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Introduction

Problem statement

For a compact convex set A ⊂ Rm, the Steiner formula expresses the volume of the set
At consisting of points at distance smaller than t from A as the following polynomial on
the radius t

vol(At) =
m∑
i=0

ωm−iµi(A)t
m−i. (1)

Here the normalizing constant ωk is the volume of the k-dimensional unit ball, and the
functionals µi are the so-called intrinsic volumes. The intrinsic volumes are fundamental
examples of the notion of valuation, which we introduce next. Denote by K(Rm) the
class of compact convex set of the euclidean space. A complex-valued functional φ on
K(Rm) such that

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

for A,B,A∪B ∈ K(Rm), is called a valuation. The space of continuous and translation
invariant valuations is denoted by Val(Rm). Hadwiger’s characterisation theorem states
that the subspace Val(Rm)SO(m) ⊂ Val(Rm) of SO(m)-invariant valuations is spanned by
the intrinsic volumes µ0 = χ, . . . , µm = volRm , where χ denotes the Euler characteristic.

In his famous tube formula, H. Weyl ([65]) proved that (1) holds for A ⊂ Rm a
smooth compact submanifold and t ≥ 0 small enough, in which case At is called the tube
around A of radius t. Additionally, he proved that the coefficients µi(A) depend only
on the induced riemannian structure of A.

In [27], Federer showed (1) for the class of compact sets of positive reach. A further
development due to Federer is the introduction of certain localizations of the intrinsic
volumes, which he called curvature measures. From the modern viewpoint, a curvature
measure is a functional Φ on K(Rm) taking values in the space of Borel measures of Rm,
fulfilling, at least, the following

Φ(A ∪B,U) = Φ(A,U) + Φ(B,U)− Φ(A ∩B,U)

where A,B,A ∪ B ∈ K(Rm) and U is a Borel subset of Rm. Taking U = Rm we
obtain a map called globalization from curvature measures to valuations. A notable
family of curvature measures, denoted by ∆i, are the Federer curvature measures, whose
globalizations correspond to the intrinsic volumes µi.

7



Contents

Tube formulas exist however in other spaces besides euclidean space. Indeed, already
in Weyl’s original work [65], the tube formula (1) was extended to the sphere and hy-
perbolic space. The perspective has shifted: our focus is now on altering the ambient
space, not merely the class of sets where tubes are taken. The tube formula in spherical
and hyperbolic spaces is expressed not as a polynomial in the radius t, but as

vol(At) =

n−1∑
i=0

(n− i)ωn−i
(∫ t

0
sinn−i−1

λ (r) cosiλ(r)dr

)
νi(A) (2)

where νi are certain functionals, λ is the curvature of the ambient,

sinλ(t) :=



sin(
√
λt)√
λ

λ > 0,

t λ = 0,

sinh(
√
|λ|t)√
|λ|

λ < 0,

which is an analytic function in both λ and t, and cosλ(t) :=
d
dt sinλ(t). The functionals

νi in (2) are naturally seen as analogs of the µi in (1), which hints at a notion of
valuation beyond the euclidean space. The current perspective is to view these νi as
smooth valuations in the sense of Alesker’s theory of valuations on manifolds (cf. [7]).
To simplify matters, let Mn be a riemannian manifold and fix R(M) the class of sets of
positive reach in M . Let π : SM →M be the sphere bundle of M . A smooth valuation
on M is a complex-valued functional φ = Jω, ηK on R(M) of the form

φ(A) =

∫
N(A)

ω +

∫
A
η, A ∈ R(M),

where ω ∈ Ωn−1(SM) and η ∈ Ωn(M), are complex-valued differential forms and
N(A) ⊂ SM is the so-called normal cycle of A (cf. e.g. [53]), consisting of outward
normal vectors to A. We denote by V(M) the complex vector space of valuations on M .

It is natural to consider also the corresponding localized functional Φ = [ω, η] given
by

Φ(A,U) =

∫
N(A)∩π−1(U)

ω +

∫
A∩U

η

where A ∈ R(M) and U is a Borel subset of M . Such a functional is called a smooth
curvature measure, and the complex vector space they comprise is denoted by C(M).
Once again, we have a globalization map C(M)→ V(M) simply by taking U =M .

Federer’s curvature measures ∆i can be naturally extended from Rm to any rieman-
nian manifold. The globalizations of these curvature measures ∆i on M give us a family
of valuations νi in M . Although there is no fixed terminology for these νi, it is natural
to refer to them as Federer valuations.
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Further results, in the vein of extending tube formulas to other ambient spaces, were
formulated by Gray and others (cf. [38, 40, 39]). In particular, Gray and Vanvhecke
[38] computed the volume of a tube around submanifolds of real, complex, quaternionic,
and octonionic space forms. Here we continue their work in the real, complex, and
quaternionic cases, leaving the octonionic one for a better occasion. For that purpose,
let us fix some notation:

• Real space forms: we denote by Smλ the (unique up to isometry) complete m-
dimensional simply connected riemannian manifold of constant sectional curvature
λ. If λ > 0, it corresponds to the sphere of radius r = 1√

λ
. For λ < 0, it

represents the real hyperbolic space, with the metric suitably rescaled. Finally,
λ = 0 represents the standard euclidean space. We refer to the family Smλ as real
space forms. We denote by Gλ,R the group Isom(Smλ ) of isometries of Smλ .

• Complex space forms: we denote by CPnλ the (unique up to isometry) complete n-
dimensional simply connected Kähler manifold of constant holomorphic sectional
curvature 4λ. If λ > 0, it corresponds to the complex projective space endowed
with the Fubini-Study metric. For λ < 0, it is the complex hyperbolic space
equipped with the Bergman metric. Finally, λ = 0 represents the hermitian stan-
dard space Cn. We refer to the family CPnλ as complex space forms. We denote by
Gλ,C the group Isom(CPnλ ) of isometries on CPnλ .

• Quaternionic space forms: we denote by HPnλ the (unique up to isometry) com-
plete n-dimensional simply connected quaternionic Kähler manifold of constant
quaternionic sectional curvature 4λ. If λ > 0, it corresponds to the quaternionic
projective space. For λ < 0, it is called quaternionic hyperbolic space. Finally,
λ = 0 represents the quaternionic standard space Hn. We refer to the family
HPnλ as quaternionic space forms. We denote by Gλ,H the group Isom(HPnλ ) of
isometries of HPnλ .

All previously mentioned works focused on computing the volume of tubes around
geometric objects. Tube formulas, however, also exist for valuations beyond volume. For
instance, by differentiating the Steiner formula one easily obtains

µk(At) =
k∑
j=0

(
m− j
m− k

)
ωm−j
ωm−k

µj(A)t
k−j , A ⊂ Rm. (3)

In real space forms, Santaló obtained similar tube formulas for all isometry invariant
valuations (see [55]); explicitly, in terms of νi, the tube formula is

νi(At) =

m∑
j=0

ϕλm,i,j(t)
(m− j)ωm−j
(m− i)ωm−i

νj(A), (4)

where

ϕλm,i,j(t) =
∑
h≥0

(−λ)j−h
(
m− j
i− h

)(
j

h

)
sini+j−2h

λ (t) cosm−i−j+2h
λ (t).
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We will refer to ϕλm,i,j as Santaló’s polynomials. Thus, we have as in (2) a tube formula
involving trigonometric polynomials instead of a polynomial on the radius like in (1)
and (3). Gray and Vanhecke established tube formulas for νi in real, complex, and
quaternionic space forms, albeit under stringent restrictions on the submanifold.

Main results

In this work, we establish the existence of tube formulas for any smooth valuation on
a riemannian manifold. In real and complex space forms we will compute these tube
formulas for every invariant valuation. In addition, we derive the tube formulas for a
certain interesting family of valuations in HPnλ including the Federer valuations. Next,
we describe these results in more detail.

Tubular operators

Given a riemannian manifold Mn, we construct the tubular operator, which consists in
a family Tt of linear endomorphisms of V(M), such that

µ(At) = Ttµ(A), ∀µ ∈ V(M)G,

for A ∈ R(M) and t ≥ 0 small enough. Differentiating Tt at t = 0 yields the derivative
operator ∂ : V(M)→ V(M). Similarly, we define the local tubular operator LTt in C(M)
and its corresponding derivative operator also denoted by ∂.

Explicitly, these tubular operators are given in terms of differential forms as follows.
Let t ≥ 0 and pt : SM× [0, t]→ SM be the projection on the first factor. Let us consider
ϕ : SM × R→ SM the geodesic flow. Then, for µ = Jω, ηK and Φ = [ω, η]; i.e.

Tt(µ) = Jϕ∗tω + (pt)∗(π ◦ ϕ)∗η, ηK, (5)

LTt(Φ) = [ϕ∗tω + (pt)∗(π ◦ ϕ)∗η, η]. (6)

Let now G be a subgroup of isometries of M and the subspaces V(M)G and C(M)G

of invariant valuations and curvature measures. We will prove their invariance under Tt

and LTt; i.e

Ttµ ∈ V(M)G, LTtΦ ∈ C(M)G,

for all µ ∈ V(M)G and Φ ∈ C(M)G. Therefore, the same property holds for ∂ in V(M)G

and C(M)G.

Let us assume that (M,G) is an isotropic space, meaning that G acts transitively
on SM . Then, V(M)G and C(M)G are finite-dimensional vector spaces and the tubular
operator Tt|V(M)G is given by the flow of ∂|V(M)G

Ttµ = exp(t∂)µ =
∑
i≥0

ti

i!
∂iµ, ∀µ ∈ V(M)G. (7)

10
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The analyticity in t is ensured by the fact that dimV(M)G < ∞, and may not hold
without the finite-dimensionality restriction. We will apply (7) to real, complex, and
quaternionic space forms, where the derivative operator will be explicitly displayed.

Complex space forms

Let us first focus on the space Vnλ,C of valuations invariant by holomorphic isometries,
endowed with its corresponding derivative operator ∂λ,C. We begin by analyzing the
null-curvature case λ = 0.

Let ValU(n) be the vector space of translation and U(n)-invariant continuous valu-
ations in Cn. Bernig and Fu introduced an sl2-module structure in ValU(n), consisting
of a triple (Λ, L,H := [Λ, L]), where Λ is a convenient normalization of the derivative
operator on ValU(n), and L is a normalization of the product with the first intrinsic
volume. In particular, Λ is nilpotent, implying that ∂ is also nilpotent. Consequently,
(7) reduces to a finite sum.

Among the many special bases for ValU(n), Bernig and Fu introduced one that is
compatible with the decomposition into sl2-irreducible components; i.e., maximal and
non-trivial subspaces that remain invariant under the action of Λ and L. In this basis,
the successive powers of ∂ are straightforwardly given, and consequently, the tubular
operator is a simple consequence of (7).

Remarkably, the sl2-structure of ValU(n) is somehow present also in the curved case
λ ̸= 0. Indeed, we will establish the existence of an isomorphism Φλ : ValU(n) → Vnλ,C
such that

∂λ,C = Φλ ◦ (Λ− λL) ◦ Φ−1
λ . (8)

While it is natural to have a relation between ∂λ,C and Λ, the appearance of L is quite
unexpected.

The identity (8) turns the determination of tube formulas in Vnλ,C into the compu-

tation of exp t(Λ − λL). By decomposing ValU(n) into sl2-irreducible components this
computation can be easily performed in some abstract model space. In fact, the same
abstract computation lies at the basis of most of the results of this thesis. The result we
obtain for Vnλ,C is the following.

Theorem. There exists a basis {σλk,r} of Vnλ,C such that

Ttσ
λ
k,r =

2n−4r∑
j=0

ϕλ2n−4r,k−2r,j(t)σ
λ
j+2r,r, (9)

where

ϕλm,k,j(t) =
∑
h≥0

(−λ)j−h
(
m− j
k − h

)(
j

h

)
sink+j−2h

λ (t) cosm−k−j+2h
λ (t).

11
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We describe the basis σλk,r explicitly in terms of the previously known valuations τλk,p
of [21]. The tube formulas for the τλk,p can be directly obtained from the previous ones,

as we also provide the expression of these valuations in terms of the σλk,r.

The expressions (9) closely resemble those obtained by Santaló in (4) within real space
forms. To explain these similarities, we demonstrate the existence of a phenomenon that
parallels (8). However, the volume tube formula exhibits significant differences.

We then switch to the local level by providing closed formulas for LTt in CPnλ ,
leveraging the complete classification of invariant curvature measures known for CPnλ
([51, 21]). The resulting formulas are substantially more involved than (9).

Federer valuations and curvature measures

Our study concludes in Chapter 4 with the determination of tube formulas for the Federer
curvature measures ∆i and the Federer valuations νi in quaternionic space forms. This
election arises from the lack of a complete classification of invariant curvature measures
in HPnλ , unlike Smλ and CPnλ . For this reason, we chose to begin with tube formulas
for Federer valuations as a solid starting point for future developments. We will treat
the cases of CPnλ and HPnλ in parallel. Although we know Tt and LTt for all invariant
valuations and curvature measures in complex space forms, it is interesting to establish
particular formulas for ∆i and νi in CPnλ . Moreover, these formulas provide insights into
approaching the case of HPnλ .

The strategy in both CPnλ and HPnλ is to decompose the Federer valuations ∆i as a
sum of curvature measures that are conveniently adapted to the curvature tensor, and
thus have a simple behavior under the geodesic flow. Explicitly, we put

∆i =
∑
j

[ψj ∧ φi−j , 0], (10)

where ψj and φi−j are a family of invariant differential forms with a specially nice
behavior to the geodesic flow. More precisely, we find that the action of LT on the span
of the ψj and the span of the φk follows the same abstract sl2 model as ∂λ,C on Vnλ,C. By
using the same abstract computations as in that case, we obtain ϕ∗tψj and ϕ

∗
tφk. These

pull-backs along with formula (7) and representation (10), yield

Theorem. The tube formulas for the Federer valuations and curvature measures in HPnλ
are

Tt(νi) =
1

(4n− i)ω4n−i

3∑
j,k=0

4n−4∑
l=0

ϕ4λ3,j,k(t)ϕ
λ
4n−4,i−j,l(t)Jψk ∧ φl, 0K,

LTt(∆i) =
1

(4n− i)ω4n−i

3∑
j,k=0

4n−4∑
l=0

ϕ4λ3,i,k(t)ϕ
λ
4n−4,i−j,l(t)[ψk ∧ φl, 0],

for 0 ≤ i ≤ 4n− 1.
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In fact, we have completely determined LTt and Tt on the vector spaces spanned by

{[ψj ∧ φk]}, {Jψj ∧ φkK}

Therefore, both on CPnλ and HPnλ we have found tubular formulas in certain natural
subspaces of isometry invariant curvature measures and valuations which contain ∆i and
νi respectively.

As application of our results, we can compute the Hopf push-forward of valua-
tions through the Hopf fibration pλ,H : S4n+3 → HPnλ following the approach of Georg
Hofstätter and Thomas Wannerer ([37]). The essential component of this computation
relies on the commutativity of Tt and the Hopf push-forward (pλ,H)∗, a result they es-
tablished. With these tools at hand, we can represent this push-forward in terms of
differential forms and introduce new and interesting families of valuations in Vnλ,H.

13
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Chapter 1

Background

In this chapter we introduce the essential material about the riemannian manifolds we
will be working with. We also review the basic notions of valuation theory, as well as
some basic facts on sl2-representations.

1.1 Riemannian manifolds

1.1.1 The sphere bundle

We review some fundamental notions on the sphere bundle of a riemannian manifold and
its canonical contact structure. Everything is classical, but we include several proofs and
details for self-containedness. For a more comprehensive treatment of this subject, see
[25].

Let Mn be an oriented riemannian manifold, where g = ⟨·, ·⟩ denotes its riemannian
metric. Let ∇ be the Levi-Civita connection satisfying

∇g = 0, [X,Y ] = ∇XY −∇YX,

and let R be the Gauss curvature tensor defined as

R(W,X)Y := ∇[W,X]Y −∇W∇XY +∇X∇WY.

The Riemann curvature tensor is given by R(W,X, Y, Z) = g(R(W,X)Y, Z).

Definition 1.1.1. The sphere bundle of M , denoted by SM , is the (2n−1)-dimensional
smooth manifold consisting of the set of unit tangent vectors with canonical projection
π : SM →M . The canonical contact 1-form of SM is

αξ(v) := ⟨ξ, dπ(v)⟩, v ∈ TξSM. (1.1)

The 2-form Θs := −dα is called symplectic form of SM . The top form α ∧ (dα)n−1 is
nowhere vanishing; i.e., it is a volume element (see [25]).

15



Chapter 1. Background

We systematically denote by e0 : SM → TM the smooth map given by e0(ξ) = ξ for
all ξ ∈ SM , i.e, the inclusion map of SM in TM . Therefore, for any vector field in SM ,
we can describe the canonical contact 1-form introduced in (1.1) by

α(X) = ⟨e0, dπX⟩. (1.2)

A diffeomorphism ϕ on SM is called a (oriented) contactomorphism if it preserves the
oriented hyperplane field kerα := {X ∈ X(SM) : iXα = 0}, known as the contact hyper-
plane, with the orientation induced by dαn−1. This is equivalent to

ϕ∗α = eh α (1.3)

for some real-valued function h on SM . When h is identically zero ϕ is called strict
contactomorphism. A vector field X on SM which satisfies LXα = f · α for some
function f : M → R is called a contact vector field.

1.1.2 Pull-back bundle and pull-back connection

Given the projections π : SM →M and π′ : TM →M , we consider the pull-back vector
bundle

π∗TM := {(ξ,X) ∈ SM × TM : πξ = π′X}.

If Y is a section of TM (i.e., a vector field onM), we can pull back Y to obtain a section
in π∗TM

π∗Y = (e0, Y ◦ π).

Locally, every section of π∗TM is a C∞-linear combination of pull-back sections of TM
(e.g. the pull-backs of Yi =

∂
∂xi

where (x1, . . . , xn) are local coordinates onM). It follows
that there exists a unique connection π∗∇ in the pullback bundle π∗TM characterized
by the property that for every vector X ∈ TξSM and every vector field Y on M , the
following holds:

(π∗∇)X(π∗Y ) = π∗ (∇dπXY ) .

For each ξ ∈ SM , the pull-back connection π∗∇ induces a natural decomposition of
TξSM given by

TξSM = Hξ ⊕ Vξ.

where Vξ := ker(dπ)ξ is known as the vertical subspace, and Hξ := ker(X 7→ (π∗∇)Xe0)ξ
is the horizontal subspace. The restriction (dπ)ξ : Hξ → TxM is an isomorphism, and
likewise

(π∗∇)e0 : Vξ −→ ⟨ξ⟩⊥, X 7−→ (π∗∇)Xe0 (1.4)

defines an isomorphism. Hence, we have an identification

TξSM = Hξ ⊕ Vξ ∼= TxM ⊕ ⟨ξ⟩⊥

X ←→ (XH , XV )

16



Chapter 1. Background

where x = π(ξ), XH = dπX and XV = (π∗∇)Xe0. Therefore, any vector field X on the
sphere bundle SM is determined by dπX and (π∗∇)Xe0, i.e., through its horizontal and
vertical parts, respectively. In this notation the canonical contact 1-form α previously
defined in (1.1) can be expressed by

α(X) = ⟨XH , e0⟩, X ∈ X(SM). (1.5)

The bilinear connection form ω is defined by

ω(X,Y ) := ⟨(π∗∇)Xe0, dπY ⟩ = ⟨XV , Y H⟩, (1.6)

for X,Y ∈ X(SM). Thus, by definition of the vertical subspace V , we have the following
description

V = {X ∈ X(SM) : iXω = 0} .
The connection form ω is bilinear but not skew-symmetric.

1.1.3 Moving frames and the Reeb vector field

Another key concept is moving frames, useful for computations with connections and
curvature.

Definition 1.1.2. Let U be an open subset of SM . A moving frame on U is a collection
e0, . . . , en−1 of smooth maps ej : U → TM such that e0(ξ) = ξ, and {e0(ξ), . . . , en−1(ξ)}
forms a basis of TπξM for all ξ ∈ SM . If the basis is orthonormal for each ξ ∈ U , we
call it an orthonormal moving frame.

Consider an orthonormal moving frame e0, e1, . . . , en−1 defined on U ⊂ SM . Then
each ej can be seen as a section of π∗TM . The coframe, connection and curvature forms

θi, ωi,j ∈ Ω1(U), Ωi,j ∈ Ω2(U), 0 ≤ i, j ≤ n− 1

are defined by

θi(X) := ⟨ei, dπX⟩, (1.7)

ωi,j(X) := ⟨ei, (π∗∇)Xej⟩, (1.8)

Ωi,j(X,Y ) := R(ei, ej ; dπX, dπY ). (1.9)

where R is the curvature tensor of M . Notice that θ0 = α.

The corresponding structure equations are given by

dθi = −
n−1∑
j=0

ωi,j ∧ θj , (1.10)

dωi,j = −
n−1∑
k=0

ωi,k ∧ ωk,j +Ωi,j , (1.11)

dΩi,j =
n−1∑
k=0

(Ωi,k ∧ ωk,j − ωi,k ∧ Ωk,j). (1.12)
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Let us recall that any vector field on SM is completely determined by its vertical
and horizontal components. Consider the vector field T on the sphere bundle SM such
that

dπT = e0, (π∗∇)T e0 = 0.

This vector field on SM is called the Reeb vector field, and its flow ϕ is called the
Reeb flow. In Proposition 1.1.7, we will see the classical description of the Reeb vector
field within contact manifolds. First, we study the behavior of the Reeb vector field T
concerning an orthonormal moving frame.

Proposition 1.1.3. Let e0, . . . , en−1 be an orthonormal moving frame. Then

iT θi = δi,0, iTωi,0 = 0, 0 ≤ i ≤ n− 1,

where T is the Reeb vector field.

Proof. From (1.7) and (1.8)

iT θi = ⟨ei, dπT ⟩ = ⟨ei, e0⟩ = δi,0,

iTωi,0 = ⟨ei, (π∗∇)T e0⟩ = 0.

Proposition 1.1.4. Let e0, . . . , en−1 be an orthonormal moving frame. Then, for 0 ≤
i ≤ n− 1

i)

LT θi = ωi,0 −
n−1∑
j=1

iT (ωi,j)θj ,

ii)

LTωi,0 = −
n−1∑
k=1

iT (ωi,k)ωk,0 + iTΩi,0.

Proof. i) By the structure equation (1.10), for 0 ≤ i ≤ n− 1

dθi = −
n−1∑
j=0

ωi,j ∧ θj .

By Proposition 1.1.3
iT θi = δi,0, iTωi,0 = 0.

Therefore

iTdθi = −
n−1∑
j=1

iT (ωi,j)θj + ωi,0.

Since iT θi = δi,0, then (d ◦ iT )θi = 0 and subsequently

LT θi = iTdθi = ωi,0 −
n−1∑
j=1

iT (ωi,j)θj .
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ii) From the structure equation (1.11), for 0 ≤ i ≤ n− 1

dωi,0 = −
n−1∑
k=0

ωi,k ∧ ωk,0 +Ωi,0.

Since iTωk,0 = 0

iTdωi,0 = −
n−1∑
k=1

iT (ωi,k)ωk,0 + iTΩi,0.

Once again, (d ◦ iT )ωi,0 = 0 and the conclusion follows.

The expressions of Proposition 1.1.4 become simpler after choosing a suitable moving
frame. The construction proceeds as follows: given ξ ∈ SM and {e0 = ξ, . . . , en−1}
an orthonormal basis of TπξM , we parallel transport e0, . . . , en−1 along the geodesic
γ(t) = exp(tξ). This defines a moving frame on the curve:

Γ := {(γ(t), γ′(t)) : |t| < ε} ⊂ SM.

Finally, we arbitrarily extend it to a moving frame e0, . . . , en−1 defined on a neighborhood
of Γ. We refer to e0, . . . , en−1 as a parallel orthonormal moving frame relative to ξ. The
property characterizing these moving frames, in addition to orthonormality, is that on Γ

(π∗∇)T ei = 0, 0 ≤ i ≤ n− 1. (1.13)

Remark 1.1.5. It is important to note that the parallel moving frame is defined in an
open neighborhood of ξ, but we only require parallelism (1.13) along the curve Γ.

Corollary 1.1.6. Let e0, . . . , en−1 be a parallel orthonormal moving frame relative to ξ.
Then, for γ(t) = exp(tξ) we have

LT θi = ωi,0, LTωi,0 = iTΩi,0, 1 ≤ i ≤ n− 1,

at every point (γ(t), γ′(t)) ∈ SM .

Proof. By Proposition 1.1.7 we know that dπT = e0. Since e0, . . . , en−1 is a parallel
orthonormal moving frame relative to ξ, from equation (1.13)

iTωi,j = ⟨ei, (π∗∇)T ej⟩ = 0.

The result follows from Proposition 1.1.4.

To conclude this section we recall two fundamental facts concerning the Reeb vector
field.

Proposition 1.1.7. The Reeb vector field T is the unique vector field on SM satisfying

iTα = 1, iTdα = 0. (1.14)
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Proof. Let e0, . . . , en−1 be an orthonormal moving frame relative to ξ ∈ SM . From
(1.10)

α = θ0, dα =

n−1∑
j=1

ωj,0 ∧ θj .

Let us prove that the Reeb vector field satisfies the identities (1.14). From Proposition
1.1.3

iTα = iT θ0 = 1,

iTdα =
n−1∑
j=1

iTωj,0 ∧ θj − ωj,0 ∧ iT θj = 0.

Let us see the uniqueness. Assume that there exists T̃ fulfilling (1.14). Since α∧(dα)n−1

is a volume element we have

kerα ∩ ker(dα)n−1 = {0}.

The identity iX(dα)
n−1 = (n − 1)iXdα ∧ dαn−2 ensures that ker dα ⊂ ker(dα)n−1.

Therefore

kerα ∩ ker dα = {0}.

Since kerα is the contact hyperplane and intersects ker dα trivially, ker dα is one-
dimensional. Thus, there exists f ∈ C∞(SM) such that T̃ = f · T . This implies

1 = iT̃α = fiTα = f,

and yields the result.

By Cartan’s magic formula, the condition iTdα = 0 may be replaced by LTα = 0.
Therefore, T is a contact vector field whose flow is a family {ϕt}t∈R of strict contacto-
morphisms; i.e

ϕ∗tα = α, ∀t ∈ R, (1.15)

which corresponds to (1.3) with h ≡ 0.

Proposition 1.1.7 contains the classical notion of the Reeb field in contact manifolds.
In our case, it has an additional key property. Recall that, for any riemannian manifold
M , the geodesic vector field G : SM → TSM is defined as follows. For each ξ ∈ SM ,
let γ : (−ε, ε)→M be the unique geodesic in M such that γ(0) = πξ and γ′(0) = ξ, i.e,
γ(t) = exp(tξ). Then G(ξ) = γ̃′(0) where

γ̃(t) := (γ(t), γ′(t)).

The following fact is well-known but remarkable. We include a proof for completeness.

Proposition 1.1.8. The Reeb vector field and the geodesic vector field on SM coincide.
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Proof. Let G : SM → TSM be the geodesic field of SM ; i.e, for each ξ ∈ SM ,

γ̃(t) := exp(tG(ξ)) = (γ(t), γ′(t)),

where γ : (−ε, ε)→ M is the unique geodesic in M such that γ(0) = πξ and γ′(0) = ξ.
Let us see that G is the Reeb field, i.e.,

dπG = e0, (π∗∇)Ge0 = 0.

By definition,

(dπ)ξ(G(ξ)) =
d

dt

∣∣∣∣
t=0

(π ◦ γ̃) = γ′(0) = ξ.

Fix ξ ∈ SM and let Y ∈ X(M) such that Y (γ(t)) = γ′(t) for all t. Then e0(γ̃(t)) =
π∗Y (γ̃(t)), and thus

(π∗∇)G(ξ)e0 = π∗
(
∇(dπ)ξ(G(ξ))Y

)
= π∗

(
∇γ′(0)Y

)
= 0.

The fact that the Reeb vector field coincides with the geodesic vector field of SM
will play a crucial role throughout our study.

1.2 Valuations in linear spaces

In this section, we introduce the concept of valuations, which is the main focus of our
study. We begin with the simplest case: valuations in linear spaces, which form the basis
of the classic valuation theory. For more information on this topic, one can consult [15].

Let V be a m-dimensional euclidean vector space. We denote by K = K(V ) the set
of convex compact subsets of V , convex bodies of V , and endow it with the Hausdorff
metric dH defined by

dH(A,B) = max

{
sup
a∈A

inf
b∈B
{d(a, b)}, sup

b∈B
inf
a∈A
{d(a, b)}

}
,

where d is the distance in the ambient space V . This metric dH in K(V ) induces a metric
topological structure. We also denote by Ksm the dense subspace of convex subsets A
with nonempty interior and smooth boundary, and such that all principal curvatures are
strictly positive in ∂A.

The Lebesgue volume function volV : K → R is continuous. Also the Minkowski sum
K ×K → K given by

A+B = {a+ b : a ∈ A, b ∈ B}

is a continuous map.

Definition 1.2.1. A valuation on V is a C-valued functional φ on K(V ) such that

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

for A,B,A ∪B ∈ K(V ).
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Definition 1.2.2. A valuation φ : K(V )→ C is

• translation invariant if

φ(A+ x) = φ(A), ∀A ∈ K(V ), x ∈ V ;

• G-invariant with respect to a group acting linearly on V if

φ(gA) = φ(A), A ∈ K(V ), g ∈ G;

• k-homogeneous if

φ(λA) = λkφ(A), ∀A ∈ K(V ), ∀λ ∈ (0,∞);

• even (resp. odd) if φ(−A) = φ(A) (resp. φ(−A) = −φ(A)) for all A ∈ K(V );

• continuous if φ : (K(V ), dH)→ (C, | · |) is a continuous map.

The space of continuous invariant translation valuations is denoted by Val(V ), the
subspace of Val(V ) of the homogeneous valuations of degree k by Valk(V ) and the sub-
space of Val(V ) of even valuations (resp. odd valuations) by Val+(V ) (resp. Val−(V )).
If G acts linearly on V we denote by ValG the space of continuous-translation and G-
invariant valuations. We say that µ ∈ Val(V ) is smooth if the map Gl(V ) → Val(V )
given by g 7→ µ ◦ g−1 is smooth. The space of smooth valuations on V forms a dense
subspace Val∞(V ) ⊂ Val(V ).

Let A ∈ K(V ) be a convex body in V . For r ≥ 0 consider the set

Ar := {x ∈ V : dA(A, x) ≤ r} ,

where dA is the (minimum) distance to the set A. The set Ar is sometimes called the
tube around A of radius r, and other times the parallel set at distance r.

A simple but important remark is that

(Ar)s = (A+ rBm) + sBm = A+ (r + s)Bm = Ar+s, r, s > 0,

where Bm ⊂ V is the euclidean m-dimensional unit ball. Note also that

dH(A,B) = min{r ≥ 0: A ⊂ Br, B ⊂ Ar}.

It follows that A 7→ Ar is an isometry of (K, dH).

Theorem 1.2.3 (Steiner’s formula). For every A ∈ K(V ) and any r ≥ 0

volV (Ar) =

m∑
i=0

rm−iωm−iµi(A),

where ωk = volV (Bm), and µ0, . . . , µm ∈ Val∞(V ) are valuations, called intrinsic vol-
umes.
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The Steiner formula is also called volume tube formula in linear spaces. The valua-
tions µi are, up to scale, to the Quermassintegrale introduced by Minkowski. The first
and last ones are µ0 = χ and µm = volV while µm−1 = 1

2 perimeter. It follows from
Steiner’s formula that

µi (Bm) =
(
m

i

)
ωm
ωm−i

.

The chosen normalization of the µi makes them independent of the ambient dimen-
sion. In other words, if f : Rn → RN is a linear isometry, then µi(f(A)) = µi(A). More-
over, the normalization is chosen such that µi(A) = voli(A) whenever A is contained in
a i-dimensional affine subspace of Rn.

For A ∈ Ksm(V ) (smooth convex body) the proof of Theorem 1.2.3 is simple using
(cf. e.g. [15])

Ar = A ∪ expA(∂A× [0, r]), expA(x, t) := x+ tnA(x),

where nA : ∂A→ Sm−1 is the Gauss map and Sm−1 ⊂ V is the unit standard euclidean
sphere. Furthermore, in this case one has the following expression for the intrinsic
volumes (cf. e.g. [15])

µi(A) =
1

(m− i)ωm−i

∫
∂A
σm−i−1 (k1, . . . , km−1)

where σj is the j-th elementary symmetric polynomial and kj are the principal curva-
tures.

For a general convex body A we have the Crofton formula (cf. e.g. [15])

µk(A) =

(
m

k

)
ωm

ωkωm−k

∫
Grk

volk (πG(A)) dG, k = 0, . . . ,m− 1

where Grk denotes the space of linear k-dimensional planes in V , i.e, the grassmannian
space, and dG is the Haar probability measure in Grk.

Let Grn−k denote the space of affine planes of dimension n− k in Rn. Then

µk(A) =

∫
Grn−k

χ(A ∩H)dH,

where χ is the Euler characteristic, and dH is a suitably normalized Haar measure.

Theorem 1.2.4 (Hadwiger’s theorem).

ValSO(V ) = ⟨µ0, . . . , µm⟩.

The linear group GL(V ) of invertible linear transformations of V acts on Val(V ) and
preserves the homogeneity.
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Theorem 1.2.5 (McMullen’s theorem+Alesker’s Irreducibility Theorem).

Val(V ) =
m⊕
i=0

⊕
ϵ=±

Valϵi

is the decomposition into GL(V )-irreducible representations, i.e, Valϵi has no proper
closed GL(V )-invariant subspaces.

There are however interesting GL(V )-invariant dense subspaces in Val(V ). One of
them is the so-called space of smooth valuations Val∞(V ), consisting of those elements
of Val(V ) that behave smoothly under the action of GL(V ). Given A ∈ K(V ), let

µA(B) = vol(A+B) =

∫
Rm

χ(A ∩ (x−B))dx.

Then, assuming ∂A to be smooth and positively curved one has µA ∈ Val∞(V ).
Remarkably, the space Val∞(V ) admits two product structures which turn it into

a commutative algebra in two different ways: the Alesker product and the Bernig-Fu
convolution. For φ ∈ Val∞(V ), the Alesker product and the Bernig-Fu convolution of
valuations are determined by

µA · φ (B) =

∫
Rm

φ(A ∩ (x−B))dx, µA ∗ φ (B) = φ(A+B).

Furthermore, observe that χ · φ = φ and vol ∗φ = φ for all φ ∈ Val∞(V ).

1.3 Valuations in riemannian manifolds

The notion of valuation was extended to smooth manifolds by Alesker (cf. [5, 6, 14, 7]).
To simplify matters, we focus on riemannian manifolds.

1.3.1 Basic notions

We consider the class of compact sets of positive reach in M , denoted by R(M). The
definition and some basic properties of such sets are recalled in subsection 2.2.2 together
with a general construction of the normal cycle for R(M). Let us describe only the
normal cycle in the subclass P(M) ⊂ R(M) of compact submanifolds with corners for
now. For A ∈ P(M), the normal cycle is

N(A) = {(p, v) ∈ SM : p ∈ A, ⟨v, w⟩ ≤ 0 ∀w ∈ TpA},

where
TpA =

{
γ′(0) ∈ TpM : γ ∈ C1([0, 1), A), γ(0) = p

}
.

For each A ∈ P(M), the normal cycle N(A) is a compact Lipschitz (n− 1)-dimensional
submanifold of the sphere bundle SM . Furthermore, N(A) is legendrian and lagrangian
with respect to the contact structure of SM , which means, respectively∫

N(A)
ρ ∧ α = 0, ∀ρ ∈ Ωn−2(SM),
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and ∫
N(A)

ω ∧ dα = 0, ∀ω ∈ Ωn−3(SM).

In Corollary 2.2.17, we establish this property in the general case of sets of positive
reach.

Definition 1.3.1. A smooth valuation on M is a C-valued functional φ = Jω, ηK on
R(M) of the form

φ(A) =

∫
N(A)

ω +

∫
A
η,

where ω ∈ Ωn−1(SM) and η ∈ Ωn(M), are complex-valued differential forms. For any
subgroup G ≤ Diff(M), we will denote by V(M)G the space of G-invariant valuations;
i.e. µ ∈ V(M) such that µ(gA) = µ(A) for all A ∈ R(M) and g ∈ G.

We denote by B(M) the set of Borel subsets of M . Any smooth valuation may be
localized, albeit non-uniquely.

Definition 1.3.2. A smooth curvature measure onM is a C-valued functional Φ = [ω, η]
on R(M)× B(M) of the form

Φ(A,U) =

∫
N(A)∩π−1(U)

ω +

∫
A∩U

η

where ω ∈ Ωn−1(SM) and η ∈ Ωn(M), are complex-valued differential forms. For any
subgroup G ≤ Diff(M), we will denote by C(M)G the space of G-invariant curvature
measures; i.e. Ψ ∈ C(M) such that Ψ(gA, gU) = Ψ(A,U) for all A ∈ R(M), U ∈ B(M)
and g ∈ G.

The globalization map is given by

glob: C(M) −→ V(M), Φ 7−→ Φ(·,M).

Theorem 1.3.3 ([12, 14] and [21]). The vector space V(M) has an algebraic structure
with the so-called Alesker product, and the vector space C(M) has a module structure
over V(M) such that

glob (µ · Φ) = µ · glob (Φ) , µ ∈ V(M),Φ ∈ C(M).

The differential forms defining a valuation are not unique. This difficulty was ad-
dressed by Bernig and Bröcker in [18] using the following operator introduced by Rumin.

Definition 1.3.4. Given ω ∈ Ωn−1(SM), there exists ξ ∈ Ωn−2(SM) such that

Dω := d(ω + α ∧ ξ), (1.16)

is a multiple of α. The unique n-form Dω satisfying (1.16) is the Rumin differential of
ω (cf. [54]).
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Proposition 1.3.5 ([18]).

kerJ·, ·K = {(ω, η) : Dω + π∗η = 0, π∗ω = 0} ,

ker[·, ·] = {(ω, 0) : ω ∈ (α, dα)} ,
where (α, dα) is the ideal generated by α and dα on Ω•(SM).

The following class of manifolds is central to our study.

Definition 1.3.6. Let M be a riemannian manifold and G ≤ Isom(M). We say that
the pair (M,G) is isotropic if G acts transitively over SM ; i.e, given ξ and ξ′ in the
sphere bundle SM , there exist g ∈ G such that ξ′ = gξ.

In an isotropic pair (M,G), given µ ∈ V(M)G and Φ ∈ C(M)G, may be represented
in terms of non-invariant differential forms. However, according to [21, Proposition 2.6],
for isotropic pairs, we can always find G-invariant forms on SM representing them.
Therefore the vector spaces V(M)G and C(M)G are finite-dimensional.

If f : M1 →M2 is an immersion, then there exist pull-back maps

f∗ : C(M2) −→ C(M1), f∗ : V(M2) −→ V(M1)

such that
(f∗Φ)(A,B) = Φ(f(A), f(B)),

(f∗µ)(A) = µ(f(A)).

Furthermore, f∗ is an algebra and module homomorphism. These pulled-back objects
can be represented, once again, by differential forms. This was explicitly proved in [34,
Proposition 4.7]. From a broader perspective, the pull-back map was analyzed in [9].

We also introduce the standard notation f∗ : V(M1) → V(M2) for the push-forward
of valuations in the specific case where f is a proper submersion

(f∗µ)(A) = µ(f−1(A)).

In [9], a representation of f∗ in differential forms is provided. We refer to [11] for further
developments about the push-forward of valuations.

1.3.2 Federer valuations

To conclude this section, we introduce the Federer valuations, which are globalizations
of the Federer curvature measures (cf. [21]).

Definition 1.3.7. For any riemannian manifold Mn and 0 ≤ i ≤ n − 1, consider
κi ∈ Ωn−1(SM) such that for X1, . . . , Xn−1 ∈ X(SM)

κi(X1, . . . , Xn−1) :=
1

i!(n− i− 1)!

∑
σ∈Sn−1

|σ| det
(
e0, X

H
σ(1), . . . , X

H
σ(i), X

V
σ(i+1), . . . , X

V
σ(n−1)

)
:=

∑
σ∈Si,n−i−1

|σ| det
(
e0, X

H
σ(1), . . . , X

H
σ(i), X

V
σ(i+1), . . . , X

V
σ(n−1)

)
,
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where Sn−1 represents the set of permutations of {1, . . . , n− 1} and

Si,n−i−1 := {ε ∈ Sn−1 : ε(1) < · · · < ε(i), ε(i+ 1) < · · · < ε(n− 1)} .

The i-th Federer curvature measure is

∆M
i :=

1

(n− i)ωn−i
[κi, 0],

and we call

νMi := glob(∆M
i , 0)

the i-th Federer valuation.

Remark 1.3.8. The Federer curvature measures and valuations are isometry invariant.

Proposition 1.3.9. In an orthonormal moving frame e0, e1, . . . , en−1, we have

κi =
1

i!(n− i− 1)!

∑
ε∈Sn−1

|ε|θε(1) ∧ · · · ∧ θε(i) ∧ ωε(i+1),0 ∧ · · · ∧ ωε(n−1),0

=
∑

ε∈Si,n−i−1

|ε|θε(1) ∧ · · · ∧ θε(i) ∧ ωε(i+1),0 ∧ · · · ∧ ωε(n−1),0.

Proof. Since

det = θ0 ∧ θ1 ∧ · · · ∧ θn−1,

using the relation ie0θj = δj,0 and the identity

θj ((π
∗∇)Xk

e0) = ⟨ej , (π∗∇)Xk
e0⟩ = ωj,0(Xk),
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we have∑
σ

|σ| det
(
e0, X

H
σ(1), . . . , X

H
σ(i), X

V
σ(i+1), . . . , X

V
σ(n−1)

)
=
∑
σ

|σ|θ0 ∧ · · · ∧ θn−1

(
ξ,XH

σ(1), . . . , X
H
σ(i), X

V
σ(i+1), . . . , X

V
σ(n−1)

)
=
∑
σ

|σ|θ1 ∧ · · · ∧ θn−1

(
XH
σ(1), . . . , X

H
σ(i), X

V
σ(i+1), . . . , X

V
σ(n−1)

)
=
∑
σ

|σ|

(∑
ε

|ε|θϵ(1) ⊗ · · · ⊗ θϵ(n−1)

(
XH
σ(1), . . . , X

H
σ(i), X

V
σ(i+1), . . . , X

V
σ(n−1)

))

=
∑
ϵ

|ϵ|

(∑
σ

|σ|θϵ(1) ⊗ · · · ⊗ θϵ(n−1)

(
XH
σ(1), . . . , X

H
σ(i), X

V
σ(i+1), . . . , X

V
σ(n−1)

))

=
∑
ϵ

|ϵ|

(∑
σ

|σ|θϵ(1)(XH
σ(1)) · · · θϵ(n−1)(X

V
σ(n−1))

)

=
∑
ϵ

|ϵ|

(∑
σ

|σ|θϵ(1)(Xσ(1)) · · · θϵ(i)(Xσ(i))ωϵ(i+1),0(Xσ(i+1)) · · ·ωϵ(n−1),0(Xσ(n−1))

)

=
∑
ϵ

|ϵ|

(∑
σ

|σ|θϵ(1) ⊗ · · · ⊗ θϵ(i) ⊗ ωϵ(i+1),0 ⊗ · · · ⊗ ωϵ(n−1),0(Xσ(1), . . . , Xσ(n−1))

)
=
∑
ϵ

|ϵ|θϵ(1) ∧ · · · ∧ θϵ(i) ∧ ωϵ(i+1),0 ∧ · · · ∧ ωϵ(n−1),0(X1, . . . , Xn−1).

Remark 1.3.10. If A ⊂ M is a smooth domain, then ∆i(A, ·) denotes a measure on
∂A. Its density relative to voln−1 is ((n− i)ωn−i)−1 times the (n− i− 1)-th elementary
symmetric function of the principal curvatures of ∂A. For M = Rn, glob(∆i) = µi.

1.4 Space forms

Our study takes place in the so-called space forms. More precisely we will work in the
real, complex, and quaternionic space forms, which are the main examples of isotropic
spaces. Further details on this topic can be found in [46, 47].

1.4.1 Real space forms

We will denote by Smλ the (unique up to isometry) m-dimensional simply connected
riemannian manifold of constant sectional curvature λ. If λ > 0, it corresponds to the
sphere of radius r = 1√

λ
. For λ < 0, it represents the real hyperbolic space. Finally, when

λ = 0, it represents the standard euclidean space. These spaces of constant sectional
curvature are also referred to as real space forms. We denote Gλ,R = Isom(Smλ ) its full
isometry group.
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Proposition 1.4.1. The curvature tensor of Smλ is given by R = λR1 where

R1(W,X;Y,Z) := g(W,Y )g(X,Z)− g(W,Z)g(X,Y ).

The curvature tensor has a simple expression in a moving frame.

Proposition 1.4.2. Let e0, . . . , en−1 be a moving frame on Smλ . Then for 0 ≤ i, j ≤ m−1

Ωi,j = λθi ∧ θj .

Proof. By definition of the curvature 2-forms Ωi,j (see (1.9))

Ωi,j(X,Y ) = R(ei, ej ; dπX, dπY ).

The concrete description of the curvature tensor R for real space forms shown in Propo-
sition 1.4.1 yields the result:

Ωi,j(X,Y ) = R(ei, ej ; dπX, dπY )

= λ (g(ei, dπX)g(ej , dπY )− g(ei, dπY )g(ej , dπX))

= λ (θi(X)θj(Y )− θi(Y )θj(X)) = λθi ∧ θj(X,Y ).

1.4.2 Complex space forms

Kähler manifolds have been the object of recent study in valuation theory and integral
geometry (cf. [17, 20, 21, 22, 34]).

Definition 1.4.3. A hermitian manifold is a riemannian manifold M2n endowed with
an endomorphism J : TM → TM , such that J2 = − id and satisfying

g(JX, JY ) = g(X,Y ), ∀X,Y ∈ X(M).

The endomorphism J is called the almost complex structure of M and g its hermitian
metric. If the 2-form F ∈ Ω2(M) defined by

F (X,Y ) := g(JX, Y ), X, Y ∈ X(M)

is closed, i.e, dF = 0, we say that M is a Kähler manifold with Kähler form F .

The condition dF = 0 is equivalent to ∇J = 0, where

(∇XJ)Y := ∇X(JY )− J∇XY, X, Y ∈ X(M). (1.17)

We will denote by CPnλ the (unique up to isometry) n-dimensional simply connected
Kähler manifold of constant holomorphic curvature 4λ. If λ > 0, it corresponds to
the complex projective space endowed with the Fubini-Study metric. For λ < 0, it
represents the complex hyperbolic space equipped with the Bergman metric. Finally,
λ = 0 represents the hermitian standard space Cn. These spaces of constant holomorphic
curvature are also referred to as complex space forms. We denote by Gλ,C = Isom(CPnλ )
its group of holomorphic isometries which for λ ̸= 0 coincides with the full isometry
group.
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Proposition 1.4.4 ([40, Lemma 6.9]). The curvature tensor of CPnλ is given by R = λG,
where

G(W,X;Y,Z) := g(W ;Y )g(X;Z)− g(W ;Z)g(X;Y )

+ g(JW ;Y )g(JX;Z)− g(JW ;Z)g(JX;Y )

+ 2g(JW ;X)g(JY ;Z).

Remark 1.4.5. The tensor G is called the Gray double form in [22, (42)].

Previously, we introduced the concept of an orthonormal moving frame for any rie-
mannian manifold. Within the context of Kähler manifolds, we encounter the almost
complex structure J . Consequently, we introduce a new type of orthonormal moving
frames.

Definition 1.4.6. Let Mn be a Kähler manifold and x ∈M . A hermitian basis of TxM
is an orthonormal basis {e0, . . . , e2n−1} of TxM such that

e2i+1 = Je2i, 0 ≤ i ≤ n− 1.

Amoving frame e0, . . . , e2n−1, locally defined on SM will be called hermitian if {e0(ξ), . . . , e2n−1(ξ)}
is a hermitian basis for all ξ.

The following well-known result is a remarkable property intertwining the Levi-Civita
connection and the almost complex structure.

Proposition 1.4.7. Let M be a Kähler manifold, ξ ∈ SM and {e0, . . . , e2n−1} a her-
mitian basis of TxM , x = πξ. Consider e0(t), . . . , e2n−1(t) the parallel transport of
{e0, . . . , e2n−1} along the curve γ(t) = exp(tξ). Then, {e0(t), . . . , e2n−1(t)} is a hermi-
tian basis of Tγ(t)M for each t.

Proof. For all 0 ≤ j ≤ 2n− 1

∇e0(t)ej(t) = 0, ∀t.

From the compatibility condition (1.17)

∇e0(t)Je2i(t) = J(∇e0(t)e2i(t)) = 0.

Then, we have that e2i+1(t) and Je2i(t) are parallel and agree in t = 0, whence e2i+1(t) =
Je2i(t), for all t.

Proposition 1.4.8. Given ξ ∈ SCPnλ we have

R(e0, X)e0 = 4λX, X ∈ ⟨Je0⟩, (1.18)

R(e0, X)e0 = λX, X ∈ ⟨e0, Je0⟩⊥. (1.19)
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Proof. We prove only (1.18) because (1.19) is analogous. Let X = aJe0 for some a ∈ R.
Since

G(e0, X; e0, Z) = g(e0, e0)g(X,Z)− g(e0, Z)g(X, e0)
+ g(Je0, e0)g(JX,Z)− g(Je0, Z)g(JX, e0) + 2g(Je0, X)g(Je0, Z)

= g(X,Z) + g(Je0, Z)g(X, Je0) + 2g(Je0, X)g(Je0, Z)

= g(X,Z) + 3ag(Je0, Z)

= 4g(X,Z)

= 4(iXg)(Z),

equation (1.18) follows from Proposition 1.4.4.

Corollary 1.4.9. Let e0, . . . , e2n−1 be a parallel hermitian moving frame in CPnλ relative
to ξ. Then, for γ(t) = exp(tξ) we have

LT θi = ωi,0, 1 ≤ i ≤ 2n− 1

LTω1,0 = −4λθ1,
LTωj,0 = −λθj , 2 ≤ j ≤ 2n− 1

at every point (γ(t), γ′(t)) ∈ SM .

Proof. This is a particular case of Corollary 1.1.6 using Proposition 1.4.8.

1.4.3 Quaternionic space forms

We conclude this overview of the fundamental concepts of space forms with the quater-
nionic case. More comprehensive discussions about these manifolds can be found in [49].
For a more focused investigation on volume and area tube formulas, we refer to [38], an
article we will reinterpret from our framework in the final chapter. Lastly, we particu-
larly mention A. Bernig and G. Solanes’ contributions in the articles [23, 24], concerning
the quaternionic plane in the light of modern valuation theory.

Definition 1.4.10. An almost quaternionic manifold is a riemannian manifold M4n

such that every point x ∈ M has an open neighborhood U endowed with three bundle
endomorphisms Ji : TU → TU , 1 ≤ i ≤ 3, such that J2

i = −I, J1J2 = −J2J1 = J3 and
satisfying

g(JiX, JiY ) = g(X,Y ), ∀X,Y ∈ X(U).

In this case, we say that g is a quaternionic metric. If there exist aj,k ∈ Ω1(U) such that

∇XJi =
3∑
j=1

ai,j(X)Jj ,

fulfilling aj,i = −ai,j , we will say that M is a quaternionic Kähler manifold.
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We say that an almost quaternionic manifold M has constant quternionic sectional
curvature a if every 2-plane ⟨X,Y ⟩, withX ∈ TM\{0} arbitrary and Y ∈ ⟨X, J1X, J2X, J3X⟩,
has sectional curvature a. All such manifolds are locally isometric [42].

We will denote by HPnλ the (unique up to isometry) n-dimensional simply connected
quaternionic Kähler manifold of constant quaternionic sectional curvature 4λ. If λ >
0, it corresponds to the quaternionic projective space. For λ < 0, it represents the
quaternionic hyperbolic space. Finally, λ = 0 represents the quaternionic standard
space Hn. These spaces of constant curvature are also referred to as quaternionic space
forms. We denote by Gλ,H = Isom(HPnλ ) its full isometry group.

Proposition 1.4.11 ([49]). The curvature tensor in HPnλ is given by R = λR1, where

R1(W,X;Y,Z) := g(W,Y )g(X,Z)− g(W,Z)g(X,Y )

+g(J1W,Y )g(J1X,Z)− g(J1W,Z)g(J1X,Y ) + 2g(J1W,X)g(J1Y, Z)

+g(J2W,Y )g(J2X,Z)− g(J2W,Z)g(J2X,Y ) + 2g(J2W,X)g(J2Y, Z)

+g(J3W,Y )g(J3X,Z)− g(J3W,Z)g(J3X,Y ) + 2g(J3W,X)g(J3Y, Z).

The following notion will be useful for our purposes.

Definition 1.4.12. LetM4n be a quaternionic Kähler manifold and x ∈M . A partially
quaternionic basis of TxM is an orthonormal basis {e0, . . . , e4n−1} of TxM such that

ej ∈ ⟨J1e0, J2e0, J3e0⟩,

for 1 ≤ j ≤ 3.

Note that no assumption is made on the vectors ei, i > 3 beyond orthonormality
in the quaternionic case. The following result naturally arises when comparing it with
Proposition 1.4.7

Proposition 1.4.13. Let M be a quaternionic manifold, ξ ∈ SM and {e0, . . . , e4n−1}
a partially quaternionic basis of TxM , x = πξ. Consider e0(t), . . . , e4n−1(t) the parallel
transport of {e0, . . . , e4n−1} along the curve γ(t) = exp(tξ). Then, {e0(t), . . . , e4n−1(t)}
is a partially quaternionic basis of Tγ(t)M for each t.

Proof. Consider e0(t), e1(t), e2(t), e3(t) the parallel transport along γ(t) = exp(tξ) of
e0 = ξ, e1 = J1(ξ), e2 = J2(ξ), e3 = J3(ξ). For 1 ≤ i ≤ 3, let us look for functions bi,j(t)
such that

ẽi(t) :=

3∑
j=1

bi,j(t)Jje0(t),

are parallel. Given that

∇e0(t)Jje0(t) =
3∑

k=1

aj,k(t)Jke0(t),
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the ẽi(t) are parallel if and only if the bi,j(t) are a solution of

0 = ∇e0(t)ẽi(t) =
3∑

j,k=1

b′i,j(t)Jje0(t) + bi,j(t)aj,k(t)Jke0(t),

Since this is a linear first-order differential system, such solutions exist with any given
initial condition. Taking bi,j(0) = δi,j we have ẽi(0) = ei(0). Consequently, since both
are parallel, we deduce ei(t) = ẽi(t).

Proposition 1.4.14. Given e0 ∈ SM = SHPnλ , one has

R(e0, X)e0 = 4λX, X ∈ ⟨J1e0, J2e0, J3e0⟩, (1.20)

R(e0, X)e0 = λX, X ∈ ⟨e0, J1e0, J2e0, J3e0⟩⊥. (1.21)

Proof.

Proof. We only prove (1.20) because (1.21) is analogous. Let

X = a1J1e0 + a2J2e0 + a3J3e0, a1, a2, a3 ∈ R.

From Proposition 1.4.11 R = λR1, and for any Z ∈ TxHPnλ , x = πξ, ξ ∈ SM

R1(e0, X; e0, Z) = g(e0, e0)g(X,Z)− g(e0, Z)g(X, e0)
+ g(J1e0, e0)g(J1X,Z)− g(J1e0, Z)g(J1X, e0) + 2g(J1e0, X)g(J1e0, Z)

+ g(J2e0, e0)g(J2X,Z)− g(J2e0, Z)g(J2X, e0) + 2g(J2e0, X)g(J2e0, Z)

+ g(J3e0, e0)g(J3X,Z)− g(J3e0, Z)g(J3X, e0) + 2g(J3e0, X)g(J3e0, Z)

= g(X,Z)

− g(J1e0, Z)g(J1X, e0) + 2g(J1e0, X)g(J1e0, Z)

− g(J2e0, Z)g(J2X, e0) + 2g(J2e0, X)g(J2e0, Z)

− g(J3e0, Z)g(J3X, e0) + 2g(J3e0, X)g(J3e0, Z)

= g(X,Z)

+ g(J1e0, Z)g(X, J1e0) + 2g(J1e0, X)g(J1e0, Z)

+ g(J2e0, Z)g(X, J2e0) + 2g(J2e0, X)g(J2e0, Z)

+ g(J3e0, Z)g(X, J3e0) + 2g(J3e0, X)g(J3e0, Z)

= g(X,Z) + 3g(J1e0, X)g(J1e0, Z) + 3g(J2e0, X)g(J2e0, Z) + 3g(J3e0, X)g(J3e0, Z)

= g(X,Z)

+ 3a1g(J1e0, Z) + 3a2g(J2e0, Z) + 3a3g(J3e0, Z)

= g(X,Z) + 3g(a1J1e0 + a2J2e0 + a3J3e0, Z)

= 4g(X,Z)

= 4(iXg)(Z).
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Corollary 1.4.15. Let e0, . . . , e4n−1 be a parallel quaternionic moving frame in HPnλ
relative to ξ. Then, for γ(t) = exp(tξ) we have

LT θi = ωi,0, 0 ≤ i ≤ 4n− 1

LTωj,0 = −4λθj , 1 ≤ j ≤ 3

LTωk,0 = −λθj , 4 ≤ k ≤ 4n− 1,

at every point (γ(t), γ′(t)) ∈ SM .

Proof. This is a particular case of Corollary 1.1.6 using Proposition 1.4.14.

1.5 sl2-representation theory

Here, we review some fundamental notions of representation theory and sl2. We include
some details for the sake of completeness and future reference but refer the reader to
[57] and [35] for more information.

1.5.1 Representation theory

Definition 1.5.1. A Lie algebra g is defined as a vector space over a field K, endowed
with a skew-symmetric bilinear map

[ , ] : g× g→ g,

fulfilling the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

We say that a vector subspace h ⊂ g is a Lie subalgebra if [x, y] ∈ h,∀x, y ∈ h.

Example 1.5.2. If V is a vector space over K, then the space g = End(V ), consisting of
all endomorphisms of V , is a Lie algebra with [A,B] = A ◦ B − B ◦ A. Similarly, The
space gln(K), which consists of all n × n matrices over K, is a Lie algebra, and sln(K),
the subspace of gln(K) consisting of matrices with trace zero, forms a Lie subalgebra of
gln(K).

Definition 1.5.3. A representation of a Lie algebra g is a linear map

ρ : g −→ End(V ),

such that
[x, y] = [ρ(x), ρ(y)], x, y ∈ g.

Clearly, the restriction of ρ to a subalgebra h is also a representation.

Given a Lie algebra g, a g-module consists of a vector space V endowed with a
bilinear map

g× V → V, (x, v) 7→ x · v,
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such that [x, y] · v = x · (y · v)− y · (x · v) for all x, y ∈ g, and v ∈ V .

If ρ : g→ End(V ) is a representation, then V has a g-module structure defined by

g× V −→ V, (x, v) 7−→ ρ(x)(v).

Conversely, every g-module V , has a corresponding representation given by

ρ : g −→ End(V ), ρ(x)(v) = x · v.

It is therefore customary to identify g-modules and representations of g.

Definition 1.5.4. A g-module V (or the corresponding representation) is called irre-
ducible if the only g-invariant subspaces of V are 0 and V .

Theorem 1.5.5 (Schur’s Lemma). If V is an irreducible g-module over C, and f ∈
End(V ) satisfies f(xv) = xf(v) for all x ∈ g, v ∈ V , then f = c · Id for some c ∈ C.

1.5.2 Irreducible sl2(C)-representations

We construct a standard model for the finite-dimensional irreducible representations
of sl2 ≡ sl2(C), the space of two-dimensional matrices with null trace. The matrices
X,Y,H given by

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, (1.22)

form a basis of sl2. The Lie bracket in this basis is simply

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y. (1.23)

A triple of endomorhpsisms X,Y,H satisfying (1.23) is sometimes called an sl2-triple.

We will denote

V (m) := ⟨xkym−k : 0 ≤ k ≤ m⟩.

This space of homogeneous polynomials plays a crucial role in this work and, therefore,
deserves special attention. The distinguishing characteristic of V (m) is its structure as
an sl2(C)-module as we show next.

Let X,Y,H ∈ End(V (m)) be given by

X = x
∂

∂y
, Y = y

∂

∂x
, H = x

∂

∂x
− y ∂

∂y
.

It is straighforward but tedious to check that these operators satisfy (1.23). Therefore,
they induce an sl2-module structure on V (m) and also on the whole C[x, y]. We observe
that H = [X,Y ] and is diagonalizable on V (m) with eigenvalues

spec(H) = {2k −m : 0 ≤ k ≤ m} ,

35



Chapter 1. Background

because of

H(xkym−k) = (2k −m)xkym−k.

In particular, each eigenspace E2k−m is one-dimensional for 0 ≤ k ≤ m and

E2k−m = C · xkym−k.

It is trivial to check

X(E2k−m) ⊂ E2k−m+2, Y (E2k−m) ⊂ E2k−m−2, 0 ≤ k ≤ m. (1.24)

The following diagram represents this situation:

{0} E−m E−m+2 E−m+4 · · · Em {0}

X X X X X

Y Y Y YY

In particular, X and Y are nilpotent. Note also that for any π ∈ E−m the X-orbit
{Xi(π) : 0 ≤ i ≤ m} spans V (m). Such an element π ∈ E−m is called Y -primitive.

The proof of the following fundamental facts can be found for instance in [35, §11.1]

Proposition 1.5.6. i) The sl2-representations V
(m) are irreducible, for all m ∈ N.

ii) If V is an m-dimensional irreducible representation of sl2 we have V ∼= V (m−1) as
sl2-modules.

If V is a sl2-representation with dimV <∞, it can be decomposed as a finite sum

V =
k⊕
j=0

Wj

where each Wj is a subrepresentation isomorphic to some V (mj). It follows that v ∈ V
can be expressed as

v =

k∑
j=0

∑
i

Xi(πj)

where each πj is Y -primitive in Wj . This is the so-called Lefschetz decomposition of v.

36



Chapter 2

Tube formulas

In this chapter, we delve into the study of tube formulas, the core of the present work.

We begin by examining tube formulas for smooth translation-invariant valuations
in linear spaces, which are described in terms of the convolution of valuations. As an
application we compute the tube formulas in ValU(n) using the sl2-module structure
introduced in [20]. As a result of independent interest, we obtain the Lefschetz decom-
position of the hermitian intrinsic volumes.

Then we move to curved spaces and prove that, for any smooth valuation µ on a
riemannian manifold, the value of µ on a tube of radius t is determined by a smooth
valuation. An analogous result is established for smooth curvature measures. To accom-
plish this, we first study certain operators on valuations and curvature measures spaces,
and then we analyze the geometric properties of tubes surrounding sets of positive reach.

2.1 Tube formulas in linear spaces

The linear case is the paradigm for developing the tubular operator in riemannian man-
ifolds.

Next, we introduce the tubular operator, which assigns the tube formula to each
valuation. Additionally, we present the derivative operator to account for variations in
terms of the radius.

Definition 2.1.1. Let V be an m-dimensional euclidean vector space. Given t ≥ 0, let
Tt : Val∞(V )→ Val∞(V ) be given by

(Ttµ)(A) = µ(A+ tBm) = (µtBm ∗ µ)(A) A ∈ K(V ), (2.1)

where Bm is the unit ball and µtBm is the valuation given by

µtBm(A) = volV (A+ tBm).
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We will call Tt the tubular operator. Let also ∂ : Val∞(V )→ Val∞(V ) be the derivative
operator given by

∂µ :=
d

dt

∣∣∣∣
t=0

Ttµ. (2.2)

The operator ∂ has sometimes been denoted by Λ in the literature, but following [20]
we reserve the symbol Λ for a certain normalization of ∂ (see (2.8)).

Proposition 2.1.2. The maps Tt and ∂ are well defined and

∂µ = areaV ∗µ, µ ∈ Val∞(V ).

Proof. Let µ ∈ Val∞(V ). We need to verify that Ttµ and ∂µ belong to Val∞(V ). Since
Ttµ is, by (2.1), the convolution of two valuations, we have Ttµ is another valuation.
Now let us check that ∂µ exists; i.e. that Ttµ is differentiable at t = 0. Steiner’s formula
tells us

µtBm = vol(·+ tBm) =
m∑
i=0

ωm−it
m−iµi.

Thus

∂µ =
d

dt

∣∣∣∣
t=0

Ttµ =
d

dt

∣∣∣∣
t=0

(µtBm ∗ µ)

=

(
d

dt

∣∣∣∣
t=0

µtBm

)
∗ µ = ω1µm−1 ∗ µ = 2µm−1 ∗ µ = area ∗µ.

Proposition 2.1.3. The tubular operator satisfies the following main properties.

i)

Tt+s = Tt ◦Ts = Ts ◦Tt. (2.3)

ii)
d

dt
Ttµ = Tt∂µ = ∂Ttµ. (2.4)

iii)

∂iµ =
di

dti

∣∣∣∣
t=0

Ttµ. (2.5)

iv)

Ttµ =

m∑
i=0

ti

i!
∂iµ. (2.6)

v) ∂ is (m+ 1)-nilpotent, that is ∂m+1 = 0 and ∂k ̸= 0 for k ≤ m.
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Proof. The properties of the Minkowski sum ensure that Tt+s = Tt ◦ Ts = Ts ◦ Tt.
Differentiating with respect to s at zero yields

d

dt
Ttµ = Tt∂µ = ∂Ttµ. (2.7)

It follows that

∂iµ =
di

dti

∣∣∣∣
t=0

Ttµ.

For each µ ∈ Val∞(V ), the map t 7→ Ttµ is a polynomial in t of degree m by (2.1) and
the Steiner formula (or by [50]). Hence

Ttµ =
m∑
i=0

ti

i!

di

dti

∣∣∣∣
t=0

Ttµ

=

m∑
i=0

ti

i!
∂iµ.

Note also that, by (2.5) and (2.6), the derivative operator ∂ is (m+ 1)-nilpotent.

Let us compute the tube formula for the intrinsic volumes µ0, . . . , µm using (2.6).
For that purpose, we first compute ∂ in those terms.

Lemma 2.1.4. For 0 ≤ j ≤ m

∂µj =
ωm−j+1

ωm−j
(m− j + 1)µj−1.

Proof. Since Tt+s = Ts ◦Tt we have

Tt+s vol =
m∑
j=0

ωm−jt
m−jTsµj .

On the other hand

Tt+s vol =

m∑
j=0

ωm−j(t+ s)m−jµj ,

Differentiating at s = 0 and comparing coefficients yields the desired formula.

Theorem 2.1.5.

Ttµk =

k∑
j=0

(
m− j
k − j

)
ωm−j
ωm−k

tk−jµj ,
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Proof. Using (2.6), we get

Ttµk =
m∑
i=0

ti

i!
∂iµk =

k∑
i=0

ti

i!

ωm−k+i
ωm−k

(m− k + i)!

(m− k)!
µk−i

=

k∑
j=0

(
m− j
k − j

)
ωm−j
ωm−k

tk−jµj .

As an application of the previous considerations we compute the tube formulas for in-
variant valuations in Cn. Recall that ValU(n) is the space of traslation and U(n)-invariant
valuations on Cn. Bernig and Fu [20] introduced the so-called hermitian intrinsic vol-
umes µk,q ∈ ValU(n) for max{0, n − k} ≤ q ≤ k

2 ≤ n which consitute a basis of ValU(n).
They also introduced a second basis consisting of the Tasaki valuations given by

τk,q =

⌊k/2⌋∑
i=q

(
i

q

)
µk,i.

In Chapter 3, which is devoted to real and complex space forms, we explore these bases
in detail.

In order to compute the tube formulas of ValU(n), it will be useful to recall the sl2-
module structure of found on this space by Bernig and Fu. For an euclidean vector space
V , consider the linear maps

Λ, L,H : Val∞(V )→ Val∞(V ),

defined as follows

Λν :=
ωm−k
ωm−k+1

∂ν, Lν :=
2ωk
ωk+1

µ1 · ν, Hν = (2k −m)ν, (2.8)

where ν ∈ Val∞k (V ) and · refers to the Alesker product.

Proposition 2.1.6. On ValO(m) the operators Λ, L are given by

Lµk = (k + 1)µk+1, (2.9)

Λµk = (m− k + 1)µk−1, (2.10)

while on ValU(n) one has

Lµk,p = (k − 2q + 1)µk+1,q + 2(q + 1)µk+1,q+1 (2.11)

Λµk,p = (k − 2q + 1)µk−1,q−1 + 2(n− k + q + 1)µk−1,q, (2.12)

which implies

Lτk,q = (k − 2q + 1)τk+1,q (2.13)

Λτk,q = (k − 2q + 1)τk−1,q−1 + (2n− 2q − k + 1)τk−1,q (2.14)

40



Chapter 2. Tube formulas

Proof. The first two equalities are [15, eqs. (2.3.12) and (2.3.13)]. The rest is [20, Lemma
5.2].

It follows that both ValO(n) and ValU(n) have a natural sl2-module structure. We
will see later that this structure also underlies the space of invariant valuations of CPnλ ,
and also a certain subspace of valuations of HPnλ .

Proposition 2.1.7 ([15, Prop. 2.3.10 (3)]). The operators Λ, L,H define an sl2-module
structure on both ValO(m) and ValU(n); i.e. [L,Λ] = H, [H,L] = 2L, [H,Λ] = −2Λ.

The decomposition into irreducible components is as follows

ValO(m) ∼= V (m), ValU(n) ∼=
⊕

0≤2r≤n
V (2n−4r) (2.15)

where V (m) is the (m+1)−dimensional irreducible sl2-representation. In particular, for
0 ≤ 2r ≤ n, there exists a unique, up to a multiplicative constant, primitive element
(i.e. annihilated by Λ) in each irreducible component of ValU(n). By the Lefschetz
decomposition, the L-orbits of these primitive elements constitute a basis of ValU(n).
This basis was explicitly computed in [20] as follows.

Proposition 2.1.8 ([20, eq. (76)]). The following valuations

π2r,r := (−1)r(2n− 4r + 1)!!
r∑
i=0

(−1)i (2r − 2i− 1)!!

(2n− 2r − 2i+ 1)!!
τ2r,i, 0 ≤ 2r ≤ n, (2.16)

are Λ-primitive; i.e. Λπ2r,r = 0. The family

πk,r := Lk−2rπ2r,r (2.17)

= (−1)r(2n− 4r + 1)!!
r∑
i=0

(−1)i (k − 2i)!

(2r − 2i)!

(2r − 2i− 1)!!

(2n− 2r − 2i+ 1)!!
τk,i, 2r ≤ k ≤ 2n− 2r

(2.18)

forms a basis of ValU(n).

In particular the irreducible components of ValU(n) are the following subspaces

In,r0,C := {πk,r : 2r ≤ k ≤ 2n− 2r} , 0 ≤ 2r ≤ n. (2.19)

We can now compute the tube formulas in the complex case using (2.6).

Theorem 2.1.9. For 0 ≤ 2r ≤ n, 2r ≤ k ≤ 2n− 2r

Ttπk,r =
(k − 2r)!

ω2n−k

k−2r∑
j=0

(
2n− 4r − j
k − 2r − j

)
tk−2r−j ω2n−2r−j

j!
πj+2r,r. (2.20)
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Proof. By [20, Lemma 5.6],

Λπk,r = (k − 2r)(2n− k − 2r + 1)πk−1,r,

and then

Λiπk,r =
(k − 2r)!(2n− k − 2r + i)!

(k − 2r − i)!(2n− k − 2r)!
πk−i,r.

Using (2.6), we obtain the tube formula

Ttπk,r =
2n∑
i=0

ti

i!

ω2n−k+i
ω2n−k

Λiπk,r

=
(k − 2r)!

ω2n−k

k−2r∑
i=0

ti

i!
ω2n−k+i

(2n− k − 2r + i)!

(k − 2r − i)!(2n− k − 2r)!
πk−i,r

=
(k − 2r)!

ω2n−k

k−2r∑
j=0

(
2n− 4r − j
k − 2r − j

)
tk−2r−j ω2n−2r−j

j!
πj+2r,r.

It might be convenient to express these tube formulas in terms of other bases of
ValU(n), like the Tasaki valuations τk,q. To achieve this, we compute their Lefschetz
decomposition, which amounts to expressing τk,q as a linear combination of the πk,r.

Proposition 2.1.10. The Lefschetz decomposition of τk,r is given by

τk,r =
1

(k − 2r)!

r∑
i=0

(
n− 2i

r − i

)
(2n− 2i− 2r)!

(2n− 4i)!
πk,i. (2.21)

Proof. Consider the linear map ψ : ValU(n) → ValU(n) mapping τk,r to the left hand side
of (2.21). We need to show that ψ = id. Let us check that this endomorphism commutes
with both Λ and L. To check commutation with Λ, we only need to verify the following

(k − 2r)!ψ(Λ(τk,r)) =

r−1∑
i=0

(n− 2i)!(2n− 2i− 2r + 2)!

(r − i− 1)!(n− r − i+ 1)!(2n− 4i)!
πk−1,i

+ (k − 2r)(2n− k − 2r + 1)

r∑
i=0

(n− 2i)!(2n− 2i− 2r)!

(r − i)!(n− i− r)!(2n− 4i)!
πk−1,i

=

r∑
i=0

(n− 2i)!(2n− 2i− 2r)!

(r − i)!(n− i− r)!(2n− 4i)!
(k − 2i)(2n− k − 2i+ 1)πk−1,i

=(k − 2r)!Λψ(τk,r).

Comparing term by term, the previous identities boil down to

2(r − i)(2n− 2i− 2r + 1) + (k − 2r)(2n− k − 2r + 1) = (k − 2i)(2n− k − 2i+ 1)
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which is trivial.
Commutation with L is straightforward using Lπk,i = πk+1,i.

Given that ψ commutes with the operators Λ and L and ValU(n) is multiplicity-free,
Schur’s lemma implies that for each 0 ≤ 2r ≤ n, there exists a constant cr such that
ψ|In,r

0,C
= cr id.

Let a2r,j and b2r,i be the coeficients of π2r,j and τ2r,i in (2.21) and (2.16) respectively,
so that ψ(τ2r,i) =

∑i
j=0 a2r,jπ2r,j and π2r,r =

∑r
i=0 b2r,iτ2r,i. Then

crπ2r,r = ψ(π2r,r) =

r∑
i=0

b2r,i

 i∑
j=0

a2r,jπ2r,j

 =

r∑
j=0

r∑
i=j

b2r,ia2r,jπ2r,j .

Comparing the coefficient of π2r,r on both sides we get cr = b2r,ra2r,r = 1 for each
0 ≤ 2r ≤ n. To obtain π2r,r on the right-hand side, we must set j = r. However, this
value of j can only be obtained by setting i = r. Therefore, we have

cr = a2r,rb2r,r =
1

0!

(
n− 2r

0

)
(2n− 4r)!

(2n− 4r)!
· (−1)2r(2n− 4r + 1)!!

(−1)!!
(2n− 4r + 1)!!

= 1.

Hence ψ = id, which proves (2.21).

By plugging (2.18) and (2.21) in (2.20) one gets the tube formulas Ttτk,p in terms
of the τi,j .

2.2 Tube formulas in riemannian manifolds

We introduce the tubular and derivative operators in riemannian manifolds, extending
the definition from linear spaces. We also review the construction of the normal cycle
for the class of sets of positive reach.

2.2.1 Tubular and derivative operators

Let Mn be a complete riemannian manifold. Recall that π : SM → M denotes the
canonical projection and ϕ : SM × R → SM denotes the Reeb flow, which is the flow
associated with the Reeb vector field T on SM .

Definition 2.2.1 (Tubular and derivative operators). Given t ≥ 0, we define the tubular
operator Tt by

Tt : V(M) −→ V(M), Jω, ηK 7−→ Jϕ∗tω + (pt)∗(π ◦ ϕ)∗η, ηK,

where pt : SM × [0, t] → SM is the projection on the first factor, and ϕt = ϕ(·, t). We
define the derivative operator ∂ = ∂M by

∂M : V(M) −→ V(M), µ 7−→ d

dt

∣∣∣∣
t=0

Ttµ.
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Definition 2.2.2 (Local tubular and derivative operators). Given t ≥ 0, we define the
local tubular operator LTt by

LTt : C(M) −→ C(M), [ω, η] 7−→ [ϕ∗tω + (pt)∗(π ◦ ϕ)∗η, η],

where pt : SM × [0, t] → SM is the projection on the first factor, and ϕt = ϕ(·, t). We
define the derivative operator ∂ = ∂M for curvature measures by

∂M : C(M) −→ C(M), Φ 7−→ d

dt

∣∣∣∣
t=0

LTtΦ.

Proposition 2.2.3. The definitions of Tt and LTt are consistent, i.e, if µ = Jω, ηK = 0
then Ttµ = 0, and if Φ = [ω, η] = 0 then LTtΦ = 0.

Proof. Suppose µ = Jω, ηK = 0, and let us check that Ttµ = 0 for all t ≥ 0, i.e.∫
N(A)

ϕ∗tω +

∫
N(A)

(pt)∗(π ◦ ϕ)∗η +
∫
A
η = 0,

for all A ∈ R(M). By Proposition 1.3.5 we have π∗η = −Dω = −d(ω + ξ ∧ α). Hence∫
N(A)

(pt)∗(π ◦ ϕ)∗η = −
∫
N(A)

(pt)∗ ◦ ϕ∗Dω = −
∫
N(A)×[0,t]

ϕ∗d(ω + ξ ∧ α)

= −
∫
N(A)×[0,t]

dϕ∗(ω + ξ ∧ α) = −
∫
N(A)×{0,t}

ϕ∗ω + ϕ∗ξ ∧ α

=

∫
N(A)

ϕ∗0ω −
∫
N(A)

ϕ∗tω =

∫
N(A)

ω −
∫
N(A)

ϕ∗tω,

as α vanishes on N(A). Since Jω, ηK = 0, we have
∫
N(A) ω = −

∫
A η. Therefore Ttµ = 0.

Assume Φ = [ω, η] = 0. From Proposition 1.3.5, we know ω ∈ (α, dα) and η = 0.
Since ϕt is a strict contactomorphism (cf. (1.15)), ϕ∗tω ∈ (α, dα), implying LTtΦ = 0.

Let us next establish some basic properties of these operators.

Lemma 2.2.4.
d

dt
(pt)∗ϕ

∗ρ = iTϕ
∗
tρ, ρ ∈ Ω∗(SM)

Proof. Given a compact smooth submanifold N ⊂ SM ,∫
N
(pt)∗ϕ

∗ρ =

∫
N×[0,t]

ϕ∗ρ

=

∫
N×[0,t]

i ∂
∂t
ϕ∗ρ ∧ dt

=

∫ t

0

(∫
N
ϕ∗t i ∂ϕ

∂t
ρ

)
dt,

Since iT and ϕ∗t commute, the result follows.
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Proposition 2.2.5. For µ = Jω, ηK and Φ = [ω, η]

∂µ = JLTω + iT (π
∗η), 0K = JiT (dω + π∗η) , 0K,

∂Φ = [LTω + iT (π
∗η), 0].

In particular, if η = 0
∂µ = JLTω, 0K,
∂Φ = [LTω, 0].

Proof. Modulo exact forms we have

d

dt
ϕ∗tω =

d

ds

∣∣∣∣
s=0

ϕ∗t+sω = LTϕ∗tω ≡ iTϕ∗tdω. (2.22)

Together with Lemma 2.2.4, taking t = 0 yields the result.

We generalize Proposition 2.1.3 within the riemannian context.

Proposition 2.2.6. The tubular operator satisfies the following main properties.

i)
Tt+s = Tt ◦Ts = Ts ◦Tt. (2.23)

ii)
d

dt
Ttµ = Tt∂µ = ∂Ttµ. (2.24)

iii)

∂iµ =
di

dti

∣∣∣∣
t=0

Ttµ. (2.25)

iv) The Taylor series expansion of T is

Ttµ ∼
∑
i≥0

ti

i!
∂iµ. (2.26)

Proof. i) It is enough to check that both sides have the same derivative with respect
to s, as they agree for s = 0. By (2.22), we have

d

ds
Tt ◦Ts(µ) = Tt ◦

d

ds
Ts(µ)

= TtJLTϕ∗sω + iTϕ
∗
sπ

∗η, 0K
= Jϕ∗t (LTϕ∗sω + iTϕ

∗
sπ

∗η), 0K
= JLTϕ∗t+sω + iTϕ

∗
t+sπ

∗η), 0K,

since ϕ∗t commutes with LT and iT . It follows from (2.22) that d
dsTt+s =

d
dsTt ◦Ts.
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ii) Since Tt+s = Tt ◦Ts = Ts ◦Tt, differentiating with respect to s at zero yields

d

dt
Ttµ = Tt∂µ = ∂Ttµ. (2.27)

iii) It is a direct consequence of (2.27).

iv) The function f : R→ V(M) defined by

f(t) := Ttµ

is C∞. To establish this, we first observe that by ii), the first derivative of f(t)
with respect to t exists and the derivative can be expressed as

d

dt
Ttµ = Tt∂µ.

In the same way, we can take the second derivative of f(t) with respect to t, resulting
in

d2

dt2
Ttµ =

d

dt
(Tt∂µ) = Tt∂

2µ.

The pattern observed here can be extended by induction to higher-order derivatives

dk

dtk
Ttµ = Tt∂

kµ.

Thus, we conclude that the function f(t) has derivatives of all orders. By definition,
the Taylor expansion around zero is∑

i≥0

ti

i!

di

dti

∣∣∣∣
t=0

f(t) =
∑
i≥0

ti

i!

di

dti

∣∣∣∣
t=0

Ttµ.

From (2.27) the result follows.

At the level of curvature measures, we have the same properties.

Proposition 2.2.7. The local tubular operator satisfies the following main properties.

i)
LTt+s = LTt ◦ LTs = LTs ◦ LTt. (2.28)

ii)
d

dt
LTtΦ = LTt∂Φ = ∂LTtΦ. (2.29)

iii)

∂iΦ =
di

dti

∣∣∣∣
t=0

LTtΦ. (2.30)
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iv) The Taylor series expansion of LT is

LTtΦ ∼
∑
i≥0

ti

i!
∂iΦ. (2.31)

Proof. The proof is similar to the preceding proposition.

Remark 2.2.8. Note that (2.26) coincides with (2.6) except that the derivative operator
does not need to be nilpotent on a riemannian manifold.

Remark 2.2.9. The functions T : t 7→ Tt and LT : t 7→ LTt are not analytic in general.
However, if we consider a finite-dimensional and ∂M -invariant subspace E ⊂ V(M),
then T|E and LT|E are analytic and agree with their Taylor series expansions (2.26)
and (2.31). This is the case for E = V(M)G where (M,G) is an isotropic pair.

2.2.2 Tubes in riemannnian manifolds

We review the basic properties of tubes around sets of positive reach and establish their
relation with the tubular operator from the previous section.

Let Mn be a complete riemannian manifold and let d : M × M → [0,∞) be its
riemannian distance.

Definition 2.2.10. For t ≥ 0, the tube of radius t around a subset A ⊂M is defined as

At := {p ∈M : dA(p) ≤ t} ,

where
dA(p) := inf {d(p, q) : q ∈ A} .

We review some basic facts about tubes around sets of positive reach (introduced by
Federer in euclidean spaces and by Kleinjohann in riemannian manifolds). For such sets
A we will prove that Ttµ(A) = µ(At) for any µ ∈ V(M) and sufficiently small t.

Definition 2.2.11 (Sets of positive reach). A set of positive reach in M is a closed
subset A ⊂M for which there exists an open neighborhood UA ⊃ A such that for every
p ∈ UA \ A there exists a unique point fA(p) ∈ A, called the footpoint associated to the
point p, such that d(p, fA(p)) = dA(p), and an unique minimizing geodesic joining p with
fA(p). We denote by R(M) the class of compact sets of positive reach in M .

By the previous definition, there is a well-defined map

FA : UA \A −→ SM, FA(p) =
(
γ(0), γ′(0)

)
(2.32)

where γ is the unique minimizing geodesic such that γ(0) = fA(p) and γ(dA(p)) = p.

Proposition 2.2.12 ([45, Satz 3.3]). For A ∈ R(M), N(A) := FA(UA \A) is a (n−1)-
dimensional oriented compact Lipschitz submanifold of SM called the normal cycle of
A.
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Proposition 2.2.13 ([45, Satz 3.3, Korollar 2.7]). Given a set of positive reach A in M
there exists r = rA > 0 such that Ar ⊂ UA and

i) for 0 < t < r the restriction FA|∂At
gives a bilipschitz homeomorphism between ∂At

and N(A), preserving the natural orientations,

ii) the distance function dA is of class C1 in Ar \A and

ϕdA(p)(FA(p)) = (p,∇dA(p)), ∂At = d−1
A ({t})

for 0 < t < r. In particular, each level set ∂At with 0 < t < r is a C1-regular
hypersurface with unit normal vector field ∇dA.

The following propositions are certainly well-known.

Proposition 2.2.14. For 0 < s < r = rA the set As has positive reach and on Ar \ As
we have

dAs = dA − s, FAs = ϕs ◦ FA. (2.33)

In particular (As)t = At+s for t+ s < r.

Proof. Let p ∈ Ar \As, and put d = dA(p). Let γ : [0, d]→ Ar be the unique minimizing
geodesic with γ(0) = fA(p) and γ(d) = p. In particular |γ′| = 1 and thus γ(s) ∈ As.

Assume that γ|[s,d] does not minimize the distance between p and As, i.e., there exists
a smooth curve α : [0, 1] → M with q := α(0) ∈ As, α(1) = p and length ℓ(α) < d − s.
It follows that

dA(p) ≤ ℓ(α) + dA(q) ≤ ℓ(α) + s < dA(p),

a contradiction. We conclude that γ|[s,d] realizes the distance dAs(p). Hence dAs(p) =
dA(p)− s and

FAs(p) = (γ(s), γ′(s)) = ϕs(γ(0), γ
′(0)) = ϕs(FA(p)).

Proposition 2.2.15. For 0 < s < rA, the restriction ϕs|N(A) is a bilipschitz homeo-
morphism between N(A) and N(As).

Proof. Take t with s < t < min(rA, s+rAs). By Proposition 2.2.13, both FA|∂At
: ∂At →

N(A) and FAs |∂At
: ∂At → N(As) are bilipschitz homeomorphisms. By (2.33) we have

ϕs|N(A) = FAs |∂At
◦ (FA|∂At

)−1.

The statement follows.

Proposition 2.2.16. For 0 < t < rA the composition π ◦ ϕ gives a bijective Lipschitz
map between N(A)× (0, t] and At \A.
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Proof. Since π, ϕ are smooth, the restriction of π◦ϕ to the Lipschitz manifoldN(A)×(0, t]
is Lipschitz. Given that π and ϕ are smooth in SM×R, it follows that π◦ϕ is also smooth
in SM × R. Furthermore, since A is compact, then N(A) is compact. Consequently,
as π ◦ ϕ is smooth and N(A) × [−t, t] is compact, we deduce that π ◦ ϕ is Lipschitz on
N(A)× [−t, t]. Thus, π ◦ ϕ is Lipschitz in N(A)× (0, t].

Given (ξ, s) ∈ N(A)×(0, t], we know by the previous proposition that ϕ(ξ, s) ∈ N(As)
and thus π ◦ ϕ(x, s) ∈ ∂As ⊂ At \A.

To check surjectivity, given p ∈ At \ A take ξ = FA(p), s = dA(p) and note that
π ◦ ϕ(ξ, s) = p.

As for injectivity, suppose π ◦ ϕ(ξ1, t1) = π ◦ ϕ(ξ2, t2) =: p for some (ξ1, t1), (ξ2, t2) ∈
N(A) × (0, t]. By the previous proposition p belongs to both ∂At1 , ∂At2 , so t1 = t2.
For s ∈ [0, t1], the geodesics γ1(s) = π ◦ ϕ(ξ1, s), γ2(s) = π ◦ ϕ(ξ2, s) realize the distance
between p and A. Since As ⊂ ArA ⊂ UA, we have γ1 = γ2 and thus ξ1 = ξ2.

Corollary 2.2.17. For A ∈ R(M), the normal cycle N(A) is legendrian and lagrangian
i.e, ∫

N(A)
ρ ∧ α = 0,

∫
N(A)

η ∧ dα = 0,

for all ρ ∈ Ωn−2(SM), η ∈ Ωn−3(SM).

Proof. The second identity follows from the first one by integration by parts. Since
dAs(p) = ε for all p ∈ ∂As+ε, by Proposition 2.2.13, the map

FAs |∂As+ε
: ∂As+ε → N(As)

is a homeomorphism of class C1. Then∫
N(As)

ρ ∧ α =

∫
∂As+ε

F ∗
As
ρ ∧ F ∗

As
α.

Now, let us evaluate F ∗
As
α. Let p ∈ ∂As+ε and let V ∈ Tp(∂As+ε). Then,

(F ∗
As
α)p(V ) = αFAs (p)

(dFAs(V ))

= ⟨FAs(p), (dπ)FAs (p)
((dFAs)p(V ))⟩.

Since p ∈ ∂As+ε ⊂ As+ε \A,

FAs(p) = ϕs ◦ FA(p) = (p,∇dA(p)).

Since π ◦ FAs |∂As+ε
= id|∂As+ε

, we have

(dπ)FAs (p)
((dFAs)p(V )) = V.

Therefore, since ∇dA(p) is orthogonal to ∂As+ε and V ∈ Tp(∂As+ε),

(F ∗
As
α)p(V ) = ⟨∇dA(p), V ⟩ = 0.

Finally, since N(As) = ϕs(N(A)) with ϕs bi-Lipschitz∫
N(A)

ρ ∧ α = lim
s→0+

∫
N(As)

ρ ∧ α = 0.
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Corollary 2.2.18. For every A ∈ R(M) and µ ∈ V(M) we have µ(At) = Ttµ(A) for
0 ≤ t ≤ rA.

Proof. Let µ = Jω, ηK. By Propositions 2.2.15 and 2.2.16 and the coarea formula,

µ(At) =

∫
N(At)

ω +

∫
At

η

=

∫
ϕt(N(A))

ω +

∫
(π◦ϕ)(N(A)×(0,t])

η +

∫
A
η

=

∫
N(A)

ϕ∗tω +

∫
N(A)

(pt)∗η +

∫
A
η

= Ttµ(A).

Proposition 2.2.19. Given A ∈ R(M) and a Borel set U , let Ut = {p ∈ At : fA(p) ∈
U}. Then, for every Φ ∈ C(M) we have Φ(At, Ut) = LTtΦ(A,U) for 0 ≤ t ≤ rA.

Proof. Let A ∈ R(M) and U a Borel set of M . For each t ∈ R

Ut = (π ◦ ϕ)
((
N(A) ∩ π−1(U)

)
× (0, t]

)
,

N(At) ∩ π−1(Ut) = ϕt
(
N(A) ∩ π−1(U)

)
.

Thus

Φ(At, Ut) =

∫
N(At)∩π−1(Ut)

ω +

∫
Ut

η

=

∫
ϕt(N(A)∩π−1(U))

ω +

∫
(π◦ϕ)((N(A)∩π−1(U))×(0,t])

η +

∫
U
η

=

∫
N(A)∩π−1(U)

ϕ∗tω +

∫
(N(A)∩π−1(U)

(pt)∗η +

∫
U
η

= LTtΦ(A,U).

Remark 2.2.20. In the subclass P(M) ⊂ R(M) of compact submanifolds with corners,
the normal cycle is more naturally defined as follows. For A ∈ P(M) and p ∈ A, let

TpA =
{
γ′(0) ∈ TpM : γ ∈ C1([0, 1), A), γ(0) = p

}
,

N ′(A) = {(p, v) ∈ SM : p ∈ A, ⟨v, w⟩ ≤ 0 ∀w ∈ TpA}.

Proposition 2.2.21. If A ∈ P(M) then N(A) = N ′(A).

Proof. Let us check that indeed N ′(A) equals N(A) = FA(UA). Covering A by local
charts (locally modeled on Rk × [0,∞)l ⊂ Rm), and considering the copy of N ′(A) in
the cosphere bundle of M , one sees that N ′(A) is a compact topological manifold. It
is also easy to show that N(A) ⊂ N ′(A). It follows by the invariance of the domain
theorem that N(A) is an open subset of N ′(A). Since N ′(A) is a Hausdorff space and
N(A) is compact, we also have that N(A) is a closed subset of N ′(A). Since the number
of connected components of both N(A) and N ′(A) equals the number of connected
components of A, we necessarily have N(A) = N ′(A).
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2.2.3 Tubular and derivative operators for invariant valuations

Let Mn be a complete riemannian manifold, G ≤ Isom(M) and g ∈ G. Denote by
g̃ : SM → SM the induced strict contactomorphism on the sphere bundle, i.e. the only
diffeomorphism satisfying

π ◦ g̃ = g ◦ π, g̃∗α = α.

Since g is an isometry, gA ∈ R(M) for all A ∈ R(M), and

N(gA) = g̃N(A), ∀A ∈ R(M).

Using the above equations, if µ = Jω, ηK, where ω ∈ Ω2n−1(SM) and η ∈ Ωn(M), then

(g∗µ)(A) = µ(gA) = Jg̃∗ω, g∗ηK(A), ∀A ∈ R(M). (2.34)

The same holds for Φ ∈ C(M).

Proposition 2.2.22. If µ ∈ V(M) and Φ ∈ C(M)

g∗Ttµ = Ttg
∗µ, g∗LTtΦ = LTtg

∗Φ, ∀g ∈ Isom(M).

In particular, if µ and Φ are G-invariant then Ttµ, ∂Mµ,LTtΦ and ∂MΦ are also G-
invariant.

Proof. Since g̃∗ commutes with ϕ∗t , π
∗ and (pt)∗, where pt : SM × R → SM is the pro-

jection onto the first factor, from (2.34) we have for µ = Jω, ηK

Ttg
∗µ = Jϕ∗t g̃

∗ω + (pt)∗(π ◦ ϕ)∗g∗η, g∗ηK
= Jg̃∗ϕ∗tω + g̃∗(pt)∗(π ◦ ϕ)∗η, g∗ηK
= g∗Ttµ.

Differentiating with respect to t at t = 0 yields

∂Mg
∗µ = g∗∂Mµ, ∀µ ∈ V(M).

In particular, if µ ∈ V(M)G, thenTtµ and ∂Mµ are alsoG-invariant. The same argument
applies to curvature measures.

Fix µ ∈ V(M)G. It follows from (2.24) in Proposition 2.2.6 that

d

dt
Ttµ = ∂Ttµ. (2.35)

Since (M,G) is isotropic, V(M)G is finite-dimensional, and hence computing Ttµ boilws
down to solving the first order linear Cauchy problem (2.35) with initial condition T0µ =
µ; i.e.

Ttµ = exp(t∂)µ =
∑
i≥0

ti

i!
∂iµ. (2.36)

This is the approach we will follow to obtain the tube formulas for invariant valuations
in Smλ ,CPnλ and HPnλ .
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Chapter 3

Tube formulas in real and complex
space forms

Here we will obtain our main result: the tube formulas for invariant valuations of CPnλ .
We will also recover Santaló’s tube formulas for invariant valuations of real space forms
(cf. [55]) in a way that explains the similarities between the real and the complex space
forms.

For λ ∈ R, let Vmλ,R and Vnλ,C denote the vector spaces of smooth valuations in Smλ
and CPnλ invariant under Gλ,R and Gλ,C, respectively, and define ∂λ,R and ∂λ,C as the
restrictions of ∂Smλ to Vmλ,R and ∂CPn

λ
to Vnλ,C. These restrictions are based on Proposition

2.2.22.

3.1 Derivative operator in Smλ
The computation of ∂λ,R is the goal of this section. Recall that we denote by ∆M

i and
νMi the Federer curvature measures and valuations of a riemannian manifold M .

For M = Smλ it will be convenient to renormalize the Federer valuations as follows.
For 0 ≤ i ≤ m− 1 we define

σλi := Jκi, 0K = (m− i)ωm−iν
Smλ
i ,

and σλm = volSmλ . Another common basis in the literature (cf. [15, 34]) is τλ0 , . . . , τ
λ
m ∈

Vmλ,R. These are proportional to σλi as follows

τλi =
i!ωi

πi(m− i)ωm−i
σλi , 0 ≤ i ≤ m− 1,

τλm =
m!ωm
πm

σλm.

To compute ∂λ,Rσ
λ
i , we only need to determine LTκi using Proposition 2.2.5. In

Chapter 4, dedicated to Federer valuations, we establish a general formula for LTκi in
real, complex, and quaternionic space forms, generalizing the following result.
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Lemma 3.1.1 ([31]). For 0 ≤ i ≤ m− 1 and κ−1 ≡ κm ≡ 0

LTκi = (m− i)κi−1 − λ(i+ 1)κi+1, 0 ≤ i ≤ m− 1.

Proposition 3.1.2.

∂λ,Rσ
λ
i = (m− i)σλi−1 − λ(i+ 1)σλi+1, 0 ≤ i ≤ m− 2, (3.1)

∂λ,Rσ
λ
m−1 = σλm−2, (3.2)

∂λ,Rσ
λ
m = σλm−1, (3.3)

where it is understood that σλ−1 = 0.

Let us emphasize that (3.1) would make formal sense but does not hold for i = m−1.

Proof. The derivative of the volume can be straightforwardly computed as follows

∂λ,Rσ
λ
m = ∂λ,RvolRm = areaRm

= Jκm−1, 0K = σλm−1.

Finally, by using the relation σλi = Jκi, 0K for 0 ≤ i ≤ m − 1, along with Lemma 3.1.1
and Proposition 2.2.5, we obtain the desired formula.

3.2 Derivative operator in CP n
λ

Here we compute the derivative operator on Vnλ,C. Remarkably we will encounter an

isomorphism with ValU(n) that intertwines ∂λ,C with Λ− λL.

3.2.1 Preliminar computations

We start introducing general notions on Kähler manifolds.

Definition 3.2.1. For M a Kähler manifold and π : SM → M its sphere bundle we
define the canonical 1-forms α, β, γ ∈ Ω1(SM)

αξ(X) := ⟨ξ, dπX⟩,
βξ(X) := ⟨Jξ, dπX⟩,
γξ(X) := ⟨Jξ, (π∗∇)Xξ⟩,

for ξ ∈ SM and X a vector field of SM .

Remark 3.2.2. If M = CPnλ , then these forms agree with the like-named forms defined
in [20] and [2]. The differential form β was also crucial in [22].
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Definition 3.2.3. Let M be a Kähler manifold. Let Θ0,Θ1,Θ2,Θs ∈ Ω2(SM) be given
by

Θ0(X,Y ) := ⟨J(π∗∇)Xe0, (π∗∇)Y e0⟩,
Θ1(X,Y ) := ⟨JdπX, (π∗∇)Y e0⟩ − ⟨JdπY, (π∗∇)Xe0⟩
Θ2(X,Y ) := ⟨JdπX, dπY ⟩,

Θs := −dα.

for ξ ∈ SM , and X,Y ∈ Tξ(SM).

Proposition 3.2.4. Let M2n be a Kähler manifold and e0, . . . , e2n−1 an hermitian mov-
ing frame. Then

(1) α = θ0, (4) Θ0 =
n−1∑
i=0

ω2i,0 ∧ ω2i+1,0,

(2) β = θ1, (5) Θ1 =
n−1∑
i=0

(θ2i ∧ ω2i+1,0 − θ2i+1 ∧ ω2i,0) ,

(3) γ = ω1,0, (6) Θ2 =

n−1∑
i=0

θ2i ∧ θ2i+1.

Proof. The identities for α, β, and γ follow directly from the definition:

(1)

α(X) = ⟨e0, dπX⟩ = θ0(X).

(2) Since e0, . . . , e2n−1 is hermitian e1 = Je0. Thus

β(X) = ⟨Je0, dπX⟩ = ⟨e1, dπX⟩ = θ1(X).

(3)

γ(X) = ⟨Je0, (π∗∇)Xe0⟩ = ⟨e1, (π∗∇)Xe0⟩ = ω1,0(X).

(4) Since

θ2i ◦ J = −θ2i+1, θ2i+1 ◦ J = θ2i, 0 ≤ i ≤ n− 1.
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we have

Θ0(X,Y ) =
2n−1∑
i=0

θi ⊗ θi(J(π∗∇)Xe0, (π∗∇)Y e0)

=
n−1∑
i=0

θ2i(J(π
∗∇)Xe0)θ2i((π∗∇)Y e0) +

n−1∑
i=0

θ2i+1(J(π
∗∇)Xe0)θ2i+1((π

∗∇)Y e0)

= −
n−1∑
i=0

θ2i+1((π
∗∇)Xe0)θ2i((π∗∇)Y e0) +

n−1∑
i=0

θ2i((π
∗∇)Xe0)θ2i+1((π

∗∇)Y e0)

= −ω2i+1,0(X)ω2i,0(Y ) +

n−1∑
i=0

ω2i,0(X)ω2i+1,0(Y )

=
n−1∑
i=0

(ω2i,0 ⊗ ω2i+1,0 − ω2i+1,0 ⊗ ω2i,0) (X,Y ) =
n−1∑
i=0

(ω2i,0 ∧ ω2i+1,0) (X,Y ).

(5) Consider
η(X,Y ) := ⟨JdπX, (π∗∇)Y e0⟩

Then
Θ1(X,Y ) = η(X,Y )− η(Y,X).

Since

ηξ(X,Y ) =
2n−1∑
i=0

θi ⊗ θi(JdπX, (π∗∇)Y e0)

=
n−1∑
i=0

θ2i ⊗ θ2i(JdπX, (π∗∇)Y e0) +
n−1∑
i=0

θ2i+1 ⊗ θ2i+1(JdπX, (π
∗∇)Y e0)

=−
n−1∑
i=0

θ2i+1 ⊗ θ2i(dπX, (π∗∇)Y e0) +
n−1∑
i=0

θ2i ⊗ θ2i+1(dπX, (π
∗∇)Y e0)

=

n−1∑
i=0

θ2i ⊗ ω2i+1,0(X,Y )−
n−1∑
i=0

θ2i+1 ⊗ ω2i,0(X,Y ),

we have

Θ1 =

n−1∑
i=0

θ2i ⊗ ω2i+1,0 − θ2i+1 ⊗ ω2i,0 − (ω2i+1,0 ⊗ θ2i − ω2i,0 ⊗ θ2i+1)

=
∑
i=0

θ2i ∧ ω2i+1,0 − θ2i+1 ∧ ω2i,0.

(6) The given expression for Θ2 follows similarly.
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To describe Vnλ,C, we introduce the classification of Ω2n−1(SCPnλ )Gλ,C (cf. [51, 21]).

Theorem 3.2.5 ([51]). For max{0, k − n} ≤ q < k
2 < n define

βk,q := cn,k,qβ ∧Θn−k+q,k−2q−1,q, k > 2q,

γk,q :=
cn,k,q
2

γ ∧Θn−k+q−1,k−2q,q, n > k − q.

where

Θa,b,c := Θa
0 ∧Θb

1 ∧Θc
2,

cn,k,q :=
1

q!(n− k + q)!(k − 2q)!ω2n−k
.

Then

Ω2n−1(SCPnλ )Gλ,C/(α, dα) ≡ ⟨βk,q : k > 2q⟩ ⊕ ⟨γk,q : n > k − q⟩.

Theorem 3.2.6 ([21]). For max{0, k − n} ≤ q ≤ k
2 ≤ n ≤ ∞, we set

µλk,q := Jβk,q, 0K ∈ Vnλ,C, k > 2q,

µλ2q,q :=
∑
i≥0

(
λ

π

)i (q + i)!

q!
Jγ2q+2i,q+i, 0K ∈ Vnλ,C,

τλk,q :=

⌊k/2⌋∑
i=q

(
i

q

)
µλk,i ∈ Vnλ,C.

Then {µλk,q}k,q and {τλk,q}k,q are two bases for Vnλ,C and Vnλ,C ∼= Vn0,C ≡ ValU(n) as vector
spaces.

The valuations µ0kq ∈ Vn0,C ≡ ValU(n) coincide with those previously studied as µk,q
in [20]. For λ ̸= 0 they agree with the basis elements examined in [2] only if k > 2q.

In light of Proposition 2.2.5, we aim to compute the Lie derivatives of the differential
forms βk,q and γk,q, as their globalizations generate the entire space of valuations Vnλ,C.
To achieve this, we present several technical lemmas.

Proposition 3.2.7. In CPnλ

(1) dα = −Θs, (4) dΘ0 = −λ (α ∧Θ1 + β ∧Θs) ,

(2) dβ = Θ1, (5) dΘ1 = 0,

(3) dγ = 2Θ0 − 2λΘ2 − 2λα ∧ β, (6) dΘ2 = 0

Proof. (1) It is the definition.
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(2) By Proposition 3.2.4 we have β = θ1, in a hermitian moving frame. The structure
equation (1.10) ensures us

dθ1 = −
n−1∑
j=0

ω1,j ∧ θj . (3.4)

On the other hand, since e1 = Je0 and π∗∇ commutes with the complex structure
J , we have

ω1,2j(X) = ⟨Je0, (π∗∇)Xe2j⟩ = −⟨e0, (π∗∇)XJe2j⟩ = −ω0,2j+1.

In the same way ω1,2j+1 = ω0,2j . Finally, by (3.4) the result follows

(3) In a hermitian moving frame, from Proposition 3.2.4 we have γ = ω1,0. By equation
(1.11) and ω1,2j = −ω0,2j+1, ω1,2j+1 = ω0,2j , we have

dω1,0 = −
n−1∑
k=0

ω1,k ∧ ωk,0 +Ω1,0 = 2Θ0 +Ω1,0.

The curvature tensor of CPnλ is given by R = λG. Then, since Ω1,0 = R(·, ·; e0, Je0)
it follows

G(X,Y ; e0, Je0) =g(X; e0)g(Y ; Je0)− g(X; Je0)g(Y ; e0)

+ g(JX; e0)g(JY ; Je0)− g(JX; Je0)g(JY ; e0)

+ 2g(JX;Y )g(Je0; Je0)

=α(X)β(Y )− β(X)α(Y )

+ α(JX)β(JY )− β(JX)α(JY )

+ 2Θ2(X,Y )

= α(X)β(Y )− β(X)α(Y )

− β(X)α(Y ) + α(X)β(Y )

+ 2Θ2(X,Y ) = (2α ∧ β + 2Θ2)(X,Y ).

(6) Since Θ2 is the Kähler form dΘ2 = 0.

(4) Since d2γ = dΘ2 = 0,

0 = d2γ = 2dΘ0 − 2λdΘ2 − 2λd(α ∧ β) = 2dΘ0 + 2λΘs ∧ β + 2λα ∧Θ1,

which yields the result.

(5) Since Θ1 = dβ then dΘ1 = d2β = 0.

Lemma 3.2.8. For any Kähler manifold, it is satisfied

iTα = 1, iTΘ1 = γ
iTΘ2 = β, iTβ = iTγ = iTΘ0 = iTΘs = 0.
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Proof. Since dπ(e0) = e0 and (π∗∇)T e0 = 0

iTα = ⟨e0, dπ(e0)⟩ = ⟨e0, e0⟩ = 1

iTβ = ⟨Je0, dπ(e0)⟩ = ⟨Je0, e0⟩ = 0

iTγ = ⟨Je0, (π∗∇)T e0⟩ = ⟨Je0, 0⟩ = 0

(iTΘ0)(Y ) = ⟨J(π∗∇)T e0, (π∗∇)Y e0⟩ = ⟨0, (π∗∇)Y e0⟩ = 0

(iTΘ1)(Y ) = ⟨Je0, (π∗∇)Y e0⟩ − ⟨JY, (π∗∇)T e0⟩ = γ − ⟨JY, 0⟩ = γ(Y )

(iTΘ2)(Y ) = ⟨Je0, dπY ⟩ = β(Y )

Finally, form Proposition 1.1.7 we know iTΘs = −iTdα = 0.

Corollary 3.2.9. In CPnλ

(1) LTα = 0, (4) LTΘ0 = −λΘ1 + λα ∧ γ,
(2) LTβ = γ, (5) LTΘ1 = 2Θ0 − 2λΘ2 − 2λα ∧ β,
(3) LTγ = −4λβ, (6) LTΘ2 = Θ1.

Proof. This straightforward computation uses Cartan’s magic formula, Proposition 3.2.7
and Lemma 3.2.8.

Proposition 3.2.10. In CPnλ

LT (Θa,b,c) =− aλΘa−1,b+1,c + aλα ∧ γ ∧Θa−1,b,c

+ 2bΘa+1,b−1,c − 2bλΘa,b−1,c+1 − 2bλα ∧ β ∧Θa,b−1,c + cΘa,b+1,c−1

LT (β ∧Θa,b,c) =γ ∧Θa,b,c − aλβ ∧Θa−1,b+1,c

− aλα ∧ β ∧ γ ∧Θa−1,b,c + 2bβ ∧Θa+1,b−1,c

− 2bλβ ∧Θa,b−1,c+1 + cβ ∧Θa,b+1,c−1

LT (γ ∧Θa,b,c) =− 4λβ ∧Θa,b,c − aλγ ∧Θa−1,b+1,c

+ 2bγ ∧Θa+1,b−1,c − 2bλγ ∧Θa,b−1,c+1

− 2bλα ∧ β ∧ γ ∧Θa,b−1,c + cγ ∧Θa,b+1,c−1.

Proof. Given that LT is a derivation

LT (Θa,b,c) = a (−λΘ1 + λα ∧ γ)Θa−1,b,c

+ b (2Θ0 − 2λΘ2 − 2λα ∧ β)Θa,b−1,c + cΘ1Θa,b,c−1

= −aλΘa−1,b+1,c + aλα ∧ γ ∧Θa−1,b,c

+ 2bΘa+1,b−1,c − 2bλΘa,b−1,c+1 − 2bλα ∧ β ∧Θa,b−1,c + cΘa,b+1,c−1.

Corollary 3.2.9 for β and γ yields the result.
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Proposition 3.2.11.

ω2n−k
ω2n−k+1

LTβk,q =2(n− k + q + 1)γk−1,q + (k − 2q + 1)βk−1,q−1

+ 2
(n− k + q + 1)(k − 2q − 1)

(k − 2q)
βk−1,q

− λ

2π
(k − 2q + 1)(2n− k + 1)βk+1,q

− 2λ(k − 2q − 1)
(2n− k + 1)(q + 1)

2π(k − 2q)
βk+1,q+1

− (n− k + q)cn,k,qλα ∧ β ∧ γ ∧Θn−k+q−1,k−2q−1,q

ω2n−k
ω2n−k+1

LTγk,q =− 2λ
(2n− k + 1)(k − 2q + 1)

2π(n− k + q)
βk+1,q

+ (k − 2q + 1)γk−1,q−1

+ 2(n− k + q + 1)γk−1,q

− λ(n− k + q − 1)
(2n− k + 1)(k − 2q + 1)

2π(n− k + q)
γk+1,q

− λ(k − 2q)
(2n− k + 1)(q + 1)

π(k − 2q)
γk+1,q+1

− (k − 2q)cn,k,qλα ∧ β ∧ γ ∧Θn−k+q−1,k−2q−1,q

Proof. For a = n− k + q, b = k − 2q − 1 and c = q, in Proposition 3.2.10

LTβk,q =2
cn,k,q
cn,k−1,q

γk−1,q + q
cn,k,q

cn,k−1,q−1
βk−1,q−1

+ 2(k − 2q − 1)
cn,k,q
cn,k−1,q

βk−1,q − λ(n− k + q)
cn,k,q
cn,k+1,q

βk+1,q

− 2λ(k − 2q − 1)
cn,k,q

cn,k+1,q+1
βk+1,q+1

− (n− k + q)cn,k,qλα ∧ β ∧ γ ∧Θn−k+q−1,k−2q−1,q.

For a = n− k + q − 1, b = k − 2q and c = q, in Proposition 3.2.10

LTγk,q =− 2λ
cn,k,q
cn,k+1,q

βk+1,q + q
cn,k,q

cn,k−1,q−1
γk−1,q−1

+ 2(k − 2q)
cn,k,q
cn,k−1,q

γk−1,q − λ(n− k + q − 1)
cn,k,q
cn,k+1,q

γk+1,q

− 2λ(k − 2q)
cn,k,q

cn,k+1,q+1
γk+1,q+1

− (k − 2q)cn,k,qλα ∧ β ∧ γ ∧Θn−k+q−1,k−2q−1,q.

Lastly, we just need to apply the identity ωn
ωn−2

= 2π
n .
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Proposition 3.2.11, which we have just established, provides a general formula for the
Lie derivative of a basis of the vector space Ω2n−1(SCPnλ )/(α, dα). Therefore, by glob-
alizing these Lie derivatives, given Proposition 2.2.5, we will obtain a closed expression
for ∂λ,Cµ

λ
k,q. Recall that Jβk,q, 0K = µλk,q (for k > 2q), while Jγk,q, 0K is given next.

Lemma 3.2.12 ([2]).

Jγk,q, 0K = µλk,q − λ
(2n− k)(q + 1)

2π(n− k + q)
µλk+2,q+1, n− k + q > 0. (3.5)

Proof. Consider η = (Θs − β ∧ γ) ∧Θn−k+q−1,k−2q−1,q. Then

dη ≡− γ ∧Θn−k+q−1,k−2q,q

+ 2β ∧Θn−k+q,k−q−1,q

− 2λβ ∧Θn−k+q−1,k−2q−1,q+1, mod (α, dα).

Since Jdη, 0K = 0, globalizing both members the result follows.

Proposition 3.2.13. For k > 2q

ω2n−k
ω2n−k+1

∂λ,Cµ
λ
k,q = (k − 2q + 1)µλk−1,q−1 + 2(n− k + q + 1)µλk−1,q (3.6)

− λ

2π
(2n− k + 1)

(
(k − 2q + 1)µλk+1,q + 2(q + 1)µλk+1,q+1

)
and

ω2n−2q

ω2n−2q+1
∂λ,Cµ

λ
2q,q = µ2q−1,q−1 − (2n− 2q + 1)

λ

2π
µ2q+1,q. (3.7)

Proof. Equality (3.6) follows from Proposition 2.2.5 and Proposition 3.2.11 together with
Lemma 3.2.12.

Let us now prove (3.7). Note first that from Proposition 3.2.11 and Lemma 3.2.12
we get

JLTγ2j,j , 0K =
ω2n−2j+1

ω2n−2j
µλ2j−1,j−1

− ω2n−2j+1

ω2n−2j

(2n− 2j + 1)(n+ 1)

n− j
λ

2π
µλ2j+1,j

+
ω2n−2j+1

ω2n−2j

(2n− 2j + 1)(2n− 2j − 1)(j + 1)

n− j
λ2

4π2
µλ2j+3,j+1

=: ajµ
λ
2j−1,j−1 + bj

λ

π
µλ2j+1,j + cj

λ2

π2
µλ2j+3,j+1

(3.8)
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Then, by Proposition 2.2.5 and observing that an = 2

∂λ,Cµ
λ
2q,q =

n−q−1∑
i=0

(
λ

π

)i (q + i)!

q!
JLTγ2q+2i,q+i, 0K + 2

(
λ

π

)n−q n!
q!
µλ2n−1,n−1

=

n−q∑
i=0

(
λ

π

)i (q + i)!

q!
aq+iµ

λ
2q+2i−1,q+i−1

+

n−q−1∑
i=0

(
λ

π

)i+1 (q + i)!

q!
bq+iµ

λ
2q+2i+1,q+i

+

n−q−2∑
i=0

(
λ

π

)i+2 (q + i)!

q!
cq+iµ

λ
2q+2i+3,q+i+1

= aqµ2q−1,q−1 +
λ

π
((q + 1)aq+1 + bq)µ

λ
2q+1,q

+

n−q∑
j=2

(
λ

π

)j ((q + j)!

q!
aq+j +

(q + j − 1)!

q!
bq+j−1 +

(q + j − 2)!

q!
cq+j−2

)
µλ2q+2j−1,q+j−1

A straightforward computation using kωk = 2πωk−2 shows

j(j − 1)aj + (j − 1)bj−1 + cj−2 = 0

and the result follows.

3.2.2 A remarkable isomorphism

Note that by (2.8) the linear map Φ0 : ValU(n) → ValU(n) given by Φ0|ValU(n)
k

= ω2n−k id

satisfies

∂0,C = Φ0 ◦ Λ ◦ Φ−1
0 .

A similar identity holds for all λ, which will be crucial for our determination of tube
formulas in CPnλ . Let us consider the linear isomorphism

Fλ,C : ValU(n) −→ Vnλ,C, µk,q 7−→ µλk,q.

Theorem 3.2.14. The linear isomorphism

Φλ := Fλ,C ◦ Φ0 : ValU(n) −→ Vnλ,C, µk,q 7−→ ω2n−kµ
λ
k,q.

fulfills

∂λ,C = Φλ ◦ (Λ− λL) ◦ Φ−1
λ .
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Proof. By combining Proposition 3.2.13, Proposition 2.1.6 and the fact ωn
ωn−2

= 2π
n , this

is straightforward to check:

Φλ ◦ (Λ− λL)(µk,q) = (k − 2q + 1)ω2n−k+1µ
λ
k−1,q−1 + 2(n− k + q + 1)ω2n−k+1µ

λ
k−1,q

− λ(k − 2q + 1)ω2n−k−1µ
λ
k+1,q − 2λ(q + 1)ω2n−k−1µ

λ
k+1,q+1

= ω2n−k+1

(
(k − 2q + 1)µλk−1,q−1 + 2(n− k + q + 1)µλk−1,q

− λ

2π
(2n− k + 1)

(
(k − 2q + 1)µλk+1,q + 2(q + 1)µλk+1,q+1

)
= ω2n−k∂λ,Cµ

λ
k,q = ∂λ,C ◦ Φλ(µk,q).

Remark 3.2.15. The linear isomorphism we have constructed serves as a valuable tool
for expressing the derivative operator simply in terms of the sl2-representation within
ValU(n). However, it is important to note that this isomorphism does not constitute an
algebra isomorphism.

In real space forms we have a result similar to Theorem 3.2.14 but only in a hyper-
plane of Vmλ,R.

Theorem 3.2.16. The linear monomorphism

Ψλ : ValO(m) −→ Vm+1
λ,R , µk 7−→ σλk

fulfills

∂λ,R ◦Ψλ = Ψλ ◦ (Λ− λL) .

Proof. By Proposition 3.1.2 and Theorem 2.1.9

∂λ,R ◦Ψλ(µk) = ∂λ,Rσ
λ
k = (m− k + 1)σλk−1 − λ(k + 1)σλk+1

= Ψλ((m− k + 1)µk−1 − λ(k + 1)µk+1)

= Ψλ(Λµk − λLµk).

Note the dimension difference between the source and the target of Ψλ. We will show
that there is no isomorphism between ValO(m) and Vmλ,R intertwining ∂ and Λ−λL. This
is essentially because (3.2) and (3.3) differ from (3.1).

3.3 A model space for tube formulas

We next perform some abstract computations that will easily lead to the tube formulas
in both complex and real space forms via (3.24) and (3.29). The same approach will
allow us to determine the kernel, the image, and the spectrum of the derivative operator
on Vmλ,R and Vnλ,C.
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3.3.1 A system of differential equations

Consider the decomposition

C[x, y] =
⊕
m≥0

V (m) (3.9)

where V (m) consists of m-homogeneous polynomials in two variables

V (m) := ⟨xkym−k : 0 ≤ k ≤ m⟩,

and recall that X = x ∂
∂y , Y = y ∂

∂x , and H = [X,Y ] induce an sl2-structure on each

V (m). It follows that X,Y,H induce an sl2-structure on C[x, y], whose decomposition
into irreducible components is (3.9).

In Proposition 1.5.6, we established that any finite-dimensional irreducible represen-
tation of sl2 is isomorphic to some V (m).

Motivated by Theorem 3.2.14, we consider

Yλ = Y − λX = y
∂

∂x
− λx ∂

∂y
,

which is a derivation on C[x, y]. Observe that V (m) is Yλ-invariant for all m ≥ 0.
Therefore, we can consider Yλ|V (m) . It will be sometimes convenient to consider the
monomials pm,k(x, y) :=

(
m
k

)
xkym−k. In these terms

Yλpm,k = (m− k + 1)pm,k−1 − λ(k + 1)pm,k+1. (3.10)

Our goal here is to solve the following Cauchy problem: find pm,k : R→ V (m) such that
d

dt
pm,k(t) = Yλpm,k(t),

pm,k(0) =

(
m

k

)
xkym−k, 0 ≤ k ≤ m.

(3.11)

Since (3.11) is a linear system of differential equations, we determine its solution by

pm,k(t) = exp(t Yλ|V (m))pm,k

=

(
m

k

)
exp(t Yλ|V (m))(xkym−k), 0 ≤ k ≤ m.

(3.12)

Given that dimV (m) < ∞ and Yλ|V (m) ∈ End(V (m)), the function exp(t Yλ|V (m)) is
always defined and analytic in t and λ. We simply write exp(tYλ).

We will use the standard notation

sinλ(t) :=



sin(
√
λt)√
λ

λ > 0,

t λ = 0,

sinh(
√
|λ|t)√
|λ|

λ < 0,
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which is an analytic function in both λ and t, and cosλ(t) :=
d
dt sinλ(t).

Proposition 3.3.1. For any λ, t ∈ R, we have

exp(tYλ)x = x cosλ(t) + y sinλ(t)=: u, exp(tYλ)y = y cosλ(t)− λx sinλ(t)=: v.

Proof. Since clearly
Y 2k
λ x = (−λ)kx, Y 2k+1

λ x = (−λ)ky,

we have

exp(tYλ)x =
∑
k≥0

tk

k!
Y k
λ x

=
∑
k≥0

t2k

(2k)!
(−λ)kx+

∑
k≥0

t2k+1

(2k + 1)!
(−λ)ky

= x cosλ(t) + y sinλ(t).

In the same way, we can compute exp(tYλ)y. Since

Y 2k
λ y = (−λ)ky, Y 2k+1

λ y = (−λ)k+1x,

we have

exp(tYλ)y =
∑
k≥0

tk

k!
Y k
λ y

=
∑
k≥0

t2k

(2k)!
(−λ)ky +

∑
k≥0

t2k+1

(2k + 1)!
(−λ)k+1x

= y
∑
k≥0

t2k

(2k)!
(−λ)k − λx

∑
k≥0

t2k+1

(2k + 1)!
(−λ)k

= y cosλ(t)− λx sinλ(t).

The following standard and elementary fact will be useful.

Lemma 3.3.2. Let A be a finite-dimensional algebra. A vector field on the underlying
vector space of A is a derivation if and only if its flow ϕt satisfies

ϕt(p · q) = ϕt(p) · ϕt(q), ∀p, q ∈ A, ∀t ∈ R.

In other words, each ϕt is an A-morphism.

Proof. Assume that X = ϕ′t is a derivation. Let p, q ∈ A be and consider g(t) :=
ϕt(p)ϕt(q). Since X is a derivation

X(g(t)) = X(ϕt(p))ϕt(q) + ϕt(p)X(ϕt(q))

= ϕ′t(p)ϕt(q) + ϕt(p)ϕ
′
t(q)

=
d

dt
ϕt(p)ϕt(q) = g′(t).
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Therefore, g(t) is an integral curve ofX. Since g(0) = ϕ0(pq) it follows that g(t) = ϕt(pq).
Conversely, assume that ϕt is an A-morphism for all t ∈ R. Then, for all p, q ∈ A

and t ∈ R, we have
ϕt(p · q) = ϕt(p) · ϕt(q).

Differentiating both sides with respect to t at t = 0, we obtain

d

dt

∣∣∣∣
t=0

ϕt(p · q) =
d

dt

∣∣∣∣
t=0

(ϕt(p) · ϕt(q)) .

Using the fact that d
dt

∣∣
t=0

ϕt(p) = X(p), we get

X(p · q) = X(p) · q + p ·X(q).

Therefore, X is a derivation.

Theorem 3.3.3. The solution of the Cauchy problem (3.11) is

pm,k(t) =

(
m

k

)
ukvm−k (3.13)

=

(
m

k

)
(x cosλ(t) + y sinλ(t))

k(y cosλ(t)− λx sinλ(t))m−k (3.14)

=

m∑
j=0

ϕλm,k,j(t)

(
m

j

)
xjym−j , (3.15)

where

ϕλm,k,j(t) =
∑
h≥0

(−λ)j−h
(
m− j
k − h

)(
j

h

)
sink+j−2h

λ (t) cosm−k−j+2h
λ (t). (3.16)

Proof. Since Yλ is a derivation, exp(tYλ) is a C[x, y]-morphism by Lemma 3.3.2. Hence

exp(tYλ)x
kym−k = (exp(tYλ)x)

k(exp(tYλ)y)
m−k = ukvm−k.

Comparing with (3.12) yields (3.14).
It remains to prove (3.15). Putting s = sinλ(t), c = cosλ(t) we have

(
m

k

)
(xc+ ys)k(yc− λxs)m−k =

(
m

k

)∑
a,b

(
k

a

)
(ys)a(xc)k−a

(
m− k
b

)
(−λxs)b(yc)m−k−b

=

(
m

k

)∑
a,b

(
k

a

)(
m− k
b

)
(−λ)bsa+bcm−a−bxk−a+bym−k+a−b

=

(
m

k

)∑
j,h

(
k

h

)(
m− k
j − h

)
(−λ)j−hsj+k−2hcm−j−k+2hxjym−j

where we changed a = k − h, b = j − h. Using(
m

k

)(
k

h

)(
m− k
j − h

)
=

(
m− j
k − h

)(
j

h

)(
m

j

)
, (3.17)

which is elementary, yields (3.15).
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3.3.2 Eigenvalues and eigenvectors of Yλ

Given f : V → V an endomorphism of vector spaces, we denote by spec(f) the set of
eigenvalues of f and by Eα(f) the eigenspace associated with each α ∈ spec(f).

Lemma 3.3.4. The endomorphism Yλ|V (m) is diagonalizable with simple multiplicities
and

spec(Yλ|V (m)) =
{
(2k −m)

√
−λ : 0 ≤ k ≤ m

}
,

E(2k−m)
√
−λ(Yλ|V (m)) = C · ek1em−k

2 ,

where e1 := y +
√
−λx and e2 := y −

√
−λx.

Proof. The result is trivial to check for m = 1. Since

Yλ(x) = y,

Yλ(y) = −λx,

we have
Yλ(e1) =

√
−λy − λx =

√
−λe1,

Yλ(e2) = −
√
−λy − λx = −

√
−λe2.

Given that Yλ is a derivation

Yλe
k
1 = kek−1

1 Yλe1 = k
√
−λek1,

Yλe
m−k
2 = (m− k)em−k−1

2 Yλe2 = −
√
−λ(m− k)em−k

2 .

Hence
Yλ(e

k
1e
m−k
2 ) = (2k −m)

√
−λek1em−k

2 ,

as stated.

Remark 3.3.5. It is interesting to notice that the spectra of Yλ and
√
−λH when re-

stricted to each V (m), are identical. These two operators are thus intertwined by the
linear isomorphism xkym−k 7→ ek1e

m−k
2 .

Lemma 3.3.6. For 0 ≤ k ≤ m, the eigenvector asociated to (2k −m)
√
−λ is given by(

m

k

)
(y +

√
−λx)k(y −

√
−λx)m−k =

∑
a,b

(
a+ b

a

)(
m− a− b
k − a

)
(−1)b(

√
−λ)a+bpm,a+b

Proof. Using the binomial theorem, we have

(y +
√
−λx)k =

k∑
a=0

(
√
−λ)a

(
k

a

)
xayk−a.

Similarly,

(y −
√
−λx)m−k =

m−k∑
b=0

(−1)b(
√
−λ)b

(
m− k
b

)
xbym−k−b.
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Therefore(
m

k

)
(y+
√
−λx)k(y−

√
−λx)m−k =

∑
a,b

(
m

k

)(
k

a

)(
m− k
b

)
(−1)b(

√
−λ)a+bxa+bym−a−b.

Finally, we only need(
m

k

)(
k

a

)(
m− k
b

)
=

(
a+ b

a

)(
m− a− b
k − a

)(
m

a+ b

)
.

which is straightforward.

3.3.3 Image of Yλ

Using Lemma 3.3.4, we can conclude that Yλ|V (m) is bijective if and only if m is odd. If
m is even, then the kernel is one-dimensional. An explicit description is the following.

Proposition 3.3.7. If m is even, then

im(Yλ|V (m)) = kerZm,λ, (3.18)

where

Zm,λ :=

(
∂2

∂x2
+ λ

∂2

∂y2

)m/2
.

Proof. By the binomial formula

Zm,λ(x
kym−k) =

m/2∑
i=0

λm/2−i
(
m/2

i

)
∂m

∂x2i∂ym−2i
xkym−kδk,2i

= λ
m−k

2

(
m/2

k/2

)
k!(m− k)! (3.19)

if k is even, and Zm,λ(x
kym−k) = 0 if k is odd. Therefore

Zm,λ ◦ Yλ(x2l+1ym−2l−1) =Zm,λ((2l + 1)x2lym−2l − λ(m− 2l − 1)x2l+2ym−2l−2)

=λ
m
2
−l
(
m/2

l

)
(2l + 1)!(m− 2l)!

− λ
m
2
−l
(
m/2

l + 1

)
(2l + 2)!(m− 2l − 1)! = 0

Zm,λ ◦ Yλ(x2lym−2l) = 0.

This shows that im(Yλ) is a subspace of kerZm,λ. Given that Zm,λ is not zero, we have
dimkerZm,λ = m, and by Lemma 3.3.4, we know that the image of Yλ|V (m) has the
same dimension. This yields (3.18)

Next we compute, for even m and given φ in the image of Yλ|V (m) , the preimage
Y −1
λ ({φ}).
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Proposition 3.3.8. Consider

Pm,k :=
∑
j≥0

λj
(k + 2j − 1)!!(m− k − 2j − 1)!!

(k − 1)!!(m− k + 1)!!
pm,k+2j ∈ V (m). (3.20)

Then
YλPm,k = pm,k−1 − cm,kxm (3.21)

where cm,k = 0 if m− k is even, and otherwise

cm,k = λ
m−k+1

2
m!!

(k − 1)!!(m− k + 1)!!
. (3.22)

Proof. Using (3.10)

Yλpm,k+2j = (m− k − 2j + 1)pm,k+2j−1 − λ(k + 2j + 1)pm,k+2j+1.

(k − 1)!!(m− k + 1)!!YλPm,k

=
∑
j≥0

λj(k + 2j − 1)!!(m− k − 2j − 1)!! {(m− k − 2j + 1)pm,k+2j−1 − λ(k + 2j + 1)pm,k+2j+1}

=
∑
l≥0

λ⌊(l+1)/2⌋(k + l)!!(m− k − l − 2)!!(m− k − l)−
∑
l≥0

λ⌊(l−1)/2⌋+1(k + l − 2)!!(m− k − l)!!(k − l)pm,k+l

=pm,k−1 − cm,kx
m.

With these ingredients at hand, for even m, we can now compute a preimage by Yλ
of any element in imYλ as follows.

Proposition 3.3.9. Let Π: V (m) → V (m) be given by pm,k 7→ Pm,k+1. If m is even then

Yλ ◦Π(φ) = φ, ∀φ ∈ im Yλ|V (m) (3.23)

Proof. Let 0 < k < m. Since (m − k + 1)cm,k − λ(k + 1)cm,k+2 = 0, using (3.10) and
(3.20) we get

(Yλ ◦Π ◦ Yλ)pm,k =Yλ ◦Π((m− k + 1)pm,k−1 − λ(k + 1)pm,k+1)

=(m− k + 1)YλPm,k − λ(k + 1)YλPm,k+2

=(m− k + 1)pm,k−1 − λ(k + 1)pm,k+1

− ((m− k + 1)cm,k − λ(k + 1)cm,k+2)x
m = Yλpm,k.

For k = 0 and k = m,

Yλ ◦Π ◦ Yλ(ym) = −λYλ(Pm,2) = −λ(mxym−1 − cm,2xm) = Yλ(y
m) + λcm,2x

m,

Yλ ◦Π ◦ Yλ(xm) = Yλ(Pm,m) = mxm−1y − cm,mxm = Yλ(x
m) + cm,mx

m.

Since cm,m = 0, and cm,2 = 0 if m is even, the result follows.
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The following consequence of Proposition 3.3.8 will be useful later.

Proposition 3.3.10.

pm,k =
∑
j≥0

λj
(k + 2j)!!(m− k − 2j − 2)!!

k!!(m− k)!!
Yλpm,k+2j+1 + cm,k+1x

m

Proof. Applying Yλ on both sides of (3.20), and using (3.21) yields the result.

3.4 Tube formulas in complex space forms

Recalling (2.15) and Proposition 2.1.8, we get an isomorphism In : Wn → ValU(n) of
sl2-modules from

Wn :=
⊕

0≤2r≤n
V (2n−4r)

to ValU(n) by putting In(y
2n−4r) = π2r,r (i.e. mapping Y -primitive elements to Λ-

primitive elements) and

In(p2n−4r,k−2r) =
1

(k − 2r)!
In(X

k−2r(y2n−4r))

=
1

(k − 2r)!
Lk−2rIn(y

2n−4r) =
1

(k − 2r)!
πk,r.

By Theorem 3.2.14, the map Jλ,C := Φλ ◦ In : Wn → Vnλ,C fulfills

∂λ,C ◦ Jλ,C = Jλ,C ◦ Yλ. (3.24)

We define

σλk,r := Jλ(p2n−4r,k−2r) =
ω2n−k

(k − 2r)!
πλk,r, (3.25)

which satisfies

∂λ,Cσ
λ
k,r = (2n− k − 2r + 1)σλk−1,r − λ(k − 2r + 1)σλk+1,r. (3.26)

We arrive at our main theorem.

Theorem 3.4.1. The tubular operator Tt in Vnλ,C is given by

Tt(σ
λ
k,r) =

2n−4r∑
j=0

ϕλ2n−4r,k−2r,j(t)σ
λ
j+2r,r,

where

ϕλm,i,j(t) =
∑
h≥0

(−λ)j−h
(
m− j
i− h

)(
j

h

)
sini+j−2h

λ (t) cosm−i−j+2h
λ (t).
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Proof. By (2.36), using (3.24) and (3.25), and putting m = 2n− 4r, we get

Ttσ
λ
k,r = exp(t∂λ,C)(σ

λ
k,r)

= exp(t∂λ,C) ◦ Jλ,C(pm,k−2r)

= Jλ,C ◦ exp(tYλ)(pm,k−2r)

= Jλ,C(pm,k−2r(t)).

Using (3.15) the result follows.

Remark 3.4.2. It is also worth noting that Vnλ,C =
⊕

0≤2r≤n I
n,r
λ,C where

In,rλ,C := Jλ,C(V
(2n−4r)) =

{
σλk,r : 2r ≤ k ≤ 2n− 2r

}
, (3.27)

and that these subspaces are ∂λ,C-invariant. In particular, given φ ∈ In,rλ,C one has

Tt(φ) ∈ In,rλ,C. This definition is an extension of (2.19) within ValU(n).

The tube formulas in terms of the τλk,i can be obtained from Theorem 3.4.1 using

(2.18) and (2.21) which hold verbatim replacing πλk,r, τ
λ
k,r for πk,r, τk,r.

Remark 3.4.3. The tube formula for the volume σλ2n,0 = volCPn
λ
is given by the following

simple expression

volCPn
λ
(At) =

2n∑
j=0

sin2n−jλ (t) cosjλ(t)σ
λ
j,0(A), (3.28)

which is Theorem 4.3 of [21], since σλj,0 = ω2n−jτ
λ
j,0 = Φλ(µj). The tube formulas

Ttσ
λ
2n−2r,r are equally simple

Ttσ
λ
2n−2r,r =

2n−4r∑
j=0

sin2n−4r−j
λ (t) cosjλ(t)σ

λ
j+2r,r.

The tube formula for σλ2r,r is also simple

Ttσ
λ
2r,r =

2n−4r∑
j=0

(−λ)j sinjλ(t) cos
2n−4r−j
λ (t)σλj+2r,r.

We have a clear explanation of this phenomenon. By Theorem 3.3.3

p2n−4r,2n−4r(t) = exp(tYλ)x
2n−4r = (x cosλ(t) + y sinλ(t))

2n−4r

p2n−4r,0(t) = exp(tYλ)y
2n−4r = (y cosλ(t)− λx sinλ(t))2n−4r.

Finally, since

Ttσ2r,r = Jλ(p2n−4r,0(t)), Ttσ2n−4r,r = Jλ(p2n−4r,2n−4r(t)),

we have that the simplicity of the formulas is due to the lack of x or y in each polynomic
representation of σλ2r,r and σ

λ
2n−4r,r.
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Remark 3.4.4. An interesting feature of the previous tube formulas is the following self-
similarity property, which is explained by (3.24). Let

Gλ
n,j : Vnλ,C −→ V

n+2j
λ,C , Gλ

n,j(σ
λ
k,r) = σλk+2j,r+j .

Then one has Tt ◦Gλ
n,j = Gλ

n,j ◦Tt.

Example 3.4.5. To illustrate the self-similarity property, we present an example in lower
dimensions. It is essential to note that the maps Gλ

n,j connect spaces with the same
dimensional parity, dividing {Vnλ,C}n∈N into two equivalence classes. Let us consider

n = 2 and j = 1. Thus, we have the map Gλ
2,1 : V2λ,C → V4λ,C. The space V2λ,C has two

invariant subspaces

V2λ,C = I2,0λ,C ⊕ I
2,1
λ,C

and V4λ,C has three of them

V4λ,C = I4,0λ,C ⊕ I
4,1
λ,C ⊕ I

4,2
λ,C.

According to the definition of Gλ
2,1, we have

Gλ
2,1

(
V2λ,C

)
= I4,1λ,C ⊕ I

4,2
λ,C,

This scenario can be represented using two diagrams, constructed as follows. Each
invariant subspace is represented as a row of squares and each square as a basic element
σλk,r. The subspace In,0λ,C forms the base of a pyramid. By stacking the subsequent rows,
we construct the corresponding diagram. In this example, we have two diagrams: one
associated with V2λ,C and another with V4λ,C. The domain and range of the map Gλ

2,1 are
shaded accordingly.

σλ0,0 σλ1,0 σλ2,0 σλ3,0 σλ4,0

σλ2,1I2,1λ,C

I2,0λ,C

V2λ,C

σλ0,0 σλ1,0 σλ2,0 σλ3,0 σλ4,0 σλ5,0 σλ6,0 σλ7,0 σλ8,0

σλ2,1 σλ3,1 σλ4,1 σλ5,1 σλ6,1

σλ4,2I4,2λ,C

I4,1λ,C

I4,0λ,C

V4λ,C
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Example 3.4.6. We draw a diagram for an odd dimension to observe the structural
difference. Let us consider n = 5.

σλ0,0 σλ1,0 σλ2,0 σλ3,0 σλ4,0 σλ5,0 σλ6,0 σλ7,0 σλ8,0 σλ9,0 σλ10,0

σλ2,1 σλ3,1 σλ4,1 σλ5,1 σλ6,1 σλ7,1 σλ8,1

σλ4,2 σλ5,2I5,2λ,C

I5,1λ,C

I5,0λ,C

V5λ,C

The invariant subspaces possess different dimensions, which discards the possibility of
finding an isomorphism between them.

3.5 Tube formulas in real space forms

Let Im : V (m) → ValO(m) be the isomorphism of irreducible sl2-representations deter-
mined by Im(y

m) = χ; i.e.(
m

i

)
Im(x

iym−i) =
1

i!
Im(X

i(ym)) =
1

i!
Li(I(ym))

=
1

i!
Li(µ0) = µi

where we used (2.9). By Theorem 3.2.16, the map Jλ,R = Ψλ ◦ Im satisfies

∂λ,R ◦ Jλ,R = Jλ,R ◦ Yλ. (3.29)

The map Jλ,R is explicitly given by

Jλ,R : V
(m) −→ Vm+1

λ,R , pm,i 7−→ σλi . (3.30)

The image of Jλ,R is the hyperplane Hm+1
λ := im Jλ,R = ⟨σλ0 , . . . , σλm⟩.

Theorem 3.5.1. The tubular operator on Vm+1
λ,R is given as follows. For 0 ≤ i ≤ m,

Ttσ
λ
i =

m∑
j=0

ϕλm,i,j(t)σ
λ
j . (3.31)

In particular

Ttσ
λ
m =

m∑
j=0

sinm−j
λ (t) cosjλ(t)σ

λ
j , (3.32)

and thus

Ttσ
λ
m+1 =

m∑
j=0

(∫ t

0
sinm−j

λ (s) cosjλ(s)ds

)
σλj + σλm+1. (3.33)
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These formulas where first obtained by Santaló [55].

Proof. By (2.36), (3.29) and (3.30), we have for 0 ≤ i ≤ m,

Ttσ
λ
i = exp(t∂λ,C)(σ

λ
i )

= exp(t∂λ,C) ◦ Jλ,C(pm,i)
= Jλ,C ◦ exp(tYλ)(pm,i)
= Jλ,C(pm,i(t)).

This proves (3.31) of which (3.32) is a particular case. Integrating with respect to t
yields (3.33).

Remark 3.5.2. It is worth pointing out the similarity between tube formulas in real and
complex space forms. More precisely, note that the isomorphism

Fλn,r :
(
H2n−4r+1
λ , ∂λ,R

)
−→

(
In,rλ,C, ∂λ,C

)
, σλj 7−→ σλj+2r,j+r (3.34)

between the linear subspaces H2n−4r+1
λ ⊂ V2n−4r+1

λ,R and In,rλ,C ⊂ V
n
λ,C such that

Fλn,r ◦ ∂λ,R = ∂λ,C ◦ Fλn,r;

i.e. Fλn,r commutes with the tubular operator Tt. This is explained by (3.24) and (3.29),
because of

∂λ,Rσ
λ
i = (m− i+ 1)σλi−1 − λ(i+ 1)σλi+1,

∂λ,Cσ
λ
k,r = (2n− k − 2r + 1)σλk−1,r − λ(k − 2r + 1)σλk+1.

3.6 Local tube formulas in complex space forms

We determine the local tube formulas in CPnλ .

From Theorem 3.2.5 we know

C(CPnλ )Gλ,C = ⟨Bk,q : k > 2q⟩ ⊕ ⟨Γk,q : n > k − q⟩ ⊕ ⟨dvol⟩,

where Bk,q = [βk,q, 0] and Γk,q = [γk,q, 0]. Recall that these differential forms βk,q, γk,q
are defined by

βk,q := cn,k,qβ ∧Θn−k+q,k−2q−1,q, k > 2q,

γk,q :=
cn,k,q
2

γ ∧Θn−k+q−1,k−2q,q, n > k − q.

We directly compute ϕ∗tβk,q and ϕ
∗
tγk,q to compute the local tube formulas.

Consider
WC

1 := ⟨γ, β⟩, UC
2 = ⟨Θ1,Θ2,Θ3⟩/(α, dα).

From Corollary 3.2.9 the subspaces WC
1 ⊂ Ω1(SCPnλ ) and UC

2 ⊂ Ω2(SCPnλ )/(α, dα) are
LT -invariant.
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Theorem 3.6.1. The maps

Fβ,γ : (V
(1), Y4λ) −→

(
WC

1 ,LT
)
, x 7−→ β, y 7−→ ψ0

FΘ : (V (2), Yλ) −→
(
UC
2 ,LT

)
, p2,i 7−→ Θi

are linear isomorphisms which satisfy

LT ◦ Fβ,γ = Fβ,γ ◦ Y4λ, LT ◦ FΘ = FΘ ◦ Yλ.

Proof. It suffices to compare Corollary 3.2.9 with

Y4λ(x) = y

Y4λ(y) = −4λx
Yλ(p2,i) = (3− i)p2,i−1 − λ(i+ 1)p2,i+1.

Proposition 3.6.2. i)

ϕ∗tβ = sinλ(t) cosλ(t)γ + (cos2λ(t)− λ sin2λ(t))β
ϕ∗tγ = (cos2λ(t)− λ sin2λ(t))γ − λ sinλ(t) cosλ(t)β

ii)

ϕ∗tΘi =
2∑
j=0

ϕλ2,i,j(t)Θj

Explicitly,

ϕ∗tΘ0 =cos2λ(t)Θ0 − λ sinλ(t) cosλ(t)Θ1 + λ2 sin2λ(t)Θ2

ϕ∗tΘ1 =2 sinλ(t) cosλ(t)Θ0 + (cos2λ(t)− λ sin2λ(t))Θ1 − 2λ sinλ(t) cosλ(t)Θ2

ϕ∗tΘ2 =sin2λ(t)Θ0 + sinλ(t) cosλ(t)Θ1 + cos2λ(t)Θ2,

Proof. i) From Theorem 3.3.3 and applying

sin4λ(t) = sinλ(t) cosλ(t),

cos4λ(t) = cos2λ(t)− λ sin2λ(t),

it follows
ϕ∗tβ = sinλ(t) cosλ(t)γ + (cos2λ(t)− λ sin2λ(t))β
ϕ∗tγ = (cos2λ(t)− λ sin2λ(t))γ − λ sinλ(t) cosλ(t)β

ii) This formula is completely analogous using once again Theorem 3.3.3.
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Corollary 3.6.3.

LTtBk,q = cn,k,q

[
(sinλ(t) cosλ(t)γ + (cos2λ(t)− λ sin2λ(t))β)

∧

(
2∑

a=0

ϕλ2,n−k+q,a(t)Θ0

)n−k+q ( 2∑
b=0

ϕλ2,k−2q−1,b(t)Θ1

)k−2q−1( 2∑
c=0

ϕλ2,q,c(t)Θ2

)q
, 0
]

LTtΓk,q =
cn,k,q
2

[
((cos2λ(t)− λ sin2λ(t))γ − λ sinλ(t) cosλ(t)β)∧

∧

(
2∑

a=0

ϕλ2,n−k+q+1,a(t)Θ0

)n−k+q+1( 2∑
b=0

ϕλ2,k−2q,b(t)Θ1

)k−2q ( 2∑
c=0

ϕλ2,q,c(t)Θ2

)q
, 0
]

Remark 3.6.4. In Corollary 4.3.4 we will obtain simpler local tube formulas for some
particular elements of C(CPnλ )Gλ,C .

3.7 Spectral analysis of the derivative operator

Here we compute the eigenvalues and eigenvectors of ∂λ,R and ∂λ,C. Note that the
tube formulas for such valuations are extremely simple: if ∂µ = aµ with a ∈ C, then
Ttµ = eatµ.

Proposition 3.7.1. For 0 ≤ 2r ≤ n, 0 ≤ k ≤ 2n− 4r, set

υλk,r :=

(
2n− 4r

k

)
Jλ,C(e

k
1e

2n−4r−k
2 )

Then

i) The restriction of ∂λ,C to In,rλ,C has the following (simple) eigenvalues and eigenspaces:

spec
(
∂λ,C|In,r

λ,C

)
=
{
0,±2

√
−λ,±4

√
−λ, . . . ,±2(n− 2r)

√
−λ,

}
,

E(2k−2n+4r)
√
−λ(∂λ,C) = C · υλk,r, 0 ≤ k ≤ 2n− 4r.

ii) The endomorphism ∂λ,C diagonalizes on Vnλ,C with the following eigenspaces:

E2j
√
−λ(∂λ,C) = ⟨υ

λ
k,r : 0 ≤ 2r ≤ min{n− j, n+ j}⟩,

for −n ≤ j ≤ n.

iii) Each eigenvector υλk,r has the next expansion

υλk,r =
∑
a,b

(
a+ b

a

)(
2n− 4r − a− b

k − a

)
(−1)b(

√
−λ)a+bσλa+b+2r,r.
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Proof. i) By (3.24) we now that ∂λ,C ◦ Jλ,C = Jλ,C ◦ Yλ, it follows that Jλ,C preserves
the eigenvectors. Specifically, if v ∈ Eα(Yλ), then Jλ,C(v) ∈ Eα(∂λ,C). The eigenvec-
tors and their corresponding eigenvalues in (V (m), Yλ) were classified in Proposition
3.3.4. Consequently,(

2n− 4r

k

)
ek1e

2n−4r−k
2 ∈ E(2k−2n+4r)

√
−λ(Yλ).

Since Jλ,C preserves the eigenvectors, we have that

υλk,r =

(
2n− 4r

k

)
Jλ,C(e

k
1e

2n−4r−k
2 )

is an eigenvector of ∂λ,C associated with the eigenvalue (2k − 2n+ 4r)
√
−λ.

ii) The endomorphism ∂λ,C diagonalizes because it has simple eigenvalues on each
invariant subspace.

iii) The υλk,r expansion formula yields from Lemma 3.3.6.

Proposition 3.7.2. For 0 ≤ k ≤ m− 1 set

υλk =

(
m− 1

k

)
Jλ,R(e

k
1e
m−k−1
2 ).

Then

i) In S2nλ the derivative operator is diagonalizable with

spec(∂λ,R) =
{
0,±
√
−λ,±3

√
−λ, . . . ,±(2n− 1)

√
−λ
}
, (3.35)

E0(∂λ,R) = C · χ (3.36)

E(2k−2n+1)
√
−λ(∂λ,R) = C · υλk , 0 ≤ k ≤ 2n− 1 (3.37)

ii) In S2n+1
λ the derivative operator is not diagonalizable since

spec(∂λ,R) =
{
0, 0,±2

√
−λ,±4

√
−λ, . . . ,±2n

√
−λ
}
, (3.38)

E0(∂λ,R) = C · χ, (3.39)

E(2k−2n)
√
−λ(∂λ,R) = C · υλk , 0 ≤ k ≤ 2n. (3.40)

iii) Each eigenvector υλk has the next expansion

υλk =
∑
a,b

(
a+ b

a

)(
m− a− b− 1

k − a

)
(−1)b(

√
−λ)a+bσλa+b.
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Proof. i) By Lemma 3.3.4 and (3.29) we have that (2k−2n+1)
√
−λ, 0 ≤ k ≤ 2n−1,

is an eigenvalue of ∂λ,R with eigenspace given by (3.37). The Euler characteristic
is an eigenvector with zero eigenvalue. We thus have at least 2n + 1 eigenvalues.
Since this is precisely the dimension of V2nλ,R, the statement follows.

ii) In light of Lemma 3.3.4 and (3.29), we ascertain that (2k − 2n)
√
−λ, 0 ≤ k ≤ 2n,

is an eigenvalue of ∂λ,R and the corresponding eigenspace is described by (3.40).

Our next objective is to prove that while the algebraic multiplicity of the zero
eigenvalue is two, its geometric multiplicity is one. This will entail finding a val-
uation µ that satisfies ∂2λ,Rµ = 0, while also ensuring that ∂λ,Rµ ̸= 0. Consider

σλ2n = Jλ,R(x
2n) ∈ V2n+1

λ,R . In the notation of Lemma 3.3.4,

x =
1

2
√
−λ

(e1 − e2), x2n = (−4λ)−n
2n∑
i=0

(−1)i
(
2n

i

)
ei1e

2n−i
2 .

Hence

∂λ,Rσ
λ
2n+1 = σλ2n = (−4λ)−n

2n∑
i=0

(−1)i
(
2n

i

)
Jλ,R(e

i
1e

2n−i
2 ).

Consider

ν := (−4λ)−n
2n∑
i=0
i ̸=n

(
2n

i

)
(−1)i

(2i− 2n)
√
−λ

Jλ,R(e
i
1e

2n−i
2 ),

and note that, by Lemma 3.3.4,

∂λ,Rν := (−4λ)−n
2n∑
i=0
i ̸=n

(
2n

i

)
(−1)iJλ,R(ei1e2n−i2 ),

since en1e
n
2 ∈ kerYλ. Finally, we define µ = σλ2n+1 − ν. Then

∂λ,Rµ = (−4λ)−n
(
2n

n

)
(−1)nJλ,R(en1en2 ) ̸= 0,

while

∂2λ,Rµ = (−4λ)−n
(
2n

n

)
(−1)n∂λ,RJλ,R(en1en2 )

= (−4λ)−n
(
2n

n

)
(−1)nJλ,R(Yλ(en1en2 )) = 0.

It follows that dimker ∂λ,R < dimker ∂2λ,R. Noting that χ ∈ ker ∂λ,R this implies the
statement.

iii) The υλk expansion formula follows from Lemma 3.3.6.
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Remark 3.7.3. We conclude from Proposition 3.7.2 and Lemma 3.3.4 that there is no
isomorphism between ValO(m) and Vmλ,R intertwining Λ−λL and ∂λ,R. Indeed, these two
operators have different spectra no matter the parity of m.

Remark 3.7.4. There is no sl2-module structure in Vnλ,C nor in Vmλ,R, where ∂λ,C and ∂λ,R
play the role of X or Y due to their lack of nilpotency.

3.7.1 Stable valuations in complex space forms

Definition 3.7.5. We say that a valuation φ ∈ V(M) on a riemannian manifold M is
stable if ∂µ = 0, or equivalently, if Ttµ = µ for all t. The space of stable valuations is
ker ∂.

Proposition 3.7.6. The Euler characteristic is the unique isometry-invariant stable
valuation in Smλ up to multiplicative constants.

Proof. By Proposition 3.7.2

E0(∂λ,R) = ⟨χ⟩ = ker ∂λ,R

with independence of the dimension.

The complex case is more interesting. Previously, in Proposition 3.7.1, we provided a
detailed description of each eigenvalue and eigenvector of ∂λ,C. In particular, we derived
an expansion for the elements of the kernel of ∂λ,C. We now refine these formulas for
this kernel, obtaining more simplified expressions.

Proposition 3.7.7. The unique (up to multiplicative constants) stable valuation on In,rλ,C
is given by

ψλ2r =
n−r∑
i=r

(
n− 2r

i− r

)(
2n− 4r

2i− 2r

)−1

λi−rσλ2i,r.

In particular
ker ∂λ,C = ⟨ψλ2r : 0 ≤ 2r ≤ n⟩.

Proof. By Lemma 3.3.4 the kernel of Yλ on the space V (m) of homogeneous polynomials
of degree m = 2n− 4r is spanned by

en−2r
1 en−2r

2 = (y +
√
−λx)n−2r(y −

√
−λx)n−2r

= (y2 + λx2)n−2r =
n−2r∑
j=0

(
n− 2r

j

)
λjx2jym−2j

=

n−r∑
i=r

(
n− 2r

i− r

)(
2n− 4r

2i− 2r

)−1

λi−r
(
2n− 4r

2i− 2r

)
x2i−2ry2n−2i−2r

Therefore the kernel of ∂λ,C in In,rλ,C is spanned by ψ2r = Jλ(e
n−2r
1 en−2r

2 ) , for each
0 ≤ 2r ≤ n.
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Next, we express the Euler characteristic as a combination of the stable valuations
ψλ2r. Note in particular that χ is not confined to any ∂λ,C-invariant subspace In,rλ,C. More
precisely:

Proposition 3.7.8.

χ =
∑

0≤2r≤n

(
λ

4π

)r (2r
r

)
r!

ω2n−2r
ψλ2r.

Proof. Since χ is stable, it can be expressed as χ =
∑

j ajψ
λ
2j . By [21, Theorem 3.11]

χ =
∑
k,p≥0

(
λ

π

)k+p ∂k+p

∂ξk∂ηp
1√

1− ξ
√
1− η

∣∣∣∣∣∣
(0,0)

τλ2k+2p,p.

The coefficient of τλ2r,r in this expansion is

[τλ2r,r](χ) =

(
λ

π

)r ∂r

∂ηr
1√
1− η

∣∣∣∣
0

=

(
λ

π

)r(2r
r

)
r!4−r.

By Proposition 2.1.8, we have

[τλ2r,r](σ
λ
k,r) =

ω2n−k
(k − 2r)!

[τλ2r,r](π
λ
k,r) =

ω2n−k
(k − 2r)!

δk,2r,

whence [
τλ2r,r

]∑
j

ajψ
λ
2j

 = ar[τ
λ
2r,r](σ

λ
2r,r)

= arω2n−2r.

Hence

ar =

(
λ

π

)r(2r
r

)
r!

4rω2n−2r

and the result follows.

3.7.2 Image of ∂λ,C and ∂λ,R

Next, we describe the image of the operators ∂λ,C and ∂λ,R, and we compute the preimage
of any element belonging to them.

Proposition 3.7.9. Given any φ =
∑

k,r ak,rσ
λ
k,r ∈ Vnλ,C, we have φ ∈ im ∂λ,C if and

only if
n−2r∑
l=r

a2l,r

(
n− 2r

l − r

)
λn−l−r = 0, for 0 ≤ 2r ≤ n. (3.41)
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Proof. Note that φ =
∑

r φr with φr =
∑

k ak,rσ
λ
k,r is the decomposition of φ corre-

sponding to

Vnλ,C =

⌊n/2⌋⊕
r=0

In,rλ,C,

where In,rλ,C are the invariant subspaces introduced in (3.27). By (3.24) and Proposition
3.3.7 we have φ ∈ im ∂λ,C if and only if for every r

0 = Z2n−4r,λ(φr) =
2n−4r∑
k=2r

ak,r

(
2n− 4r

k − 2r

)
Z2n−4r,λ(x

k−2ry2n−k−2r)

=
n−2r∑
l=r

a2l,r

(
2n− 4r

2l − 2r

)(
n− 2r

l − r

)
λn−l−r(2l − 2r)!(2n− 2l − 2r)!

= (2n− 4r)!

n−2r∑
l=r

a2l,r

(
n− 2r

l − r

)
λn−l−r

where we used (3.19).

Proposition 3.7.10. Given φ =
∑

k,r ak,rσ
λ
k,r ∈ Vnλ,C satisfying (3.41) we have

∂−1
λ,C({φ}) =

∑
k,r

ak,rJλ,C(P2n−4r,k−2r+1) + ⟨ψ2r : 0 ≤ 2r ≤ n⟩

where Pm,l is given by (3.20).

Proof. This follows at once from Proposition 3.3.9 after decomposing φ =
∑

r φr as in
the previous proof.

The following proposition will be useful later.

Proposition 3.7.11. In CPnλ for 0 ≤ 2r ≤ n and 2r ≤ k ≤ 2n− 2r

σλk,r =
∑
j≥0

λj
(k + 2j − 2r)!!(2n− k − 2j − 2r − 2)!!

(k − 2r)!!(2n− 4r − k + 2)!!
∂λ,Cσ

λ
k+2j+1,r+c2n−4r,k−2r+1σ

λ
2n−2r,r,

where c2n−4r,k−2r+1 are the constants introduced in (3.22).

Proof. By Proposition 3.3.10

p2n−4r,k−2r =
∑
j≥0

λj
(k + 2j − 2r)!!(2n− k − 2j − 2r − 2)!!

(k − 2r)!!(2n− 4r − k + 2)!!
Yλp2n−4r,k+2j−2r+1+c2n−4r,k−2r+1x

2n−4r.

Then, transfering the formula via

Jλ,C :
⊕

0≤2r≤n
V (2n−4r) −→ Vnλ,C
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given by (3.25), we have

σλk,r =
∑
j≥0

λj
(k + 2j − 2r)!!(2n− k − 2j − 2r − 2)!!

(k − 2r)!!(2n− 4r − k + 2)!!
∂λ,Cσ

λ
k+2j+1,r+c2n−4r,k−2r+1σ

λ
2n−2r,r.

Next, we characterize the image of ∂λ,R. To this end, let us recall one of the several
natural bases of Vmλ,R. According to [15, eq. (118)], we define

ϕk =

∫
Gλ,C

χ(· ∩ gSm−k
λ )dg (3.42)

where dg denotes a properly normalized Haar measure on Gλ,C, and Sm−k
λ represents an

(m− k)-dimensional totally geodesic submanifold in Smλ . The family ϕ0, . . . , ϕm forms a
basis of Vmλ,R and is further expressed as

ϕk =
∑
j≥0

(
λ

4

)j
τλk+2j , (3.43)

where, we recall τλ0 , . . . , τ
λ
m ∈ Vmλ,R are the valuations proportional to σλ0 , . . . , σ

λ
m

τλi =
i!ωi

πi(m− i)ωm−i
σλi , 0 ≤ i ≤ m− 1,

τλm =
m!ωm
πm

σλm

Proposition 3.7.12. The image of ∂λ,R in Vmλ,R is the hyperplane Hmλ generated by

σλ0 , . . . , σ
λ
m−1. Moreover

∂λ,Rϕ
k =

k!ωk
πkωm−k

σλk−1, 1 ≤ k ≤ m. (3.44)

In particular

∂−1
λ,R({σ

λ
k−1}) =

πkωm−k
k!ωk

ϕk + C · χ.

Proof. Since

σλi =
πi(m− i)ωm−i

i!ωi
τλi , 0 ≤ i ≤ m− 1,

σλm =
πm

m!ωm
τλm.

we have

ϕk =

⌊m−k−1
2 ⌋∑
j=0

(
λ

4π2

)j (k + 2j)!ωk+2j

πk(m− k − 2j)ωm−k−2j
σλk+2j +

((
λ

4

)m−k
2 m!ωm

πm
σλm

)
,

where the term between brackets appears only if m−k is even. Using Proposition 3.1.2,
this yields (3.44). The rest of the statement follows.
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Remark 3.7.13. Equation (3.44) also follows from Theorem 4 in [59].
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Chapter 4

Tube formulas for the Federer val-
uations

In this chapter, we determine the tube formulas for the Federer curvature measures and
valuations in CPnλ and HPnλ . In fact, we obtain such formulas for an interesting space
of curvature measures that includes Federer’s ones. Additionally, we identify bases in
which these formulas are particularly simple. As an application, we compute the push-
forward of invariant valuations of the sphere through the quaternionic Hopf fibration,
thus extending a result of Hofstätter-Wannerer.

4.1 Preliminary constructions

Definition 4.1.1. LetMn be a riemannian manifold. For 1 ≤ r ≤ n, let Grr(M) be the
bundle over M whose fiber over x ∈ M is the grassmannian of oriented linear r-planes
of TxM . A distribution along geodesics is a smooth map f : SM → Grr(M) such that
ξ ∈ f(ξ) for all ξ ∈ SM .

Given any ξ ∈ SM and any basis e0, . . . , er−1 of f(ξ), we can consider the parallel
transport e0(t), . . . , er−1(t) along the geodesic γ(t) = exp(tξ). We say that f is a parallel
distribution along geodesics if

ei(t) ∈ f(e0(t)), ∀t.

Example 4.1.2. The map f2 : SCPnλ → Gr2(CPnλ ) given by

f2 : ξ 7−→ ⟨e0(ξ), Je0(ξ)⟩.

is a distribution along geodesics.

Recall our convention e0(ξ) = ξ. More precisely, given ξ = (x, v) with x ∈ M and
v ∈ TxM , we take e0(ξ) = v.

Example 4.1.3. The global map f4 : SHPnλ → Gr4(HPnλ ) locally given by

f4 : ξ 7−→ ⟨e0(ξ), J1e0(ξ), J2e0(ξ), J3e0(ξ)⟩.
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is a distribution along geodesics.

Proposition 4.1.4. The maps

i) f2 : SCPnλ −→ Gr2(CPnλ ), f2 : ξ 7−→ ⟨e0(ξ), Je0(ξ)⟩,

ii) f4 : SHPnλ −→ Gr4(HPnλ ), f4 : ξ 7−→ ⟨e0(ξ), J1e0(ξ), J2e0(ξ), J3e0(ξ)⟩,

are parallel distributions along geodesics.

Proof. Both points are direct consequences of Proposition 1.4.7 and 1.4.13.

Definition 4.1.5. Let f : SM → Grr(M) be a distribution along geodesics. A positively
oriented orthonormal moving frame e0, . . . , en−1 on SM such that e0(ξ), . . . , er−1(ξ) is
a positive basis of f(ξ) will be called a frame adapted to f .

Let us define, for 0 ≤ i ≤ r − 1, the differential forms Ti(f) ∈ Ωr−1(SM) given by

Ti (f) (X1, . . . , Xr−1) :=
∑

σ∈Si,r−i−1

|σ|det(e0, XH
σ(1), . . . , X

H
σ(i), X

V
σ(i+1), . . . , X

V
σ(r−1), er, . . . , en−1),

where e0, . . . , en−1 is a frame adapted to f .

It is easy to see that the previous definition is independent of the chosen adapted
frame.

Example 4.1.6. Observe that for r = n and fn : SM → Grn(M) given by

fn : ξ 7−→ ⟨e0(ξ), e1(ξ), . . . , en−1(ξ)⟩,

we obtain the differential forms κi, i.e

Ti(fn) = κi, 0 ≤ i ≤ n− 1.

From now on, for simplicity in the computations, we will omit the ∧ symbol.

Proposition 4.1.7. Let f : SM → Grr(M) be a distribution along geodesics. Then, for
0 ≤ i ≤ r − 1 and with respect to an adapted frame

Ti (f) =
∑

σ∈Si,r−i−1

|σ|θσ(1) · · · θσ(i)ωσ(i+1) · · ·ωσ(r−1)

Proof. Since det = θ0 ∧ · · · ∧ θn−1 and

ωj,0(X) = ⟨ej , (π∗∇)Xe0⟩ = θj((π
∗∇)Xe0) = θj(X

V )

The same argument of Proposition 1.3.9 gives us the result.
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Example 4.1.8. Let f2 : SCPnλ → Gr2(CPnλ ) be given by

f2 : ξ 7−→ ⟨e0(ξ), Je0(ξ)⟩.

We denote
ψi = Ti(f2), φj = Tj(e0 ⊕ f⊥2 ),

for 0 ≤ i ≤ 1, 0 ≤ j ≤ 2n−2. Let us show a description of this family of differential forms.
Let e0, . . . , e2n−1 be a hermitian moving frame and note that {e0, e1} and {e2, . . . , e2n−1}
are positively oriented bases of f2(e0) and f2(e0)

⊥ respectively. Then

ψ0 = ω1,0 = γ,

ψ1 = θ1 = β,

φj =
∑
σ

|σ|θσ(2) · · · θσ(j+1)ωσ(j+2),0 · · ·ωσ(2n−1),0,

where σ is in the range of permutations of {2, . . . , 2n− 1} such that

σ(2) < · · · < σ(j + 1); σ(j + 2) < · · · < σ(2n− 1).

Example 4.1.9. Let f4 : SHPnλ → Gr4(HPnλ ) be given by

f4 : ξ 7−→ ⟨e0(ξ), J1e0(ξ), J2e0(ξ), J3e0(ξ)⟩,

We consider, as in CPnλ , the family of differential forms

ψi = Ti(f4), φj = Tj(e0 ⊕ f⊥4 ),

for 0 ≤ i ≤ 3, 0 ≤ j ≤ 4n − 4. Let e0, . . . , e2n−1 a quaternionic moving frame such
that {e0, e1, e2, e3} and {e4, . . . , e4n−1} are positively oriented bases of f4(e0) and f

⊥
4 (e0)

respectively. Then

ψ0 = ω1,0ω2,0ω3,0,

ψ1 = θ1ω2,0ω3,0 + ω1,0θ2ω3,0 + ω1,0ω2,0θ3,

ψ2 = θ1θ2ω3,0 + θ1ω2,0θ3 + ω1,0θ2θ3,

ψ3 = θ1θ2θ3,

φj =
∑
σ

|σ|θσ(4) · · · θσ(j+3)ωσ(j+4),0 · · ·ωσ(4n−1),0,

where σ is in the range of permutations of {4, . . . , 4n− 1} such that

σ(4) < · · · < σ(j + 3); σ(j + 4) < · · · < σ(4n− 1).

Proposition 4.1.10. Let 0 ≤ i ≤ n − 1, 1 ≤ r ≤ n and f : SM → Grr(M) be a
distribution along geodesics. Then

κi =
r−1∑
j=0

Tj(f) ∧ Ti−j(e0 ⊕ f⊥).
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Proof. Let us write

ψ
(r)
i := Ti(fr), φ

(r)
j := Tj(e0 ⊕ f⊥r ).

We choose a common orthonormal moving frame, denoted by e0, . . . , en−1, such that

fr(ξ) = ⟨e0(ξ), e1(ξ), . . . , er−1(ξ)⟩,
e0 ⊕ f⊥r (ξ) = ⟨e0(ξ), er(ξ), . . . , en−1(ξ)⟩,

and such that {e0(ξ), e1(ξ), . . . , er−1(ξ)} and {e0(ξ), er(ξ), . . . , en−1(ξ)} are positive basis.
Then

ψ
(r)
i =

∑
ϵ∈Si,r−i−1

|ϵ|θϵ(1) · · · θϵ(i)ωϵ(i+1),0 · · ·ωϵ(r−1),0, (4.1)

φ
(r)
i =

∑
σ

|σ|θσ(r) · · · θσ(i+r−1)ωσ(i+r),0 · · ·ωσ(n−1),0, (4.2)

where σ is in the range of the set of permutations of {r, . . . , n− 1} such that

σ(r) < · · · < σ(i+ r − 1), σ(i+ r) < · · · < σ(n− 1).

We give an inductive proof over r.

i) For r = 1, κi = Ti(e0 ⊕ f⊥r ).

ii) Assume κi =
∑r−2

j=0 ψ
(r−1)
j ∧ φ(r−1)

i−j , where

fr−1 : ξ 7−→ ⟨e0(ξ), e1(ξ), . . . , er−2(ξ)⟩,

ψ
(r−1)
i := Ti(fr−1), φ

(r−1)
j := Tj(e0 ⊕ f⊥r−1).

We have to show κi =
∑r−1

j=0 ψ
(r)
j ∧ φ

(r)
i−j . Let us decompose (4.1) as

ψ
(r)
i =

∑
ϵ(i)=r−1

|ϵ|θϵ(1) · · · θϵ(i)ωϵ(i+1),0 · · ·ωϵ(r−1),0 (I)

+
∑

ϵ(r−1)=r−1

|ϵ|θϵ(1) · · · θϵ(i)ωϵ(i+1),0 · · ·ωϵ(r−1),0 (II)

The first sum is

(I) = |(r − 1, i)|
∑

ϵ(r−1)=r−1

|ϵ|θϵ(1) · · · θϵ(i−1)θr−1ωϵ(i+1),0 · · ·ωϵ(r−2),0ωϵ(i),0

= |(r − 1, i)|(−1)i+1θr−1 ∧
∑

ϵ(r−1)=r−1

|ϵ|θϵ(1) · · · θϵ(i−1)ωϵ(i+1),0 · · ·ωϵ(r−2),0ωϵ(i),0

= |(r − 1, i)|(−1)i+1(−1)r−iθr−1 ∧
∑

ϵ(r−1)=r−1

|ϵ|θϵ(1) · · · θϵ(i−1)ωϵ(i),0ωϵ(i+1),0 · · ·ωϵ(r−2),0

= (−1)rθr−1 ∧ ψr−1
i−1
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Arguing similarly with (II) we get

ψ
(r)
i = (−1)rθr−1 ∧ ψ(r−1)

i−1 + (−1)rωr−1,0 ∧ ψ(r−1)
i ,

and an analogous argument with (4.2) gives

φ
(r−1)
i = θr−1 ∧ φ(r)

i−1 + ωr−1,0 ∧ φ(r)
i .

Here and in the following ψ
(k)
j , φ

(k)
j are taken to be 0 if j = −1 or j = k. Thus

r−1∑
j=0

ψ
(r)
j ∧ φ

(r)
i−j =

r−1∑
j=0

(−1)rθr−1 ∧ ψ(r−1)
j−1 ∧ φ

(r)
i−j + (−1)rωr−1,0 ∧ ψ(r−1)

j ∧ φ(r)
i−j

=

r−1∑
j=0

ψ
(r−1)
j−1 ∧ θr−1 ∧ φ(r)

i−j+

r−1∑
j=0

ψ
(r−1)
j ∧ ωr−1,0 ∧ φ(r)

i−j

=
r−1∑
j=0

ψ
(r−1)
j−1 ∧ (φ

(r−1)
i−j+1 − ωr−1,0 ∧ φ(r)

i−j+1)

+

r−1∑
j=0

ψ
(r−1)
j ∧ (φ

(r−1)
i−j − θr−1 ∧ φ(r)

i−j−1)

=
r−2∑
j=0

ψ
(r−1)
j ∧ φ(r−1)

i−j +
r−1∑
j=0

ψ
(r−1)
j ∧ φ(r−1)

i−j

−
r−1∑
j=0

ψ
(r−1)
j−1 ∧ ωr−1,0 ∧ φ(r)

i−j+1 + ψ
(r−1)
j ∧ θr−1 ∧ φ(r)

i−j−1

(∗)
=

r−2∑
j=0

ψ
(r−1)
j ∧ φ(r−1)

i−j
(∗∗)
= κi,

where in (∗) we have used that

r−1∑
j=0

ψ
(r−1)
j−1 ∧ ωr−1,0 ∧ φ(r)

i−j+1 +
r−1∑
j=0

ψ
(r−1)
j ∧ θr−1 ∧ φ(r)

i−j−1

=
r−2∑
j=0

ψ
(r−1)
j ∧ ωr−1,0 ∧ φ(r)

i−j +
r−2∑
j=0

ψ
(r−1)
j ∧ θr−1 ∧ φ(r)

i−j−1

=

r−2∑
j=0

ψ
(r−1)
j ∧

(
ωr−1,0 ∧ φ(r)

i−j + θr−1 ∧ φ(r)
i−j−1

)

=

r−2∑
j=0

ψ
(r−1)
j ∧ φ(r−1)

i−j ,

and (∗∗) is the induction hypothesis.
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Corollary 4.1.11. i) In CPnλ

κi = ψ0 ∧ φi + ψ1 ∧ φi−1

= γ ∧ φi + β ∧ φi−1, 0 ≤ i ≤ 2n− 1.

ii) In HPnλ

κi = ψ0 ∧ φi + ψ1 ∧ φi−1 + ψ2 ∧ φi−2 + ψ3 ∧ φi−3, 0 ≤ i ≤ 4n− 1.

The following fact will be key for determining the Lie derivative LTκi in complex
and quaternionic space forms.

Proposition 4.1.12. Suppose f : SM → Grr(M) is a parallel distribution along geodesics
and for certain a ∈ R it is satisfied

R(X, e0)e0 = a · iXg, ∀X ∈ f(e0).

Then, for 0 ≤ i ≤ r − 1

LTTi(f) = (r − i)Ti−1(f) + a(i+ 1)Ti+1(f).

Proof. Given ξ ∈ SM let e0, . . . , en be a parallel moving frame relative to ξ such that
e0(ξ), . . . , er−1(ξ) is a positive basis of f(ξ). Since f is parallel, the same happens for
all t at ξ(t) = (γ(t), γ′(t)) where γ(t) = exp(tξ). Consequently, by Corollary 1.1.6, the
following holds:

LT θi = ωi,0, LTωj,0 = iTΩj,0 = aθj

for all 0 ≤ i ≤ r − 1 and 1 ≤ j ≤ r − 1. By Proposition 4.1.7

Ti(f) =
∑

σ∈Si,r−i−1

|σ|θσ(1) · · · θσ(i)ωσ(i+1),0 · · ·ωσ(r−1),0

=
1

i!(r − i− 1)!

∑
σ∈Sr−1

|σ|θσ(1) · · · θσ(i)ωσ(i+1),0 · · ·ωσ(r−1),0.

Since LT is a derivation, we have

i!(r − i− 1)!LTTi(f) =
i∑

j=1

∑
σ∈Sr−1

|σ|θσ(1) · · · LT θσ(j) · · · θσ(i)ωσ(i+1),0 · · ·ωσ(r−1),0

+

r−1∑
j=i+1

∑
σ∈Sr−1

|σ|θσ(1) · · · θσ(i)ωσ(i+1),0 · · · LTωσ(j),0 · · ·ωσ(r−1),0

=

i∑
j=1

∑
σ∈Sr−1

|σ|θσ(1) · · ·ωσ(j),0 · · · θσ(i)ωσ(i+1),0 · · ·ωσ(r−1),0

+a

r−1∑
j=i+1

∑
σ∈Sr−1

|σ|θσ(1) · · · θσ(i)ωσ(i+1),0 · · · θσ(j) · · ·ωσ(r−1),0
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Consider τi,j = (j, i). Then

θσ(1) · · ·ωσ(j),0 · · · θσ(i)ωσ(i+1),0 · · ·ωσ(r−1),0 =

θσ◦τi,j(1) · · · θσ◦τi,j(i−1)ωσ◦τi,j(i),0 · · ·ωσ◦τi,j(r−1),0

In the same way,

θσ(r) · · · θσ(r+i−1)ωσ(r+i),0 · · · θσ(j) · · ·ωσ(r−1),0 =

θσ◦τi,j(1) · · · θσ◦τi,j(i+1)ωσ◦τi,j(i+2) · · ·ωσ◦τi,j(r−1),

Therefore, the first sum is given by

i∑
j=1

∑
σ∈Sr−1

|σ ◦ τi,j |θσ◦τi,j(1) · · · θσ◦τi,j(i−1)ωσ◦τi,j(i) · · ·ωσ◦τi,j(r−1) =

=
i∑

j=1

∑
π∈Sr−1

|π|θπ(1) · · · θπ(i−1)ωπ(i) · · ·ωπ(r−1) =

=i
∑

π∈Sr−1

|π|θπ(1) · · · θπ(i−1)ωπ(i) · · ·ωπ(r−1) = i!(r − i)!Ti−1(f).

and similarly

r−1∑
j=i+1

∑
σ∈Sr−1

|σ|θσ(1) · · · θσ(i)ωσ(i+1),0 · · · θσ(j) · · ·ωσ(r−1),0 = (r − i− 1)!(i+ 1)!Ti+1(f).

Thus the result follows.

Remark 4.1.13. The previous proposition generalizes Lemma 3.1.1, considering that, as
in Example 4.1.6,

fn : SSnλ → Grn(Snλ), ξ 7−→ ⟨e0(ξ), . . . , en−1(ξ)⟩

satisfies
Ti(fn) = κi, 0 ≤ i ≤ n− 1.

According to Proposition 4.1.12, for r = n,

LTκi = (n− i)κi−1 − λ(i+ 1)κi+1,

which coincides with Lemma 3.1.1.

Proposition 4.1.14. In CPnλ

LTψ0 = −4λψ1, LTψ1 = ψ0,

and for 0 ≤ i ≤ 2n− 2,

LTφi = (2n− i− 1)φi−1 − λ(i+ 1)φi+1.
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Proof. By definition

ψi = Ti(f2), φj = Tj(e0 ⊕ f⊥2 )

where f2 : SCPnλ → Gr2(CPnλ ) and e0 ⊕ f⊥2 : SCPnλ → Gr2n−2(CPnλ ). By Propositions
1.4.8 and 4.1.4, Proposition 4.1.12 applies and yields the result.

Corollary 4.1.15. In CPnλ , for 0 ≤ i ≤ 2n− 1

LTκi = (2n− i)κi−1 − λ(i+ 1)κi+1 − 3λβ ∧ φi.

Proof.

κi =LTγ ∧ φi + γ ∧ LTφi + LTβ ∧ φi−1 + β ∧ LTφi−1

=− 4λβ ∧ φi + (2n− i− 1)γ ∧ φi−1 − λ(i+ 1)γ ∧ φi+1

+ γ ∧ φi−1 + (2n− i)β ∧ φi−2 − λiβ ∧ φi
=(2n− i)κi−1 − λ(i+ 1)κi+1 − 3λβ ∧ ∧φi.

Proposition 4.1.16. In HPnλ

LTψi =(4− i)ψi−1 − 4λ(i+ 1)ψi+1, 0 ≤ i ≤ 3,

LTφi =(4n− i− 3)φi−1 − λ(i+ 1)φi+1, 0 ≤ i ≤ 4n− 4.

Proof. By definition

ψi = Ti(f4), φj = Tj(e0 ⊕ f⊥4 )

where f4 : SHPnλ → Gr4(HPnλ ) and e0 ⊕ f⊥4 : SHPnλ → Gr4n−4(CPnλ ). By Propositions
1.4.14 and 4.1.4, Proposition 4.1.12 applies and yields the result.

Corollary 4.1.17. In HPnλ , for 0 ≤ i ≤ 4n− 1

LTκi =(4n− i)κi−1 − λ(i+ 1)κi+1

− 3λψ1 ∧ φi − 6λψ2 ∧ φi−1 − 9λψ3 ∧ φi−2

Proof. By Corollary 4.1.11

κi = ψ0 ∧ φi + ψ1 ∧ φi−1 + ψ2 ∧ φi−2 + ψ3 ∧ φi−3, 0 ≤ i ≤ 4n− 1.
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Therefore

LTκi =LTψ0 ∧ φi + ψ0 ∧ LTφi
+ LTψ1 ∧ φi−1 + ψ1 ∧ LTφi−1

+ LTψ2 ∧ φi−2 + ψ2 ∧ LTφi−2

+ LTψ3 ∧ φi−3 + ψ3 ∧ LTφi−3

=− 4λψ1 ∧ φi + (4n− i− 2)ψ0 ∧ φi−1 − λ(i+ 1)ψ0 ∧ φi+1

+ 3ψ0 ∧ φi−1 − 8λψ2 ∧ φi−1 + (4n− i− 1)ψ1 ∧ φi−2 − λiψ1 ∧ φi
+ 2ψ1 ∧ φi−2 − 12λψ3 ∧ φi−2 + (4n− i)ψ2 ∧ φi−3 − λ(i− 1)ψ2 ∧ φi−1

+ ψ2 ∧ φi−3 + (4n− i+ 1)ψ3 ∧ φi−4 − λ(i− 2)ψ3 ∧ φi−2

=(4n− i− 3)ψ0 ∧ φi−1 + 3ψ0 ∧ φi−1

+ (4n− i− 2)ψ1 ∧ φi−2 + 2ψ1 ∧ φi−2

+ (4n− i− 1)ψ2 ∧ φi−3 + ψ2 ∧ φi−3

+ (4n− i)ψ3 ∧ φi−4

− λ(i+ 1)ψ0 ∧ φi+1

− 4λψ1 ∧ φi − λiψ1 ∧ φi
− 8λψ2 ∧ φi−1 − λ(i− 1)ψ2 ∧ φi−1

− 12λψ3 ∧ φi−2 − λ(i− 2)ψ3 ∧ φi−2

= (4n− i)κi−1 − λ(i+ 1)κi+1

− 3λψ1 ∧ φi − 6λψ2 ∧ φi−1 − 9λψ3 ∧ φi−2.

4.2 Globalization of ψi ∧ φj in CP n
λ

After determining the Lie derivative of each of φi ∧ φj , we establish their globalizations
in CPnλ in terms of the basis σλk,r of Vnλ,C. Let us recall the Definition 1.3.7 adapted to
M = CPnλ

Jκi, 0K = (2n− i)ω2n−iνi = (2n− i)ω2n−i glob(∆i), 0 ≤ i ≤ 2n− 1.

Lemma 4.2.1 ([21, Lemma 3.9]). For max{0, k − n} ≤ q ≤ k/2 < n we consider

δk,q =
1

2n− k
(2(n− k + q)γk,q + (k − 2q)βk,q) .

Then, for ∆i,q := [δi,q, 0]

∆i =

⌊i/2⌋∑
q=0

∆i,q

and

Jδk,q, 0K = µλk,q − λ
q + 1

π
µλk+2,q+1, µλk,q =

∑
i≥0

(
λ

π

)i (q + i)!

q!
Jδk+2i,q+i, 0K.
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Proposition 4.2.2. In CPnλ , for 0 ≤ i ≤ 2n− 1

Jβ ∧ φi−1, 0Kλ =
i(2n− i)
2n− 1

σλi,0 − 2σλi,1,

Jγ ∧ φi, 0Kλ =
(2n− i)(2n− i− 1)

2n− 1
σλi,0 − λ

(i+ 1)(i+ 2)

(2n− 1)
σλi+2,0 + 2σλi,1 − 2λσλi+2,1,

Jκi, 0K = (2n− i)σλi,0 − λ
(i+ 1)(i+ 2)

(2n− 1)
σλi+2,0 − 2λσλi+2,1.

Proof. By Lemma 4.2.1

Jκi, 0K = (2n− i)ω2n−i

⌊i/2⌋∑
q=0

Jδi,q, 0K

= (2n− i)ω2n−i

⌊i/2⌋∑
q=0

(
µλi,q − λ

q + 1

π
µλi+2,q+1

)
= (2n− i)ω2n−i

(
τi,0 −

λ

π
τi+1,1

)
.

By the Lefschetz decomposition given in Proposition 2.1.10

Jκi, 0K = (2n− i)ω2n−i

(
τλi,0 −

λ

π
τλi+2,1

)
= (2n− i)ω2n−i

(
1

ω2n−i
σλi,0 −

λ

π

(
(i+ 1)(i+ 2)

2(2n− 1)ω2n−i−2
σλi+2,0 +

1

ω2n−i−2
σi+2,1

))
= (2n− i)σλi,0 − λ

(i+ 1)(i+ 2)

(2n− 1)
σλi+2,0 − 2λσλi+2,1.

From Corollary 4.1.15

β ∧ φi =
1

3λ
((2n− i)κi−1 − λ(i+ 1)κi+1 − LTκi) .

Then, globalizing

Jβ ∧ φi, 0Kλ =
1

3λ
((2n− i)Jκi−1, 0Kλ − λ(i+ 1)Jκi+1, 0Kλ − JLTκi, 0Kλ) . (4.3)

On the other hand, by Proposition 2.2.5

JLTκi, 0Kλ = ∂λ,CJκi, 0K =∂λ,C
(
(2n− i)σλi,0 − λ

(i+ 1)(i+ 2)

(2n− 1)
σλi+2,0 − 2λσλi+2,1

)
.

Using

∂λ,Cσ
λ
k,r = (2n− k − 2r + 1)σλk−1,r − λ(k − 2r + 1)σλk+1,r.
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and equation (4.3) we get

Jβ ∧ φi−1, 0Kλ =
i(2n− i)
2n− 1

σλi,0 − 2σλi,1.

From Corollary 4.1.11

Jγ ∧ φi, 0K = Jκi, 0K− Jβ ∧ φi−1, 0K.

The conclusion follows.

Corollary 4.2.3. In CPnλ , for 0 ≤ i ≤ 2n− 1

νi =
1

(2n− i)ω2n−i

{
(2n− i)σλi,0 − λ

(i+ 1)(i+ 2)

(2n− 1)
σλi+2,0 − 2λσλi+2,1

}
.

4.3 Tube formulas for the Federer valuations in complex
and quaternionic space forms

Although we know Tt and LTt in complex space forms, it is interesting to establish
particular formulas for ∆i and νi also in CPnλ . Moreover, the same approach will apply
also in HPnλ .

4.3.1 Complex space forms

Let us recall that in CPnλ we have a particular construction of families of differential
forms. We stated in Proposition 4.1.4 that f2 : SCPnλ → Gr2(CPnλ )

f2 : ξ 7−→ ⟨e0(ξ), Je0(ξ)⟩,

is a parallel distribution along geodesics. We consider the differential forms introduced
in the Example 4.1.8

ψi = Ti(f2), φj = Tj(e0 ⊕ f⊥2 ),

for 0 ≤ i ≤ 1 and 0 ≤ j ≤ 2n− 2. We denote by WC
1 and WC

2n−2 the vector subspaces

WC
1 := ⟨ψ0, ψ1⟩ = ⟨γ, β⟩, WC

2n−2 := ⟨φi : 0 ≤ i ≤ 2n− 2⟩ (4.4)

and WC :=WC
1 ⊗WC

2n−2 its tensor product. Recall also that V (m) denotes the space of
m-homogeneous polynomials on x, y, on which we considered the operators

X = x
∂

∂y
, Y = y

∂

∂x
, Yλ = Y − λX.

We can rephrase Proposition 4.1.14 as follows.
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Theorem 4.3.1. The linear isomorphisms

Fψ : (V
(1), Y4λ) −→

(
WC

1 ,LT
)
, x 7−→ ψ1, y 7−→ ψ0

Fφ : (V
(2n−2), Yλ) −→

(
WC

2n−2,LT
)
, p2n−2,i 7−→ φi,

satisfy

LT ◦ Fψ = Fψ ◦ Y4λ, LT ◦ Fφ = Fφ ◦ Yλ.

Proof. It suffices to compare Proposition 4.1.14 with

Y4λ(x) = y,

Y4λ(y) = −4λx,
Yλ(p2n−2,i) = (2n− i+ 1)p2n−2,i−1 − λ(i+ 1)p2n−2,i+1.

Remark 4.3.2. The map Fψ was previously introduced in Theorem 3.6.1 under the no-
tation Fβ,γ .

Proposition 4.3.3.

ϕ∗tγ = (cos2λ(t)− λ sin2λ(t))γ − λ sinλ(t) cosλ(t)β
ϕ∗tβ = sinλ(t) cosλ(t)γ + (cos2λ(t)− λ sin2λ(t))β

ϕ∗tφi =
2n−2∑
j=0

ϕλ2n−2,i,j(t)φj .

Proof. Since Fψ intertwines LT and Y4λ, according to Theorem 3.3.3, we obtain the
following expressions

ϕ∗tγ = exp(tLT )γ = cos4λ(t)γ − λ sin4λ(t)β,
ϕ∗tβ = exp(tLT )β = cos4λ(t)β + sin4λ(t)γ.

The identities
sin4λ(t) = sinλ(t) cosλ(t),

cos4λ(t) = cos2λ(t)− λ sin2λ(t),

allow us to derive the first two formulas. The third formula can be established by using
Theorem 3.3.3.

Corollary 4.3.4.

ϕ∗t (γ ∧ φj) =
(
(cos2λ(t)− λ sin2λ(t))γ − λ sinλ(t) cosλ(t)β

) 2n−2∑
k=0

ϕλ2n−2,j,k(t)φk,

ϕ∗t (β ∧ φj) = (sinλ(t) cosλ(t)γ + (cos2λ(t)− λ sin2λ(t))β)
2n−2∑
k=0

ϕλ2n−2,j,k(t)φk.
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Globalizing we get the following results.

Theorem 4.3.5. In CPnλ

LTt[β ∧ φi, 0] = (cos2λ(t)− λ sin2λ(t))
2n−2∑
j=0

ϕλ2n−2,i,j(t)[β ∧ φj , 0] + sinλ(t) cosλ(t)
2n−2∑
j=0

ϕλ2n−2,i,j(t)[γ ∧ φj , 0],

LTt[γ ∧ φi, 0] = −λ sinλ(t) cosλ(t)
2n−2∑
j=0

ϕλ2n−2,i,j(t)[β ∧ φj , 0] + (cos2λ(t)− λ sin2λ(t))
2n−2∑
j=0

ϕλ2n−2,i,j(t)[γ ∧ φj , 0],

TtJβ ∧ φi, 0K = (cos2λ(t)− λ sin2λ(t))
2n−2∑
j=0

ϕλ2n−2,i,j(t)Jβ ∧ φj , 0K + sinλ(t) cosλ(t)
2n−2∑
j=0

ϕλ2n−2,i,j(t)Jγ ∧ φj , 0K

TtJγ ∧ φi, 0K = −λ sinλ(t) cosλ(t)
2n−2∑
j=0

ϕλ2n−2,i,j(t)Jβ ∧ φj , 0K + (cos2λ(t)− λ sin2λ(t))
2n−2∑
j=0

ϕλ2n−2,i,j(t)Jγ ∧ φj , 0K

Corollary 4.3.6. The tube formulas for the Federer valuations and curvature measures
in CPnλ are

Tt(νi) =
cos2λ(t)

(2n− i)ω2n−i

∑
k=0,1

2n−2∑
j=0

(
(1− λ tan2λ(t))ϕ2n−2,i−k,j(t) + (−λ)k tanλ(t)ϕ2n−2,i+k−1,j(t)

)
Jψk ∧ φj , 0K,

LTt(∆i) =
cos2λ(t)

(2n− i)ω2n−i

∑
k=0,1

2n−2∑
j=0

(
(1− λ tan2λ(t))ϕ2n−2,i−k,j(t) + (−λ)k tanλ(t)ϕ2n−2,i+k−1,j(t)

)
[ψk ∧ φj , 0],

for 0 ≤ i ≤ 2n− 1.

4.3.2 Quaternionic space forms

The procedure used in the previous subsection can be applied in HPnλ . We stated in
Proposition 4.1.4 that f4 : SHPnλ → Gr4(HPnλ ) given by

f4 : ξ 7−→ ⟨e0(ξ), J1e0(ξ), J2e0(ξ), J3e0(ξ)⟩

is a parallel distribution along geodesics. Thus, we have a family of differential forms

ψi = Ti(f4), φj = Tj(e0 ⊕ f⊥4 ),

for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 4n − 4, as in the Example 4.1.9. We consider the vector
subspaces of Ω•(SHPnλ )

WH
3 := ⟨ψ0, ψ1, ψ2, ψ3⟩, WH

4n−4 := ⟨φi : 0 ≤ i ≤ 4n− 4⟩, (4.5)

and WH := WH
3 ⊗ WH

4n−4 its tensor product. Proposition 4.1.16 is equivalent to the
following.
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Theorem 4.3.7. The linear isomorphisms

Fψ : (V
(3), Y4λ) −→

(
WH

3 ,LT
)

p3,i 7−→ ψi,

Fφ : (V
(4n−4), Yλ) −→

(
WH

4n−4,LT
)
, p4n−4,i 7−→ φi,

satisfy

LT ◦ Fψ = Fψ ◦ Y4λ, LT ◦ Fφ = Fφ ◦ Yλ.

Proof. It suffices to compare Proposition 4.1.16 with

Y4λ(p3,i) = (4− i)p3,i−1 − 4λ(i+ 1)p3,i+1,

Yλ(p4n−4,i) = (4n− i− 3)p4n−4,i−1 − λ(i+ 1)p4n−4,i+1.

Proposition 4.3.8. For 0 ≤ i ≤ 3 and 0 ≤ j ≤ 4n− 4,

ϕ∗tψi =

3∑
k=0

ϕ4λ3,i,k(t)ψk,

ϕ∗tφj =
4n−4∑
l=0

ϕλ4n−4,j,l(t)φl.

Proof. This is a direct application of Theorem 3.3.3.

Corollary 4.3.9. In HPnλ

ϕ∗t (ψi ∧ φj) =
3∑

k=0

4n−4∑
l=0

ϕ4λ3,i,k(t)ϕ
λ
4n−4,j,l(t)ψk ∧ φl.

Proof. By Corollary 4.1.11

κi = ψ0 ∧ φi + ψ1 ∧ φi−1 + ψ2 ∧ φi−2 + ψ3 ∧ φi−3, 0 ≤ i ≤ 4n− 1.

Then, applying Corollary 4.3.9, the result follows.

Globalizing we get

Theorem 4.3.10. In HPnλ

LTt[ψi ∧ φj , 0] =
3∑

k=0

4n−4∑
l=0

ϕ4λ3,i,k(t)ϕ
λ
4n−4,j,l(t)[ψk ∧ φl, 0]

TtJψi ∧ φj , 0K =
3∑

k=0

4n−4∑
l=0

ϕ4λ3,i,k(t)ϕ
λ
4n−4,j,l(t)Jψk ∧ φl, 0K
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Corollary 4.3.11. The tube formulas for the Federer valuations and curvature measures
in HPnλ are

Tt(νi) =
1

(4n− i)ω4n−i

3∑
j,k=0

4n−4∑
l=0

ϕ4λ3,j,k(t)ϕ
λ
4n−4,i−j,l(t)Jψk ∧ φl, 0K,

LTt(∆i) =
1

(4n− i)ω4n−i

3∑
j,k=0

4n−4∑
l=0

ϕ4λ3,j,k(t)ϕ
λ
4n−4,i−j,l(t)[ψk ∧ φl, 0],

for 0 ≤ i ≤ 4n− 1.

4.4 Area tube formula in complex and quaternionic space
forms

The rest of this chapter is essentially devoted to the determination of bases where the
previous tube formulas have a simpler form. We begin by considering the tube formulas
for the area using two alterniavtive approaches.

Proposition 4.4.1.

ϕ∗td areaCPn
λ
=

2n∑
i=0

sin2n−iλ (t) cosiλ(t)ρi,0,

where
ρi,0 := κi−1 − λβ ∧ φi, 0 ≤ i ≤ 2n.

As usual, it is understood above that κi−1 = 0 for i = 0, and φ2n−1 = φ2n = 0.

Proof. Since
κ2n−1 = β ∧ φ2n−2.

and ϕm,m,j(t) = sinm−j
λ (t) cosjλ(t), by Corollary 4.3.4 we have

ϕ∗t (β ∧ φ2n−2) =
2n−2∑
j=0

sin2n−j−2
λ cosj+2

λ β ∧ φj

+

2n−2∑
j=0

sin2n−j−1
λ cosj+1

λ γ ∧ φj

− λ
2n−2∑
j=0

sin2n−jλ cosjλ β ∧ φj

=

2n−2∑
j=0

sin2n−1−j
λ (t) cosj+1

λ (t)(β ∧ φj−1 + γ ∧ φj)

− λ
2n−2∑
j=0

sin2n−jλ (t) cosjλ(t)β ∧ φj .
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Since κi = γ ∧ φi + β ∧ φi−1, the result follows.

Corollary 4.4.2.

LTt areaCPn
λ
=

2n∑
i=0

sin2n−iλ (t) cosiλ(t)[ρi,0, 0],

LTt volCPn
λ
=

2n∑
i=0

(∫ t

0
sin2n−iλ (s) cosiλ(s) ds

)
[ρi,0, 0] + [0, d volCPn

λ
].

Proposition 4.4.3.

ϕ∗td areaHPn
λ
=

3∑
i=0

4n−4∑
j=0

i∑
k=0

(−λ)k
(
i

k

)
sin4n−i−j+2k−1

λ (t) cosi+j−2k+3
λ (t)ψi ∧ φj

=

4n+2∑
l=0

sin4n−l+2
λ (t) coslλ(t)ζl,0,

where

ζl,0 :=
∑

0≤k≤i≤3

(−λ)k
(
i

k

)
ψi ∧ φl−i+2k−3

=ψ0 ∧ φl−3 + ψ1 ∧ φl−4 + ψ2 ∧ φl−5 + ψ3 ∧ φl−6

− λψ1 ∧ φl−2 − 2λψ2 ∧ φl−3 − 3λψ3 ∧ φl−4

+ λ2ψ2 ∧ φl−1 + 3λ2ψ3 ∧ φl−2

− λ3ψ3 ∧ φl.

Proof. Since d areaHPn
λ
= κ4n−1 = ψ3 ∧ φ4n−4 and ϕλm,m,j(t) = sinm−j

λ (t) cosjλ(t) we only
have to use Corollary 4.3.9

ϕ∗t (ψ3 ∧ φ4n−4) =

3∑
i=0

4n−4∑
j=0

ϕ4λ3,3,i(t)ϕ
λ
4n−4,4n−4,j(t)ψi ∧ φj

=
3∑
i=0

4n−4∑
j=0

sin3−i4λ (t) cosi4λ(t) sin
4n−j−4
λ (t) cosjλ(t)ψi ∧ φj

Using the identities
sin4λ(t) = sinλ(t) cosλ(t),

cos4λ(t) = cos2λ(t)− λ sin2λ(t),
we get

sin3−i4λ cosi4λ(t) = sin3−iλ (t) cos3−iλ (t)(cos2λ(t)− λ sin2λ(t))i

=
i∑

k=0

(−λ)k
(
i

k

)
sin3−i+2k

λ (t) cos3+i−2k
λ (t).
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Then,

ϕ∗t (ψ3 ∧ φ4n−4) =
3∑
i=0

4n−4∑
j=0

sin3−i4λ (t) cosi4λ(t) sin
4n−j−4
λ (t) cosjλ(t)ψi ∧ φj

=
3∑
i=0

4n−4∑
j=0

i∑
k=0

(−λ)k
(
i

k

)
sin4n−i−j+2k−1

λ (t) cosi+j−2k+3
λ (t)ψi ∧ φj .

Setting l = i+ j − 2k + 3 yields the result.

Corollary 4.4.4.

LTt areaHPn
λ
=

4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)[ζi,0, 0],

LTt volHPn
λ
=

4n+2∑
i=0

(∫ t

0
sin4n−i+2

λ (s) cosiλ(s)

)
[ζi,0, 0] + [0, d volHPn

λ
].

Next, we will provide an alternative computation of the local tube area formulas in
both CPnλ and HPnλ , employing the tools we have developed so far in a different way.
The expression we obtain coincides with the formulas derived by Gray and Vanhecke
through different methods in [38].

Proposition 4.4.5 ([38]). With respect to any hermitian moving frame of CPnλ

ϕ∗td areaCPn
λ
= cos2nλ (t)(θ1 + tanλ(t)ω1,0 − λ tan2λ(t)θ1)(θ2 − tanλ(t)ω2,0) · · · (θ2n−1 − tanλ(t)ω2n−1,0).

Proof. The expression on the right-hand side is independent of the chosen hermitian
moving frame e0, . . . , e2n−1. We can therefore assume that e0, . . . , e2n−1 is a parallel
hermitian moving frame. Then, by Corollary 1.4.9

LT θj = ωj,0, LTω1,0 = −4λθ1, LTωi,0 = −λθi,

where 1 ≤ j < i ≤ 2n− 1. Hence

F1 : ⟨θ1, ω1,0⟩,LT ) −→ (V (1), Y4λ), θ1 7−→ x, ω1,0 7−→ y,

Fi : (⟨θi, ωi,0 : 2 ≤ i ≤ 2n− 1⟩,LT ) −→ (V (1), Yλ), θi 7−→ x, ωi,0 7−→ y,

are linear isomorphisms intertwining the indicated derivations; i.e. satisfying

Y4λ ◦ F1 = F1 ◦ LT ,
Yλ ◦ Fi = Fi ◦ LT , 2 ≤ i ≤ 2n− 1.

By Proposition 3.3.1

ϕ∗t θ1 = exp(tLT )θ1 = cos4λ(t)θ1 + sin4λ(t)ω1,0,

ϕ∗t θi = exp(tLT )θi = cosλ(t)θi + sinλ(t)ωi,0, i > 1.

101



Chapter 4. Tube formulas for the Federer valuations

Since

sin4λ(t) = sinλ(t) cosλ(t),

cos4λ(t) = cos2λ(t)− λ sin2λ(t),

we have

ϕ∗t θ1 = cos2λ(t)(θ1 + tanλ(t)ω1,0 − λ tan2λ(t)θ1).

For 2 ≤ i ≤ 2n− 1

ϕ∗t θi = cosλ(t)(θi − tanλ(t)ωi,0).

Therefore

ϕ∗td areaCPn
λ
= ϕ∗t (θ1 ∧ · · · ∧ θ2n−1)

= cos2nλ (t)(θ1 + tanλ(t)ω1,0 − λ tan2λ(t)θ1)(θ2 − tanλ(t)ω2,0) · · · (θ2n−1 − tanλ(t)ω2n−1,0).

Proposition 4.4.6 ([38]). With respect to a partially quaternionic moving frame of
HPnλ ,

ϕ∗td areaHPn
λ
= cos4n+2

λ (t)(θ1 + tanλ(t)ω1,0 − λ tan2λ(t)θ1)(θ2 + tanλ(t)ω2,0 − λ tan2λ(t)θ2)
(θ3 + tanλ(t)ω3,0 − λ tan2λ(t)θ3)(θ4 + tanλ(t)ω4,0) · · · (θ4n−1 + tanλ(t)ω4n−1,0)

Proof. Let e0, . . . , e4n−1 be a parallel and partially quaternionic moving frame. By Corol-
lary 1.4.15 we have

LT θk = ωk,0, LTωi,0 = −4λθi, LTωj,0 = −λθj ,

for 0 ≤ k ≤ 4n − 1, 1 ≤ i ≤ 3 and 4 ≤ j ≤ 4n − 1. Therefore, the following linear
isomorphisms intertwine the indicated derivations

(⟨θi, ωi,0 : 1 ≤ i ≤ 3⟩,LT ) −→ (V (1), Y4λ), θi 7−→ x, ωi,0 7−→ y,

(⟨θj , ωj,0 : 4 ≤ j ≤ 4n− 1⟩,LT ) −→ (V (1), Yλ), θj 7−→ x, ωj,0 7−→ y.

Then, arguing as in Proposition 4.4.5, the result follows.

Let us check that the formulas obtained in Proposition 4.4.1 and Proposition 4.4.5
are equivalent. To this end, we just need to use the following expansion

b∧
i=a

(xi + yi) =

b∑
i=a−1

∑
σ

|σ|xσ(a) · · ·xσ(i)yσ(i+1) · · · yσ(b). (4.6)

where σ is in range of permutation of the set {a, . . . , b} such that

σ(a) < · · · < σ(i); σ(i+ 1) < · · · < σ(b).
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In this way,

2n−1∧
i=2

(θi + tanλ ωi,0) =
2n−1∑
i=1

tan2n−i−1
λ

∑
σ

|σ|θσ(2) · · · θσ(i)ωσ(i+1) · · ·ωσ(2n−1)

=
2n−1∑
i=1

tan2n−i−1
λ φi−1,

Therefore the area tube formula given in Proposition 4.4.5 becomes

ϕ∗td areaCPn
λ
= cos2nλ (t)(β + tanλ(t)γ − λ tan2λ(t)β)

2n−2∑
i=0

tan2n−i−2
λ (t)φi

= cos2nλ (t)

2n−2∑
i=0

tan2n−i−2
λ (t)β ∧ φi

+ cos2nλ (t)

2n−2∑
i=0

tan2n−i−1
λ (t)γ ∧ φi

− λ cos2nλ (t)
2n−2∑
i=0

tan2n−iλ (t)β ∧ φi

= cos2nλ (t)
2n−1∑
i=0

(κi−1 − λβ ∧ φi) tan2n−iλ (t)

=

2n−1∑
i=0

(κi−1 − λβ ∧ φi) sin2n−iλ (t) cosiλ(t),

which agrees with Proposition 4.4.1.

Likewise, the formulas in Proposition 4.4.3 and Proposition 4.4.6 are equivalent, since

4n−1∧
i=4

(θi + tanλ ωi,0) =

4n−1∑
i=3

tan4n−i−1
λ

∑
σ

|σ|θσ(4) · · · θσ(i)ωσ(i+1),0 · · ·ωσ(4n−1),0

=

4n−1∑
i=3

tan4n−i−1
λ φi−3 =

4n−4∑
j=0

tan4n−j−4
λ φj .
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In the same manner

3∧
i=1

((1− λ tan2λ(t))θi + tanλ(t)ωi,0)

=
3∑
i=0

(1− λ tan2λ(t))i tan3−iλ (t)
∑
σ

θσ(1) · · · θσ(i)ωσ(i+1),0 · · ·ωσ(3),0

=

3∑
i=0

(1− λ tan2λ(t))i tan3−iλ (t)ψi

=
3∑
i=0

i∑
k=0

(−λ)k
(
i

k

)
tan3−i+2k

λ (t)ψi.

Finally,

ϕ∗td areaHPn
λ
= cos4n+2

λ (t)
3∧
i=1

((1− λ tan2λ(t))θi + tanλ(t)ωi,0)
4n−1∧
i=4

(θi + tanλ ωi,0)

= cos4n+2
λ (t)

3∑
i=0

4n−4∑
j=0

i∑
k=0

(−λ)k
(
i

k

)
tan4n−i−j+2k−1

λ (t)ψi ∧ φj

=

3∑
i=0

4n−4∑
j=0

i∑
k=0

(−λ)k
(
i

k

)
sin4n−i−j+2k−1

λ (t) cosi+j−2k+3
λ (t)ψi ∧ φj ,

which agrees with Proposition 4.4.3.

4.5 Simpler local tube formulas

Here we endow certain subspaces of differential forms with a sl2-module structure com-
patible with LT . As a result we obtain specially simple tube formulas on some spaces of
curvature measures.

Proposition 4.5.1. In CPnλ , for 0 ≤ k ≤ 2n

LTρk,0 = (2n− k + 1)ρk−1,0 − λ(k + 1)ρk+1,0.

Proof. We write for simplicity hl(t) = sin2n−lλ (t) coslλ(t), which is a famliy of linearly
independent functions. By Proposition 4.4.1

ϕ∗td areaCPn
λ
=

2n∑
l=0

hl(t)ρl,0, (4.7)
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and h′l(t) = (2n− l)hl+1(t)− λlhl−1(t),we have

d

dt
ϕ∗tdareaCPn

λ
=

2n∑
l=0

h′l(t)ρl,0

=

2n∑
l=0

((2n− l)hl+1(t)− λlhl−1(t)) ρl,0

=
2n∑
l=0

((2n− l + 1)ρl−1,0 − λ(l + 1)ρl+1,0)hl(t).

On the other hand

d

dt
ϕ∗tdareaCPn

λ
=

d

ds

∣∣∣∣
0

ϕ∗s+td areaCPn
λ
=

d

ds

∣∣∣∣
0

ϕ∗s(ϕ
∗
td areaCPn

λ
)

= LTϕ∗td areaCPn
λ
=

2n∑
l=0

hl(t)LTρl,0.

The result follows by comparing coefficients of hl(t).

Proposition 4.5.2. In HPnλ , for 0 ≤ l ≤ 4n+ 2

LT ζl,0 = (4n− l + 3)ζl−1,0 − λ(l + 1)ζl+1,0, 0 ≤ l ≤ 4n+ 2.

Proof. Put hl(t) = sin4n−l+2
λ (t) coslλ(t). By Proposition 4.4.3

ϕ∗td areaHPn
λ
=

4n+2∑
l=0

hl(t)ζl,0.

Since h′l(t) = (4n− l + 2)hl+1(t)− λlhl−1(t), we have

d

dt
ϕ∗tdareaHPn

λ
=

4n+2∑
l=0

h′l(t)ζl,0

=

4n+2∑
l=0

((4n− l + 2)hl+1(t)− λlhl−1(t)) ζl,0

=
4n+2∑
l=0

((4n− l + 3)ζl−1,0 − λ(l + 1)ζl+1,0)hl(t).

On the other hand

d

dt
ϕ∗tdareaHPn

λ
=

d

ds

∣∣∣∣
0

ϕ∗s+td areaHPn
λ
=

d

ds

∣∣∣∣
0

ϕ∗s(ϕ
∗
td areaHPn

λ
)

= LTϕ∗td areaHPn
λ
=

4n+2∑
l=0

hl(t)LT ζl,0.

The result follows by comparing the coefficients of hl(t).
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In particular, the following subspaces of WC and WH, are LT -invariant

Rn,0λ,C := {ρk,0 : 0 ≤ k ≤ 2n} ⊂WC,

Rn,0λ,H := {ζk,0 : 0 ≤ k ≤ 4n+ 2} ⊂WH.

We will find an additional invariant subspace of WC. It is suggested by the following
proposition.

Proposition 4.5.3. In CPnλ , for 0 ≤ k ≤ 2n

Jρk,0, 0K = ∂λ,Cσ
λ
k,0.

Proof. The volume tube formula in CPnλ is

Tt volCPn
λ
=

2n∑
k=0

sin2n−kλ (t) coskλ(t)σ
λ
k,0.

Hence

Tt areaCPn
λ
= Tt∂λ,C volCPn

λ
=

d

ds

∣∣∣∣
s=0

Tt+s volCPn
λ

=

2n∑
k=0

sin2n−kλ (t) coskλ(t)
d

ds

∣∣∣∣
s=0

Tsσ
λ
k,0

=
2n∑
k=0

sin2n−kλ (t) coskλ(t)∂λ,Cσ
λ
k,0.

Globalizing (4.7), yields

Tt areaCPn
λ
=

2n∑
j=0

sin2n−jλ (t) cosjλ(t)Jρj,0, 0K. (4.8)

By comparing the coefficients of the basis {sin2n−jλ (t) cosjλ(t)}
2n
j=0 the result follows.

Proposition 4.5.4. For 2 ≤ j ≤ 2n− 2, set

ρj,1 :=
1

2

{
−(2n− j)(2n− j − 1)

2n− 1
β ∧ φj−2 +

(2n− j − 1)(j − 1)

2n− 1
γ ∧ φj−1 + λ

j(j − 1)

2n− 1
β ∧ φj

}
.

Then, for r ∈ {0, 1} and 2r ≤ k ≤ 2n− 2r

i)

Jρk,r, 0K = ∂λ,Cσ
λ
k,r.

ii)
LTρk,r = (2n− k − 2r + 1)ρk−1,r − λ(k − 2r + 1)ρk+1,r.
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Proof. It remains only to prove the case r = 1.

i) By Proposition 4.2.2

2∂λ,Cσ
λ
i,1 =

i(2n− i)
2n− 1

Jκi−1 − λβ ∧ φi, 0K

− Jγ ∧ φi−1, 0K− (2n− i)Jβ ∧ φi−2, 0K + λiJβ ∧ φi, 0K

=− (2n− i)(2n− i− 1)

2n− 1
Jβ ∧ φi−2, 0K

+
(2n− i− 1)(i− 1)

2n− 1
Jγ ∧ φi−1, 0K

+ λ
i(i− 1)

2n− 1
Jβ ∧ φi, 0K.

Thus

Jρi,1, 0K = ∂λ,Cσi,1, 2 ≤ i ≤ 2n− 2.

ii) We need to prove

LTρi,1 = (2n− i− 1)ρi−1,1 − λ(i− 1)ρi+1,1.

Since

LT (β ∧ φj−2) = γ ∧ φj−2 + (2n− j + 1)β ∧ φj−3 − λ(j − 1)φj−1

LT (γ ∧ φj−1) = −4λβ ∧ φj−1 + (2n− j)φj−2 − λjφj
LT (β ∧ φj) = γ ∧ φj + (2n− j − 1)β ∧ φj−1 − λ(j + 1)φj+1,

we have

LTρj,1 =−
(2n− j)(2n− j − 1)

2(2n− 1)
(γ ∧ φj−2 + (2n− j + 1)β ∧ φj−3 − λ(j − 1)φj−1)

+
(2n− j − 1)(j − 1)

2(2n− 1)
(−4λβ ∧ φj−1 + (2n− j)φj−2 − λjφj)

+ λ
j(j − 1)

2(2n− 1)
(γ ∧ φj + (2n− j − 1)β ∧ φj−1 − λ(j + 1)φj+1)

=(2n− j − 1)
1

2

(
−(2n− j + 1)(2n− j)

2n− 1
β ∧ φj−3

+
(2n− j)(j − 2)

2n− 1
γ ∧ φj−2 + λ

(j − 1)(j − 2)

2n− 1
β ∧ φj−1

)
− λ(j − 1)

1

2

(
−(2n− j − 1)(2n− j − 2)

2n− 1
β ∧ φj−1

+
(2n− j − 2)j

2n− 1
γ ∧ φj + λ

(j + 1)j

2n− 1
β ∧ φj+1

)
.
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We have thus a decomposition WC = Rn,0λ,C⊕R
n,1
λ,C into LT -invariant subspaces given

by

Rn,rλ,C := ⟨ρk,r : 2r ≤ k ≤ 2n− 2r⟩ ⊂WC, r = 0, 1.

The operator LT acts familiarly on each invariant subspace.

Theorem 4.5.5. i) In CPnλ , for r ∈ {0, 1}, the linear isomorphisms given by

Fρ : (V
(2n−4r), Yλ) −→

(
Rn,rλ,C,LT

)
, p2n−4r,k−2r 7−→ ρk,r,

satisfy

LT ◦ Fρ = Fρ ◦ Yλ.

ii) In HPnλ , the linear isomorphism given by

Fρ : (V
(4n), Yλ) −→

(
Rn,0λ,H,LT

)
, p4n,k 7−→ ζk,0,

satisfies

LT ◦ Fρ = Fρ ◦ Yλ.

Corollary 4.5.6. i) In CPnλ , for r ∈ {0, 1} and 2r ≤ k ≤ 2n− 2r

LTt[ρk,r, 0] =
2n−4r∑
j=0

ϕλ2n−4r,k−2r,j(t)[ρj+2r,r, 0].

ii) In HPnλ

LTt[ζk,0, 0] =
4n∑
j=0

ϕλ4n,k,j(t)[ζj,0, 0]

Remark 4.5.7. To derive the tubular formulas for the Federer valuations in CPnλ and
HPnλ , we considered the spaces of differential forms WC and WH. The results involve
products of Santaló polynomials. However, by identifying the differential forms ρk,r, we
have been able to linearize the expression and represent the Lie derivative on WC in the
form Y − λX, where (X,Y, [X,Y ]) forms an sl2-triple. In Section 4.7.2 we will achieve
something similar for the whole WH.

At this stage, having obtained a representation in terms of differential forms for
the valuations ∂λ,Cσ

λ
k,r for r ∈ {0, 1}, it is natural to ask whether we can also find a

representation for σλk,r. The answer is affirmative, and the proof relies on our results on
the derivative operator ∂λ,C obtained in section 3.7.2.
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Proposition 4.5.8. For 0 ≤ i ≤ 2n − 1 consider the (2n − 1)-differential forms given
by

ηi,0 :=
∑
j≥0

λj
(i+ 2j)!!(2n− i− 2j − 2)!!

i!!(2n− i+ 2)!!
(κi+2j − λβ ∧ φi+2j+1) ,

=
∑
j≥0

λj
(i+ 2j)!!(2n− i− 2j − 2)!!

i!!(2n− i+ 2)!!
ρi+2j+1,0,

ηi,1 :=
i(2n− i)
2(2n− 1)

ηi,0 −
1

2
β ∧ φi−1.

and η2n,0 = 0. Then, for 0 ≤ i ≤ 2n and 2 ≤ j ≤ 2n− 2, we have

σλi,0 = Jηi,0, c2n,i+1d volK,

σλj,1 = Jηj,1,
j(2n− j)
2(2n− 1)

c2n,j+1d volK,

where cm,k = 0 if k −m is even and otherwise is given by (3.22).

Proof. From Proposition 4.5.3

Jκi−1 − λβ ∧ φi, 0K = (2n− i− 1)σλi−1,0 − λ(i+ 1)σλi+1,0 = ∂λ,Cσ
λ
i,0.

Then by Proposition 3.7.11

σλi,0 =
∑
j≥0

λj
(i+ 2j)!!(2n− i− 2j − 2)!!

i!!(2n− i+ 2)!!
∂λ,Cσ

λ
i+2j+1,0 + c2n,i+1 volCPn

λ

=
∑
j≥0

λj
(i+ 2j)!!(2n− i− 2j − 2)!!

i!!(2n− i+ 2)!!
(Jκi+2j − λβ ∧ φi+2j+1, 0K) + c2n,i+1 volCPn

λ
.

By Proposition 4.2.2

σλj,1 =
j(2n− j)
2(2n− 1)

σλj,0 −
1

2
Jβ ∧ φj−1, 0K

=
j(2n− j)
2(2n− 1)

Jηj,0, c2n,j+1d volK−
1

2
Jβ ∧ φj−1, 0K

= Jηj,1,
j(2n− j)
2(2n− 1)

c2n,j+1d volK.

4.6 Push-forward through the Hopf fibration

Wannerer and Hofstätter have recently computed the push-forward through the complex
Hopf fibration of the invariant valuations of the sphere. We will extend their result to
the quaternionic case.

Let us first recall how these fibrations are constructed.
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Definition 4.6.1. For λ > 0, (z1, . . . , zn+1) ∈ S2n+1
λ ⊂ Cn+1\{0}, we define the complex

Hopf fibration by

pλ,C : S2n+1
λ −→ CPnλ , (z1, . . . , zn+1) 7−→ [z1, . . . , zn+1] ∈ CPnλ ≡ Cn+1 \ {0}/C∗,

with fiber S1.

For λ > 0, (q1, . . . , qn+1) ∈ S4n+3
λ ⊂ Hn+1 \ {0}, we define the quaternionic Hopf

fibration by

pλ,H : S4n+3
λ −→ HPnλ , (q1, . . . , qn+1) 7−→ [q1, . . . , qn+1] ∈ HPnλ ≡ Hn+1 \ {0}/H∗,

with fiber S3.

Both Hopf fibrations are riemannian submersions. The following results are thus
relevant to us.

Proposition 4.6.2 ([37]). Let f : M1 → M2 be a proper riemannian submersion and
assume that M2 is connected. Denote by F the fiber of f . Then

i)
f∗χ = c · χ,

where c = χ(F ).

ii) For every B ∈ P(M2),

(f∗volM1)(B) =

(∫
B
volM1(f

−1(·))
)
volM2 .

In particular, if the fiber of f has constant volume a ∈ R, then

f∗volM1 = a · volM2 .

The next result by Hofstätter and Wannerer is crucial for determining the push-
forward of valuations under the complex fibration.

Theorem 4.6.3 ([37]). The push-forward map f∗ commutes with ∂, and therefore with
Tt.

4.6.1 Push-forward through the complex Hopf fibration

Let us recall Wannerer-Hofstätter’s result. We include the proof for completeness and
also because our approach in the quaternionic case is analogous.

For λ > 0, let pλ,C : S2n+1
λ → CPnλ be the Hopf fibration. Since the fiber is S1,

Proposition 4.6.2 provides

(pλ,C)∗ volS2n+1
λ

= 2π volCPn
λ
. (4.9)
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Theorem 4.6.4 ([37]).

1

2π
(pλ,C)∗σ

λ
k = (2n− k + 1)σλk−1,0 − λ(k + 1)σλk+1,0 = ∂λ,Cσ

λ
k,0 = Jρk,0, 0K.

In particular, the image of (pλ,C)∗ is contained in In,0λ,C.

Proof. From Theorem 3.2.14, we have

TtvolS2n+1
λ

=
2n∑
j=0

(∫ t

0
sin2n−jλ (s) cosjλ(s) ds

)
σλj + volS2n+1

λ
.

By equation (4.9) and the property Tt ◦ (pλ,C)∗ = (pλ,C)∗ ◦ Tt, as stated in Theorem
4.6.3, it follows that

2πTtvolCPn
λ
= Tt(pλ,C)∗ volS2n+1

λ
= (pλ,C)∗TtvolS2n+1

λ

=

2n∑
j=0

(∫ t

0
sin2n−jλ (s) cosjλ(s) ds

)
(pλ,C)∗σ

λ
j + (pλ,C)∗volS2n+1

λ
.

Differentiating with respect to t, we obtain

2π
d

dt
TtvolCPn

λ
=

2n∑
j=0

sin2n−jλ (t) cosjλ(t)(pλ,C)∗σ
λ
j .

Moreover, since Tt+s = Tt ◦Ts, using (3.28) we have

d

dt
TtvolCPn

λ
=

d

ds

∣∣∣∣
s=0

Tt+svolCPn
λ
=

d

ds

∣∣∣∣
s=0

Ts ◦TtvolCPn
λ

=
2n∑
j=0

sin2n−jλ (t) cosjλ(t)
d

ds

∣∣∣∣
s=0

Tsσ
λ
j,0 =

2n∑
j=0

sin2n−jλ (t) cosjλ(t)∂λ,Cσ
λ
j,0.

Since {sin2n−jλ (t) cosjλ(t)}
2n
j=0 are linearly independent functions, equating coefficients in

the previous two identities yields the result.

A precise description of the image and the kernel of (pλ,C)∗ will be provided below
in Proposition 4.6.6. First, we relate (pλ,C)∗ to some maps we constructed before.

Let us recall the linear isomorphism (3.34)

Fλn,r : H2n−4r+1
λ −→ In,rλ,C, σλj 7−→ σλj+2r,j+r

between the linear subspaces H2n−4r+1
λ ⊂ V2n−4r+1

λ,R and In,rλ,C ⊂ V
n
λ,C. This map com-

mutes with the tubular operator Tt, i.e, both Fλn,0 and pλ,C preserve the tube formulas.
The two maps are closely related.
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Proposition 4.6.5.
1

2π
(pλ,C)∗ = Fλn,0 ◦ ∂λ,R.

Proof. By Proposition 3.7.12 the image of ∂λ,R is contained in the hyperplane H2n+1
λ

and therefore the expression is well defined. The equality follows from (3.1).

Proposition 4.6.6. For λ > 0 the complex Hopf fibration satisfies

i) ker(pλ,C)∗ = ⟨χ⟩.

ii) Im(pλ,C)∗ = In,0λ,C = ⟨µλ0 , . . . , µλ2n⟩.

Proof. i) Since the fiber is isomorphic to S1 and χ(S1) = 0, by Proposition 4.6.2
(pλ,C)∗χ = 0. Let µ ∈ V2n+1

λ,R be such that (pλ,C)∗µ = 0. By Proposition 4.6.5,

Fλn,0(∂λ,Rµ) = 0. Thus, ∂λ,Rµ ∈ kerFλn,0 = {0} and therefore ∂λ,Rµ = 0. Since
ker ∂λ,R = ⟨χ⟩ by Proposition 3.7.6, the result follows.

ii) By Proposition 3.7.12, the image of ∂λ,R is H2n+1
λ . Since Fλn,0 : H

2n+1
λ → In,0λ,C is a

linear isomorphism, the result follows.

Let us recall the basis ϕ0, . . . , ϕ2n+1 ∈ V2n+1
λ,R introduced in (3.42).

Proposition 4.6.7. For k ≥ 1

(pλ,C)∗ϕ
k = 2

k!ωk
πk−1ω2n−k+1

σλk−1,0 = 2
k!ωk
πk−1

τλk−1,0.

Proof. By Proposition 4.6.5 and Proposition 3.7.12

1

2π
(pλ,C)∗ϕ

k = Fλn,0 ◦ ∂λ,Rϕk =
k!ωk

πkωm−k
σλk−1.

Since πλk,0 = k!τλk,0 we have

σλk,0 =
ω2n−k
k!

πλk,0 = ω2n−kτ
λ
k,0.

The stated formula follows.

Another basis of Vmλ,R is given by the so-called Lipschitz-Killing valuations t0 =

χ, t, . . . , t2n+1 where t = 2
πµ1 and µ1 is the restriction to S2n+1 of the intrinsic volume

µ1 ∈ Val(R2n+2).

Proposition 4.6.8.

(pλ,C)∗t
k =

∑
j≥0

(
k/2 + j − 1

j

)(
λ

4

)j {
2
(k + 2j)!ωk+2j

πk+2j−1
τλk+2j−1,0

}
.

Proof. By [34, Lemma 3.4]

tk =
∑
j≥0

(
k/2 + j − 1

j

)(
λ

4

)j
ϕk+2j .

Proposition 4.6.7 yields the result.
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4.6.2 Push-forward through the quaternionic Hopf fibration

For λ > 0, let pλ,H : S4n+3
λ → HPnλ be the Hopf fibration. Since the fiber is S3, Proposition

4.6.2 provides
(pλ,H)∗ volS4n+3

λ
= 2π2 volHPn

λ
. (4.10)

Let us recall the forms

ζl,0 :=
∑

0≤k≤i≤3

(−λ)k
(
i

k

)
ψi ∧ φl−i+2k−3.

Proposition 4.6.9.

1

2π2
(pλ,H)∗σ

λ
i = Jζi,0, 0K, 0 ≤ i ≤ 4n+ 2.

Proof. By Corollary 4.4.4 and equation (3.32)

Tt areaHPn
λ
=

4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)Jζi,0, 0K

Tt areaS4n+3
λ

=
4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)σ

λ
i .

Since (pλ,H)∗ commutes with the derivative map, and ∂ vol = area, by Proposition 4.6.2
we have

(pλ,H)∗ areaS4n+3
λ

= (pλ,H)∗∂ volS4n+3
λ

= ∂(pλ,H)∗ volS4n+3
λ

= 2π2∂ volHPn
λ

= 2π2 areaHPn
λ
.

Therefore

(pλ,H)∗Tt areaS4n+3
λ

=

4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)(pλ,H)∗σ

λ
i

= 2π2Tt areaHPn
λ
= 2π2

4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)Jζi,0, 0K.

Comparing coefficients in the last two lines yields the result.

Proposition 4.6.10.
(pλ,H)∗χ = 0.

Proof. Since χ(S3) = 0, by Proposition 4.6.2, the result follows.
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Since we do not know much about the globalizations Jζi,0, 0K we can not determine
the kernel and the image of (pλ,H)∗.

Next we will look for valuations Sλi,0 in HPnλ playing the same role as the σλi,0 in CPnλ ;
i.e, such that

Jζi,0, 0K =
1

2π2
(pλ,H)∗σ

λ
i = ∂λ,HS

λ
i,0.

Our approach consists of integrating the valuations σλi ∈ V
4n+3
λ,R with respect to ∂λ,R and

then transferring them through the push-forward. Let us consider the valuations given
by

Σi :=
πi+1ω4n−i+2

(i+ 1)!ωi+1
ϕi+1 ∈ V4n+3

λ,R , 0 ≤ i ≤ 4n+ 2,

where ϕ0, . . . , ϕ4n+3 ∈ V4n+3
λ,R are the valuations introduced in (3.42). By Proposition

3.7.12 it is satisfied

∂λ,RΣi = σλi , 0 ≤ i ≤ 4n+ 2.

In particular, since ϕm = tm = m!ωm
πm µm on Smλ ,

∂λ,RΣ4n+2 = ∂λ,R volS4n+3
λ

= areaS4n+3
λ

.

Proposition 4.6.11. Define

Sλi,0 :=
1

2π2
(pλ,H)∗Σi, 0 ≤ i ≤ 4n+ 2.

Then

∂λ,HS
λ
i,0 =

1

2π2
(pλ,H)∗σ

λ
i ,

and

Tt volHPn
λ
=

4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)S

λ
i,0.

In particular

Sλ4n+2,0 =
1

2π2
(pλ,H)∗ volS4n+3

λ
= volHPn

λ
.

Proof. Given that

∂λ,RΣi = σλi , 0 ≤ i ≤ 4n+ 2,

the first equality holds. Theorem 3.5.1 reads

Tt∂λ,RΣ4n+2 =Tt areaS4n+3
λ

=

4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)σ

λ
i

=

4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)∂λ,RΣi.
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Since ∂λ,R ◦Tt = Tt ◦ ∂λ,R, it follows that

∂λ,R (TtΣ4n+2) = ∂λ,R

(
4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)Σi

)
.

From Proposition 3.7.6, we know that ker ∂λ,R = ⟨χ⟩. Therefore, there exists a constant
c ∈ R such that:

TtΣ4n+2 =
4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)Σi + cχ.

Given that (pλ,H)∗χ = 0 applying (pλ,H)∗ on both sides of the previous formula yields

TtS
λ
4n+2,0 =

4n+2∑
i=0

sin4n−i+2
λ (t) cosiλ(t)S

λ
i,0.

Corollary 4.6.12.

∂λ,HS
λ
i,0 = (4n− i+ 3)Sλi−1,0 − λ(i+ 1)Sλi+1,0, 0 ≤ i ≤ 4n+ 2,

TtS
λ
i,0 =

4n+2∑
j=0

ϕ4n+2,i,j(t)S
λ
j,0.

In analogy with the construction carried out in the complex case and the notation
adopted in (3.27), we write

In,0λ,H := ⟨Sλi,0 : 0 ≤ i ≤ 4n+ 2⟩. (4.11)

Proposition 4.6.13. The linear isomorphism

Jλ,H : (V (4n+2), Yλ) −→
(
In,0λ,H, ∂λ,H

)
, p4n+2,i 7−→ Sλi,0

satisfies
Jλ,H ◦ Yλ = ∂λ,H ◦ Jλ,H.

We shall now express Sλi,0 in terms of differential forms for 0 ≤ i ≤ 4n+ 1.

Proposition 4.6.14. For 0 ≤ i ≤ 4n+ 2

Sλi,0 =
∑
s≥0

λs
(i+ 2s)!!(4n− i− 2s)!!

i!!(4n− i+ 2)!!
Jζi+2s+1,0, 0K + c4n+2,i+1 volHPn

λ
.

Proof. By Proposition 4.6.13, we have an sl2-isomorphism Sλi,0 7→ p4n+2,i. From Propo-
sition 3.3.10

p4n+2,i =
∑
s≥0

λs
(i+ 2s)!!(4n− i− 2s)!!

i!!(4n− i+ 2)!!
Yλp4n+2,i+2s+1 + c4n+2,i+1x

4n+2.
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Then, transferring this expresion and using ∂λ,HS
λ
i,0 = Jζi,0, 0K

Sλi,0 =
∑
s≥0

λs
(i+ 2s)!!(4n− i− 2s)!!

i!!(4n− i+ 2)!!
∂λ,HS

λ
i+2s+1 + c4n+2,i+1 volHPn

λ

=
∑
s≥0

λs
(i+ 2s)!!(4n− i− 2s)!!

i!!(4n− i+ 2)!!
Jζi+2s+1,0, 0K + c4n+2,i+1 volHPn

λ
.

4.7 Diagonalization of LT on WC and WH

Here we diagonalize the operator LT in WC and WH.
Note that we can diagonalize LT on each component of the tensor product using

Lemma 3.3.4. Hence, we just need to use the following observation. Given two vector
spaces U1, U2 and two linear endomorphisms fi : Ui → Ui, i = 1, 2, consider f : U1⊗U2 →
U1 ⊗ U2 given by

f(v ⊗ w) = f1(v)⊗ w + v ⊗ f2(w), v ∈ U1, w ∈ U2.

Let u1, u2 ∈ U1, U2 be such that

f1(u1) = α1u1, f2(u2) = α2u2.

Then
f(u1 ⊗ u2) = (α1 + α2)u1 ⊗ u2.

4.7.1 Complex space forms

Let us recall the space WC =WC
1 ⊗WC

2n−2, where

WC
1 = ⟨γ, β⟩, WC

2n−2 = ⟨φi : 0 ≤ i ≤ 2n− 2⟩.

By the previous considerations, if ψ ∈WC
1 and φ ∈WC

2n−2 satisfy

LTψ = aψ, LTφ = bφ

for a, b ∈ C, then
LT (ψ ⊗ φ) = (a+ b)ψ ⊗ φ.

Proposition 4.7.1. i) LT is diagonalizable in WC
1 and

spec(LT |WC
1
) =

{
−2
√
−λ, 2

√
−λ
}
,

with eigenspaces
E−2

√
−λ(LT |WC

1
) = ⟨υ1,0⟩,

E2
√
−λ(LT |WC

1
) = ⟨υ1,1⟩.

where
υ1,0 = γ − 2

√
−λβ,

υ1,1 = γ + 2
√
−λβ.
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ii) LT is diagonalizable in WC
2n−2 and

spec(LT |WC
2n−2

) =
{
(2k − 2n+ 2)

√
−λ : 0 ≤ k ≤ 2n− 2

}
,

E(2k−2n+2)
√
−λ(LT |WC

2n−2
) = ⟨υ2n−2,k⟩, 0 ≤ k ≤ 2n

where

υ2n−2,k =
∑
a,b

(
a+ b

a

)(
2n− a− b− 2

k − a

)
(−1)b(

√
−λ)a+bφa+b.

Proof. i) By Lemma 3.3.4, the eigenvalues of Y4λ in V (1) are

α0 = −
√
−4λ = −2

√
−λ, α1 =

√
−4λ = 2

√
−λ,

with the corresponding eigenvectors given by

u0 = y − 2
√
−λx, u1 = y + 2

√
−λx.

By Theorem 4.3.1, the linear isomorphism Fψ preserves both the eigenvalues and
the eigenvectors of LT . Thus, υ1,i = Fψ(ui), explicitly given by

υ1,0 = γ − 2
√
−λβ, υ1,1 = γ + 2

√
−λβ,

are the eigenvectors associated with the eigenvalues −2
√
−λ and 2

√
−λ, respec-

tively.

ii) By Lemma 3.3.4, the eigenvalues of Yλ in V (2n−2) are βk = (2k − 2n + 2)
√
−λ for

0 ≤ k ≤ 2n− 2, with the corresponding eigenvectors given by

vk =

(
2n− 2

k

)
(y +

√
−λx)k(y −

√
−λx)2n−k−2.

According to Lemma (3.3.6), we can expand this expression as follows:

vk =
∑
a,b

(
a+ b

a

)(
2n− a− b− 2

k − a

)
(−1)b(

√
−λ)a+bp2n−2,a+b.

By Theorem 4.3.1, the linear isomorphism Fφ preserves the eigenvectors and eigen-
values of LT . Then υ2n−2,k = Fφ(vk) are LT -eigenvectors with the associated
eigenvalue βk, explicitly given by

υ2n−2,k =
∑
a,b

(
a+ b

a

)(
2n− a− b− 2

k − a

)
(−1)b(

√
−λ)a+bφa+b,

for 0 ≤ k ≤ 2n− 2.
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Proposition 4.7.2. LT is diagonalizable in WC =WC
1 ⊗WC

2n−2 and

spec(LT |WC) =
{
(4i+ 2j − 2n)

√
−λ : 0 ≤ i ≤ 1, 0 ≤ j ≤ 2n− 2

}
E(4i+2j−2n)

√
−λ(LT |WC) = ⟨υ1,i ⊗ υ2n−2,j⟩, 0 ≤ i ≤ 1, 0 ≤ j ≤ 2n− 2.

Proof. By definition, for 0 ≤ i ≤ 1 and 0 ≤ j ≤ 2n

LTυ1,i = (4i− 2)
√
−λυ1,i,

LTυ2n−2,j = (2j − 2n+ 2)
√
−λυ2n−2,j ,

therefore for 0 ≤ i ≤ 1 and 0 ≤ j ≤ 2n− 2, since LT is a derivation

LT (υ1,i ⊗ υ2n−2,j) = (4i+ 2j − 2n)
√
−λυ1,i ⊗ υ2n−2,j .

From a dimensionality argument, it follows that LT is diagonalizable.

4.7.2 Quaternionic space forms

Proposition 4.7.3. i) LT is diagonalizable in WH
3 and

spec(LT |WH
3
) =

{
(4i− 6)

√
−λ : 0 ≤ i ≤ 3

}
,

E(4i−6)
√
−λ = ⟨υ3,i : 0 ≤ i ≤ 3⟩,

where

υ3,i :=
∑
a,b

(
a+ b

a

)(
3− a− b
k − a

)
(−1)b(2

√
−λ)a+bψa+b.

ii) LT is diagonalizable in WH
4n−4 and

spec(LT |WH
4n−4

) =
{
(2j − 4n+ 4)

√
−λ : 0 ≤ j ≤ 4n− 4

}
,

E(2j−4n+4)
√
−λ = ⟨υ4n−4,j : 0 ≤ j ≤ 4n− 4⟩,

where ∑
a,b

(
a+ b

a

)(
4n− a− b− 4

k − a

)
(−1)b(

√
−λ)a+bφa+b.

Proof. i) The eigenvalues of Y4λ in V (3) are (4k − 6)
√
−λ for 0 ≤ k ≤ 3, with the

associated eigenvectors given by

uk :=

(
3

k

)
(y + 2

√
−λx)k(y − 2

√
−λx)3−k, 0 ≤ k ≤ 3.
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Specifically, using Lemma 3.3.6, this can be expanded as:

uk =
∑
a,b

(
a+ b

a

)(
3− a− b
k − a

)
(−1)b(2

√
−λ)a+b

(
3

a+ b

)
xa+by3−a−b.

By Theorem 4.3.7 the differential forms υ3,k := Fψ(uk) given by

υ3,k =
∑
a,b

(
a+ b

a

)(
3− a− b
k − a

)
(−1)b(2

√
−λ)a+bψa+b

are LT -eigenvectors with associanted eigenvalue (4k − 6)
√
−λ.

ii) The eigenvalues of Yλ in V (4n−4) are βk = (2k − 4n + 4)
√
−λ for 0 ≤ k ≤ 4n − 4,

with the associated eigenvectors given by

uk :=

(
4n− 4

k

)
(y +

√
−λx)k(y −

√
−λx)4n−k−4.

Specifically, using Lemma 3.3.6, this can be expanded as:

uk =
∑
a,b

(
a+ b

a

)(
4n− a− b− 4

k − a

)
(−1)b(

√
−λ)a+b

(
4n− 4

a+ b

)
xa+by4n−a−b−4.

By Theorem 4.3.7, the differential forms υ4n−4,k := Fφ(uk) given by

υ4n−4,k =
∑
a,b

(
a+ b

a

)(
4n− a− b− 4

k − a

)
(−1)b(

√
−λ)a+bφa+b

are LT -eigenvectors with associanted eigenvalue (2k − 4n+ 4)
√
−λ.

Proposition 4.7.4. LT is diagonalizable in WH =WH
3 ⊗WH

4n−4 and

spec(LT |WH) = {(2k −m)
√
−λ : 0 ≤ k ≤ m},

where m = 4n+ 2, and

E(2k−m)
√
−λ(LT |WH) = ⟨υ3,i ⊗ υ4n−4,j : 2i+ j = k, 0 ≤ i ≤ 3, 0 ≤ j ≤ 4n− 4⟩.

Proof. By the previous proposition v3,i ⊗ v4n−4,j , with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 4n− 4, is
an eigenvector with eigenvalue

(4i+ 2j − 4n− 2)
√
−λ.

Such vectors form a basis, and thus the proposition follows.
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A straightforwrad but tedious analysis shows (for n ≥ 3)

dimE(2k−m)
√
−λ =


⌊
k
2

⌋
+ 1, if 0 ≤ k ≤ 6,

4, if 7 ≤ k ≤ 4n− 5,⌊
2n+ 1− k

2

⌋
+ 1, if 4n− 4 ≤ k ≤ 4n+ 2.

Using Lemma 3.3.4 one checks that Yλ restricted to

V (4n−10) ⊕ V (4n−6) ⊕ V (4n−2) ⊕ V (4n+2)

has the same spectrum and the same multiplicities as LT on WH. It follows that there
exists an isomorphism

Φ: V (4n−10) ⊕ V (4n−6) ⊕ V (4n−2) ⊕ V (4n+2) −→WH

such that Φ ◦ Yλ = LT ◦ Φ.

Corollary 4.7.5. There exists a basis {ζk,r : 0 ≤ r ≤ 3, 2r ≤ k ≤ m − 2r} of WH such
that

LTt[ζk,r, 0] =
m−4r∑
j=0

ϕλm−4r,k−2r,j(t)[ζj+2r,r, 0].

and the following subspaces of WH, are LT -invariant

Rn,rλ,H := {ζk,r : 2r ≤ k ≤ m− 2r} .

Proof. It suffices to take ζk,r = Φ(pm−4r,k−2r) and use

exp(tLT )(ζk,r) = exp(tLT )(Φpm−4r,k−2r)

= Φ ◦ exp(tYλ)(pm−4r,k−2r)

= Φ(pm−4r,k−2r(t))

=
∑
j

ϕλm−4r,k−2r,j(t)Φ(pm−4r,j)

=
∑
j

ϕλm−4r,k−2r,j(t)ζj+2r,r.
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tures from the Advanced Course on Integral Geometry and Valuation Theory held
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