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Abstract

The development of more accurate, computationally efficient and practical methodologies for
a better understanding of dynamic soil-structure interaction and prediction of ground-borne
vibration levels in the vicinity of man-made induced vibration sources is greatly sought-after
by practising engineers, as these vibration levels might cause harmful effects on buildings
and/or on their occupants. This dissertation aims to develop an approach that requires low
computational resources to simulate the response of pile-soil systems accurately and is intended
to be simplistic in formulation terms towards a more practical methodology. Thus, an efficient,
fully coupled three-dimensional approach for solving pile-soil interaction problems is presented
in the current dissertation, as well as its numerical and experimental validation. The proposed
approach employs classic rod and Euler-Bernoulli theories to model the pile. The soil, in
the presence of the pile’s corresponding cavity, is modelled as an elastic half-space using an
emerging meshless methodology that approximates the dynamic unknown states of the soil
to linear combinations of the fundamental solution of the medium. Thus, this methodology,
referred to as the singular boundary method, is adapted in this dissertation to deal with three-
dimensional elastodynamic problems. Furthermore, the proposed piled foundation model allows
the rotational motions and reaction torques associated with the pile to be accounted for in the
pile-soil interaction, and their contribution to the accuracy of the scheme is assessed. To achieve
an acceptable trade-off between the accuracy and numerical performance of the methodology, a
comprehensive criterion to define the discretization scheme is also proposed. The robustness of
the approach is studied in the context of single-pile and pile-group systems, the latter with and
without attaching its corresponding pile cap, where the relevance of including torsional motions
in the piles-cap coupling is discussed. Comparisons with existing approaches show that the
formulation provides strong computational advantages to detailed modelling approaches, such
as the ones based on the three-dimensional finite element-boundary element method, as well
as overcoming the fundamental limitations of plain-strain and axisymmetric methods. Finally,
a set of experimental tests on a full-scale single-pile foundation and a 2× 2 pile-group system
embedded in layered soil were conducted to validate the modelling strategy for the simulated
responses.
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Chapter 1

Introduction

"There was probably no subject before engineers in the country today,
particularly those dealing with road transport, that caused more trouble,
or gave rise to more concern than vibration".

Hyde and Lintern [6], England in 1929.

The rapid growth of the urban population in metropolitan areas often gives rise to challenges
regarding urban distribution, especially when geographical constraints such as the limited avail-
ability of land for territorial expansion stand. Complications are especially arising in densely
populated cities, where urban environments are constantly updating their spatial distribution
to implement additional transport links, address the scarcity of residential areas, or provide
essential facilities. While these measures aim to enhance people’s quality of life and foster
urban dynamics, they also give rise to undesirable side effects, with ground-borne noise and
vibration being a significant concern. The increasing number of construction activities, denser
road traffic, and the operation of the every-day-larger urban railway network contribute to this
issue, generating noise and vibration pollution that cause discomfort to residents in nearby
buildings and may also affect the functioning of precision machinery or the structural integrity
of heritage buildings.

To mitigate these undesired effects, governments have established laws and regulations to limit
the exposure of citizens to ground-borne noise and vibration, forcing infrastructure developers
and construction managers to prove that the levels of vibration and re-radiated noise in affected
buildings (existing or to be constructed) will comply with the particular regulations in place.
However, accurately predicting building vibration and re-radiated noise in new scenarios is a

1
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strongly challenging task. The wide range of variables involved in the definition of important
subsystems such as the building, the foundations, the soil and the source, as well as the high
uncertainty on some of these parameters, especially the ones associated with the soil, are the
main causes of this modelling complexity. Thus, engineers and researchers working on this
topic face the challenge of achieving accurate predictions with reduced levels of uncertainty
and limited computational resources.

In such a sense, developing reliable prediction approaches for ground-borne noise and vibration
problems in buildings able to offer a good trade-off between accuracy and computational costs
remains an ongoing challenge. Such models would help designers predict noise and vibration
levels accurately and adopt countermeasures when these levels exceed the allowed thresholds.
Among several complex phenomena involved in such problems, and of particular interest to the
present thesis, these methodologies should enable detailed modelling of the three-dimensional
dynamic interaction between the building foundations and the soil, especially at high frequen-
cies, where the ground-borne noise and vibration problem takes importance.

1.1 Motivation for the research

From the early days when ground-borne vibration was identified as a harmful effect on buildings
and their occupants, researchers have made efforts to develop prediction tools and solutions
to this complex structural dynamics problem. Since then, different prediction models have
been proposed for modelling the diverse soil-structure interaction scenarios that may be en-
countered when dealing with the assessment of ground-borne noise and vibration in buildings
due to ground vibration sources. However, the existing strategies generally suffer from either
limited flexibility/accuracy or high computational costs. The former family of prediction mod-
els counts on various alternatives that can provide reliable results with low computational
costs but lack the ability to model complex soil-structure scenarios adequately or to account
for the full three-dimensional nature of the wave propagation pattern in the soil. On the other
side, prediction models based on numerical approaches are considered a good alternative when
detailed studies are required or when dealing with non-conventional soil-structure problems.
However, the computational efficiency of these models is low, especially when high-frequency
responses are intended to be calculated, which is the situation encountered when developing
ground-borne noise and vibration assessment studies. The mentioned disadvantages of the dif-
ferent existing prediction models, combined with the increasing amount and complexity of the
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Chapter 1. Introduction 3

problems to be addressed, present a challenge in finding detailed modelling strategies that can
effectively handle these engineering problems without becoming impractical due to excessive
computational resource requirements. The present dissertation is mainly focused on the case
of piled foundations, while the proposed method can be easily adapted to other foundation
systems.

1.2 Objectives of the research

This research aims to contribute to the development of practical methodologies to deal with soil-
structure interaction problems involving piled foundations in the context of ground-borne noise
and vibration assessment studies in buildings. The main objective is to actually develop an
approach that requires low computational resources to simulate the response of pile-soil systems
accurately. Furthermore, the resulting approach is intended to be simplistic in formulation
terms towards a more practical methodology. Thus, the approach to be developed in the
framework of this thesis would:

• be able to accurately simulate the three-dimensional dynamic response of pile-soil systems
embedded in homogeneous or layered soils;

• offers a suitable trade-off between the accuracy of predicted results and the computational
resources required;

• be designed on the basis of a simplistic formulation framework that minimises the com-
plexity of the corresponding algorithm.

In order to reach these goals, the following specific objectives are proposed:

• to develop a pile-soil modelling strategy based on classical linear structural member
theories for modelling the pile and an advanced meshless approach to model the soil,
offering accuracy, computational efficiency, and a simple formulation;

• to test the importance of detailed pile-soil coupling conditions and to assess in which
situations they can be relaxed;

• to develop the method for both single-pile and pile-group systems;
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• to numerically verify the proposed approach compared with existing numerical methods;

• to study the limitations of existing simple approaches with respect to the proposed one;

• to experimentally validate the proposed approach.

1.3 Outline of the dissertation

The present thesis dissertation is divided into six chapters. The current Chapter 1 offers a short
overview of the ground-borne noise and vibration problem and their negative effects when they
reach neighbouring structures through their foundations, as well as the main motivation and
the research objectives of this work.

The main body of the dissertation has been divided into four chapters. Chapter 2 is devoted
to presenting the phenomenology and sources of ground-borne vibration and the most relevant
works proposed to study soil-structure interaction systems under static and, mostly, dynamic
loads. Furthermore, the main assumptions, methodologies and capabilities of the different piled
foundation models to deal with ground-borne vibration problems are also discussed.

Chapter 3 addresses the formulation for modelling a single-pile system embedded in a half-
space model of the soil. The system is under harmonic loads applied at the pile or anywhere
on the ground surface. The proposed model employs the classical linear structural member
theories to account for the pile reaction, whereas the singular boundary method is adopted to
model the soil reaction. The proposed approach is compared with other existing methodologies
to verify its correctness and highlight its benefits. Different assumptions that can be adopted
for the compatibility conditions at the pile-soil interface are studied.

In Chapter 4, the formulation and assumptions presented in Chapter 3 are extended to the case
of pile-group systems with or without pile caps. Pile caps are proposed to be modelled using the
finite element method. The significance of the pile cap flexibility and the coupling conditions
between the pile cap and the piles themselves are studied. The compatibility conditions at the
pile-soil interface are also studied in this chapter for different scenarios to evaluate the influence
that these conditions have on the response of pile-group systems.

Chapter 5 presents an experimental validation of the proposed methodology. This validation
is carried out with the support of an experimental test site that consists of a single-pile and
a 2 × 2 pile-group system. The soil condition was previously assessed to achieve an accurate
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picture of the experimental system in hands. The tests were conducted by hammer testing,
and the results have been compared with the ones predicted by the proposed approach.

Finally, Chapter 6 summarises the general findings presented in the dissertation and achieved
along the doctoral studies. Further work recommendations are also discussed in detail.



Chapter 2

Literature review

2.1 The problem of ground-borne vibration: phenomeno-

logy and sources

Ground-borne vibration problem is mainly considered a man-made problem due to the de-
velopment of urban roads and rail networks that rarely induce structural integrity failures to
surrounding structures. This is not the case with vibration induced by natural sources such as
earthquakes that release seismic waves which propagate from the bedrock to the surface and
that have the potential to produce structural damage due to high strain levels induced on the
building foundation. These aspects have been extensively studied and addressed within the
field of earthquake engineering, thus falling outside the scope of this dissertation.

The governing physical mechanism to produce ground-borne vibration generally begins when
a dynamic event occurs in which mechanical energy is released in the soil through elastic
waves, giving rise to wave fields that travel across the medium and reach the surrounding
building foundations. Thus, those vibrations are transmitted through the structure, inducing
the building structure (and its walls, windows and furniture) to shake. Consequently, when
vibration levels are high enough to turn it perceptible for people, and they are prolonged
exposure to this, the ground-borne vibration becomes a harmful effect causing adverse effects
on inhabitant health. Similarly, ground-borne vibration can induce malfunction of sensitive
equipment (laboratories, recording studios, micro-manufacturing facilities) or discomfort in
public facilities (theatres or hospitals) when the vibration levels are high enough.

6
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Although there is a wide range of sources that induce ground-borne vibration, they can be
differentiated between those that act on the ground surface, such as heavy machine foundations,
at-grade road and railway traffic or construction activities, and those located below the ground,
such as tunnelling, blasting or underground road or railway traffic, as shown in Fig. 2.1. In
the following, a brief review of the governing physical mechanisms of those sources and the
frequency range where their associated excitations present the most significant spectral content
is described. However, for a more general overview of ground-borne vibration sources, the
interested reader is referred to the books of Thompson [7] and Semblat and Pecker [8].

Air-borne

noise

Blasting

waves

Ground-borne

vibration

Ground-borne

vibration

Ground-borne

vibration

Ground-borne

noise

Figure 2.1: Sources of ground-borne noise and vibration in urban environments.

Construction activities

Many construction activities, such as vibratory compaction, pavement breaking, building de-
molition, tunnelling, pile driving or blasting, liberate vibration energy in the soil that can
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even structurally damage surrounding buildings. From these sources, blasting has gained con-
siderable attention from the engineering community due to the large amount of mechanical
energy realised in the ground. For instance, a numerical study presented in [9] discusses the
dynamic fracture mechanism, crack propagation and dynamic stresses at surrounding points
where blasting is performed. The prediction of ground vibration generated by pavement break-
ers has been addressed in [10], where numerical models for predicting the near and far field
vibration levels are proposed and validated regarding experimental results, concluding that
while non-linear effects govern the near field response and that significant overestimation of
vibration levels are expected by neglecting these effects in the numerical model, the far field
response can be predicted by linear models. Similar attention has been received on the vi-
bration induced by pile driving activities [11, 12] due to the constantly increasing number of
tall buildings constructed in densely populated cities. Empirical prediction methods and their
effectiveness in predicting ground-borne vibration levels elicited by construction works and the
available options to mitigate problematic vibration levels are described and evaluated in [13].

Roads

Ground-borne vibration induced by traffic roads is generally perceptible in urban zones when
roads present an uneven surface. The typical frequency interest ranges from 8-16 Hz and
corresponds to the "wheel-hop" and "body-bounce" modes of vibration of the vehicle [14, 15].
Parameters such as the type of vehicle, the type of road [14], and the distance to the building
strongly determine the vibration levels. These parameters were accounted for to develop an
empiric approach in [15] to deal with road/pavement soil systems under dynamic loads. The
model is experimentally validated, and results show that the vibration levels are strongly linked
with the soil composition. The results of a more detailed model based on numerical methods
have demonstrated that while the pavement type only affects the road-soil frequency response
function at small distances and high frequencies, the soil parameters mainly determine the
transfer functions. Thus, proper soil characterisation is suggested to obtain accurate results
[16]. Recently, the negative effect on heritage buildings due to traffic roads has been an
increasing concern because of the cosmetic and minor structural damages to which buildings
are exposed. This has been demonstrated in experimental studies that show that, for instance,
both the ISO 2631 [17] perception threshold for peak particle velocity (0.14 mm/s) and the
Swiss Standard threshold [18] (1.5 mm/s) were exceeded in heritage buildings [19–21].

The vibration of heavy machine foundations

Ground-borne vibration induced by heavy machinery operation has been widely studied over
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the years due to the extreme amount of concentrated energy that is delivered to the soil
through their foundation. Despite the wide variety of equipment capable of producing such
energy amount, the most often heavy machines employed by the industry [22] can be differ-
entiated by their main governing physical mechanisms of operation: machines with rotating
components (e.g. electric motors, fans or turbines), those with reciprocating motion (e.g. pis-
ton compressors or diesel engines), the ones that generate powerful dynamic forces but very
short in duration as, for instance, hydraulic hammers (called shock-producing machines) or
those that produce random vibration time history (e.g. pumps, shredders and mills). The
frequency content from these sources depends on the particular machine, but it ranges from
5-200 Hz [23]. Although these machines are restricted to being located in a fixed location
within an industrial park to prevent vibration/noise pollution within urban zones, they still
need to be implemented with vibration isolation (e.g. open and filled trenches) because the
released powerful dynamic energy can affect workers, other sensitive equipment and/or some-
times surrounding urban areas.

Railways traffic

The impact of railway-induced ground-borne vibration and noise pollution in densely populated
areas is a matter of governmental and public concern nowadays. Recently, a statistical study
of a collection of ground-borne vibration and noise reports from 9 countries worldwide has
pointed out the alarming increased number of people that, nowadays, complain about vibration
and re-radiated noise pollution to what they are exposed for [24]. The study has also shown
that more than 44% and 31% of the reports employed have exceeded the vibration and noise
thresholds, respectively, allowed by their corresponding national regulations. Furthermore, the
same research concludes that more than 50% of the evaluated railway projects have shown the
need to account for ground-borne measures.

Traffic-induced vibration has been addressed since the beginning of the previous century when
vibration elicited by the traffic of the Central London Railway was studied and measured in
1901. The study was later referred to by Hyde and Lintern [6], who considered improved
measured instruments to study the vibration of roads and structures induced by vehicular
traffic and machinery. Since then, many studies have been undertaken to identify the possible
mechanisms that generate ground vibration when passing trains. These excitation mechanisms,
similar to air-borne sources, can be decomposed into supersonic and accelerated motions [25].
The supersonic motion is associated with generating a Mach cone, which occurs when an object
moves with greater speed than the wave speed in the surrounding medium. Consequently, the
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low pressure behind the object can not be compensated for the high-pressure region in from of
the object, so Match cones are generated along with the object. In traffic trains, bending and
Rayleigh waves that are associated with the rail and the ground, respectively, are considered
as main parameters involved in the generation of ground vibration since they have the lowest
wave speed in the train-passing surrounding field. Because bending waves speed in rails lying
far away from typical train velocities, high vibration levels induced by this are extremely
unlikely. In contrast to the bending waves, the Rayleigh waves do not depend on the frequency
and are strongly related to the quasi-static excitation that contributes to generating ground
vibration. The quasi-static excitation occurs when the dynamic moving load induced by the
repeated passage of axles of the train can be expressed as a superposition of the contribution
of different train axles since the wave field that generates the moving load of each train axle is
similar to the one of a load at a fixed position when the train moves at speed lower than the
surface waves (Rayleigh waves). Consequently, the characteristic peaks and troughs dynamic
responses for the quasi-static excitation are obtained, which lie at low frequencies of 1-20 Hz
[25, 26]. However, if the moving load speed of the train reaches (or is larger than) the critical
surface load speed, vibration amplitudes in the soil and track significantly increase, leading to
the formation of Mach cone and, consequently, track stability problems and passenger-safety
concerns [27–32].

The second excitation mechanism is associated with accelerated motion or dynamic excitation,
which is determined by the train-track interaction, such as wheel and track-unevenness, impact
excitation due to rail joints and wheel flats or crossings [7, 26, 33–37]. Parametric excitation
is also an important excitation mechanism considered within dynamic excitation. It has been
shown that the spatial variation of the train truck stiffness produces ground-borne vibration
due to, for instance, the sleeper spacing along the railway track [7, 25, 38, 39]. Furthermore,
it has been shown that train speed v and sleeper spacing s determine the sleeper-passing
frequency v/s [40–42]. Therefore, for a fixed sleeper spacing s = 0.6 m and a conventional
urban railway traffic speed (e.g. v = 80 km/h), the sleeper-passing frequency appears at 37
Hz that lies within the frequency range of interest for ground-borne noise and vibration. That
scenario changes for high-speed trains (v = 300 km/h) where the sleeper-passing frequency
occurs at 139 Hz in the ground-borne noise frequency range. Another parametric excitation
source responsible for the variation of the train track stiffness is the transition zones where the
track parameters (geometric or mechanical) change and produce the vehicle to shake [43, 44].

By the previously aforementioned, the peak vibration generated by traffic train lie in the
frequency range of 1-80 Hz, [7, 26], in where the building shakes and produces mechanical
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vibration perceivable for the human body, whereas, from 16-250 Hz [7, 26, 45], the ground-
borne vibration can induce noise pollution (or: re-radiated noise) inside the building.

2.2 Soil-structure interaction

Soil-structure interaction (SSI) is a broad discipline in Applied Mechanics that looks for the
development and research of theoretical methods and their computational implementation for
the study of the dynamic reaction of structures, taking into account the flexibility and dynamic
properties of the surrounding soil. Thus, researchers from multidisciplinary fields (e.g. soil and
structural mechanics, soil and structural dynamics, geophysics, geomechanics, earthquakes
engineering, computational and numerical methods, and other technical disciplines) have paid
attention to developing models capable of predicting the behaviour of structures embedded in
the soil, and that can also provide a better understanding of physics within the SSI.

SSI problems where the dynamic excitation acts directly onto the structures (e.g. unbalanced
reciprocating machines on elastic foundation, railways track dynamically loaded by passing
trains, or tall buildings under wind loads) are known as problems involving external loads.
When this external force is applied to the structure, it produces (in conjunction with the
resulting inertial load of the structure) an interaction effect in which the loads are transmitted
to the ground. This interaction effect is referred to as inertial interaction. Thus, the mechanical
energy transferred to the ground is scattered away from the structure in the form of stress waves
so that the energy is dissipated. This process is called damping radiation. On the contrary, in
structures subjected to forces applied in the medium (e.g. seismic waves induced by blasts or
earthquakes), the SSI theory needs to be extended to internal loads in order to deal with the
action effect of the stiffer structure that cannot conform to the distortion of the soil elicited by
the incident seismic waves. In this case, the foundation or inclusion scatters the seismic waves
that lead to modifying the local motion in the vicinity of the foundation. This is known as the
kinematic interaction.

Two approaches can basically address these SSI effects. The first one is referred to as the direct
approach (based on the superposition theorem [46]), which employs discrete methods to per-
form the mathematical model of the soil and the structure so that the structure (or structures)
and the surrounding soil are analysed together. The principal advantages of this approach are
the inclusion of the non-linear soil behaviour, as well as the inclusion of the flexibility of the
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mat, and the exact connection to the structure model. However, because many degrees of free-
dom are involved in the mathematical model to solve the SSI problem, the computational cost
is the main disadvantage of the direct approach. The second approach employs a set of springs,
dashpots and masses to account for the stiffness or impedance functions of the ground, whereas
the structure can be represented by regular linear members or any discrete method, such as
finite elements. This approach is normally referred to as the spring method, substructure me-
thod, or three-step approach due to the solution of the system involves the following: i) the
kinematic interaction (massless structure) for which the structure is treated as a massless rigid
system to determine its motion when subjected to input motions, ii) the foundation imped-
ance (massless foundation) where the frequency-dependent subgrade stiffness, which accounts
for layering and embedment effects, is determined, and iii) the inertial interaction (dynamic
interaction) for which the real model of the structure supported on frequency-dependent soil
"springs" (foundation impedance) is calculated when the system is under an input motion
computed previously in the kinematic interaction. Although this approach has the advantage
of requiring less time consumption, which allows for performing more parametric studies, the
assumption of treating the structural foundation as a rigid system is mainly valid at low fre-
quencies (e.g. seismic analysis cases), which is no longer valid for vibration from underground
railways. The interested reader is referred to the book of Kausel [46] in which the formulations
of these approaches are derived in detail.

As aforementioned, the development of what the SSI is known as nowadays can be tracked
since the course of the 19th and early part of the 20th century, by the time a number of
scientists developed theoretical frameworks which conform to a cornerstone in the matter (for
dealing with SSI problems) such as highly idealised mathematical models (e.g. rigid circular
disk resting on halfspace) or the case of the development of fundamental solutions, or Green’s
functions that are the heart of more sophisticated tools (e.g. the boundary element method)
for addressing the reaction of soil cavities of complex geometries. In this regard, a brief review
of the most technical developments of the formulation of fundamental solutions and the first
SSI approaches are presented in the following sections.

2.2.1 Fundamental solutions

In SSI problems, a fundamental solution is an expression derived analytically (or at least semi-
analytically, e.g. Green’s functions where numerical solutions are employed for evaluating some
integral transforms) for the response anywhere in an elastic or viscoelastic infinite medium (e.g.
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soil) due to applying a point force source or distributed load source located at a given, arbitrary
fixed position. This fundamental solution, combined with, for instance, the boundary integral
theory, provides an excellent alternative for solving complex SSI problems. An earlier pioneer
work that addressed the influence of a static concentrate point load acting in an infinite solid
was presented by Thomson - better known as Lord Kelvin - in [47] by 1848. In his work,
analytic expressions for displacements were presented. Similarly, fundamental solutions for
time-varying point loads in a full space were proposed and presented in [48] by Sir George G.
Stokes. A modern rendition of these expressions in two and three dimensions using the current
mathematical notation employed those days can be found in [49]. It is worth mentioning
that those fundamental solutions developed by Stokes are included within the small group
of analytical expressions presented in closed forms and solved in both the time and frequency
domains, which are widely employed in fields such as SSI, geophysics or acoustic. Subsequently,
the solution for a vertical load acting on an elastic half-space was sketched by Boussinesq in
[50–52] that was also adopted by Cerruti [53] who addressed the problem employing Betti’s
principle (integral theorems used in elastostatics) to compute the response within the half-
space by prescribing tractions and displacements on the surface (know nowadays as Neumann
and Dirichlet boundary value problems, respectively).

A well-detailed explanation for the derivation of fundamental solutions for homogeneous half-
space under dynamic loads on the surface was presented by Lamb in [54], where employing
an integral transform method gives a solution for far-field responses when the system is under
an impulsive load acting in a two-dimensional (2D) system or a suddenly vertical load acting
in a three-dimensional (3D) medium. Nowadays, dynamic loads that act on the surface of a
half-space are referred to as Lamb’s problem [55]. For cases where the dynamic load is applied
within the halfspace, Mindlin proposed closed-form equations for computing the response on
the ground surface presented in [56]. It should be noted that the solution to those dynamic
problems, up to here described, can be evaluated only on the surface or the axis of symmetry
below the load but not at interior points without employing numerical approaches. In this
regard, Kausel and Kausel and Peek [57, 58] developed the thin-layer method (TLM) to evaluate
the responses anywhere in a layered half-space.

2.2.2 Static SSI

One step more to going forward in developing closed-form equations to find the soil response
under concentrate loads is to consider a distributed external force instead. However, the
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resulting integrals appearing in the formulation have paused its final solution for around 130
years [55]. An initial approach was to consider a rigid, ideally massless disk resting on the soil
under a concentrated static vertical load. Closed-form equations were proposed for vertical
stiffness and stress distribution underneath the disk under the assumption that the contact
interface is not welded but smooth instead [59] (e.g. the interface is lubricated). Later, these
solutions were employed to infer the soil reaction [60], which is useful to address foundation
problems via the Winkler spring approach. Strip footings and rigid disks under eccentric loads
were later attended, and, similar to the previous approach, equations for stress distribution and
rocking stiffness underneath the plates were proposed [61]. Subsequent, torsional stiffness for
circular disk welded to a half-space were derived in [62, 63], and finally, the lateral stiffness of
circular disks subjected to tangential load in the horizontal displacement mode was presented
in [64].

Up to this point, the previous closed-form formulations proposed consider static load in the
shape of disks and rectangles, but all of them are incapable of predicting the soil reaction
within the soil. The first article that attended that inconvenient was presented by Steinbrenner
[65] by 1934. In his work, complete formulations (but without giving any technical detail of its
derivation, [55]) were presented for predicting displacements and stresses everywhere, including
in the soil. It is curious (at least for the writer) that, many years ago, before the Steinbrenner
works were published, Terezawa [66] and Love [67] published well detail works addressing soil
reaction (even within the medium) induced by circular and rectangle distributed loads. For
a complete discussion and more details about this last controversy, the interested reader is
referred to the remarkable paper of Kausel [55], which revisits the early history of SSI.

2.2.3 Dynamic SSI

The first dynamic SSI problem involves the study of a rigid circular disk resting on a halfspace
subjected to a harmonic load addressed by Reissner in [68], by 1936. In this article, the soil-
disk interface was imposed to behave as a frictionless contact, whilst the stresses were assumed
to have a uniform distribution at the soil-disk interface to avoid thus the proper solution of a
boundary value problem. One year later, the same assumptions regarding frictionless contact
and uniform stress distribution were adopted by the same author in [69] for solving the soil
response under dynamic torsional loads problem. In that paper, three ways of modelling the
load were addressed: concentrate moments, ring moments and distributed torsional loads.
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Further investigation on the subject brings Reissner and Sagoci to give the solution to the
boundary value problem [62, 63] proving not only the exact formulation for plates dynamic-
ally loaded but closed-form solution of the wave equation in spheroidal coordinates. After-
wards, Apsel and Luco [70] adopted the proposed spheroidal coordinates to address oblate
ellipsoidal foundation embedded in a half-space under harmonic torsional and propagating
shear-horizontal waves coming from arbitrary directions. Similarly, analytic solutions for a
rigid sphere embedded in an infinite elastic solid under angular or rectilinear oscillations were
developed by Chadwick and Trowbridge in [71, 72] concluding that, for each mode of vibration
of the sphere, the character of the solution for rectilinear oscillation has determined by both
the density ratio between the sphere and its surrounding medium, and the Poisson’s ratio of
the elastic medium [72]. Additionally, when the system is under angular oscillations, a free
vibration is attenuated due to the density contrast between these two subsystems when the
radiation energy is transferred from the sphere toward the medium [71]. It is worth men-
tioning that all analytical solutions for a dynamically loaded sphere in a full-space provided
by Reissner-Sagoci, Apsel-Luco and Chadwick-Throwbidge have been employed in subsequent
studies as benchmark solutions for comparison with alternatives method solutions, such as the
numerical approaches.

Finally, up to this point, this review has been focused on describing the foundation for giving
rise to what the SSI on those days is known for. It is evident that diverse physical and engin-
eering fields own their development (to a greater extent) to the studies previously discussed.
Therefore, these highly idealised mathematical models, together with the entry of digital com-
puters and the ever-increasing necessity of developing more realistic models (mainly driven
by the nuclear power, offshore industry or earthquakes consequences), have encouraged faster
progress in the SSI subjects as well as, to afford particular attention by researchers in creating
more than ever predicting models able to account for complex geometries or nonlinear SSI
behaviour. In that context, the following sections pay particular attention to reviewing the
pile-soil prediction models and the main capabilities of each one.

2.3 Modelling single-pile dynamics

The structural component responsible for the transmission of ground vibration to civil struc-
tures is its foundation system. Piled foundation systems are the preferred option among the
most common foundation solutions, especially for tall structures or poorly consolidated soils.
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Over the years, different approaches have been proposed for estimating the dynamic beha-
viour of the piled foundation system. These approaches are generally based on three modelling
strategies: the dynamic Winkler foundation approach, the elastic continuum theory and mesh-
based numerical modelling methods. The reader can find a fully comprehensive review of the
existing modelling strategies for pile-soil dynamic interaction in [73]. However, to include some
recently proposed methodologies and, more importantly, to make prominent what new con-
tribution the present work offers relative to the existing methods, the main capabilities and
assumptions of each modelling approach are briefly outlined in the following paragraphs.

2.3.1 Winkler-foundation approach

In earlier models of foundations, the elastostatic theory was initially employed to estimate the
dynamic displacements and stresses response in the soil. This approach was later improved
when inertial forces occurring in the soil-structure system and wave propagation through the
soil were incorporated to overcome the static-based modelling limitations. Lysmer and Richart
[74] were pioneers in adopting this approach for a circular footing. They show that, below the
footing, the behaviour of an elastic half-space is similar to that of a simple damped oscillator.
Thus, they proposed to model a circular footing as an equivalent mass-spring-damper sys-
tem to represent the dynamic footing-soil behaviour. This modelling technique, based on the
Winkler-foundation approach, was later employed by Lysmer and Kuhlemeyer [75] to represent
the infinite soil behaviour through discrete absorbing boundaries in finite element methods. Al-
ternatively, Baranov [76] proposed an analytical methodology to model circular footings based
on the hypothesis that the foundation’s surrounding soil can be represented by a set of infin-
itesimally thin horizontal elastic layers that are dynamically uncoupled from each other. As a
result, only horizontal waves can be released in the soil so that outward radiation of S-waves
(secondary or shear waves) and P-waves (primary or compression waves) is individually ac-
counted for in vertical and lateral footing equations of motion, respectively. Equivalent simple
expressions, based on those developments in [76], are later proposed in [77] for vertical motions
of footings and in [78] for lateral and rotational motions. In subsequent work, Novak [79]
combined Baranov’s closed-form expressions for the reactions of the soil with the equations of
motion of rod and beam structural elements to obtain vertical and lateral motions of a single-
pile embedded in an elastic half-space, respectively. The Novak approach is regarded as the
first method that includes the radiation-damping effects of the soil in pile foundation model-
ling. However, although Novak’s approach accurately predicts the vertical dynamic response
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of a pile, this methodology presents significant limitations when either horizontal pile-driving
response, dynamic interaction between piles or the field response is required.

2.3.2 Elastic continuum approach

The mentioned dynamic Winkler-foundation approach limitations regarding the wave propaga-
tion in all directions can be overcome by representing the soil as an elastic continuum. There-
fore, by assuming the elastic continuum theory, the soil is modelled as an elastic half-space,
whilst the pile is typically modelled as an axial rod for vertical vibrations and as an Euler-
Bernoulli beam for lateral vibrations. The earliest works employing this methodology for piles
are attributed to Novak and Nogami [80–82], who used mode expansion to model a viscoelastic
layer where the pile is embedded. Similarly to [80–82], the resulting vertical and lateral dy-
namic equivalent stiffnesses of the layer are then introduced into the equations of motion of
the pile to account for the pile-soil interaction.

One of the most well-known three-dimensional models for single-pile and pile-group problems
was developed by Kaynia and Kausel [1], who discretised the soil-pile interface into an arbitrary
number of cylindrical segments, as shown in Fig. 2.2(a), and represented the soil reactions
considering the response to two types of loads: barrel and disk loads. While the cylindrical
barrel loads are associated with the soil reaction at the lateral surface of the pile, as shown
in2.2(b) and (c), the circular disk loads represent the tractions at the pile tip as shown in
Fig. 2.2(d) and (e). Therefore, the continuous traction distribution at the pile-soil interface
is discretized and replaced by a piecewise-constant distribution over the cylindrical and disk
segments. In a similar approach [83], translational and rotational ring line loads at a discrete
number of soil-pile interaction layers were proposed to include the traction moments of the
coupled system. Other examples of the elastic-continuum-type formulation include Nogami and
Novak [80, 81, 84], Pak and Jennings [85], Wolf [86], Rajapakse and Shah [87, 88] , Anoyatis et
al. [89, 90] and Di laora et al. [91, 92]. While these analytical elastic-continuum formulations
are more accurate than Winkler-type models for modelling pile foundations under harmonic
loads or kinematic interactions, soil inhomogeneity can only be included in the form of layers
or varying elastic moduli. Moreover, the soil cavity is not explicitly modelled, but rather
the pile is treated as reinforcement, with density and elastic modulus equal to the difference
between the desired pile and soil values. Kuo and Hunt in [93] have included the soil cavity
and proposed a single pile-soil modelling approach which uses the mirror-image method to
account for the boundary conditions at the pile head. Nonetheless, that formulation was based



Chapter 2. Literature review 18

on the Pipe-in-Pipe (PiP) model [94, 95] that for the calculation of the soil-pile interaction
tractions considers the soil medium as a full-space with a cavity, downplaying the effect of the
soil surface and soil inhomogeneity.

x

z

y

(a) (d) (e)

(b) (c)

Figure 2.2: Soil-pile interface discretization into several cylindrical segments and one disk
segment (a) proposed by Kaynia and Kausel [1]. The soil reaction is decomposed into a
horizontal (b) and vertical (c) barrel load acting on each cylindrical segment, whilst the soil

reaction at the pile tip is decomposed into horizontal (d) and vertical (e) disk loads.

2.3.3 Discrete methods

Finite element method

Up to hear, pile foundation modelling strategies based on analytical solutions involves certain
idealised mathematical assumptions, such as a rigid circular body perfectly attached to a ho-
mogeneous medium. Such assumptions, together with the fact that many solutions techniques
assume some symmetry in the distribution of, for instance, a pile-group, can lead to predicting
inaccurate results of the dynamic response of the system. This is particularly true in cases
where the soil has to account for non-linear effects such as soil liquefaction or gaps at the pile-
soil interface. Modelling strategies based on discrete methods are suitable when the system
has a significant degree of complexity.

The first work on modelling piled foundations employing a numerical method is attributed
to Kuhlemeyer [96, 97], who took advantage of the finite element method (FEM) versatility
in determining the dynamic response of the system under lateral and vertical loads. Syngros
[98] presented a single-pile foundation model based on an axisymmetric FE approach to deal
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with vertical load applied at the pile head. The model used simplified expressions to repres-
ent the soil inhomogeneity in vertical and radial directions induced by, respectively, vertical
overburden and pile driving. Other examples of single-pile systems using the axisymmetric FE
approach to model impact pile driving include [11, 99]. Because FEM can only deal with finite
domains, frequency-dependent [79], or frequency-independent [75] absorbing boundaries were
included in FEM models of SSI problems to represent the semi-infinite nature of the soil me-
dium by avoiding wave reflections, as shown in Fig. 2.3(a). Therefore, due to the FE-flexibility
offered, intricate geometries depth-dependency of the soil mechanical properties [100, 101],
non-linear soil behaviour [102–104] or discontinuity conditions at the pile-soil interface [105]
became possible to be addressed . However, the axisymmetric nature of these models limits
their applicability to the prediction of radial and vertical responses. Due to the large number
of elements required, FEM with absorbing boundaries are not a suitable approach to model
the dynamic response of piles or pile-groups, especially at high frequencies
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Figure 2.3: Comparison between half-space modelling using finite elements (a) against
the boundary element approach that uses full-space fundamental solutions (b) or half-space

Green’s functions (c).

Boundary element method

In contrast with the FEM, the boundary element method (BEM) can naturally deal with infinite
or semi-infinite domains. This discrete technique is based on the boundary integral equations,
which are discretised along the boundary and computed by enforcing the fundamental solutions
(or Green’s functions) to be thus evaluated at infinitely many collocation points. Thus, in cases
where the BEM employs half-space Green’s functions for calculating the soil reaction, only the
pile cavity is discretised since the ground surface information is already included in Green’s
functions. Otherwise, the pile cavity and ground surface should be considered in the mesh
discretisation if the fundamental solutions of a full space are used. A review of different BEM-
based approaches for 2D and 3D elastodynamic problems in time and frequency domains can
be found in [106, 107]. To predict the vibration isolation of a row of piles, Kattis et al. [108]
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modelled the piles and the soil using boundary elements and coupled them together through
equilibrium and compatibility at their interfaces. Several authors have also proposed the use
of hybrid approaches that combine the modelisation of the soil using BEM with other discrete
methods or analytical approaches to model the pile. For instance, Padrón et al. [109] proposed
a FE-BE approach in which the pile is modelled by employing a one-dimensional (1D) FE model
and coupled with a 3D BE model for representing the soil. As their approach considered the
fundamental solutions for a full space, both cavity and ground surface were discretised. Talbot
and Hunt [5] developed a computationally efficient model for solving a single-pile or a row of
piles based on periodic structure theory. In their work, the pile is modelled using the solutions
for an elastic bar and Euler beam theory for vertical and lateral motions, respectively. This
pile model is coupled with a BE model of the soil that uses constant rectangular elements for
meshing the ground surface and the pile cavity, resulting in an accurate and computationally
efficient method. In [110], Coulier verified that the improvement obtained by modelling the
pile as a Timoshenko beam model was small.

Meshless methods

Meshless methods have emerged as an interesting alternative to mesh-based ones due to their
simplicity and computational efficiency. Among them, the singular boundary method (SBM),
first proposed by Chen in [111], has gained popularity these recent years due to its robustness
with respect to other meshless approaches. The SBM can be seen as a modified version of
the method of fundamental solutions (MFS). In brief, the MFS uses a set of virtual sources
computed so that they satisfy a prescribed boundary condition. These boundary conditions
are evaluated at a set of points called collocation points. While the MFS places the virtual
forces outside the domain, the SBM proposes to locate the sources at the physical boundary
so that they are superimposed to the collocation points. Like the MFS, the SBM employs
the fundamental solutions (or Green’s functions) of the governing equation of the problem
of interest (e.g. a homogeneous full space or a layered half-space) as the interpolation basis
functions. However, singularities of the fundamental solution arise when the collocation points
are geometrically coincident with the virtual sources. In those situations, the responses are
replaced by the so-called origin intensity factors (OIFs), which overcome the singularity of
the fundamental solution for both Neumann and Dirichlet boundary problems. Although this
methodology has been extensively employed for solving potential problems in acoustics, few
investigations are available on applying the SBM to elastic wave propagation problems. Gu et
al. [112] employed the SBM for plane strain elastostatics and later to deal with orthotropic
elastostatic problems [113]. This last work also presented a theoretical background for the SBM
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formulation, stating that the SBM can be seen as a discrete version of the indirect boundary
integral equations based on the single-layer potential formulation. In [114] Sun et al. applied
the SBM to 2D dynamic poroelastic problems. Recently, Liravi et al. [115] have proposed a
2.5D FEM-SBM approach for solving SSI problems. In their work, the structure is modelled
using the FEM, while the SBM is employed to model the soil system. The authors compare
the novel approach with FEM-BEM and FEM-MFS approaches, finding that it offers higher
computational efficiency than BEM and more robustness than MFS.

2.4 Modelling pile-group dynamics

In many cases, the bearing capacity of a single-pile is not enough to support the service load
required by a column, which needs to transfer such a service load toward its foundation. this
could be because, for instance, the building is going to lie on soils that have low bearing
capacities (e.g. soft soils), or the pile can not be designed to reach the bedrock (floating pile
cases). In these situations, a pile-group foundation is an excellent alternative for increasing the
bearing capacity of the foundation. However, when the pile spacing in the pile-group is small,
the pile-soil-pile interaction (PSPI) should be considered for predicting its dynamic response at
high-frequency ranges. In such a sense, different approaches have been developed to compute
the dynamic response of pile-groups efficiently.

The first and most commonly used approach is the use of the "interaction factors" introduced by
Poulos [116], who used them to study the static elastostatic response of a laterally loaded two-
pile group. In his work, interaction factors are used to express the ratio between the horizontal
displacements and rotations of a two-pile system and those obtained for a single-pile. Thus,
by using these interaction factors and the superposition principle, a global receptance matrix
for a general pile-group can be built up. Later, Novak and Grigg [117] addressed the response
of a dynamically loaded pile-group. In their work, the total stiffness and damping values for
the pile-group were computed by summing up the stiffness and damping of each pile treated
as an isolated system and modelled using the Winkler approach. Additionally, they employed
the static interaction factor proposed by Poulos [116], assuming, therefore, that the static
and dynamic behaviours of a pile-group should be similar (frequency-independent interaction).
This assumption was later tested by Sheta and Novak [118], who, when addressing the vertical
vibration of pile-groups, showed that the dynamic group effect differs considerably from the
static one. They conclude that the frequency-depend pile-group interaction is much stronger
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than the static one when the pile spacing is small. Similar contributions regarding frequency-
depend transfer and impedance functions for pile-groups embedded in multilayered soil and
subjected to passing seismic waves were discussed by Wolf and Von Arx [119] and Nogami
[120]. Dynamic PSPI for lateral vibration was later studied by Nogami [121], who presented a
methodology for computing the flexural responses of a pile-group treated as a single-pile. The
method employed by Nogami, referred to as Winkler model for pile-groups and developed in
his previous works [122–124]), uses the pile-head receptance of two piles to obtain the pile-head
receptance of a general pile-group.

Dobry and Gazetas [125] proposed an alternative approach for obtaining the stiffness and
damping of floating pile-groups. This method employs asymptotic cylindrical wave expression
to simulate the interference of cylindrical wave fields that originated and spread radially out
from each pile. By doing this, closed-form equations for computing approximated interaction
factors were proposed for pile-groups dynamically loaded with lateral, axial and rocking ex-
ternal forces. Gazeta and Makris performed an extension of this approach in [126, 127] for thus
computing the dynamic response of a pile-group embedded in a non-homogeneous half-space
and subjected to vertical loads or seismic SV-waves. Milonakis and Gazetas [2] proposed a
closed-form expression for the dynamic response of pile-groups embedded in layered soil. In
their derivation, the authors considered the Winkler approach to represent the pile-soil inter-
action system (source pile) under vertical vibration and assumed that the interaction produces
cylindrical waves that propagate horizontally to neighbouring pile a surrounding pile (receiver
pile), as shown in Fig 2.4. Thus, the axial Winkler stiffness of the receiver and the soil re-
sponse induced by those cylindrical waves give rise to an interaction between this pile and the
surrounding soil, leading to diffraction of the arriving wave field. Consequently, a closed-form
expression for computing the interaction factor can be deducted [2].



Chapter 2. Literature review 23

Pile source Pile reciver

Pile-soil

Springs and

dahspots

Base

impedance

Radially-spreading waves

Figure 2.4: Schematic representation proposed by Milonakis and Gazetas in [2] to solve
pile-group problems based on the Winkler approach.

Cairo et al. [128, 129] proposed a methodology for computing the dynamic response of a
vertically loaded pile-group embedded in a layered half-space. The approach employs the
stiffness matrix method (SMM) [130] for computing the reaction in points located at the pile-
soil interface. The pile-soil-pile interaction of a pile-group is accounted for by assuming that its
dynamic response is a function of the pile-soil interaction forces and free-field soil displacements
both associated with a single-pile. In their results, a reasonable agreement with theoretical
approaches was obtained, especially at low frequencies.

The simplifying assumptions considered by the models presented in the previous paragraphs
generally limit their accuracy. More detailed three-dimensional models of pile-group systems
can be obtained by considering the displacement compatibility and force equilibrium between
the piles and the soil. In this regard, Kaynia and Kausel [1, 3] formulation, previously men-
tioned in Sec. 2.3, also present the coupling procedure for computing pile-groups. In their
work, the responses of several types of pile-groups to dynamic loads or passing seismic waves
are calculated. Additionally, a simplified solution scheme based on the superposition method
is also presented for cases involving a large number of piles. This simplified approach employs
a dynamic interaction factor for a two-pile group without the presence of neighbouring piles,
as shown in Fig. 2.5(a). The interaction factor is defined as the ratio between the dynamic
displacement of one pile induced by loads acting on the other and the static displacement of
the latest when it is considered individually. The comparisons of the results obtained using
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the simplified approach against the ones computed using the complete pile-group formulation
show a good agreement between them, especially for large pile spacings.
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Figure 2.5: Two-pile group configuration used for computing the dynamic interaction factor
employed by Kaynia [3] (a) and its variant that considers adjacent piles (b) employed by

Edirisinghe [4].

The approach presented by Talbot and Hunt [5, 131] employs periodic structure theory for
computing a row of an infinite number of identical piles modelled combining Euler-Bernoulli
beam and elastic bar formulations with the BEM, as described in Sec. 2.3. In their work, the
single-pile model is used to create a repeating unit. The compatibility condition is then applied
to vertical meshes located at both ends of the repeating units, as shown in Fig. 2.6. Then,
taking advantage of Floquet’s theorem [132], the response of a system consisting of an infinite
row of identical piles is finally obtained. Comparisons between the results obtained with this
approach and those obtained using Kaynia’s and Kausel’s model [1] showed a good agreement
between both formulations.
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Figure 2.6: single-pile repeating units proposed by Talbot in [5] for solving a row pile-group
system based on the periodic structure theory.

An extension of the original single-pile model proposed [5] has been developed by Edirisinghe
and Talbot [4], who proposed a methodology in which the piles and the soil are considered as two
independent subsystems and an iterative wave-scattering approach computes the response of
the coupled pile-soil system. The authors show that the results obtained with this methodology
are in good agreement with those obtained using the same model in which the subsystems are
strongly coupled instead. Furthermore, Edirisinghe and Talbot studied the inertial interaction
in pile-groups at high-frequency ranges employing both an iterative wave-scattering approach
and a direct method. Parametric studies for different pile-groups show that the results obtained
with the two approaches agree very well, thus validating the proposed iterative approach.
Further analysis of two-pile models, the authors also show that discrepancies in the dynamic
interaction factors arise at high frequencies when adjacent piles are considered in the calculation
(Fig. 2.5(b)) rather than neglected, as usually considered in the superposition method (Fig.
2.5(a)).
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2.5 Experimental studies of pile dynamics

Single-pile and pile-group dynamics have been investigated by performing tests on both small-
scale and full-scale systems. The main benefits of small-scale configurations (or model scale
tests) are they usually allow the performing of parametric studies since the tests account for
controlled environments, repeatability in the tests, and possess economic advantages. Addi-
tionally, because they are used to be conducted in controlled environments, the model scale
tests are employed to improve or validate modelling pile-soil methodologies since researchers
can address the inertial and kinematic effects in the pile foundation or in piled-building sys-
tems. However, because these tests involve setting up a container for the soil, boundary effects
may introduce accurate results, mostly in dynamic experimental tests. Therefore, boundary
effects and realistic soil-pile stress field representation rise as principal limitations of the scale
model testing. In contrast, full-scale tests provide "correct" stress conditions of real pile sys-
tems embedded in real soil compositions. This type of pile testing is limited because the testing
loads are usually applied at the pile head, concentrating the effects of inertial interaction and
neglecting the effects of kinetic interaction. Thus, by combining both the field and laboratory
tests on pile foundation systems, valuable global recorded data can be obtained since these two
complement each other. A brief resume of pile-soil interaction experimental research focused
on only systems under dynamic loads is presented in the following. For a compressive review of
full-scale and small experiments conducted to study the seismic soil-pile-structure interactions,
the interested reader is referred to the work presented by Meymand [133].

2.5.1 Experimental studies with small-scale systems

Novak and Grigg [117] conducted static and dynamic tests on single small piles and on 2×2
pile-groups. In their work, the pile-soil systems were dynamically loaded through an oscillator
placed over a steel test body made of steel flanges, which rested directly on the pile head
(for a single-pile case) or the pile cap (for pile-groups). The recorded data is compared with
theoretically predicted results [79, 84]. The study shows that resonant amplitudes and natural
frequencies could be predicted whether the soil shear modulus, derived from static pile test-
ing, is employed in the formulation of single-piles and when the static interaction factors are
accounted for in the pile-group formulation, especially for systems with small pile spacing. El
Sharnouby and Novak presented experimental validation for a large group of small piles closely
spaced in [134, 135]. The system comprised 102 steel pipes of diameter d = 26.7 mm and length
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L = 1.06 welded to a steel plate and joint with a reinforced concrete cap. An artificial soil
mixture with similar properties to the natural deposit was employed in the experimental setup.
The recorded data was compared with the ones predicted by other theoretical approaches, such
as the one predicted using the dynamic interaction factor proposed by Kaynia and Kausel [1].
By analysing the results, they conclude that the dynamic interaction factor plays an important
role in predicting the dynamic response of pile-groups. A similar study is presented by El-
Marsafawi et al. in [136] where small- and full-scale pile-groups were dynamically tested under
harmonic loads in a frequency range of 6-60 Hz. Results show that linear theories based on dy-
namic interaction factors to account for pile-group systems can predict the pile-group stiffness
well but overestimate its viscous damping when compared with experimental data. The exper-
imental results also showed that the pile-soil system can display moderate nonlinearities in its
response. Boominathan and Ayothiraman [137] employ aluminium single-piles, with slender
ratios between 10 and 40, embedded in a basket of mild steel and filled with clay. Geomem-
branes were used to cover the inside basket to act as absorbing boundaries, thus, simulating a
semi-infinite medium. The piles were subjected to steady-state sinusoidal lateral excitation in a
frequency range of 2−50 Hz and amplitudes between 7 and 30 N at their pile heads. The study
aimed to study the bending behaviour of single-piles. The results showed that linear dynamic
responses were obtained for rigid piles even when subjected to large load magnitude. On the
contrary, flexible piles only describe linear behaviour when applying low-amplitude loads.

Other pile-soil interaction test approaches used to study the dynamic behaviour of small-scale
pile foundations experimentally are the centrifuge testing and the shaking table model test.
Centrifuge testing is a widely used method to study the seismic soil-pile-superstructure inter-
action. Moreover, it provides valuable information to validate and improve pile-soil modelling
approaches. A principal advantage of the centrifuge method is that the gravitational stress
field in the model can replicate what will occur in a real prototype. This is particularly ad-
vantageous to represent cohesionless sands which present a stress-strain behaviour as a function
of confining pressure. Because the centrifuge equipment possesses a test container for testing
the model, This method presents a boundary limitation to studying pile-soil interaction at
high frequencies since reflecting waves are introduced in the result, so then centrifuge tests are
usually conducted for a seismic frequency range (<10 Hz) [93]. Like the centrifuge testing me-
thod, shaking table model tests are also conducted to validate seismic soil-pile-superstructure
interaction effects. However, because this technique can not achieve elevated stress fields, it
is suitable for testing pile foundations embedded in cohesive soils. The shaking table model
test has the advantage of dealing with more realistic shaking conditions than the 1-D shaking
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capability offered by centrifuges. Examples of small-scale piles tested on shaking tables un-
der strong shaking can be found in [138] or pile-groups laterally loaded and embedded in two
locations with different cohesive soil properties (soft and hard)[139].

2.5.2 Experimetal studies with full-scale systems

Full-scale system tests are typically conducted to ascertain pile-soil stiffness under dynamic
loads. Generally, there are three types of full-scale tests which differ from the dynamic excit-
ation: i) the ringdown test, which consists of imposing an initial displacement to the pile to
be quickly realised from that subsequently; ii) the impact test in which smaller strain levels
are induced to the pile through, for instance, impact hammers to generate lower free vibration
than the ringdown tests, and iii) the forced vibration tests in where, for instance, an eccentric
mass shaker attached to the pile head induce the pile to vibrate. Although reasonable agree-
ment of experimental and predicted results can be obtained when the system behaves linearly,
numerical models become less accurate if dynamic loads are high enough to genera nonlinear
soil-pile dynamic response. In contrast to small-scale system tests, which typically employ
artificial soil mixtures to simulate natural deposits, full-scale system tests necessitate signific-
ant efforts to characterise the soil composition surrounding and beneath the pile foundation.
Moreover, soil properties exhibit spatial dependence (e.g. presence of boulders, sand or clay
sediments, soft layers), temporal variability (e.g. structural settlement or soil consolidation),
and are influenced by the employed characterisation techniques—such as laboratory analysis
of samples or in-situ seismic testing (e.g. cross hole). Consequently, full-scale system tests
are considered an expensive experimental investigation since parametric studies cannot be per-
formed. Nevertheless, they yield invaluable insights into the performance of pile foundation
systems under realistic soil and pile stress conditions. In the following, a brief review of some
experimental studies on full-scale systems is presented. The interested reader is referred to the
work presented by Meymand [133] for a more detailed review of the subject.

Both pile and field responses were evaluated by Masoumi et al. in [140]. In this work, two cast-
in-situ concrete piles with a diameter of 0.46 m were partially embedded in dry sand, which was
characterised by a spectral analysis of surface waves (SASW) test and the information was used
in a prediction model based on the coupled FE-BE method. The piles are excited at their heads
using a 5.5 kg instrumented hammer to evaluate pile and soil low-strain vibrations. A good
agreement was obtained between the time history and the frequency content of the measured
and predicted pile head response, respectively when compared. Additionally, A reasonable
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agreement between the predicted and experimental results at far distances is found regarding
the free-field response, but significant discrepancies were found when evaluated at closer ones.
Masoumi et al. concluded that the soil response is more sensitive at closer distances rather
than longer ones, so a careful characterisation of the damping ratio of the soil is crucial to
predict thus free-field vibration levels accurately. Elkasabgy and El Naggar performed a full-
scale test on a double-helix helical pile and a driven steel pile of the same length and shaft
geometry [141]. Elkasabgy and El Naggar aimed to study the dynamic performance of the piles
when subjected to harmonic (quadratic) loading of different force intensities and the influence
of the consolidation settlement in the dynamic response. Predicted results, based on linear
and nonlinear theories computed using the DYNA 6 software [142], are compared with the
measured ones, which were tested twice: two weeks and nine months after the installation.
The comparison of experimental results showed that the dynamic response of helical piles
is essentially the same as that of driven steel piles. Additionally, it has shown that free-
field response is mainly induced by the soil-pile shaft interaction rather than by the presence
of that double-helix in the helical pile. By comparing the data recorded two weeks after
installation with the predicted results, the linear theory tends to overestimate the stiffness
and damping of the piles since the model assumes perfect pile-soil contact. On the contrary,
the nonlinear model, which accounted for the weak boundary zone and the pile-soil separation
in their formulation, provided reasonable estimations. However, the discrepancies between
these results increased when the comparison accounts for the data recorded nine months after
installation, concluding that the weak boundary zone’s influence has reduced due to the soil’s
stiffening. Capatti et al. [143] present data recorded in extensive experimental tests on full-
scale vertical-injected (grouted at high pressures) and not injected (simply grouted) micropiles
embedded in alluvial soils. Three experimental setups were considered consisting of ambient
vibration and impact load tests to investigate the system’s dynamic response and snap back
(ringdown) test to investigate its nonlinear behaviour. The fundamental frequency of the
micropile with injections was found to be higher than the simply grouted. Additionally, the
radial driving response of the injected micropile is no longer the same along two investigated
orthogonal directions. Regarding the ambient vibration test, although this method provides
reliable dynamic properties of the systems concerning the impact test load, this requires more
demanding post-processing techniques. The snap-back tests showed that the injected micropile
develops several nonlinear behaviours due to the resulting opening of radial cracks in the soil-
micropile interface.

Han and Vaziri [144] tested the dynamic response of six cast-in-place reinforced concrete piles
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subjected to a lateral harmonic excitation generated by counterrotating eccentric mass, which
was placed on the pile cap. The experiment conducted in winter time aimed to evaluate the
influence of frozen soil layer on the dynamic behaviour of the pile-group, as well as to investigate
the viability of theoretical approaches based on dynamic interaction factors in predicting pile-
group system. The experimental results showed that the presence of a frozen soil layer induces
the dynamic response to a significant displacement reduction regarding experimental data
acquired in the summertime. Moreover, although the pile-group formulation based on the
dynamic interaction can predict reasonably good results, introducing weak boundary zones in
its formulation improves the agreement between the calculated and measured results. Biswas
and Manna [145] employed a mechanical oscillator to produce lateral harmonic loads of different
excitation intensities to test the dynamic response on pile and pile-group systems. The systems
accounted for pressure sensors along the pile length to thus investigate the distance from
the ground level up to the point of no contact between the pile and soil (pile-soil separation
length). Biswas and Manna employed the computational tool DYNA 6, which accounted for the
separation length and weak boundary zones around the pile-soil interface in the formulation,
to predict pile-soil responses and compared it with experimental results. Good agreements
are presented in the comparison of results. An extension of this work using pile-groups with
different pile spacing was presented in [146]. Recently, Theland et al. [147] have presented an
experimental study of the dynamic response of end-bearing single and multi piles foundations
embedded in soft clay. This study addresses the dynamic response of a single-pile, the dynamic
interaction factors of the pile-group without casting the pile cap, and the global behaviour
of the 2x2 pile-group connected by a concrete cap. The system has been instrumented with
accelerometers along the centerline of each pile, and the soil properties for small and large-strain
excitations have been measured using non-destructive tests. The dynamic load was induced by
an impact hammer with a mass of 5.5 kg. The authors have compared the experimental results
against predictions performed using a FE model of the system provided with perfectly matched
layers to attenuate any outgoing waves. The comparison shows that while the numerical model
tends to overestimate the dynamic response of the single-pile, a good agreement is obtained in
the pile-group case.



Chapter 3

A single-pile foundation model based on

the singular boundary method

An efficient three-dimensional approach for solving pile-soil interaction problems is proposed in
this chapter. In the approach, the soil is modelled as an elastic half-space, and its response in
the presence of the pile’s corresponding cavity is computed by employing the singular bound-
ary method (SBM). The pile is modelled analytically using the classic rod and Euler-Bernoulli
beam theories. For the coupling with the soil, the pile is divided into a set of rigid segments
that interact along their circumference with the soil. The methodology allows the rotational
motions and reaction torques at these segments to be accounted for, and their contribution to
the accuracy of the scheme is assessed. A criterion to define the minimum number of colloca-
tion points that offers an acceptable trade-off between accuracy and numerical performance is
also proposed. For radiation problems, the method is verified against well-established meth-
odologies. In contrast, the reciprocity principle, which relates the wave radiation from the
pile to the ground field with the incident wave problem due to a load on the ground surface,
is employed to verify the system response under incident wave fields. Results are shown for
different soil stiffnesses and different pile length to diameter ratios. The employment of the
singular boundary method is shown to provide strong computational advantages with respect
to detailed modelling approaches such as the three-dimensional (3D) finite element-boundary
element (FE-BE) method, as well as overcoming the fundamental limitations of plain-strain
and axisymmetric methods.

31
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3.1 Single-pile foundation modelling

The system under investigation consists of a single-pile embedded in a homogeneous half-
space, as shown schematically in Fig. 3.1, with the origin of the Cartesian coordinate system
placed on the ground surface and coincident with the pile axis. In the formulation, lowercase
letters denote variables in the time domain, and uppercase letters relate to scalar variables
in the frequency domain. Bold lowercase letters and bold uppercase letters denote vectors
or matrices in the time domain and frequency domain, respectively. A modelling strategy is
presented that aims to compute the dynamic response of the system, at the pile head and at
the ground surface, due to loads applied at the pile head and/or at the ground surface. The
pile is assumed to be purely elastic and is modelled as a rod to account for axial and torsional
motions, whilst the Euler-Bernoulli beam theory is considered for the flexural response of
the pile. The soil is considered as an elastic homogeneous half-space; however, the proposed
methodology can be applied to layered soils as well. Non-linear effects associated with pile-
soil contact interactions, high strain levels or soil liquefaction are not accounted for. The
coupled pile-soil model is formulated in the frequency domain and constructed employing the
dynamic substructuring technique; the response of each subsystem is separately derived and
they are coupled considering force equilibrium and displacement compatibility conditions. The
mathematical formulation of the proposed model is presented in the following subsections.

x

z

y

Soil

subsystem

Pile

subsystem

Figure 3.1: Schematic drawing of the pile-soil system.
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3.1.1 Model of the pile subsystem

As mentioned above, the pile subsystem is modelled analytically using axial rod and Euler-
Bernoulli beam theories. Thus, the model accounts for the 3D deformation of the pile, repres-
ented by displacements upi= (upx, upy, upz) and rotations ϕpi= (ϕpx, ϕpy, ϕpz) along the three
Cartesian coordinates (x, y, z), respectively. Free-free boundary conditions are adopted for
both rod and beam models. In this section, the expressions that determine the response of the
pile model when subjected to loads applied to an arbitrary position along the pile axis z are
outlined.

First, consider the differential equations of motion of a rod for axial and torsional deformations
before applying any external excitation, which are given by the expressions

ρp
∂2upz(z, t)

∂t2
− Ep

∂2upz(z, t)

∂z2
= 0, (3.1a)

∂2ϕpz(z, t)

∂t2
− C2

s

∂2ϕpz(z, t)

∂z2
= 0, (3.1b)

where Ep is the elastic modulus of the pile. The shear wave speed of the pile is given by
Cs =

√
Gp/ρp, being Gp the shear modulus and ρp its density. For the bending motion of the

pile, the differential equation of an Euler-Bernoulli beam

ρpAp
∂2upx(z, t)

∂t2
+ EpIp

∂4upx(z, t)

∂z4
= 0, (3.2)

is employed, where Ap is the cross-sectional area of a pile, and Ip is the second moment of
area of the pile’s cross-section. The same expression is also valid for upy(z, t) that describes
the bending in the y direction.

The pile is excited at an arbitrary position z1 along the pile axis, as illustrated in Fig. 3.2,
by an arbitrary set of harmonic forces and moments of the form fi(z, t) = Fi(z) exp(iωt) and
mi(z, t) = Mi(z) exp(iωt), respectively, with i = x, y, z; ω is the angular frequency and i =

√
−1

represents the unit imaginary number. The resulting displacements and rotations of the pile
take the form upi(z, t) = Upi(z) exp(iωt) and ϕpi(z, t) = θpi(z) exp(iωt), respectively, where θpi

is used to represent the rotational motion ϕpi in the frequency domain. As a result, the axial
response of the free-free pile along its neutral axis due to a unit point load can be expressed
in the frequency domain as
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Figure 3.2: Pile subsystem (illustrated horizontally for convenience) subjected to arbitrary
loads at an arbitrary position along the pile axis.

Upz(z) = A1 cos(αz) + A2 sin(αz), 0 ≤ z ≤ z1, (3.3a)

Upz(z) = A3 cos(αz) + A4 sin(αz), z1 ≤ z ≤ Lp, (3.3b)

where Lp is the pile length and α2 = (ρpω
2)/Ep.

Similarly, the expressions for the torsional response are given by

θpz(z) = B1 cos(γz) +B2 sin(γz), 0 ≤ z ≤ z1, (3.4a)

θpz(z) = B3 cos(γz) +B4 sin(γz), z1 ≤ z ≤ Lp, (3.4b)

where γ2 = (ρpω
2)/Gp. The expressions for the coefficients Aj in Eqs. (3.3) and Bj in Eqs.

(3.4) can be found in Appendix A.

Finally, the lateral displacements induced by lateral loads or bending moments can be determ-
ined using the following expressions:

Upx(z) = C1 cos(βz) + C2 sin(βz) + C3 cosh(βz) + C4 sinh(βz), 0 ≤ z ≤ z1, (3.5a)

Upx(z) = C5 cos(βz) + C6 sin(βz) + C7 cosh(βz) + C8 sinh(βz), z1 ≤ z ≤ Lp, (3.5b)

where β4 = (ρpApω
2)/(EpIp). The coefficients Cj are again defined in Appendix A, whilst the

cross-sectional rotation induced by lateral loads or bending moments can be obtained applying
θpy = ∂Upx/∂z in Eq. (3.5). These expressions are associated with the bending in the y

direction: analogous expressions can be used for the bending of the pile in the x direction.
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3.1.2 Model of the soil subsystem

The soil subsystem is modelled as an elastic half-space that includes the cavity corresponding
to the pile using the SBM [113, 115, 148]. In order to describe the SBM-based model of the soil
presented in this work, consider the general case of a 3D cavity in an elastic medium Ω ∈ R3,
as shown in Fig. 3.3(a), where ∂Ω represents the boundary (for simplicity, the key elements of
the SBM are represented in a 2D scheme in the figure). The variables x, y denote the position
in a Cartesian system of coordinates of points located at ∂Ω and Ω, respectively. As a radial
basis function method, the SBM assumes that the dynamic unknown states of the medium
(the displacement and traction fields for the case of the soil) can be approximated by a linear
combination of a set of virtual sources with the fundamental solution (or Green’s function)
of the medium evaluated at the virtual sources locations, which are placed over the physical
boundary ∂Ω. Red circles in Fig. 3.3(b) and Fig. 3.3(c) represent this set of virtual forces.
This leads to a system of equations that can be expressed as

y

x

(a) (b)

c c

12

3. . . Nv

Nv -1

. . .

. . .

. .
 .

Nv -th virtual force

(Nv -1)-th
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point

Nv

Nv -1

1

Area of

influence AN

c
Nv

v

(c)

Figure 3.3: Schematic of the generic problem (a); distribution of the collocation points
(marked by blue dots) and the virtual sources (marked by red circles) over the boundary (b);
and generic description of the area of influence associated with a particular virtual source (c).

U(y) =
Nv∑
v=1

H(y,xv, ω)Sv, (3.6a)

T(y) =
Nv∑
v=1

Hτ (y,xv, ω)Sv, (3.6b)
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where the vectors U(y), T(y) contain the three components of the displacements and tractions
of the medium, respectively, at the point y. These are induced by a set of virtual sources in
which the v-th virtual force of the set is defined by the three-component complex vectors Sv

for amplitude and xv for position. The displacement and traction elastodynamic fundamental
solutions in the frequency domain evaluated at the point y caused by a point load placed at
xv are represented by the matrices H(y,xv, ω) and Hτ (y,xv, ω), respectively. Eq. (3.6) can be
seen as a discrete version of the indirect boundary integral equation in the form of a single-layer
potential, as discussed in detail by Gu et al. [113]. Thus, the set of virtual sources can be
interpreted as a discretization of the flux discontinuity, which is used as auxiliary sources in the
indirect boundary integral equations in the form of a single-layer potential [149]. It is worth
mentioning that the fundamental solution notation in this dissertation is based on a function
with three input variables: the first representing the receiver location, the second the source
location and the third the angular frequency at which the fundamental solution is evaluated
and that it has been explicitly included to ease the differentiation between elastodynamic and
elastostatic fundamental solutions in what follows. In the case of the traction fundamental
solution, the vector normal to the plane at which the traction is evaluated is a variable not
explicitly stated in the notation of the fundamental solutions but also required in its calculation.

It is important to note that, as for the BEM, the SBM naturally allows for using Green’s
functions of more complex problems than the case of a full-space, for instance, homogeneous
or layered half-spaces (both employed in [115]). In this dissertation, the soil is assumed to
be a homogeneous elastic half-space. The corresponding Green’s functions to this problem are
computed on the basis of the direct stiffness matrix method proposed by Kausel [150]. However,
the adoption of layered models of the soil can be carried out simply by replacing those Green’s
functions with the corresponding ones of the adopted layered half-space configuration, which
can also be obtained based on the direct stiffness matrix method [150].

To determine the virtual sources due to the prescribed boundary conditions, the collocation
method is commonly used in boundary domain methods, which proposes to discretize those
boundary conditions at a set of collocation points distributed along the physical boundary. For
the particular SBM approach presented in this work, a set of collocation points, defined by the
positions xc, is established for c = 1, 2, ..., Nc. This set of collocation points is assumed to be
geometrically coincident with the set of virtual sources, having Nc = Nv. Both sets of colloc-
ation and source points are shown in Fig. 3.3(b). A linear system of equations results by the
evaluation of Eq. (3.6) at all the collocation points of the set. Due to geometrical coincidence
between collocation and source sets, singularities arise from the fundamental solutions in Eq.
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(3.6) when c = v. To overcome those singularities, the SBM proposes to employ the origin
intensity factors (OIFs) [115]. When considered, the resulting linear systems of equations for
Dirichlet and Neumann boundary conditions, respectively, are

U(xc) =
Nv∑

v=1,v ̸=c

H(xc,xv, ω)Sv +HccS
c, for c = 1, 2, ..., Nv, (3.7a)

T(xc) =
Nv∑

v=1,v ̸=c

Hτ (xc,xv, ω)Sv +Hτ
ccS

c, for c = 1, 2, ..., Nv, (3.7b)

where Hcc and Hτ
cc represent the matrices of the OIFs associated with the Dirichlet and Neu-

mann boundary conditions, respectively.

The fundamental solutions Hτ (xc,xv, ω) behaves as a singular function of the type |xc − xv|−2

when xc tends to xv [149]. Thus, to derive the corresponding OIFs, a regularization strategy
similar to the one used in standard BEM is considered. The procedure involves the application
of the subtracting and adding-back technique in Eq. (3.7b) and using the rigid-body identity.
This procedure is thoroughly explained in [113, 115] for the elastostatics and elastodynamic
problems, respectively. Here, the formulation presented in [115] for determining the OIFs
associated with the Neumann boundary condition is adopted. A three-dimensional version of
that formulation results in

Hτ
cc =

1

Ac

I+Bcc −
Nv∑

v=1,v ̸=c

AvHτ (xv,xc, 0)

 , (3.8)

where the terms Av and Ac represent the area of influence associated with the v-th and c-th
sources, respectively, as shown in Fig. 3.3(c). I is the identity matrix, Hτ (xv,xc, 0) is the
matrix of static fundamental solutions for the tractions and Bcc is given by

Bcc =

∫
∂Ωc

[
Hτ (xc,x, 0)−Hτ (x,xc, 0)

]
dSx, (3.9)

where dSx is a differential of area along the boundary portion ∂Ωc, which is the portion of
influence of the c-th source, with a total area of Ac. Note that the integration in Eq. (3.9)
is performed componentwise (i.e. the integration is performed for each component of the
matrix). For arbitrarily smooth boundaries, by assuming that the considered source point
moves gradually close to the considered collocation point along a line segment, the term Bcc
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becomes zero [151, 152]. For general boundaries, Bcc is still regular and can be numerically
integrated using standard Gaussian quadrature [113].

Regarding the OIFs for the Dirichlet boundary condition, the fundamental solution H(xc,xv, ω)

undergoes a singular of behaviour of the form |xc − xv|−1 [149] when xc tends to xv. In this
case, the associated OIFs Hcc can be directly computed by averaging the fundamental solution
over the boundary portion of influence where the virtual source is applied [113, 115, 152].

The linear systems of equations associated with Eqs. (3.7a, 3.7b) can be written in matrix
form as

Ub = HbbS, Tb = Hτ
bbS, (3.10)

where Ub, Tb are the vectors that contain the three components of the displacements and
tractions, respectively, at the boundary for all collocation points. The vector S contains the
source intensities of all virtual sources, and Hbb and Hτ

bb are the corresponding matrices
of frequency response functions of the soil for the displacement and traction, respectively,
which are composed of Green’s functions and OIFs. A unit vector normal to the boundary
pointing outwards to the soil medium is considered when constructing Hτ

bb. In a similar way,
displacements Us at an arbitrary point in the soil medium can be computed using the matrix
form Eq. (3.6a), which can be written as

Us = HsbS, (3.11)

where Hsb is the matrix of fundamental solutions that relates the set of forces S with the
responses at the particular arbitrary point.

3.1.3 Pile-soil coupling formulation

The pile-soil dynamic coupling is carried out by employing the dynamic substructuring tech-
nique considering the two subsystems presented in the previous two subsections, the pile and
the soil with the pile’s cavity inclusion. When coupling two elastic solids, this technique en-
forces compatibility of the strain and stress fields at their interface. In the proposed method
for pile-soil problems presented in this work, these conditions are met by ensuring displacement
and interaction forces compatibility at a set of collocation points distributed along the pile-soil
interface. Interaction forces seen by the cavity at the collocation points are determined consid-
ering a constant distribution of the traction field in the vicinity of each particular collocation
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point, whilst these forces are transferred to the pile as point forces.

A detailed description of the collocation point distribution employed is presented in Fig. 3.4(a).
A uniformly distributed set of Np ring-shaped distributions of collocation points are defined
along the lateral pile-soil interface. Each ring-shaped distribution has a total of Ns uniformly
distributed collocation points. Also, an additional collocation point is located at its centre
in the bottom circular pile-soil interface. Therefore, this implies that the dynamic fields at
the pile-soil interface are represented at Nc = NsNp + 1 collocation points. As shown in Fig.
3.4(a), a set of uniformly distributed pile centroid points constitutes the discretization scheme
for the pile. Each of them is associated with a pile segment and also with a ring of collocation
points. Based on the assumption that each of these pile segments is rigid, the corresponding
responses at the collocation points at the pile-soil interface can be related with the responses
of the pile at the centroid points. The derivation of this relation is presented in the next
paragraphs. Additionally, the areas of influence associated with each collocation point have
also been depicted in Fig. 3.4(b). These areas are important in the application of the SBM
to model the soil, as described in the previous section, as well as for the determination of the
interaction forces applied to the pile from the tractions at the pile-soil interface.

z

(b) (c)

(a)

z

x

y

1 2 N p-1 N pn . . .. . .

1

2

N s-13

. . .

ns

N s

Additional (N s+1)-th

collocation point

associated with the N p-th

circular segment (pile tip)x

y

. .
 .

Figure 3.4: Discretization schemes adopted in this work (illustrated horizontally for con-
venience). In (a), the distribution of collocation points (blue dots) over the pile-soil interface,
together with the corresponding pile centroid points (red dots) is displayed. In (b) and (c),
the four distinct types of areas of influence are presented: In green, the area of influence of
a collocation point located at the ground surface is shown; in red, the one for a collocation
point located in an intermediate position along the lateral interface is illustrated; in magenta,
the influence area for one point of the ring-shaped distribution at the pile tip is represented;
and finally, in cyan, the area of influence of the collocation point located at the centre of the

bottom pile-soil interface is displayed.
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The displacements at all collocation points along the pile-soil interface are collected by the
vectors Us

b and Up
b for the soil and pile subsystems, respectively. Displacement compatibility

at the interface leads to Us
b = Up

b. Due to the assumption that each pile segment acts as a rigid
body, the displacements Up

b can be expressed in terms of the rigid body translation and rotation
of the cylindrical segments defined at the corresponding pile centroid points displacements as

Up
b = WUp, (3.12)

where the Up vector collects the displacements and rotations at all pile centroid points, and W

is the transformation matrix that relates the six degrees of freedom of all pile centroid points
with the three-component motion of all collocation points. Details of this transformation and
the definition of W are given in Appendix B. The compatibility of the reaction forces at the
interface is expressed as Ps

b = −Pp
b, with Ps

b and Pp
b being the interaction forces to which the

soil and the pile are subjected, respectively, at all collocation points. As mentioned above, the
present methodology assumes that the traction field in the pile-soil interface is constant along
each influence area and equal to the value evaluated at its corresponding collocation point.
Thus, the interaction forces to which the soil is subjected are given by

Ps
b = WAT

s
b, (3.13)

where WA is a diagonal matrix that contains the areas of influence associated with all colloc-
ation points and Ts

b is the vector that contains the tractions at all collocation points along the
pile-soil interface. Regarding the pile interaction forces, their summation for each rigid pile seg-
ment results in equivalent three-component forces and moments applied to the corresponding
pile centroid point. This transformation is analogous to the one presented for the translational
and rotational motions: Pp = WTPp

b = −WTPs
b (see Appendix B for more details). Thus,

tractions at the pile-soil interface are related with the interaction forces and moments at the
pile centroid as

Pp = −WTWAT
s
b. (3.14)

As discussed above, the transformations of motions and forces from the pile centroid points to
the collocation points consider both translational and rotational motions, as well as forces and
moments. A simplified approach has been considered in previous works about dynamic pile-soil
interaction, for which the rotations and the moments are neglected in the coupling procedure
[4, 5]. This assumption can also be applied in the context of the present formulation, as
discussed in Appendix B. The accuracy of such simplification are studied in Section 3.2.
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The pile-soil system is considered to be subjected to external forces at the pile head and at an
arbitrary point in the soil, represented by the three-component vectors Fp and Fs, respectively.
Based on the superposition principle, the dynamic unknown states of the soil can be written
as the summation of the motion induced by the external load Fs and the motion induced by
the traction boundary condition at the pile-soil interface. Thus, based on Eqs. (3.10) and
(3.11), the response at the collocation points Us

b and at an arbitrary point in the soil Us can
be written as

Us
b = Hbb(H

τ
bb)

−1Ts
b +Hcav

bf Fs, (3.15a)

Us = Hsb(H
τ
bb)

−1Ts
b +Hcav

sf Fs, (3.15b)

with Hcav
bf and Hcav

sf being the receptance matrices relating the response at the collocation
points and at an arbitrary point in the soil subsystem, respectively, due to the external force
Fs. The superindex cav is used to denote that these receptance matrices of the soil should be
determined by accounting for the inclusion of the cavity. They can be expressed in terms of
the Green’s functions of an elastic half-space with no inclusions as

Hcav
bf = Hbf −Hbb(H

τ
bb)

−1Hτ
bf and Hcav

sf = Hsf −Hsb(H
τ
bb)

−1Hτ
bf , (3.16)

where the matrices Hbf and Hsf contain the Green’s functions associated with the source point
of Fs and the receivers at the collocation points or at the arbitrary point in the soil, respectively.
The matrix Hτ

bf is analogous to Hbf but for traction response. In Eq. (3.16), the second terms
of the right-hand side simulates the existence of the cavity by enforcing a traction-free field
along the surface where the pile-soil interface should be.

Similar expressions can be derived for the pile subsystem, for which its responses at the col-
location points Up

b and at the pile head Uh are given by

Up
b = W

(
HphFp −HppW

TWAT
s
b

)
, (3.17a)

Uh = HhhFp −HhpW
TWAT

s
b, (3.17b)

in which Hph, Hpp, Hhh and Hhp are the matrices of receptance functions that relate the
response at all pile centroid points or at the pile head (represented by p and h, respectively,
as the first subscript) due to forces along the pile or at the pile head (represented by the same
nomenclature for the second subscript).
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By applying the compatibility of displacements and using Eqs. (3.15a) and (3.17a), the trac-
tions at the pile-soil interface can be determined and subsequently substituted to Eqs. (3.15b)
and (3.17b) to find the final expressions for the coupled pile-soil system which allow for cal-
culating the responses of an arbitrary point in the soil or the pile head, respectively. These
responses of the coupled system can be written as a function of the external loads as

Us = Hc
shFp +Hc

sfFs, (3.18a)

Uh = Hc
hhFp +Hc

hfFs, (3.18b)

where Hc
sh, Hc

sf , Hc
hh and Hc

hf are the receptance matrices of the coupled system that provide the
relationship between the response of an arbitrary point in the soil or the pile head (identified
in the first subscript by s and h, respectively) due to forces applied to the soil at another
arbitrary point or forces applied to the pile head (identified by the second subscripts f and h,
respectively). These matrices are given by the following expressions

Hc
sh = Hsb(H

τ
bb)

−1ΥWHph, (3.19a)

Hc
sf = Hcav

sf −Hsb(H
τ
bb)

−1ΥHcav
bf , (3.19b)

Hc
hh = Hhh −HhpW

TWAΥWHph, (3.19c)

Hc
hf = HhpW

TWAΥHcav
bf , (3.19d)

with
Υ =

[
Hbb(H

τ
bb)

−1 +WHppW
TWA

]−1

. (3.20)

Eqs. (3.18a) and (3.18b) inherently contain the solution to both radiation and scattering
problems for the system under study, which can be extracted by enforcing Fs = 0 or Fp = 0,
respectively.

Finally, note that the formulation of the proposed model is not limited to single-piles and/or
homogeneous soils. While the case of a multi-pile foundation can be directly considered by
considering displacement compatibility and force equilibrium on each pile (as described in
detail in Chapter 4), considering horizontally layered soils instead of homogeneous ones only
requires using the corresponding Green’s functions in the calculation.
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3.2 Numerical assessment of the single-pile model

A numerical assessment of the single-pile foundation model is presented in this section. For this
purpose, a convergence study is initially performed to define suitable values for Np and Ns that
ensure an acceptable degree of convergence that allows for defining a general criterion to select
the number of collocation points required for a specific problem. Although the study presented
in Section 3.2.1 only focuses on the convergence of the method itself, it is worth mentioning
that the accuracy of the converged results has also been verified for each one of the calculation
cases considered. The accuracy of the proposed method is discussed in detail in Section 3.2.2 in
which the method is compared with other existing state-of-the-art methodologies. The aim is to
demonstrate the accuracy of the method and discuss its numerical efficiency in the framework
of two problems: the radiation problem, for which the response of the pile-soil system due to
the force Fp on the pile is calculated; and the scattering problem, in which the system response
to a load Fs on the soil is evaluated. These numerical studies are performed in the context
of three different pile-soil systems: a short pile embedded in soft soil (Case 1); a short pile
embedded in stiff soil (Case 2); and a long pile embedded in soft soil (Case 3). The soil is
modelled as a homogeneous elastic half-space for all these cases.

The specific geometrical and mechanical parameters considered for the three cases are presented
in Table 3.1. The dimensions of the piles and the soil properties have been selected to assess the
performance of the proposed methodology in very different situations rather than attempting
to represent realistic scenarios. Therefore, while the pile aspect ratio of the short pile case
(Lp/rp = 33.4) is similar to those considered other works in the field [3, 4], the long pile
Lp/rp = 100 has been chosen to assess the performance of the method for a very slender pile.
The material damping is introduced in the soil by considering complex Lamé constants λ∗ and
ν∗ given by λ∗ + 2ν∗ = (λ+ 2ν)(1 + i2D) and ν∗ = ν(1 + i2D) for positive-valued frequencies,
where D represents the hysteretic material damping ratio of the soil. The frequency range of
interest is selected to be 1− 100 Hz in accordance with the frequency range in which ground-
borne vibration is typically significant [153]. For the comparison of results, three observation
points are considered: O1, O2 and O3, located at positions (0, 0, 0), (5, 0, 0) m and (20, 0, 0) m,
respectively; the first one is collecting the pile head response and the other two are collecting
the response of the soil surface at the near and far field. Furthermore, the results are presented
in terms of magnitude of the free-field and pile-head frequency response functions receptances
in dB with 1 m/N as reference. This form of presentation is particularly adequate to compare
the performance of various numerical models, as it does not involve any additional assumption
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or source of inaccuracy, such as the ones that could arise when dynamic stiffness results are
normalised by their static counterparts [93]. Moreover, as the free-field and pile-head responses
depend on the pile-soil interaction forces, the obtention of accurate results strongly suggests
that the model adequately captures any dynamic unknown state at the pile-soil boundary.

Description Units Soft
soil

Hard
soil

Short
pile

Long
pile

Density (ρ) kg/m3 1950 2000 2860 2860
Young’s modulus (E) MPa 151.2 445.5 40000 40000
Poisson’s ratio (ν) - 0.35 0.40 0.25 0.25
Hysteretic damping ratio (D) - 0.05 0.02 0.01 0.01
Speed of the P-waves (Cp) m/s 352.8 703.6 - -
Speed of the S-waves (Cs) m/s 169.5 287.2 - -
Pile length (Lp) m - - 10 35
Pile radius (rp) m - - 0.3 0.35

Table 3.1: Pile and soil parameters used in the considered numerical examples.

Regarding the computation details, the elastic half-space Green’s functions required in the
proposed approach, as well as for the 3D FE-BE approach employed for verification purposes,
are computed with the EDT toolbox [154]. Algorithms for all methods have been implemented
in MATLAB, and the simulations have been carried out on a 40-core high-performance cluster
with 2 GHz Intel® Xeon® Gold 6138 CPU.

Finally, the term Bcc presented in Eq. (3.9) has been neglected from the calculations to enhance
thus the computational efficiency of the proposed method since, as discussed in Section 3.1.2
and reported in [115, 151, 152], this term has almost no impact on the accuracy of the results
in the case of smooth boundaries. This fact has also been verified numerically for each one of
the considered examples.

3.2.1 Convergence analysis of the proposed approach

This subsection aims to provide a criterion for defining Np and Ns values that ensure an
acceptable trade-off between accuracy and numerical performance. In the context of the BEM,
it is usually stated that element size should be between six and ten times smaller than the
minimum wavelength of the problem [155]. This statement may not be representative of the
SBM, taking into account the meshless nature of the method. In this sense, a convergence study
to determine appropriate Np and Ns values is presented in this section. For this analysis, only
the radiation problem for the Case 1 is presented; however, similar results have been derived
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for the other two cases (not included here). The response of this case has been computed for
values of Np ranging between 5 and 60, and for Ns between 4 and 40. The excitation frequency
is set to the maximum of the frequency range, being 100 Hz. The convergence analysis is
performed by comparing the results obtained for the different values of Np and Ns with those
obtained for a reference case with N ref

p = 70 and N ref
s = 40. The discrepancies between each

case and the reference one are presented in terms of a relative error, which is given by

εij =

∣∣∣Hc,ij
kh −Hc,ij

kh,ref

∣∣∣∣∣∣Hc,ij
kh,ref

∣∣∣ , (3.21)

where εij is the relative error of the receptance component Hc,ij
kh with respect to the reference

one Hc,ij
kh,ref. The first superscript i denotes the response direction, while j is referred to the

force direction. The subscript k is defined as k = h or k = s according to whether the response
is evaluated on the pile head or at the ground surface, respectively.

Fig. 3.5 shows the convergence analysis results at the three observation points. For clarity, the
results are presented in logarithmic scale. As expected, the relative errors decrease as the values
of Np and Ns increase. Very small relative errors are observed for values of Np and Ns above
50 and 18, respectively, suggesting that the results of the proposed method have numerically
converged. The vertical driving-point response at the pile head (associated with εzz) in Figs.
3.5(a-i), (b-i) and (c-i) converges for smaller values of Np and Ns than the lateral driving-
point response (associated with εxx, εyy). Moreover, the lateral driving-point responses are
more sensitive with respect to Ns than the vertical driving-point responses, which are almost
insensitive to changes in Ns. These trends are less prominent for soil response. The convergence
analysis shows that the difference between the reference results and the results obtained when
considering at least eight collocation points per wavelength in the longitudinal direction are
below −1.25 in the logarithmic scale used in Fig. 3.5, which corresponds to differences below
0.2 dB with respect to the reference solution. Thus, Np is suggested to be defined based on
this criterion. For the specific problem under investigation, where the minimum wavelength
is λmin = 1.695 m, this criterion indicates that Np should be at least 47 (see vertical dashed
green lines in Fig. 3.5). Regarding the discretization scheme for the collocation points within
the ring-shaped distributions along the perimeter of the pile segments, the convergence study
demonstrated that a practical rule for defining an appropriate value for Ns is Ns ≥ 32πrp/λmin,
in which λmin stands for the minimum wavelength of the problem. Consequently, the minimum
number of collocation points per wavelength along each ring-shaped distribution is 16. This
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Figure 3.5: Relative errors (depicted in logarithmic scale) εxx (a), εyy (b) and εzz (c)
associated with the response at the observation points O1 (i), O2 (ii), O3 (iii), respectively,

for the case of a short pile embedded in soft soil.

rule is especially important to be complied when the lateral driving-point response at the pile
head is computed. Following this criterion, the suggested value for Ns is 18 (see horizontal
dashed green lines in Fig. 3.5). When only the vertical response due to vertical loading is
computed, this criterion can be significantly relaxed and a value Ns ≥ 16πrp/λmin is found to
be working well in this situation. For the specific problem under investigation, the Ns value
suggested for computing εzz is 9 (see horizontal dashed red lines in Figs. 3.5(c-i), (c-ii) and
(c-iii)).

Furthermore, the efficacy of the proposed discretization rules has been studied by comparing
the results for four discretization schemes, which are: Np = 70 and Ns = 40; Np = 50 and
Ns = 32; Np = 35 and Ns = 8; and Np = 15, Ns = 8. The resulting frequency response
functions (FRFs) are presented in Fig. 3.6 and show that, as suggested by the relative error
results, there is almost no difference between the cases that consider Np and Ns values that
comply with the previously stated criteria. It should be noticed that, as shown by the relative
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errors, vertical responses due to a vertical load on the pile head are predicted with reasonable
accuracy by the proposed approach, even for low Np and Ns values, as shown in Fig. 3.6(c-i),
(c-ii) and (c-iii), where differences of less than 1 dB are found, occurring at 100 Hz. On the
contrary, the responses related to lateral motions and/or loading are more sensitive to such
changes.

The proposed criterion for defining the Ns and Np values has been tested in other scenarios
proving its correctness in all those situations. The mechanical and geometry parameters em-
ployed for testing these criteria ranged between the ones described for piled foundation Case
1 and Case 3. Therefore, for the sake of brevity, only the convergence analysis for the case
associated with the minimum wave speed (Case 1) is shown since it is the one requiring the
highest density of collocation and source points.

3.2.2 Comparison with existing approaches

In this section, the proposed modelling approach is compared with other well-established ap-
proaches in terms of its accuracy. This study serves to verify the approach and to test the
discretization criteria discussed in the previous section. Furthermore, the need to account
for rotational motion and torques when coupling both pile and soil subsystems has been also
assessed. This study is performed for the radiation problem of Case 1, Case 2 and Case 3
scenarios.

The methods considered for comparison in this validation study are Novak’s approach [79];
an axisymmetric FE-based approach that uses perfectly matched layers (PML) to avoid wave
reflections at the borders of the model referred to as aFE-PML [11]; and a 3D FE-BE approach
consisting of a 3D BE-based approach developed on the basis of [149]. Table 3.2 summarises
the discretization schemes adopted for the proposed method, the aFE-PML and the FE-BE
methodologies, particularly defining the number of nodes per wavelength (NPW) considered
and the resulting discretization or mesh parameters. Additionally, Table 3.3 provides the num-
ber of collocation points or nodes, as well as the number of elements NE, used in the different
numerical models considered in this study. The 3D FE-BE approach has been implemented
using four-noded quadrilateral BEs and eight-noded hexahedral FEs, whilst the aFE-PML
method uses six-noded triangular elements to construct its meshes.

Although a detailed description of the aFE-PML approach is not in the scope of the present
dissertation, it is worth mentioning some general information about the PML formulation.
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Figure 3.6: Displacement FRFs (receptances) for the radiation problem in the context of
Case 1 scenario considering different discretization schemes. Components of the FRFs matrices
shown are xx (a), yy (b), zz (c), xz (d) and zx (e) and observation points considered are O1

(i), O2 (ii), O3 (iii). Results in dB using 20 log10(|H|), with 1 m/N as reference.

For the three pile cases computed with the aFE-PML approach, a stretching function with a
constant value of 20 for the attenuation function is considered, as suggested in [156, 157], the
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thickness of the PML layer has been set to be 1 m in the radial and vertical direction, dividing
the layer into six sub-layers. Regarding Novak’s approach, the soil lateral reaction equation
described in [79] does not correspond to the one proposed by Baranov in his original work [76].
This imprecise transcription of the original Baranov’s formula could lead to inaccurate results
for lateral driving-point responses. Corrected closed-form expressions for the soil reaction,
originally proposed by Baranov, have been detailed in Appendix C. Additionally, the equation
for obtaining the lateral response of the pile proposed in [79], which considers either the pile
with both ends fixed or the pile head fixed and the pile tip pinned, is adapted to the case where
both ends are free.

Although Novak’s approach is generally a suitable and extremely efficient approach for model-
ling pile driving cases, the method does not perform well at low frequencies and cannot predict
the free-field response. Additionally, due to its axisymmetric nature, the aFE-PML approach
can only be used to predict the system’s dynamic vertical and radial responses to vertical
excitations applied on the pile axis. However, both methods are included in the comparison
study to highlight the proposed method’s potential and increase the validation process’s merit.
Regarding the latter, since the FE-BE model was developed within this study to validate the
proposed method and assess its computational efficiency, it was also considered necessary to
verify the FE-BE results by including the comparison against results from other available tools.
It is worth mentioning that although there are several alternative pile-soil interaction models
based on analytical elastic-continuum formulations to deal with single-pile foundations [89–
92], these models have not been considered in the presented comparisons since they involve
assumptions that are not considered in the presented numerical approaches, as discussed in
Section 2.3 and reported in [73].

Description Proposed approach 3D FE-BE aFE-PML
Case study NPW d [cm] Np Ns NPW d [cm] NPW d [cm]

Case 1: Short pile - soft soil 8 21 47 28 9 20 7 25
Case 2: Short pile - stiff soil 9 32 32 18 14 20 6 45
Case 3: Long pile - soft soil 8 21 165 32 4 50 7 25

Table 3.2: Discretization schemes adopted for the proposed 3D FE-BE and aFE-PML ap-
proaches. The variable d represents the distance between collocation points along the longit-
udinal direction of the pile in the proposed approach and the element size in the mesh-based

approaches.

Fig. 3.7 to 3.9 show the displacement FRF (receptance) at each one of the observation points
to forces applied on the pile head obtained by the different approaches mentioned above. An
alternative version of the proposed approach that does not account for rotations and torques in
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Description Proposed
approach 3D FE-BE aFE-PML

Case study SB points FE mesh BE mesh FE mesh
Nc Nodes NE Nc NE Nodes NE

Case 1: Short pile - soft soil 1317 3723 3000 1273 1260 125685 62464
Case 2: Short pile - stiff soil 577 3723 3000 1273 1260 85890 42605
Case 3: Long pile - soft soil 5281 5183 4200 1740 1753 125685 62464

Table 3.3: Number of collocation points (or nodes) and elements used in the different
numerical models considered in the numerical assessment.

the coupling between the pile and the soil is also included in the comparison. It can be seen that
the responses due to vertical loads simulated by all the considered methods demonstrate a good
agreement between them. Some differences between the methods can be seen in the results of
the responses due to lateral loading. This is particularly clear for the Novak approach, which
is found to be inaccurate at low frequencies for the lateral driving-point responses. Results
show that the Novak method underestimates the lateral stiffness of the pile in a range of
frequencies that mainly depends on the mechanical properties of the soil rather than the pile
geometry, having inaccurate results arising below 20 Hz for the soft soil cases and below 40
Hz in the stiff soil case. On the contrary, a good agreement over the whole frequency range
is observed when comparing the results of the proposed methodology with those obtained
with the other two numerical approaches. The results also show that when rotations and
bending moments are not included in the coupling procedure, the proposed methodology may
predict inaccurate responses to lateral loads. This effect can be observed in Figs. 3.7 to 3.9,
that show discrepancies between the two coupling assumptions for the x and z soil responses
due to lateral forces in the x-direction, especially at high frequencies. However, the impact
of neglecting rotations and bending effects is much smaller for the remaining lateral loading
responses.

Overall, the results from the comparison study presented in this section demonstrate the high
accuracy of the proposed approach due to the agreement of its corresponding results with the
ones delivered by the 3D FE-BE methodology, which is expected to provide highly detailed
results.
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Figure 3.7: FRFs for the radiation problem in the framework of Case 1 (short pile & soft
soil) scenario considering different approaches. Components of the FRFs matrices shown are
xx (a), yy (b), zz (c), xz (d) and zx (e) and observation points considered are O1 (i), O2 (ii),

O3 (iii). Results in dB using 20 log10(|H|), with 1 m/N as reference.
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Figure 3.8: FRFs for the radiation problem in the framework of Case 2 (short pile & stiff
soil) scenario considering different approaches. Components of the FRFs matrices shown are
xx (a), yy (b), zz (c), xz (d) and zx (e) and observation points considered are O1 (i), O2 (ii),

O3 (iii). Results in dB using 20 log10(|H|), with 1 m/N as reference.
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Figure 3.9: FRFs for the radiation problem in the framework of Case 3 (long pile & soft
soil) scenario considering different approaches. Components of the FRFs matrices shown are
xx (a), yy (b), zz (c), xz (d) and zx (e) and observation points considered are O1 (i), O2 (ii),

O3 (iii). Results in dB using 20 log10(|H|), with 1 m/N as reference.
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3.2.3 Verification of the dynamic reciprocity of the proposed ap-

proach

In the context of ground-borne vibration problems, the response of the pile due to a dynamic
load applied on the ground is the most interesting problem to study since it allows for determ-
ining the response of buildings or structures with piled foundations to the action of incident
elastic wave fields. This problem can be referred to as a travelling wave problem (or kinematic
excitation problem) for which the pile foundation is induced to shake by the incident wave
fields from a source. However, employing the dynamic reciprocity theorem, this result can be
obtained by solving the radiation problem for the case that the response is determined at the
position where the load in the original scattering problem is intended to be placed.

In this section, a numerical study to verify that the proposed approach fulfils the dynamic
reciprocity theorem is presented, which states the following property of the fundamental or
Green’s function of an elastic system as H(x,y, ω) = HT(y,x, ω), which also applies for any
FRF of the system. Due to the special assumptions taken into consideration in the proposed
approach, it is worth checking the correctness for the proposed approach and for the alternative
version that only considers translational coupling when dealing with the pile-soil interaction.
Thus, the radiation problem of a force applied at the pile head and the response evaluated at
the point O2, governed by Eq. (3.19a), is compared to the scattering problem where the force
is applied at the point O2 and the response is evaluated at the pile head, governed by Eq.
(3.19d). Results are shown in Fig. 3.10, from which it can be observed that the reciprocity for
the proposed approach is satisfied. Therefore, it can be deduced that the dynamic reciprocity is
fulfilled over the frequency range of interest in all situations for both studied coupling strategies
employed within the proposed approach.

3.2.4 Computational efficiency of the proposed approach

In the cases studied in the previous subsections, it was shown that the proposed approach
offers several advantages over the other methods. Compared with Novak’s method, although
significantly more computationally demanding, it can perform with better accuracy and include
the results in the free field. Similarly, compared with the aFE-PML method, the proposed
method overcomes the fundamental limitation on obtaining the results due to excitations at
the free field (incident wave fields) and lateral excitations at the pile. Also, it avoids the high
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Figure 3.10: Response of the radiation and corresponding scattering problems in the context
of the Case 1 (i), Case 2 (ii) and Case 3 (iii) scenarios. Components of the FRFs matrices
shown are xx (a), yy (b), zz (c), xz (d) and zx (e). Results in dB using 20 log10(|H|), with 1

m/N as reference.

computational cost of dealing with far evaluation points and the requirements for a large mesh
of the soil (a similar issue can be extrapolated for a 3D FE-PML model).
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The 3D FE-BE methodology can provide accurate results in all directions; however, an inherent
disadvantage of this method is associated with the computational effort. This is because the
3D FE-BE model requires a significant number of Green’s function evaluations for solving the
numerical integration over each of the BEs of the constructed mesh. This computational effort
increases rapidly when the mesh density increases, either to fulfil high-frequency range require-
ments or to include multiple piles. The current work does not include a detailed computational
efficiency comparison, particularly against the FE-BE approach because such an effort would
depend (to some extent) on the programmer’s skill in the computational implementation of
the two methods. Furthermore, as described in Table 3.3, the SBM and BEM have modelled
the pile cavity with different numbers and arrangements of collocation points so that a quant-
itative comparison of the computational times between them appears to be unfair. However,
a general overview of the computational benefits of the SBM over the BEM is included here.
Previous work in the fields of elastostatics [113] and acoustics [158] showed that the SBM can
outperform the BEM in terms of accuracy when considering the same number of collocation
points. Having that in mind, consider, for instance, a generic BE mesh consisting of NE bound-
ary elements and Nc collocation points and assuming a moderate number of Gaussian points
GP = 2 × 2 for a bilinear interpolation function of elements that are not severely distorted,
as suggested in [149]. The BEM would require at least n = GP ×NE ×Nc Green’s functions
evaluations to obtain the unknown states of the system. In contrast, a corresponding SBM
model considering the same number of collocation points would require n = N2

c computations.
Therefore, considering the BEM and SBM employing the same collocation point distribution
to characterize the unknown states of the cavity, the inequality N2

c < GP ×NE×Nc holds and
demonstrates the SBM to be more computationally efficient than the BEM, generally speaking.
Moreover, although different numbers and arrangements of collocation points are employed to
model the soil sub-system with the BEM and the SBM, the differences in computational re-
quirements between these two approaches were observed when computing the results included
in this dissertation. This difference was particularly significant for the pile foundation Case
3 when, even utilizing a discretization scheme incorporating six NPW, considerable computa-
tional efforts in terms of processor speed and rapid access memory was required for calculating
the response of that pile-soil system. For these reasons, only four nodes per wavelength were
employed in the modelling, as reported in Table 3.2, which has induced some inaccuracies at
higher frequencies in the semi-analytical response, as shown in Fig. 3.9(a-ii), (a-iii), or (e-iii).
Due to the meshless nature of the proposed approach, a significantly smaller number of Green’s
function evaluations are required to obtain the response of the targeted pile-soil system using
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the proposed method, resulting in a large reduction of the computation resources employed in
the simulation.

3.3 Conclusions

A computationally efficient 3D approach for predicting pile-soil interaction problems is presen-
ted in this chapter. The proposed method models the soil as a half-space and represents the pile
as an Euler-Bernoulli beam to capture its flexural motion and as a rod to account for axial de-
formations. Regarding the coupling, the soil reaction is modelled using the SBM, an emerging
meshless numerical method with computational efficiency and formulation simplicity merits
exploited in the proposed scheme. The pile is divided into circular segments, each of them in-
volving a set of collocation points placed at the soil-pile interface, in which the compatibility of
displacements and tractions between the two sub-systems is enforced. A transformation matrix
is introduced to relate the pile response at the collocation points in the pile-soil interface with
the pile response computed at the pile’s centroid. This matrix is constructed assuming each
pile segment to be rigid and considering both translational and rotational motions of the pile
segments, as well as forces and bending moments.

The outcomes of the present chapter can be summarised in the following list of findings:

• The convergence analysis conducted for the proposed approach has provided a criterion
for defining the number of pile segments and the number of collocation points per seg-
ment that ensures an acceptable trade-off between robustness, accuracy and numerical
performance of the scheme.

• The proposed methodology has been verified against a 3D FE-BE methodology, an
axisymmetric aFE-PML approach and compared with the Novak’s method. Moreover,
the reciprocity principle has also been verified for the proposed methodology in order
to assess the correctness of the formulation presented. In the calculation examples con-
sidered, the method is found to yield a comparable level of accuracy with respect to
the FE-BE approach when employing a similar number of collocation points for both
methods. This, combined with the fact that SBM typically involves less Green’s function
evaluations with respect to BEM per collocation point, allows for concluding that the
method is more computationally efficient than a standard 3D FE-BE.
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• The verification study also shows that the rotational motions and bending moments must
be considered in the pile-soil coupling scheme to obtain accurate results, especially when
estimating the lateral response of the free field due to lateral or vertical loading patterns.
The discrepancies appearing when only translational motions and forces are considered
to establish the coupling conditions are more pronounced at high frequencies.

Given the robustness of the proposed method as well as its computational efficiency merits, it
conforms as an interesting alternative to deal with ground vibration problems involving single-
piled foundations. Moreover, the current methodology can be employed to model multi-pile
foundation systems by considering displacement compatibility and force equilibrium on each
pile. The formulation for pile-group system is described in detail in the following Chapter 4.



Chapter 4

A multi-pile foundation model based on

the singular boundary method

In many practical situations, the number of piles required to support a foundation is determined
by factors such as the amplitude of columns’ service loads, the soil’s bearing capacity, or the
pile spacing. The dynamic response of pile-groups can typically be modelled by employing
the governing equations and soil-pile coupling assumptions used in single-pile models. An
example of a pile-group model based on elastic continuum theory is the one developed by
Kaynia and Kausel [1, 3] and, examples of pile-group models based on numerical methods have
been presented in [4, 5, 96, 97, 109, 131]. As in single-pile models, accurate predictions of a pile-
group’s dynamic response require realistic coupling assumptions. However, 3D fully coupled
approaches become impractical in terms of computational effort when dealing with pile-groups
comprising many piles. An alternative method to overcome the computational challenges
associated with fully coupled approaches is the use of the superposition method proposed by
Poulos [116] to study the static behaviour of a pile-group system employing the response of two
isolated piles only. This methodology is also employed by Kaynia [3] to compare the dynamic
response of a generic pile-group predicted by a fully coupled model with the ones obtained using
the superposition method, which employs the dynamic interaction factors of two isolated piles
as entries to construct a global flexibility matrix that solely relates force and displacement at
the pile heads. While this method offers some advantages in terms of computational effort when
foundations comprise many piles, inaccurate results can be predicted at high-frequency ranges
since the calculation of the dynamic interaction factors does not account for neighbouring or
intermediate piles [4].

59
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This chapter employs the previously proposed single-pile formulation, which considered Euler-
Bernoulli beam and elastic rod theories to model the pile, and the SBM to model the soil,
described in detail in Section 3.1.1 and 3.1.2, respectively, to develop a fully-coupled 3D multi-
pile foundation model. In the proposed model, the piles and soil are coupled using the procedure
and formulations for a single-pile presented in Chapter 3. Furthermore, by employing the
method of joining subsystems presented in Section 3.1.3, the formulation for coupling a pile-
group with a pile cap (or slab) is also obtained. The proposed approach is validated by
comparing the results obtained against the ones given by a 3D FE-BE method. The proposed
methodology is also employed to study the influence of including neighbouring piles in the
calculation of the interaction factors in the context of three pile-group cases.

4.1 Pile-group model formulation

A modelling strategy is presented in this section that aims to compute the dynamic response
of pile-group systems. In the formulation developed below, uppercase letters relate to scalar
variables in the frequency domain, and bold uppercase letters denote vectors or matrices in the
frequency domain. The system under investigation is a pile-group comprising of M identical
piles in an arbitrary arrangement, as shown in 4.1(b), and embedded in M cavities in the soil
modelled by a set of collocation points, as illustrated in 4.1(a). Similar to the single-pile case,
the piles and the soil are dynamically coupled by ensuring displacement compatibility and force
equilibrium at a set of collocation points distributed uniformly along each pile-soil interface.
The dynamic fields at the piles-soil interfaces for the pile-group are represented by a total set
of Nc = M(NsNp+1) collocation points, where Np represent the generic number of cylindrical
segments of each pile and Ns a set of collocation points distributed along the pile-soil interface
of each cylindrical segment. A detailed description of the collocation points distribution and
their corresponding area of influence is presented in Section 3.1.3.

Assuming that each pile is identified by the superscript notation m = 1, 2, ...,M , the vector
that contains the three-component displacements and rotations at the piles’ centroid points
can be expressed by Up = [U

(1)
p U

(2)
p · · ·U(m)

p · · ·U(M)
p ]T. Moreover, by considering that each

cylindrical segment acts as a rigid body, the displacements at all the Nc collocation points of
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Figure 4.1: Schematic drawing of soil (a) and pile (b) subsystems comprising the multi-pile
foundation.

all pile subsystems Up can be expressed in terms of Up as

Up
b =


U

p(1)
b

U
p(2)
b
...

U
p(M)
b

 =


W(1) 0 · · · 0

0 W(2) · · · 0
... · · · . . . ...
0 0 · · · W(M)




U

(1)
p

U
(2)
p

...
U

(M)
p

 = WUp, (4.1)

where W(m) represents the transformation matrix of the m-th pile that relates the vector U(m)
p

with the vector U
p(m)
b that contains the three-component displacements at its corresponding

collocation points. Note that for a pile-group system comprised of identical pile geometries
and similar collocation points distribution, the transformation matrices are also identical since
the construction of each of them is a function of the local coordinates of each pile rather than
the global coordinates of the system, so then W(1) = W(2) = · · · = W(m). Details of this
transformation and the definition of W(m) are given in Appendix B.

Similar to the single-pile formulation, the coupling is performed by assuming displacement
compatibility and force equilibrium conditions at each pile-soil interface. Thus, the displace-
ment compatibility condition between the two subsystems leads to Up

b = Us
b, where the vector

Us
b = [U

s(1)
b U

s(2)
b · · ·Us(m)

b · · ·Us(M)
b ]T, contains the soil displacements at the Nc collocation

points.

The compatibility of the reaction forces at the piles-soil interfaced is expressed by Ps
b = −Pp

b,
with Ps

b and Pp
b = [P

p(1)
b P

p(2)
b · · ·Pp(m)

b · · ·Pp(M)
b ]T being the interaction forces to which the

soil and the piles are subjected, respectively, at the Nc collocation points.
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As discussed in Section 3.1.3, the traction field in the pile-soil interface is assumed to be
constant along each influence area and equal to the value at its corresponding collocation
point. Thus, the interaction forces to which the soil is subjected are given by

Ps
b =


P

s(1)
b

P
s(2)
b
...

P
s(M)
b

 =


W

(1)
A 0 · · · 0

0 W
(2)
A · · · 0

... · · · . . . ...
0 0 · · · W

(M)
A




T

s(1)
b

T
s(2)
b
...

T
s(M)
b

 = WAT
s
b, (4.2)

where W
(m)
A is a diagonal matrix that contains the areas of influence associated with all the

collocation points of the m-th soil cavity and T
s(m)
b is a vector that contains the traction field

at these collocation points.

Because each cylindrical segment is assumed to behave as a solid rigid, the pile interaction forces
Pp

b acting on the pile-soil interface of each segment can be expressed in terms of equivalent
forces and moments acting on their corresponding pile centroid point. This transformation
leads to Pp = WTPp

b = −WTPs
b, where the vector Pp = [P

(1)
p P

(2)
p · · ·P(m)

p · · ·P(M)
p ]T contains

the equivalent interaction forces applied at the piles’ centroid points. Thus, the traction at the
piles-soil interfaces Ts

b is related with the vector Pp as

Pp = −WTWAT
s
b. (4.3)

As in Chapter 3, the system is considered to be subjected to forces applied at the soil and on
the pile heads, represented by Fs and Fp = [F

(1)
p F

(2)
p · · ·F(m)

p · · ·F(M)
p ]T, respectively. Based

on the superposition principle, the dynamic unknown states of the soil cavities can be written
as the summation of the motion induced by the piles-soil interaction forces, which are elicited
by Fs and Fp. Thus, the soil response is given by equivalent expressions to the ones described
in Eqs. (3.15) but now accounting for the M pile cavities, therefore, the soil response at all
the Nc collocation points Us

b and at an arbitrary point on the soil Us can be written as

Us
b = Hbb [H

τ
bb]

−1Ts
b +Hcav

bf Fs, (4.4a)

Us = Hsb [H
τ
bb]

−1Ts
b +Hcav

sf Fs, (4.4b)
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with

Hτ
bb =


H

τ(11)
bb H

τ(12)
bb · · · H

τ(1M)
bb

H
τ(21)
bb H

τ(22)
bb · · · H

τ(2M)
bb

... · · · . . . ...
H

τ(M1)
bb H

τ(M2)
bb · · · H

τ(MM)
bb

 , Hbb =


H

(11)
bb H

(12)
bb · · · H

(1M)
bb

H
(21)
bb H

(22)
bb · · · H

(2M)
bb

... · · · . . . ...
H

(M1)
bb H

(M2)
bb · · · H

(MM)
bb

 , (4.5)

where H(ij)
bb is the corresponding FRF matrix of displacements at the collocation points of cavity

i induced by unit loads applied at the collocation points of cavity j, and the matrix H
τ(ij)
bb is

analogous to H
(ij)
bb but for the FRF of traction. Moreover, Hsb contains the soil receptance due

to unit loads applied at all the collocation points Nc, and expressions Hcav
bf and Hcav

sf are given
by

Hcav
bf = Hbf −Hbb [H

τ
bb]

−1Hτ
bf and Hcav

sf = Hsf −Hsb [H
τ
bb]

−1Hτ
bf , (4.6)

where the matrices Hbf and Hsf contain the Green’s functions associated with all the collocation
points and an arbitrary point in the soil, respectively, both induced by the external force Fs.
The matrix Hτ

bf is analogous to Hbf but for traction response.

Similar expressions can be derived for the pile-group subsystem for which its responses at the
collocation points Up

b and at the pile heads Uh are given by

Up
b = W

[
HphFp −HppW

TWAT
s
b

]
, (4.7a)

Uh = HhhFp −HhpW
TWAT

s
b, (4.7b)

in which Hph, Hpp, Hhh and Hhp are the matrices of receptance functions that relate the
response at all piles’ centroid points or at the pile heads (represented by p and h, respectively,
as the first subscript) due to forces along the pile or at the pile head (represented by the same
nomenclature for the second subscript). It should be noted that, as the pile-group subsystem
is composed of independent piles, the matrices of receptance functions are block diagonal
matrices.

Finally, by applying the compatibility of displacements and using Eqs. (4.7a) and (4.4a), the
traction at the piles-soil interfaces can be determined and subsequently substituted in Eqs.
(4.7b) and Eqs. (4.4b) to find the following expressions for the response at the soil soil or at
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the pile heads

Us = Hc
shFp +Hc

sfFs, (4.8a)

Uh = Hc
hhFp +Hc

hfFs, (4.8b)

where

Hc
sh = Hsb [H

τ
bb]

−1ΥWHph, (4.9a)

Hc
sf = Hcav

sf −Hsb [H
τ
bb]

−1ΥHcav
bf , (4.9b)

Hc
hh = Hhh −HhpW

TWAΥWHph, (4.9c)

Hc
hf = HhpW

TWAΥHcav
bf , (4.9d)

with
Υ =

[
Hbb [H

τ
bb]

−1 +WH̄ppW
TWA

]−1

. (4.10)

Eqs. (4.8a) and (4.8b) inherently contain the solution to both radiation and scattering problems
for the system under study, which can be recovered by enforcing Fs = 0 or Fp = 0, respectively.

4.2 Modelling a dynamic pile-cap foundation model

As discussed in Chapter 2, ground-borne vibrations are transmitted to the building through its
foundation, usually composed of a pile-group system attached to a large concrete slab, referred
to as a pile cap, that joins the pile heads. The pile cap is a thick concrete block that rests on a
pile-group foundation and distributes the service load from the column onto the piles so that,
as far as possible, the load is shared between the piles. Thus, the pile cap, usually designed
to behave as a rigid block, supports axial and bending loads induced by the column and the
piles. Particular care is taken by designers in selecting a pile cap thickness that ensures its
resistance to shear stresses. It is beyond the scope of this dissertation to discuss construction
specifications, such as pile spacing, pile arrangement distribution or pile and pile cap design
under specific service loads. The interested reader is referred to foundation design handbooks
such as Tomlinson [159, 160], Eurocode 2 [161] and Eurocode 7 [162, 163].

Although the pile cap is assumed to behave as a rigid body in seismic analysis, this assumption
may no longer be valid for ground-borne vibrations induced by man-made activities, for which
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the range of frequencies of interest is much higher. Hence, a dynamic pile-cap model based
on the FE method is proposed in this section. Thus, the governing equation for the pile cap
subsystem is given by

DUcap = Fcap, (4.11)

where Ucap contains the displacements of each FE node induced by the external nodal forces
Fcap, and where the dynamic stiffness matrix of the pile cap is represented by D and given by
the expression

D = −ω2M+K, (4.12)

where M and K are the mass and stiffness matrices of the pile. The structural damping is
introduced in Eq. (4.12) by considering a complex stiffness matrix given by K∗ = K(I+i2DK),
where D is the hysteretic damping ratio of the pile cap.

The pile heads and the pile cap are coupled by assuming force equilibrium and displacement
compatibility. This joining procedure is performed by meeting these compatibility conditions
between the pile heads and their corresponding coupling surfaces of the pile cap, which are
represented by a set of FE nodes located at the same z-plane as the pile heads and within the
pile head surfaces, as shown in Fig. 4.2. Thus, Eq. (4.11) can be expressed in terms of FE
nodes employed for coupling and the free ones. The resulting expression is given byD11 D12

D21 D22

Ucap
nb

Ucap
b

 =

Fcap
nb

Fcap
b

+

 0

Pcap
b

 , (4.13)

where subscripts nb and b denote, respectively, the subset of FE nodes not located on any of
the coupling surfaces and the subset of FE nodes located on these surfaces. Therefore, Ucap

nb

and Ucap
b are the displacements induced by the external forces Fcap

nb and Fcap
b , as well as by the

interaction forces Pcap
b to which the pile cap is subjected.

As detailed in Section 3.1, it is assumed that, to model the dynamics of the piles, these can
be divided into small rigid cylindrical segments (see Fig. 3.4). This assumption implies that
the displacement of any point of the pile can be expressed in terms of the displacements
and rotations associated with each one of the corresponding rigid segments. Therefore, the
displacement compatibility condition relates the displacement of the FE nodes belonging to
each coupling surface to the displacement and rotations associated with each pile head. The
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Figure 4.2: Schematic drawing of the joining procedure of the piles and the pile cap. The
M pile heads are coupled with their corresponding coupling surface of the pile cap modelled

by FE nodes, which are within the pile head surfaces.

relation can be expressed as

Ucap
b =


U

cap(1)
b

U
cap(2)
b
...

U
cap(M)
b

 =


W

(1)
b 0 · · · 0

0 W
(2)
b · · · 0

... · · · . . . ...
0 0 · · · W

(M)
b




U

(1)
h

U
(2)
h
...

U
(M)
h

 = WbUh (4.14)

where W(m)
b relates the displacements of those FE nodes belonging to the m-th coupling surface

U
cap(m)
b with the displacement and rotation of the m-th pile head U

(m)
h . The procedure to obtain

W
(m)
b is similar to the one considered for W(m) and can be found in Appendix B.

As each pile has been discretised into small cylindrical rigid segments, the interaction forces
and moments acting on the pile-heads Ppile(m)

h can be expressed in terms of the resulting forces
acting on the FE nodes of the pile cap in contact with the m-th pile-head surface P

cap(m)
b .
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Thus, the expression that describes the force equilibrium condition can be expressed by

Ppile
h =


P

pile(1)
h

P
pile(2)
h
...

P
pile(M)
h

 = −


W

T(1)
b 0 · · · 0

0 W
T(2)
b · · · 0

... · · · . . . ...
0 0 · · · W

T(M)
b




P

cap(1)
b

P
cap(2)
b
...

P
cap(M)
b

 = −WT
bP

cap
b . (4.15)

Introducing Eq. (4.14) into Eq. (4.13) and multiplying the resulting expression by WT
b the

following matrix equation is obtained

I 0

0 WT
b

D11 D12

D21 D22

I 0

0 Wb

Ucap
nb

Uh

 =

I 0

0 WT
b



Fcap

nb

Fcap
b

+

 0

Pcap
b


 . (4.16)

Introducing the expression Ppile
h = −WT

bP
cap
b described in Eq. (4.15) in the right-hand side of

Eq. (4.16), and imposing Fcap
b = 0, the resulting matrix equation is given by D11 D12Wb

WT
bD

21 WT
bD

22Wb

Ucap
nb

Uh

 =

Fcap
nb

0

+

 0

−Ppile
h

 . (4.17)

The pile and field responses for the pile-group subsystem considered in this section are obtained
by adding to Eqs. (4.8) the interaction forces Ppile

h to which the pile heads are subjected. The
resulting expressions are

Us = Hc
sh

(
Fp +Ppile

h

)
+Hc

sfFs, (4.18a)

Uh = Hc
hh

(
Fp +Ppile

h

)
+Hc

hfFs. (4.18b)

Finally, the kinematic and inertial interactions between the pile cap and the pile-group subsys-
tems are satisfied when combining Eqs. (4.17) and (4.18). Thus, by combining those equations
and after rearranging the resulting expression, the following system of equations for the coupled
piles-cap system can be obtained
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D11 D12Wb 0

WT
bD

21 WT
bD

22Wb + (Hc
hh)

−1 0

0 −Hc
sh(H

c
hh)

−1 I



Ucap

nb

Uh

Us

 =


Fcap

nb

Fp

0

+


0

(Hc
hh)

−1Hc
hf

Hc
sf −Hc

sh(H
c
hh)

−1Hc
hf

Fs.

(4.19)

Eq. (4.19) is the system of equations that describes the dynamic response of the piles-cap
model due to forces applied on the cap, on the pile heads or on the soil.

4.3 Numerical assessment of the pile-group model

In this section, the developed formulation for modelling the dynamic response of pile-group
systems is numerically verified using two case studies. In the first one, the formulation presented
in Section 4.1 is used to model a two-pile group embedded in an elastic half-space. In the second,
the approach presented in Section 4.2 is used to add a pile cap to the previously considered
two-pile group system. In both cases, the proposed approaches are verified by comparing their
predictions against those obtained using a 3D FE-BE approach.

The geometric and mechanical parameters for the piles employed for the two case studies are
given in Table 4.1 and correspond to the short pile employed in the validation of the single-pile
model previously presented in Chapter 3. The piles are spaced between them for s = 1.2 m,
and they are embedded in a soft soil modelled as a homogeneous half-space whose mechanical
properties are also given in Table 4.1. Furthermore, the analysis is performed for frequencies
between 1 Hz and 100 Hz, covering the frequency range where ground-borne vibration induced
by railway traffic is usually significant [153].

When modelling both case studies using the developed formulations, the criteria described
in Section 3.2.1 is used to define the number of cylindrical segments and collocation points
required to represent each pile accurately. Thus, by considering the piles’ geometry and the
minimum wavelength of this problem, the criterion establishes that each pile should be modelled
using Np = 47 cylindrical segments with Ns = 36 collocation points each. Regarding the
discretization scheme for 3D FE-BE models used for the verification, the piles and the pile cap
structures are discretised using eight-noded hexahedral FEs, while the structure-soil boundary
is discretised using four-noded quadrilateral BEs. Similar to the single-pile case, the FE-BE
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model for the piles and cap employ nine nodes per wavelength to define the maximum distance
between the nodes, which is 20 cm.

Finally, similar to the single-pile foundation model, the influence of neglecting the rotational
motion and bending effect in the pile-soil coupling procedure of the proposed approach, carried
through the transformation matrix W, is also included in the comparison of results for the two
case studies. Furthermore, it is worth mentioning that the torsional rotation has usually been
neglected in previous works because of its low influence when the pile model is employed for
modelling planar building foundations [5, 131] or when responses in low frequency range are
accounted for in the analysis of pile-groups.

Description Units Soil Piles Pile cap
Density (ρ) kg/m3 1950 2860 2860
Young’s modulus (E) MPa 151.2 40000 40000
Poisson’s ratio (ν) - 0.35 0.25 0.25
Hysteretic damping ratio (D) - 0.05 0.01 0.01
Speed of the P-waves (Cp) m/s 352.8 - -
Speed of the S-waves (Cs) m/s 169.5 - -
Pile length (Lp) m - 10 -
Pile radius (rp) m - 0.3 -
Pile spacing (s) m - 1.2 -

Table 4.1: Soil, piles and pile cap parameters used in the case studies involving multi-pile
foundations.

4.3.1 Case study 1: Two-pile group system

The numerical verification of the first case study is conducted by comparing the responses
predicted by the proposed approach with those obtained using a 3D FE-BE approach when a
harmonic point load is applied at the head of one pile. It is assumed that the pile subjected
to the excitation (Pile 1) is located at the origin of a Cartesian system of coordinates. Three
observation points are considered for this numerical verification: O1, O2 and O3 located at
position (1.2, 0, 0) m, (5, 0, 0) m and (20, 0, 0) m, respectively; the first one evaluates the
dynamic response at the second pile head and the other two are considering the response of
the soil surface at the near and far field. The FRF due to unitary harmonic excitation at these
evaluation points due to a unitary harmonic excitation at the head of Pile 1 Hc

kh are presented
in Figs. 4.3 and 4.4 in dB with 1 m/N for the responses to unitary harmonic point loads and
1 m/N·m for the responses to unitary harmonic bending moments as references, respectively.



Chapter 4. A multi-pile foundation model based on the singular boundary method 70

In the figures, the first, second and third columns are associated with responses at O1, O2 and
O3, respectively. Additionally, the subscript k depends on the observation point considered,
being k = h when the FRF at the pile head, computed using Eq. (4.9c), is considered, or k = s

when the FRF associated to a field point, computed using Eq. (4.9a), is required. For the 3D
FE-BE approach, distributed loads were applied at the FE nodes located at the head of Pile
1. These distributions were designed to ensure that the resulting forces and moments acting
on the pile head were equal to those applied in the case modelled using the new pile-group
formulation.

The FRFs predicted by the proposed formulation agree well with those obtained using the 3D
FE-BE approach, as shown in Fig. 4.3 and 4.4. On the contrary, when rotational motion and
bending effects are neglected in the soil-pile coupling, discrepancies similar to those discussed
in the single-pile studies presented in Section 3.2 are again observed. These discrepancies are
are particularly notable in the displacements induced by bending moments in the y-direction,
as shown in Fig. 4.4(a-i), (a-ii). Similar discrepancies are observed in the vertical responses
induced by bending loads in the y-direction, as shown, for instance, in 4.4(c-i). In this case, the
discrepancies can be explained by the assumption of imposing the rigid cylindrical segments
solely to translation movements rather than to allow the rotational motion as the proposed
model does. This trend is also observed in Fig. 4.4(c-ii), (c-iii) which suggests that neglecting
the rotational motion effect in the pile-soil coupling increases the stiffness of the pile-group
system associated to this motion, leading to predicted vibration levels that are lower than
those predicted by the 3D FE-BE method.

Finally, the results presented in Figs. 4.4(d-i), (d-ii) and (d-iii) show another significant dis-
crepancy between the presented approaches. While the results obtained for the case in which
rotational and bending effects are considered agree well with those obtained using the FEM-
BEM approach, no response is obtained when these effects are neglected in the proposed
formulation. This result can be explained by the fact that, as piles are modelled using Euler-
Bernouilli beam theory, a torsional moment applied at Pile head 1 will only cause torsional
vibrations of Pile 1, i.e. no displacements of the pile centroid. Therefore, if torsional effects
are neglected in the coupling, there is no pile-soil interaction and no transmission of SH waves
through the ground. Consequently, the response at any observation point not located on Pile
1 is zero.
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Figure 4.3: Receptance of a two-piled group system induced by harmonic point loads
considering different approaches. Components of the receptance shown are xx (a), yy (b), zz
(c), xz (d) and zx (e) and observation points considered are O1 (i), O2 (ii), O3 (iii). Results

in dB using 20 log10(|H|), with 1 m/N as reference.
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Figure 4.4: Receptance of a two-piled group system induced by harmonic bending moments
considering different approaches. Components of the receptance shown are xy (a), yx (b), zy
(c) and yz (d) and observation points considered are O1 (i), O2 (ii), O3 (iii). Results in dB
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4.3.2 Case study 2: Two-pile group system with pile-cap

The second case study aims to study the performance of the proposed pile-cap foundation
model developed in this chapter. The geometry of the piled foundation system considered
in this second case study is presented in Fig. 4.5. As before, the FRFs obtained using the
formulation presented in Section 4.2 are compared with those obtained by using a 3D FE-
BE approach. Moreover, this case study is also used to study different coupling assumptions
between the piles and the soil and between the piles and the pile cap, which it is assumed to
have the same mechanical properties as those considered for the piles (see Table 4.1). The
studied coupling conditions are classified into the following four coupling methodologies:

• Methodology 1: In this methodology, rotational and bending effects on the pile cyl-
indrical segments are considered in the pile-soil coupling conditions, so the transform-
ation matrix W is constructed as described in Appendix B. Similarly, the matrix Wb

that relates the displacement and rotation of the pile heads with their corresponding FE
nodes of the pile cap is constructed by considering the six degrees of freedom of each pile
head. In this context, this methodology is referred to as fully coupled methodology in
what follows.

• Methodology 2: Rotational and bending effects on the pile cylindrical segments are
neglected in the pile-soil coupling conditions, so the transformation matrix W, described
in Appendix B, is modified accordingly. Whilst the piles-pile cap coupling conditions are
equal to those considered in Methodology 1.

• Methodology 3: Rotational and bending effects on the pile cylindrical segments are
neglected in the pile-soil coupling conditions, so the transformation matrix W is con-
structed accordingly as in Methodology 2. Whilst, torsional effects are neglected when
considering the piles-pile cap coupling. Therefore, Wb is constructed accordingly.

• Methodology 4: Similar to Methodology 1, rotational and bending effects on the pile
cylindrical segments are considered in this methodology for the construction of the trans-
formation matrix W, but torsional effects are neglected in the piles-pile cap coupling.
Therefore, Wb is constructed accordingly.

The dynamic response of the system is initially assessed by considering a harmonic point load
applied on the pile cap surface and just above the centroid line of Pile 1. This point is located
at (0, 0,−0.5) m in the Cartesian system of coordinates considered in this example, as shown
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in Fig. 4.5. The considered excitation point ensures that the system is eccentrically loaded,
inducing torsional motion. The comparison is performed at three evaluation points: O1, O2

and O3 located at position (1.2, 0,−0.5) m, (5, 0, 0) m and (20, 0, 0) m, respectively; the first
one evaluates the dynamic response just above the centroid line of Pile 2, and the other two
are considering the response of the soil surface at the near and far field.

Fig. 4.6 shows the receptances obtained at each evaluation point for the considered pile-
cap loading scenario. The results show that the fully coupled approach (Methodology 1)
predicts vibration levels that agree well with those predicted by the 3D FE-BE model. Slight
discrepancies (of around 0.5 dB) are only observed at high frequencies and for the responses on
the field, as shown in Fig. 4.6(c-ii) or (d-ii). However, when the studied alternative coupling
conditions are considered, significant differences are observed between the predicted responses
and those obtained using the FE-BE approach. These differences are particularly notorious
in the lateral responses (uy) due to lateral harmonic loads (fy) presented in Figs. 4.6(b-i),
(b-ii) and (b-iii). From these figures, it is clear that the alternative approaches (Methodologies
2, 3 and 4) cannot be used to predict the response of the system for the whole range of
frequencies considered. However, it is worth highlighting that the discrepancies between the
approaches are very small for frequencies between 1 and 25 Hz. This fact is consistent with
the result previously reported by Novak et al. in [164], who stated that the error introduced
by ignoring the twisting reaction of the piles in a group is usually small. A further observation
regarding Methodology 4 denotes that even by employing a fully piles-soil coupling scheme
(similar to Methodology 1), the dynamic response of the pile-cap system presents almost similar
discrepancies to Methodology 3, for which the torsional motion is neglected in the piles-cap
coupling. In contrast to what is observed for the other methodologies, the results obtained with
Methodology 2 present unexpected troughs in the frequency range of 40 - 50 Hz when observed
lateral responses (uy) due to loads (fy). These troughs can be explained by the fact that the
pile cap transmits torsional motion to the pile-group, but this motion is not transferred to the
soil since Methodology 2 does not consider it in the pile-soil coupling scheme.



Chapter 4. A multi-pile foundation model based on the singular boundary method 75

10 m

0.1 m

0.4 m

1.2 m

2.4 m

1.2 m

0.6 m

x

z

x

y

O0

O0 O1

O1

O2 O 3

Ground

level

Pile 1 Pile 2

Figure 4.5: Schematic drawing of the pile cap system.
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Figure 4.6: FRFs of the piles-cap system considering different coupling methodologies.
Components of the FRFs matrices shown are xx (a), yy (b), zz (c), xz (d) and zx (e) and
observation points considered are O1 (i), O2 (ii), O3 (iii). Results in dB using 20 log10(|H|),

with 1 m/N as reference.
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The proposed approach is also used in this case study to discuss whether the considered pile
cap can be assumed to behave as a rigid body for the range of frequencies of interest. The
study is performed by comparing the responses of the piled foundation system due to two
different loading conditions. These loads are chosen so that the resultant forces and moments
are equal in both cases, being equivalent to unit point forces and moments applied at point
O0 = (0.6, 0,−0.5) m, which is located at the centre of the upper surface of the cap, as shown
in Fig. 4.7. The first loading condition, referred to as P , considers combinations of point
loads applied at the edges of the cap’s upper surface as shown in Fig. 4.7(a). In contrast, the
second one, referred to as D, consists of load distributions applied on the cap’s upper surface,
as shown in Fig. 4.7(b). Therefore, if applied to a rigid body, both loading conditions would
cause the same dynamic response (translation and rotation) of that body. The responses of the
system to both types of loading conditions predicted by the proposed approach are compared
with the ones predicted by the FE-BE approach at three evaluation points: O0, the location
of the equivalent loads, O2, located at (5, 0, 0) m, and O3, located at (20, 0, 0) m; the first one
is the location of the equivalent unit forces, and the other two are considering the response of
the soil surface at the near and far field, as shown in Fig. 4.5. Moreover, the results obtained
by the proposed approach correspond to the one referred to as a fully coupled system, which
was previously detailed in Methodology 1.
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Figure 4.7: Considered (a) point and (b) distributed load configurations that are equivalent
to unit forces and moments acting at the centre of the pile’s cap upper surface.

Figs 4.8 and 4.9 show the displacements obtained when load distributions producing, respect-
ively, unit forces and unit moments are applied at the pile cap of the pile foundation system.
In general, the results obtained by the proposed approach agree very well with those predicted
by the 3D FE-BE model. The results also indicate that the assumption of considering the
assessed pile cap as a rigid body is valid for the whole range of frequencies studied since there
are slight discrepancies between the vibration levels predicted for both loading cases in the
whole range of frequencies of interest. For instance, the vibration levels in the x-direction due
to a distributed load in the z-direction slightly differ (around 1 dB) from the one induced by
the corresponding combination of point loads, as shown in Fig. 4.8(d-ii). Similar differences
are observed for the displacements in the x-direction due to load distributions equivalent to a
unit bending load in y-direction, as shown in Fig. 4.9(a-i). However, it is worth mentioning
that this conclusion is limited to the specific piles-cap configuration adopted for the presented
numerical assessment of the proposed approach because the behaviour of the current pile cap
as a rigid body may no longer be valid for a system with other geometry configurations such
as smaller pile cap thickness, bigger pile spacing, number of piles or pile distribution.
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Figure 4.8: FRFs of the piles-cap system when subjected to equivalent unit forces. Compon-
ents of the FRFs matrices shown are xx (a), yy (b), zz (c), xz (d) and zx (e) and observation
points considered are O0 (i), O2 (ii), O3 (iii). Results in dB using 20 log10(|H|), with 1 m/N
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Figure 4.9: FRFs of the piles-cap system when subjected to equivalent unit moments.
Components of the FRFs matrices shown are xy (a), yx (b), zy (c) and yz (d) and observation
points considered are O0 (i), O2 (ii), O3 (iii). Results in dB using 20 log10(|H|), with 1 m/N·m

as reference.
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4.4 The effect of neighbouring piles in the calculation of

the dynamic interaction factors

Despite the fact that the modelling approach for pile-groups presented in Section 4.1 is almost
as accurate and much more efficient than the 3D FE-BE approach, its computational cost can
still be significant when pile-groups with a large number of piles are considered. Because of
this, an alternative solution scheme to reduce the computational effort or simplify the solution
of a pile-group to smaller and simpler systems is highly desirable. The superposition method
(firstly proposed by Poulos [116]) is a great alternative solution scheme that allows to avoid
dealing with the large systems of equations involved in fully coupled systems. This method,
which adopts the assumption that neighbouring piles do not significantly affect the motion of
the two adjacent piles under consideration, solely employs the response of two isolated piles to
construct a global flexibility matrix that relates forces and displacements only at the pile heads.
Thus, for a system under static loads, the input in the global flexibility matrix is obtained from
the solution of two piles, commonly referred to as the interaction factor, which is a function
of the pile spacing and of the mechanical properties of the system. In order to employ the
superposition method to solve a two-pile group subjected to unit harmonic load, Kaynia [3]
defines the dynamic interaction factors of two piles in isolation α as

α =
H

c(2)
hh (ω)

H
c(1)
hh (ω = 0)

, (4.20)

where H
c(2)
hh (ω) is the receptance of Pile head 2 due to a harmonic load applied at Pile head

1 (which is given by Eq. (4.9c)), and H
c(1)
hh (ω = 0) is the static receptance of Pile head 1

due to a static load applied on it. This static receptance is computed considering a single-
pile foundation, i.e. neglecting the existence of neighbouring piles. It is worth mentioning
that although Poulos and Davis [165] presented an alternative solution for the static pile-
head receptance of a single floating pile in a homogeneous half-space, the static receptance
H

c(1)
hh (ω = 0) considered in this dissertation is approximated to the dynamic response of the

system for an excitation frequency of 0,1 Hz. The results obtained for such excitation frequency
are essentially the same to the ones obtained using the solution Poulus and Davis [165], as
discussed in [131].

Existing comparisons between results obtained with fully coupled models and those obtained
using the superposition method show that this methodology is valid for inertial loads for the
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range of frequencies of interest in seismic applications with the accuracy improving as the pile
spacing increases [3]. However, at high frequencies, it is expected that the interaction between
two adjacent piles is increasingly affected by the existence of neighbouring piles. Thus, in order
to evaluate this assumption, the definition of the dynamic interaction factor of two isolated
piles is extended to a generic pile-group [166], which is given by

α(i,j)
pq =

H
c,(ij)
hh,(pq)(ω)

H
c,(ii)
hh,(pq)(ω = 0)

, (4.21)

where αi,j
pq is the dynamic interaction factor between Pile i (receiver) and Pile j (source). The

subscript p denotes the component of the displacements (p = 1, 2, 3) or rotation (p = 4, 5, 6)
at Pile head i, whilst q denotes the component of the force (q = 1, 2, 3) or moment (q = 4, 5, 6)
acting at Pile head j. The FRF H

c,(ij)
hh,(pq)(ω) and the static receptance H

c,(ii)
hh,(pq)(ω = 0) are also

calculated using Eq. (4.9c).

In this section, the approach for modelling pile-groups presented in Section 4.1 will be used to
study the influence of neighbouring piles in the calculation of dynamic interaction factors of a
generic pile-group in the framework of three different pile-group systems: a 2× 1 pile-group, a
2 × 2 pile-group and a 3 × 3 pile-group. The dynamic interaction factors considered for each
case are: α(2,1) for Case 1, α(4,3) for Case 2 and α(6,5) for Case 3, as shown in Fig. 4.10.
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Figure 4.10: Pile-group systems with the same separation ratio s/d = 2 used for the calcu-
lation of the dynamic interaction factors. The unit harmonic loads are applied at Pile heads
1 (a), 3 (b) and 5 (c), while the responses are evaluated at Pile heads 2 (a), 4 (b) and 6 (c).
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For verification purposes, the dynamic interaction factors calculated using the methodology
proposed by Kaynia [3] for a 2 × 1 isolated pile-group, which were reproduced from [4], are
also included in the comparison. Therefore, the mechanical and geometrical parameters used
for the calculations presented in this section are consistent with the ones considered in [3]. In
this study, the dimensionless parameters employed for the comparison are the ratio between
the elastic modulus of the soil and pile Es/Ep = 1.0 × 10−3 and the ratio of their densities
ρs/ρp = 0.7. The Poisson’s ratio for the soil and for the pile are νs = 0.4 and νp = 0.25,
respectively. The hysteretic damping ratio for the soil is 0.05, whilst no damping ratio is
considered for the pile. Regarding the pile-group geometry, the piles are all of diameter d and
length L, with a pile aspect ratio of L/d = 15 and the pile spacing ratio is s/d = 2. The results
are presented in terms of the dimensionless frequency ao = ωd/Cs. The number of collocation
points employed to model all three pile-group cases is obtained by the criteria described in
Section 3.2.1. Thus, in the current study, each pile is modelled using Np = 44 cylindrical
segments with Ns = 44 collocation points each.

Figs. 4.11 and 4.12 compare the dynamic interaction factors obtained using the proposed pile-
group modelling approach to each one of the three pile-group cases. In general, the calculated
dynamic interaction factors due to unit point loads (Fig. 4.11) and moments (Fig. 4.12) agree
well at low frequencies with the ones presented in [3]. However, the results also show that the
inclusion of neighbouring piles modifies the dynamic interaction factors for frequencies above
10 Hz. This effect is particularly clear, for instance, in Figs. 4.11(a) or 4.12(d) in which
considerable discrepancies are observed between the 2×1 pile-group and 3×3 pile-group cases
at high frequencies. These results indicate that the scattering of waves by neighbouring piles
significantly influences the dynamic responses. The importance of this influence on systems
with a pile spacing ratio of s/d = 2 is directly related to the number of neighbouring piles
considered in the calculation of the dynamic interaction factors.



Chapter 4. A multi-pile foundation model based on the singular boundary method 84

0  0.4 0.8 1.2 1.6 2  2.4
-0.4

-0.2

0   

0.2 

0.4 

0.6 
(a-i)

0  0.4 0.8 1.2 1.6 2  2.4
-0.4

-0.2

0   

0.2 

0.4 

0.6 
(a-ii)

0  0.4 0.8 1.2 1.6 2  2.4
-0.4

-0.2

0   

0.2 

0.4 
(b-i)

0  0.4 0.8 1.2 1.6 2  2.4
-0.4

-0.2

0   

0.2 

0.4 
(b-ii)

0  0.4 0.8 1.2 1.6 2  2.4
-0.4

-0.2

0   

0.2 

0.4 

0.6 
(c-i)

0  0.4 0.8 1.2 1.6 2  2.4
-0.4

-0.2

0   

0.2 

0.4 

0.6 
(c-ii)

0  0.4 0.8 1.2 1.6 2  2.4
-0.4

-0.2

0   

0.2 

0.4 
(d-i)

0  0.4 0.8 1.2 1.6 2  2.4
-0.4

-0.2

0   

0.2 

0.4 
(d-ii)

0  0.4 0.8 1.2 1.6 2  2.4
-0.3

-0.2

-0.1

0   

0.1 

0.2 
(e-i)

0  0.4 0.8 1.2 1.6 2  2.4
-0.3

-0.2

-0.1

0   

0.1 

0.2 
(e-ii)

2x1 pile group 2x2 pile group

3x3 pile group Kaynia 2x1

Figure 4.11: Comparison of the real (ℜ) (i) and imaginary (ℑ) (ii) parts of the dynamic
interaction factor plotted against dimensionless frequency ao = ωd/Cs for two adjacent piles
in a 2× 1, 2× 2 and 3× 3 pile-group system. Components of the dynamic interaction factor
shown are αuxfx (a), αuyfy (b), αuzfx (c), αθyfx (d) and αθxfy (e). The dynamic interaction

factors associated with the Kaynia approach [3] were reproduced from [4].
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Figure 4.12: Comparison of the real (ℜ) (i) and imaginary (ℑ) (ii) parts of the dynamic
interaction factor plotted against dimensionless frequency ao = ωd/Cs for two adjacent piles
in a 2× 1, 2× 2 and 3× 3 pile-group system. Components of the dynamic interaction factor
shown are αθxmx (a), αθymy (b), αθzmz (c), αuxmy (d) and αuymx (e). The dynamic interaction

factors associated with the Kaynia approach [3] were reproduced from [4].
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The comparison between the results obtained when rotations and moments are included in the
pile-soil coupling and those obtained when these effects are neglected (responses referred to as
no rotational coupling (NRC) in the figures) for the three pile-group configurations considered
in this section are also presented in Figs. 4.13 (point loads) and 4.14 (moments). The results
are plotted in terms of the magnitude of the pile-head response in dB with 1 m/N or 1 m/N·m
as references. The results are plotted up to 100 Hz, which corresponds to a dimensionless
frequency a0 = 2.3 for a soil system with the same mechanical properties described in Table
4.1, and piles with a pile radius of r = 0.3. The results show that, while the proposed approach
and its simplified version predict similar responses for a 2 × 1 pile-group (see Figs. 4.13(i)
and 4.14(i)), considerable discrepancies arise between them when a larger number of piles in
the group is considered, as shown, for instance, in Figs. 4.13(iii) and 4.14(iii). However,
both approaches still predict almost equal vertical responses due to vertical unit loads for all
pile-group cases, as shown in Figs. 4.13(c-i), (c-ii) and (c-iii).

When the responses at Pile heads 2 (column i), 4 (column ii) and 6 (column iii) are compared,
it can be noticed that differences in all components arise for excitation frequencies above 15
Hz, indicating that the scattering of waves by neighbouring piles becomes significant at higher
frequencies.
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Figure 4.13: Comparison of the FRFs for two adjacent piles in a 2 × 1, 2 × 2 and 3 × 3
pile-group. External forces are applied in Pile heads 1, 3 and 5, whilst the dynamic response
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20 log10(|H|), with 1 m/N as reference.
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Figure 4.14: Comparison of the FRFs for two adjacent piles in a 2 × 1, 2 × 2 and 3 × 3
pile-group. External forces are applied in Pile heads 1, 3 and 5, whilst the dynamic response
is evaluated, respectively, in Pile heads 2 (i), 4 (ii) and 6 (iii). Components of the FRFs
matrices shown are θxmx (a), θymy (b), θzmz (c), uxmy (d) and uymx (e). Results in dB

using 20 log10(|H|), with 1 m/N·m as reference.
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4.5 Conclusions

In this chapter, the proposed single-pile model, developed in Chapter 3, is extended to consider
the dynamic response of the pile-group system embedded in half space. Furthermore, by
employing the method of joining subsystems, the pile-group system is attached to a concrete
block represented by 3D FEs to model a pile-cap system and study its dynamic behaviour
at high frequencies. A 3D FE-BEM approach is employed for the numerical validation of
the proposed piles-soil and pile-cap formulations. As in Chapter 3, the results of neglecting
rotational motion and bending effects in the piles-soil coupling formulation, as well as of relaxing
the torsional effects in the pile-cap coupling are also studied. The main outcomes of the studies
performed in this chapter are:

• The proposed approach for modelling multi-pile foundations has been verified against a
3D FE-BE methodology in the context of a two-pile group system. The results obtained
with the novel approach agree well with those obtained using the 3D FE-BE method
when rotations and moments are accounted for in the piles-soil coupling. However, when
these components are neglected, significant discrepancies arise between both models, as
was previously observed when analysing single-pile foundations (see Chapter 3).

• The proposed approach for including pile caps in the multi-pile foundation model has also
been verified against the 3D-FE method. Discrepancies between both approaches have
only been observed when torsional effects have been neglected in the pile-cap coupling
procedure, resulting in considerable discrepancies at high frequencies (above 30 Hz). This
result is consistent with the previous work presented in [164], which states that the error
introduced by ignoring the twisting reaction of the piles in a group is usually small at
low frequencies.

The proposed methodology has also been employed to study the influence of neighbouring piles
in the calculation of the dynamic interaction factor of two adjacent piles in 2 × 1, 2 × 2 and
3× 3 pile-group scenarios, concluding that

• The dynamic interaction factors obtained for the three pile-group scenarios are very
similar/almost equal at low frequencies (>10 Hz in the considered example). However,
discrepancies due to the wave scattering of neighbouring piles arise when higher excitation
frequencies are considered. Results showed that these discrepancies are more significant
when considering higher excitation frequencies and/or larger pile-group systems.
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• Inaccurate dynamic interaction factors (and, therefore, the response to point loads and
moments) are obtained when the rotational motions and bending effects are neglected
in the pile-soil coupling conditions. The results show that almost all components of the
responses present discrepancies due to the assumption adopted in the piles-soil coupling,
with the exception of the vertical responses due to vertical point loads.



Chapter 5

Experimental validation of the pile

foundation model

This chapter presents an experimental measurement campaign that serves to validate the sim-
ulation approach presented in this dissertation in the framework of two scenarios: a single-pile
and a 2 × 2 pile-group systems. To do so, an experimental site was constructed consisting
of concrete casted-in-situ piles in a particular testing field dedicated to experimental studies
regarding railway-induced vibration phenomenology. The existing soil was previously charac-
terised by means of multichannel analysis of surface waves (MASW) and cross-hole testings,
as well as laboratory analysis. For both single-pile and pile-group systems, employed measure-
ment setups are based on several accelerometers distributed in the ground surface and the pile
heads, while the system is excited using instrumented hammer impacts on the pile head as well
as the ground surface. Comparisons between experimental and theoretical results confirm the
validity of the approach proposed predicting the response of pile-soil systems in the vertical
direction.

91
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5.1 Description of the experimental test site

5.1.1 Location description

The experimental campaign developed to validate the approach proposed in this dissertation
has been conducted at the testing facilities for experimental studies on railway-induced ground-
borne noise and vibration of the Acoustical and Mechanical Engineering Laboratory (LEAM)
of the Universitat Politècnica de Catalunya (UPC). The facilities are placed at the Institut
Politècnic del Campus de Terrassa (IPCT), located 30 km northeast of Barcelona city and on
the outskirts of Terrassa city town (carretera N-150 km 14.5 08227 Terrassa, Barcelona). The
site where concrete cast-in-situ piles were installed is a field ground mainly composed of soft
clays. Moreover, it is important to mention that the site is at a fairly remote location, with low
exposure levels to environmental background vibration that make the site ideal for the planned
studies. Fig. 5.1 presents the location of the mentioned testing facilities and distribution of
piled foundation systems used for the study. Finally, from that figure, note that the locations
of the piled foundation systems were selected to be far from other structures existing on the
IPCT to avoid any dynamic interaction with the piles.
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Figure 5.1: Overview of the site by an aerial photograph of the IPCT area (a) and a drawing
of the facilities for railway-induced ground-borne vibration testing (b).
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5.1.2 Soil condition

The soil composition has been obtained by conducting a geotechnical site investigation consist-
ing of a MASW, cross-hole tests and laboratory analysis of undisturbed soil samples (ground
retrieved with minimal disturbance to its structure, density, water contains and stress state)
collected from the drilled boreholes. Cross-hole tests were conducted according to the stand-
ard ASTM D 4428/D 4428M–00 [167]. The survey consisted of two drilled boreholes of 30 m
depth referred to as S1 and S2 and located between the measured lines used for the MASW
tests, as shown in Fig. 5.2(a). By releasing energy from the first source at S1 to the soil, the
train of the seismic waves is recorded by a transducer located at the receiver S2, as shown in
Fig.5.2(b). This procedure has been repeated at different probe depths, with a spacing of 1
meter between each one, to determine the speed of the horizontally travelling P- and S-waves,
resulting in obtaining at different depths the shear modulus, Young’s modulus and Poisson’s
ratio of the soil. The soil density at different depths has been obtained by laboratory analysis
of the undisturbed soil samples, as shown in Fig. 5.2(d), that were retrieved from the drilled
boreholes used for the cross-hole test. Additionally, the MASW test was performed along three
measurement lines, referred to as L1, L2 and L3, distributed as shown in Figs. 5.2(a) and
(c) and based on geophones spaced at intervals of 5 meters to record the particle vibration
velocity, in the vertical direction, induced by Rayleigh-type surface waves. To produce the
surface waves, a 5 kg weight sledgehammer has been used as an external source. The excita-
tion point of the sledgehammer was selected to be located 10 m away from the first geophone
for each measurement line. From the MASW test, S-wave speed profiles are estimated, and
results showed that all soil conditions just below the three measured lines consist of dense or
medium-dense sand, gravel or stiff clay. This first layer corresponds to a ground with a S-wave
speed between 200-400 m/s. The thickness of this first layer varies according to the measured
line location, being 6, 10 and 14 m of thickness associated with the measured lines L3, L2 and
L1, respectively. A second soil layer of 30 m depth for measured lines L2 and L3 and of 18
m depth for the L1 were identified and consisted of very dense sand, gravel or very stiff clay
with a S-wave speed between 400-750 m/s. Rock or other rock-like geological formations with
an S-wave speed exceeding 750 m/s appear after the second layer in all measurement lines.
The P-wave speeds obtained from both MASW and cross-hole tests have been found to be in
agreement. Results are synthesised in Table 5.1.
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(a) Location of the measurements lines (L)  for the MASW test and points (S )

selected for the cross-hole test

(b) Equipments for the

cross-hole test.

(c) Measurement line L3 for the

MASW test

(d)  Undisturbed soil samples retrieved from the drilled boreholes S1

Figure 5.2: Measurement setup for the MASW and cross-hole tests (a-c). Soil samples
obtained from borehole drilling (d).

5.1.3 Pile systems design and installation

The experimental setup was designed to accommodate two cast-in-place piled foundations,
including a single piled foundation and a 2×2 pile-group system. The borehole drilling was
conducted in December 2020 and cast with concrete to create piles of 10 cm radius and total
length of 5.5 m, from which only a length of 5.3 m is embedded in the soil, as shown in Fig.
5.3(a). This free 20 cm of the piles was adopted to facilitate future experimental studies in
which lateral excitations would be applied, or other structural systems, such as concrete pile
caps, could be incorporated. The spacing between the piles for the pile-group system is 1 m
horizontally and 1, 5 m vertically, as shown in Fig. 5.3(b). Moreover, the single-pile is located
long enough from the pile-group system (around 18 m away) to avoid any dynamic interaction
between the two systems.
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Depth Cs Cp ν ρ G E Ground
type(m) (m/s) (m/s) (-) (kg/m3) (GPa) (GPa)

1 180 532 0.44 2260 0.07 0.21 Dense or
medium-dense sand,

gravel or stiff
clay

2 241 721 0.44 2260 0.13 0.38
3 303 809 0.42 2260 0.21 0.59
4 371 933 0.41 2260 0.31 0.88
5 419 1038 0.40 2260 0.40 1.11
6 452 1133 0.41 2260 0.46 1.30

Very dense sand,
gravel or very

stiff clay

7 494 1308 0.42 2130 0.52 1.47
8 537 1480 0.42 2130 0.61 1.75
9 547 1672 0.44 2130 0.64 1.84
10 602 1899 0.44 2130 0.77 2.23
11 637 1966 0.44 2080 0.84 2.43
12 603 1925 0.45 2080 0.76 2.18
13 530 1818 0.45 2080 0.58 1.70
14 467 1714 0.46 2080 0.45 1.33
15 442 1740 0.47 2080 0.41 1.19
16 470 1796 0.46 2080 0.46 1.35
17 526 1920 0.46 2080 0.58 1.68
18 558 2040 0.46 2080 0.65 1.89
19 599 2075 0.45 2080 0.75 2.17
20 619 2138 0.45 2080 0.80 2.32
21 644 2142 0.45 2080 0.86 2.51
22 720 2128 0.44 2080 1.08 3.09
23 757 2135 0.43 2080 1.19 3.40

Rock or other
rock-like geological

formations

24 748 2096 0.43 2080 1.16 3.32
25 755 2055 0.42 2080 1.19 3.37
26 770 2074 0.42 2080 1.23 3.51
27 785 2119 0.42 2080 1.28 3.64
28 783 2109 0.42 2080 1.27 3.62
Inf 779 2086 0.42 2080 1.26 3.58

Table 5.1: Experimentally estimated soil properties.
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Figure 5.3: Geometrical definition of the piled foundations systems constructed for the
validation of the proposed simulation approach.
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5.2 Experimental setups and testing procedures

The experimental investigations were conducted using two measurement setups for which ham-
mer impacts at the pile heads and the surrounding ground were employed to determine ex-
perimentally the receptances of the system. The impact hammer used in both experimental
campaigns is a PCB Piezotronics 086D50 with a hammer mass of 5.5 kg. Both setups are
based on a set of accelerometers PCB 393B12 and PCB 393B31 placed on the piles and on
the ground surface, as shown in Fig 5.4. The accelerometers and instrumented hammer are
connected to the 24-channel data acquisition system LMS SCADAS.
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(b) Experimental setup for the pile-group system
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Figure 5.4: Experimental setup for the single-pile case (a) and for the pile-group system
(b). The locations of the accelerometers are denoted by blue dots, while the application of

hammer the hammer excitation is marked with red ones.

The first phase of the measurement campaign took place in August 2021, nine months after
the installation of the piles. This timing was chosen to ensure sufficient soil consolidation,
mitigating the impact of the weak boundary zone resulting from the borehole drilling [141]. In
this first setup, only the single-pile foundation is considered. Fig. 5.4(a) and Fig. 5.5 show
various illustrations of the measurement setup adopted. Since only vertical responses of the
system are intended to be obtained, accelerometers are all directed to the vertical direction
and the hammer impacts are only applied in the vertical direction. Acceleration levels were
measured by accelerometers placed at the following points: Osp

1 , Osp
2 , Osp

3 , Osp
4 and Osp

5 located
at the positions 5.4(a), being the first one placed at the pile head to retrieve the driving-point
response of the pile, while the other four are distributed on the ground surface. Points Osp

4
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and Osp
5 are specifically employed to account for the variability of the ground composition in

different horizontal directions.

(a) (b)

(c) (d)

Figure 5.5: Single-pile setup. Measurement equipment: (a) accelerometers placed on the
pile head, (b) impact hammer and accelerometers distribution along (c) the x- and (d) y-

directions with respect to the single-pile system local coordinates.

The second test was conducted in October 2021, and it aimed to study the pile-group system
and, especially, the dynamic interaction between piles. Again, hammer impacts in the vertical
direction were used to excite the system. Two different dynamic loading schemes were con-
sidered in this case. In the first one, the excitation is applied at the pile head of Pile 4, as
depicted in Fig. 5.4(b), while in the other one, the excitation is applied on the ground surface,
at the point Opg

6 . For both loading scenarios, the response is evaluated at points Opg
1 , Opg

2 ,
Opg

3 , Opg
4 and Opg

5 located at (0, 0,−0.2) m, (1, 0,−0.2) m, (0, 1.5,−0.2) m, (1, 1.5,−0.2) m
and (0.5, 0.75, 0) m, respectively; the first four ones correspond to accelerometers located at
the pile head of Piles 1, 2, 3 and 4, respectively, and the remaining one lies on the free field,
in central point of the pile-group system. Note that the response at the accelerometer placed
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in Pile 4 was discarded in the first dynamic loading scenario because the recorded signals were
saturated due to the proximity of that accelerometer to the impact loads. The first loading
scenario aimed to study the dynamic interaction between the piles and the radiation pattern
of a pile-group system. The second one, instead, was adopted to analyse the response of a pile
group to an incident wave field, as well as the scattering of waves through this system. Fig.
5.6 illustrates the setup employed in the second test.

(a) (b)

Pile 3

Pile 1

Pile 4

Pile 2

Pile 1

Pile 3

Pile 2

Pile 4

(c)

Pile 1

Pile 2

Pile 4
Pile 3

The presence of  surplus concrete 

attached to Piles 1, 2, and 4.

No surplus concrete attached 

to Pile 3.

Figure 5.6: Experimental setup for the pile-group system shown in (a) and (b). The presence
of surplus concrete specimens attached to Piles 1,2 and 4 are depicted in (c).

For all described test setups, various measurements were conducted to ensure the correctness
of the results obtained. For each measurement, 50 impacts of the instrumented hammer are
carried out. This procedure is adopted to ensure that the output FRFs are not highly affected
by background noise. To post-process the gathered data, all recorded signals from each meas-
urement are initially divided into 50 blocks of the same length (specifically, a block size of 211

samples is adopted). Each block contains the acceleration and force time histories correspond-
ing to one hammer impact. Welch’s method [168] is then employed to determine the FRFs of
the system, which will be compared in Section 5.4 with the numerical model results, aiming to
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validate the approach proposed in this dissertation. Coherence functions have also been cal-
culated to demonstrate the correctness of the FRF estimations within the frequency range of
interest. The coherence function is a measure that statistically validates the frequency content
of estimated transfer functions, where a zero value denotes no causal relationship between the
input and output, and a value of 1 indicates the existence of a linear noise-free relation between
the input and the output [140].

Finally, it is worth mentioning that although each measured point in both loading schemes was
implemented with three accelerometers to record the dynamic responses in the three directions
of the local Cartesian coordinate, as shown in Figs. 5.5 and 5.6, only vertical responses are
presented in this study because of the complexity of applying horizontal inertial excitations at
the pile head due to its cylindrical surface.

5.3 Numerical model

A numerical model of the two piled foundation systems of the experimental site has been con-
structed employing the approach proposed in Chapters 3 and 4. Thus, both assumptions of
the proposed model, namely the hypotheses of low strains and the absence of relative motion
between the pile and the soil, are also adopted here. From the data gathered in the construc-
tion process of the experimental site, the concrete piles are supposed to have a density of 2860
kg/m3, modulus of elasticity of 40 GPa and a Poisson’s ratio of 0.25. The soil is modelled
as a homogeneous, horizontally layered elastic media with mechanical properties similar to
as obtained from the soil characterisation and outlined in Table 5.1. The soil is modelled as
a homogeneous, horizontally layered elastic media with mechanical properties similar to as
obtained from the soil characterisation and outlined in Table 5.1. Due to the lack of experi-
mental evidence about soil damping, all numerical results have been computed using assumed
soil damping values ranging from those associated with soft soils (0.03) to hard soils (0.07).
The analysis is performed for frequencies between 1 Hz and 100 Hz, covering the frequency
range where ground-borne vibration induced by railway traffic is usually significant [153].

Regarding the details of the numerical computation, both numerical models were constructed
by adopting the criteria described in Section 3.2.1 that suggests the number of cylindrical
segments and collocation points required to represent each pile foundation system accurately.
In this context, and employing 10 collocation points per wavelength in the longitudinal direction
of the pile, each pile is modelled by Np = 30 cylindrical segments with Ns = 16 collocation
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points each. Furthermore, the corresponding Green’s functions for a layered half-space required
for computing the FRFs of the system using the proposed approach are calculated with the
EDT toolbox [154].

5.4 Comparison of results

In this section, the experimentally obtained FRFs are compared to the results delivered by
the proposed numerical model on the basis of the parameters described in previous sections.
It is worth mentioning that the results shown correspond to the vertical frequency response
function of the system due to dynamic loads exciting the system also in the vertical direction.
Results are presented in terms of the magnitude (in dB with 1 m/N as references) and phase
of the pile head and free-field FRFs. For the experimental data, two different measurements
denoted by T1 and T2 are presented. Results of the numerical model are presented for soil
damping values ranging from 0.03 to 0.07, while results for a damping of 0.05 are especially
highlighted.

5.4.1 Response of the single-pile system

This section presents the results associated with the single-pile system. Fig. 5.7 presents the
experimentally and numerically obtained direct FRFs at the pile head. On the one hand,
experimental results show high coherence values above 20 Hz, ensuring its correctness above
this frequency. On the other hand, numerical results are found to be not affected by the soil
damping at all. In this context, it can be said that experimental and numerical results agree
well since discrepancies between them only reach 1.5 dB at 80 Hz, as shown in Fig. 5.7(i).
Although the proposed numerical approach tends to overestimate the predicted vibration levels
slightly, it can be stated that the proposed pile-soil model developed in the current dissertation
can accurately predict vertical driving point responses. Moreover, the phase of the resulting
experimental and the numerical FRFs also agree quite accurately. The phase of the numerical
result tends to zero at low frequencies due to the similarity to the static case, while this
tendency cannot be observed in the experimental results because of the poor estimation of
the FRFs below 20 Hz pointed out by the coherence results. Low coherence values at low
frequencies can be explained by the fact that the hammer impact excitation does not have
significant energy content at this frequency range, a problem that is encountered all along the
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present study. However, the main focus of this dissertation lies upon the proper evaluation of
the response of piled foundation at high frequencies, a frequency range generally excited by
the employed hammer [140].

20 40 60 80 100

Frequency [Hz]

-178

-176

-174

-172
(i)

20 40 60 80 100

Frequency [Hz]

-180

-90 

0   

90  

180 
(ii)

20 40 60 80 100

Frequency [Hz]

0   

0.25

0.5 

0.75

1   
(iii)

Figure 5.7: Comparison of experimentally and numerically predicted driving-point recept-
ances of the single-pile system. Vertical external forces are applied at the pile head, whilst the
dynamic response is also evaluated at the pile head. The magnitude of the responses (i) and
their phases (ii) are presented for the vertical direction, as well as the coherence function (iii)
of the measured results. Only the phase associated with FRF of the numerical model solution
with soil damping D = 0.05 is plotted. FRF results are displayed in dB using 20 log10(|H|),

with 1 m/N as reference.

The results obtained for the free-field responses at the four evaluation points Osp
2 , Osp

3 , Osp
4 and

Osp
5 are depicted in Fig. 5.8. In general, the experimental vertical FRFs are very similar to

the ones numerically predicted. As expected, in contrast with the pile head FRF, the free-field
response is much more sensitive to the variation of soil damping values at high frequencies and
when the distance between the evaluation and source points is large. It is worth mentioning
that, above 30 Hz, the measured FRFs are contained in the envelope of the predicted ones,
which were calculated using the previously stated range of soil damping values (0.03 − 0.07).
The soil damping value of 0.05 can be adopted as a good approximation to represent the real
soil damping since their corresponding FRFs are very similar to the experimentally determined
receptances.

Theoretically speaking, a single circular pile foundation system embedded in a horizontally
layered elastic half-space is a fully axisymmetric system. This could not be true in real cases
if the heterogeneity of the ground horizontal directions is strong. Thus, a notable observation
arises when comparing the experimental free-field responses at points Osp

4 = (8, 0, 0) m and
Osp

5 = (0, 8, 0) m. In contrast to the predicted results, which depict the same vibration levels
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in those cases, the experimental results indicate that the soil is actually slightly heterogen-
eous horizontally speaking, since both exhibit variations along the frequency range of interest.
Although too much effort was invested in determining the mechanical properties of the soil
underneath, those discrepancies in the experimental results were expected, to some extent,
since the soil, in the real world, is a complex heterogeneous medium, and their properties not
only vary with depth but also in other directions. In contrast to the phase of the pile head
response, which varies smoothly with frequency and possesses values near zero, the phases
associated with the free-field responses show the influence of the damping of the soil since the
phase curves denote complex values of the FRFs.
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Figure 5.8: Comparison of experimentally and numerically predicted driving-point recept-
ances of the single-pile system. Vertical external forces are applied at the pile head, whilst
the dynamic responses are evaluated in the field at points Osp

2 (a), Osp
3 (b), Osp

4 (c) and Osp
5

(d). The magnitude of the responses (i) and their phases (ii) are presented for the vertical
direction, as well as the coherence function (iii) of the measured results. Only the phase
associated with FRF of the numerical model solution with soil damping D = 0.05 is plotted.

FRF results are displayed in dB using 20 log10(|H|), with 1 m/N as reference.

5.4.2 Response of the pile-group system

The comparison of experimentally and numerically predicted receptances of the 2 × 2 pile-
group system in its first loading configuration is presented in Figs. 5.9 and 5.10, which plot
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the receptances associated with the pile-soil-pile interaction and the free-field responses, re-
spectively. When comparing the PSPI results, it is shown that reasonable agreement of the
FRFs for the one associated with Pile 3 for which discrepancies between the experimentally
and the numerically predicted FRFs reach up to 2 dB over the frequency range of interest.
On the contrary, although the numerical model predicts similar levels of FRFs for Piles 1 and
2, those predicted receptances are slightly overestimated, mostly at high frequencies, with the
worst scenario being the one associated with Pile 2, for which the discrepancies reach up to 12
dB at 100 Hz with respect to the measured ones. Although this behaviour can be explained
by the fact that the soil properties have not been well characterised along the exact local area
where the pile-group has been installed, this assumption ceases to be valid since the predicted
FRF values on the ground at the point Opg

5 reasonable agree well with respect the measured
results, except for the frequency range of 62-80 Hz in which the coherence function consider-
ably decay up to unreliable experimental data. Then, the discrepancies found for the FRFs
associated with Piles 1 and 2 do not come from a wrongly experimental soil characterisation.
However, a visual inspection of the pile-group system area reveals the existence of surplus
concrete attached to the piles, as shown in Fig. 5.6(c). These leftovers of concrete result from
the concrete poured on the ground on the concrete-casted day, and they can be pointed out as
the cause of the discrepancies in the comparison of results. From that visual inspection, it can
be highlighted that the largest amount of surplus concrete appears to be attached to Piles 1
and 2, which are also associated with significant discrepancies at high frequencies between the
predicted and measured results. Similarly, it is noticed that the presence of surplus concrete
in Pile 3 represents a small amount of spread concrete attached to its interface. This is the
reason why the results associated with the Pile 3 are more in agreement with the numerical
ones. A further observation of these results is the low influence of the different soil damping
range values on the results presented, as plotted in Figs. 5.9(i) and 5.10(i), which was expected
due to the proximity of the evaluation points with respect to the excitation.

Finally, results for the second loading case in which the excitation is applied to the ground
surface are presented in Figs. 5.11 and 5.12. In general, the numerical model predicts reas-
onably similar vibration levels with respect to the measured ones at frequencies below 70 Hz.
As discussed in the first loading case, the numerical model tends to overestimate the system’s
dynamic response for frequencies above 70 Hz, in which discrepancies between them can reach
up to 12 dB at high frequencies. The disagreements found can be explained by the surplus
concrete attached to the piles. Additionally, it is worth mentioning that the FRF associated
with Piles 2 and 4, as well as the FRF on the ground at the point Opg

6 , present unstable values



Chapter 5. Experimental validation of the pile foundation model 106

20 40 60 80 100

-202

-200

-198

-196

-194

-192
(a-i)

20 40 60 80 100

-180

-90 

0   

90  

180 
(a-ii)

20 40 60 80 100

0   

0.25

0.5 

0.75

1   
(a-iii)

20 40 60 80 100

-205

-200

-195

-190
(b-i)

20 40 60 80 100

-180

-90 

0   

90  

180 
(b-ii)

20 40 60 80 100

0   

0.25

0.5 

0.75

1   
(b-iii)

20 40 60 80 100

Frequency [Hz]

-195

-193

-191

-189

-187

-185
(c-i)

20 40 60 80 100

Frequency [Hz]

-180

-90 

0   

90  

180 
(c-ii)

20 40 60 80 100

Frequency [Hz]

0   

0.25

0.5 

0.75

1   
(c-iii)

Figure 5.9: Comparison of experimentally and numerically predicted receptances of the 2×2
pile-group system. Vertical external forces are applied at Pile head 4, whilst the dynamic
responses are evaluated at Pile heads 1 (a), 2 (b) and 3 (c). The magnitude of the responses
(i) and their phases (ii) are presented for the vertical direction, as well as the coherence
function (iii) of the measured results. Only the phase associated with FRF of the numerical
model solution with soil damping D = 0.05 is plotted. FRF results are displayed in dB using

20 log10(|H|), with 1 m/N as reference.

for the coherence function that could affect the correctness of the obtained FRF.responses.
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Figure 5.10: Comparison of experimentally and numerically predicted receptances of the
2×2 pile-group system. Vertical external forces are applied at Pile head 4, whilst the dynamic
responses are evaluated on the field at the point Opg

5 . The magnitude of the responses (i) and
their phases (ii) are presented for the vertical direction, as well as the coherence function (iii)
of the measured results. Only the phase associated with FRF of the numerical model solution
with soil damping D = 0.05 is plotted. FRF results are displayed in dB using 20 log10(|H|),

with 1 m/N as reference.
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Figure 5.11: Comparison of experimentally and numerically predicted receptances of the
2 × 2 pile-group system. Vertical external forces are applied on the field at the point Opg

6 ,
whilst the dynamic responses are evaluated at the Pile heads 1 (a), 2 (b), 3 (c) and 4 (d). The
magnitude of the responses (i) and their phases (ii) are presented for the vertical direction, as
well as the coherence function (iii) of the measured results. Only the phase associated with
FRF of the numerical model solution with soil damping D = 0.05 is plotted. FRF results are

displayed in dB using 20 log10(|H|), with 1 m/N as reference.
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Figure 5.12: Comparison of experimentally and numerically predicted receptances of the
2 × 2 pile-group system. Vertical external forces are applied on the field at the point Opg

6 ,
whilst the dynamic responses are evaluated on the field at the point Opg

5 . The magnitude of
the responses (i) and their phases (ii) are presented for the vertical direction, as well as the
coherence function (iii) of the measured results. Only the phase associated with FRF of the
numerical model solution with soil damping D = 0.05 is plotted. FRF results are displayed

in dB using 20 log10(|H|), with 1 m/N as reference.
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5.5 Conclusions

This chapter presents a comparison of experimentally and numerically predicted FRF of a
single-pile and 2 × 2 pile-group. The full-scale cast-in-situ piles were installed in layered soil,
which has been characterised by means of the MASW and cross-hole tests and laboratory ana-
lysis of undisturbed soil samples. The experimental results were obtained in two experimental
campaigns. The first one corresponds to the experimental campaign for the single-pile system,
which is subjected to inertial excitation, whilst the second campaign evaluates the dynamic
response of the 2× 2 pile-group system under inertial excitation and indecent wave fields due
to vertical hammer impacts on the ground. The measured results, in terms of magnitude
and phase, are compared with the ones numerically predicted by the proposed methodology.
Furthermore, because the hysteretic soil damping has not been experimentally characterised,
a range of assumed soil damping values associated with soft soils (0.03) to hard soils (0.07)
was employed in the numerical model to evaluate the sensitivity of the FRF to those values.
Thus, the outcomes of the comparison of the results obtained for the single-pile system can be
summarised in the following list:

• In general, the numerically predicted and measured responses in the vertical direction
agree very well when comparing the driving-point responses. Moreover, it has shown
that discrepancies between them only reach 1.5 dB at 80 Hz and that the adopted values
of the damping soil for the numerical model do not significantly affect the driving-point
response.

• A comparison of the experimentally free-field responses against the ones numerically pre-
dicted shows that the measured FRFs are contained in the envelope of predicted ones,
which were calculated by assuming a range of soil damping values between 0.03 − 0.07.
In contrast with the point-driving responses, which are less sensitive to the assumed
soil-damping values, the free-field responses are more susceptible to those damping val-
ues at high frequencies or when the distance between the source and receiver increases.
Furthermore, the predicted FRF with soil damping of 0.05 can be adopted as a good
approximation to represent the real soil damping since their corresponding FRFs agree
very well with the experimental ones.

Although the proposed numerical approach tends to overestimate the predicted vibration levels
at the pile head and on the free field, it can be stated that the proposed single-pile model
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can accurately predict their dynamic responses. Thus, given the robustness of the proposed
approach, in conjunction with the computational efficiency discussed in the previous chapter,
this methodology was also employed to predict the FRF of the full-scale 2×2 pile-group system.
From the comparison of results, the following outcomes can be summarised in the following:

• When the pile-group considered inertial excitation, the comparison of the FRF at the pile
heads shows that the numerical response can reasonably predict similar vibration levels
up to 70 Hz. Above this frequency, the numerical model slightly tends to overestimate
the dynamic response. A visual inspection of the experimental setup shows that these
discrepancies can be explained by the added effect of surplus concrete attached to the
pile surface. Thus, it was found that the significant discrepancies at high frequencies
come from the Pile head 3, which also has the biggest surplus concrete attached to its
surface.

• When the pile-group considered incident wave field due to vertical hammer impacts on the
ground, similar discrepancies to the first loading case were obtained. Although acceptable
agreement of results was obtained up to 70 Hz, the added effect of those surplus concrete
specimens also appears at high frequencies where considerable discrepancies arise between
the experimentally and numerically predicted results.



Chapter 6

Conclusions and further work

recommendations

This dissertation has presented a new approach to model piled foundation systems under
inertial and kinematic excitation. The proposed method employs the SBM to model the soil as a
half-space, whilst the pile is represented by an Euler-Bernoulli bean and a rod for accounting for
flexural and axial motions, respectively. Both soil and pile are modelled in the space-frequency
domain, and they are coupled by imposing geometry compatibility and traction equilibrium
at the pile-soil interface. Therefore, the pile is divided into circular segments, each of them
involving a set of collocation points placed at their soil-pile interface. Thus, assuming that each
circular segment behaves as a rigid body, the pile reaction at the collocation points is obtained
by considering a transformation matrix that relates the pile response computed at the centre
of each circular segment (pile’s centroid) with their corresponding collocation points. This
transformation matrix is constructed according to both translational and rotational motions of
the pile segments, as well as forces and bending moments. This new approach has been assessed
in terms of assumptions, accuracy and computational effort against existing methods. Special
focus is placed on the study of the influence of different pile-soil coupling conditions. This
chapter summarises the main findings of this research and also provides some recommendations
for further work based on the experience acquired by the author during the course of the
doctoral studies.
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6.1 Conclusions

As mentioned, this dissertation presents a novel three-dimensional, fully-coupled pile-soil model
to deal with ground-borne noise and vibration problems. To successfully achieve this goal, a
number of objectives were outlined in Section 1.2, which are now reviewed to evaluate the
extent to which they have been met.

In Chapter 3, the novel approach is developed in the context of single-pile foundation systems.
A convergence analysis conducted for the proposed single-pile model has provided a criterion
for defining the minimum number of collocation points required to ensure an acceptable trade-
off between robustness, accuracy and numerical performance of the scheme. Furthermore,
an extensive numerical assessment of the proposed approach is also conducted to verify its
accuracy against a 3D FE-BE methodology, an axisymmetric FE-PML approach and Novak’s
method. These assessments have demonstrated that the proposed approach can predict similar
vibration levels to the ones obtained by the 3D FE-BE methodology. Moreover, the SBM
typically involves fewer Green’s function evaluations with respect to BEM per collocation
point, allowing for the conclusion that the method is more computationally efficient than a
standard 3D FE-BE. Another pile-soil coupling condition that neglects the rotational motions
and bending moments in the coupling procedure has also been accounted for in the numerical
assessment of the proposed method. Results show that some discrepancies in the dynamic
response with respect to the proposed fully-coupled approach and the 3D FE-BE method can
arise, especially at high frequencies and when estimating the lateral response of the free field
due to lateral or vertical loading patterns.

Given the robustness of the proposed fully coupled single-pile model, its formulation has been
extended in Chapter 4 to deal with pile-group systems with or without a concrete cap. Similar
to the single-pile case, the comparison of results shows that the proposed pile-group model
predicts similar vibration levels to the 3D FE-BE method when both rotational motions and
torques are accounted for in the pile-soil coupling scheme. Otherwise, significant discrepancies,
as in the single-pile case, have been found for the crossed responses, mostly at high frequencies.
Furthermore, the accuracy of the approach with the presence of a concrete pile cap in the
context of piles-soil and piles-cap coupling conditions is also verified against the 3D FE-BE
approach. This study has highlighted that a fully piles-soil coupled system attached to a pile
cap, by considering the six-degree-of-freedom of the pile heads in its formulation, can predict
accurate vibration levels with respect to ones modelled by a 3D FE-BE model. However,
it was observed that if the rotational motion and bending effects are all neglected in the
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piles-soil coupling, or the torsional motion is relaxed in the pile-cap coupling procedure, then
discrepancies arise at frequencies above 30 Hz when compared with the proposed fully coupled
or the 3D FE-BE model. This result was expected since it is consistent with previous works,
which stated that the error introduced by ignoring the twisting reaction of the piles in a group
is usually small at low frequencies. Moreover, the proposed formulation was employed to study
the influence of considering neighbouring piles in the calculation of the dynamic interaction
factor of two adjacent piles in 2 × 1, 2 × 2 and 3 × 3 pile-group scenarios. These dynamic
interaction factors agree very well between them and with the ones obtained by Kaynia [3],
but only at low frequencies. It has shown that the wave-scattering feedback between the
considered two adjacent piles and the remaining neighbouring piles of each pile-group scenario
affects the dynamic response of the system as the frequency of analysis and the number of
neighbouring piles increase, as well as by the piles-soil coupling assumption adopted for the
transformation matrix.

This dissertation also includes an experimental validation of the proposed novel approach. The
experimental tests are conducted over full-scale cast-in-situ single pile 2×2 pile-group systems
constructed on the testing facilities for experimental studies in railway-induced vibration of
the Acoustical and Mechanical Engineering Laboratory. The soil has been characterised by
means of the MASW and cross-hole tests, as well as laboratory analysis of undisturbed soil
samples. The experimental results in the vertical direction due to vertical hammer impacts
are compared with the ones numerically predicted using the approach presented in this disser-
tation. Because the hysteretic soil damping has not been experimentally characterised, it is
assumed to be ranging between typical damping ratios for soft (0.03) and stiff (0.07) soils. On
the one hand, it has been observed that the numerically predicted results for the single-pile
system, when considering inertial excitation, agree very well with respect to the experimental
results, for which discrepancies between them only reach 1.5 dB at 80 Hz and that the adopted
values of the damping soil for the numerical model do not significantly affect the driving-point
response. The last statement is not true for the numerically predicted free-field responses since
they are obviously more sensitive to those damping values, especially at high frequencies and
large distances away from the pile. However, a comparison of the experimentally free-field
responses against those numerically predicted shows that the measured results are contained
in the envelope of the predicted ones. Moreover, the numerical results associated with a soil
damping of 0.05 can be adopted as a good approximation to represent the real soil damping
since their corresponding FRFs agree very well with the experimental ones. On the other hand,
the comparison of experimental and numerical results in the context of the tested pile-group
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system shows that the pile-soil-pile interaction can be well-predicted using the proposed ap-
proach up to frequencies of 70 Hz. Above this frequency, the numerical model is found to
be slightly overestimating the dynamic response. Similar patterns are found when comparing
numerical and measured responses of the system under incident wave fields due to vertical
hammer impacts on the ground. A visual inspection of the experimental setup shows that
these discrepancies can be explained by the influence of the surplus concrete resulting from the
construction process of the cast-in-situ piles.

6.2 Further work recommendations

The piled foundation model outlined in this dissertation provides an interesting alternative to
predict building vibration levels based on this foundation system type when subjected to ground
vibration. This model represents a valuable contribution towards the field of soil-structure
interaction research, as the model offers an interesting trade-off between robustness, accuracy
and numerical performance, as discussed in the current dissertation. The results presented
correspond to two generic piled foundation cases, a single-pile system and a 2 × 2 pile-group
one, on the basis of a set of hypotheses that have been found to be valid for the majority of
situations. However, there are many scenarios for which the proposed hypothesis could not be
valid. Furthermore, the influence of other structural systems could induce important changes
on the dynamic behaviour of piled foundation systems. In such a sense, the following topics
for further investigation on the present topic are proposed and listed below:

• When deploying the SBM in the context of the proposed approach, the origin intensity
factor for the Neumann boundary condition involves the calculation of the term Bcc,
given in Eq. (3.9). However, as discussed in Chapter 3, this term has been neglected
in all calculations presented in this dissertation because it has been found to be very
small with respect to the other terms computed for the smooth geometry of a circular
pile. Although the relevancy of this term in the context of circular piles is clearly low,
this omission may not be directly extrapolated to arbitrarily shaped boundaries. Thus.
the importance of the term Bcc, can be of high interest for structures with complex
geometries, allowing thus to extend the applicability of the SBM to any 3D soil-structure
interaction problem.

• Although the hypothesis of considering the concrete cap as a solid rigid at high frequencies
in a pile-cap system was revisited for a specific cap thickness, it cannot be concluded
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that this hypothesis can be applied to caps with lower thickness than the assumed in
this dissertation. In such a sense, an extensive analysis of pile-cap systems with different
cap thicknesses can provide an efficient and versatile means to establish new guidelines to
determine for which thicknesses the concrete cap behaves as a solid rigid and its influence
in piled-buildings subjected to ground vibration sources. Furthermore, the formulation
developed for the pile-cap coupling assumes the cap as a floating subsystem since no
contact with the soil is considered. In this context, comparing the dynamic response
between the previous analysis and those obtained by considering cap-soil coupling is also
an interesting topic to study.

• Further work is required to assess the relevancy of accounting for the rotational motion
and the interaction torques in the pile-soil coupling conditions when a superstructure
(e.g. a residential building) is considered.

• Another interesting topic for further research is to study efficient approaches to include
the effect of a near-at-grade or underground railway system. In such a sense, a com-
prehensive and efficient model for track-soil-foundation-building systems in situations of
high proximity between the two structures could be a very interesting outcome.

• In its present form, the proposed approach models pile-soil coupling considering perfect
contact (no relative motion between the two sub-systems). However, relative motion
could occur between the pile and the soil in the real world, especially at low depths.
Including a model for the pile-soil interaction that accounts for this possibility of motion
could result in a better representation of the actual physical problem.
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Appendix A

Unknown-constant values for a pile with

free-free ends

This appendix presents the expressions for the constants Aj (for j = 1, 2, 3, 4), Bj (for j =

1, 2, 3, 4), and Cj (for j = 1, . . . , 8) associated to the pile model adopting free-free boundary
conditions and under external unitary point loads and bending moments located at z = z1, as
shown in Fig. 3.2. The coefficients Aj are given by

A1 = −cos(αz1) cos(αLp) + sin(αz1) sin(αLp)

αApEp sin(αLp)
,

A2 = 0,

A3 = −cos(αz1) cos(αLp)

αApEp sin(αLp)
,

A4 = −cos(αz1)

αApEp

.

(A.1)

The coefficients Bj associated with the torsional response due to a unitary torsional moment
are given by
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B1 = −cos(γz1) cos(γLp) + sin(γz1) sin(γLp)

γJpGp sin(γLp)
,

B2 = 0,

B3 = −cos(γz1) cos(γLp)

γJpGp sin(γLp)
,

B4 = −cos(γz1)

γJpGp

.

(A.2)

Finally, the expressions for the coefficients Cj associated with the flexural response of the pile
due to a unitary point load are

C1 = C3 = b1[a4 sinh (βz1) + a3 cosh (βz1) + a5 sin (βz1) + a3 cos (βz1)],

C2 = C4 = b1[a2 sinh (βz1) + a5 cosh (βz1) + a2 sin (βz1) + a4 cos (βz1)],

C5 = b1[a4 sinh (βz1) + a3 cosh (βz1) + a4 sin (βz1) + a3 cos (βz1)],

C6 = b1[a2 sinh (βz1) + a5 cosh (βz1) + a2 sin (βz1) + a5 cos (βz1)],

C7 = b1[a5 sinh (βz1) + a3 cosh (βz1) + a5 sin (βz1) + a3 cos (βz1)],

C8 = b1[a2 sinh (βz1) + a4 cosh (βz1) + a2 sin (βz1) + a4 cos (βz1)].

(A.3)

where b1 = (a1β
3)−1 and

a1 = 4EpIp[cos (βLp) cosh (βLp)− 1],

a2 = sin (βLp) cosh (βLp) + sinh (βLp) cos (βLp),

a3 = sin (βLp) cosh (βLp)− sinh (βLp) cos (βLp),

a4 = cos (βLp) cosh (βLp)− sin (βLp) sinh (βLp)− 1,

a5 = − cos (βLp) cosh (βLp)− sin (βLp) sinh (βLp) + 1.

(A.4)
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In the case that the flexural motion is induced by a unitary external bending moment, the
coefficients Cj (for j = 1, . . . , 8) become

C1 = C3 = b2[a3 sinh (βz1) + a4 cosh (βz1)− a3 sin (βz1) + a5 cos (βz1)],

C2 = C4 = b2[a5 sinh (βz1) + a2 cosh (βz1)− a4 sin (βz1) + a2 cos (βz1)],

C5 = b2[a3 sinh (βz1) + a4 cosh (βz1)− a3 sin (βz1) + a4 cos (βz1)],

C6 = b2[a5 sinh (βz1) + a2 cosh (βz1)− a5 sin (βz1) + a2 cos (βz1)],

C7 = b2[a3 sinh (βz1) + a5 cosh (βz1)− a3 sin (βz1) + a5 cos (βz1)],

C8 = b2[a4 sinh (βz1) + a2 cosh (βz1)− a4 sin (βz1) + a2 cos (βz1)],

(A.5)

where b2 = (a1β
2)−1.



Appendix B

Pile-soil transformation matrix

The pile-soil interaction modelling strategy is based on the assumption that the pile is divided
into Np segments, each one of them behaving as a rigid solid. Therefore, the displacement of
one of these segments at the collocation points located at its perimeter can be defined in terms
of the translational and rotational motions of the segment centroid. Thus, the response at the
ns-th collocation point of the n-th segment, located at the position

xn,ns =
{
xn,ns yn,ns zn,ns

}T
, (B.1)

can be written as a function of the pile centroid point motion of the corresponding segment
Un

p as

Up,n,ns

b =


Un,ns

bx

Un,ns

by

Un,ns

bz

 =


1 0 0 0 0 −yn,ns

0 1 0 0 0 xn,ns

0 0 1 yn,ns −xn,ns 0





Un
px

Un
py

Un
pz

θnpx

θnpy

θnpz


= Wn,nsUn

p. (B.2)
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The matrix that relates the displacement at all collocation points with the six-component
motions of all pile centroid points is given by

W =



W1,1

W1,2

...
W1,Ns

W2,1

W2,2

...
W2,Ns

. . .

WN,1

WN,2

...
WN,Ns

WN,Ns+1



. (B.3)

It can be demonstrated that the transpose of this matrix can also be used to determine the
equivalent forces applied to the segment centroid as a result of the forces at the collocation
points, having that

Pp = −WTPs
b. (B.4)

In the case that neither the rotations nor the bending and torsion moments associated with
each segment are not desired to be accounted for in the coupling procedure, the right 3 × 3

matrix of Wn,ns should be replaced by a null matrix.



Appendix C

Vertical and lateral soil reaction equations

In the approximate formulation presented by Baranov [76], the soil reactions are described by

Nx = GSxu(z),

Nz = GSzw(z),
(C.1)

where Nx and Nz are, respectively, the soil reactions to lateral and vertical motions, G is the
shear modulus of the soil and Sx and Sz are given by

Sx(a0, ν) = 2πa0

1
√
q
H

(2)
2 (a0)H

(2)
1 (x0) +H

(2)
2 (x0)H

(2)
1 (a0)

H
(2)
0 (a0)H

(2)
2 (x0) +H

(2)
0 (x0)H

(2)
2 (a0)

,

Sz(a0) = 2πa0
J1(a0)J0(a0) + Y1(a0)Y0(a0)

J2
0 (a0) + Y 2

0 (a0)
+

4i
J2
0 (a0) + Y 2

0 (a0)
,

(C.2)

where H
(2)
n is the Hankel function of the second kind and order n, J0 and J1 are the Bessel

functions of the first kind of order zero and one, respectively, and Y0 and Y1 are the Bessel
functions of the second kind of order zero and one, respectively. The dimensionless frequency
a0 and the parameters q and x0 are given by

a0 = rpω

√
ρ

G
, q =

(1− 2ν)

2(1− ν)
, x0 = a0

√
q, (C.3)

where rp is the pile radius, ω the angular frequency, ρ is the density of the soil and ν its
Poisson’s ratio.
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