ⟩ be a Kripke model

in some signature Σ, and let w ∈W be a world, g be a w-assignment, S ∈ RELΣ be an n-ary relation

symbol, and φ,ψ be L□∀ formulas in the language of Σ.

We defineM, w ⊩g φ (φ is true at w under g) recursively on φ as follows:

• M, w ̸⊩g ⊥;

• M, w ⊩g S(x0, . . . , xn−1) if and only if ⟨g(x0), . . . , g(xn−1)⟩ ∈ SJw ;

• M, w ⊩g φ→ ψ if and only if eitherM, w ̸⊩g φ orM, w ⊩g ψ;

• M, w ⊩g ∀xφ if and only if for all w-assignments h such that h ∼x g we haveM, w ⊩h φ;

• M, w ⊩g □φ if and only if for every u ∈W such that wRu we haveM, u ⊩g
u

φ.

IfM, w ⊩g φ for every w-assignment g we say that φ is satisfied at w and writeM, w ⊩ φ. If φ is

satisfied at every world w, we say that φ is valid inM and writeM ⊨ φ. Finally, if φ is valid in every

modelM based on a given sheaf S, we say that φ is valid in S and write S ⊨ φ.
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Note that when interpreting ∀xφ in the world w we quantify over w-assignments only, which is to

say, we interpret the quantification as ranging over the domain of w and nothing else. Note also that

M, w ⊩g φ is only defined when g is a w-assignment.

We now sketch the proof of a simple soundness result, which will be useful in Section 4.5. We

go into much more detail on the soundness proof described in Section 4.3, which shares many of the

same ideas, even if it is about a logic in a different language.

Theorem 2.5.4 (Soundness for QL). Let F be a Kripke frame for L□ as described in Definition 2.4.2.

If F satisfies every theorem of a propositional modal logic L, then any sheaf based on F (i.e., with

the same set of worlds and accessibility relation) satisfies every theorem of QL.

Proof. We proceed by induction on a QL proof of a L□∀ formula.

Given a substitution instance of a theorem of L, i.e., a formula φ[p0←δ0] · · · [pn−1←δn−1] (which

we abbreviate as φ[p←δ]) where δi ∈ L□∀ for each i < n and L ⊢ φ (note that φ ∈ L□ and φ[p←δ] ∈

L□∀), we reason by contradiction. Let M1 be a first-order Kripke model based on any sheaf based

on F , w be a world in that model, and g be a w-assignment such thatM1, w ̸⊩g φ[p←δ].

We now define a propositional Kripke modelM0 based on F such that, if u is either w or accessible

from w, we have M0, u ⊩ pi if and only if M1, u ⊩ηw,u◦g δi (with ηw,w as the identity function for the

purposes of easing this definition), for each i < n. We do not care about the valuation of the symbols

pi at other worlds nor about the valuation of any other propositional symbols, so we can assume they

are not validated anywhere else. It is easy to check by induction on φ that M1, w ⊩g φ[p←δ] if and

only ifM0, w ⊩ φ (see Lemma 4.3.9 for a proof of a different result following the same idea). This is

a contradiction, because φ is valid inM0 by assumption (it is a model based on F).

We turn to ∀E, where we need to show that if M, w ⊩g ∀xφ, then M, w ⊩g φ[x←y], with y free

for x in φ and arbitrary M, w, and g. Let h ∼x g be a w-assignment such that h(x) = g(y). By

assumption,M, w ⊩h φ. This is equivalent toM, w ⊩g φ[x←y] via a standard First-order Logic result

(see Lemma 4.3.4 for a proof of this result in a slightly different setting).

For ∀I, assume that QL ⊢ φ → ψ and that x is not free in φ. We wish to show that ifM, w ⊩g φ

then M, w ⊩g ∀xψ for arbitrary M, w, and g. Let h ∼x g be an arbitrary w-assignment. By the

induction hypothesis with h, we have M, w ⊩h φ → ψ. Since x is not free in φ and M, w ⊩g φ

by assumption, we also know that M, w ⊩h φ by another well-known First-order Logic result (see

Lemma 4.3.3). Then we may concludeM, w ⊩h ψ from the stated induction hypothesis, as desired.

It is clear from the definition of satisfiability that modus ponens is sound.

Finally, for necessitation, we assume QL ⊢ φ with φ ∈ L□∀ and wish to show that for any first-order

Kripke model M based on any sheaf based on F , any world w, and any w-assignment g we have

M, w ⊩g □φ. Let u be any world such that wRu; we wish to showM, u ⊩g
u

φ. This is straightforward

from the induction hypothesis applied to QL ⊢ φ with the world u and assignment gu.

From this soundness result we conclude for example that any first-order Kripke model based on

a sheaf is a QK model, any such transitive model is a QK4 model, and any such transitive and
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Noetherian model is a QGL model. Many more similar corollaries can be obtained from the list of

frame conditions described in Section 2.4.1.

So far we have not mentioned any formulas with both quantifiers and modalities, nor any logics

axiomatized by such formulas. In fact, these formulas do not play a large role in this thesis. However,

we cannot end this section without mentioning the well-known Barcan formula (or, more accurately,

Barcan schema):

BF := ∀x□φ→ □∀xφ.

This schema was first isolated by Barcan [26] when she described one of the first systems of quantified

modal logic.

The Barcan formula is not derivable in QK, nor in any of the other logics defined above. In fact,

it is easy to find counter-models for BF if one picks non-surjective compatibility functions. Con-

versely, Kripke sheaves with surjective compatibility functions satisfy all instances of BF. When using

Kripke frame instead of Kripke sheaf semantics, the Barcan formula is associated with constant do-

mains [129].

BF is not valid in a provability setting: when we interpret the □ as, say, “provable in PA”, it states

that external universal quantifiers can be made internal, which is not the case. On the other hand, the

converse of the Barcan formula is already provable in QK, and easily seen to be arithmetically sound.

2.5.2 Arithmetical semantics

We extend the notion of arithmetical realization to L□∀ in the natural way. To simplify matters, in the

sections dealing with both the quantified modal language and the language of arithmetic, we always

use variables named xi (for some i) in the modal setting and variables named yi in the arithmetical

setting.

Definition 2.5.5 (Arithmetical realization for L□∀, ·∗, ·∗T ). An arithmetical realization ·∗ is a function

from relation symbols applied to a tuple of n variables (corresponding to the symbol’s arity) to formulas

in the language of arithmetic with n free variables. We require that a variable xi in the modal language

be translated to yi in the arithmetical language.

Given a c.e. theory T extending EA, and an arithmetical realization ·∗, we define ·∗T on quantified

modal formulas as follows:

• ⊥∗T := (0 = 1);

• S(x)∗T := S(x)∗;

• (φ→ ψ)∗T := φ∗T → ψ∗T ;

• (∀xk φ)∗T := ∀ yk φ∗T ;

• (□φ)∗T := □Tφ∗T .

After Solovay’s completeness theorems, it was natural to ask whether one could find nice charac-

terizations for the counterparts of PL(PA) and TPL(PA) in the quantified modal language, defined as

follows (see Boolos [49]).
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Definition 2.5.6 (Quantified provability logic, QPL and quantified truth logic, QTPL). If T is a c.e. ex-

tension of EA, the quantified provability logic of T is defined as:6

QPL(T ) := {φ ∈ L□∀ | for any ·∗, we have T ⊢ ∀y φ∗T }.

In general, QPL(T ) can be different depending on the chosen axiomatization τ for T (see [21, 146,

147]), but here we fix an axiomatization for each relevant theory T for simplicity.

The quantified truth logic of T is defined as:

QTPL(T ) := {φ ∈ L□∀ | for any ·∗, we have N ⊨ ∀y φ∗T }.

The natural candidate for a quantified provability logic for PA was QGL, but although QGL ⊆

QPL(PA), Montagna [175] showed that this inclusion is strict, i.e., that QGL is not complete for arith-

metical semantics. Soon after, Artemov [20] proved that QTPL(PA) is not even arithmetically defin-

able. Last hopes were scattered when Vardanyan [203] and McGee [170] independently showed that

QPL(PA) is as complex as it can possibly be: Π0
2-complete. This is a very high complexity, and it

implies that QPL(PA) does not have a recursive axiomatization. We refer to this result as Vardanyan’s

theorem. Moreover, Boolos and McGee [50] showed that QTPL(PA) is also as complex as possible:

Π0
1-complete in the set of true sentences of arithmetic.

These negative results are quite robust in various ways. For example, Vardanyan [204] showed

that restricting the language to the fragment with a single unary predicate and without any modality

nesting doesn’t break the Π0
2-completeness. Restricting the complexity of the realizations to Σ0

1 for-

mulas doesn’t help either: the corresponding set is still Π0
2-complete, as shown by Berarducci [44].

One may ask whether this is merely a problem for PA or if it holds for other theories of arithmetic

too. It is easy to see that the degenerate case of QPL(PA + □PA⊥) is axiomatized by FOL together

with □⊥.7 However, Visser and de Jonge [207] proved that for most natural theories T , QPL(T ) is

indeed Π0
2-complete. The title of their paper is No escape from Vardanyan’s theorem.

Be that as it may, there have already been some “escapes" from Vardanyan’s theorem. For ex-

ample, the one-variable fragment of QPL(PA) is decidable, as shown by Artemov and Japaridze [23].

Furthermore, an arithmetically complete quantified modal logic was proposed by Yavorsky [212] (see

also [124]). This logic, called QGLb, assumes that in □A every free variable of A is bound under the

box.

Chapters 4 and 5 were inspired by this state of affairs, and describe an alternative escape from

Vardanyan’s theorem, obtained by restricting the language to its strictly positive fragment (see Sec-

tion 2.7 for an introduction to strictly positive logic).

2.6 Polymodal logic

We have already spoken of the standard provability predicate, but there are other relevant no-

tions of provability, such as provability under assumptions. The interplay between several different
6Recall that we assume all modal variables are of the form xi and that these are translated to the arithmetical variables yi.

Thus, with ∀y φ∗T we mean to quantify over all the free variables of φ∗T .
7Given a quantified modal formula φ, let φ̃ be φ with every subformula of the form □ψ replaced by ⊤. Let ·∗ be any

realization. Then PA+ □PA⊥ ⊢ φ∗ if and only if PA ⊢ φ̃∗ (by induction on φ). Similarly, FOL+ □⊥ ⊢ φ if and only if FOL ⊢ φ̃.
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provability notions can be represented by polymodal logics, i.e., logics with several different, non

inter-definable, modalities. Polymodal logic appears in several contexts, but here we focus on the

provability one. We talk about Linear Temporal Logic in Part II, which is a different kind of polymodal

logic.

Japaridze [139] generalized the logic GL to a polymodal version GLP with countably many modal-

ities, and Beklemishev [31] generalized this further to a transfinite setting, yielding GLPΛ, where

for each ordinal α < Λ there is a provability modality [α] (and the corresponding ⟨α⟩ defined as

⟨α⟩φ := ¬[α]¬φ), and larger ordinals refer to stronger provability notions. Let L[α],α<Λ be the lan-

guage of GLPΛ.

Definition 2.6.1 (GLPΛ [139, 31]). Let φ and ψ be formulas in the language of GLPΛ, and α, β < Λ be

ordinals. The axioms and rules of GLPΛ are:

(i) all propositional tautologies in the language L[α],α<Λ;

(ii) [α](φ→ ψ)→ ([α]φ→ [α]ψ) (distribution);

(iii) [α]([α]φ→ φ)→ [α]φ (Löb);

(iv) ⟨β⟩φ→ [α]⟨β⟩φ, for α > β (negative introspection);

(v) [β]φ→ [α]φ, for α > β (monotonicity);

(vi) if GLPΛ ⊢ φ→ ψ and GLPΛ ⊢ φ, then GLPΛ ⊢ ψ (modus ponens);

(vii) if GLPΛ ⊢ φ then GLPΛ ⊢ [α]φ (necessitation).

As we can see, each [α] behaves like the □ in GL, and there are two axiom schemas describing

how [α] and [β] interact depending on the order of the ordinals α and β, one of which is reminiscent

of 5.

GLPΘ is a conservative extension of GLPΓ whenever Θ > Γ [40]. In other words, introducing

higher modalities does not lead to new GLP theorems that do not mention them. Furthermore, in a

purely modal context the study of GLPΛ does not differ significantly from the study of GLP2. For these

reasons, we omit the subscript Λ whenever it is not relevant to the matter at hand.

2.6.1 Relational semantics

We can extend the notion of Kripke frame to a polymodal logic such as GLP by introducing one

relation Rα for each modality [α].

Definition 2.6.2 (Kripke frame and model for L[α],α<Λ). A Kripke frame for L[α],α<Λ is a tuple ⟨W,

{Rα}α<Λ⟩ where W is a set of worlds and for each α < Λ, Rα ⊆W ×W is a binary relation on worlds,

which we think of as accessibility via α.

A Kripke model is a Kripke frame together with a valuation function V : PROP → ℘(W ), determin-

ing which propositional symbols hold at which worlds.
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The notion of satisfiability in the polymodal case is just as in the unimodal one (Definition 2.4.3),

with [α] being interpreted as follows:

• M, w ⊩ [α]φ if and only if for every u such that wRαu we haveM, u ⊩ φ.

We can easily see that in order for a frame to validate all the theorems of GLP we should have

simultaneously that:

• each Rα is transitive and Noetherian, due to Löb’s axiom for each α;

• if wRαu and wRβv with β < α, then uRβv (poly-Euclidity), due to the negative introspection

axiom;

• if β ≤ α, then Rα ⊆ Rβ (monotonicity), due to the monotonicity axiom.

Unfortunately, these conditions are in conflict (unless there are no relations Rα with α > 0). To see

this, suppose β < α and Rα is non-empty. If wRαu for some worlds w and u, it follows by monotonicity

that wRβu, but then by poly-Euclidity it must be that uRβu, which implies that Rβ is not Noetherian.

For this reason, relational semantics is not much used in the context of GLP, although there are

Kripke models for which GLP is sound and complete [33]. Instead, GLP has good (albeit complex)

topological semantics [41], which we do not explore here, and several different choices of arithmetical

semantics, which we mention in Section 2.6.2.

In contrast, some fragments of GLP do have well-behaved relational semantics, particularly the

closed fragment GLP0, which we discuss presently, and the strictly positive fragment RC, which we

discuss in Section 2.7. There is another fragment with good Kripke semantics named J [33]. This is

the fragment of GLP without monotonicity but with poly-transitivity, i.e., [β]φ → [α][β]φ ∧ [β][α]φ with

β ≤ α, which is derivable in GLP. It was via J that complete Kripke models for GLP were found, but

we do not further comment on J in this thesis.

GLP0 has a universal Kripke model8 called Ignatiev’s model [135, 96], or I. By universal, we mean

that every theorem of GLP0 is validated in I and that if a closed formula φ is not a theorem of GLP0

then there is a world of I where it is refuted. This model is essentially infinite, having fractal features.

In order to describe I, we start with some auxiliary definitions, and we assume basic knowledge

about ordinals (see, for example, [183]). We use On to represent the class of all ordinals.

Definition 2.6.3 (End-logarithm, ℓ). The end-logarithm ℓ is a function from On to On defined as follows:

• ℓ(0) := 0;

• ℓ(α+ ωβ) := β.

We can iterate end-logarithms, obtaining hyper-logarithms. For this definition, we use the notion

of initial function. This is a function that maps initial segments of ordinals [0, α] (i.e., intervals including

0) onto initial segments [0, β]. The end-logarithm is an initial function: finite initial segments [0, n] are

mapped to the point [0], while [0, ω] is the first segment to be mapped to [0, 1], [0, ω2] the first to be

mapped to [0, 2], and so on.
8It is actually a frame, but since we only care about closed formulas, every frame is a model as well.
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Definition 2.6.4 (Hyper-logarithms, ℓξ). The hyper-logarithms are iterates of ℓ. We write ℓξ to denote

the ξ-th iterate of ℓ, and define:

• ℓ0 := id (the identity function);

• ℓ1 := ℓ;

• ℓα+β := ℓβ ◦ ℓα.

These three properties do not tell us anything about ℓξ for an additively indecomposable ξ, so we fur-

ther require that each ℓξ be point-wise maximal among all families of initial ordinal functions {fξ}ξ∈On

that satisfy the three properties. In this way, each ℓξ defines an initial function. For the purposes

of this thesis, many of the exact details of the ℓξ functions are irrelevant and we refer the interested

reader to [95, 96] for further details.

We now compute the first few of values of ℓω in order to obtain some intuition. In what follows, εζ

denotes the ζ-th fixpoint of x 7→ ωx. Since the initial segment [0] should be mapped onto an initial

segment, it must be that ℓω(0) = 0. If α < ε0 then it is easy to see that, after some finite number n

of iterations, we have ℓn(α) = 0 (for example, ℓ3(ωω
2

) = ℓ2(ω2) = ℓ(2) = 0). Thus, if we take such

an n for α, we can see that ℓn+ω(α) = ℓω ◦ ℓn(α) = ℓω(0) = 0, which means that ℓω(α) = 0 as well

(because ω = n+ ω). Consequently, each initial segment [0, α] with α < ε0 is mapped by ℓω to [0].

What about ℓω(ε0)? If we disregard the requirement on initiality, it is not hard to see that ℓω(ε0)

could be any value. However, since ℓω should map the initial segment [0, ε0] to an initial segment and

do so in a maximal way, it must be that ℓω(ε0) = 1.

We observe that ℓω(ξ + ζ) = ℓ1+ω(ξ + ζ) = ℓω ◦ ℓ(ξ + ζ) = ℓω ◦ ℓ(ζ) = ℓ1+ω(ζ) = ℓω(ζ) so that

ℓω(ε0 + α) = 0 for any α < ε0.

Following these kinds of arguments, we can see that the next value where ℓω increases is at ε1

and ℓω(ε1) = 2. Fortunately, we do not need to reason from scratch any time we want to know some

value of ℓα(β), as there is a recursive algorithm for the hyper-logarithms.

Lemma 2.6.5 (Fernández-Duque and Joosten [95, 96]). For ordinals ξ, ζ, the following recursion is

well-defined9 and determines all the ℓξ(ζ) values:

• ℓ0(α) = α;

• ℓξ(0) = 0;

• ℓ1(α+ ωβ) = β;

• ℓω
ρ+ξ = ℓξ ◦ ℓωρ

provided that ξ < ωρ + ξ;

• ℓω
ρ

(ζ) = ℓω
ρ

(ℓη(ζ)) if ρ > 0 and η < ωρ is such that ℓη(ζ) < ζ (if such η exists);

• ℓω
ρ

(ζ) = sup
δ∈[0,ζ)

(ℓω
ρ

(δ) + 1) if ρ > 0 and ζ = ℓη(ζ) for all η < ωρ.

9This is not obvious, since ℓω
ρ
(ζ) with ρ > 0 is defined as depending on a chosen η in some cases. However, every choice

of η that fulfills the restriction leads to the same value of ℓω
ρ
(ζ).
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Now that the hyper-logarithms have been defined, we can specify the points of Ignatiev’s model I

which are the so-called ℓ-sequences.

Definition 2.6.6 (ℓ-sequence). An ℓ-sequence is a function f : On→ On such that for each ordinal ζ

we have f(ζ) ≤ ℓ−ξ+ζ(f(ξ)) for ξ < ζ large enough.10

At times we shall write fξ instead of f(ξ). We note that for each ℓ-sequence f the inequality

f(α + 1) ≤ ℓ(f(α)) holds. Furthermore, the requirement of ξ < ζ being large enough is important,

as it means that f = ⟨ωε0+1, ε0, ε0, . . . 1, 0, . . .⟩ is an ℓ-sequence, where f(0) = ωε0+1, f(n) = ε0 for

0 < n < ω, f(ω) = 1 and f(α) = 0 for α > ω. It is easy to see that ℓω(ωε0+1) = 0 and ℓω(ε0) = 1.

Then, f(ω) ≤ ℓω(f(1)) but it is not the case that f(ω) ≤ ℓω(f(0)).

We can now define the class-size version of Ignatiev’s model as the collection of all ℓ-sequences

with suitable relations Rξ to model each of the [ξ] modalities. For all practical purposes we can take

sufficiently large set-size truncations of the class-size model.

Definition 2.6.7 (Ignatiev’s model, I [135, 96]). Ignatiev’s model I is a Kripke model ⟨I, {Rξ}ξ∈On⟩,

where I is the collection of all ℓ-sequences and fRξg if and only if both f(α) = g(α) for α < ξ and

f(ξ) > g(ξ).

For example:

⟨ωε0+1, ε0, ε0, . . . , 0, 0, . . .⟩ R0 ⟨ε0, ε0, ε0, . . . , 0, 0, . . .⟩,
⟨ωε0+1, ε0, ε0, . . . , 1, 0, . . .⟩ R0 ⟨ε0, ε0, ε0, . . . , 1, 0, . . .⟩,
⟨ωε0+1, ε0, ε0, . . . , 1, 0, . . .⟩ Rω ⟨ωε0+1, ε0, ε0, . . . , 0, 0, . . .⟩,
⟨ωε0+1, ε0, ε0, . . . , 1, 0, . . .⟩ ��Rω ⟨ε0, ε0, ε0, . . . , 0, 0, . . .⟩.

We can finally state the universality theorem for I.

Theorem 2.6.8 ([96]). GLP0 is sound and complete with respect to Ignatiev’s model, that is:

GLP0 ⊢ φ ⇐⇒ I ⊨ φ.

2.6.2 Arithmetical semantics

There are several different interpretations for the modalities of GLP. The first one, proposed by

Japaridze [139] for GLPω, interprets [n]φ as “φ is provable over T with at most n nested applica-

tions of the ω-rule”, where T is a fixed theory of arithmetic and the ω-rule is an infinitary rule stating

that if P (0), P (1), P (2), . . . are all provable for a given predicate P , then ∀xP (x) is too. The logic

GLPω is sound and complete for this interpretation ([139], see also [136, 34] for simplified proofs).

Fernández-Duque and Joosten [98] later extended it to the transfinite setting, showing soundness

and completeness for GLPΛ as long as Λ is a computable ordinal.

A different arithmetical interpretation was proposed by Beklemishev and Pakhomov [42] in first

order arithmetic enriched with a collection of truth predicates indexed by the ordinals.

Another possible interpretation is to read [n]φ as “φ is provable over T in the presence of all true

Π0
n-sentences.” This interpretation has become popular and was used by Beklemishev to perform

10In particular, one can take ξ as the predecessor of ζ if ζ has a predecessor.
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proof-theoretical analysis of PA and related logics [37, 29, 30]. A generalization of this interpretation

to transfinite modalities has been proposed by Joosten [141].

The logic GLPω has been successfully used to perform a modular ordinal analysis of PA and related

systems (see [29], and more recently [42]). A key feature in the ordinal analysis is that consistency

operators ⟨n⟩ can be interpreted as reflection principles, which are finitely axiomatizable. Of note,

GLP0 actually suffices for various purposes. In fact, even the strictly positive fragment of GLP0 suffices.

We describe this fragment in the next section.

2.7 Strictly positive logic

Strictly positive logics are logics with the language reduced to the fragment containing only the

connectives ⊤, ∧, ∀ and ♢ (or ⟨α⟩ in the polymodal setting). Thus we define the strictly positive

fragments of L□, L□∀, and L[α],α<Λ, respectively as:

L+
□ ::= ⊤ | p | φ ∧ φ | ♢φ;

L+
□∀ ::= ⊤ | S(x) | φ ∧ φ | ∀xφ | ♢φ;

L+
[α],α<Λ ::= ⊤ | p | φ ∧ φ | ⟨α⟩φ,with α < Λ.

Note that the above are the only available connectives. The absence of implication and negation

does not allow us to define any of the other ones.11 The statements of a strictly positive logic are

implications between two strictly positive formulas, typically written φ ⊢ ψ (where φ,ψ are strictly

positive) instead of φ→ ψ to remind ourselves that implication cannot be nested.

It might seem strange that ♢ is said to be a positive connective, when its Kripke semantics is

existential (“there is an accessible world where the formula holds”). However, we are going to be

interested in strictly positive logics mainly from the provability point of view, and arithmetically it is the

□ which has an existential flavor (“there is a proof of the formula”).

One might think that L+
□ is too weak to say anything of interest, but even this language can lead

to interesting studies [144]. The interplay between ∀ and ♢ adds an extra layer of complexity, and we

study a non-trivial logic in this language in Chapters 4 and 5. In the case of L+
[α],α<Λ, the interplay

between different ⟨α⟩ modalities is a well of information, as we see during the rest of this section and

in Chapter 3.

The study of strictly positive logics has been developed in several contexts, such as description

logics [149, 143] and linear logics [144], but here we focus on so-called reflection calculi [78, 36, 94].

We present the original reflection calculus in this section and a new one in Chapter 4.

When considering a strictly positive logic P , one may ask whether there is some modal logic L

whose strictly positive fragment coincides with P (see [38]). In that case we would have:

φ ⊢P ψ ⇐⇒ L ⊢ φ→ ψ, (2.2)

where φ and ψ are strictly positive formulas.
11There is a significant body of work done on (non strictly) positive logics [85, 58], where only negations and nested implica-

tions are disallowed, but we do not study them here.
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The Reflection Calculus (RCω) is a propositional strictly positive logic (with language L+
[α],α<ω) first

introduced by Beklemishev [35] as an axiomatization for the strictly positive fragment of GLPω in the

sense of (2.2). This fragment had already been previously studied and described by Dashkov [78] with

a slightly different axiomatization. The transfinite version RCΛ for an arbitrary computable ordinal Λ

was introduced later [97], although modaly speaking working with RC2, RCω, or RCΛ for larger ordinals

Λ is not much different, and so we often omit the subscript and write simply RC. We explicitly write

RC1 when considering the unimodal fragment.

Definition 2.7.1 (Reflection Calculus, RCΛ, [78, 35, 97]). Let φ,ψ and χ be formulas in the language

L+
[α],α<Λ, and α, β < Λ be ordinals.

The axioms and rules of RCΛ are:

(i) φ ⊢RC φ and φ ⊢RC ⊤;

(ii) φ ∧ ψ ⊢RC φ and φ ∧ ψ ⊢RC ψ (conjunction elimination);

(iii) if φ ⊢RC ψ and φ ⊢RC χ, then φ ⊢RC ψ ∧ χ (conjunction introduction);

(iv) if φ ⊢RC ψ and ψ ⊢RC χ, then φ ⊢RC χ (cut);

(v) if φ ⊢RC ψ, then ⟨α⟩φ ⊢RC ⟨α⟩ψ (necessitation);

(vi) ⟨α⟩⟨α⟩φ ⊢RC ⟨α⟩φ (transitivity);

(vii) ⟨α⟩φ ⊢RC ⟨β⟩φ, for α > β (monotonicity);

(viii) ⟨α⟩φ ∧ ⟨β⟩ψ ⊢RC ⟨α⟩(φ ∧ ⟨β⟩ψ) for α > β (poly-Euclidity).

If φ ⊢RC ψ, we say that ψ follows from φ in RC. If both φ ⊢RC ψ and ψ ⊢RC φ, we say that φ and ψ

are equivalent in RC and write φ ≡RC ψ.

We briefly comment on the axiomatization of RC. The first four items are typical in any propositional

logic presented in sequent-style. RC-necessitation is easily obtained in GLP through a mix of GLP-

necessitation and distribution. Both transitivity and monotonicity in this setting are equivalent to their

GLP counterparts. Finally, poly-Euclidity is a consequence of negative introspection (noting that K ⊢

□φ ∧ ♢ψ → ♢(φ ∧ ψ), which can be easily translated to the polymodal setting).

Like GLP, the logic RCΘ is conservative over RCΛ whenever Θ ≥ Γ.

Lemma 2.7.2. Let φ,ψ ∈ L+
[α],α<Λ and Θ ≥ Λ. Then:

φ ⊢RCΘ
ψ =⇒ φ ⊢RCΛ

ψ.

Proof. By the analogous result for GLP [40] and the conservativity of GLPΓ over RCΓ [78].

Even though RC has a strictly positive language, it is remarkably expressive, giving rise to an

ordinal notation system [93] and being an appropriate tool for Π0
1 ordinal analysis [42]. Furthermore,

the arithmetical semantics becomes more expressive, as we see in Section 2.7.2.
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Perhaps surprisingly, many applications of RC can in fact be performed using only its closed frag-

ment RC0. This is due to some special inhabitants of RC0: the worms, called so due to their relation to

the Worm Battle [32]. These are the formulas of RC0 that have no conjunction symbols. It is provable

in RC0 that each of its formulas is equivalent to a single worm, a result which motivates Chapter 3.

Lemma 2.7.3 ([136, 93]). For each formula φ of RC0 there is a worm A such that φ ≡RC A with all the

modalities appearing in A also appearing in φ.

Worms can be read in various ways. One can conceive of them as consistency statements or

reflection principles. Furthermore, natural fragments of arithmetic are denoted by worms [153]. The

worms modulo provable equivalence can be ordered, and one can also conceived of them as ordi-

nals [97]. Apart from their interpretation as consistency statements, reflection principles, fragments of

arithmetic, or ordinals, worms also stand in an intimate relation with Turing progressions [140]. All of

these mathematical entities can be manipulated and reasoned about within the rather simple modal

logic RC0.

We end this section with a striking observation. Strictly positive fragments have a tendency to

have significantly lower complexity than their full language counterparts (assuming the polynomial

hierarchy doesn’t collapse somewhere, eg. that PTIME is different from PSPACE), as summarized

in Table 2.1. Note that there are strictly positive logics that are not the strictly positive fragment of

anything, such as RCω (not to be confused with RCω, where the ω is a subscript), a logic closely

related to RCω+1 that includes the persistence axioms ⟨ω⟩φ ⊢ φ (see [36] for more details).

Table 2.1: Complexity of some modal logics and their strictly positive counterparts. See the associated
references for the definitions of the logics not previously mentioned in this thesis.

Full logic Strictly positive fragment

K PSPACE-complete [150] K+ PTIME [38, 39]
K4 and GL PSPACE-complete [106] RC1 PTIME [78, 35]a

K4.3 and GL.3 coNP-complete [160] K4.3+ PTIME [199]
GLP0

Λ (Λ ≥ ω)b PSPACE-complete [180] RC0
Λ PTIME [78, 35]c

GLP PSPACE-complete [191] RC PTIME [78, 35]
T PSPACE-complete [150] {erefl} PTIME [143]
S4 PSPACE-complete [150] Eqo PTIME [143]
S4.3 coNP-complete [106] Elin PTIME [143]
S5 coNP-complete [91] S5+ PTIME [199]
S5m (m > 1) PSPACE-complete [91] S5+m PTIME [199]
QPL(PA) Π0

2-complete [203] QRC1 decidable [14]

aObserving that RC is conservative over RC1 by Lemma 2.7.2.
bGLP0

n with n < ω is decidable in PTIME [180].
cObserving that RC is conservative over RC0 (replace any propositional symbol in an RC-proof with ⊤ to obtain an RC0-

proof).

This reduction in complexity inspired us to study the strictly positive fragment of QPL(PA) as a

hope that it would lead to a complexity lower than Π0
2-complete. The resulting logic, which we called

QRC1, is indeed a simplification. For more details, see Chapters 4 and 5.
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2.7.1 Relational semantics

There is nothing special about relational semantics for strictly positive logics, since we can re-

strict the notions of Kripke frame (or sheaf) and model to the relevant language fragment and keep

everything else the same. However, it is worthwhile to briefly talk about relational semantics for RC.

With each L+
[α],α<Λ formula φ we associate a model T [φ] based on the syntax tree of φ, with

leaves representing diamond-free formulas, forks representing conjunctions of diamond formulas,

and labeled arrows representing diamonds (see [78] for details). The model T [φ] is then the closure

of this syntax tree of φ under transitivity for each Rα, monotonicity, and poly-Euclidity. Note that these

are precisely the frame conditions associated with the axioms of RC, as previously mentioned. See

Figure 2.2 for an example.

{p} {q, r}

{}

0

10
0

Figure 2.2: A graphical representation of T [⟨1⟩p ∧ ⟨0⟩(q ∧ r)]. Each node includes the set of propo-
sitional variables that hold at that world. An arrow between two worlds with a label n means that the
second is reachable from the first through Rn. We use dashed arrows for R0 and full arrows for R1.

It is possible to characterize the sequents provable in RC using the T [·] models, as the following

theorem shows.

Theorem 2.7.4 (Dashkov [78]). Let φ,ψ ∈ L+
[α],α<Λ. Then:

φ ⊢RC ψ ⇐⇒ T [φ], r ⊩ ψ,

where r is the root of T [φ].

With this result, checking whether φ ⊢RC ψ for specific formulas φ and ψ becomes entertainingly

easy. In fact, it was with an algorithm based on it that Dashkov [78] showed how to decide RC in

polynomial time.

2.7.2 Arithmetical semantics

As with relational semantics, we can reuse the arithmetical semantics available for the full lan-

guages. Thus, the arithmetical realizations for propositional modal logic (Definition 2.4.5) are avail-

able for L+
□, the ones for quantified modal logic (Definition 2.5.5) are available for L+

□∀, and the several

different arithmetical realizations mentioned for GLP (Section 2.6.2) are available for L+
[α],α<Λ and in

particular RC. However, the restricted language provides another avenue for arithmetical interpreta-

tions.

Typical arithmetical realizations interpret modal formulas as arithmetical formulas, which amounts

to interpreting modal formulas as finite extensions of arithmetical theories. However, non finitely ax-

iomatizable principles are not available as translations of modal formulas. In particular, limit modalities
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such as ⟨ω⟩ have no obvious translation, since they would normally translate to non finitely axioma-

tizable reflection schemas [36]. Interpretations for strictly positive languages can overcome this by

interpreting a modal formula as an axiomatization of a theory of arithmetic instead of as an arith-

metical formula. This is not available in the full language, since the non-positive connectives have

no clear counterparts. One can thus distinguish arithmetical semantics for strictly positive languages

over whether they are finitary (like all the ones mentioned so far) or infinitary.

Recall from Section 2.3 that an axiomatization of a theory of arithmetic T is a formula τ(u) with

one free variable u such that τ(u) is true in the standard model if and only if u is the Gödel number of

an axiom of T .

Definition 2.7.5 (Infinitary arithmetical realization for L+
□, ·◦, ·◦τ ). Let ·◦ be a function from proposi-

tional symbols to axiomatizations of theories of arithmetic. Given a base axiomatization τ with one

free variable u, we extend ·◦ to formulas of L+
□ as follows:

• ⊤◦τ := τ(u);

• p◦τ := τ(u) ∨ p◦;

• (φ ∧ ψ)◦τ := φ◦τ ∨ ψ◦τ ;

• (♢φ)◦τ := τ(u) ∨ (u = ⌜♢φ◦τ⊤⌝).

Intuitively, we wish to interpret modal formulas as (axiomatizations of) theories, and in particular

conjunctions of formulas as unions of theories. It makes sense, then, that (φ ∧ ψ)◦τ is translated to a

disjunction, since a formula is an axiom of a union of two theories if and only if it is an axiom of one or

of the other. On the other hand, ♢φ is interpreted as the base theory augmented with a single axiom

stating the consistency of the theory axiomatized by φ◦τ .

The same idea can be extended to both L+
□∀ and L+

[α],α<Λ. We go into detail on the former in

Chapter 5 and refer the reader to [36] for the latter.
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3.1 Introduction

As mentioned in Section 2.6, the polymodal provability logic GLP is both PSPACE-complete and

frame-incomplete. However, several fragments of GLP are still useful as provability logics. The sim-

plest such previously available fragment was RC0, the closed fragment of the Reflection Calculus. In

this chapter, whose results were published in [12], we introduce a further simplification: the Worm

Calculus (WC).

Recall from Lemma 2.7.3 that every formula in the language of RC0 is equivalent to a worm. One

may wonder whether there is some decent axiomatization of the worm fragment of RC0. The current

chapter settles this question in the positive, presenting a calculus WC that only manipulates worms,

so that RC0, and thus also GLP0, are conservative extensions of WC.

In the last section of this chapter we dwell on semantics for WC. In particular we see that although

WC has the finite model property, any (moderately nice) universal model for WC inherits much of the

intrinsic complexity of Ignatiev’s universal model for GLP0.

The conservativity of RC0 over WC was formalized in Coq [3], which required describing the lan-

guage and axiomatization of both RC0 and WC, as well as the formalization of most of the proofs

presented in this chapter. Since these are elementary and self-contained results, the process was

rather straightforward and we do not describe it in this thesis.

3.2 Axiomatization

Recall that a worm is a conjunction-free strictly positive formula in a polymodal language, or in

other words, a sequence of diamonds ending in ⊤. We use capital letters to represent worms, and

W(Λ) for the class of all worms in a given language L[α],α<Λ. When the Λ is clear from context we

write simply W. We further use Wα to represent the class of worms with modalities at least α.

Since the language of worms is so simple, we omit the ⟨·⟩, obtaining formulas which are strings of

ordinals ending in ⊤. To further simplify, we write A and B for the worms A⊤ and B⊤. When we write

AB this is understood as AB⊤.

We propose a Worm Calculus, denoted by WC, which derives sequents of worms.

Definition 3.2.1 (Worm Calculus, WCΛ). Let A,B and C be worms in W(Λ), and α, β < Λ be ordinals.

The axioms and rules of WCΛ are the following:

(i) A ⊢WC ⊤;

(ii) ααA ⊢WC αA (transitivity);

(iii) αA ⊢WC βA, for α > β (monotonicity);

(iv) if A ⊢WC B and B ⊢WC C, then A ⊢WC C (cut);

(v) if A ⊢WC B, then αA ⊢WC αB (necessitation);

(vi) if A ⊢WC B and A ⊢WC αC, then A ⊢WC BαC, for B ∈Wα+1.
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If A ⊢WC B, we say that B follows from A in WC. If both A ⊢WC B and B ⊢WC A, we say that A

and B are equivalent in WCΛ, and write A ≡WC B. We typically omit the Λ subscript in WCΛ and write

simply WC.

Some comments on the definition of WC. As mentioned before, it was inspired by RC0, and as

such we kept all axioms and rules that could be expressed in the reduced language of worms, with the

exception of A ⊢WC A, which can be derived from the others (see Corollary 3.2.4 below). The ones

that deal exclusively with conjunction are not important here, but Axiom 2.7.1.(viii) is. That axiom,

also known as poly-Euclidity, states:

⟨α⟩φ ∧ ⟨β⟩ψ ⊢RC ⟨α⟩(φ ∧ ⟨β⟩ψ).

Rule 3.2.1.(vi) was inspired by the above RC0 axiom, using a particular kind of worm concatenation

to represent conjunction, a trick we explore below.

The number of diamonds of a worm A is called the length of A. This serves as a notion of simplicity

that allows us to recursively define operations on worms.

Definition 3.2.2 (Length). The length of a worm A, denoted by |A|, is defined recursively as such:

|⊤| := 0 and |αA| := |A|+ 1.

We can immediately prove some facts about worms using the worm calculus.

Lemma 3.2.3. For any worms A and B, we have that AB ⊢WC A.

Proof. The proof goes by induction on the length of A. Starting from B ⊢WC ⊤ (base case), repeatedly

apply necessitation (Rule 3.2.1.(v)) to build A up front.

From this lemma we obtain a simple but useful corollary.

Corollary 3.2.4. For any worm A, we have that A ⊢WC A.

It is in general not true that AB ⊢WC B, but there is a special case.

Lemma 3.2.5. For any ordinal α and wormsA andB such thatA ∈Wα+1, we have thatAαB ⊢WC αB.

Proof. By induction on the length of A, with the help of transitivity and monotonicity (Axioms 3.2.1.(ii)

and 3.2.1.(iii), respectively).

Note how we have shown that the concatenation of worms can be interpreted as a conjunction of

sorts, under some circumstances. As long as A ∈Wα+1, we have the following:

• AαB ⊢WC A (Lemma 3.2.3);

• AαB ⊢WC αB (Lemma 3.2.5);

• if C ⊢WC A and C ⊢WC αB then C ⊢WC AαB (Rule 3.2.1.(vi)).

Finally, we show how worms of length one can be obtained, which will be useful later.

Lemma 3.2.6. For any non-trivial worm A ∈Wα, we have that A ⊢WC α.
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Proof. By induction on the length of A. If |A| = 1, then A = β for some β ≥ α. The result follows

by monotonicity (Axiom 3.2.1.(iii)) and Corollary 3.2.4. For the induction step, consider A = βA′,

where β ≥ α and we already know A′ ⊢WC α. Then by necessitation (Rule 3.2.1.(v)) and transitivity

(Axiom 3.2.1.(ii)), αA′ ⊢WC αα ⊢WC α. Since βA′ ⊢WC αA
′, we are done.

It is easy to see that RC extends WC. As we shall later see, RC is conservative over WC, which

means that this extension is, in a sense, not proper. The first of these two claims is articulated in the

following theorem.

Theorem 3.2.7. For any two worms A and B we have that A ⊢WC B implies A ⊢RC B.

Proof. By an easy induction on the length of a WC proof. To see that Rule 3.2.1.(vi) is admissible in

RC, we use induction on the length of B and RC’s poly-Euclidity axiom (Axiom 2.7.1.(viii)).

The proof of the converse is a bit more involved. We shall use the fact that an implication between

worms can be recursively broken down into implications between simpler worms.

3.3 Worm decomposition

The notions of α-head and α-remainder are useful to break down worms into smaller ones.

Definition 3.3.1 (α-head, α-remainder). Let A be a worm and α be an ordinal.

The α-head of A, denoted by hα(A), is defined inductively as:

• hα(⊤) := ⊤;

• hα(βA) := βhα(A) if β ≥ α;

• hα(βA) := ⊤ if β < α.

Likewise, the α-remainder of A, denoted by rα(A), is defined inductively as:

• rα(⊤) := ⊤;

• rα(βA) := rα(A) if β ≥ α;

• rα(βA) := βA if β < α.

Intuitively, the α-head of A is the greatest initial segment of A which is in Wα, and the α-remainder

is what remains after cutting off the α-head. It then follows that A = hα(A)rα(A), for every worm A

and ordinal α. An immediate consequence is that the lengths of the α-head and of the α-remainder

of a worm are always at most the length of the worm itself.

It is possible to prove that A ≡RC hα(A)∧ rα(A) for every worm A and ordinal α. In WC we cannot

state such a result due to the lack of the conjunction connective in the language. We can, however,

obtain the same consequences.

Lemma 3.3.2. Let A and B be worms and α be an ordinal. Then:
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1. A ⊢WC hα(A);

2. A ⊢WC rα(A);

3. If B ⊢WC hα(A) and B ⊢WC rα(A), then B ⊢WC A.

Proof. Note that A = hα(A)rα(A), this is to say, they are syntactically the same. Thus, Item 1

follows from Lemma 3.2.3. Item 2 is a consequence of Lemma 3.2.5, taking into consideration that

hα(A) ∈ Wα and that rα(A) always starts with either ⊤, rendering the result trivial, or with an ordinal

less than α. Item 3 follows from Rule 3.2.1.(vi) unless rα(A) = ⊤, in which case it is trivial.

There is another relevant part of a worm, the α-body. It is obtained from the (α+ 1)-remainder by

dropping its leftmost modality (as long as said remainder is not trivial).

Definition 3.3.3 (α-body). Let A be a worm and α an ordinal. The α-body of A, denoted by bα(A), is

defined from rα+1(A) as follows:

• if rα+1(A) = ⊤, then bα(A) := ⊤;

• if rα+1(A) = βB, then bα(A) := B.

The α-body of a non-trivial wormA is particularly useful because its length is always strictly smaller

than the length of A. We can also prove a counterpart of Lemma 3.3.2 about the α-body.

Lemma 3.3.4. Let α be an ordinal, A be a non-trivial worm in Wα and B be any worm. Then:

1. A ⊢WC αbα(A);

2. if B ⊢WC hα+1(A) and B ⊢WC αbα(A), then B ⊢WC hα+1(A)αbα(A);

3. hα+1(A)αbα(A) ⊢WC A;

4. A ≡WC hα+1(A)αbα(A).

Proof. We make a case distinction on rα+1(A) in order to prove Items 1 to 3 separately in each case.

Note that Item 4 is a corollary of the others.

Suppose that rα+1(A) = βbα(A) for some ordinal β. Since A ∈ Wα, then β ≥ α. But since it is in

the (α+ 1)-remainder, β < α + 1. We conclude that β = α, and hence that rα+1(A) = αbα(A). Then

Items 1 to 3 are just a corollary of Lemma 3.3.2.

However it can be the case that rα+1(A) = ⊤ and hence bα(A) = ⊤ as well. Then Item 1 becomes

an instance of Lemma 3.2.6, Item 2 follows from Rule 3.2.1.(vi) and Item 3 is a consequence of

Lemma 3.2.3.

The following result describes part of a recursive decision procedure for provability in RC between

worms.

Lemma 3.3.5 ([97, Lemma 3.15]). For any two worms A and B and for any ordinal α we have that

A ⊢RC αB if and only if both hα(A) ⊢RC αhα(B) and A ⊢RC rα(B).
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Let us see that we can prove one of the implications in WC, which we will later use in the proof of

our main theorem (Theorem 3.5.1). There is no a priori reason why the other implication can’t also

hold (in fact, we will see later that it does, since the calculi are equivalent for worms), but it won’t be

needed here.

Lemma 3.3.6. For any two worms A and B, and for any ordinal α, if we have that hα(A) ⊢WC αhα(B)

and A ⊢WC rα(B), then we have A ⊢WC αB.

Proof. Taking into consideration that A = hα(A)rα(A) and similarly for B, consider two cases. In

the first case, rα(B) = ⊤, and the result is a consequence of Lemma 3.3.2. In the second case,

rα(B) = βC for some β < α and worm C. Then the result follows from Rule 3.2.1.(vi).

We now want to prove that RC is conservative over WC using the following inductive strategy. If

A ⊢RC B, we use Lemma 3.3.5 to recast this into a collection of provability statements in RC between

worms with smaller lengths. We then translate them to WC using the induction hypotheses, and

finally go back with the help of Lemma 3.3.6. However, depending on the worms A and B, it could

be the case that these two theorems are not enough, since they don’t always reduce the length of the

provability statements. In what follows, we introduce some more useful notions and results, which will

help us deal with that problem.

3.4 Well-founded orders on worms

It is possible to define an order relation between worms as is standard in the literature.

Definition 3.4.1 (Ordering worms). We say that A <WC
α B if B ⊢WC αA. Furthermore, we say that

A ≤WC
α B if either A <WC

α B or A ≡WC B. The provability can be taken in RC to obtain <RC
α and ≤RC

α ,

respectively. During the rest of this chapter we write <α and ≤α instead of <WC
α and ≤WC

α .

It is well-known that <RC
α is irreflexive [40]. Since WC is embedded in RC, we also know that <α is

irreflexive. It is easy to see that both relations are transitive.

Our goal now is to show that <α is a total relation over worms in Wα. This has been shown for <RC
α

using worm normal forms [31, 40], but here we follow a different strategy, proposed by Fernández-

Duque [93]. We start by presenting a number of useful sufficient conditions to deduce A <α B, and

one to deduce A ≡WC B.

Lemma 3.4.2. Let A,B ∈ Wα such that A,B ̸= ⊤. Then in WC (and hence in RC) we have the

following:

1. If bα(B) ⊢ A, then A <α B;

2. If A <α bα(B), then A <α B;

3. If bα(A) <α B and hα+1(A) <α+1 hα+1(B), then A <α+1 B (and consequently A <α B);

4. If bα(A) <α B and bα(B) <α A and hα+1(A) ≡ hα+1(B), then A ≡ B.
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Proof. For the first item, from bα(B) ⊢ A we get by necessitation that αbα(B) ⊢ αA. Since by

Lemma 3.3.4 we know that B ⊢ αbα(B), we can conclude that B ⊢ αA. The second item follows

by the transitivity of <α, taking into account that bα(B) <α B (Lemma 3.3.4). The third item follows

from Lemma 3.3.6. Finally, for the fourth item we use B ⊢ αbα(A) and hα+1(B) ⊢ hα+1(A) to get

B ⊢ hα+1(A)αbα(A), and hence B ⊢ A. Then we obtain A ⊢ B in the same way.

Now we are ready to prove the totality of <α for worms in Wα, following the same strategy as

Fernández-Duque [93].

Lemma 3.4.3 (Trichotomy). Given worms A,B ∈ Wα, we have that either A <α B, or A ≡WC B, or

B <α A.

Proof. We proceed by induction on the length of AB. If the length is zero, i.e., if A = B = ⊤, then

clearly A ≡WC B.

Note that by Lemma 3.2.6, ⊤ <α C, as long as C ̸= ⊤ and C ∈Wα. Then if exactly one of A or B

is ⊤ we have also solved our problem.

Now for the induction step, take both A and B with positive length. Our induction hypothesis is:

For any ordinal β and worms C,D ∈ Wβ such that |CD| < |AB|, we have that either

C <β D, or C ≡WC D, or D <β C.

Let ξ be the minimum ordinal in AB, which means that α ≤ ξ. According to Lemma 3.4.2, if

A ≤ξ bξ(B) or B ≤ξ bξ(A), we can conclude A <ξ B or B <ξ A, respectively. Assume then that

A ̸≤ξ bξ(B) and B ̸≤ξ bξ(A). Since we assume A ̸= ⊤, it is clear that |bξ(A)| < |A|, and analogously

for B. Then by the induction hypothesis we have bξ(B) <ξ A and bξ(A) <ξ B.

Since we are assuming ξ is in AB, we also know that:

|hξ+1(A)hξ+1(B)| < |AB|,

and thus by the induction hypothesis we have:

hξ+1(A) <ξ+1 hξ+1(B), or

hξ+1(B) <ξ+1 hξ+1(A), or

hξ+1(A) ≡WC hξ+1(B).

Then by Lemma 3.4.2, we can conclude A <ξ B, or B <ξ A, or A ≡WC B, respectively.

As a final remark, we observe that since α ≤ ξ, we have that C <ξ D implies C <α D for any

worms C,D ∈Wξ.

The following technical result can now be readily proved. It will be useful in Section 3.6.

Corollary 3.4.4. If A,B ∈Wα, then either αA ⊢WC αB or αB ⊢WC αA.

Proof. By Lemma 3.4.3, either A ⊢WC αB, A ≡WC B, or B ⊢WC αA. If A ⊢WC B, then immediately

by necessitation αA ⊢WC αB. On the other hand, if A ⊢WC αB we can easily obtain αA ⊢WC αB by

necessitation and transitivity, and similarly for the B ⊢WC αA case.
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With the totality of <α on Wα at hand, we can already show that proofs in RC and WC are equiva-

lent for certain worms.

Theorem 3.4.5. If A,B ∈Wα, then:

A <α B ⇐⇒ A <RC
α B;

A ≡WC B ⇐⇒ A ≡RC B.

Proof. Both left-to-right implications are a consequence of RC extending WC (Theorem 3.2.7).

For the right-to-left implication of the first statement, we reason as follows: suppose that A <RC
α B

but it is not the case that A <α B. Then by the totality of <α for worms in Wα (Lemma 3.4.3), either

B <α A, or A ≡WC B. By the inclusion of WC in RC, we then conclude that either B <RC
α A, or

A ≡RC B. But neither of these two cases is possible, as they contradict the irreflexivity of <RC
α . Then

it must be the case that A <α B. The proof of the second statement is analogous.

3.5 Conservativity of RC over WC

We are now ready to prove the main result of this chapter.

Theorem 3.5.1. For any worms A and B′, if A ⊢RC B′, then A ⊢WC B
′.

Proof. If B′ = ⊤, the result is immediate. Assume then that B′ = αB for some ordinal α and worm B.

The proof proceeds by induction on the length of AαB. The minimum length of AαB is 1, and it

occurs only when A = B = ⊤. The premise ⊤ ⊢RC α is absurd since it would contradict the irreflexivity

of <RC
α , and hence there is nothing left to prove in the base case.

For the induction step, our induction hypothesis is the following:

For any worms C,D such that |CD| < |AαB| and C ⊢RC D, we have that C ⊢WC D.

Assume that A ⊢RC αB. From Lemma 3.3.5 we get hα(A) ⊢RC αhα(B) and A ⊢RC rα(B).

If both rα(A) = ⊤ and rα(B) = ⊤, then A,B ∈ Wα, and hence A ⊢WC αB by Theorem 3.4.5.

Suppose then that either rα(A) ̸= ⊤ or rα(B) ̸= ⊤. Since |A| = |hα(A)| + |rα(A)| (and similarly

for B), we know that |hα(A)| < |A| or |hα(B)| < |B|. Then |hα(A)αhα(B)| < |AαB|. Furthermore,

|Arα(B)| < |AαB|. By using the induction hypothesis twice we get hα(A) ⊢WC αhα(B) and A ⊢WC

rα(B), which is enough to show A ⊢WC αB by Lemma 3.3.6.

The proof of the preceding result (together with the proofs of the results it uses) gives us a con-

structive algorithm to decide whether A ⊢WC B. Furthermore, if indeed A ⊢WC B, this algorithm

provides a list of syntactical steps which form a formal proof. Since at each iteration of the recursion

we may need to decide several different statements with only slightly smaller lengths, the algorithm is

a priori exponential. It is known that there is a polynomial procedure to decide RC [78] (and hence, as

we’ve seen, WC), but it uses semantics. Finding a polynomial syntactical algorithm remains an open

problem.

Combining Theorems 3.2.7 and 3.5.1, we obtain the promised result: RC is a conservative exten-

sion of WC.
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Theorem 3.5.2. For any worms A and B we have that A ⊢RC B if and only if A ⊢WC B.

Combining this theorem with Lemma 2.7.3 we obtain the following corollary.

Corollary 3.5.3. Let φ and ψ be closed RC formulas and A and B be worms such that φ ≡RC A and

ψ ≡RC B. Then we have φ ⊢RC ψ if and only if A ⊢WC B.

3.6 Universal models

Inspired by the finite model property of RC (see Section 2.7.1) and whence of WC, in this section

we question whether WC may have a universal model U that is significantly simpler than Ignatiev’s

model I described in Definition 2.6.7. We settle the answer to this question in the positive and in the

negative.

Positively, U can be simpler in that we can bound the length of the strict chains of successors in U

by ω. For this, it suffices to take the disjoint union of all finite RC0 counter-models for all statements

for which A ̸⊢RC B. This clearly defines a universal model for RC0 with only finite strict Rα-chains,

whereas Ignatiev’s model I has arbitrarily long strict Rα-chains.

Negatively, we shall see that a large class of universal models U inherit much of the intrinsic

complexity of I in that for infinitely many essentially different points f ∈ I we can find corresponding

points w ∈ U such that f and w have the same modal theory.

We begin with some preliminary definitions and results about I, firstly discussing an important

subset of its worlds with rather nice properties: the main axis.

Definition 3.6.1 (Main axis, MA). By MA we denote the main axis of Ignatiev’s model I and define it

as such: f ∈ MA if and only if ∀ ζ ∀ ξ < ζ f(ζ) = ℓ−ξ+ζ(f(ξ)).

For example, ⟨ωε0+1, ε0, ε0, . . . , 1, 0, . . .⟩ is not on the main axis, whereas ⟨ωε0+1, ε0 + 1, 0, . . .⟩ is.

One of the nice properties of the main axis is that each point on it is modally definable.

Lemma 3.6.2 (Fernández-Duque and Joosten [96]). For each f ∈ MA there is a worm A such that

for any given g ∈ I, we have I, g ⊩ A ∧ [0]¬A if and only if f = g. Moreover, each worm A defines a

point on the main axis via A ∧ [0]¬A.

We now present a way of merging two worlds of I that preserves the satisfiability of worms, which

will be useful to prove a characterization lemma below. Given two sequences f and g and an ordinal

α, we can create a new sequence by considering the (< α) part of the first one and the (≥ α) part of

the second one. In that case, we write α(f, g) for the resulting sequence. In symbols, α(f, g)ζ := fζ

for ζ < α and α(f, g)ζ := gζ for ζ ≥ α. Clearly, whenever both f and g are ℓ-sequences and gα ≤ fα,

we have that α(f, g) is again an ℓ-sequence. Furthermore, this new ℓ-sequence satisfies any worms

that both f and g do, as the following lemma shows.

Lemma 3.6.3. For any worm A and any ℓ-sequences f and g with gα ≤ fα we have that if both

I, f ⊩ A and I, g ⊩ A, then I, α(f, g) ⊩ A.
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Proof. By induction on A with the base case being trivial. Thus we consider the inductive case where

A = ζB for some ζ, assuming I, f ⊩ ζB and I, g ⊩ ζB.

In the case where ζ < α, we see that for any h such that fRζh, we also have α(f, g)Rζh, which

tells us that I, α(f, g) ⊩ ζB.

In the case where ζ ≥ α, we find h and h′ such that fRζh and I, h ⊩ B on the one hand, and

gRζh
′ and I, h′ ⊩ B on the other. If ζ > α, note that hα = fα ≥ gα = h′α by the definition of Rζ ,

so α(h, h′) is also an ℓ-sequence. By the induction hypothesis, we know that I, α(h, h′) ⊩ B. Since

α(f, g)Rζα(h, h
′), we see that I, α(f, g) ⊩ ζB, as was to be shown.

If, however, ζ = α, it might be that hα < h′α (if not, the reasoning of the ζ > α case can be

repeated). In that case, α(h, h′) is not necessarily an ℓ-sequence and we cannot use the induction

hypothesis.1 What we can do is observe that if hα < h′α then necessarily hα < gα (because gRαh′α).

Then α(f, g)Rαh and consequently I, α(f, g) ⊩ αB, as we wanted to show.

We now define a relation g ⪰ f on I as g being point-wise at least f , that is, g ⪰ f if and only if for

all ξ we have gξ ≥ fξ. The following lemma tells us that this relation and the point f where a worm A

is true for the first time characterize all the points of I where A holds.

Lemma 3.6.4. Let A be a worm and f, g ∈ I. We have that:

I, f ⊩ A =⇒ (g ⪰ f =⇒ I, g ⊩ A);

I, f ⊩ A ∧ [0]¬A =⇒ (g ⪰ f ⇐⇒ I, g ⊩ A).

Proof. The first item is proven by an easy induction on A. It was already observed by Icard [131,

Lemma 2.4.3]. Note also that the =⇒ direction of the second item follows from the first one.

For the⇐= direction of the second item, we fix f such that I, f ⊩ A ∧ [0]¬A, consider g such that

I, g ⊩ A, and assume for a contradiction that g ̸⪰ f . Let ξ be the smallest ordinal such that gξ < fξ.

Then it is easy to see that fRξξ(f, g). Since I, ξ(f, g) ⊩ A by Lemma 3.6.3, it follows that I, f ⊩ ξA.

But this implies I, f ⊩ 0A by the soundness of I (Theorem 2.6.8), which contradicts the assumption

that I, f ⊩ [0]¬A.

With this characterization lemma, we can easily prove the following admissible rule for GLP0.

Lemma 3.6.5. Let A and B be worms. Then:

GLP0 ⊢ A ∧ [0]¬A→ B =⇒ GLP0 ⊢ A→ B.

Proof. Given a worm A, let f be the unique ℓ-sequence where A ∧ [0]¬A holds (see Lemma 3.6.2).

Clearly, since GLP0 ⊢ A ∧ [0]¬A → B, we also have that I, f ⊩ B. We prove that for any g ∈ I,

if I, g ⊩ A, then I, g ⊩ B, from which the result follows by completeness (Theorem 2.6.8). By

Lemma 3.6.4, if I, g ⊩ A, then g ⪰ f . But then, using the other part of the same lemma, we may

conclude that I, g ⊩ B.
1This possibility was not considered in the original proof published in [12], of which this is a correction.
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We now prove two simple results about poly-Euclidean models. Recall that a model is called

poly-Euclidean whenever wRαu and wRβv imply uRβv for β < α.

Lemma 3.6.6. Let M be any poly-Euclidean model and w ∈ M. Then, for worms A and B with

A ∈Wα+1, ifM, w ⊩ A andM, w ⊩ αB, we also have thatM, w ⊩ AαB.

Proof. By induction on the length ofAwith the base case being trivial. For the inductive case, suppose

that M, w ⊩ γA for some γ > α, and that M, w ⊩ αB. Then there is u ∈ M such that wRγu and

M, u ⊩ A. Likewise, there is v ∈ M such that wRαv andM, v ⊩ B. SinceM is poly-Euclidean, we

know that uRαv, which allows us to proveM, u ⊩ αB and thus obtainM, u ⊩ AαB by the induction

hypothesis. Then clearlyM, w ⊩ γAαB.

With this lemma at hand we can show that although a poly-Euclidean model for WC cannot speak

directly about conjunctions, it can indirectly do so. We say that a modelM is a model for WC when

φ ⊢WC ψ implies that for every world w ∈M we haveM, w ⊩ φ =⇒ M, w ⊩ ψ.

Lemma 3.6.7. LetM be a poly-Euclidean model for WC and w ∈M. Let A,B and C be worms such

that A ∧B ≡RC C. Then, if bothM, w ⊩ A andM, w ⊩ B, we also haveM, w ⊩ C.

Proof. By induction on the number of different symbols of AB following the standard proof that each

conjunction of worms is equivalent to a worm in the same language (Lemma 2.7.3 here, but see also

[31, Lemma 9]). The base case is trivial. For the induction step, let α be the minimal modality of AB

and C ≡RC A ∧ B. From Lemmas 3.3.2 and 3.3.4 together with the assumptions thatM, w ⊩ A and

M, w ⊩ B we collect the following observations:

• M, w ⊩ hα+1(A);

• M, w ⊩ αbα(A);

• M, w ⊩ hα+1(B);

• M, w ⊩ αbα(B).

Let D be provably equivalent to hα+1(A) ∧ hα+1(B) and such that D ∈Wα+1 (just like hα+1(A) ∈

Wα+1 and hα+1(B) ∈Wα+1). Then, since there is no α in D, we know thatM, w ⊩ D by the induction

hypothesis. By Corollary 3.4.4, we know that either bα(A) <α αbα(B) or bα(B) <α αbα(A). Let αE

be the maximum. We obtainM, w ⊩ DαE by Lemma 3.6.6.

We now see that DαE ≡RC A∧B: the right-to-left direction is a simple application of a generaliza-

tion of Rule 3.2.1.(vi) (which is admissible in RC as seen in Theorem 3.2.7). For the left-to-right direc-

tion, we prove DαE ⊢WC A, with DαE ⊢WC B being analogous. By Lemma 3.3.4 and Rule 3.2.1.(vi)

it suffices to show DαE ⊢WC hα+1(A) and DαE ⊢WC αbα(A). The former is a consequence of

Lemma 3.2.3 and the latter is a consequence of Lemma 3.2.5, noting that D ∈Wα+1.

It remains to show that M, w ⊩ C. Since C ≡RC A ∧ B, we know by transitivity of ≡RC that

C ≡RC DαE, and consequently that C ≡WC DαE. Then the result follows by the assumption thatM

is a WC model.

We now finally consider universal WC models and prove the main result of this section. A model

U is a universal WC model when:

A ⊢WC B ⇐⇒ (for all w ∈ U ,we have U , w ⊩ A =⇒ U , w ⊩ B).
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Given a modelM, let ThM(w) := {A | M, w ⊩ A} be the collection of worms satisfied at the world

w ofM. We are finally ready to prove the main result of this section.

Theorem 3.6.8. Let U be a poly-Euclidean universal model for WC. Then, for each point f ∈ I with

f ∈ MA, there is some world w ∈ U such that ThI(f) = ThU (w).

Proof. Let f ∈ MA be arbitrary and let A be the worm given by Lemma 3.6.2 such that A ∧ [0]¬A is

true at f and nowhere else. Since A ̸⊢WC 0A by the irreflexivity of <0, we can find w ∈ U such that

U , w ⊩ A and U , w ⊮ 0A. We shall show that for this particular choice of w we have ThI(f) = ThU (w).

First, suppose that I, f ⊩ B for some worm B. By the definability of f and the completeness of

I (Theorem 2.6.8), we know that GLP0 ⊢ A ∧ [0]¬A → B. By Lemma 3.6.5 and the conservativity of

GLP0 over WC, we may conclude that A ⊢WC B, and hence that U , w ⊩ B.

For the opposite inclusion, suppose that I, f ⊮ B for some worm B. Then GLP0 ⊬ A → B, which

implies that A ̸⊢WC B. Let C be a worm equivalent to A ∧ B, which exists by Lemma 2.7.3. Clearly,

since A ̸⊢WC B and A ̸⊢RC ⟨0⟩(A ∧ B), we have that A <RC
0 C by the trichotomy of <RC

0 , whence

C ⊢WC 0A. We assume towards a contradiction that U , w ⊩ B. In that case, since also U , w ⊩ A, we

may conclude by Lemma 3.6.7 that U , w ⊩ C. But since C ⊢WC 0A, this would mean that U , w ⊩ 0A,

which is a contradiction by our choice of w.

We conclude by observing that the results proven about (universal) poly-Euclidean models for WC

also hold for (universal) poly-Euclidean models for RC0. It remains to see whether the same results

hold for non-poly-Euclidean models.
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4.1 Introduction

As described in Section 2.5.2, there are no nice provability logics in the full quantified modal

language; more precisely, QPL(T ) is Π0
2-complete for a large class of theories of arithmetic T [203,

207].

In order to isolate a quantified provability logic, we took inspiration from the field of strictly positive

logics and their tendency to have lower complexity than their full-language counterparts (see Sec-

tion 2.7 and in particular Table 2.1). We chose the Reflection Calculus with one modality as a starting

point due to its status as a strictly positive provability logic, and extended it to the quantified setting,

obtaining the Quantified Reflection Calculus with one modality, denoted by QRC1.

In this chapter, we describe QRC1 from the modal point of view, exhibiting relational soundness

and completeness proofs, and also a proof of decidability and an upper-bound for its complexity. We

further show that QRC1 is the strictly positive fragment of the logics between QK4 and QGL (both

inclusive), just as RC1 is the strictly positive fragment of the logics between K4 and GL (also both

inclusive) [78]. These results are published in [13] and [14].

We tackle the arithmetical semantics in Chapter 5, where we prove that QRC1 is the strictly pos-

itive fragment of QPL(T ) when T is a computably enumerable (c.e.) and sound extension of EA.

Thus, QRC1 is indeed a quantified provability logic, albeit a strictly positive one, and we do obtain a

substantial drop in complexity: from Π0
2-complete to decidable.

Many of the results of this chapter have been formalized in Coq [5], and some are presented here

in exceeding detail because detailed proofs are easier to formalize. We describe the formalization

process in Chapter 10, where the main difficulties are described, as well as some new insights into

both the relational soundness and completeness proofs.

4.2 Axiomatization

The Quantified Reflection Calculus with one modality, denoted by QRC1, is a calculus for strictly

positive quantified modal formulas.

Towards describing the language of QRC1, denoted by L+
□∀c, we fix a countable set of variables

x0, x1, . . . (also referred to as x, y, z, etc.) and define a signature Σ as a set of constants denoted by

CONSTΣ and a set of relation symbols with corresponding arity denoted by RELΣ. We have no func-

tion symbols nor equality. We use the letters c, ci, . . . to refer to constants and the letters P,Q, S, Si, . . .

to refer to relation symbols. The signature is often not mentioned explicitly. Note that this deviates

slightly from the language L+
□∀ described in Section 2.5 for quantified modal logics, since here con-

stants are included. This decision, inspired by Goldblatt [110], is helpful for proving the relational

completeness result, but the constant-free fragment of QRC1 is equally expressive (Lemma 4.2.6; see

also Section 4.5).

Given a signature, a term t is either a variable or a constant of that signature. Both ⊤ and any

n-ary relation symbol applied to n terms are atomic formulas. The set of formulas is the closure of the

atomic formulas under the binary connective ∧, the unary modal operator ♢, and the quantifier ∀x,
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where x is a variable. Formulas are represented by Greek letters such as φ,ψ, χ, etc.

The axioms and rules of QRC1 are listed in the following definition.

Definition 4.2.1 (QRC1). Let Σ be a signature and φ, ψ, and χ be any formulas in L+
□∀c with the

signature Σ. The axioms and rules of QRC1 are the following:

(i) φ ⊢ ⊤ and φ ⊢ φ;

(ii) φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ (conjunction elimination);

(iii) if φ ⊢ ψ and φ ⊢ χ, then φ ⊢ ψ ∧ χ (conjunction introduction);

(iv) if φ ⊢ ψ and ψ ⊢ χ, then φ ⊢ χ (cut);

(v) if φ ⊢ ψ, then ♢φ ⊢ ♢ψ (necessitation);

(vi) ♢♢φ ⊢ ♢φ (transitivity);

(vii) if φ ⊢ ψ, then φ ⊢ ∀xψ, for x /∈ fv(φ) (quantifier introduction on the right);

(viii) if φ[x←t] ⊢ ψ, then ∀xφ ⊢ ψ, for t free for x in φ (quantifier introduction on the left);

(ix) if φ ⊢ ψ, then φ[x←t] ⊢ ψ[x←t], for t free for x in φ and ψ (term instantiation);

(x) if φ[x←c] ⊢ ψ[x←c], then φ ⊢ ψ, for c not in φ nor ψ (constant elimination).

If φ ⊢ ψ, we say that ψ follows from φ in QRC1. When the signature is not clear from the context,

we write φ ⊢Σ ψ instead.

We briefly comment on the above axioms and rules. The first six statements correspond to ax-

ioms and rules of RC1, while the two quantifier rules are standard in first-order logics. The final two

rules, term instantiation and constant elimination, fulfill an essential role in the completeness of QRC1.

The best way to think of them is as quantifier rules in disguise. Since our semantics (described in

Section 4.3) interprets the free variables on both sides of ⊢ in the same way, we can also think of

such free variables as being generalized outside this implication. In other words, P (x) ⊢ Q(x) can be

thought of as ∀x (P (x) ⊢ Q(x)). We never explicitly write the latter, since it falls outside the scope of

the strictly positive language. However, we do wish to arrive at some conclusions of such a formula,

namely, we wish to be able to simultaneously instantiate x on both sides of ⊢ by any term (accom-

plished by Rule 4.2.1.(ix)) and to simultaneously “generalize” a given term as well (accomplished by

Rule 4.2.1.(x)).

The following easy lemma collects several results provable in QRC1, which should provide flavor

for the kinds of things one can prove in this system.

Lemma 4.2.2. The following are theorems (or derivable rules) of QRC1:

1. ∀x ∀ y φ ⊢ ∀ y ∀xφ (quantifier commutativity);

2. ∀xφ ⊢ φ[x←t] for t free for x in φ (instantiation);
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3. ∀xφ ⊢ ∀ y φ[x←y] for y free for x in φ and y /∈ fv(φ) (variable renaming);

4. if φ ⊢ ψ, then φ ⊢ ψ[x←t] for x not free in φ and t free for x in ψ;

5. if φ ⊢ ψ[x←c], then φ ⊢ ∀xψ for x not free in φ and c not in φ nor ψ;

6. ♢∀xφ ⊢ ∀x♢φ.

Proof.

1. Starting from φ ⊢ φ, apply quantifier introduction on the left (Rule 4.2.1.(viii)) twice (noting that

a variable is always free for itself), concluding ∀x ∀ y φ ⊢ φ. Now neither x or y is free in

the left-hand-side, so use quantifier introduction on the right (Rule 4.2.1.(vii)) twice to obtain

∀x ∀ y φ ⊢ ∀ y ∀xφ, as desired.

2. By quantifier introduction on the left applied to φ[x←t] ⊢ φ[x←t].

3. By quantifier introduction on the right applied to instantiation (the previous item).

4. Observe that, since x is not free in φ, we have φ ⊢ ∀xψ by quantifier introduction on the right.

We also have ∀xψ ⊢ ψ[x←t] by instantiation, which is enough through cut (Rule 4.2.1.(iv)).

5. This is a consequence of constant elimination (Rule 4.2.1.(x)) when x is not free in φ and

quantifier introduction on the right.

6. Starting from ∀xφ ⊢ φ (instantiation), use necessitation (Rule 4.2.1.(v)) to obtain ♢∀xφ ⊢ ♢φ

and end with quantifier introduction on the right.

In order to analyze various aspects of our calculus we define the following complexity measures

on formulas.

Definition 4.2.3 (d,d♢, d∀). Given a formula φ, its depth d(φ) is defined recursively as follows:

• d(⊤) := d(S(x0, . . . , xn−1)) := 0;

• d(ψ ∧ χ) := max{d(ψ),d(χ)}+ 1;

• d(∀xψ) := d(ψ) + 1;

• d(♢ψ) := d(ψ) + 1.

The modal depth d♢(φ) is defined similarly, except neither conjunctions nor quantifiers increase it:

• d♢(⊤) := d♢(S(x0, . . . , xn−1)) := 0;

• d♢(ψ ∧ χ) := max{d♢(ψ),d♢(χ)};

• d♢(∀xψ) := d♢(ψ);

• d♢(♢ψ) := d♢(ψ) + 1.
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The quantifier depth d∀(φ) is analogous except for:

• d∀(∀xψ) := d∀(ψ) + 1;

• d∀(♢ψ) := d∀(ψ).

Let d ∈ {d,d♢,d∀}. Given a finite set of formulas Γ, we define d(Γ) := maxφ∈Γ{d(φ)}.

The modal depth provides a necessary condition for derivability, proven by a straightforward in-

duction on φ ⊢ ψ.

Lemma 4.2.4. If φ ⊢ ψ, then d♢(φ) ≥ d♢(ψ).

In particular, we get irreflexivity for free as stated in the next result. For other calculi this usually

requires hard work via either modal or arithmetical semantics, as can be seen in [40, 96, 98].

Corollary 4.2.5. For any formula φ, we have φ ̸⊢ ♢φ.

The following lemma tells us that adding new constants to our signature (which a priori could have

an empty set of constants) yields a conservative extension of the calculus.

Lemma 4.2.6. Let Σ be a signature and let C be a collection of new constants not yet occurring in

Σ. By ΣC we denote the signature obtained by including these new constants C in Σ. Let φ,ψ be

formulas in the language of Σ. Then, if φ ⊢ΣC
ψ, so does φ ⊢Σ ψ.

Proof. This is a standard result and a proof for a calculus similar to ours can be found in Goldblatt [110,

Section 1.8]. The idea is to replace every constant from C appearing in the proof of φ ⊢ΣC
ψ by a

fresh variable. It can easily be seen that axioms are mapped to axioms under this replacement, and

that the rules are also mapped correctly. The most interesting case is that of constant elimination

(Rule 4.2.1.(x)), because replacing new constants by variables in the premise φ[x←c] ⊢ΣC
ψ[x←c]

may leave us unable to apply the same rule. Fortunately term instantiation (Rule 4.2.1.(ix)) suffices to

complete the proof.

We note that QRC1 does not allow one to have spurious relation symbols on the right side of a

sequent.

Lemma 4.2.7. Let φ and ψ be QRC1 formulas. If φ ⊢ ψ, then all the relation symbols appearing in ψ

also appear in φ.

Proof. By an easy induction on φ ⊢ ψ.

This gives us interpolation for free.

Corollary 4.2.8 (Interpolation). Let φ and ψ be QRC1 formulas. If φ ⊢ ψ, then there is a formula χ

such that all the relation symbols appearing in χ also appear in both φ and ψ, and furthermore we

have both φ ⊢ χ and χ ⊢ ψ.

Proof. By Lemma 4.2.7, χ := ψ is an adequate interpolant.
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We can also deduce that new relation symbols can be conservatively added to a signature.

Corollary 4.2.9. Let Σ be a signature and let R be a collection of new relation symbols not yet

occurring in Σ. By ΣR we denote the signature obtained by including these new relation symbols R in

Σ. Let φ,ψ be formulas in the language of Σ. Then, if φ ⊢ΣR
ψ, so does φ ⊢Σ ψ.

Proof. By induction on φ ⊢ΣR
ψ, assuming φ,ψ ∈ Σ. The only non-trivial case is that of the cut rule.

If φ ⊢ΣR
ψ via a cut, let χ ∈ ΣR be the cut formula such that φ ⊢ΣR

χ and χ ⊢ΣR
ψ. By Lemma 4.2.7,

the relation symbols of χ must be present in φ. Thus, χ ∈ Σ, so we can use the induction hypotheses

to conclude.

4.3 Relational soundness

In order to obtain relational semantics for QRC1, we adapt the Kripke sheaf semantics for quantified

modal logic described in Section 2.5.1. The main difference is that, since we include constants in the

language of QRC1, the models for QRC1 should know how to interpret constants.

Definition 4.3.1 ((Adequate) relational model). A relational model for the language of QRC1 in a

signature Σ is a tuple ⟨W,R, {Mw}w∈W , {ηw,u}wRu, {Iw}w∈W , {Jw}w∈W ⟩ where ⟨W,R, {Mw}w∈W ,

{ηw,u}wRu⟩ is a Kripke sheaf and:

• for each w ∈ W , the interpretation Iw assigns an element of the domain Mw to each constant

c ∈ Σ, written cIw ;

• for each w ∈ W , the interpretation Jw assigns a set of tuples SJw ⊆ ℘((Mw)
n) to each n-ary

relation symbol S ∈ RELΣ.

We say that a model is adequate if:

• R is transitive: if wRu and uRv, then wRv;

• I is concordant: if wRu, then cIu = ηw,u(c
Iw) for every constant c ∈ Σ.

We say that the model is finite (respectively, constant domain) if the sheaf is finite (respectively,

constant domain).

Recall that a w-assignment g is a function assigning a member of the domain Mw to each variable

in the language, and that we write gu as shorthand for ηw,u ◦ g. A w-assignment g is extended to

terms by defining g(c) := cIw for any constant c. Note that this meshes nicely with the concordance

restriction of an adequate model: for any term t, if wRu then gu(t) = ηw,u(g(t)).

We are now ready to define satisfiability at a world. This is essentially the same definition we have

for the full quantified modal language (Definition 2.5.3), except now focused on the strictly positive

connectives and taking into account that terms might be constants as well as variables.

Definition 4.3.2 (Satisfiability). Let M = ⟨W,R, {Mw}w∈W , {ηw,u}wRu, {Iw}w∈W , {Jw}w∈W ⟩ be an

adequate model in some signature Σ, and let w ∈W be a world, g be a w-assignment, S be an n-ary

relation symbol of Σ, and φ,ψ be formulas in the language of Σ.
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We defineM, w ⊩g φ (φ is true at w under g) recursively on φ as follows:

• M, w ⊩g ⊤;

• M, w ⊩g S(t0, . . . , tn−1) if and only if ⟨g(t0), . . . , g(tn−1)⟩ ∈ SJw ;

• M, w ⊩g φ ∧ ψ if and only if bothM, w ⊩g φ andM, w ⊩g ψ;

• M, w ⊩g ♢φ if and only if there is a u ∈W such that wRu andM, u ⊩g
u

φ;

• M, w ⊩g ∀xφ if and only if for all w-assignments h such that h ∼x g, we haveM, w ⊩h φ.

We now present a number of simple results needed to prove the relational soundness of QRC1.

These are standard observations about either first-order models or Kripke models that we adapted to

our case.

Lemma 4.3.3 (Absent free variables). Let M be an adequate model, w be a world, g, h be Γ-

alternative w-assignments, and φ be a formula with no free variables in Γ. Then:

M, w ⊩g φ ⇐⇒ M, w ⊩h φ.

Proof. We take the different assumption that g and h are (Var \ fv(φ))-alternative (i.e., they agree on

the valuations of every free variable of φ) in order to obtain a better induction principle and proceed by

induction on φ. Note that this assumption implies the above one and that there is no need to inspect

both implications, since the lemma statement is symmetrical.

If φ is ⊤ or a conjunction, the result is straightforward.

If φ is a predicate symbol S applied to a tuple of terms t0, . . . , tn−1, thenM, w ⊩g S(t0, . . . , tn−1)

if and only if ⟨g(t0), . . . , g(tn−1)⟩ ∈ SJw . Since g and h agree on the value of all the ti, this is also

equivalent to ⟨h(t0), . . . , h(tn−1)⟩ ∈ SJw , which happens if and only ifM, w ⊩h S(t0, . . . , tn−1).

Let φ be ♢ψ and assumeM, w ⊩g ♢ψ. Then there is a world u such that wRu andM, u ⊩g
u

ψ.

In order to see that M, w ⊩h ♢ψ, we can use u as a witnessing world as long as we can show

M, u ⊩h
u

ψ. But this is clear by the induction hypothesis, taking into account that for any set ∆ we

have that g ∼∆ h implies gu ∼∆ hu.

Suppose φ is ∀xψ. Assume M, w ⊩g ∀xψ, and let f be an arbitrary w-assignment such that

f ∼x h. We want to checkM, w ⊩f ψ. Define a new assignment f ′ that coincides with g everywhere

except at x, where f ′(x) := f(x). By our hypothesis thatM, w ⊩g ∀xψ, we know thatM, w ⊩f
′
ψ.

Then by the induction hypothesis it suffices to show that f ∼Var\fv(ψ) f
′, i.e., that for every free variable

y of ψ we have f(y) = f ′(y). If y is x, this is straightforward by the definition of f ′. If not, note

that y must be a free variable of ∀xψ as well. Since f ∼x h, we know that f(y) = h(y). Since

h ∼Var\fv(∀ xψ) g, we conclude f(y) = g(y), as desired.

Lemma 4.3.4 (Substitution in formula). Let M be an adequate model, w be a world, and g, g̃ be

x-alternative w-assignments such that g̃(x) = g(t). Then for every formula φ with t free for x:

M, w ⊩g̃ φ ⇐⇒ M, w ⊩g φ[x←t].
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Proof. By induction on φ. We only present the cases of the diamond and of the universal quantifier;

the remaining cases are straightforward. We assume that x is a free variable of φ, since otherwise

we could use Lemma 4.3.3.

Suppose that φ is ♢ψ and assume thatM, w ⊩g̃ ♢ψ. Then there is a world u such that wRu and

M, u ⊩g̃
u

ψ. Note that gu ∼x g̃u and g̃u(x) = gu(t) (either t is a variable and this is a consequence

of g̃(x) = g(t), or t is a constant and this follows from tIu = ηw,u(t
Iw)), so by the induction hypothesis

M, u ⊩g
u

ψ[x←t]. This gives usM, w ⊩g ♢ψ[x←t], as desired. The other direction is analogous.

Suppose now that φ is ∀ z ψ and assume that M, w ⊩g̃ ∀ z ψ. Note that x and z are different

variables, for otherwise x would not be free in φ. Let h be any w-assignment such that h ∼z g. We

wish to show M, w ⊩h ψ[x←t]. Define h̃ such that h̃ ∼x h and h̃(x) := h(t). Then by the induction

hypothesis we can reduce our goal to M, w ⊩h̃ ψ. By our assumption, it is enough to check that

h̃ ∼z g̃.

In order to see this, note first that h̃ ∼{x,z} h (because h̃ ∼x h). Similarly, h ∼{x,z} g and g ∼{x,z} g̃.

Then h̃ ∼{x,z} g̃ by the transitivity of ∼{x,z}. But g̃(x) = g(t) by assumption; g(t) = h(t) because

g ∼z h (z and t are not the same variable because otherwise t would not be free for x in φ); and

h(t) = h̃(x) by construction of h̃. Thus g̃(x) = h̃(x), and h̃ ∼z g̃.

Towards the other direction, assume thatM, w ⊩g (∀ z ψ)[x←t] and that x and z are not the same

variable. Let h̃ ∼z g̃ be a w-assignment. We wish to show M, w ⊩h̃ ψ. Define h ∼x h̃ such that

h(x) := g(x). Note that h ∼z g by the transitivity of ∼{x,z} (using a similar argument to the one above).

Thus we know thatM, w ⊩h ψ[x←t] by assumption. It only remains to show that h̃(x) = h(t), as we

can then finally use the induction hypothesis to finish. If t is x there is nothing to show, and t cannot

be z, because z is not free for x in ∀ z ψ (recalling our assumption that x is a free variable of φ). Thus,

h(t) = g(t) = g̃(x) = h̃(x).

We now wish to provide counterparts to Lemmas 4.3.3 and 4.3.4 for when the change happens

in the interpretation of a constant instead of in the interpretation of a variable. It is straightforward to

check that the interpretation of constants not appearing in a formula is not relevant for the truth of that

formula:

Lemma 4.3.5 (Absent constants). LetM andM′ be adequate models differing only in their constant

interpretations {Iw}w∈W and {I ′w}w∈W . Let w be any world, g be any w-assignment, and φ be a

formula whose constants are interpreted in the same way by bothM andM′. Then:

M, w ⊩g φ ⇐⇒ M′, w ⊩g φ.

Proof. The statement is symmetric, so we prove only one direction. The ⊤ and conjunction cases are

straightforward.

In the case of relation symbols, we assume that φ is S(x, c) for some variable x and constant c,

with other arities and term arrangements being analogous. IfM, w ⊩g S(x, c), then ⟨g(x), cIw⟩ ∈ SJw .

Since cIw = cI
′
w , we also have thatM′, w ⊩ S(x, c).

If φ is ♢ψ andM, w ⊩g ♢ψ, then there is u such that wRu andM, u ⊩g
u

ψ. Since the constants
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in ψ are the same as in ♢ψ, we can use the induction hypothesis to see thatM′, u ⊩g
u

ψ, and hence

we haveM′, w ⊩g ♢ψ.

Assume now that φ is ∀ z ψ and that M, w ⊩g ∀ z ψ. Let h ∼z g be a w-assignment, and set out

to proveM′, w ⊩h ψ. By the induction hypothesis this is equivalent toM, w ⊩h ψ, which follows from

our assumption.

However, we need a bit of work to be able to state a counterpart of Lemma 4.3.4 for constants.

We want to be able to replace the interpretation of a constant by an element of the domain of some

world w, but this element may not exist in the domains of the worlds below w. Thus we need to first

get rid of that part of the model and keep only the sub-model rooted at w.

Definition 4.3.6 (Sheaf and model restricted to a world). Given a Kripke sheaf S = ⟨W,R, {Mw}w∈W ,

{ηw,u}wRu⟩ and a world r ∈ W , the sheaf restricted at r, written S|r = ⟨W |r, R|r, {Mw}w∈W |r
{ηw,u}wR|ru⟩, is defined as the restriction of S to the world r and all the worlds accessible from r

by R. Thus, W |r := {r} ∪ {w ∈W | rRw}, and the relation R|r is R restricted to W |r.

IfM = ⟨S, {Iw}w∈W , {Jw}w∈W ⟩ is a model, thenM|r is defined as ⟨S|r, {Iw}w∈W |r , {Jw}w∈W |r ⟩.

Note that if M is an adequate model, then so is M|r, for any world r of M. The following is a

well-known observation, noting that the satisfiability of a formula at a world w depends only on w and

on the sub-model accessible from w.

Remark 4.3.7. Given an adequate modelM and a world r ∈M, we have that for any formula φ, any

world w ∈M|r and any w-assignment g:

M, w ⊩g φ ⇐⇒ M|r, w ⊩g φ.

We are now ready to define what it means for the interpretation of a constant to be changed to a

particular domain element.

Definition 4.3.8 (Model with c replaced by d). Let M = ⟨S, {Iw}w∈W , {Jw}w∈W ⟩ be an adequate

model, r ∈ W be a world, c ∈ CONSTΣ be a constant, and d be an element of the domain of r. We

define:

M|r[c←d] := ⟨S|r, {I ′w}w∈W |r , {Jw}w∈W |r ⟩

such that its sheaf is S truncated at r, the relation symbols interpretation and the interpretation of

all constants except for c coincides with that of M|r, the interpretation of c at the world r is d (i.e.,

cI
′
r := d) and the interpretation of c at any other world w ∈W |r is ηr,w(d).

Note that, since we assumeM is adequate, then so isM|r[c←d].

Lemma 4.3.9. Given a constant c, a formula φ where c does not appear, an adequate model M, a

world w, and a w-assignment g, we have:

M, w ⊩g φ ⇐⇒ M|w[c←g(x)], w ⊩g φ[x←c].

Proof. We proceed by induction on the formula φ. The cases of ⊤, relation symbols, and conjunction

are trivial. We assume that x is free in φ, for otherwise we could use Lemma 4.3.5 and Remark 4.3.7.
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Consider the diamond case where φ is ♢ψ. If M, w ⊩g ♢ψ, then there is a world u such that

wRu andM, u ⊩g
u

ψ. By the induction hypothesis we obtainM|u[c←gu(x)], u ⊩g
u

ψ[x←c]. Observe

thatM|u[c←gu(x)] is the same model as (M|w[c←g(x)])|u, since they share the same Kripke sheaf,

the same constant interpretation (because interpreting c as g(x) at world w implies interpreting c as

ηw,u(g(x)) at world u, and this is precisely gu(x); recall that the η functions respect transitivity, so

future worlds are not affected) and the same relation symbol interpretation. Then by Remark 4.3.7

we getM|w[c←g(x)], u ⊩g
u

ψ[x←c] and consequentlyM|w[c←g(x)], w ⊩g ♢ψ[x←c], as desired. The

other implication is analogous.

Finally, let φ be ∀ z ψ and assume thatM, w ⊩g ∀ z ψ. Let h ∼z g be a w-assignment, and set out to

proveM|w[c←g(x)], w ⊩h ψ[x←c] (note that z and x are not the same variable for otherwise x would

not be free in φ). Since h ∼z g, we know that g(x) = h(x), so by the induction hypothesis it is enough

to showM, w ⊩h ψ, which follows from our assumption. The other implication is analogous.

We are finally ready to prove that QRC1 is sound with respect to the relational semantics presented

above.

Theorem 4.3.10 (Relational soundness). If φ ⊢ ψ, then for any adequate model M, for any world

w ∈W , and for any w-assignment g:

M, w ⊩g φ =⇒ M, w ⊩g ψ.

Proof. By induction on the proof of φ ⊢ ψ.

In the case of the axioms φ ⊢ ⊤ and φ ⊢ φ, the result is clear, as it is for the conjunction elimination

axioms. The conjunction introduction and cut rules follow easily from the definitions.

For the necessitation rule assume the result for φ ⊢ ψ and further assume thatM, w ⊩g ♢φ. Then

there is a world u such that wRu andM, u ⊩g
u

φ. We wish to seeM, w ⊩g ♢ψ. Taking u as a suitable

witness, our goal changes toM, u ⊩g
u

ψ. Thus the induction hypothesis for u and gu suffices.

The transitivity axiom is ♢♢φ ⊢ ♢φ, so assume thatM, w ⊩g ♢♢φ. Then there is a world u such

that wRu andM, u ⊩ηw,u◦g ♢φ, and also a subsequent world v such that uRv andM, v ⊩ηu,v◦(ηw,u◦g)

φ. Since R is transitive, we know that wRv and thus that ηu,v ◦ (ηw,u ◦ g) extensionally coincides with

ηw,v ◦ g. Then M, v ⊩ηw,v◦g ψ by Lemma 4.3.3 (since the two assignments are extensionally equal,

we have ηu,v ◦ (ηw,u ◦ g) ∼{} ηw,v ◦ g), and consequentlyM, w ⊩g ♢φ, as desired.

For the quantifier introduction on the right rule, assume the result for φ ⊢ ψ towards showing the

soundness of φ ⊢ ∀xψ with x ̸∈ fv(φ). Assume further that M, w ⊩g φ. Let h be a w-assignment

such that h ∼x g. We wish to see thatM, w ⊩h ψ. Since x is not a free variable in φ, we know that

M, w ⊩h φ by Lemma 4.3.3. The result follows from the induction hypothesis with the w-assignment h.

Consider now the quantifier introduction on the left rule. Assume the result for φ[x←t] ⊢ ψ with

t free for x in φ and assume further that M, w ⊩g ∀xφ. Then for every w-assignment h such that

h ∼x g we have M, w ⊩h φ. Define h ∼x g such that h(x) := g(t). We obtain M, w ⊩g ψ by the

induction hypothesis and Lemma 4.3.4.

Finally, the term instantiation rule is sound by Lemma 4.3.4, and the constant elimination rule is

sound by Lemma 4.3.9.
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We end this section with the observation that, even though the language of QRC1 is quite restricted,

even its diamond-free fragment requires counter-models with arbitrarily large domains. For example,

the sequent:

∀x, y S(x, x, y) ∧ ∀x, y S(x, y, x) ∧ ∀x, y S(y, x, x) ⊢ ∀x, y, z S(x, y, z)

is unprovable in QRC1, but satisfied by every world with at most two domain elements. This reasoning

can be extended to any n: if S is an n-ary predicate symbol, let φn be the conjunction of the n(n−1)/2

formulas of the form ∀x0, . . . , xn−2 S(. . . , x0, . . . , x0, . . .), with x0 appearing in every possible pair

of positions and every other position filled by a unique variable. Then φn does not entail ψn :=

∀x0, . . . , xn−1 S(x0, . . . , xn−1) but any world with at most n − 1 domain elements that satisfies φn

must also satisfy ψn.

4.4 Relational completeness

We now wish to prove the relational completeness of QRC1. For every underivable sequent we

provide an irreflexive, rooted, finite, and constant domain adequate model that doesn’t satisfy it.

Before starting the formal proof, we briefly describe the main idea. The term models we build are

such that each world is a pair of sets of closed formulas p = ⟨p+, p−⟩. The first set, p+, is the set

of formulas that will be satisfied at that world, or the positive part. The second set, p−, is the set of

formulas that will not be satisfied at that world, or the negative part. All worlds must be well-formed

with respect to some finite set of closed formulas Φ, which means that:

• p is closed: every formula in p+ and every formula in p− is closed;

• p is Φ-maximal: every formula of Φ is in either p+ or p− and there are no formulas in p but not

in Φ;

• p is consistent: if δ ∈ p− then
∧
p+ ̸⊢ δ; and

• p is fully-witnessed: if ∀xφ ∈ p− then there is a constant c such that φ[x←c] ∈ p−.

In that case we say that p is Φ-maximal consistent and fully witnessed, or Φ-MCW for short (the

closeness condition is included in the concept, although in practice almost every formula in this section

is closed).1 If p and q are pairs, we write p ⊆ q when p+ ⊆ q+ and p− ⊆ q−. Furthermore, if Γ is a set

of formulas we write p ⊆ Γ instead of p+ ∪ p− ⊆ Γ.

We want to have Φ-MCW pairs where Φ is closed under subformulas. However, the naive subfor-

mulas of ∀xφ might be open. In order to avoid that, we use the notion of closure with respect to a set

of constants C, where φ[x←c] is a valid subformula of ∀xφ as long as c ∈ C.

Definition 4.4.1 (CℓC). Given a set of constants C, the closure of a formula φ under C, written CℓC(φ),

is defined recursively on the formula as such:
1A Φ-maximal consistent pair p is fully determined by p+ and Φ, so we could have worked with the positive parts and their

Φ-complements instead of with the positive and negative parts. We chose this presentation because our original completeness
proof used different sets Φ for different pairs (see [13]).
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• CℓC(⊤) := {⊤};

• CℓC(S(t0, . . . , tn−1)) := {S(t0, . . . , tn−1)),⊤};

• CℓC(φ ∧ ψ) := {φ ∧ ψ} ∪ CℓC(φ) ∪ CℓC(ψ);

• CℓC(♢φ) := {♢φ} ∪ CℓC(φ);

• CℓC(∀xφ) := {∀xφ} ∪
⋃
c∈C CℓC(φ[x←c]).

The closure under C of a set of formulas Γ is the union of the closures under C of each of the

formulas in Γ:

CℓC(Γ) :=
⋃
γ∈Γ
CℓC(γ).

The closure of a pair p is defined as the closure of p+ ∪ p−.

Note that the closure of a set of closed formulas is itself a set of closed formulas.

Going back to the overview of the completeness proof, suppose that φ ̸⊢ ψ, (assuming for now that

φ and ψ are closed). Defining p := ⟨{φ}, {ψ}⟩, the counter-model will be rooted on a CℓC(p)-MCW

extension of p, where C is a set of constants to determine later. The set of constants C will be used as

the domain of the root. Note that p is already closed and consistent, so taking the step to maximality

is as simple as deciding whether to add each χ ∈ CℓC(p) to the positive or to the negative part of

the root without ruining its consistency. The hard part is doing so in a way that guarantees that the

resulting pair is fully witnessed.

In the usual Henkin construction this is traditionally accomplished in two steps: first extend the

signature to include a constant for each existential statement and add every closed formula of the form

∃xφ → φ[x←cφ] to your set, proving that this didn’t break consistency. Then prove a Lindenbaum

lemma to the effect that consistent sets can be extended to maximal consistent sets. The resulting

sets will be maximal, consistent, and fully witnessed. However we cannot do this because we cannot

express implications. Thus if we were to add a witness for every existential formula in our original pair

p (read: universal formula in p−) and then use a Lindenbaum lemma to make it maximal, there could

be new existential formulas without witnesses. We might have to iterate the process over and over

again, or at least a proof of termination would be non-trivial.

We now observe that if
∧
p+ ̸⊢ ∀xχ, then also

∧
p+ ̸⊢ χ[x←c], as long as c does not appear in

either p+ or χ (Lemma 4.2.2.5). This suggests a way of sorting the formulas of CℓC(p) into positive

and negative parts: mark a formula as positive if and only if it is a consequence of p+. This guarantees

that there are witnesses for the negative universal formulas as long as there are enough constants to

go around. In the course of studying QRC1, we obtained two different ways of making sure there are

enough constants: one that leads to increasing domains (published first in [13]) and one that leads

to a constant domain (published later in [14]). Here, we describe only the latter, since it is a stronger

result. However, the two different proofs share many ideas.

We introduce a new measure of formula complexity.
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Definition 4.4.2 (dconst). The number of different constants in a given formula φ is represented by

dconst(φ). The maximum number of different constants per formula in a set of formulas Γ is defined as

dconst(Γ) := maxφ∈Γ{dconst(φ)}.

Note that dconst(Γ) is not the number of different constants appearing in Γ, but the maximum

number of different constants in any single formula of Γ. For example, dconst({S(a, b), P (c)}) = 2.

We observe that the maximum number of distinct constants per formula in the closure under C of

a set of formulas can be bounded by a number that does not depend on C.

Remark 4.4.3. For any formula φ, set of formulas Φ, and set of constants C:

• dconst(φ) ≤ dconst(φ[x←c]) ≤ dconst(φ) + 1;

• dconst(φ) ≤ dconst(CℓC(φ)) ≤ dconst(φ) + d∀(φ);

• dconst(Φ) ≤ dconst(CℓC(Φ)) ≤ dconst(Φ) + d∀(Φ).

We are now ready to prove a Lindenbaum-like lemma.

Lemma 4.4.4 (Lindenbaum). Given a finite signature Σ with constants C and a finite set of closed

formulas Φ in the language of Σ such that |C| > 2(dconst(Φ) + d∀(Φ)), if p ⊆ CℓC(Φ) is a closed

consistent pair and p+ is a singleton, then there is a pair q ⊇ p in the language of Σ such that q is

CℓC(Φ)-MCW, and d♢(q
+) = d♢(p

+).

Proof. We start by defining a pair q ⊇ p such that for each χ ∈ CℓC(Φ), χ ∈ q+ if p+ ⊢ χ and χ ∈ q−

otherwise. It is easy to see that this pair q is CℓC(Φ)-maximal, and we have d♢(q
+) = d♢(p

+) by

Lemma 4.2.4.

Now assume by way of contradiction that q is not consistent, and let ψ ∈ q− be such that
∧
q+ ⊢ ψ.

Note that for every χ ∈ q+ we know that p+ ⊢ χ, because this was the required condition to add χ to

q+ in the first place. Thus, it must be that p+ ⊢ ψ. But then we would have placed ψ in q+ instead of

q− and we reach a contradiction. We conclude that q is consistent.

It remains to show that q is fully witnessed. Let ∀xψ be a formula in q−. We claim that there

is d ∈ C such that d does not appear either in p+ or in ∀xψ. For this it is enough to see that

|C| > dconst(
∧
p+)+dconst(∀xψ), which is the same as |C| > dconst(p

+)+dconst(∀xψ) (note the lack of

a big conjunction behind p+) because p+ is a singleton by assumption. Since p+ ⊆ CℓC(Φ), we know

that dconst(p
+) ≤ dconst(CℓC(Φ)), and similarly for ∀xψ. Then by Remark 4.4.3 we may conclude that

dconst(p
+) + dconst(∀xψ) ≤ 2(dconst(Φ) + d∀(Φ)), which suffices by our assumption on the size of C.

Since d does not appear in either p+ or ∀xψ, we can use Lemma 4.2.2.5 to conclude p+ ̸⊢ ψ[x←d],

and consequently ψ[x←d] ∈ q−, as desired.

The next step is to link maximal consistent and fully witnessed pairs through a relation that respects

the diamond formulas in the pair. To that end we define R̂ and prove some properties about it.

Definition 4.4.5 (pR̂q). The relation R̂ between pairs is such that pR̂q if and only if both of following

hold:

61



• for any formula ♢φ ∈ p− we have {φ,♢φ} ⊆ q−;

• there is some formula ♢ψ ∈ p+ ∩ q−.

Lemma 4.4.6. The relation R̂ restricted to consistent pairs is transitive and irreflexive.

Proof. In order to see that R̂ is transitive, assume that pR̂qR̂r. We wish to see that pR̂r. Let ♢φ ∈ p−

be arbitrary. Then ♢φ ∈ q− because pR̂q, and then {φ,♢φ} ⊆ r− because qR̂r. Let now ♢ψ ∈

p+ ∩ q−. Since qR̂r we know that ♢ψ ∈ r−. Then ♢ψ ∈ p+ ∩ r−.

Regarding irreflexivity, suppose that there is a pair p such that pR̂p. Then there must be ♢ψ ∈

p+ ∩ p−, which contradicts the consistency of p.

For maximal and consistent pairs, we can replace the first condition on R̂ with one that looks at

the positive parts.

Lemma 4.4.7. Given a set of formulas Γ and Γ-maximal consistent pairs p, q, we have that pR̂q if and

only if both of the following hold:

• for every formula ♢φ ∈ Γ, if either φ ∈ q+ or ♢φ ∈ q+, then ♢φ ∈ p+;

• there is some formula ♢ψ ∈ p+ ∩ q−.

Proof. Assume that pR̂q and let ♢φ ∈ Γ be such that either φ ∈ q+ or ♢φ ∈ q+. Assume by contradic-

tion that ♢φ /∈ p+. Then we know that ♢φ ∈ p− by maximality. Thus, since pR̂q, we obtain both φ ∈ q−

and ♢φ ∈ q−. But this contradicts the consistency of q. The last condition holds by the definition of R̂.

Assume now that these conditions hold, towards checking that pR̂q. Only the first condition is in

question. Let ♢φ ∈ p− and assume that φ /∈ q−. It must then be that φ ∈ q+ by maximality. Then

♢φ ∈ p+, which contradicts the consistency of p. Assume now that ♢φ /∈ q−. By the same token, ♢φ

must be in q+. Then ♢φ ∈ p+, reaching a contradiction again.

We now see that, if C is large enough and w is a CℓC(Φ)-MCW pair with ♢φ ∈ w+, we can find a

CℓC(Φ)-MCW pair u with φ ∈ u+ and wR̂u.

Lemma 4.4.8 (Pair existence). Let Σ be a signature with a finite set of constants C, and Φ be a finite

set of closed formulas in the language of Σ such that |C| > 2(dconst(Φ)+d∀(Φ)). If p is a CℓC(Φ)-MCW

pair and ♢φ ∈ p+, then there is a CℓC(Φ)-MCW pair q such that pR̂q, φ ∈ q+, and d♢(q
+) < d♢(p

+).

Proof. Consider the pair r defined as r+ := {φ} and r− := {δ,♢δ | ♢δ ∈ p−} ∪ {♢φ}. Assume that

r is not consistent, and thus that there is a formula ψ ∈ r− such that φ ⊢ ψ. It cannot be that ψ is

♢φ due to Corollary 4.2.5. Thus there is ♢δ ∈ p− such that either φ ⊢ δ or φ ⊢ ♢δ. By necessitation

we get either ♢φ ⊢ ♢δ or ♢φ ⊢ ♢♢δ, which also implies ♢φ ⊢ ♢δ by transitivity. This contradicts the

consistency of p, which leads us to conclude that r is consistent.

It is clear that pR̂q by the definition of r: for every ♢δ ∈ p−, the formulas δ and ♢δ are in r− (and

hence in q−), and the formula ♢φ is both in p+ and in q−.

We then use Lemma 4.4.4 to obtain a CℓC(Φ)-MCW pair q ⊇ r such that d♢(q
+) = d♢(r

+) =

d♢(φ) < d♢(p
+). We obtain pR̂q as a straightforward consequence of pR̂r.
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We can now define an adequate and constant domain model M[p] from any given finite and

consistent pair p such that M[p] satisfies the formulas in p+ and doesn’t satisfy the formulas in p−.

The idea is to build a term model where each world w is a CℓM (p)-MCW pair (where M is the model’s

domain), and the worlds are related by (a sub-relation of) R̂.

Definition 4.4.9. Let Σ be a signature. Given a finite consistent pair p of closed formulas in Σ such

that p+ is a singleton (or, if p+ is not a singleton, take the conjunction of every formula in p+ and use

that as p+ instead), we define an adequate modelM[p]. Here we use Φ := p+ ∪ p−.

Let C be a set of at least 2(dconst(Φ) + d∀(Φ)) + 1 different constants, including all of the ones

appearing in Σ and adding more if necessary. The pairs of formulas we work with are in the signature

Σ extended by C.

We start by defining the underlying Kripke sheaf in an iterative manner. Each of the following

sheaves has a constant domain C and identity compatibility functions.

• The root is given by Lemma 4.4.4 applied to C and p, obtaining the CℓC(Φ)-MCW pair q. The

sheaf S0 is then defined such that its set of worlds is W 0 := {q} and its relation R0 is empty.

• Assume now that we already have a sheaf Si, and we set out to define Si+1 as an extension of

Si. For each leaf w of Si, i.e., each world w such that there is no world u ∈ Si with wRiu, and

for each formula ♢φ ∈ w+, use Lemma 4.4.8 to obtain a CℓC(Φ)-MCW pair u such that wR̂u,

φ ∈ u+, and d♢(u
+) < d♢(w

+). Now add u to W i+1 and add ⟨w, u⟩ to Ri+1.

The process described above terminates because each pair is finite and the modal depth of CℓC(Φ)

(and consequently of w+, for any w ⊆ CℓC(Φ)) is also finite. Thus there is a final sheaf Sm, for some

natural number m. This sheaf is constant domain by construction, but not transitive. We obtain S[p]

as the transitive closure of Sm, which is clearly still constant domain.

In order to obtain the model M[p] based on the sheaf S[p], let Iq take constants in Σ to their

corresponding version as domain elements. If w is any other world, let Iw coincide with Iq. This is

necessary to make sure that the model is concordant, because q is related to every other world, and

it is sufficient to see thatM[p] is adequate. Finally, given an n-ary predicate letter S and a world w,

define SJw as the set of n-tuples ⟨d0, . . . , dn−1⟩ ⊆ Cn such that S(d0, . . . , dn−1) ∈ w+.

We now collect some straightforward consequences of the definition ofM[p].

Lemma 4.4.10. Let p be as above. The following are properties of the S[p] = ⟨W,R,C, {ηw,u}wRu⟩

sheaf and theM[p] = ⟨S[p], {Iw}w∈W , {Jw}w∈W ⟩ model:

1. The set of worlds W is finite.

2. The model is rooted.

3. The domain C is the same for every world.

4. The domain C is finite.

5. The compatibility function ηw,u is the identity for any pair of worlds w, u such that wRu.
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6. Every world w ∈W is closed, CℓC(p)-maximal consistent, and fully witnessed.

7. For every world w ∈W , we have ⊤ ∈ w+.

8. For any two worlds w, u ∈W , if wRu, then wR̂u.

Proof. These are simple consequences of the definition of M[p]. The finiteness of the domain is

possible due to Lemma 4.4.4, while the finiteness of W comes directly from Definition 4.4.9. We have

⊤ ∈ w+ for every world w ∈ W due to the definition of closure, noting that C is non-empty (this is

needed because ⊤ /∈ Cℓ{}(∀xφ)). For the last property, note that R is the transitive closure of Rm. If

wRmu, then wR̂u by construction. The result then follows by the transitivity of R̂ (Lemma 4.4.6).

Since everything up until now was meant for closed formulas, and furthermore we are potentially

adding new constants to the signature of the formulas we care about, we provide a way of replacing

the free variables of a formula with constants.

Definition 4.4.11 (φg). Given a formula φ in a signature Σ and a function g from the set of variables

to a set of constants in some signature Σ′ that has the same relation symbols as Σ and such that

CONSTΣ′ ⊇ CONSTΣ, we define the formula φg in the signature Σ′ as φ with each free variable x

simultaneously replaced by g(x).

Given a variable x, the formula φg\x is as above, except that the variable x is not replaced even if

it is free in φ.

We are now ready to prove the Truth lemma, which roughly states that the formulas in the positive

part of a given world inM[p] are precisely those satisfied at that world.

Lemma 4.4.12 (Truth). Let Σ be a signature. For any finite non-empty consistent pair p of closed

formulas in the language of Σ, world w ∈ M[p], w-assignment g, and formula φ in the language of Σ

such that φg ∈ CℓC(p) (where C is the domain ofM[p]), we have that:

M[p], w ⊩g φ ⇐⇒ φg ∈ w+.

Proof. By induction on φ. The cases of ⊤ and conjunction are straightforward, so we focus on the

other ones.

In the case of the relation symbols, take φ as S(x, c) where c ∈ C as a simplification, since

other arities and arrangements of terms are analogous. Note that M[p], w ⊩g S(x, c) if and only if

⟨g(x), cIw⟩ ∈ SJw if and only if S(g(x), cIw) ∈ w+. Since c ∈ C, we know by the definition ofM[p] that

cIw = c. Thus, we conclude thatM[p], w ⊩g S(x, c) if and only if S(g(x), c) ∈ w+, as desired.

Consider now the case of the universal quantifier. For the left to right implication, suppose that

M[p], w ⊩g ∀xφ. Then for every w-assignment h ∼x g we haveM[p], w ⊩h φ. Thus for each such h

we know that φh ∈ w+ by the induction hypothesis (φh ∈ CℓC(p) because (∀xφ)g ∈ CℓC(p)). We want

to show that (∀xφ)g ∈ w+, i.e., that ∀xφg\x ∈ w+. Assume by contradiction that this is not the case.

Then, since w is CℓC(p)-maximal consistent, it must be that ∀xφg\x ∈ w−. Let c ∈ C be a witness

such that φg\x[x←c] ∈ w−, which exists because w is fully witnessed. Let h be the w-assignment that
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coincides with g everywhere except at x, where h(x) := c. Then g ∼x h and φg\x[x←c] = φh. But this

contradicts our earlier observation that for every such h the formula φh is in w+.

For the right to left implication, let ∀xφg\x ∈ w+, and let h ∼x g be any w-assignment. We want to

show thatM[p], w ⊩h φ. By the induction hypothesis this is the same as showing that φh ∈ w+. But

φh = φg\x[x←h(x)], and this is in w+ by the completeness and consistency of w.

Finally, consider the case of the diamond. For the left to right implication, assumeM[p], w ⊩g ♢φ.

Then there is some world u such that wRu andM[p], u ⊩g
u

φ. By the induction hypothesis we obtain

φg
u ∈ u+, and since ηw,u is the identity function, also φg ∈ u+. Now, since wRu, we know that wR̂u

by Lemma 4.4.10.8, and thus by Lemma 4.4.7 we obtain ♢φg ∈ w+, as desired.

For the right to left implication, assume that (♢φ)g ∈ w+. By the construction ofM[p], there is a

world u such that φg ∈ u+ (and hence φg
u ∈ u+) and wRu, and thenM[p], u ⊩g

u

φ by the induction

hypothesis, from which we finally concludeM[p], w ⊩g ♢φ.

We can finally prove the constant domain completeness theorem.

Theorem 4.4.13 (Constant domain completeness). Let Σ be a signature and φ,ψ formulas in Σ. If

φ ̸⊢ ψ, then there is an adequate, finite, irreflexive, rooted, and constant domain model M, a world

w ∈W , and a w-assignment g such that:

M, w ⊩g φ and M, w ̸⊩g ψ.

Proof. Define a new constant cx for each free variable x of φ and ψ and let Σ′ be the signature Σ

augmented with these new constants and a dummy constant c0. Let g be the assignment taking each

free variable x of φ and ψ to cx and every other variable to c0. Note that φg ̸⊢Σ′ ψg by the constant

elimination rule and Lemma 4.2.6. BuildM :=M[⟨{φg}, {ψg}⟩] as described in Definition 4.4.9, with

root w. Then by Lemma 4.4.12 we have bothM, w ⊩g φ andM, w ̸⊩g ψ, as desired.

We observe that QRC1 has the finite model property with respect to domains and number of worlds

(as a consequence of Lemma 4.4.10 and Theorem 4.4.13). It is interesting that QRC1 is this well

behaved while, say, predicate intuitionistic logic doesn’t enjoy the finite model property with respect to

either of these.

Corollary 4.4.14. QRC1 is decidable.

Proof. Since QRC1 is recursively axiomatized, has the finite model property, and it is easy to check

whether a given finite model is adequate, Post’s theorem [184] allows us to decide whether φ ⊢ ψ.

See Section 10.7 for a more detailed proof.

We briefly comment on the complexity of QRC1. We take the maximum number of nested con-

nectives (the depth, denoted by d) of a formula as the relevant complexity measure. We have both

d♢(φ) ≤ d(φ) and d∀(φ) ≤ d(φ). We do not take dconst(φ) into account.

Given two closed formulas2 φ and ψ in a signature Σ where we want to decide whether φ ⊢ ψ, let

p := ⟨{φ}, {ψ}⟩ and Φ := p+ ∪ p−. By soundness and completeness, we know that φ ⊢ ψ if and only
2We assume the formulas are closed without loss of generality, since the trick of the completeness proof can be used to get

rid of any free variables.
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ifM[p], w ⊩g φ impliesM[p], w ⊩g ψ, where w and g are as in the completeness theorem. Using big

O notation (see [73]), we can bound the size ofM[p] as follows:

• the domain M of M[p] has size at most max{2(dconst(Φ) + d∀(Φ)) + 1, |CONSTΣ|}, which is

O(d(Φ)) because we are disregarding the complexity arising from dconst and hence |CONSTΣ|

as well;

• for any formula χ and set of constants C, we have that |CℓC(χ)| isO(|C|d(χ)), so since CℓM (Φ) =

CℓM (φ) ∪ CℓM (ψ), we have that |CℓM (Φ)| is O(d(Φ)d(Φ));

• the number of worlds of M[p] is at most the number of subsets of CℓM (Φ), so the number of

worlds is O
(
2d(Φ)d(Φ)

)
;

• the relation R can be described using O
((

2d(Φ)d(Φ)
)2)

symbols.

Thus the current approximation for the space needed to describe M[p] is double exponential on

the depth of p. By enumerating all models with size at most the size of M[p] and checking whether

they validate φ and/or ψ, we can determine whether φ ⊢ ψ. This gives us an upper-bound of double

exponential space for the complexity of QRC1. A more dedicated study might lead to a tighter bound.

4.5 Fragment of QK4 and QGL

Dashkov [78] showed that RC1 is the strictly positive fragment of both K4 and GL (and of any logic

between them), meaning that, if φ and ψ are built up from ⊤, propositional symbols, conjunctions, and

diamonds, then φ ⊢RC1
ψ if and only if K4 ⊢ φ→ ψ, and similarly for GL. In this section we show that

this equivalence also holds in the quantified case.

Since QRC1 includes constants in its language and quantified modal logics are often presented

without them (a decision we repeated in Section 2.5), we define a map from the language of QRC1

to its constant-free fragment (i.e., a map from L+
□∀c to L+

□∀), replacing constants with fresh vari-

ables. Thus, given a finite set of QRC1 formulas Φ where the different constants appearing in Φ

are c = c0, . . . , cn−1, let x = x0, . . . , xn−1 be fresh variables with respect to Φ. Then we define

φΦ := φ[c0←x0] · · · [cn−1←xn−1] for each φ ∈ Φ, and abbreviate this long substitution with the nota-

tion φ[c←x]. Thus we also have φ = φΦ[x←c].

We confirm that the above translation is harmless when it comes to provability.

Lemma 4.5.1. Let Φ be a finite set of QRC1 formulas such that φ,ψ ∈ Φ. Then:

φ ⊢ ψ ⇐⇒ φΦ ⊢ ψΦ.

Proof. If φ ⊢ ψ, then φΦ[x←c] ⊢ ψΦ[x←c], and since no constant appears in either φΦ nor ψΦ and

the constants ci are all different, we can iterate the constant elimination rule to obtain φΦ ⊢ ψΦ. If, on

the other hand, we have φΦ ⊢ ψΦ, then we can repeatedly use the term instantiation rule to obtain

φΦ[x←c] ⊢ ψΦ[x←c], which is φ ⊢ ψ.
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Recall that QK4 is K4 adapted to the quantified modal language together with ∀I and ∀E, and

similarly for QGL (see Section 2.5). We are now ready to prove the desired result of this section.

Theorem 4.5.2. Let φ and ψ be QRC1 formulas and let QL be any logic in the quantified modal

language between QK4 and QGL.3 Then φ ⊢QRC1
ψ if and only if there is a finite set Φ such that

φ,ψ ∈ Φ and QL ⊢ φΦ → ψΦ.

Proof. For the left-to-right implication, let Φ be the set of formulas appearing in the proof of φ ⊢QRC1
ψ.

We check by induction on the length of the QRC1 proof that QK4 ⊢ φΦ → ψΦ for this particular Φ, which

then implies that QL ⊢ φΦ → ψΦ.

The axioms φ ⊢ ⊤, φ ⊢ φ, and φ ∧ ψ ⊢ φ and the conjunction introduction and cut rules are

straightforward.

For the QRC1 necessitation rule, assume that φ ⊢ ψ, which by the induction hypothesis gives us

QK4 ⊢ φΦ → ψΦ. Then by taking the contrapositive and then applying the QK4 necessitation rule, we

obtain QK4 ⊢ □(¬ψΦ → ¬φΦ). This implies QK4 ⊢ □¬ψΦ → □¬φΦ, and taking the contrapositive

again gives us QK4 ⊢ ♢φΦ → ♢ψΦ, as desired.

The translation of the QRC1 transitivity axiom, ♢♢φΦ → ♢φΦ, is just the contrapositive of an

instance of 4.

We turn to the quantifier introduction on the right rule. If φ ⊢ ψ and x /∈ fv(φ), then by the induction

hypothesis QK4 ⊢ φΦ → ψΦ and we can be assured that x /∈ fv(φΦ) because all the new variables

introduced by the ·Φ translation are fresh with respect to ∀xψ and are consequently different from x.

Then QK4 ⊢ φΦ → ∀xψΦ by ∀I.

In the case of the quantifier introduction on the left rule, suppose that φ[x←t] ⊢ ψ, with t free

for x in φ. Defining tΦ as either t itself (when t is a variable), or whichever variable replaces t by

the ·Φ translation (when t is a constant), observe that (φ[x←t])Φ is φΦ[x←tΦ]. Thus we have that

QK4 ⊢ φΦ[x←tΦ] → ψΦ by the induction hypothesis, and we wish to show QK4 ⊢ ∀xφΦ → ψΦ. We

know QK4 ⊢ ∀xφΦ → φΦ[x←tΦ] by ∀E, and so we are done.

For the term instantiation rule, suppose that φ ⊢ ψ and let x and t be such that t is free for x in

both φ and ψ. By the induction hypothesis we have established QK4 ⊢ φΦ → ψΦ. Using ∀I with ⊤

as the antecedent, we obtain QK4 ⊢ ∀x (φΦ → ψΦ), and then we may conclude QK4 ⊢ φΦ[x←tΦ] →

ψΦ[x←tΦ] by ∀E, as desired.

Finally, in the case of the constant elimination rule, if φ[x←c] ⊢ ψ[x←c], then QK4 ⊢ φΦ[x←cΦ] →

ψΦ[x←cΦ] by the induction hypothesis. Since cΦ is a variable, we can generalize it through ∀I, ob-

taining QK4 ⊢ ∀ cΦ (φΦ[x←cΦ] → ψΦ[x←cΦ]). We then use ∀E to instantiate cΦ with x, obtaining

QK4 ⊢ φΦ[x←cΦ][cΦ←x] → ψΦ[x←cΦ][cΦ←x]. Since c does not appear in either φ nor ψ, we also

know that cΦ does not appear in either φΦ nor ψΦ, and so φΦ[x←cΦ][cΦ←x] = φΦ, and similarly for ψ.

We conclude that QK4 ⊢ φΦ → ψΦ, as desired.

For the right-to-left implication, we prove the contrapositive. If φ ̸⊢ ψ, then by Lemma 4.5.1 we

know that φΦ ̸⊢ ψΦ for any Φ including both φ and ψ. LetM be a QRC1 model satisfying φΦ and not

3It suffices that QL be some set of formulas such that QK4 ⊢ φ implies φ ∈ QL and φ ∈ QL implies QGL ⊢ φ. We write
QL ⊢ φ instead of φ ∈ QL.
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satisfying ψΦ, as given by Theorem 4.4.13. This model is based on a transitive and Noetherian frame

(the latter because it is irreflexive and has finitely-many worlds), which implies that it (or rather, its

translation to a model for a language without constants in the sense of Definition 2.5.2) is a QGL model

by Theorem 2.5.4. We conclude that QGL ̸⊢ φΦ → ψΦ, and consequently that QL ̸⊢ φΦ → ψΦ.

We end with the following observation. The proof of Theorem 4.5.2 holds for any quantified modal

logic that extends QK4 and is sound for any combination of constant-domain, finite, transitive and

irreflexive models. The Barcan formula BF is always sound in constant-domain models. Thus the

proof of Theorem 4.5.2 also serves to see that, for example, φ ⊢QRC1
ψ if and only if there is a finite

set Φ such that φ,ψ ∈ Φ and QK4 + BF ⊢ φΦ → ψΦ. This is curious because BF is not provable in

QGL and is in fact unsound with the usual provability interpretation of □. From this we conclude that

it would be worthwhile to study QRC1 from points of view unrelated to provability.
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5.1 Introduction

Having studied the modal properties of QRC1 in Chapter 4, we now turn to its arithmetical prop-

erties. The original goal of QRC1 was to escape Vardanyan’s theorem [203] that QPL(PA) is Π0
2-

complete, as described in Section 2.5.2. This cannot literally be done, but we show in this chapter

that the strictly positive fragment of QPL(T ) is exactly described by the theorems of QRC1 for a large

class of theories T . This gives QRC1 its status as a provability logic, and furthermore is a significant

reduction in complexity from Π0
2-completeness, since QRC1 is decidable (Corollary 4.4.14).

We also describe an alternative, infinitary arithmetical semantics for QRC1, inspired by the usual

arithmetical semantics for strictly positive logics described in Section 2.7.2. We show that QRC1 is

sound and complete with respect to this infinitary semantics, as well as for the usual finitary one.

Finally, we briefly delve into intuitionistic arithmetic and show that all the theorems of QRC1 are

always provable in HA, although we leave completeness as future work.

The results of this chapter are published in [14].

5.2 Arithmetical soundness

As mentioned in Section 2.7.2, we can provide both finitary and infinitary arithmetical semantics

for strictly positive logics. We use ·∗ to refer to finitary realizations and ·◦ to refer to infinitary ones.

5.2.1 Finitary

The finitary semantics for QRC1 are a straightforward adaptation of Definition 5.2.1, with only one

addition: since there are constants in the language of QRC1, we require that each constant ck always

be translated to the arithmetical variable zk.

Definition 5.2.1 (Finitary arithmetical realization for L+
□∀c, ·∗, ·∗T ). A finitary arithmetical realization

is a function ·∗ such that, for a given predicate S and terms t, S(t)∗ is an arithmetical formula with

the same arity as S where modal variables xk are interpreted as yk and modal constants ck are

interpreted as zk.

Given a computably enumerable (c.e.) arithmetical theory T extending EA, we extend this realiza-

tion to QRC1 formulas as follows:

• ⊤∗T := ⊤;

• S(t)∗T := S(t)∗;

• (φ ∧ ψ)∗T := φ∗T ∧ ψ∗T ;

• (♢φ)∗T := ♢Tφ∗T ;

• (∀xk φ)∗T := ∀ yk φ∗T .
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Remark 5.2.2. Given any realization ·∗ and formula φ in the language of QRC1, we have that xi is a

free variable of φ if and only if yi is a free variable of φ∗T . Similarly, the constant ci appears in φ if and

only if zi is a free variable of φ∗T .

Recall the definition of quantified provability logic (Definition 2.5.6), where T is a c.e. extension of

EA:

QPL(T ) := {φ ∈ L□∀ | for any ·∗, we have T ⊢ ∀y φ∗T }.

The strictly positive fragment of QPL(T ) is defined as follows:

QPL+(T ) := {⟨φ,ψ⟩ ∈ L+
□∀c × L

+
□∀c | for any ·∗, we have T ⊢ ∀y, z (φ∗T → ψ∗T )},

where ∀y, z is meant to quantify over all free variables of φ∗T → ψ∗T . Clearly, if φ and ψ are formulas

in the language of QRC1, we have that ⟨φ,ψ⟩ ∈ QPL+(T ) if and only if ⟨φΦ, ψΦ⟩ ∈ QPL+(T ) if and

only if φΦ → ψΦ ∈ QPL(T ), where Φ is any finite set of formulas including both φ and ψ and ·Φ is the

translation from L+
□∀c to L+

□∀ described in Section 4.5.

We can now prove the finitary soundness of QRC1.

Theorem 5.2.3 (Finitary arithmetical soundness). Let T be a c.e. theory of arithmetic extending EA

and φ and ψ be formulas of QRC1. Then:

φ ⊢ ψ =⇒ ⟨φ,ψ⟩ ∈ QPL+(T ).

Proof. By induction on the QRC1 proof of φ ⊢ ψ.

Consider φ ⊢ ⊤ with x, c the free variables and constants appearing in φ, respectively. Let ·∗ be

any realization. We wish to show that T ⊢ ∀y, z (φ∗T → ⊤), which is clearly the case. We are equally

easily convinced that T ⊢ ∀y, z (φ∗T → φ∗T ), that T ⊢ ∀y,y′, z, z′ (φ∗T ∧ ψ∗T → φ∗T ), and that

T ⊢ ∀y,y′, z, z′ (φ∗T ∧ψ∗T → ψ∗T ) (where x′ and c′ are the variables and constants of ψ not already

present in φ).

Let x and c be the constants appearing in either φ, ψ, or χ.

The conjunction introduction rule states that from φ ⊢ ψ and φ ⊢ χ we can obtain φ ⊢ ψ ∧ χ. Let ·∗

be any realization. We wish to prove T ⊢ ∀y, z (φ∗T → ψ∗T ∧ χ∗T ). By the induction hypotheses we

know both T ⊢ ∀y, z (φ∗T → ψ∗T ) and T ⊢ ∀y, z (φ∗T → χ∗T ), which easily allows us to prove the

desired goal.

The cut rule states that if φ ⊢ ψ and ψ ⊢ χ, then φ ⊢ χ. It is enough to show T ⊢ ∀y, z (φ∗T → χ∗T )

for an arbitrary realization ·∗. By the induction hypotheses, we know both T ⊢ ∀y, z (φ∗T → ψ∗T ) and

T ⊢ ∀y, z (ψ∗T → χ∗T ). The result follows handily.

The necessitation rule states that if φ ⊢ ψ, then ♢φ ⊢ ♢ψ. We work towards showing that T ⊢

∀y, z (♢Tφ∗T → ♢Tψ∗T ). By the induction hypothesis, we know that T ⊢ ∀y, z (φ∗T → ψ∗T ). Taking

this under the box (see Lemma 2.3.2), we obtain T ⊢ □T ∀y, z (φ∗T → ψ∗T ). This implies that

T ⊢ ∀y, z□T (φ∗T → ψ∗T ) by the formalized converse Barcan formula, which in turn implies our

desired goal.

Consider now the transitivity axiom ♢♢φ→ ♢φ. We wish to show T ⊢ ∀y, z (♢T♢Tφ∗T → ♢Tφ∗T ).

This is derivable from the contrapositive of one of the derivability conditions (Lemma 2.3.2).
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We turn to the quantifier introduction on the right rule, that if φ ⊢ ψ then φ ⊢ ∀x′ ψ, as long

as x′ ̸∈ fv(φ). Let x be the free variables appearing in either φ or ∀x′ ψ. We wish to show that

T ⊢ ∀y, z (φ∗T → ∀ y′ ψ∗T ). By the induction hypothesis, T ⊢ ∀y, y′, z (φ∗T → ψ∗T ). The goal follows

from the observation that y′ ̸∈ fv(φ∗T ).

For the quantifier introduction on the left rule, that if φ[x′←t] ⊢ ψ then ∀x′ φ ⊢ ψ (t free for x′ in φ),

we want to show T ⊢ ∀y, z (∀ y′ φ∗T → ψ∗T ). Let w be the arithmetical variable corresponding to t.

Then (φ[x′←t])∗T is φ∗T [y′←w] and the induction hypothesis tells us that T ⊢ ∀y, z, w (φ∗T [y′←w]→

ψ∗T ), which readily implies the desired result.

For the term instantiation rule, that if φ ⊢ ψ then φ[x′←t] ⊢ ψ[x′←t], let w be the arithmetical

variable corresponding to t. Our goal is T ⊢ ∀y, z, w (φ∗T [y′←w] → ψ∗T [y′←w]). The induction

hypothesis is T ⊢ ∀y, y′, z (φ∗T → ψ∗T ), so this is a simple matter of variable renaming.

Finally, consider the constant elimination rule, that if φ[x′←c′] ⊢ ψ[x′←c′] then φ ⊢ ψ, with c′

not appearing in either φ nor ψ. We wish to show T ⊢ ∀y, y′, z (φ∗T → ψ∗T ). We know T ⊢

∀y, z, z′ (φ∗T [y′←z′] → ψ∗T [y′←z′]) by the induction hypothesis. The result follows by renaming

z′ to y′ in the induction hypothesis, noting that z′ does not appear in either φ∗T nor ψ∗T .

5.2.2 Infinitary

We now turn to the infinitary semantics. As in Definition 2.7.5, we interpret strictly positive modal

formulas as parameterized axiomatizations of arithmetical theories extending EA.

Definition 5.2.4 (Infinitary arithmetical realization for L+
□∀c, ·◦, ·◦τ ). An infinitary realization ·◦ is a

function mapping each n-ary relation symbol S(x, c) to an (n + 1)-ary Σ0
1 formula σ(u,y, z) in the

language of arithmetic, where u is a fresh variable, y matches with x and z matches with c.

Given a Σ0
1 axiomatization τ of an extension of EA, we extend ·◦ to QRC1 formulas as follows:

• ⊤◦τ := τ ;

• S(x, c)◦τ := τ ∨ S(x, c)◦;

• (ψ ∧ δ)◦τ := ψ◦τ ∨ δ◦τ ;

• (♢ψ)◦τ := τ ∨ (u = ⌜♢ψ◦τ⊤⌝);

• (∀xi ψ)◦τ := ∃ yi ψ◦τ .

Remark 5.2.5. Given any realization ·◦ and formula φ in the language of QRC1, xi is a free variable

of φ if and only if yi is a free variable of φ◦τ . Similarly, the constant ci appears in φ if and only if zi is

a free variable of φ◦τ . Finally, u is always a free variable of φ◦τ .

As an example, if S(x, c)◦ is σ(u, y, z), then (♢S(x, c))◦τ is τ(u) ∨ (u = ⌜♢τ(u)∨σ(u,ẏ,ż)⊤⌝). Recall

from Section 2.3 that the dotted variables ẏ and ż in the expression u = ⌜♢τ(u)∨σ(u,ẏ,ż)⊤⌝ indicate that

y and z are free variables of this expression that, upon being instantiated by natural numbers n and

m, shall be replaced by the numerals n and m instead.
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The interpretation of the universal quantifier is an existential quantifier, by analogy with the inter-

pretation of conjunction being a disjunction. Thinking of each ψ(x)◦τ as the axiomatization of a theory

and of (∀xψ(x))◦τ as the axiomatization of the infinite union of those theories for each x, it makes

sense that its axiomatization is the infinite disjunction of ψ(x)◦τ for each x, i.e., ∃ y ψ◦τ (y).

Remark 5.2.6. If φ is a QRC1 formula and τ is a Σ0
1 axiomatization of an extension of EA, then φ◦τ is

equivalent to a Σ0
1 formula, provably in EA.

We deliberately defined ·◦τ so that φ◦τ leads to an extension of the base theory T for every formula

φ, as the following lemma shows.

Lemma 5.2.7. Given a QRC1 formula φ and a Σ0
1 axiomatization τ , we have that φ◦τ is an axiomati-

zation of an extension of the theory axiomatized by τ , provably in EA.

Proof. We prove that for every modal formula φ there is an arithmetical formula χ with the same free

variables as φ◦τ such that EA ⊢ φ◦τ ↔ (τ ∨ χ).

We proceed by (external) induction on φ. The base cases of⊤ and relation symbols are straightfor-

ward, as is the ♢ case. The conjunction case follows easily by the induction hypotheses, so we focus

on the quantifier case. We wish to show that there is some formula χ with the same free variables as

(∀xi φ)◦τ such that EA ⊢ (∀xi φ)◦τ ↔ (τ ∨ χ). By the induction hypothesis, there is some formula δ

with the same free variables as φ◦τ such that EA ⊢ φ◦τ ↔ (τ ∨ δ), so EA ⊢ (∀xi φ)◦τ ↔ ∃ yi (τ ∨ δ).

Since yi is not a free variable of τ , we conclude that χ := ∃ yi δ is a suitable formula, which in fact has

the same free variables as (∀xi φ)◦τ .

Given a finitary realization ·∗, we can interpret it as an infinitary one by taking S(t)⊛ := (u =

⌜S(t)∗⌝), where the ·⊛ symbol is meant to allude to the fact that this is an infinitary realization (it

is a circle) but comes from a finitary one (it has a star inside). The above proof might tempt us to

conjecture that φ⊛τ is equivalent to τ ∨ (u = ⌜φ∗T ⌝). However, such a result is in general false: the

best we can do is prove one of the implications.

Lemma 5.2.8. If T is a c.e. extension of EA axiomatized by τ , φ is a formula in the language of QRC1

and ·⊛ is the infinitary interpretation of ·∗ as defined above, then:

T ⊢ ∀ θ ∀y, z (□φ⊛τ θ → □τ (φ
∗T → θ)),

where θ is a closed formula and y, z are the free variables of φ∗T (which are the same as the free

variables of φ⊛τ ).

Proof. By external induction on φ. There is nothing to show for ⊤ and the case of relation symbols is

a straightforward consequence of the formalized deduction theorem (Theorem 2.3.1).

In the case of ∧, we take φ = ψ∧ δ, and omit the variables y and z, as they introduce visual clutter

but don’t make the proof any more complex. Reason in T and fix an arbitrary θ, assuming □ψ⊛τ∨δ⊛τ θ.

Then there is a finite sequence π = π0, . . . , πn with πn = θ that is a proof of θ in the theory axiomatized

by ψ⊛τ ∨ δ⊛τ . Each formula χi occurring in π that is not a consequence of previous formulas in the
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sequence through a rule satisfies either ψ⊛τ or δ⊛τ . Then we have in particular that either □ψ⊛τ χi or

□δ⊛τ χi for each such χi, whence by the induction hypotheses either □τ (ψ∗T → χi) or □τ (δ∗T → χi).

In both cases we have □τ (ψ∗T ∧ δ∗T → χi), and thus the proof of θ can be repeated in T under the

assumption of (ψ ∧ δ)∗T , as desired.

The ∀ case follows the same idea as the ∧ case. Consider φ = ∀x0 ψ, with fv(ψ) = {x0, x1} for

simplicity (adding more free variables leads to an analogous proof). Note that x0 is represented by y0

in T , and this is always a different variable from any z used to represent QRC1 constants. As there is

no further complication with constants, we omit them in our proof. Reason in T , and let θ be (the Gödel

number of) a closed formula and l be an arbitrary number taking the place of y1. If □∃ y0 ψ⊛τ [y1←l]θ,

then there is a proof π = π0, . . . , πn where πn = θ and each axiom χi in π satisfies ψ⊛τ [y1←l][y0←ki]

for some number ki, and consequently □τ (ψ∗T [y1←l][y0←ki] → χi) by the induction hypothesis for

each i. Then by weakening we conclude □τ (∀ y0 ψ∗T [y1←l]→ χi) for each i, and we are done.

Finally, for the case of φ = ♢ψ, we start by observing that the induction hypothesis with θ := ⊥

yields T ⊢ ∀y, z (♢τψ∗T → ♢ψ⊛τ⊤). Note that (♢ψ)⊛τ := τ ∨ (u = ⌜♢ψ⊛τ⊤⌝), and thus □(♢ψ)⊛τ θ

implies □τ (♢ψ⊛τ⊤ → θ) by the formalized deduction theorem. The previous observation under the

box then suffices to finish the proof.

We do some musing on the other implication, i.e., on T ⊢ ∀ θ ∀y, z (□τ (φ∗T → θ) → □φ⊛τ θ).

Clearly it would follow from T ⊢ ∀y, z□φ⊛τ φ∗T , which seems at first glance like a true statement.

However, note that in the quantifier case it states that there is a finite proof of ∀ y ψ∗T in the theory

axiomatized by ∃ y ψ⊛τ . Such a proof cannot rely on different arguments for each of the infinitely-

many values available for y, there must instead be some pattern in ψ∗T that can be exploited. This is

the case for the realization we define in the next section, and in that case we can indeed prove the

equivalency (Lemma 5.3.6).

Since we interpret formulas as axiomatizations, the statement φ ⊢ ψ is to be read as “the theory

axiomatized by φ is an extension of the theory axiomatized by ψ”, or equivalently, “if the theory axiom-

atized by ψ proves some formula θ, then so does the theory axiomatized by φ”. We can then define

the quantified reflection logic of a c.e. theory T extending EA. Let τ be an elementary axiomatization

of T . Then:

QRL(T ) := {⟨φ,ψ⟩ ∈ L+
□∀c × L

+
□∀c | for any ·◦, we have T ⊢ ∀ θ ∀y, z (□ψ◦τ θ → □φ◦τ θ)},

where θ is a closed formula and φ◦τ , ψ◦τ in general depend on y and z.

We finally prove the infinitary soundness of QRC1 for any c.e theory T extending EA + COLLΣ0
1
.

We are not aware of a proof of this result for theories where Σ0
1 collection is not derivable, although

rather weak theories such as IΣ1 already suffice (see Lemma 2.2.4).

Theorem 5.2.9 (Infinitary arithmetical soundness). Let T be a c.e. theory of arithmetic extending

EA+ COLLΣ0
1

and φ and ψ be formulas of QRC1. Then:

φ ⊢ ψ =⇒ ⟨φ,ψ⟩ ∈ QRL(T ).
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Proof. By induction on the QRC1 proof of φ ⊢ ψ. The case of the axiom φ ⊢ ⊤ is a consequence of

Lemma 5.2.7, while axiom φ ⊢ φ and the cut rule are both trivially sound. The conjunction elimination

axioms are easily seen to be sound since (φ ∧ ψ)◦τ is φ◦τ ∨ ψ◦τ , that is, the formula that defines the

union of two axiom sets.

We proceed with the soundness of the conjunction introduction rule, that if φ ⊢ ψ and φ ⊢ χ then

φ ⊢ ψ ∧ χ. Fix a realization ·◦, reason in T and let θ be a closed formula and y, z be arbitrary. If

□ψ◦τ∨χ◦τ θ, there is a proof π = π0, . . . , πn in the sense of ψ◦τ ∨ χ◦τ with πn = θ. Some of the

πi are axioms of ψ◦τ , some are axioms of χ◦τ , and some follow from previous steps in the proof

through a rule. Let {δi}i<I be the finite set of ψ◦τ axioms appearing in π. Then □ψ◦τ ∀ i < I δi

and by the induction hypothesis for φ ⊢ ψ we obtain □φ◦τ ∀ i < I δi. On the other hand, we know

□χ◦τ (∀ i < I δi → θ) by the deduction theorem. Through the induction hypothesis for φ ⊢ χ we

conclude □φ◦τ (∀ i < I δi → θ). Putting these two observations together, we obtain the desired □φ◦τ θ.

We turn to the necessitation rule, that if φ ⊢ ψ then ♢φ ⊢ ♢ψ. Reason in T and let θ,y, and z

be arbitrary. Consider the induction hypothesis with θ := ¬⊤ (and y, z as given by our assumption):

□ψ◦τ ¬⊤ → □φ◦τ ¬⊤. Taking the contrapositive, we conclude ♢φ◦τ⊤ → ♢ψ◦τ⊤, and consequently

□τ (♢φ◦τ⊤ → ♢ψ◦τ⊤) by Lemma 2.3.2. Assume now that □(♢ψ)◦τ θ. By the deduction theorem, we

obtain □τ (♢ψ◦τ⊤ → θ). Thus our previous observation gives us □τ (♢φ◦τ⊤ → θ), which is equivalent

to □(♢φ)◦τ θ by the deduction theorem again.

Consider the transitivity axiom: ♢♢φ ⊢ ♢φ. We start by observing that (♢♢φ)◦τ is equivalent

to τ ∨ (u = ⌜♢τ♢φ◦τ⊤⌝). Note that we can derive □τ (♢τ♢φ◦τ⊤ → ♢φ◦τ⊤) from Σ0
1 completeness

(Lemma 2.3.2). Assume now □(♢φ)◦τ θ. By the deduction theorem we have □τ (♢φ◦τ⊤ → θ). Then

we obtain □τ (♢τ♢φ◦τ⊤ → θ) by our previous observation, and we finish with one more application of

the deduction theorem.

The quantifier introduction on the right rule states that if x0 /∈ fv(φ) and φ ⊢ ψ, then φ ⊢ ∀x0 ψ.

Reason in T and let θ,y, and z be arbitrary, where y0 does not appear in y. Assume □∃ y0 ψ◦τ θ and

let π = π0, . . . πn be a proof of this fact. Let {δi}i<I be the finite set of axioms of ∃ y0 ψ◦τ appearing

in π. Note that □τ (∀ i < I δi → θ) holds by the deduction theorem. Furthermore, for each i < I

there is ki such that δi is an axiom of ψ◦τ [y0←ki], so in particular □ψ◦τ [y0←ki]δi. We can use the

induction hypothesis for each i < I to conclude □φ◦τ [y0←ki]δi, and since x0 ̸∈ fv(φ), we also know that

y0 ̸∈ fv(φ◦τ ), and thus we obtain ∀ i < I □φ◦τ δi. We now use Σ0
1 collection to obtain □φ◦τ ∀ i < I δi,

and the result follows from our observation that □τ (∀ i < I δi → θ), noting that the theory axiomatized

by φ◦τ extends T .

The quantifier introduction on the left rule states that if φ[x0←t] ⊢ ψ, then ∀x0 φ ⊢ ψ. Let w be

the arithmetical counterpart of t (so if t is xk then w := yk and if t is ck then w := zk). We have

φ[x0←t]◦τ = φ◦τ [y0←w]. Reason in T and let θ,y and z be arbitrary, where y0 appears in y if and

only if x0 is a free variable of ψ. We assume □ψ◦τ θ. If t appears in φ or in ψ, then the value of w

was already fixed when we picked arbitrary y and z. Otherwise, fix w := 0 and in either case use the

induction hypothesis to obtain □φ◦τ [y0←w]θ. It is then clear that □∃ y0 φ◦τ θ holds as well.

Finally, the term instantiation and constant elimination rules boil down to variable renaming.
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5.3 Arithmetical completeness

We show arithmetical completeness with respect to both kinds of realization, leading to a proof

of:1

QRC1 = QPL+(T ) = QRL(T ),

where T is a sound c.e. extension of EA+ COLLΣ0
1
.

5.3.1 Finitary

The proof of finitary arithmetical completeness, that QRC1 ⊇ QPL+(T ), closely follows the proof of

Solovay’s theorem (Theorem 2.4.7) presented by Boolos [49]. The idea of Solovay’s proof is to take a

Kripke model not satisfying the desired unprovable formula and embed it in the language of arithmetic.

If the embedding is done correctly, it is possible to prove that a formula is satisfied at a world of the

Kripke model exactly when its arithmetical interpretation is a consequence of the representation of

that world in the desired theory T . In this subsection, we fix an elementary presented theory T

extending EA that is furthermore sound (i.e., T ⊢ φ implies N ⊨ φ).

Given two strictly positive formulas φ and ψ such that φ ̸⊢ ψ in QRC1, let Mφ,ψ be a finite, ir-

reflexive, and constant domain adequate model satisfying φ and not satisfying ψ at the root 1 under a

1-assignment gφ,ψ. This model and assignment exist by Theorem 4.4.13. SinceMφ,ψ has constant

domain, we refer to gφ,ψ and any other i-assignments as just assignments, omitting the relevant world.

We assume that the worlds of Mφ,ψ are W = {1, 2, . . . , N}, where 1 is the root. We define a

new (adequate) model M that is a copy of Mφ,ψ, except that it has an extra world 0 as the new

root. This world 0 is connected to all the other worlds through R and has the same domain, constant

interpretation, and relation symbol interpretation as 1. The functions η0,i with 0 < i ≤ N are all defined

as the identity function.

Let λi be the Solovay sentences for the propositional frame upon whichM is based (i.e., just the

set of worlds and the relation R) as defined by Boolos [49]. Since this frame is finite, transitive, and

irreflexive, we have the following embedding lemma.

Lemma 5.3.1 (Embedding [49, 79]).

1. T ⊢
∨
i≤N λi;

2. T ⊢ λi →
∧
j≤N,j ̸=i ¬λj , for i ≤ N ;

3. T ⊢ λi →
∧
j≤N,iRj ♢Tλj , for i ≤ N ;

4. T ⊢ λi → □T
∨
j≤N,iRj λj , for 0 < i ≤ N ;

5. N ⊨ λ0.

Each λi is meant to represent the world i ofM. For example, if iRj, we have T ⊢ λi → ♢λj .

1From now on we abuse notation and write QRC1 instead of {⟨φ,ψ⟩ | φ ⊢ ψ}.
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The domain of every world ofM is M . Let m be the size of M , and v · w be a bijection between M

and the set of numerals {0, . . . ,m− 1}. We now define for a given n-ary relation symbol S and terms

t = t0, . . . , tn−1 the finitary realization ·∗ as follows:

S(t)∗ :=
∨
i≤N

(
λi ∧ Φ

S(t)
i

)
, where

Φ
S(t)
i :=

∨
⟨a0,...,an−1⟩∈SJi

∧
l<n

(
valw =

{
ykmodm if tl = xk

zkmodm if tl = ck

)
.

Here, xk is any modal variable, yk is the corresponding arithmetical variable, ck is any constant, zk is

the corresponding arithmetical variable, and ·Ji is the denotation of a relation symbol at world i. Note

that xk ∈ fv(S(t)) if and only if yk ∈ fv(S(t)∗) and ck appears in S(t) if and only if zk ∈ fv(S(t)∗).

The ·∗ interpretation is extended to generic formulas as described in Definition 5.2.1, and the free

variables and constants of φ correspond to the free variables of φ∗T just as in Remark 5.2.2.

We further note that φ∗T is invariant under replacing variables by themselves modulo the size of

the domain ofM, provably in T .

Lemma 5.3.2. For any QRC1 formula φ and any arithmetical variable w:

• T ⊢ φ∗T ↔ φ∗T [w←wmodm];

• T ⊢ ∀wφ∗T ↔ ∀w < mφ∗T .

Proof. The second item is a straightforward consequence of the first, which we prove by external

induction on φ. The cases of ⊤ and conjunction are trivial.

For the case of the relation symbols, consider S(x, c) as a reasonable simplification (the general

case easily follows). The formula S(x, c)∗ has two free variables, namely y and z, so the result is trivial

when w is not one of these.

We check first that T ⊢ S(x, c)∗ ↔ S(x, c)∗[y←ymodm]. We have:

S(x, c)∗ =
∨
j≤N

λj ∧ ∨
⟨a0,a1⟩∈SJj

(va0w = ymodm ∧ va1w = zmodm)

 ,

and hence, noting that y and z are different variables,

S(x, c)∗[y←ymodm] =
∨
j≤N

λj ∧ ∨
⟨a0,a1⟩∈SJj

(va0w = (ymodm)modm ∧ va1w = zmodm)

 .

These are equivalent because T proves (ymodm)modm = ymodm. If w is z instead, the argument

is analogous.

Consider now the case of ∀xφ. If w is y there is nothing to show because y is not a free variable of

(∀xφ)∗T . Thus we may assume that (∀xφ)∗T [w←wmodm] is the same as ∀ y (φ∗T [w←wmodm]).

By the induction hypothesis, we have that T ⊢ φ∗T ↔ φ∗T [w←wmodm], from which we obtain

T ⊢ ∀ y φ∗T ↔ ∀ y φ∗T [w←wmodm], as desired.

Finally, in the case of ♢φ, note that (♢φ)∗T [w←wmodm] is the same as ♢Tφ∗T [w←wmodm].

Thus the result is straightforward from the induction hypothesis under the box.
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We now prove two versions of a truth lemma, one for when φ is satisfied at a world i of M, and

one for when it isn’t. We wish to show that T proves φ∗T (respectively ¬φ∗T ) as a consequence of λi,

as long as the free variables of φ are interpreted in the same way in both settings.

In order to use concise notation, we shall write y instead of y0, . . . , yn−1, and similarly for other

terms. We also abbreviate iterated substitutions, writing φ∗T [y←vg(x)w] instead of:

φ∗T [y0←vg(x0)w] · · · [yn−1←vg(xn−1)w],

and writing φ∗T [z←vcI0w] instead of:

φ∗T [z0←v(c0)
I0w] · · · [zk−1←v(ck−1)

I0w].

Lemma 5.3.3 (Truth: positive). Let φ be a QRC1 formula with free variables x = x0, . . . , xn−1 and

constants c = c0, . . . , ck−1. Then for any world i ≤ N (i.e., i ∈M) and any assignment g:

M, i ⊩g φ =⇒ T ⊢ λi → φ∗T [y←vg(x)w][z←vcI0w].

Proof. By external induction on the complexity of φ. The cases of ⊤ and conjunction are straightfor-

ward.

In the case of relational symbols, assume for simplicity’s sake that the relevant formula is S(x, c).

IfM, i ⊩g S(x, c), then ⟨g(x), cIi⟩ ∈ SJi . Reason in T and assume λi. By the definition of ·∗, it suffices

to prove:

Φ
S(x,c)
i [y←vg(x)w][z←v(c)I0w],

which implies S(x, c)∗[y←vg(x)w][z←v(c)I0w] under the assumption λi. By the definition of ΦS(x,c)i , we

need to find a pair ⟨a0, a1⟩ ∈ SJi such that va0w = vg(x)wmodm and va1w = vcI0wmodm. Noting that

vbwmodm is provably equal to vbw for any b in the domain ofM, we pick a0 := g(x) and a1 := cI0 . This

concludes this step of the proof because cI0 is equal to cIi , for any world i.

For ∀x0 φ, assume for simplicity’s sake that the free variables of φ are x0 and x1. If we have

M, i ⊩g ∀x0 φ then for every assignment h ∼x0 g we haveM, i ⊩h φ. We wish to show:

T ⊢ λi → (∀ y0 φ∗T )[y1←vg(x1)w][z←vcI0w].

Reason in T and assume λi. By Lemma 5.3.2, it is enough to show:

(∀ y0 < mφ∗T )[y1←vg(x1)w][z←vcI0w].

Since y0, y1, and z are all different variables, we can push the substitutions inside and prove:

∀ y0 < mφ∗T [y1←vg(x1)w][z←vcI0w]

instead. Let y0 < m be arbitrary. Since v · w is a bijection, there is a in the domain of M such that

vaw = y0. We define an assignment h such that h ∼x0
g and h(x0) := a. By assumption, M, i ⊩h φ,

so by the induction hypothesis we obtain:

φ∗T [y0←vh(x0)w][y1←vh(x1)w][z←vcI0w].
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This concludes the argument because vh(x0)w = y0 and h(x1) = g(x1).

Finally, consider the case of ♢φ. IfM, i ⊩g ♢φ, then there is a world j such that iRj andM, j ⊩g φ.

Reason in T and assume λi. By Lemma 5.3.1.3, we obtain ♢Tλj . Then the induction hypothesis under

the box gives us the desired ♢T (φ∗T [y←vg(x)w][z←vcI0w]).

Unlike the positive truth lemma, we only have the negative version for worlds ofM other than its

root, i.e., other than 0.

Lemma 5.3.4 (Truth: negative). Let φ be a QRC1 formula with free variables x = x0, . . . , xn−1 and

constants c = c0, . . . , ck−1. Then for any world 0 < i ≤ N and any assignment g:

M, i ̸⊩g φ =⇒ T ⊢ λi → ¬φ∗T [y←vg(x)w][z←vcI0w].

Proof. By external induction on the complexity of φ. The cases of ⊤ and conjunction are straightfor-

ward.

For the relation symbols, consider S(x, c) for simplicity’s sake. IfM, i ̸⊩g S(x, c), then ⟨g(x), cIi⟩ /∈

SJi . Reason in T and assume λi. We obtain ¬λj for every j ̸= i by Lemma 5.3.1.2, and hence

need only show ¬ΦS(x,c)i [y←vg(x)w][z←vcI0w] by the definition of ·∗. In other words, we need to check

that if ⟨a0, a1⟩ ∈ SJi , then either va0w ̸= vg(x)wmodm, or va1w ̸= vcI0wmodm. This follows from our

observation that ⟨g(x), cIi⟩ /∈ SJi , taking into account that vbwmodm is equal to vbw for any domain

element b, that v · w is injective, and that cI0 = cIi .

Consider now the case of ∀x0 φ and assume as a simplification that fv(φ) = {x0, x1}. IfM, i ̸⊩g

∀x0 φ, then there is an assignment h ∼x0 g such that M, i ̸⊩h φ. Reason in T and assume λi.

From the induction hypothesis we obtain ¬φ∗T [y0←vh(x0)w][y1←vh(x1)w][z←vcI0w], which then implies

¬∀ y0 φ∗T [y1←vh(x1)w][z←vcI0w]. This is what we wanted, taking into account that h(x1) = g(x1).

Finally, in the case of ♢φ, assume that M, i ̸⊩g ♢φ. Then for every j such that iRj, we have

M, j ̸⊩g φ and thus the induction hypothesis for j gives us T ⊢ λj → ¬φ∗T [y←vg(x)w][z←vcI0w],

which put together imply T ⊢
∨
iRj λj → ¬φ∗T [y←vg(x)w][z←vcI0w]. Reason in T and assume λi. By

Lemma 5.3.1.4 and our assumption, we obtain □T
∨
iRj λj . Taking the previous observation under

the box, we conclude □T¬φ∗T [y←vg(x)w][z←vcI0w], which is ¬(♢φ)∗T [y←vg(x)w][z←vcI0w].

With both versions of the truth lemma at hand, we can prove the finitary arithmetical completeness

of QRC1.

Theorem 5.3.5 (Finitary arithmetical completeness). If φ,ψ are QRC1 formulas with free variables x

and constants c such that φ ̸⊢ ψ, we have T ̸⊢ (φ∗T → ψ∗T )[y←vgφ,ψ(x)w][z←vcI0w].

Proof. Recall thatM satisfies φ and not ψ at world 1 under the assignment g := gφ,ψ.

SinceM, 1 ⊩g φ, we obtain T ⊢ λ1 → φ∗T [y←vg(x)w][z←vcI0w] from Lemma 5.3.3. SinceM, 1 ̸⊩g

ψ, we obtain T ⊢ λ1 → ¬ψ∗T [y←vg(x)w][z←vcI0w] from Lemma 5.3.4. Thus:

T ⊢ λ1 → ¬(φ∗T → ψ∗T )[y←vg(x)w][z←vcI0w].

By Lemma 5.3.1.3 and the fact that 0R1, we obtain T ⊢ λ0 → ♢Tλ1, so putting this together with

the previous observation under the box, T ⊢ λ0 → ♢T¬(φ∗T → ψ∗T )[y←vg(x)w][z←vcI0w].
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By Lemma 5.3.1.5, we know that N ⊨ λ0, and thus by the soundness of T , we know that N ⊨

♢T¬(φ∗T → ψ∗T )[y←vg(x)w][z←vcI0w]. Then T ̸⊢ (φ∗T → ψ∗T )[y←vg(x)w][z←vcI0w], as desired.

We have now proved, via Theorems 5.2.3 and 5.3.5, that for any sound c.e. theory T extending

EA:

QRC1 = QPL+(T ).

5.3.2 Infinitary

The proof of infinitary arithmetical completeness is essentially a corollary of finitary arithmetical

completeness, noting that for the specific realization ·∗T defined in Section 5.3.1 and in the presence

of COLLΣ0
1

we can prove that its translation to an infinitary realization ·⊛ behaves exactly like the

finitary version.2 For this reason, we now take T to be a sound c.e. extension of EA+ COLLΣ0
1
.

Recall that the infinitary arithmetical realization ·⊛ that behaves like a given finitary realization ·∗

is defined such that S(t)⊛ := τ ∨ (u = ⌜S(t)∗⌝) and extended to non-atomic formulas as described

in Definition 5.2.4. Note that xk ∈ fv(φ) if and only if yk ∈ fv(φ⊛τ ) and ck appears in φ if and only if

zk ∈ fv(φ⊛τ ), as in Remark 5.2.5.

Lemma 5.3.6. Let ·∗ be the arithmetical realization used for the proof of finitary arithmetical complete-

ness in Section 5.3.1. Then for any QRC1 formula φ with free variables x and constants c:

T ⊢ ∀ θ ∀y, z
(
□φ⊛τ θ ↔ □τ (φ

∗T → θ)
)
,

where θ is a closed formula.

Proof. The left-to-right implication was already proved in Lemma 5.2.8 for any realization ·∗. For the

right-to-left implication we proceed by external induction on φ. There is nothing to show for ⊤ and the

case of relation symbols is a straightforward consequence of the formalized deduction theorem.

In the case of conjunction, we take φ = ψ ∧ δ and omit the variables y and z, as they introduce

visual clutter but don’t make the proof any more complex. Fix θ, y and z. By the induction hypothesis

(taking θ to be ψ∗T ) we see that □ψ⊛τ ψ∗T and likewise □δ⊛τ δ∗T . Thus □ψ⊛τ∨δ⊛τ (ψ∗T ∧ δ∗T ). By

assumption we have □τ (ψ∗T ∧ δ∗T → θ), and since φ⊛τ extends T , we may conclude □φ⊛τ θ as

desired.

The ∀ case follows the same idea as the ∧ case. Consider φ = ∀x0 ψ, with fv(ψ) = {x0, x1} for

simplicity’s sake. Note that x0 is represented by y0 in T , and this is always a different variable from

any z used to represent QRC1 constants. As there is no further complication with constants, we omit

them. Reason in T and let θ and l be arbitrary. Assume □τ (∀ y0 ψ∗T [y1←l] → θ). By Lemma 5.3.2

under the box, we obtain □τ (∀ y0 < mψ∗T [y1←l] → θ), where m is the size of the domain of M.

Using the induction hypothesis for each k < m with θ := ψ∗T [y1←l][y0←k], y0 := k, and y1 := l, we

get:

∀ k < m□ψ⊛τ [y1←l][y0←k]ψ
∗T [y1←l][y0←k],

2This is the other implication of Lemma 5.2.8 mentioned in Section 5.2.2.
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and in particular:

∀ k < m□∃ y0 ψ⊛τ [y1←l]ψ
∗T [y1←l][y0←k].

Then by COLLΣ0
1

we can change the order of the quantifier and the box, which allows us to complete

this part of the proof with □∃ y0 ψ⊛τ [y1←l] ∀ y0 < mψ∗T [y1←l].

Finally, for the case of φ = ♢ψ, we start by observing that the induction hypothesis with θ := ⊥

yields T ⊢ ∀y, z (♢ψ⊛τ⊤ → ♢τψ∗T ). Note that (♢ψ)⊛τ = τ ∨ (u = ⌜♢ψ⊛τ⊤⌝), and thus □τ (♢ψ⊛τ⊤ →

θ) implies □(♢ψ)⊛τ θ by the formalized deduction theorem. The previous observation under the box

then suffices to finish the proof.

We are ready to prove arithmetical completeness for any sound c.e. theory extending EA +

COLLΣ0
1
.

Theorem 5.3.7 (Infinitary arithmetical completeness). Let T be a c.e. theory of arithmetic extending

EA+ COLLΣ0
1
. Then QRC1 ⊇ QRL(T ).

Proof. Recall the definition of QRL(T ):

QRL(T ) := {⟨φ,ψ⟩ ∈ L+
□∀c × L

+
□∀c | for any ·◦, we have T ⊢ ∀ θ ∀y, z (□ψ◦τ θ → □φ◦τ θ)},

where θ is closed.

Given L+
□∀c formulas φ and ψ such that φ ̸⊢ ψ, we know from finitary completeness that there is

some finitary realization ·∗ such that T ̸⊢ (φ∗T → ψ∗T )[y←k][z←l], where y, z are the free variables

of φ∗T → ψ∗T and k, l are specific terms described in Theorem 5.3.5 whose definition is not relevant

at the moment.

We show that the realization ·⊛ defined from ·∗ as explained above is such that:

T ̸⊢ ∀ θ ∀y, z (□ψ⊛τ θ → □φ⊛τ θ).

Suppose towards a contradiction that T does prove this formula. Then by Lemma 5.3.6:

T ⊢ ∀ θ ∀y, z (□T (ψ
∗T → θ)→ □T (φ

∗T → θ)).

Taking θ := ψ∗T [y←k][z←l], y := k, and z := l, we conclude:

T ⊢ □T (φ
∗T → ψ∗T )[y←k][z←l].

This together with the soundness of T contradicts finitary completeness.

We have seen that QRC1 = QPL+(T ) = QRL(T ) for any sound c.e. theory T extending EA +

COLLΣ0
1
. Thus, QPL+(T ) is constant over a large class of theories, and for these theories it does

not depend on the specific axiomatization chosen for T . This is similar to the propositional case,

but simpler than the full predicate case, where QPL(T ) is known to depend on both T (as shown by

Montagna [175]) and τ (as shown by Artemov [21]; see also Kurahashi [146, 147]).
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5.4 Heyting Arithmetic

We end this chapter with a foray into intuitionistic arithmetic. The provability logic of Heyting

Arithmetic (HA) was somewhat of a mystery for a long time [133, 22], until it was recently axiomatized

by Mojtahedi [174]. This axiomatization is both decidable and of considerable conceptual complexity.

We show that QRC1 is sound with respect to Heyting Arithmetic (HA) and announce (but do not prove

here) that it is complete as well. Thus, it represents a simple axiomatization of the strictly positive

provability logic of HA.

Let η(u) be a natural elementary axiomatization of HA. The HA-provability of φ can thus be

expressed by □ηφ, as defined in Section 2.3. We observe that a number of standard results in the

realm of classical provability logic still hold in the intuitionistic case.

Lemma 5.4.1 ([208, Proposition 2.1.10]). Let τ be a Σ0
1 axiomatization of an arithmetical theory T

extending HA, and φ,ψ be formulas in the language of arithmetic. Then:

• if T ⊢ φ then HA ⊢ □τφ;

• HA ⊢ □τ (φ→ ψ)→ (□τφ→ □τψ);

• if σ is a Σ0
1 formula, then HA ⊢ σ → □τσ.

Lemma 5.4.2 (Collection [104, Proposition 5.13]). HA proves full collection.

As in the classical case, we define ♢τφ as ¬□τ¬φ when τ is an axiomatization of an extension of

HA.

We extend a generic realization ·◦ to non-predicate formulas as in the classical case (Defini-

tion 5.2.4), using HA as the base theory. Note that φ◦η is equivalent to a Σ0
1 formula and extends HA,

both of these provably in HA.

Theorem 5.4.3 (Arithmetical soundness w.r.t. HA).

• QRC1 ⊆ QPL+(HA);

• QRC1 ⊆ QRL(HA).

Proof. The proofs of Theorems 5.2.3 and 5.2.9 can be repeated for HA, using Lemmas 5.4.1 and

5.4.2 instead of their classical counterparts.

We have a proof that QRC1 is also arithmetically complete with respect to HA, but is not yet

published.

5.5 Open questions

We have seen how extending RC1 to a quantified language can lead to a quantified provability

logic with nice properties. The obvious next step is to extend QRC1 to the polymodal setting. We have

a sound axiomatization in mind for the polymodal QRC, but completeness is still just a conjecture for
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both Kripke and arithmetical semantics. We hope to further explore this in the future. Besides being

interesting for its own sake, the polymodal language might enable applications to ordinal analysis.

We have provided an upper bound for the complexity of QRC1, but it is likely not tight. Furthermore,

the current decidability proof is not constructive. If we had an axiomatization of QRC1 with the subfor-

mula property, we might obtain a different decision procedure and improve on those two observations.

They could also be tackled through other means.

Another avenue for study is strictly positive quantified truth logic. Are there ways of extending

QRC1 to the strictly positive fragment of the quantified truth logic of PA? This could be inspired by how

the truth logic of PA, called GLS, is an extension of GL.
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Part II

Temporal laws
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6.1 Introduction

This part is an outcome of a collaboration with industry (Formal Vindications S.L. and Guretruck

S.L.), lawyers, and legislators, where the ultimate goal is to develop verified legal software. Various

legal decisions are made on the basis of algorithmic processing of data, but two common issues

come into play. First, even though there are written regulations specifying these algorithms, they

are sometimes unclear, overly complicated, inefficient, contradictory, or incomplete. Second, even

assuming a good specification is available, unformalized implementations are always at risk of being

wrong, and often are. These observations are not restricted to the legal context, of course. Specifying

and correctly implementing software is hard in general. However, these kinds of issues should be

mitigated if at all possible, especially in high-stakes contexts.

Our particular focus are the European regulations on the road transport of public and goods.

They are a suitable target because a large part of that regulatory landscape depends on automated

checking of drivers’ travel logs. These are obtained via tachographs, which are to trucks what black-

boxes are to airplanes: they register data on the truck and the driver, such as speed, movement and

others. The drivers under these regulations have their records regularly checked, and may be fined or

charged with serious infractions if the checker software finds a problem. Unfortunately, such problems

do not always exist, and are instead artifacts of hardware or software bugs in either the tachograph or

the checker itself [87].

Some of these issues, such as hardware problems, are beyond the scope or our work. How-

ever, some software problems can be mitigated through clarification of the intended laws and formal

verification [172, 130]. Thus, we analyze the relevant regulations and identify some of their prob-

lematic articles in Chapter 7. Then, having settled on acceptable interpretations of these articles,

we look for mathematical systems in which they can be expressed, aiming for tractability. A general

formalization of the law with its obligations, prohibitions, and permissions, would likely require deontic

reasoning [116, 125]. However, we focus on the temporal aspects and as such we are able to work

within fragments of Monadic Second-order Logic (see Chapter 8). We also take preliminary steps into

formal verification of these articles, although the ones described in this thesis (in Chapter 11) are only

a prerequisite and not proper regulation formalization. Formal Vindications S.L. is currently working

on the latter.

In this chapter we describe the articles under study and briefly introduce Linear Temporal Logic

(LTL) and Monadic First and Second-order Logic (MFO and MSO).

6.2 European road transport regulations

We focus on small parts of two specific European road transport regulations, chosen for being

somewhat puzzling.

Regulation (EU) 2016/799 [90] describes the requirements for the use of tachographs. These are

digital devices that record the activities of road transport drivers on a second-by-second resolution.

This data is used to determine whether drivers have complied with Regulation (EC) 561/2006 [88],
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which is written assuming a minute-by-minute resolution of the driver’s activity. Requirements (51)

and (52) of Regulation (EU) 2016/799 [90] describe how the second-by-second data recorded by the

tachographs is to be translated into a minute-by-minute format. They read as follows:

(51) Given a calendar minute, if DRIVING is registered as the activity of both the immediately preced-

ing and the immediately succeeding minute, the whole minute shall be regarded as DRIVING.

(52) Given a calendar minute that is not regarded as DRIVING according to requirement (51), the

whole minute shall be regarded to be of the same type of activity as the longest continuous

activity within the minute (or the latest of the equally long activities).

Note that Requirement (51) seems to be lacking a base case and Requirement (52) explicitly

mentions Requirement (51), so it is unlikely that Requirement (52) was meant as the only base case.

However, there are no other requirements pertaining to this translation. We investigate this issue in

Section 7.2.

Once data has been formatted according to these requirements, it must be checked for compliance

with Regulation (EC) 561/2006 [88]. There are various requirements, mostly restraining the amount

of time that may be spent driving within a given period of time and providing a lower bound on the

amount and frequency of time spent resting. For instance, drivers must have a weekly rest period

(similar to a weekend), as prescribed by the following articles:

§4(h) ‘regular weekly rest period’ means any period of rest of at least 45 hours.

§4(i) ‘a week’ means the period of time between 00.00 on a Monday and 24.00 on the following

Sunday.

§8.6 In any two consecutive weeks, a driver shall take at least:

• two regular weekly rest periods, or

• one regular weekly rest period and one reduced weekly rest period of at least 24 hours.

However, the reduction shall be compensated by an equivalent period of rest taken en bloc

before the end of the third week following the week in question.

A weekly rest period shall start no later than at the end of six 24-hour periods from the end of

the previous weekly rest period.

§8.7 Any rest taken as compensation for a reduced weekly rest period shall be attached to another

rest period of at least nine hours.

§8.9 A weekly rest period that falls in two weeks may be counted in either week, but not in both.

We identify some difficulties with the above excerpt. First, the concept of week is strict and de-

pends on a calendar. There is no restriction on ending a weekly rest period before the end of the

week, but §8.9 does say that each such period must be assigned to one of the weeks it intercepts.

89



Determining whether a given configuration of weekly rest periods can be assigned to weeks in a legal

way may be non-trivial, and we study it in Sections 7.4.1, 8.2.1 and 8.3.1.

Second, there are hard restrictions on the circumstances in which reduced weekly rest periods are

allowed, and in particular they must be compensated by resting extra hours in the near future. Again,

checking whether a given configuration of weekly rest periods satisfies these rules can be hard, even

assuming there are no complications with the assignments of weekly rest periods to weeks. We

further study the compensation requirements in Sections 7.4.2, 8.2.2 and 8.3.2.

6.3 Linear Temporal Logic

Linear Temporal Logic, denoted by LTL, was first proposed by Pnueli [182] as a tool for formal

reasoning about temporal properties of systems or programs. It is a propositional modal logic with

modalities representing relationships between moments in (linear) time, such as “in the next moment”

or “some time in the future.” One of the nice things about LTL is that it lends itself well to model

checking, and it is widely used in that capacity [128]. The model checking problem for LTL is PSPACE-

complete [192], but time-wise it is linear on the size of the model and exponential on the size of the

formula being checked [159]. In practice, models are quite large and formulas are small, so model

checking in LTL is feasible.

Here, we focus on the language and semantics of LTL, as well as on bisimulation results that are

useful during Section 8.3. For a more thorough treatment of LTL in particular and model checking

in general, refer to Baier and Katoen [25]. See also Vardi [206] for a history of LTL and relevant

milestones.

The language of LTL is denoted by LMU and defined as follows:

LMU ::= ⊥ | p | φ→ φ | Mφ | φUφ,

where p ∈ PROP is a propositional variable and φ is a LMU formula. We read M as “next” and U as

“until.” The missing Boolean connectives are defined as abbreviations in the usual way. The ♢ and □

modalities can be defined as abbreviations as well, setting ♢φ := ⊤Uφ and □φ := ¬♢¬φ, although

their semantics are different from the one presented in Section 2.4.1 for L□: in this context, □φ is

interpreted as meaning that φ holds in the current world and in all future worlds as well, instead of

only in all future ones. Similarly, ♢φ is interpreted as meaning that there is some world, either current

or future, where φ holds.

Another crucial difference is that the relevant LTL models are linear and can be reduced to the

structure ⟨N, S⟩, where S(n) := n + 1. Thus, for our purposes, an LTL model is merely a function

J : PROP → ℘(N). We write pJ instead of J(p), which matches with the notation of Definition 2.5.3.

We also use the letters M and N to refer to models when convenient. We define the satisfaction

relation ⊩ recursively as follows:

• J, n ̸⊩ ⊥;

• J, n ⊩ p if and only if n ∈ pJ , where p ∈ PROP;
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• J, n ⊩ φ→ ψ if and only if either J, n ̸⊩ φ or J, n ⊩ ψ;

• J, n ⊩ Mφ if and only if J, S(n) ⊩ φ;

• J, n ⊩ φUψ if and only if there exists k ≥ 0 such that J, Sk(n) ⊩ ψ and for every 0 ≤ i < k we

have J, Si(n) ⊩ φ.

A formula φ is said to be satisfiable over a set of models Ω is there are J ∈ Ω and n ∈ N such

that J, n ⊩ φ (also written J, n ⊩LTL φ to distinguish it from other satisfiability notions). Furthermore, if

J, n ⊩ φ for every n ∈ N, we say that φ is valid in J and write J ⊨ φ. If φ is valid in J for every model

J ∈ Ω, we say that φ is valid in Ω.

We also consider the fragment of LMU that excludes U but includes □, written LM□ and defined as

follows:

LM□ ::= ⊥ | p | φ→ φ | Mφ | □φ,

where p ∈ PROP, φ is a LM□ formula and the Boolean connectives and ♢ are defined as usual.

The semantics for LM□ are the same as the semantics for LMU, with the clause for □φ as follows:

• J, n ⊩ □φ if and only if for every k ≥ 0 we have J, Sk(n) ⊩ φ.

We sometimes wish to express counting. This can be achieved via the following abbreviations,

where n,m ∈ N and an empty disjunction should be read as ⊥ and an empty conjunction as ⊤:

• M0φ := φ;

• Mn+1φ := MMnφ;

• ♢<nφ :=
∨n−1
i=0 Mnφ;

• □<nφ =
∧n−1
i=0 Mnφ.

Variants with ≤n instead of <n are defined by reading ≤n as <(n+ 1).

Given any formula φ and a modality θ ∈ {M,□,U}, the θ-depth of φ (in symbols, dθ(φ)) is defined

as the maximum nesting depth of θ in the usual way.

It would be more practical to use sugared versions of LTL such as Metric Temporal Logic (MTL,

[178]), which allows for expressions such as Mn+1φ to be represented succinctly. Since the standard

translation of MTL into LTL does not increase U-depth, we focus on that and ignore M-depth and

formula size when making succinctness arguments. Thus, these arguments hold both in LTL and in

MTL.

We could additionally consider modalities referring to the past, but they do not add expressive

power to LTL in models with a starting point [105]. There is also the possibility of using entirely

different logics that may better capture the regulations, such as logics based on intervals [1]. However,

we have not yet found an option with a substantial technical advantage over LTL.

We now present a version of bounded bisimulation for LM□ and LMU proposed by Kurtonina and de

Rijke [148]. A bounded bisimulation in this case is a relation between two LTL models that preserves

satisfiability of formulas of bounded depth in both directions. Since both languages include Booleans

and M, it is convenient to begin with a basic notion of bisimulation for the □-free fragment of LM□.
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Definition 6.3.1 (k-M-bisimulation). Given a natural number k and two LTL models M and N , a

binary relation Z ⊆ N × N is a k-M-bisimulation (between M and N ) if whenever x Z y, we have

Sj(x) ∈ pM if and only if Sj(y) ∈ pN for every p ∈ PROP and j ≤ k.

We now extend the concept of bounded bisimulation to the languages LM□ and LMU.

Definition 6.3.2 (k-□-bisimulation, k-U-bisimulation). Fix a natural number k and two LTL modelsM

and N . Let Z := (Zi)
∞
i=0 be a sequence such that for all i ∈ N, the relation Zi is a k-M-bisimulation

and Zi+1 ⊆ Zi. Then:

• Z is a k-□-bisimulation (betweenM and N ) if whenever x Zi+1 y both of the following hold:

FORTH □. for all x′ ≥ x there exists y′ ≥ y such that x′ Zi y′;

BACK □. for all y′ ≥ y there exists x′ ≥ x such that x′ Zi y′.

• Z is a k-U-bisimulation (betweenM and N ) if whenever x Zi+1 y both of the following hold:

FORTH U. for all x′ ≥ x there exists y′ ≥ y and a function ξ : [y, y′] → [x, x′] such that every

z ∈ [y, y′] satisfies ξ(z) Zi z and ξ(z) = x′ if and only if z = y′;

BACK U. for all y′ ≥ y there exists x′ ≥ x and a function η : [x, x′] → [y, y′] such that every

z ∈ [x, x′] satisfies z Zi η(z) and η(z) = y′ if and only if z = x′.

Bounded bisimulations are an essential tool in proving inexpressivity or succinctness results, given

that they preserve the truth of formulas of small enough nesting depth.

Lemma 6.3.3 (Kurtonina and de Rijke [148]).

1. Given two LTL models M and N and a k-□-bisimulation Z between them, for all formulas

φ ∈ LM□ and for all ⟨x, y⟩ ∈ Zi, if φ has M-depth at most k and □-depth at most i thenM, x ⊩ φ

if and only if N , y ⊩ φ.

2. Given two LTL models M and N and a k-U-bisimulation Z between them, for all formulas

φ ∈ LMU and for all ⟨x, y⟩ ∈ Zi, if φ has M-depth at most k and U-depth at most i thenM, x ⊩ φ

if and only if N , y ⊩ φ.

In Section 8.3 we use Lemma 6.3.3 to show that certain legal properties are hard or impossible to

define in certain fragments of LTL.

6.4 Monadic logic

Both First-order and Second-order Logic are undecidable. However, restricting their language

to the monadic fragment interpreted over the natural numbers leads to decidable fragments [162]:

Monadic First-order Logic (MFO) and Monadic Second-order Logic (MSO), respectively. These logics

are of interest because MFO is expressively equivalent to LTL [142] and most of the systems used for

model checking are fragments of MSO.
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Let us define the languages of MSO and MFO. A term is either the constant 0, a variable x ∈ V

(where V is a fixed set of first-order variables), or S(t) (where t is some term). The language L1
∀∀ is

defined as follows:

L1
∀∀ ::= ⊥ | P (t) | t = t | t < t | φ→ φ | ∀xφ | ∀P φ,

where x ∈ V is a first-order variable, t is a term, and P ∈ P is a second-order variable (P being a fixed

set of second-order variables). Note that all second-order variables are unary, i.e. the expression P (t)

is a valid formula but the expression P (t, u) is not. We define the other Boolean connectives as well

as ∃xφ and ∃P φ as standard abbreviations, and define L1
∀ as the sub-language of L1

∀∀ that does not

allow quantification over elements of P.

Similarly to the semantics for LTL, we interpret formulas of L1
∀∀ in the natural numbers and reduce

a model to a function J : P → ℘(N). Furthermore, free first-order variables are interpreted according

to assignments g : V→ N. As in Section 2.5.1, we write g ∼x h when g(y) = h(y) for every y ̸= x, and

extend this notion to models, writing J ∼P J ′ when QJ = QJ
′

for every Q ̸= P . Finally, we extend any

assignment g to terms by setting g(0) := 0 and g(S(t)) := g(t) + 1. The satisfaction relation is defined

as follows:

• J ̸⊩g ⊥;

• J ⊩g P (t) if and only if g(t) ∈ P J ;

• J ⊩g t = u if and only if g(t) = g(u);

• J ⊩g t < u if and only if g(t) < g(u);

• J ⊩g φ→ ψ if and only if either J ̸⊩g φ or J ⊩g ψ;

• J ⊩g ∀xφ if and only if for all h ∼x g we have J ⊩h φ;

• J ⊩g ∀P φ if and only if for all J ′ ∼P J we have J ′ ⊩g φ.

As before, a formula φ is said to be satisfiable over a set of models Ω is there are J ∈ Ω and

g : V → N such that J ⊩g φ (also written J ⊩gMSO φ to distinguish it from other satisfiability notions).

Furthermore, if J ⊩g φ for every assignment g, we say that φ is valid in J and write J ⊨ φ. If φ is valid

in J for every model J ∈ Ω, we say that φ is valid in Ω.

Monadic Second-order Logic (MSO) is the language L1
∀∀ endowed with this semantics. Monadic

First-order Logic (MFO) is MSO restricted to L1
∀.

The semantics of LTL and MSO (and in particular MFO) are similar and can be unified to provide

a notion of equivalence between sublanguages of LMU and L1
∀∀. Towards this goal, we identify the

sets of symbols PROP and P so that an LTL model J : PROP → ℘(N) can be seen as an MSO model

J : P → ℘(N) and vice-versa. Given any natural number n, let gn : V → N be the assignment such

that gn(x) := n for every x ∈ V. Then, a formula φ ∈ LMU is said to be equivalent to a formula ψ ∈ L1
∀∀

over a set of models Ω when for every J ∈ Ω and n ∈ N we have J, n ⊩LTL φ if and only if J ⊩gnMSO ψ.

With this in mind, we may regard MFO as a temporal logic via the following result.
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Theorem 6.4.1 (Kamp [142], see also Rabinovich [186]). Let Ω be any set of models. For every

φ ∈ LMU there is ψ ∈ L1
∀ such that φ and ψ are equivalent over Ω. Conversely, for every ψ ∈ L1

∀ with

one free variable, there is φ ∈ LMU such that φ and ψ are equivalent over Ω.

When discussing expressivity, we go back and forth between LTL and MFO depending on which

is more convenient for the application at hand.

We now briefly introduce the analytical hierarchy, which is useful as a way to distinguish par-

ticular fragments of MSO. It is defined analogously to the arithmetical hierarchy (Definition 2.2.1),

distinguishing formulas by their second-order quantifiers. It is typically defined for the full (i.e., not

monadic) second order language.

Definition 6.4.2 (Analytical hierarchy, Π1
n,Σ

1
n,∆

1
n). A formula is ∆1

0 if it has no second-order quanti-

fiers. Then the classes of formulas Σ1
n and Π1

n are defined as the smallest classes such that:

• Σ1
0 := Π1

0 := ∆1
0;

• if φ ∈ Σ1
n then ∀P φ ∈ Π1

n+1;

• if φ ∈ Π1
n then ∃P φ ∈ Σ1

n+1.

Furthermore, we say that a formula is Π1
n in T (respectively Σ1

n in T ) if it is equivalent over T to some

formula ψ such that ψ ∈ Π1
n (respectively ψ ∈ Σ1

n). A formula is ∆1
n in T if it is simultaneously Π1

n in T

and Σ1
n in T . The theory T is often omitted when clear from context.
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7.1 Introduction

Legislation is often intended to leave room for various interpretations and applications of the law,

while mathematical definitions and algorithms disallow ambiguity by design. However, the regulations

considered here prescribe algorithms, and as such we believe they should be taken as prose descrip-

tions of such mathematical constructs rather than as deliberately ambiguous statements. We still

find many ambiguities even in such cases, perhaps unavoidable due to the format of the regulations.

They are still regrettable in that the developers implementing these algorithms must make possibly

unnoticed and unexamined decisions on specific implementation details.

In this chapter we show how easily overlooked subtleties in both Regulation (EU) 2016/799 [90]

and Regulation (EC) 561/2006 [88] can in principle lead to drastic differences in results, possibly

interpreting legal sequences of activities as illegal or vice-versa. These observations are published in

[10], which itself is based on [99] and [9].

7.2 From seconds to minutes

Tachographs record the driver’s activity on a second-by-second resolution. One of the goals of

Regulation (EU) 2016/799 [90] is to specify how to translate those records into a minute-by-minute

resolution, more amenable to interpretation by Regulation (EC) 561/2006 [88]. The idea is that ac-

tivities lasting only a small number of seconds amount to noise (Requirement (52)). Furthermore,

single minutes of something other than DRIVING in between periods of DRIVING are to be interpreted

as DRIVING as well (Requirement (51)).

In this section we provide explicit interpretations for Requirements (51) and (52) and discuss the

consequences of considering them in the order in which they appear or in the opposite order, as well

as what happens when they are considered more than once each. We start by defining the concepts

of second and minute labelings.

Seconds and minutes are represented by the integers Z. A labeling is a function assigning an

activity a ∈ A to each number i ∈ Z, where:

A := {DRIVING, REST, AVAILABILITY,WORK, UNKNOWN}.

In practice, labelings have a finite subset of Z as domain, but those can be extended to Z by assigning

UNKNOWN to the remaining numbers, so we take the domain of any labeling to be Z.

When Z is interpreted as a set of seconds we use the symbol S for labelings and say they are sec-

ond labelings. Similarly, when it is interpreted as a set of minutes we use the symbolM for labelings

and say they are minute labelings. We only care about extensional equality between labelings, and

use the = symbol to denote it in this context.

We interpret the requirements as functions to be applied to minute and possibly second labelings,

obtaining minute labelings. Requirement (51) is interpreted as follows.
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Definition 7.2.1 (R51). Given a minute labeling M : Z → A, the labeling after applying Require-

ment (51) is defined for each i ∈ Z as:

R51(M)(i) :=

{
DRIVING ifM(i− 1) =M(i+ 1) = DRIVING

M(i) otherwise.

Note that after applying R51 to a minute labeling, either there is no change or there are more

minutes labeled as DRIVING and less minutes labeled as any other activity. Furthermore, consecutive

applications of R51 do not lead to new minute labelings, as the following lemma shows.

Lemma 7.2.2. Requirement (51) is idempotent, i.e., R51(R51(M)) = R51(M) for any minute label-

ingM.

Proof. Towards a contradiction, let i be such that R51(R51(M))(i) ̸= R51(M)(i). Then by the definition

of R51:

R51(M)(i− 1) = R51(M)(i+ 1) = DRIVING; and

R51(R51(M))(i) = DRIVING.

Since we are assuming the second application of R51 changed the labeling at i, we conclude that

R51(M)(i) ̸= DRIVING and consequently M(i) ̸= DRIVING too. Furthermore, either M(i − i) ̸=

DRIVING orM(i+ 1) ̸= DRIVING.

Assume without loss of generality thatM(i− 1) ̸= DRIVING. Note that R51(M)(i− 1) = DRIVING,

so in applying R51 the first case must have been triggered, i.e., it must have been that M(i − 2) =

M(i) = DRIVING. This contradicts our previous observation thatM(i) ̸= DRIVING.

Clearly, Requirement (51) is not enough to translate a second labeling into a minute labeling, since

it doesn’t so much as mention or interact with second labelings. It is merely a way to “clean up” a

minute labeling by interpreting short periods of non-DRIVING between periods of DRIVING as DRIVING

too. The only requirement translating second labelings into minute labelings is Requirement (52),

which we interpret as follows.

Definition 7.2.3 (R52). Given a shift d ∈ Z, a second labeling S : Z → A and a minute labeling

M : Z→ A, the labeling after applying Requirement (52) is defined for each i ∈ Z as:

R52(d,S,M)(i) :=

{
A(d,S, i) ifM(i) = UNKNOWN

M(i) otherwise,

where A(d,S, i) is the activity a ∈ A such that S−1(a) ∩ [d+ 60i, d+ 60(i+ 1)) contains the rightmost

interval of maximal length.

In other words, A(d,S, i) is the activity of the longest constant-activity interval among all constant-

activity intervals contained in [d + 60i, d + 60(i + 1)), or the activity of the rightmost such interval if

there is a tie.

The shift d appearing in the definition of R52 is meant to represent the calendar. Different calendars

differ from each other by a small amount of seconds depending on whether or not leap seconds are
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considered. For example, as of July 2023, there is a difference of 27 seconds between UTC [138] and

Unix time [132], so one could take d = 27 to see what would happen if using UTC instead of Unix (or

d = −27 if starting with UTC).1 We discuss calendars with and without leap seconds in more detail

in Section 11.1. In this section we always use d = 0, but in Section 7.3 we show how varying d can

drastically change the result of applying R52.

It is easy to check that R52 is idempotent.

Lemma 7.2.4. Requirement (52) is idempotent, i.e., R52(d,S,R52(d,S,M)) = R52(d,S,M) for any

shift d, second labeling S and minute labelingM.

Proof. Towards a contradiction, let i be such that R52(d,S,R52(d,S,M))(i) ̸= R52(d,S,M)(i). Then

by definition of R52 it must be that R52(d,S,M)(i) = UNKNOWN and R52(d,S,R52(d,S,M))(i) =

A(d,S, i), with A(d,S, i) ̸= UNKNOWN.

On the other hand, the only situation in which R52(d,S,M)(i) = UNKNOWN is when bothM(i) =

UNKNOWN and A(d,S, i) = UNKNOWN. This is a contradiction, as A(d,S, i) cannot be both UNKNOWN

and not UNKNOWN.

In order to discuss the translation of a second labeling into a minute labeling, we introduce the

unknown minute labeling, upon which we can build with both R51 and R52.

Definition 7.2.5 (U). The unknown labeling is the minute labeling U : Z → A such that U(i) :=

UNKNOWN for all i ∈ Z.

Requirements (51) and (52) appear in that order in Regulation (EU) 2016/799 [90], which is puz-

zling. As previously stated, Requirement (51) does not mention how to translate second labelings into

minute labelings, and furthermore does not change the unknown labeling, i.e., R51(U) = U . However,

if applied after R52 there is the possibility for change, as the following example illustrates.

Example 7.2.6. Let S be the second labeling that assigns DRIVING to all seconds within even minutes

and REST to all seconds within odd minutes. Then for any i ∈ Z:

R52(0,S,U)(i) =

{
DRIVING if i is even
REST otherwise,

and R51(R52(0,S,U))(i) = DRIVING.

On the other hand, R52 applied to U and followed by R51 leads to a stable configuration, where a

further application of either requirement does not produce any changes.

Lemma 7.2.7. Let S be a second labeling and d be a shift. Furthermore, let R51-52 be a notation for

R51(R52(d,S,U)). The following both hold:

1. R51(R51-52) = R51-52;

2. R52(d,S,R51-52) = R51-52.
1Changing the calendar is more complicated than this, since each new leap second changes the shift. For example, the

difference between UTC and Unix time is only of 25 seconds if considering records during the year 2014. Notwithstanding, this
simplified implementation of R52 suffices for our purposes.
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Proof. The first observation follows from the idempotency of R51 (Lemma 7.2.2). For the second, note

that R52 is the identity over the non-UNKNOWN part by definition. If R51-52(i) = UNKNOWN for some i,

then R51 didn’t change what happens at i and so R52(d,S,U)(i) was UNKNOWN already, which implies

that A(d,S, i) = UNKNOWN. Then, since R52(d,S,R51-52)(i) = A(d,S, i), it follows that it is UNKNOWN

too, which concludes the proof.

Note that since R51(U) = U , starting with an application of R51 followed by R52 is the same as

starting with R52, and thus by Lemma 7.2.7 and the idempotency of both requirements we conclude

that all orderings of applications of both R51 and R52 to U converge on the same labeling, namely the

one obtained by starting with R52 followed by R51.

Why then does Requirement (51) precede Requirement (52) in Regulation (EU) 2016/799 [90]?

This is especially notorious since Requirement (52) references Requirement (51). If we trace these

requirements back in time, we find that there was another sentence immediately preceding Require-

ment (51), which was removed by an amendment in Commission Regulation (EU) 1266/2009 [89],

changing the global meaning of the excerpt. It is possible that the oddness of the resulting order was

not noticed or alternatively not deemed relevant enough to change.

Since the internal functioning of commercial tachographs is subject to proprietary software restric-

tions, we cannot freely check the implementation of the regulation that they have chosen. However,

Guretruck S.L. conducted experimental tests and deduced from them that commercial tachographs

apply Requirement (52) followed by Requirement (51), which is the only ordering that makes sense,

although it is not the one suggested by Regulation (EU) 2016/799 [90]. They also disregard leap

seconds, which are part of the UTC time standard prescribed by Regulation (EU) 2016/799 [90]. We

discuss the latter issue in the next section.

7.3 Time shifts

In this section we show that different calendar shifts d can lead to completely different minute

labelings while still being in accordance with Regulation (EU) 2016/799 [90].

Lemma 7.3.1. Let d be such that 1 ≤ d ≤ 59 andM andM′ be any two minute labelings. Then there

exists a second labeling S such that R52(0,S,U) =M and R52(d,S,U) =M′.

Proof. We can assume without loss of generality that d ≤ 30, for otherwise M and M′ could be

swapped. For each s ∈ Z, let S(s) be as follows:

S(s) :=


M′(⌊s/60⌋ − 1) if smod60 = 0

M(⌊s/60⌋) if 0 < smod60 ≤ 30

M′(⌊s/60⌋) if smod60 > 30.

Recall that R52(0,S,U)(i) = A(0,S, i), which is the activity of the rightmost maximal interval of con-

stant activity in [60i, 60i+60). By the definition of S, in the interval [60i, 60i+60) there is a first second

60i of activity M′(i − 1), then 30 seconds of activity M(i), and then 29 seconds of activity M′(i).

Therefore, R52(0,S,U)(i) =M(i).
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M
no shift

S

M′
shift d

0 1 2

0 1 2

d

Figure 7.1: A second labeling S such that Requirement (52) gives rise to the minute labeling M in
the absence of any shift and to M′ in the presence of a shift d. The serpentine and smooth lines
represent different activities.

Now for the other condition: R52(d,S,U)(i) = A(d,S, i), which is the activity of the longest interval

in [d+60i, d+60i+60). By the definition of S, in that interval there are first 31− d seconds of activity

M(i), then 30 seconds ofM′(i), and then d− 1 seconds ofM(i+ 1). If d > 1, then the activity with

the longest interval isM′(i). If d = 1, then there is a draw betweenM(i) andM′(i), but the latest is

M′(i). In any case, R52(d,S,U)(i) =M′(i).

This construction can be visualized in Figure 7.1.

Informally, Lemma 7.3.1 states that, given two minute labelings and a shift, there is a possible

second labeling which leads R52 to the first minute labeling in the calendar without any shift and to the

second minute labeling in the shifted calendar. In particular, there are sequences of activities that lead

to a minute labeling that is 100% DRIVING or 100% REST, depending on the shift. Even though such a

drastic difference is unlikely in practice, Guretruck S.L. conducted experimental tests with real-world

driver data and found that the minute labelings vary up to 8% in DRIVING time depending on which

calendar is used.

Finally, we observe that Requirement (51) does not solve this problem; it only places some mild

restrictions on the labelingsM andM′, as defined below.

Definition 7.3.2 (Feasible minute labeling). A minute labeling M : Z → A is said to be feasible if

M(i) = DRIVING for every i ∈ Z such thatM(i− 1) =M(i+ 1) = DRIVING.

Feasible minute labelings do not change upon the application of R51, which is easily checked

with the reasoning used in the proof of R51’s idempotency (Lemma 7.2.2). Thus, the following is a

straightforward corollary of Lemma 7.3.1.

Corollary 7.3.3. Let d be a time shift such that 1 ≤ d ≤ 59 and M and M′ be two feasible

minute labelings. Then there exists a second labeling S such that R51(R52(0,S,U)) = M and

R51(R52(d,S,U)) =M′.

We have seen that the translation of second labelings into minute labelings proposed by Regula-

tion (EU) 2016/799 [90] is especially fragile, since it depends on which calendar is being used. The

choice of calendar is also prescribed by the regulations, but is often not heeded (leap seconds are

ignored when they shouldn’t be, see Section 11.1). Even if that weren’t the case, this is an example
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where the precise moment at which a driver starts their work is relevant in the eyes of the regulations,

even though it is our opinion that starting a number of seconds later or earlier should not matter.

With this we conclude our discussion of issues with labelings, and in the sequel consider the

problem of verifying that a given minute labeling complies with the regulations, assuming it has been

suitably obtained from the original tachograph data.

7.4 Weekly rest periods

Recall from Section 6.2 that according to Regulation (EC) 561/2006 [88] weekly rest periods are

periods of uninterrupted rest of at least 24 hours (reduced) or 45 hours (regular). A week in the sense

of §4(i) is the period between 00:00 on a Monday and 24:00 on the following Sunday, and each week

in that sense must contain at least one weekly rest period. Furthermore, there can be no consecutive

reduced weekly rest periods and any reduced weekly rest period must be compensated during the

following three weeks. We discuss the assignment of weekly rest periods in Section 7.4.1 and the

compensations of reduced weekly rest periods in Section 7.4.2.

7.4.1 Assignments

Consider the following six weeks of weekly rest periods: the driver starts resting on Saturday of

the first week at 00:00 and retakes their activity on the following Monday at 20:00, thus resting for

68 consecutive hours. Then, until the fourth week, the driver periodically starts their weekly rest on

Sunday at 00:00 and retakes their activity on the following Tuesday at 20:00, again resting for 68

consecutive hours. During the sixth week they only rest for 45 consecutive hours, from Monday at

20:00 to the following Wednesday at 17:00. This is depicted in Figure 7.2.

A B C D E F G

Figure 7.2: Six weeks of activity of a hypothetical driver. Each letter-divided segment denotes a week
and the smaller segments denote days. Each serpentine line denotes a weekly rest period of 68
hours except the last one, which lasts only for 45 hours.

Since all but the last of these rest periods fall between two weeks, the application of §8.9 must

determine which week each rest period pertains to. This procedure should find a legal placement if

at all possible.

There is no legal assignment for this example, because the are six weeks and only five rest

periods. In principle, a long rest period could be interpreted as two consecutive weekly rest periods,

but since the longest rest periods available are only 68 hours long, any split would lead to either two

consecutive reduced weekly rest periods or to a regular weekly rest period and at most 23 hours of

rest, which is not enough to count as a weekly rest period. The former would go against §8.6, and the

latter is not useful at all. This situation is a bit puzzling, since on average the driver rests well over the

minimum required time per week and never spends more than six 24 hour periods without a weekly

rest period, which is explicitly mentioned as a requirement.
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Here Regulation (EC) 561/2006 [88] does not pose a logical problem, nor is it inconsistently

worded. However, the complexity that results from §8.9 coupled with the strict definition of “week”

is worthy of note. The situation described in Figure 7.2 can be extended to arbitrarily-many weeks

and it is possible that verifying compliance would require checking a large number of week assign-

ments. A more thorough discussion of this issue is provided by del Castillo Tierz [57].

7.4.2 Compensations

Regulation (EC) 561/2006 [88] requires that every reduced weekly rest period be compensated

by “an equivalent period of rest taken en bloc before the end of the third week following the week in

question“ (§8.6) and that “[a]ny rest taken as compensation for a reduced weekly rest period shall be

attached to another rest period of at least nine hours” (§8.7). We call these two restrictions together

with the requirements that all weeks must have a weekly rest period and that no two consecutive

weeks may have reduced weekly rest periods the compensation rules. Checking whether a given

driver’s activities satisfy the compensation rules is not always trivial, and can even be non-local.

To illustrate, we present an arbitrarily long sequence of weeks s and weeks A and B such that

both A | s and s | B satisfy the compensation rules but A | s | B does not (where · | · denotes week

concatenation).

When describing weeks in this section, we focus on the length of the Maximum Period of Con-

secutive Rest (MPCR) within each week and not on its placement within the week. We disregard

shorter periods of rest, including daily rest periods (also part of Regulation (EC) 561/2006 [88] but

not explored in this thesis). Including those would increase the opportunities for compensation but

ultimately not be enough to avoid the issue presented here.

Definition 7.4.1. We define the following weeks by the lengths of their Maximum Period of Consecu-

tive Rest (MPCR):

• A has an MPCR of 44 hours;

• B has an MPCR of 45 hours;

• Ci has an MPCR of 45 hours for each i;

• D has an MPCR of 24 hours.

Thus, in a vacuum, both A and D have reduced weekly rest periods while B and each Ci have regular

weekly rest periods.

We now define the sequences used to exemplify the non-locality of the compensation rules.

Definition 7.4.2. Fix a natural number n. Then:

• s := C0 | · · · | Cn | D;

• sA := A | s;

• sB := s | B;
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• sAB := A | s | B.

Our interpretation of the compensation rules is that time spent compensating a reduced weekly

rest period cannot simultaneously count for the weekly rest period of its week, as otherwise the

concept of compensation would be meaningless. Thus, if the length of the MPCR is 45 hours in a

given week and one of those hours is used as compensation, the weekly rest period of that week has

a length of 44 hours and must be compensated. We further assume that future weeks for which we

do not have records (for example, weeks after B in sAB) are spent fully resting, which is as favorable

for the compensation rules as possible (following the in dubio pro reo principle).

Lemma 7.4.3. If n ≥ 2, both sA and sB satisfy the compensation rules, but sAB does not.

Proof. Let wri represent the (i + 1)-th week of sequence r, so for example wsA0 = wsAB
0 = A and

wsB0 = C0.

Week wsA0 requires a compensation of one hour. We distinguish the case where n is even from

the case where it is odd. If n is even, we use week wsA2 to compensate week wsA0 . This makes wsA2
require a compensation, which we assign to week wsA4 (for n ≥ 4), and so on. In general, even weeks

of sA require a compensation that can be achieved during the following even week, with the exception

of week wsAn , since the following even week is week D. Week D cannot be used to compensate

anything because its MPCR is at minimum length for a reduced weekly rest period. However, in sA

that is also the final week on which we have data, so the compensation of week wsAn can be achieved

during week wsAn+3, assumed to be a full week of rest. Similarly, the reduced weekly rest period of

week D can be compensated during either of the following three full weeks of rest. See Figure 7.3 for

an illustration of the n = 4 case.

A

44

C0

45

C1

44 + 1

C2

45

C3

44 + 1

C4

45

D

24

Figure 7.3: The sequence sA with n = 4 together with the compensation scheme proposed during
the proof of Lemma 7.4.3 for the even n case. Shaded weeks are the ones with ultimately reduced
weekly rest periods.

If n is odd, the reasoning is similar except week wsA0 is compensated during week wsA3 instead.

Each subsequent odd week then requires a compensation, which can be achieved during the following

odd week unless it is week D. As in the even case, such a compensation can be done during week

wsAn+3. Note that this argument does not hold for n = 1, because then week wsA0 would only be

compensated during week wsA4 , which is too late. See Figure 7.4 for an illustration of the n = 3 case.

The only reduced weekly rest periods of sA in this compensation scheme occur on even weeks

when n is even and on wsA0 or odd weeks (wsA1 excluded) when n is odd, guaranteeing that they

are not consecutive, and all required compensations occur within the required three following weeks.

Thus, sA satisfies the compensation rules.
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A

44

C0

45

C1

45

C2

44 + 1

C3

45

D

24

Figure 7.4: The sequence sA with n = 3 together with the compensation scheme proposed during the
proof of Lemma 7.4.3 for the odd n case. Shaded weeks are the ones with ultimately reduced weekly
rest periods.

It is easy to check that sB satisfies the compensation rules too, since the only week with a reduced

weekly rest period is the next-to-last one, which can be compensated during the weeks of full rest

assumed to exist after the end of sB . See Figure 7.5 for an illustration of the n = 2 case.

C0

45

C1

45

C2

45

D

24

B

45

Figure 7.5: The sequence sB with n = 2 together with the compensation scheme proposed during
the proof of Lemma 7.4.3. The only week with a reduced weekly rest period is D.

As for sAB , we show how none of the available weeks (other than the ones after B) can be used

to compensate even a single hour. Let l := n + 3 be the index of B, the last week of sAB . None

of wsAB

l , wsAB

l−1 or wsAB

l−2 can be used to compensate anything, because they are either D, which is at

its minimum length of MPCR, or adjacent to a week with a reduced weekly rest period. Then wsAB

l−3

can also not be used to compensate anything, since it would become reduced itself and in need of

compensation during one of the following three weeks, none of which allow compensations. Iterating

this argument, we see that none of the weeks of sAB can be used for compensations. However, wsAB
0

needs to be compensated and is too far away from the full rest at the end of sAB , which concludes

the argument that sAB cannot satisfy the compensation rules.

We have shown that it is possible to satisfy the compensation rules for an arbitrarily long stretch of

time (sA) only to violate them during a single final week (B). That by itself would not be so surprising,

except that the violation does not in fact occur during the new week, as the correctness of sB shows:

it occurs due to the combination of both A and B. This implies that a driver’s record would in principle

need to be checked in its entirety (since they became a driver under Regulation (EC) 561/2006 [88])

in order to confirm that a given sequence satisfies the compensation rules. This is not feasible for

long-term drivers.
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8.1 Introduction

We saw in Section 7.4 how the requirements of Regulation (EC) 561/2006 [88] relating to weekly

rest periods have interpretations that lead to unexpected consequences. In this chapter, we focus on

representing our interpretations of those same requirements within formal mathematical systems.

Since these legal requirements are checked via automated methods, it is desirable to represent

them within simple systems with good complexity properties. A driving record is essentially a se-

quence of consecutive events, so well-understood logics with ontologies relating to discrete moments

in time, such as LTL, and stronger logics that can be related to LTLs such as MSO, are good candi-

dates.

Thus, we start by showing how the two weekly rest period problems (choosing which week a

certain rest period is assigned to and choosing in which week to compensate a reduced weekly rest

period) can be expressed in the Σ1
1 fragment of MSO. Then we show that neither is expressible in

LM□ and that the compensation rules are not expressible in LMU via a formula with a small U-depth.

The upshot is that evaluating whether a given driver’s record complies with the relevant part of

Regulation (EC) 561/2006 [88] can be reduced to model checking over the Σ1
1 fragment of MSO.

This fragment is well-behaved, since the truth of a given Σ1
1 MSO formula in a given model is trivially

reduced to satisfiability of a MFO formula, which itself can be reduced to satisfiability in LTL, for which

many solvers are available [128]. Nevertheless, satisfiability in LTL is PSPACE-complete [192] and

moreover the translation of MFO into LTL is non-elementary in the worst case, so we feel that such

laws should instead be representable in a computationally tame fragment of MSO.

The contents of this chapter were published in [9] and [10].

8.2 Expressibility

In this section we show how parts of Regulation (EC) 561/2006 [88] pertaining to weekly rest

periods, already explored in Section 7.4, can be represented within MSO. Note that the articles in

question allow for some leeway in interpretation and thus there are possibly readings different from

those we propose. We also make a few simplifying assumptions for the sake of exposition.

We discussed how tachograph data is recorded second-by-second and then translated into a

minute-by-minute format in Section 7.2. However, here we consider hour labelings for the sake of

readability. Recall that the set of activities is A := {DRIVING, REST, AVAILABILITY,WORK, UNKNOWN}.

Each activity is regarded as a propositional variable. Then a labeling H (in the sense of Section 7.2)

with domain N may be viewed as an LTL model by setting aH := {n ∈ N : H(n) = a} for a ∈ A,

and pH := ∅ for all other propositional variables p. We use N as domain so that Kamp’s theorem

(Theorem 6.4.1) is available. It is also possible to work with Z as in Chapter 7, but an analogue of

Kamp’s theorem in that setting would require additional modalities to represent the past, which would

make some upcoming proofs more tedious. A rest period is any interval whose activity is always

REST.

We introduce a predicate symbol WEEK that holds on the first hour of each Monday. This condition
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can be treated model-theoretically, i.e. models are assumed to be equipped with a correct valuation

for WEEK, or syntactically via the axiom:

WEEK ∧□(WEEK → (M□<167¬WEEK ∧M168WEEK)),

assuming that the model begins on the first hour of a Monday. LTL models satisfying this formula at

zero are called weekly models. With this in mind, we illustrate how a simplified version of the relevant

parts of Regulation (EC) 561/2006 [88] can be represented.

8.2.1 Assignments

Our goal in this section is to show how assigning weekly rest periods to weeks can be accom-

plished within MFO, and hence LTL. The relevant parts of Regulation (EC) 561/2006 [88] were already

explored in Section 7.4.1.

Since the required amount of hours in a weekly rest period depends on the context of the sur-

rounding weeks (see Section 7.4.2), we use a parameter d as the minimum amount of hours required

for a rest period to be considered a weekly rest period. This is a considerable but reasonable simplifi-

cation of the overall regulation in this context where we are only interested in studying the part related

to assigning weekly rest periods to weeks. Thus, we wish to describe sequences of weeks that allow

a rest period assignment of at least d hours to each week such that each period intersects the week

it is assigned to.

In this section we assume that variables range over weeks. This can clearly be established in

MFO, as a week can be identified with its starting point, already marked by the predicate WEEK.

Furthermore, we represent the successor of a week w as w+1 and the predecessor of a week w > 0

as w − 1.

A week w can be said to have early, late, or internal rest periods, defined as follows.

Definition 8.2.1 (early, late, internal rest periods). An early rest period for week w is a rest period of

length at least d that intersects weeks w − 1 and w. Similarly, a late rest period for week w is a rest

period of length at least d that intersects weeks w and w + 1. Finally, an internal rest period for week

w is a rest period of length at least d that is disjoint (but possibly contiguous with) any early or late

rest periods of w.

We make use of formulas E, L and I such that:

• E(w) if and only if w has an early rest period;

• L(w) if and only if w has a late rest period;

• I(w) if and only if w has an internal rest period.

Clearly, E, I and L are first-order definable (although their definition depends on d). If d ≤ 85 and

E(w) ∧ L(w), the early and late rest periods of w are disjoint. This is because an early rest period

has at least one hour on the previous week, so at most d − 1 ≤ 84 hours of the early rest period can
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be part of w, and similarly for the late rest period. A week has 2 · 84 hours, so these two rest periods

cannot overlap.

Theorem 8.2.2. Given d ∈ [2, 85], there is a formula φd ∈ L1
∀ such that for any model J , we have

J ⊨ φd if and only if there is an assignment of rest periods such that every week is assigned a rest

period of length at least d intersecting that week.

Proof. Let Ě(w) := E(w) ∧ ¬I(w) ∧ ¬L(w), and define Ǐ(w) and Ľ(w) analogously. Then set:

φd := ∀w (E(w) ∨ I(w) ∨ L(w)) ∧ ∀w ∀u (w < u ∧ Ľ(w) ∧ Ě(u)→ ∃ v (w < v < u ∧ I(v))).

We claim that φd holds if and only if there is an assignment such that each week is assigned one

rest period of length at least d intersecting that week. First assume that such an assignment exists.

Clearly ∀w (E(w) ∨ I(w) ∨ L(w)) holds, since if w were a counterexample no rest period could be

assigned to week w.

Now suppose w < u are such that Ľ(w) ∧ Ě(u), and choose w and u such that u − w is minimal

among all such pairs. Note that w must be assigned to its late rest period and u to its early rest period,

as these are the only ones available. Let v ∈ (w, u] be the minimal week not assigned to its late rest

period, which must exist because u is such a week. By minimality, v − 1 must be assigned to its late

rest period, and hence v cannot be assigned to its early rest period (since it is the same as v − 1’s

late one), and in particular v ̸= u. However, v must be assigned to some rest period by assumption,

and since this rest period is neither early nor late, v must contain some internal rest period, and so

I(v) holds.

For the other direction, assume that φd holds and define an assignment iteratively on the ordered

list of rest periods as follows. Let R be a rest period and suppose that all earlier rest periods have

been assigned to some week. If R is internal, assign it to its current week. If R is late for week w and

w has not been assigned a rest period yet, assign R to w. Otherwise, assign R to w + 1.

We prove by induction that every week is assigned some rest period. Fix u and assume all earlier

weeks have an assigned rest period. Note that we have E(u) ∨ I(u) ∨ L(u) by φd. If I(u) or L(u),

it is clear that u is assigned some rest period by the algorithm. If Ě(u) and u is not assigned a rest

period, then the early rest period of u must have been assigned to u− 1. Let w < u be minimal such

that every v ∈ [w, u) has a late rest period assigned to it. First note that w must not have an early

rest period at all, since otherwise w > 0 and either w − 1 has had its late rest period assigned to it,

contradicting the minimality of w, or else the early rest period of w would have been assigned to the

week of w by the algorithm, and then no late rest period would have been assigned to w. Note also

that I(v) fails for all v ∈ [w, u), since any internal rest period is automatically assigned to the current

week, again preventing the assignment of a late rest period. We conclude that Ľ(w) holds and I(v)

fails for all v ∈ (w, u), implying that φd does not hold, which is a contradiction.

8.2.2 Compensations

We now isolate the compensation mechanism from the assignments and analyze it in a similar

fashion. We claim that the content of §8.6 admits a representation in L1
∀∀ by a Σ1

1 formula over the
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class of weekly models.

Recall the compensation rules from Section 7.4.2. A reduced weekly rest period must be compen-

sated in the future, but it may be compensated during the same week as the rest period itself. The

compensation must fall entirely within the union of the current week with the subsequent three weeks.

We further assume that after compensation each week should have a weekly rest period of exactly

45 hours assigned. This is not an issue since longer rest periods can be partially unassigned. Finally,

we assume that each week is assigned a single weekly rest period. Regulation (EC) 561/2006 [88]

does not explicitly forbid weeks with two weekly rest periods, but we find this to be the most intuitive

interpretation.

Our representation uses second-order variables with the following intended meanings. The no-

tions of early, internal, and late rest periods are as in Definition 8.2.1 except no minimum length d is

specified at this point.

• RE denotes the union of all early rest periods;

• RI denotes the union of all internal rest periods;

• RL denotes the union of all late rest periods;

• C0, C1, C2, and C3 denote periods of compensation such that Ci represents compensations

performed during the i-th week after the weekly rest period to be compensated.

We express §8.6 by the formula ψ§8.6 defined as follows:

ψ§8.6 := ∃RE ∃RI ∃RL ∃C0 ∃C1 ∃C2 ∃C3 ψ
0
§8.6,

where ψ0
§8.6 contains no second-order quantifiers. Note that we can quantify over intervals in MFO,

since an interval [a, b] can be identified with its endpoints. Conditions of the form |X| ≥ n with fixed n

are expressed by stating that there exist distinct x1, . . . , xn belonging to X.

The formula ψ0
§8.6 is a conjunction over formulas expressing the following properties:

• the sets RE , RI , RL, C0, C1, C2, C3 are mutually disjoint and all fully REST;

• both RE and RL are unions of non-contiguous intervals of length at least 24 and at most 45;

• for any week w, RI ∩ w is either empty or an interval of length at least 24 and at most 45;

• for any week w, there is a unique maximal interval Rw, the rest period assigned to w, such that

Rw ∩ w is non-empty and one of the following holds:

– Rw ⊆ RE , w > 0, and Rw intersects w − 1;

– Rw ⊆ RI ∩ w;

– Rw ⊆ RL and Rw intersects w + 1;

• for any week w, Rw+1 must start no later than 6 · 24 hours after the end of Rw, and at least one

of Rw, Rw+1 must be a 45 hour interval;
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• for any week w, define Cw :=
⋃3
i=0(Ci ∩ (w + i)) such that the following conditions all hold:

– Cw is an interval disjoint from Rw and it begins after Rw ends;

– there is a rest interval J such that Cw ⊆ J and J \ Cw is an interval of length at least 9;1

– |Rw ∪ Cw| = 45.

It should be clear that each of these conditions is first-order definable, and hence that ψ§8.6 is

Σ1
1. Moreover, some inspection shows that over the class of weekly models, ψ§8.6 coincides with our

reading of §8.6. Indeed, the variables RE , RI , and RL are used as auxiliary variables to define Rw,

the weekly rest period assigned to w. If Rw is a reduced weekly rest period, the variables Ci are used

to define the compensation period Cw. Once these auxiliary variables are fixed, checking whether

each weekly rest is of suitable length or has been compensated appropriately is a first-order property.

We conclude that the content of §8.6 admits a Σ1
1 representation over the set of weekly models,

as claimed.

8.3 Non-expressibility

We have seen that §8.9 and §8.6 are expressible in L1
∀ and L1

∀∀, respectively. However, they are

not expressible in LM□, and §8.6 is not reasonably expressible in LMU. In order to see this, we use

constructions similar to the examples given in Section 7.4.2. However, since these constructions are

somewhat more elaborate, we fix some extra notation first.

Say that a modelM is eventually resting if there is some m such that for all n > m and all a ∈ A,

n ∈ aM if and only if a = REST. The end of an eventually resting model M is the least such value

of m that is also a multiple of 168 (i.e., M has a whole number of weeks). A week-long model is an

eventually resting weekly model whose end is 168. We define the concatenation of two eventually

resting models A and B, denoted A | B, as follows. Let m be the end of A. Then, for a predicate

symbol P and n ∈ N, we set:

n ∈ PA|B :=

{
n ∈ PA if n ≤ m
n−m ∈ PB if n > m.

If k is a natural number then Ak denotes k concatenated copies of A. If n ∈ [24, 168), then n

denotes a week with a rest period of n hours and no other rest periods of 12 hours or more; we

assume that these weekly periods fall in the middle of each week without overlapping with other

weeks, with the details being non-essential. However, we do assume that any two instances of the

week represented by n are identical.

8.3.1 Assignments

We saw in Section 8.2.1 that the possibility of assigning weekly rest periods to a sequence of

weeks is definable in L1
∀ (and hence in LMU via Kamp’s theorem (Theorem 6.4.1)). One may then ask

1Note that in our reading of §8.7, we allow J ∩ Cw′ ̸= ∅ for some week w′ ̸= w. This is because the regulation does not
explicitly state that the nine-hour rest period attached to a compensation period cannot be used to compensate an additional
week. However, a more strict reading with J ∩ Cw′ = ∅ for w′ ̸= w can be formalized similarly.
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whether LM□ suffices to define it, and the answer is negative. In order to see this, we start by defining

a number of models.

Definition 8.3.1 (E, I, L,EL,EIL). Fix d ∈ [24, 84]. The week-long models E, I, and L are defined

as follows:

• E is a model whose first ⌊d/2⌋ hours are REST;

• I is a model whose hours [⌊d/2⌋+ 1, ⌊d/2⌋+ d] are REST;

• L is a model whose last ⌈d/2⌉ hours are REST.

The remaining hours of each of the above models are not important for our purposes with the ex-

ception that they may not include rest periods with a length of 12 or more hours other than the ones

explicitly mentioned above. Furthermore, all E weeks must be identical, and similarly for the others.

We use concatenations of letters to denote week-long models with more than one long rest period.

Thus, EL denotes a week with the long rest periods of both E and L, while EIL denotes a week with

all three long rest periods.

Definition 8.3.2 (An,An). Fix d ∈ [24, 84]. For each n ∈ N, the eventually resting models An and An
are defined as follows:

An := (L | ELn | EIL | ELn | E)n+1

An := L | ELn | E | An,

where ELn denotes the EL week concatenated with itself n times; for example, EL3 = EL | EL | EL.

Given d ∈ [24, 84] and a model H, we say that H admits a weekly rest assignment if it is possible

to assign a weekly rest period of length at least d to every week in H.

Lemma 8.3.3. The model An admits a weekly rest assignment. The model An does not.

Proof. It is easy to see that An satisfies the formula φd of Theorem 8.2.2 and that An does not.

However, for any given LM□ formula φ there is an n such that the models An and An are not

distinguishable through φ, as the following lemma suggests.

Lemma 8.3.4. There is a 168n-□-bisimulation Z between An and An such that 0 Zn 0.

Proof. First we provide some intuition. Consider the following representation of the models, where

each number k in subscript marks the beginning of a week, such that 168k is the corresponding

moment in the model:

An = 0 L |1 ELn |n+1 EIL |n+2 EL
n |2n+2 E |2n+3 · · ·

An = 0 L |1 ELn |n+1 E |n+2 An.

The models are very similar, except that An has an extra initial n+ 2 weeks. Thus, starting at world i

in An and finding a bisimilar portion of An is easy, just skip to world 168(n+ 2) + i in An.
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When starting from An, however, we need to be careful with the first n+ 2 weeks (after that it’s a

simple matter of going to the corresponding week in An). If we are on the first week of An, we are

free to go to the first week of An; if we are between weeks 1 and n + 1 of An, then we can go to

the corresponding world between weeks n + 2 and 2n + 2 of An. In fact, we can even continue for

(n−1)(2n+3) more weeks, until we hit the end of An but not the end of An, at which point the models

are different again.

We now make this argument in a more precise form.2 Define r := 2n + 3 and for x = 168w + h

and y = 168v + ℓ with h, ℓ < 168, let x Zi y if and only if both h = ℓ and one of the following holds:

(A1) w = v = 0 and i ≤ n;

(A2) 0 < v < n+ 2 and i < n and w = v + n+ 1;

(A3) v = w + n+ 2;

(A4) n+ 2 ≤ v and max{w, v − n− 2} ≤ (n− i)r and v ≡ w + n+ 2 (mod r).

We can easily check that 0 Zn 0. We now show that Z is a 168n-□-bisimulation.

It is clear that Zi+1 ⊆ Zi. Suppose that x Z0 y and write x = 168w + h and y = 168v + ℓ with

h, ℓ < 168; note that by definition we must have h = ℓ. Some inspection shows that x and y share the

same formulas of the form Mjp with j ≤ 168n, since the current and subsequent n weeks are of the

same form. It is sufficient to check this for Z0 because it contains Zi for any i.

Now change variables so that x Zi+1 y; we check that the remaining clauses hold.

FORTH □. Let x′ ≥ x and write x′ = 168w′ + h′. We want to find y′ ≥ y such that x′ Zi y′. By the

definition of Zi, we look for a v′ such that y′ := 168v′ + h′ fulfills the desired conditions.

The easiest case is when v′ := w′ + n + 2 suffices, for we immediately obtain x′ Zi y
′ via (A3).

However, if 168v′ + h′ < y this doesn’t suffice.

In that case, we have that either w′ + n + 2 = v and h′ < h, or w′ + n + 2 < v. It follows that

w + n+ 2 < v, through the following argument. In the first case, since h′ < h, then w < w′; otherwise

we would not have x ≤ x′. Since w < w′, so does w+n+2 < w′+n+2. Then since we are assuming

w′ + n+ 2 = v, it follows that w + n+ 2 < v. In the second case, from x ≤ x′ we deduce w ≤ w′ and

so w + n+ 2 ≤ w′ + n+ 2, whence w + n+ 2 < v by the assumption that w′ + n+ 2 < v.

From w + n + 2 < v we conclude that (A4) must hold for x Zi+1 y, as none of the other options

apply. Then max{w, v − n− 2} ≤ (n− i− 1)r.

Take v′ ∈ (v, v+ r] such that v′ ≡ w′+n+2 (mod r) and set y′ := 168v′+h′. Clearly y′ ≥ y. Now,

since w′ + n+ 2 ≤ v and v − n− 2 ≤ (n− i− 1)r, it follows that w′ ≤ (n− i− 1)r and consequently

w′ ≤ (n − i)r. On the other hand, v′ ≤ v + r, so v′ − n − 2 ≤ v + r − n − 2. We already saw that

v − n − 2 ≤ (n − i − 1)r, so v − n − 2 + r ≤ (n − i)r. From these two observations it follows that

v′ − n− 2 ≤ (n− i)r. Then x′ Zi y′ via (A4).

BACK □. Let y′ ≥ y and write y′ = 168v′ + h′. We want to find w′ such that 168w′ + h′ ≥ 168w + h

and 168w′ + h′ Zi 168v
′ + h′.

2This corrects the proof presented in [10]: there, the (A1) clause has a typo and the BACK □ case is incomplete, so the
bisimulation definition is slightly different here.
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We distinguish the case where n+ 2 ≤ v′ from the case where v′ < n+ 2.

Suppose that n + 2 ≤ v′. As in the FORTH □ case, things are easy if w′ := v′ − n − 2 suffices,

for then the result follows from (A3). If it doesn’t suffice, then 168(v′ − n − 2) + h′ < x, so either

v′−n−2 = w and h′ < h or v′−n−2 < w, but in any case v′−n−2 ≤ w. Furthermore, by reasoning

similar to the one in the FORTH □ case, v < w + n+ 2.

Pick w′ ∈ (w,w+ r] such that w′ ≡ v′−n−2 (mod r) and set x′ := 168w′+h′. Clearly x ≤ x′. We

set out to show that x′Ziy′ via (A4), of which the only non-trivial property is max{w′, v′−n−2} ≤ (n−i)r

in this case. Since v′−n−2 ≤ w and w < w′, we only really need to check w′ ≤ (n−i)r, which follows

from w + r ≤ (n− i)r. We check this latter property in different ways depending on why x Zi+1 y.

Suppose that x Zi+1 y via (A1). Then since w = 0, we just need to check r ≤ (n − i)r, which

follows from the (A1) assumption that i+ 1 ≤ n.

Note that if i+ 1 ≤ n we can deduce w + r ≤ (n− i)r from w ≤ (n− i− 1)r. Thus, if x Zi+1 y via

(A2), we set out to prove w ≤ r and r ≤ (n−i−1)r, which together give us the desired w ≤ (n−i−1)r.

The former is a consequence of w = v + n+ 1 and v < n+ 2, recalling the definition r := 2n+ 3. The

latter is a straightforward consequence of the (A2) assumption i+ 1 < n.

Finally, if x Zi+1 y via (A4) (the (A3) case being impossible due to v < w + n + 2), then by

assumption we have w ≤ (n − i − 1)r, so by the same reasoning as above we need only prove

i+1 ≤ n. Note that since (A4) holds, we have n+2 ≤ v, so since we already observed v < w+n+2,

it follows that 0 < w. Then 0 < (n − i − 1)r, which implies i + 1 < n and consequently i + 1 ≤ n, as

desired.

Assume now that v′ < n+2. Then x Zi+1 y via either (A1) or (A2), as the other two are impossible

due to y ≤ y′. If (A1) holds, then w = v = 0 and i + 1 ≤ n. If v′ = 0, then x′ := h′ is such that

x ≤ x′ and x′Ziy
′ via (A1). Otherwise, 0 < v′ and we pick w′ := v′ + n + 1 with x′ := 168w′ + h′,

which is clearly such that both x ≤ x′ and x′ Zi y
′ via (A2). Lastly, if (A2) holds, then the same

x′ := 168(v′ + n+ 1) + h′ works to obtain x ≤ x′ and x′ Zi y′ via (A2).

We are finally ready to prove the main result of this section, that §8.9 is not expressible in LM□.

Theorem 8.3.5. Given d ∈ [24, 84], there is no formula φ ∈ LM□ such that for every model J , we have

J, 0 ⊩ φ if and only if J admits a weekly rest assignment.

Proof. Suppose that φ ∈ LM□ is such a formula and let dM and d□ be its M-depth and □-depth,

respectively. Choose n such that dM ≤ 168n and d□ ≤ n. Then by Lemmas 6.3.3 and 8.3.4, we have

An, 0 ⊩ φ if and only if An, 0 ⊩ φ. However, according to Lemma 8.3.3, An admits a weekly rest

assignment and An does not.

8.3.2 Compensations

Our goals now are to show that §8.6 is not expressible in LM□ and that it is not expressible by a

formula with a small U-depth in LMU. As before, we start by defining a model that complies with the

regulation and one that doesn’t, and then show that they are bisimilar up to a large enough bound.
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Definition 8.3.6 (Bn,Bn). For each n ∈ N, the eventually resting models Bn and Bn are defined as

follows:

Bn := (44 | 45n | 46 | 45n)n | 24 | 45 | 24

Bn := 44 | 45n | Bn,

where each number i ∈ {24, 44, 45, 46} represents a week-long model with a Maximum Period of Con-

secutive Rest (MPCR) of length i and no other long periods of consecutive rest, as in Section 7.4.2.

Lemma 8.3.7. Let n ∈ N. Then Bn admits an assignment of compensations and Bn does not. In

other words, we have both Bn ⊨ ψ§8.6 and Bn ̸⊨ ψ§8.6.

Proof. When n = 0 the result is straightforward. Assume then that n > 0.

In Bn, the first week’s missing hour can be compensated during the third week. This creates a

chain reaction of compensations, as the third week then also needs to be compensated, since its

MPCR is interpreted as a reduced weekly rest period of 44 hours together with a compensation of 1

hour. However, it is always possible to compensate either two weeks after, or on the week with a 46

hour MPCR, if it is close enough. It is thus never necessary to use up hours from the second block of n

weeks with an MPCR of 45 hours, which all include regular weekly rest periods. This process repeats

n times, until we reach the last three weeks of the model. Two of them need to be compensated, but

it is possible to do so using the unlimited hours of rest available after the end.

Consider now Bn. The two weeks with an MPCR of 24 hours near the end of the model cannot

be used to compensate previous weeks, since 24 is the minimum allowed length for a weekly rest

period. The next-to-last week cannot be used to compensate previous weeks either, because then

there would be more than one consecutive week with no regular rest period. Thus, we set the last

three weeks aside.

There are m := 2n2 + 3n+ 1 weeks in the rest of the model, 2n2 + n of which have MPCRs of 45

hours, n + 1 of which have MPCRs of 44 rest hours, and n of which have MPCRs of 46 hours, for a

total of 45m− 1 rest hours. Thus there are not enough rest hours to distribute among the period such

that each week is assigned 45 hours of rest.

Lemma 8.3.8. There is a 168n-□-bisimulation Z between Bn and Bn such that 0 Zn 0.

Proof. The bounded bisimulation and the proof are analogous to those of Lemma 8.3.4.

Theorem 8.3.9. There is no LM□ formula equivalent to ψ§8.6 over the class of eventually resting

models.

Proof. Suppose that ψ ∈ LM□ is a formula expressing §8.6 with M-depth dM and □-depth d□. Choose

n big enough to ensure that dM ≤ 168n and d□ ≤ n, and let Z be the bisimulation of Lemma 8.3.8.

Then by Lemma 6.3.3, Bn, 0 ⊩ ψ if and only if Bn, 0 ⊩ ψ. This contradicts Lemma 8.3.7.

Now we show that any LMU formula equivalent to ψ§8.6 requires U-depth of at least 19, via the

definition of two more eventually resting models.
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Definition 8.3.10 (Cn, Cn). For each n ∈ N, the eventually resting models Cn and Cn are defined as

follows:

Cn := (44 | 452n+1)21 | 66 | 24 | 45 | 24

Cn := 44 | 452n+1 | Cn.

Lemma 8.3.11. Let n ∈ N. Then Cn ⊨ ψ§8.6 and Cn ̸⊨ ψ§8.6.

Proof. First we see that Cn ⊨ ψ§8.6. Intuitively, even weeks in need are compensated two weeks later,

and the size of the compensation increases by one every 2n+2 weeks. Thus for example one hour of

week 0 is compensated by one hour of week 2, which is compensated by one hour of week 4, and so

on until we reach week 2n + 2. Note however that this week only has an MPCR of 44 hours and has

used one hour to compensate the previous week, so we need to compensate two hours of rest. This

is compensated by two hours on week 2n+ 4, and so on until we reach the third week with an MPCR

of 44 hours. Since two hours of this rest are used to compensate a previous week, now three hours

need to be compensated, and so on. On week 21(2n + 2) we use 21 hours to compensate, which is

the maximum allowed, given that each week requires at least a 24 hour rest period. Finally, the week

with an MPCR of 66 hours breaks the pattern, allowing a full rest of 45 hours plus the required 21

hours of compensation. As in the case of Bn, the last 24 | 45 | 24 block can be compensated with the

following unlimited rest.

More formally, every week w numbered 2k (including week zero) is reduced and compensated by

week 2k + 2, up to and including week 21(2n + 2). The amount of the compensation is the unique

i > 0 such that (i− 1)(2n+ 2) ≤ w < i(2n+ 2).

For the second claim, the 24 | 45 | 24 block at the end of Cn cannot be used to compensate previous

weeks, similarly to what is discussed during the proof of Lemma 8.3.7. There are m := 22(2n+2)+ 1

remaining weeks in Cn, of which 22(2n+1) have an MPCR of 45 hours, 22 have an MPCR of 44 hours,

and 1 has an MPCR of 66 hours, for a total of 45m − 1 resting hours. Thus there are not enough

resting hours to distribute among the weeks.

Lemma 8.3.12. There is a 168n-U-bisimulation Z between Cn and Cn such that 0 Z19 0.3

Proof. Let r := 2n+2 and for 168w+h ∈ Cn and 168v+ℓ ∈ Cn with h, ℓ < 168, set 168w+h Zi 168v+ℓ

if and only if h = ℓ and one of the following properties holds:

(C1) max{w + r, v} < (21− i)r and w ≡ v (mod r);

(C2) v = w + r.

Clearly, 0 Z19 0. We now show that Z is a 168n-U-bisimulation.

It is clear that Zi+1 ⊆ Zi. Suppose that x Z0 y and write x = 168w + h and y = 168v + ℓ with

h, ℓ < 168; note that by definition we must have h = ℓ. Some inspection shows that x and y share the

same formulas of the form Mjp with j ≤ 168n, since the current and subsequent n weeks are of the

same form. It is sufficient to check this for Z0 because it contains Zi for any i.
3In [10] we claimed that 0 Z20 0, but that is clearly not the case.
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Now change variables so that x Zi+1 y; we check that the remaining clauses hold.

FORTH U. Let x′ ≥ x and write x′ = 168w′ + h′ with h′ < 168. Consider two cases. First assume

that w′ ≤ w + r. Set y′ := y + (x′ − x) and for z ∈ [y, y′] set ξ(z) := x+ (z − y). It is then not hard to

check that if x Zi+1 y by (C1) then ξ(z) Zi z by (C1), and similarly if x Zi+1 y by (C2) then ξ(z) Zi z

by (C2). The other requirements on ξ are easy to check.

Otherwise w′ > w+ r. We claim that there is v′ such that 168v′ + h′ ≥ 168v + h and 168w′ + h′ Zi

168v′+h′. If 168(w′+r)+h′ ≥ 168v+h we may take v′ = w′+r. Otherwise, we have v ≥ w′+r > w+r

so that x, y do not satisfy (C2) and thus max{w+ r, v} ≤ (21− i− 1)r. Take v′ ∈ (v, v+ r] with v′ ≡ w′

(mod r) and set y′ := 168v′ + h′; from (21− i− 1)r ≥ v ≥ w′ + r and v′ ≤ v + r ≤ (21− i)r we obtain

x′ Zi y
′ by (C1).

We now construct the function ξ : [y, y′]→ [x, x′]. First define ξ(y′) := x′. For z = 168u+ t ∈ [y, y′)

with t < 168, we consider two cases. If 168(u−r)+t ∈
[
x, x′

)
take ξ(z) = 168(u−r)+t, which in view of

(C2) satisfies all desired properties. Otherwise, 168(u−r)+ t ̸∈ [x, x′), and choose d ∈ (0, r] such that

w+d ≡ u (mod r), then set ξ(z) = 168(w+d)+t. The assumption that w′ > w+r implies ξ(z) ∈ [x, x′].

It remains to show that ξ(z) Zi z, for which it suffices to check that max{w + d+ r, u} < (21− i)r.

If 168(u − r) + t < x then since z ≥ y, either u > v and hence v < u ≤ w + r, or else u = v and

t ≥ h, so that forcibly u−r < w and thus v < w+r. But v < w+r together with 168v+h′ Zi+1 168w+h

means that (C1) holds so that max{w+ r, v} < (21− i− 1)r. Thus we have u− r ≤ w < (21− i− 1)r

so that u < (21− i)r. Similarly w + d ≤ w + r < (21− i− 1)r yields w + d+ r < (21− i)r.

Otherwise 168(u − r) + t ≥ x′. But then since z < y′, either u = v′ and hence t < h′, so that

v′ − r = u − r > w′; or else u < v′ and v′ − r > u − r ≥ w′. Thus w′ + r ̸= v′, which together

with 168w′ + h′ Zi 168v′ + h′ yields max{w′ + r, v′} < (21 − i)r. From u ≤ v′ < (21 − i)r and

w + d+ r ≤ (w + r) + r < w′ + r < (21− i)r we obtain max{w + d+ r, u} < (21− i)r, as needed.

BACK U. This is essentially symmetric and we omit it.

Theorem 8.3.13. All LMU formulas equivalent to ψ§8.6 have U-depth at least 19.

Proof. Suppose that ψ ∈ LMU is a formula expressing §8.6 with M-depth d and U-depth less than 19.

Let Z be the bisimulation of Lemma 8.3.12 with n := d. Then by Lemma 6.3.3, Cn, 0 ⊩ ψ if and only if

Cn, 0 ⊩ ψ, which contradicts Lemma 8.3.11.

One can ask how Theorem 8.3.13 would differ if we included “since” in the language. In this case,

Cn, 0 and Cn, 0 are only about 10-bisimilar. However, the nesting depth of 19 is determined only by the

resolution of our models. If instead we used a minute-wise resolution (which, as we have mentioned,

is the resolution required by Regulation (EC) 561/2006 [88] itself), we could stretch this to 19 · 60 by

replacing the weeks with a MCRP of 44 hours with weeks with a MCRP of 44 hours and 59 minutes.

Thus, any LTL definition of ψ§8.6 would have to exploit the temporal resolution in an essential way,

making it arguably unnatural.

We can consider a variant of the regulation where the requirements are: (i) in every two consec-

utive weeks, the driver must take two weekly rest periods, at least one of which is regular; and (ii) in
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every four consecutive weeks, the sum of the weekly rest periods must be of at least 180 hours. This

formulation is definable by a reasonably-sized LTL formula and maintains the spirit of the original.
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Part III

Formalization
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9.1 Introduction

In this chapter we discuss interactive theorem proving, both in the context of mathematics and in

the context of software. We then describe Coq, our interactive theorem prover of choice, and touch

on several strategies and tools relevant for formalization. This sets the stage for the descriptions of

the two formalization projects described in Chapters 10 and 11.

9.2 Interactive theorem proving

Proofs as found in most publications, including this thesis, are informal arguments to be read by

someone with a large amount of mathematical culture and knowledge. It is understood that these

proofs can be formalized in systems such as classical or constructive set theory, or possibly in sub-

stantially weaker systems such as PA or EA, although often the specific system and steps toward

formalization are left implicit. This is reasonable because people typically think at much higher levels

than the axioms of any formalism, having internalized several consequences of the axiomatic sys-

tems they use long before producing any proofs worth publishing or reading any non-pedagogical

publication. That most published proofs are still correct is a testament to this way of working.

Be that as it may, certain circumstances justify being more careful. Some proofs of hard problems

are too complex or long to manually check. For example, the first proof of the four color theorem [19]

used a computer to check hundreds of different cases. The community’s uncertainty towards this

proof was partly assuaged when it was fully formalized several years later [111].

A practical way of formalizing a non-trivial proof is to use a proof assistant, also known as an

interactive theorem prover. This kind of software provides a scaffolding for the user to implement

definitions, theorem statements, and proofs. Proofs are typically interactive: the user states the result

to be proved (known as the goal) and incrementally describes steps towards advancing the proof,

possibly introducing assumptions or generating more goals, until all goals are discharged. The user’s

inputs are internally translated to a proof in a formal system (typically some flavor of higher-order

logic, possibly with dependent types). The proof assistant can offer a myriad of tricks to help the user

(in particular, automatically solving some goals, see Section 9.6), but critically there should be a final

proof object that can be checked correct via a small program (the proof assistant’s kernel). This is

known as the de Bruijn criterion [27].

When we rely on results verified by a proof assistant we are assuming that the kernel is correct

and lacks any bugs. Small kernels can in principle be manually checked for correctness, although

empirical tests are also an important part of why we trust them. Most software does include bugs,

and critical problems are periodically found in the kernels of existing proof assistants [68]. The key

difference with informal proofs is in the kinds of mistakes. A kernel bug that allows for a proof of a

false result is very unlikely to exactly match with a reasoning mistake in an informal proof. Thus, even

if ill-intentioned users who found a kernel bug could produce a wrong and machine-checked proof,

users are unlikely to rely on kernel bugs without realizing it.

There are several well-known interactive theorem provers, such as Agda [2], Coq [66], HOL
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Light [127], Isabelle [137], and Lean [151], among others. Several proof assistants are compared

by Wiedijk [210] for the purposes of proving the irrationality of
√
2, while Ringer et al. [187] provide

a more recent overview from the point of view of software verification and Geuvers [108] supplies a

general history.

We used Coq for our work and focus on it during the rest of this chapter. Other interactive theorem

provers could have been used to achieve similar results, but Coq provides many advantages: its

underlying theory is strong enough to prove our results; there are several well-developed libraries

for many useful data structures; and the community is large and active [8]. Furthermore, algorithms

implemented in Coq can be extracted to other programming languages more suited for computation,

such as OCaml. We further expand on Coq and its libraries in Section 9.3.

We now go into more detail on two main uses of interactive theorem provers: the formalization of

mathematical theorems and the formalization of software.

9.2.1 Formalizing mathematics

When formalizing mathematics, an informal proof typically already exists and this proof merely

needs to be translated into the language of the chosen proof assistant. This translation can be more

or less straightforward depending on two factors: the previous existence of a library formalizing all the

required ontologies, and the level of detail of the informal proof itself. Informal proofs typically assume

a great deal of implicit knowledge that the proof assistant simply doesn’t have. New Coq users may

be surprised when goals as simple as n+0 = n are not automatically discharged. Even though there

are many ways of solving such a goal, the fact remains that one of those ways must be used.

Furthermore, the language of a theorem prover is often not exactly the same as the one of every-

day mathematics. Sets are ubiquitous in mathematics, but not primitive objects in Coq. Even though

one can define the concept of set, many times they are not the most appropriate tool for a given job.

For example, in informal mathematics N is the set of natural numbers and we write n ∈ N to say that

n is a natural number. In Coq, nat is an inductive type and we write n : nat to say that nat is the type

of n, which in practice is the same as saying n is a natural number.

This hints at the important art of code design. It is often the case that the precise definition

used in an informal proof is not too important, because equivalent definitions can be used whenever

relevant. However, the particular implementation of a given concept can fundamentally change the

difficulty of a given formalized proof. Often, the definitions used with informal proofs are not suitable

for formalization in a given system, and so alternative definitions (and consequently proofs) must be

divined. In fact, this can lead to simpler proofs even on paper by translating the formalized proof back.

We showcase two such examples in Sections 10.5.2 and 10.6.3.

Finally, formalizing an informal proof does unveil errors in the original, if they exist. Most of the time

these are not serious errors: if found by a reader, they might be considered typos. Typical such errors

are forgetting a (more or less obvious) assumption, inductions whose induction hypothesis must be

strengthened, and other similar mistakes. Sometimes a proof just does not work as stated, but the

result in itself continues being provable [115]. Sometimes genuine mistakes are found [52, 51].
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Other than the already mentioned formalization of the four color theorem [111], there have been

many formalizations of high-profile results, such as the Gödel-Rosser incompleteness theorem [179],

the odd order theorem [112], the Kepler conjecture [123], and the Church-Rosser theorem [65], to

name only a few.

We formalized most of the results of Chapter 4 and describe this formalization in Chapter 10,

focusing on design decisions and remarks of general interest rather than on the exact implementation

details or proofs.

9.2.2 Formalizing software

Formalizing software is different from formalizing mathematics in that typically there are no informal

proofs to translate. Instead, there is some (formal or informal) specification for how existing software

must behave under given conditions, and the formalizer’s job is to prove that the existing implemen-

tation of that software satisfies the specification.1 It is also possible to start only with a specification

and write an implementation together with a proof that it meets the specification. Regardless of which

process is chosen, some challenges must be overcome.

First, writing a good specification is a hard task in itself. Special care must be taken that each

corner-case is considered and that the specification is truly what one means. This is unfortunate in

that it tends to imply specifications are more complex than we would like them to be, which makes

them harder to read and interpret, which in itself introduces room for mistakes. As an example, one

can specify a sorting function as follows: “receive a list as input and output a sorted list”, but this is of

course silly, since the function that always outputs the empty list meets this specification: we forgot to

require that the output be a permutation of the input.

Even assuming a perfect specification, there is one other problem. Interactive theorem provers

are not known for their efficiency as compiled code, nor their interoperability with typical programming

languages. For the purposes of fast code, it is better to use a language like C rather than Coq, so

there is often a mismatch between the language we want to use for the implementations and the

language where we can talk about correctness. This can be overcome in several ways, one of which

is extraction. The implementation can be written in Coq and then automatically translated to OCaml

(or other languages) via the Coq extraction plugin. This leads to a nice experience while formalizing,

but the extraction process itself is not fully formalized and the code used in the real world is not the

code about which there are proofs. Nevertheless, extraction is common in software verification and it

is part of the process used for one of our formalizations. See Section 9.7 for details.

Another option is to do the opposite of extraction: start with an implementation already written

in the desired language and (either automatically or manually) translate it into the Coq language.

This suffers from the same problems as extraction and furthermore can lead to unidiomatic Coq

code, about which it is hard to prove anything. The advantages are that the implementation is itself

idiomatic of the language in which it is written, which is less than can be said of extracted Coq code

1One can have an informal proof of such a statement, and then the process is more similar to the one described in Sec-
tion 9.2.1.
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(but see Section 11.7) and that this can be easily applied to existing codebases. The coq-of-ocaml

tool [61] automates the translation of OCaml to Coq and has been used to partially verify Tezos smart

contracts [46].

Another worry in software formalization is the compilation of the final (possibly extracted) source

code. We do not go into detail here, but mention only that the verified C compiler CompCert [154] is

itself an important example of a verification project and it has been used in the context of formalizing

other C code in Coq, leading to tools such as the Verified Software Toolchain [16] and Œuf [176].

Other verification projects of note are summarized by Appel [18], as well as different formaliza-

tion strategies and tools. As final examples, we mention the verified implementation of SHA-256

[17], the verified FSCQ file system [59], and the fiat-crypto project [86], which verifies standard

cryptographic functions and whose code is currently part of several well-known browsers.

We verified UTC calendars and time operations as part of the verified law project described in

Part II, and describe the process in Chapter 11.

9.3 Coq and MathComp

Coq [66] is a general purpose interactive proof assistant. It provides a formal language expressive

enough to write theorem statements and their proofs, as well as specifications of algorithms and their

implementations. These proofs are verified by the Coq kernel, and are thus correct up to hypothetical

(and unexpected) errors in the kernel itself.2

The core language is based on the Calculus of Inductive Constructions [71, 72], a constructive

dependent type theory with inductive types, among other features. Even though the base theory is

constructive, it is compatible with several common axioms, including the axiom of excluded middle.

The Mathematical Components libraries, also known as MathComp [166], are libraries of formal-

ized mathematics originally developed for the formalization of the four color theorem [111]. They

serve as an alternative to Coq’s standard library and provide the theories of basic types such as

natural numbers and lists (mathcomp-ssreflect), as well as finite sets of so-called choice types

(mathcomp-finmap [63]), among many others we do not use here.

The proofs in MathComp use the SSReflect proof language [113] and particular definition and

proof design principles further explained in the MathComp book [165]. For the projects described

here, we used both MathComp and SSReflect, and tried to abide by the same design principles, one

of which we detail below. Our naming convention is also inspired by MathComp.

In Coq, every term has a type, and every type is also a term (and thus has a (larger) type itself).

We write t : T to say that t has type T , or that T is inhabited by t.

Types of the form T → U (where T and U are types) represent functions with input of type T

and output of type U . Functions with more than one input are typically represented via currying.

For example, addition on the natural numbers is defined with type nat → (nat → nat), i.e., it is a

2The MetaCoq project [196] provides a formalization of Coq in Coq (excepting some features such as the module system),
which assures us that the implementation of the Coq kernel is both correct and complete with respect to its specification.
Proving the soundness of the specification is a different matter, not possible in Coq due to Gödel’s second incompleteness
theorem.
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function that receives a natural number as input and outputs a function from nat to nat. Thus, we

write (add n)m instead of add(n,m). The arrow→ is taken to be right associative, so the parentheses

in nat→ (nat→ nat) can be omitted. Similarly, function application is taken to be left associative, so

the parentheses in (add n) m can be omitted too.

It is relevant to distinguish between simple and dependent types. A function has a dependent

type when the type of its output depends on the value of its input, and a simple type otherwise. For

example, addition on the natural numbers has a simple type. To exemplify a dependent type, consider

the type of finite ordinals as defined in MathComp. The notation is ’I_n for the ordinal n, which is

implemented as the type of natural numbers less than n. The function nat_of_ord receives a natural

number n and an element i of type ’I_n and outputs the natural number representation of i. This

function has the dependent type ∀(n : nat), ’I_n → nat, where ∀ represents the product type or

dependent function type. Note that in Coq the → binds stronger than the ∀ (this is hinted by the

comma right after ∀(n : nat) in ∀(n : nat), ’I_n → nat), which is not the typical convention in other

contexts and in fact not the convention we use in the other parts of this thesis. We make sure to

include the comma after the quantified variables to signal when the Coq convention is being used.

The dual of the dependent function type is the dependent pair type, sometimes represented by ∃.

A dependent pair is an ordered pair where the type of the second element depends on the value of

the first element. For more details on type theory refer to Nederpelt and Geuvers [177].

Coq has a special type, called Prop, which is meant to represent logical propositions. Thus, when

P : Prop we think of P as the statement of a lemma, and of inhabitants of P as proofs of P .

Terms can be defined directly or via tactics. For example, if p : P and p2q : P → Q are known,

then (p2q p) : Q is a proof of Q, but such a proof could alternatively be obtained via the incantation

apply: p2q; exact: p. The tactic language enables a conversation between the user and the proof

assistant and can be extended to solve complex goals, which we discuss in Section 9.6.

Most of the time, we don’t care which particular proof of P was used to show that P was inhabited.

In contrast, when defining a non-Prop object, we often do care about which specific inhabitant was

chosen. For example, the statement 0 : nat is much more informative than the statement “nat is

inhabited”. We refer to inhabitants of Prop as proofs or non-informative terms, and to other objects as

informative terms.

The richness of Coq’s dependent type theory allows one to define complex terms that are not very

easy to work with. As an example, compare the standard vector library [53] with the MathComp tuple

library [168], both of which define lists of fixed size. Standard library vectors are defined inductively:

nil is a vector of size 0, and if w is a vector of size n and x is an element of the vector’s type

then cons x w is a vector of size n + 1. In contrast, MathComp tuples are inductively defined lists

together with a proof that their size is n. These are isomorphic structures, but vectors require their

own dedicated theory, while tuples require only a couple of specialized lemmas, inheriting the rest

from lists.

More importantly, it is hard to work with vectors because any operation f on a vector must go

beyond fulfilling the size invariant: it must do so provably in Coq at the time of f ’s definition. The
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proof must be interleaved with the definition of f because there is no way of talking about vectors

without explicitly monitoring their size. In contrast, one can define a function g on lists regardless of

its consequences of the list’s size, prove facts about g’s behavior on size separately, and use these

proofs to obtain tuples out of g.

It has been our experience that a Coq development becomes much simpler when there is a clear

separation between the informative, non-dependent part of a type and the dependent version with

non-informative restrictions or assumptions.3 Thus, we abide by the simple types convention, which

states as follows.

Convention 9.3.1 (Simple types). Use simply-typed terms as much as possible. If using dependently-

typed terms, avoid interleaving the informative and non-informative parts.

This thesis tries to be accessible to someone who has never used Coq or even other interactive

proof assistants. For this reason, we mostly highlight the interesting design decisions and difficul-

ties that would plausibly arise in other formalization efforts and stick to standard mathematical nota-

tion. There are some exceptions when we delve into Coq-specific issues or decisions, and we also

sometimes provide Coq code for the readers who are already familiar with the syntax and common

MathComp terms. This code can safely be ignored in favor of the accompanying text description.

Furthermore, when possible we mention the Coq name for each definition and theorem presented

here. These names are hyperlinks to an online rendition of their source code.

9.4 Partial functions

A common issue in typed settings is that of defining partial functions. The domain in which a partial

function is defined may be known, as is the case of division (undefined only when the divisor is zero)

or unknown, as is the case of a function semi-deciding the halting problem. We ran into the former,

simpler, problem several times in our development and employed different solutions depending on the

circumstance. For a discussion of the latter problem see Bove et al. [54].

Consider, as an example of a partial function, Euclidean division on the natural numbers, div. Divi-

sion is mathematically undefined when the divisor is zero. There are three main ways of implementing

such partial functions in Coq, illustrated here with the type signature of division.

1. Output an error:

diverr : nat→ nat→ nat_or_error

2. Forbid the input:

divgt0 : nat→ nat_greater_than_0→ nat

3. Output a default value:

divdflt : nat→ nat→ nat
3This boils down to style. There is a well-known Coq textbook [60] describing how to make heavy use of dependent types.
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Outputting an error can be done with an option type. In that case, diverr a b is Some n when b is not

0, and None otherwise. This strategy is then felt throughout the development, because every function

or theorem mentioning division needs to expect and possibly output an option type as well. However,

it is useful when preparing interfaces where we do want error handling.

Forbidding the input can be done by taking advantage of dependent types. In this case, the division

function expects a proof that the divisor is greater than 0, and thus there is no need to provide any kind

of output for that case. This strategy is mathematically clean, but it also creates ripples throughout

the rest of the development. Every time divgt0 is used, a proof that the divisor is greater than 0

must be provided. This goes against the first part of the simple types convention (Convention 9.3.1):

“use simply-typed terms as much as possible.” However, it can be useful when defining function

specifications and stating theorems, and it is still possible to use dependent types while abiding with

the second half of the convention (“avoid interleaving informative and non-informative parts”).

Finally, there is the option of providing a default value for division by 0, such as 0 itself. This is

how both Coq’s standard library and MathComp implement Euclidean division. The advantage is that

the type signature of divdflt is as simple as possible and can easily interact with every other function

on the natural numbers. A smart choice of default value can even make true some theorems on

division without requiring the extra assumption that the divisor be positive, but in general adding this

assumption to theorems is not a problem. The disadvantage is that we end up formalizing slightly

different structures from the ones used in typical informal proofs.

9.5 Refinements

The refinement technique refers to defining a list of programs P0, . . . , Pn+1 and showing for each

i < n that Pi relates to Pi+1 in some specified way (for example, that they agree on a subset of

inputs) under specific assumptions. In the end, Pn+1 is a refinement of P0 under the intersection of all

assumptions. This is often easier than directly proving that P0 and Pn+1 have the desired relationship.

This approach has been extensively developed both in specific proof assistant developments, such

as Coq [82, 62, 81] and Isabelle [121], and in its purely theoretical aspects [24]. Some other software

verification projects have used it too [56].

An example of this strategy is going from an inefficient but easy to understand program P0 to an

efficient but complicated program Pn+1 that solves the same problem as P0. This is how formal veri-

fication of software is sometimes done, P0 being the specification and Pn+1 the final implementation

to be used in the real world. These two programs may use different data types and even ontologies,

so it is useful to be able to change parameters one by one instead of all at the same time.

As an example, consider the natural numbers. Their default representation in the standard library

and MathComp is the unary one: 0 is a nat and if n is a nat then S n is also a nat. This representation

corresponds to the typical arithmetical one, and in particular the automatically generated structural

induction principle corresponds to IA (Definition 2.2.2). It is a great type for proving things about

natural numbers, and as such it is often used in Coq developments. However, it is a very inefficient
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representation in terms of space: explicitly representing unary numbers larger than 5000 in Coq

makes the code almost unusable. There are ways around this, namely to encode the natural numbers

in binary, which is the standard in computer science. The downside is that proofs using binary natural

numbers become more complicated (the typical induction principle for the natural numbers is still

provable for their binary representation, but it no longer coincides with structural induction).

The usual solution for this kind of problem is to use type refinements. There is an intermediate

step where algorithms are defined on top of non-efficient data types and then redefined on top of

efficient ones. A proof can then be provided to ensure that the refinement kept the relevant properties

of the algorithm.

Some types are isomorphic: for example, every provable result about natural numbers that does

not look into their implementation can be proved regardless of whether the numbers are represented

in unary or binary form. In contrast, some types are not isomorphic but behave in the same way

under certain conditions: for example, modular arithmetic behaves like regular arithmetic as long as

no operation goes beyond the module (in other words, as long as there is no overflow), and the non-

negative integers behave like the natural numbers so long as we do not subtract larger quantities from

smaller ones.

Translations between isomorphic (or merely similar) data types are valuable for type refinements

because they are project-independent. The same translation library or tool between unary and binary

natural numbers can be used in the type refinement step of any project using natural numbers. The

Coq standard library already provides some such translations, for example between the unary and

binary versions of the natural numbers, between the binary versions of natural numbers and integers,

and between integers and primitive integers. In Section 11.6 we mention a similar translation between

MathComp unary natural numbers and unsigned primitive integers, as well as between MathComp

unary integers and signed primitive integers.

9.6 Automation

The most natural process for writing proofs in Coq is to use tactics. Each tactic manipulates the

proof assumptions or the goal in some way, many of which straightforward. For example, there is

a tactic to add a hypothesis to be proved later, and another to observe that the goal coincides with

one of the available hypotheses. Other tactics perform more complex manipulations of the goal, such

as outright solving problems in Presburger Arithmetic [47] or identifying intuitionistic propositional

tautologies [70]. When we mention automation in Coq we are thinking of the latter kind of tactics,

although the former are also technically automating part of the proof. See Ringer et al. [187] for a

history and more thorough overview.

There are many different tactic languages in Coq, which permit the creation of new tactics: the

standard one is Ltac [80], but it is slowly being superseded by Ltac2 [181]. Other meta-languages

include Mtac [213], Template-Coq [15], and Coq-Elpi [201]. It is also possible to directly write Coq

tactics in OCaml.
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We barely used any automation in the formalization described in Chapter 10. However, during the

project described in Chapter 11 there were many tedious arithmetical goals to solve, and as such we

tried a number of automation tools and eventually built our own, which is described in Section 11.9.

Below is a brief overview of the state of the art.

Linear integer arithmetic is decidable and the lia tactic solves any goal in that fragment. It is part

of the micromega [47] set of tactics, which go beyond this small fragment of arithmetic and provide

partial solvers for non-linear problems as well as for several Coq and MathComp representations of

different kinds of numbers (naturals, integers, and rationals). These different types are handled by the

extendable translator tactic zify and its MathComp version mczify [189].

Also in the realm of arithmetic, interval [171] can be used to solve interval arithmetic goals over

floating-point numbers, and also combined with external automation such as gappa [48].

The ring and field [118] tactics simplify (semi-)ring and field equations down to a canonical

polynomial form, which avoids manual associativity and commutativity rewriting.

Other tactics are more generic, such as auto and eauto [69], which are lemma aggregators,

meaning that they produce proofs by choosing from a set of existing lemmas configurable by the

user. It is also possible to connect to external automated theorem provers via Coq Hammer [77],

Gappa [48], or others.

9.7 Extraction

Coq provides extraction to OCaml, Haskell, and Scheme [155, 156, 157]. This consists of an

automatic translation from the language of Coq to the chosen target language, with two main parts:

erasure of non-informative types and translation of dependent types to the simpler types available in

the target languages. Thus, lemmas are extracted to empty objects, while types that mix informative

and non-informative parts lose the non-informative ones.

Extraction is one of the features that make Coq a prime choice for software verification: software

can be written in Coq first, where it is easy to state and prove facts about it, and then be extracted

into a more efficient and mainstream language, where it can be combined with non-formalized code

and used to solve practical problems [45, 76].

The extraction algorithms are not fully formalized yet (although erasure to an intermediate lan-

guage is [196], and there are plans for extending it in the near future), and so it is possible that errors

in the extraction process lead to unexpected discrepancies between the original and the extracted

code. Even if no errors occur, extracted code is typically non-idiomatic and hard to read. Worse,

since some Coq types are not expressible in, say, OCaml, extraction often introduces type-casts via

Obj.magic, a low-level OCaml function that allows casting any type to any other type. These casts

are permissible because the functions type-checked in Coq’s type theory. However, interoperability

with non-formalized code must be done with care.

Extracting dependent types can lead to other problems, even if Obj.magic is not needed. Con-

sider, for example, the finite ordinals as defined in MathComp. The notation is ’I_n for the type of
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natural numbers smaller than n. Naturally, ’I_0 is the empty type. We can define a function that,

given a proof of 0 < n, produces an inhabitant of ’I_n (in this case ord0, the first ordinal):

From mathcomp Require Import all_ssreflect.

Definition nonempty_ordinal (n : nat) : 0 < n → ’I_n.
by case: n ⇒ [//|n _]; exact: ord0.

Defined.

This function can be extracted,4 and we see that the case where the input is 0 is translated into

assert false:

(** val nonempty_ordinal : nat → ordinal **)

let nonempty_ordinal = function
| O → assert false (* absurd case *)
| S _ → O

However, there is a possible trap:

Definition trap := nonempty_ordinal 0.

This is a perfectly reasonable Coq term, and so can be extracted, leading to:

(** val trap : __ → ordinal **)

let trap _ =
nonempty_ordinal O

Note that if trap is called from OCaml it will lead to an error via assert false.

Despite its flaws, extraction is an extremely powerful and useful tool, which we rely on to obtain

practical formalized software. We describe our particular process in Section 11.7, which led to clean,

reasonably short, and readable extracted code.

4The code shown here is not literally the result of extracting nonempty_ordinal, but the result of extracting a cbv simplifica-
tion of it, which leads to equivalent and much easier to read OCaml code.
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10.1 Introduction

This chapter presents a Coq formalization [5] of the main results of Chapter 4, namely the sound-

ness and completeness of QRC1 with respect to relational semantics, as well as its decidability. Points

where we diverged from the definitions or proofs described in that chapter are particularly highlighted.

The first part of this chapter (up to Section 10.5) was published in [4], while the remaining sections

are new. There is also a summary of the formalization available online [6], serving as a kind of

documentation.

Quantified modal logic has been extensively studied [110], and even formalized. For example,

Basin et al. [28] describe a modular Isabelle formalization of several quantified modal logics, including

Kripke soundness and completeness theorems for them. On the other hand, Benzmüller and Pa-

leo [43] describe a set of Coq tactics to facilitate showing that a user-defined and possibly quantified

modal logic proves a given statement. We have not made use of this library as our main goal was to

prove meta-theorems of QRC1. There has also been work on a custom proof assistant for quantified

modal logic [158], as well as an automated theorem prover for normal quantified modal logics [109].

Furthermore, there are several implementations of propositional modal logics, both in Coq [84, 83, 3]

and in other proof assistants [163], as well as presentations of first-order logics [179, 102].

We briefly present some figures comparing the formalization presented here with mathematical

text describing the same definitions, theorems, and proofs. With this information, we calculate this

project’s de Bruijn factor [209], which is the quotient between the compressed size of the formalization

and the compressed size of natural language text describing the same results. The formalization

described in this document takes up about 47K of memory when compressed (corresponding to

4862 lines of code excluding comments and empty lines). That is roughly 2.8 times as much as the

compressed size of the LATEX source for the relevant parts of Chapter 4 (corresponding to about 15

typeset pages). This is a smaller factor than many of the ones described by Wiedijk [211], which

indicates that the text we chose to formalize was reasonably amenable.

10.2 Language

The language of QRC1 is that of quantified and strictly positive formulas based on a signature

with both constants and predicate symbols. We define the names of variables, VarName, as simply

the natural numbers, ensuring there is always a fresh variable for any given finite context. We then

define the concept of (finite) signature as including a finite type of constant names ConstName, a

finite type of predicate names PredName, and a function arity from the relation symbols to the natural

numbers assigning an arity to each one. The finiteness is not much of a restriction, as signatures

can be expanded or restricted without impact on the QRC1 theorems in the appropriate language (see

Lemma 4.2.6 and Corollary 4.2.9).

A term is either a variable or a constant. We define the appropriate canonical instances for eqType

(equality on terms is decidable), countType (there is a countable amount of terms), and choiceType

(there is a choice function for terms). This makes it possible to talk about finite sets of terms using the
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machinery of the Finite Maps library [63] later on.

A formula in a fixed signature is either ⊤, a predicate name together with a tuple of terms of the

arity given by the signature, a conjunction of two other formulas, a diamond of one other formula, or a

universal quantifier of a variable and another formula. We use standard mathematical notation in this

text and reasonable approximations for this notation in the Coq development.

As with terms, we can show that equality on formulas is decidable and that there is a countable

number of formulas by reduction to a structure that has previously been shown to be countable,

trees [167] in this case.

The Language.v file then goes on to define several standard notions and facts, such as free

variables (fv(φ) or fv), substitution (φ[t1←t2] or sub), simultaneous substitution (φ[t←u] or simsub),

and being free for a variable in a formula (no occurrence of a free variable becomes bound after the

substitution, or freefor).

Our formulas live in a quantified language, and as such there is a distinction between free and

bound variables. This distinction is important when dealing with substitution, since it should not

impact bound variables. Thus, (∀xφ)[x←y] should be exactly ∀xφ because x is not a free variable

of ∀xφ. There is one tricky issue, though: cases where replacing a free variable by a term lead to a

previously free occurrence becoming bound, such as in (∀ y S(x, y))[x←y]. Here a naive substitution

would lead to ∀ y S(y, y), which clearly does not preserve logical strength. In informal mathematics

it is common to ignore this issue by observing that the names of the bound variables are ultimately

irrelevant: if we wish to replace x by y in ∀ y S(x, y), then this can be achieved by first renaming the

bound variable to some fresh name such as z, and then doing the substitution. The final formula

would then be ∀ z S(y, z). This is the approach taken by O’Connor [179] in his formalization of the

Gödel-Rosser incompleteness theorem. However, the paper cites this decision as having led to many

issues in the formalization; although it ultimately works, we did not wish to use the same strategy.

Another common solution for this problem is to use de Bruijn indices [55]. This avoids naming

bound variables altogether, so this concern does not appear. However, this approach is complex in

its own right and would make the formalization considerably different from Chapter 4 in the details,

if not the overall arc. There is a tool named Autosubst [198] that internally uses de Bruijn indices

but generates the boilerplate code by itself and thus cuts back on the complexity and size of the

developments. We have not made use of Autosubst, although it would be interesting to see how

many lines of manually-written code and complications it would save.

The approach we settled on was inspired by [190] and the will to avoid mixing non-informative and

informative objects, following the simple types convention (Convention 9.3.1). We define unguarded

substitution, sub, and add an extra assumption, freefor, as needed. This assumption assures us

that the replacing term will not be captured under any binders after substitution. We already spoke

of terms being free for variables in formulas in Chapter 4, so the formalization is very similar to its

informal counterpart. Furthermore, there were no significant complications in using this approach

in the formalization of relational soundness. This was no longer the case for the formalization of

relational completeness, mostly due to the formalization of Lemma 4.2.6, where we show that new
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constants can be conservatively added to the signature (see Section 10.6.1).

One downside of our strategy is that variable names must be picked with some foresight. Going

back to our example from above, if (∀ y S(x, y))[x←y] ever appears in our development then we can

perform the substitution, but won’t be able to use any of the results about it because here y is not free

for x in ∀ y S(x, y). Thus it is assumed that in practice the names for the bound variables do not clash

with the names for the free variables, or that bound variables are renamed as needed.

Finally, we declare a sufficient condition for a variable to be fresh with respect to a formula (fresh),

namely being larger than all the variables appearing in the formula. This depends on our implemen-

tation of variables as natural numbers, since we use the order relation of nat, but it is without loss of

generality since any infinite and countable set of variables would be isomorphic to the natural numbers

and hence have an associated order relation. This implementation has the following useful property:

if x is fresh for φ and y is fresh for ψ, then max{x, y} is fresh for φ ∧ ψ. The typical notion of

freshness (“x is fresh for φ if x does not appear in φ”) does not have a similar property and we do not

implement it at all.

10.3 Axiomatization

The axioms and rules of QRC1 are represented as the QRC1Proof inductive type. We use a slightly

different notation in the Coq implementation, with Latin upper-case letters instead of Greek lower-

case letters for formulas and |- A ∼> B instead of A ⊢ B (or φ ⊢ ψ). Each of the axioms and rules

described in Definition 4.2.1 has a Coq counterpart. For example, the quantifier introduction on the

right rule has the following type:

AllIr : ∀ (sig : signature) (x : VarName) (A B : formula sig),
x \notin fv A → |- A ∼> B → |- A ∼> All x B.

This representation facilitates the proofs of meta-theorems such as relational soundness and com-

pleteness, which is our ultimate goal. However, it is still quite easy to prove theorems within QRC1

itself, as the simple formalization of Lemma 4.2.2 illustrates. Each of this lemma’s items can be found

in QRC1.v, starting with AllC and ending with Diam_All.

Like other provability logics, QRC1 is irreflexive, i.e., φ ⊢ ♢φ is not provable (Corollary 4.2.5).

However, unlike other provability logics, this fact can be shown without semantics. Its formalization is

called Diam_irreflexive.

10.4 Relational semantics

Recall from Section 4.3 that the relational semantics for QRC1 is based on Kripke sheaves, which

are a generalization of the relational semantics for propositional modal logics where each world is a

first-order model and for each two worlds w, u such that wRu there is a compatibility function ηw,u

from the domain of w to the domain of u.

When implementing Kripke models for QRC1 in Coq, we made small changes to the definitions,

which we comment on below. We furthermore used the keyword “frame” instead of “sheaf,” which we
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use in this chapter to match the source code.1

The definitions of frame and model are implemented in two steps: first we define simple types with

a raw prefix (rawFrame, rawModel) and then we obtain the final types (frame, model) by including a

non-informative restriction that they must be adequate. This strategy is inspired by MathComp, follows

the simple types convention (Convention 9.3.1), and is repeated in Section 11.3 in a different context.

Definition 10.4.1 (rawFrame, rawModel). A rawModelM in a signature Σ is a tuple ⟨W,R, {Mw}w∈W ,

{ηw,u}w,u∈W , {Iw}w∈W , {Jw}w∈W ⟩ where:

• W is a finite set (the set of worlds, where individual worlds are referred to as w, u, v, etc);

• R is a binary relation on W (the accessibility relation R);

• Mw is a finite set for each w ∈W (the domain of the world w, whose elements are referred to as

d, d0, d1, etc);

• ηw,u is a function from Mw to Mu for each w, u ∈ W (the compatibility function eta between w

and u);

• for each w ∈ W , the interpretation Iw assigns an element of the domain Mw to each constant

c ∈ CONSTΣ, written cIw or I w c; and

• for each w ∈ W , the interpretation Jw (or J w) assigns a set of n-tuples SJw ⊆ ℘((Mw)
n) to

each n-ary predicate symbol S ∈ RELΣ.

The ⟨W,R, {Mw}w∈W , {ηw,u}w,u∈W ⟩ part of a rawModel is called its rawFrame.

The main difference between the above definition of rawFrame and the definition of sheaf presented

in Section 2.5.1 is that above we postulate compatibility functions for every pair of worlds, while in

typical sheaves ηw,u is only defined when wRu. The restriction makes sense because the notion of

satisfiability only uses the compatibility functions in those cases. However, including such a restriction

in a Coq definition, although possible, leads to noticeable inconveniences and goes against the simple

types convention (Convention 9.3.1). Our work-around is to change the notion of frame so that ηw,u

must exist for every pair of worlds w and u. This decision was crucial in the formalization of the

soundness of the constant elimination rule (Rule 4.2.1.(x) or ConstE), which was the trickiest one (see

Section 10.5.2).

Another small difference is that we do not explicitly require non-empty domains. None of the

formalized results depend on the domains being non-empty; at worst they become trivial. There is no

particular reason to avoid adding this restriction other than the code becoming more complex for no

clear benefit.

The final difference is that we only implement finite models, in the sense that both the set of worlds

and each domain are finite. This does not impact the completeness proof, since QRC1 has the finite
1When we discovered that our adapted notion of Kripke frame was known in the literature as Kripke sheaf, most of the Coq

code had already been released.
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model property (Theorem 4.4.13), but it does mean that the formalized soundness proof is slightly

weaker than the more general one presented in Section 4.3.

Note how we do not lose generality with the alternative definition. The extra ηw,u functions can be

dropped to obtain the original definition; on the other hand, when the domain Mu is non-empty we

can define a function ηw,u from Mw to Mu. Since this function is not used, it doesn’t matter which

one we pick. Thus, the original soundness theorem for models with fewer compatibility functions and

non-empty models (Theorem 4.3.10) can easily be recovered from the formalized one, and similarly

for completeness (Theorem 4.4.13).

Above, there were no restrictions on the validity of the frames and models, and in fact their Coq

keywords are rawFrame and rawModel precisely to highlight that they might not fulfill all the required

restrictions. We implement those restrictions as follows.

Definition 10.4.2 (adequateF, adequateM). A rawFrame F is adequate (adequateF, to distinguish it

from the similar notion for models) if all of the following hold:

• R is transitive: if wRu and uRv, then wRv (transitiveF);

• the compatibility functions respect transitivity: if wRu and uRv, then ηw,v(d) = ηu,v(ηw,u(d)) for

every d in the domain of w (transetaF);

• for every world w, the compatibility function ηw,w is the identity (idetaF).

A rawModel is adequate (adequateM) if it is based on an adequate frame and it is:

• concordant: if wRu, then cIu = ηw,u(c
Iw) for every constant c (concordantM).

Note that in an adequate and rooted model the interpretation of the constants is fully determined by

their interpretation at the root.

The notion of frame is defined by pairing a rawFrame with a proof that it is adequate, and similarly

for model. When defining specific frames or models or notions that depend on frames or models

such as satisfiability, we use the raw versions. On the other hand, when stating facts about frames or

models we use the adequate versions, if necessary. We make use of implicit coercions (see the next

paragraph) in order to smoothly refer to operations that expect a rawFrame in a theorem statement

about a frame, and similarly for models.

A coercion is a function f that is automatically used by Coq when an otherwise ill-typed statement

would be well-typed in the presence of f . For example, we declare a coercion from rawFrame to the

set of worlds that lets us write statements such as ∀(F : rawFrame)(w : F ), . . . that closely resemble

the common shorthand of stating that a world is part of a frame instead of part of the set of worlds

of the frame. In this case Coq automatically infers the implicit coercion world necessary to make the

statement type-check. Explicitly, it would be ∀(F : rawFrame)(w : world F ), . . .

We use a small number of coercions in our development, the most important of which are repre-

sented in Figure 10.1. These coercions serve as a translation between a type and a super-type (in the

sense that the former is a sub-type of the latter). We have a very small type hierarchy. Formalizations
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of, say, mathematical algebra or large libraries such as MathComp include rich hierarchies [188],

and there are existing tools to implement and maintain such large hierarchies such as Hierarchy

Builder [64].

model

frame rawModel

rawFrame

rawModel_of_modelframe_of_model

rawFrame_of_frame rawFrame_of_rawModel

Figure 10.1: A representation of the four datatypes defined to represent frames and models and the
coercions between them. Each arrow from X to Y represents the coercion Y_of_X.

Still, even with a small hierarchy we do run into some issues. For example, consider the following

unification problem:

rawFrame_of_frame ?F = rawFrame_of_rawModel (rawModel_of_modelM) (10.1)

In words, given a model M , a frame ?F must be found such that its rawFrame corresponds to the

rawFrame of the model. The diamond represented in Figure 10.1 trivially commutes, so we define the

canonical coercion frame_of_model as the path to solve (10.1) with ?F := frame_of_modelM .

We use assignments to define truth at a world in a first-order model. Fixing a world w, a w-

assignment g is a function assigning a member of the domain Mw to each variable in the language.

Two w-assignments g and h are Γ-alternative, written g ∼Γ h (Xaltern g h Γ in Coq), if they

coincide on all variables other than the ones in Γ. We write g ∼x h instead of g ∼{x} h. We define the

extension to terms g+ of a w-assignment g as g+(x) := g(x) for any variable x and g+(c) := cIw for

any constant c (named assignment_of_term in Coq).

We now define satisfiability at a world.

Definition 10.4.3 (sat). Let M = ⟨W,R, {Mw}w∈W , {ηw,u}w,u∈W , {Iw}w∈W , {Jw}w∈W ⟩ be a model

in some signature Σ, and let w ∈W be a world, g be a w-assignment, S be an n-ary predicate symbol

of Σ, and φ,ψ be formulas in the language of Σ.

We defineM, w ⊩g φ (φ is true at w under g) recursively on φ as follows:

• M, w ⊩g ⊤;

• M, w ⊩g S(t0, . . . , tn−1) iff ⟨g+(t0), . . . , g+(tn−1)⟩ ∈ SJw ;

• M, w ⊩g φ ∧ ψ iff bothM, w ⊩g φ andM, w ⊩g ψ;

• M, w ⊩g ♢φ iff there is a u ∈W such that wRu andM, u ⊩ηw,u◦g φ;

• M, w ⊩g ∀xφ iff for all w-assignments h such that h ∼x g, we haveM, w ⊩h φ.
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Note how we haven’t required that M be adequate in the definition of satisfiability, as it is not

needed. We will of course assume the models are adequate when proving facts about them. Note

also that the expressionM, w ⊩g φ is only defined when g is a w-assignment.

The notion of satisfiability is decidable on finite models, due to there being only finitely-many

worlds to check in the diamond case and finitely-many domain elements to check in the quantifier

case. Since this fact is useful for proving the decidability of QRC1 (see Section 10.7.2), we also define

a boolean version of satisfiability ⊩b (satb). It is defined very similarly to sat, the main difference

being the quantifier case, which is as follows:

• M, w ⊩gb ∀xφ iff for all d ∈Mw, we haveM, w ⊩g[x←d]b φ,

where g[x←d] is the w-assignment that outputs d on input x and g(y) on all other inputs y. This

formulation is easier to implement because Mw is already proved to be finite, unlike the set of w-

assignments that are x-alternative to g. These two versions of satisfiability are equivalent (satP).

10.5 Relational soundness

The relational soundness of QRC1 (Theorem 4.3.10, soundness) is proved by induction on the

proof of φ ⊢ ψ.

Theorem 4.3.10 (Relational soundness). If φ ⊢ ψ, then for any adequate model M, for any world

w ∈W , and for any w-assignment g:

M, w ⊩g φ =⇒ M, w ⊩g ψ.

Most of its Coq formalization is straightforward, with the exception of two lemmas. The first is

Lemma 4.3.3, stating that satisfiability of a formula φ under an assignment g does not depend on the

values g(x) for variables x not free in φ. That this proof poses a problem is perhaps surprising, since

it is such an intuitive lemma. We discuss this in Section 10.5.1.

The second is Lemma 4.3.9, stating that the constant elimination rule is sound. This is the most

complicated part of the overall soundness proof and it is not surprising that its formalization is non-

trivial. We discuss it in Section 10.5.2, where we present a slightly different proof from the one

described in Section 4.3.

10.5.1 Finite sets

In our formalization, we restrict ourselves to finite sets. This allows us to make use of the nice

Finite Maps library for choice types of MathComp [63] instead of having to prove many basic facts from

scratch. However, Lemma 4.3.3 (reproduced below) made us momentarily reconsider this decision.

Lemma 4.3.3 (Absent free variables). Let M be an adequate model, w be a world, g, h be Γ-

alternative w-assignments, and φ be a formula with no free variables in Γ. Then:

M, w ⊩g φ ⇐⇒ M, w ⊩h φ.

140

https://ana-borges.gitlab.io/QRC1-Coq/v1.0.0/QRC1.KripkeSemantics.html#satb
https://ana-borges.gitlab.io/QRC1-Coq/v1.0.0/QRC1.KripkeSemantics.html#sat
https://ana-borges.gitlab.io/QRC1-Coq/v1.0.0/QRC1.KripkeSemantics.html#satP
https://ana-borges.gitlab.io/QRC1-Coq/v1.0.0/QRC1.KripkeSoundness.html#soundness


This lemma feels intuitive and in fact its proof was omitted in [13] and [14]. However, it is not as

straightforward as it looks. A simple induction is underpowered to solve it; one must do induction

building with the assumption that g and h are (Vars \ fv(φ))-alternative instead. Since Vars \ fv(φ) is

not a finite set, it cannot be represented by the machinery of the Finite Maps library. In order to get

around this, we define the notion of Γ-equivalent assignments.

Definition 10.5.1 (Xeq). Two w-assignments g and h are said to be Γ-equivalent if they agree on

every variable in Γ.

Clearly, g and h are (Vars \ fv(φ))-alternative if and only if they are fv(φ)-equivalent. Then it is

easy to prove a version of the absent free variables lemma using the notion of Γ-equivalency, stated

as follows.

Lemma 10.5.2 (sat_Xeqfv). LetM be an adequate model, w be a world, φ be a formula, and g, h be

fv(φ)-equivalent w-assignments. Then:

M, w ⊩g φ ⇐⇒ M, w ⊩h φ.

Then Lemma 4.3.3 (sat_Xalternfv) is an easy corollary, and we successfully avoid working with

non-finite sets.

10.5.2 Constant elimination rule

Recall the constant elimination rule (Rule 4.2.1.(x), ConstE):

if φ[x←c] ⊢ ψ[x←c], then φ ⊢ ψ

(c not in φ nor ψ)

The argument for its soundness goes as follows. Suppose that φ[x←c] ⊢ ψ[x←c] is true and

that M, w ⊩g φ for some adequate model M, world w, and w-assignment g. We wish to show that

M, w ⊩g ψ. We build a new modelM[w, c←g(x)] that is identical toM except it interprets c as g(x) in

w, in hopes thatM[w, c←g(x)] satisfies χ[x←c] at w if and only ifM satisfies χ at w, for any formula χ

where c does not appear. We can then deduce thatM[w, c←g(x)], w ⊩ φ[x←c] from our assumption

that M, w ⊩g φ, and, since φ[x←c] ⊢ ψ[x←c] is true, this implies that M[w, c←g(x)], w ⊩g ψ[x←c],

and consequently thatM, w ⊩g ψ.

The above proof sketch should be intuitive enough, but it omits a crucial point: the naive definition

of M[w, c←g(x)] is not concordant (i.e., the constant interpretation is not in sync over all accessi-

ble worlds), because the interpretation of a constant is being changed at w without being changed

anywhere else. It is fine to propagate the change to the successors of w through the compatibility

functions, and this would restore the concordance if w were the root of the model. However, when w

is not the root, there is no clear solution other than dropping every other world from the model, which

is what is done in Section 4.3. It works well because the satisfiability of a formula at w depends only

on the model restricted to w and its successors.
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We originally tried to implement this proof directly: restrict M to w and its successors and then

replace the interpretation of c with g(x) at w and with ηw,u(g(x)) at all the successors u of w. In this

proof, the models are adequate every step of the way. However, implementing this strategy proved

rather difficult. A model restricted to w and its successors is naturally defined as a regular model

together with a non-informative statement to the effect that every world is either w or its successor.

Then the next step would be to define a way to change the interpretation of a constant at the root and

propagate it to all its successors. However, trying to do this on top of restricted models proved hard,

in part because there is no built-in concept of root. Adequate models do not need to be rooted and

we didn’t want to include this restriction.

Instead, we changed the proof to postpone including non-informative elements as much as pos-

sible, in accordance with the simple types convention (Convention 9.3.1). The key insight is that only

the final model needs to be adequate, and so we can change the constant interpretation first and only

then restrict the worlds to obtain concordance. Here is also where the decision to have compatibility

functions for every pair of worlds shines, as we’ll soon see. We define the constant interpretation for

the new model as follows.

Definition 10.5.3 (replace_I). LetM be a model, w be a world, c be a constant, and d be an element

of the domain of w. If I is the constant interpretation ofM, we define a new interpretation I[w, c←d]

as follows. For a given world u, cI[w,c←d]u := ηw,u(d). The interpretation I[w, c←d] behaves like I for

every other constant.

Note that the above definition is well-typed even if M is not an adequate model, and it won’t

necessarily lead to an adequate model unless w happens to be the root ofM. Note also that, ifM is

adequate, then cI[w,c←d]w = ηw,w(d) = d, because ηw,w is the identity in adequate models.

Finally, observe that if ηw,u only existed when wRu, we could not have defined I[w, c←d] like this,

for there would be no way to obtain an element of the domain of u in the cases where u was not a

successor of w. Recall that we’re going to drop these worlds later anyway, so it doesn’t matter which

domain element this is; only that we have one in hand. Even though this could have been implemented

in other ways (for example, by designating a default element for each domain), this particular solution

is elegant in its simplicity and symmetry, as there is no need to have a case distinction on whether

wRu or not.

The first approximation to M[w, c←g(x)] is then a copy of M with the constant interpretation

replaced by I[w, c←g(x)]. We can already prove the desired property about this model (sat_replace),

namely that M[w, c←g(x)] satisfies χ[x←c] at w if and only if M satisfies χ at w, for any formula χ

where c does not appear. It now remains to further modify M[w, c←g(x)] so that it is adequate, by

dropping all spurious worlds, obtainingM[w, c←g(x)]|w. The final model, called restrict_replace,

is finally adequate and allows us to prove the desired result, Lemma 10.5.4, which has the soundness

of the constant elimination rule as a corollary.

Lemma 10.5.4 (sat_restrict_replace). Given a constant c, a formula φ where c does not appear,
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an adequate modelM, a world w, and a w-assignment g, we have:

M, w ⊩g φ ⇐⇒ M[w, c←g(x)]|w, w ⊩g φ[x←c].

10.6 Relational completeness

The relational completeness theorem (Theorem 4.4.13, completeness) is proved via the descrip-

tion of a canonical model, world, and assignment for each pair of formulas φ and ψ such that φ ̸⊢ ψ.

The canonical model satisfies φ at the canonical world under the canonical assignment and does not

satisfy ψ under the same conditions.

Theorem 4.4.13 (Constant domain completeness). Let Σ be a signature and φ,ψ formulas in Σ. If

φ ̸⊢ ψ, then there is an adequate, finite, irreflexive, rooted, and constant domain model M, a world

w ∈W , and a w-assignment g such that:

M, w ⊩g φ and M, w ̸⊩g ψ.

Our formalization of this theorem mostly follows the proof described in Section 4.4 with the ex-

ception of the way of obtaining the set of worlds of the canonical model, which we describe in Sec-

tion 10.6.3. We also comment on the formalization of the conservativity of QRC1 when extra constants

are added to the signature in Section 10.6.1 and on the implementation of the closure under a set of

constants in Section 10.6.2.

10.6.1 Extended signature

For the completeness proof, it is essential to be able to conservatively extend the signature with

extra constants. We do this twice: once to translate free variables to new constants and once to obtain

an appropriately large domain for the canonical model.

The notion of extended signature by a finite number of new constants (extend) is straightforward,

but formalizing that it does not increase the strength of the calculus (Lemma 4.2.6, QRC1Proof_lift)

was tricky. The informal proof argues that a new constant appearing in a QRC1 proof can be replaced

by a fresh variable with no issue. However, this variable must be fresh for the whole QRC1 proof.

Instead of directly translating this requirement, we slightly modify it as follows.

Let P (x, φ) be some property of a variable x and formula φ such that P is monotone on x, i.e.,

such that if x ≤ y and P (x, φ) then also P (y, φ).2 Consider the following statement, which abstracts

some details away in order to highlight the part that we wish to discuss:

Given a provable formula φ, there exists a Hilbert-style proof π of φ and a variable x fresh

for π such that P (x, φ).

We cannot directly translate statements like this to Coq if we do not have an object representing

the full proof π. Although such an object could be defined, the typical formalization of inductive

2Recall that we implement variables as natural numbers, so writing x ≤ y is allowed. We could alternatively make use of
some bijection between the variables and the natural numbers for the same purpose.
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axiomatizations does not provide one, it only lets us reason by induction on the construction. Instead,

we prove the following adaptation:

Given a provable formula φ, there exists a variable x greater than all variables appearing

in φ such that we have P (x, φ).

This takes advantage of the representation of variables as natural numbers. If x is greater than

every variable appearing in a given formula φ, then x is fresh for φ. Furthermore, given a variable y

greater than all variables appearing in a given context (be it a formula or a proof), max{x, y} is greater

than the variables of both that context and φ, and so it is fresh for both.

We can now see that the two statements are equivalent. On the one hand, if x is fresh for a proof

π of φ, then it is also fresh for φ in particular, and so P (y, φ) holds for any y ≥ x by the monotonicity

of P . On the other hand, if φ is provable then there exists a proof π of φ. We reason by induction

on π. If the proof π is built of a single axiom, then x is also fresh for the whole proof. If the final

step of the proof is the consequence of a rule, then by the induction hypothesis there are proofs of

the rule’s assumptions and respective fresh variables. From x and the fresh variables of the previous

proof steps, we can build a new variable fresh for the whole proof.

The above trick can be used in several contexts, as the abstraction suggests, and it was useful for

the formalization of the conservativity of adding new constants to the signature. Still, that formaliza-

tion was long and tedious, making use of several low-level lemmas about circumstances in which a

given term is free for substitution in a formula, substitution in general, and free variables. It is likely

that a nameless implementation of quantification (such as de Bruijn indices) would have significantly

simplified the process.

10.6.2 Closure

During the proof of completeness, we use the notion of closure under a set of constants C, denoted

by CℓC (Definition 4.4.1). This coincides with the usual notion of closure under subformulas in all cases

except ∀. Given a formula ∀xφ and a finite set of constants C, the closure under C of ∀xφ includes

the closure under C of φ[x←c] for each c ∈ C:

CℓC(∀xφ) := {∀xφ} ∪
⋃
c∈C
CℓC(φ[x←c]).

Note that φ[x←c] is not a subformula of ∀xφ. Thus, the formalization of CℓC(φ) cannot be achieved

by structural recursion on φ, even though that is the first method one reaches for in this case. Instead,

we define CℓC(φ) by recursion on the depth of φ, i.e., on the nesting depth of connectives appearing

in φ. This works because the depth of φ[x←c] coincides with the depth of φ.

There are several ways of defining non-structurally recursive functions in Coq, such as the FunInd

plugin (legacy code, not recommended for new projects [67]), Program [195], and the Equations plu-

gin [197]. The definition of CℓC (closure in Coq) is relatively simple, so we used Program. However,

this results in a term which is hard to use, because we typically want to reason about the shape of
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a formula and not about its depth. Thus, we prove two auxiliary results. First, that closure is exten-

sionally equal to a direct translation of Definition 4.4.1, i.e., to our intuitive understanding of closure

(closure_eq). Second, an induction principle for this definition that inducts on the shape of the for-

mula (closure_ind). This avoids using the default induction on the depth of the formula, which feels

less natural.

The definition of closure, the relevant auxiliary results, and the formalization of the observation

that the maximum number of distinct constants per formula in CℓC(Γ) has upper and lower bounds

independent of C (Remark 4.4.3, constantcount_closurefs) can be found in the Closure.v file.

10.6.3 Canonical model

The formalized proof of completeness follows the ideas presented in Section 4.4 up to the point

of defining the canonical model, where it diverges. In Definition 4.4.9, we define the canonical model

recursively for a given unprovable sequent as follows: we start by explicitly providing the root (up to

a use of the Lindenbaum lemma) and then add new worlds via inspection of the existing ones (again

making use of the Lindenbaum lemma). The Lindenbaum lemma (Lemma 4.4.4) roughly states that

under some conditions there is a well-formed world extending a given pair of sets, but we do not

provide a decidable algorithm to obtain this world, only a classical proof of its existence. Thus, even

though we provide an algorithm to define the canonical model, it relies on a non-constructive oracle.

Directly translating the aforementioned definition of the canonical model to Coq posed a challenge.

The natural induction principle over our Coq frames uses the leafs as base-cases instead of the root,

so we cannot easily use it. In fact, we do not even have a reified notion of root. Even if those problems

were overcame via alternative or additional definitions, there was one other issue: not having access

to a constructive Lindenbaum lemma, we could not describe a full construction for the canonical model

as an informative algorithm. The axiom of excluded middle is non-informative, and so the Lindenbaum

lemma is non-informative too.

Since the overall completeness proof is already non-constructive, there is no reason to avoid clas-

sical reasoning to define the canonical model. The relation, domain, compatibility functions, constant

interpretation, and predicate interpretation are all clear and pose no problem. The hard part is identi-

fying the set of worlds.

Fortunately, we can restrict the worlds to binary partitions of some previously determined finite set

Φ with some additional properties. In fact, the property of being a Φ-MCW pair (see either Section 4.4

or wfpair) is both necessary and sufficient for being a world. Clearly, there are only finitely-many

binary partitions of Φ, so even if we cannot constructively identity which partitions are acceptable

worlds, we are able to classically prove that there is an appropriate set of acceptable worlds via the

following comprehension lemma.

Lemma 10.6.1 (fset_seq_comprehension). Let Γ be a countable set of objects, Φ be a finite subset

of Γ, and P : Γ → Prop be a predicate on Γ. Then there is a set ΦP ⊆ Φ such that for any γ ∈ Γ we

have γ ∈ ΦP if and only if P (γ) holds.
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One of the consequences is that our informative Coq definition of canonical model (crawModel) is

parametrized not only on the formulas φ and ψ for which the model is meant to be canonical, but also

on a set of worlds. This set is then instantiated during the completeness proof, where we have access

to the non-informative Lindenbaum lemma.

As a final note, we observe that the definition of the set of worlds as the set of well-formed partitions

of Φ is similar to the corresponding definition in the proof of relational completeness for RC [36]. It

is also a simplification of the proof presented in Section 4.4. We missed it earlier because it only

works when the canonical model has a constant domain and our original canonical model (described

in [13]) did not. The proof presented in Section 4.4 does not differ from the one presented in [13] on

this particular matter, and so misses out on this simplification.

10.7 Decidability

We saw in Corollary 4.4.14 that QRC1 is decidable via its finite model property. In this section, we

go into detail on this proof and on its formalization in Coq. We rely on Post’s theorem, which states

as follows.

Theorem 10.7.1 (Post [184]). If a set and its complement are both computably enumerable, then both

are decidable.

Post’s theorem is not constructively provable (it is equivalent to Markov’s principle [202]), but does

hold classically. We already used the axiom of excluded middle to prove the finite model property, so

accepting Markov’s principle for the proof of decidability is inconsequential.

We use a formalization of Post’s theorem available in the Library of Undecidability Proofs [103]

that assumes the axiom of excluded middle (bi_rec_enum_t_dec). In order to make use of it, we

need to show that both QRC1-derivability and QRC1-non-derivability are enumerable (in the sense of

rec_enum_t). In other words, we need to find a function e : nat→ formula→ formula→ bool such

that there is n : nat for which e n φ ψ = true if and only if φ ⊢ ψ, and similarly for φ ̸⊢ ψ. Then the

decidability of QRC1 (QRC1Proof_dec) easily follows.

10.7.1 Derivability

In order to see that QRC1 provability is computably enumerable, we define a decidable notion of

n-bounded provability ⊢n and then prove that for any formulas φ and ψ we have φ ⊢ ψ if and only if

there is some n such that φ ⊢n ψ. The notion of n-bounded provability is then trivially an appropriate

enumerator (a statement that is formalized as QRC1Proof_enum).

We first comment on why the calculus we already have (Definition 4.2.1, QRC1Proof) is not trivially

proved to be decidable. One of the issues is the cut rule:

if φ ⊢ ψ and ψ ⊢ χ, then φ ⊢ χ.

Note that ψ does not appear in the conclusion of the rule, so if we are doing proof search starting

from the conclusion, there are a priori infinitely-many candidates ψ to try. Some of the other rules
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have similar issues with formulas, terms, or both. It is possible that there are clever observations that

reduce the search space to a finite size, which would lead to a different decidability proof for QRC1.

However, here we simply bound the search space directly. This works for our purposes because any

QRC1 proof is finite and includes formulas and terms in finite languages. Thus, for any QRC1 proof

there is a bound n that would allow us to repeat the proof as an n-bounded proof, and n-bounded

proofs obviously work as regular proofs as well.

We now define the concept of n-bounded term and n-bounded formula, for which we first need

notions of size for both. The size of a variable is defined as its representation as a natural number.

We are already working with a finite signature, so there is no need to restrict the search space for

constants, and as such we define the size of any constant as zero. Then an n-bounded term (bterm)

is simply a term with size less than or equal to n.

The size of a formula is determined by two factors: the maximum size of the terms appearing in the

formula, and its maximum depth of nested connectives (depth). For ease of use, we define bounded

formulas in two steps. A raw n-bounded formula (rawBformula) is defined inductively similarly to a

regular formula, except all the terms appearing in it must be n-bounded. A (non-raw) n-bounded

formula (bformula) is a raw n-bounded formula that furthermore has depth at most n.

We are now ready to define the bounded QRC1 calculus. We write |t| ≤ n to denote that t is an

n-bounded term and |φ| ≤ n to denote that φ is an n-bounded formula.

Definition 10.7.2 (⊢n, bQRC1Proof). Let Σ be a finite signature and φ, ψ, and χ be any formulas in

L+
□∀c with the signature Σ. The axioms and rules of bounded QRC1 are the following:

(i) if φ ⊢ ψ is a QRC1 axiom, then φ ⊢0 ψ;

(ii) if φ ⊢n ψ, then φ ⊢n+1 ψ (monotonicity);

(iii) if φ ⊢n ψ and φ ⊢n χ, then φ ⊢n+1 ψ ∧ χ (bounded conjunction introduction);

(iv) if φ ⊢n ψ and ψ ⊢n χ, then φ ⊢n+1 χ, for |ψ| ≤ n+ 1 (bounded cut);

(v) if φ ⊢n ψ, then ♢φ ⊢n+1 ♢ψ (bounded necessitation);

(vi) if φ ⊢n ψ, then φ ⊢n+1 ∀xψ, for x /∈ fv(φ) (bounded quantifier introduction on the right);

(vii) if φ[x←t] ⊢n ψ, then ∀xφ ⊢n+1 ψ, for |t| ≤ n + 1 and t free for x in φ (bounded quantifier

introduction on the left);

(viii) if φ ⊢n ψ, then φ[x←t] ⊢n+1 ψ[x←t], for t free for x in φ and ψ and |φ| ≤ n + 1, |ψ| ≤ n + 1,

|x| ≤ n+ 1, |t| ≤ n+ 1 (bounded term instantiation);3

(ix) if φ[x←c] ⊢n ψ[x←c], then φ ⊢n+1 ψ, for c not in φ nor ψ and |x| ≤ n + 1 (bounded constant

elimination).
3See the proof of Lemma 10.7.3 for motivation.
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To a first approximation, one can think of the bound as measuring the proof depth. However, this is

not literally the case because the sizes of some terms and formulas are also restricted. We comment

on the decisions behind this axiomatization during the proof of its decidability, which follows.

Lemma 10.7.3 (bQRC1ProofP). The n-bounded calculus is decidable, i.e., there is an effective and

terminating algorithm deciding whether φ ⊢n ψ or φ ̸⊢n ψ for any given n and formulas φ, ψ in a finite

signature.

Proof. By induction on n. Note that φ ⊢0 ψ if and only if φ ⊢ ψ is an axiom of QRC1. All the axioms of

QRC1 are easily identifiable from the formulas φ and ψ, which concludes the base case.

The monotonicity, bounded conjunction introduction, bounded necessitation and bounded quan-

tifier introduction on the right rules have only subformulas of φ and ψ in their premises, so deciding

whether φ ⊢n+1 ψ through one of those rules as the last step in an (n+ 1)-bounded proof is straight-

forward from the induction hypotheses.

The other rules all have some new term or formula appearing in their premise. For example, in

order to check whether φ ⊢n+1 ψ as a consequence of bounded cut, we must check whether there is

a formula δ with |δ| ≤ n+1 such that both φ ⊢n δ and δ ⊢n ψ. This is precisely why we bound the size

of δ, as that means there are only finitely many formulas δ available as cut formulas.

Similar reasoning applies to the rest of the rules. We observe that there is no restriction on c in the

bounded constant elimination rule because the signature is assumed to be finite, so there are only

finitely-many constants to check. Note also that the bounded term instantiation rule includes generic

restrictions on the size of the formulas φ and ψ when we already know both φ[x←t] and ψ[x←t], and

so we could further reduce the search space for φ and ψ. However, implementing such a restriction

would be costly and offer no benefit, since we do not attempt to optimize the decision procedure in

any way.

The Coq implementation of the decision procedure sketched above is bQRC1Proof_bool.

We can now easily prove the correctness of bounded QRC1, which directly implies enumerability,

as already noted above.

Lemma 10.7.4 (QRC1Proof_bQRC1Proof). Given formulas φ and ψ, we have φ ⊢ ψ if and only if there

is a number n such that φ ⊢n ψ.

Proof. Each direction follows from a straightforward induction on the respective derivability notion.

10.7.2 Non-derivability

In order to formalize that the unprovable sequents are computably enumerable, we take advantage

of the following formalization of the completeness theorem.

Theorem 10.7.5 (explicit_completeness). Let φ and ψ be QRC1 formulas such that φ ̸⊢ ψ. Then

there is a (finite) set of worlds W and a world w ∈W such that:

(cmodelW ), w ⊩cg w φ and (cmodelW ), w ̸⊩cg w ψ,
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where cmodel is the adequate canonical model and cg is the canonical assignment.4

The helpful thing about this formulation of the completeness theorem is that it provides a counter-

model for any unprovable sequent using only a finite set of worlds and one particular world. We

already know how to enumerate worlds and finite sets of worlds in Coq because the type of the worlds

is trivially a countType. These types have a canonical nat encoding and decoding. Thus, there is no

need to describe how to enumerate models in general, which would be much more cumbersome.

We define the enumerating function e, called enumerate_cmodels in Coq, approximately as fol-

lows:

e n m φ ψ := ((cmodelWn), wm ⊩cg wm

b φ) & ((cmodelWn), wm ̸⊩cg wm

b ψ),

whereWn is the n-th finite set of worlds, wm is them-th world of that model,5 ⊩b is the boolean version

of the satisfaction relation (satb), and & is the boolean conjunction. Thus, e n m φ ψ = true if and

only if n is the code of a finite set of worlds and m is the code of a world such that cmodel Wn is a

model and wm is a world of that model where φ is satisfied under the cg wm assignment and ψ is not.

Via further coding, we can represent the numbers n and m as a single number.

Finally, to see that non-provable QRC1 sequents are enumerated by e, note that if φ ̸⊢ ψ, then

there is a counter-model by completeness, so there are n and m such that e n m φ ψ = true. On

the other hand, if there are some such n and m, then we have an example of a model where φ is

satisfied and ψ is not, so by soundness it must be that φ ̸⊢ ψ. The formalization of this result is called

nQRC1Proof_enum.

4Besides the explicitly shown parameters W and w, these functions are both parametrized on φ and ψ as well, and cg is
additionally parametrized on W .

5In practice, either of Wn or wm may be undefined, in which case e n m φ ψ := false.
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11.1 Introduction

Coordinated Universal Time (UTC) [138] is the current world standard for keeping time. Although

it uses atomic time, it is designed to stay close to solar time, and as such it includes leap seconds.

The number of seconds in a minute can be either 59 (if there is a negative leap second), 60, or 61 (if

there is a positive leap second). The need for a new leap second is somewhat unpredictable, so the

International Earth Rotation and Reference Systems Service announces whether there will be one

about six months in advance. The convention is to have at most two leap seconds per year, as the

final second of either June 30 or December 31. As of 2023 there have been 27 positive leap seconds

and no negative ones [134].

The vast majority of software uses Unix time [132], which is an implementation of UTC without leap

seconds. This is fine for many use cases, and understandable given the unpredictability of UTC for

future moments. However, it conflicts with regulations that explicitly require UTC, such as Regulation

(EU) 2016/799 [90]. For software related with these regulations such as Police Controller [119], using

a Unix time implementation such as Microsoft’s [173] does not follow the letter of the law. It may

seem like 27 seconds are not enough to meaningfully change anything, but they can be, as seen in

Section 7.3.

It was in this context that FV Time [7] was developed. It is a Coq library for time management, im-

plementing both Unix time and UTC. The name alludes to Formal Vindications S.L., which sponsored

this thesis and is the owner of FV Time and of the related FVTM executable. FV Time includes con-

versions between time, represented as a 7-tuple of year, month, day, hour, minute, second, and proof

of existence in the chosen paradigm (to avoid ill-formed tuples such as the ones including February

30), and timestamps, represented as the number of seconds since a chosen epoch (for example,

year 0, or year 1970, which is the Unix epoch). We also define dates and datestamps, which are the

respective concepts without information on the hour, minute, and second. Leap seconds are tracked

via a modifiable parameter, which can be empty for Unix time or updated as appropriate to keep pace

with UTC.

FV Time is not the first library to implement UTC (see for example [114, 74, 152, 169]), but to the

best of our knowledge it is the first formally verified one either for Unix time or for UTC. This chapter,

based on [11], reports on the development of FV Time from high-level specifications to executable

code integrated with other software. It can serve as a roadmap for other similar verification projects.

11.2 FV Time

The main goal of FV Time is to provide verified functions translating between time in a human-

readable format and timestamps. It also provides functions for time arithmetic (for example, calculating

the number of days between two dates). In this section we give a very brief overview of the plan for

the rest of the chapter and of the file structure of the library, summarized in Figure 11.1.

The calendar.v file describes the main datatypes, such as what it means to be a (human-

readable) date and time (Section 11.3). It also specifies the expected behavior of the translating
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calendar.v

Hinnant.v formalTime.v

HinnantR.v formalTimeR.v

fvtm_extraction.v

fvtm_extraction_correct.v

implements

uses

refines refines

uses

refinesrefines

proves correct

Figure 11.1: The file structure of FV Time. There is an extra file, doe_of_yoeK.v, that only contains
auxiliary proofs and definitions and doesn’t appear in the diagram.

functions by providing simple implementations (Section 11.4.1). In Hinnant.v, there are alternative

and more efficient implementations of these translating functions (Section 11.4.2) and proofs that they

coincide with their specification (Section 11.4.3). The latter implementations of the datestamp algo-

rithm and its inverse are inspired by the ones described by Hinnant [126], hence the name. The time

arithmetic functions are specified and implemented in formalTime.v (Section 11.5).

Since these algorithms are meant to be extracted from Coq to OCaml for efficient execution, we

provide a type refinement for each of them in the HinnantR.v and formalTimeR.v files (Section 11.6).

In other words, there are two versions of each algorithm: one based on proof-friendly datatypes, and

one based on extraction and computation-friendly ones. These two versions are proven equivalent un-

der some assumptions with the aid of the FV Prim63 to MathComp library, which describes the precise

relationship between the types. It was developed purposefully for this refinement, but can be reused in

any other work dealing with the same types. The relevant files are listed in all_prim63_mathcomp.v.

Next, fvtm_extraction.v redefines every relevant function using simple types and error manage-

ment, and these new versions are proven correct in fvtm_extraction_correct.v (Section 11.7). The

extracted code can be used either directly as an OCaml library, or through the FVTM command-line

interface (Section 11.8).

Finally, we describe a custom set of automation tactics used throughout the formalization (Sec-

tion 11.9). These tactics are called FV Check Range and apply to any decidable goal on primi-

tive integer intervals with up to three variables. The relevant files are check_range_Uint63.v and

check_range_Sint63.v for unsigned and signed primitive integers, respectively.
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11.3 Main data types

The central data type in FV Time is a representation of moments in time in UTC or Unix (depending

on the assumed leap seconds) up to the end of the year 9999,1 which we call time. Under the hood

it is simply a 6-tuple of natural numbers representing a given year, month, day, hour, minute, and

second,2 together with a proof that the tuple in question forms an existing time, in which case we say

it is valid. What counts as an existing time depends on the parametrized list of leap seconds.

For convenience and modularity’s sake, we define three other relevant types: date, rawDate, and

rawTime. A date is the part of the time with only the year, month, and day, together with a proof that

it is valid, i.e., that it exists in UTC. The raw types are simply the tuples without the proofs. Thus,

January 32, 2000 could be represented as a rawDate but not as a date.

We encode the list of leap seconds as a parameter that can be updated each time a new leap

second is announced. The list is actually a list of pairs, where each pair has a rawDate (indicating that

a leap second occurs on the last moment of that day) and a Boolean value (where false means that

it’s a positive leap second and true that it’s a negative one). Since we treat the list as a parameter

with unknown contents, it can be instantiated in any way. However, we only prove correctness of

the time functions when two further assumptions hold: the list must be sorted with respect to the

strict (lexicographic) order of rawDates (in particular it doesn’t include repeated values), and all the

rawDates in it must be valid. Note that we specifically avoid dates in the list of leap seconds in

accordance with the simple types convention (Convention 9.3.1).

Leap seconds are only ever announced for the last second of June 30 or December 31. However,

we accept leap seconds on any day (always on the last second of that day). There is no attempt to

verify that the leap seconds provided by a user are the real ones, although we do provide an updated

list with each version of FV Time for users who want to use UTC.

The raw types are used in the implementation of every function that operates on dates or times, in

accordance with the simple types convention. It is then possible to compute the datestamp of January

32, 2000, but we do not wish to prove any facts about the datestamps of such ill-formed dates. For

that reason, we use the valid (non-raw) versions in the specifications and theorem statements. There

is then a disconnect between the specification and the implementation, since they refer to different

types. This is easily solved using coercions, i.e., automatically inserted translations between one type

and another.

We use a number of coercions in our development, mostly between types and their subtypes, as

described in Figure 11.2. This leads to ambiguity if a rawDate is required and a time is provided, as

there are two possible (equivalent) ways to obtain a rawDate from a time. This issue was already

described in Section 10.4 and we solve it similarly, declaring rawDate_of_date ◦ date_of_time as

the canonical choice.
1It is useful to have a finite number of acceptable times, which is explained further in Section 11.4.1. The year 9999 has no

particular significance and different end years could be substituted, although if they were large enough there might be problems
with overflow.

2We currently take the second to be the smallest unit, but a finer-grained resolution could be easily implemented.
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time

date rawTime

rawDate

rawTime_of_timedate_of_time

rawDate_of_date rawDate_of_rawTime

Figure 11.2: A representation of the four main data types in FV Time and of the coercions between
them. Each arrow from X to Y represents the coercion Y_of_X.

11.4 Main functions

The backbone of FV Time are the translations between times and timestamps, which themselves

depend on translations between dates and datestamps. In this section we focus on the specification

and first implementation of these four functions, as well as on the proofs that they coincide on well-

formed inputs. The names of these terms are listed in Table 11.1 with hyperlinks to the relevant online

documentation, and their types are made explicit in Table 11.2 on page 164. Further implementations

with more practical types are discussed in Section 11.6.

Table 11.1: Main functions in FV Time together with the name of the theorem stating that the imple-
mentation meets the specification. See also Table 11.2 on page 164, which includes the types of each
of these terms.

Specification Implementation Correctness
calendar.v Hinnant.v Hinnant.v

date datestamp datestamp datestampE
from_datestamp from_datestamp from_datestampE

time timestamp timestamp timestampE
from_timestamp from_timestamp from_timestampE

The relevant files are calendar.v and Hinnant.v. The former includes the basic definitions of

dates and times, as well as the specifications of the main translator functions. The latter includes the

efficient implementations and the correctness proofs of those functions. Note that the specification

and implementation of a given function have the same name, so we use the name of the file to clarify

which we mean at any given time. Similarly, some lemma names coincide and are clarified as well.

11.4.1 Specification

The specifications of the main functions were primarily chosen to be intuitive. Thus, the calendar.

datestamp of a date d is the size of the set of dates strictly smaller than d, and similarly for calendar.

timestamp, where the order relations on dates and times are defined as expected (lexicographic).

These definitions use the notion of cardinality of a finite set, which is defined in MathComp’s fintype

library [164]. We arbitrarily set the maximum date as December 31, 9999 so that our types for valid

dates and times could be declared as a finType (i.e., a type with finitely-many inhabitants) and
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hence benefit from this library’s theory. This also allowed us to prove the absence of overflow in the

refinements of our functions to 63-bit numbers, as explained in Section 11.6.

Given the notions of next_date and next_time, which are described in the next paragraph, we

define calendar.from_datestamp for a number n as the n-th iteration of next_date after the minimum

date, and similarly for calendar.from_timestamp.

The definition of next_date is the expected one, with its only particularity being that the successor

of the maximum date is the minimum date. This cyclic behavior was chosen in order to maintain the

invariant that the successor of a valid date is always a valid date. We also define next_time to be

cyclic, and we underline that this definition depends on the list of leap seconds (see Section 11.3), as

do essentially all the functions related to time.

11.4.2 Implementation

Hinnant.datestamp

If every month had the same number of days and every year the same number of months, com-

puting the datestamp of a given date would be as straightforward as multiplying each date component

by its corresponding number of days and adding everything. Even with different lengths for different

months it would not be particularly complicated, but the existence of leap years means that some

more care must be taken. Notably, the pattern of leap years repeats every 400 years, so we divide

the years into 400-year eras. Furthermore, we internally use shifted years that start on the first day

of March and end on the last day of February, as inspired by Hinnant [126]. Thus, the leap day, if it

exists, is the last day of the shifted year and doesn’t influence the calculation of the datestamp of any

day in that year other than itself.

The only other main part of Hinnant.datestamp is calculating how many days there are between

the start of a (shifted) year and the first day of each (shifted) month. This can be represented as a

table, but it turns out there is a simple linear equation interpolating this table, so we use that instead

of storing the table in memory.

Hinnant.from_datestamp

As in Hinnant.datestamp, we divide years into 400-year eras and shift everything so that years

start on March 1. With this framing, the Hinnant.from_datestamp algorithm is more obviously the

inverse of Hinnant.datestamp, a fact which we rely on for the correctness proofs.

Given the number of days since the beginning of the era, finding the year must take into consid-

eration leap years, and finding the month must take into consideration the varying number of days in

each month. For the latter we use a linear interpolant of the table matching days in a year to months

instead of using the table directly.

Hinnant.timestamp

This is a natural extension of Hinnant.datestamp. In the absence of leap seconds, we could simply

add the product of each time component by the amount of seconds in that component (60 seconds
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per minute and so on). With leap seconds, we need to additionally calculate the offset generated by

them, i.e., the number of extra seconds that must be added or subtracted to the leap second-less

timestamp. Such an offset is relatively easy to calculate for a given date d, for we can simply count

the number of leap seconds that happened prior to d, and then check whether each leap second was

positive or negative to obtain a final offset. This is accomplished by offset_rd.

Since the leap second offset can a priori be negative (even though no negative leap seconds

have been declared as of July 2023), we first calculate the timestamp over the integers and then

take its absolute value. This works because even before taking the absolute value we know that the

timestamp is positive due to our restrictions on leap seconds: we allow at most one leap second per

day (an unimportant restriction, since the international convention allows at most two leap seconds

per year). Since there are less days than seconds in any given amount of time, it is not possible to

have enough negative leap seconds to obtain a negative timestamp.

Hinnant.from_timestamp

Once we know how to calculate the date corresponding to some datestamp, calculating the time

corresponding to some timestamp (i.e., to some number n of seconds since the epoch) is straight-

forward in the absence of leap seconds. Thus, we first subtract the relevant offset from n and then

proceed as if there were no leap seconds.

Obtaining the offsets for this function is slightly more complicated than for Hinnant.timestamp,

since our list of leap seconds is a list of dates and not of timestamps. Thus, the offset calculator

for Hinnant.from_timestamp, called offset_ts, first computes the Hinnant.timestamp of the final

second of each date in our list of leap seconds (leap seconds are always the final second of each

day by international convention), and then proceeds similarly to the offset computation for Hinnant.

timestamp.

11.4.3 Correctness

The specification and implementation of the main functions differ significantly, and so it is hard to

directly prove that they match. Instead, we make use of lemmas showing that certain functions are

the (left) inverse of others (also known as canceling lemmas) and the following simple remark.

Remark 11.4.1. Let T and U be types, and f1, f2 : T → U be functions. If there is a function g : U → T

that is simultaneously a right inverse of f1 and a left inverse of f2, then f1 and f2 are (extensionally)

equal.

We summarize the correctness proof for timestamp (Theorem 11.4.2) as an example. The actual

Coq statement includes our standard assumptions on the shape of the list of leap seconds (see

Section 11.3 and Table 11.2), omitted here. Note that the theorem statement is about valid times;

we make no claim about non-existing times such as any moment during January 32 of any year. The

other correctness statements can be found in Table 11.2, together with links to their proofs.
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Theorem 11.4.2 (timestampE). For every time t:

Hinnant.timestamp t = calendar.timestamp t.

Proof. By Remark 11.4.1 it suffices to find a suitable function bridging the implementation and spec-

ification of timestamp. We used calendar.from_timestamp and the canceling lemmas calendar.

timestampK and cal_from_timestampK (see Figure 11.3 for a schematic representation of their state-

ments).

calendar.timestamp Hinnant.timestamp

calendar.from_timestamp Hinnant.from_timestamp

cal_from_timestampKcalendar.timestampK Hinnant.timestampK

Figure 11.3: The implementation and specification of the main time functions together with the can-
celing lemmas used to prove their correctness. Each arrow from f to g represents the proof that f is
a left inverse of g.

Given the above strategy, the main challenge becomes proving the canceling lemmas. There are

three relevant lemmas for time, depicted as the arrows in Figure 11.3, and three analogous ones for

dates, used as a stepping stone for the time ones and not shown here. We briefly comment on each

of these three results.

On the specification side, calendar.timestampK states that calendar.from_timestamp is a left

inverse of calendar.timestamp. Since this is a statement about two specifications that behave nicely

with respect to proofs, there were no great difficulties in proving it.

The bridge between specification and implementation is provided by cal_from_timestampK, which

states that calendar.from_timestamp is a right inverse of Hinnant.timestamp. The specification for

calendar.from_timestamp is very simple (just iterating next_time), and so this proof follows without

too much difficulty using basic arithmetical facts.

Finally, on the implementation side, Hinnant.timestampK (needed for proving from_timestampE,

which is the correctness theorem for from_timestamp) states that Hinnant.from_timestamp is a left

inverse of Hinnant.timestamp. Its proof is the most intricate of the three if done with pen and paper,

due to the ubiquitous presence of Euclidean division, which doesn’t have an inverse. However, once

we developed the automation tool FV Check Range (see Section 11.9), this proof was significantly

eased.

11.5 Time arithmetic

The usefulness of time libraries comes in part from the ability to perform time arithmetic, such as

finding the date three weeks from today, or the amount of hours between two given moments. To a

first approximation, these operations can be done by translating the times to timestamps (or the dates

to datestamps), doing the desired arithmetical operation on the natural numbers representing those

timestamps, and translating back the result. This is one of the reasons timestamps are useful.
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The difficulty with time arithmetic is then not the calculus itself, but the corner-cases of the speci-

fications. What should “one month from today” mean, exactly? Presumably, some day in the vicinity

of 30 days from today, although it could also be anywhere from 28 to 31 and it would recognizably

be “one month”. With leap seconds, not even expressions such as “35 minutes” are fully determined,

because some minutes are longer than others.

Thus, we defined two sets of time arithmetic functions, and leave the decision of which one to

pick for the library users. The first approach, leading to the so-called shift functions, uses the same

specification as Microsoft [173], which allows FV Time to be used as its replacement. The second

approach is a definition of a standard for durations called formal time and operations that manipulate

fixed amounts of seconds.

11.5.1 Shift functions

The shift functions follow the Microsoft specification [173]. The idea is that adding n months

to a given date is the same as adding n to the month component of that date, changing the year

appropriately. This needs to be adapted if the target day does not exist in the resulting month, for

example when adding 1 month to January 31. In that case, the result is the previous existing date,

February 28 in this case, or 29 if it’s a leap year. Adding other amounts of time is analogous.

More specifically, the shift function changes a component of the time, carrying to the left if nec-

essary, and then if the result is invalid it performs corrections on the wrong component(s) to return

the closest previous valid time that shares all the same components to the right of the wrong ones.

For example, 2000-01-31 15:30:10 plus 13 months is 2001-02-28 15:30:10, because January plus 13

months is February of the following year, and there is no 31st of February; the closest previous existing

day is 28 (since 2001 is not a leap year) and so the result is the same time (15:30:10) on February 28,

2001. The precise specification can be found in the lemma shift_utc_monthsP for months, and simi-

larly for the other date-time components (shift_utc_yearsP, shift_utc_daysP, shift_utc_hoursP,

etc.).

We accept negative integers as input too, so the shift functions effectively function as both addition

and subtraction. Note however that this particular addition and subtraction are not mutual inverses:

for example, January 31 plus one month and then minus one month is January 28 in a non-leap year.

11.5.2 Formal time

Sometimes we may want to add or subtract specific amounts of time instead of vague concepts

such as “months” or “years”. This reduces to adding and subtracting seconds, since that’s the low-

est precision available in our setting, and this is accomplished by add_formal_seconds (which also

performs subtraction if given a negative number as input and coincides with shift_utc_seconds).

In order to spare the user from calculating or inputting n · 24 · 60 · 60 when they wish to add n days

to a date, we define the concept of base of units. For example, the base (3600, 60) represents two

different units: one that is 3600 seconds long and one that is 60 seconds long. These correspond

to reasonable units for our concepts of hour and minute. Any strictly decreasing list is accepted as
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a base, but we define a standard one too, G_FT_Conf, which stipulates what we call formal units. A

formal second is an atomic second, a formal minute is 60 formal seconds, a formal hour is 60 formal

minutes, a formal day is 24 formal hours, a formal month is 30 formal days, and a formal year is 365

formal days. A duration represented in the G_FT_Conf base is called a formalTime.

Adding durations can then be accomplished in one of three ways: with add_formal_years (or

add_formal_months and so on, depending on the desired units) if there is no need to mix units; with

add_formal if the duration is expressed as a formalTime; or with add_formal_generic if the duration

is expressed in a different base.

As an example, if one wishes to add two 31-day months to t, one can either:

• use add_formal_month to add two formal months and then add_formal_day to add the extra

two days;

• use add_formal with (0, 2, 2, 0, 0, 0) as the formalTime; or

• use add_formal_generic with 31 · dur_day as a base and 2 as the number of units.

With the concept of duration, we also define subtraction between two moments in time. The result

can be expressed either as the number of seconds between the two times (sec_time_difference),

as a formalTime (time_difference), or in a user-specified base (time_difference_generic).

11.6 Type refinements

As explained in Section 9.5, the unary types for the natural numbers and integers provided by

MathComp are less than adequate for computation and memory management. Instead of extracting

the FV Time functions directly, we first refine them by changing those types into the 63-bit primitive

integers available in Coq (unsigned and signed, respectively). Primitive integers are an ideal type for

this task because they are built into OCaml at the processor level. Their Coq instance is defined at

the kernel level as the OCaml version, and their extraction is straightforward.

However, the refinement in itself is not trivial because the natural numbers are not isomorphic

to the 63-bit unsigned integers: the latter are a finite type behaving like arithmetic modulo 263. As

mentioned in Section 11.3, we have a maximum time, namely December 31, 9999 23:59:59 (or at

most 23:59:60, depending on the parametrized list of leap seconds). The timestamp of this time is on

the order of 238, so overflow should not be (and in fact isn’t) a concern. However, this argument is not

precise enough to prove the correction of the refinement.

The refined main data types and functions are defined and proven correct in HinnantR.v, and the

functions related with time arithmetic in formalTimeR.v. The proofs are quite tedious and in some

cases challenging. Ensuring the equivalence between the original and the refined versions implies

ensuring that all of the intermediate steps do not overflow, or finding bounds for which they don’t.

Automation was key for several lemmas, specially ones with nested Euclidean division. We go into

more detail on this in Section 11.9.
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One other reason for difficulty (or at least cumbersomeness) was the non-existence of a library

linking the types we were working with, so the relationship between MathComp natural numbers and

unsigned primitive integers (and also between MathComp integers and signed primitive integers) had

to be provided essentially from scratch. This led to the development of FV Prim63 to MathComp [7],

a generic and stand-alone library designed exactly for this purpose.

11.7 Extraction

We use extraction to go from the verified Coq code to easily executable OCaml code (see Sec-

tion 9.7). The terms to be extracted are all defined in a stand-alone file fvtm_extraction.v where the

only imported libraries are the ones for lists, Booleans, and primitive integers. In particular, it doesn’t

import any MathComp libraries nor any of our several other files. It is as close to OCaml as possible

while still being written in Coq. This is a strategy for simplifying the extraction process and obtaining

clean and readable extracted code.

Since we are defining all data types and functions from scratch (albeit essentially copying the

refined versions discussed in Section 11.6), we give them more sensible names in the context of the

future extracted code. With no dependent types around it makes no sense to talk about raw dates,

so we might as well call them dates. Thus, fvtm_extraction.date is defined like HinnantR.rawDate,

and similarly for fvtm_extraction.time.

The major difference is the introduction of the possibly type, which is a more detailed option

type that is either Result or one of several different errors such as InvalidDate or Overflow. This

allows us to write useful error messages for the OCaml wrapper (see Section 11.8) while keeping the

checking for those errors entirely within the verified part of the program. For example, the function

utc_timestamp is defined as follows:

Definition utc_timestamp (t : time) : possibly uint :=
if valid_time t then Result (utc_timestamp_plain t)
else InvalidTime t.

In other words, it receives a time (which in this context is just a 6-tuple of unsigned primitive integers),

checks whether it represents a UTC time with valid_time, and if so outputs the result of actually com-

puting its UTC timestamp with utc_timestamp_plain. If the time is invalid, the output is InvalidTime

instead. The utc_ prefix highlights that the epoch is the Unix one (1970-01-01 00:00:00) and that the

current UTC list of leap seconds is being used. This list is kept up to date manually via new releases

of FV Time. The user is free to provide their own epoch and list of leap seconds with timestamp,

although we do not provide a version of that function with error handling.

The actual extraction occurs from a different file, extraction_command.v, which lists all the func-

tions from fvtm_extraction.v to be extracted. We import both ExtrOcamlBasic and ExtrOCamlInt63

from the Coq standard library here. The former is a small collection of well-accepted translations, such

as mapping Coq’s bool type to OCaml’s, and other such mappings where the types are basically the

same in both languages. The latter maps the Coq definitions of the primitive integers to the very same

OCaml module used to implement them in the Coq kernel.
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Finally, fvtm_extraction_correct.v presents the links between the functions to be extracted and

their formalized counterparts. Here we do make use of the full FV Time library, showing the correct-

ness of each fvtm_extraction.v function. This correctness amounts to both proofs of equality with

the type refined versions, such as timestampE, and to further proofs of equality with the specifica-

tions provided in calendar.v and formalTime.v under appropriate assumptions on the input, such

as timestampR. There are also lemmas specifying the intended behavior when the input is incorrect

in a specific way, such as utc_timestamp_InvalidTime.

11.8 Command-line interface

The extracted code is an OCaml library with all the relevant functions of our development. How-

ever, OCaml is not the most popular programming language and communication with other languages

is non-trivial. Hence, we wrote a command-line interface in OCaml that allows a user to compile the

library as an executable and invoke it from the terminal or from other programming languages. It

translates the possibly type into either the plain result in the Result case or into OCaml excep-

tions with helpful error messages in the other cases. There is also a parsing phase that can throw

parsing-related errors.

This command-line version of the library is named FVTM (which stands for FV Time Manager)

and is documented in [101], but the non-extracted source code and the executable are not publicly

available. The conversions between UTC times and timestamps and the function calculating the

difference between two times can be tried online [100].

FVTM is currently being used as one possible time library for Police Controller [119], which is

proprietary software used for checking compliance with the laws mentioned in Part II. The alternative

is the Microsoft time library [173], which is about two times faster. The relative slowness of FVTM is

attributed to the interface with the FVTM executable and not with the implementation of the functions

themselves.

11.9 FV Check Range

FV Check Range [7] is a set of tactics to automatically solve true decidable statements with up to

three free variables bounded by a specific primitive integer range. Given a goal with base statement

of type bool and at most three primitive integer variables3 and the bounds on which to check them,

the tactics identify the desired Boolean statement, generate a list with all the primitive integers in the

relevant range, and use vm_compute [117] to confirm that the Boolean statement indeed holds for

every number in range. The implementation of the tactics is simple and done with Ltac [80].

These tactics work rather fast, checking ranges with sizes on the order of 105 in hundredths of

seconds and on the order of 107 in two or three seconds (showing a linear progression) in one of our

machines.
3There is a different tactic for each number of variables to be checked, so adding support for more variables is not as simple

as changing a parameter. It could be easily done by analogy, though.
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We used FV Check Range at several points during the development of FV Time and describe here

only a particular example:

∀ (x : Uint63.int), x < 146097→ h(x)

365
· 365 + h(x)

365 · 4
− h(x)

365 · 100
≤ x,

with h(x) := x− x

1460
+

x

36524
− x

146096
.

(11.1)

Note that the division operation in question is Euclidean division, so it is not always the case that
x
y · y = x.

As expected, we found that using automation was significantly easier and faster than translating

informal proofs. In particular, the translation of our informal proof for (11.1) had 400 lines in Coq and

took a non-trivial amount of time to compile, while the proof using FV Check Range is a one-liner and

takes hundredths of seconds.

Notably, a translation of (11.1) to ssrint integers can be automatically solved with mczify [189],

an extension of micromega designed to work with MathComp numbers. However, it can’t yet be solved

in the realm of binary or primitive integers. This is likely not a fundamental but a practical shortcoming

that could be bridged with some work. Nonetheless, our tactics solve any kind of decidable goals on

primitive integers, not only arithmetical expressions, and thus the scope is different from micromega’s.

Another relevant tactic is interval [171], which solves interval arithmetic goals on real numbers.

It doesn’t seem like it can solve a translation of (11.1) in particular. Even if it could, it would introduce

a significant amount of overhead and unnecessary axioms due to the detour through the (classical)

reals. The other automation tactics mentioned in Section 9.6 are also unable to solve (11.1), at least

to the best of our attempts.
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