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Introduction

Problem statement

For a compact convex set A C R™, the Steiner formula expresses the volume of the set
A; consisting of points at distance smaller than ¢ from A as the following polynomial on
the radius ¢

vol(Ay) =) wm—ipi(A)E™ . (1)
=0

Here the normalizing constant wy is the volume of the k-dimensional unit ball, and the
functionals u; are the so-called intrinsic volumes. The intrinsic volumes are fundamental
examples of the notion of wvaluation, which we introduce next. Denote by IC(R™) the
class of compact convex set of the euclidean space. A complex-valued functional ¢ on
K(R™) such that

(AU B) = o(A) + p(B) — p(AN B)

for A, B, AU B € IC(R™), is called a valuation. The space of continuous and translation
invariant valuations is denoted by Val(R™). Hadwiger’s characterisation theorem states
that the subspace Val(R™)39(™) < Val(R™) of SO(m)-invariant valuations is spanned by
the intrinsic volumes pg = x;, . . . , ty, = volgm, where x denotes the Euler characteristic.

In his famous tube formula, H. Weyl ([65]) proved that holds for A C R™ a
smooth compact submanifold and ¢ > 0 small enough, in which case A; is called the tube
around A of radius t. Additionally, he proved that the coefficients p;(A) depend only
on the induced riemannian structure of A.

In [27], Federer showed for the class of compact sets of positive reach. A further
development due to Federer is the introduction of certain localizations of the intrinsic
volumes, which he called curvature measures. From the modern viewpoint, a curvature
measure is a functional ® on KC(R™) taking values in the space of Borel measures of R™,
fulfilling, at least, the following

®(AUB,U)=®(A,U)+ ®(B,U) —P(ANn B,U)

where A,B,AU B € K(R™) and U is a Borel subset of R™. Taking U = R™ we
obtain a map called globalization from curvature measures to valuations. A notable
family of curvature measures, denoted by A;, are the Federer curvature measures, whose
globalizations correspond to the intrinsic volumes p;.
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Tube formulas exist however in other spaces besides euclidean space. Indeed, already
in Weyl’s original work [65], the tube formula was extended to the sphere and hy-
perbolic space. The perspective has shifted: our focus is now on altering the ambient
space, not merely the class of sets where tubes are taken. The tube formula in spherical
and hyperbolic spaces is expressed not as a polynomial in the radius ¢, but as

n—1

vol(4)) = 3" (n — i)uon_ ( /0 1) cosg(r)dr> Vi(A) )

=0

where v; are certain functionals, A is the curvature of the ambient,

sin(v/t) XS0,
VA
siny (t) := t A=0,
inh(+/|A|¢
sn(VIV)
VAl
which is an analytic function in both A and ¢, and cosy(t) := 4 sin,(¢). The functionals

v; in are naturally seen as analogs of the p; in , which hints at a notion of
valuation beyond the euclidean space. The current perspective is to view these v; as
smooth valuations in the sense of Alesker’s theory of valuations on manifolds (cf. [7]).
To simplify matters, let M"™ be a riemannian manifold and fix R(M) the class of sets of
positive reach in M. Let m: SM — M be the sphere bundle of M. A smooth valuation
on M is a complex-valued functional ¢ = [w,n] on R(M) of the form

go(A):/N(A)w—k/An, AeR(M),

where w € Q" Y(SM) and n € Q"(M), are complex-valued differential forms and
N(A) € SM is the so-called normal cycle of A (cf. e.g. [53]), consisting of outward
normal vectors to A. We denote by V(M) the complex vector space of valuations on M.

It is natural to consider also the corresponding localized functional ® = [w, 7] given

by
®(A,U) :/ w+/ n
N(A)NT=1(U) ANU

where A € R(M) and U is a Borel subset of M. Such a functional is called a smooth
curvature measure, and the complex vector space they comprise is denoted by C(M).
Once again, we have a globalization map C(M) — V(M) simply by taking U = M.

Federer’s curvature measures A; can be naturally extended from R™ to any rieman-
nian manifold. The globalizations of these curvature measures A; on M give us a family
of valuations v; in M. Although there is no fixed terminology for these v;, it is natural
to refer to them as Federer valuations.
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Further results, in the vein of extending tube formulas to other ambient spaces, were
formulated by Gray and others (cf. [38, 40, [39]). In particular, Gray and Vanvhecke
[38] computed the volume of a tube around submanifolds of real, complex, quaternionic,
and octonionic space forms. Here we continue their work in the real, complex, and
quaternionic cases, leaving the octonionic one for a better occasion. For that purpose,
let us fix some notation:

e Real space forms: we denote by SY' the (unique up to isometry) complete m-
dimensional simply connected riemannian manifold of constant sectional curvature
A If A > 0, it corresponds to the sphere of radius r = % For A < 0, it
represents the real hyperbolic space, with the metric suitably rescaled. Finally,
A = 0 represents the standard euclidean space. We refer to the family SY' as real

space forms. We denote by G\ r the group Isom(SY") of isometries of SY".

o Complex space forms: we denote by CPy' the (unique up to isometry) complete n-
dimensional simply connected Kéahler manifold of constant holomorphic sectional
curvature 4\. If A > 0, it corresponds to the complex projective space endowed
with the Fubini-Study metric. For A < 0, it is the complex hyperbolic space
equipped with the Bergman metric. Finally, A = 0 represents the hermitian stan-
dard space C". We refer to the family CP{' as complex space forms. We denote by
G\ c the group Isom(CPY) of isometries on CPy'.

e Quaternionic space forms: we denote by HP} the (unique up to isometry) com-
plete n-dimensional simply connected quaternionic Kéahler manifold of constant
quaternionic sectional curvature 4X\. If A > 0, it corresponds to the quaternionic
projective space. For A < 0, it is called quaternionic hyperbolic space. Finally,
A = 0 represents the quaternionic standard space H™. We refer to the family
HP{ as quaternionic space forms. We denote by G\ m the group Isom(HPFPY') of
isometries of HPY'.

All previously mentioned works focused on computing the volume of tubes around
geometric objects. Tube formulas, however, also exist for valuations beyond volume. For
instance, by differentiating the Steiner formula one easily obtains

k .
m— 7\ Wm—; i m
(a) =30 (M), AcR™ 3

=0

In real space forms, Santalé obtained similar tube formulas for all isometry invariant
valuations (see [55]); explicitly, in terms of v;, the tube formula is

- i)wm—i

S ) 0
=0

where

Oha®) = S () () sl 0 o),

h>0
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We will refer to qﬁ;)u ; as Santald’s polynomials. Thus, we have as in a tube formula
involving trigonometric polynomials instead of a polynomial on the radius like in
and . Gray and Vanhecke established tube formulas for v; in real, complex, and
quaternionic space forms, albeit under stringent restrictions on the submanifold.

Main results

In this work, we establish the existence of tube formulas for any smooth valuation on
a riemannian manifold. In real and complex space forms we will compute these tube
formulas for every invariant valuation. In addition, we derive the tube formulas for a
certain interesting family of valuations in HPY' including the Federer valuations. Next,
we describe these results in more detail.

Tubular operators

Given a riemannian manifold M", we construct the tubular operator, which consists in
a family T; of linear endomorphisms of V(M), such that

1(As) = Tyu(A), Vi e V(M)©,

for A € R(M) and ¢t > 0 small enough. Differentiating T; at ¢t = 0 yields the derivative
operator 0: V(M) — V(M). Similarly, we define the local tubular operator LT; in C(M)
and its corresponding derivative operator also denoted by 0.

Explicitly, these tubular operators are given in terms of differential forms as follows.
Let ¢t > 0 and p;: SM x[0,t] — SM be the projection on the first factor. Let us consider
¢: SM x R — SM the geodesic flow. Then, for u = [w,n] and ® = [w,n]; i.e.

Ty(n) = [t w + (pe)«(m 0 ¢)"n, 1], (5)

LT:(®) = [¢7w + (pr)«(m 0 ¢)"n, 7). (6)

Let now G be a subgroup of isometries of M and the subspaces V(M) and C(M)%
of invariant valuations and curvature measures. We will prove their invariance under T}
and LTy; i.e
T € V(IM)Y, LT® e C(M)“,
for all p € V(M)% and ® € C(M)%. Therefore, the same property holds for 9 in V(M)¢
and C(M)C.
Let us assume that (M,G) is an isotropic space, meaning that G acts transitively

on SM. Then, V(M)% and C(M) are finite-dimensional vector spaces and the tubular
operator Tt|v(M)G is given by the flow of 8|V(M)G

th .
Tip=exp(td)p =) —0'n  YpeV(M)©. (7)
i>0

10



Contents

The analyticity in ¢ is ensured by the fact that dim V(M) < oo, and may not hold
without the finite-dimensionality restriction. We will apply to real, complex, and
quaternionic space forms, where the derivative operator will be explicitly displayed.

Complex space forms

Let us first focus on the space VY - of valuations invariant by holomorphic isometries,
endowed with its corresponding derivative operator d)c. We begin by analyzing the
null-curvature case A = 0.

Let Val’™ be the vector space of translation and U(n)-invariant continuous valu-
ations in C”. Bernig and Fu introduced an slo-module structure in ValV (™), consisting
of a triple (A, L, H := [A, L]), where A is a convenient normalization of the derivative
operator on ValV™_ and L is a normalization of the product with the first intrinsic
volume. In particular, A is nilpotent, implying that 9 is also nilpotent. Consequently,
reduces to a finite sum.

Among the many special bases for Val’(™, Bernig and Fu introduced one that is
compatible with the decomposition into sle-irreducible components; i.e., maximal and
non-trivial subspaces that remain invariant under the action of A and L. In this basis,
the successive powers of 0 are straightforwardly given, and consequently, the tubular
operator is a simple consequence of .

Remarkably, the sly-structure of ValV(™ is somehow present also in the curved case
A # 0. Indeed, we will establish the existence of an isomorphism & : ValV/™ — VY
such that

e =®yo(A—AL)o D . (8)

While it is natural to have a relation between 0y ¢ and A, the appearance of L is quite
unexpected.
The identity turns the determination of tube formulas in V{ ¢ into the compu-

tation of expt(A — AL). By decomposing Val’(™ into sly-irreducible components this
computation can be easily performed in some abstract model space. In fact, the same
abstract computation lies at the basis of most of the results of this thesis. The result we
obtain for VY is the following.

Theorem. There exists a basis {Ui,‘r} of VY ¢ such that

2n—A4r
A A A
Ttok,r = Z ¢2n—4r,k—2r,j(t)0-j+2r,r7 (9)
7=0

where

Ohea) = LN (3T (1) snk 20 cos 5,

h>0

11
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We describe the basis Ul/c\,r explicitly in terms of the previously known valuations 7,5\7 »

of [2I]. The tube formulas for the Tk’\p can be directly obtained from the previous ones,
as we also provide the expression of these valuations in terms of the 0,;\ -

The expressions @ closely resemble those obtained by Santalé in (4]) within real space
forms. To explain these similarities, we demonstrate the existence of a phenomenon that
parallels . However, the volume tube formula exhibits significant differences.

We then switch to the local level by providing closed formulas for LT; in CPy,
leveraging the complete classification of invariant curvature measures known for CPy
(51, 21]). The resulting formulas are substantially more involved than ().

Federer valuations and curvature measures

Our study concludes in Chapter 4 with the determination of tube formulas for the Federer
curvature measures A; and the Federer valuations v; in quaternionic space forms. This
election arises from the lack of a complete classification of invariant curvature measures
in HPY, unlike SY* and CPy'. For this reason, we chose to begin with tube formulas
for Federer valuations as a solid starting point for future developments. We will treat
the cases of CPy and HPY{ in parallel. Although we know T; and LT; for all invariant
valuations and curvature measures in complex space forms, it is interesting to establish
particular formulas for A; and v; in CP{'. Moreover, these formulas provide insights into
approaching the case of HPy'.

The strategy in both CP{ and HPY is to decompose the Federer valuations A; as a
sum of curvature measures that are conveniently adapted to the curvature tensor, and
thus have a simple behavior under the geodesic flow. Explicitly, we put

A; = Z['Lﬂj AN Pi—js 0], (10)

where v; and ¢;_; are a family of invariant differential forms with a specially nice
behavior to the geodesic flow. More precisely, we find that the action of L7 on the span
of the v; and the span of the ¢, follows the same abstract sly model as J) ¢ on Vic By
using the same abstract computations as in that case, we obtain ¢;1; and ¢;py. These
pull-backs along with formula and representation , yield

Theorem. The tube formulas for the Federer valuations and curvature measures in HPY
are

3 4n—4
Tt<Vi) (4n—z Wini ; z_: ,jk ¢4n 4,i—7,1 )[[Qbk/\(pl,()]],
1 3 4n—
LT;(A) = ———— A ot A\ 0
t( ) (4n —_ i)w4n—i == ¢3,2,k( )¢4n74,17],l( )[wk P, ]7

for0<i<d4n-—1.

12



Contents

In fact, we have completely determined LT; and T} on the vector spaces spanned by

{lbi nerlt, {5 A erl}

Therefore, both on CP{" and HP;' we have found tubular formulas in certain natural
subspaces of isometry invariant curvature measures and valuations which contain A; and
v; respectively.

As application of our results, we can compute the Hopf push-forward of valua-
tions through the Hopf fibration py m: SAnt3 _y HPY following the approach of Georg
Hofstéatter and Thomas Wannerer ([37]). The essential component of this computation
relies on the commutativity of T; and the Hopf push-forward (pym)«, a result they es-
tablished. With these tools at hand, we can represent this push-forward in terms of
differential forms and introduce new and interesting families of valuations in V.

13
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Chapter 1

Background

In this chapter we introduce the essential material about the riemannian manifolds we
will be working with. We also review the basic notions of valuation theory, as well as
some basic facts on sls-representations.

1.1 Riemannian manifolds

1.1.1 The sphere bundle

We review some fundamental notions on the sphere bundle of a riemannian manifold and
its canonical contact structure. Everything is classical, but we include several proofs and
details for self-containedness. For a more comprehensive treatment of this subject, see
[25].

Let M™ be an oriented riemannian manifold, where g = (-, -) denotes its riemannian
metric. Let V be the Levi-Civita connection satisfying

Vg=0, [X,Y]=VxY -VyX,
and let R be the Gauss curvature tensor defined as
RW, X)Y := Vi x)Y = VwVxY + VxVyY.
The Riemann curvature tensor is given by R(W, XY, Z) = g(R(W, X)Y, Z).

Definition 1.1.1. The sphere bundle of M, denoted by SM, is the (2n— 1)-dimensional
smooth manifold consisting of the set of unit tangent vectors with canonical projection
m: SM — M. The canonical contact 1-form of SM is

ag(v) :== (&, dr(v)), veTSM. (1.1)

The 2-form O, := —da is called symplectic form of SM. The top form a A (da)”! is
nowhere vanishing; i.e., it is a volume element (see [25]).

15



Chapter 1. Background

We systematically denote by eq: SM — T'M the smooth map given by ey(&) = ¢ for
all £ € SM, i.e, the inclusion map of SM in T'M. Therefore, for any vector field in SM,
we can describe the canonical contact 1-form introduced in (|1.1]) by

a(X) = (eg,dr X). (1.2)

A diffeomorphism ¢ on SM is called a (oriented) contactomorphism if it preserves the
oriented hyperplane field ker a := {X € X(SM) : ixa = 0}, known as the contact hyper-
plane, with the orientation induced by da™~!. This is equivalent to

p*a=e"a (1.3)

for some real-valued function h on SM. When h is identically zero ¢ is called strict
contactomorphism. A vector field X on SM which satisfies Lxa = f - a for some
function f: M — R is called a contact vector field.

1.1.2 Pull-back bundle and pull-back connection

Given the projections w: SM — M and 7’: TM — M, we consider the pull-back vector
bundle
7 TM :={(£,X) € SM xTM : 7€ = 7' X }.

If Y is a section of T'M (i.e., a vector field on M), we can pull back Y to obtain a section
in ™TM
™Y = (ep, Y o).

Locally, every section of 7*T'M is a C*°-linear combination of pull-back sections of T'M
(e.g. the pull-backs of Y; = Biwi where (x1,...,x,) are local coordinates on M). It follows
that there exists a unique connection 7*V in the pullback bundle 7#*T M characterized
by the property that for every vector X € T:SM and every vector field Y on M, the
following holds:

(T V)x(7Y) =7 (VarxY) .

For each £ € SM, the pull-back connection 7*V induces a natural decomposition of
TeSM given by

TeSM = He @ Ve,
where Vg := ker(dm)¢ is known as the vertical subspace, and H¢ := ker(X — (7*V)xeq)¢
is the horizontal subspace. The restriction (dm)¢: He — T, M is an isomorphism, and

likewise
(m*V)eo: Ve — (6)7F, X — (7"V)xep (1.4)

defines an isomorphism. Hence, we have an identification

TeSM = HeoVe =T,Ma(€)"
X «—  (XH XY

16



Chapter 1. Background

where x = 7(¢), X = drX and XV = (7*V)xeo. Therefore, any vector field X on the
sphere bundle SM is determined by dn X and (7*V)xey, i.e., through its horizontal and

vertical parts, respectively. In this notation the canonical contact 1-form « previously
defined in (1.1]) can be expressed by

a(X) = (X ep), X € X(SM). (1.5)
The bilinear connection form w is defined by
w(X,Y) := ((7*V)xep, dnY) = (XV,VH), (1.6)

for X, Y € X(SM). Thus, by definition of the vertical subspace V', we have the following
description
V={XeX(SM):ixw=0}.

The connection form w is bilinear but not skew-symmetric.

1.1.3 Moving frames and the Reeb vector field
Another key concept is mowving frames, useful for computations with connections and

curvature.

Definition 1.1.2. Let U be an open subset of SM. A moving frame on U is a collection
€o, - - ., en—1 of smooth maps e; : U — T'M such that eg(§) = &, and {eg(§),...,en—1(£)}
forms a basis of T¢M for all £ € SM. If the basis is orthonormal for each { € U, we
call it an orthonormal moving frame.

Consider an orthonormal moving frame eg, eq,...,e,_1 defined on U C SM. Then
each e; can be seen as a section of 7*T'M. The coframe, connection and curvature forms

0;,wi; € QYU), Qi € Q*(U), 0<ij<n-—1
are defined by
Qz(X) = <€i,d7TX>, (1.7)
wij(X) == (i, (7"V) xe;),
Qi ;(X,Y) := R(e;, ej;dr X, dnY).
where R is the curvature tensor of M. Notice that 0y = a.

The corresponding structure equations are given by

n—1
df; = — Z wi i N\ 9]', (110)
7=0

n—1

dwi j = _sz‘,k/\wk,j + Qi 4, (1.11)
k=0
n—1

€ j = Z(Qi,k ANwij — Wik A Qg ;). (1.12)
k=0

17



Chapter 1. Background

Let us recall that any vector field on SM is completely determined by its vertical
and horizontal components. Consider the vector field 1" on the sphere bundle SM such
that

dnT = ey, (7*V)reg=0.

This vector field on SM is called the Reeb wvector field, and its flow ¢ is called the
Reeb flow. In Proposition we will see the classical description of the Reeb vector
field within contact manifolds. First, we study the behavior of the Reeb vector field T’
concerning an orthonormal moving frame.

Proposition 1.1.3. Let eq,...,en—1 be an orthonormal moving frame. Then
irt; = 00, irwio=0, 0<i<n-—1,

where T' is the Reeb vector field.

Proof. From and

irl; = (e;,dnT) = (ej, e0) = i,

iTwio = (€, (1"V)reg) = 0. =
Proposition 1.1.4. Let eq,...,e,_1 be an orthonormal moving frame. Then, for 0 <
1<n-—1
i
n—1
Lrb; = wio— Z ir(wi )05,
j=1
i)
n—1
Lrwio = — Z i (wik)wr,o + 178 0.
k=1

Proof. i) By the structure equation ([1.10)), for 0 <i <n —1
n—1
df; = — Zwi,j A Hj.
j=0

By Proposition [T.1.3]
iTh; = 6;0, iTw;o = 0.

Therefore
n—1

irdl; = — Z iT(wi,j)Qj + wio.
j=1

Since irb; = i, then (d oir)f; = 0 and subsequently

n—1
Lpb; =irdb; = wio — Z i (wi,j)0;.
=1

18



Chapter 1. Background

i1) From the structure equation (1.11)), for 0 <i<n—1

n—1
dwig == wik Awko+ Qip.

k=0
Since 7w =0

n—1

irdw;g = — Z i (wik)wk,o + 178 0.

k=1

Once again, (d o ir)w;o = 0 and the conclusion follows. O

The expressions of Proposition become simpler after choosing a suitable moving
frame. The construction proceeds as follows: given & € SM and {eg = &,...,ep—1}
an orthonormal basis of Tr¢M, we parallel transport eq,...,e,—1 along the geodesic
~(t) = exp(t§). This defines a moving frame on the curve:

U= {(v(1),7'(1): [t| <e} C SM.

Finally, we arbitrarily extend it to a moving frame ey, . . ., e,_1 defined on a neighborhood
of I'. We refer to eg, ..., e,—1 as a parallel orthonormal moving frame relative to £&. The
property characterizing these moving frames, in addition to orthonormality, is that on I"

(7*V)pe; =0, 0<i<n-—1. (1.13)

Remark 1.1.5. It is important to note that the parallel moving frame is defined in an
open neighborhood of &, but we only require parallelism ((1.13) along the curve I'.

Corollary 1.1.6. Let eq,...,en—1 be a parallel orthonormal moving frame relative to €.
Then, for v(t) = exp(t§) we have

Lr8; = wio, Lrwio =110, 1<i<n-—1,
at every point (v(t),~'(t)) € SM.

Proof. By Proposition we know that dnT = eg. Since eg,...,e,_1 is a parallel
orthonormal moving frame relative to &, from equation ((1.13))

iTwZ-’j = <€z'7 (W*V)T6j> =0.

The result follows from Proposition O

To conclude this section we recall two fundamental facts concerning the Reeb vector
field.

Proposition 1.1.7. The Reeb vector field T is the unique vector field on SM satisfying

iTCk = 1, deCM =0. (1.14)
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Proof. Let eq,...,e,—1 be an orthonormal moving frame relative to ¢ € SM. From
(1.10))

n—1
a =0, dOdZZij/\Hj.
7j=1

Let us prove that the Reeb vector field satisfies the identities (|1.14)). From Proposition
. 1.0l
iTOé = iT90 = 1,

n—1
irda = Z 1rwjo A 9j —wjo N iTHj =0.
Jj=1

Let us see the uniqueness. Assume that there exists T fulfilling (T.14)). Since A (der)™ !
is a volume element we have

ker a Nker(da)" ™! = {0}.

The identity iy(da)" ' = (n — 1)iyda A da™2 ensures that kerda C ker(da)" L.
Therefore
ker o N ker da = {0}.

Since kera is the contact hyperplane and intersects kerda trivially, kerda is one-
dimensional. Thus, there exists f € C°°(SM) such that T'= f - T. This implies
1 =ija = fira=f,

and yields the result. ]

By Cartan’s magic formula, the condition i7da = 0 may be replaced by Lra = 0.
Therefore, T' is a contact vector field whose flow is a family {¢;}+cr of strict contacto-
morphisms; i.e

pra = a, vt € R, (1.15)

which corresponds to (1.3) with h = 0.

Proposition contains the classical notion of the Reeb field in contact manifolds.
In our case, it has an additional key property. Recall that, for any riemannian manifold
M, the geodesic vector field G: SM — TSM is defined as follows. For each £ € SM,
let v: (—¢,e) — M be the unique geodesic in M such that y(0) = 7€ and 7/(0) = ¢, i.e,
v(t) = exp(t€). Then G(§) =7'(0) where

The following fact is well-known but remarkable. We include a proof for completeness.

Proposition 1.1.8. The Reeb vector field and the geodesic vector field on SM coincide.
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Proof. Let G: SM — T'SM be the geodesic field of SM; i.e, for each £ € SM,

3(t) = exp(tG(€)) = (v(t),7'(1)),

where v : (—g,¢) — M is the unique geodesic in M such that v(0) = 7€ and +/(0) = &.
Let us see that G is the Reeb field, i.e.,

drG = €, (W*V)Geo =0.

By definition,
d
(ms(c(E) = 5|

Fix £ € SM and let Y € X(M) such that Y(v(t)) = +/(¢) for all t. Then eo(F(t)) =
™Y (7(t)), and thus

(r*Vaweo =" (VamecenY) =7 (Vy@Y) = 0. O

The fact that the Reeb vector field coincides with the geodesic vector field of SM
will play a crucial role throughout our study.

1.2 Valuations in linear spaces

In this section, we introduce the concept of valuations, which is the main focus of our
study. We begin with the simplest case: valuations in linear spaces, which form the basis
of the classic valuation theory. For more information on this topic, one can consult [I5].

Let V be a m-dimensional euclidean vector space. We denote by I = (V') the set
of convex compact subsets of V', convex bodies of V, and endow it with the Hausdorff
metric di defined by

(4, ) = wax {sup inf{a(a. ). sup in {aa. 1)} |

where d is the distance in the ambient space V. This metric dy in (V') induces a metric
topological structure. We also denote by K™ the dense subspace of convex subsets A
with nonempty interior and smooth boundary, and such that all principal curvatures are
strictly positive in JA.
The Lebesgue volume function voly : X — R is continuous. Also the Minkowski sum
K x KK — K given by
A+B={a+b:acAbe B}

is a continuous map.

Definition 1.2.1. A waluation on V is a C-valued functional ¢ on (V') such that
p(AUB) = p(A) + ¢(B) = (AN B)
for A,B,AUB e (V).
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Definition 1.2.2. A valuation ¢: (V) — C is

o translation invariant if

o(A+z)=¢p(A), YAeK(V), ze€V;

e G-invariant with respect to a group acting linearly on V' if

p(gA) = p(4), AeK(V), geG;

e k-homogeneous if

©(AA) = MFrp(A), YA e K(V), VYA€ (0,00);

o cven (resp. odd) if p(—A) = p(A) (resp. p(—A) = —p(A)) for all A € L(V);
o continuous if ¢: (K(V),dg) — (C,|-|) is a continuous map.

The space of continuous invariant translation valuations is denoted by Val(V'), the
subspace of Val(V') of the homogeneous valuations of degree k by Valg (V) and the sub-
space of Val(V) of even valuations (resp. odd valuations) by Val® (V) (resp. Val™(V)).
If G acts linearly on V we denote by Val® the space of continuous-translation and G-
invariant valuations. We say that u € Val(V) is smooth if the map GI(V) — Val(V)
given by g + po g~ ! is smooth. The space of smooth valuations on V forms a dense
subspace Val* (V) C Val(V).

Let A € K(V) be a convex body in V. For r > 0 consider the set
Ari={x €V :da(Az) <r},

where d4 is the (minimum) distance to the set A. The set A, is sometimes called the
tube around A of radius r, and other times the parallel set at distance 7.
A simple but important remark is that

(A)s = (A+rB™)+sB™ = A+ (r+s)B™ = Ay, r,s > 0,
where B™ C V is the euclidean m-dimensional unit ball. Note also that
dig(A,B) =min{r >0: AC B,, BCA,}.
It follows that A — A, is an isometry of (IC,dp).

Theorem 1.2.3 (Steiner’s formula). For every A € K(V) and any r > 0

m

voly (A,) = Z " o —ipti (A),
=0
where wy = voly (B™), and po, ..., m € Val®™ (V) are valuations, called intrinsic vol-

umes.
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The Steiner formula is also called volume tube formula in linear spaces. The valua-
tions p; are, up to scale, to the Quermassintegrale introduced by Minkowski. The first
and last ones are ug = x and p,, = voly while p,;,—1 = %perimeter. It follows from

Steiner’s formula that
m\ w
@) = () 2
v ) Wm—i

The chosen normalization of the p; makes them independent of the ambient dimen-
sion. In other words, if f: R — RY is a linear isometry, then ;(f(A)) = pi(A). More-
over, the normalization is chosen such that y;(A) = vol;(A) whenever A is contained in
a i-dimensional affine subspace of R".

For A € K*™(V) (smooth convex body) the proof of Theorem is simple using
(cf. e.g. [15])

Ar = AUexpy(0A x [0,7]), expy(z,t):=x+tna(x),

where ng: 0A — S™ 1 is the Gauss map and S™! C V is the unit standard euclidean
sphere. Furthermore, in this case one has the following expression for the intrinsic
volumes (cf. e.g. [15])

1
1i(A) = / it (k1o K1)
0A

(m — 1) wm—;

where o is the j-th elementary symmetric polynomial and k; are the principal curva-
tures.

For a general convex body A we have the Crofton formula (cf. e.g. [15])

js(A) = (’:)“’m/Gk voly, (m¢(A))dG, k=0,...,m—1

WEWm—k

where Gry denotes the space of linear k-dimensional planes in V, i.e, the grassmannian
space, and dG is the Haar probability measure in Gry,.
Let Gr,,_j, denote the space of affine planes of dimension n — k in R”. Then

pu(A) = / x(ANH)dH,

Grn—k
where y is the Euler characteristic, and dH is a suitably normalized Haar measure.
Theorem 1.2.4 (Hadwiger’s theorem).

VaISO(V) = <:u’07 e 7,U«m>

The linear group GL(V) of invertible linear transformations of V' acts on Val(V') and
preserves the homogeneity.
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Theorem 1.2.5 (McMullen’s theorem+Alesker’s Irreducibility Theorem).

Val(V) = é P val;

1=0 e==%

is the decomposition into GL(V')-irreducible representations, i.e, Val{ has no proper
closed GL(V)-invariant subspaces.

There are however interesting GL(V)-invariant dense subspaces in Val(V'). One of
them is the so-called space of smooth valuations Val>(V'), consisting of those elements
of Val(V') that behave smoothly under the action of GL(V'). Given A € K(V), let

pa(B) =vol(A+ B) = / X(AN (z — B))dzx.

m

Then, assuming dA to be smooth and positively curved one has p4 € Val>™ (V).

Remarkably, the space Val**(V) admits two product structures which turn it into
a commutative algebra in two different ways: the Alesker product and the Bernig-Fu
convolution. For ¢ € Val*(V), the Alesker product and the Bernig-Fu convolution of
valuations are determined by

pace (B)= [ olAN@- B, paxe (B)=p(4+B).

m

Furthermore, observe that x - ¢ = ¢ and vol xp = ¢ for all ¢ € Val®(V).

1.3 Valuations in riemannian manifolds

The notion of valuation was extended to smooth manifolds by Alesker (cf. [5] [0, 14, [7]).
To simplify matters, we focus on riemannian manifolds.

1.3.1 Basic notions

We consider the class of compact sets of positive reach in M, denoted by R(M). The
definition and some basic properties of such sets are recalled in subsection [2.2.2] together
with a general construction of the normal cycle for R(M). Let us describe only the
normal cycle in the subclass P(M) C R(M) of compact submanifolds with corners for
now. For A € P(M), the normal cycle is

N(A) ={(p,v) e SM :pe A, (v,w) <0 Vw € T,A},

where

T, A= {7(0) € T,M : v € C'([0,1), 4),4(0) = p} .

For each A € P(M), the normal cycle N(A) is a compact Lipschitz (n — 1)-dimensional
submanifold of the sphere bundle SM. Furthermore, N(A) is legendrian and lagrangian
with respect to the contact structure of SM, which means, respectively

/ pAa=0, VYpecQ2(SM),
N(4)
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and
/ wAda=0, YwcQ"3(SM).
N(A)

In Corollary [2.2.17] we establish this property in the general case of sets of positive
reach.

Definition 1.3.1. A smooth valuation on M is a C-valued functional ¢ = [w,n] on

R(M) of the form
o)= [ we [
N(A) A

where w € Q"7 1(SM) and n € Q*(M), are complex-valued differential forms. For any
subgroup G < Diff(M), we will denote by V(M )¢ the space of G-invariant valuations;
ie. p€ V(M) such that u(gA) = p(A) for all A € R(M) and g € G.

We denote by B(M) the set of Borel subsets of M. Any smooth valuation may be
localized, albeit non-uniquely.

Definition 1.3.2. A smooth curvature measure on M is a C-valued functional ® = [w, 7]
on R(M) x B(M) of the form

D(A,U) :/ w—i—/ n
NA)NT—1(U) ANU

where w € Q""1(SM) and n € Q*(M), are complex-valued differential forms. For any
subgroup G < Diff(M), we will denote by C(M)% the space of G-invariant curvature
measures; i.e. ¥ € C(M) such that ¥(gA,gU) = ¥(A,U) for all A€ R(M), U € B(M)
and g € G.

The globalization map is given by
glob: C(M) — V(M), &+ (-, M).

Theorem 1.3.3 ([12, 14] and [21]). The vector space V(M) has an algebraic structure
with the so-called Alesker product, and the vector space C(M) has a module structure
over V(M) such that

glob (- ®) = p-glob(®), peV(M),®ecC(M).

The differential forms defining a valuation are not unique. This difficulty was ad-
dressed by Bernig and Brocker in [I8] using the following operator introduced by Rumin.

Definition 1.3.4. Given w € Q""1(SM), there exists £ € Q"2(SM) such that
Dw :=d(w+aAf), (1.16)

is a multiple of . The unique n-form Dw satisfying (1.16)) is the Rumin differential of
w (cf. [54]).
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Proposition 1.3.5 ([1§]).
ker[, ] = {(@,7) : Dw + 7 = 0, 70 = 0},
ker[-,-] = {(w,0) : w € (v, dv) },
where (o, da) is the ideal generated by a and da on Q*(SM).
The following class of manifolds is central to our study.

Definition 1.3.6. Let M be a riemannian manifold and G < Isom(M). We say that
the pair (M, G) is isotropic if G acts transitively over SM; i.e, given £ and ¢ in the
sphere bundle SM, there exist g € G such that ¢ = g€.

In an isotropic pair (M,G), given € V(M)% and ® € C(M), may be represented
in terms of non-invariant differential forms. However, according to [21, Proposition 2.6],

for isotropic pairs, we can always find G-invariant forms on SM representing them.
Therefore the vector spaces V(M)% and C(M)® are finite-dimensional.

If f: My — M5 is an immersion, then there exist pull-back maps
[ C(Mz) — C(My), f7: V(M2) — V(M)
such that .
(/" ®)(A,B) = ®(f(A), f(B)),
(f* 1) (A) = pu(f(A)).

Furthermore, f* is an algebra and module homomorphism. These pulled-back objects
can be represented, once again, by differential forms. This was explicitly proved in [34]
Proposition 4.7]. From a broader perspective, the pull-back map was analyzed in [9].

We also introduce the standard notation f.: V(M) — V(M3) for the push-forward
of valuations in the specific case where f is a proper submersion

(fur)(A) = p(fH(A)).

In [9], a representation of f, in differential forms is provided. We refer to [I1] for further
developments about the push-forward of valuations.

1.3.2 Federer valuations

To conclude this section, we introduce the Federer valuations, which are globalizations
of the Federer curvature measures (cf. [21]).

Definition 1.3.7. For any riemannian manifold M™ and 0 < i < n — 1, consider
Kk; € Q" Y(SM) such that for Xi,...,X,—1 € X(SM)

1

(Xt X)) = e > loldet (eo, X2y o X2 XY inys oo Xy

i —i_1
:1(n 1
( oceSn_1

. H H |4 1%
= Z |O"det (eO’X(J'(l)""7X0'(i)’Xa'(i+l)7"‘7X0'(7’L—1)>7

0€Sin—i—1
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where S,,_1 represents the set of permutations of {1,...,n — 1} and
Sin—ic1:={e€Sp—1:e(1) <---<e(i), e(i+1)<---<eln—1)}.

The i-th Federer curvature measure is

and we call

vM = glob(AM,0)
the i-th Federer valuation.
Remark 1.3.8. The Federer curvature measures and valuations are isometry invariant.

Proposition 1.3.9. In an orthonormal moving frame ey, e1,...,e,—1, we have

1

An—i—1) Z l€0z1y A+ A Oy AWe(ir1),0 N A We(n—1),0

EGSn_l

Ry =

= Z ’5‘96(1) ARRRRA 96(@) A We(i4-1),0 ARERRA We(n—1),0-
e€Sin—i—1

Proof. Since

det =0y AOL N NOp_1,
using the relation i 0; = d;0 and the identity

0; ((7"V)x,e0) = (e, (T"V)x,€0) = wjo(Xk),
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we have

H H \% 1%
Z ‘0—‘ det <€0,X0_(1)’ . e 7X0'(i)7XU(’i+1)7 “ e 7XO'(TL*1)>
_ H H \4 \%
= Z |0"90 Ao A 97171 (g,XU(l), e 7Xo’(i)’X0'(i+1)7' . "XO'(n—l)>

- Zmel A N (XE o XE G Xy X))
=2 _lol Z|€|9e<1>®“'®9<n o (X0 X2 X Xavm—l)))
—Z\ \<Z|U|9e<1>® Oy (X2ye - X0l X (z+1>=~-vXaV(n—1>)>
= Z\ \ (Z |16 (X, “+ Be(n— )(X;/(n_n))
(Z 101y (X, Oy (Xo(i))wWe(iv1),0(Xo(irr)) - ‘we(nl),O(Xo(nl))>
i

Z |U|06(1) Q- ® 06(2) ® We(i41),0 - ® we(nfl),O(Xo(lﬁ s 7Xcr(n1))>

g

== Z |6‘95(1) VANCIEIEWAN 96(1) A we(Hl)’O VANREIWAN we(nfl)’o(X]_, e ,Xn_l). L]

Remark 1.3.10. If A C M is a smooth domain, then A;(A4,-) denotes a measure on
OA. Tts density relative to vol,_1 is ((n — i)w,_;) "' times the (n — i — 1)-th elementary
symmetric function of the principal curvatures of dA. For M = R", glob(4A;) = u;.

1.4 Space forms

Our study takes place in the so-called space forms. More precisely we will work in the
real, complex, and quaternionic space forms, which are the main examples of isotropic
spaces. Further details on this topic can be found in [46] [47].

1.4.1 Real space forms

We will denote by SY* the (unique up to isometry) m-dimensional simply connected
riemannian manifold of constant sectional curvature A. If A > 0, it corresponds to the
sphere of radius r = \% For A < 0, it represents the real hyperbolic space. Finally, when
A = 0, it represents the standard euclidean space. These spaces of constant sectional
curvature are also referred to as real space forms. We denote G\ r = Isom(SY’) its full
isometry group.
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Proposition 1.4.1. The curvature tensor of SY' is given by R = ARy where
R(W, XY, Z) = gW,Y)g(X, Z) — g(W, Z)g(X,Y).
The curvature tensor has a simple expression in a moving frame.
Proposition 1.4.2. Letey,...,e,—1 be a moving frame on SY'. Then for0 <1i,j < m—1
Q5 = AN0; NO;.
Proof. By definition of the curvature 2-forms €; ; (see (1.9))
Q;(X,Y) = R(ej, e5;dn X, drY).

The concrete description of the curvature tensor R for real space forms shown in Propo-

sition yields the result:
0;(X,Y) = R(ej, e5;dn X, dnY’)
A(g(ei,drX)g(ej,dnY) — g(e;,dnY)g(ej,dm X))

1.4.2 Complex space forms

Kéhler manifolds have been the object of recent study in valuation theory and integral
geometry (cf. [17, 20} 21] 22 [34]).

Definition 1.4.3. A hermitian manifold is a riemannian manifold M?" endowed with
an endomorphism J: TM — TM, such that J? = —id and satisfying

g(JX,JY) = g(X,Y), VX,Y €X(M).

The endomorphism J is called the almost complex structure of M and g its hermitian
metric. If the 2-form ' € Q?(M) defined by

F(X,)Y):=9(JX,Y), X, YeX(M)
is closed, i.e, dF' = 0, we say that M is a Kdahler manifold with Kahler form F'.
The condition dF' = 0 is equivalent to VJ = 0, where

(VxJ)Y :=Vx(JY) = JVxY, X,Yex(M). (1.17)

We will denote by CPy the (unique up to isometry) n-dimensional simply connected
Kahler manifold of constant holomorphic curvature 4\. If A > 0, it corresponds to
the complex projective space endowed with the Fubini-Study metric. For A < 0, it
represents the complex hyperbolic space equipped with the Bergman metric. Finally,
A = 0 represents the hermitian standard space C". These spaces of constant holomorphic
curvature are also referred to as complex space forms. We denote by G ¢ = Isom(CFY)
its group of holomorphic isometries which for A # 0 coincides with the full isometry

group.
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Proposition 1.4.4 ([40, Lemma 6.9]). The curvature tensor of CP} is given by R = G,
where
GW, X;Y, 2) :=g(W;Y)g(X; Z) — g(W; Z)g(X;Y)
+9(JW:Y)g(JX;Z) —g(JW; Z)g(JX;Y)
+29(JW; X)g(JY; Z).
Remark 1.4.5. The tensor G is called the Gray double form in [22] (42)].

Previously, we introduced the concept of an orthonormal moving frame for any rie-
mannian manifold. Within the context of Kéhler manifolds, we encounter the almost
complex structure J. Consequently, we introduce a new type of orthonormal moving
frames.

Definition 1.4.6. Let M™ be a Kahler manifold and x € M. A hermitian basis of T, M
is an orthonormal basis {ey,...,e,—1} of T, M such that

e2it1 = Jeg;, 0<i<n-—1

A moving frame ey, . . ., €21, locally defined on SM will be called hermitianif {eg(£), ..., e2,—1(§)}
is a hermitian basis for all &.

The following well-known result is a remarkable property intertwining the Levi-Civita
connection and the almost complex structure.

Proposition 1.4.7. Let M be a Kdihler manifold, & € SM and {eg, ... ,e2,—1} a her-
mitian basis of T,M, v = w&. Consider ey(t),...,eam—1(t) the parallel transport of
{eo,...,ean—1} along the curve y(t) = exp(t&). Then, {eg(t),...,ean—1(t)} is a hermi-
tian basis of Ty M for each t.
Proof. Forall 0 < j <2n—1
veo(t)ej(t) =0, Vvt

From the compatibility condition (|1.17])

veo(t)Je2i(t) = J(veo(t)€2i(t)) =0.

Then, we have that eg;+1(t) and Jeg;(t) are parallel and agree in t = 0, whence eg;1+1(t) =
Jeai(t), for all ¢. O

Proposition 1.4.8. Given § € SCP{ we have

R(eo, X)eo =4)X, X ¢€ <J€0>, (1.18)
R(eg, X)eg = A\X, X € (eq, Jeo)™. (1.19)
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Proof. We prove only (1.18)) because (1.19)) is analogous. Let X = aJeq for some a € R.

Since

G(eo, X;e0,Z) =g(eo, €0)9(X, Z) — g(eo, Z)g(X, eo)
+g(Jeo, e0)g(J X, Z) — g(Jeo, Z)g(J X, e0) + 29(Jeo, X)g(Jeo, Z)
=9(X,Z) + g(Jeo, Z)g(X, Jeo) + 29(Jeo, X)g(Jeo, Z)
=g(X,Z) + 3ag(Jey, Z)

=49(X, Z2)

=4(ixg)(Z),
equation ([L.18) follows from Proposition [1.4.4] O
Corollary 1.4.9. Let eq, ..., e2,_1 be a parallel hermitian moving frame in CPy' relative

to &. Then, for v(t) = exp(t§) we have

ETHi:wi,g, 1§’L§2’I’L*1
ETWLO = —4>\91,
Lrwjo = —N0;, 2<j<2n-1

at every point (y(t),7'(t)) € SM.

Proof. This is a particular case of Corollary using Proposition O

1.4.3 Quaternionic space forms

We conclude this overview of the fundamental concepts of space forms with the quater-
nionic case. More comprehensive discussions about these manifolds can be found in [49].
For a more focused investigation on volume and area tube formulas, we refer to [38], an
article we will reinterpret from our framework in the final chapter. Lastly, we particu-
larly mention A. Bernig and G. Solanes’ contributions in the articles [23, 24], concerning
the quaternionic plane in the light of modern valuation theory.

Definition 1.4.10. An almost quaternionic manifold is a riemannian manifold M*"
such that every point x € M has an open neighborhood U endowed with three bundle
endomorphisms J;: TU — TU, 1 < i < 3, such that J? = —1, J1Jo = —JoJJ; = J3 and
satisfying

9(Ji X, ;Y)=g(X,)Y), VX, Y eXU).

In this case, we say that g is a quaternionic metric. If there exist a;; € Q!(U) such that

3
V)(JZ‘ = Zai,j(X)Jj7
j=1

tulfilling a;; = —a; ;, we will say that M is a quaternionic Kdhler manifold.
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We say that an almost quaternionic manifold M has constant quternionic sectional
curvature a if every 2-plane (X,Y), with X € TM\{0} arbitrary and Y € (X, J1 X, Jo X, J3X),
has sectional curvature a. All such manifolds are locally isometric [42].

We will denote by HP}' the (unique up to isometry) n-dimensional simply connected
quaternionic Kahler manifold of constant quaternionic sectional curvature 4A. If A >
0, it corresponds to the quaternionic projective space. For A < 0, it represents the
quaternionic hyperbolic space. Finally, A = 0 represents the quaternionic standard
space H". These spaces of constant curvature are also referred to as quaternionic space
forms. We denote by G = Isom(HPY) its full isometry group.

Proposition 1.4.11 ([49]). The curvature tensor in HPY is given by R = AR, where

Ri(W, X;Y,Z) :=g(W,Y)g(X, Z) — g(W, Z)g(X,Y)
+9(NW,Y)g(N1 X, Z) — g(LW, Z)g(J1 X, Y) + 29(L1 W, X)g(1Y, Z)
+9(LW,Y)g(2 X, Z) — (oW, 2)g(J2 X, Y) + 29(oW, X)g(J2Y, Z)
+9(SW,Y)g(J3X, Z) — g(JsW, 2)g(J3X,Y) + 29(sW, X)g(J3Y, Z).

The following notion will be useful for our purposes.

Definition 1.4.12. Let M*" be a quaternionic Kahler manifold and x € M. A partially
quaternionic basis of T, M is an orthonormal basis {eg, ..., e4,—1} of T, M such that

€ (Jieg, Jae, J3eq),
for 1 <5 <3.

Note that no assumption is made on the vectors e;,2 > 3 beyond orthonormality
in the quaternionic case. The following result naturally arises when comparing it with

Proposition

Proposition 1.4.13. Let M be a quaternionic manifold, § € SM and {eg,...,e4n—1}
a partially quaternionic basis of T,M, x = €. Consider ey(t),...,ean—1(t) the parallel
transport of {eq, ..., e4m—1} along the curve vy(t) = exp(t§). Then, {eo(t),...,e4n—1(t)}
is a partially quaternionic basis of Ty M for each t.

Proof. Consider eq(t),e1(t),ea(t), es(t) the parallel transport along v(t) = exp(t€) of
eo =&, e1 = J1(§),e2 = J2(§),e3 = J3(&). For 1 < i < 3, let us look for functions b; ;(t)

such that
3

&it) =Y bij(t)Jjeq(t),

j=1

are parallel. Given that
Veo(t)J 60 Z a;, k Jkeo
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Chapter 1. Background

the é;(t) are parallel if and only if the b; j(¢) are a solution of
0= Z b J 6() —|— sz( )CLLk(t)Jkeo(t),
7,k=1

Since this is a linear first-order differential system, such solutions exist with any given
initial condition. Taking b; ;(0) = ¢; ; we have €;(0) = e;(0). Consequently, since both
are parallel, we deduce e;(t) = é;(t). O

Proposition 1.4.14. Given eg € SM = SHP{, one has

R(eo, X)eo =4)X, X € <J1€0, Joeg, J3€0>, (1.20)
R(eo,X)eo =X, X¢e€ <60,J160,J260,J360>J‘. (1.21)
Proof. O

Proof. We only prove (1.20) because (1.21)) is analogous. Let
X = a1J1eg + asJoeg + asJseq, ai,as,as € R.
From Proposition R = ARy, and for any Z € T,HP}, x =&, £ € SM

Ri(eo, X;e0,2) =gleo,e0)9(X, Z) — g(eo, Z)g(X, ep)
+ g(J1eo, €0)9(N1X, Z) — g(Jreo, Z)g(J1X, e0) + 2g(J1e0, X )g(J1e0,
+ g(Jaeq, €0)g(J2 X, Z) — g(Jaeo, Z)g(J2 X, e9) + 29(J2e0, X)g(J2e0,
+ g(Jse0, €0)9(J3X, Z) — g(Jseo, Z)g(J3X, e9) + 29(J3e0, X)g(Jse0,
=9(X,2)
—g(Jreo, 2)g(J1 X, e0) + 2g9(J1e0, X)g(J1e0, Z)
— g(J2e0, 2)g(J2X, e0) + 29(J2e0, X)g(J2e0, 2)
— g(J3e0, 2)g(J3X, e0) + 29(J3e0, X)g(J3e0, 2)
=9(X,2)
+ g(Jreo, Z)g(X, Jreo) + 2g(J1eq, X )g(Jre0, Z)
+ g(Jaep, Z)g(X, Jaey) + 2g(J2e0, X )g(J2e0, Z)
+ g(Jze0, Z2)g(X, Jzeo) + 29(Jze0, X)g(J3e0, 2)
=9(X, Z) + 39(Jreo, X)g(Jreo, Z) + 39(J2e0, X)g(J2e0, Z) + 39(J3e0,
=9(X,2)
+ 3a19(Jieo, Z) + 3azg(Jeeo, Z) + 3asg(Js3eq, Z)
=9(X,Z) 4+ 3g(a1J1e0 + asJoeg + azJszeq, Z)
=49(X,2)
=4(ixg)(Z). O
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Chapter 1. Background

Corollary 1.4.15. Let eg,...,e4,—1 be a parallel quaternionic moving frame in HPY
relative to . Then, for v(t) = exp(t§) we have

£T9i:wi70, 0§z§4n—1
Eij,o = —4)\(9]', 1 S] S 3
Lrwro=—N0;, 4<k<4n—1,
at every point (y(t),7'(t)) € SM.
Proof. This is a particular case of Corollary using Proposition [1.4.14 O

1.5 slo-representation theory

Here, we review some fundamental notions of representation theory and sly. We include
some details for the sake of completeness and future reference but refer the reader to
[57] and [35] for more information.

1.5.1 Representation theory

Definition 1.5.1. A Lie algebra g is defined as a vector space over a field K, endowed
with a skew-symmetric bilinear map

[[]:axg—g,
fulfilling the Jacobi identity

[, [y, 2]] + [y, [z, 2] + [z, [2, y]] = 0.
We say that a vector subspace ) C g is a Lie subalgebra if [z,y] € h,Vz,y € b.

Ezample 1.5.2. If V is a vector space over K, then the space g = End(V), consisting of
all endomorphisms of V', is a Lie algebra with [A,B] = Ao B — B o A. Similarly, The
space gl,,(K), which consists of all n x n matrices over K, is a Lie algebra, and s, (K),
the subspace of gl,(K) consisting of matrices with trace zero, forms a Lie subalgebra of

g1, (K).
Definition 1.5.3. A representation of a Lie algebra g is a linear map
p: g — End(V),
such that
[z,y] = [p(), p(y)], 2,y €8

Clearly, the restriction of p to a subalgebra b is also a representation.

Given a Lie algebra g, a g-module consists of a vector space V endowed with a
bilinear map
gxV =V, (z,v)—z-0,
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such that [z,y]-v=2-(y-v) —y-(z-v) forall z,y € g, and v € V.
If p: g — End(V) is a representation, then V' has a g-module structure defined by

gxV —V, (z,v)— p(z)(v).

Conversely, every g-module V', has a corresponding representation given by
p:g— End(V), px)(v)=z-v.

It is therefore customary to identify g-modules and representations of g.

Definition 1.5.4. A g-module V (or the corresponding representation) is called irre-
ducible if the only g-invariant subspaces of V are 0 and V.

Theorem 1.5.5 (Schur’s Lemma). If V is an irreducible g-module over C, and f €
End(V) satisfies f(xv) =xf(v) for all z € g,v € V, then f = c-1d for some c € C.

1.5.2 Irreducible sly(C)-representations

We construct a standard model for the finite-dimensional irreducible representations
of sly = sl3(C), the space of two-dimensional matrices with null trace. The matrices

X,Y, H given by
01 0 0 1 0
(0D () w=(t 0. ”

form a basis of sly. The Lie bracket in this basis is simply
(X,Y]|=H, [H,X]=2X, [HY]=-2Y. (1.23)

A triple of endomorhpsisms X, Y, H satisfying (|1.23]) is sometimes called an sly-triple.
We will denote
ym = (xkym_k :0<k<m).

This space of homogeneous polynomials plays a crucial role in this work and, therefore,
deserves special attention. The distinguishing characteristic of V(™) is its structure as
an sly(C)-module as we show next.

Let X,Y, H € End(V (™) be given by

0 0 0

0
X=xz—, Y H—x%—ya—y.

8y7 = y%7

It is straighforward but tedious to check that these operators satisfy ((1.23]). Therefore,
they induce an sly-module structure on V™) and also on the whole C[z,%]. We observe
that H = [X,Y] and is diagonalizable on V(™) with eigenvalues

spec(H) ={2k—m:0<k <m},
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because of
H(xkym_k) = (2k — m)xkym_k.

In particular, each eigenspace Foi_,, is one-dimensional for 0 < k < m and
Eopm = C - zFym=F.
It is trivial to check
X (Eog—m) C Eok—ma2, Y (Eok—m) C Eog—m—2, 0<k<m. (1.24)

The following diagram represents this situation:

X X X X X
R 3 - T T
{0} E—m E—m+2 E—m+4 e Em {O}
Ne——— K~ L | S —
Y Y Y Y Y

In particular, X and Y are nilpotent. Note also that for any = € E_,, the X-orbit
{X(m): 0 <i<m} spans V(™. Such an element w € E_,, is called Y-primitive.
The proof of the following fundamental facts can be found for instance in [35] §11.1]

Proposition 1.5.6. 1) The sly-representations V™) are irreducible, for all m € N.

i) If V is an m-dimensional irreducible representation of sly we have V = Vm=1) g
sly-modules.

If V is a sls-representation with dim V' < oo, it can be decomposed as a finite sum

where each W is a subrepresentation isomorphic to some V(M) Tt follows that v € V

can be expressed as
k
v=2 2 X))
j=0 i

where each 7; is Y-primitive in Wj. This is the so-called Lefschetz decomposition of v.
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Tube formulas

In this chapter, we delve into the study of tube formulas, the core of the present work.

We begin by examining tube formulas for smooth translation-invariant valuations
in linear spaces, which are described in terms of the convolution of valuations. As an
application we compute the tube formulas in ValV () using the sle-module structure
introduced in [20]. As a result of independent interest, we obtain the Lefschetz decom-
position of the hermitian intrinsic volumes.

Then we move to curved spaces and prove that, for any smooth valuation y on a
riemannian manifold, the value of u on a tube of radius ¢ is determined by a smooth
valuation. An analogous result is established for smooth curvature measures. To accom-
plish this, we first study certain operators on valuations and curvature measures spaces,
and then we analyze the geometric properties of tubes surrounding sets of positive reach.

2.1 Tube formulas in linear spaces

The linear case is the paradigm for developing the tubular operator in riemannian man-
ifolds.

Next, we introduce the tubular operator, which assigns the tube formula to each
valuation. Additionally, we present the derivative operator to account for variations in
terms of the radius.

Definition 2.1.1. Let V be an m-dimensional euclidean vector space. Given ¢t > 0, let
T;: Val™(V) — Val> (V) be given by

(Tu) (A) = (A +tB™) = (ugm +p)(4) A€ K(V), (2.1)
where B™ is the unit ball and ppm= is the valuation given by
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We will call T; the tubular operator. Let also 0: Val™ (V') — Val>*(V) be the derivative
operator given by

= = T 2.2
ou it th (2.2)

The operator 0 has sometimes been denoted by A in the literature, but following [20]
we reserve the symbol A for a certain normalization of 0 (see (2.8))).

Proposition 2.1.2. The maps Ty and 0 are well defined and
Op = areay *u, p € Val>® (V).

Proof. Let p € Val™® (V). We need to verify that Tyx and du belong to Val®™ (V). Since
Typ is, by (2.1), the convolution of two valuations, we have Ty is another valuation.
Now let us check that O exists; i.e. that Tyu is differentiable at ¢ = 0. Steiner’s formula
tells us

m
pegm = vol(- +tB™) = Zwm,itm_i,ui.
=0

Thus
d d
a = — T = — m
m= Gl T (keemm * 1)
d
=\ Bm | L = Wi m—1 * b = 2flym—1 * [t = area k[i. O
t t=0

Proposition 2.1.3. The tubular operator satisfies the following main properties.

i)

Tt+5 = Tt e} TS = TS e} Tt- (23)
i)
d
)
. dt
o= — Tps. 2.5
dti|,_, " (2:5)
iv)
T = ZO aam. (2.6)

v) 0 is (m + 1)-nilpotent, that is 0™+ =0 and OF # 0 for k < m.
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Proof. The properties of the Minkowski sum ensure that Ty = Ty o Ty = T, 0 Ty.

Differentiating with respect to s at zero yields

d
dt

It follows that

) dt
82 = — T .
W dti 7

t=0

th,LL = Ttﬁu = 8Tt[1,

(2.7)

For each p € Val*®(V), the map ¢ — Ty is a polynomial in ¢ of degree m by (2.1) and

the Steiner formula (or by [50]). Hence
Nt

T — -
th < il df

1=

m i )
=279
i=0

t=0

Tiu

Note also that, by (2.5) and (2.6)), the derivative operator 0 is (m + 1)-nilpotent. O

Let us compute the tube formula for the intrinsic volumes po, ..., iy, using (2.6)).

For that purpose, we first compute 9 in those terms.

Lemma 2.1.4. For0<j3<m

Wm—j+1
Opj = ———(
Wm—j

Proof. Since Tys = T 0 T, we have

m
Tt+s vol = Z wm,jtm_st,uj.

J=0

On the other hand

m
Tyysvol = Z Win—j(t + )™y,

J=0

m—j+1)pj-1.

Differentiating at s = 0 and comparing coeflicients yields the desired formula. O

Theorem 2.1.5.

k ,
m— 7\ Wm—j i
TthZZ(k_;>m Ltk

=0 Wm—k
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Proof. Using (2.6)), we get

t # g (M — k4 4)!
Topr = Y 70" = > T e s

i=0 i=0
k m— 7\ Wm—j
=D (k— ')wm_] . 0
j=0 J m—k

As an application of the previous considerations we compute the tube formulas for in-
variant valuations in C". Recall that Val”(™ is the space of traslation and U (n)-invariant
valuations on C". Bernig and Fu [20] introduced the so-called hermitian intrinsic vol-
umes figq € Vall (™ for max{0,n —k} < ¢ < g < n which consitute a basis of ValV (),
They also introduced a second basis consisting of the Tusaki valuations given by

Lk/2] ;
Thg = Z <q>,uk,z’-

1=q
In Chapter 3, which is devoted to real and complex space forms, we explore these bases
in detail.
In order to compute the tube formulas of ValU("), it will be useful to recall the sl,-

module structure of found on this space by Bernig and Fu. For an euclidean vector space
V', consider the linear maps

A, L,H: Val*(V) — Val>*(V),

defined as follows

_ 2
Ap = Lmk ov, Ly = 2k 1 - v, Hv = (2k — m)v, (2.8)
Wim—k+1 Wk+1

where v € Val°(V) and - refers to the Alesker product.

Proposition 2.1.6. On Val®™) the operators A, L are given by

Ly = (k+ 1) pe+1, (2.9)
Apy = (m =k + 1) pi—1, (2.10)
while on Val?™ one has
Litgp = (k=2 + Dpupy1,g +2(¢ + 1) pir1,911 (2.11)
Apgp = (k= 2¢+ Dpgp—149-1+ 20—k +q+ Dpp_1,9, (2.12)
which implies
Ly = (k—2q+ 1)Tht14 (2.13)
ATk7q = (]{7 —2q+ 1)77@71,(171 + (2n —29—k+ 1)Tk,17q (2.14)
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Proof. The first two equalities are [15], egs. (2.3.12) and (2.3.13)]. The rest is [20, Lemma
5.2]. O

It follows that both Val®™ and Val’(™ have a natural sly-module structure. We
will see later that this structure also underlies the space of invariant valuations of CPy’,
and also a certain subspace of valuations of HPy'".

Proposition 2.1.7 ([I5, Prop. 2.3.10 (3)]). The operators A, L, H define an sly-module
structure on both Val®™ and ValV™; i.e. [L,A] = H, [H,L] = 2L, [H, A] = —2A.

The decomposition into irreducible components is as follows

Valolm) =2 ym) - vV = @y 2n=in) (2.15)
0<2r<n

where V™) is the (m 4 1)—dimensional irreducible slp-representation. In particular, for
0 < 2r < n, there exists a unique, up to a multiplicative constant, primitive element
(i.e. annihilated by A) in each irreducible component of ValV™. By the Lefschetz
decomposition, the L-orbits of these primitive elements constitute a basis of ValV (),
This basis was explicitly computed in [20] as follows.

Proposition 2.1.8 ([20, eq. (76)]). The following valuations

.
Tory i= (=1)"(2n —4r + DI1Y (—1)°
=0

(2r —2i — 1)1
.y
(2n —2r — 2i + 1)l 27"

0<2r<mn, (2.16)

are A-primitive; i.e. Ama., = 0. The family

Ty = LF "2 mg,., (2.17)

. d s (k=20 (2r—2i—1)!
= (e A DR () (&-23)!(22-%-%11)!!

Thi, 2r <k <2n—2r
(2.18)
forms a basis of ValV (™
In particular the irreducible components of ValV(™ are the following subspaces
Ig’é ={mp,2r <k<2n-2r}, 0<2r<n. (2.19)
We can now compute the tube formulas in the complex case using .

Theorem 2.1.9. For 0 <2r <n, 2r <k <2n-—2r

k—2r .
(k‘ — 27’)' 2n —4r —j k—92r—jW2n—2r—j
T — E AR Ll A p . 2.20
T o \k-2r—j jroe (2:20)
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Proof. By [20, Lemma 5.6],
A, =(k—=2r)2n —k —2r + 1)mp_1,,

and then

(k—=2r)!2n —k—2r+4)!
(k—2r —i)!(2n — k — 2r)! =i,

Aiﬂ-k,r =

Using (2.6)), we obtain the tube formula

thw
Ttﬂ'k,r _ Z 2n—k-+1 AZ

il wank
:(k—zr)!’“i%iQ I )
i R —2r —i)1(2n — k — 2r)! b
—2r .
(k—2r)! 2n —4r — j\ p_or_iWon—2r—j
e phoar—gm=2rmg L O
Wop—k jgo k—2r—j J! T+

It might be convenient to express these tube formulas in terms of other bases of
ValU("), like the Tasaki valuations 73 4. To achieve this, we compute their Lefschetz
decomposition, which amounts to expressing 7 , as a linear combination of the my, .

Proposition 2.1.10. The Lefschetz decomposition of Ty, is given by

n— 2\ (2n — 2i — 2r)!
— Tk 2.21
Thr = (& —2r 'Z(r—z> (2n — 44)! it (221)

Proof. Consider the linear map : ValV/(™ — valV(™ mapping 7, to the left hand side
of (2.21). We need to show that ¢) = id. Let us check that this endomorphism commutes
with both A and L. To check commutation with A, we only need to verify the following

r—1

(n—20)!(2n — 2i — 2r 4+ 2)! i A
< (r—i—1Dl(n—r—i+1)!2n—4) "
+(k—2r)(2n—k—2r+1)z
i=0

(n —20)!(2n — 2i — 2r)! . .
- k—2i)2n —k —2i + Dmp_1
2 =i —i—r)Ea— a1 2Een i+ 1),

1=

(k — 2r)lp(A
(n — 2i)!(2n — 2 — 2r)!
(r—i)l(n—1i—r)!(2n— 41-)!7%—1,1'

T

=(k —2r)! A (g ).
Comparing term by term, the previous identities boil down to
2(r—i)2n—-2i—2r+ )+ (k—2r)2n—k—-2r+1)=(k—2))2n—k —2i + 1)
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which is trivial.

Commutation with L is straightforward using L7y, ; = mpq1,.

Given that ¢ commutes with the operators A and L and ValV () g multiplicity-free,
Schur’s lemma implies that for each 0 < 2r < n, there exists a constant ¢, such that
QMI&’& = Cp id.

Let az; and bay; be the coeficients of 7, ; and 72,; in (2.21)) and (2.16) respectively,
so that ¥(7ari) = D 5_ azrjT2rj and Tar, = D1 bariTeri. Then

r [ r r
CrTory = Y(Tor,) = E bori E agr jTor; | = E E bar iy jTor .
i=0 =0

§=0 i=j

Comparing the coefficient of m,, on both sides we get ¢, = ba, a2, = 1 for each
0 < 2r < n. To obtain ma,, on the right-hand side, we must set j = r. However, this
value of j can only be obtained by setting ¢ = r. Therefore, we have

1 (n—2r\(2n—4r)! 9 (=N
= by = — — . (-D)"2n—-4r+ - =
Or = G2nrBom 0!( 0 )(2n—4r)! (=) @n =+ D
Hence ¢ = id, which proves (2.21)). O

By plugging (2.18) and (2.21) in (2.20) one gets the tube formulas Ty7, in terms

of the Ti,j-

2.2 Tube formulas in riemannian manifolds

We introduce the tubular and derivative operators in riemannian manifolds, extending
the definition from linear spaces. We also review the construction of the normal cycle
for the class of sets of positive reach.

2.2.1 Tubular and derivative operators

Let M™ be a complete riemannian manifold. Recall that 7 : SM — M denotes the
canonical projection and ¢ : SM x R — SM denotes the Reeb flow, which is the flow
associated with the Reeb vector field 7" on SM.

Definition 2.2.1 (Tubular and derivative operators). Given ¢t > 0, we define the tubular
operator Ty by

Ty V(M) — V(M), [w,n] — [¢iw + (pt)«(m 0 @) n, 1],

where p;: SM x [0,t] — SM is the projection on the first factor, and ¢ = ¢(-,t). We
define the derivative operator 0 = Oy by

o: V(M) — VM), p+— 4 T u.
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Definition 2.2.2 (Local tubular and derivative operators). Given t > 0, we define the
local tubular operator LT; by

LT;: C(M) — C(M), [w,n] > [¢jw + (pr)«(m 0 )" n, 1],
where p,: SM x [0,t] — SM is the projection on the first factor, and ¢y = ¢(-,t). We

define the derivative operator 0 = 0y for curvature measures by

Oar: C(M) — C(M), @ — % LT,.
t=0

Proposition 2.2.3. The definitions of Ty and LTy are consistent, i.e, if p = [w,n] =0
then Ty =0, and if & = [w,n] =0 then LT, ® = 0.

Proof. Suppose p = [w,n] = 0, and let us check that Ty = 0 for all £ > 0, i.e.

[ s [ wmodrn+ [0
N(A) N(A) A
for all A € R(M). By Proposition we have 7*n = —Dw = —d(w + £ A «). Hence

/N RONCTORES /N P00 D=~ / d(w + €N a)

N(A)x[0,t]
:—/ d¢*(w+§/\a):—/ P'w+PEN
N(A)x[0,t] N(A)x{0,t}

:/ ¢z;w—/ ¢:w:/ w—/ $rw,
N(A) N(A) N(A) N(A)

as « vanishes on N(A). Since [w,n] = 0, we have fN(A) w = — [, 0. Therefore Typ = 0.
Assume ® = [w,n] = 0. From Proposition we know w € (a,da) and n = 0.
Since ¢ is a strict contactomorphism (cf. (1.15)), ¢jw € (a, da), implying LT ® = 0. O

Let us next establish some basic properties of these operators.

Lemma 2.2.4. p

2P =irdip,  p € Q(SM)

Proof. Given a compact smooth submanifold N C SM,

/ (pe)«d*p = / ¢*p
N N x[0,¢]
= / io @ p Ndt
Nx[0,]

- (fizo) o

Since i and ¢; commute, the result follows.
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Proposition 2.2.5. For p = [w,n] and ® = |w,n]
Op = [Lrw +ir(w*n), 0] = [ir (dw + 7*n) , 0],
0P = [Lrw + ip(7m*n),0].

In particular, if n =0
op = [Lrw,0],
0P = [ETCU, 0].

Proof. Modulo exact forms we have

Together with Lemma taking ¢t = 0 yields the result. O

We generalize Proposition within the riemannian context.

Proposition 2.2.6. The tubular operator satisfies the following main properties.

i)

Tiis=TioT, =T, 0Ty (2.23)
i)
d
iti)
oy = a T (2.25)
n= dti o th- .

iv) The Taylor series expansion of T is

t
Top~ Y 0 (2.26)

i>0

Proof. i) Tt is enough to check that both sides have the same derivative with respect
to s, as they agree for s = 0. By (2.22), we have

d d
—T;oT =T;0—T
ds t© s(ﬂ) t© ds s(/vt)

= Ty[Lrosw + irdsn™n, 0]
= [¢; (Lrosw +irpsm™n), 0]
- [[£T¢:+sw + iT(ﬁ;thrsﬂ-*n)? 0ﬂ7

since ¢; commutes with L7 and ip. It follows from ([2.22]) that %THS = %Tt oT,.
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i1) Since Tyys = Ty o Ty = T, o Ty, differentiating with respect to s at zero yields

ii1) It is a direct consequence of ([2.27)).
iv) The function f : R — V(M) defined by

f(t) =T

is C*. To establish this, we first observe that by i), the first derivative of f(t)
with respect to t exists and the derivative can be expressed as

d

— T = Tou.

p tH top

In the same way, we can take the second derivative of f(¢) with respect to ¢, resulting
in

d—2T —i(Ta)—Ta2
a2 tﬂ—dt top) = L0 fL.

The pattern observed here can be extended by induction to higher-order derivatives

k

d
WTI&N = Ttak/,b

Thus, we conclude that the function f(¢) has derivatives of all orders. By definition,
the Taylor expansion around zero is

td td
7 fO=)_ 55 T
; il dt'],_, g il dtt],_,
From (2.27)) the result follows. O

At the level of curvature measures, we have the same properties.

Proposition 2.2.7. The local tubular operator satisfies the following main properties.

i)

LTy, =LT; o LT, = LT o LT,. (2.28)

i1)
d

%LTttl) = LT;09 = OLT;®. (2.29)

ii1)
) dt
0P = — LT, ®. (2.30)
dt'|,_g
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iv) The Taylor series expansion of LT is

/[: .
LT ® ~ ) 0. (2.31)
i>0
Proof. The proof is similar to the preceding proposition. O

Remark 2.2.8. Note that (2.26]) coincides with (2.6 except that the derivative operator
does not need to be nilpotent on a riemannian manifold.

Remark 2.2.9. The functions T : ¢ — Ty and LT : ¢t — LT; are not analytic in general.
However, if we consider a finite-dimensional and 9ps-invariant subspace E C V(M),
then T|, and LT|, are analytic and agree with their Taylor series expansions
and (2-31). This is the case for E = V(M)® where (M, G) is an isotropic pair.

2.2.2 Tubes in riemannnian manifolds

We review the basic properties of tubes around sets of positive reach and establish their
relation with the tubular operator from the previous section.

Let M™ be a complete riemannian manifold and let d: M x M — [0,00) be its
riemannian distance.

Definition 2.2.10. For ¢t > 0, the tube of radius t around a subset A C M is defined as
Ay :={pe M :dslp) <t},
where
da(p) = inf {d(p,q) : ¢ € A}.

We review some basic facts about tubes around sets of positive reach (introduced by
Federer in euclidean spaces and by Kleinjohann in riemannian manifolds). For such sets
A we will prove that Typu(A) = p(A¢) for any p € V(M) and sufficiently small ¢.

Definition 2.2.11 (Sets of positive reach). A set of positive reach in M is a closed
subset A C M for which there exists an open neighborhood U4 D A such that for every
p € Uy \ A there exists a unique point fa(p) € A, called the footpoint associated to the
point p, such that d(p, fa(p)) = da(p), and an unique minimizing geodesic joining p with
fa(p). We denote by R(M) the class of compact sets of positive reach in M.

By the previous definition, there is a well-defined map
Fa:Us\A—SM,  Fa(p) = (2(0),7/(0)) (2.32)
where ~ is the unique minimizing geodesic such that v(0) = fa(p) and v(da(p)) = p.

Proposition 2.2.12 ([45, Satz 3.3]). For A€ R(M), N(A) := Fa(Ua\ A) is a (n—1)-
dimensional oriented compact Lipschitz submanifold of SM called the normal cycle of

A.
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Proposition 2.2.13 (J45, Satz 3.3, Korollar 2.7]). Given a set of positive reach A in M
there exists T =1 > 0 such that A, C Ug and

i) for 0 <t <r the restriction FA|8At gives a bilipschitz homeomorphism between 0A;
and N(A), preserving the natural orientations,

ii) the distance function da is of class C* in A, \ A and

Garp)(Fa(p)) = (0, Vda(p)), — 04, =d;" ({t})

for 0 < t < r. In particular, each level set OA; with 0 < t < r is a C'-reqular
hypersurface with unit normal vector field Vd,.

The following propositions are certainly well-known.

Proposition 2.2.14. For 0 < s < r = ry4 the set Ag has positive reach and on A, \ As
we have

da, =da — s, Fy, = @50 Fjy. (2.33)
In particular (As)y = Aiys fort+s <r.

Proof. Let p € A, \ As, and put d = da(p). Let v: [0,d] — A, be the unique minimizing
geodesic with v(0) = fa(p) and v(d) = p. In particular |7'| = 1 and thus (s) € As.
Assume that 7| [s,d] does not minimize the distance between p and Ay, i.e., there exists
a smooth curve « : [0,1] — M with ¢ := a(0) € As, a(1) = p and length {(a) < d — s.
It follows that
da(p) < la) +da(q) < la) + s < da(p),

a contradiction. We conclude that 7|, q realizes the distance da,(p). Hence d4,(p) =
da(p) — s and

Fa,(p) = (7(5),7'(5)) = 85(7(0),7(0)) = ¢s(Fa(p)). =

Proposition 2.2.15. For 0 < s < rya, the restriction ¢S|N(A) s a bilipschitz homeo-
morphism between N(A) and N(As).

Proof. Taket with s <t < min(ra,s+r4,). By Proposition[2.2.13) both Faly,, : 0A; —
N(A) and Fa,lg,, : 0A; — N(A;) are bilipschitz homeomorphisms. By (2.33) we have

Dsln(ay = Faloa, © (FA|8At)_1'
The statement follows. O

Proposition 2.2.16. For 0 < t < r4 the composition wo ¢ gives a bijective Lipschitz
map between N(A) x (0,t] and Ay \ A.
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Proof. Since 7, ¢ are smooth, the restriction of mo¢ to the Lipschitz manifold N (A)x (0, ¢]
is Lipschitz. Given that 7 and ¢ are smooth in SM xR, it follows that wo¢ is also smooth
in SM x R. Furthermore, since A is compact, then N(A) is compact. Consequently,
as 7 o ¢ is smooth and N(A) x [—t,t] is compact, we deduce that 7 o ¢ is Lipschitz on
N(A) x [—t,t]. Thus, 7o ¢ is Lipschitz in N(A) x (0,¢].

Given (§,s) € N(A)x(0,t], we know by the previous proposition that ¢(§, s) € N(As)
and thus 7o ¢(x,s) € 0A; C Ay \ A.

To check surjectivity, given p € A; \ A take £ = F4(p),s = da(p) and note that
o ¢<fa 3) =Pp

As for injectivity, suppose mo ¢(&1,t1) = mo ¢(&a,ta) =: p for some (£1,11), (§2,t2) €
N(A) x (0,t]. By the previous proposition p belongs to both 0A4;,,0A;,, so t; = to.
For s € [0, 1], the geodesics v1(s) = 7o ¢(&1, 5),72(s) = 7 o ¢(&2, s) realize the distance
between p and A. Since Ay C A,, C Uy, we have y; = 72 and thus & = &. O

Corollary 2.2.17. For A € R(M), the normal cycle N(A) is legendrian and lagrangian

i.e,
/ pAa=0, / nAda =0,
N(A) N(A)
for all p € Q"2(SM), n € Q" 3(SM).

Proof. The second identity follows from the first one by integration by parts. Since
da,(p) =€ for all p € 0A,., by Proposition [2.2.13] the map

FAS|8A5+5 : aAS+€ — N(AS)

is a homeomorphism of class C'. Then

/ p/\a:/ Fy.pNFj a.
N(As) OAsie

Now, let us evaluate F} a. Let p € 0Asyc and let V € T,(0As1c). Then,

(Fa,0)p(V) = ap, ) (dFa,(V))

= (Fa,(p), (dm) py, (p) ((dFa,)p(V)))-

Since p € 0Agye C Asye \ 4,
Fa.(p) = ¢s 0 Falp) = (p, Vda(p)).
Since 7o Fa lgy,, = id|y,,, , we have
(A7) py, (p) ((dFa,)p(V)) = V.
Therefore, since Vda(p) is orthogonal to 0As;. and V € T),(0As4e),
(Fa,a)p(V) = (Vda(p),V) = 0.

Finally, since N(Ag) = ¢s(N(A)) with ¢, bi-Lipschitz

/ pAa= lim pha=0. 0O
N(4) 50T N (4,
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Corollary 2.2.18. For every A € R(M) and pp € V(M) we have pu(A:) = Tip(A) for
0<t<ry.

Proof. Let p = [w,n]. By Propositions [2.2.15 and [2.2.16| and the coarea formula,

N(A¢) Ay
:/ w—i—/ 77+/ Ui
Ge(N(A)) (o) (N(A)x (0,¢]) A
:/ ¢:w+/ (pt>*n+/n
N(A) N(A) A

= Tiu(A). u

Proposition 2.2.19. Given A € R(M) and a Borel set U, let U, = {p € As: fa(p) €
U}. Then, for every ® € C(M) we have ®(Ay,Up) = LT ®(A,U) for 0 <t <ry.

Proof. Let A € R(M) and U a Borel set of M. For each t € R
Uy = (ro¢) (NA) Nna~ 1 (U)) x (0,1]),
N(A) N7 HU) = ¢¢ (N(A) N7 HU)).
Thus

(I)(At,Ut):/ w—l—/ n
N(At)ﬁﬂfl(Ut) U,
:/ w+/ 77+/ n
be(N(A)Nm=1(U)) (mod) (N (A)Nm—1(U)) % (0,t]) U

=/‘ ﬁW+/ @MW+/U
N(A)nr—1(U) (N(A)Nm—1(U) U
= LT,®(A,U). m

Remark 2.2.20. In the subclass P(M) C R(M) of compact submanifolds with corners,
the normal cycle is more naturally defined as follows. For A € P(M) and p € A, let

T,A={+(0) € T,M : v € C'([0,1), 4),7(0) = p} ,
N'(A) ={(p,v) € SM :p € A, (v,w) <0 Vw € T,A}.

Proposition 2.2.21. If A € P(M) then N(A) = N'(A).

Proof. Let us check that indeed N'(A) equals N(A) = F4(Ua). Covering A by local
charts (locally modeled on R* x [0,00)! € R™), and considering the copy of N’(A) in
the cosphere bundle of M, one sees that N'(A) is a compact topological manifold. It
is also easy to show that N(A) C N'(A). It follows by the invariance of the domain
theorem that N(A) is an open subset of N'(A). Since N'(A) is a Hausdorff space and
N(A) is compact, we also have that N(A) is a closed subset of N'(A4). Since the number
of connected components of both N(A) and N'(A) equals the number of connected
components of A, we necessarily have N(A) = N'(A). O
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2.2.3 Tubular and derivative operators for invariant valuations

Let M™ be a complete riemannian manifold, G < Isom(M) and g € G. Denote by
g: SM — SM the induced strict contactomorphism on the sphere bundle, i.e. the only
diffeomorphism satisfying

gom, J'a=a.

Tog=
Since g is an isometry, gA € R(M) for all A € R(M), and
N(gA) =gN(A), VAeR(M).

Using the above equations, if u = [w,n], where w € Q?**~}(SM) and n € Q"(M), then

(9" 1)(A) = u(gA) = [§7w,g"n](A), VA€ R(M). (2.34)
The same holds for ® € C(M).
Proposition 2.2.22. If p € V(M) and ® € C(M)

9 Ty =Tig"'n, ¢g'LTy® =LTg*®, Vg € Isom(M).

In particular, if p and ® are G-invariant then T, Oprp, LT ® and Oy ® are also G-
mvariant.

Proof. Since §* commutes with ¢7, 7* and (p;)s, where p;: SM x R — SM is the pro-
jection onto the first factor, from (2.34) we have for u = [w, 7]

Tig" 1 = [0; 5w + (pe)«(m 0 )" g™ n, g™ 1]
= [g"djw + G*(pe)«(m 0 ®)*n, g™ n]
=g " Tp.

Differentiating with respect to t at ¢t = 0 yields
omg =g omp, VucV(M).

In particular, if 4 € V(M) then Ty and 9y are also G-invariant. The same argument

applies to curvature measures. O
Fix u € V(M)C. Tt follows from (2.24) in Proposition that
d
— T = T . 2.35
dt tH tH ( )

Since (M, G) is isotropic, V(M)? is finite-dimensional, and hence computing T u boilws
down to solving the first order linear Cauchy problem ([2.35)) with initial condition Tou =
s i.e.
t
Ty = exp(td)pu = Z 58 L (2.36)
i>0

This is the approach we will follow to obtain the tube formulas for invariant valuations
in Sy, CP}' and HPY.
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Chapter 3

Tube formulas in real and complex
space forms

Here we will obtain our main result: the tube formulas for invariant valuations of CPy'.
We will also recover Santald’s tube formulas for invariant valuations of real space forms
(cf. [59]) in a way that explains the similarities between the real and the complex space
forms.

For A € R, let V{'z and V{ denote the vector spaces of smooth valuations in S
and CPy invariant under G r and G) ¢, respectively, and define 0\ g and 0y c as the
restrictions of 8S;n to V' and dc pp to VY ¢ These restrictions are based on Proposition

2.2.22

3.1 Derivative operator in S}’

The computation of 9y is the goal of this section. Recall that we denote by Afw and
I/i]\/[ the Federer curvature measures and valuations of a riemannian manifold M.

For M = SY' it will be convenient to renormalize the Federer valuations as follows.
For 0 < i <m — 1 we define

. ST
al-)‘ = [K4,0] = (M — §)wm—iv; >,

and o) = volgm. Another common basis in the literature (cf. [15, 34]) is T8y ooy T €
VY'z- These are proportional to Ui’\ as follows

tlw; .
P A 0<i<m-—1,
wHm — ) wpm—i
A m'wm A

Tm == m*

ﬂ-m
To compute 8>\7Raf‘, we only need to determine Lrk; using Proposition In
Chapter 4, dedicated to Federer valuations, we establish a general formula for Lrk; in

real, complex, and quaternionic space forms, generalizing the following result.
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Lemma 3.1.1 ([31]). For0<i<m—1and i1 = kpyp =0
Lrk; = (m — i)lii_l — )\(Z + 1)’%—}—1; 0<i:<m-—1.

Proposition 3.1.2.

RO} = (m —i)o} — A(i +1)o}, g, 0<i<m-—2, (3.1
A A

a)\JRa-m—l = Om—2;
A A

OMNROp = O 1,

where it is understood that o>, = 0.

Let us emphasize that (3.1])) would make formal sense but does not hold for i = m—1.

Proof. The derivative of the volume can be straightforwardly computed as follows

8>\,Ra7)‘n = O) gVOlgm = areagm

= [Km-1,0] = o,
Finally, by using the relation o7 = [#;,0] for 0 < i < m — 1, along with Lemma
and Proposition [2.2.5] we obtain the desired formula. ]
3.2 Derivative operator in CP}
Here we compute the derivative operator on VY. Remarkably we will encounter an

isomorphism with ValV (™ that intertwines Oxc with A — AL.

3.2.1 Preliminar computations

We start introducing general notions on Kéhler manifolds.

Definition 3.2.1. For M a Kéahler manifold and w: SM — M its sphere bundle we
define the canonical 1-forms a, 3, € Q(SM)

ag(X) = (£, dnX),
Be(X) == (JE, dnX),
Ye(X) = (JE, (7"V)x€),

for £ € SM and X a vector field of SM.

Remark 3.2.2. If M = CPy', then these forms agree with the like-named forms defined
in [20] and [2]. The differential form /8 was also crucial in [22].

54



Chapter 3. Tube formulas in real and complex space forms

Definition 3.2.3. Let M be a Kihler manifold. Let ©g, ©1,02,0, € Q?(SM) be given
by

eo(X,Y) = <J(7T*V)X60, (W*V)y60>,
@1(X,Y) = <Jd7TX, (F*V)y€0> - <Jd7TY, (W*V)X60>
09(X,Y) = (Jdr X,drY),

O, := —do

for £ € SM, and X,Y € T¢(SM).

Proposition 3.2.4. Let M?" be a Kihler manifold and eq, . . ., ean—1 an hermitian mov-
ing frame. Then

n—1

(1) =6y, (4) ©9= Zam,o N W2it1,0
=0
n—1

(2) B=6, (5) ©1= Z (02i A waiy1,0 — O2iv1 Aw2ip),
i=0

n—1
(3) v =wip, (6) ©2= Z i N O2;41.
=0

Proof. The identities for «, 8, and v follow directly from the definition:

(1)
a(X) = (eg,dnX) = 0y(X).
(2) Since eg,...,eo,_1 is hermitian e; = Jey. Thus
B(X) = (Jep,dnX) = (e1,dn X) = 01 (X).
(3)
")/(X) = <J€0, (W*V)X€0> = <€1, (W*V)X€0> = wL()(X).
(4) Since

Og;0J = =041, Oop10J =10y, 0<i<n-—1L1
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we have

2n—1
O0(X,Y) = Y 0;®0;(J(7*V)xeq, (T*V)yeo)

~

~0
-1 n—1
62i(J(7*V) xe0)02:((7*V)yeo) + Z G251 (J (V) xe0)02i+1((7"V)yeo)
=0

n—1
== b 1((m"V)xeo)02((7"V)yeo) + Z 02;((7*V) x€0)02i+1((7"V)yeo)
=0

3

Il
(]

.

3 ©
L

[e=]

7=

n—1
= —woiy1.0(X)w2i0 (V) + Y waio(Xwair10(Y)
i=0

n—1 n—1
= > (w2i,0 ® Waig1,0 — W2i+1,0 ®w20) (X, Y) = > (w2i0 Awaig10) (X, Y).
1=0 =0
(5) Consider
n(X,Y) = (Jdr X, (7*V)yeo)
Then
Since
2n—1
ne(X,Y) =Y 0; ® 0;(Jdr X, (" V)yeo)
i=0
n—1 n—1
= Z 92i & OQi(JdTFX, (W*V)Yeo) + Z 92i+1 (9 02¢+1(Jd7TX, (W*V)yeo)
i=0 =0
n—1 n—1
= - Z O2i+1 ® Oo;(dm X, (1°V)yeo) + Z 02; ® Oait1(dm X, (7°V)ye€)
i=0 i=0
n—1 n—1
= b ®wap10(X,Y) — Z 2i11 @ woin(X,Y),
i=0 i=0
we have
n—1
01 = Z 02 @ Waig1,0 — 02i41 @ wai0 — (W2it1,0 @ B2; — waio @ B2i41)
i=0
= Z i A\ w2ir1,0 — 02011 A waip-
i=0
(6) The given expression for O4 follows similarly. O
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To describe V{ ¢, we introduce the classification of Q¥=L(SCPy) e (cf. 1L 21]).

Theorem 3.2.5 ([51]). For max{0,k —n} < q< & < n define

ﬁk,q = Cn,k,qﬁ A @nfk+q,k72q71,m k> 2q,

C ’k’
Vk,q ‘= %’Y N ®nfk+q71,k72q,qy n>k—q.
where
Oupe =03 NOY A 65,
1
Cn,k,q = | | | .
q'(n —k+ @) (k — 2q)lwap
Then

Q¥ (SCPYe /(a,da) = (Brq: k > 29) © (Yg: >k — q).

Theorem 3.2.6 ([21]). For max{0,k —n} <g < % <n < oo, we set

1y = [Bras O] € Vig, k> 2q,

MY (g + i)

A

tor= 3 (7) S sl € Vi
>0

k2,
A A
Theyq "= Z ( >Mk,i €Vic.
i=q q
Then {/’L£7q}k‘,q and {T,i"q}kyq are two bases for Vi ¢ and Vi = Vi = ValV™ a5 vector
spaces.

The valuations ,ugq € Vic = ValV(™ coincide with those previously studied as Ik, q
in [20]. For A # 0 they agree with the basis elements examined in [2] only if & > 2q.

In light of Proposition [2.2.5] we aim to compute the Lie derivatives of the differential
forms B4 and 7y 4, as their globalizations generate the entire space of valuations VY ..
To achieve this, we present several technical lemmas. 7

Proposition 3.2.7. In CP}

1) da=-0,, (4) dOg = -A(aAOL+BAO,),
(2) dB =6y, (5) dO, =0,
(3) dy =200 — 2)\0; — 2)a A B, (6) dOs =0

Proof. (1) It is the definition.
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(2)

By Proposition we have = 01, in a hermitian moving frame. The structure
equation (|1.10]) ensures us

n—1
db; = — Zij A Gj. (3.4)
=0

On the other hand, since e; = Jeg and 7*V commutes with the complex structure
J, we have

wi,25(X) = (Jeo, (7" V) xez5) = —(eo, (T°V) x Jezj) = —wo2j+1-
In the same way wj 2j4+1 = wo,2j. Finally, by (3.4) the result follows

In a hermitian moving frame, from Proposition we have 7 = wy 9. By equation

(L.11)) and wy 2 = —wo,2j+1, W1,2j+1 = Wo,25, we have
n—1
dwyp = — E wi kg Awro + Q1o =200 + Q0.
k=0

The curvature tensor of CPy is given by R = AG. Then, since Q19 = R(-,-; eq, Jeo)
it follows
G(X,Y;e0, Jeo) =9(X;e0)g(Ys Jeo) — g(X; Jeo)g(Y; eq)
+9(J X5 e0)g(JY; Jeo) — g(J X Jeo)g(JY; €q)
+29(JX:Y)g(Jeo; Jeo)
=a(X)B(Y) = B(X)a(Y)
+a(JX)BJY) — B(JX)a(JY)

+ 292(X7 Y)

=a(X)B(Y) - B(X)a(Y)
—BX)a(Y) + a(X)B(Y)
+205(X,Y) = (2a A B +202)(X,Y).

(6) Since ©9 is the Kahler form dOs = 0.

(4) Since d?y = dOs = 0,

0 = d*y = 2dOy — 2X\dOy — 2)\d(a A ) = 2dOg + 200, A 4 2 a A Oy,

which yields the result.

(5) Since ©; = df then dO; = d?3 = 0.

Lemma 3.2.8. For any Kdahler manifold, it is satisfied

o8

ira =1, ir©1 =17
iTO2 = B, irf =iy =1irOy = i760, = 0.
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Proof. Since dr(eg) = eg and (7*V)reg = 0

ira = (eg,dm(ep)) = (ep,e0) =1

irf = (Jeo,dr(eg)) = (Jeg,ep) =0

ity = (Jeg, (7*V)reg) = (Jep,0) =0
(i7©0)(Y) = (J(7"V)reo, (m*V)yeo) = (0, (7*V)yeo) =0
(ir©1)(Y) = (Jeo, (7" V)yeo) — (JY, (7" V)reg) = v — (JY,0) = v(Y)
(ir©2)(Y) = (Jeg, drY) = B(Y)

Finally, form Proposition [1.1.7] we know i70; = —ipda = 0. O

Corollary 3.2.9. In CP}

(1) Lra =0, (4) L7Og = —AO1 + Aa A7,
(2) Lrp=r, (5) L7101 =209 —2X02 — 2 a A f,
(3) Lry=—4)\5, (6) L7163 =061.

Proof. This straightforward computation uses Cartan’s magic formula, Proposition [3.2.7]
and Lemma [3.2.8 O

Proposition 3.2.10. In CP}

ET(@a,b,c) = — a)\@a,uprl’c 4+ ada Ay A @afl,b,c

+ 2b@a—i-l,b—l,c - 2b)\(aa,b—l,c—&-l — 2bAa A /8 A ®a,b—1,c + C@a,b—i-l c—1
ET(B A @a,b,c) =Y A ('_)a,b,c - a)\ﬁ A ®a—1,b+1,c

—ala A ﬁ ANy A @a—l,b,c + 2bﬁ A @a+1,b—1,c

- Qb)‘ﬁ A @a,b—l,c—i—l + Cﬂ A ®a,b+1,c—1
['T(’V A @a,b,c) = - 4)\/8 A ®a,b,c - a)\’y A ®a—1,b+1 c

+ 2b7 A @a-i—l,b—l,c - Qb)"y A @a,b—l,c—H
—2Aa A BAYANOgp—1,c+ Y AOgptic—1-

Proof. Given that Lr is a derivation

ET(@a,b,c) =a (_)‘@1 +Aa A ’Y) @a—l,b,c
+b (2@0 — 2009 — 2 a A ,3) G)a,b—l,c +¢010,p.c-1

= —aAOy_1pt1c+ AANANYANOG_1pc
+ 2b@aJrl,bfl,c - 2b)\(_)a,bfl,chl — 20 a A /B A @a,bfl,c + C@a,bJrl c—1-

Corollary for B and ~ yields the result.

29



Chapter 3. Tube formulas in real and complex space forms

Proposition 3.2.11.

Wan—k
n L7Prg=2n—k+q+ )14+ (k—2¢+1)Br_1,4-1

(n—k+q+1)(k—2g—1)
(k —2q)
_ i(k —2¢+1)2n —k+1)Brt14

27
N o (2n—k+1)(g+1)
2)\(]{? 2q ].) 271_(]{; — 2q) /Bk_;'_l’q_i_l

Won—k+1

+2

ﬂk—l,q

—(n—k+q)CnrgAaABAYANOn kg 1k-2¢-14
Won—k Loy = _2)\(2n—k;+1)(k—2q—|—1)
Woan—k+1 ’ 2r(n —k +q)
+(k=2¢+1D)v-141
+2(n—k+q+1)m-14
2n—k+1)(k—2q¢+1)
2m(n —k+q)

— Ak —2q) (&n ;]g;__l;((;)] 1) Ve+1,q+1

6k+1,q

—An—k+q—1) Vi+1,q

- (k - QQ)Cn,k,qAa A 5 A i A @nfk+q71,k72q71,q

Proof. Fora=n—k+q,b=%k —2q — 1 and ¢ = ¢, in Proposition [3.2.10

C 3 ) c 7k’
L7 B,q =2 1 + " Br—1,9-1
n,k—1,q Cn,k—1,q—1
+2(k —2q — 1)7’ LB 1q—An—k+ Q) LR A
Cn,k—1,q Cn,k+1,q
7k7
—oAN(k—2q—1)— "R g
Cn,k+1,q+1

- (n —k+ Q)Cn,k’,q)\a ANBA YA Gn—k+q—1,k—2q—1,q-

Fora=n—k+q—1,b=k —2q and ¢ = ¢, in Proposition [3.2.10]

7 ) ’k?
LTYeq = — g)—uka Brt1,q + Q#W’k—l,q—l
Cp, k+1,q Cnk—1,q—1
+2(k — 20) B0y An— kg — 1R
Cn,k—1,q Cnk+1,q
Cn.k,q
—2Xk -2 )7’)%—}-1,(1—{-1
Cnk+1,q+1

— (k= 2q)cn kg A A BAYAOn_kig-1k-2¢-1,4-

2

=

Lastly,
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Chapter 3. Tube formulas in real and complex space forms

Proposition 3.2.11] which we have just established, provides a general formula for the
Lie derivative of a basis of the vector space Q"= }(SCPJ)/(c, da). Therefore, by glob-
alizing these Lie derivatives, given Proposition [2.2.5] we will obtain a closed expression
for 8>\7(cu27q. Recall that [By 4,0] = “27(1 (for k > 2q), while [y 4,0] is given next.

Lemma 3.2.12 ([2]).

(2n—k)(g+1)
[0, O] = pih g — on(n k1 a) Mhisqits n—k+q>0. (3.5)

Proof. Consider n = (05— BA7Y) A Op_k+q—1k—2¢—1,4- Then
d77 =7 A Gn—k+q—1,k—2q,q
+ Qﬁ A ®n—k+q,k—q—1,q

—2AB A @n—k+q—1,k—2q—1,q+1a mod (a, doz).

Since [dn, 0] = 0, globalizing both members the result follows. O

Proposition 3.2.13. For k > 2q

Won—k
— - Orctipg = (k=20 + D1 g1 +2(n—k+ g+ Dpd_q, (3.6)

Won—k+1

A
- 7(27@ —k+1) ((k —2q+ 1)#24—1,(1 +2(¢+ 1)M2+1,q+1)
and
Wan—2q A A

—=0 = 1a—-1—(2n—2 1)— . 3.7
o age OMCH2ag = F2a-La-1 (2n —2q + )27ru2q+1,q (3.7)

Proof. Equality (3.6] follows from Proposition and Proposition[3.2.11|together with
Lemma [3.2.12)

Let us now prove (3.7). Note first that from Proposition |3.2.11] and Lemma [3.2.12

we get
[£772;,5,0] = %M%\j—l,j—l
| Won-2j+1 2n—-2j+1)(n+1) i \
Wop—9j n—j 277”2j+1’j 13
L Wen—2j41 (2n—2j+1)(2n—2j—1)(j+1))\72ﬂ>\' 4 (32)
W2 o A2 H2i+3.5+1
PN \?

RPN , T
=:ajpyj_1 j-1 +bj —H25415 ¥ G 24,541
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Chapter 3. Tube formulas in real and complex space forms

Then, by Proposition and observing that a, = 2

™

n— q
(q + i) A
aq+iﬂ2q+2z‘—1,q+z’—1

n—q—1 n—
A\ (g +9)! ATl
8)\7(C/’L§\q q Z <> q [[ET'Y2q+2z,q+z; 0]] +2 T aru'%n—lm—l

’L
n— 7,+1(
q+1)! A
+ Z ( ) qu+z‘ﬂ2q+27;+1,q+i
1=0 ’
—g—2 : .
N (AT s
T 1 CatiM2g+2i+3,q+i+1
i=0 T

A
= Ggli2g—1,g-1 + ;((q + Dagr1 + bo)idgr14

n—q j . ; ]
M (g +))! (¢+j—1)! (g +j—2) A
+ Z () ( " Qgtj + quﬂ'ﬂ =+ chﬂ'*? H2q+2j—1,g+j—1

‘ T
Jj=2

A straightforward computation using kwy = 27wy _o shows
3G =1Vaj+ (= 1)bj_1+¢j—2=0

and the result follows. O

3.2.2 A remarkable isomorphism

Note that by (2.8)) the linear map ®q: ValV/(™ — valV(™ given by q)O‘ValUW = woy,_p1d
k
satisfies
doc = <I>OOAO(I>61.

A similar identity holds for all A, which will be crucial for our determination of tube
formulas in CPy'. Let us consider the linear isomorphism

./—")\7@: ValU(n) — V;&C, Hi,qg V> /1,2761.
Theorem 3.2.14. The linear isomorphism
o . U(n) 0 A
P, = f)\,(c ody: Val — V)\,(C’ Mg " Wan—k Mg q-

fulfills
e =®y0(A—AL)od, .
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Chapter 3. Tube formulas in real and complex space forms

Proof. By combining Proposition [3.2.13 Proposition and the fact ﬁ = 2%, this

is straightforward to check:

@y 0 (A= AL)(trg) = (k = 2¢ + Dwon—ky1tp-14-1 +2(n — k + g+ Dwan 11414
— Ak = 2¢ + Vwan— k1811, — 2Mq + Dwon—k10341,g41

= Won—k+1 ((k —2q+ 1)#271,(171 +2(n—k+q+ 1)#271,(1
A
= =k +1) (k= 20+ Dby + 20+ Dotk )
= Wan—kOACHEq = OAC © Pa(ttg)- u

Remark 3.2.15. The linear isomorphism we have constructed serves as a valuable tool
for expressing the derivative operator simply in terms of the slo-representation within
ValV/ (™, However, it is important to note that this isomorphism does not constitute an
algebra isomorphism.

In real space forms we have a result similar to Theorem [3.2.14] but only in a hyper-
plane of V.

Theorem 3.2.16. The linear monomorphism

T, Valolm Vj\ngl, L — U,;\

fulfills
OroVUy=Vyo(A-AL).

Proof. By Proposition |3.1.2] and Theorem [2.1.9

Ok o Uy(p) = O\rop = (m —k+ 1)op_y — Ak + 1)opy
=U\((m —k+ Dpp—1 — ME+ 1)pg41)
= U\(App — ALpg). O

Note the dimension difference between the source and the target of ¥. We will show
that there is no isomorphism between Val®™) and Vg intertwining 0 and A — AL. This

is essentially because (3.2) and (3.3)) differ from (3.1)).

3.3 A model space for tube formulas

We next perform some abstract computations that will easily lead to the tube formulas
in both complex and real space forms via and . The same approach will
allow us to determine the kernel, the image, and the spectrum of the derivative operator
on VX’}R and V.
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Chapter 3. Tube formulas in real and complex space forms

3.3.1 A system of differential equations

Consider the decomposition

Clz,y) = P V™ (3.9)

m>0
where V(™) consists of m-homogeneous polynomials in two variables
ym) .= <xkym_k 0 <k <m),
and recall that X = :108%, Y = ya%, and H = [X,Y] induce an sly-structure on each

V(M) Tt follows that X,Y, H induce an sly-structure on C[x,y], whose decomposition
into irreducible components is .

In Proposition we established that any finite-dimensional irreducible represen-
tation of sly is isomorphic to some V(™).

Motivated by Theorem [3.2.14] we consider

0 0

Y=Y - AX=y——z—
which is a derivation on C[z,y]. Observe that V(™ is Yy-invariant for all m > 0.
Therefore, we can consider Y|y (m). It will be sometimes convenient to consider the

monomials py, x(z,y) := (7')zFy™ *. In these terms

YVapmyk = (m =k + L)pmp—1 — Ak + 1)pm ot 1- (3.10)
Our goal here is to solve the following Cauchy problem: find p, ;: R — V(™) such that
d

—Pm t) =Y, m t’
ey k(1) = Yapm k(1)

. (3.11)
Pm,k(0) = <k>xkym_k, 0<k<m.

Since ((3.11)) is a linear system of differential equations, we determine its solution by
Pk (t) = exp(t Yalyom) )pm

m o (3.12)
= (7) eple Vo)), 0k <

Given that dim V(™ < oo and Yi|ywm € End(V™), the function exp(t Ya|ym)) is
always defined and analytic in ¢t and A. We simply write exp(tY)).

We will use the standard notation

sin(v/At)

—  A>0,

VA
siny(t) :== t A =0,
sinh(y/|A[t) N <0

VIAl
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Chapter 3. Tube formulas in real and complex space forms

which is an analytic function in both A and ¢, and cosy(t) := & siny(t).

&‘Q‘

Proposition 3.3.1. For any \,t € R, we have
exp(tYy)r = xcosy(t) + ysiny(t)=: u, exp(tYy)y = ycos(t) — Azsiny (t)=: v.

Proof. Since clearly
Yibe = (=NFz, Y = (-0,
we have

tk
exp(tYy)zr = Z EYAI%

k>0
Z t2k Z t2k+1 N
ko + )y
k>0 ) k>0 (2k +1
= x cosy(t) + ysiny(t).
In the same way, we can compute exp(tYy)y. Since
Vby = (=Nry, Yy = (-0,
we have
th .
exp(tYa)y = ) Y
k>0
12k £2k+1
_ A k+1
sz MY+ 2k+1)( )y
k>0 k>0
t2k £2k+1 N
= - A
=2 G (2k)! Y BRI 2k + 1)

k>0 k>0
= ycosy(t) — Azsiny(t). O

The following standard and elementary fact will be useful.

Lemma 3.3.2. Let A be a finite-dimensional algebra. A wvector field on the underlying
vector space of A is a deriwvation if and only if its flow ¢; satisfies

oe(p-q) = ¢e(p) - e(q), Vp,g€ AVt ER.
In other words, each ¢¢ is an A-morphism.

Proof. Assume that X = ¢, is a derivation. Let p,q € A be and consider g(t) :=
¢+ (p)¢e(q). Since X is a derivation

X(g(t) = X(d1(p))e(q) + ¢ () X (¢:(q))
= ¢y(p)di(q) + ¢¢(p) ¢ (q)

= L on)ona) = g (1),
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Therefore, g(t) is an integral curve of X. Since g(0) = ¢o(pq) it follows that g(t) = ¢+(pq).
Conversely, assume that ¢, is an A-morphism for all £ € R. Then, for all p,q € A
and ¢t € R, we have

ot(p - q) = ¢e(p) - Pe(q)-
Differentiating both sides with respect to t at ¢ = 0, we obtain

L s =2 () @)

dt |, dt =0

Using the fact that %‘tzo(bt(p) = X(p), we get
X(p-q)=Xp) q+p- X9

Therefore, X is a derivation. O

Theorem 3.3.3. The solution of the Cauchy problem (3.11)) is

P (t < )ukvm b (3.13)
= <T/::L> zcosy(t) + ysiny (£))* (y cos(t) — A siny (£))™F (3.14)
= O ( ) Ty, (3.15)
7=0
where
Mgt = S (A (’:__ ];L’> <2> s 2h (1) cog™ R+ ), (3.16)
h>0

Proof. Since Y) is a derivation, exp(tYy) is a C[z, y]-morphism by Lemma Hence
exp(tYy)aFymFk (exp(tYA) ¥ (exp(tYy)y)™F = wFo™F,

Comparing with - 3.12)) yields (3 .

It remains to prove ({3.15)). Putting s = siny(t), c = cosy(t) we have
m k m—k m k af, Nk—a M=k b, \m—k—b
Y twet ) e — sy = (M) 0 (F) e (M F) (aas)we

()"
)

(_)\)b8a+bcm—a—bxk—a+bym—k+a—b

(=)
()26

(—A)I~hgith=2h m—j—k+2h j,m—j
where we changed a = k — h,b=j — h. Using
(1)) G20 = G2 EG) 619
k)J\h)\j—h k—h)\h)\Jj
which is elementary, yields . O
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3.3.2 Eigenvalues and eigenvectors of Y)

Given f:V — V an endomorphism of vector spaces, we denote by spec(f) the set of
eigenvalues of f and by E,(f) the eigenspace associated with each a € spec(f).

Lemma 3.3.4. The endomorphism Y|y, m) is diagonalizable with simple multiplicities
and
spec(Yalyom) = {(% — VA 0<k< m} :

E(Qk—m)Vj(YA’V<m>) =C- ellqegl_k?

where e1 :=y + vV —Ax and ez ==y — vV —Ax.
Proof. The result is trivial to check for m = 1. Since

Ya(z) =y,
YA(y) = — Az,

we have

Yi(e1) = vV=Ay — Az = v —)dey,
Yi(e2) = —V—=Ay — Az = =V —dea.
Given that Y) is a derivation
Vieh = keb1Yyer = kv/= ek,
Yaed F = (m — k)el F ey = —vV=A(m — k)ej ",

Hence

Ya(efel ™) = (2k — m)vV/=Aefel =k,
as stated. O
Remark 3.3.5. It is interesting to notice that the spectra of Yy and v—AH when re-

stricted to each V(™) are identical. These two operators are thus intertwined by the

linear isomorphism z*y™ % — e’fegn_k .

Lemma 3.3.6. For 0 < k < m, the eigenvector asociated to (2k — m)v/—X\ is given by

() e vt —v=sar s = o () (7 )R e

k a k—a
a,b

Proof. Using the binomial theorem, we have

Similarly,

67



Chapter 3. Tube formulas in real and complex space forms

Therefore
k —k
(m) (y+ /7—)\3:)’“(3/— /_)w)m—k _ Z (m) ( ) (m )(_1)b(\/_7/\)a+b$a+bym—a—b'
k — k) \a b

Finally, we only need

m\ (k\ (m—k\ [fa+b\y/m—a—b m

k) \a b N a k—a a+b)
which is straightforward. O

3.3.3 Image of Y,

Using Lemma we can conclude that Y)|j m) is bijective if and only if m is odd. If
m is even, then the kernel is one-dimensional. An explicit description is the following.

Proposition 3.3.7. If m is even, then

im( Y|y om)) = ker Zp, 5, (3.18)

82 82 m/2
Zon= (g Va)

where

Proof. By the binomial formula

m/2

m— m/2—i [T 2 om m—
Zualahy ) = S (M) b s
=0

_ A <7Z//22> Kl(m — k)! (3.19)

if k is even, and Z,, \(z*y™ %) = 0 if k is odd. Therefore
va)\ o Y)\(:L,QH*lymfZlfl) _ Zm7,\((2l + 1)x2lym72l _ )\(m _9] — 1)x21+2ym72l72)

B (m/2) (2 + 1)!(m — 20)!

N5 (;”Zi) (20 +2)l(m —2— 1)1 =0

This shows that im(Y)) is a subspace of ker Z,,, x. Given that Z,, ) is not zero, we have
dimker Z,,, x = m, and by Lemma we know that the image of Y)|\(m) has the
same dimension. This yields (3.18]) O

Next we compute, for even m and given ¢ in the image of Y)|i,(m), the preimage
Y, ({eh)-
A
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Proposition 3.3.8. Consider

k:—i—2j —1) (m—k—25— 1!
Prei= 2% “Dim ko Pk €V (3.20)
j=>0
Then

VAPt = Pmk—1 — Cm k" (3.21)

where ¢y = 0 if m — k is even, and otherwise

m— i

ek = A" = (3.22)

(k—1D!M(m —Ek+ 1)1
Proof. Using (13.10))

Yarmkt2i = (m —k =25 + 1)pmpyoi—1 — MK + 25 + 1)Dm k2541

(k 1) (m k + 1)”Y>\Pm k

:Z N (k25 = 1)Mm =k = 2j = DN{(m =k = 2] + Dppseraj—1 — Ak + 25 + 1)pm 241}
Jj=20

= AR (= k= 1= 2)W(m — k —1) = Y AR (41— )1 (m — & — D)1k — Dpyn ks
1>0 120

m
=Pm.k—1 — Cm kT - O

With these ingredients at hand, for even m, we can now compute a preimage by Y
of any element in imY), as follows.

Proposition 3.3.9. Let II: yim) _ y(m) pe given by py, . — Py p+1. If m is even then
Yaoll(p) =¢, Vo cimYy|ym (3.23)

Proof. Let 0 < k < m. Since (m —k + 1)cpm i — Ak + 1)em g2 = 0, using (3.10) and
B20) we get

(Y oIlo Y))pmy =Yx o IL((m — k + 1)pmg—1 — A(k + 1)pm k+1)
=(m—k+1)Y\Pp i — Ak + 1)Y\Py, py2
:(m —k+ 1)pm,k—1 - A(k + 1)pm,k+1
—((m—=k+1)cmp — ANk +1)cmpr2)2™ = YaDm k-

For £k =0 and &k = m,

Yy oTlo Ya(y™) = —AYa(Pr2) = —A(may™  — cpuox™) = Ya(y™) + Aem2z™,
Yy oIl o Y3 (2™) = YA(Pmm) = ma™ 'y — cppma™ = Ya(2™) 4 crmz™.

Since ¢y, = 0, and ¢,,2 = 0 if m is even, the result follows. O
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The following consequence of Proposition [3.3.8 will be useful later.

Proposition 3.3.10.

(E+2))M(m—k—2j—2
Pk =Y N F(m — )1 ! YaPmk+2j+1 + Cm 12"
7>0
Proof. Applying Y on both sides of (3.20)), and using (3.21)) yields the result. O

3.4 Tube formulas in complex space forms

Recalling (2.15)) and Proposition we get an isomorphism I,: W, — Val/(™ of

slp-modules from
@ y/(2n—ar)

0<2r<n

to Val’(™ by putting I,,(y>* %) = mg., (i.e. mapping Y-primitive elements to A-
primitive elements) and

b
(k —2r)!
1

_ k—2r 2n—4r —
= 7(k_2r)!L Ln(y™ ™)

In(pan—arh—2r) = Ly (X k=2 (g2niny)

L
(k—2r) P

By Theorem the map Jy ¢ := ®yo Il,: W, — V{ fulfills

OvcoJdyc=JacoYh (3.24)
We define \ Wonk
Oir = In(P2n—ark—2r) = i — 21 "k (3.25)
which satisfies
Oconr=Cn—k—2r+1)op_y, — Ak —2r+ 1)op, (3.26)

We arrive at our main theorem.
Theorem 3.4.1. The tubular operator Ty in VY  is given by
2n—A4r

A A
- Z ¢2nf4r,k72r,j(t)aj+2r,r’
Jj=0

where

Ohaa®) = XA () () sl ) o)

h>0

70



Chapter 3. Tube formulas in real and complex space forms

Proof. By (12.36)), using (3.24) and (3.25)), and putting m = 2n — 4r, we get

Tiop, = exp(tdrc) (oh )
= exp(tdxrc) © Irc(Pmr—2r)
= Jxc o exp(tYa)(Pmk—2r)
= nc(Pmr—2r(1)).

Using (3.15)) the result follows. O
Remark 3.4.2. Tt is also worth noting that V{ ¢ = @y<p.<, Iy Where

I = (V) = {akr L or < k< 2n— 27"} (3.27)
and that these subspaces are 0 c-invariant. In particular, given ¢ € I;’(E one has

Ty(p) € Z)'¢. This definition is an extension of (2.19) within ValV (™),

The tube formulas in terms of the T,i‘,i can be obtained from Theorem using
(2.18]) and (2.21)) which hold verbatim replacing W];\’T, T,i‘,r for mp p, Th -

Remark 3.4.3. The tube formula for the volume ag‘mo = volgpp Is given by the following
simple expression

volepp (At) = Zsm)\ - cos&(t)aﬁO(A), (3.28)

which is Theorem 4.3 of [21], since O';:O = U.)Qn,jTJ{\’O = ®,(p;). The tube formulas
TtU%n—Qr,r are equally simple

2n—A4r
A 2 : 2n—4r— ] i A
Tto-2n—27’ r — Sln ) COS)\ (t)o'j+2r7r.

The tube formula for U%m is also simple

2n—A4r

P g on—4
To%,, = Z (—A) sind (¢) cosy" ™™ J(t)aj\ﬂr,r.
=0

We have a clear explanation of this phenomenon. By Theorem [3.3.3

2n—A4r 2n—4r

DP2n—4r2n—ar (t) = exp(tYA)x = (aj COS) (t) + Yy sin)\ (t))
Pan—aro(t) = exp(tYy)y?" =" = (y cosx(t) — Awsin(#))*"~*".
Finally, since

Tt02r,r = J)\(p2n74r,0(t))7 Tt0'2nf4r,r = J)\(p2n74r,2n74r(t));

we have that the simplicity of the formulas is due to the lack of x or y in each polynomic
representation of Ué\w and aé\n_ dr
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Remark 3.4.4. An interesting feature of the previous tube formulas is the following self-
similarity property, which is explained by (13.24]). Let

A Ly nt2j A LAy A
GLi: Ve — Ve s G1 i (0%r) = Okyojrise

Then one has T} o G;\LJ = Gf‘l’j oT,.
Ezxzample 3.4.5. To illustrate the self-similarity property, we present an example in lower
dimensions. It is essential to note that the maps wa connect spaces with the same
dimensional parity, dividing {V;L,(C}NEN into two equivalence classes. Let us consider
n = 2 and j = 1. Thus, we have the map G%}l: V/%,(C — Vic. The space V/%,(C has two
invariant subspaces
2 2,0 2,1
Vice =Lyc &1y ¢
and V;\l ¢ has three of them
4 4,0 4,1 4,2
e =Lc®L)c DI
According to the definition of G%‘J, we have
A 2 4,1 4,2
Gy, Vic) =Lic® Lye

This scenario can be represented using two diagrams, constructed as follows. Each
invariant subspace is represented as a row of squares and each square as a basic element
a,;\,r. The subspace I;’(g forms the base of a pyramid. By stacking the subsequent rows,
we construct the corresponding diagram. In this example, we have two diagrams: one
associated with V2  and another with V{ . The domain and range of the map Gé\,l are
shaded accordinglj 7

2
V)\,(C

2,0 | _a A by A A
Iyc 90,0 | 91,0 | 92,0 | 93,0 | 94,0

)

4
Vic

4,2 A
Iye | 942

4,0 | ) A A A A A A A A
I ¢ 90,0910 %20 930 | 940 | 950 | 96,0 | 97,0 | 98,0

)
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Example 3.4.6. We draw a diagram for an odd dimension to observe the structural
difference. Let us consider n = 5.

51 [ A A A A A A A
Iyc| 021 | 951 | 941 [ 951 | 961 | 971 | 982

50 | A by A A A A A A A A A
I,\,cc 90,0 91,0 92,0930 %940 | 950 | 96,0 | 97,0 | 98,0 | 99,0 |910,0

The invariant subspaces possess different dimensions, which discards the possibility of
finding an isomorphism between them.

3.5 Tube formulas in real space forms

Let I,: V™ — Val?(™ pbe the isomorphism of irreducible slo-representations deter-
mined by I,,(y™) = x; i.e.

(7 ) nlals™ ) = LX) = ™)
1 .
= ﬂLl(Mo) = i
where we used . By Theorem the map Jyr = V¥, o I, satisfies
OAroJyr =JyroY). (3.29)
The map Jyr is explicitly given by
Ir: VO — v p e o) (3.30)

Hm+1

The image of Jy g is the hyperplane =imJyg = (00,...,00).

Theorem 3.5.1. The tubular operator on V/\R s given as follows. For 0 <1i < m,

T;o) qum’w (3.31)
In particular
Z sin{"~ cosk(t)aj’\, (3.32)
and thus .
Tiopi1 = Z (/ sin' )COSA( )ds> 03\ + ot (3.33)
j=0
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Chapter 3. Tube formulas in real and complex space forms

These formulas where first obtained by Santalé [55].

Proof. By (22.36)), (3.29) and ({3.30]), we have for 0 < i <m,
Ti0} = exp(tdxrc)(07)
= exp(torc) © Irc(Pm,i)
= Jrc o exp(tYy)(pm.i)

= Irc(Pm.i(t))-
This proves (3.31)) of which (3.32)) is a particular case. Integrating with respect to ¢
yields (3.33]). O

Remark 3.5.2. It is worth pointing out the similarity between tube formulas in real and
complex space forms. More precisely, note that the isomorphism

A 2n—4r+1 ) A A
Fooo (HY7 T 0ar) — (IQ,E,GA,«:), 0j = Ojtarjisr (3.34)
between the linear subspaces H?\"%TH C Vijﬁg““ and I;,’é C V{ ¢ such that

A A
Foro0\r=0coF; ;

ie. Fﬁm commutes with the tubular operator T;. This is explained by (3.24)) and (3.29)),
because of

8)\7]1{03‘ =(m—-i+ 1)0{\71 — A+ l)af‘ﬂ,

6>\7<c0,)§‘7r =02n—k—-2r+ 1)0,’6\_” — Mk —2r 4+ 1)op, ;.

3.6 Local tube formulas in complex space forms

We determine the local tube formulas in CFPy'.

From Theorem [3.2.5] we know
C(CPY)M = (Bry: k> 29) & (Trg: n > k — g) & (dvol),

where By, = [Bi,4,0] and T'y g = [k,4,0]. Recall that these differential forms Sy 4, vk q
are defined by

5k,q = Cn,k,qﬁ A @n7k+q,k72qfl,qa k> 2q,

C 7k7
Yk,q ‘= %7 A @n—k—l—q—l,k—Qq,qa n>k-—gq.
We directly compute ¢; ), and ¢; v 4 to compute the local tube formulas.

Consider
Wl(c = <’Y76>7 Uéc = <@17 @27 @3>/(O[7d06).

From Corollary the subspaces W C Q1(SCP}) and US C Q*(SCPY)/(a, da) are

Lr-invariant.
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Theorem 3.6.1. The maps
Fpq: (VY. Yiy) — <Wic7ﬁT) , x> B,y o
Fo: (V?,3) — (US, Lr). P — O
are linear isomorphisms which satisfy
LroFs,=Fs,0Y5, LroFo=FeoYy.
Proof. Tt suffices to compare Corollary with

Yin(z) =y
Yin(y) = -4z
Ya(p2,i) = (3 —9)p2,i—1 — A+ Dp2iv1. O

Proposition 3.6.2. i)

¢F B = siny(t) cosy(t)y + (coss (t) — Asin3 (1))
by = (cosi(t) — Asin3 (t))y — Asiny (t) cosy(t)3

2
G0 =Y $2:,(t)0;
j=0
Ezxplicitly,

$rO0 = cosi (t)Og — Asiny (t) cosy(t)O1 + A sin3 (1),
$7O1 =2siny (t) cosy(t)Og + (cos3(t) — Asin3 (¢))O1 — 2\ siny (t) cosy (t)O2
¢ O =sin3 (t)Op + siny(t) cosy (t)O1 + cosi (t)Os,

Proof. i) From Theorem and applying

singy (t) = siny (t) cosx (),

cosyy (t) = coss (t) — Asin3 (t),

it follows
¢F B = siny(t) cosy(t)y + (cos3 (t) — Asin3 (1))
by = (cosi(t) — Asind(t))y — Asiny(t) cosy ()8
i7) This formula is completely analogous using once again Theorem m O
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Corollary 3.6.3.

LT, Bl = Cnig [(sin,\(t) cosx(£)y + (cos2 () — Asin2(t))5)

9 n—k+q 2 k—2q—1 2 q
N (Z q%,n—k—&—q,a (t)®0> (Z qb%,k—Qq—l,b(t)@l) <Z ¢%,q,c(t)®2> ) 0}
a=0 b=0

c=0
LTy, = % [((cosi(t) — Asin?(t))y — Asiny(£) cosy (£)8)A

2 n—k+q+1 2 k—2q 2 q
A (Z (b%\,n—k—o—q—i-l,a(t)@()) (Z (b%\,k—Qq,b(t)@l) (Z (ng\,q,c(t)(a?) ) 0:|
a=0 b=0 c=0

Remark 3.6.4. In Corollary we will obtain simpler local tube formulas for some
particular elements of C(CP{)“ e,
3.7 Spectral analysis of the derivative operator

Here we compute the eigenvalues and eigenvectors of dyr and dyc. Note that the
tube formulas for such valuations are extremely simple: if Ou = ap with a € C, then
Ty = e“p.

Proposition 3.7.1. For 0 <2r <n, 0 <k <2n —4r, set

2n —4r 4
2, ;:( ; >J,\7@(e’fe§” )

Then

i) The restriction of Oy c to I/T\L’(E has the following (simple) eigenvalues and eigenspaces:

spec (8,\7@|I;:é) — {0, £V, AV, . £2(n — 20)V N, } ,

Eok—ontaryy=x(Orc) = C- Uit 0<k<2n—4r
i1) The endomorphism Oxc diagonalizes on Vic with the following eigenspaces:
Ey; =0 c) = <v,/€\,r :0 <2r <min{n —j,n+j}),

for —n < j < mn.

iii) FEach eigenvector U]i‘r has the next expansion

a+b\[(2n—4r —a—b —a
U/i\,r = Z ( ) ( k—oa >(_1)b( _)\) +bJé—i—b—‘,—?r,’r‘'

a
a,b
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Proof. i) By (3.24]) we now that 9y c o Jyxc = Jyc oY), it follows that Jy ¢ preserves
the eigenvectors. Specifically, if v € Eo(Y)), then Jy c(v) € Eo(0xc). The eigenvec-
tors and their corresponding eigenvalues in (V(m), Y)) were classified in Proposition

Consequently,

2n —4r n—dr—k
( & >€If€§ ! € Elop—ontar)yy=x(YA):

Since J) ¢ preserves the eigenvectors, we have that

2n — 4r 4
U?m = < . )JA’C(e’fe%n ar k)

is an eigenvector of 0y ¢ associated with the eigenvalue (2k — 2n + 4r)v/—A\.

it) The endomorphism 0y ¢ diagonalizes because it has simple eigenvalues on each
invariant subspace.

ii1) The v,)ﬁ‘m expansion formula yields from Lemma W O]

Proposition 3.7.2. For0 <k <m —1 set

m—1 m—k—
’U,i\:( & )J,\,R(elfeQ k 1).
Then

i) In S3" the derivative operator is diagonalizable with

spec(Oyp) = {0, VN, 3V, .., (20— 1)\/—>\} . (3.35)
Eo(Ozr) = C - x (3.36)
Bk o1y x(Orar) =C-vp, 0<k<2n—1 (3.37)

i1) In Sinﬂ the derivative operator is not diagonalizable since

spec(Oyg) = {o, 0, +2v/—\, +4vV =N, . .., iznﬂ} : (3.38)
Eo(Orr) =C - x, (3.39)
Elgp—anyy=3(Orr) = C-vg, 0<k<2n. (3.40)

ii1) Fach eigenvector Uﬁ‘ has the next expansion
a+by\/m—-—-a—-b—1
A= (I ("I e,
a,b
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Proof. i) By Lemma and (3.29) we have that (2k—2n+1)v/—\, 0 <k <2n—1,

i)

i)

78

is an eigenvalue of 0\ g with eigenspace given by (3.37). The Euler characteristic
is an eigenvector with zero eigenvalue. We thus have at least 2n 4+ 1 eigenvalues.
Since this is precisely the dimension of VfﬁR, the statement follows.

In light of Lemma |3.3.4] and (3.29)), we ascertain that (2k — 2n)v/—\, 0 < k < 2n,
is an eigenvalue of 0\ g and the corresponding eigenspace is described by (3.40).

Our next objective is to prove that while the algebraic multiplicity of the zero
eigenvalue is two, its geometric multiplicity is one. This will entail finding a val-
uation p that satisfies 93 = 0, while also ensuring that dygpu # 0. Consider

g%‘n — J/\’R(a:%) € V/%ﬁ{l. In the notation of Lemma m

2n
1 n —-n i 2n i 2n—i
v 2@(61 —e2), @™ =(-4)) ;(—1) ( ; >€1€§ -

Hence
2n - (2n ) )
OAROD 41 = Oy, = (—4A)‘”Z(—1>’< i )JA,R(eﬁegn_z).
i=0
Consider

" /2n (—1)i
vi=(—4)\)"" ) T\ g(cle2 ,
(=4%) ;;(z)(m‘—zn)ﬂ rrlee™)
and note that, by Lemma [3.3.4
2n m, ) . )
Orry = (=40 < . )(-1)%JA,R(6563”—1),
iZn
since efel € kerY). Finally, we define o = 03, — v. Then

2n

onan = (-0 (%

) (et 0
while
= (0 () (-1 oh (et
(4 (2:> (—1)" s g (Ya(ehe})) = .

It follows that dim ker 9y g < dim ker 8?\ r- Noting that x € ker 9y g this implies the
statement.

The U,i‘ expansion formula follows from Lemma m O
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Remark 3.7.3. We conclude from Proposition and Lemma that there is no
isomorphism between Val®(™ and V}{”R intertwining A — AL and 0y g. Indeed, these two
operators have different spectra no matter the parity of m.

Remark 3.7.4. There is no sly-module structure in Vf\“i(c nor in V{'p, where 0y ¢ and 0y r
play the role of X or Y due to their lack of nilpotency.

3.7.1 Stable valuations in complex space forms

Definition 3.7.5. We say that a valuation ¢ € V(M) on a riemannian manifold M is
stable if Ou = 0, or equivalently, if Ty = p for all t. The space of stable valuations is
ker 0.

Proposition 3.7.6. The Fuler characteristic is the unique isometry-invariant stable
valuation in SV up to multiplicative constants.

Proof. By Proposition [3.7.2]
Eo(Ozr) = (x) = ker O\
with independence of the dimension. ]

The complex case is more interesting. Previously, in Proposition [3.7.1] we provided a
detailed description of each eigenvalue and eigenvector of 0y c. In particular, we derived
an expansion for the elements of the kernel of 0\ c. We now refine these formulas for
this kernel, obtaining more simplified expressions.

Proposition 3.7.7. The unique (up to multiplicative constants) stable valuation on II\L’(E

is given b
! ’ L m—2r\ /20 —4r\ !
A - - —r A\
%’”_Z<z‘—7«><21—2r> AT o0

i=r
In particular
ker Iy = (13, : 0 < 2r < n).

Proof. By Lemma the kernel of Yy on the space V(™) of homogeneous polynomials
of degree m = 2n — 4r is spanned by

6711727‘63721" — (y + \/j)\l,)n—Qr(y o \/j)\l_)n—Qr
n—2r
_ (y2 + )\xQ)n—Qr _ z (n —J 27’) N p2gym=2i

j=0
n—r -1
_ Z n—2r\ [2n — 4r = 2n — 4r in,ergn,Qi,gr
P 1= 21— 2r 21— 2r

n—2r _n—2r

Therefore the kernel of dy¢ in Zy7¢ is spanned by 1o, = Jy(e] e5 ™) , for each
0<2r<n. ]
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Next, we express the Euler characteristic as a combination of the stable valuations
T,ZJQ)‘T. Note in particular that x is not confined to any 0y c-invariant subspace I)'\I ’(E. More
precisely:

Proposition 3.7.8.

AN\ /2r 7 A
= Z <47T> <r>w2n—2rw2r‘

0<2r<n

Proof. Since y is stable, it can be expressed as y = Zj aﬂ/}é\j. By [21], Theorem 3.11]

A k+p ok+p 1 \
X = Z - % T2k-+2p,p-
WS \T 0&RomP /1 — &1 — 1 o

0
The coefficient of 73, in this expansion is

o0 = (2) 22
T =\ -
2r,r X T anr m 0
I8
_ <A) (2"“>r!4—r.
T T
By Proposition [2.1.8 we have
Won—k Won—k
[TZ)\T,T](O’]?,’I‘) = M[Tg\r,r](ﬂ-lé,r) = mék,%ﬁ
whence
|:7—2)\r,ri| Z aj¢§\j = ar [TZ)\T,T] (02/\r,7")
J
= ArW2an—2r-
Hence
(A) " (27”) r!
ar= | — e
™ r ) A" won o
and the result follows. O

3.7.2 Image of 0\c and O\ g

Next, we describe the image of the operators 0y ¢ and 9y r, and we compute the preimage
of any element belonging to them.

Proposition 3.7.9. Given any ¢ = Zkrakﬂuaﬁr € V¢, we have ¢ € im0y ¢ if and
only if

=y n—2r
Z (Igl,r< l >)\"_l_T =0, for 0<2r<n. (3.41)
—r

l=r
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Proof. Note that ¢ = > ¢, with ¢, = >, akma,i‘r is the decomposition of ¢ corre-

sponding to
ln/2]
Vic = @ Ve
r=0
where I/T\Z(C are the invariant subspaces introduced in (3.27). By (3.24) and Proposition
[3-3.7 we have ¢ € im Oxc if and only if for every r

g 2n — 4r
0= Z2nf4r,)\<907") = Z ak,r( >22n471,)\($k27“y2nk27‘)

k—2r
k=2r
no 2n — 4r
_ - n—Il—r _ | _ _ |
; a2l’r<2l—2r) ( I—p >)\ (20 —2r)!(2n — 21 — 2r)!

=y n—2r
= (2n — 4r)! AT
(2n — 4r) lz:am’T(l—T)
where we used (3.19). O

Proposition 3.7.10. Given ¢ = Zk,r ak 07y, € Vi satisfying (3.41) we have

a)C(%:({SD}) = Zak,TJA,(C(PZrL*ZlT,k*QT‘JrI) + <¢2r: 0<2r< TL>
k,r

where Py, is given by (3.20).

Proof. This follows at once from Proposition after decomposing ¢ = > ¢, as in
the previous proof. O

The following proposition will be useful later.

Proposition 3.7.11. In CP} for 0 <2r <n and 2r <k < 2n —2r

Z)\] (k427 —2r)(2n—k —25 —2r — 2)!!

A A
(k—2r)(2n — 4r — k + 2)!1 ~ONCOh12j 41,7 TC2n—Ar k—2r 4102027 s

3>0
where Cap—ar k—2r41 are the constants introduced in (3.22)).

Proof. By Proposition [3.3.10]

(k+2j—2r)1(2n — k — 25 —2r — 2)! In—4
J . n—4ar
D2n—drk—2r = ]§>0 A (k=2 (@n —4r —k+ 2)1 Y\D2n—ark+2j—2r+1FCon—drk—2r 1T :

Then, transfering the formula via

@ V(2n—47") V)T\L,(C
0<2r<n
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given by (13.25)), we have
N (k+2j—2r)(2n — k —2j — 2r — 2)N! \ \
e ; g (k —2r)1(2n — 47 — k + 2)!! ONCOkrj41,HCon—drk—2r+102n 29,

O]

Next, we characterize the image of d\ r. To this end, let us recall one of the several
natural bases of V{%;. According to [I5] eq. (118)], we define

o = /G XN gSyF)dg (3.42)

where dg denotes a properly normalized Haar measure on G ¢, and ST_k represents an
(m — k)-dimensional totally geodesic submanifold in S§*. The family ¢°, ..., ¢™ forms a
basis of VQ?R and is further expressed as

A\
o= <4> Thyaj (3.43)

720

A

where, we recall 76\, e ,T% € V\'y are the valuations proportional to 03‘, ce O,

g

tlw .

Tz-)‘:%%)‘, 0<i<m-—1,
T (m — 1) wim—;

Tm = m

7rm

Proposition 3.7.12. The image of O\r in V' is the hyperplane HY' generated by

03y 00 _1. Moreover
klwp

RO = ———0p 1, 1<k<m. 3.44

\RO o <k<sm (3.44)
In particular

k
A T Wm—k .k
O r{or1}) = k,m p"+C-x

Proof. Since

o5 = o 7, 0<i<m-—1,
m
o) = 7: .
mlwn,
we have
mekfl ) m—k
2 .
A (k + 27)wky2; A\ 2 mlw
k +2 A A
¢ = Z <4 2) K(m — k — 24 ——Olyg + 1 e om |
= T 7wk (m J)Win—k—2; T

where the term between brackets appears only if m — k is even. Using Proposition [3.1.2
this yields (3.44). The rest of the statement follows. O
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Remark 3.7.13. Equation (3.44]) also follows from Theorem 4 in [59].
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Chapter 4

Tube formulas for the Federer val-
uations

In this chapter, we determine the tube formulas for the Federer curvature measures and
valuations in CPy' and HP)'. In fact, we obtain such formulas for an interesting space
of curvature measures that includes Federer’s ones. Additionally, we identify bases in
which these formulas are particularly simple. As an application, we compute the push-
forward of invariant valuations of the sphere through the quaternionic Hopf fibration,
thus extending a result of Hofstatter-Wannerer.

4.1 Preliminary constructions

Definition 4.1.1. Let M™ be a riemannian manifold. For 1 <r <mn, let Gr,(M) be the
bundle over M whose fiber over x € M is the grassmannian of oriented linear r-planes
of T, M. A distribution along geodesics is a smooth map f: SM — Gr.(M) such that
ge f(§ forall £ € SM.

Given any £ € SM and any basis ey, ...,e,—1 of f(£), we can consider the parallel
transport eg(t), ..., e,—1(t) along the geodesic y(t) = exp(t£). We say that f is a parallel
distribution along geodesics if

ei(t) € f(eo(t)), Vt.
Example 4.1.2. The map fo: SCP{ — Gra(CPY) given by
fa: & > (eo(§), Jeo(§))-

is a distribution along geodesics.

Recall our convention eg(§) = £. More precisely, given & = (z,v) with x € M and
v €T, M, we take eg(§) = v.

Example 4.1.3. The global map f4: SHP — Gry(HPY) locally given by
Ja: & {eo(§), Jreo(§), J2e0(8), Jseo(§))-
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is a distribution along geodesics.
Proposition 4.1.4. The maps

i) f2: SCPY — Gra(CPY),  fa: & (e0(§), Jeo(§)),

i1) fa: SHPY — Gra(HPY), fa: & +— (e0(§), Jieo(§), Jaeo(§), J3e0(&)),
are parallel distributions along geodesics.

Proof. Both points are direct consequences of Proposition [1.4.7 and [T.4.13] O

Definition 4.1.5. Let f: SM — Gr, (M) be a distribution along geodesics. A positively
oriented orthonormal moving frame eg,...,e,—1 on SM such that ey(§),...,e,—1(§) is

a positive basis of f(§) will be called a frame adapted to f.
Let us define, for 0 < i < r — 1, the differential forms 7;(f) € Q"~1(SM) given by

T(f) (Xe, o, Xeoa) = > ol det(eo, X2y, o X2 XY ays o XY 1y €0s o enn),
€S r—i—1
where ey, ...,e,_1 is a frame adapted to f.

It is easy to see that the previous definition is independent of the chosen adapted
frame.

Ezample 4.1.6. Observe that for r = n and f,: SM — Gr,(M) given by
fo: &= (eo(§),e1(§), .. en-1(8)),
we obtain the differential forms k;, i.e
Ti(fa) =i, 0<i<n—1
From now on, for simplicity in the computations, we will omit the A symbol.

Proposition 4.1.7. Let f: SM — Gr,(M) be a distribution along geodesics. Then, for
0 <i<r—1 and with respect to an adapted frame

T(f)= D 100oq)  Ou)@Wo(itt)  * Wa(r—1)

CESi i1
Proof. Since det =0g A --- A 6,_1 and
wj0(X) = (e, (7" V) xen) = 0;((7*V)xeq) = 0;(X")
The same argument of Proposition [1.3.9] gives us the result. O
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Example 4.1.8. Let fo: SCP{ — Gra(CPy') be given by

f2: € (eo(§), Jeo(§))-

We denote
vi =Ti(f2), @5 =Tjleo® f3),

for0 <i<1,0<j<2n—2. Let us show a description of this family of differential forms.
Let e, ..., e2,—1 be a hermitian moving frame and note that {eg, e1} and {ea, ..., e2,-1}
are positively oriented bases of fa(eg) and fo(eg)® respectively. Then

Yo = w10 =7,

Y =61 =B,
i = Z |0|00(2) 05 (j41)Wo(j42),0 * Wa(2n—1),05

where o is in the range of permutations of {2,...,2n — 1} such that
c2) < <o(f+1); o(j+2)<---<o(2n—1).
Example 4.1.9. Let fy: SHP? — Gry(HPY) be given by
fa: € (eo(§), Jreo(§), Jae0(§), Jzeo(£)),

We consider, as in CPY{’, the family of differential forms

Vi =Ti(f1), ¢ =Ti(eo® fib),

for 0 < i <3,0<j<4n—4. Let ey,...,ea,—1 a quaternionic moving frame such
that {eg, e1,e2,e3} and {ey, ..., es,—1} are positively oriented bases of f41(ep) and fj(eo)
respectively. Then

o = wi,0w2,0w3,0,

1 = O1wapws o + w10bws o + w1 ow2 003,
o = 016ow30 + O1wo 003 + w1 00203,

3 = 610203,

¥j= Z 10105(4)  * * O (j+3)Wo (j+4),0 - Wo(an—1),0

g

where o is in the range of permutations of {4,...,4n — 1} such that
od)<---<0o(j+3); o(j+4)<---<o(dn-—1).

Proposition 4.1.10. Let 0 < i < n—-1,1 <r < n and f: SM — Gr,.(M) be a
distribution along geodesics. Then

I
—

ki= Y Ti(f) A Tizjleo ® fF).

J

I
=)
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Proof. Let us write
v =Tilf), @) = Tieo @ fi1).

We choose a common orthonormal moving frame, denoted by eg, ..., e,_1, such that
fr(€) = {e0(§), e1(8), - - -, er—1(8)),
eo ® f;(€) = (eo(€) er(€), - en1(8)),

and such that {eg(§),e1(€),...,e,—1(§)} and {ep(&), er(§),- .., en—1(£)} are positive basis.
Then

ZDZ(T) - Z [€l0c(1) -+ OciyWe(i+1),0 -+ We(r-1),05 (4.1)
€€Sir—i—1
SO'ET) - Z ‘0—‘90(7“) T ea(i-i—r—l)wa(i—i-r),o T Wo(n—1),00 (42)
g
where o is in the range of the set of permutations of {r,...,n — 1} such that

ory<--<o(i+r—1), oli+r)<---<o(n-1).
We give an inductive proof over r.
i) Forr =1, k; = Ti(eo © f+).
i1) Assume k; = Z;;(ZJ z/JJ(-T_l) A cp,g:l), where
foo1s € (eo(€)sex(€), - era()),
W =T, WU = Tieo® £
We have to show k; = Z;;é w§r) A goz@j. Let us decompose as

B0 = 3 el e o Wm0 ()

e(i)=r—1
+ D elber)y - Oepywe(ian 0 - Wer—nyo (1)
e(r—1)=r—1

The first sum is

(D =1r=10 D> lelfeqry - Oe(im1)Pr—10e(i41),0 - De(r—2),09e(5),0

e(r—1)=r—1
=[(r — 1ai)’(—1)i+19r—1 N Z \6\96(1) T He(i—l)we(iﬂ),o " We(r—2),0We(3),0
e(r—1)=r—1
=(r =L)D" (=101 A ) elfer) e ety We(s) 0%e(i41),0 -+ We(r—2),0
e(r—1)=r—1

= (=)0, AU

88



Chapter 4. Tube formulas for the Federer valuations

Arguing similarly with (/1) we get
e = (<1701 A+ (<) wag Ap(TY,
and an analogous argument with (4.2)) gives

sz(r_l) = 97’—1 A QOET_)I + Wr—1,0 A (p(r)

(2

Here and in the following wj(-k), apﬁ»k) are taken to be 0 if j = —1 or j = k. Thus

r—1 r—1
ST A =31 0o AT AR+ (<)o AT A,
3=0 J=0
r—1
=S A Al +Z¢(T Y Awroro Al
§=0 =0
r—1
r—1 r—1 r
= Z¢§—1 A (901('—]‘-1—)1 —Wr-10/\ ‘Pz(‘—)jﬂ)
§=0
r—1 .
r— r—1 r
+ %( ) A (90( ) 07"—1 A (pfg_)j_l)
§=0
r—2 r—1 .
r—1 r—1 r— r—1
WIS A WYl
§=0 §=0
r—1 N
S Ao A AT NG Ao
§=0
() (x4
= wj(‘r_l) A @ETJI) = Kq,
§=0
where in (%) we have used that
r—1 r—1
r—1 r r—1 r
Z 1/)5‘_1 ) A wr—1,0 N @E_)jﬂ + Z Q;Z)]( ) A SD’L(—)j—l
§=0 §=0
r—2 r—2
= Z 1/]](1”*1) A Wr—1,0 A QOZ(Z)] + Z ¢§T*1) A 97“—1 A QDET_)j_l
j=0 Jj=0
r—2 L
= Z %(-r_ ) A (wr—l,() A ‘PEZ)J + 07"—1 A @Ei)j_l)
§j=0
S0 ;)
= w‘] /\ sz_j I
=0
and (#x) is the induction hypothesis. O
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Chapter 4. Tube formulas for the Federer valuations

Corollary 4.1.11. i) In CP}
Ki = %o A i +P1 A i1
=v7ANpi+BANpi—1, 0<i<2n—1.
i1) In HPY
Ki=t%oNpi+ V1 Apic1 + P2 Npia +P3 ANpimg, 0<i<4n-—1.

The following fact will be key for determining the Lie derivative Lrk; in complex
and quaternionic space forms.

Proposition 4.1.12. Suppose f: SM — Gr,(M) is a parallel distribution along geodesics
and for certain a € R it is satisfied

R(X,eq)eo = a-ixg, YX € f(eon).
Then, for0 <i<r—1
LrTi(f) = (r —i)Tica(f) +a(i + 1)Tipa(f)-

Proof. Given & € SM let eq,...,e, be a parallel moving frame relative to & such that
eo(§),...,er—1(£) is a positive basis of f(§). Since f is parallel, the same happens for

all t at £(t) = (y(¢),7'(t)) where v(t) = exp(t§). Consequently, by Corollary the
following holds:

Lr0; = wio, Lrwjo=1i780 = ab;
forall0 <i<r—1and1<j<r—1. By Proposition [£.1.7]

Ti(f) = Z |U|90(1)'"eo(i)wa(iJrl),O"’wo(rfl),o

0ES r—i—1
1
= 7@'!(7“ i) Z \U|90(1) e 'ea(i)wa(iﬂ),o © o We(r—1),0-

’ oES, 1

Since L is a derivation, we have

Z'(T’—Z -1 'ﬁTT Z Z |U‘9 £T9 G) " Qg(i)wg(i_;,_l)’()-"wU(r_l)Q

j=10€S,1

+ Z Z 71601 ()W (i+1),0 " LTWs(4),0* Wo(r-1),0
.7 1+IU€ST 1

_Z Z ‘0—‘9 a(4),0° -0 (i)W (i+1),0 " Wo(r—1),0
j=10€S,_1

+a Z Z 71601 (W (i+1),0 "o (j) "+ Wo(r—1),0
j=i+10€S, 1
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Chapter 4. Tube formulas for the Federer valuations

Consider 7; ; = (j,4). Then
90(1) T We(),00 ea(i)wa(i—&-l),o T W (r—1),0 =
eoon’j(l) T eaon,j(ifl)waon,j(i),O ©Woor, i(r—1),0
In the same way,
Oo(r) O (rri-1)Wo(rt+i),0 " Uo(j) *** Wo(r—1),0 =
eaon’j(l) T eaori,j(i—&-l)woon,j(i—i-Q) © o Woor; j(r—1)s

Therefore, the first sum is given by

i
> > 100 Tilb00r (1) Boor - 1)Wo0mi () Woor s (r—1) =

j=10€8,_1

=D Y 7Oy On ()W) W) =
j:l TES, 1

=1 Z 17|01y On(i—1)Wr (i) " Wr(r—1) = iH(r — ) Tie1 ()
TESr—1

and similarly

r—1

DT olboy Ooy oo o) Watr—1y0 = (1 — i = DG + D! Tipa (f).
j=i+10€S,—1
Thus the result follows. O

Remark 4.1.13. The previous proposition generalizes Lemma considering that, as

in Example
In: SSK — Grn(ST)\l)a §— <60(§), ce aen—1(§)>

satisfies
Ti(fn) = Kis 0<i<n-—1.

According to Proposition for r = n,
Lrk;=(n—1i)ki—1 — A0 + 1)Kiy1,

which coincides with Lemma B.1.7

Proposition 4.1.14. In CP}

L1y = =41, L1 = o,
and for 0 <i<2n—2,
Lrpi=2n—1i—1)pi1 — Ai+ 1)piq1.
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Chapter 4. Tube formulas for the Federer valuations

Proof. By definition

Vi =Ti(f2), ¢ =Tileo® f3)
where fo: SCPP — Gra(CPY) and e @ f3: SCPY — Gra,—o(CPY). By Propositions
and Proposition applies and yields the result. O

Corollary 4.1.15. In CPy, for 0 <i<2n—1
Lrk; = (277, — i)/iz‘_l - )\(Z + 1)/%.;,.1 —3AB A ;.
Proof.

ki =Lry Npi +7 N Lroi+ LrB A pim1 + B A Lrpi—a
=—4d\BApi+(2n—i— Dy Apii1 = A+ 1)y A pin
+YANpi1+ (2n—)BApi2 — NS Ag;
=2n —i)Kki—1 — AN + 1)Kkit1 — 3AB A Agp;. O

Proposition 4.1.16. In HP{

L =(4 —i)i1 — 4N([0 + 1)iq, 0<i<3,
£T(,D¢ :(4n — 17— 3)(,02;1 — )\(Z + 1)(,Di+1, 0<¢<4n —4.

Proof. By definition
i =Tilfs), @j = Tileo ® f1)

where fi: SHPY — Gry(HPY) and eg @ fj-: SHP — Gran—4(CPY). By Propositions
[[.4.14) and £.1.4] Proposition applies and yields the result. O

Corollary 4.1.17. In HP?, for0 <i<4n —1

LrK; :(477, — i)/ﬁ;i_l — )\(Z + 1)/4@.;,.1
— 3A1 A i — 6APa A i1 — IMP3 A o

Proof. By Corollary

ki =Yoo N@i + V1 AN@i—1 +a Api—o +P3 Npi—3, 0<7<4dn—1.
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Therefore

Lrki =Lro N i+ o A Lrp;

+ Loy A i1+ 1 A Lrgiq
+ Lrpe A pi—a + b2 N LTpi—2
+ Lrs A i3 + b3 N Lrpi—3

= — A1 A i+ (dn — i = 2)Po A i1 — A(i + 1)tho A it
+ 30 A pic1 — 8Apa A i1 + (An — i — 1)1 A pi—a — Nih1 A ;
+2¢1 A pia — 12X\P3 A pi—o + (4n — )2 A @imz — A1 — 1)iha A @iy
+ P2 ANpi—g+ (4n — i+ D)3 Api—a — (i — 2)P3 A i

=(4n — 1= 3)Yo A\ pi—1 + 3o A i1
+ (4n —i—2)P1 A pi—2 + 201 A pi2
+(@An —i— 1) A3+ 12 Api-g
+ (4n — i) A pi—a
— A(i+ 1)tho A pita
—4AXP1L A i — Nih1 A i
=8\ A i1 — A(i — 1)ha A i1
—12X\P3 A pi—a — N1 — 2)h3 A pi—a
=(4n —i)ki—1 — A0 + 1)Kip1
— 31 A i — 62 A i1 — I3 A o, O

4.2 Globalization of ; A ¢; in CP}

After determining the Lie derivative of each of ¢; A ¢;, we establish their globalizations
in CP} in terms of the basis a,i‘r of V{ . Let us recall the Definition m adapted to
M =CP}

[[I{i, 0]] = (21’L — i)wgn,iui = (2n — Z')(.L)Qn,i glOb(Al), 0 < 7 < 2n — 1.
Lemma 4.2.1 ([21, Lemma 3.9]). For max{0,k —n} < ¢ < k/2 < n we consider

1
2n — k

Okyg = 2 —k+@Vg + (kK —29)Brg) -

Then, for A; 4 = [d;q,0]

and

N q+1 \ M (g +1i)!
[6k,4: 0] = pie 4 — /\Tﬂﬁw,qﬂy Whg = Z (77 J [0k+2i,g+i> 0] -
i>0
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Proposition 4.2.2. In CPy, for 0 <i<2n—1

1(2n — 1
[BA@i—1,0]\ = (271—1)02'):0 - 201'):17
(2n—1i)(2n—i—1) (t+ 1)@+ 2)
[v A i, 05 = S oo — Awaﬁz,o + 2071 — 20001,

G+DE+2)

Proof. By Lemma [4.2.1

li/2]
[i,0] = (2n — i)wan—i Y _ [8iq,0]

q=0

[i/2] g+1
= (2n — i)wap—; Z <M¢A,q —A— MZ\+2 q+1)
q=0

) A
= (2n — i)wan—; <7'i,0 - 7r7'z‘+1,1> :

By the Lefschetz decomposition given in Proposition [2.1.10)

; A
[[Hi, Oﬂ = (Qn — Z)CL)Q”_Z' <Ti/}0 _ ;T’L{\i-Q 1)
j A G+ +2 1

2n'L 77 22n_1w2n12
(z+1)(2—|—2)
(2n_1) Z+20

From Corollary
B A= % (21 — D)kit — A+ Dkisr — Lpos)
Then, globalizing
18 A @i, 00x = — (21— i)[Ki_1, 0]x — G + Dsisn, 0]r — [LoksOL) . (4.3)

3
On the other hand, by Proposition

. 1+ 1)(2+ 2
[L7k:,0]x = Oxc[ki, 0] =0xc ((Qn —i)ojy — /\((273(_1))03+2,0 - 2/\01')\—&-2,1) :

Using
Oncorr=Cn—k—2r+1)op_y, — Ak —2r+ 1)op, .
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and equation (4.3) we get

[BA pi—1,0]x = Z.(22:__1i)0i):0 — 201»):1.
From Corollary
[v A i, O] = [53, 0] — [B A @i-1,0].
The conclusion follows. O

Corollary 4.2.3. In CP{, for 0 <i<2n—1

L
(277, — i)(x)gn_i

. 1+ 1)(2+ 2
{(2n —i)ofy — )‘((%)(_1))01{\—1-270 - 2)\U¢A+2,1} :

Vv; =

4.3 Tube formulas for the Federer valuations in complex
and quaternionic space forms

Although we know T; and LT; in complex space forms, it is interesting to establish
particular formulas for A; and v; also in CPy'. Moreover, the same approach will apply
also in HPy".

4.3.1 Complex space forms

Let us recall that in CP{" we have a particular construction of families of differential
forms. We stated in Proposition that fo: SCP{ — Gra(CPY)

fa: & (eo(§), Jeo(§)),

is a parallel distribution along geodesics. We consider the differential forms introduced
in the Example
wzz,];(fé)v @]:E(eo@f;_%

for 0 <i<1andO0<j<2n—2. We denote by W{C and WQ(EZ_2 the vector subspaces
WL = (Yo,91) = (v,8), Way, o= {p;i:0<i<2n—2) (4.4)

and W€ := W @ WE _, its tensor product. Recall also that V(™) denotes the space of
m-homogeneous polynomials on x,y, on which we considered the operators

X=x—, Y =

Y =Y - \X.
y A

9
y 8.%' Y
We can rephrase Proposition [4.1.14] as follows.
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Theorem 4.3.1. The linear isomorphisms
Fus (V. v0) — (WE, £r), Ty, Y 1o
Fy: (V=2 vy) — (Wécnfz,ﬁ:r) ] D2n—2,i — P,
satisfy
LroFy=FyoY,, LroF,=F,oY).
Proof. Tt suffices to compare Proposition with
Yain(z) =y,

Yin(y) = —4Az,
Ya(pan—2,) = 2n — i+ 1)pan—2,i—1 — A4 + 1)p2n—2,it1. O

Remark 4.3.2. The map Fy, was previously introduced in Theorem [3.6.1] under the no-
tation Fg .

Proposition 4.3.3.

Gy = (cos?\(t) — A sin?\(t))fy — Asiny(t) cosy(t)5
c

;8 = siny (1) cosx(t)y + (cos¥ (1) — Asing ()8
2n—2

. A
i = E Pon—24(t)p;-
7=0

Proof. Since F intertwines Lr and Y}y, according to Theorem we obtain the
following expressions

iy = exp(tLr)y = cosg(t)y — Asingy ()3,
;B = exp(tLr)f = cosyr(t)B + singy ().

The identities
singy (t) = siny () cosy(t),

cosg(t) = cos3 (t) — Asini (1),

allow us to derive the first two formulas. The third formula can be established by using
Theorem [3.3.3 O

Corollary 4.3.4.

2n—2
S (v A ps) = ((cosX (£) — Asin (£))y — Asina(t) cosa(t)8) D ook (t)ers
k=0

2n—2
7 (B A p5) = (siny(t) cosx(t)y + (cos} (t) — Asin3 (£)8) Y oo k(D) k-
k=0
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Globalizing we get the following results.

Theorem 4.3.5. In CP{

2n—2 2n—2
LT4[B A ¢, 0] = (cos3 (t) — Asin3(t) Z Do 2.7 (E)[B A @j,0] + siny () cos(t Z Do 2.4, ([ A @5, 0],

2n—2 2n—2
LTth//\SOZ?O] = _>\Sln)\ COS)\ Z ¢2n 22] B/\Sojv ]+ (COS)\( )\Sln)\ Z ¢2n 22] 7A¢370]>

2n—2 2n—2
Tt[[ﬁ N 90170]] = (COS)\( >\Sln)\ Z ¢2n 21] ﬁ A 30J70]] +Sln>\ COS)\ Z ¢2n 21] 7/\ SOJ7O]]

2n—2 2n—2
Tu[y A @i, 0] = —Asin(£) cosa(t) D d,0,; (DB A @;, 0] + (cos} () — Asin3(£)) D ¢3,-0,; (D)7 A ¢;,0]
Jj=0 j=0

Corollary 4.3.6. The tube formulas for the Federer valuations and curvature measures
in CPy are

2n—2

T (v;) = Cr z;o:1 ;::0 ((1 = Xtan3 (1) ban—2,i—k,; () + (—=A)F tanx (t)d2n—2,i+k-1,5(t)) [¥r A ©;,0],
2n—2
LT(h) = (QnCSSZA YW — lkzm ]ZO ((1 = Xtan3 () dan—2,i—k,; (t) + (—=A)* tanx (£)dan—2,i+k-1,5 (1)) [r A @5, 0],

for 0 <i<2n—1.

4.3.2 Quaternionic space forms

The procedure used in the previous subsection can be applied in HP;y'. We stated in
Proposition that fi: SHPY — Gry(HPY) given by

fa: &— (eo(§), Jreo(§), J2e0(§), J3e0(£))
is a parallel distribution along geodesics. Thus, we have a family of differential forms
wzz,];(f4)7 @]:E(eo@fi_%

for 0 <i<3and 0 < j < 4n — 4, as in the Example We consider the vector
subspaces of Q°*(SHPY)

Wy = (Yo, ¥1, 92, ¥3), Wi g = (pi: 0 <i < dn—4), (4.5)

and WH .= W?I)m ® WEL_4 its tensor product. Proposition |4.1.16[is equivalent to the
following.
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Theorem 4.3.7. The linear isomorphisms

Fy: VO v, — (WZ]SHIMCT) P3,i > Vg,

F,: (VU= y,) — (WEL%,ET) , Pin—4d,i — ©i,

satisfy
,CTOF¢:F¢O§/4)\, ETOFQO:FQOOY)\'

Proof. Tt suffices to compare Proposition with

Yir(psi) = (4 —i)p3i—1 — 4N(i + 1)p3.it1,
Ya(pan—a,) = (4n — i — 3)pan—ai—1 — A0+ V)pan—ay1. O

Proposition 4.3.8. For0<i<3 and 0 < j <4n —4,

i = Z¢3zk (t)x,

An—4

Pipj = Z ¢4n 4,jl

Proof. This is a direct application of Theorem [3.3.3

Corollary 4.3.9. In HPY

3 4n—4

of (Vi N pj) = Z Z ¢3,z,k <754n 4][( Uk A @1

k=0 1=0
Proof. By Corollary
kKi=t%oNpi+ V1 ANpic1 + P2 Npia + 3 Npimg, 0<i<d4dn—1.
Then, applying Corollary the result follows.

Globalizing we get

Theorem 4.3.10. In HP}

3 4n—4

LT, wl A (10]7 Z Z ¢3,z,k ¢4n 4,7, l( )ij N, 0]
k=0 [=0
3 4n—4

Ti[vi A p;,0] = Z Z O35 1 (1) B2n—a i1 () [k A 01, 0]

k=0 [=0
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Corollary 4.3.11. The tube formulas for the Federer valuations and curvature measures
wm HPY are
4n

3 —
Tt(VZ')— (4TL—Z i ; Z: 3,]k ¢4n 40— jl( )[ij/\()pl?o]]?
3

In—4

1
LT,(A) = — N
t( ) (47’L — i)w4n—i == ¢3,],k( )¢4n—4,z—j,l( )ij A QOZ,OL

for0<i<4n—1.

4.4 Area tube formula in complex and quaternionic space
forms

The rest of this chapter is essentially devoted to the determination of bases where the
previous tube formulas have a simpler form. We begin by considering the tube formulas
for the area using two alterniavtive approaches.

Proposition 4.4.1.

¢idareacpp = ZSan” “(t) cosh () pios

where
Pio = Ki—1 — ABAp;, 0<17<2n.

As usual, it is understood above that ;1 = 0 for ¢ = 0, and 9,1 = @2, = 0.

Proof. Since
Kan—1 :5/\%0% 2.
and @ m,;(t) = sin}' J(t) cos)\( ), by Corollary 4 we have
2n—2 '
S (BA pan—2) = D siny" 7 2 cos) T B A p;

+ Z sininﬂ_1 cosj)\Jr YA ;

2n—2
o ,
- A E sin)" 7 cosy B A p;
=0

2n—2
. In—1—j
= siny" ](t)cos)\ Yt YBA@j—1+7Np))
=0
2n—2

- A Z sin}" (1) cos), (t) B A ;.
=0
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Since k; = v A @; + B A @i—1, the result follows. ]

Corollary 4.4.2.

2n

LT, areacpp = ZSIHZH z(t) COS&(t) [0, 0],
i=0
2n

t
LT volcpp = Z (/ sin}" " (s) cos}(s) d3> [pi,0,0] + [0, dvolcpyp].
0

i=0
Proposition 4.4.3.

3 4n—4 i .
. i\ . i
¢;dareagpy = E E (=\)F <k:> ST A0 cosy R (s A o;

7=0 k=0

@

4n+2
dn—1 2
= m/\” + cos 2\()C0,

N

where
Go= Y, (=N (;) Vi N Qi—ivok—3
0<k<i<3
=Yoo N3+ V1 ANpi_a+ s N5 +P3 Apre
— M1 A prog —2XP2 A3 — 33 Ay
+ X%y A it + 3N3 A g

— Xihg A .
Proof. Since dareagpp = Kan—1 = ¥3 A pan—s and gbm mJ(t) = sing\nfj (t) cosi(t) we only
have to use Corollary -
3 4n—4
b7 (V3 A Pan—s) ZZ¢3,31 )P2n—a,4n—a,; ()0 A 0
=0 j5=0
3 4n—4 '
= sin} " (t) cosi, (t) smin =4 cos} (£) i A @;
=0 j=0

Using the identities
singy (t) = siny (t) cosx (),
cosyy (t) = coss (t) — Asin3 (t),

we get S ' ‘
sin’} " cosy, (t) = sin} "(t) cosy ' (t)(cos3 (t) — Asin3 (¢))"

=) (=N* <Z> Slni’\ 2k () cos?)’\+i_2k (t).
k=0
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Then,

3 4n—4

&5 (Y3 A an—4) Z Z sin?} " (t) cosiy, () sinin_j_4(t) cosg\(t)wi A j

=0 7=0
3 4n—4 i i o
— Z (_)\)k(k:) sm;l\n 1—J+2k— 1(t) C081>\+]—2k+3(t)wi A ;.
i=0 j=0 k=0
Setting | =i+ j — 2k + 3 yields the result. O
Corollary 4.4.4.

An+2

LT; areagpp = Z sinﬁn_i”( ) cosh ()[Ci0, 0],
i=0
4An+2

LT, volspy = ) (/ siny" "2 (s) cos (s )> [€i,0, 0] + [0, d volgpp].
i=0 0

Next, we will provide an alternative computation of the local tube area formulas in
both CP}' and HPy', employing the tools we have developed so far in a different way.
The expression we obtain coincides with the formulas derived by Gray and Vanhecke
through different methods in [38].

Proposition 4.4.5 ([38]). With respect to any hermitian moving frame of CP{
¢idareacpp = cos3™ (1) (01 + tany (t)wr,o — A tan3 (£)0;1) (e — tany (t)wa) - - - (B2n—1 — tany (t)wan_1,0)-

Proof. The expression on the right-hand side is independent of the chosen hermitian
moving frame eg,...,ea,—1. We can therefore assume that eg,...,es,_1 is a parallel
hermitian moving frame. Then, by Corollary

Lr0; = wjo, Lrwip=—4N1, Lrw;o= —Nb;,
where 1 < j <t <2n — 1. Hence
Fy: (01,w10), L) — (VD ¥1), b — z, wip— Y,
Fy: ((Bi,wi0:2<i<2n—1),Ly) — (VI v3), 0 — x, wior—Y,
are linear isomorphisms intertwining the indicated derivations; i.e. satisfying

YinoFy = FyoLr,
YyoF,=F,oLp, 2<i:<2n-1.

By Proposition |3.3.1

(ﬁ?@l = exp(tET)Hl = COS4)\(t)91 + sin4,\(t)w170,
1 0; = exp(tLr)0; = cosy(t)8; + siny (H)wio, @ > 1.
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Since
singy (t) = siny (t) cosx (),

cosyy (t) = coss (t) — Asin3 (1),

we have
$701 = cosi(t) (01 + tany (t)wr o — Atan3 (¢)0;).

For2<:<2n -1
¢;0; = cosx(t)(0; — tany(t)wip).

Therefore

¢rdareacpp = ¢y (01 A -+ A b2n_1)
= COS%\n(t) (91 + tanA(t)wLo — Atan?\(t)ﬂl)(ég — tan)\(t)wl()) cee (Hgn_l — tan)\(t)WQn_Lo).

O]

Proposition 4.4.6 ([38]). With respect to a partially quaternionic moving frame of
HPY,

¢rdareaypy = cosy T2(1) (01 + tany (t)wio — Atan3 (£)01) (0 + tany (t)wao — Atan3 (£)6s)

(93 + tan,\(t)wg,o - )\tani(t)eg)((94 + tan)\(t)w470) e (9471—1 + tan,\(t)w4n_1,o)

Proof. Let e, ..., eq—1 be aparallel and partially quaternionic moving frame. By Corol-

lary [I.4.15] we have

Lrb = wro, Lrwip= —4N0;, Lrwjo= —A0;,

for 0 <k <4n—-1,1< i <3 and 4 < j < 4n — 1. Therefore, the following linear
isomorphisms intertwine the indicated derivations

(B, wio: 1<i<3),Ly) — (VI ¥y), 0 — x, wior—y,
((Oj,wjo:4<j<4n—-1),Lr) — (V(l),YA), Oj — z, wjor—y.
Then, arguing as in Proposition the result follows. O

Let us check that the formulas obtained in Proposition and Proposition [4.4.5
are equivalent. To this end, we just need to use the following expansion

b b
N@i+v)= D Y lolto@  To@loir) ** Yoib): (4.6)
i=a i=a—1 O
where o is in range of permutation of the set {a,...,b} such that

ola)<---<o(i); o(i+1)<---<oa(b).
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In this way,
2n—1 2n—1
/\ (0; + tany w; o) Z tan3" ! Z 0|05z ()Wo(i+1) " Wo(2n—1)
i=2

2n—1

§ : 2n—i—1
tan Vi—1,

Therefore the area tube formula given in Proposition becomes

2n—2
¢y dareacpp = cosy" (t)(8 + tan(t)y — A tan (t) Z tan3™ " 2(t)p;
2n—2
= cos3™( Z tan2" 2B A @
2n—2
—i—cos)\ Z tan2" i- 1 t)y A @
2n—2
— )\COS Z tan2n 7, /B/\ (pl
2n—1
= o () 3 (mict = A A i) tan" (1)
i=0
2n—1 .
= Z (i1 — AB A ;) sin3"~(t) cosh (1),
i=0

which agrees with Proposition

Likewise, the formulas in Proposition and Proposition are equivalent, since

4n—1 dn—1
dn—i—1
/\ (91 + tan) w;, 0 5 tan § |0"9 (D)Wo(i+1),0 ** " Wo(4n—1),0
=4
4n—1 4n—4

4 1 dn—j—4
_Ztan”l QDzS—Ztan = ©;.
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In the same manner

3
/\ (1 = Xtan3 (£))6; + tany (£)wi o)
=1

3
= Z(l - )\tan/\ tan/\ Z 0 cr (1)Wo (i+1),0 ** " Wo(3),0
i=0
3
=) (1 - Atani(¢))"tan] " (t)y;
i=0
3 ;
= (=\)F (k) tan} ™ 2R (1)ap;.
1=0 k=0
Finally,
3 4n—1
¢idareagpp = cosy" 2 (t) \ (1 — Atan} (£))6; + tanx(t)wio) /\ (6; + tany wi)
i=1 i=4
3 4n—4 i ;
i=0 j=0 k=0
3 4dn—4 1 i S
=20 D0 YN ) N T T ) cos\ T (0 A g,
i=0 j=0 k=0

which agrees with Proposition

4.5 Simpler local tube formulas

Here we endow certain subspaces of differential forms with a slo-module structure com-
patible with Lp. As a result we obtain specially simple tube formulas on some spaces of
curvature measures.

Proposition 4.5.1. In CP}, for 0 <k < 2n

LTph() = (2n -k + 1)pk_1?0 — )\(k + 1)pk+1,0.

Proof. We write for simplicity hy(t) = sin3""'(t) cos} (t), which is a famliy of linearly

independent functions. By Proposition

2n

¢idareacpp = Y ()i, (4.7)
=0
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and hj(t) = (2n — 0)hiy1(t) — AMlhyi—1(t),we have

2n

¢t darea@pn = Z hl )P0
1=0

= Z 2n — Dhiga (t) = Alh—1(t)) pro

= Z 2n — 1+ 1)pi—1,0 = AL+ D)piy1,0) Pa(t).

On the other hand

* d * * *
%(bt dareacpp = ds . b5y idareacpy = s . ¢5(¢tdarea@p;z)
2n
= Ly¢idareacpy = > hy(t)Lrpio.
=0
The result follows by comparing coefficients of hy(t). O

Proposition 4.5.2. In HP{, for 0 <1 <4n+ 2
LrCo = (4n — 1+ 3)Q_1 o— A+ 1)Cl+1 0, 0<I1<4n+2.
Proof. Put hy(t) = sin}"~ H2(4) cosl (t). By Proposmlonm

An+2

ord areagpy = Z hi(t)Go-
=0

Since hj(t) = (4n — 1+ 2)hy41(t) — Alhy—1(t), we have

In+2

¢t dareaHpn = Z hl CZO

4n+2

= Z ((4n — 1+ 2)hyg1 () — Nhy—1(2)) Co
2

= Z ((4n =1+ 3)G-1,0 — AU+ 1)G1,0) Pu(?)-
1=0
On the other hand
d

s o5 (¢;d areagpy)

0

* _ = * _
%qﬁt dareaHp;L =7 lo Ggigd areag pp

4An+2

= Lr¢;dareagpp = Z hy(t) LG o
=0

The result follows by comparing the coefficients of h(t). O
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In particular, the following subspaces of W€ and W™, are Lp-invariant

Ry = {pro: 0 < k < 2n} c WE,
RyE = {Cro : 0 < k < 4n +2} ¢ W

We will find an additional invariant subspace of WC. It is suggested by the following
proposition.

Proposition 4.5.3. In CP?, for 0 < k <2n

[ok,0,0] = Oxcono-

Proof. The volume tube formula in CPy' is

2n
T volepy = Z siny"~ k(1) cos’f\(t)a,i"o.
k=0
Hence
d
T; areacpr = Ty0) ¢ volcpn = — T, volgpr
A ’ A ds s=0 A

d
= Zst" *(t) cosk () 7s Tso’/}\,o
Sls=0

= Zsm2” F(t) cosk ()0, @ako

Globalizing (4.7)), yields
2n

T, areacpp = Z sin}" 7 (t) cos) (t) [ 05,0, 0] (4.8)
7=0

By comparing the coefficients of the basis {sininfj (t) cosg\(t) ?7:‘0 the result follows. [J
Proposition 4.5.4. For2 < j <2n—2, set

1{_(2n—j)(2n—j—1) 2n—j-D0E-1)

2n —1

U~ )

YA Pj-1 +)‘]

Pj1 = BNpj2+

Aot
2 o — 1 17 %}

Then, forr € {0,1} and 2r < k < 2n —2r
i)
[ok,r, 0] = 3A,<CUIQ\,T-

i)
Lrprr=2n—k—2r+1)pp_1, — XNk —2r + 1) py1,r.
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Proof. Tt remains only to prove the case r = 1.
i) By Proposition m

i(2n —9)
T o1 Lt AT 0]

— v A wiz1,0] = (2n —9)[B A pi—2,0] + Ni[B A ¢;, 0]
(2n—19)(2n—1i—1)

A
28}\,(C0—i71 -

=— — [B A pi—2,0]
(2n —i—1)(i — 1) |
+ o — 1 [v A pi-1,0]
I D15 ng,0)

Thus
[pi1,0] = Orcoin, 2<i<2n—2.

i) We need to prove

Lrpia=(2n—1i—1)pi—1,1 — A(i = 1)pit1,1.

Since
LT(BApj—2)=7Npj2+2n—7+1)BApj—3—AJ—1)pj-1
Lr(yNpj-1) = —4AB A pj_1+ (2n = j)pj—2 — Ajp;
Lr(BAp;) =7Npi+2n—3j—1)BApj1—AJ+Dpjt1,
we have
2n—71)(2n—7—1 . .
Lrpji=— ( 2‘7()2(72 — 1)] ) (YApj—2+2n =7+ 1B Apj—3—AJ —1)pj-1)
(2n—j—-1)(j—1) , N .
2(27'L — 1) ( 4)‘/8 A Pj—1 + (2n j)gp]*Q A]SDJ)

+ )\2.7'((2.7;1—_11)) (YAp;+(2n—7—1)BApj—1— A +1)pjt1)

o 1)% (_ (2n —j;?; i)(12n — j)ﬂ Ao
+W7A¢j—2 +)‘(j_2711)(jl_2)'6/\%_1>
G-l (_<2n—j sCIIS N Ire
+@%;tfw7Aw+Ang¥5AW“>' D
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We have thus a decomposition W€ = R;’(% @Rt\b’é into Lp-invariant subspaces given
by

Ryc = (pryr:2r <k <2n—2r) C we, r=0,1.
The operator L1 acts familiarly on each invariant subspace.

Theorem 4.5.5. i) In CP}, for r € {0,1}, the linear isomorphisms given by
E,: (V=) vy — (RA @7£T> DPon—drk—2r > Pk

satisfy
£TOFp :FpOY/\.

it) In HPY, the linear isomorphism given by

Fo: (V0. 73) — (RA%L1) s pans — Cro,

satisfies
LroF,=F,0Y).

Corollary 4.5.6. i) In CP}, forr € {0,1} and 2r < k <2n —2r

2n—4r
LTt pkra Z d)Qn 4r,k— 27"]( )[pj+27"7“0]‘

i) In HP}

LT [Cx,0,0] Z¢4nk] )[G5.0,0]

Remark 4.5.7. To derive the tubular formulas for the Federer valuations in CPy' and
HPy', we considered the spaces of differential forms WC and WH. The results involve
products of Santalé polynomials. However, by identifying the differential forms py, ., we
have been able to linearize the expression and represent the Lie derivative on W€ in the
form Y — AX, where (X,Y,[X,Y]) forms an sly-triple. In Section we will achieve
something similar for the whole WH,

At this stage, having obtained a representation in terms of differential forms for
the valuations 8,\7((301;\’7" for r € {0,1}, it is natural to ask whether we can also find a

representation for 02‘ .- The answer is affirmative, and the proof relies on our results on
the derivative operator d) ¢ obtained in section [3.7.2}
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Proposition 4.5.8. For 0 < i < 2n — 1 consider the (2n — 1)-differential forms given

by
(14 2))M2n —i—25 —2)!!
mio =y N 20— i1 o)l (Kit2j — ABA @it2j41)
7>0
N (i 4+2))M2n —i—25 —2)!!
Z 2n —i+ 2 Pi+2j+1,05
7>0
i(2n — 1) 1
1m0 — =B A i1
i1 2(27”&— 1)771,0 25 Yi—1

and Mano = 0. Then, for 0 <i<2n and 2 < j < 2n — 2, we have

U{\,O = 1,0, C2n,i+1d vol],
j(2n — j)

2(2n — 1)C2n,j+1 vol],

oy = [,
where ¢y 1, = 0 if kK —m is even and otherwise is given by .
Proof. From Proposition [4.5.3
[fim1 = AB A @i, 0] = (2n — i = 1)ofy g — A(i + 1)oty 0 = drcoip.

Then by Proposition [3.7.11

(i4+2))M2n—1—2j—2
o0 = Z X e “O\.COMy 41,0 + Coniv1 volepp

= il(2n — 1+ 2)!
(i4+2)1(2n —i— 25 — 2)!!
Z )\J ’L” I — i + 2)” ([[&2—1—2] )\ﬁ A Qoi+2j+17 O]]) + CZn,i—i—l VOICP/{l .
7>0
By Proposition [4.2.2]
x o J@2n—j) ) 1
_Jj@n—j) J)

J(2n—j)

— [[77j,17 m@n,ﬁ.ldvolﬂ. ]

4.6 Push-forward through the Hopf fibration

Wannerer and Hofstatter have recently computed the push-forward through the complex
Hopf fibration of the invariant valuations of the sphere. We will extend their result to
the quaternionic case.

Let us first recall how these fibrations are constructed.
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Definition 4.6.1. For A > 0, (21, ...,2n41) € S} € C"*1\ {0}, we define the complex
Hopf fibration by

bxc: S?\TH_I — CP)?? (Zla .. '7Zn+1) — [Zlv s 7zn+1] € C]D/\ = (Cn+1 \ {0}/(@*7

with fiber St.

For A > 0, (q1,---,qn+1) € S§”+3 C ™\ {0}, we define the quaternionic Hopf
fibration by

P H: S§n+3 — HP)\n7 (Q17 v 7qn+1) — [917 v ,Qn-i-l] € HP)?} = HnJrl \ {0}/H*>
with fiber S3.

Both Hopf fibrations are riemannian submersions. The following results are thus
relevant to us.

Proposition 4.6.2 ([37]). Let f: My — My be a proper riemannian submersion and
assume that Ms is connected. Denote by F the fiber of f. Then

i)
fix=c-x,
where ¢ = x(F).

i) For every B € P(Ma),
(Fevola)(B) = ([ vobu (71 ) ol

In particular, if the fiber of f has constant volume a € R, then
faxvolyr, = a - volyy,.

The next result by Hofstatter and Wannerer is crucial for determining the push-
forward of valuations under the complex fibration.

Theorem 4.6.3 ([37]). The push-forward map f. commutes with 0, and therefore with
T,.
4.6.1 Push-forward through the complex Hopf fibration

Let us recall Wannerer-Hofstatter’s result. We include the proof for completeness and
also because our approach in the quaternionic case is analogous.

For A > 0, let pyc: Si”“ — CPy' be the Hopf fibration. Since the fiber is St
Proposition provides

(PA,C)x VOIS§7L+1 =27 VOl((;p)r\L . (4.9)
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Theorem 4.6.4 ([37]).

1
g(p/\,C)*Ug‘ =(2n—k+ 1)02—1,0 — Ak + 1)‘71/c\+1,0 = a/\,CUl/c\,o = [pk,0,0].

In particular, the image of (pac)« is contained in I;L’(g.

Proof. From Theorem we have

2n

¢
TtVOISi"“ = Z (/0 s1n§\” I(s )cos/\( )ds> o; + V01S2n+1

J=0

By equation (4.9) and the property T; o (paxc)« = (pac)« © Ty, as stated in Theorem
it follows that

27TTtV01(cpn = Tt(p)\ C)x VO]S2n+l = (p)\,(c)*TtvolsinH
= Z </ Sln B )COS&( )dS) (p/\,«:)*U; + (p,\,(c)*volginﬂ.

Differentiating with respect to t, we obtain

2n

d A
27rd Tivolepp = ]Zosm% I(t) cos (t)(pa,c)«0

Moreover, since Tyys = Tt o Ty, using (3.28) we have

d d d
—Ttvol(cp — Tiisvolepr = — T, o Tyvolepr
dt ds|,_o A ds|,_g o
2n ) ) d 2n )
= sin}" 7 (t) cosi (¢) = Too0 =Y _siny" 7 (t) cos) (t)Or co
j=0 s=0 j=0

Since {sini"fj (t) cos /\(t) 2”0 are linearly independent functions, equating coefficients in
the previous two 1dent1tles yields the result. O

A precise description of the image and the kernel of (py )« will be provided below
in Proposition m First, we relate (py )« to some maps we constructed before.
Let us recall the linear isomorphism ([3.34))

3 2n—4r+1 n,r A A
H — L\ 05 = Tjtorjtr

between the linear subspaces 7—[3\"—4”1 - foR_MH and If(g C V}¢. This map com-

mutes with the tubular operator Ty, i.e, both F,)‘Z’O and py ¢ preserve the tube formulas.
The two maps are closely related.
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Proposition 4.6.5.

1 A

%(P/\,C)* =F,o0 OA\R-
Proof. By Proposition [3.7.12| the image of 0)r is contained in the hyperplane H?\”H
and therefore the expression is well defined. The equality follows from (3.1)). ]

Proposition 4.6.6. For A > 0 the complex Hopf fibration satisfies
i) ker(pxc)« = (X)-

it) Tm(pac)s = Zyg = (13- -+ 13,)-

Proof. i) Since the fiber is isomorphic to S' and x(S') = 0, by Proposition
(pac)«x = 0. Let p € V;’ﬁ{l be such that (pyc)«p¢ = 0. By Proposition [4.6.5
F7);70(8A7Ru) = 0. Thus, O\rp € kerFf‘hO = {0} and therefore 0\gp = 0. Since
ker O\ r = (x) by Proposition m the result follows.

ii) By Proposition 3.7.12E the image of 9y g is H3" . Since F270: HimH I;’(g is a
linear isomorphism, the result follows. ]

Let us recall the basis ¢°, ..., ¢*" 1 € Virﬁgl introduced in (3.42)).
Proposition 4.6.7. For k >1

k!wk k!wk
(pac)«¢" =2 A A

1. Ok-1,0~ 4 _%_1Tk—1,0"
ok 1w2nfk+1 k1

Proof. By Proposition 4.6.5| and Proposition |3.7.12

|
%(Px,@)*qbk =F) 0hrs" = %02_1
Since 772,‘,0 = k!T,éO we have
0'1::\,0 = %Wﬁ,o = W2n—le§\,0'
The stated formula follows. ]

Another basis of V% is given by the so-called Lipschitz-Killing valuations t0 =

S2n+1

X, t, ..., t2"1 where t = % w1 and w1 is the restriction to of the intrinsic volume

[ Val(R2"+2).
Proposition 4.6.8.

E/245—1\ (A [ (k+2)) wpso;

(Prc)et’ =D ( j ) <4> T W SEYRT) B
Jj=20

Proof. By [34, Lemma 3.4]

g () () e

Jj=0
Proposition yields the result. O
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4.6.2 Push-forward through the quaternionic Hopf fibration

For A > 0, let pym: S‘f\"% — HPY be the Hopf fibration. Since the fiber is S3, Proposition
4.6.2| provides
(PaH)+ VOlSin-»—S = 272 volgpp . (4.10)

Let us recall the forms
o ENTEAWS .
Qo= Z (=) <k> Vi N Q1—iyok—3-
0<k<i<3

Proposition 4.6.9.

1 .
) (pam)«oy = [Gi0,0), 0<i<dn+2.
Proof. By Corollary and equation (3.32))
4n+2 '
Trareazpy = 3 sin}" ™" *2(t) cos} (1)[¢.0, 0]
=0
4An—+2

T, areagints = E siny™ "2 (t) cos (t) o7

Since (pxm)« commutes with the derivative map, and 0 vol = area, by Proposition m
we have
(PAH) areagin+s = (pam)+0 VOIS§n+3
= 3(;0)\7131)* VOIS‘)‘\”+3
== 271'28 VOIHp;\z

= 271'2 areaHp; .

Therefore

An+2
(pam)« T4 areagints = Z siny™~"t2(t) cosh (t) (pa )+

4n—+2
= 27T, areagpp = 22 Z 51n§” “F2(t) cosh (1[0, 0]
i=0
Comparing coeflicients in the last two lines yields the result. O
Proposition 4.6.10.
(PAm)+x = 0.
Proof. Since x(S®) = 0, by Proposition m the result follows. O
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Since we do not know much about the globalizations [{;,0] we can not determine
the kernel and the image of (pm)«.

Next we will look for valuations S’%O in HPy' playing the same role as the 020 in CPY;
i.e, such that
1 A A
[[Ci,(]a 0]] = Tﬁ(px,H)*Ui = 8/\,HSZ'70-
Our approach consists of integrating the valuations o;\ € Vj\“ﬁg?’ with respect to 0\ g and
then transferring them through the push-forward. Let us consider the valuations given
by
T snit2 ip1  ysanes ,
D, = b WAnzid? it SR 0<i<dn+2,
(1 + Dlwita
where ¢V, ..., ¢T3 ¢ Vﬁ?ﬁ{?’ are the valuations introduced in (3.42). By Proposition
[B.7.12l it is satisfied
NRrYi =0, 0<i<dn+2.

. . |
In particular, since ¢ =" = = 1, on SY,

a/\,RZ4n+2 = 8)\’R VOIS§n+3 = areagiwa .

Proposition 4.6.11. Define

1 .
Sz‘),‘o = Tﬂg(p)\,]}]l)*zia 0<i<4n+2.
Then
B 1
M mSiy = ﬁ(Px,H)wz
and
An+2 A
Ty volupp = Z sm4" F2(1) cosz)\(t)S{}O.
=0

In particular
1
A
S4n+2,0 = ) (pA,H)* V01S§n+3 = VOal;\t .

Proof. Given that
NrEi =07, 0<i<dn+2,
the first equality holds. Theorem reads

An+2
4 2( ; A
Ti0\rYan+2 =T areagints = E siny"™ o (t) cos\(t)o;

4An+2
= E siny "2 (t) cos) (1) O g Zi-
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Since d\r o Ty = Ty 0 Oy R, it follows that

4n+2
OAR (TiX4nt2) = OAR (Z siny™ 2 (¢) cosf\(t)Ez) .
=0

From Proposition we know that ker Oy g = (x). Therefore, there exists a constant

¢ € R such that:
an+2

T X4nio = Z siny" "2 (¢) cos} (t)3; + ex.
Given that (pxm)«x = 0 applying (pm)« on both sides of the previous formula yields

4An+2
TtSi\nJrQ,O = Z siny"™ "2 () cos} ( )S’\ O
=0

Corollary 4.6.12.
8)\]}]157/0—(4”_1"_3)5@ 1,0 — )\(Z—"l)sl_;’_lo, 0§Z§4n+2,

An+2

TS0 = Y bant2.(t)S7o
§=0

In analogy with the construction carried out in the complex case and the notation

adopted in (3.27)), we write
Tyg o= (S} : 0 < i <4n+2). (4.11)

Proposition 4.6.13. The linear isomorphism
Jam: (VU2 yy) — (Ij\l,’ﬁ,a,\,@ , Diny2i 5{\,0

satisfies
IpoYy=0\mo \u

We shall now express S 0 in terms of differential forms for 0 <1 < 4n + 1.

Proposition 4.6.14. For 0 <¢ <4n+2

SZ—I—QSH n—i— 28)
0 —SZ%)\ z” An — i+ 2) [[Cz+2s+1 0,0]] + Cani2,i41 VOaln .

Proof. By Proposition [4.6.13 we have an sls-isomorphism Si):[) > Pan+2,i- From Propo-
sition [3.3.10)

Z/\sz+2s”4n—z—2$) dn+2,

Din+2,i i(dn — i + 21 Y\Pan42,i+2541 + Cant2,i417

s>0

115



Chapter 4. Tube formulas for the Federer valuations

Then, transferring this expresion and using 0y HS, o = [¢i0,0]

(i4+2s)!M(4n — i — 2s
Sh=>_ xe! ! “O\HS 2541 + Cant2,it1 VOlupy

= a( 4n71+2)”
(i + 2s)!1(4n — i — 2s)!!
—Z)\S iN(dn —i+2)! ) [Ci+25+1,0, 0] + cant2,i+1 volgpp . O
>0 o

4.7 Diagonalization of £; on W® and WH

Here we diagonalize the operator L7 in W and WH,

Note that we can diagonalize L7 on each component of the tensor product using
Lemma Hence, we just need to use the following observation. Given two vector
spaces Uy, Us and two linear endomorphisms f;: U; — U;,i = 1,2, consider f: U1 QUy —
U1 ® Us given by

foew)=fi(v)@w+v® fo(w), veU,wéeUs.

Let uy,us € Uy, Uy be such that

fiur) = arur,  fa(uz) = azus.
Then

flur @ ug) = (a1 + az)ur @ us.
4.7.1 Complex space forms
Let us recall the space WC = WL ® WS _,, where

C—(y,8), W& o=1{(p:0<i<2n—2)
By the previous considerations, if ¢ € W and ¢ € W5, satisfy
Lry =ap, Lrp=bp

for a,b € C, then
L@ p)=(a+dby R p.

Proposition 4.7.1. i) Lr is diagonalizable in W and
spec(Lr|yc) = {—2\/—A,2m},

with eigenspaces

E_y =x(Lrlye) = (v10),
Ey /x(Lrlye) = (v1)-

v =7 — 2V =AB,
v =7+ 2V=AB.

where
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ii) Lr is diagonalizable in W5 o and
spec(£T|W§ _2) = {(2]€ —2n+2)V-A:0<k<2n-— 2} ,

E(2k-2n+2)m(ﬁﬂwgn_2) = (Van—2k), 0<k<2n

where

v = 3 (a + b) <2n —a-b- 2) R

a k—a
a,b

Proof. i) By Lemmam the eigenvalues of Y;y in V(1) are
ap = —V—4\ = =2V =), a; = V—4\ = 2V =)\,
with the corresponding eigenvectors given by
up =y —2vV-XAz, u =y+2vV-Az.

By Theorem the linear isomorphism [, preserves both the eigenvalues and
the eigenvectors of Lp. Thus, vi; = Fy(u;), explicitly given by

V1,0 =Y —2V=AB, i1 =7+ 2V A8,

are the eigenvectors associated with the eigenvalues —2+/—\ and 2+/—\, respec-
tively.

i1) By Lemma m the eigenvalues of Yy in V(?*=2) are ), = (2k — 2n + 2)v/—\ for
0 < k < 2n — 2, with the corresponding eigenvectors given by

o= (M%) Ve - VR

According to Lemma (3.3.6)), we can expand this expression as follows:
a+b\/2n—a—b—2
ve =Y ( " ) ( E—a )(—1)b(v N pon_2.atb.
a,b

By Theorem the linear isomorphism F, preserves the eigenvectors and eigen-
values of Lp. Then vy, o) = F,(vx) are Lp-eigenvectors with the associated
eigenvalue [, explicitly given by

vonan =Y <a - b> <2n _k:a—_ab - 2> PR o,

a
a,b

for 0 <k <2n-—2. ]

117



Chapter 4. Tube formulas for the Federer valuations

Proposition 4.7.2. Ly is diagonalizable in W& = W @ WS _, and
spec( Lr|ye) = {(42‘ 12— 2V A 0<i<1,0<j<2n— 2}
Eivaj—onyy=x(Lrlwe) = (1i @ v2p—2j4), 0<i<1,0<5<2n-2.
Proof. By definition, for 0 <¢<1land 0 <j <2n
Lrvy; = (41— 2)V —Avy,
Lrvan—2; = (2] — 2n + 2)V—=Avan—2,5,

therefore for 0 < i <1 and 0 < j < 2n — 2, since L7 is a derivation

Lr(v1i ®van—2,5) = (40 +2j — 2n)V —=Av1; ® Van-2,5.

From a dimensionality argument, it follows that L7 is diagonalizable. 0

4.7.2 Quaternionic space forms

Proposition 4.7.3. i) Lr is diagonalizable in W3 and
spec(£T|W§ﬁ) = {(42 —6)V—-A:0<i< 3},

E(4i_6)\/f = <U3,i :0<i < 3>7
where

e 3 (a + b) (3 —a- b> R W

a k—a
a,b

ii) Lr is diagonalizable in Wi _, and
spec(£T|W£ﬂ _4) = {(Qj —dn+4HV-A:0<j<4dn-— 4} ,

E(2j—4n+4)m = (Uan—a; : 0 < j < 4dn —4),

where

> (a ;r b) <4n _ka__ab - 4) (=D (V=" pqs-

a,b

Proof. i) The eigenvalues of Yy, in V) are (4k — 6)v/=X for 0 < k < 3, with the
associated eigenvectors given by

U = <l?;> (y +2v=2 )k (y —2v=22)>* 0<k<3.
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Specifically, using Lemma this can be expanded as:

wu=3 (a ;r b> (3 ;i ; b) (—1)P(2v/ =) (a i b) by 3=a—b,

a,b

By Theorem the differential forms vg ), := Fyy(uy) given by

T o | (i [ LE

a
a,b

are Lr-eigenvectors with associanted eigenvalue (4k — 6)v/ —A.

i1) The eigenvalues of Y) in Vn—4) are g, = (2k —4n + 4)/—X for 0 < k < 4n — 4,
with the associated eigenvectors given by

wei= (M) VR - VR

Specifically, using Lemma this can be expanded as:

wp = Z (a ;r b> (4” *ka:ab - 4> ()P (VR <4:+b4> by An—a—b—4

a,b

By Theorem the differential forms vy, 1= F(uy) given by

U4n—4,k = Z (a : b) (471 —ka_—ab - 4) (_l)b(\/j>a+b<ﬁa+b

ab
are Lr-eigenvectors with associanted eigenvalue (2k — 4n + 4)v/—\. O
Proposition 4.7.4. Lt is diagonalizable in W% = Wl @ Wi | and
spec( Lr|yu) = {(2k —m)V=X: 0 < k <m},
where m = 4n + 2, and
E o myyx(Lrlys) = (3 @ ap—aj : 20+ = k,0 <i <3,0 < j < dn—4).

Proof. By the previous proposition v3; ® v4n—4,;, with 0 <7 <3 and 0 < j <4n — 4, is
an eigenvector with eigenvalue

(4i 4+ 25 —4dn — 2)V =\,
Such vectors form a basis, and thus the proposition follows. O
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A straightforwrad but tedious analysis shows (for n > 3)

5] +1, if0<k<6,
dim E(Qkfm)\/j = 4, if 7 S k é 4n — 5,
2n+1—4]|+1, ifdn—4<k<4n+2.
Using Lemma [3.3.4] one checks that Y), restricted to

V(4n710) @ V(4n76) @ V(4n72) D V(4n+2)

has the same spectrum and the same multiplicities as £7 on WH. Tt follows that there
exists an isomorphism

d- V(4n—10) D V(4n—6) @ V(4n—2) D V(47’L+2) N WH
such that ®oY), = L1 o D.

Corollary 4.7.5. There exists a basis {(y,: 0 <7 <3,2r <k <m—2r} of WHEH such
that

m—4r
LTt[Ck,raO] = Z ¢£\n—4r,k—2r,j(t)[<j+27’$70]'
j=0
and the following subspaces of WY, are Lp-invariant
Ry = {1 2r <k <m—2r}.
Proof. It suffices to take (i, = ®(pm—ark—2r) and use

exp(tLr)(Crr) = exp(tLr ) (PPm—ari—2r)
—do exp(tYA)(pm_4r,k—2r)
= ®(prm—ark—2r(t))

= Z ¢3\n—4r,k—2r,j (t)q)(pm*‘l?",j)
J

A
= Z Grm—ar o—2r,; (L) Cj+2r,r- N
J
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