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Abstract  

Type 1 Diabetes (T1D) is an autoimmune disease characterized by a 

selective destruction and a progressive loss of the pancreatic β cells. In 

the initial phase of inflammation, known as early insulitis, there is an 

interaction between immune cells and β cells. However, as the disease 

develops, the precise mechanisms leading to β cell death are not fully 

understood. On the other hand, there is an urgent need to develop in 

vitro human tissue models to capture the relevant regulatory responses 

of the cells involved in the early T1D stages. Investigating the gene 

regulatory networks that govern β cell responses during insulitis will 

enable the identification of key molecular pathways leading to β cell 

dysfunction and apoptosis, disentangling the role β cells play in their 

own destruction.  

In the present thesis, I aimed to elucidate the β cell responses to an 

inflammatory environment by developing a new in vitro model, based on 

the co-culture of β cells with CD4+ T cells, to mimic early insulitis. After 

β cell exposure to activated CD4+ T cells, I characterized the cytokine 

profile of the culture milieu and the changes in chromatin landscape and 

gene expression. Cytokine profiling confirmed IFNγ presence and other 

inflammatory cytokines, indicating bidirectional communication between 

immune and β cells. Additionally, I observed significant chromatin 

remodeling coupled with extensive changes in gene expression. I 

identified a subset of new regulatory elements that become active or 

inactive only upon exposure, named Induced (IREs) and Lost (LoREs) 

Regulatory Elements. Comparative analysis revealed unique regulatory 

pathways activated in co-cultured β cells, containing IREs that directly 

overlap with some T1D-risk SNPs. Risk variants overlapping 

inflammatory responsive regulatory elements might disrupt the regular 

β cell response to inflammation, highlighting potential genes implicated 

in disease pathogenesis such as SOCS1. CRISPR activation 

experiments validated the functional impact of an IRE bearing a risk 

variant on SOCS1 gene expression. 

In conclusion, the optimized co-culture model provides valuable insights 

into β cell responses to immune-mediated inflammation, emphasizing 

the importance of studying cell-cell interactions and chromatin dynamics 

in T1D pathogenesis. This approach offers a robust platform for 

identifying potential therapeutic targets for T1D treatment. 



 

 

 

Resum  

La diabetis tipus 1 (T1D) és una malaltia autoimmune caracteritzada per 

la destrucció selectiva de les cèl·lules β pancreàtiques. En la fase inicial 

d'inflamació, coneguda com a insulitis, hi ha una interacció entre les 

cèl·lules immunitàries i les cèl·lules β. No obstant això, els mecanismes 

exactes que condueixen a la mort de les cèl·lules β encara són 

desconeguts. A més, hi ha una necessitat urgent de desenvolupar 

models in vitro per captar les respostes moleculars rellevants més 

rellevants de les cèl·lules implicades en les primeres etapes de la T1D.  

El principal objectiu d’aquesta tesi és aclarir la resposta de les cèl·lules 

β a un entorn inflamatori. Per aconseguir-ho, he desenvolupat un nou 

model in vitro basat en la co-cultivar cèl·lules β amb cèl·lules T CD4+ 

per reproduir la insulitis. Després de l'exposició a les cèl·lules T CD4+ 

activades, he caracteritzat la composició de citoquines del medi de 

cultiu i els canvis en la cromatina i l'expressió gènica. La presència 

d'IFNγ i altres citoquines inflamatòries confirma una comunicació 

bidireccional entre les cèl·lules immunitàries i les cèl·lules β. També hi 

ha una remodelació significativa de la cromatina i canvis en l'expressió 

gènica, caracteritzant elements reguladors induïts (IREs) i elements 

reguladors perduts (LoREs) després de l'exposició. La comparació amb 

altres models in vitro revela vies de regulació específiques activades en 

les cèl·lules β co-cultivades, amb IREs que se superposen amb variants 

genètiques de risc de T1D. Aquestes variants de risc que se superposen 

amb IREs podrien alterar la resposta normal de les cèl·lules β a la 

inflamació, destacant gens potencialment implicats en la patogènesi de 

la malaltia. Experiments amb CRISPR han validat l'impacte funcional 

d'un IRE amb una variant de risc en l'expressió del gen SOCS1. 

En conclusió, el model de co-cultiu presentat proporciona valuoses 

perspectives sobre les respostes de les cèl·lules β a la inflamació, 

subratllant la importància d'estudiar les interaccions cel·lulars i la 

dinàmica de la cromatina en la patogènesi de la T1D. Aquest 

enfocament ofereix una plataforma robusta per identificar possibles 

dianes terapèutiques per al tractament de la T1D.  
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Preamble  

This doctoral thesis was supervised by Dr. Lorenzo Pasquali, Principal 

Investigator of the Endocrine Regulatory Genomics group, at the 

Department of Medicine and Life Sciences of the Universitat Pompeu 

Fabra.  

The results obtained by addressing the objectives of the present thesis 

have been organized in different sections: Introduction, Hypothesis and 

objectives, Materials and methods, Results, Discussion and 

Conclusions.     

Despite advances in understanding the pathophysiological aspects of 

Type 1 diabetes (T1D), the exact mechanisms by which β cells become 

dysfunctional and die remain unclear. One of the main challenges in 

studying T1D is the limited availability of human pancreatic samples at 

the early stages of the disease to study the response of β cells in early 

stages of disease. 

Regarding the content of this study, I have developed a novel co-culture 

model that mimics early insulitis in T1D by exposing human β cells to 

activated CD4+ T cells. This new model enabled a more detailed 

analysis of β cell-specific responses to immune-mediated inflammation 

as well as profiling the complex interactions between immune cells and 

β cells that occur during insulitis. This underscores the importance of 

studying β cell responses within a more physiologically relevant context, 

as it can provide a more comprehensive understanding of the 

mechanisms driving β cell dysfunction and death in T1D. 

The results from the present study provide significant insights into the 

transcriptomic and epigenetic changes that occur in β cells under 

inflammatory stress. By analyzing gene expression and chromatin 

accessibility, I identified numerous regulatory elements and gene 

networks that are activated in response to inflammation. These findings 

highlight the dynamic changes in β cell gene regulation and suggest 

potential pathways that could be targeted to preserve β cell function and 

prevent cell death. 

The broader implications of these findings extend to the uncovering of 

potentially new therapeutic targets. By integrating the data with genetic 

studies, I identified specific regulatory elements that may contribute to 

T1D susceptibility and progression. This knowledge can inform the 
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design of targeted therapies aimed at modulating the immune response 

or enhancing β cell resilience in the face of autoimmune attack. 

In conclusion, my thesis project provides a comprehensive framework 

for studying β cell responses to immune-mediated inflammation, 

bridging the gap between in vitro models and the complex in vivo 

environment of T1D. The insights gained from this work pave the way 

for novel therapeutic approaches and enhance our understanding of the 

genetic and molecular mechanisms underlying T1D pathogenesis. 
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Part I 

 

General Introduction 
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1  

The immune system 

 

The immune system has an essential role of protecting our organism 

from external pathogens to prevent infections and diseases. However, 

this is not the only role fulfilled by the immune system, being a key player 

in development, tissue homeostasis and repair[1]. The immune system 

achieves its functions and ensures system integrity through frequent 

interactions of two distinct compartments: the innate and adaptive 

responses. These are characterized by the speed and specificity of their 

responses, being the former an immediate unspecific defence response 

while the latter is antigen-specific which takes days to develop. Both 

compartments are composed of different cells including white blood cells 

and immune cells, which originate in the bone marrow and migrate to 

peripheral tissues to exert their function, through blood vessels and the 

lymphatic system. There are two main categories of white blood cells: 

the myeloid and lymphoid lineages[2, 3].  

 

1.1 Innate immune response 

The myeloid progenitor gives rise to granulocytes (neutrophils, 

eosinophils and basophils), monocytes/macrophages, mast cells and 

dendritic cells. These cells are key players in innate immunity, a system 

comprising different elements as immune cells and proteins that are 

highly conserved in evolution underscoring their crucial role  in 

survival[2]. The innate immune response is a rapid response by the 

organism to defend against pathogens. However, due to its lack of 

specificity, it can sometime damage normal tissues. The main 

components of innate immune response are: 

• Neutrophils are the main cell players of the innate response, with 

phagocytic activity. Their migration to the site of infection happens 

at early stages of infection or tissue damage, when activated 

macrophages release cytokines to recruit them, and they end up 

killing the organisms in their phagolysosome (membrane-bound 

vesicle with toxic granules). 
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• Macrophages are the mature form of monocytes in the tissues and 

acquire different phenotypes and functions upon activation. In 

general terms, they are in charge of cleaning the site of infection or 

the damage tissue by phagocyting microorganisms or dead cells, 

recruit other immune cell populations and favouring T cell activation 

at the site of inflammation. 

• Dendritic cells are phagocytes specialized in taking up antigens 

and present them for recognition by the lymphocytes in the lymph 

nodes. They represent the direct communication between the innate 

and adaptive responses. 

• Complement refers to a collection of 20 different serum 

glycoproteins that engage in an amplified cascade sequence upon 

activation. This cascade results in the formation of transmembrane 

pores, ultimately leading to the demise of microorganisms through 

osmotic lysis. Normal host cells are protected from this action due to 

expression of inhibitors of these proteins. Moreover, complement 

proteins play additional roles, including the ability to promote 

phagocytosis, enhancement of vascular permeability, and 

chemotactic activity, all of which contribute to bolstering the 

inflammatory response. 

• Natural Killer (NK) cells are known as effector lymphocytes of 

innate immunity. Although they have similar morphology as 

lymphocytes, they do not require antigen-specific activation. In fact, 

these are the only cells, along with certain dendritic cells, from the 

innate immunity that are derived from the lymphoid progenitor. They 

recognize abnormal or stressed cells either when these cells are 

coated with antibodies produced by the adaptive response or when 

the cells lack the MHC I protein on the surface, which is normally 

present in healthy normal host cells. Once activated, the NK cells 

release perforins to make holes in the target cell’s membrane and 

allowing  granzymes to enter and induce apoptosis[4].  

• Cytokines are soluble small molecules that function as 

messengers, transmitting signals from one cell to modulate the 

behaviour of another cell or even its own activity. Cytokines bind to 

membrane receptor and send intracellular signals. The biological 

function of cytokines varies depending on the cytokine and cell 

involved, acting as autocrine, paracrine or endocrine signals. 

- Chemokines are a subgroup of the cytokine family specialized 

in leucocyte migration. These molecules are produced by most 



Introduction | 9 

 

 
 

cells upon proinflammatory stimulus and act as chemotactic 

agents, attracting leucocytes to the site of inflammation. 

- Interleukins are cytokines produced by leucocytes that are 

meant to act on other white blood cells. 

- Interferons are a subfamily of cytokines secreted to interfere 

with viral replication in healthy cells and enhance recognition 

of infected cells (α and β). In contrast, IFNγ is produced only 

by immune cells and acts directly on the immune system to 

activate the inflammatory response. 

In addition to the above mentioned, there are other cells types involved 

in the innate response such as eosinophils, that protect the host from 

parasitic infections and are involved in allergic reactions, or mast cells 

and/or basophils, which enhance the inflammatory response and are 

related to anaphylaxis. In general terms, the innate response is not 

antigen-specific but it is able to recognize patterns associated to 

pathogens to discriminate between self-molecules and external ones. 

However, the response is poorly targeted to only extracellular organisms 

and can eventually lead to collateral tissue damage[2, 3, 5].  

 

1.2 Adaptive immune response 

On the other hand, the lymphoid progenitor is the precursor for 

lymphocytes, mostly B and T cells but also some types of dendritic cells 

and NK cells. B and T lymphocytes belong to the adaptive response, 

which is highly specific but requires several days or even weeks to 

develop fully. Unlike the innate response, the adaptive response 

involves memory, meaning that upon subsequent exposure to the same 

antigen, the body mounts a swifter and more robust reaction[2, 6, 7]. 

This antigen-specific immunity is driven by T and B lymphocytes, 

although other cell populations are also involved: 

• CD4+ T cells are the master regulators of the immune system and 

essential to achieve a regulated and effective immune response. 

They modulate the activation or inhibition of other immune 

populations through different subtypes of CD4+ T cells, including 

the T helper and regulatory CD4+ T cells. CD4+ T helper cells are 

a type of effector T cell that orchestrates the immune response, 

activating cell-mediated immune responses once activated by 

Antigen Presenting cells (APCs). In contrast, regulatory T cells 
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negatively regulate the immune response after infection resolution 

to preserve immunologic tolerance to both self and foreign 

antigens, thereby protecting against immunopathological 

consequences[8]. 

• CD8+ T cells, also known as cytotoxic T cells, are the other type 

of effector T cells. They detect and actively kill infected or abnormal 

cells, such as tumoral cells. They act similar to NK cells, inducing 

apoptosis in the targeted cell. 

• B lymphocytes are the cells that detect free antigens and secrete 

antibodies. These antibodies not only help neutralising toxins or 

microorganisms but also help enhancing the innate immunity. 

These cells also help with antigen processing and presentation to 

activate T lymphocytes. 

Although all immune cells need interaction at different levels with other 

immune cells to get fully activated, it is strictly necessary for T 

lymphocytes to physically interact with other cells that express MHC 

molecules to exert their function. These interactions involve different 

elements (Fig 1): 

• MHC molecules, also known as HLA (Human Leukocyte Antigen) 

in humans, are a family of proteins that bind peptide fragments of 

abnormal proteins within the body, being self or from other 

microorganisms. These proteins display antigens for recognition by 

T cells, facilitating the immune response activation. MHC 

molecules are polygenic and polymorphic, with multiple gene 

variants, resulting in different combination of molecules varying 

between individuals. Additionally, the immune system is able to 

distinguish between self and nonself MHC molecules, activating an 

allogenic response in case of mismatch with the host MHC 

combination. There are two types of MHC molecules, class I and 

class II[3]. 

• TCR is the T cell receptor that recognizes the antigen. It is a 

complex of proteins that contains the TCR heterodimer subunit, 

which recognizes the antigen, and the CD3 molecules, the main 

responsible of transducing the activation signal to the T cell 

nucleus. 

• CD4/CD8 are co-receptors that stabilize the TCR/MHC-antigen 

interaction upon antigen recognition and help with the CD3 signal 

transduction. 
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• Co-stimulatory molecules are receptors on the T cell surface that 

cause activation of the cell only when the TCR is also engaged with 

the MHC. Co-activators are required to avoid anergy or cell death 

upon TCR-MHC interaction. CD28 is one of the main co-

stimulatory receptors in T cells.  

 

In the case of CD8+ T cells, they recognize abnormal endogenous 

antigens presented by host cells in MHC-I molecules and activate the 

cytotoxic attack targeted only to a specific cell. Whereas for CD4+ T 

cells, antigen recognition goes through MHC II antigen presentation only 

by APCs. This is due to the broad effect of CD4+ T cell activation, which 

leads to cytokine production to activate or inhibit a wide range of other 

cells, so the reaction needs to be controlled. Besides the need for 

processing and presenting the antigen, T cells also need the binding of 

coactivators, like CD28, to ensure that the adaptive response is not 

activated by innocuous antigens[2, 9]. In summary, when a CD4+ T cell 

encounters an APC with its antigen, it will first recognize the antigen in 

the MHC class II molecule through its TCR. Simultaneously, the CD4 

molecule in the membrane will contact the MHC class II, identifying the 

APC as a cell from the host, and stabilizing the MHC-TCR interaction. 

This will activate the CD3 subunits leading to signal transduction and T 

cell activation. Additionally, the CD28 molecule on the lymphocyte will 

bind its ligand (B7 molecules) on the membrane of the APC, activating 

and enhancing the signals of the TCR. All these events promote T cell 

activation, leading to proliferation and differentiation into the different 

subtypes(Fig 1)[8]. 
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Figure 1. Immune synapse between CD4+ T cells and APCs to induce 

lymphocyte activation. 

In brief, the immune system comprises a dynamic network of lymphoid 

organs, cells, humoral factors, and cytokines. Its crucial role becomes 

most evident when it malfunctions: underactivity can lead to severe 

infections or tumours, while excessive activity can cause allergies or 

autoimmune diseases, which are the focus of our interest. In this last 

case, the immune system has checkpoints to ensure that autoreactive 

receptors that recognize self-antigens are eliminated, a process called 

tolerance to reduce the risk of autoimmunity. However, due to genetic or 

environmental factors these checkpoints can fail, increasing the risk of 

developing an autoimmune disease like Type 1 Diabetes (T1D). 
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2  

Human pancreatic islets 

 

The pancreas is a gland composed of two distinct portions with different 

functions; the exocrine portion which secretes digestive enzymes and 

constitutes the majority of the organ, and the endocrine part which 

consists of pancreatic islets that produce and release different 

hormones, which represents only 1-2% of the entire pancreas. The 

pancreatic islets or islets of Langerhans are small organs with island-

like structures embedded in the pancreas that play a key role in 

controlling the glucose homeostasis. 

A human pancreas contains approximately one million islets, and 

although islets have shown great variability in size and cell abundance, 

each islet contains around 1,000 cells[10–12]. Regarding their 

composition, islets consist of different types of endocrine cells: 

• β cells (65-80%) are the most common islet cells. β cells produce 

insulin, a hormone with an important role in the metabolism of 

carbohydrates, protein, and fat. Insulin promotes the uptake of 

glucose from peripheral tissues, inhibits glucose release by the 

liver, increases protein uptake in the muscles and prevents the 

release of fats. Beta cells release insulin in response to elevated 

blood glucose levels to counteract it. 

• α cells (15-20%) produce a hormone called glucagon, countering 

insulin. Glucagon stimulates the release of glucose by the liver and 

fatty acids from adipose tissue. Its secretion is triggered in 

response to low blood glucose levels. Once blood glucose levels 

are normal, the release of insulin inhibits the secretion of further 

glucagon. 

• δ cells (3-10%) produce somatostatin, which inhibits insulin and 

glucagon release although its actual role in metabolism is not clear, 

yet. 

• γ cells (PP cells or F cells) (3-5%) produce the pancreatic 

polypeptide (PP), involved in regulating both exocrine and 

endocrine functions of the pancreas. 
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• ε cells (<1%) produce ghrelin, which has a role in appetite and 

adiposity by stimulating food intake, fat deposition and growth 

hormone release. Other functions have been associated to ghrelin 

such as glucose and energy homeostasis, cardioprotection and 

bone metabolism. 

In humans, these cell types are highly organized, with a specific 3D 

tissue architecture, to ensure proper hormone secretion. Human islets 

are highly vascularized and quite heterogeneous in their composition, in 

contrast to rodent islets. While rodent islets show a core of β cells in the 

centre of the islet covered by a mantle of other endocrine cells (Fig 2), 

human islets show a more intermingled distribution of endocrine cells, 

forming trilaminar epithelial plates (Fig 2). Blood vessels surround these 

plates allowing the release of hormones into the blood. This distribution 

facilitates interactions between different β cells and between α and β 

cells[13–15]. 

 

 

Figure 2. Pancreatic islet from mouse and human immunostained for 

different cell types. Immunofluorescent staining of insulin (green), glucagon 

(red), somatostatin (blue). Adapted from Powers and Brissova Research Group 

website (https://www.powersbrissovaresearch.org/projects). 

 

The importance of the endocrine portion of the pancreas primarily 

resides in the central role of insulin and glucagon in energy metabolism. 

Body growth, development and maintenance require an adequate 
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glucose supply, which is especially important for the central nervous 

system. Therefore, the body maintains blood glucose levels within a 

narrow range, which underscore the significance of insulin and glucagon 

in metabolic regulation. The anabolic function of insulin in reducing free 

glucose in the bloodstream and incorporation of amino acids into 

proteins counteracts with the catabolic function of glucagon in a perfectly 

balanced regulation[16, 17].  

Therefore, pancreatic islets are trivial in maintaining glucose 

homeostasis and dysregulation can cause different diseases. Indeed, 

one of the most known and common is diabetes mellitus, which is 

caused by a deficiency in insulin signalling because of a loss of the 

insulin producing beta cells (Type 1 Diabetes) or a relative reduction of 

insulin production/secretion and/or peripheral resistance to its effects 

(Type 2 Diabetes). 
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3  

Type 1 diabetes 

 

Type 1 Diabetes (T1D) is a chronic autoimmune disease that leads to 

the targeted destruction of insulin-producing β cells in the pancreas. The 

immune system recognizes the self-β cells as foreign and activates 

immune mechanisms to attack and eliminate them. As a consequence, 

patients face chronic insulin deficiency and must rely on insulin 

injections for life with a reduced quality of life and potential long-term 

complications[18]. The majority of T1D diagnoses occur when patients 

experience a life-threatening episode of ketoacidosis, which typically 

follows the common symptoms of T1D onset: increased urination, 

increased appetite and weight loss, persistent thirst, and fatigue. 

Besides the complications at the time of diagnosis, patients might also 

present long-term complications such as micro- and macrovascular 

defects along with hypoglycaemic episodes depending on long-term 

glycaemic management[19]. 

Historically, T1D has been also known as juvenile diabetes because it is 

usually diagnosed in children or young adults (age <20 years). Recent 

reports have shown that there is also an adult-onset form of T1D (age 

≥20 years), often misdiagnosed as Type 2 Diabetes. Key differences 

exist between these two forms of T1D at genetic, metabolic and immune 

levels that make the adult form less aggressive, but many of these 

differences are still not well understood, yet[20, 21].  

 

3.1 Epidemiology 

Assessing the prevalence, incidence and associated mortality of T1D 

worldwide becomes difficult but there is an estimate prevalence of 8.5 

million T1D patients worldwide in 2021. It represents about 10% of total 

diabetes cases and evidence suggest that the prevalence and incidence 

continue to rise globally. The top ten countries with highest T1D 

prevalence count for 60% of global cases, including USA, UK, Canada, 

China or Spain, among others. Only in Spain, the estimated prevalence 

of T1D in 2021 was about 200,000 patients all ages[22–24]. 
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The incidence of T1D varies by geographic region and country (Fig 3). 

T1D represents the most common form of diabetes in patients ≤ 19 

years, accounting for around 70% of new diagnosis of diabetes. The 

estimated incidence of T1D in children and young adults (<20 years) 

worldwide was > 350,000 new cases in 2021[25]. For USA and Spain, 

the incidence was estimated in >18,000 and 1,600 new patients per 

year, respectively[26].The incidence of adult-onset T1D is not that well 

characterized since historically T1D has been attributed to be a 

childhood-onset disease and the challenges to distinguish the adult-

onset form from T2D. Recent reports point to a high incidence and 

prevalence of the adult-onset T1D, higher than the childhood-onset 

form, and a high percentage of diagnoses of total T1D occur during 

adulthood [21, 22, 27, 28]. Of note, Sardinian and Finnish populations 

present the highest T1D incidence rate with >36 cases/100,000 children 

per year [29]. 

In 2021, it was estimated that about 175,000 deaths worldwide were 

caused by T1D across all ages due to various complications. For 

individuals younger than 25 years, the primary cause of death was due 

to non-diagnosis. It is estimated that the prevalence of T1D will increase 

by 66% globally by 2040, also because of an improvement on the 

diagnosis both of young-onset and adult-onset forms[22]. 

 

Figure 3. Estimated worldwide incidence of Type 1 Diabetes in 2021. 

Estimated new T1D cases per country in children (age <20 years) in 2021. Data 

and graph extracted from the International Diabetes Federation Diabetes Atlas 

(https://diabetesatlas.org/data/en/indicators/10/) 

 

https://diabetesatlas.org/data/en/indicators/10/
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3.2 Disease pathogenesis 

T1D is a chronic disease that follows a continuous progression since the 

trigger of the autoimmune attack to the appearance of the clinical 

symptoms. Thus, T1D pathogenic process starts long before, from 

months to even decades, the clinical onset and diagnosis. This 

asynchronicity between the trigger of the autoimmune attack on β cells 

and the clinical diagnosis makes the pathogenesis of T1D complex and 

difficult to study.  

T1D disease pathogenesis has been divided in three stages (Fig 4): 

• Stage 1 is defined by the presence of β cell autoimmunity. 

Detection of more than one autoantibody (AAb) against insulin 

(IAA), glutamic acid decarboxylase GAD65 or GAD67 (GADA), IA-

2/IA-2β (IA-2A), and/or ZnT8 (ZnT8A) means that the autoimmune 

attack has already started. However, the effect on insulin 

production is not critical yet and the patient preserves glycaemic 

control. 

• Stage 2 is characterized by the onset of dysglycaemia or glucose 

intolerance. At this stage, the blood glucose levels become 

abnormal due to the increase of β cell loss. 

• Stage 3 is defined by the clinical presentation of the disease. As a 

consequence of a significant β cell loss, the patient is no longer 

able to regulate glucose homeostasis. Symptoms of 

hyperglycaemia (polyuria, polydipsia, weight loss, blurred vision 

and fatigue) might be accompanied with diabetic ketoacidosis. 

Stage 1 and 2 are still presymptomatic while stage 3 often coincides with 

the clinical diagnosis. This classification was adopted to standardize 

T1D diagnosis and facilitate the study of the pathogenesis at the 

different stages as well as for risk assessment, clinical trials and 

precision medicine[19, 30]. 

It is believed that one or more environmental factors such as viral 

infection, diet or toxins could trigger the autoimmune attack against β 

cells. The initial immune response to the trigger might lead to the 

activation of self-reactive immune cells leading to T1D pathogenesis.  

Islet autoantibodies detection has been a really useful tool not only to 

stratify and diagnose T1D patients but also to develop predictive models 

to determine individuals at risk of T1D. Additionally they can be used as 
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markers of prognosis in islet transplantation or markers of treatment 

efficacy in clinical trials.  

For children at risk, seroconversion can present two scenarios: a single 

autoantibody, often IAA or GADA, or, more commonly, multiple 

autoantibodies. Additionally, quantification of AAbs at time of 

seroconversion has been associated with risk of developing T1D. Those 

patients that show higher levels of IAA or IA-2A are at greater risk of 

finally developing T1D symptoms compared to patients with lower levels 

of the same AAbs. Finally, early age of seroconversion also correlates 

with increased T1D risk[30, 31]. 

 

 

Figure 4. Schematic view of T1D progression. Adapted from Powers, AC. 

2021[32]. 

 

Although AAbs represent a powerful biomarker tool to study the disease 

progression, their active role in T1D pathogenesis is not clear, yet. This 

is exemplified by the fact that having ≥ 2 AAbs is a determinant for T1D 

clinical progression, yet not all individuals at risk develop the 

disease[33]. Actually, T1D is considered a T-cell mediated disease while 

it is not yet clear whether the AAbs production has a functional role in 

the disease pathogenesis. 
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3.3 Inflammation in T1D 

The inflammation within the pancreatic islets is called insulitis and it is 

one of the key features of T1D. T1D is heterogeneous, which translates 

into a very diverse infiltration process, both in the number of affected 

islets and the distribution of preserved β cell mass throughout the 

pancreas. 

Several observations across different models of T1D, insulitis have been 

categorized into three distinct stages[34, 35]: 

• Induction of the immune response. It is the first stage of 

inflammation corresponding to the activation of the innate 

immunity, likely in response to molecules from external 

microorganisms. This initial activation of the immune response 

is typically followed by an increase of the levels of interferons 

(IFNs). 

• Amplification of the immune response in early stages of 

insulitis. The increase in IFNs causes cascade of autocrine and 

paracrine responses in the β cell that result in attraction of other 

immune cells. In this transition from innate immunity to an 

adaptive response, cytokines and chemokines are essential 

players that will determine the dialogue established between β 

cells and immune cells. As an example, the levels of certain 

chemokines (CXCL10, CCL3, CCL4, CCL2 or CCL7, among 

others) are increased in the serum of T1D patients. However, 

most of the events in early insulitis take place within the islet so 

examination of peripheral cells or blood samples usually is not 

entirely representative of disease pathogenesis. 

• Maintenance or resolution. It consists on stabilization and 

maintenance of inflammation or its resolution. This stage is 

mainly dominated by the adaptive immune system. In the case 

of resolution, mild insulitis is disrupted and β cell function is 

restored. If the loop of chemokine production and immune cell 

activation does not stop, it will likely evolve to progressive 

accumulation of immune cells within the islet.  

In healthy conditions the induction and amplification phases of insulitis 

are meant to eradicate an infection event. Each of these stages can be 

resolved, impeding T1D progression. However, in at risk T1D 

individuals, these mechanisms might malfunction. Inflammation may be 

enhanced, and there could be a reduced capacity to resolve each stage 
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of the inflammatory status, eventually leading to β cell loss and the 

induced exposure of autoantigens. Indeed, β cell death seems to 

happen simultaneously to strong inflammation in the islet. 

 

3.4 Aetiology of T1D 

The complexity and high heterogeneity of T1D limits our understanding 

of its aetiology. It is known that T1D development is influenced by many 

different known and unknown environmental factors and certain genetic 

predisposition. All these factors contribute to a multifactorial interplay 

that ultimately trigger an aggressive autoimmune attack against 

pancreatic β cells and clinical onset of the disease. Yet, our knowledge 

on the genetic and environmental mechanisms that lead to T1D and 

whether these factors serve as triggers, facilitate, or exacerbate the 

autoimmune reaction remains limited. 

 

3.4.1 Environmental factors 

In the past decades, the rapid increase in the incidence of T1D and the 

observation that immigrants tend to acquire a T1D risk similar to the 

native ethnicity[36], support the idea that different environmental factors 

are likely involved in T1D pathology. Many different factors have been 

shown to influence T1D pathogenesis, some of them have been strongly 

implicated with the risk of developing T1D.  

Viral infections have been studied for decades since several evidence 

point to enteroviral, rubella and mumps infections as a key 

environmental factor. Most recent studies have shown that T1D patients 

show increased levels viral RNA and anti-enteroviral antibodies months 

before seroconversion and some studies reported detectable infections 

in the pancreas and islets of recently diagnosed patients[37, 38]. Many 

other circumstantial evidence supports the idea that a viral infection 

might trigger islet autoimmunity. For example, persistent infection of β 

cells with CVB4 affects insulin maturation, causing the release of 

antigenic forms of proinsulin and altering β cell functions[39]. 

Enteroviruses are also associated with β cell damage by cytolysis during 

viral replication and increased antigen presentation in response to 

infection[40]. Additionally, the genetic predisposition to T1D has been in 

part associated with β cell response to enteroviral infection[19, 41]. 
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Nevertheless, a single viral infection is not likely to trigger autoimmunity 

alone and probably acts simultaneously with other disadvantageous 

factors[19, 40, 41]. 

Gut microbiome has also been the focus of many studies since the gut 

microbiota plays an important part in the development of innate and 

adaptive immunity and in maintaining the mucosal barrier. Their actual 

role in T1D pathogenesis or whether it is a risk or protective factor is not 

fully understood. It will likely depend on the microbiome composition and 

the type of mediators produced to facilitate the crosstalk between them 

and the host. In T1D patients, there is a dysbiosis (reduced diversity) of 

the microbiota, with an increase of Gram-negative bacteria that produce 

LPS, a proinflammatory compound. This dysbiosis can have other 

effects such as increased intestinal permeability and microbial 

components and exogenous antigens might reach the bloodstream 

promoting inflammation and enhancing autoimmunity[19, 42]. 

Nutritional factors such as diet are also very important. Diet is a key 

determinant of microbiome composition, and therefore stimulating an 

appropriate immune response. For example, cow milk, introduction of 

cereals and eggs or decreased vitamin D intake have been attributed to 

a higher risk of developing T1D. On the other hand, breastfeeding, 

vitamin D, nicotinamide and other vitamins have been linked to T1D risk 

protection. Indeed, exposure to maternal microbiome during birth and 

breastfeeding are of upmost importance during the establishment of 

mucosal immunity of newborns[19, 43, 44]. Obesity might also be 

related to T1D risk, especially in those children with reduced genetic 

risk[45]. 

 

3.4.2 Genetic susceptibility 

Reflecting its multifactorial origin, T1D does not follow a Mendelian 

inheritance pattern. T1D has a significant hereditary component 

evidenced by up to 70% twin concordance[46] and an approximate 8% 

risk among siblings[47, 48]. Likewise, relatives of T1D patients show a 

15 times higher risk of developing the disease[49]. 

Genome-Wide Association Study is a method used to identify 

associations between single-nucleotide polymorphisms (SNPs) 

common in the population and particular traits or diseases. For GWAS, 

large cohorts of healthy controls and patients are compared to identify 



Introduction | 23 

 

 
 

genetic variants that are more common in people with a particular trait 

or disease. Thus, detection of genetic association signals by GWAS 

generates a set of common and low-impact risk variants associated to 

the disease. In contrast to monogenic diseases, the link between these 

associations and causal genes is not direct and the pathway to 

personalized medicine becomes more complex. However, GWAS brings 

the opportunity to study and understand pathogenic molecular 

mechanisms and highlight important genes in the development of T1D. 

As for other multifactorial traits, collection of all these T1D-associated 

variants is useful to predict individuals at risk of the disease. To do so, 

polygenic risk scores (PRS) are used to determine the overall risk of 

certain individual. According to its contribution and direction of effect, 

each variant associated to disease has a specific value. Thus, PRS take 

into account the inherited combination of genetic variants associated to 

T1D in a given individual to calculate the predisposition to finally develop 

the disease. This strategy offers the possibility to develop surveillance 

protocols for at risk individuals and even selection of candidates for 

clinical trials focused on early stages of autoimmunity[50–52]. 

Importantly, most genetic studies are conducted in specific ethnic 

populations, usually with European ancestry, so the same PRS have 

limited transferability across different and underrepresented 

populations[47, 53]. 

GWAS studies have unveiled more than 60 different regions associated 

with T1D risk, which explain nearly 80% of disease heritability[54, 55]. 

These regions contain SNPs that can be classified into the HLA-

associated variants and other non-HLA variants with lower impact. 

 

3.4.2.1 HLA loci 

The HLA-associated variants were the first ones associated to T1D risk 

and carry the highest impact on the risk of developing the disease[56, 

57]. As already explained in the first section, HLA molecules are the 

Major Histocompatibility Complex (MHC) in humans. These molecules 

are highly polygenic and polymorphic, with different gene variants, so 

the combination of molecules varies a lot between individuals.  

HLA proteins are key for antigen presentation to the immune system and 

can be classified in two main types of molecules: 
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• MHC class I are the proteins in charge of presenting 

endogenous antigens in host cells to be recognized by CD8+ T 

cells. Each individual presents three classical HLA I proteins: 

HLA-A, HLA-B and HLA-C. Non-classical ones are HLA-E, HLA-

F and HLA-G. 

• MHC class II are usually expressed in antigen-presenting cells 

to present exogenous phagocytosed proteins and activate the 

adaptive immune response through CD4+ T cells (section 1.2). 

Five different genes compose this subgroup: HLA-DP,HLA-DQ, 

HLA-DR, HLA-DM, and HLA-DO, although the last two ones are 

not usually profiled to determine the haplotype because they are 

not highly polymorphic 

There is a third class, MHC class III, that is composed of proteins related 

to the complement system with important functions in the innate immune 

response (section 1.1). 

The haplotype is the combination of HLA antigens inherited by an 

individual from one parent. As mentioned, there is a vast number of 

alleles for each HLA gene although this does not translate into a huge 

variety of different haplotypes. This is due to linkage disequilibrium 

events, a phenomenon in which two or more alleles tend to occur 

together more than expected rather than following independent 

segregating. 

In T1D, HLA genes are strongly associated with risk and contributing to 

about 50% of the total heritability[48, 58]. However, not all HLA 

molecules show the same strength or direction in this association. 

Therefore, the patient risk is defined by the haplotype combination 

inherited from both parents. 

The major contribution to the risk comes from HLA class II and almost 

all T1D cases, around 90%, exhibit HLA class II risk haplotypes. The 

variants with strongest association are located in the highly polymorphic 

pocket sites of the DQ and DR molecules. It is believed that the different 

polymorphisms can affect the affinity of the HLA for specific peptides or 

the generation of cross-reactive antigens, when two different peptides 

can be recognized by the same TCR. The most common associated 

haplotypes vary between different populations. As an example, in the 

Caucasian population, the DR4/DQ8 and DR3/DQ2 molecules are the 

most common haplotypes conferring susceptibility, specifically the 

DQ2/DQ8 show higher risk of T1D. In contrast, another association is 
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the DR1501-DQ6 haplotype, linked to a protective effect owing to a 

higher frequency of islet-specific T regulatory cells[19, 47]. 

In addition, certain HLA class II haplotypes have also been associated 

with the age of seroconversion or the appearance of specific 

autoantibodies. For instance, the DR4/DQ8 haplotype is linked to the 

IAA as first autoantibody at seroconversion, while the DR3/DQ2 is 

associated with the GADA[59, 60]. However, HLA II haplotypes have not 

been associated with other pathological traits such as age of onset or 

C-peptide loss[61]. 

Besides HLA class II, HLA class I genes, specifically HLA-A and HLA-

B, have also been genetically associated with T1D risk, although with 

relatively modest effects. It is suggested that these HLA I risk haplotypes 

impact recognition and destruction of β cells. For example, HLA-A*24 

allele is linked to lower residual β cell function, likely due to an increased 

immune-mediated destruction[57, 62]. Considering the nature and 

function of HLA class I proteins, these variants are likely influencing late 

stages of T1D pathogenesis, when an autoimmunity process is already 

in place. 

 

3.4.2.2 Non-HLA loci 

The other half heritability in T1D is explained by many other signals 

scattered across the genome that (with the relevant exception of two loci 

namely INS and PTPN22) present lower individual impact on the overall 

risk. This makes the detection of these loci more difficult although recent 

advances in DNA sequencing and powerful GWAS have help identifying 

many new associated signals. 

The insulin locus (INS) was the first non-HLA region detected through 

small candidate gene association studies and represents the second 

region with strongest risk association, accounting for 10% of T1D 

susceptibility. The variants are clustered in the 5’ upstream section of 

the gene and most of the signal comes from the variable number of 

tandem repeats region (INS-VNTR). Alleles with shorter sequences are 

associated with increased risk, altering (pro)insulin expression in the 

thymus and affecting the self-tolerance immune mechanisms. In 

contrast, long alleles are associated with a protective effect due to an 

opposite role thus enhancing central immune tolerance[63, 64]. 



26 | Introduction 

 

 

The other locus with strongest association signal, map to the PTPN22 

gene, which encodes a negative regulator of T cell receptor (TCR) 

signaling. Other relevant non-HLA T1D-associated loci include the 

CTLA4 locus, a negative regulator of CD8+ T cell function, the 

interleukin 2 receptor alpha (IL2RA), ubiquitin-associated and SH3 

domain-containing protein A (UBASH3A) and interferon-induced 

helicase c domain-containing protein 1 (IFIH1)[60, 65, 66]. Table 1 

provides a list of potential genes that have been associated with T1D 

pathogenesis. 

The use of GWAS is crucial for uncovering the genetic background of 

T1D and it has facilitated the discovery of new non-HLA regions linked 

to T1D risk. GWAS results offer valuable insights into the molecular 

mechanisms driving the disease pathogenesis. However, GWAS data is 

its interpretation is challenging. The detection of causative risk variants 

within the genetic signal of association is difficult due to linkage 

disequilibrium events. Additionally, assessing the individual impact of 

each the disease risk and understanding the underlying molecular 

mechanisms can be complicated by the fact that most GWAS-

associated variants lay in non-coding parts of the genome, likely 

affecting gene regulatory networks rather than the gene code[67]. 

Finally, the ultimate goal is twofold: to translate the genetic signals 

associated with disease risk into precision medicine for T1D prediction 

and to apply the understanding of molecular mechanisms to target 

treatment for prevention or treatment[53]. 

Since most risk variants fall in the non-coding genome[67], additional 

efforts are needed to understand the gene regulatory pathways affected. 

Nonetheless, the gene regulatory landscape is highly dynamic, being 

specific for each cell type, and cell state. This implies knowledge of not 

only the regulatory networks active in each tissue or cell population 

implicated in disease but also how these regulatory networks may 

change upon disease development. Furthermore, associating non-

coding variants to their respective gene targets requires a deeper 

understanding of tissue-specific and state-specific enhancer-promoter 

interactions. Addressing these challenges will improve our 

understanding of the mechanisms driving T1D pathogenesis.  

Different studies have conducted co-localization analysis of T1D 

variants and regulatory elements active in distinct cell populations with 

the aim of uncovering the cell population and cell state capturing T1D 
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associated signals and their potential target genes [66, 68]. Recent 

association studies have focused on linking detected genetic signals 

with regulatory maps from immune and pancreatic cell types[69]. Early 

association studies [70–72] mapped T1D risk variants to enhancers 

active in different immune cell populations such as T cells, thymus and 

B cells. T1D risk variants have been primarily reported to be enriched in 

resting and stimulation-responsive T cell enhancers including the 

detection of a subtle enrichment in enhancers specifically active in 

regular pancreatic islet [71, 73]. Overall, these studies reported over 50 

different non-HLA loci with a candidate gene assigned using co-

localization and Quantitative trait loci (QTL) approaches. 

The latest GWAS study [74], combined a large cohort of T1D patients 

with regulatory maps charted in pancreatic and immune tissues and 

obtained at the single-cell level. The increase in sample size and the 

use of single cell technology to map enabled the authors not only to 

confirm the enrichment of T1D-associated variants in T cell enhancers 

but also to identify specific enrichment in regulatory elements active in 

non-endocrine populations of acinar and ductal cells. Notably, the 

exocrine active enhancer bearing risk variants were found to be 

associated with genes specifically expressed in those populations, such 

as the CFTR gene. This was the first study linking T1D GWAS genetic 

risk to the exocrine portion of the pancreas. 

Finally, the different genetic association between T1D and T2D has 

always been under study since β cells show a partially shared 

phenotype. Newer studies found several shared risk pathways or genes 

that interact to modulate islet functions and lead to β cell dysfunction in 

disease[19, 75, 76].  

None of these studies linking T1D genetic risk with regulatory maps 

charted in disease-related tissues in basal conditions, captured 

enrichment of T1D-risk variants in pancreatic islet enhancers. These 

findings are supported by other studies showing that T2D only (and not 

T1D) risk variants are enriched in pancreatic islet enhancers[77]. Of note 

the studies above mentioned only explored unchallenged regulatory 

maps and did not include disease-relevant states. Increasing genetic 

evidence points to the implication of β cell in the predisposition to T1D 

[78, 79] which will be further discussed in section 6.  
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Candidate gene Gene function 

Immune-related 

CCR5 
Involved in T(h) development and chemokine-induced 
signalling 

CD226 
Modulates thymic T cell selection (immune tolerance) 
Involved in effector CD8+ T cell activation and function 
Reduced functions of Tregs 

CD69 
Participates in lymphocyte activation and limits the 
inflammatory response 
Linked to the signalling of NK cells 

CTLA4 
Controls the proliferation of Tregs in the periphery and 
regulates pancreas autoimmunity 

IFIH1 
Mediates the response to virus by innate immune system, 
inducing interferon production 
Involved in the β cell response to viral dsRNA 

IKZF1 Regulation of immune cell development 

IL2/IL21 
Implicated in T(h) cell differentiation and inflammatory 
response 

IL27 Modulates T cell subsets, regulating inflammatory process 

IL2RA 
Receptor of IL-2, the main cytokine involved in T cell function. 
Variants cause different sensitivities to IL2 Potentially alters 
the balance between Tregs and Teffs 

IL7R Involvement in antigen binding, Ig production, and cytotoxicity 

PRKCQ 
Involved in T cell function, apoptosis and the innate immune 
response 

PTPN22 
Participates in TCR signalling pathway and central tolerance 
pathways 

UBASH3A 
Downregulates the NF-kB signalling pathway upon TCR 
stimulation, reducing the IL2 expression 
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Other genes 

BACH2 
Regulates proinflammatory cytokine-induced apoptosis in 
pancreatic β cells 

C1QTNF6 
Inflammation-related gene linked to the pathogenesis of 
tumors and arthritis, involved in proliferation and apoptosis 
regulation 

CLEC16A 
Regulates mitochondrial quality control with a putative 
involvement in β cell fragility 

CTSH 
Regulates cytokine-signalling inside β cells and proapoptotic 
signal transduction 
Protects from immune-mediated damage 

ERBB3 
Modulates antigen presentation and cytokine-induced β cell 
apoptosis 

GLIS3 
Involved in the generation of β cells, insulin expression, 
maintenance of β cell functions and mass 
It also shows antiapoptotic effects 

HIP14 Regulates β cell apoptosis and insulin secretion 

NRIR 
Functional lncRNA likely acting as a negative regulator of 
interferon response 

PTPN2 
Induces β cell apoptosis due to increased local levels of 
interferon 

SH2B3 Growth factor and negative regulator of cytokine signalling 

STX4 

Associated with insulin secretion 
Downregulates the expression of chemokine genes in 
inflammation 
Decreases apoptosis in pancreatic islets by reducing the 
translocation and activation of NF-kB 

TASP1 
Important for proper HOX gene expression, essential for MLL 
protein cleavage 

TNFAIP3 
Downregulates the intrinsic apoptotic pathway 
Regulates the expression of ZnT8 
Essential for insulin production and secretion 
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TYK2 

Regulates the proapoptotic effects of cytokines inside β cells 
Mediates interferon response in viral infections 
Mediates the immune reaction of different subtypes ofCD4+ T 
cells 

 

Table 1. Selection of genes associated to T1D and their putative roles in 

immune or pancreatic pathways. HLA and INS loci are not included in the 

table. Adapted from Zajec, A. et al 2022[19]. 

 

 

3.5 Current therapies for T1D 

The current gold standard treatment for T1D is the exogenous 

administration of insulin and lifestyle adjustments, which include regular 

exercise and a low-carbohydrate diet. Strict glycaemic control using 

insulin therapy can prevent ketoacidosis, delays the progression of 

hyperglycaemia-related complications and lower patient’s mortality[80]. 

This treatment is focused on substituting the missing endogenous 

insulin and represents the only effective treatment for patients with no 

alternative that actually cures the disease. However, risk of severe 

hypoglycaemia episodes represents the major adverse effect of insulin 

treatment as maintaining good metabolic control requires continuous 

glucose monitoring[81, 82]. Many of the advances in T1D clinical care 

come from development of new devices to administer insulin or 

accurately measure blood glucose levels. Nevertheless, none of the 

current strategies on insulin administration avoid long-term 

complications so other alternatives have been explored to develop a 

treatment to stop or slow down the autoimmune attack. Nonetheless, 

the seek of effective treatments for T1D is extremely challenging 

especially due to the heterogeneity in both aetiology and disease 

pathogenesis.  

Once the autoimmune nature of T1D was clarified, the focus for 

therapeutic efforts have been directed towards drugs designed to disrupt 

or modulate the autoimmune response with the aim of preserving the β 

cell mass. Numerous clinical trials involving the use of a wide range of 

immunosuppressive agents have been conducted over the years but 

with limited success. Most of the trials achieved a delay on onset or 
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progression of disease but only one was successful enough to be 

approved by the FDA for health care use. Teplizumab, a monoclonal 

antibody anti-CD3, delays the progression of type 1 diabetes and its 

onset in adults and children over 8 years old with stage 2 (pre-

symptomatic) disease. It is the first drug approved for delaying the onset 

of any autoimmune disease before clinical symptoms appear[83, 84]. 

Although many reasons could account for the unfulfilled aim in 

immunotherapies, the main conclusion to highlight is the lack of 

complete understanding of T1D pathogenesis[85, 86]. Additionally, 

immunotherapies should be addressed for presymptomatic patients 

since most of the β cell mass is lost by the time of diagnosis. 

Alternatively, transplantation of pancreas or islets from humans 

represents an alternative that has been proven successful in providing 

insulin independence in 70% of transplanted patients. However, a 

number of challenges limit the clinical implementation such asthe 

scarcity of donors and the significant side effects of immunosuppressors 

to protect the transplanted tissue. Xenotransplantation of islets from pigs 

has been explored and proven partially successful although with great 

limitations, too[87, 88]. 

The use of stem cells (SC), either human embryonic stem cells (hESCs) 

or induced pluripotent stem cells (iPSCs), has gained support in the last 

few years as it represents another alternative to human islet supply. 

Both sources of stem cells become a source to generate new β cells 

which can be transplanted into T1D patients. The islet-like organoids 

obtained contain functional glucose responsive insulin-producing cells. 

While the use of hESCs is ethically more controversial, the use of 

patient-specific iPSC-derived β cells is a promising tool for allogenic 

transplantation that can also prevent allograft rejection. When combined 

with genome editing techniques for gene correction is a promising 

strategy for T1D treatment. 

Human islet isolation and post-transplantation protocols have been 

optimized very carefully in the past decades to improve effectiveness. 

However, there are still limitations, one of them being the survival of islet 

graft after transplantation. One promising technique is the encapsulation 

of islets before transplantation to physically protect them from the 

immune response of the host and, thus, avoid the need for 

immunosuppressors for life.  
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In 2021, Vertex Pharmaceuticals reported the results of first clinical trial 

of iPSC-derived islet transplantation (VX-880). The islets were 

transplanted into the liver of patients with no insulin production previous 

to the transplant and post-transplantation treatment included with 

immunosuppressant drugs. Transplanted patients showed improved 

levels of insulin production and glucose homeostasis, with even some 

patients able to be completely independent from exogenous insulin 

administration. Although still in early stages, research data suggests 

that iPSC-derived islets are a promising and potentially groundbreaking 

treatment for type 1 diabetes. 

Vertex is also running another clinical trial using the same islets but 

encapsulated (VX-264). The company is also running preclinical studies 

combining the iPSC-derived islets with gene editing techniques to 

modify the islets and “hide” them from the immune system[89]. Both 

strategies focus on optimizing the protection of the implanted islet cells 

from the immune system as an alternative to immunosuppressant drugs. 

In summary, many promising advances in T1D treatment have emerged 

over the past decades, a deeper understanding of the complex interplay 

between environment, genetic predisposition and immune dysregulation 

underlying T1D is essential for the successful clinical application of 

these strategies. A greater understanding of the precise mechanisms of 

disease progression will enable identification of new pathways relevant 

to the autoimmune attack and β cell death which can be modulated in 

SC-derived islets for cell replacement therapy. 
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4  

Cells populations involved in T1D 

 

4.1 T1D and the immune system 

Being T1D an autoimmune disease, the immune system plays a crucial 

role in the pathophysiology of the disease. Decades ago, it was 

determined that the primary cause of beta cell demise is the immune 

attack by CD4+ and CD8+ T cells. T1D patients are believed to inherit 

an immune system that is genetically predisposed to recognize β cell 

antigens[90, 91]. The role of autoreactive T cells in this disease has 

been widely studied resulting in histological evidence of lymphocyte 

infiltration in the islets of T1D patients.  

T1D has strong genetic association with HLA class II genes and HLA 

class I genes, along with other genes related to the maturation and 

control of the immune system. In fact, HLA associated variants show the 

highest impact on the risk of developing T1D with some haplotypes 

clearly associated with increased or reduced risk of disease. On the 

other hand, several pathways controlled by genes associated to T1D 

include those implicated in the establishment of central immune 

tolerance, in charge of reducing self-reactive T cells, or CD4+ T 

regulatory cell stability and function, which ensure peripheral tolerance. 

Diverse studies have found that peripheral Tregs for T1D antigens are 

found at similar frequency in both patients and controls but with reduced 

function in T1D[79, 92, 93].  

Other immune cells have also been described to infiltrate the human 

islet in the context of T1D, such as B cells or NK cells, but their functions 

and interactions with other cell populations in disease progression are 

not well understood. Dendritic cells and macrophages are well defined 

as core components of human insulitis since they have an active role in 

connecting the innate and adaptive response, although their altered 

phenotypes and dysfunction in this context is still under study[91]. 

Additionally, macrophages have been the focus of several studies aimed 

at characterizing the early stages of T1D due to their role in releasing 

proinflammatory cytokines in response to β cell antigens that, in turn, 



34 | Introduction 

 

 

activate both the adaptive response and the β cell stress phenotype[79, 

94]. 

In summary, it is clear that CD4+ and CD8+ T cells have a very active 

and essential role in the T1D. Self-reactive effector T cells infiltrate the 

pancreatic islets, with CD4+ lymphocytes orchestrating the immune 

attack and the CD8+ encompassing the direct killing of β cells. 

Experiments on mice demonstrated that β cell destruction in T1D 

requires the activation of both CD4+ and CD8+ effector T cell 

populations; importantly, independent activation of either population 

alone was insufficient to induce T1D[95]. On the other site, dysfunction 

of CD4+ T reg cells also seems to be a key factor as it was observed 

that in T1D, an effective suppression of self-reactive effector T cells 

cannot be achieved[96]. On the same line, cancer patients treated with 

immune checkpoint inhibitors, interfering with peripheral tolerance 

pathways, are at risk of developing an acute form of T1D[79, 96, 97]. 

Additionally, other immune cell populations, such as NK cells, B cells 

and dendritic/APC cells, are found to infiltrate islets of T1D patients 

although their roles and dysfunction in disease progression is not 

completely defined yet[96]. 

The immune system in T1D has been studied for decades, however the 

factors driving islet immune infiltration still remain poorly understood. In 

fact, it has been reported that pre-(pro)insulin reactive CD8+ T cells are 

present in the pancreas of healthy donors although at lower levels 

compared to T1D patients[98] and that autoreactive T cells are part of a 

normal T cell repertoire in healthy individuals[79, 91, 96].  These findings 

depict the complexity in understanding the role of immune cells in the 

pathogenesis of T1D and their interactions with the target β cells in the 

pancreatic islets. Thus, justifying the current efforts to investigate other 

cell populations besides those composing the immune system, 

potentially involved in the development of the disease. 

 

4.2 Pancreatic cell populations 

In last decades numerous pieces of evidence have supported the 

concept that the immune system is not solely responsible for T1D. 

Instead, β cells could also actively contribute to disease progression. 

The hypothesis that β cells contribute to their own demise was first 

proposed in the late 80s[99]. Studies analysing pancreas from T1D 
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donors show that β cells acquire a phenotype in response to stress 

characterized by increased endoplasmic reticulum (ER) stress and 

expression of unfolded protein response (UPR) markers while trying to 

restore cellular homeostasis[19, 79, 100, 101].  

Additionally, it was shown that more than 80% of T1D-related candidate 

genes are expressed in β cells. Likewise, increasing genetic-based 

evidence also highlights the potential and important role of β cells in T1D 

development[19, 102]. For example, novel risk genes involved in the 

progression from islet autoimmunity to clinical onset are involved in 

interferon signalling in β cells in response to viral infections[19]. 

Activation of all the response pathways help the β cell cope with 

environmental stimuli but, due to their ability to constantly produce large 

amounts of insulin, they are inherently very sensitive to stress. If the 

proinflammatory stimulus becomes constant, it might eventually lead to 

β cell death[103–105]. A constant proinflammatory stimulus disrupts the 

activity of β cells, mainly based on insulin synthesis and release[106, 

107]. Specifically, the prolonged inflammatory context can induce the 

loss of β cell identity, decreasing expression of key β cell marker genes, 

and loss of insulin production[34, 108]. Moreover, the coping 

mechanisms of β cells in insulitis might participate in the amplification of 

the immune attack and its own destruction. In fact, exposure to a 

proinflammatory environment induces expression of HLA class I and 

class II molecules, which in combination with presentation of aberrant 

antigens (neo-antigens) is now a current research focus of T1D 

pathogenesis[109–112]. Many altered processes contribute to the 

increased diversity in β cell neo-antigens such as alternative splicing 

events in gene transcription, higher error rate in mRNA translation into 

proteins or increased deposition of post-translational modifications to 

proteins[19, 79, 103, 113]. 

These neo-antigens can also be released into the environment as 

peptides or proteins which will be processed by APCs, exacerbating the 

immune activation. Over-expression of HLA class II molecules may also 

aggravate the immune response since β cells can themselves act as 

APCs. β cells also activate other pathways related to immune regulation 

such as overexpression and secretion of CXCL10, a chemokine with a 

potent role in T cell attraction, and other cytokines/chemokines. 

Other pancreatic cell populations have also been studied, especially in 

primary islets from T1D donors using imaging and single cell techniques. 
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For example, α cells have also been reported to exhibit signs of immune-

related stress such as altered gene expression, like overexpression of 

proinflammatory cytokines (e.g. CXCL10), or impairment of their 

endocrine function. However, β cells seem more sensitive to this 

process, suggesting a highly specific attack to insulin-presenting cells 

and/or an inherent fragility of the β cell[114, 115]. 

Finally, implication of other pancreatic populations in the development 

of T1D cannot be discarded either. A recent study found that some of 

the T1D risk variants overlap enhancers active in the ductal and acinar 

cells composing the exocrine pancreas. In addition, these enhancers 

were linked to genes only expressed in those specific populations[74]. 

In summary, extensive research suggests that β cells activate numerous 

pathways related to immune regulation, ER stress and apoptosis. These 

pathways likely result in increased antigen presentation, exacerbating 

the autoimmune assault. While the contribution of other pancreatic cell 

populations to disease pathogenesis still needs additional investigation, 

emerging evidence offers preliminary insights into their potential 

involvement. 

Nowadays, it is becoming evident that T1D pathogenesis involves both 

immune cells and pancreatic β cells. Thus, understanding the interaction 

and crosstalk between them, especially at early stages of disease, is 

crucial for comprehending the molecular mechanisms leading to 

disease.   
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5  

Different models to study T1D 

 

The endocrine pancreas is difficult to access and isolate. In humans, 

pancreas biopsies can result in acute pancreatitis, as a result, biopsies 

in living donors are only performed under special circumstances, and 

most islets used for transplants or research are obtained from deceased 

donors. In addition, human pancreatic islets are embedded within the 

exocrine pancreas, comprising a very small portion of the total 

pancreatic mass. Therefore, obtaining a viable sample requires a 

complex and time-consuming isolation protocol developed more than 35 

years ago[116].  

Furthermore, since T1D pathogenesis is believed to develop over years 

before its clinical onset, early detection of individuals at risk is 

challenging. This is feasible to some extent in close relatives of 

diagnosed T1D patients but remains a significant challenge in the 

general population. Obtaining samples from T1D patients is already 

difficult, and collecting samples from patients in presymptomatic phases 

to study different disease stages is impractical. 

Unlike other diseases, obtaining relevant blood biomarkers for 

personalized medicine or understanding mechanisms underlying 

disease pathogenesis has also been challenging. Since islets represent 

less than 2% of the pancreas, any local inflammatory process will 

inevitably be diluted in the peripheral circulation. Nevertheless, the 

presence of AAbs in the peripheral blood was shown to be a disease 

predictive marker. However, the role of AAbs in disease pathogenesis is 

unclear, and not all AAb+ individuals will eventually develop T1D. 

For all these reasons, different in vitro and in vivo animal models have 

been developed over the years as an approach to study and 

comprehend the molecular mechanisms behind T1D[117]. 
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5.1 Animal models 

The nonobese diabetic (NOD) mouse model develops T1D 

spontaneously and is the most widely used T1D animal model. NOD 

mice develop T1D due to a high genetic risk associated with different 

gene polymorphisms found in genes that are also relevant in the human 

pathogenesis. The disease onset is around 12 weeks of age but, as for 

humans, the age of onset is highly heterogeneous. Regarding the initial 

stages of the disease, NOD mice show extensive immune infiltrates with 

similar characteristics as those observed in human insulitis. However, 

there are differences: NOD mice islets contain less CD8+ T cells and 

more CD4+ T cells compared to humans. Other immune populations 

have also been described to contribute to disease development in NOD 

including B cells producing AAbs against insulin[117].  

This model has been extremely useful to understand the basic 

mechanisms of T1D pathogenesis because complex processes that 

involve many organs cannot be studied in vitro. The NOD mice have 

been particularly useful for studying the genetics of T1D and to 

understand how candidate genes expressed by immune cells or islet 

cells influence the autoimmune attack and to uncover the effect of 

environmental factor such as gut microbiome or infections. Additionally, 

the use of this model has also enabled the identification of many β cell 

antigens, which later have been confirmed in human patients. 

Other models that spontaneously develop T1D upon an environmental 

perturbation include different rat breeds, with high and low incidence of 

the disease. Some dog breeds also develop T1D spontaneously at a 

prevalence similar to humans and following a pathology closer to 

humans compared to rodent models. However, due to the costs and 

difficulties in genetic manipulation, the canine models have been very 

valuable mainly for late preclinical studies[117]. 

Chemically induced T1D had also been used to model the disease 

pathogenesis. This approach was primarily applied to rodents, but in 

some cases to non-human primates.  The animals were treated with 

agents to chemically induce T1D, mainly alloxan, streptozotocin (STZ) 

or cyclophosphamide. These diabetogenic agents generate pancreatic 

β cells toxicity resulting in hypoinsulinemia and hyperglycemia within a 

period of days. STZ causes DNA fragmentation on β cells and it is the 

most commonly used agent. The STZ rodent model reproduces both 

acute and chronic complications of human T1D. However, due to the 
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oncogenic effect of STZ, the animals show increased risk of insulinoma, 

kidney and liver tumors formation, amongst other complications. Thus, 

chemically induced models show some limitations which include the lack 

of disease heterogeneity observed in T1D patients in terms of disease 

variability and disease onset, the risk of toxicity and death of the animal. 

Moreover, the application of these models can be challenging in keeping 

consistency and reproducibility[117–119]. 

Other animal models including rodents and primates take advantage of 

the use of viral infections to induce T1D, both in genetically 

predisposed and non-predisposed animals. However, these models are 

not widely used since the infection is not only targeted to β cells and the 

complete mechanisms for getting T1D are not understood[119]. Finally, 

in order to study the behaviour of the human immune system in T1D in 

vivo, humanized mice models have been used. In this approach 

immunodeficient mice are transplanted with human immune cells to 

reproduce  immune tolerance and induction of autoimmunity[117, 119]. 

Different non-human animal cell lines derived from pancreatic β cells 

have been developed over the years. Different strategies have been 

used to immortalize the β cells such as viral infections or radiation. Some 

of the mostly used β cell lines are: the MIN6 mouse cell line; the HIT 

hamster cell line and the INS-1 rat cell line. All these are derived from 

insulinomas, a functional β cell tumor. While all the cell lines available 

produce insulin, most of them are not responsive to glucose[120]. 

All the described animal models of T1D have been very useful in 

providing insights on the development and progression of the disease. 

However, none of these models are able to fully recapitulate the 

extensive spectrum of pathogenesis observed in human T1D patients. 

In addition, there are considerable differences in the ontology of each 

species, the phenotype presented, function of pathways and genes that 

limit the transferability of results in preclinical trials. Moreover, animal 

models are limited in recapitulating the genetic predisposition observed 

in human T1D. As already mentioned, most of the risk variants 

associated with T1D lie in the non-coding genome, likely affecting gene 

regulatory networks. While understanding variants that affect specific 

genes can be more straightforward in animal models, gene regulatory 

networks are highly specific to each species. Therefore, results from 

these studies are often not applicable to other species. Thus, modelling 

T1D in human cells or tissues is of upmost importance, not only for 
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studying the genetic contributions to the disease but also to fully 

understanding the complex human pathology and developing targeted 

treatments for T1D disease. 

 

5.2 Human models 

Mainly due to the accessibility, peripheral blood samples have been 

extensively collected in T1D patients to study human immune cells at 

different stages of disease. Different types of peripheral blood immune 

cells have been reported to be altered in T1D at the transcriptome and 

functional levels. The study of peripheral blood samples has also 

enabled the identification of AAbs as biomarkers of disease progression 

and characterization of different self-reactive T and B cells. These 

samples are of easy accessibility, however, biomarkers and changes 

observed in blood may not be comprehensively representative of the 

inflammatory process happening within the islet. Thus, to fully 

understand the mechanisms underlying disease pathogenesis and the 

effects on the cell types composing the pancreatic islet, more complex 

models including the combination of multiple disease relevant tissues 

may be required[117]. 

 

5.2.1 Primary human islets 

Human pancreatic islet samples are scarce and difficult to obtain. The 

use of a Ricordi chamber has become the gold standard procedure to 

isolate pancreatic islets from the exocrine tissue in human and large 

animals. The procedure combines enzymatic and mechanical digestion 

of the exocrine pancreatic tissue to separate the different compartments 

of the pancreas. The protocol has been further optimized since its 

inception to increase the yield and purity of these samples, while 

maintaining the core principles of the original procedure [116]. This 

method has contributed to the success of islets transplantations and 

help with all research related to glucose metabolism.  

Due to the limitations in obtaining human pancreatic islets samples from 

cadaveric donors, over the past two decades, different programs have 

been created to isolate and procure islets to cover needs for pancreatic 

islets transplantation and beta cell research. TrialNet[121, 122] or 

HPAP[123] are examples of consortia aiming in collecting vast number 
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of samples including clinical information on  healthy and diabetic 

patients (T1D, T2D or prediabetic) donors. The main objective is to 

facilitate collaborative research to enhance the understanding of islet 

diseases and discovery of new treatment options. TrialNet is mainly 

focused on gathering information on T1D patients to provide insights 

into the pathology of T1D and developing clinical trials on prevention 

and intervention. HPAP is more focused on understanding the molecular 

function of healthy pancreatic islets and their dysfunction in both T1D 

and T2D. 

Information gathering from these and other consortia is of great value to 

establish hallmarks of T1D in humans. For example, collection of human 

samples has been useful to characterize the T cell infiltration in insulitis 

or to uncover possible viral infections in T1D islet samples, evidences 

that was previously observed in animal models. However, human 

pancreatic samples are scarce, very sensitive to shipment and 

manipulation, and do not cover all disease stages. Thus, studying the 

contribution of specific genes or genetic variants in human islets is and 

has been challenging [117]. 

 

5.2.2 Models of insulitis 

To further understand the process that leads to T1D progression and the 

contribution of genetic risk to these processes, in vitro models that mimic 

different stages of disease are used. To achieve this, these models must 

combine the appropriate cell types within the correct disease 

environment to accurately replicate interactions between β cells and 

immune cells.  

Microfluidic devices, such as microphysiological systems (MPS), 

create an environment with an artificial flow of nutrients, and, in some 

cases, immune cells, that allow the supply of desired conditions and 

recollection of secreted byproducts from the culture population. MPS 

systems can be used to study the reaction of the β or islet cells to 

autoreactive or activated immune cells. One of the major advances in 

T1D disease modelling has been the generation of SC-derived islets 

from hESC or iPSC, which are islet-like endocrine clusters, mostly 

composed of insulin positive and glucagon positive cells, derived from 

human pluripotent stem cells[124]. This system can be loaded with 

primary human islets, SC-derived islets or β cell lines and expose them 
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to different types of activated immune cells to study the effect on the 

target tissue. In the case of primary cells obtained from different donors, 

MPS can provide insights on the difference in response between T1D 

patients and healthy donors[125]. 

The development of protocols to produce of iPSC-derived islets has 

facilitated the creation of individualized models for different T1D 

genotypes and for control donors. Additionally, these cells can be 

genetically manipulated to study the specific contribution of different loci. 

In fact, the use of iPSC-derived islets facilitates the study of the 

interaction between β cells and immune cells[126]. Deriving T cells from 

iPSCs is still not feasible thus the use of autologous primary T cells in 

co-culture with iPSC-derived islets form the same donor is a promising 

approach to prevent alloreactivity when modelling insulitis in vitro. 

Moreover, this approach grants the possibility of maintaining the genetic 

background from the same individual. In one study, matched iPSC-

derived β cells and α-cells with primary PBMCs from the same donor 

were co-cultured to characterize the physical interaction between CD8+ 

T cells and iPSC-β cells after induction of ER stress in β cells[127].Co-

culture models taking advantage of iPSC-β cells can be adapted to 

study interactions with any type of immune cells purified from PBMCs. 

SC-derived islets have transformed T1D research and treatment 

strategies. However, differentiation protocols from SCs do not generate 

fully mature islet populations and in any case pure β or α cell populations 

are obtained so, depending on the project hypothesis, further 

purification steps or single-cell techniques might be required. 

Additionally, obtaining iPSCs and differentiation protocols into islet-like 

organoids is expensive and requires highly specialized technical 

expertise[128, 129]. 

Other models of earlier stages of insulitis are mainly based on in vitro 

exposure to proinflammatory cytokines[34, 113, 130]. These models 

are focuses mainly on processes that precede CD8+ T cell-mediated 

killing and are had been extensively used to study the effect of insulitis 

on the β cell and human islets. Thus, different cytokines or cytokine 

cocktails have been used to mimic the inflammatory milieu present at 

early stages of disease. The specific cocktail of cytokines, their 

concentration and the different cycles of stimulation (unique stimulus ore 

multi-pulse) may vary depending on which immune cell type is likely 

acting at each stage. For example, IFN-α is secreted by innate immune 
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cells, mainly macrophages, and is involved in the response to viral 

infections. On the other hand, IFNγ is a cytokine mainly secreted by T 

cells, both CD4+ and CD8+, having a role in inducing an inflammatory 

response through the activation of other immune cells. IL1-β and TNFα 

are cytokines produced by activated macrophages and dendritic cells, 

and are key in regulating the immune response by connecting innate 

and adaptive responses. A list of the main cytokine cocktails used to 

mimic the insulitis preceding T1D can be found in Table 2. 

These models have been really useful to study the β cell in vitro in a 

context that resembles insulitis. An advantage of cytokine cocktails is 

that they can be used with iPSCs, human islets and β cell lines, such as 

EndoC-βH1, an immortalized human pancreatic β cell line derived from 

fetal pancreas. EndoC-βH1 has been validated in vitro as a good model 

of human β cells since it expressed all key markers of β cell maturity and 

shows functional glucose-stimulated insulin secretion (GSIS). 

Additionally, this approach and the use of a cell line is compatible with 

genome editing techniques for gene candidate validation[131, 132]. 

Other human beta cell lines beyond EndoC-βH1 have also been 

developed, such as EndoC-βH3 that is a conditionally immortalized cell 

line in which tamoxifen-controlled de-immortalization increases insulin 

content and secretion, compared to EndoC-βH1.  

Cytokine models have proven useful to understand specific disease 

mechanisms or how the β cell responds at different levels (epigenome, 

transcriptome, proteome, secretome, etc) to proinflammatory stimuli. 

However, these models have only partially elucidated the response of 

the β cells to inflammation and its connection to genetic predisposition. 
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Publication Cytokines Dose Time 
Tissue/
cell line 

Readout 
techniques 

Ramos-
Rodriguez 

et al 
2019[130] 

IFNγ 
1000 U/ml 
(50 ng/ml) 

48 h 
EC 
HI 

ATAC-seq 
ChIP-seq 
RNA-seq 

DNA methylation 
3D chromatin 

structure 
Proteomics 

IL-1β 
50 U/ml 
(2.8 ng/ml) 

Benaglio et 
al. 2022[133] 

IFNγ 
HI: 10 ng/ml 
Low: 0.2 
ng/ml 

6 h 
24 h 
48 h 
72 h 

HI 

Bulk: ATAC-seq 
Single-cell: 

snATAC-seq (only 
HI dose for 24 h) 

IL-1β 
HI: 0.5 ng/ml 
Low: 0.01 
ng/ml 

+/- TNFα 
HI: 1 ng/ml 
Low: 0.02 
ng/ml 

Colli et al. 
2020[134] 

IFNα 2000 U/ml 
2 h 
8 h 
24 h 

EC 
HI 

ATAC-seq 
RNA-seq 

Proteomics 

Stancill et 
al. 2024[135] 

IFNγ 500 U/mL 
6 h 
18 h 

HI scRNA-seq 
IL-1β 50 U/ml 

Eizirik et al. 
1994[136] 

IFNγ 1000 U/ml 

6 h 
30 h 
48 h 
6 d 

HI 

Nitric oxide (NO) 
formation 

GSIS 
 

TNFα 1000 U/ml 

IL-1β 50 U/ml 

IL-6 25 U/ml 

Dettmer et 
al. 2022[137] 

IFNγ 14 U/ml 

12 h 
24 h 
48 h 

SC-β 
cells 
EC 

Transcriptome 
microarray 

Cell apoptosis 
assays 

ROS formation 
Western Blot 

ELISA for 
cytokine 

quantification 

TNFα 185 U/ml 

IL-1β 60 U/ml 

Oleson et 
al. 2015[138] 

IL-1β 75 U/ml 

72 h EC 

GSIS 
Metabolism tests 

Cell viability 
assays 

NO formation 
Western blot 

qPCR 

IFN-γ 750 U/ml 

TNF-α 
1,000 U/ml 
(10 ng/ml) 
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Chen et al. 
2005[139] 
(Mouse 

cytokines) 

IL-1β 5 ng/ml 

0-3 h HI 

GSIS 
Cell death 

Western blot 
Other functional 

assays 

IFN-γ 100 ng/ml 

TNF-α 10 ng/ml 

Grunnet et 
al. 2009[140] 

IL-1β 2 ng/ml 

24 h HI 
Cell viability and 

death assays 
GSIS 

IFN-γ 100 ng/ml 

TNF-α 100 ng/ml 

 

Table 2. Summary of the different cytokine cocktails used to mimic T1D 

insulitis in human models. Dose is sometimes stated as ng/ml or U/ml, 

depending on the information provided by the authors. However, U/ml or ng/ml 

between different studies are not always comparable unless the same product 

catalogue number was used. For standardized and comparable measure, IU 

should be stated. Of note, additional studies using similar models with same 

dose/cocktail were not included. Studies not reporting the dose of the cytokine 

cocktail used were not included either. Unless otherwise stated, cytokines are 

human recombinant. EC: EndoC-βH1; HI: Human Islets. 
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6  

Chromatin remodelling and gene expression 
regulation 

 

6.1 DNA structure 

DNA, or deoxyribonucleic acid, is the molecule that contains all the 

genetic information required for the development and functioning of a 

human being. It consists of two intertwined strands that form a spiral-

shaped structure known as the double helix. Each strand's backbone is 

composed of alternating sugar and phosphate molecules, to which one 

of four nitrogenous bases—adenine (A), thymine (T), guanine (G), and 

cytosine (C)—is attached. These bases pair specifically (A with T and G 

with C) through chemical bonds, creating the rungs of the ladder-like 

structure and stabilizing the double helix (Fig 5). Since the nitrogenous 

bases differentiate one nucleotide from another, they are often used to 

identify the entire monomer so a DNA molecule can be represented as 

a sequence of nucleotides (A, C, T, and G). 

In humans, each somatic cell contains 46 molecules of genomic DNA, 

23 pairs of chromosomes, along with a smaller DNA molecule located 

within the mitochondria, the mitochondrial DNA (mDNA). The genomic 

DNA is enclosed inside the nucleus and organized into molecular 

structures named chromosomes. When stretched out, the total amount 

of DNA in a human cell forms a very thin fiber of about 2 meters 

long[141]. Inside the cell the DNA is tightly compacted to suit the 

nucleus, which has a diameter measuring in average 6 µm. Thus, DNA 

is packaged into chromatin, a large nucleoprotein complex consisting 

of DNA and a variety of structural and regulatory proteins. 

The high level of DNA organization is crucial in controlling chromatin-

mediated cellular processes like transcription, DNA replication, and DNA 

repair. Genes are sequences within the genome that are transcribed into 

mRNA, a different type of nucleic acid, by RNA polymerase II (Pol II). 

These mRNA molecules are synthesized inside the nucleus and then 

exit the nucleus and undergo translation into proteins, which regulate 

cell metabolism and function. Usually, a single gene can be divided into 

different segments; exons, which are segments of nucleotides that are 
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transcribed into mRNA; interspersed with non-coding regions called 

introns. Often, gene exons are referred to as coding regions since they 

encode for proteins. The exons constitute about 2% of the human 

genome[142]. 

For many decades it was believed that only the coding parts of our 

genome held biological relevance. The remaining portion of the 

genome, comprising non-coding sequences, was largely dismissed and 

labelled as "junk DNA". Fortunately, numerous researchers persisted in 

studying the non-coding genome, aiming to comprehend why such a 

significant portion of the genome seemed to lack an apparent function. 

In 2012, the Encyclopedia of DNA Elements (ENCODE) project released 

findings from extensive studies spanning over a decade, challenging the 

perception of noncoding sequences as mere "junk”. They proposed that 

approximately 80% of the human genome possesses a biochemically 

relevant function[143]. Thus, the non-coding genome has been further -

and keeps being- characterized to unravel and describe these functions, 

such as non-coding genes and regulatory elements (REs), which play 

an essential role in gene transcription regulation. 

 

6.2 Nucleosomes 

While during mitosis chromosomes are compacted and easily visible, 

during interphase chromosomes are not easily distinguishable but still 

retain microscopic organization. Mitotic chromosomes represent the 

highest degree of condensation while during interphase chromosomes 

show different degrees of packaging, influenced by DNA-bound 

proteins. Thus, chromatin can be categorized into euchromatin, which 

is more loosely packed and accessible, and heterochromatin, which is 

more densely packed (Fig 5). Interestingly, the interphase organization 

has biological implications as euchromatin is enriched in actively 

transcribed regions, since facilitates access for the transcription 

machinery, while heterochromatin is predominant in inactive and 

repressed regions[144]. 

The chromatin fiber is fundamentally composed of nucleosomes, 

formed by a core body of proteins called histones to which the DNA 

wraps around every 150-200 base pairs (bp) (Fig 5).The nucleosome, 
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besides being an structural component of the chromatin, is implicated in 

the modulation of gene expression[144]. 

Nucleosomes are precisely positioned across DNA molecule to expose 

key transcription factor binding sites (TFBS) while maintaining a stable 

fiber conformation. Their positioning can be modulated due to specific 

interactions between the DNA sequence and nucleosome surface 

charges. Despite being discretely positioned, histones are mobile, which 

is important to ensure gene expression regulation. 

 

6.2.1 Histone proteins 

Different types of histones bind the DNA to facilitate organization and 

gene transcription regulation. Histones are main components of the 

chromatin which form the core complex of nucleosomes: H2A, H2B, H3 

and H4. Core histones are positively charged proteins rich in lysine and 

arginine. They bind directly to the DNA fiber through non-covalent 

forces, primarily through interactions between the positively charged 

histone residues and negatively charged DNA phosphates. Core histone 

complexes are organized in octamers, and each complex is composed 

of two proteins of each core histone (Fig 5). 

The terminal domains of core histones are phylogenetically conserved 

long tails that extend out of the nucleosome core. These terminal tails 

undergo various covalent post-translational modifications, which 

modulate the conformation and interactions of the chromatin fiber with 

adjacent DNA sequences[145]. 

Different variants of each histone gene also exist and are expressed at 

different developmental stages. Changes in the composition of core 

histone complexes affect the conformation and function of chromatin, 

affecting both physiological and pathogenic processes. 

 

6.3 Chromatin organization 

The chromatin fiber consists of a series of nucleosomes arranged in 

tandem array and folded into a compact, higher-order structure. 
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Genome organization is highly complex in order to maintain proper 

transcriptional regulation. Chromosomes are folded into various 

hierarchical domains, forming functional compartments, maintained by 

different architectural proteins including CTCF, cohesion or the mediator 

complex.  

Recent advances in technologies to study the 3D genome organization 

in interphase chromatin allowed us to deepen our understanding of 

chromosome folding. The hierarchical layers of chromosome 

organization can be classified by decreasing size of interactions as 

following[146–148]: 

• Chromosome territories refer to the localization of the 

chromosomes within the nucleus. This is the highest level of 

nuclear organization, with initial reports dating back to the early 

1980s [144]. It promotes intra-chromosomal interactions of the 

chromatin.  

• A/B compartments are large multi-Mb scale hubs with 

accessible chromatin and active gene transcription (A) or 

inactive and condensed chromatin (B)[149, 150]. The probability 

of interactions between genomic regions within the same 

compartment is higher than with regions in the other 

compartment. The composition and distribution of A/B 

compartments is cell-type specific, dynamic during development 

and seems to be altered in disease[151]. 

• Topologically associating domains (TADs) are genome 

regions marked by high degree of self-interaction with other 

regions within their boundaries, and limited interactions 

observed with regions outside the TAD, even when regions are 

at similar distances[152].First reported by Dixon et al.[149], 

TADs constitute the fundamental structural unit of the genome. 

They are conserved in different tissues and across species. 

• Chromatin loops represent the ultimate structural unit 

controlling gene expression. The stability of chromatin loops is 

mediated by CTCF or enhancer-promoter contacts. These loops 

facilitate long-range interactions among distinct genomic regions 

(Fig 5). The establishment of a chromatin loop enhances the 

likelihood of interaction between two distant regions in the linear 

genomic space, which would otherwise occur at very low 

frequencies. 
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Figure 5. Chromatin structure and DNA composition. Summary of different 

levels of chromatin and DNA organization. From lower to higher degree: DNA 

consists of nucleotides (A, T, C or G) forming the double-helix. This DNA can 

be subjected to different modification, such as DNA methylation in guanine 

residues. DNA is wrapped around histone proteins (octamers) and compacted, 

forming nucleosomes. Histone proteins can present different posttranslational 

modifications and each modification will influence the condensation and 

accessibility of the chromatin. According to the degree of condensation, 

chromatin is divided into euchromatin and heterochromatin. Inside the nucleus, 

chromatin follows different layers of organization. Chromatin loops represent 

the smallest interaction domains where enhancer-promoter contacts occur, to 

regulate gene transcription. 
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6.4 Gene expression regulation 

In general, all somatic cells in the body share the same DNA. However, 

each cell type varies in structure and function because somatic cells do 

not express all coding genes within the genome. Thus, different cell 

types express different sets of genes. The regulation of gene expression 

in each cell type involves is a highly regulated process with different 

levels of control to ensure that proteins are produced in the correct cells 

at the appropriate times. Interestingly, even in the adult organism, it 

remains essential to regulate the activation or suppression of gene 

expression to uphold cell function and respond to external stimuli. 

The activation and repression of gene transcription is controlled by 

various mechanisms such as chromatin properties, transcription factor 

(TF) binding, non-coding RNAs, RNA processing and alternative 

splicing, among others. However, for the purpose of this thesis, I will 

focus my discussion on cis regulatory networks and non-coding REs. 

Cis-regulatory elements, which are non-coding DNA sequences 

including promoters and enhancers. Promoters are located near the 

transcription start site (TSS) of genes and facilitate the binding of 

different proteins, such as TFs or RNA Pol II, to initiate transcription. On 

the other hand, enhancers can be positioned anywhere from a few bp 

to megabases (Mb) away in the linear space from their target genes. 

They are also bound by various proteins, such as TFs, and they likely 

physically interact with their target gene promoters to regulate gene 

expression. 

TFs are proteins that bind short DNA sequences and regulate gene 

transcription. These DNA sequences, typically found at enhancers and 

promoters, include a consensus sequence, known as a motif, usually 6-

10 base pairs in length. However, a TF motif alone is not sufficient to 

ensure TF binding, other cell type-specific factors also facilitate the 

binding. In fact, TFs bind to only a small fraction of the motifs in the 

genome as a consequence TFs that are expressed ubiquitously may 

show cell-type-specific binding and function. 

Transcription factors are the ultimate regulators of gene transcription 

and help with the recruitment of RNA polymerase II (RNA pol II), the 

main enzyme in charge of facilitating gene transcription. 
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6.4.1 Gene promoters 

A promoter is a DNA region where RNA polymerase initiates gene 

transcription, usually situated just upstream or at the 5' end of the 

transcription start site (TSS). RNA polymerase machinery and essential 

TFs bind to both promoters and transcription initiation sites to start the 

transcription process. Promoters, typically 100–1,000 bp long, have 

three elements in eukaryotic cells: core, proximal, and distal promoters. 

Each element plays a distinct role in DNA transcription and RNA 

polymerase function[153, 154]: 

• Core promoter is a region approximately 40 bp upstream the 

TSS. It is the minimal unit for transcriptional initiation, where 

general TFs and Pol II bind. It contains the classical TATA-box 

that serves as the binding site for the TATA-box-Binding Protein 

(TBP), a subunit of the complex that mediates Pol II recruitment. 

• Proximal promoter is located upstream to the core promoter, 

approximately 250 bp from TSS. It is characterized by the 

presence of TFBS that either activate or repress the expression 

of the target gene. 

• Distal promoter are regions located upstream of the proximal 

promoter that also containing regulatory sequences with TFBS 

to regulate gene expression. These regions are not as well 

characterized as the other two but can expand up to 2 kb 

upstream the TSS.  

The ability of a promoter to activate gene transcription depends on its 

sequence composition and the presence of specific transcription factors. 

While the core promoter can initiate basal transcription, the presence of 

a proximal promoter can boost transcriptional activity. Furthermore, 

enhancers can also interact with target promoters to further modulate 

gene transcription[155]. 

In broad terms, there are two types of promoters according to their basal 

activity. Constitutive promoters show general high expression levels 

independent of the cell type. Inducible or regulated promoters are 

those with cell-type and cell-state specific functions, only activated by 

environmental stimuli to adapt and respond accordingly. 
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6.4.2 Enhancers 

The human genome is believed to contain hundreds of thousands to 

millions of enhancers. Enhancers are thought to play a crucial role in 

coordinating gene expression, essential for human development and 

homeostasis. They are also very relevant in common diseases as the 

heritable risk is largely associated with non-coding regions, particularly 

enhancers specific to disease-relevant cell types. This has heightened 

interest in annotating and understanding human enhancers. However, 

despite their clear importance in both basic and disease biology, much 

remains unknown about enhancers, including their locations, 

mechanisms of action, and the genes they influence. 

As briefly explained above, enhancers are 100-700 bp non-coding DNA 

regulatory sequences that can be bound by transcription factors (TFs) 

and enhance the expression of genes. Unlike promoter, are located 

distally to the target gene TSS, from hundred bp to even 1M bp away. 

Enhancers are predominantly found in intergenic and intragenic regions, 

mainly introns and very few described within exons. Enhancers form 

complex loops to physically interact with their target gene promoter to 

boost transcription[156, 157]. 

Enhancer contain sequences that allow the binding of TFs (TFBS), co-

regulators, chromatin modifiers and other enzymes to interact with gene 

promoters and induce the expression of target genes transcribed by the 

RNA Pol II. They act independent of orientation and location respect to 

the target gene. It has also been described that enhancers can form 

clusters of multiple enhancers forming super-enhancers[158]. 

In vertebrates, enhancers are usually conserved in sequence and 

function, although in some cases the sequences might diverge but their 

function may be conserved. The function of an enhancer is determined 

by its underlying sequence, since it primarily consists of dense clusters 

of TFBSs. Initially, inactive enhancers are likely bound by pioneer TFs 

that trigger the binding of other TFs, co-regulators, chromatin 

remodelling factors, among others. The recruitment of the TFs 

complexes may lead to enhancer priming and activation. 

To impact gene transcription and regulation, enhancers must 

communicate with their target promoters. In higher eukaryotes, 



54 | Introduction 

 

 

enhancers are often physically distant from their target gene promoters 

along the genome. Different models have been proposed to understand 

the mechanisms by which enhancers meet their target promoters but 

the looping models is the most experimentally supported. The looping 

model suggests that those proteins assembled at the enhancer and 

promoter establish a direct physical contact between (Fig 5). Although 

these enhancer-promoter contacts do not ensure transcriptional 

activation, it seems to be one of the firsts steps needed to facilitate gene 

transcription. Furthermore, it is known that an enhancer can regulate 

multiple promoters, and a promoter can be influenced by several 

enhancers. Enhancers can be understood as modular units of gene 

expression, exhibiting additive and/or redundant effects on their target 

genes to provide robustness to gene expression. 

The actual mechanisms of transcriptional activation by a single 

enhancer are not clearly described. Two main steps have been 

suggested[156]: 

• Recruitment. Sequence-specific TFs are recruited to enhancers 

and promoters, these proteins will then recruit additional TFs and 

coactivators essential for the transcription process. 

• Synergism. After their recruitment, TFs exhibit functional 

synergy, meaning that the combined transcriptional output of two 

TFs is greater than the sum of their individual outputs, indicating 

"functional amplification" of their action. This synergy has been 

extensively demonstrated in various contexts, though the 

precise mechanics remain unclear. 

It seems that TFs create a necessary platform for coactivators and other 

enzymes to perform catalytic activities that result in transcriptional 

activation rather than directly activating transcription. Therefore, since 

enhancers are mainly TFBSs regions, they are known to increase the 

probability of transcription rather than its intensity or level. Therefore, a 

strong enhancer likely interacts with the promoter more often, with each 

interaction potentially initiating a transcription event. Thus, the strength 

of the enhancer determines the frequency of transcriptional bursts, 

which are rapid and repeated cycles of transcription. This scenario is 

only feasible if enhancer-promoter contacts are dynamic and transient, 

involving continual formation and disruption[156]. 
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6.5 Methods to profile chromatin features that 

characterize regulatory elements 

To completely understand the cis-regulatory networks governing gene 

expression, the first step is to characterize regulatory elements. Over 

the past decades, extensive efforts such as the ENCODE project have 

allowed the characterization of active regulatory elements in many 

human cell types, across different developmental stages and disease 

states. However, this library remains incomplete and many cell types or 

disease states haven’t been characterized yet due to their tissue- and 

state-specific nature. 

Many different features of regulatory elements have been studied and 

used to determine their function. However, regarding chromatin 

features, properly characterizing cis-regulatory elements involves 

considering three main aspects: 

• Genomic position: Determining the genomic coordinates of a 

RE is crucial for studying its sequence features, like TF binding 

motifs, to characterize the networks involved in its activation. 

• Activity status: Regulatory elements can exist in various activity 

states – active, poised or repressed – which may be specific to 

cell type and cell state. Defining the activity status contributes to 

decipher the role of the RE in gene regulatory programs of a cell 

in a specific state. 

• Gene targets: Identifying the potential gene targets of a RE is 

probably the most challenging task, particularly because distal 

enhancers can be located Mb away from their target genes. 

One of the most studied chromatin features of REs is DNA methylation 

(DNAme). It can be used as a proxy for active or repressed RE. It is a 

DNA modification that does not alter the nucleotide sequence. In this 

case, a methyl group is added to the cytosine residues within CpG 

dinucleotides, which may be dispersed throughout the genome or 

clustered in areas with a high density of CpG sites, known as CpG 

islands. 

Promoters contain higher GC content than the rest of the genome. In 

fact, 70% of human proximal promoters contain CpG islands. 
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Methylation of these CpG islands is associated with reduced gene 

transcription, mechanistically it was suggested that this may result from 

the interference of the methylation residues with the binding of the 

transcription machinery[159]. Like promoters, enhancers may also 

contain CpG islands, which can repress enhancer activity if 

methylated[160]. DNAme solely does not provide information on the 

genomic coordinates of REs, as the majority of CpGs in mammal 

genomes are methylated[161]. However, examining DNA methylation at 

particular REs can provide information on their activity status. While 

DNAme is linked to inactive regulatory elements, the lack of DNA 

methylation does not always indicate active regulatory elements. 

 

6.5.1 Chromatin accessibility 

Chromatin accessibility refers to the extent to which nuclear proteins can 

physically interact with the chromatin. This event is influenced by the 

occupancy, spatial arrangement of nucleosomes, and other chromatin-

binding factors that restrict access to DNA. 

The arrangement of nucleosomes throughout the genome is not 

uniform. While they are densely packed in heterochromatin, they are 

depleted at active regulatory sites such as enhancers or promoters, and 

transcribed gene bodies. DNA between nucleosomes is often bound by 

transcription factors, RNA polymerases, or architectural proteins. The 

complexes recruited to an enhancer or promoter results in a large 

assembly of proteins that keeps the enhancer or promoter region 

nucleosome-free and hypersensitive to nucleases, a characteristic used 

to identify enhancers (Fig 6). 

Nucleosome occupancy is dynamic and varies across the genome, a 

highly regulated feature during development, disease or in response to 

external stimuli. The landscape of chromatin accessibility reflects the 

regulatory capacity of the cell, crucial for determining chromatin 

organization and function[162]. 

While chromatin accessibility can be used to locate functional REs in the 

genome, accessibility alone does not necessarily mean that these 

regulatory elements are active and inducing expression of their target 

genes. 
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Different methodologies have been developed to profile chromatin 

accessibility. In general, it is typically assessed by measuring the 

susceptibility of nucleosome-free chromatin to enzymatic cleavage. The 

cleaved fragments of DNA can be used to generate NGS-ready libraries 

for high-throughput or quantitative PCR (qPCR) assays. Some of the 

most used technologies are micrococcal nuclease sequencing (MNase-

seq), DNase I hypersensitive site sequencing (DNase-seq), 

Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE)[163] 

or Assay for transposase-accessible chromatin using sequencing 

(ATAC-seq)[162].  

ATAC-seq, developed by Buenrostro et al.[164], employs a hyperactive 

Tn5 transposase to cut and integrate Illumina sequencing adaptors into 

regions of accessible chromatin. ATAC-seq is widely used due to its 

robust identification of accessible chromatin, straightforward and rapid 

implementation, and suitability for use with limited clinical and primary 

tissue samples. In fact, high quality ATAC-seq libraries have been 

successfully generated from a very reduced amount of starting material 

(500-1,000 cells) as a result of the high efficiency of Tn5-mediated 

adaptor ligation. 

Slightly different modifications of the protocol have been developed to 

adapt the original protocol to cell-type specific requirements, like 

changing the detergents used or additional transposase enzyme, or to 

optimize the protocol for a wider range of samples, like Omni-

ATAC[165]. Furthermore, ATAC-seq has been modified for single-cell 

applications to examine the regulatory networks of different cell 

populations within a heterogeneous tissue. The gold standard scATAC-

seq technique was developed by 10x Genomics. The most recent 

advancement is the single-cell multiome technique, which enables 

simultaneous profiling of the transcriptome and chromatin accessibility 

from the same nucleus[166]. 

 

6.5.2 Histone modifications 

The terminal tails of histones can be subjected to different post-

translational modifications, such as acetylation, methylation, 

phosphorylation, SUMOylation and ubiquitination. These modifications 

can alter the structure of histone tails, changing the chromatin state and 

influencing gene expression. These post-transcriptional modifications 
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can alter the electronic charge and structure of histone tails that bind to 

DNA, thereby changing the chromatin state and influencing gene 

expression. Histone modifications have been identified as key players 

in various cellular processes. 

Each modification has been associated with a specific effect on 

chromatin structure and gene regulation. However, in this brief overview 

of histone modifications, I will focus on some modifications of the lysine 

residues (K) of histone H3 (H3).  

In lysine 4 (H3K4) different modifications have been described such as 

H3K4me2 (dimethylation), which marks the 5’ end of transcribed genes, 

or H3K4me3 (trimethylation), associated with active promoters. 

Interestingly, the deposition and association of these histone marks with 

activity status of the chromatin might vary in different stages of 

development[167].  

On the other hand, H3K4me1 (monomethylation) is enriched at 

enhancer regions but does not associate with the activity status of the 

RE. This histone mark is often profiled along with others, such as 

H3K27ac or H3K27me3, to determine if the RE is active or repressed. It 

has been suggested that the presence of this mark in distal REs may 

protect them from inhibitory complexes, such as DNA methylation 

enzymes, thereby keeping them in a poised state that can be activated 

by the appropriate stimulus[168]. 

Modifications in lysine 27 (H3K27) are also well studied due to their 

informative role in the activation status of REs.H3K27me3 is usually 

linked to gene repression, found at poised enhancers and forming 

broad domains at promoters of silenced genes. In contrast, 

H3K27me1 is enriched at active transcribed promoters. H3K27ac is one 

of the most well studied acetylation modification. It is enriched at active 

promoters and enhancers. The combined profiling of H3K27ac, 

H3K27me3 and H3K4me1 helps classifying the enhancer regions as: 

active (H3K27ac + H3K4me1), poised (H3K27me3 + H3K4me1) and 

primed (H3K4me1 solely)[167](Fig 6).  
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Figure 6. Chromatin accessibility and histone modifications as indicators 

of regulatory element activity. Overview of key epigenetic features used to 

identify regulatory elements and assess their activity status. 

 

Many other modifications have also been described such as H3K9me2 

or H3K9me3, linked to gene repression and heterochromatin, or 

H3K9me1, associated with active genes and found around their 

TSS[167]. In summary, histone modifications profiling not only provides 

information on the activity status of the RE but also indicates the location 

of RE, as histone modifications are found in the nucleosomes that 

border the accessible regulatory regions. 

There are different methods to analyze histone modifications, although 

the gold standard to profile enrichment analysis on specific loci is 

chromatin immunoprecipitation (ChIP). From formaldehyde-fixed 

samples, it uses an antibody to detect the modification of interest and 

precipitate the DNA that is wrapped around the nucleosome containing 

that histone mark. After immunoprecipitation, the DNA is purified and 

subjected to qPCR (ChIP-qPCR) to interrogate known loci, microarray 

analysis or sequencing (ChIP-seq) to perform a genome-wide analysis. 

However, this technique requires a large number of cells (1-10 million 

cells) as starting material and it is directly dependent on the quality of 

the antibody used[169]. 
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Over the years, different modifications to the original ChIP-seq protocol 

have been used, some to adapt the procedure to the requirements of 

specific samples and others to optimize the number of cells as starting 

material or the protocol time, like ChIPmentation[170]. Additionally, there 

have been some attempts to adapt the ChIP protocol to single cell 

applications[171, 172]. Single cell resolution of histone modifications did 

not fulfil the initial expectative although the authors managed to 

characterize different populations within a heterogeneous tissue and 

establish the basis for future improvements[171, 173]. 

Although ChIP-seq continues to be the technique of choice for histone 

profiling in most cases, in recent years, new techniques have been 

developed that improve some of the limitations of ChIP-seq. Two 

alternatives are Cleavage Under Targets and Release Using Nuclease 

(CUT&RUN)[174] and Cleavage Under Targets and Tagmentation 

(CUT&Tag)[175, 176]. Both are similar antibody-based techniques for 

profiling different chromatin features.  

The increasing number of publications using the recently developed 

CUT&Tag protocol advocate for its advantages. This antibody-based 

technique profiles targeted proteins without relying on 

immunoprecipitation to capture genomic loci containing the protein of 

interest. Instead, after antibody binding, a recombinant Tn5 enzyme is 

used to directly shear the chromatin and prepare the library for 

sequencing. 

CUT&Tag offers several benefits: 1) it requires only a small number of 

cells (5,000-100,000 cells); 2) it uses native samples, eliminating the 

fixation step and improving antibody performance; 3) it has a shorter 

protocol time; 4) it significantly reduces the signal-to-noise ratio; 5) it 

requires less sequencing depth; and it is more cost-effective. 

Additionally, CUT&Tag shows great potential for single-cell applications. 

Various protocols have already adapted CUT&Tag to the 10x Genomics 

platform, as well as other platforms, to profile different histone 

modifications and transcription factors in heterogeneous tissues at the 

single-cell level[177–181]. 

 

6.5.3 3D chromatin organization 

Once the distal RE is mapped in the genome, one remaining major 

challenge is that of determining the target gene promoter it regulates. 

Thus, charting three-dimensional chromatin contact profiles can help in 
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the identification of potential gene targets and in characterizing cell-type 

and cell-state specific regulatory programs. 

Early studies of chromatin conformation relied on light microscopy 

techniques, such as fluorescence in situ hybridization (FISH), to 

determine the proximity between different loci. However, the low 

resolution of microscopy approaches only allowed for the 

characterization of higher chromatin architecture features. Nowadays, 

most assays are based on C-based methods, which have evolved in 

powerful technologies for profiling chromatin interactions at different 

levels of resolution. 

Chromosome conformation capture techniques (3C and 3C-based) 

quantify the frequencies of contacts between different regions of the 

genome. These methods follow basic steps that start with the 

crosslinking of chromatin to preserve its 3D conformation. Next, the 

chromatin is isolated and digested with restriction enzymes, followed by 

re-ligation of DNA fragments that may be distant in linear distance but 

close in space at the time of cross-linking. The result is a library of 

chimeric molecules in which the two DNA fragments in physical contact 

but far from each other in the DNA linear sequence are stitched together. 

The libraries are then amplified by PCR or sequencing. 

Various protocols have been developed based on these principles, 

differing in terms of genomic coverage and resolution. 3C was the first 

assay used to confirm the existence of chromatin loops. It is used to 

study high resolution interactions between two known loci, “one vs one”, 

using PCR and gel electrophoresis. However, it is not suitable for high-

throughput applications and requires a good PCR primer design on the 

regions of interest[182]. 

To address the limitations of 3C, other derived methods have been 

developed for high-throughput data. HiC is the technique with highest 

coverage along the genome, but with reduced resolution[150]. It is an 

"all vs all" method, interrogating contacts between all regions of the 

genome without relying on loci-specific primer design, as libraries 

generate genome-wide contact maps. Other techniques aimed in 

increasing the resolution of Hi-C by reducing the number of interrogated 

loci were developed and named "many vs all" approaches. Promoter 

Capture Hi-C is one example of such strategy, where only the contacts 

with the promoters are interrogated[183]. 

Another example with reduced coverage but higher resolution is 4C, 

which analyses interactions between a viewpoint (region of interest) and 

the rest of the genome, following a "one vs all" strategy.  It also relies on 
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locus-specific PCR primer design to amplify the library with contacts for 

sequencing. The advantage of this strategy is the ability to achieve high-

resolution maps with low sequencing depth[146, 182]. A modification of 

4C, called UMI-4C, allows for accurate quantification of chromatin 

interactions by reducing PCR amplification bias[184]. 

Many other variations of 3C-based techniques have been reported, 

each with specific applications and advantages. Interestingly, since 

linking distal regulatory elements with their target genes remains 

challenging, some studies have focused on using snATAC-seq data to 

predict chromatin interactions. Cicero is an algorithm designed to 

identify co-accessible pairs of DNA elements to link regulatory elements 

to their potential target genes[185]. 

 

6.6 Functional validation of enhancer-promoter 

contacts 

Once an enhancer, or even an enhancer-promoter interaction, has been 

described, further experiments can be performed to confirm the 

functional effect of the distal RE.  

One option as first strategy can be to evaluate the putative enhancer 

function of the detected sequence using reporter genes. There are 

different technologies available to measure enhancer activity, such as 

massively parallel reporter assays (MPRA). This approach uses a high-

throughput assay that tests the functional activity of candidate regions 

using a reporter gene within a vector. The validation is independent of 

the position as the library of candidate sequences are cloned inside a 

reporter vector, to assess if the putative distal RE is able to enhance the 

expression of a reporter gene through a minimal promoter. Then, each 

reporter gene contains a barcode associated to a specific enhancer to 

quantify enhancer activity[157]. MPRAs have the advantage to 

simultaneously testlarge numbers of REs, although similar assays are 

also available to test the activity of only one or few candidate regions, 

like luciferase reporter assays. In this case, the conceptual basis is 

very similar as the sequence of interest is cloned into a vector with a 

reporter gene under a minimal promoter. Nonetheless, the readout this 

time is the activity of the luciferase enzyme, which synthesis is regulated 

by the putative enhancer sequence[186]. 

Nevertheless, MPRAs and other reporter assays only validate the 

potential enhancer function out of cellular context and this not always 
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translates into an active RE once the native context is restored. Thus, 

another approach to confirm the enhancer function over the potential 

target promoter whiteout interfering with the cell-specific chromatin 

context is to induce enhancer perturbations followed by transcriptional 

characterization of its potential/s target genes. 

Nowadays, CRISPR-based technologies allow genetic or epigenetic 

perturbation in single assays to assess the function of selected numbers 

of enhancers or in high-throughput screening settings. CRISPR 

technology allows to study enhancers in their genomic context under the 

appropriate external conditions. Thus, a guide RNA (gRNA) or gRNAs 

are delivered with the CRISPR machinery to target the enhancer region, 

and the cells are tested to determine if the enhancer perturbation has 

an impact on the expression of a target gene or genes. Additionally, with 

single CRISPR perturbations, the modified cell lines can also be tested 

for other phenotypic traits, such as cell viability, proliferation or 

migration, among others, to further explore the phenotypic effects of 

such perturbation[157]. 

CRISPR screenings take advantage of large libraries of gRNAs which 

are delivered to the cells, resulting in the possibility of testing thousands 

of distal REs at the same time. Different variations of the CRISPR-based 

technology have been generated, with two main types: CRISPR 

machineries with active Cas9 for sequence disruption and CRISPR 

machineries with inactive Cas9 (dCas9) and fused to an epigenetic 

repressor or activator domain. 

The original CRISPR tool contains a gRNA-Cas9 active nuclease 

complex that generates targeted DNA cuts that upon repair result in 1-

10 bp deletions or 1 bp indels. In most cases, this technology has been 

used to target coding sequences of genes to generate mutations and 

study the function or dysfunction of such protein. Nevertheless, it has 

also been successfully applied to characterize regulatory elements 

although this presents additional challenges as compared to its 

application on coding sequences. Disruption of the enhancer function 

can be more challenging as the RE functions have to be perturbed, for 

example the binding site of a TF can be disrupted although, depending 

on the RE nature this may not be sufficient to alter its function. To 

address these limitations a common strategy that has been applied 

consists in using pairs of gRNAs to create a pair of cuts at both ends of 

the RE and generate larger deletion, although with very low efficiency. 

An alternative methodology to study enhancer function is the use of 

CRISPR-dCas9 techniques which are designed to induce epigenetic 
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perturbations instead of genetic ones. In CRISPR interference 

(CRISPRi), a dCas9 with a KRAB repressor domain (dCas9-KRAB) is 

directed to silence gRNA defined sequences. On the other hand, 

CRISPR activation (CRISPRa) technology contains activator domains 

fused to the dCas9 able to induce the activation of poised regulatory 

elements. Other fused domains have also been described to disrupt 

enhancer activity[157]. 

Even though these perturbations have been successfully applied, the 

mechanisms of enhancer perturbation are not optimal. The epigenetic 

mechanisms mimicked with these techniques are partially accurate but 

they do not really recapitulate all layers of enhancer regulation. In 

contrast, CRISPR deletions of enhancer regions can result in a more 

drastic disruption of the enhancer function. 

A limitation of CRISPR techniques are off-target effects that may affect 

complex regulatory interactions where multiple enhancers regulate a 

target gene or vice versa. Taking into account the limitations of CRISPR 

and other technologies, the most effective way to conclusively identify 

functional enhancer-gene pairs may be to integrate multiple 

methodologies. This include combining information from enhancer 

chromatin mapping, profiling of chromatin 3D contacts, and performing 

functional validation in a defined cell population. 
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7  

Regulatory maps in pancreatic islets in health and 
disease 

 

Understanding the molecular mechanisms underlying the genetic 

predisposition driving multifactorial diseases can shed light on the 

disease pathogenesis and eventually translate the findings towards a 

personalized therapy. Obtaining regulatory maps of T1D-relevant cell 

populations in the context of insulitis may be valuable approach to 

uncover molecular mechanisms linking T1D genetic risk to altered 

pancreatic islet gene regulatory functions (Fig 7A). However, this 

represents a novel hypothesis currently being tested by few research 

groups worldwide. 

The application of next-generation sequencing techniques has allowed 

profiling, during the last decades, the transcriptome and the epigenome 

of hundreds of different cell populations and human tissues in detail. 

Different consortia such as Encyclopedia of DNA Elements (ENCODE) 

or Epigenome Roadmap produced tissue-specific regulatory maps and 

expression profiles from many different tissues. However, pancreatic 

islets, and thus islet cell populations, were not initially included in these 

databases as this tissue is less accessible than most other tissues. 

As pancreatic islets are embedded in the exocrine tissue, their isolation 

is required to capture the islet-specific signal. In addition, islets are 

composed of different populations present at different proportions, which 

represents another challenge when studying a specific cell type 

population. To address the heterogeneity, different protocols have 

successfully applied to segregate the major cell populations, α and β 

cells, using FACS. However, sorting minor cell populations such as ε or 

γ cells requires further characterization of such population to select cell-

specific markers[187]. 

Despite the difficulties, different laboratories took advantage of the 

optimization of the tissue isolation methods to profile the regulatory 

landscape of pancreatic islets. In an effort to dissect molecular 

mechanisms leading to different glucose metabolism diseases, the first 

studies focused on profiling adult pancreatic islets[77, 188–191] and 
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pancreatic progenitors[192]. These studies helped characterization of 

regulatory elements specifically active in pancreatic islets and link them 

to T2D genetic risk. Additional efforts have been made to deepen our 

understanding of pancreatic islet pathology. Another layer of complexity 

in linking genetic predisposition and regulatory maps is to understand 

the target gene of the regulatory element bearing a variant (Fig 7B-D). 

A more recent paper included 3D chromatin structure experiments in HI 

to characterize enhancer-promoter interactions, which are not 

necessarily close in the linear space[193]. 

 

Figure 7. Schematic representation on how gene regulatory networks can 
change upon proinflammatory stimulus and how tissue-specific 
regulatory elements can capture the genetic risk signals. A. 
Proinflammatory stimuli can alter gene regulatory networks, by changing the 
activation status of different RE and 3D chromatin organization, leading to 
changes in gene expression. Genetic risk variants can be captured using 
disease-relevant chromatin maps, as key RE/genes might only be active in cell 
type and cell states important in disease pathogenesis.  B. Relevant genetic 
risk variants can increase enhancer activity or TF binding in distal RE, leading 
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to amplify gene transcription. C. Risk variants can also disturb TFBSs in distal 
RE, causing a disruption of chromatin loops with target promoters and a 
decrease in gene expression. D. Risk variants may also modify TFBSs in distal 
RE, causing changes in TF machinery binding, creating new loops with different 
target promoters and leading to expression of new genes. 

 

With the advent of single-cell technologies, an increasing number of 

studies are applying transcriptome and epigenomic analyses on the 

pancreatic islets which allow characterization of the different cell 

populations composing the tissue. Single-cell technologies have 

enabled researchers to study not only the different cell types but also 

their different potential cell states in health and disease state. These 

advancements in single-cell technologies have facilitate the collection of 

crucial information that may help understanding disease pathogenesis. 

For example, Chiou et al.[74], combined a powerful GWAS with 

regulatory maps from single cells of pancreatic and immune tissues from 

normal donors. This approach allowed them to confirm the enrichment 

of T1D risk variants in regulatory elements active in T cells while 

identifying an overlap of some T1D-associated variants with regulatory 

elements specific to the exocrine pancreas. This observation is relevant 

as it suggests a potential role of the exocrine pancreas in T1D 

pathogenesis. 

In 2019, a study characterized islet regulatory maps in the context of 

early insulitis. Ramos-Rodriguez et al.[130] used a cytokine model to 

expose both β cells and HI to a proinflammatory stimulus mimicking 

early insulitis. The authors profiled the response at the chromatin, 

expression and protein levels. The β cell regulatory landscape showed 

marked plasticity upon exposure, with an induction of new and primed 

regulatory elements (IREs) already pre-bound by islet-specific 

transcription factors. Additionally, they identify for the first time T1D-

associated variants that overlap and disrupt cytokine-responsive 

enhancer activity in human β cells. 

Later, others laboratories explored how regulatory landscape of the β 

cell respond not only to a proinflammatory environment but also to viral 

islets infections [194, 195]. The combination of HI or β cell stimulation 

with single-cell profiling of chromatin regulatory networks has also been 

proven successful in deciphering the T1D genetic risk implication in β 

cell response. A main challenge now resides in the validation and 

interpretation of the variants potentially affecting the β cell, or other islet 
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cell populations, and assessing their impact on T1D pathogenesis. 

Different options have been used to address this limitation such as 

unbiased genome-wide CRISPR screening can help prioritize candidate 

genes[195], techniques to profile the 3D genome architecture can help 

linking regulatory elements to their target genes[130, 195] or creating 

SC-derived islets with specific knockouts to study the function of the 

regulatory region or target gene in β cell function[194]. 

In a big effort to fully characterize at the molecular level the different 

populations of islets cells in different contexts associated with diabetes, 

the Human Pancreas Analysis Program (HPAP) is dedicated to 

conducting in-depth phenotyping of the human endocrine pancreas. The 

goal is to gain a better understanding of the cellular and molecular 

events that precede and result in beta-cell loss and/or dysfunction in 

T1D and T2D. All the data gathered can be accessed in their open-

source data repository PANC-DB, available for all the research 

community. It contains results from many types of experiments 

(histology, transcriptome and epigenome in bulk and in single-cell, DNA 

methylome, among others) in samples from T2D and T1D patients, 

AAb+ individuals and healthy controls. 

In summary, many advances have been made in the past few years to 

understand the molecular mechanisms underlying T1D. It seems that 

the strategy of combining the power of single cell epigenomics in cell-

types and cell-states relevant in T1D progression with GWAS results will 

help dissect how the genetic component of the disease modulates the 

start and progression of the disease.  
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8  

Hypothesis and objectives 

 

Given the substantial evidence implicating the β cell as an active player 

in the development of T1D, I strongly believe that investigating β cell 

behavior in the early stages of the disease will enhance our 

understanding of T1D pathogenesis before glucose homeostasis is 

disrupted. While in vivo animal models have been invaluable in 

identifying key hallmarks of T1D, they do not fully replicate human 

pathogenesis. Conversely, existing in vitro human models that mimic 

T1D primarily focus on the later stages of insulitis, characterized by the 

active destruction of β cells by CD8+ T cells, or are limited by the 

hypothesis that specific cytokines alone drive insulitis at the molecular 

level. 

While the models using cytokines have significantly highlighted the 

crucial role of β cells in the early stages of T1D, moving beyond the 

notion that β cells are merely passive bystanders, they have only 

partially helped in understanding the response of β cells to inflammation 

and its relationship to genetic predisposition[130, 195]. This limitation 

may arise from the fact that the current models of early insulitis are 

confined to only studying β cell stress responses to abrupt and extreme 

inflammatory stimuli. Consequently, this limitation has hindered our 

ability to translate genetic risk into specific mechanisms or pathways 

affected in β cells in T1D, with few examples of potentially inaccurate β 

cell responses in the context of genetically susceptible individuals. 

The main purpose of this and previous studies focused on early insulitis 

is to understand what happens to the β cell prior to the direct cytotoxic 

T cell-mediated destruction, with the aim of uncovering novel therapeutic 

targets to prevent, treat or cure T1D. Nevertheless, I believe that a 

critical gap persists in the field since current in vitro models fail to 

properly recapitulate the complex environment β cells are exposed to 

within the context of this disease. 

Therefore, I hypothesize that the use of a novel model that better 

resembles the pathophysiology in early insulitis will help to unravel 
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unknown β cell-specific regulatory networks critical to T1D progression 

and β cell survival. To do so, I aim to: 

1) Develop a new in vitro model to study the lymphocytes-beta cell 

interplay that may occur during early insulitis and precede T1D.  

2) Characterize the regulatory genomics response of β cells to the 

inflammatory environment. 

3) Study the T1D genetic risk modulating the ability of β cells to respond 

to the inflammatory stimulus and possibly contributing to the disease 

progression.
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9  

Wet lab techniques 

 

9.1 Cell Culture  

EndoC-βH1 

The human insulin-producing EndoC-βH1 (EC) cells were purchased to 

Human Cell Design (formerly Univercell Biosolutions). EndoC-βH1 were 

cultured in DMEM medium low glucose (1 g/l), 2% BSA fraction V 

(#10775835001, Roche), 50 µM 2-mercaptoethanol (#31350010, 

Gibco), 10 mM nicotinamide, 5.5 μg/ml human transferrin (#T8158, 

Sigma), 6.7 ng/ml sodium selenite (#S9133, Sigma), 1% inactivated 

FBS, 100 units/ml penicillin and 100 μg/ml streptomycin. Cells were 

incubated at 37 ºC 5% CO2. 

In CRISPR validation experiments, EndoC-βH1 were exposed to 

cytokines concentrations in the same medium without FBS for 48 hours. 

The cytokine concentrations used were as previously described[130]: 

recombinant human IL-1β (#201-LB-005, R&D Systems) at 50 U/ml; 

recombinant human IFN-γ (#AF-300-02, Peprotech) at 1000 U/ml. 

 

Primary CD4+ T cells 

CD4+ T cells were provided by Dr. Pere Santamaria’s group in IDIBAPS, 

Barcelona. CD4+ T cells were isolated from PBMCs from 3 different 

human donors without a history of glucose intolerance and normal BMI 

using the Human CD4 T cell isolation kit (#130-096-533, Miltenyi 

Biotech). Frozen vials were thawed following standard procedures and 

centrifuged 400 g 10 min. Then, cells were resuspended at 1 million 

cells/ml and activated in CTL-Test Medium (CTLT-005, ImmunoSpot 

CTL) containing 1% Penicillin-streptomycin (Gibco), 1% Glutamine 

(#BE17-605E, Lonza), 10% inactivated Human Serum (#H4522, 

Sigma), 20 IU/ml Recombinant hIL2 (#202-IL-050, R&D Systems) and 

25 µl/ml of ImmunoCult Human CD3/CD28/CD2 T Cell Activator 

(#10970, StemCell). Activated CD4+ T cells were cultured for 12-14 
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days and split at day 3, 7 and 10 using the same medium without 

CD3/CD28/CD2.  

 

9.2 Co-culture of EndoC-βH1 with APC and CD4+ T 

cells 

Both K562.DRB1*03:01 CD80 APC cell line and engineered CD4+ T 

cells expressing TCR specific of IGRP13-25 were kindly generated and 

provided by Dr. Santamaria’s group. 

CD4+ T cells were thawed following standard procedures and cultured 

at 1 M/ml in CTL-Test Medium containing 1% Penicillin-streptomycin, 

1% Glutamine, 10% inactivated Human Serum, 20 IU/ml Recombinant 

hIL2, at 37 ºC 5% CO2 for a few hours. APC cells were thawed and 

cultured 1 M/ml in DMEM (#D6429, Sigma-Aldrich) supplemented with 

10% FBS (#F7524, Sigma-Aldrich), 2 mM glutamine (#BE17-605E, 

Lonza), 1 mM sodium pyruvate (#S8636, Sigma-Aldrich), 100 U 

penicillin and 0’1 mg/mL streptomycin (Sigma-Aldrich), 50 mg/mL 

gentamycin sulphate (#17-518Z, Lonza) and 50 mg/mL Normocin 

(#NOL42-13, InvoGen) at 37 ºC 5% CO2. After a few hours, CD4+ T 

cells were washed with resting medium (CTL-Test Medium with 1% 

Penicillin-streptomycin and 1% Glutamine) and seeded 24 h for resting 

before co-culture. The same day, 100,000 (M1.1) or 500,000 (M1.2) EC 

cells were seeded in 96 or 48 well plates, for M1.1 and M1.2 

respectively. 

On day 0 of the co-culture, APC cells were collected and resuspended 

in EC medium. Then, EC medium from the wells was removed and 

100,000 (M1.1) or 500,000 (M1.2) APC cells were seeded each well that 

contains EC. Then, CD4+ T cells were also collected, resuspended in 

EC medium and 100,000 (M1.1) or 500,000 (M1.2) CD4+ T cells were 

seeded each well containing both EC and APC cells. To activate the co-

culture, 20 µl of IGRP13-25 peptide suspension (100 µg/ml) or 12.5 µl/ml 

of the CD3/CD28/CD2 T Cell Activator complex were added to the 

corresponding stimulated wells (IGRP and CD3, respectively). As a 

negative control, 20 µl of a DMSO control suspension was added to the 

corresponding wells. 

After each time point, the supernatant (SN) from the whole well 

containing T and APC cells was collected and centrifuged 500 g 10 min. 
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The APC/T cell pellet was frozen and stored at -80 ºC and EC cells were 

detached using accutase treatment, collected in suspension, and 

processed for RNA extraction. 

 

9.3 Co-culture of EndoC-βH1 with primary CD4+ T 

cells (CC-M2 and CC-M3) 

After 12-14 days of growth, CD4+ T cells were washed and seeded in 

resting medium (CTL-Test Medium with 1% Penicillin-streptomycin and 

1% Glutamine) at a concentration of 2 million cells/ml. They were 

incubated for 48 hours prior to starting the co-culture experiments. A day 

before the co-culture, 500,000 and 850,000 – 1 million EndoC-βH1 were 

seeded in 48 or 12 well plates, for CC-M2 and CC-M3 respectively.  

On day 0 of the co-culture, EndoC-βH1 cells were washed once with 1X 

PBS, and fresh EC medium was added to each well. CD4+ T cells in 

resting medium were collected and resuspended in EndoC-βH1 

medium. 500,000 or 700,000 CD4+ T cells were used in CC-M2 and 

CC-M3 respectively. In CC-M2 T cells were seeded directly into the well 

while in CC-M3 a cell culture insert (#3401, Corning) was placed into 

each well seeded with EC and T cells were added into each insert. Next, 

CD4+ T cells were activated using 12.5 µl/ml of the CD3/CD28/CD2 T 

Cell Activator complex and samples were left in co-culture for 2 h, 6 h, 

24 h, 48 h or 72 h. Final culture volume was 500 µl for M2 and 1 ml for 

M3. 

After each time point, the supernatant (SN) from the whole well 

containing T cells was collected in CC-M2 and centrifuged 500 g 10 min. 

In CC-M3, the SN from the upper chamber, containing medium and 

CD4+ T cells, was collected in a tube, and the SN in the bottom chamber, 

containing medium and dead EC, was collected in separate tube. Both 

SNs were centrifuged 500 g 10 min, and transferred to a new tube and 

mixed. In both cases, the CD4+ T cell pellet was frozen and stored at -

80 ºC, while the dead EC pellet was discarded. EC cells were detached 

using accutase treatment, collected in suspension, and processed for 

ATAC-seq, Cut&Tag and RNA extraction.  
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9.4 ATAC-seq library preparation  

ATAC-seq library preparations were done as previously described[130] 

with minor modifications. Briefly, 50,000 EC cells were centrifuged 5 min 

500 g at 4 ºC and washed in ice-cold PBS for 15 min 500 g 4 °C. Then, 

I isolated the nuclei by incubating them in 300 μl cold lysis buffer (10 

mM Tris-HCl pH 7.4, 10 mM NaCl, 3mM MgCl2, 0.1% Igepal CA-630) 

for 20 min and resuspending them after 10 min. The sample was 

centrifuged for 15 min at 500 g at 4 °C (with low acceleration and brake 

settings) and the pellet was next washed in 100 μl of cold lysis buffer 

and centrifuged again, same conditions. The transposition reaction was 

carried out in a 25 μl reaction mix containing 1.25 μl of Tn5 transposase 

(#C01070012, Diagenode), 12.5 μl of 2X tagmentation buffer 

(#C01019043, Diagenode) and 11.25 μl DEPC-treated water. The 

transposition reaction mix was incubated at 37 °C for 1 h following 

inactivation by incubating for 30 min at 40 °C after addition of 5 μl of 

clean up buffer (900 mM NaCl, 300 mM EDTA), 2 μl of 5% SDS and 2 

μl of Proteinase K (#EO0491, ThermoScientific). Tagmented DNA was 

isolated with 2x SPRI beads cleanup (#A63880, Beckman Coulter) and 

was eluted in 21 μl 10mM Tris-HCl pH8. 

Two sequential 9-cycle PCR were performed in order to enrich for small 

DNA fragments. The PCR mix consisted of 2 μl of 25 μM PCR Primer 1 

(described in Buenrostro et al.[164]), 2 μl of 25 μM Barcoded PCR 

Primer 2 (described in Buenrostro et al.[196]), 25 μl of NeBNext High-

Fidelity 2x PCR Master Mix (#M0541, NEB) and 21 μl of the eluted 

sample. The library was amplified in a thermocycler using the following 

program: 72 °C for 5 min; 98 °C for 30 s; 9 cycles of 98 °C for 10 s, 63 

°C for 30 s; and 72 °C for 1 min; and at 4 °C hold. After the first PCR 

round, fragments smaller than 600 bp were selected using SPRI cleanup 

beads, 0.6x ratio with right side selection, and second round of PCR was 

performed with same conditions. The DNA library was finally purified 

using 1.8x SPRI cleanup beads, eluting in 21 μl 10mM Tris-HCl pH8.  

Final library was quantified using Qubit dsDNA BR Assay (#Q32850, 

Invitrogen) and fragment analysis was performed using TapeStation, 

Agilent Bioanalyzer or similar to check library quality and nucleosomal 

pattern resulted from the tagmentation reaction. Once library quality was 

confirmed, samples were sequenced 100-150 bp paired-end on a 

NovaSeq X Plus system (Illumina) to obtain about 70 M reads per end. 
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9.5 CUT&Tag library preparation 

CUT&Tag was performed as previously described[175, 176] with minor 

modifications. Cells were harvested, counted, and 100,000 cells were 

centrifuged in a LoBind tube (#30108051, Eppendorf) for 3 min at 600 g 

at room temperature. Cells were washed in Wash Buffer (20 mM HEPES 

pH 7.5, 150 mM NaCl, 0.5 mM Spermidine (#S0266, Sigma-Aldrich), 10 

mM Sodium butyrate (#B5887, Sigma), 1X Protease inhibitor cocktail 

(#11873580001, Sigma-Aldrich)) and resuspended in 300 µl of Wash 

Buffer. During washes, 10 μL per sample of Concanavalin A coated 

(Bangs Laboratories, #BP531) magnetic beads were mixed with 10 

volumes of binding buffer (20 mM HEPES pH 7.9, 10 mM KCl, 1 mM 

CaCl2, 1 mM MnCl2, 10 mM Sodium butyrate), and washed using a 

magnet stand with 1.5 mL of binding buffer. Beads were resuspended in 

1 volume of binding buffer, added to the cells, and mixture was 

incubated on an end-over-end rotator for 8 min. 

After incubation, the unbound supernatant was removed, and bead-

bound cells were resuspended in 50 μL ice-cold Antibody buffer (20 mM 

HEPES pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 10 mM Sodium 

butyrate, 0.4 mM EDTA, 0.02% BSA, 0.05% Digitonin (#300410, 

Millipore), 1X Protease inhibitor cocktail). Primary antibody against 

H3K27ac (Abcam, #ab4729) was added (1:100) and incubated 

overnight on a rotating wheel at 4 ºC. Next day, tubes were placed on 

the magnet stand to clear and pull off the liquid. Secondary antibody 

(Antibodies Online, #ABIN101961) was diluted 1:100 in 100 µl of Dig-

wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 

10 mM Sodium butyrate, 0.05% Digitonin, 1X Protease inhibitor cocktail) 

and incubated on a rotating wheel at room temperature for 1 h. Tubes 

were placed on the magnet stand to clear and withdraw the liquid and 

beads were washed three times with 1 mL of Dig-wash buffer. The pA-

Tn5 adapter complex (#15-1017, Cutana) was diluted 1:20 in Dig-300 

buffer (20 mM HEPES pH 7.5, 300 mM NaCl, 0.5 mM Spermidine, 10 

mM Sodium butyrate, 0.01% Digitonin, 1X Protease inhibitor cocktail), 

and added to the beads. The tubes were mixed by soft vortexing and 

incubated on a rotating wheel at room temperature for 1 h. After 

incubation, beads were washed three times in 1 mL of Dig-300 buffer. 

Tubes were placed on the magnet stand to pull off the liquid, and beads 

were resuspended in 300 μL of Tagmentation buffer (Dig-300 buffer, 10 

mM MgCl2) and incubated at 37 ºC for 1 h. To stop tagmentation and 

reverse cross-links, 10 µL 0.5M EDTA, 3 µL 10% SDS and 2.5 µL 20 
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mg/mL Proteinase K (#EO0491, Thermo Fisher Scientific) were added 

to each sample and incubated for 1 h at 55 ºC. DNA was purified by 

phenol-chloroform extraction and dissolved in 28 µL of TE (1 mM Tris-

HCl pH 8, 0.1 mM EDTA). 

For library amplification, the PCR mix consisted of: 21 µL of purified 

DNA, 2 µL of 10 µM universal i5, 2 μL of 10 µM a unique barcoded i7 

primer   (primers described in Buenrostro et al.[196]) and 25 μL 

NEBNext HiFi 2X PCR Master mix (#M0541, NEB). The following 

program was used for library amplification: 72 ºC for 5 min, 98 ºC for 30 

s, 13 cycles of 98 ºC for 10 s and 63 ºC for 10 s, a final extension at 72 

ºC for 1 min and hold at 8 ºC. Post-PCR clean-up was performed by 

adding 1.3X of Ampure XP beads (#A63880, Beckman-Coulter). 

Samples were eluted in 25 µL 10 mM Tris-HCl pH 8.  

Final library was quantified using Qubit dsDNA BR Assay and fragment 

analysis was performed to check library quality. Once library quality was 

confirmed, samples were sequenced 100-150 bp paired-end on a 

NovaSeq X Plus system (Illumina) to obtain about 30 M reads per end. 

 

9.6 RNA extraction 

Total RNA was isolated from EC cells using the RNeasy Micro Kit 

(#74004, Qiagen). RNA quantity was measured using a NanoDrop 

Spectrophotometer and quality was assessed using gel electrophoresis. 

For sequencing samples, RNA integrity number values were evaluated 

using fragment analysis technologies. All the samples had RNA integrity 

number (RIN) values >8.5. 

Stranded mRNA libraries were sequenced 100-150 bp paired-end on 

NovaSeq X Plus system (Illumina) to obtain about 60 M reads per end. 

 

9.7 RT and qPCR 

Reverse transcription (RT) was performed using 250 ng of total RNA in 

a final volume of 10 µl following the manufacturer’s instructions 

(SuperScript IV Reverse Transcriptase, #18090, Invitrogen). Next, 

cDNA was diluted 1/10 and 1 µl was used to analyzed the expression of 

each gene by real time PCR. Experiments were performed in a 

LightCycler 480 platform using SYBR Green I Master (#4707516001, 
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Roche) and each sample was analyzed in triplicate. Samples were 

incubated for an initial denaturation at 95 °C for 10 min, then 45 PCR 

cycles were performed using the following conditions: 95 °C for 10 s, 64-

66 °C for 20 s, and 72 °C for 15 s. An additional cycle to calculate the 

melting curve was added before cooling down. The expression levels 

were normalized according to the average of at least two independent 

reference genes (TBP, VAPA and/or RAB7A). Primer efficiency was 

calculated by extracting fluorescence raw data and using the Chainy tool 

(http://maplab.imppc.org/chainy/ [197]). 

 

9.8 IFNγ quantification by ELISA 

IFNγ quantification (at 2 h, 6 h, 24 h, 48 h and 72 h) was carried out 

using BioLegend’s ELISA MAX™ Deluxe Set (#430104, BioLegend) 

following manufacturer's instructions. Briefly, SNs at each time point 

were collected and centrifuged 500 g 10 min to remove dead or floating 

cells, and stored at -20ºC. 

The day before performing the ELISA, Capture Antibody was diluted in 

1X Coating Buffer A to prepare the 96-well plate (#44-2404-21, 

Invitrogen), adding 100 μL of the Capture Antibody solution to all wells 

needed. Plate was sealed and incubated overnight between 2 °C and 8 

°C. Next day, each well was washed four times with 300 μL Wash Buffer 

and non-specific binding to reduce background was blocked adding 200 

μL 1X Assay Diluent A per well and incubating at RT for 1 hour with 

shaking. During this incubation, all standards and sample dilutions were 

prepared to be run in triplicate. Then, plate was washed four times with 

Wash Buffer and 100 μL/well of standards or samples was added to the 

appropriate wells. Plate was incubated at RT for 2 hours with shaking 

and washed four times with Wash Buffer. Next, 100 μL of diluted 

Detection Antibody solution were added to each well, and plate was 

incubated at RT for 1 hour with shaking. Plate was washed four times 

with Wash Buffer and 100 μL of diluted Avidin-HRP solution to each well 

was added and incubated at RT for 30 minutes with shaking. Afterwards, 

plate was washed five times with Wash Buffer and 100 μL of freshly 

mixed TMB Substrate Solution (#S5814, Sigma) was added and 

incubated in the dark for 20 minutes. Finally, reaction was stopped by 

adding 100 μL of Stop Solution to each well. Absorbance at 450 nm was 

read within 15 minutes and at 570 nm to subtract it from the absorbance 

http://maplab.imppc.org/chainy/
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at 450 nm. ELISA data obtained was analyzed using GainData (Arigo 

Biolaboratories, https://www.arigobio.com/elisa-analysis ). 

 

9.9 Cytokine array  

Multiplexing laser beads array was outsourced to Eve Technologies to 

profile 71 different human cytokines and chemokines related to 

inflammation and autoimmunity in the collected SNs at 2 h, 24 h and 72 

h. Only those values above the limit of detection were reported in this 

work. Additionally, six quantiles were computed from all cytokine 

quantifications at 72 h, and the cytokines within the last quantile were 

excluded from the analysis. 

 

9.10 FACS 

Fluorescence activated cell sorting (FACS) to check CD4+ T cell 

contamination in co-culture samples was performed as follows. First, 

cells were counted and 500,000 cells were used per condition. Samples 

were transferred to a 1.5 ml tube and centrifuged 300 g 5 min. Cells 

were washed with 1X PBS to prevent inactivation of the blocking 

antibody. Samples were resuspended in 50 µl Blocking reagent 

(blocking antibody (#16-9161-73, eBioscience) diluted 1:20 in 1X PBS) 

and incubated 10 min covered at 4 ºC. Next, 1X PBS was added to each 

sample to dilute the blocking reagent and samples were centrifuged 300 

g 5 min. Pellet was resuspended in 1X PBS with 1:16 anti-human CD4-

PE (#12-0049-42, eBioscience) and incubated covered 25 min at 4 ºC. 

Then, the staining antibody was removed by diluting each sample with 

1X PBS and centrifuged. Three more washes were done using 1X PBS. 

Finally, the pellet was resuspended in 200 µl of DAPI solution (1 µg/ml, 

#32670, Sigma) to discriminate live from dead cells. Samples were 

analyzed with a BD LSR II Flow Cytometer and FlowJo software was 

used for analyses. 

 

9.11 Cell death assay 

The percentage of viable and apoptotic cells was assessed  by 

fluorescence microscopy as previously described[198]. Briefly, samples 

at 2 h, 6 h, and 24 h were stained with the DNA binding dyes Hoechst 

https://www.arigobio.com/elisa-analysis
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33342 (HO, #382065, Sigma) and propidium iodide (PI, #P4170, 

Sigma). Cell death was determined in at least six different areas of each 

well. Results are expressed as percent of apoptotic cells, calculated as 

number of apoptotic cells/total number of cells × 100. 

HO freely passes through the plasma membrane and enters both intact 

and damaged cells, staining DNA blue. In contrast, PI, a highly polar dye 

that cannot penetrate cells with intact membranes, stains DNA red. 

 

9.12 CRISPRa experiments 

The gene target of the RE containing the T1D-related SNP rs193778 

was assessed using the CRISPR/Cas9 synergistic activation mediator 

(SAM) system. 6 different single guides RNAs (sgRNAs) were designed 

to target the RE but only 3 were finally selected for final experiments. 

The designed sgRNAs were cloned into the lentiSAMv2 vector (#75112, 

Addgene) and amplified by transformation into Stbl3 E. coli. EC cells 

were infected with lentiviruses containing the SAM vector with sgRNAs. 

The lentiviral particles were produced using HEK 293FT, filtered and 

concentrated before infection. EC cells were seeded in 12 well plates 

and infected with the volume of viral concentration determined by a 

previous titration test. After 24-72 h of infection, cells were selected 

using Blasticidine (6 µg/ml). After complete selection, cell lines were 

cultured for expansion. Finally, EC samples were collected for RNA 

extraction and qPCR analysis. 

A control of EC cells without infection and antibiotic selection was 

included to ensure baseline cell viability. A selection control (no infection, 

with antibiotic) and a positive control of EC cells infected with GFP were 

also included. Additionally, three other negative controls for 

transcriptome changes were used, consisting of the same SAM 

backbone vector with sgRNAs targeting regions not present in the 

human genome. These vectors were also infected into EC cells, and 

changes in expression of potential target genes were normalized 

against these samples. 

 

 

 



84 | Material and Methods 

 

 

10  

Bioinformatic analysis 

The following bioinformatic processing and analysis were conducted by 

Georgina Fuentes, a PhD student from the laboratory.  

 

10.1 ATAC-seq data processing 

Raw fastq files were processed using the nf-core/atacseq pipeline 

version (2.0) with default parameters implemented in Nextflow v22.10.5. 

In short, reads were trimmed using trimGalore!, and aligned to the 

human reference genome GRCh38 release using Bowtie2, removing 

duplicate reads as well as reads mapping to non-canonical 

chromosomes or to ENCODE blacklisted regions using Picard tools and 

Samtools. Peak calling was performed using MACS2 with the argument 

“--narrow_peak”. 

 

10.2 CUT&Tag data processing 

Raw fastq files were processed using the nf-core/atacseq pipeline 

version (2.0) with default parameters implemented in Nextflow v22.10.5. 

In short, reads were trimmed using trimGalore!, and aligned to the 

human reference genome GRCh38 release using Bowtie2, removing 

duplicate reads as well as reads mapping to non-canonical 

chromosomes or to ENCODE blacklisted regions using Picard tools and 

Samtools. Peak calling was performed using MACS2. 

 

10.3 RNA-seq processing 

Raw fastq files were processed using the nf-core/rnaseq pipeline 

version (3.11.1) with default parameters implemented in Nextflow 

v22.10.5. In short, reads were trimmed using trimGalore!, aligned to the 

human reference genome GRCh38 release using STAR and quantified 

by salmon. 
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10.4 Differential analysis of ATAC-seq, CUT&Tag 

and RNA-seq 

For both ATAC-seq and CUT&Tag, aligned reads from all replicates were 

merged into a single BAM file to identify a comprehensive set of peaks. 

Next, the comprehensive peak set was used to compute read counts 

separately for each replicate and condition. In the case of the RNA-seq 

data, the output of salmon was used as the input matrix for downstream 

analysis. The generated matrices were normalized and differential 

analysis was performed using DESeq2 v.1.38.3 [199] using a paired 

sample design. Genes/regions were considered significantly gained 

when adjusted p-value < 0.05 and log2FC > 1 and significantly lost when 

adjusted p-value < 0.05 and log2FC < -1. All regions/genes that did not 

reach significance or did not pass the log2 fold change cutoff were 

classified as stable/equally regulated. 

 

Table 1. List of islet-specific markers 

ABCC8 G6PC2 INS MYT1 PDX1 SNAP25 

ADCYAP1 GAD2 INSM1 NBRE PRKCA SOX17 

ARX GATA4 ISL1 NCAM1 PRLR SOX4 

BHLHA15 GATA6 KCNB2 NEUROD1 PTF1A SOX9 

CACNA1C GCK KCNJ11 NEUROG3 PTPRN ST18 

CACNA1D GIPR KCNK10 NGN3 PTPRN2 STX1A 

CACNA1E GJD2 LMX1A NKX2.2 RFX3 SULT4A1 

CDKAL1 GLIS3 MAFA NKX6.1 RFX6 SYT4 

CHGA GLP1R MAFB NR4A3 RGS4 SYT7 

CPE HB9 MEF2A ONECUT1 RPBJ TCF7L2 

DACH1 HES1 MEF2C PAX4 SCG2 TM4SF4 

FFAR1 HNF1A MEF2D PAX6 SCG5 UCN3 

FOXA2 HNF1B MIST1 PCSK1 SCGN WNT4 

FOXO1 HNF6 MNX1 PCSK2 SLC2A2  

FXYD2 IAPP MNX1 PDE3B SLC30A8 
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10.5 Defining classes of IREs 

To characterize the dynamics of chromatin accessibility, the results 

obtained from the DESeq2 differential analysis were processed and the 

direct overlap between ATAC-seq peaks and H3K27ac-enriched sites 

was computed. Regions annotated as stable for both ATAC-seq and 

H3K27ac assays were classified as SREs. Regions classified as either 

stable or gained in ATAC-seq differential analysis and as gained in 

H3K27ac were classified as IREs. To remove redundant information and 

identify unique mechanisms over time, we further classified the set of 

IREs, ensuring that once a regulatory element was activated, it was not 

included in later time points. Thus, we only kept IREs that are unique for 

each specific time point. Regions classified as lost in ATAC-seq or 

H3K27ac differential analysis were classified as LoREs. 

 

10.6 Assigning regulatory elements to target genes 

To annotate regulatory elements as distal or proximal, we assigned each 

regulatory element to the nearest TSS of a coding gene (using 

GENCODE release 18 annotation 60). Those regions lying within 2 

kilobases (kb) from the nearest TSS were annotated as promoters while 

the rest were considered as distal regulatory elements. 

To analyze the effect of IREs and LoREs on gene expression changes, 

each IRE/LoRE was assigned to all DEGs whose TSS was closer than 

40 kb. When an upregulated gene could not be found in <40 kb, the IRE 

was assigned to the closest, but <1 Mb far, induced. 

 

10.7 T1D GWAS SNPs overlap with regulatory 

elements 

T1D-associated SNPs were obtained from the National Human 

Genome Research Institute European Bioinformatics Institute 

(NHGRI-EBI) GWAS catalog. All variants in high linkage 

disequilibrium (1000 Genomes Project, phase 3 European 

population (EUR), R2 >0.8) with the leading SNP were obtained 

using the LDlinkR package (v1.3.0). 
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11  

Co-culturing β cells with T lymphocytes and APCs 

 

The first step in order to fulfil the aims of my project was to develop a 

new in vitro model mimicking early insulitis in T1D to study the β cell 

behaviour in this inflammatory environment. Current human models are 

mainly based on exposure of human β cells to specific cytokines. This 

can be modulated 1) in terms of composition, from just one cytokine to 

a cocktail of several cytokines, and 2) in terms of dose, by exposing the 

cells to cytokines at different concentrations. All these models have 

some limitations, as, to optimally mirror insulitis, they require a priori 

knowledge of all the concentration and type of chemokines and 

cytokines participating to the inflammatory process (Table 2, section 

5.2.2, Introduction). Moreover, the stimulus is always abrupt, it goes 

from resting state to maximum stimulus directly while missing the effect 

of cell-to-cell communication that may occur during this process.  

For models of later stages of insulitis, where direct CD8+ T cell killing is 

occurring, significant attention has been devoted to developing in vitro 

models that help unravel the interactions between β cells and other 

involved immune cell populations, primarily CD8+ T cells[127]. This 

need is apparent due to the physical contact required for direct β cell 

killing. However, these interactions may also be crucial in early insulitis, 

where the different populations involved “communicate” behaviour 

through the release and uptake of different cytokines and chemokines.  

Therefore, in order to better recapitulate the complex scenario which β 

cells are exposed to, I decided to re-direct the focus on which cell types 

are important rather than which cytokines or molecules are present in 

the islets at this stage of the disease. As described in the introductory 

section, CD4+ T cells are one of the main players at early stages of T1D 

since they modulate the activation or suppression of downstream 

effectors of the immune response. Hence, in collaboration with Pere 

Santamaria, MD, PhD, team leader at IDIBAPS and professor at 

University of Calgary, I developed a new in vitro model of early insulitis 

based on the co-culture of β cells with CD4+ T cells to mirror the 

dynamic inflammatory changes at this stage and study the effects on the 

β cells regulatory networks. 
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11.1 Co-culture of β cells with APC and CD4+ T cells 

in 96-well plates 

I initially set up a complex model by co-culture with EndoC-βH1, a 

primary human transgenic CD4+ T cell line modified to express a TCR 

that recognizes the IGRP13-25 T1D antigen in the context of a specific 

HLA class II T1D risk haplotype (DRB1*03:01), and an immortalized 

antigen presenting (APC) cell line that has been transduced to express 

the HLA class II haplotype that the CD4+ T cells recognize. I will from 

now on refer to this model as “CC-M1.1”. The idea of combining these 

three cell populations is to study the response of the β cell in an immune 

context that resembles the likely scenario of a genetically predisposed 

individual within autoantigens-activated T lymphocytes. I co-cultured 

these three populations in 96-well plates and collected samples at 

different time points to capture the dynamics of molecular changes in β 

cells (Fig 1). The experiment design included 1) the co-culture samples 

treated with the IGRP13-25 antigen (IGRP), 2) a positive control in which 

CD4+ T cells were activated by CD3/CD28/CD2 antibody complex 

(CD3), 3) a negative control in which CD4+ T cells have not been 

activated (DMSO) and 4) negative control in which EndoC-βH1 (EC) 

were cultured alone. I analyzed the β cells transcriptome at different time 

points (24 h, 48 h) and collected the cell culture medium to confirm the 

activation of CD4+ T cells. 

IFNγ abundance in the medium, measured by ELISA, confirmed the 

activation of the CD4+ T cells, both in the IGRP and the positive control 

samples. No activation was observed in the negative control (DMSO) 

sample (Fig 2A). Activation levels in the CD3 sample (artificially 

activated CD4+ T cells) were more than 10 folds higher as compared to 

the samples exposed to the IGRP antigen which were coupled with less 

marked changes in gene expression of key IFNγ-response genes. 

Overall, the activation of CD4+ T cells led to mild changes in 

transcription of EndoC-βH1 in the CD3 sample. Gene expression 

changes were also detected but to a less extend in the samples using 

the IGRP antigen (Fig 2B). The levels of IFNγ, used as a proxy for the 

CD4+ T cell activation, were quite low, especially in the IGRP samples, 

when compared to the IFNγ concentration used in other models of 

insulitis (Table 2, section 5.2.2 in introduction). Thus, driven by these 

results, I decided to further optimize the model in order to obtain a 

stronger activation of the lymphocytes.   
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Figure 1. Schematic representation of Model 1.1 Co-culture (CC-M1.1). 
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Figure 2. CC-M1.1 activation of CD4+ T cells led to a mild response in the 

transcriptome of the β cells. A. IFNγ levels present in the culture medium 

after each time point for each condition. Measured by ELISA and expressed as 

pg/ml. B. Relative expression of CXCL10, TAP1, STAT1 and SOCS1 at 24 h 

and 48 h of co-culture in EndoC-βH1. Gene expression was normalized to the 

mean expression of three reference genes. Bars represent mean +/- SD. 
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11.2 Co-culture of β cells with APC and CD4+ T cells 

in 48-well plates 

In order to address the potential limitations revealed in the CC-M1.1, I 

increased the co-culture format and the density of every cell population 

to increase the stoichiometric probability of CD4+ T cell activation in the 

context of a new experimental setting (CC-M1.2) (Fig 3A). The IFNγ 

abundance at 24 h increased notably as compared to CC-M1.1 

reflecting and improved induction of CD4+ T cell activation in both 

positive control and IGRP conditions (Fig 3B). However, the increase in 

IFNγ in both conditions did not translate much into increased changes 

in gene expression of marker genes measured by qPCR. Therefore, I 

performed RNA-seq to assess the breadth of transcriptional changes 

and evaluate the model's efficacy in capturing β cell responses to an 

inflammatory stimulus. 

RNA-seq experiments revealed lymphocytes-induced changes in the 

transcriptome of the β cells. The transcriptome changes were in line with 

the abundance of INFγ detected in the media as a proxy of the CD4+ T 

cell activation (Fig 4A and 4B). Almost all the changes observed 

coincided with well characterized genes known to be part of the β cell 

response to a proinflammatory stimulus[113, 200, 201].However, taking 

into account the levels of CD4+ T cell activation and RNA-seq results, I 

hypothesized that these changes could reflect a mild response to a low 

inflammatory stimulus. Indeed, another work arrived to a similar 

conclusion when using a similar dose of IFNγ in a cytokine cocktail, but 

lacking power to profile transcriptome nor chromatin changes[195]. 

Therefore, although these results were promising, I decided to re-design 

the co-culture model to improve the activation of CD4+T cells to induce 

higher levels of cytokine production and increase the inflammatory 

stimulus to be able to better understand the β cell behaviour in early 

insulitis. 
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Figure 3. CC-M1.2 activation of CD4+ T cells led to an improved response 

in the transcriptome of the β cells in the IGRP condition. A. Schematic 

representation of Model 1.2 Co-culture (CC-M1.2). B. IFNγ levels present in the 

culture medium after 24 h compared to results of CC-M1.1 at same time point. 

Measured by ELISA and expressed as pg/ml. C. Relative expression of 

CXCL10, TAP1, STAT1 and SOCS1 at 24 h and 48 h of co-culture in EndoC-

βH1 from CC-M1.1 and CC-1.2. Bars represent mean +/- SD. 
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Figure 4. RNA-seq results from CC-M1.2 show limited transcriptional 

response in the IGRP sample. A. Barplot with the number of DEGs in each 

condition compared to the negative control (DMSO) and differential analysis 

between IGRP and CD3. B. MA plot comparing the gene expression changes 

of IGRP vs DMSO; IGRP vs CD3 and CD3 vs DMSO. C. Venn diagram 

overlapping the DEGs from CD3 vs DMSO and IGRP vs DMSO. 

 

By observing these results, I reasoned a few important points to take 

into account when changing the model: 

- The co-culturing model CCM1 is a complex setup which requires 

physical interaction of 3 distinct cell populations. The 

experimental design is thus particularly difficult to optimize. 

- The β cell transcriptome changes observed by exposure of 

CD4+T cells CD3-activated (used in the experimental design as 
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a “positive control”) are qualitatively very similar to those 

obtained by IGRP CD4+ T cell activation. When directly 

comparing the response of both conditions, the only two DEGs 

in IGRP not present in CD3 are MT2A and HSPA1B (Fig 4C). 

However, when directly comparing the IGRP vs CD3 

transcriptome, the only DEGs detected are downregulated, with 

no genes expressed in IGRP condition not found in CD3 (Fig 

4B). 

- Activation of the CD4+ T cells by CD3/CD28/CD2 complex can 

be further optimized in a much more flexible co-culture system. 

Moreover, the process of engineering CD4+ T primary cells to recognize 

the IGRP13-25 antigen from primary cells is challenging and typically 

yields batches with a low cell count. These lymphocytes are thus often 

highly exhausted by the conclusion of the process. Based on these 

observations, I decided to optimize a co-culture experimental design 

based on CD3 complex CD4+ T lymphocytes activation in order to 

overcome some of the limitation encountered but maintaining the overall 

complexity of the experimental design as compared to exposure to 

specific cytokine cocktails. 
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12  

Co-culture of β cells with T lymphocytes in 48 wells 

 

In the previous setup, the CD3 condition involved co-culturing all cell 

populations similar to the IGRP condition but used an antibody complex 

(CD3/CD28/CD2) instead of the IGRP13-25 antigen for lymphocyte 

activation to ensure strong signal transduction to lymphocytes 

independently of APC cells. This method has proved more effective and 

RNA-seq results showed that the gene expression changes in the IGRP 

condition were also present in the CD3 condition (Fig 4A and 4B, IGRP 

vs CD3). Hence, I decided to focus on using the CD3 complex to activate 

lymphocytes. This approach reduces complexity ensuring an efficient 

response of CD4+ T cells consistent for each donor, as in this set up, 

the lymphocytes do not require engineering and selection. 

I thus design a new experiment in which I combined in the same culture 

both human primary CD4+ T cells and EndoC-βH1. I included the 1) 

treated sample, named “CD3”, 2) a negative control in which the 

lymphocytes were not activated, named “DMSO” and 3) a negative 

control of bare EndoC-βH1. I collected samples at different time points 

for IFNγ quantification and transcriptome profiling (Fig 5A). 

Quantification of IFNγ revealed higher concentration of this cytokine 

present in the co-culture medium compared to the previous design (Fig 

5B). After confirmation of high levels of lymphocyte activation, I analysed 

the transcriptome changes of the CD3 sample to profile the response of 

the β cells to the stimulus. 
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Figure 5. Re-design of co-culture led to a strong activation of CD4+ T cells. 

A. Schematic representation of Model 2 Co-culture (CC-M2). B. IFNγ levels 

present in the culture medium after each time point for each co-culture 

condition. Measured by ELISA and expressed as pg/ml. 

 

RNA-seq experiments showed a relevant response of the β cells to the 

stimulus (Fig 6A) characterized, over time, by an increasing number of 

differentially expressed genes (DEGs), including both upregulated and 

downregulated genes. Gene upregulation seems to appear earlier in 

time than gene downregulation but both reaching the maximum number 

of DEGs at the later time point. Of note, most DEGs, with few 

exceptions, follow a similar trend in the time course as once a gene is 

upregulated or downregulated it maintains the expression levels over 

later time points (Fig 6B). Importantly, a relevant proportion of 

downregulated genes could be observed at later time points, around 40-



Results | 99 

 

 
 

45% of DEGs, something that, to my knowledge, was not reported in 

other in vitro models of early insulitis (Fig 6A). I also checked gene 

expression changes for specific markers of inflammatory response, 

such as SOCS1, IRF1, STAT1 and CXCL10, and for β cell specific 

markers, MAFB and PDX1. Both β cell-specific markers follow a similar 

trend of downregulation after 48 h of co-culture, while inflammatory 

markers seem to follow different dynamics (Fig 6C).  
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Figure 6. CC-M2 activation of CD4+ T cells induced a response in the β 

cells characterized by extensive changes in gene expression. A. Barplot 

depicting the number of differentially expressed genes (DEGs) in both 

directions, up or down, of CD3 compared to DMSO at the different time points. 

B. Alluvial plot showing the dynamic changes in gene expression in the CD3 

sample through all the time course of the experiment. C. Gene expression 

changes of different marker genes of inflammation, β cell identity and 

senescence through time. 

 

This model is based on culturing both populations in the same plate 

where EndoC-βH1 are expected to grow attached to the substrate and 

CD4+ T cells in suspension. Conceptually, separating both populations 

before sample collection should be straightforward. However, based on 

microscope observations indicating an incomplete separation of the two 

cell populations, I decided to check the amount of CD4+ T cells present 

in the β cell sample after co-culture before proceeding with further 

experiments. To do so, upon a 72 h co-culture I quantified the number 

of lymphocytes present in the cells detached from the plate and after 

removing those in suspension. Staining the sample with an anti-CD4 

antibody and DAPI for FACS analysis revealed that over 70% of total 

cells were CD4+ T cells, while the DMSO sample only contained 14% 

of CD4+ T cells (Fig 7A and 7B). These results were consistent with 

previous concerns from microscope observations indicating that CD4+ 

T cells, when activated, tend to attach to the EndoC-βH1 cells rather 

than forming aggregates and growing in suspension. In fact, not only the 

levels of lymphocyte contamination represent an obvious problem but 

also the striking difference in cell composition between the CD3 and 

DMSO samples, that make impossible the comparison between 

samples. 

In addition, the DAPI staining revealed that CD4+ T cells display good 

levels of cell viability (Fig 7C) while β cells displayed reduced viability 

with activation of CD4+ T cells, pointing to an increase in the levels of β 

cell death (Fig 7C). 

Given the challenges encountered in separating CD4+ T cell from β cell 

after a co-culture time course, I decided to follow a new strategy aimed 

at achieving similar activation results but being able to discriminate the 

signal from the two cell populations. 
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Figure 7. Sample of β cell from CC-M2 contains a high level of CD4+ T cell 

contamination. A. Gating strategy for FACS to distinguish between CD4+ and 

CD4- cells and viability of each subset. B. Percentage of CD4+ T cells and β 

cells in each condition after 72 h of co-culture. C. Percentage of CD4+ T cells 

or β cells alive and dead in each condition after 72 h of co-culture.  
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13  

Co-culturing β cells with T lymphocytes using 
transwells 

 

With the aim of achieving a proper discrimination of the co-cultured cells 

and being able to identify the β cell-specific molecular responses, I 

decided to use a transwell insert to physically separate both populations 

in culture. This system consists on a two-compartment culture vessel 

separated by a porous membrane (Fig 8A). Depending on the size of 

these pores, these cell culture inserts can have many applications such 

as co-culture or migration assays. In my case, I took advantage of this 

system to culture CD4+ T cells in the upper compartment with EndoC-

βH1 in the bottom one, separated by a porous membrane that does not 

allow cell migration from one compartment to the other (Fig 8A). 

However, the small size of the pores does allow the cell culture medium 

to be shared between both compartments; in this way the molecules 

including chemokines and cytokines produced and secreted in one 

compartment will reach the other one. This approach allows both cell 

populations to share their media but at the same time permits to solely 

capture the β cells’ molecular response signal. 

 

13.1 Transwells co-culture set-up 

In order to find the optimal conditions for the transwell co-culture set up, 

I performed an explorative experiment (CC-M3.1) using two different 

number of CD4+ T cells, 700,000 and 900,000 per well. As compared to 

the previous experiments described, the transwell co-culture set up 

requires increasing total culture volume while maintain the cell seeding 

density and nutrients used in previous experiments. IFNγ quantification 

of culture medium after different time points revealed high levels of 

CD4+ T cell activation, reaching concentrations of this cytokine very 

similar to those obtained in the CC-M2 (Fig 8B). Exposure to these 

concentrations of IFNγ in the medium also lead to a transcriptional 

response in the β cells, as it was evident from gene expression 

quantification by qPCR of specific inflammatory genes and β cell specific 

markers (Fig 8C). Inflammatory markers are highly upregulated in all 
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cases compared to both DMSO and EndoC-βH1 not exposed to 

lymphocytes, with almost no differences between experiments 

performed with different number of CD4+ T cells (Fig 8C). I noticed that 

exposure to activated lymphocytes seems to induce a downregulation 

of β cell markers although to a less extend when compared with CC-M2. 

Overall, the differences in the induced gene expression changes 

observed in the in CC-M3 as compared to CC-M2 are likely due to the 

lack of capacity, in the latter model, to discriminate the contribution of 

the two cell populations in the transcriptome data (Fig 8C and 7B). 

Of note, in this preliminary test, I also included a 96 h time point in one 

condition (700,000 CD4+ T cells) to comprehend the dynamics of 

lymphocyte activation and β cell transcription changes after 72 h to 

better design the final experiment. In this 96 h time point, there is a slight 

increase in IFNγ concentration, although CD4+ T cell activation seems 

to be reaching a plateau (Fig 8B). In fact, the increase in IFNγ 

concentration and time of exposure do not translate into increased 

changes in gene expression of key markers, showing a response very 

similar to the 72 h time point. 
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Figure 8. Activation of CD4+ T cells using a cell culture insert in CC-M3.1 

led to the presence of IFNγ in the medium and changes in β cell’s gene 

expression. A. Graphical representation of a transwell system, with the cell 

culture insert as top compartment and the regular well as bottom compartment. 
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B. IFNγ levels present in the culture medium of CC-M3.1 with 700,00 cells and 

900,00 cells at the different time points compared to IFNγ levels of CC-M2. C. 

Relative expression of two inflammatory markers (TAP1 and SOCS1) and two 

β cell specific markers (INS and MAFB) in CC-M2 and CC-M3.1 at the different 

time points. Bars represent mean +/- SD. 

 

In summary, the findings from CC-M3 indicate that the transwell system 

serves as a highly effective means to capture CD4+ T cell-induced 

alterations in a specific cell type such as the β cells. I observed that 

employing 700,000 CD4+ T cells for a 72-hour time course is adequate 

for comprehending the dynamic changes in β cells following this 

proinflammatory stimulus. Finally, after a 96-h exposure followed by a 

48-hour resting period, in which the CD4+ T cells were removed from 

the co-culture, I measured gene expression in β cells (Fig 9A). 

Interestingly, expression levels of inflammatory markers were strongly 

reduced after 48 h of resting reaching similar levels of expression as in 

the negative controls while β cell-specific markers increased after 

resting, going back to normal levels. These results suggest that, even 

though β cells show a strong response when exposed to an 

inflammatory stimulus, they seem to be able to rapidly recover from it 

when the insult is ceased.   
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Figure 9. A resting period of 48 h after 96 h of co-culture seems to be 

enough for β cells to recover from the stimulus and progressively go back 

to normal gene expression levels. A. Schematic representation of CC-M3.1 

using 700,000 CD4+ T cells. Resting sample was collected after 96 h exposure 

+ 48 h resting period. SN of resting sample was collected at the end of 

exposure. B. IFNγ levels present in the medium of CC-M3.1 with 700,00 cells 

at the different time points. Of note, the levels of resting sample correspond to 

those present at 96 h of stimulus, right before removing the stimulus. C. 

Relative expression of two inflammatory markers (TAP1 and SOCS1) and two 

β cell specific markers (INS and MAFB) in CC-M3.1 with 700,000 CD4+ T cells 

at the different time points. Bars represent mean +/- SD. 
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14   

Secretome profiling of β cells co-cultured with CD4+ 
T lymphocytes  

 

Taking into consideration all the previous results, I designed an 

experiment to profile, at different time points, the inflammatory response 

of β cells at the transcriptional and gene regulation levels (Fig 10A). Of 

notice, for this experimental design I used regular EndoC-βH1 rather 

than DMSO treated co-cultures as negative controls. The rational of the 

use of this control was due to data recollected in previous experiments 

showing that resting lymphocytes in DMSO present residual activation 

resulting in the release of low levels of IFNγ in the co-culture medium. 

Although the activation is minimal it results in gene expression changes 

compared to non-co cultured EndoC-βH1 (the data is not shown but can 

be appreciated in Fig 8C). 

The experiment was performed in replicates (n=3), each using a 

different human donor of CD4+ T cells. I studied the medium 

composition, the transcriptome and the chromatin profile in β cells at 

different time points. 

Quantification of IFNγ was employed to ensure consistent lymphocyte 

activation across all replicates (Fig 10B). In an effort to examine the 

different proteins released in the medium after co-culture, I applied a 

commercial bead-based cytokine array for over 70 different cytokines 

related to autoimmunity and diabetes. Results underscore the 

predominant presence of IFNγ in the medium, alongside with numerous 

other cytokines present at varying concentrations (Fig 10C). Beyond 

IFNγ, the analysis uncovered several cytokines known to be secreted 

by different subtypes of CD4+ T cells, as well as others that could 

potentially be produced by β cells in response to the stimulus. Therefore, 

I decided to integrate the array results with RNA expression data 

obtained from the β cells at different co-culture time points (Fig 10C). I 

classified the medium components according to the likely cell of origin, 

considering the expression levels in β cells and their biological function. 

Interestingly, most of the components are attributed to CD4+ T cells (Fig 

10C, green names), like IFNγ, IL13, CD40L, IL4, IL9, IL17A, or IL13, as 
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low or no expression of these genes was detected in β cells. In the case 

of VEGF-A and PDGF-A, both genes are expressed but with a tendency 

of downregulation in β cells. Taking into account their function and the 

opposite direction between expression and protein abundance, I 

assigned them to CD4+ T cell production. However, other regulatory 

mechanism of protein synthesis and secretion might be contributing to 

the presence of these molecules. 

On the other hand, several cytokines are highly likely produced by β 

cells (Fig 10C, red names) or even both populations at the same time, 

confirming the bidirectional communication established between the 

immune cells and β cells within the inflammatory context (Fig 10C). It 

includes CXCL10, CXCL9, TRAIL and LIF, among others. 
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Figure 10. Activation of CD4+ T cells in CC-M3.2 leads to high levels of 

IFNγ in the medium. A. Schematic representation of CC-M3.2, done with 

EC.B. IFNγ levels present in the medium of CC-M3.2 at the different time points 

for each replicate quantified by ELISA. C. Co-culture medium composition at 

different time points (n=1) checked using a cytokine array. The heatmap on the 

left represents the protein concentration detected in the media at different 

timepoints. The heatmap on the right represents the changes in expression in 

β cells of the gene encoding the corresponding protein detected in the media 

at different time points. Green highlight means cytokines likely produced by 

CD4+ T cells with low or no expression in β cells, red one likely by EndoC-βH1 

and no highlight likely by both populations. 
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15  

EndoC-βH1 viability is disrupted when exposed to 
activated CD4+ T cells in co-culture 

 

I found markers of apoptosis enriched in the upregulated genes in co-

culture at all time points (Fig 14C), thus I decided to check the 

percentage of dead EC upon exposure to activated CD4+ T cells at the 

different time points. To do so, I used Hoechst (HO) and propidium iodide 

(PI) staining and quantified the number of PI positive cells (red) over the 

total number of cells (HO positive, blue) (Fig 11A). While treatment with 

a pro-apoptotic agent (POS) caused a significant increase in cell death, 

co-culture of EndoC-βH1 with activated CD4+ T cells induced β cell 

death upon 24 h (Fig 11B).  
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Figure 11. Co-culture exposure increases EndoC-βH1 cell death. A. 

Representative images of each condition at the different time points B. 

Percentage of dead cells of the different samples for each time point. Six 

different regions were quantified for each well, and each sample was run in 

triplicate. Ctl: untreated cells; CD3: co-cultured cells; POS: positive control. The 

lines/whiskers in the boxplot indicate the variability outside the upper and lower 

quartiles. 
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16  

Transcriptomic Changes in β Cells after activated 
lymphocyte exposure 

 

Next, I further characterize the impact of activated lymphocytes 

exposure on the β cells transcriptome. RNA-seq profiling of β cells 

unveiled a substantial number of gene expression changes, with 571 

upregulated genes and 387 downregulated genes at 72 h (Fig 12A). 

Analysis of the dynamics of changes demonstrates that both gained and 

lost genes tend to maintain their respective categories across 

subsequent time points. However, the majority of upregulated genes are 

gained at 6 h and 24 h, while conversely, almost all downregulated 

genes are lost by 72 hours (Fig 12B). Curiously, the magnitude of 

changes is consistent over time, with the changes in gained genes 

exhibiting greater intensity compared to the intensity observed in the lost 

genes (Fig 12C). 
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Figure 12. Exposure to activated lymphocytes leads to strong gene 

expression changes in β cells. A. Barplot with the number of changes in gene 

expression at the different time points B. Alluvial plot showing the dynamic 

changes of all DEGs over time. C. Boxplot with the magnitude of changes for 

each category at each time point. The lines/whiskers in the boxplot indicate the 

variability outside the upper and lower quartiles. 

 

KEGG pathway enrichment analysis of gained and lost genes revealed 

that, already from an early time point, there is an induction of pathways 

related to the inflammatory response, such as cytokine and chemokine 
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signalling, as TNF or NF-κB signalling pathways, or antigen processing 

and presentation. Notably, a subset of upregulated genes linked to Type 

I Diabetes and other autoimmune diseases show enrichment from 24 

hours, with their significance slightly increasing by 72 hours (Fig 

13A).The subset of T1D-related genes includes HLA genes[96, 113], 

FAS[202], LTA[203], IL12A[204, 205] and GAD1[206]. As for the limited 

number of downregulated genes observed at 24 hours, the main 

enriched pathway is associated with both intracellular and extracellular 

signalling, which include hormones and neurotransmission receptors. 

Some of these genes are the nicotinic receptor subunits CHRNA4 and 

B4, the GABA receptor GABBR2 and glutamate receptor GRIN1. 

Conversely, genes downregulated at the later time point are mainly 

enriched in processes related to cell cycle and cellular division (Fig 13B). 

I explored in more detail the differences between downregulated genes 

at 24 h and found that 19 genes were downregulated only at 24 h, 

including CEBPA, while 40 genes were downregulated at both 24 h and 

72 h, including SOCS2, G6PC2 and the previously mentioned CHRNA4 

and B4. 

Gene expression levels of inflammatory markers related to IFNγ 

response significantly increase over time compared to the EC control, 

whereas HI-specific markers show a significant decrease, particularly at 

earlier time points (Fig 14A). Gene expression levels of EC treated with 

IFNγ and IL-1β for 48 h (CYT) from a previous publication of our lab[130] 

also show a significant increase of IFNγ response markers upon 

stimulus. However, in contrast to co-culture results, islet-specific 

markers do not exhibit the same decrease in expression, showing 

instead an increase in expression after 48 hours of stimulation (Fig 14B). 

Additionally, I also found an enrichment of genes related to apoptosis 

and senescence in the upregulated genes of co-culture at all time points 

(Fig 14C).  
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Figure 13. KEGG pathway enrichment analysis of gained and lost genes 

upon co-culture. A. Enriched terms in upregulated genes at the different time 

points B. Enriched terms in downregulated genes at 24 h and 72 h. 
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Figure 14. Gene expression changes reveal increased expression of 

inflammatory, apoptotic and senescence markers while a decrease in 

islet-specific markers. A. Gene expression of inflammatory and islet-specific 

markers in the different co-culture samples. B. Gene expression levels of same 

inflammatory and islet-specific markers (full list of islet-specific markers can be 

found in Table 1, Materials and Methods section) in EC treated with IFNγ + IL-

1β. The lines/whiskers of each boxplot inside the violin plot indicate the 

variability outside the upper and lower quartiles. C. Gene Set Enrichment 

Analysis (GSEA) on all DEGs from co-culture samples for apoptosis and 

senescence markers. 
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17  

Impact of activated lymphocytes on β cell regulatory 
landscape 

 

Additionally, I investigated the impact of exposure to activated 

lymphocytes on the regulatory landscape of β cells. To accomplish this, 

I mapped all accessible chromatin sites and H3K27ac enriched regions 

in EndoC-βH1 upon the described co-culture setting. I used assay for 

transposase-accessible chromatin coupled with sequencing (ATAC-seq) 

and Cleavage Under Targets and Tagmentation (CUT&Tag), 

respectively, to map non-coding cis-regulatory elements responsive to 

the proinflammatory stimulus. 

Consistent with the transcriptome findings, I observed substantial 

chromatin remodelling in response to activated lymphocytes, although, 

in general, the data suggests that most of the overall changes in the 

chromatin landscape organization required longer time of exposure 

compared to changes in transcription (Fig 15A). I identified, at different 

time points, over 11,000 differentially accessible regions (DAR).  The 

majority of gained changes were detected at 24 hours and sustained at 

72 hours, with minimal alterations at 6 h. Similarly, acetylation changes 

(DAcR) show no alterations at 2 h, but acetylation deposition required a 

longer exposure time than accessibility, with a progressive increase in 

DAcR over time. Similarly, almost no lost regions were detected before 

24 h and the majority of all lost region were identified at 72 h (Fig 15A). 

As both layers of regulation provide insights into the activity of regulatory 

elements (RE), I integrated the signals and defined a set of regulatory 

elements based on the changes in activity observed upon the co-culture 

set up (Fig 15B): 

- Lost Regulatory Elements (LoREs): these regions experience a 

decrease in activity upon co-culture. They are identified by the 

loss of either the ATAC signal, K27ac signal, or both, at least 

with a FC < -1. 

- Stable Regulatory Elements (SREs), regions that do not change 

the activity status upon exposure. 
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- Induced Regulatory Elements (IREs): these regions exhibit 

increased activity when co-cultured with activated CD4+ T cells. 

They are subclassified into a) Neo-IREs, that gain both the ATAC 

and K27ac signal, and b) Primed-IREs, which are already 

accessible in stable state but increase the K27ac deposition 

upon activated lymphocytes exposure. Gained signal was 

considered when FC > 1. 

Overall, I identified over 3,200 different IREs distributed along the 

different time points, with also a progressive increase over time, 

reaching the highest number at 72 hours. On the other hand, LoREs are 

rare, predominantly emerging at 72 hours with only 198 lost regulatory 

elements (Fig 15C). When analysing the dynamics of regulatory 

elements (Fig 15C), two key observations emerged: 1) half of the IREs 

at 72 h are also identified as IREs at both 24 h and 6 h, and 2) very few 

IREs activated at 6 h or 24 h transition to being classified as SREs at 

later time points (Fig 15C). Based on these observations, and with the 

aim of understanding whether specific pathways are activated earlier or 

later, providing a more nuanced understanding of the β cell response, 

we conducted a subclassification of the IREs based on their induction 

dynamics. To this end, IREs were categorized as early, middle, or late 

responders, based on their induction time point 6 h, 24 h, or 72 h, 

respectively. I found 650 early, 997 middle and 1613 late IREs (Fig 16A) 

and, overall, most IREs are neo while only 10-15% of them are primed 

(Fig 16B). Additionally, I found that the vast majority of IREs are located 

in distal regulatory elements, with solely 1-5% located in promoter 

regions, while almost all LoREs are found in distal regulatory elements 

(Fig 16C). The same strategy was not followed with LoREs since almost 

all LoREs are induced at 72 h and very few are specific of 6 h or 24 h 

(Fig 15C). 

Moreover, changes in the activity of the different subgroups of REs 

correlate with gene expression changes of transcripts located in the 

same loci at the same time point, the effect being particularly evident for 

IREs (Fig 16D). Genes located near an IRE exhibit a significant increase 

in expression compared to those located near SREs at every time point 

analyzed. However, the correlation between LoREs and the expression 

changes of nearby genes become apparent at 72 hours, at which point 

most of the lost LoREs are detected and the nearby genes show 

significantly decreased expression (Fig 16D). 
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Figure 15. Classification of regulatory elements according to their 

changes in activity A. Dynamic changes of differentially accessible regions 

(DARs) and differentially acetylated regions (DAcRs) in time B. Scheme of 

classification of regulatory elements according to changes in accessibility and 

K27ac deposition. C. Alluvial plot showing classification dynamics across time. 
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Figure 16. Sub-classification of regulatory elements according to time of 

induction is accompanied with changes in gene expression of nearby 

genes. A. Number of Induced Regulatory Elements (IREs) and Lost Regulatory 

Elements (LoREs) for each subclassification according to time of induction. B. 

Number of neo and primed IREs specifics of each induction time. C. Distribution 

of REs in distal RE or promoters. D. Gene expression changes broken down 

by exposure time points (6 h, 24 h, and 72 h, representing early, middle, and 

late stages respectively), for genes near IREs, SREs and LoREs. The 
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lines/whiskers in the boxplot indicate the variability outside the upper and lower 

quartiles. 

 

Gene Ontology (GO) analysis of the DEGs genes around the different 

IREs highlighted a predominant response of stress and inflammation. 

As expected, early IREs are enriched in pathways related to the first 

inflammatory response and stress (Fig 17). Middle and late IREs are 

also enriched in early inflammatory pathways and more specific ones 

such as response to IFNs or TNF (Fig 17). 
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Figure 17. Classification of regulatory elements according to time of 

induction reveals inflammatory pathways activated upon exposure. GO 

analysis of early, middle and late IREs. 
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18  

Co-culture model of EndoC-βH1 with activated CD4+ 
T cells provides novel chromatin regulatory maps 

 

This new in vitro model based on the co-culture of β cells with activated 

CD4+ T cells to mimic early insulitis in T1D appears to replicate key 

factors of disease pathogenesis. However, it is imperative to understand 

the extent to which this model enhances our current understanding of 

early insulitis in T1D.  To address this, I compared the findings from this 

model with existing datasets from other studies using diverse cytokine 

cocktails with EndoC-βH1. 

Comparing the transcriptome results of the current model with two 

alternative cytokine exposure based experimental designs—one using 

IFNγ + IL1β[130] and the other employing IFNα[134]—, it became 

evident that the β cell response to IFNα is clearly distinct from the 

responses captured in the other two models (Fig 18A). As expected, the 

β cell response to activated CD4+ T lymphocytes aligns more closely 

with the model using IFNγ + IL1β (CYT), given that both models primarily 

involve IFNγ stimulation. Yet, samples from the co-culture model 

diverge, exhibiting separate clustering from those treated with IFNγ + 

IL1β (CYT), underscoring notable differences between the two 

approaches (Fig 18A). To explore this, I overlapped the overexpressed 

(Fig 18B) and downregulated genes (Fig 18C) from both models to 

assess the extent of similarities and differences in transcription. 

In general terms, the transcriptomic response in the CYT model tends 

to be stronger than in the CC model. When comparing the upregulated 

genes, I found that while the majority of them are shared between both 

models, a subset of upregulated genes is specific of each group (Fig 

18B). GO analysis on shared genes show enrichment in pathways 

related to inflammation and IFNγ signalling (data not shown). The CYT 

specific upregulated genes are enriched in pathways related to cell 

adhesion, regulation of cytokine signalling and production, and MHC-II 

production and assembly (data not shown). On the other hand, CC 

specific genes are enriched in viral response (data not shown). 

Comparison of downregulated genes revealed that most downregulated 
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genes in CC are shared with the CYT model whereas the majority of 

CYT-downregulated genes are specific to this group (Fig 18C). GO 

analysis showed that shared genes between both models are enriched 

in pathways related to synaptic transmission and cell division while CYT-

specific genes include pathways of organ development, extracellular 

organization and cell cycle. In contrast, CC-specific genes are mainly 

enriched in cell cycle and division (not shown). 
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Figure 18. Comparison of RNA-seq data and IREs from the co-culture 

model and other cytokine models. A. PCA analysis of transcriptome data 

from available datasets with EndoC-βH1. B. Overlap of upregulated genes 

between co-culture model and IFNγ + IL1β cocktail. C. Overlap of 

downregulated genes between co-culture model and IFNγ + IL1β cocktail. D. 

Venn diagram overlapping IREs from CYT and co-culture. IFNA corresponds to 
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IFNα treatment, CYT corresponds to IFNγ + IL1β treatment and CD3/CC to co-

culture. 

 

Considering the transcriptome comparison, I decided to perform a 

similar analysis by comparing the chromatin changes induced by the 

different models. I compared the regulatory elements responsive to the 

IFNγ + IL1β cocktail (CYT) and co-culture (CC) approaches, as data of 

chromatin accessibility but not histone modification enrichments are 

available for the IFNα model. To do this, I overlapped the IREs obtained 

in the CC with those from CYT. Results showed only around a 50% 

overlap between the two models (Fig 18D), indicating that different 

regulatory pathways are activated by the different proinflammatory 

stimulus. These findings differ from the transcriptome comparison, 

where the majority of genes are common to both models. In this case, 

LoREs were not compared since there were no lost RE detected in the 

CYT model.  
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19  

The response of β cells to the co-culture model 
recapitulates the genetic risk associated with T1D 

 

One of the main goals of current studies focused on the β cells role in 

T1D and its implication to the pathogenesis of the disease. To do so, I 

tested whether T1D genetic risk can be implicated with β cells 

inflammatory-responsive regulatory changes, by linking distal regulatory 

elements with their target genes, thereby highlighting affected pathways 

or mechanisms. In that regard, I overlapped all the REs defined at any 

time point in the co-culture model with available GWAS datasets of T1D 

SNPs. I also compared the results obtained with a similar analysis using 

the IREs defined in the IFNγ + IL1β model.  

Overall, I observed that over 40% of T1D loci (n=182) encompass 

stress-induced β cell regulatory elements mapped in the CC model (Fig 

19C). In search of potentially causative T1D variants that could 

mechanistically be implicated in the pathogenesis of the disease I 

computed a direct overlap of T1D risk variant and the recently mapped 

regulatory elements. I found a total of 11 IREs mapped in CC bearing 

19 different T1D-SNPs (Fig 19A). As a comparison 12 IREs bearing 16 

T1D SNPs overlapped CYT model IREs. Approximately half of the IREs 

bearing a T1D SNP are shared between the two models (Fig 19B). No 

overlap between SNPs and LoREs was found. A list of shared and CC-

specific IREs can be found in Table 1.  
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Figure 19. Overlap of T1D-risk SNPs with IREs from CC and CYT models. 

A. Number of IREs and SREs that bear a T1D-risk SNP for CC and CYT 

dataset. B. Overlap between the IREs from CC and CYT that bear at least one 

T1D-SNP. 
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Shared SNPs 

SNP 
Chrom location 

(hg38) 
Nearest DEGs 

Distance to 
TSS 

Potential 
candidate gene 

rs61674550 chr1:113540310 
DCLRE1B (down) 360 kb 

OLFML3 
OLFML3 (up) 440 kb 

rs78037977 chr1:172746562 - - - 

rs12083773 chr1:197374633 
ASPM (down) 220 kb 

- 
CFH (up) 720 kb 

rs4065274 chr17:39918763 GSDMB (up) 
Near 

promoter 
GSDMB 

rs3024495 chr1:206769068 
RASSF5 (up) 260 kb 

RASSF5; IKBKE IKBKE (up) 295 kb 
C4BPB (up) 315 kb 

 

CC-specific SNPs 

SNP 
Chrom location 

(hg38) 
Nearest DEGs 

Distance to 
TSS 

Potential 
candidate gene 

rs11741255 chr5:132475490 IRF1 (up) 15 kb IRF1 

rs10863989 chr1:212721403 BATF3 (up) 20 kb BATF3 

rs2427749 chr6:30111111 

TRIM31 (up) 2 kb TRIM31 rs2523988 chr6:30111352 

rs118026715 chr6:30111530 

rs17187931 chr6:30113179 

TRIM31 (up) Prom TRIM31 

rs117994940 chr6:30113412 

rs17455103 chr6:30113469 

rs17187945 chr6:30113557 

rs17389539 chr6:30114226 

rs3822914 chr6:167020379 

- - - rs117306933 chr6:167020640 

rs117702482 chr6:167020646 

rs413809 chr16:11259447 
SOCS1 (up) 3 kb 

SOCS1/CIITA 
CIITA (up) 390 kb 

 

Table 1. List of SNPs overlapping IREs from either CC and CYT models 

(shared) or only from CC (CC-specific). List of SNPs with their genomic 

location, the nearest DEGs to the RE and the distance to it. 
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The T1D SNPs overlapping CC defined IREs were found at BATF3, 

IRF1, OLFML3, RASSF5 or SOCS1, loci amongst others (Table 1). 

Interestingly I found rs4065274 T1D associated variant overlapping and 

IRE responsive to both CYT and CC located near the TSS of GSDMB 

(Fig 20). This gene is the only upregulated gene in the locus in both 

models. This observation makes GSDMB being very likely the target 

gene. Among the T1D-risk SNPs overlapping IREs specifically induced 

in CC, I found 8 different variants (rs2427749, rs2523988, rs118026715, 

rs17187931, rs117994940, rs17455103, rs17187945 and rs17389539) 

overlapping 2 different IREs located in the promoter or near the TSS of 

TRIM31 (Fig 20). In this case, two genes are upregulated in the locus, 

TRIM31 and TRIM40 which makes both transcripts candidate T1D 

targets.   

 

Figure 20. Schematic representation of chromatin regulatory maps and 

gene expression data of interesting loci containing IREs overlapping T1D 

associated variants. Schematic representation of the loci containing GSDMB 
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and TRIM31 genes with the RE and gene expression data obtained in both 

models, co-culture (CC) and IFNγ + IL1β (CYT). 

 

In addition to T1D-SNPs overlapping IREs, I also found a significant 

overlap between variants and SREs in both models. The locus 

containing the DCLRE1B gene has a region with several T1D-risk 

variants, one of which, rs11552449, overlaps with an SRE located in the 

promoter of DCLRE1B (Fig 21). This gene is downregulated and is the 

only DEG in the locus. Similarly, in the ZFP36L1 locus, there is another 

region with different T1D-risk variants, and two of them overlap with an 

SRE located in the promoter of ZFP36L1 (Fig 21). This gene is 

upregulated and the only DEG in the locus. 

Furthermore, I also examined whether any genes encoding components 

present in the co-culture medium detected in the cytokine array could 

be modulated by T1D genetic risk. I focused on components likely 

secreted by EndoC-βH1 or both populations for easier interpretation. I 

found that both TNF-β (LTA gene) and LIF (LIF gene) have SNPs in the 

loci. In the case of LTA, there is just one SNP, and it does not overlap 

with any RE. In contrast, the LIF locus contains a region with several 

T1D-risk SNPs downstream of the gene. Although none of the SNPs 

directly overlap a RE, two of them fall really close to two different SREs, 

rs57043769 and rs1807711 (Fig 21). Interestingly, LIF is the only DEGs 

within a 5 Mb window from the gene. 
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Figure 21. Schematic representation of chromatin regulatory maps and 

gene expression data of interesting loci. Schematic representation of the 

loci containing DCLRE1B, ZFP36L1 and LIF genes with the RE and gene 

expression data obtained in both models, co-culture (CC) and IFNγ + IL1β 

(CYT). 
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20  

CRISPR validation of cytokine-induced regulatory 
element reveals potential target gene 

 

In parallel to co-culture experiments, I also started a validation 

experiment for one of the IREs identified using the IFNγ + IL1β model. 

As reported in a previous publication by the group[130], the SOCS1 

locus contains two distinct regions enriched in T1D-risk variants. Among 

the regulatory elements detected in this locus, rs193778 overlaps with 

an IRE near the SOCS1 promoter (Fig 22A). To investigate the impact 

of this variant on β cell response, two approaches were employed. The 

first approach was to assess whether the variant affects enhancer 

activity using a luciferase reporter assays (Fig 4g from Ramos-

Rodriguez et al[130]). The second approach involved profiling 3D 

contact maps of the locus to explore potential interactions between the 

regulatory element and gene promoters. The results demonstrated that 

the risk SNP increases the enhancer activity of the RE only upon 

cytokine stimulation. Additionally, the 3D contact maps revealed a highly 

complex organization of elements within the locus, identifying potential 

gene targets for this regulatory element (Fig 4h from Ramos-Rodriguez 

et al[130]). 

Therefore, I decided to validate the gene target of the RE using CRISPR 

activation (CRISPRa) experiments. Six different sgRNAs were designed 

to target the CYT IRE containing rs193778 (Fig 22A, red star), and three 

of them (gRNA1, gRNA3 and gRNA4) were selected for validation in a 

preliminary experiment. For this experiment, in addition to the cloned 

gRNAs, I used four different control gRNAs (non-targeting ctls) that 

target non-human sequences. Cells were infected in triplicate, and gene 

expression was profiled by qPCR after antibiotic selection (Fig 22B).     
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Figure 22. Schematic representation of the locus containing rs193778 (red 

star) and rs413809 (yellow star). A. Locus of SOCS1 containing both T1D-

risk SNPs overlapping two different RE, one IRE in CYT and another IRE in 

CC. B. Simplified scheme of CRISPR workflow. 3 gRNAs targeting the RE and 

4 non-targeting controls for normalization were used. Each infection was done 

in triplicate. 
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After harvesting the cells, the expression levels of SOCS1, DEXI, RMI2 

and CIITA were quantified by qPCR. In both CYT and CC models, 

SOCS1 and CIITA were the only genes within the locus that were 

upregulated in EC (Fig 22A). Additionally, transcriptome data from HI 

exposed to IFNγ + IL1β showed that RMI2 and DEXI were also 

upregulated in HI. Therefore, I examined the expression levels of all four 

genes and found that SOCS1 was the only gene to show a significant 

increase in expression following the activation of the regulatory element 

by CRISPRa (Fig 23), when compared to the non-targeting controls.  

quantification by qPCR, which was performed in unstimulated EC, did 

not detected CIITA expression in the controls or in any of the gRNA 

samples.  

 

 

Figure 23. Gene expression quantification after CRISPRa experiments 

revealed an increase in SOCS1 expression. Relative expression of three 

potential target genes normalized to three reference genes (GAPDH, RPLP0, 

TBP). The expression value corresponds to the mean of all the replicates (n=3) 

and the bars represent mean +/- SD. 
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21  

Optimization of a co-culture model to characterize β 
Cell Inflammatory Responses in T1D 

 

Insulitis, a key process in the development of T1D, is marked by the 

infiltration of immune cells into the pancreatic islets. This infiltration 

leads to the secretion of different cytokines and chemokines by both 

immune and pancreatic islet cells, including β cells. These signalling 

molecules facilitate communication among the different cell populations 

and induce changes in nearby cells, altering their gene expression 

patterns as they adapt and respond to the inflammatory environment. 

Understanding the regulatory responses in β cells within this 

proinflammatory context is crucial for uncovering new pathological 

mechanisms of T1D and identifying potential targets for therapeutic 

interventions. 

However, human primary samples at early stages of disease are of 

difficult access as most patients have not been diagnosed yet. Thus, in 

order to study the response of the β cell in these early stages of disease, 

different in vitro models have been developed over the years, mainly 

based on exposure to different cocktails of cytokines (Table 2, section 

5.2.2, Introduction). All these models have been very useful in 

characterizing some of the key pathways activated in β cells within a 

proinflammatory environment, but the exact mechanisms leading to β 

cell dysfunction and death remain unclear. Here, I present a new in vitro 

model based on the co-culture of β cells with activated CD4+ T cells to 

explore new regulatory pathways that can be affected in early stages of 

T1D. Importantly, instead of using a fixed cytokine cocktail to mimic the 

exact mixture of molecules produced by T lymphocytes, this innovative 

experimental design allow reproducing, at least in part, the inflammatory 

environment experienced by β cells during early insulitis 

In the first approach used, CC-M1, the activation of the T cells was 

limited, in particular when relying on the IGRP antigen, and induced mild 

changes in β cell’s transcription. Transcriptome profiling showed only 9 

upregulated genes and 1 downregulated gene in the IGRP sample. 

Thus, I decided to redesign the set up as it did not seem optimal for the 
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aims of this project. As a reference this experimental design resulted in 

the induction in the coculture media of IFNγ levels proximal to 200 pg/ml, 

a dose that was recently tested in another study. Consistent with our 

findings, this study explored the β cell regulatory landscape in insulitis 

and reached similar conclusions[195]. They observed few changes in 

chromatin accessibility and subsequently decided to work with higher 

doses of the cytokine. 

In contrast, the non-specific activated “CD3” sample resulted in 36 

upregulated and 1 downregulated genes. When comparing the DEGs 

from the two approaches, only two genes (MT2A and HSPA1B) were 

found as DEG in the antigen-specific activated “IGRP” sample but not in 

“CD3”. Nevertheless, MT2A and HSPA1B, although not identified as 

DEG, were close to the threshold and these results were based only on 

one replicate. In fact, when comparing directly “IGRP” against “CD3”, no 

IGRP-specific DEG gene could be found.  

Re-design of the model and focus on co-culturing only β cells with 

activated CD4+ T cells facilitated the optimization, in terms of cell 

availability and activation efficiency. Preliminary results of transcriptome 

profiling in CC-M2 were promising although segregation of the signal 

from β cells and CD4+ T cells was difficult. Transwell systems or cell 

culture inserts, have been widely used to prevent cellular interactions or 

contaminations[207]. The application of a transwell system allowed to 

unequivocally distinguish the β cell from the CD4+ T cells for 

downstream analyses. 

Interestingly, β cells showed a tendency of recovery when left in resting 

for 48 h after co-culture as markers of inflammation went back to pre-

co-culturing levels and β cell-specific markers returned to unchallenged 

β cells levels. Although these results were obtained only from one 

replicate, the observation is supported by other studies that have shown 

a similar behaviour of β cell plasticity. Chenet al. [208] demonstrated 

that chronic ER stress causes a transcriptional reprogramming and 

impaired β cell function that is restored after recovery. Nonetheless, 

according to this study, β cell plasticity is gradually lost after repeated 

episodes of ER stress. The CC-M3 co-culture model could be utilized in 

follow-up studies to further investigate and characterize the gene 

regulatory landscape associated with recurrent inflammation. 
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22  

Co-culture of β cells with activated CD4+ T cells as a 
novel in vitro approach to study early insulitis in T1D 

 

22.1 Exposure to activated CD4+ T cells generates a 

bidirectional cytokine communication and 

reduced β cell viability 

Exposure of β cells to activated CD4+ T cells induces a response not 

only at the gene regulation and transcriptional levels but also in the 

secretome observed after 72 h of co-culture. 

The variability observed in terms of lymphocytes activation was 

expected as each batch of primary CD4+ T cells came from a different 

human donor. Besides activation variability, the use of primary cells 

offers the advantage of avoiding clone or lymphocyte subtype selection, 

thereby providing a wide spectrum of CD4+ T cell responses. Thus, it 

will be of great value to obtain the cytokine profile of all samples used to 

capture the potential variability of CD4+ T cell subtypes amongst 

different donors. For example, I found a response with IFNγ, IL2, TNFα, 

and TNFβ, commonly associated to Th1 CD4+ lymphocyte, a subtype 

related to cell-mediated immune response[2, 209]. While IL-4, IL-5, IL-

9, IL10, and IL13 is typically associated with Th2 CD4+ T cells, related 

to B cell activation and humoral response, the presence of IL-17A, and 

IL-22 is associated with another subtype of CD4+ T cells, Th17. This 

subtype is involved in the immune response against bacteria and fungi, 

and it has been linked to the generation of autoimmune disease[8, 96, 

209]. In the context of T1D, many of these cytokines have been 

associated with a proinflammatory effect, such as TNF‐α, and IL‐17, 

while others have been linked to an anti-inflammatory effect, like IL‐10, 

IL‐5, and IL‐4. However, many of the cytokines detected, like IL-2, have 

shown a pleiotropic effect in immune cell activation[210]. 

The cytokine profiling of co-culture medium at the different time points 

confirms the bidirectional communication between CD4+ T cells and β 

cells. Some of the cytokines and chemokines are clearly secreted by the 

lymphocytes upon activation, but I also found molecular mediators that 
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are very likely secreted by β cells, and others by both populations, in 

response to the stimulus. Although cytokine function can be very broad 

and should be carefully assessed for each specific condition, upon co-

culture, there is a clear induction of CXCL9 and CXCL10, markers of β 

cell response in T1D and key chemokines in the regulation of immune 

cell migration, activation and differentiation[91, 96, 211]. Other cytokines 

produced by β cells probably with effects on the immune system are IL-

8, M-CSF, CXCL5, Fractalkine, TRAIL, and LIF. For example, 

fractalkine, also known as CX3CL1, is a special chemokine that can be 

found as a membrane bound, as an adhesion molecule, or soluble 

protein, acting as chemoattractant for monocytes, NK and T cells[212, 

213]. Increased circulatory levels of fractalkine have been associated 

with T2D pathogenesis[214, 215]. On the other hand, while TRAIL is 

known as a death ligand involved in the regulation of innate 

immunity[216], LIF plays a crucial role in numerous biological processes 

from tissue homeostasis to immune response regulation[217]. 

Interestingly, LIF is found in one T1D-risk loci (HORMAD2 locus)[218, 

219]. TRAIL deficient mice exhibit increased autoimmunity, indicating a 

function as a negative immune regulator causing anergy in diabetogenic 

T cells rather than an apoptotic effector[220–222]. However, these last 

two mediators show a broad spectrum of activity and their function in co-

culture context should be carefully assessed as well as the affected cell 

types[223]. 

In addition to secretome changes, I also assessed cell viability upon co-

culture exposure as I found the apoptosis pathway enriched in 

upregulated genes from early time points. Quantification of mortality 

confirmed that upon 24 h, β cells show increased cell death which is in 

line with reported results of cell viability after exposure to IFNγ and IL-

1β[224, 225]. Limitations of these analysis include the lack of viability 

assessment at 72 h due to technical issues and the use of an additional 

complementary method to check cell viability, such as quantification of 

caspases enzymatic activity. 

 

22.2 Co-culture of β cells with activated CD4+ T 

cells induces relevant transcriptome changes 

In regards to transcriptome changes, I found over 680 upregulated 

genes and over 400 downregulated genes throughout the co-culture 
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time course. Upregulated genes are enriched in T1D relevant pathways 

that have been previously reported to be upregulated in β cells upon 

inflammation, such as inflammatory response, cytokine signalling 

andantigen processing and presentation. Moreover, gene ontology 

terms included a specific enrichment for T1D-related genes [113, 226]. 

Remarkably, while inflammatory markers show a significant increase in 

gene expression upon co-culture, islet-specific markers show a 

significant decrease in expression. Importantly, the downregulation of 

islet-specific markers is not observed in β cells exposed to IFNγ+IL-1β 

(data from Ramos-Rodriguez et al.[130]), indicating that this effect is 

driven by different combinations of cytokine signals. Moreover, 

senescence markers were also upregulated in co-culture, particularly at 

early and middle time points. A recent work demonstrated the presence 

of a subset of β cells that acquires a senescence phenotype, in both 

human and mice, and its elimination prevented T1D development in 

mice[227]. Another work, showed that triggering an early senescence 

phenotype in β cells can promote an anti-inflammatory response and 

prevent T1D development[228]. The molecular mechanisms driving the 

senescence phenotype in β cells and its implications in disease 

pathogenesis are not yet clear. However the co-culture model could 

serve as a tool to disentangle the molecular mechanisms driving these 

specific pathways and their implication in the disease 

pathogenesis[229].  

Most downregulated genes were detected after 72 h of co-culture. While 

general characterization of this subset of genes provided minimal 

information on mechanisms of response, detailed inspection highlighted 

some interesting genes related to β cell differentiation and insulin 

secretion. I here highlight 3 genes consistently downregulated in β cells 

upon 24-72 h of co-culture whose loss function could be implicated in 

the disease pathogenesis. 

The nicotinic receptor subunits CHRNA4 and B4 have been associated 

to T2D genetic risk as the receptor has a function in insulin secretion 

and its function is impaired in T2D patients. Its promoter, which bears 

some T1D-risk variants, is regulated by MAFA, one of the main β cell-

specific TFs[230]. Additionally, MAFB regulation of this receptor has 

been associated with pancreatic islet formation and development in 

mice[231].  
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GABBR2 encodes a GABA receptor, and its expression is 

downregulated at 24 h. It has been reported that activation of this 

receptor in β cells reduces expression of β cell-specific markers and 

insulin secretion[232]. Whether the downregulation of GABBR2 is a 

consequence of the increased GABA production due to upregulation of 

GAD1 in β cells is not known. 

G6PC2 is an important enzyme implicated in glucose metabolism. The 

non-coding T1Drisk variantsupstream ofG6PC2 have been linked to a 

more rapid loss of insulin secretion in T1D[233]. In this study, T1D-

associated variants rs59681820 and rs16855123 were found to overlap 

a SREs upstream of G6PC2.  

 

22.3 Co-culture with activated CD4+ T cells reveals 

novel chromatin regulatory pathways in β cells 

In terms of gene regulatory networks, I found that co-culture with 

activated CD4+ T cells induced an extensive chromatin remodelling in β 

cells. I found >11,000 opening chromatin sites and >3,000 newly 

acetylated regions upon co-culture. Curiously, very few regions lose 

their accessibility or acetylation upon exposure compared to gained 

regions, and almost all are detected at later time points. This observation 

contrast with gene expression changes, as approximately 40% of the 

DEGs are downregulated genes. Thus, it is likely that this decrease in 

gene expression is primarily mediated by mechanisms other than 

chromatin accessibility, such as loss of TF binding/replication machinery 

or changes in 3D chromatin structure.  

In order to better characterize the cis-regulatory networks that drive the 

response of the β cell to activated CD4+ T cells, both chromatin features 

(chromatin accessibility and enrichment of H3K27ac) were used to 

define responsive non-coding regulatory elements. I found >3,200 IREs 

and > 200 LoREs. IREs correlated positively with changes in expression 

of nearby genes at the same time of induction at all time points while 

late LoREs were associated with a decreased expression of nearby 

genes.  

In general terms, the magnitude of changes for gene expression, 

chromatin accessibility and histone acetylation are comparable to other 

published studies using cytokine cocktails[130, 134, 195]. Specific 
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comparison with other works is limited by the use in many studies of 

human islets instead of a human β cell line resulting in higher variability. 

Future experiments of co-culture with human islets will allow correct 

comparison with the different cytokine cocktail used in other studies. 

When comparing the results obtained in this study with exposure of 

EndoC-βH1 to IFNγ + IL-1β[130], I observed relevant differences in 

inflammatory-responsive non-coding regulatory functions. Only half of 

the induced regulatory elements (IREs) are shared between both 

models, uncovering novel regulatory pathways in β cells. As genetic 

susceptibility mainly acts in the non-coding genome, obtaining new 

regulatory maps of β cells in response to inflammation is of upmost 

importance to dissect potential mechanisms of disease development.  

Thus, the results in the present work show that the co-culture model is 

a valid approach to generate datasets of transcriptome and chromatin 

regulatory maps of β cells in response to a physiological 

proinflammatory stimulus. It captures well known features of T1D 

pathogenesis providing novel regulatory maps that could help 

disentangle the genetic susceptibility of the disease. 

Additionally, the co-culture model described can be adapted to other 

sources of β cells, such as primary human islets or SC-derived islets. 

Future efforts should focus on profiling the response of primary human 

islets to co-culture both in bulk and at the single cell level to dissect 

response of the different islet populations to inflammation. Current 

efforts are focusing on profiling the transcriptomic and gene regulatory 

networks at single cell level to uncover the specific molecular pathways 

active in each cell population in the context of T1D and identifying the 

cell populations affected by genetic predisposition [74, 194, 195, 226, 

234].   
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Linking the β cell response to inflammatory clues 
with T1D genetic susceptibility 

 

GWAS data provides valuable information to understand the genetic risk 

of complex traits, such as T1D. However, most of the variants 

associated to T1D are located in the non-coding genome, potentially 

affecting gene regulatory networks. Thus, intersecting GWAS datasets 

with detailed regulatory maps of cell types and cell states relevant in 

disease pathogenesis can be a useful strategy to shed light onto 

potential disease mechanisms. However, this approach relies on two 

factors: 1) the power of the GWAS which determines the number of 

leading SNPs, and 2) the quality of the regulatory maps used to 

elucidate new disease mechanisms. 

Nearly 40% of T1D-associated loci contain stress-induced RE in β cells 

from the co-culture model, where genetic susceptibility can potentially 

disrupt the β cell response to inflammation. From the direct overlap 

between IREs and T1D-variants, only half of the SNP-bearing IREs are 

shared between the co-culture and IFNγ + IL-1β model. This supports 

the conclusion that the novel regulatory maps obtained with the co-

culture model can help dissecting new disease mechanisms that were 

not previously captured.  

Examples of loci in which T1D risk variants overlap inflammatory-

responsive β cell regulatory elements included the GSDMB and the 

TRIM31 loci. 

GSDMB belongs to the gasdermin-domain containing protein family, 

and it is involved in pyroptosis, an inflammatory form of cell death. This 

mechanisms have been suggested to be implicated in T1D 

pathogenesis[235]. Variants found near the promoter of GSDMB might 

increase the expression of the gene, increasing β cell death and 

potentially exacerbating the immune response. TRIM31 is an E3 

ubiquitin ligase that has been described to regulate the innate immune 

response and deficiency has been associated with impaired glucose 

metabolism and gut microbiota disruption in mice[236, 237]. Variants 

found in the promoter of the gene or its vicinity can potentially alter the 
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innate immune response in the pancreatic islets of susceptible 

individuals.  

Although the main analysis focused on T1D-risk variants overlapping 

IREs or LoREs, I uncovered a large number of variants overlapping SRE 

(437 T1D associated SNPs overlapping 235 SREs). While gene 

expression changes can derive from regulatory variants disrupting TF 

binding sites in stress-induced REs, other mechanisms could explain 

gene expression changes without affecting the RE status directly, such 

as changes in the binding of co-activators or co-repressors or changes 

in the chromatin organization. The ZFP36L1 promoter contains an SRE 

bearing two T1D-risk variants. ZFP36L1 is an early-responder gene to 

stress that has been implicated in a number of different diseases and 

linked to protein synthesis attenuation[238–241]. Upregulation of this 

gene is only captured at 6 h, and not detected in the cytokine model. 

T1D-risk variants affecting the expression of this gene might modulate 

the earliest response of the β cell to inflammation, increasing the risk of 

exacerbating the immune assault. Similarly, DCLRE1B is a gene that 

blocks gene transcription and replication to facilitate DNA repair[242]. 

Additionally, it has an essential role in telomere maintenance[243]. 

Altered regulation of this gene upon stimulus might have detrimental 

effects on β cells. Nonetheless, the mechanisms by which each of these 

variants disrupts the β cell response to a proinflammatory stimulus 

should be studied in detail and addressed with other experimental 

approaches. 

The LIF locus contains a nearby region enriched in T1D-risk variants. 

Although none overlaps with any of the RE directly, some of them are 

located in close proximity to two SRE that are not classified as IREs due 

to a lack of statistical power. Both SRE show FC > 1 in chromatin 

openness and acetylation that are not statistically significant. However, 

LIF is one of the components found in the co-culture medium, and its 

expression is upregulated in β cells. The LIF pathway has been linked 

to β cell replication in a subset of β cells that express the LIF receptor 

and have increased proliferative capacity[244]. Upregulation of LIF 

could stimulate β cell proliferation during inflammation and, its altered 

expression could contribute to T1D progression.  
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SOCS1 as the likely target gene of T1D-risk variants 

 

Elucidating the molecular mechanisms by which candidate risk variants 

influence enhancer function requires significant effort. One of the key 

challenges is identifying the potential gene targets of candidate 

enhancers carrying T1D-risk variants. To this end various strategies can 

be employed including mapping 3D chromatin contacts and profiling 

physical contacts between different RE in the genome. However, it is 

crucial to functionally validate the effect of the regulatory element on the 

target gene under disease-relevant conditions to uncover the gene 

regulatory impact of the variant. 

Previous work from the group demonstrated that rs193778 overlapped 

a β cell cytokine-responsive RE. Allele-specific luciferase reporter assay 

showed significant differences in enhancer activation for constructs 

bearing or not the T1D-associated variant. Thus, I performed CRISPRa 

experiments on the enhancer to uncover and functionally validate the 

target gene. Activation of the RE in basal conditions led to increased 

expression of theSOCS1 transcript while other genes in the locus were 

not perturbed. 

While this experiment clearly implicates the SOCS1 inflammatory-

dependant gene expression regulation to the susceptibility of developing 

T1D, I acknowledge 2 potential experimental limitations. 

First, the expression of β cells was evaluated under basal conditions, 

while a more complete characterization of enhancer function would 

require assessing expression following a proinflammatory exposure. 

Nevertheless, it is unlikely that a proinflammatory stimulus would alter 

the regulatory landscape of the locus by switching the enhancer gene 

target. Secondly, the proximity between the CRISPRa-target enhancer 

and the TSS of SOCS1 experiments could affect the experiment’s 

outcome. However, it has been reported that optimal distance of the 

gRNA tothe promoter of a gene to activate its expression is around 100 

bp from the TSS[245]. The regulatory element targeted in this 

experiment is located 1.6 kb from the TSS of SOCS1, so it should not 

interfere with the promoter of the gene. 
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Interestingly, an independent, recently published study, found SOCS1 

as a T1D risk gene regulating cytokine-induced β cell death by CRISPR-

KO screening[195]. SOCS1 is a negative regulator of cytokine signalling 

and protects β cells from death in response to an inflammatory 

stimulus[195]. The regulation of the locus is complex including several 

regulatory elements potentially regulating the expression of the gene, 

for example, by co-culturing beta cells and activated CD4+ T cells, I 

found a previously unappreciated IRE, proximal to the enhancer tested 

in this experiment that overlaps an additional T1D-risk SNP, rs413809. 

A similar experimental approach as the one described above could be 

employed to functionally test whether rs413809 has an impact on the 

regulation of the SOCS1 gene in inflammatory conditions thus further 

implicating the protein encoded by this gene in the pathogenesis of T1D.  
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Conclusions 

 

1. An optimized co-culture model featuring β cells and activated CD4+ 

T cells, using a transwell system, can be employed to investigate T-

cell-mediated inflammatory effects on β cells, which are crucial for 

understanding T1D pathogenesis. 

 

2. Co-culturing CD4+ T cells and β cells leads to bidirectional 

communication, characterized by a diverse array of cytokines likely 

secreted by both cell populations. 

 

3. Exposure to activated CD4+ T cells causes extensive changes in β 

cells gene expression. Transcriptomic changes are characterized by 

induction of inflammatory pathways and T1D-related genes over 

time and decreased expression of pancreatic islet-specific 

markers. 

 

4. Exposure of β cells to activated lymphocytes induces substantial 

chromatin remodeling. This epigenetic rearrangement results in 

activation of over 3,200 and loss of ~200 regulatory elements across 

the β cell genome. 

 

5. Co-culturing CD4+ T cells and β cells leads results in unique 

regulatory pathways compared to other models using specific 

combinations of cytokines cocktail including IFNα, IFNγ, and/or IL-

1β.  

 

6. Inflammatory-responsive β cell regulatory elements map to ~40% of 

T1D-associated genetic loci with specific T1D-risk SNPs 

overlapping these IREs. These observations implicate β cell 

regulatory functions to the susceptibility of developing T1D. 

 

7. Regulatory variants overlapping inflammatory-responsive β cell 

regulatory elements implicate gene expression regulation of SOCS1 

to the risk of developing T1D. 
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