
FPGA AND ASIC ACCELERATORS FOR

GENOME DATA ANALYSIS

Abbas Haghi

Barcelona, 2023

Advisors: Miquel Moretó Planas,
Lluc Álvarez Martí

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

in the Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Acknowledgements

This doctoral dissertation was carried out in the computer architecture research group of

the Barcelona Supercomputing Center (BSC) and computer architecture department of the

Polytechnic University of Catalonia (UPC) from 2019 to 2023.

First, I wish to express my deepest appreciation to my advisors, Dr. Miquel Moretó and Dr.

Lluc Álvarez, for giving me the opportunity to pursue a PhD and for their help throughout this

work.

I appreciate the support of my colleagues and friends in the computer architecture group, in

particular, Santiago Marco-Sola for his guidance in most aspects of this thesis.

Lastly, the biggest thanks go to my family, especially my wife, for her endless love and

support that enabled my decision to pursue a PhD.

i

Abstract

The continuous progress of Moore’s Law in improving single-threaded performance (execution

time) through clock frequency and process node improvements has slowed down due to physical

limitations in silicon device physics. This has resulted in a shift towards using multicore

processors to achieve performance gains. However, the use of multiprocessing is limited

by Amdahl’s Law, in which the sequential parts of the applications restrict the speedups in

parallel systems. Consequently, the technology industry is now emphasizing specialization and

developing domain-specific accelerators to enhance performance compared to general-purpose

computers.

Genomics is a field that deals with the study of genes and their functions. Thanks to current

and ongoing advancements, each stage of development in sequencing technologies is able to

produce enormous amounts of data at an increasingly faster and cheaper way compared to its

previous stage. However, the assembly and analysis of this data take extensive time on general-

purpose processors, and the processor performance is growing at a much slower pace than

the DNA sequencing speed. Hence, domain-specific accelerators are becoming increasingly

essential in the genomics field, especially for DNA assembly. Specialized hardware computing

devices designed for this specific domain can achieve significant performance improvements

compared to general-purpose computers. Thus, with domain-specific accelerators, the speed of

DNA assembly can keep up with the pace of DNA sequencing, allowing for quicker analysis

and discoveries in the genomics field.

The main goal of this thesis is to accelerate two critical applications of DNA assembly,

k-mer counting and pairwise read alignment, using FPGAs and ASICs. The first contribution of

this thesis targets accelerating the k-mer counting application using FPGAs and its adaptation

in a genomics application called SMUFIN, a Somatic MUtation FINder. The second and

third contributions focus on exploiting FPGAs for accelerating the Wavefront Alignment

(WFA), a novel pairwise read alignment algorithm for aligning DNA sequences generated by

different sequencing technologies. The accelerator in the second contribution is customized for

short DNA sequences of up to 300 bases, which are generated by next generation sequencing

iii

Abstract

technologies, while the accelerator in the third contribution is customized for long DNA

sequences of up to 50K bases, which are generated by third generation sequencing technologies.

The fourth contribution proposes an ASIC accelerator of the WFA algorithm and its integration

in a RISC-V SoC. In all contributions, we analyze different parts of the application and port

the most time-consuming parts to the accelerator. We also modify and re-design the remaining

CPU parts to better adapt them to the accelerator code and finally propose efficient co-designed

accelerated designs.

In our first contribution, the integration of our k-mer counting accelerator improves the

SMUFIN k-mer counting performance by 2.14× while consuming 2.93× less energy and

1.57× less memory compared to the baseline multi-threaded software implementation. The

performance of the WFA accelerators in the second and third contributions is evaluated using

one and two FPGAs. Compared to the baseline multi-threaded software implementation of the

WFA running on a IBM POWER9 high-performance processor, our WFA accelerator for short

reads reaches performance improvements of up to 8.8× and 13.5× with one and two FPGAs,

respectively, and energy efficiency improvements of up to 9.7× and 14.6× with one and two

FPGAs, respectively. The WFA accelerator for long reads reaches performance improvements

of up to 5.6× and 9.9× with one and two FPGAs, respectively, and energy efficiency im-

provements of up to 7.5× and 10.9× with one and two FPGAs, respectively. In our fourth

contribution, our ASIC WFA accelerator integrated in the RISC-V SoC reaches performance

improvements of up to 1076× compared to the single-threaded software implementation of the

WFA on Sargantana, the RISC-V CPU of the chip.

iv

Resumen

El continuo progreso de la Ley de Moore en la mejora del rendimiento de un solo hilo a través

de la frecuencia de reloj y las mejoras en el nodo de proceso se ha visto obstaculizado debido a

limitaciones físicas. Esto ha resultado en un cambio hacia el uso de procesadores multinúcleo

para lograr ganancias de rendimiento. Sin embargo, el rendimiento de los procesadores

multinúcleo se ve limitado por la Ley de Amdahl, que limita cualquier aceleración por las

partes secuenciales del software. En consecuencia, la industria tecnológica está enfocándose en

la especialización y el desarrollo de aceleradores para mejorar el rendimiento de aplicaciones

específicas.

La genómica es el campo que se ocupa del estudio de los genes. Con los desarrollos actuales

en tecnologías de secuenciación se produce una cantidad enorme de datos de manera más

rápida y económica de lo previsto por la Ley de Moore. Sin embargo, el ensamblaje y análisis

de estos datos llevan mucho tiempo en procesadores de propósito general. Por lo tanto, los

aceleradores son esenciales en el campo de la genómica, especialmente para el ensamblaje

de ADN. Al utilizar hardware especialmente diseñado para este dominio, como FPGAs o

ASICs, los investigadores en genómica pueden lograr mejoras significativas en el rendimiento

en comparación con los procesadores de propósito general. Gracias a los aceleradores, la

velocidad de ensamblaje de ADN puede mantenerse al ritmo de la secuenciación de ADN, lo

que permite un análisis y descubrimientos más rápidos en genómica.

El objetivo principal de esta tesis es acelerar dos aplicaciones críticas del ensamblaje de

ADN, el conteo de k-mers y la alineamiento de secuencias, utilizando FPGAs y ASICs. La

primera contribución se centra en acelerar la aplicación de conteo de k-mers utilizando FPGAs

y su adaptación en una aplicación de genómica llamada SMUFIN. La segunda y la tercera

contribución se centran en acelerar con FPGAs el novedoso algoritmo de alineamiento de

secuencias WFA. El acelerador de la segunda contribución está diseñado para secuencias

cortas de ADN de hasta 300 bases, que son generadas por tecnologías de secuenciación de

próxima generación. El acelerador de la tercera contribución está diseñado para secuencias

largas de ADN de hasta 50.000 bases, que son generadas por tecnologías de secuenciación de

v

Resumen

tercera generación. En la cuarta contribución diseñamos un ASIC para acelerar el alinemiento

de secuencias con WFA y lo integramos en un SoC RISC-V. En todas las contribuciones

analizamos diferentes partes de la aplicación y trasladamos las partes más lentas al acelerador.

También modificamos y rediseñamos las partes restantes de la CPU para adaptarlas al código

del acelerador.

En nuestra primera contribución, nuestro acelerador de conteo de k-mers mejora el rendimiento

respecto al conteo de k-mers de SMUFIN en un factor de 2,14×, mientras consume 2,93×
menos energía y 1,57× menos memoria en comparación con la implementación software de

referencia. El rendimiento de los aceleradores de alineamiento de secuencias de la segunda

y la tercera contribución se evalúa utilizando una y dos FPGAs. En comparación con la im-

plementación software de referencia del algoritmo WFA, nuestro segundo acelerador alcanza

mejoras de rendimiento de hasta 8,8× y 13,5× con una y dos FPGAs, respectivamente, y una

mejora en eficiencia energética de hasta 9,7× y 14,6× con una y dos FPGAs, respectivamente.

Nuestro tercer acelerador alcanza mejoras de rendimiento de hasta 5,6× y 9,9× con una y dos

FPGAs, respectivamente, y una mejor en eficiencia energética de hasta 7,5× y 10,9× con una y

dos FPGAs, respectivamente. En la cuarta contribución nuestro acelerador ASIC integrado en

el SoC alcanza mejoras de rendimiento de hasta 1076× en comparación con la implementación

software del algoritmo WFA en Sargantana, la CPU RISC-V del chip.

vi

Resum

El progressiu desenvolupament de la Llei de Moore per a millorar el rendiment de fils individuals

mitjançant la freqüència de rellotge i les millores en el node de procés s’ha vist obstaculitzat a

causa de limitacions físiques. Això ha resultat en un canvi cap a l’ús de processadors multinucli

per aconseguir guanys de rendiment. No obstant això, el rendiment dels processadors multinucli

està limitat per la Llei d’Amdahl, que limita qualsevol acceleració per les parts sequencials del

programa. En conseqüència, la indústria tecnològica està posant l’accent en la especialització i

el desenvolupament d’acceleradors per millorar el rendiment d’aplicacions específiques.

La genòmica és el camp que es dedica a l’estudi dels gens. Amb els desenvolupaments actu-

als en tecnologies de seqüenciació es produeix una enorme quantitat de dades més ràpidament i

econòmicament que el previst per la Llei de Moore. No obstant això, l’assemblatge i l’anàlisi

d’aquestes dades és molt lent en processadors de propòsit general. Per tant, els acceleradors

són essencials en el camp de la genòmica, especialment per a l’assemblatge d’ADN. Utilitzant

hardware dissenyat per a aquest domini concret, com ara FPGAs o ASICs, els investigadors

en genòmica poden aconseguir millores significatives en el rendiment en comparació amb els

processadors de propòsit general. Gràcies als acceleradors, la velocitat de l’assemblatge d’ADN

pot mantenir-se al ritme de la seqüenciació d’ADN, el que permet un anàlisi i descobriments

més ràpids en genòmica.

L’objectiu principal d’aquesta tesi és accelerar dues aplicacions crítiques de l’assemblatge

d’ADN, el recompte de k-mers i l’alineament de seqüències, utilitzant FPGAs i ASICs. La

primera contribució es centra en accelerar l’aplicació de recompte de k-mers utilitzant FPGAs i

la seva adaptació en una aplicació de genòmica anomenada SMUFIN. La segona i la tercera

contribució es centren en accelerar amb FPGAs el nou algoritme d’alineament de seqüències

WFA. L’accelerador de la segona contribució està dissenyat per a seqüències curtes d’ADN

de fins a 300 bases, que són generades per tecnologies de seqüenciació de pròxima generació.

L’accelerador de la tercera contribució està dissenyat per a seqüències llargues d’ADN de

fins a 50.000 bases, que són generades per tecnologies de seqüenciació de tercera generació.

En la quarta contribució dissenyem un ASIC per accelerar l’alineament de seqüències amb

vii

Resum

WFA i l’integrem en un SoC RISC-V. En totes les contribucions analitzem diferents parts de

l’aplicació i portem les parts més lentes a l’accelerador. També modifiquem i redisenyem les

parts restants de la CPU per adaptar-les al codi de l’accelerador

En la nostra primera contribució, el nostre accelerador de recompte de k-mers millora el

rendiment del recompte de k-mers de SMUFIN en un factor de 2,14×, mentre que consumeix

un 2,93× menys energia i un 1,57× menys memòria en comparació amb la implementació

software de referència. El rendiment dels acceleradors d’alineament de seqüències de la

segona i la tercera contribució s’avalua utilitzant una i dues FPGAs. En comparació amb la

implementació software de referència de l’algoritme WFA, el segon accelerador millora el

rendiment fins a 8,8× i 13,5× amb una i dues FPGAs, respectivament, i millora la eficiència

energètica fins a 9,7× i 14,6× amb una i dues FPGAs, respectivament. El tercer accelerador

arriba a millores de rendiment de fins a 5,6× i 9,9× amb una i dues FPGAs, respectivament, i

una millor eficiència energètica de fins a 7,5× i 10,9× amb una i dues FPGAs, respectivament.

En la quarta contribució el nostre accelerador ASIC integrat en el SoC millora el rendiment

fins a 1076× en comparació amb la implementació software de l’algoritme WFA a Sargantana,

la CPU RISC-V del xip.

viii

List of Figures

1.1 50 years of microprocessor trend data [1]. 2

1.2 The cost of sequencing a human-sized genome [17]. 3

2.1 DNA structure [21]. 14

2.2 NGS shotgun sequencing and read production [25]. 15

2.3 An example of a Hamiltonian and Eulerian de Bruijn graphs [40]. 18

2.4 Calculating DP-matrix of edit distance between sequences a and b. 23

2.5 a) Distance scoring matrix; b) Similarity scoring matrix. 24

2.6 Calculating the DP-matrix of local alignment between sequences a and b. . . 26

2.7 Memory hierarchy in GPUs [74]. 30

2.8 (a) The von Neumann architecture in CPU and GPU, (b) PIM architecture [80]. 32

2.9 FPGA structure. Derived from [101]. 34

2.10 FPGA design flow. 35

2.11 RISC-V based SoC with cryptography accelerators [112]. 37

3.1 POWER9 system. 42

3.2 CAPI infrastructure [194]. 43

3.3 CPU and FPGA direct memory access. 44

4.1 SMUFIN mandatory and optional (light color) phases. 51

4.2 Procedure of the count step. 53

4.3 Proposed procedure of the count step. 54

4.4 Block diagram of FPGA k-mer generator modules. The connections are labeled

with their width, in bits. 56

4.5 Example of partitioning lookup table. 58

4.6 An example of k-mer and its frequency layout after data compaction. 59

4.7 Execution time for different designs and configurations. 61

ix

LIST OF FIGURES

4.8 Memory and disk usage of the count step. 63

4.9 Power consumption of the count step over time. 64

5.1 Dependencies between previous wavefronts to compute one element of the new

wavefront [19]. 68

5.2 Alignment of two sequences using penalties (x,go,ge) = (4,6,2). Left) SWG

DP-matrix highlighting the cells that are computed by the WFA. Right) Calcu-

lation of the necessary wavefront vectors by the WFA. 69

5.3 Example of error rate, error score, and penalties. 72

5.4 Steps in the WFA co-designed accelerator of short reads and example of the

compact and full CIGAR. The compact CIGAR is computed in the FPGA and

only returns differences between sequences. Then, the CPU recovers the full

CIGAR inserting matches by comparing both sequences in the CPU. 73

5.5 Structure and different modules of the FPGA design of the WFA accelerator

for short reads. 74

5.6 a) An example WFA wavefront matrix with k = 8. Valid cells for penalties

(x,go,ge) = (4,6,2) are marked with an X. Same colored cells of each column

are the parallel inputs of the Extend and Compute modules at each clock cycle.

The appropriate Extend and Compute inputs are selected using multiplexers

shown in (b). 76

5.7 Architecture of the Aligner module and its sub-modules in the FPGA design of

the WFA accelerator for short reads. 78

5.8 Co-design steps in the WFA accelerator for long reads. The FPGA aligns reads

in batches while the CPU checks the results and performs the backtrace. The

CPU Rescue computes the alignments that the FPGA has failed to compute. . 80

5.9 Synchronization of different threads. 81

5.10 Structure and different modules of the FPGA design of the WFA accelerator

for long reads. 83

5.11 Implementation of the M̃ wavefront matrix using RAMs in the WFA accelerator

for long reads. 86

5.12 Data required by each Compute sub-module and how it is accessed as cells of a

matrix (left) or words of a RAM (right). Two accesses in two consecutive clock

cycles are required to read the data required by the Compute sub-modules. For

simplicity, the right figure only shows connections and addresses for the first

access. 87

x

LIST OF FIGURES

5.13 Parallel structure of an Aligner using input RAMs and wavefront RAMs in the

WFA accelerator for long reads. 89

5.14 Extend sub-module in the FPGA design of the WFA accelerator for long reads. 90

5.15 The format of writing the alignment and backtrace data in memory for the

design of long reads. 93

5.16 ASM chart and equations for calculating compact CIGAR. 94

5.17 Speedup of the FPGA designs of the WFA accelerator for short reads with

respect to WFA-CPU. 98

5.18 Speedup of the FPGA designs for short reads with WFA-CPU (top) and one

FPGA (bottom) for multi-threaded runs over single-threaded WFA-CPU. . . . 100

5.19 Energy improvement of the FPGA designs for short reads with respect to

WFA-CPU. 100

5.20 Speedup of the FPGA designs for long reads with respect to WFA-CPU. . . . 101

5.21 Speedup of the FPGA designs for medium reads with respect to WFA-CPU. . 102

5.22 Speedup of the FPGA design 13 for long reads with different number of

Aligners and with one and two FPGAs with respect to the same design with

one Aligner and one FPGA. 102

5.23 Speedup of the FPGA designs for long reads with WFA-CPU (top) and one

FPGA (bottom) for multi-threaded runs over single-threaded WFA-CPU. . . . 103

5.24 Energy improvement of the FPGA designs for long reads with respect to

WFA-CPU. 104

5.25 Energy improvement of the FPGA designs for medium reads with respect to

WFA-CPU. 105

5.26 Speedup (left) and energy improvement (right) of the FPGA designs of long

reads with respect to WFA-CPU when applying real input sets. 107

6.1 SoC architecture including the RISC-V CPU, the WFAsic accelerator and their

connections. 112

6.2 WFAsic structure and different modules. 114

6.3 The format of writing the alignment and backtrace data in memory for the

WFAsic. 118

6.4 Accelerator layout. The size is 1330um×1200um with all the connectivity on

the right side. 119

6.5 Speedup with respect to the CPU-scalar code. 121

6.6 Speedup of adding Aligners with respect to one Aligner. 122

xi

LIST OF FIGURES

6.7 Performance comparison between WFAsic with one Aligner of 64 parallel

sections (64PS) performing data separation (Sep), two Aligners of 32 parallel

sections (32PS) performing data separation (Sep), and one Aligner of 64 parallel

sections (64PS) without performing data separation (No Sep). 123

xii

List of Tables

3.1 Input sets of second, third and fourth contributions. 47

4.1 FPGA resources utilization (%) for the CAPI-related IP cores and for the

proposed k-mer counting accelerator. 60

4.2 Execution time and disk space requirements of the count and unify steps with

the prune step enabled and disabled. 62

5.1 FPGA designs, resource utilization, number of Aligners in each FPGA and

synthetic inputs used in the evaluation. 96

5.2 Duration (in clock cycles) of alignment, backtrace and extracting reads of one

sequence pair and maximum efficient Aligners in each FPGA. 99

5.3 Real input sets specifications. 106

5.4 FPGA design configurations evaluated with real input sets. 106

5.5 Computed and equivalent GCUPS achieved by our co-designs for different inputs.108

5.6 Peak GCUPS of different exact SWG FPGA accelerated methods. 109

6.1 Maximum number of Aligners for each input based on the execution cycles of

reading and aligning one pair of reads. 122

6.2 GCUPS and area comparison of different platforms/methods aligning reads of

10Kbp. 125

6.3 GCUPS comparison of WFA-1FPGA and WFAsic per Aligner. 125

xiii

Table of contents

Acknowledgements i

Abstract iii

Resumen v

Resum vii

List of Figures ix

List of Tables xiii

Contents xvii

1 Introduction 1
1.1 Thesis Objectives and Contributions . 4

1.1.1 Accelerating K-mer Counting . 5

1.1.2 Accelerating Pairwise Read Alignment 7

1.2 Thesis Outline . 10

2 Background 13
2.1 Genomics . 13

2.1.1 DNA Sequencing . 15

2.1.2 DNA Assembly . 17

2.2 Hardware Accelerators . 28

2.2.1 GPU . 29

2.2.2 PIM . 31

2.2.3 FPGA . 33

2.2.4 ASIC . 36

TABLE OF CONTENTS

2.2.5 Genomics Hardware Accelerators 38

3 Experimental Methodology 41
3.1 Platforms . 41

3.1.1 POWER9 Platform . 41

3.1.2 ASIC Platform . 45

3.2 Baselines and Input Sets . 45

3.2.1 K-mer Counting in SMUFIN . 45

3.2.2 WFA for Pairwise Read Alignment 46

4 K-mer Counting FPGA Accelerator 49
4.1 Introduction . 49

4.2 Background . 50

4.2.1 DNA Reads, K-mers and K-mer Counting 50

4.2.2 SMUFIN Overview . 50

4.2.3 SMUFIN K-mer Counting Structure 51

4.3 Acceleration Method of K-mer Counting in SMUFIN 53

4.3.1 Prune Step . 53

4.3.2 Count Step . 54

4.3.3 Unify Step . 59

4.4 Evaluation and Results . 59

4.4.1 Experimental Setup . 59

4.4.2 Results . 60

4.5 Conclusions . 64

5 WFA FPGA Accelerator 65
5.1 Introduction . 65

5.2 Background . 67

5.3 WFA Accelerator for Short Reads . 73

5.3.1 Extractor Module . 74

5.3.2 Collector Module . 74

5.3.3 Aligner Module . 74

5.4 WFA Accelerator for Long Reads . 79

5.4.1 Hardware/Software Co-design Structure 80

5.4.2 Extractor Module . 84

xvi

TABLE OF CONTENTS

5.4.3 Aligner Module . 84

5.4.4 Collector Module . 91

5.4.5 Backtrace in CPU . 92

5.5 Evaluation and Results . 95

5.5.1 Experimental Setup . 95

5.5.2 Results of Short Reads for Synthetic Input Sets 98

5.5.3 Results of Long Reads for Synthetic Input Sets 101

5.5.4 Results of Long Reads for Real Input Sets 105

5.5.5 Performance Comparison . 107

5.6 Conclusions . 109

6 WFA ASIC Accelerator 111
6.1 Introduction . 111

6.2 System on Chip Architecture . 112

6.3 WFAsic Accelerator . 113

6.3.1 Memory implementations . 113

6.3.2 Extractor Adaptation . 115

6.3.3 Collector Adaptation . 115

6.3.4 Backtrace . 117

6.4 Evaluation . 119

6.4.1 ASIC Synthesis and Place and Route 119

6.4.2 FPGA Prototype Performance Results 120

6.5 Conclusions . 125

7 Conclusions 127
7.1 Goals, Contributions and Main Conclusions 127

7.2 Future Work . 130

7.3 Publications . 131

7.4 Financial and Technical Support . 133

Bibliography 135

xvii

Chapter 1
Introduction

The progress of Moore’s Law is being impeded by physical limitations in silicon device

physics. According to the data collected and plotted by Horowitz et al. [1] in Figure 1.1,

since 2004 the frequency has not scaled anymore as the Dennard Scaling was no longer viable

due to increasing leakage power and chip temperature in the advanced technology nodes,

where the size of transistors has shrunk to the point where physical effects have a significant

impact on power consumption. As a result, improving single-threaded performance (execution

time) through clock frequency and process node improvements is no longer effective. Slight

increases in single-thread performance after 2004 are achieved with developments in computer

architecture [2] and clever power management by dynamic clock frequency adjustments [3].

Therefore, instead of increasing frequency, the focus has shifted to using multicore processors

to achieve performance gains. In this trend, cores work in parallel at lower frequencies and

share resources, and so consume less power. However, the use of multiprocessing is limited

by Amdahl’s Law, which states that any speedup will be restricted by the sequential parts of

the software. Hence, instead of relying solely on general-purpose processors, the technology

industry is now emphasizing specialization and developing domain-specific accelerators [4].

A domain-specific accelerator refers to a specialized hardware computing device designed

for a particular domain of applications. These accelerators are capable of significantly en-

hancing the performance/cost and performance/W ratios when compared to general-purpose

computers. To accelerate domains of applications, different types of accelerators such as

Graphics Processing Units (GPUs), Processing in Memories (PIMs), Field Programmable Gate

Arrays (FPGAs), and Application Specific Integrated Circuits (ASICs) are available, each

with varying degrees of development cost, programmability, and efficiency trade-offs. These

accelerators have been developed for various tasks, genomics being one of them [5].

Genomics is a field of biology that deals with the study of genes and their functions.

Genomics is changing our understanding of humans, evolution, diseases, and medicine. The

1

Figure 1.1: 50 years of microprocessor trend data [1].

genomics data is not only valuable to find the DNA mutations causing cancer [6], Alzheimer [7],

genetic disorders [8], and autism [9], but also to better understand the human biology and the

differences between individuals [10–12], which opens the door to personalized medicine in

which each patient takes specific and effective medical treatments regarding to their individual

characteristics or genetic information [13, 14].

Genomics is divided to two very general categories of DNA sequencing and DNA assembly.

DNA sequencing is a chemical process, used to obtain the DNA in a format that can be analyzed

by scientists. Today, the growth of DNA sequencing using new technologies is significantly

outpacing the growth of computation power predicted by the Moore’s Law and, as shown in

Figure 1.2, have drastically reduced the cost of DNA sequencing compared to just a few years

ago by several orders of magnitude. The Illumina NovaSeq 6000 system can sequence about

48 human whole genomes at 30× genome coverage (the average number of times a base is

sequenced) in about two days [15, 16].

After DNA sequencing, the first step to make it usable for scientific analysis consists of

DNA assembly which is reconstructing the DNA sequence. Advances in genomics technology

have allowed researchers to analyze large amounts of genomics data quickly and accurately.

However, the analysis of genomic data is computationally intensive, and general-purpose

processors are often not powerful enough to handle the processing requirements. For example,

reconstructing the sequenced data of a single human genome, which consists of 90GB of data,

requires over 32 hours on a 48-core Intel Xeon processor [16]. Analyzing this amount of data

using CPU based platforms is time-consuming and falls the speed of DNA assembly far behind

that of DNA sequencing.

2

Introduction

Figure 1.2: The cost of sequencing a human-sized genome [17].

Hence, as mentioned earlier, domain-specific accelerators in genomics domain for DNA

assembly are considered as promising solutions for improving performance as well as reducing

power consumption. Among the available accelerators, FPGAs are of more interest due to their

performance, scalability, energy efficiency, and reconfigurability. FPGAs are integrated circuits

that can be programmed to perform specific tasks, making them highly versatile and efficient

for a wide range of applications. One of the main advantages of using FPGAs in genomics

applications is their high performance. FPGAs can achieve processing speeds (throughput) that

are significantly higher than those of CPUs and GPUs. This means that FPGAs can significantly

reduce the time required to process large genomic datasets, making it possible to perform

complex genomics analyses in a timely manner. Also, FPGAs are highly scalable, which means

they can be configured with multiple processing units, which makes them highly efficient for

parallel processing. This means that FPGAs can be used to scale up genomics applications to

handle large datasets, making them ideal for large-scale genomics projects. Another advantage

of using FPGAs is their low power consumption. Although FPGAs can be more expensive

than traditional computing platforms, they can be more cost-effective in the long run. FPGAs

consume less power than traditional computing platforms, which can result in significant cost

savings over time. This is particularly important for large-scale genomics projects, where the

energy costs of traditional computing platforms can be prohibitively high. Additionally, FPGAs

can be customized to meet the specific requirements of a particular genomics application, which

can result in increased efficiency and cost savings. FPGAs can be reprogrammed to perform

3

1.1 Thesis Objectives and Contributions

different tasks, making them highly flexible. This is useful for genomics applications, which

often involve developing new algorithms or modifying existing ones.

While FPGAs are reconfigurable, ASICs are custom-built integrated circuits that are de-

signed and optimized to perform a specific function. ASICs are also good options for accelerat-

ing genomics applications. ASICs are more energy efficient compared to the FPGAs and reach

higher working frequencies, however, they are more costly and have more complex design flow.

Despite the fact that FPGAs and ASICs have many advantages in genomics applications,

there are some challenges associated with their use. One of the main challenges of using them

in genomics applications is the complexity of designing them. In addition, due to the hardware

resource restrictions of FPGAs and ASICs, they may not have enough resources (i.e. memory)

to handle some of the most complex applications. This means that they may not be suitable

for all genomics applications. Hence, wise decisions should be made to select the genomics

applications or a part of them which are good targets for the FPGA/ASIC implementation.

Hardware/software co-design using FPGAs and ASICs can offer several benefits for ge-

nomics applications. FPGA and ASIC hardware/software co-designs provide the required

flexibility, in terms of performance, resources/memory usage and design complexity, for im-

plementing genomics applications, resulting in highly optimized systems that can handle

large-scale genomics data processing. Additionally, hardware/software co-design can result in

reduced power consumption, as the custom hardware can be designed to operate at low power.

1.1 Thesis Objectives and Contributions

The objective of this thesis is accelerating important genomics applications. To do this,

we select important genomics applications, we identify their most time-consuming steps as

best candidates for acceleration, we evaluate the feasibility and the potential performance

improvement, and we propose hardware/software co-designs for them. After that, the software

codes are modified and customized for the accelerators integration in a hardware/software

co-designed approach.

The selected target applications cover k-mer counting application and its implementation in

a de novo approach, SMUFIN [18], and a novel pairwise read alignment algorithm, WFA [19].

These applications are computationally intensive and require significant amounts of memory

and processing power to complete in a reasonable time. Traditional computing architectures,

such as CPUs, are often not efficient enough to handle these tasks in a reasonable amount

4

Introduction

of time. However, using FPGAs and ASICs which offer high speed, power efficiency and

scalability are promising solutions for accelerating these applications.

This thesis does a total of four contributions; one contribution to accelerate the k-mer

counting and its integration within the SMUFIN, and three contributions to accelerate WFA.

More specifically, the four contributions of this thesis are:

• Accelerating the k-mer counting.

• Accelerating pairwise read alignment.

– Aligning short reads using FPGAs.

– Aligning long reads using FPGAs.

– Aligning reads using ASICs.

1.1.1 Accelerating K-mer Counting

The first contribution of this thesis, in general, accelerates the genomics k-mer counting

application through an FPGA-based hardware/software co-design, and in particular its usage

in the SMUFIN algorithm [18]. K-mer counting involves counting the occurrence of all

possible substrings of length k in a sequence. K-mers are used in a variety of genomics

applications, including genome assembly and gene expression analysis. SMUFIN is a state-of-

the-art algorithm for identifying somatic mutations in DNA samples. The algorithm consists of

separate and sequential steps, with the first step being k-mer counting. This step reads DNA

sequences stored in several files, generates all possible k-mers of all reads, and then counts

the number of appearances of each distinct k-mer in the whole dataset. Since a huge amount

of data should be processed, k-mers are processed in batches, and the results of each step are

stored on the disk as intermediate data. These intermediate data are later merged to generate a

single histogram table.

The k-mer counting step is considered data-intensive, and generates and consumes more

than 500GB of intermediate data. One of the main challenges in software implementation of

data-intensive applications like k-mer counting is the high computational requirements and

the large amount of memory resources required. The sequential execution of the algorithm

on traditional CPUs can be slow, and parallelizing the code can introduce overheads and

dependencies that limit scalability. Moreover, the memory requirements for k-mer counting can

be substantial, which can lead to issues with memory allocation and management in software

implementations. Additionally, the use of high-performance computing resources can lead to

high energy consumption, making the analysis of genomics data unsustainable in the long run.

Offloading some portions of these applications to the FPGAs can overcome the limitations of

5

1.1 Thesis Objectives and Contributions

software implementation, as FPGAs are capable of performing parallel computations at a much

higher speed and with much lower energy consumption. This leads to faster and more efficient

data analysis, enabling researchers to analyze larger datasets and ultimately accelerate the pace

of genomics research. However, optimizing the performance of the algorithm requires a deep

understanding of the underlying hardware and software architectures.

In this contribution, we investigate the bottlenecks of the k-mer counting software imple-

mentation of the SMUFIN algorithm and redesign it to improve its performance. Additionally,

we explore portions of the code that are relatively slow in software and could be parallelized

using FPGA. Finally, we propose an efficient hardware/software co-design for k-mer counting

in SMUFIN that improves performance, reduces power consumption, and requires less memory

while producing the same output. To achieve these goals, we make several contributions. Firstly,

we present an register-transfer-level (RTL) design for the FPGA that accelerates the processes

of extracting reads and generating k-mers. Secondly, we modify the software algorithm, where

it counts the occurrence of all k-mers, to remove dependencies between parallel threads, re-

duce overheads, and use less memory. Finally, we introduce data compaction mechanisms

to minimize memory and disk requirements of the intermediate data. We integrate the co-

designed accelerator into an adapted version of SMUFIN, and evaluate it on a high-performance

computing node with a dual-socket POWER91 processor and an FPGA.

Our results show that the co-design of the k-mer counting of SMUFIN, using one Xilinx

Virtex UltraScale+ (XCVU3P) FPGA running at 250MHz, outperforms the 160-threaded

CPU-only design, running on 40 cores of the POWER9 High Performance Computing (HPC)

machine, by 2.14×, while consuming 2.93× less energy and 1.57× less memory. This co-

design is not only applicable to the SMUFIN algorithm but can also be adapted for use in other

algorithms that require k-mer counting. Our work has important implications for genomics

research and for the development of more efficient and effective algorithms for identifying

somatic mutations in DNA samples. By improving the performance and reducing the power

consumption and memory requirements of the SMUFIN algorithm, our work contributes to the

development of more efficient and sustainable genomics research.

1IBM, POWER9 and OpenCAPI (Open Coherent Accelerator Processor Interface) are registered trademarks.
Other product or service names may be trademarks or service marks of IBM or other companies. A current list of
IBM trademarks is available on ibm.com/trademark.

6

Introduction

1.1.2 Accelerating Pairwise Read Alignment

Pairwise read alignment involves aligning two sequences of DNA reads to identify regions of

similarity and differences. This technique is used in genome assembly and variant detection.

This thesis makes three contributions towards accelerating pairwise read alignment, which are

detailed in the following sub-sections.

Aligning Short Reads using FPGAs

The second contribution of this thesis aims to accelerate the pairwise read alignment of short

DNA reads (up to 300 bases) through an FPGA-based hardware/software co-design. In most

DNA sequence analysis pipelines, the first step is to locate each read in the reference genome.

This process is known as read mapping and involves two main steps. The first step, seeding,

involves filtering and minimizing the potential locations of the reads in the reference genome.

The second step, seed extension, entails aligning the reads with the potential candidate locations

of the reference genome. This contribution specifically focuses on the seed extension step of

read mapping which is also known as pairwise read alignment.

Next Generation Sequencing (NGS) technologies generate massive amounts of short reads,

typically ranging from 50 to 300 base pairs in length. These short reads pose a significant

challenge in terms of aligning them to a reference genome. Variants of Smith-Waterman

(SW) algorithm are commonly used for the pairwise read alignment, but unfortunately it is

computationally intensive and requires significant amount of memory. This is because these

algorithms are based on Dynamic Programming (DP) and require O(n2) execution time and

memory proportional to the sequence length n. Hence, by increasing the sequence length,

the computational requirements of the SW increases drastically. Running SW alignment for

millions of short reads can be time-consuming and resource-intensive, making it a bottleneck

in the overall analysis pipeline. Recently, the WaveFront Alignment (WFA) [19] algorithm

has been proposed as a breakthrough solution, which runs in O(n·s) time, proportional to the

sequence length n, and the error score between sequences s. It utilizes a novel approach that

only computes a reduced number of DP-matrix cells to find the optimal alignment.

In this contribution, we examine the software code of the WFA algorithm, conduct profiling,

and identify functions that could be parallelized and moved to the FPGA. We distribute the

workload across two available accelerators and modify the software code to schedule tasks

between them and verify accelerator results. In addition, some alignment tasks still need to be

performed by the CPU and cannot be moved to the FPGA. As a result, we propose the first

7

1.1 Thesis Objectives and Contributions

FPGA-based hardware/software co-designed accelerator for the wavefront alignment algorithm.

This accelerator computes sequence alignments for pairs of sequences and produces compacted

results that make communication between the CPU and FPGA more efficient.

Our WFA accelerator design which is suitable for aligning short length DNA sequences,

using Xilinx Virtex UltraScale Plus (XCVU37P) FPGAs running at 200MHz, achieves speedups

of 4.5× to 8.8× with one FPGA and 8.2× to 13.5× with two FPGAs, compared to the 64-

threaded CPU-only implementation of the reference WFA running on 16 cores of the POWER9

HPC machine. Additionally, the FPGA accelerator reduced energy-to-solution by 6.1× to 9.7×
with one FPGA and by 11.4× to 14.6× with two FPGAs. The accelerator is also scalable, with

multiple aligner cores that can work in parallel to compute sequence alignments, depending on

available resources. Furthermore, the design is parameterizable, with configurable maximum

supported read length and error score values between the reads, making it adaptable to different

input sets with varying characteristics.

Aligning Long Reads using FPGAs

The third contribution of this thesis aims to accelerate the pairwise read alignment of long DNA

reads (more than 10K bases) through an FPGA-based hardware/software co-design. While

NGS technologies have revolutionized the field of genomics, there are still some limitations

that have led to the emergence of third generation sequencing technologies, which provide

reads with lengths on the order of a few thousand base pairs.

NGS technologies have difficulties in sequencing long DNA fragments, calling large

structural variants, and impose difficulties in assembling repetitive genome regions. On the

other hand, third generation sequencing technologies can produce ultra-long reads, which

makes it easier to sequence these previously difficult-to-sequence regions. Moreover, the ability

of third generation sequencing technologies to produce longer reads and real-time sequencing

data, could reduce the time and cost associated with DNA analysis. This could make third

generation sequencing technologies more attractive for large-scale genomics projects.

Long read aligners are critical tools for accurately mapping long reads generated by third

generation sequencing technologies to reference genomes. However, the implementation of

long read aligners, particularly on FPGAs, can be challenging due to the large amounts of data

involved. One of the main difficulties in implementing long read aligners on FPGAs is the high

memory requirements. This often results in the need for off-chip memory access, which can

significantly slow down the alignment process. In addition, implementing computations of the

8

Introduction

long reads alignment algorithms on FPGAs can be challenging, particularly when trying to

balance the trade-off between performance and resource usage.

To address these challenges, many researchers have turned to heuristic methods for imple-

menting long read aligners on FPGAs. Heuristic methods involve using simplified algorithms

that sacrifice some accuracy in exchange for improved computational efficiency. While these

methods may not produce optimal results, they can still provide high-quality alignments that

are suitable for many downstream analysis.

In this contribution, we propose a modified design for the WFA accelerator, which extends

its functionality to medium and long reads. Our approach involves intelligent usage of FPGA

RAMs to store sequences and data structures of the WFA algorithm, as well as a re-organization

of tasks between the FPGA and CPU in hardware/software co-design. Unlike many long read

aligners, our design implements the optimal WFA alignment algorithm, rather than relying on

heuristics.

Our WFA accelerator design which is suitable for aligning long length DNA sequences,

using Xilinx Virtex UltraScale Plus (XCVU37P) FPGAs running at 200MHz, achieves signifi-

cant speedups, ranging from 2.6× to 5.6× with one FPGA, and 2.7× to 9.9× with two FPGAs,

compared to the 64-threaded CPU-only implementation of the reference WFA running on 16

cores of the POWER9 HPC machine. We also reduce energy-to-solution by 3.6× to 7.5× with

one FPGA, and 3.7× to 10.9× with two FPGAs. Similar to our design for aligning short reads,

this design is also scalable and parameterizable. The parameters of this design allow users to

balance resource utilization between FPGA RAMs and lookup tables. This provides efficient

and even utilization of resources, which consequently maximizes parallelization.

Aligning Reads using ASICs

The fourth contribution of this thesis aims to accelerate the pairwise read alignment of DNA

reads using an ASIC implementation of WFA algorithm in a RISC-V SoC. Having genomics

ASIC accelerators inside a RISC-V SoC offers several benefits over a system with FPGA. Firstly,

ASICs offer higher performance and energy efficiency compared to FPGAs. This is because

ASICs are specifically designed to perform a particular task, whereas FPGAs are general-

purpose devices that can be reconfigured to perform different tasks. Therefore, ASICs can

provide higher computational power and lower energy consumption for genomics applications,

making them a more cost-effective solution in the long run. Moreover, integrating genomics

ASIC accelerators into a RISC-V SoC can improve system-level integration and reduce the

overall system complexity. By having ASICs integrated into the SoC, the communication

9

1.2 Thesis Outline

between the different components can be optimized, leading to faster and more efficient data

transfer. Additionally, having an ASIC-based solution can also lead to a reduction in the form

factor of the overall system, which can be beneficial in applications where space is a constraint.

However, porting FPGA code to ASIC can be a challenging task due to the fundamental

differences between the two technologies. FPGAs are reconfigurable devices, and the design

flow involves programming the logic and routing resources of the device. In contrast, ASIC

design involves a process of physical implementation, which involves the design of custom

logic cells and interconnects. As a result, porting FPGA code to ASIC can require significant

modifications to the original design, making it a complex and time-consuming process.

In this contribution, we modify our FPGA-based long-reads design to be implemented

on an ASIC. We achieve this by exploring various design configurations to ensure that the

design meets the budget constraints of the ASIC while maintaining the highest possible level of

parallelization. We also make changes to the previous design to make it compatible with the

requirements of the SoC. Additionally, we modify the hardware modules and components to

optimize the ASIC operating frequency. Moreover, we adapt the C code running on the RISC-V

processor to work with the new hardware implementation, with the ultimate goal of achieving

the best single-thread performance for the entire co-design.

Our ASIC design after synthesis and Place and Route (PnR) in GlobalFoundries 22nm

technology fits in an area of 1.6mm2 and reaches a frequency of 1.1GHz. The ASIC accelerator

is configured using a standard Linux driver and Application Programming Interface (API). In

addition, the ASIC accelerator runs as an independent process in parallel to other CPU processes.

Based on the performance analysis using an FPGA prototype, the integrated ASIC accelerator

provides performance improvements of up to 1076× compared to the CPU implementation of

the WFA running on Sargantana [20], the in-order single-threaded RISC-V CPU of the chip

which also runs at 1.1GHz.

1.2 Thesis Outline

The contents of this thesis are organized as follows:

• Chapter 2 presents the background and definitions in genomics, different hardware

accelerators and their architectures, and related works in accelerating genomics with

hardware accelerators.

10

Introduction

• Chapter 3 presents the experimental methodology used within the four contributions of

this thesis.

• Chapter 4 presents the first contribution of this thesis, which provides an FPGA-based

hardware/software co-design for accelerating k-mer counting and its implementation in

the SMUFIN application.

• Chapter 5 presents the second and third contributions of this thesis, which provides

FPGA-based hardware/software co-designs for accelerating pairwise read alignment of

short and long reads using WFA algorithm.

• Chapter 6 presents the fourth contribution of this thesis, an ASIC implementation of

WFA for pairwise read alignment in a RISC-V SoC.

• Finally, Chapter 7 concludes by summarizing the contributions of this thesis, listing the

publications resulting from it and considering what future potential research directions it

suggests.

11

Chapter 2
Background

This chapter presents the background and outlines the related work in the topics addressed in

this thesis. This chapter is divided in two main sections. First, in Section 2.1 we explain the

required background on genomics and the necessary definitions to understand this thesis. It

includes Section 2.1.1, which is about DNA sequencing, and Section 2.1.2, which is about

DNA assembly methods and their fundamental operations which are the focus of this thesis, i.e.,

k-mer counting and pairwise sequence alignment. Then, in Section 2.2 we describe different

hardware accelerators and their architectures, in which Section 2.2.1 provides context for

GPUs, Section 2.2.2 describes processing in memory, and Sections 2.2.3 and 2.2.4, respectively,

discuss FPGA and ASIC accelerators, which are the accelerators we used in this work. Finally,

Section 2.2.5 reviews the main hardware accelerators for genomics applications which are most

related to this thesis.

2.1 Genomics

The DNA of each living species and virus holds the genetic instructions (codes) which determine

the characteristics of that species. DNA is made of two twisted and connected strands of chained

nucleotides. Nucleotides are made of sugar and phosphate molecules, and one of four types

of nitrogen bases, i.e., adenine (A), cytosine (C), guanine (G) and thymine (T). The chain of

each DNA strand is formed by alternating covalent bounds between sugars and phosphates of

consecutive nucleotides [21, 22]. Then, the two strands are connected by forming hydrogen

bonds between complementary bases of the strands, i.e., A with T and C with G and vice versa.

A pair of those bonded bases is called a base pair (bp). Figure 2.1 shows the structure of a

DNA [23].

The sequence of bases in the DNA strands determines the biological instructions of the

DNA. For example, the sequence ATCGTT might instruct for blue eyes, while ATCGCT might

13

2.1 Genomics

Figure 2.1: DNA structure [21].

instruct for brown. The complete human instruction genome is made of 3 billion bases and

20,000 genes on 23 pairs of chromosomes [21]. The human reference genome is developed

and maintained by the Genome Reference Consortium and the current version is called the

GRCh38 [24].

In order to study and analyze DNA, it is necessary to decode its instructions. Instructions

are actually DNA sequences, and each instruction is related to a section of the DNA sequence,

called gene. Decoding instructions refers to identifying which instruction affects which organs

and in what manner. However, before decoding, the initial step is to obtain DNA sequences,

i.e., for a human, the 3 billion bases of the DNA in order. The techniques of obtaining

DNA sequences are developing every day, and are getting faster, more accurate, and more

cost-effective.

Obtaining DNA sequences is a two-step approach. In the first step, DNA sequencing, the

DNA is sampled and sequenced in short or long lengths. In the second step, DNA assembly, the

sequenced data is put together to reconstruct the whole genome.

14

Background

2.1.1 DNA Sequencing

Nowadays, DNA sequencing is the most widely used way to obtain the DNA sequences in a

format that can be analyzed by scientists. DNA sequencing is the process of sampling molecules

of the DNA into a large number of fragments, called reads, and reading the sequence of bases

in each read. The size of the reads depends on the sequencing technology. Apart from the first

generation DNA sequencing technique, there are two DNA sequencing technologies in the

market, known as next generation DNA sequencing and third generation DNA sequencing.

First Generation DNA Sequencing

In 1977, the complete genome of an organism was sequenced for the first time using the first

generation of sequencing technologies. Sanger sequencing, the widely preferred method at the

time, eventually produced a reference human genome in 2003. Sanger reads fragments of the

DNA sequence with a few thousand base pairs long, which are useful for sequencing unknown

genomes where no reference genome is available. However, this process requires high cost and

long time to sequence DNA, thereby limiting the usage of these sequencers [14].

Next Generation DNA Sequencing

Since 2005, next generation sequencing technologies have proliferated. Instead of producing

the long and slow-to-extract reads, NGS technologies use shotgun sequencing, in which the

DNA is cut in many small fragments and, from those fragments, reads are extracted in parallel.

Thus, this technique makes genome sequencing much easier, faster and cheaper. A sequencing

run produces many overlapping reads [25, 26] because first the DNA is replicated and then

each copy is cut somewhat randomly, resulting in many overlapping fragments [27]. Figure 2.2

shows the NGS shotgun sequencing and the read production process.

Figure 2.2: NGS shotgun sequencing and read production [25].

15

2.1 Genomics

NGS technologies are typically capable of producing output reads with short lengths of

between 50 and 300 base pairs, so they are also know as Short Read Sequencing (SRS)

technologies [26]. As sequencing technologies are not 100% accurate, sequencing machines

report a quality score for each sequenced base of the DNA [25]. The higher the quality score is,

the more accurate the base call is. A quality score of 20 means that 1 error might occur in every

1000 sequenced bases. The accuracy of a base with a quality score of 20 is 99% and that of 30

is 99.9% (1 error in 10,000 bases) [28]. Low quality bases could be neglected or substituted

with other bases depending on the application.

NGS sequencing machines fragment DNA into small pieces, amplify them, and then

sequence the resulting fragments simultaneously to achieve a high coverage of the genome.

Coverage or depth refers to the number of times a given base in a genome is sequenced by

high-quality reads. In other words, it is the number of times that a given position in the genome

is covered by a high-quality read [29]. The quality of the sequenced bases is measured using

a Phred quality score, which is a logarithmic scale that reflects the probability of an error in

base calling. A base with a quality score of at least 20 is considered a high-quality base [30].

NGS coverage level for whole human DNA sequencing is recommended to be between 30×
and 50× depending on the application [31].

NGS sequencing technologies usually provide sequenced reads in FASTQ file format. Each

read in a FASTQ file is represented by four lines. The first line determines the sequence

identifier and information about the sequencing run and the cluster, such as machine ID, run

session, lane, etc. The second line contains the sequence data (sequenced bases). The third line

is a separator between the data of the second and the fourth lines. It starts with the character

“+”, and is optionally followed by the same sequence identifier. The fourth line includes the

quality scores for each base in line 2 [32].

Illumina, Ion Torrent, Roche 454 and SOLID are some of the available and widely used NGS

sequencing technologies nowadays. Although NGS has very good output quality (error rates

around 0.1%), it fails to generate sufficient overlapping sequences from the DNA fragments.

This constitutes a major challenge for reconstructing a highly complex and repetitive genome

like the human genome without using a reference genome (de novo). Also, the detection of

large sequence changes is another difficulty encountered by NGS [26].

Third Generation DNA Sequencing

To overcome the limitations of NGS technologies, third generation sequencing technologies

produce long reads with lengths of about 10Kbp. This new technology, which entered the

16

Background

market in 2011, is also called long read sequencing (LRS) technology. As third generation

sequencing machines provide longer reads, they make DNA assembly significantly faster, easier

and more accurate. More importantly, the long reads also enable the identification of long

insertions and deletions in the genome. However, LRS technologies have higher error rates

than the ones produced by NGS technologies, so the assembly of long reads becomes more

complicated. Nowadays, a big effort is being made to lower the error rates of LRS technologies,

which is currently around 5% in most cases but can reach less than 1% in the most advanced

and costly LRS approaches. Despite the fact that LRS technology is racing to overtake NGS

technology in industry, it is not yet fully accepted by the market and, hence, NGS technology is

still dominating the market due to the aforementioned reasons [26].

2.1.2 DNA Assembly

After DNA sequencing, the first step to make it usable for scientific analysis consists of

reconstructing the DNA sequence. There are two general methods to perform this step. In the

first one, called reference-guided method, reads are aligned against a reference genome. In

other words, the reads are assigned to locations in the DNA sequence based on the similarity

between the reads and the reference genome. The second method, called de novo, avoids using

a reference genome. In other words, genome is reconstructed from the scratch. In this method,

to reconstruct the genome, reads which are next to each other in the genome are identified and

assembled like a puzzle. De novo genome sequence assembly is important to reconstruct the

genome of uncharacterized genomes and also to identify the genome sequence of individuals in

a reference-unbiased way [33].

De novo Read Assembly

Existing de novo sequence assembly algorithms can be categorized in five branches: greedy,

Overlap Layout Consensus (OLC), De Bruijn Graph (DBG), string graph, and hybrid algo-

rithms [34]. OLC and DBG are two most common methods for de novo assembly algorithms.

The string graph algorithm is a variant of OLC that makes it more suitable for assembling long

reads. The hybrid algorithm mixes various algorithms to reduce the number of contigs (sets of

DNA segments or sequences that overlap in a way that provide a contiguous representation of a

genomic region) and errors produced by other algorithms [35].

In the OLC method, the first step is to detect overlaps greater than a certain threshold

between all the reads, followed by the construction of an overlap graph. Overlaps can be

17

2.1 Genomics

detected by pairswise read alignment techniques, which are explained later in this chapter.

Then, overlapping reads are merged to form contigs. After that, according to the consensus

of all reads which form a contig, the sequence is inferred. The human genome was primarily

constructed using OLC algorithms [33]. Popular OLC-based assembly algorithms include

PCAP [36], AMOS [37], Arachne [38] and Celera [39].

A de Bruijn graph is a representation of all the k-mers of all the reads of the genome.

K-mers of a read are all the sub-strings of length k of that read. Each read contains (n− k+1)

k-mers, where n is the read length, and k is the k-mer length. The de Bruijn graph is a directed

graph which is used to find overlaps between reads. To do so, first all the k-mers of all the reads

are generated. Then, the nodes are connected if they share an overlap of a (k−1)-mer. There

are two types of de Bruijn graphs, Hamiltonian and Eulerian. In the Hamiltonian de Bruijn

graph, k-mers are nodes, and edges are the connections between the nodes having an overlap

of (k−1)-mer. While, in the Eulerian de Bruijn graph, k-mers are edges and the overlapped

(k−1)-mers are the nodes [40]. An example of Hamiltonian and Eulerian de Bruijn graphs is

shown in Figure 2.3.

G
A

G
G

TGAG TTGA

G
TT

G

AAA AAG AGG GGT GTT TTT

GAG

TGA

TTG

CGTGGC

GCG

AAAG AAGG AGGT GGTT GTTT

A
G

G
C

GGCG
GCGT

C
G

TT

AAAG AAGG AGGT GGTT

GTTG

GTTT

GAGG

TGAG TTGA

GCGT

AGGC

GGCG

CGTT

Eulerian de Bruijn graph

Hamiltonian de Bruijn graph4-mers of read:

AAAGGCGTTGAGGTTT

AAAG
AAAGG
AAAGGC
AAAGGCG
AAAGGCGT
AAAGGCGTT
AAAGGCGTTG
AAAGGCGTTGA
AAAGGCGTTGAG
AAAGGCGTTGAGG
AAAGGCGTTGAGGT
AAAGGCGTTGAGGTT
AAAGGCGTTGAGGTTT

Figure 2.3: An example of a Hamiltonian and Eulerian de Bruijn graphs [40].

Once the graph is formed, the optimal path(s) which reassembles the genome is identified.

Wisely choosing the length of the k-mer (k) is important in the formation of de Bruijn graph

18

Background

and the results it yields. A very large k removes some short repetitive regions and hence,

leaves more unconnected sub-graphs, which leads to having more gap regions. In contrast,

a very small k reduces some gap regions and hence, increases the number of nodes and

edges, which leads to increasing the number of short repetitive regions [33]. The de Bruijn

graph data structure is widely used in next generation sequencing [41]. Popular DBG-based

assembly algorithms include Euler assembler [42], Velvet [43], Euler-USR [44], AllPaths [45],

ABySS [46], ABySS2 [47] and IDBA [48].

Some of the OLC-based genome assemblers and mainly DBG genome assemblers use k-mer

counting in their algorithms. The k-mer counting problem consists of building a histogram of

occurrences of the k-mers of all reads in the dataset. K-mer counting plays a crucial role in

genome analysis, allowing for the detection of overlaps and estimation of genome size [49]. It

is also valuable for other bioinformatics applications, such as fast multiple sequence alignment

and repeat detection [50], and for creating multiple protein sequence alignments (for fast

distance estimation) [51]. K-mer counting is a simple yet time-consuming phase of many

genomics applications. One of the main challenges of k-mer counting is the huge amount of

memory it requires, specially when dealing with large datasets like a complete human genome.

Most of the k-mer counters in the literature use either hash tables or sorting mechanisms

for their counting algorithm. Jellyfish [52], BFCounter [53], DSK [54], KMC [50] and

MSPKmerCounter [55] are among the first memory efficient k-mer counting algorithms.

Jellyfish uses an algorithm using an efficient lock-free hash table. Jellyfish writes hash tables

to disk when the system is out of memory and merges them later. BFCounter proposes using

a Bloom filter to discard unique k-mers before putting them into the hash table. In a dataset,

a huge number of k-mers are unique and generated mostly due to sequencing errors. Hence,

by accepting a low rate of false positives, Bloom filters can be used to reduce memory usage

significantly. The concept of partitioning is introduced in DSK, KMC and MSPKmerCounter,

which all are disk based algorithms. DSK generates all the k-mers of the whole input in a loop

and, based on the loop iteration, only some k-mers are stored on disk. K-mers are partitioned

based on a hash function and written to their specific files. The total number of loop iterations

is determined by the size of the input and the specified disk and memory space. Later, each

file (partition) is loaded in memory separately and processed using a hash table. KMC uses a

sorting mechanism instead of hash tables and compacts data before writing it to disk. In this

approach, all the k-mers are generated and partitioned based on k-mer prefixes with variable

lengths and are put into specific bins (partitions). When a bin is full, its data is compacted

and written to a file.determining the relationship between each gene and its corresponding

19

2.1 Genomics

instruction, as well as Later these files are read back to memory, sorted, and the frequency of

each k-mer is counted. KMC uses multiple threads for k-mer generation, compaction, writing

data to disk, and sorting, and the communication channel between each pipeline stage uses

shared queues, which often become a congested synchronization point. MSPKmerCounter

uses super k-mers generated using minimizers, which reduces the required disk space. The

file (partition) of each super k-mer is determined based on its minimizer. Later, each time a

partition is loaded in memory, k-mers are extracted from super k-mers and are processed using

hash tables, and the resulting hash table is sorted and written back to disk.

The aforementioned algorithms use different approaches to reduce their memory footprint.

Some works in the literature have mixed these ideas to improve performance of k-mer counting.

Turtle [56] generates k-mers and partitions them using hash tables. Then, a consumer thread

responsible for a partition creates one Bloom filter for that partition and, when the number of

k-mers reaches a threshold, the thread sorts the k-mers and calculates their frequency. Thus,

at the end of each frequency calculation, the table only contains distinct k-mers with their

associated frequency. The next time that the number of k-mers reaches the threshold, in

addition to sorting them, their histogram is calculated by comparing the new k-mers with the

ones from the previous step. KMC2 [57] is the modified version of KCM in which partitioning

is done using minimizers and, instead of saving k-mers, it stores super k-mers on disk, like

MSPKmerCounter.

In this thesis we accelerate the k-mer counting step of the SMUFIN [18] application.

SMUFIN is a reference free algorithm which identifies somatic mutations just by comparing

normal and tumor DNA samples of the same patient. This algorithm is explained in detail in

Section 4.

Reference guide assembly

The first step in most DNA sequence analysis pipelines based on a reference genome is to

determine the location of each read in the reference genome. Modern read mappers such as

BLAST [58], BWA-MEM [59], Minimap2 [60], and GEM [61, 62] avoid comparing every read

against the whole reference genome, which can be very time-consuming and inefficient. Instead,

modern mapping tools implement a seed-and-extend approach. The seeding step consist in

finding candidate locations in the genome where a read can map to. Doing this, each read is

only compared with a few regions from the genome, which depict some similarities with the

input read. Afterwards, during the seed extension step, also known as pairwise read alignment,

each candidate location is aligned against the input read. This process determines the degree

20

Background

of the similarity (i.e., matches, mismatches, insertions, and deletions) between the input read

and the candidate region of the reference genome. The main focus of the current thesis is to

accelerate the pairwise read alignment algorithm leveraging FPGA and ASIC accelerators. This

way, we discuss this topic in more detail in the following sections.

Pairwise Read Alignment

An essential problem in computational biology is the comparison and alignment of two DNA

sequences. Pairwise sequence alignment identifies similarities between the elements of a pair

of sequences which may share a common characteristic, revealing mutations, insertions or

deletions of bases and demonstrating the functional or structural relationships between two

DNA sequences. Sequence aligners are used to find the homology between DNA sequences and

to align sequences in a way that the similarity is maximized according to a given distance/score

function. There are three main types of pairwise sequence alignment: global alignment,

semi-global alignment, and local alignment.

Global alignment compares both sequences through their entire length, end to end. This

way, deletions and insertions at beginning or at the end of both sequences are also penalized

during the alignment. Global alignment is used when it is known that both sequences should

be the same entirely, and it is done to find out the differences caused by sequencing errors

or single nucleotide polymorphisms (SNPs) [63]. This type of alignment is used in the most

common alignment algorithms and it is considered to be the most natural form of pairwise

sequence alignment [22].

Semi-global alignment is a variant of global alignment in which the gaps at the beginning

or at the end of one of the sequences are not penalized. Semi-global alignment is used when

one of the sequences is much larger than the other and it is known that the entire length of the

smaller sequence is related to the region of the larger sequence where they overlap. Hence,

the entire smaller sequence, end to end, is aligned to a local region of the larger sequence. In

semi-global alignment, gaps at both ends of the larger sequences are not considered in the

alignment [22].

In contrast, local alignment does not compare none of the sequences end to end. Instead, it

detects a sub-string in sequence a which has the most similarity with a sub-string in sequence b.

In other words, it finds the most similar regions in the sequences. This way, the gaps before

and after the similar regions of both sequences are not penalized. Local alignment is used in

applications such as detecting homology, finding protein structure and function, deciphering

evolutionary relationships, etc [64].

21

2.1 Genomics

The most efficient way of performing pairwise sequence alignment is using dynamic

programming techniques. The following sections explain these techniques for global and local

alignment.

Dynamic Programming for Global Alignment

Levenshtein introduced the edit distance (Levenshtein distance) [65] between two strings as the

minimum number of required operations, i.e., substitutions, insertions and deletions, to change

one string to the other one. It is important in bioinformatics as the similarity between two DNA

sequences can be measured and presented by the edit distance between them.

The edit distance between two sequences can be calculated using dynamic programming

techniques. In this method we need to calculate a matrix (DP-matrix), in which one of

dimensions corresponds to sequence a (or query, usually in the vertical dimension) and the

other dimension corresponds to sequence b (or reference, usually in the horizontal dimension).

In the DP-matrix we add an empty character at the beginning of each sequence. Figure 2.4

shows an example of calculating the edit distance using a DP-matrix, which explanation follows.

The value of each cell of the matrix determines the edit distance between the prefix of

sequences until the coordinates of that cell. For example, the value in cell (i,j) shows the edit

distance between prefix [0:i] of sequence a and prefix [0:j] of sequence b. Hence, the most right

and the most bottom cell of the matrix determines the final edit distance between the sequences.

The edit distance of each cell is calculated by Equation 2.1.

ed(i, j) =

max(i, j) if min(i, j) = 0

min

ed(i−1, j−1)+

0 if ai = b j

1 Otherwise

ed(i−1, j)+1

ed(i, j−1)+1

Otherwise
(2.1)

The first case of the equation initializes the cells of the first row and the first column of

the matrix from 0 to L in ascending order. This is because the edit distance between an empty

character and a sequence of length L is L. The second case of the equation determines how the

value of the rest of cells is calculated. This value is achieved by comparing three previously

calculated adjacent cells (top, left and diagonal). According to the dependencies between cells,

22

Background

“” G C T A T A C

“” 0 1 2 3 4 5 6 7

G 1 0 1 2 3 4 5 6

C 2 1 0 1 2 3 4 5

G 3 1 1 1 2 3 4 5

T 4 2 2 1 2 3 4 5

A 5 3 3 2 1 2 3 4

T 6 4 4 3 2 1 2 3

G 7 5 5 4 3 2 2 3

C 8 6 5 5 4 3 3 2

?

(mis)
Match

Deletion

Insertion

Ed(2,3) = 1
between prefix GCT of sequence b
and prefix GC of sequence a

Final edit distance = 2

Backtrace: (M for Match, X for Substitution, I for Insertion and D for Deletion)
CIGAR: 2M1I3M1X1M

Anti-diagonal -2
all cells can be calculated in parallel

S
eq

ue
nc

e
a

Sequence bEmpty
character

Figure 2.4: Calculating DP-matrix of edit distance between sequences a and b.

and by looking at the matrix in Figure 2.4, we can see that the algorithm can be parallelized. In

particular, all the cells in each anti-diagonal can be calculated in parallel.

As mentioned earlier, the last cell of the matrix holds the edit distance between the two

sequences. However, in order to identify how different the sequences are, we need to perform

the backtrace step. To do the backtrace, when we calculate the value of each cell, we also save

the direction (top, left or diagonal) from which the value is achieved. Using this data we trace

back the directions from the last to the first cell, i.e., from ed(8,7) to ed(0,0) in the example

of Figure 2.4. The backtrace provides the Compact Idiosyncratic Gapped Alignment Report

(CIGAR) which is the set of operations that illustrates all of the differences and similarities

between sequence a and sequence b. CIGAR string has several operators, each preceded by a

number indicating consecutive occurrences of that operator. Operator ’M’ indicates a match,

’X’ indicates a mismatch, ’I’ indicates an insertion and ’D’ indicates a deletion in sequence a

(compared to the reference genome). A diagonal direction indicates a match or a mismatch. If

a(i) = b(j) it is a match, otherwise it is mismatch. A vertical direction indicates an insertion and

a horizontal direction indicates a deletion in sequence a.

When calculating the edit distance between two sequences, each difference (mismatch,

insertion and deletion) is penalized by a unit of 1. However, depending on the nature of the

23

2.1 Genomics

A G C T “ ”

A 0 x x x g

G x 0 x x g

C x x 0 x g

T x x x 0 g

“ ” g g g g

A G C T “ ”

A a -x -x -x -g

G -x a -x -x -g

C -x -x a -x -g

T -x -x -x a -g

“ ” -g -g -g -g

a) Distance Scoring Matrix
(Penalty Function)

b) Similarity Scoring Matrix
(Score Function)

Figure 2.5: a) Distance scoring matrix; b) Similarity scoring matrix.

bioinformatics analyses, some substitutions might be more common than other substitutions

or gaps (insertion and deletion). For this reason, more complex distance scoring or penalty

functions are introduced. Figure 2.5 (a) shows a distance scoring matrix where a match is not

penalized, a mismatch penalty is x and a gap penalty is g. To use this distance scoring matrix,

the edit distance computation previously shown in Equation 2.1 evolves into Equation 2.2 [63].

Using distance scoring, the lesser the distance, the more similar the sequences are.

H(i, j) =

max(i, j)×g if min(i, j) = 0

min

H(i−1, j−1)+

0 if ai = b j

x Otherwise

H(i−1, j)+g

H(i, j−1)+g

Otherwise
(2.2)

A similar metric to distance scoring is similarity scoring. In similarity scoring, the bigger

the similarity score (or simply the score), the more similar the sequences are. As shown in

Figure 2.5 (b), in the similarity scoring method a match between characters is rewarded by

a positive score a and differences are penalized by negative scores, i.e., -x for mismatches

and -g for gaps. When using the similarity scoring method, the DP-matrix is computed using

Equation 2.3. This algorithm is known as the Needleman–Wunsch algorithm [66].

24

Background

H(i, j) =

max(i, j)×(−g) if min(i, j) = 0

max

H(i−1, j−1)+

a if ai = b j

(−x) Otherwise

H(i−1, j)+(−g)

H(i, j−1)+(−g)

Otherwise
(2.3)

Neither of the scoring methods change the characteristics of the DP-matrix, i.e., anti-

diagonal cells can be calculated in parallel, the final distance/score is kept in last cell of the

matrix and the backtrace starts from last cell backwards to the first cell of the matrix.

Dynamic Programming for Local Alignment

The Smith-Waterman algorithm [67] is a variant of the Needleman–Wunsch algorithm to

perform local alignment instead of global alignment. Local alignment is used when a local

region of sequence a is related to a local region of sequence b, but they are not related end to

end. Thus, in local alignment the dynamic programming technique is modified in a way that it

allows the alignment to start and end at any position of the sequences without penalizing gaps

at both ends of the sequences. To do that, the local alignment equation shown in Equation2.4

includes a term that sets the score to zero whenever a difference in the alignment makes a

negative score. This equation uses the scoring matrix of Figure 2.5 (b) and initializes the first

row and column of the DP-matrix to 0. This allows the alignment to start from any position of

the sequences [63].

H(i, j) =

0 if min(i, j) = 0

max

H(i−1, j−1)+

a if ai = b j

(−x) Otherwise

H(i−1, j)+(−g)

H(i, j−1)+(−g)

0

Otherwise
(2.4)

25

2.1 Genomics

“” T G T T A C G G

“” 0 0 0 0 0 0 0 0 0

G 0 0 3 1 0 0 0 3 3

G 0 0 3 1 0 0 0 3 6

T 0 3 1 6 4 2 0 1 4

T 0 3 1 4 9 7 5 3 2

G 0 1 6 4 7 6 4 8 6

A 0 0 4 3 5 10 8 6 5

C 0 0 2 1 3 8 13 11 9

T 0 3 1 5 4 6 11 10 8

A 0 1 0 3 2 7 9 8 7

Optimal local alignment achieves in regions:

GTT _AC of sequence b and
GTTGAC of sequence a

For scores:
+3 → match
-3 → mismatch
-2 → gap

CIGAR = MMMIMM = 3M1I2M

S
eq

ue
nc

e
a

Sequence bEmpty
character

Figure 2.6: Calculating the DP-matrix of local alignment between sequences a and b.

Figure 2.6 illustrates an example of calculating the DP-matrix for local alignment with a

sample score function. Please note that different score functions produce different alignment

results. In the DP-matrix, cells with lower values show less relevant regions, while higher

values indicate areas with higher similarities. The calculation of the DP-matrix of the local

alignment follows the same steps as of the global alignment, the only difference is the starting

and ending positions of the backtrace. The backtrace for the local alignment starts from the cell

of the matrix which holds the maximum value, and traces back until a cell with a value of zero

is reached. This way, not only we detect the most similar regions in the sequences, but we also

identify the differences between these regions.

Both the Needleman–Wunsch algorithm for global alignment and the Smith-Waterman

algorithm for local alignment have the same nature, and both implement the gap-linear scoring

system. The gap-linear scoring system does not differentiate the penalty of a gap-opening from

a gap-extension (continuous gap), that is, it penalizes a gap proportional to its length. However,

in biological analyses, the penalty of a gap may not increase linearly with its length, and it is

preferred that a gap-opening (first gap) is penalized more compared to the gap-extension(s)

following the first gap [22]. To this end, the Smith-Waterman-Gotoh (SWG) algorithm [68] is a

variant of the Smith-Waterman algorithm that implements the gap-affine scoring model. This

scoring model penalizes more the gap-opening than the gap-extensions, so it is highly preferred

by biologists as it provides a more realistic computation where a genetic mutation generally

26

Background

causes an insertion/deletion of a large block of bases [69]. However, using this scoring system

makes the alignment algorithm more complicated, and thus lowers the performance of the

sequence aligners. Yet, modern sequence alignment tools tend to implement alignments based

on the gap-affine scoring model.

In the gap-affine scoring model there are three DP-matrices to be solved, M, I and D, which

track the scores of alignments ending with a match/mismatch, an insertion, and a deletion,

respectively. Equation 2.5 indicates how each matrix is calculated.

Initialization

M(0, j) = M(i,0) = 0

I(0, j) = D(i,0) =−∞

I(i,0) = D(0, j) = NotUsed

M(i, j) = max

M(i−1, j−1)+

a if ai = b j

(−x) Otherwise

D(i, j)

I(i, j)

0

D(i, j) = max

M(i−1, j)+(−go−ge)

D(i−1, j)+(−ge)

I(i, j) = max

M(i, j−1)+(−go−ge)

I(i, j−1)+(−ge)

(2.5)

In the equation, a is the reward of a match, -x is the penalty of a mismatch, and −go and

−ge are the penalties of gap-opening and gap-extension, respectively. Please note that a first

gap (opening) is penalized both for gap-opening and gap-extension, while a continuous gap

(extension) is only penalized for gap-extension. Basically, a gap-opening is more costly than a

gap-extension. In this method, as the values of the cells of each matrix are calculated based on

the values of the cells of the other matrices, the backtrace also has to potentially traverse up to

27

2.2 Hardware Accelerators

three matrices. However, the concept remains the same as when using the gap-linear scoring

model.

All the aforementioned algorithms use DP techniques to find the optimal alignment, whether

local or global. A common characteristics of these algorithms is that they need to calculate all

cells of the DP-matrix, which is time and memory consuming. To solve this problem, many

heuristic variants of these algorithms have been proposed, in which a reduced number of cells

of the DP-matrix are calculated. The main problem of the heuristics methods is that they do not

provide the exact (or optimal) alignment. As an example, the pairwise read alignment step of

BLAST limits the computation of cells to bases that are likely to be highly similar. Many other

heuristic methods only compute a band of the matrix, known as banded Smith-Waterman, or

adaptively banded Smith-Waterman. In these kind of algorithms, the computation of the matrix

is limited to a fixed-size W wide band of diagonal cells, i.e., W/2 of diagonals after, and that of

diagonals before the main diagonal. This is done based on the assumption that the alignment

of a high quality sequenced read should not go far from the main diagonal. These heuristic

methods, in general, are more desired to be implemented in hardware, specially if the target is

to align long sequences. This is because such methods require much less memory compared to

the optimal methods.

Recently, the WFA algorithm [19] has been proposed. The WFA algorithm uses a novel

approach which only computes a reduced number of the DP-matrix cells. However, it is not a

heuristic method and finds the optimal alignment. Three of the contributions of this thesis are

about the acceleration of the WFA algorithm, which are discussed in Sections 5 and 6.

2.2 Hardware Accelerators

Nowadays, a variety of software-based applications, ranging from trading to medicine and

aerospace, take advantage of accelerators such as GPUs, PIM, FPGAs, and ASICs to primarily

increase the speedup and, in some cases, consume less power. These accelerators can increase

the parallelism of the application at the cost of decreasing the flexibility of it. Therefore, usually

it is more desirable to use them beside the CPU implementation, and constitute a co-design

in order to provide both the flexibility and the degree of parallelism which is required by the

application.

28

Background

2.2.1 GPU

GPUs were initially designed in the 1970s and 1980s to offload the CPU task of 2D graphics

rendering computations. Later in the 1990s the support of 3D rendering was added to the

GPUs [70]. In that time GPUs were not programmable and the rendering operation was

implemented in the GPU hardware. From these early designs, the architecture of the GPUs

has developed over the time. First they offered limited programmability only for operating on

graphical data (e.g., pixels and vertices) and then, in 2009, the release of Fermi architecture

General Purpose GPU (GPGPU) allowed to solve non-graphics-related problems [71]. By

adding more and more programmability capabilities and flexibility to the GPUs, programming

models and environments were developed allowing to run non-graphical application written in

C-like languages on the GPUs. Compute Unified Device Architecture (CUDA) and OpenCL

are the most popular programming models for GPUs. CUDA is developed by NVIDIA only for

NVIDIA GPUs, while OpenCL can be used generally for different vendors (e.g., Intel, AMD,

NVIDIA, Altera, IBM, Samsung, Xilinx) [72].

In comparison with CPUs which can be used for any kind of applications running on several

processing cores and software threads, GPUs are massively parallel devices used in highly

parallelized computational applications as they include tens of processing cores and can run

thousands of threads. A GPU has multiple processing units called streaming multi-processors

(SM). The SMs are responsible for executing the GPU functions known as kernels. Each SM

is capable of running multiple threads, known as a thread block, and executing hundreds of

instructions in parallel. GPUs have a Single Instruction Multiple Threads (SIMT) architecture.

The execution unit in SIMT is called warp which typically consist of 32 threads. In other words,

the thread block of the SM is divided into batches of 32 threads, called warps. The A100 GPU

has 108 SMs, in which each SM is able to run 64 warps. Having 32 threads per warp, the A100

when running with full capacity could have 221,184 threads (108 SMs × 64 warps per SM ×
32 threads per warp) in flight [73].

GPUs have different types of memories. Some of them are shared and some other are

private to each SM or thread. The memory hierarchy of a GPU is shown in Figure 2.7. Each

SM includes registers (of 256KB in A100) which are private to each thread and are not visible

to other threads. The registers resource utilization depends on the compiler decisions. In

addition to registers, each SM has a fast, on-chip scratchpad memory (of 192KB in A100) that

can be used as L1 cache and shared memory. All threads in a SM can share shared memory.

Also all threads of a SM can share the physical memory resource provided by the SM. Each

29

2.2 Hardware Accelerators

SM contains a read-only memory to kernel code which includes instruction cache, constant

memory, texture memory and RO cache. The global memory which is of several GB (40GB in

A100) and the L2 cache which is of several MB (40MB in A100) are shared memories among

SMs. The global memory contains the frame buffer of the GPU and includes the DRAM of the

GPU [74].

Figure 2.7: Memory hierarchy in GPUs [74].

The architecture of GPUs continuously improves in order to make them faster or more

efficient for specific applications. For example very recently NVIDIA has introduced their

new Hopper GPU architecture which is able to accelerate dynamic programming techniques

using an instruction set built into NVIDIA H100 GPUs, called DPX instructions [75]. New

DPX instructions in H100 GPU are claimed to improve the performance of DP algorithms by

7× compared to the A100 GPU, and by 40× compared to traditional dual-socket CPU-only

servers [76]. Accelerating algorithms based on dynamic programming are of importance as

they are used in different scientific areas including genomics.

GPU applications, in order to obtain high performance executions, should design kernels

with thousands of threads all doing the same instruction at the same time. To increase the

level of parallelism, GPUs use a latency-hiding mechanism in which several warps of the SM

thread block are dynamically scheduled to be executed in the SM. GPUs achieve a very high

degree of parallelism specially from instruction level parallelism, as they can execute multiple

independent instructions at the same time. Consequently, they should be used for applications

capable of being parallelized, otherwise the performance drops significantly, even less than that

of on a CPU. For example, applications which need a huge number of vector operations are good

30

Background

targets for GPU implementations. They can reach performance improvements of several orders

of magnitude compared to a CPU implementation [77, 78]. On the other hand, applications with

many conditional branches degrade the level of parallelism due to the instruction dependencies

they make and warp divergence they cause. This problem makes some of the threads idle,

and only a few remain active. The other GPUs drawback is the slow access to the global

memory in comparison with the fast access to the on-chip memory (i.e., shared memory and

registers). Thus, the access to the global memory should be limited by performing coalesced

accesses in order to increase the performance. This means that the shared memories should

be exploited. However, the amount of required shared memory by CUDA block negatively

affects the number of concurrent CUDA blocks running on the same SM (i.e., reduces the total

number of concurrent active threads per SM). Having high thread occupancy is critical for

hiding memory latency and compute operations [78].

2.2.2 PIM

In data intensive applications, such as genomics applications, a huge amount of data should

be regularly read from the memory, processed and written back to the memory. These data

transfers between memory and processor cause latency and power consumption.

The idea of processing in memory (sometimes referred as processor in memory) is to do

some or all the operations on data in memory (e.g., in RAM) by embedding logic units or

by integrating the whole processor inside the memory or near memory in a single chip. The

latter one sometimes is called near-memory processing [79, 80]. PIM makes it feasible to

perform the necessary computations and data processing inside the memory of a computer

or a server [81]. Hence, all or lots of data accesses to the memory are eliminated, and so the

performance is not degraded due to the off-chip data transfer latency [82]. It also helps in

saving energy. In addition, by processing in memory we can benefit from the inherent parallel

computing mechanism and utilize wide internal memory bandwidth [80]. Consequently, it

increases the speed up of processing tasks, and so the whole application by processing data

inside the memory. The application software running on one or more CPUs manages the

processing and the data in memory [81].

Processing in memory is of interest nowadays not only due to its performance improvements

compared to data processing methods requiring multiple data readings and writings to the

memory but also due to the performance improvements over readings and writings from/to

slower media. Reads and writes to a slower media usually results in a data access bottleneck,

known as Input/Output (I/O) bound. Processing in memory is considered to be real-time or

31

2.2 Hardware Accelerators

at least is used in real-time application. As RAM prices continuously decrease, processing in

memory opportunities are becoming more economical [82].

Not only data intensive applications but also today’s standard von Neumann computer

architectures have a latency problem. This is because in such architecture there are two separate

computing and memory sections which are connected through buses [81]. This leads to memory

access latency, limited memory bandwidth, energy-hungry data transfer, and huge leakage

power for holding data in volatile memory [83, 84]. This is because processing data is only the

task of processor and memory is not taking a part in that. Hence, a huge number of instruction

fetch and data transfer is needed between both sections [81]. Processing in memory is a

promising technique to tackle the above mentioned issues, especially the latency. Figure 2.8

compares the von Neumann architecture in CPU and GPU with PIM architecture.

Figure 2.8: (a) The von Neumann architecture in CPU and GPU, (b) PIM architecture [80].

The PIM architecture, preferably should have the ability to perform bulk bit-wise operations

as they are required in data intensive applications [85, 86]. Normally a PIM has operand rows

ready to operate on the data of rows of the memory. When PIM’s row decoder receives the

instruction from the CPU, it detects the rows of the two operands and performs bit-wise logic

function (required computations) between bit-cells of the target rows which are storing the

two operands (operand row 1 and 2 are activated in Figure 2.8(b)) [80]. In the literature it

is doable by performing different modifications on memory components at Sense Amplifiers

(SA) level [85], on memory bit-cell level [87, 88], or even adding combinational circuits after

SA [89–91].

32

Background

There are works suggesting PIM architectures for SRAMs [92, 93], DRAMs [94, 95] and

even Non-Volatile Memory (NVM) technology, such as Phase Change Memory (PCM) [96]

and resistive RAM (ReRAM) [83]. Processing in DRAMs has been a trend in recent years

mainly because of huge memory capacities and off-chip data transfer reduction opportunities

it delivers. Although the current processing in memory architectures designed to perform a

range of tasks from simple logical operations [85, 97] to more complex ones [80, 98–100], they

suffer from serious drawbacks such as high refresh/leakage power, multi-cycle logic operations,

operand data overwritten, operand locality, etc.

2.2.3 FPGA

FPGAs, which are the main focus of this research, are integrated circuits which allow users to

configure them over and over and design digital circuits. Simply, an FPGA is composed of an

array of Configurable Logic Blocks (CLBs). Designers can design their digital logic using low

level Hardware Description Language (HDL) or high level OpenCL programming language.

The two most popular HDLs are VHDL and Verilog. Programming using HDLs gives more

control to the designer in terms of implementation, resource utilization and optimization.

FPGAs support lower frequencies compared to the CPUs and GPUs. With current tech-

nologies an FPGA design barely reaches a frequency above 300MHz and usually less than

200MHz. In contrast, CPUs easily work with frequencies of orders of gigahertz. This makes

FPGAs more energy efficient but not slower and even faster if they are used wisely for the

appropriate algorithms. FPGAs, unlike the CPU instructions which may need multiple clock

cycles to be executed, can execute multiple operations in parallel and in just one clock cycle

or two. This is because with FPGAs we implement the operations with physical resources.

In other words, we configure the available FPGA resources to implement the desired circuit

which performs the required functionality. Therefore, if in an algorithm, multiple data can be

analyzed independently, they could be easily parallelized in the FPGA.

Depending on the FPGA manufacturer, the FPGA resources may differ or be handled

differently. Normally they consist of Look-Up Tables (LUTs), Flip-Flops (FFs), DSPs, memory

blocks and programmable I/O blocks. LUTs are truth tables inside the FPGA, which can have

different number of inputs depending on the FPGA and one output. Essentially, this element

is a truth table in which different combinations of the inputs implement different functions

to yield output values. LUTs can act as logic gates in various combinations. LUTs also can

be treated as a small piece of RAM. The address of the RAMs are as the inputs of the LUTs.

LUTs are building blocks of combinational circuits. FFs are the smallest memory elements

33

2.2 Hardware Accelerators

which keeps the state of a signal for one clock cycle. FFs are the building blocks of sequential

circuits. DSP block is an Arithmetic Logic Unit (ALU) and includes dedicated multiplication

resources and also some other supporting operations. On-chip memory blocks of FPGAs are

usually in orders of tens of megabits. They can be used as dual or single port RAMs, ROMs and

as FIFOs. The limitation in using blocks of memories is that the minimum size of the memory

you can use is the minimum size of a physical block (i.e. 18Kb for Xilinx virtex ultra scale plus

FPGAs). In other words, if you use less than 18Kb of a block of memory, it allocates the entire

block of 18Kb. The general I/Os could be configured as inputs, outputs or inouts. Some special

I/Os are for high speed communications, differential signals or clocks of the system. I/O groups

also can be configured to work with different voltage levels. It makes it easy to connect FPGAs

to peripherals of different voltage levels. A basic structure of an FPGA is shown in Figure 2.9.

M
U
X

FFLUT

a
b
c
d
RST
CLK

O
ut
pu
t

CLB

Figure 2.9: FPGA structure. Derived from [101].

The FPGA design flow is shown in Figure2.10. First, we need to evaluate the algorithm we

want to implement in the FPGA, define the design functionality and estimate the performance

regarding the FPGA resources and the frequency expectation. To have a modular design we

need to separate different functions of the design and implement them in different modules.

Then the functionality of each module is described in HDL as the source codes of the design.

Next, a behavioral simulation is performed to make sure the design functions as expected. In

34

Background

RTL Design
(source codes)

Behavioral
Simulation

Synthesis

Implementation
Generating
Bit-stream

Programming
FPGA

Testing
FPGA Design

Feasibility Study
&

Design Planning

Figure 2.10: FPGA design flow.

this step the frequency and timings are not considered and only the functionality of the design

is of importance. Some of the HDL simulator tools are ModelSim/QuestaSim from Siemens

and Xcelium from Cadence. Some of the EDA tools also have embedded simulators. After

verifying the design functionality, using an EDA tool, a project is build and source codes are

added to that. The most common tool for targeting Xilinx FPGAs is Vivado and for targeting

Intel FPGAs is Quartus.

After adding source files and constraint files to the project, the tool performs the synthesis

step by transforming the RTL code into a lower level of gate-level description. Usually after

this step an optimization step is performed in order to reduce resource utilization, power

consumption and critical path (a trade-off between them). Then the logic gates are mapped to

the existing technology libraries and the output is a netlist of the synthesized modules which

is understandable for the next step. Synthesis tool also reports a fine estimation of resource

utilization, power, timing and etc. Regarding the resource utilization report we can re-think the

design and increase or decrease the level of parallelization if the resource utilization is low or

high, respectively. At this point also we should check the timing and maximum frequency the

design can reach. If it does not reach the expected frequency, whether the RTL code should be

modified and the synthesis step runs again, or we should lower our frequency expectation if

possible.

The next step after synthesis is implementation. Translation, mapping, placing and routing

is commonly referred to as the implementation step [102]. In this step the netlist is divided

into sub-blocks and is mapped and placed to actual FPGA blocks. Then it routes between the

blocks. The placement and routing is done by considering time constraints. Optimizations

may perform after placement and after routing to decrease resources and to decrease critical

path delay which improves the frequency. Implementation reports consist of final resource

utilization, power and timing reports. We should check again the resource utilization and timing

reports to make sure everything is as expected.

35

2.2 Hardware Accelerators

The final step is generating the bitstream. In this step the implemented design is converted

into a bitstream understandable for the FPGA. A bitstream includes the description of the

hardware logic, routing, and initial values for both registers and on-chip memory (e.g., LUTs).

By streaming it to the FPGA configuration port, we can program the FPGA and test the FPGA

design.

There are several technologies to transfer the configuration bitstream to the FPGA. The

most widely-used one is the SRAM-based FPGAs technology. In this method, FPGA keeps the

configuration data in the static memory. In this method the FPGA should be programmed on

the start and every time that FPGA is powered on, as SRAM is volatile. This method has two

modes of master and slave. In master mode FPGA reads configuration data from an external

flash memory. While in slave mode, FPGA is configured by an external master device, such as

a processor. This is usually done using a JTAG interface [103]. SRAM cells are distributed

throughout the design in form of an array and mainly are used to program: (1) the routing

interconnects (2) used CLBs (see Figure 2.9) [104]. SRAM cell could be programmed an

indefinite number of times.

2.2.4 ASIC

ASICs are hardware circuits which are only designed to have a specific application, and unlike

FPGAs are not programmable. In fact FPGAs are used as ASIC prototypes. In the design of an

ASIC the HDLs are used. The design of an ASIC should be tested on FPGAs, because after

ASIC fabrication it cannot be changed. ASICs can reach frequencies above 1GHz which is

much faster than FPGAs.

Multiple ASICs which each of them has a dedicated function can be connected together

on a single ASIC chip and create a System-on-Chip (SoC). Typical SoCs may include a

microcontroller or microprocessor core, DSPs, memories such as RAMs or ROMs, peripherals

such as timers/counters, communication interfaces such as USB/UART, analog interfaces such

as ADCs/DACs or other hardware [105]. Communication between SoC modules is a challenge

in SoC design. However, it may be facilitated by a simple bus if the number of modules is

small or they do not need to communicate together. A commonly used bus in SoC designs is

the AXI (Advanced eXtensible Interface) [106, 107] interface introduced by ARM.

36

Background

RISC-V based SoCs

Since the emerge of the open source Instruction Set Architecture (ISA) of RISC-V many

research centers and companies started developing their own custom RISC-V based processors

for their SoCs without the need of paying for that. This is the main reason of RISC-V popularity,

i.e. an open source publicly available ISA standard [108] which could be used and developed

by everyone.

In 2010 the research project of RISC-V started in UC Berkeley, and soon after, in 2011, the

first RISC-V chip in 28nm FDSOI taped out [109]. In the same year, the first report describing

the RISC-V instruction set was published [110]. The first RISC-V workshop was held in

2015, and later that year, the RISC-V Foundation established by 36 founding members. These

company members include NVIDIA, Google, IBM, and Qualcomm. In 2020, the RISC-V

Foundation became RISC-V International [111].

Figure 2.11: RISC-V based SoC with cryptography accelerators [112].

A sample RISC-V based SoC with a custom IP (ASIC) as cryptographic accelerator is shown

in Figure 2.11. In the literature several works have been implemented application-specifies

IPs in the RISC-V based SoCs to accelerate different applications such as cryptography [112],

deep neural network [113] and, Internet-of-Things (IoT) [114].

Adding ASIC accelerators to the SoC is not the only solution for accelerating specific

applications when there is a RISC-V CPU in the chip. RISC-V ISA has different groups of

instructions (ISA extensions), and is designed to be able to activate or deactivate some of these

groups of instruction extensions based on the system requirements. This is an efficient practice

to avoid area and power increases by only keeping the necessary elements in the design. Among

these groups one empty group exists which belongs to the designer customized instructions.

This enables designers to invent their required application-specific instructions complying with

37

2.2 Hardware Accelerators

the RISC-V standards without violating the main specification. Hence, based on the designer

needs, it is possible to have a RISC-V processor with minimum instructions for basic integer

operations (I/E extension), with all extensions enabled, or even with designer own-specific

extensions [115]. Many projects in the literature have designed instruction extensions to

accelerate their target applications in cryptography [116], and driving assistance [117].

However, adding customized extensions is not a trivial implementation. It not only is about

implementing the instructions in RTL code, but also is about the work to add them to the

compiler, simulators, debuggers and etc, and verify the functionality of all of those tools after

the changes. Not to mention the RTL verification step. There are many companies providing

RISC-V related services. For example Codasip provides an EDA tool that enables customizing

off-the-shelf processors that Codasip also offers [115].

2.2.5 Genomics Hardware Accelerators

In this thesis we are targeting two genomics applications, k-mer counting and pairwise read

alignment. Both are critical applications which have been targeted for acceleration in many

works. In the following sections we review some of them.

K-mer Counting Accelerators

Gerbil [118] is one of the most well-known works on k-mer counting. It introduces an

open source k-mer counter software with optional GPU threads The work evaluates different

algorithms for different datasets and k-mer lengths and shows that its GPU enabled design

outperforms other algorithms. Li [119], another GPU accelerator for k-mer counting, reports

a significant speed up by porting some parts of KCM2 to GPU. Cadenelli [120] proposes

some modifications to the k-mer counting application to decrease its memory requirements and

proposes a GPU accelerator for it.

K-mer counting is a memory-bound application. Hence, using in/near memory processing

could be a suitable acceleration method for this application. NEST [121] is a Near Data

Processing (NDP) accelerator for k-mer counting. It is built by modifying the Load-Reduced

Dual-Inline Memory Module (LRDIMM). NEST adds a Near Memory Computing (NMC)

module to each rank within each LRDIMM to perform k-mer counting. In another work,

Joardar [122] propose a Network on Chip (NoC) architecture that uses the Monolithic 3D

(M3D) integration to implement multiple logic layers in PIM architectures with 3D-stacked

memory for k-mer counting.

38

Background

In another work of Cadenelli [123], he re-designs the GPU part of his previous work [120]

for an FPGA implementation and makes an FPGA accelerator for k-mer counting. Mcvicar [124]

ports Bloom filter generation and calculation of k-mer counting to a cloud of 4 FPGAs at-

tached to a Hybrid Memory Cube (HMC). The paper shows how taking the advantages of

parallel FPGA designs together with high random access speed of HMCs can yield performance

improvements.

Pairwise Read Alignment Accelerators

In recent years, many hardware accelerators have been proposed to improve the performance of

read mappers. GPUs can be leveraged to accelerate read mappers. Pham [125], Sadasivan [126],

Rani [127] and Muller [128] has used GPUs to improve, BWA-MEM, minimap2, BLAST and

Anyseq [129], respectively. Other works has focused on accelerating pairwise read alignment

algorithm of the read mapper, the WFA algorithm [78, 130, 131] ,the SW algorithm [132–

135], or both the SW and the NW algorithms [136, 137]. In-memory computation is also a

promising technique to accelerate read alignment. Many works have suggested to improve the

performance of the read mappers [138–142] or the pairwise read alignment part either using

the SW algorithm [143, 144], the NW algorithm [145], the WFA algorithm [146], or all of

them [147].

Many FPGA ASIC-based methods have been proposed to accelerate the SW algorithm.

As a result, some surveys [14, 148, 149] have been published summarizing the many contri-

butions done over the years. In addition, many production-ready bioinformatics tools already

incorporate custom FPGA accelerators [150–156].

Some of the earlier works on sequence alignment tried to fully optimize the FPGA LUTs by

doing custom optimizations using simple cost models, like the edit-distance, the Levenshtein

distance [157–159] or being limited to compute the longest common subsequence (LCS) [160].

Despite their good performance, these solutions do not fulfill the requirements of modern

bioinformatics tools due to algorithmic limitations.

Other FPGA-based proposals tackled the problem of accelerating the SW algorithm using

linear gap penalties [156, 161–171]. The design of these accelerators has improved from

optimized designs based on systolic architectures [156, 162, 166, 169] and custom FPGA

designs to large-scale accelerators running on supercomputing infrastructures [167, 168].

Nevertheless, these solutions lack the flexibility to meet the requirements of many biological

applications. For this reason, FPGA accelerators that fully implement the gap-affine model

(i.e., the SWG algorithm) are usually preferred [154, 155, 172–187].

39

2.2 Hardware Accelerators

Other works propose to accelerate SWG approximate methods such as banded SWG. These

heuristic methods are usually employed to align long reads [173–175, 188], although some

works also apply them to short reads [155, 189]. The main limitation of these approaches is

that the result of the algorithms is not guaranteed to be the optimal one, so they trade speed for

accuracy.

Another problem of the gap-affine model is the complexity of producing the full alignment.

For this reason, some accelerators proposed in the literature are limited to compute the alignment

score [177, 178], but not the CIGAR. In contrast, other designs offer more flexibility and allow

the computation of the full CIGAR alignment at the expense of lower performance [179, 186,

190].

40

Chapter 3
Experimental Methodology

This chapter describes the experimental methodology used in this thesis. The platforms used

for thesis contribution are explained in Section 3.1, while Section 3.2 outlines the baselines and

input sets of each contribution.

3.1 Platforms

The platform used for the first three contributions of this thesis is the IBM POWER9 system

with attached FPGAs which is explained in Section 3.1.1. The last contribution of this thesis, is

an ASIC design in a RISC-V SoC. In Section 3.1.2 the technology node, tools of synthesis,

place and route, and simulations of the ASIC design are explained.

3.1.1 POWER9 Platform

IBM POWER9 is an HPC machine which ranks among the top 5 computer systems as of the

time of conducting this thesis [191]. IBM has also developed an infrastructure to take advantage

of FPGAs in addition to their CPU-based systems. They have developed a customized Coherent

Accelerator Processor Interface (CAPI) [192] to connect the POWER9 to the FPGA boards,

providing a platform with processors and FPGAs as a complete package. Figure 3.1 shows a

POWER9 system with the attached FPGA boards.

CAPI

CAPI provides a coherent access to the host memory for accelerators (FPGAs) eliminating the

need of a driver and hence avoiding multiple data copies. In other words, CPU and FPGA can

access to the same shared memory equally and directly by giving memory addresses. Shared

memory is constituted of DDR4s, shown in Figure 3.1 in purple. Three versions of CAPI have

41

3.1 Platforms

POWER9 LaGrange

U2NVMe RAID0 RAM (DDR4)

ADM-PCIE-9H7

2 x hotplug PSUNVIDIA Mellanox ConnectX-5

ADM-PCIE-9V3Ultraport SlimSAS OpenCAPI

Figure 3.1: POWER9 system.

been released up to now. CAPI 1 and 2 protocols are on top of the PCIe communication BUS.

While, OpenCAPI (CAPI3) [193] has a customized communication link (in Figure 3.1 marked

by green). The practical bandwidth between host memory (shared memory) and FPGA for data

sizes more than 100MB are approximately 3.3, 13 and 20GBps, respectively for CAPI 1, 2 and

OpenCAPI.

OpenCAPI utilizes high-frequency differential signaling technology (BlueLink) that pro-

vides high bandwidth in addition to low latency inteconnection links. IBM introduced the

Bluelink interconnect in POWER9 processors to provide NUMA interconnects across multiple

POWER9 processors, and across POWER9 processors and GPU accelerators (e.g. Nvidia

NVLink for Volta GPUs), and also to provide more generic memory coherent links to other

kinds of accelerators, like FPGAs.

IBM has developed two C libraries, SNAP and libcxl, for the CPU side and one IP core,

PSL, for the FPGA side. The SNAP library serves as the interface between the user application

written in C and the libcxl. Libcxl, on the CPU side, is the CAPI translator, while PSL, on

the FPGA side, translates CAPI to AXI and vice versa. Figure 3.2 illustrates the structure of a

CAPI-equipped system.

AXI is a widely used bus protocol in modern computer systems. It provides a standard

interface for IP cores and enables easy integration of different hardware components such as

processors, memory controllers, DMA engines, and other IP blocks. The AXI bus protocol is

widely used in SoC designs. The newest version of AXI, AXI4, has three types of AXI4-Full

42

Experimental Methodology

Figure 3.2: CAPI infrastructure [194].

(or AXI or AXI-mm), AXI4-Lite and AXI4-Stream. AXI4-Full is used for high performance

memory mapped transactions between components in a system. AXI4-Lite is a simplified

version of the AXI4-Full, designed for simple memory mapped control and status register

access. AXI4-Stream is used for high-speed, continuous data transfers.

Figure 3.3 shows, in a CAPI-equipped system, how CPU and FPGA are communicating.

First, in the C application two memory sections are allocated as the shared memory between

CPU and FPGA. These memory sections are called source memory and destination memory.

Source memory holds the data to be analyzed by the FPGA, while, destination memory keeps

the final analyzed data. Then, the application puts the raw data on the source memory. After

that, the C application should determine, for the FPGA, the size of the data, the address of the

source memory and the address of the destination memory. To do this, it uses SNAP functions

to write the starting addresses of source and destination memories and also the size of the data

in MMIO (Memory-Mapped Input/Output). MMIO is mapping device registers to memory

addresses. Then, by setting the start bit in the MMIOs, it triggers the FPGA to start processing

data. Finally, the C application reads the idle bit of the MMIOs in a polling manner to check for

the completion of the FPGA process. After job completion, the C application can use the results

of the FPGA which are written in the destination memory. Checking/Setting control registers

of the MMIO from the FPGA side is done using AXI4_Lite. While reading and writing from/to

source and destination memory is done using AXI4-Full [195].

SNAP and CAPI setup and simulation

In order to work with SNAP and CAPI, the most important requirement is to install Xilinx

Vivado. IBM provides all the necessary scripts and tcl files to make an FPGA project, simulate,

synthesis, place and route and generate bitstream using Xilinx Vivado. The codes are open

43

3.1 Platforms

FPGA
Shared (Host)

MemoryCPU

Source Memory

Destination Memory

C
Application

SNAP

 FPGA
 Code

Control Registers
(MMIO)

P
S

L

Figure 3.3: CPU and FPGA direct memory access.

source and publicly available for CAPI2 [194] and OpenCAPI [196]. The software platform

that IBM provides to the users includes a folder for the user software code and one for hardware

code. The software code uses SNAP libraries to communicate with FPGA through CAPI. The

SNAP folder includes a make file to compile and link all libraries needed by user C code.

IBM also provides a platform for simulating PSL and user FPGA code and its commu-

nication with the C code. In other words, it simulates the whole system. The simulator is

called Power Service Layer Simulation Engine (PSLSE). Through an interface user is able to

choose the target FPGA board, the FPGA frequency and other configuration. For simulating the

hardware part user can select the preferred simulator from the user interface. It also includes

the Vivado simulator, xsim. The simulator shows the output of the user C code, but all of the

FPGA waveforms are also saved automatically and can be seen by the user when the simulation

is finished. Opening waveforms is done using provided commands in the scripts.

POWER9 configurations of the thesis contributions

POWER9 systems could have different CPU sockets, amount of RAMs and FPGA boards. In

this sub-section we explain the configurations of the POWER9 for each of our contributions.

For our first contribution of this thesis in Chapter 4 the experiments are done on a POWER9

with two CPU sockets, each with 20 cores running at 2.3GHz. Each core has four threads so

the platform provides 160 threads in total. The RAM of the system is 512GB and consists of 16

32GB DDR4 DIMMs running at 2666MHz. This POWER9 has two 2TB Micron SATA SSDs.

The attached FPGA board is a CAPI2 enabled AlphaData ADM-PCIE-9V3 [197]. This board

utilizes a Xilinx Virtex UltraScale Plus (XCVU3P) FPGA, which run at 250MHz and have

788K Flip-Flops (FF), 394K LookUp Tables (LUTs), 2280 Digital Signal Processing blocks

(DSPs), 25.3Mb Block RAMs (BRAM) and 90Mb Ultra RAMs (URAM).

For our second and third contribution of this thesis in Chapter 5 we evaluate our proposal

on a POWER9 system with one CPU socket which has 16 cores with 4 threads per core running

at 2.3GHz, The system has 512GB of RAM (16 32GB DDR4 DIMMs running at 2666MHz)

44

Experimental Methodology

and 2 FPGA boards. Two ADM-PCIE-9H7 FPGA boards [198] are attached to the POWER9

with OpenCAPI. The FPGA devices are Xilinx Virtex UltraScale Plus (XCVU37P), which

run at 200MHz and have 2607K FFs, 1304K LUTs, 9024 DSPs, 70.9Mb BRAMs and 270Mb

URAMs each.

3.1.2 ASIC Platform

For synthesis we use Genus tool from Cadence with the GlobalFoundries 22nm Fully-Depleted

Silicon-On-Insulator (GF22FDX) technology. We use Synopsys Standard Cells libraries in

GF22FDX technology for 8-Track platform. Placement and routing is performed using Innovus

tool from Cadence using 8 metal layers. We compare post-synthesis and post-PnR netlists with

the RTL design using the conformal Logic Equivalence Checker (LEC) tool from Cadence.

Both RTL and gate level simulations (GLS) of our ASIC in the whole SoC are performed

using Xcelium from Cadence. Since the chip is still in the manufacturing process, for verifi-

cation and performance evaluation we simulate the whole SoC using FPGA prototyping on

an Alveo U280 FPGA board [199] connected to a server with AMD Ryzen 9 5900X CPUs

(12 cores/24 threads) and 4×32GiB 3200MHz DDR4s. Alveo is build on the AMD (Xilinx)

16nm UltraScale+ architecture and offers 8GB of HBM2 460 GB/s bandwidth and includes PCI

Express 4.0 support. The FPGA device (core + accelerator) runs on 50MHz and have 2607K

FFs, 1304K LUTs, 9024 DSPs, 70.9Mb BRAMs and 270Mb URAMs.

3.2 Baselines and Input Sets

3.2.1 K-mer Counting in SMUFIN

The original software implementation of SMUFIN (first contribution) which is developed

at BSC is written in C++ and its initial version was executed on 16 nodes of Marenostrum

supercomputer (application explanation in Section). The code is private and stored on BSC

gitlab platform. The baseline of this contribution is the software implementation of the multi-

threaded SMUFIN run on all threads of the POWER9 CPU cores explained in Section 3.1.1.

The inputs of the SMUFIN are DNA samples of a customized human genome based on the

Hg19 (also known as GRCh37) reference. Random somatic variants with random insertions,

deletions and inversions are applied to the inputs. In silico sequencing is simulated using ART

Illumina21. The total input size is 312GB and consists of 256 gzip compressed FASTQ files.

45

3.2 Baselines and Input Sets

3.2.2 WFA for Pairwise Read Alignment

The original software implementation of WFA code (second, third and fourth contributions) is

written in C and is publicly available on github [200] (application explanation in Section). The

code has been optimized to run on multiple threads using OpenMP programming. Different DP-

matrix calculation algorithms are also implemented in the C code for comparison purposes. The

baseline of second and third contributions is the software implementation of the multi-threaded

WFA run on all threads of the POWER9 CPU cores explained in Section 3.1.1. While for the

fourth contribution the baseline is the single core software implementation of the WFA on the

RISC-V of the SoC explained in Section 3.1. The WFA codes includes a data (read) generator

which allows user to generate an input file with the required number of read pairs, maximum

read length and maximum error rate with random mismatches, insertions and deletions. We

also use this data generator to produce our synthetic inputs. The specifications of the input sets

of three last contributions are shown in Table 3.1.

The parameters of the synthetic input sets of Table 3.1 are representative of the current

sequencing platforms [201]. Using the same methodology as in related studies [19, 161, 172,

173], we randomly generate input sets with different maximum read lengths and error rates and

with random mismatches, insertions and deletions.

For the real input sets we select two publicly available datasets representative of state-of-

the-art sequencing technologies. The PacBio HiFi real dataset corresponds to a PacBio High

Fidelity (HiFi) sample from HG002. This dataset was obtained from PrecisionFDA Truth

Challenge V2 and can be found at [202]. The PacBio CCS real dataset corresponds to a PacBio

Circular Consensus Sequencing (CCS) sample from HG002. This dataset was obtained from

NIST’s Genome in a Bottle (GIAB) project and can be found at [203].

46

Experimental Methodology

Table 3.1: Input sets of second, third and fourth contributions.

Contributions Read Length Error Rate (%) Number of Reads Input Type

2
WFA-FPGA
(Short Reads)

100
5

10M Synthetic

8

150
3
5
8

300
3
5

3
WFA-FPGA
(Long Reads)

1K
5

1M

Synthetic

10
20

5K
5

500K10
20

10K
5

100K

10
20

25K
5

10
20

50K
5

20K10
20

PacBio HiFi: avg len = 12.8K
1M Real

PacBio CCS: avg len = 9.6K

4
WFA-ASIC

100
5

1K

Synthetic

10

1K
5

100
10

10K
5

20
10

47

Chapter 4
K-mer Counting FPGA Accelerator

4.1 Introduction

K-mer counting is a time-consuming step in various genomics applications that is complicated

by the large memory requirements, especially when analyzing large datasets such as the entire

human genome. Some methods have been proposed to speed up k-mer counting [50, 52–57,

118–120, 123, 124, 204], being the reduction of the memory requirements one of the main

goals of many works [50, 52–57].

The computational capabilities of accelerators like FPGAs have persuaded engineers from

different fields to propose hardware/software co-designs to accelerate their applications. How-

ever, the limited memory capacity of FPGAs is a crucial impediment to designing accelerators

for applications that process massive amounts of data, as it is the case of k-mer counting.

For this reason, in the last years chip manufacturers have put a lot of effort in developing

communication protocols between processors and accelerators that provide accelerators with

direct access to the processor memory. For instance, the IBM CAPI [192] protocol allows

FPGAs to directly access the processor memory at a speed of up to 20GB/s. This feature makes

CAPI-based systems ideal for accelerating workloads with large memory requirements such as

genomics algorithms.

This chapter presents a hardware/software co-designed accelerator for k-mer counting using

a CAPI-enabled FPGA. The main contributions of this chapter are: (i) an RTL design for

FPGAs to accelerate the processes of extracting reads and generating k-mers; (ii) modifications

to the software algorithm to remove dependencies between parallel threads, reduce overheads

and use less memory; and (iii) three data compaction mechanisms to minimize the memory

and disk requirements. We integrate the co-designed accelerator in an adapted version of

SMUFIN [18], a state-of-the-art reference-free algorithm that identifies somatic mutations,

and we evaluate it on a CAPI-enabled high-performance computing node with a dual-socket

49

4.2 Background

POWER9 processor and an FPGA. Results show that the co-design outperforms the CPU-only

design by 2.14× while consuming 2.93× less energy and 1.57× less memory.

4.2 Background

4.2.1 DNA Reads, K-mers and K-mer Counting

Read is a segment of DNA that is obtained through the process of sequencing. NGS technologies

provide reads of lengths between 50 and 300 bases. A DNA base is represented by one of the

letters A, C, G or T, so a compact 2-bit numerical representation is often used. A k-mer is a k

length sub-string of a read, so a read of length n has n-k+1 possible k-mers. K-mer counting is

the process of counting the occurrences of all possible k-mers within a dataset.

4.2.2 SMUFIN Overview

SMUFIN [18] is a state-of-the-art application that detects DNA mutations by comparing normal

and tumoral DNA samples from the same patient without requiring a reference genome. To do

so, SMUFIN counts the frequency of the k-mers in the two sets of reads (normal and tumoral)

separately and compares them to find imbalances that determine candidate DNA positions with

mutations.

Figure 4.1 shows a diagram of the SMUFIN application, which consists of three main

phases of count, filter and group. The count phase can also include two optional auxiliary

steps of prune and unify. Unlike other applications, SMUFIN does not reconstruct genome

sequences, yet like many de-novo assembly algorithms, its first phase is k-mer counting. The

k-mer counting phase first generates all k-mers of reads from normal and tumoral datasets.

Then, generates a histogram based on the k-mers of the whole dataset. The range of the length

of generated k-mers in this algorithm is selectable between 24 and 32. This range has been

determined by domain experts to be both unique enough to ensure precise genome alignment

and general enough to facilitate accurate mutation detection. Once created, the histogram

remains static and is not subject to any further updates. However, it is accessed by the filtering

phase of the algorithm numerous times, with a frequency in the hundreds of billions. The

filtering phase constructs the interesting reads and k-mers database. Biologists establish a set

of criteria that reads and k-mers must fulfill to be regarded as interesting for further mutation

analysis and reconstruction. The set of criteria encompasses various characteristics of individual

reads (i.e., contains a particular sequence of bases, quality markers of the bases in the reads)

50

K-mer Counting FPGA Accelerator

Figure 4.1: SMUFIN mandatory and optional (light color) phases.

and k-mers (i.e., frequency counts of the k-mers). The grouping phase groups reads with the

same interesting k-mers together to reconstruct the mutations. After forming groups of reads,

they are aligned with each other based on the locations of the matching k-mers. If the positions

of matching k-mers are inconsistent between normal and tumoral reads, it may indicate the

presence of a mutation [77].

SMUFIN processes the whole human genome, which is stored on multiple compressed

FASTQ files that require 200 to 400GB of disk storage. The original SMUFIN algorithm [18]

was designed to run on multiple nodes of a supercomputer with enough memory to store the

whole data required for human genome analysis. Its successor, SMUFIN2 [205], rethinks

the initial design to be more scalable and flexible. To do so, SMUFIN2 uses two levels of

partitioning to distribute data among processes and threads. The first level splits data for

processing into one or more partitions, and each one of these partitions can then be distributed

either concurrently in multiple nodes or sequentially in a single node. In this chapter we use

an adapted version of SMUFIN2 where the first level partitions are based on batches of input

files instead of a logical data distribution. For the second level partitions we use the same

mechanism as SMUFIN2, which is based on the first 5-mers of a k-mer. In the rest of this

chapter we use the term SMUFIN to refer to our adapted version that partitions the data in

batches of files, and partitioning refers to the second level of partitioning. The adapted version

of SMUFIN2 is explained in the next subsections and it is also used as the CPU baseline in the

evaluation presented in Section 5.5.

4.2.3 SMUFIN K-mer Counting Structure

K-mer counting is one of the most time-consuming phases of SMUFIN, up to 35% of the whole

processing time [120]. Since the input of the count step is the whole human genome, it requires

a huge amount of memory. For this reason, this algorithm is a very good candidate for being

accelerated using CAPI-supported FPGAs, as they can access host memory directly without

51

4.2 Background

the need of making multiple copies of the genome data. To reduce the memory requirements of

this step, in the previous accelerations of SMUFIN [120], two optional steps of prune and unify

are used.

The prune step creates Bloom filters from all input files to identify and discard unique

k-mers later in the count step. Bloom filters reduce the memory footprint of the count step by

reducing the total amount of k-mers to be analyzed and the size of the intermediate histogram

tables to be stored on disk. However, generating the Bloom filters is time-consuming as three

hash functions are applied to each k-mer [53, 123].

The count step, due to the large memory requirements for the whole input, processes

input files in batches. It reads a batch of input files, generates k-mers, and counts their

frequency in the normal and in the tumoral inputs. Then it stores the k-mers and their two

corresponding frequency counters on disk as intermediate histogram tables. Afterwards, it

reads and analyzes the next batch of input files, repeating this process until all input files are

analyzed. The resulting intermediate histogram tables are represented as hash tables with the

format pair<(uint64) k-mer, (uint16) counter[2]>.

Figure 4.2 shows the structure of the count step. This step has configurable numbers of

producer and consumer threads, two of each type in the example. SMUFIN uses a k-mer

partitioning mechanism that spreads k-mers among partitions based on their first five bases. The

number of partitions can be configured between 1 and 128. Based on the statistical distribution

of the k-mers, a lookup table is used to assign partitions to k-mers with the aim of distributing

k-mers evenly among partitions. The number of producer threads is equal or less than the

number of files in each batch, and the number of consumer threads is equal to the number of

partitions.

Producer threads read data from one input file, extract reads, generate k-mers, convert

k-mers to their numeric representation, check the lookup table to determine the partition where

each k-mer belongs, and insert the k-mers into the producer-consumer queues of each partition.

Consumer threads are in charge of counting the number of k-mers of each partition. To do

so, they read k-mers from the producer-consumer queues, discard unique k-mers using the

Bloom filters generated in the prune step, count the frequency of each k-mer, and populate the

intermediate histogram tables that are stored on disk. The name of these tables on disk consists

of two numbers, its partition and its index. For example, if there are 100 partitions and the

count step analyzes 16 batches of files, the partition numbers are 0 to 99 and the indexes are 0

to 15.

52

K-mer Counting FPGA Accelerator

Figure 4.2: Procedure of the count step.

The unify step merges all the intermediate histogram tables of each partition into one final

frequency table for that partition. The intermediate histogram tables are sequentially loaded

from disk and, for each partition, the final frequency table is updated. Final frequency tables

are represented as hash tables with a different layout than the intermediate histogram tables, so

the unify step converts them to the final layout that is suitable for next steps. Finally, the unify

step re-checks all the final frequency tables to discard unique k-mers that can appear due to

false positives in the Bloom filters.

4.3 Acceleration Method of K-mer Counting in SMUFIN

This section presents a hardware/software co-design for k-mer counting. The proposed design

consists of restructuring the count step to enable the usage of the FPGA and improving the unify

step, which for our co-design is a mandatory step. The accelerated count phase is compatible

with the rest of SMUFIN phases, which are left unaltered, and could also be integrated in other

genomic applications.

4.3.1 Prune Step

The proposed accelerator does not use Bloom filters, so the prune step is not needed. As

explained in Section 4.2.3, the Bloom filters created in the prune step reduce the memory and

disk requirements by reducing the amount of k-mers to be analyzed. This allows the count step

to use larger batches of input files and to generate smaller intermediate histogram tables, which

decreases the memory usage and execution time of the unify step. The proposed design skips

the prune step at the cost of using more disk space, and the count and unify steps are modified

to use less memory and perform faster even without Bloom filters and for smaller batches of

input files. Removing the unique k-mers is postponed to the unify step.

53

4.3 Acceleration Method of K-mer Counting in SMUFIN

Figure 4.3: Proposed procedure of the count step.

4.3.2 Count Step

Figure 4.3 illustrates the proposed design for the count step. The main changes with respect to

the original design consist of offloading the generation of k-mers to the FPGA, adjusting the

behavior of the producer and consumer threads, and using a sort mechanism instead of hash

tables in the consumer threads.

The producer-consumer queues of the original count step create inter-thread dependencies.

The proposed design uses partition memories to pass data from producers to consumers

instead of queues. The producer and FPGA threads first generate all the k-mers for a batch of

input files, then one partitioner thread stores them in the partition memories, and finally the

consumer threads start working. Each partition belongs to only one consumer, minimizing

thread dependencies.

Producer Threads

Producer threads read the input files, extract the reads, and write them into the source memory.

The reads in the source memory are marked as normal or tumoral so that the FPGA can

determine their type. To avoid adding storage overheads, we use the first byte of each read to

encode its type. If the read belongs to a normal file the first base is written as A, C, G, T or N

(for unknown), otherwise the first read is incremented by 1, so it becomes B, D, H, U or O.

To maximize parallelism and avoid synchronization overheads, a configurable number of

producer threads read small parts of different files and fill different portions of the source

memory. Note that, when a producer thread finishes reading a file, the extracted reads may not

be enough to fill the entire portion of that thread’s source memory. When this happens, the

54

K-mer Counting FPGA Accelerator

producer thread fills the remaining space with ’S’ reads indicating to the FPGA that these reads

have to be skipped.

FPGA Design

The FPGA design is controlled by an FPGA thread. The FPGA thread continuously checks

the status of producer threads and, when they all have filled their portion of source memory,

triggers the FPGA design. The FPGA design reads data from the source memory, generates the

k-mers, and writes them into the destination memory. Figure 4.4 shows a block diagram of

the FPGA design, which consists of two main modules: the Read_Extr module extracts reads

from the input data and encodes them with a 2-bit representation, and the K-mer_Extr module

generates k-mers.

The Read_Extr module is responsible for extracting reads from input words. CAPI2 defines

that the data width of the FPGA is 64 bytes. Since the read length is 80 bases (bytes) for our

input dataset, the reads are split between input words. The state machine determines, in each

state, what portion of the incoming input data belongs to one read and what portion to the next

read. The incomplete reads are stored in Temp Reg and, once completed, they are put in Read

Reg.

The Read_Extr module adds one bit to each read to define its type. The type is determined

from the first base of each read, as explained previously. If the first base is A, C, G, T or N, the

type bit is set to 0 for normal. Otherwise, it is set to 1 for tumoral and the first base is converted

back to A, C, G, T or N. The read and its type are stored in the Read_FIFO in 161-bit words

(80 bases/read × 2 bits/base + 1 type_bit).

The Read_Extr module also identifies k-mers with unknown bases, which are represented

as ’N’ in the input data. These k-mers are marked as invalid and are omitted later by the

partitioner thread. To do so, a valid bit is assigned to each base of a read and is set to one if the

base is not ’N’. The valid bits of the reads are stored in a separate Valid_FIFO with a width

of 80 bits, so each read in the Read_FIFO has a corresponding entry in the Valid_FIFO. In

addition to unknown bases, the Read_Extr module handles reads with all their bases set to ’S’,

which is the format that producer threads use to specify invalid entries in the source memory.

These reads are skipped by not writing them in the Read_FIFO nor in the Valid_FIFO.

The next FPGA module is the K-mer_Extr, which is in charge of generating the k-mers.

This module reads data from the Read_FIFO and separates the first bit, which contains the

type of the read (tumoral or normal), from other bits that contain the read itself. In this FPGA

design the k-mer length is set to 30. As the data width of the FPGA is 64 bytes, eight k-mers

55

4.3 Acceleration Method of K-mer Counting in SMUFIN

Figure 4.4: Block diagram of FPGA k-mer generator modules. The connections are labeled
with their width, in bits.

(each eight bytes) of the read in the Read Shift Register are picked during each clock cycle,

concatenated with the type bit of their read and their corresponding valid bits, and then written

to the destination memory. The valid bit is obtained by an AND operation on the valid bits in

the Valid Shift Register, which correspond to all the bases of the k-mer. During the same clock

cycle, the Read and the Valid Shift Registers are shifted 16 and 8 bits, respectively. If in a given

clock cycle the Read Shift Register contains less than eight k-mers, k-mers of the Next Read

are generated to ensure a total of eight k-mers are processed in each clock cycle, and the Next

Read and the Valid Read registers are shifted accordingly.

The FPGA design has two pipeline stages, one for each module. Although Read_Extr can

analyze 64 bytes of data at each clock cycle, the K-mer_Extr module is the bottleneck because

the output data of this module is 5× larger than its input data. With data width equal to 64

bytes at the output side, only 1/6 of the output data of the K-mer_Extr module is sent to the

destination memory at each clock cycle. Therefore, the Read and Valid FIFOs can become full

and impose a wait time on the Read_Extr module. With a clock frequency of 250MHz the peak

bandwidth is 16GB/s, or 2Gk-mer/s nominally, but in practice 1.7Gk-mer/s is obtained.

Partitioner Thread

When the FPGA action finishes, a partitioner thread in the CPU checks the destination memory,

terminates invalid k-mers, determines the partition of each k-mer, and copies the k-mers to

their corresponding partition memory. Meanwhile, the producer threads start loading the rest of

the reads in the source memory.

56

K-mer Counting FPGA Accelerator

Consumer Threads

The consumer threads count the frequency of the generated k-mers in partition memories.

Each consumer is responsible for one partition memory. Each consumer thread first sorts and

then counts the k-mers of its partition. After sorting, the counting is easily accomplished by

comparing each k-mer with the previous one and, if they match, incrementing the frequency

counter of the k-mer. After calculating the frequency of all the k-mers, consumer thread stores

its intermediate histogram table on disk.

The benefits of using sort instead of hash tables, in addition to improved performance,

are the lower requirements for memory and disk. The Google sparse hash tables used in the

CPU-only version need four extra bytes per item [120]. So in that design, to avoid writing

extra bits on disk, a loop iterates on all the elements of the hash tables and their values are

extracted and copied in another part of memory that is then saved on disk. This adds extra time

and memory usage that is eliminated in the proposed design. As there are no hash tables in

our design, k-mers and their corresponding counters are directly put in a byte aligned array of

memory.

The performance of writing the intermediate histogram tables to disk heavily depends on

the speed of the I/O subsystem. Hence, compacting the data can lead to better performance and

less storage requirements.

Data Compaction

As explained in Section 4.2.3, the intermediate histogram tables keep two frequency counters

per k-mer in a format of pair<(uint64) k-mer, (uint16) counter[2]>. The consumer threads use

three techniques to compress the information of these tables.

The first technique consists of grouping the batches of files by their type, so that a batch

only contains normal or tumoral files. With this technique all the k-mers of the batch of files

have the same type so, instead of two frequency counters per k-mer (one tumoral and one

normal), only one counter per k-mer is required. First we feed the system with normal files and

then with tumor files. As the number of normal and tumoral files is the same, the type of each

k-mer is easily distinguishable from the index of its table name in later steps. If the index of a

table is in the first half of all indexes, that table contains normal k-mers, otherwise it contains

tumoral k-mers.

The second technique is based on the observation that, in practice, the frequency of 99% of

the k-mers is below 255. To exploit this, we use a variable length counter controlled by a bit

57

4.3 Acceleration Method of K-mer Counting in SMUFIN

Figure 4.5: Example of partitioning lookup table.

cntr_ex_en (counter extension enable) per k-mer that indicates the size in bytes of the counter

field (0 for one byte and 1 for two bytes). This compaction method is applicable when the

k-mer field contains at least one unused bit. For example, with a k-mer field of 64 bits, this

method is suitable for k-mer lengths of 31 and lower, where at most 62 bits of the k-mer field

are used (31 bases × 2 bits/base) and at least two bits are free and can be used to encode the

cntr_ex_en bit.

The third technique reduces the space required to store one k-mer. This is achieved by

replacing the first 5-mer of each k-mer with its index in the partitioning lookup table (see

Figure 4.5). This technique is only applicable when the number of partitions is more than 35.

In this case each partition will contain less than 32 5-mers, so the index number of each 5-mer

in the lookup table will be in the range of 0 to 31. Therefore, a 10-bit 5-mer is replaced by its

5-bit index. In our FPGA design the k-mer length is fixed to 30 and each k-mer occupies eight

bytes (61 bits = 30 bases × 2 bits/base + Cntr_ex_en). With this data compaction method, each

k-mer fits in 56 bits (61 bits_before_compaction - 10 bits/5-mer + 5 bits/index). Note that this

method is only useful when the number of saved bits reduces the k-mer field by one byte. For

example, with a k-mer length of 31, this method is not useful because 58 bits are needed after

compaction, which still requires 8 bytes.

These three compaction methods allow to save 30% of the space needed for storing the

k-mers and their frequency counters. In the proposed design, hash table containers are no

longer used. Instead, intermediate histogram tables are written sequentially in a byte aligned

array of memory. In this array, each k-mer occupies 7 bytes and its corresponding frequency

counter occupies one or two bytes, depending on its value. Figure 4.6 illustrates an example of

the format of storing a k-mer and its frequency after data compaction.

58

K-mer Counting FPGA Accelerator

Figure 4.6: An example of k-mer and its frequency layout after data compaction.

4.3.3 Unify Step

The unify step has three responsibilities: merging all the intermediate histogram tables of each

partition into a final frequency table of that partition, discarding unique k-mers, and converting

the final frequency tables layout. The proposed unify step loads only the first k-mer of all

intermediate histogram tables in memory, and determines the smallest k-mer of the loaded ones

for each partition. If two or more k-mers are equal to the smallest one, their values are added

together and stored in the final frequency table while, it is discarded if it is unique. Then the

next k-mers of the tables are loaded and this procedure continues for all the k-mers of all the

intermediate histogram tables.

The new unify design has four major changes compared to the CPU version: (i) it merges

all intermediate histogram tables at once; (ii) it only loads the first k-mers of each table in

memory; (iii) it removes unique k-mers before inserting them into the final frequency tables;

and (iv) it stores final frequency tables as sorted vectors. The first modification makes the

design faster while the others make it more memory efficient.

4.4 Evaluation and Results

4.4.1 Experimental Setup

As explained in Chapter 3 the experiments of this contribution are done on a POWER9 system

with 2×20 cores (160 threads) running at 2.3GHz, with an attached CAPI2-enabled AlphaData

ADM-PCIE-9V3 FPGA board. The FPGA code is written in VHDL and compiled using Vivado

v2018.1. In this design the FPGA runs at 250MHz. To integrate our accelerator with CAPI2

interface, we use the platform provided by IBM in github [194].

59

4.4 Evaluation and Results

Table 4.1: FPGA resources utilization (%) for the CAPI-related IP cores and for the proposed
k-mer counting accelerator.

LUT FF DSP BRAM URAM

CAPI 10.04 9.86 1 32.99 -

K-mer counting 11.25 0.63 - 2.57 -

Total 21.29 10.49 0.04 35.56 0

The input DNA samples consists of 256 gzip compressed FASTQ files, 128 for normal

samples and 128 for tumoral. The read length is 80bp so each input file contains approximately

16M reads. To increase the speed of reading and writing files, half of input and output files are

saved on one disk and the other half on the other disk.

In the evaluation we use the adapted version of SMUFIN as CPU baseline, as explained in

Section 4.2.2. SMUFIN accepts k-mer lengths between 24 and 32. We use a k-mer length of 30

in both the CPU baseline and the FPGA co-design. To verify the correctness of our accelerator,

we compare the outputs obtained in the executions with the accelerator with the ones obtained

in the executions with the software baseline.

4.4.2 Results

Table 4.1 shows the resource utilization of the FPGA. The k-mer counting accelerator occupies

only a small fraction of the FPGA resources, while the CAPI modules present a higher resource

utilization, specially in FF and BRAM. Even consuming few resources, the proposed accelerator

reaches the maximum bandwidth of CAPI2, so a more complex design would not provide any

benefit. For future generations of CAPI that provide more bandwidth, like OpenCAPI, there is

room to scale up the proposed design and utilize more FPGA resources.

The execution time of both designs is summarized in Figure 4.7. In this exploration we try

all the possible combinations of batch sizes (16, 32, 64, 128), producer threads (16, 32) and

consumer threads (100, 120). Other values for these parameters reduce the performance for

both designs. The CPU+FPGA design results for a batch size of 128 are not shown because the

system runs out of memory in this configuration. In this section the term "memory" refers to the

main memory (DRAM) of the system. The CPU-only design uses producer-consumer queues

of 32K elements as it gives the best performance. The best configuration for the CPU+FPGA

design is 120 consumer threads, 16 producer threads and batches of 16 files, while for the

CPU-only design it is 120 consumer threads, 32 producer threads and batches of 32 files.

60

K-mer Counting FPGA Accelerator

Figure 4.7: Execution time for different designs and configurations.

Comparing the best execution times of both designs, the CPU+FPGA design presents a speedup

of 2.14× for the count phase.

Figure 4.7 also shows the distribution of the execution time among the different steps. The

CPU+FPGA design does not use Bloom filters, so the time-consuming prune step is not needed.

Even without Bloom filters, the count step is 1.34× faster by offloading work to the FPGA.

Although the unify step of the CPU+FPGA design merges larger tables, its execution time is

similar to the unify step of the CPU-only design with the prune step enabled.

Results show that the count step of the CPU+FPGA design presents less variability in the

execution times when changing the number of producer and consumer threads. For a batch

size of 32 files, the performance difference between the fastest and the slowest configuration

in the CPU+FPGA design is 5.94%, while for the CPU-only design it is 24.59%. The higher

variability of the execution times of the CPU-only design is due to the synchronization between

producer and consumer threads in the producer-consumer queues. If the number of threads is

not tuned properly, producer and consumer threads experience idle time when the queues are

full or empty, negatively affecting performance. In contrast, the CPU+FPGA design decouples

the operation of the two types of threads, resulting in a more stable performance.

In addition to the proposed FPGA co-design, we evaluate different design alternatives to

try to further increase performance. One approach is to offload the partitioner thread to the

FPGA. In this approach, the FPGA detects the partition of each k-mer and directly writes it in

its corresponding partition memory. Since k-mers could belong to any partition, the memory

write addresses are not sequential and the FPGA-memory bandwidth is not efficiently used.

However, we try to use the bandwidth more efficiently by buffering 64 k-mer of each partition

inside the FPGA FIFOs and then writing them into the memory in one burst transaction. We

61

4.4 Evaluation and Results

Table 4.2: Execution time and disk space requirements of the count and unify steps with the
prune step enabled and disabled.

Prune

Status

Time (s)
Disk (GB)

Prune Count Unify Total

Enabled 3335 3049 1050 7434 475

Disabled - 3994 16323 20317 1101

observe this approach also provides negligible speedup compare to partitioning in the CPU.

Moreover, partitioning in the FPGA limits system configurability as it requires to reprogram the

FPGA when the number of partitions changes. We also try to offload the work of the consumer

threads to the FPGA, but results show that performing this work using 160 parallel threads is

faster than doing it in a single FPGA. Finally, to observe the effect of the FPGA acceleration on

the execution time of the co-design, we replace the FPGA design by an analogous CPU code

and we observe that the k-mer generation and the whole count step are slowed down by 150×
and 10×, respectively.

As explained in Section 4.2.3, the prune step that generates the Bloom filters for the count

step is optional. To quantify the impact of the prune step, Table 4.2 compares the execution

time of the whole k-mer counting phase with and without the prune step for the CPU-only

design. This experiment uses 16 producer threads, 100 consumer threads, and batches of 16

files. The system runs out of memory for batches with more than 16 files when the prune step

is disabled. Results show that enabling the prune step improves performance by 2.73× because,

although the execution of this step takes 3335 seconds, it provides important speedups in the

count and unify steps. With the prune step enabled, the count step avoids the computation

of unique k-mers, which reduces the execution time of this step by 1.31× and makes the

intermediate histogram tables smaller. The unify step takes 15.54× more time when the prune

step is disabled because it needs to merge larger tables, and the execution time of this step

grows exponentially with the size of tables to be merged. The unify step can merge half of

the intermediate histogram tables at once when the prune step is enabled, while without the

prune step only 1/12 of these tables fits in memory at once. When the prune step is enabled

the required disk space is 475GB while, with the prune step disabled, it reaches 1101GB. This

shows that 57.86% of the required disk space is occupied by unique k-mers which do not

provide useful information.

The number of files in each input batch affects disk and memory usage. Figure 4.8

illustrates the memory and disk storage requirements of the count step for different batch

62

K-mer Counting FPGA Accelerator

(a) Memory (b) Disk

Figure 4.8: Memory and disk usage of the count step.

sizes. The memory usage of the prune and unify steps are not dependent on the number of

files in each batch and are almost constant. The prune step uses 90GB of memory, while

the unify step requires 470GB of memory with the CPU-only design and 300GB of memory

with the CPU+FPGA design, i.e., 1.57× less memory than the CPU-only design. As seen

in Figure 4.8(a), the memory usage of the count step scales up with the batch size and the

CPU+FPGA design needs less memory for any batch size below 128. However, its count step

does not fit in the system memory for batches of 128 files. Regarding the best performing

configurations (from Figure 4.7), the CPU+FPGA design needs 114GB of memory while the

CPU-only design requires 400GB. Regarding the disk utilization, Figure 4.8(b) shows that,

as the batch size increases, the disk usage decreases in both designs. This happens because,

with larger batches, more files are merged together at once and more data is packed in the

intermediate histogram tables, which reduces the required disk space. In conclusion, the

CPU+FPGA design is faster and its count step requires 3.51× less memory. These memory and

performance improvements are achieved at the cost of using 1.93× more disk space, 881GB in

the CPU+FPGA design versus 456GB in the CPU-only design.

The power consumption of the count step is illustrated in Figure 4.9. We measure the power

consumption of the whole node with in-band readings from Linux to the On Chip Controller

(OCC) [206]. It can be observed that the power consumption of the producers is lowered in

the CPU+FPGA design by more than 200W. Peaks in the CPU+FPGA design belong to the

sort part of consumer threads. There are 16 of them as the total input is analyzed in 16 batches.

The power consumption of the unify step of the CPU+FPGA design, which is not shown in

Figure 4.9, is also 170W below that of the CPU-only design. All together, for the whole count

63

4.5 Conclusions

Figure 4.9: Power consumption of the count step over time.

phase, the CPU+FPGA design consumes 0.42kWh of energy while the CPU-only one uses

1.23kWh, so the total energy-to-solution is improved by a factor of 2.93×.

4.5 Conclusions

K-mer counting is one of the most time-consuming phases of many genomic applications.

Although FPGAs are very well suited to accelerate the k-mer counting algorithm, their reduced

memory capacity is a big limiting factor to handle the vast amount of data that is processed

with this algorithm. To overcome this limitation, the IBM CAPI interface allows FPGAs to

directly access the processor memory.

This chapter presents a hardware/software co-designed accelerator for k-mer counting on

CAPI-enabled FPGAs. The proposed approach consists of an FPGA design to accelerate the

generation of k-mers and a combination of optimizations on the software side to eliminate

thread dependencies, replace hash-tables for sorted vectors, and re-define the memory layout

using three data compaction mechanisms. The co-designed accelerator is able to efficiently

count k-mers and unify the results without the need of Bloom filters, so the time-consuming

phase to generate them can also be avoided. All together, the proposed co-design greatly

accelerates the k-mer counting algorithm while reducing the memory requirements, the thread

synchronization overheads, and the sensitivity to the algorithm parameters. Results show that

the presented co-design achieves a speedup of 2.14× over the CPU-only design while reducing

the energy-to-solution and the memory requirements by 2.93× and 1.57×, respectively. The

proposed co-design can be easily integrated in the k-mer counting phase of any genomic

application and can be scaled up in future CAPI-based systems that provide higher bandwidth

between the FPGA and the processor memory.

64

Chapter 5
WFA FPGA Accelerator

5.1 Introduction

The current most widely used sequencing technologies, NGS, sequence DNA in millions of

small fragments, aka reads, of length 50 to 300 base pairs. While, third generation sequencing

machines, which are expected to be widely used in the future, generate longer reads of thousands

of base pairs.

Read mapping is the first step in most DNA sequence analysis pipelines, which determines

the location of each read in the reference genome. One of the main steps of read mapping, is

pairwise read alignment which aligns pairs of sequences, input reads verses candidate locations

of the reference genome. Modern read mappers, for their pairwise read alignment step, use

variants of SW algorithm which uses dynamic programming and require quadratic O(n2)

execution time and memory, where n is the sequence length. Hence by increasing the sequence

length, the computational requirements of SW become the bottleneck.

Recently, the WFA algorithm has been proposed [19] which runs in O(n · s) time, propor-

tional to the sequence length n and the error score s between sequences. To do so, the WFA

uses a novel approach which only computes a reduced number of the DP-matrix cells to find the

optimal alignment. With this approach, the WFA algorithm performs exact pairwise sequence

alignment between the query and every potential candidate of the database, so its results are

identical to the gapped SWG. Thus, the SWG algorithm of any full mapper could be replaced

by the WFA algorithm to improve the mapper performance. Since the error score is typically

much smaller than the sequence length, the WFA algorithm is significantly faster than other

algorithms when aligning short reads. In addition, the WFA algorithm also scales much better

with increasing sequence lengths, achieving 10−100× speedups over other methods with long

reads such as those produced by third generation sequencing systems.

65

5.1 Introduction

This chapter presents the first FPGA-based accelerator for the WFA algorithm. In a

hardware/software co-designed scheme, the FPGA accelerator computes the alignment of pairs

of sequences and sends the output to the CPU. Then, multiple CPU threads process the output

of the FPGA and produce the final results in parallel.

The FPGA design of the accelerator is composed of multiple Aligner cores that collabora-

tively compute the sequence alignments. Unlike the CPU implementation of the WFA, which

supports any read length and computes any error score, the proposed design of the Aligners

allows a configurable maximum read length and error score between the reads. These two

design parameters determine the compute and memory resources required by each Aligner

and, thus, the number of parallel Aligners that can be placed in the FPGA. By configuring the

maximum read length and error score, the Aligners can be adapted to the characteristics of the

reads generated by different sequencing machines and technologies. The source code of the

WFA accelerator is open source and publicly available [207].

The main contributions of this chapter are:

• We propose the first accelerator for the WFA algorithm. The initial design of the proposed

accelerator targets input sets composed of short reads and it performs the alignment of

sequences in a hardware/software co-designed scheme. With this scheme, the compute

intensive parts of the algorithm are done in the FPGA and the CPU gathers the output of

the FPGA and computes the final results.

• We present key modifications to the initial design of the WFA accelerator to extend its

functionality to long reads. To this end, we propose techniques to intelligently use the

FPGA RAMs to store the sequences and the data structures of the WFA algorithm, and

we also propose a re-organization of the tasks performed by the FPGA and by the CPU

in the hardware/software co-design.

• We do a thorough evaluation of the WFA accelerator on a high performance system with

a POWER9 CPU and two FPGAs. The evaluation uses synthetic input sets for short and

long reads as well as real PacBio input sets, and it compares the performance and the

power efficiency of the WFA accelerator against the CPU implementation of the WFA

and of the SWG.

• For short reads, we demonstrate that the WFA accelerator achieves speedups of 4.5× to

8.8× with one FPGA compared to the WFA CPU-only implementation, and the speedups

increase to 8.2× to 13.5× with two FPGAs. In addition, the energy-to-solution is reduced

by 6.1× to 9.7× with one FPGA, and by 11.4× to 14.6× with two FPGAs.

66

WFA FPGA Accelerator

• For long reads, we demonstrate that the WFA accelerator achieves speedups of 2.6×
to 5.5× with one FPGA and of 2.7× to 9.9× with two FPGAs compared to the WFA

CPU-only implementation. The energy-to-solution is also reduced by 3.6× to 7.5× with

one FPGA, and by 3.7× to 10.9× with two FPGAs.

5.2 Background

The WFA [19] is an exact gap-affine-based pairwise alignment algorithm with identical results

to the SWG algorithm. However, the WFA computes only a minimal number of cells of the

DP-matrix to find the optimal alignment. This is done by proposing a different way of encoding

the DP-matrix, as shown in Equation 5.1.

Ĩs,k = max

M̃s−go−ge,k−1 (Open Insertion)

Ĩs−e,k−1 (Extend Insertion)

+1

D̃s,k = max

M̃s−go−ge,k+1 (Open Deletion)

D̃s−ge,k+1 (Extend Deletion)

M̃s,k = max

M̃s−x,k +1 (Substitution)

Ĩs,k (Insertion)

D̃s,k (Deletion)

(5.1)

with initial condition M̃0,0 = 0.

In Equation 5.1, {x,go,ge} are penalty scores (x: mismatch, go: gap-opening, ge:gap-

extension), a match penalty score is 0, s is the alignment error score or simply score, and k is

the diagonal offset, which is 0 for main diagonal of the DP-matrix. It increases for diagonals

on the right side of the main diagonal, and decrease (negative values) for diagonals on the

left side of the main diagonal, depending the distance or offset of the diagonal with regard

to the main diagonal. The WFA algorithm computes three wavefront vectors M̃s,k, D̃s,k and

Ĩs,k for each score, being k the index of their elements. The M̃, D̃ and Ĩ wavefront vectors,

respectively, track alignments that end with a match/mismatch, a deletion or an insertion. The

WFA encodes the diagonal cells, progressively as the score increases, from the left-most column

to the farthermost cell that has score s. Hence, the wavefront vectors length increases as the

score increases, and consequently it runs in O(n · s) time.

67

5.2 Background

Figure 5.1: Dependencies between previous wavefronts to compute one element of the new
wavefront [19].

Regarding Equation 5.1 wavefronts of a new score, WFs, only depend on the previously

calculated wavefronts of scores s− x, s−go−ge and s−ge (WFs−x, WFs−go−ge and WFs−ge).

Figure 5.1 shows the dependencies between previously calculated wavefronts to compute one

element of the new wavefront.

Figure 5.2 illustrates an example of aligning two sequences with the classical SWG using a

DP-matrix (left) and its equivalent alignment with the WFA using wavefront vectors (right).

The SWG computes all the cells in the matrix of Figure 5.2 (left), while the WFA only computes

the colored cells. The WFA starts from score 0 and calculates only the cells which could have a

score 0. Then it increases the score and calculates all possible cells with the new score. This

process repeats until the end of alignment is reached, i.e., the calculation reaches cell (n,m),

where n and m are sequences lengths. The positions of the cells with a specific score are kept

in the wavefront vector of that score. For example as shown in Figure 5.2, for score 8, the

vector M̃8 holds the offsets 2, 5 and 1 for the diagonals k=1, k=0 and k=-1, respectively. This

represents that, in the diagonal 1 (k=1) of the matrix, the cell with offset 2 has a score of 8.

Similarly, the cells with score 8 in diagonals 0 and -1 are at offsets 5 and 1, respectively. Note

that, in the diagonal 0, the offsets 3, 4 and 5 have cells with score 8, and the WFA only stores

the biggest offset (furthest-reaching point) of a score in a specific diagonal.

The WFA algorithm has two main operators to perform the alignment: extend() and

compute(). First, extend() compares the sequences for each diagonal cell from starting posi-

tions i and j in the M DP-matrix until a mismatch is found and outputs the number of contiguous

matching characters which are stored in M̃s. After extending all the cells of the M̃ wavefront

vector, the compute() operator computes the offsets of the next M̃, D̃ and Ĩ wavefront vectors

based on Equation 5.1.

68

WFA FPGA Accelerator

k=-2

k = 0
k = 1
k = 2k = -1k = -2

 Offset

A

C

C

A

T

A

C

T

C

G

1 2 3 4 5 6 7 8 9 10

0 8 10 12

8 4 12

10 12 8

A G G A T G C T C G

12 8

8

12

12

12

12

12

k=0
k=1
k=2
k=3

k=-3

k=-1
1 2

2

5

1

3

1

4 4 4

3 3 3

6

2 2 2

10

1 1 1

.. . . ex
te
nd
()

compute()
compute()

extend()

M0 M4

M8

M10

M12M12I12 D12

~ ~
~

~
~ ~ ~ ~

The biggest offset of score 12 (M12)
in diagonal 0 (k=0) is 10

~

Figure 5.2: Alignment of two sequences using penalties (x,go,ge) = (4,6,2). Left) SWG
DP-matrix highlighting the cells that are computed by the WFA. Right) Calculation of the

necessary wavefront vectors by the WFA.

The WFA iteratively performs extend() and compute() until a wavefront, with score s,

reaches the end of both sequences. So, the final alignment score is s. After that, to obtain the

differences between the sequences, the backtrace() operator is performed. This operator traces

all the cells back from cell (m,n) to cell (0,0), or in other words, from the cell that gave the

optimal alignment score to the initial wavefront M̃0,0 = 0. This is done by looking at the values

that Equation 5.1 has generated for each cell towards the final alignment score.

The whole WFA algorithm, extend(), compute(), and backtrace() algorithms are depicted,

respectively, in Algorithms 1, 2, 3, and 4. As mentioned earlier, by increasing score the new

wavefront grows by one element from both sides which is spanning over one more diagonal

on each end. In Algorithms 2 and 3, hi and lo respectively indicate the highest and lowest

elements or diagonals (k) that each type of wavefronts (M̃, D̃, Ĩ) include for the score s.

In the reminder of this thesis we use the terms error rate, error score and penalty score

(or simply penalty). The error rate refers to the accuracy of the sequencing machine. For

example, a sequencing machine which has an error rate of 2% assures a DNA sequencing with

98% of accuracy, that is, two bases out of 100 may be sequenced incorrectly. The error score

is the score that the alignment algorithm calculates when aligning a pair of sequences. The

error score represents the degree of difference between two reads, and it indicates the cost of

changing one read to make it identical to the other one. The error score is computed based on

the penalty score (or simply penalty) used in the alignment algorithm, which is a numerical

69

5.2 Background

Algorithm 1: Gap-affine WFA algorithm
Input: Sa,Sb strings, p = {x,go,ge} gap-affine penalties
Output: Gap-affine alignment A between Sa and Sb under p penalties

Function WF_ALIGN(Sa,Sb, p) begin
// Diagonal and offset to (n,m)
Ak← (m−n)
Ao f f set ← m
// Initial conditions
M̃0,0← 0
// Incremental computation of wavefronts
s← 0
while true do

// Exact extend s-wavefront
WF_EXTEND(M̃s,Sa,Sb)
// Check exit condition
if (M̃s,Ak ≥Ao f f set) then break
// Compute wavefront for the next score
s← s+1
WF_COMPUTE(M̃, Ĩ, D̃,Sa,Sb,s)

// Backtrace alignment
A ←WF_BACKTRACE(M̃, Ĩ, D̃,Sa_Len,Sb_Len,s) return A

Algorithm 2: Wavefront extend
Input: M̃s wavefront, Sa,Sb strings

Function WF_EXTEND(M̃,Sa,Sb) begin
for k← M̃lo to M̃hi do

i← M̃s,k− k
j← M̃s,k
while Sa[i] == Sb[j] do

M̃s,k← M̃s,k +1
i← i+1
j← j+1

Algorithm 3: Compute next wavefront
Input: M̃, Ĩ, D̃ wavefronts, s score

Function WF_COMPUTE(M̃, Ĩ, D̃,s) begin
hi←max{M̃hi

s−x,M̃
hi
s−go−ge , Ĩ

hi
s−ge , D̃

hi
s−ge}+1

lo←min{M̃lo
s−x,M̃

lo
s−go−ge , Ĩ

lo
s−ge , D̃

lo
s−ge}−1

for k← lo to hi do
Ĩs,k←max{M̃s−go−ge,k−1, Ĩs−ge,k−1}+1
D̃s,k←max{M̃s−go−ge,k+1, D̃s−ge,k+1}
M̃s,k←max{M̃s−x,k +1, Ĩs,k, D̃s,k}

70

WFA FPGA Accelerator

Algorithm 4: Compute backtrace
Input: M̃, Ĩ, D̃ wavefronts, Sa_Len,Sb_Len strings lengths, s score

Function WF_BACKTRACE(M̃, Ĩ, D̃,Sa_Len,Sb_Len,s) begin
k← Sa_Len−Sb_Len
m← Sa_Len+Sb_Len
o f f set← M̃k,s
BT _TY PE←Mismatch
i← offset− k
j← offset
while (i > 0 and j > 0 and s > 0) do

// find the origin and its corresponding difference
(max,Di f f erence)←

max_di f f erence_type(M̃k+1,s−go−ge ,M̃k,s−x +1,M̃k−1,s−go−ge +1, Ĩk−1,s−ge +1, D̃k+1,s−ge)
if (BT_TYPE == Mismatch) then

for n← 0 to offset−max do
A[m−−]← ”M”

o f f set← max

switch Difference do
case Deletion_extension: do

s← s−ge , k← k+1, A[m−−]← ”D”, BT _TY PE← Deletion

case Deletion_opening: do
s← s−go−ge, k← k+1, A[m−−]← ”D”, BT _TY PE←Mismatch

case Insertion_extension: do
s← s−ge , k← k−1, A[m−−]← ”I”, offset← offset−1, BT _TY PE← Insertion

case Deletion_opening: do
s← s−go−ge, k← k−1, A[m−−]← ”I”, offset← offset−1,

BT _TY PE←Mismatch
case Mismatch: do

s← s− x, A[m−−]← ”X”, offset← offset−1, BT _TY PE←Mismatch

i← offset− k
j← offset

if s == 0 then
for n← 0 to offset−max do

A[m−−]← ”M”

else
while i > 0 do

A[m−−]← ”D”, i← i−1

while j > 0 do
A[m−−]← ”I”, j← j−1

71

5.2 Background

S1 [100] = “AACCTG………...AAACTTTG”
S2 [100] = “AACGTG………...AAACTT_G”

Defined penalties: x = 4; g
o
 = 6; g

e
=2

Error Rate = 2% (2 errors in 100 bases)
Error Score = 1x4 + 1x(6+2) = 12

Figure 5.3: Example of error rate, error score, and penalties.

value that represents the cost of each difference (mismatch, gap-opening and gap-extension)

between two reads. The example in Figure 5.3 clarifies these terms.

72

WFA FPGA Accelerator

Backtrace

CPU CPUFPGA

Alignment

Extend Compute
Compact
CIGAR

Full
CIGAR

Parsing
Input

Check
FPGA
Result

Sequence a : AAA_CGT Sequence b : ACATCG_
Compact CIGAR : XID (in FPGA - only differences in order)
Full CIGAR : MXMIMMD (in CPU - inserting matches)

M
em

or
y

M
em

or
y

Figure 5.4: Steps in the WFA co-designed accelerator of short reads and example of the
compact and full CIGAR. The compact CIGAR is computed in the FPGA and only returns

differences between sequences. Then, the CPU recovers the full CIGAR inserting matches by
comparing both sequences in the CPU.

5.3 WFA Accelerator for Short Reads

This section presents the proposed WFA accelerator for short reads. Figure 5.4 shows the

co-design steps. First, the CPU parses the input data and stores them in the memory. Then, the

FPGA reads the sequences, computes the alignments by iteratively performing the extend and

compute operations, and writes the results to the memory in compact CIGAR form. After that,

multiple CPU threads read and check the FPGA alignment results and finish the backtrace step

by unpacking the compact CIGARs to full CIGARs.

In our experiments with the reference WFA CPU-only implementation of the WFA algo-

rithm [200], the extend, compute and backtrace steps are responsible for around 50%, 45%

and 5% of the total execution time, respectively. Hence, offloading the extend and compute

steps to the FPGA is crucial to accelerate the algorithm. In addition, offloading the backtrace

step to the FPGA is also beneficial because, although this step has a small weight on the total

execution time, it requires reading the whole data of all the wavefronts. Thus, to minimize

bandwidth-bound data transfers between the memory and the FPGA, the presented accelerator

innovatively divides the backtrace operation into two parts, one in the FPGA that computes

the CIGARs in a compacted form of only eight bytes, and one in the CPU that unpacks the

compact CIGARs and generates the full CIGARs. An example of a compact and a full CIGAR

is shown in Figure 5.4.

The FPGA design is composed of three main modules, as shown in Figure 5.5. The Aligner

module implements the main computational steps of the WFA algorithm. A configurable

number of Aligners can be instantiated in the design so they process alignments in parallel. The

73

5.3 WFA Accelerator for Short Reads

A 00
C 01
G 10
T 11 Packer

n

Packer
2

Packer
 1

Seq a
Len a
Seq b

ID

Assign

Data
 In

Extractor

D
at

a
O

ut

Collector
E

xt
ra

ct

S
ch

ed
ul

er

 Aligner

 Inputs

 Status
 Results

G
ro

up
M

ak
er

N
 8

-b
as

e
(1

6-
bi

t)
gr

ou
ps

 o
f S

eq
 a

N
=

L
en

 a
/8

Len b

Figure 5.5: Structure and different modules of the FPGA design of the WFA accelerator for
short reads.

Extractor module distributes sequences among the Aligners and the Collector module gathers

results from them.

5.3.1 Extractor Module

The Extractor module distributes sequences among Aligners. This module has two states,

extract and assign. The first state reads data from memory and extracts the DNA sequences,

their alignment IDs, and their lengths. The length of the input sequences is fixed in the Extractor

module at design time. The second state compresses the sequences by mapping each base to

two bits and sequentially packs them in groups of eight bases. Blocks of eight bases (16 bits)

of each sequence are stored in an array of 16-bit registers. When an Aligner becomes idle, the

Extractor module assigns to it one pair of sequences along with their lengths and the alignment

ID, in order to process the alignment.

5.3.2 Collector Module

The Collector module collects the results of the Aligners and writes them to the memory. The

result of each Aligner is 16 bytes, while the FPGA data width is 128 bytes in our setup. Thus,

the Collector module first packs eight results of each Aligner in one 128-byte word and then

writes it to the memory. A Scheduler handles the order in which the results of the different

Aligners are written to the memory.

5.3.3 Aligner Module

The Aligner module computes the sequences alignment. To do so, each Aligner contains a

configurable number of Extend and Compute sub-modules, a Backtrace sub-module, and a

Controller sub-module that controls the operations and the data flow. The Extend and Compute

sub-modules operate sequentially multiple times, as the output of one is the input of the other

74

WFA FPGA Accelerator

one. At the end, the Backtrace sub-module computes the compact CIGAR. Although these

steps are executed sequentially, they are pipelined and internally parallelized.

Aligner Parallel Structure

The parallel operation of the Aligners is achieved by dividing a wavefront matrix in independent

parts. A wavefront matrix, as shown in Figure 5.6 (a), is a structure that unifies all the wavefront

vectors of a given type (Ĩ, D̃ and M̃). The values stored in the cells of the matrix are called

offsets. The X axis of the wavefront matrix represents the scores, and each column of the matrix

stores the wavefront vector for the corresponding score (i.e, the column 0 of the wavefront

matrix M̃ stores the wavefront vector M̃0). The Y axis is defined at compile time with a

parameter called k as in Equation 5.1, which limits the maximum supported error score between

sequences and sets the range of the Y axis from −k to k. As explained in Section 5.2, this

parameter defines the maximum number of diagonals that a wavefront vector can include, or in

other words, the maximum number of elements of a wavefront vector. Since the length of the

wavefront vectors increases with the score, some cells of the wavefront matrix are invalid. In

the example of Figure 5.6 (a), valid cells are marked with an X. In addition, the whole cells of

some columns, depending on the penalties, are not valid. Therefore, each column has a Null

tag that indicates if all the cells of that column are invalid. In the design, invalids cells hold a

negative value.

The proposed accelerator exploits parallelism by computing multiple offsets of a column of

a wavefront matrix at the same time. For a given score, the corresponding columns offsets in

the three wavefront matrices can be calculated in parallel, as they only depend on the previously

calculated columns of the wavefront matrices (see Equation 5.1 and Figure 5.1). We define

window as the set of columns of a wavefront matrix that are needed to compute a given column.

The rightmost column of a window, called frame column, is the one being processed, and the

other columns of the window are needed as inputs to compute the frame column. The width

of the windows depends on the penalty scores. For typical penalties (x,go,ge) = (4,6,2), the

computation of the frame column requires 2, 2 and 8 previous columns of the Ĩ, D̃, and M̃

wavefront matrices, respectively. When all the offsets of a frame column are calculated, all the

columns of the window are shifted to the left and the leftmost one is discarded. This allows to

reduce the FPGA resource utilization, as we only need to keep a limited number of columns of

the wavefront matrices. The windows of the wavefront matrices are implemented as 2D-arrays

of registers to provide concurrent and fast access to the cells. The width of the registers depends

on the sequence length.

75

5.3 WFA Accelerator for Short Reads

Compute 8

Extend 8

E
xtends
Select

Score

k

 F
ra

m
e

C
ol

u
m

n

a

 8

0

 1

-7

Extend 1

b

C
om

putes
Select

M Wavefront Window

M
U

X
 2:1

Compute 1 M
U

X
 2:1

N
u

ll
 C

ol
u

m
ns

Figure 5.6: a) An example WFA wavefront matrix with k = 8. Valid cells for penalties
(x,go,ge) = (4,6,2) are marked with an X. Same colored cells of each column are the parallel
inputs of the Extend and Compute modules at each clock cycle. The appropriate Extend and

Compute inputs are selected using multiplexers shown in (b).

To compute a frame column, each of its cells is fed to a configurable number of pairs of

Extend and Compute sub-modules, called parallel sections. In the example of Figure 5.6 there

are eight parallel sections which compute eight cells of the frame column in parallel. Note

that the number of parallel sections can be lower than the number of cells in a frame column,

so the computation of the frame column can take several cycles. To efficiently use the FPGA

resources, we restrict the possible inputs of the multiplexers that pass the offsets of the frame

column to the Extend and Compute sub-modules. In the example of Figure 5.6 (b), the offsets

of cells 8 and 0 are inputs of the first Extend and Compute sub-modules, cells 7 and -1 are

inputs of the second sub-modules, and so on. In Figure 5.6 (a) the colors represent the cycle in

which each cell is processed. In the example, the frame column of score 8 has 5 valid cells,

and the computation of the cells in rows k = 1 and k = 2 is performed in the first cycle, while

76

WFA FPGA Accelerator

the computation of the cells in rows k =−2 to k = 0 are performed in the second cycle. We

pipeline the processing of frame columns that require more than one cycle by first performing

the compute for eight cells and, while these eight cells are extended, the next eight cells are

computed.

The next subsections explain in detail the architecture of the Aligner module and its

sub-modules, shown in Figure 5.7.

Extend Sub-module

The Extend sub-module receives the offset of a cell, its k position and a start signal. From these

inputs, the Extend sub-module calculates the initial positions in sequence a and sequence b

based on Equation 5.2, compares the bases of both sequences starting from the initial positions

until a mismatch is found, and returns the number of matching bases.

Starting position of sequence a = o f f set_in− k

Starting position of sequence b = o f f set_in
(5.2)

To increase the speed of the design and minimize resources, the sequences are compared in

blocks of eight bases. To do so, the Extractor module packs blocks of eight bases in an array of

registers. However, each base of sequence a can be compared with any base of sequence b, and

their positions may not be at the boundaries of the blocks of eight bases. For this reason, two

blocks of eight bases of each sequence are passed to the Extend sub-module, which uses two

multiplexers for each sequence to select the eight bases that need to be compared. The selected

16 bases of each sequence are then concatenated and passed to a shift register that aligns them

to the comparator input. The design is pipelined in such a way that the comparator compares

eight bases of the sequences at each clock cycle.

The extend operation continues until a mismatch is found. Then the Extend sub-module

returns the number of matches and the new offset for the cell. The Extend sub-module may

receive a negative (invalid) input. For example in Figure 5.6, the inputs of Extend sub-modules

1 to 6, when calculating offsets of score 8 in first cycle, are invalid. In such cases, the starting

position of at least sequence b will be negative (Equation 5.2) and hence, the number of matches

will be zero. Therefore, the output offset will be equal to the input offset. The new offsets are

stored in the rightmost column of the M̃ wavefront window. After extending a column, if the

alignment has not reached the end of the sequences and k has not reached the maximum value,

77

5.3 WFA Accelerator for Short Reads

Comparator
Shift

MUX N:1 MUX N:1

Seq b Comparator input

Groups of 2bit-8 Bases of Seq a MUX Select Seq a

Shift Value Seq b

C
on

tr
ol

le
r

Matches
Num

Concatenate

Seq Len a,b

k

Offset In

Offset Out

Controller

RAM_Dout

Rd_Addr

Score
Len a-b

k

B
ac

kt
ra

ce
R

A
M

-1
0

5 Offsets OriginB
ac

k
tr

ac
e

C
om

pu
te

Address
Decoder

Compact
CIGAR

Score

O
ff

se
ts

 I
nOffsets

Out
DI

Compute
Wavefront

M
Null Tags

Din

E
xt

en
d

C
on

tr
ol

le
r

Figure 5.7: Architecture of the Aligner module and its sub-modules in the FPGA design of the
WFA accelerator for short reads.

the Controller moves the window to the right, increases the score, and extends k by one from

both ends.

Compute Sub-module

After the extend step, the compute step determines the new offset of a cell of each wavefront

frame column by comparing some of the previously calculated offsets of previous columns, as

described in Equation 5.1.

The Compute sub-module is also in charge of managing the Null tags of the columns of

the wavefront matrices. The Null tag of the frame column is determined by the Null tags of

the input columns that are used to compute the frame column. If the Null tag of any of the

input columns is not set, the Null tag of the frame column is set to zero and the offsets are

computed normally. Otherwise, the Null tag of the frame column is set to one and a negative

value is returned. Then the upcoming extend operation is skipped because the extend of an

invalid offset always returns the same offset.

This sub-module also tracks the origin of each computed cell in a backtrace RAM, as the

backtrace step requires this information. Clearly the origins of the invalid columns are not

useful. Hence, to minimize the depth of the backtrace RAM, the Compute sub-module only

writes the origins of cells of columns with a Null flag of zero. As shown in Equation 5.1 and

Figure 5.1, the origin of a cell in the Ĩ, D̃, and M̃ wavefronts matrices can come from 2, 2 and

5 positions, respectively, so we need 1, 1 and 3 bits to store them. At the end of the compute

step, the origins of the computed cells are concatenated in five bits. Since in our design of short

78

WFA FPGA Accelerator

reads eight Compute sub-modules process eight cells in parallel, the width of the backtrace

RAM is 40 bits, and a depth of 250 words is needed to support k values of up to ±32. The

write address of the backtrace RAM is controlled by the Controller sub-module of the Aligner.

Backtrace Sub-module

At the end of alignment, the backtrace determines the mismatches, insertions and deletions that

have to be applied to one sequence to make it identical to the other sequence. For this step we

propose a novel hardware/software co-designed technique that reduces the amount of memory

required by the algorithm and avoids doing a traditional memory-bound backtrace.

On the FPGA side, the Controller of the Backtrace sub-module receives the final score, the

difference in the length of sequences, and the last written data in the backtrace RAM. With these

values it calculates the new k and score and it passes them to the Address Decoder to find the

backtrace RAM addresses of the previous location of the last cell. As the Backtrace sub-module

reads the output data of the backtrace RAM, it decodes the backtrace data and updates the

compact CIGAR register by the corresponding difference, i.e, mismatch, insertion-opening,

deletion-opening or extension. Each of these differences are reflected by two bits in the compact

CIGAR register. The process of reading backtrace data, updating CIGAR, calculating new

k and score, and decoding next addresses, is iteratively repeated until the calculated score

becomes zero and the backtrace is completed. Then, an 8-byte backtrace in compact CIGAR

form is sent to the CPU along with the alignment ID.

The CPU then traverses the two sequences to unpack the backtrace in full CIGAR format. If

an extension appears after an insertion-opening, the CPU interprets it as an insertion-extension.

The same is true for the deletion-extension. CPU threads can recover different backtraces in

parallel, as they are completely independent processes.

5.4 WFA Accelerator for Long Reads

This section presents the extensions to the WFA accelerator to make it suitable for long reads.

Long reads are those with a length of more than 1K bases. Unlike short reads, long reads

cannot be stored in FPGA registers due to the huge LUT utilization and the complications in the

routing. Moreover, as the read length increases, the error rate of sequencing technologies also

increases. Thus, in the accelerator for long reads, the dimensions of the wavefront matrix and

the parameters k and score (Figure 5.6) are significantly larger than in the one for short reads.

In addition, as the wavefront matrix expands, the number of parallel Extend and Compute

79

5.4 WFA Accelerator for Long Reads

M
em

 1

CPU
Batch 2

M
em

 2

CPU
Batch 1

M
em

 1

FPGA
Batch 1

FPGA
Batch 2

CPU - Rescue

CPU
Batch 3

FPGA
Batch 3S

ta
rt

E
nd

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 5.8: Co-design steps in the WFA accelerator for long reads. The FPGA aligns reads in
batches while the CPU checks the results and performs the backtrace. The CPU Rescue

computes the alignments that the FPGA has failed to compute.

sub-modules, i.e., parallel sections, should increase to improve performance. Lastly, the higher

error rates require bigger RAMs to store the backtrace data.

The WFA accelerator for short reads presented in the previous sections of this chapter

does not scale to long reads. We have tried to configure the WFA accelerator for short reads

with Aligners using eight parallel sections for an input set with read lengths of 1K and error

rates of 5%. In this step we have observed that, in our setup, the resulting FPGA design

can only fit two Aligners inside the FPGA. As a result, it offers less performance than the

multi-threaded execution of the WFA implementation for CPUs. We have also tried to scale the

WFA accelerator for short reads to a read length of 10K and an error rate of 10%. However, in

this step the resulting FPGA design cannot even fit a single Aligner in the FPGA. To overcome

these scalability problems, we propose the following modifications and extensions to the design

of the accelerator so that it is applicable to long reads:

1 Place the input sequences in RAMs instead of registers.

2 Place the wavefront matrices in RAMs instead of registers.

3 Move the backtrace computation of the compact CIGAR to the CPU.

4 Re-structure the entire hardware/software co-design to adapt it to the new changes.

5.4.1 Hardware/Software Co-design Structure

Figure 5.8 shows the hardware/software co-design structure of the WFA accelerator for long

reads. In such co-design, the FPGA does the alignment in batches and sends the backtrace data

to the CPU. The CPU checks the results received from the FPGA, separates the backtrace data

80

WFA FPGA Accelerator

pthread_join

pthread_join

A
lig

nm
en

t

B
ac

kt
ra

ce

0

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

pthread_join

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

pthread_join

.

.

.

.

….. …..

…..

….. …..

…..

FPGA CPU Rescue

S
ta

tu
s

A
rr

ay

B
ac

kt
ra

ce
B

ac
kt

ra
ce

B
ac

kt
ra

ce
B

ac
kt

ra
ce

B
ac

kt
ra

ce

B
ac

kt
ra

ce
B

ac
kt

ra
ce

B
ac

kt
ra

ce

R
e-

al
ig

nm
en

t

R
e-

al
ig

nm
en

t

Figure 5.9: Synchronization of different threads.

81

5.4 WFA Accelerator for Long Reads

of each sequence, performs the backtrace to obtain the compact CIGARs (this is done in the

FPGA in the WFA accelerator for short reads), and then it recovers the full CIGARs from the

compact CIGARs (Figure 5.4). In addition, the CPU also performs the Rescue, which aligns

reads that the FPGA is not able to align. Such reads are those with lengths or alignment scores

higher than what is supported by the FPGA design.

The hardware/software co-designed scheme processes the alignments in batches and uses

double buffering to overlaps the work done in the CPU and the FPGA. The batch processing

also allows to control the memory requirements, which are much larger in the WFA accelerator

for long reads compared to the one for short reads. The batch size is configured by the user.

Based on the characteristics of the input, the user can estimate the maximum memory required

to store the backtrace data. The amount of memory required is approximately k2×5 bits for

each pair of reads. For example, given an input set with read lengths of 10K bases and error

rates of 10% that uses k=4K, around 10MB of memory is needed to store the backtrace data

of the alignment of a pair of reads. Thus, the user can select the most appropriate batch size

based on the estimated size of the backtrace data, the number of reads, and the memory size of

the system. In addition, selecting an appropriate batch size is also important for achieving a

balanced CPU-FPGA workload.

Each task involving the FPGA, CPU, and Rescue in Figure 5.8 is executed using separate

threads. The synchronization among them is illustrated in Figure 5.9. Initially, a single FPGA

thread is active, responsible for initiating the alignment of the first batch of inputs. Following

the first iteration, the Rescue threads are launched, and they remain active throughout the whole

execution. From the second to the penultimate iterations, both the single FPGA thread and

the CPU threads run concurrently within a for loop. The CPU threads are spawned at each

iteration using an OpenMP for clause that traverses the backtrace data generated in the previous

iteration. At the end of each iteration of the loop, thread_join is used to ensure synchronization

between the FPGA thread and the CPU threads. In the final iteration, outside the loop, only the

CPU threads are activated to perform the backtrace of the last batch of reads.

We use two global variables to synchronize the CPU threads and the Rescue threads. One

variable is an array that holds the alignment status of all pairs of sequences in the input set, and

the other variable is an integer indicating the last processed ID by the CPU threads. Each ID

corresponds to a pair of sequences in the input set. When a CPU thread detects an unaligned

ID, it sets the corresponding index in the status array to one. The last processed ID integer is

updated at the end of each iteration. Rescue threads are assigned a portion of the status array

using an OpenMP for clause and, when they encounter a one in an element of the array, they

82

WFA FPGA Accelerator

O
ut

pu
t F

IF
O

C
ol

le
ct

or

E
xt

ra
ct

or

In
pu

t F
IF

O

AXI DMA Read AXI DMA WriteAXI Lite

Extend 2

Extend 3

Extend n

Wavefront_M,I,D
RAM 2

Wavefront_M,I,D
RAM 3

Wavefront_M,I,D
RAM n

Compute 2

Compute 3

Compute n

Input_Seq a RAM 1
Extend 1 Wavefront_M,I,D

RAM 1
Compute 1

Aligner 1
Aligner 2

Aligner n

Input_Seq b RAM 1

Input_Seq a RAM 2
Input_Seq b RAM 2

Input_Seq a RAM 3
Input_Seq b RAM 3

Input_Seq a RAM n
Input_Seq b RAM n

Figure 5.10: Structure and different modules of the FPGA design of the WFA accelerator for
long reads.

perform the rescue alignment for that ID. The Rescue threads can advance in the array only up

to the index indicated by the last processed ID specified in the synchronization variable. The

entire application is considered finished when the Rescue threads have traversed all the indexes

of the status array and realigned all the unaligned IDs.

At the beginning of the alignment, all the input reads are read from disk by the CPU. Then,

as shown in Figure 5.8, the FPGA reads the first batch of reads, processes the alignments, and

stores the results in a memory partition of the CPU memory (Mem 1). Then, multiple CPU

threads read the results from Mem 1, check the results, and perform the backtrace. Note that the

results can contain alignments that the FPGA has failed to compute because the read lengths or

the error of the alignment are higher than what is supported by the Aligners. The result of each

alignment includes a Success flag that is set to zero if the FPGA cannot compute it. When the

CPU checks the results, the alignments that have the Success flag unset are sent to the Rescue.

The Rescue aligns the reads using the CPU implementation of the WFA, and it is executed by

multiple CPU threads in parallel with the FPGA and the main CPU block.

Figure 5.10 shows the structure of the FPGA design of the WFA accelerator for long

reads. The layout is very similar to the one for short reads. The Extractor module extracts

the sequences and distributes them among different Aligners. The results of the Aligners

are collected by the Collector module, which sends the results to the CPU. The following

subsections explain the modifications and extensions introduced in the design of each module,

compared to the design for short reads.

83

5.4 WFA Accelerator for Long Reads

5.4.2 Extractor Module

The Extractor module of the WFA accelerator for long reads is more generic than that of the

short reads. The length of the reads is fixed by design in the accelerator for short reads. In

contrast, the Extractor of the accelerator for long reads defines a configurable maximum read

length, and it can process reads with any length as long as they do not surpass the maximum

length. To do so, the CPU defines a MAX_READ_LEN for the input set and sends it to the

FPGA via the AXI-Lite bus in Figure 5.10. The MAX_READ_LEN must be divisible by the

data width of the FPGA (128 bytes in our setup). For example, if the longest sequence in the

input set has a length of 9010 bases, the MAX_READ_LEN is set to 9088 bases and the extra

78 bases are filled by dummy bases in the CPU. Dummy base padding is applied to all the

sequences of the input set, and the Extractor module ignores the dummy bases when it reads

them.

The Extractor module monitors the activity of the Aligner modules and, when one of them

becomes idle, it starts extracting data and passing it to the idle Aligner. For a pair of sequences,

the Extractor module spends three initial clock cycles in reading the ID of the alignment and

the length of the two sequences to be aligned. Then, at each clock cycle, it reads 16 bytes (i.e.,

16 bases) from each sequence until it reaches the end of the sequences. When reading bases, the

Extractor module maps them to two bits, so the blocks of 16 bytes are converted to 32 bits. In

this phase, the Extractor module is also in charge of detecting two types of unsupported reads:

those with a length longer than MAX_READ_LEN, and those including ’N’ (unknown) bases.

If an unsupported read is found, the Extractor module signals the corresponding Aligner in

order for the latter to ignore the inputs and not process the alignment. Then it sets the Success

flag of the alignment to zero.

When the Extractor reads valid bases, these are stored in the input RAMs of the Aligner. The

two sequences (a and b) are stored in separate RAMs (see Figure 5.10), since parallel accesses

to the two sequences are required during the processing of the alignment. In addition, the

sequences are replicated multiple times, one per each set of Extend and Compute sub-modules.

Each sequence is stored in its input RAMs using the following format: alignment ID (4 bytes),

sequence length (4 bytes), sequence bases (MAX_READ_LEN bytes).

5.4.3 Aligner Module

The Aligner module is responsible for computing the sequence alignment. Each Aligner

contains a configurable number of Extend and Compute sub-modules. Figure 5.10 shows an

84

WFA FPGA Accelerator

example with four Extend and Compute sub-modules working in parallel in different parallel

sections. Each parallel section processes one cell of the wavefront matrix and has its own

independent resources, i.e., the Extend and Compute sub-modules, the input RAMs, and

the wavefront RAMs. As the Extend and Compute sub-modules work in parallel, they need

parallel access to the input sequences and to the wavefront matrices. Hence, in each Aligner

the sequences are replicated in different number of RAMs, one per each parallel section. In

contrast, the wavefront matrices are distributed among the wavefront RAMs. As in the design

for short reads, the Extend and Compute sub-modules operate sequentially until the end of the

alignment, as the output of one is the input of the other one. However, the Extend and Compute

sub-modules are internally parallelized and their operation is pipelined.

Aligner Parallel Structure

In the WFA accelerator for long reads, the wavefront windows (Section 5.3.3 and Figure 5.6)

are stored in wavefront RAMs instead of 2D-arrays of registers. In addition, unlike in the

accelerator for short reads, in the accelerator for long reads the Null columns are not stored

in the wavefront windows, so the M̃, Ĩ and D̃ wavefronts windows only contain, respectively,

four, one and one columns of previous data and one frame column (for typical penalties

(x,go,ge) = (4,6,2)). Figure 5.11 shows an example of how the M̃ wavefront window is

implemented as a matrix (left) and how it is mapped to a series of wavefront RAMs in the

accelerator for long reads (right). Each cell contains the coordinates of the matrix to ease

the understanding of how each position of the matrix is mapped to the wavefront RAMs. In

the design for long reads, after calculating each frame column, we only shift the tags of the

columns to the right, and the right-most one to column 0. In the example of Figure 5.11 (left),

after calculating the cells of the frame column which is tagged as Score, the columns from left

to right will be tagged as Score (frame column), S-8, S-6, S-4 and S-2.

Cells with the same color in Figure 5.11 are processed at the same time, so parallel writes

to the cells with the same colors of the frame column are required. In addition, processing the

cells of the frame column requires reading data of the cells from previous columns (according

to Equation 5.1), so parallel reads of those cells are also required. Thus, naively mapping the

wavefront window to a single RAM would lead to serialized accesses to the different elements

of the window required to compute a given cell of the frame column. For this reason, the

proposed design distributes the wavefront window among multiple RAMs to enable parallel

accesses to the elements required in the computation. As shown in Figure 5.11, the data in

85

5.4 WFA Accelerator for Long Reads

0,0

4,0

8,0

0,1

4,1

8,1

0,2

4,2

8,2

0,3

4,3

8,3

0,4

4,4

8,4

3,0

7,0

11,0

3,1

7,1

11,1

3,2

7,2

11,2

3,3

7,3

11,3

3,4

7,4

11,4

2,0

6,0

10,0

2,1

6,1

10,1

2,2

6,2

10,2

2,3

6,3

10,3

2,4

6,4

10,4

s-8 s-6 s-4 s-2 score
0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4

5,0 5,1 5,2 5,3 5,4

6,0 6,1 6,2 6,3 6,4

7,0 7,1 7,2 7,3 7,4

8,0 8,1 8,2 8,3 8,4

9,0 9,1 9,2 9,3 9,4

10,0 10,1 10,2 10,3 10,4

11,0 11,1 11,2 11,3 11,4

1,0

5,0

9,0

1,1

5,1

9,1

1,2

5,2

9,2

1,3

5,3

9,3

1,4

5,4

9,4
M Wavefront Window

F
ra

m
e

C
ol

u
m

n

0,0

4,0

8,0

0,1

4,1

8,1

0,2

4,2

8,2

0,3

4,3

8,3

0,4

4,4

8,4

3,0

7,0

11,0

3,1

7,1

11,1

3,2

7,2

11,2

3,3

7,3

11,3

3,4

7,4

11,4

RAM 1/ RAM 1 RAM 2 RAM 3 RAM 4 RAM 4/

M_Wavefront RAM implementation M_Wavefront Matrix implementation

Figure 5.11: Implementation of the M̃ wavefront matrix using RAMs in the WFA accelerator
for long reads.

the RAMs is structured in a way that the cells of each column that have the same color are

accessible in parallel. Each RAM has one read and one write port.

The number of RAMs required to store the wavefront window depends on the number of

parallel sections, as it determines the number of cells with the same color that are processed in

parallel. Following the example with four parallel sections, four RAMs are required for each

wavefront window. In addition, in the M̃ wavefront window we duplicate the first and the last

RAMs (labeled RAM 1′ and RAM 4′ in Figure 5.11), as discussed in the following paragraphs.

These duplicated RAMs are not required in the Ĩ and D̃ wavefronts windows. The width of the

wavefront RAMs is equal to the number of bits required to store ±MAX_READ_LEN (i.e. 15

bits for a sequence length of 10K), and their depth is equal to number of cells of the wavefront

window divided by the number of parallel sections, as the wavefront window is distributed

among multiple wavefront RAMs.

Figure 5.12 shows the cells of the M̃ wavefront window that are read to compute the values

of cells (4,4), (5,4), (6,4) and (7,4) of the frame column. The figure shows how these elements

86

WFA FPGA Accelerator

Compute 1

Compute 2

Compute 3

Compute 4

M Wavefront Window

3,2

4,2

5,2

6,2

7,2

8,2

1,0

5,0

9,0

2,0

6,0

10,0

3,0

7,0

11,0

3,0

7,0

11,0

0,0

4,0

8,0

A
dd

r
1

A
dd

r
1

A
dd

r
1

A
dd

r
1

A
dd

r
0

A
dd

r
2

M
 R

A
M

s

3,0

4,0

5,0

6,0

7,0

8,0
Compute

2
Compute

3
Compute

4
Compute

 1

0,0

4,0

8,0

R
A

M
 1

/

R
A

M
 1

R
A

M
 2

R
A

M
 3

R
A

M
 4

R
A

M
 4

/

M_Wavefront Matrix implementation M_Wavefront RAM implementation

Figure 5.12: Data required by each Compute sub-module and how it is accessed as cells of a
matrix (left) or words of a RAM (right). Two accesses in two consecutive clock cycles are

required to read the data required by the Compute sub-modules. For simplicity, the right figure
only shows connections and addresses for the first access.

are accessed when the window is implemented with registers in the design for short reads (left)

and when the window is implemented using RAMs in the design for long reads (right).

The left part of Figure 5.12 shows that each Compute sub-module requires three accesses

to the data of M̃ wavefront window, one for reading data in column 2 and two for reading data

in column 0. In addition, it can be observed that the second access to column 0 is only needed

for the first and the last cells of each parallel section.

The right part of Figure 5.12 shows that replicating RAM 1 and RAM 4 allows reading

all the data required from column 0 in a single clock cycle. For simplicity, the right part of

Figure 5.12 only shows the RAM accesses to the data of column 0, as the access to column 2

is trivial. It can be observed that, apart from the elements (4,0), (5,0), (6,0) and (7,0) which

are distributed among RAMs, two other elements from column 0 are required: element (3,0),

which is mapped in RAM 4 and is required by Compute 1, and element (8,0), which is mapped

to RAM 1 and is required by Compute 4. Thus, replicating RAMs 1 and 4 in RAMs 1′ and

4′ allows parallel access to all the required elements. In particular, element (4,0) is read from

address 1 in RAM 1 while element (8,0) is read from address 2 in RAM 1′. Similarly, element

(7,0) is read from address 1 in RAM 4 while element (3,0) is read from address 0 in RAM 4′.

Therefore, two accesses to the wavefront RAMs (one for column 0 and one for column 2) are

needed to provide the data of the M̃ wavefronts to the Compute sub-modules.

87

5.4 WFA Accelerator for Long Reads

The Compute sub-modules also require data from the Ĩ and the D̃ wavefronts. To reduce the

RAM utilization we merge the data of the Ĩ and the D̃ wavefronts in a single RAM and access

the data of these wavefronts in two accesses. For example, in one of our designs that supports

read lengths of up to 10K bases and 10% error rate, the RAM width required to store the Ĩ and

D̃ wavefronts is 15 bits each, and the required RAM depth is 256. In our setup, the minimum

size of the FPGA physical block RAMs is 18Kb and they can be configured as 4K×4, 2K×9,

1K×18, and 512×36 [208]. Thus, if we used the 1K×18 block RAM configuration for the

Ĩ and D̃ wavefronts RAMs, we would need two physical block RAMs, one for the Ĩ and one

for the D̃ wavefronts RAM. Instead, by concatenating the Ĩ and D̃ wavefronts into a single

RAM, we require a RAM width of 30 bits and a RAM depth of 256, so we can use a single

physical block RAM with the 512×36 configuration to store both the Ĩ and the D̃ wavefront

RAMs. The downside of this optimization is that the accesses to the Ĩ and D̃ wavefronts have

to serialized. However, this does not cause any performance penalty, as the two accesses to the

Ĩ and D̃ wavefronts required to compute a cell are done in parallel to the two accesses to the M̃

wavefront.

Figure 5.13 illustrates the parallel structure of an Aligner of the accelerator for long reads.

The Extend and Compute sub-modules work in parallel in a pipelined fashion. For the sake

of simplicity, each Extend and Compute sub-module is connected to the same index of the

wavefront RAMs. All the Extend sub-modules have their own copy of the sequences a and b in

separate input RAMs. Each Extend sub-module performs the extend operation and writes the

result in the corresponding cell of its M̃ wavefront RAM. Then, the Compute sub-modules read

data of the M̃, Ĩ and D̃ wavefronts and compute the cells. The results of the Ĩ and D̃ wavefronts

are directly written in the Ĩ/D̃ wavefront RAMs, and the results of the M̃ wavefront are passed

to the Extend sub-modules, which perform the extend operation and write the results in the M̃

wavefront RAMs. This process is repeated until the end of alignment is reached.

Extend Sub-module

The Extend sub-module compares two sequences from different starting positions and outputs

the number of matching characters. The number of Extend sub-modules is as many as parallel

sections. Each Extend has a comparator and the size of its inputs is equal to the width of the

input RAMs (32 bits in the accelerator for long reads, which means comparing 16 bases at the

same time). Unlike in the accelerator for short reads, where each Extend has fast and direct

access to the sequences, in the accelerator for long reads each Extend sends read requests to

the input RAMs and receives 16 bases at each clock cycle. Similar to the accelerator for short

88

WFA FPGA Accelerator

Seq a_1

Seq b_1
Comp 1

Comp 2

Comp 3

Comp 4

Compute

R1_M

R2_M

R3_M

R4_M

R1_I/D

R2_I/D

R3_I/D

R4_I/D

Extend 1

Seq a_2

Seq b_2
Extend 2

Seq a_3

Seq b_3
Extend 3

Seq a_4

Seq b_4
Extend 4

Wavefront RAMs
Input_Seq

RAMs

M_RAM 1

M_RAM 2

M_RAM 3

M_RAM 4

M_RAM 4/

M_RAM 1/

I/D_RAM 1

I/D_RAM 2

I/D_RAM 3

I/D_RAM 4
Compute Registers

Figure 5.13: Parallel structure of an Aligner using input RAMs and wavefront RAMs in the
WFA accelerator for long reads.

reads, the starting positions of the sequences to be compared may not be at the boundaries of

the received bases. Hence, two blocks of 16 bases of each sequence are needed to do the shift

and align the sequences to the comparator inputs before starting the comparison.

The new version of Extend sub-module for long reads is shown in Figure 5.14. The Extend

sub-module, at each clock cycle, sends read requests to the each of the Input_Seq RAMs

(RAMs a and b) starting from the address which holds the starting index, and increasing the

address by one. The received blocks of sequences a and b are stored in 32-bit registers of

REG_1 of Seq_a and REG_1 of Seq_b, respectively. At each clock cycle the value of these

registers are shifted in two other registers, REG_2 of sequence a and REG_2 of sequence b,

and their values are overwritten by the new values from Input_Seq RAMs. When both registers

of the sequences have valid bases, the value of both registers of each sequence are concatenated

and shifted to the starting base index of each sequence. The Extend sub-module is pipelined in

a way that it compares 16 bases of the two sequences at each clock cycle and, in parallel, it

reads the next 16 bases of each sequence that are going to be compared in the next clock cycle.

The Extend sub-modules also require information about the lengths of the sequences. Thus,

the lengths are written on the first address of the input RAMs by the Extractor module. The

lengths of the sequences are read at the beginning of the alignment by the Aligner and are

provided to each Extend. The output result of each Extend is written in the corresponding M̃

wavefront RAM.

89

5.4 WFA Accelerator for Long Reads

Seq b comparator input
Comparator

Shift

REG_2
Seq a

shift value seq a

C
on

tr
ol

le
r

(S
ta

te
 M

ac
hi

ne
)

Matches
Num

Concatenate

Seq Len a,b

k

Offset In

Offset Out

REG_1
Seq a

Read Addr
Input_Seq a

+1

Addr Seq bSeq a bases

Seq b bases

32

32

3232

64 32

Figure 5.14: Extend sub-module in the FPGA design of the WFA accelerator for long reads.

Compute Sub-module

The Compute sub-module computes the cells of the frame column based on Equation 5.1. In

contrast to the accelerator for short reads, the input cells of the accelerator for long reads are

read from the wavefront RAMs, so the compute operation takes more time compared to the

accelerator of short reads.

When the compute operation finishes, the new values of the M̃ wavefront are written in the

corresponding registers to be extended by the Extend sub-modules, while the new values of the

Ĩ and the D̃ wavefronts are directly written in their corresponding RAMs (Figure 5.13).

Backtrace Data

The backtrace data is generated by the Compute sub-modules, as explained in Section 5.3.3.

The design of long reads process 64 cells of the three wavefront vectors of Ĩ, D̃, and M̃

wavefronts in parallel. Hence, the Compute sub-module concatenates the backtrace data of 64

cells in a backtrace block of 320 bits (5 × 64). In contrast to the accelerator for short reads,

the accelerator for long reads sends the backtrace data to the Collector module instead of to

the backtrace RAM. To avoid over-writing backtrace data, the Compute sub-modules check

if the previously sent backtrace data has been consumed by the Collector. If the previously

sent backtrace data has not been consumed by the Collector, the Aligner is paused until it is

consumed. At the end of the alignment, the score and the Success flag are appended to the

backtrace data.

90

WFA FPGA Accelerator

5.4.4 Collector Module

The Collector module collects the backtrace data and the final alignment result from different

Aligners, packs them in blocks of 128 bytes (data width of our FPGA setup) and sends them to

the CPU. Note that the size of the backtrace data depends on the number of parallel sections.

For example, when using 64 parallel sections, the size of the backtrace data is 40 bytes (64

parallel sections× 5-bits of backtrace data / 8). So, for this setup, the Collector module contains

three 40-byte registers for each Aligner to collect its backtrace data.

The Collector module accepts backtrace data from an Aligner as long as its corresponding

registers are not filled. When the three registers of an Aligner are filled, the Collector module

packs the contents of the registers in a block of 128 bytes (3×40 bytes of backtrace data and

eight bytes of information) and sends it to a FIFO queue from which the data is sent to the

CPU. At this moment, the Collector sets the wait signal for that Aligner to avoid receiving

more backtrace data from that Aligner. When the queued backtrace data is sent to the CPU, the

Collector unsets the wait signal of that Aligner.

The Collector sends alignment data (backtrace data and alignment result) to the CPU by

the format illustrated in Figure 5.15 (A). As shown in this figure, the Collector module sends

the data of different Aligners to the CPU without any order. So, in order to be able to identify

the data of each alignment in the CPU, the Collector attaches eight bytes of information to

each data block of 3×40 bytes. The attached information includes: the ID of the alignment, a

counter of the block, and other information including the Last flag, the Success flag, and the

position of the alignment result in the Collector registers which are shown in Figure 5.15 (B).

The ID determines the pair of sequences that the block of data belongs to. The counter indicates

the order of the block of the backtrace data for each ID. The Last flag indicates that this block

of the backtrace data is the last one of the alignment and contains the alignment result. Note

that the alignment result of an alignment is stored in a backtrace data register of the Collector

and sent to the CPU as the last 40-byte block of the last backtrace data of that alignment.

Obviously, the format of the alignment result block is different from that of the backtrace data

block, as shown in Figures 5.15 (C) and 5.15 (D), respectively. Since we do not know how

many backtrace data each alignment may have, the last backtrace data block which contains the

alignment result may be stored in any of the three backtrace registers of the Collector, i.e. n−2,

n− 1 or n (Figure 5.15 (A)). Hence, the information field contains the position field which

specifies the register where the alignment result is written. In addition to alignment score, the

alignment result block (Figures 5.15 (C)) also includes the kmax and Length_difference required

91

5.4 WFA Accelerator for Long Reads

for performing the backtrace. At the end of all the alignments of a batch of reads, the Collector

sends three debug data of 128 bytes which are served for debugging purposes.

As shown in Figure 5.15 (D), the first 192 bits (3×64) of each 320-bit (40-byte) backtrace

block include the origins of 64 cells of the M̃ wavefront, The next 64 bits include the origins of

64 cells of the Ĩ wavefront, and the last 64 bits include the origins of 64 cells of the D̃ wavefront.

In a backtrace data block, the origins of cells 0 to 63 are positioned from right to left. For

example, in a backtrace block, the origin of cells 0 and 1 of the M̃ wavefront are located at bits

0 to 2, and 3 to 5, respectively. The origin of cells 0 and 1 of Ĩ wavefront are located at bits 192

and 193, respectively. Similarly, the origin of cells 0 and 1 of D̃ wavefront are located at bits

256 and 257, respectively.

When the alignment of a batch of reads is finished, the Collector writes into the MMIO

registers (explained in Section 3.1.1) the amount of 128-byte results data it has sent to the

memory. As the size of backtrace data could vary for different inputs, by reading this register,

we find out what range of memory we should read.

5.4.5 Backtrace in CPU

After the FPGA has aligned a batch of reads, the CPU reads the results and does the backtrace.

This process is done in different stages. First, multiple CPU threads separate the backtrace data

of the alignments in different memory partitions, one per alignment, and remove the information

fields. This is done by looking at the alignment ID of each block of backtrace data. After

separating backtrace data, each backtrace block of 40 bytes (320 bits) are written consecutively

in their specific memory section. At the same stage of separating data, unsuccessful alignments

are detected by checking the Success flag and are sent to the Rescue phase.

Once the backtrace data is separated, the backtraces of the alignments are computed. A

single thread is responsible for computing the backtrace of an individual alignment, but multiple

threads are used to compute multiple backtraces in parallel. The threads first compute the

compact CIGAR and then recover the full CIGAR. The processes used to compute the two

CIGAR forms are the same as the ones described in the accelerator for short reads, the only

difference being that the compact CIGAR form is extracted in the CPU instead of in the FPGA.

Figure 5.16 illustrates the ASM chart and equations to compute the compact CIGAR. It also

indicates how each backtrace data of each cell is decoded. The BT string holds the backtrace

strings: ‘M’ for mismatch, ‘I’ for insertion-opening, ‘D’ for deletion-opening, and ‘E’ for

gap(insertion/deletion)-extension. Please note that in this figure:

92

WFA FPGA Accelerator

3x320 bits 8 bit 24 bits 32 bits

Backtrace Data
Alignment Result

Information

 Alignment Info Block Counter ID

Results Address {0, 1, 2} 0 0 1

Results Address+128 {0, 1, 2} 0 0 2

... {3, 4, 5} 0 1 1

{0, 1, 2} 0 0 3

{3, 4, 5} 0 1 2

...

{n-2, n-1, n} 0b00010101 n/3 3

{n-2, n-1, n} 0bXXXX0001 n/3 1

...

{n-2, n-1, n} 0b00100101 n/3 m

Debug Data 1

Debug Data 2

Debug Data 3

Backtrace Data Format (blocks of 64 cells of 3 wavefront vectors [concatenated in 320 bits])

64x1 bits 64x1 bits 64x3 bits

D wavefront
Origins

I wavefront
Origins

M wavefront
Origins

Alignment Results Format (last data block of 320 bits)

272 bits 16 bits 16 bits 16 bits

0 Length difference k
max Error Score

A

C

D

Alignment Info Format

4 bits 1 bit 1 bit 1 bit 1 bit

Determines the last data (alignment result) is
in which backtrace register of n-2, n-1 or n.

1: in 1st register (n-2); 2: in 2nd register (n-1); 0: in 3rd register (n)

0 Success
Flag

0 Last
Flag

B

Figure 5.15: The format of writing the alignment and backtrace data in memory for the design
of long reads.

93

5.4 WFA Accelerator for Long Reads

Block_Finder(dist,k)
Cell_Finder(dis,k)

BT Data?
BT Data? BT Data?

dist = dist - 1
k = k - 1

BT[i++] = “E”
Wavefront = “I”

if (dist == 4): dist = 1
else: dist = dist - 4

k = k + 1
BT[i++] = “D”

Wavefront = “M”

0b
10

0
M

is
m

at
ch

In
se

rt
io

n
O

pe
ni

ng
: 0

b1
01

D
el

et
io

n
O

pe
ni

ng
: 0

b1
10

D
el

et
io

n
E

xt
en

si
on

: 0
b0

10

In
se

rt
io

n
E

xt
en

si
on

: 0
b0

01

0b
1

In
se

rt
io

n
E

xt
en

si
on

In
se

rt
io

n
O

pe
ni

ng
: 0

b0 0b
1

D
el

et
io

n
E

xt
en

si
on

D
el

et
io

n
O

pe
ni

ng
: 0

b0

dist = k
max

k = Length_difference
i = 0

BT[] = “ ”
Wavefront = “M”

Wavefront?
M

I

D

Dist == 0?Done!

No

Yes

Error!

O
th

er
s

dist = dist - 1
k = k + 1

BT[i++] = “E”
Wavefront = “D”

if (dist == 4): dist = 1
else: dist = dist - 4

k = k + 1
BT[i++] = “D”

Wavefront = “M”

if (dist == 4): dist = 1
else: dist = dist - 4

k = k - 1
BT[i++] = “I”

Wavefront = “M”

if (dist == 2): dist = 1
else: dist = dist - 2

k = k
BT[i++] = “X”

Wavefront = “M”

if (dist == 4): dist = 1
else: dist = dist - 4

k = k - 1
BT[i++] = “I”

Wavefront = “M”

dist = dist - 1
k = k - 1

BT[i++] = “E”
Wavefront = “I”

dist = dist - 1
k = k + 1

BT[i++] = “E”
Wavefront = “D”

x1=
dist−1

64
+1

x2=((x 1−1)∗64)+1

BT Block=[(dist−x2)∗2∗x 1]+[x2∗x 1]+[
(x1∗64)+k

64
]

Cell Index=k−[
(x1∗64)+k

64
]∗64−[x 1∗64]

Figure 5.16: ASM chart and equations for calculating compact CIGAR.

94

WFA FPGA Accelerator

• The equations use the kmax and Length_difference values which are provided in the

alignment result field of each ID.

• The Block_Finder operation uses BT Block equation to give the number (address) of the

320 bits block of backtrace (each memory word contains 320 bits of backtrace data).

• The backtrace block address starts from 0.

• The Cell_Finder operation, which uses the Cell Index equation, gives the cell index in

the backtrace block determined by the Block_Finder.

Recovering full CIGAR from short CIGAR is shown in Figure 5.4.

In parallel with the computation of the backtraces, multiple threads also perform the Rescue

phase. In this phase, threads use the sequential CPU implementation of the WFA to perform

the alignments of sequences that have been failed in the FPGA.

5.5 Evaluation and Results

5.5.1 Experimental Setup

As mentioned in Chapter 3, we evaluate our proposal on a POWER9-based system with 16

cores (64 threads) running at 2.3GHz and two OpenCAPI-enabled ADM-PCIE-9H7 FPGA

boards. The FPGA code is written in VHDL and compiled using Vivado v2019.1. In this design

the FPGAs run at 200MHz. To integrate our accelerators with the OpenCAPI interface, we use

the platform provided by IBM in github [196]. The evaluation reports results for executions

with one and two FPGAs.

The proposed WFA accelerator is open source and publicly available [207]. The code allows

to configure the sequence length and the maximum k of the FPGA design to meet the input set

characteristics. In our evaluation analysis, we selected as many as 25 FPGA designs, in order

to cover a wide representative range of sequence lengths and k values, found in state-of-art

sequencing technologies.

Table 5.1 summarizes our 25 designs, 7 for short reads (designs 1 to 7), 15 for long reads

(designs 11 to 25) and 3 for medium length reads (designs 8 to 10). Designs 8 to 10 are similar

to the designs 11 to 13, the main difference is that they do the backtrace in the FPGA and in the

CPU, respectively. Designs 8 to 10 are mixed designs that use RAMs to store the required data

as the designs for long reads, but they do the backtrace in the FPGA as the designs for short

reads.

95

5.5 Evaluation and Results

Table 5.1: FPGA designs, resource utilization, number of Aligners in each FPGA and synthetic
inputs used in the evaluation.

FPGA Design Resource Utilization (%) Input
NO

Len k PS1 BT2 LUT FF BRAM URAM
Num

Aligners3 Len-ERR4

1 100 16 8 FPGA 88 26 9 0 100 100-5%
2 100 32 8 FPGA 91 33 8 0 80 100-8%
3 150 16 8 FPGA 84 26 8 0 80 150-3%
4 150 32 8 FPGA 86 32 7 0 64 150-5%
5 150 64 8 FPGA 86 37 6 0 45 150-8%
6 300 32 8 FPGA 87 30 7 0 55 300-3%
7 300 64 8 FPGA 90 37 6 0 40 300-5%
8 1K 224 32 FPGA 92 23 95 77 44 1K-5%
9 1K 448 32 FPGA 93 24 92 83 42 1K-10%
10 1K 896 32 FPGA 89 21 93 84 37 1K-20%
11 1K 256 32 CPU 97 21 88 83 44 1K-5%
12 1K 512 32 CPU 97 21 84 83 42 1K-10%
13 1K 1K 32 CPU 98 20 79 83 40 1K-20%
14 5K 1K 64 CPU 95 21 94 83 21 5K-5%
15 5K 2K 64 CPU 89 19 96 83 19 5K-10%
16 5K 4K 64 CPU 95 19 70 83 18 5K-20%
17 10K 2K 64 CPU 95 19 85 83 17 10K-5%
18 10K 4K 64 CPU 91 18 92 83 16 10K-10%
19 10K 8K 64 CPU 92 16 96 90 14 10K-20%
20 25K 5K 64 CPU 78 14 92 90 12 25K-5%
21 25K 10K 64 CPU 85 13 96 90 11 25K-10%
22 25K 20K 64 CPU 93 11 93 90 9 25K-20%
23 50K 10K 64 CPU 74 12 92 90 9 50K-5%
24 50K 20K 64 CPU 72 10 95 93 8 50K-10%
25 50K 40K 64 CPU 73 8 94 96 6 50K-20%
1 PS: Parallel Sections, determines how many cells of a wavefront matrix are computed in parallel.
2 BT: BackTrace, determines if backtrace is performed in the CPU or in the FPGA.
3 Num Aligners: Number of Aligner cores which fit in the design of one FPGA.
4 Len-ER: Length - Error Rate(%), determines the length and the error rate between pairs of sequences in

the inputs set applied to the FPGA design.

Table 5.1 describes, for each design, its maximum sequence length and k, its number of

parallel sections, its type of backtrace implementation, its resource utilization, and the number

of parallel Aligners that fit in each FPGA. The table also shows the characteristics of the

synthetic input sets that are fed to each design. Detailed characteristics of the input sets are

summarized in Table 3.1.

96

WFA FPGA Accelerator

We feed each synthetic input set of Table 3.1 (contributions 2 and 3), which is also reflected

in the last column of Table 5.1, to its corresponding FPGA design. In Section 5.5.4 we use real

input sets of Table 3.1 (contributions 3).

Note that, given a maximum sequence length and k, an FPGA design can correctly process

any input containing shorter sequences and smaller ks. Nevertheless, a tailored instantiation

requires less space in the FPGA and maximizes the number of Aligners that can fit in the

FPGA.

Equation 5.3 shows the relation of the k value and the score for the penalties used in this

work, i.e. (x,go,ge) = (4,6,2).

Score = k×2+4 (5.3)

Regarding the penalties and the equation above, The k value determines how many differences

in a pair of sequences can be supported by the FPGA design. For example, design 18 uses

k=4K, so it can support scores of up to 8K. A gap-opening has the maximum penalty score of 8

(go +ge). Thus, if all the differences between the pair of sequences are gap-openings (which is

the worst case) 1K differences between the sequences can be detected in an FPGA design with

k=4K, regardless of the length of the sequences.

As explained in Chapter 3, the baseline used in the evaluation is the reference CPU

implementation of the WFA algorithm proposed by Marco-Sola et al. [19], which is open

source and publicly available [200]. In the evaluation we refer to this CPU-only baseline

implementation as WFA-CPU. In our experiments we perform an exploration of the batch size

(number of reads in each batch) on the FPGA designs for long reads, and also an exploration

of the number of CPU threads (from 1 to 64) on the WFA-CPU implementation and on all

the FPGA designs. All the results report the execution time of the best performing number of

threads and batch sizes unless stated otherwise. The time and energy measurements include the

data transfers between the CPU and the FPGAs, while parsing the input files is excluded in the

measurements of all evaluation setups (WFA-FPGA or WFA-CPU).

The WFA-CPU software implementation is also used to verify our accelerators. To do so,

in all the experiments we check that the output of the WFA using the accelerators is exactly the

same as the output of the WFA-CPU.

To measure the power consumption of the entire node (CPU and FPGAs), we use in-band

readings from Linux to the OCC [206].

Compared to a reference multithreaded CPU implementation of the traditional SWG [68]

algorithm, the WFA-CPU achieves speedups of 8.4× to 53.3× for the 7 input sets applied to

97

5.5 Evaluation and Results

100_5% 100_8% 150_3% 150_5% 150_8% 300_3% 300_5%
FPGA design and input set

1

5

10

15

Sp
ee
du
p

1 1 1 1 1 1 1

6.0

8.8

6.5
7.4

4.8

7.2

4.5

9.0

13.5

10.0

12.0

8.7

11.9

8.2

WFA-CPU WFA-1FPGA WFA-2FPGAs

Figure 5.17: Speedup of the FPGA designs of the WFA accelerator for short reads with respect
to WFA-CPU.

designs 1 to 7 of short reads, and 3× to 132× for the 15 input sets applied to designs 8 to 25

of medium and long reads. The proposed WFA accelerator outperforms SWG by 42.6× to

383.8× with one FPGA and by 76.6× to 634.3× with two FPGAs for input sets applied to

the short reads designs; 18× to 193× with one FPGA and 36× to 378× with two FPGAs for

input sets applied to the medium reads designs; and 13× to 400× with one FPGA and 26× to

794× with two FPGAs for input sets applied to the long reads designs. In addition, compared

to a Banded Smith-Waterman heuristic method [200] that does not perform the backtrace, the

proposed WFA accelerator achieves speedups of 37.4× to 93.5× with one FPGA and of 55.9×
to 154.8× with two FPGAs for input sets applied to the short reads designs; 12× to 41× with

one FPGA and 24× to 80× with two FPGAs for input sets applied to the medium reads designs;

and 9× to 77× with one FPGA and 17× to 152× with two FPGAs for input sets applied to the

long reads designs.

5.5.2 Results of Short Reads for Synthetic Input Sets

Figure 5.17 shows the speedup achieved by applying seven different synthetic input sets to

seven designs (designs 1 to 7) of the proposed WFA accelerator for short reads compared to the

WFA-CPU. The different FPGA designs achieve speedups of 4.5× to 8.8× with one FPGA,

and of 8.2× to 13.5× when the two FPGAs in the system are used. The lowest speedups belong

to the designs with biggest ks. This happens because the size of the Aligner module increases

as k grows, so fewer Aligners fit in the FPGA and fewer sequences are aligned in parallel.

Using two FPGAs increases the speedup by a factor of 1.5× to 1.8× compared to one FPGA.

98

WFA FPGA Accelerator

Table 5.2: Duration (in clock cycles) of alignment, backtrace and extracting reads of one
sequence pair and maximum efficient Aligners in each FPGA.

FPGA Alignment Backtrace Total Extracting Input Max Efficient
Design (clk cycles) (clk cycles) (clk cycles) (clk cycles) Num of Aligners

1 185 15 200 3 67
2 265 23 288 3 196
3 185 15 200 4 50
4 265 23 288 4 147
5 1900 39 1939 4 485
6 265 23 288 6 98
7 1900 39 1939 6 324

Using two FPGAs doubles the speed of the FPGA part of the co-design, but the time of the

CPU part remains unchanged. As a result, the total execution time is not halved.

Table 5.2 shows, for each FPGA design, the maximum possible number of Aligners before

saturating the OpenCAPI bandwidth. The table indicates, for each design, how many FPGA

clock cycles are needed to do the alignment, the backtrace, and to extract one pair of sequences.

From these numbers, the maximum possible Aligners in each system is calculated and shown

in the last column. In this test we feed each design with inputs with k values equal to the

maximum supported k in each design. If these designs are fed with inputs with smaller ks,

the bandwidth is saturated with even fewer Aligners. As shown in Table 5.1, design 3 has 80

Aligners per FPGA, although Table 5.2 shows that this design saturates the bandwidth with

50 Aligners. So, in this design, adding more than 50 Aligners per FPGA does not provide any

benefit because the Extractor module cannot feed them with data on time due to bandwidth

limitations.

Figure 5.18 shows the scalability of multi-threaded runs of the FPGA accelerator with one

FPGA and of the WFA-CPU. All the speedups are computed over the single threaded execution

of the WFA-CPU. The POWER9 CPU has 64 threads, so the scalability of the WFA-CPU and

the FPGA designs saturates at that point. In single threaded runs, the FPGA designs achieve

speedups over WFA-CPU of 19× to 32×. The scalability of the WFA-CPU is linear up to

16 threads. However, after that point, the parallelization efficiency drops because the threads

share the resources of the CPU cores. The scalability of the co-designs is less effective because,

when increasing the number of threads, the time spent in the CPU part decreases and, hence,

the constant thread-independent FPGA time dominates the total execution time.

Next we study the impact of encountering input pairs of sequences with ks larger than the

maximum k supported in the FPGA designs. We feed the FPGA design 4 with an input in

99

5.5 Evaluation and Results

0 5 10 15 20 25 30 35 40 45 50 55 60 65
1
5

10

15

20

25

Sp
ee
du

p

100_5%
100_8%

150_3%
150_5%

150_8%
300_3%

300_5%

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of threads

25

75

125

175

Sp
ee
du

p

100_5%
100_8%

150_3%
150_5%

150_8%
300_3%

300_5%

Figure 5.18: Speedup of the FPGA designs for short reads with WFA-CPU (top) and one
FPGA (bottom) for multi-threaded runs over single-threaded WFA-CPU.

100_5% 100_8% 150_3% 150_5% 150_8% 300_3% 300_5%
FPGA design and input set

1

6

12

18

E
ne
rg
y
Im

pr
ov
em

en
t

1 1 1 1 1 1 1

9.2 9.0
9.7

8.6
7.8

8.7

6.1

12.5
11.4

13.6
12.4 12.3

14.6

12.1

WFA-CPU WFA-1FPGA WFA-2FPGAs

Figure 5.19: Energy improvement of the FPGA designs for short reads with respect to
WFA-CPU.

100

WFA FPGA Accelerator

1K
_5

%
1K

_1
0%

1K
_2

0%
5K

_5
%

5K
_1

0%
5K

_2
0%

10
K_

5%
10

K_
10

%
10

K_
20

%
25

K_
5%

25
K_

10
%

25
K_

20
%

50
K_

5%
50

K_
10

%
50

K_
20

%

FPGA design and input set

0

4

8

12

Sp
ee

du
p

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2.
6

4.
1 4.

8 5.
6

5.
2

5.
0 5.
2

5.
0

4.
6

4.
1

3.
7

3.
0

3.
0

2.
7 3.

5

2.
7

5.
2

8.
3

9.
8

9.
9

9.
6

9.
7

9.
4

9.
2

8.
0

7.
3

6.
0

6.
0

5.
3

6.
4

WFA-CPU WFA-1FPGA WFA-2FPGAs

Figure 5.20: Speedup of the FPGA designs for long reads with respect to WFA-CPU.

which 10% of the total sequences have scores larger than what is supported by the design, so

the alignment of that percentage has to be performed in the CPU. The best execution times of

the FPGA design are 1318ms with one FPGA and 1030ms with two FPGAs, while the fastest

WFA-CPU execution for this input is 4500ms, so the FPGA design achieves speedups of 3.4×
and 4.4× with one and two FPGAs, respectively.

Finally, Figure 5.19 shows the improvement in energy consumption of the different FPGA

designs of the WFA accelerator for short reads compared to the WFA-CPU. To report fair and

meaningful power consumption measurements, in this experiment we repeat the alignment of

the same input set several times so the fastest execution takes at least 30 seconds. For each

input set, the number of repetitions and the total amount of work to be performed is the same in

the WFA-CPU and the FPGA design. Results show that the different FPGA designs consume

significantly less energy than the WFA-CPU, with energy improvements of 6.1× to 9.7× with

one FPGA and of 11.4× to 14.6× with two FPGAs.

5.5.3 Results of Long Reads for Synthetic Input Sets

Figure 5.20 shows the speedup achieved by applying 15 different synthetic input sets to the 15

designs (11 to 25) of the proposed WFA accelerator for long reads, compared to applying those

input sets to the WFA-CPU. The different FPGA designs achieve speedups of 2.6× to 5.6×

101

5.5 Evaluation and Results

1K_5% 1K_10% 1K_20%
FPGA design and input set

0

4

8

12

16

Sp
ee
du
p

1 1 1

6.3 6.0 5.9

12.4 11.9 11.8

WFA-CPU WFA-1FPGA WFA-2FPGAs

Figure 5.21: Speedup of the FPGA designs for medium reads with respect to WFA-CPU.

1 5 10 15 20 25 30 35 40
Number of Aligners per FPGA

0

20

40

60

Sp
ee
du

p

1.0
2.0 5.0

9.9
9.9

19.7

14.9

29.3

19.8

38.7

24.6

46.8

28.8

50.4

29.0

50.7

29.0

50.61FPGA 2FPGAs

Figure 5.22: Speedup of the FPGA design 13 for long reads with different number of Aligners
and with one and two FPGAs with respect to the same design with one Aligner and one FPGA.

with one FPGA, and of 2.7× to 9.9× with two FPGAs. The best speedups are achieved for

input sets with lengths of 5K bases and 10K bases, which are applied to designs 14 to 19.

We observe that the speedups decrease at both ends of the figure. At the right end of the

figure this happens because, as shown in Table 5.1, the FPGA resources used by the Aligners

increase with the supported read length and error rate, so less Aligners can fit inside the FPGA.

Note that this trend changes for the last input set (50K_20%) because the WFA-CPU can only

be executed using eight threads. This is due to memory limitation issue by using 64 threads. At

the left end of the figure, for read lenghts of 1K bases, the speedups of the FPGA designs are

also lower even though a large number of Aligners fit in the FPGA. The reason is that, for these

inputs, the FPGA alignment time is relatively fast but the time spent sending backtrace data to

the CPU and performing the backtrace in the CPU dominate the total execution time.

102

WFA FPGA Accelerator

0 5 10 15 20 25 30 35 40 45 50 55 60 650

10

20

Sp
ee
du

p

1K_5%
1K_10%
1K_20%

5K_5%
5K_10%
5K_20%

10K_5%
10K_10%
10K_20%

25K_5%
25K_10%
25K_20%

50K_5%
50K_10%
50K_20%

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of threads

−20

0

20

40

60

80

100

Sp
ee
du

p

1K_5%
1K_10%
1K_20%

5K_5%
5K_10%
5K_20%

10K_5%
10K_10%
10K_20%

25K_5%
25K_10%
25K_20%

50K_5%
50K_10%
50K_20%

Figure 5.23: Speedup of the FPGA designs for long reads with WFA-CPU (top) and one FPGA
(bottom) for multi-threaded runs over single-threaded WFA-CPU.

Designs 8 to 10 in Table 5.1 attempt to increase the speedups achieved for input sets with

read lengths of 1K bases. To this end, these designs decrease the amount of work done in

the CPU and avoid saturating the bandwidth by doing the backtrace in the FPGA. With this

approach, the amount of data sent from the FPGA to the CPU is drastically reduced, and the

CPU only needs to perform the computation of the full CIGAR from compact CIGAR as in

the designs for short reads. Thus, these designs combine features of the designs for long reads,

in which data is stored in RAMs, and the designs for short reads, in which the backtrace in

compact CIGAR form is computed in the FPGA. This creates mixed designs which we call

medium reads designs. Figure 5.21 shows the speedups achieved by the medium reads designs

(8 to 10 in Table 5.1) over WFA-CPU when they are fed input sets with read lenghts of 1K

bases and error rates of 5%, 10% and 20%. The speedups are significantly larger than the ones

achieved by the designs for long reads, and they scale perfectly to two FPGAs.

Figure 5.22 shows the speedups of the design 13 in Table 5.1 with different number of

Aligners with regard to using only one FPGA and one Aligner. The figure shows that the design

scales perfectly when increasing the number of Aligners and FPGAs as long as the bandwidth

is not saturated. For this specific design and input set (1K_20%), the bandwith is saturated

103

5.5 Evaluation and Results

1K
_5
%

1K
_1
0%

1K
_2
0%

5K
_5
%

5K
_1
0%

5K
_2
0%

10
K_
5%

10
K_
10
%

10
K_
20
%

25
K_
5%

25
K_
10
%

25
K_
20
%

50
K_
5%

50
K_
10
%

50
K_
20
%

FPGA design and input set

0

4

8

12

16

E
ne

rg
y
Im

pr
ov
em

en
t

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3.
6

5.
5 6.
0 6.
1 6.
6

6.
6 7.
5

7.
1

6.
1

5.
8

5.
5

5.
6

4.
5

4.
1

3.
7

3.
7

6.
4

8.
2

10
.1

10
.6

10
.9

10
.4

10
.8

10
.0

10
.0

9.
0

7.
9

7.
6

7.
1

6.
2

WFA-CPU WFA-1FPGA WFA-2FPGAs

Figure 5.24: Energy improvement of the FPGA designs for long reads with respect to
WFA-CPU.

at nearly 30 Aligners per FPGA. This figure is a representative for the scalability of all the

designs for long reads, which present the same trend.

Figure 5.23 shows the scalability of multi-threaded runs of the FPGA designs of the WFA

accelerator for long reads (designs 11 to 25 in Table 5.1) with one FPGA and of the WFA-CPU.

All the speedups are computed over the single threaded execution of the WFA-CPU. In single

threaded runs, the FPGA designs achieve speedups over WFA-CPU of 10× to 27× (Figure 5.23

(bottom)). The WFA accelerator for long reads requires multiple threads: one main thread, one

thread to control the operation of the FPGA, and multiple threads to perform the backtrace

and the Rescue. However, the Rescue is not active for synthetics inputs. In Figure 5.23 the

number of threads for the co-design is the number of threads which are doing the backtrace.

In the smaller designs with read lengths of 1K bases the executions have longer CPU times

compared to the FPGA times, specially due to the computation of the backtraces. For this

reason, in these designs, increasing the number of threads up to 16 gradually increases the

speedup. In contrast, in the designs with larger read lengths, the execution times are dominated

by the FPGA, which are significantly larger than the CPU times. Thus, increasing the number

of threads does not provide performance benefits, and the speedups saturate using less than four

threads. Figure 5.23 (top) shows that the scalability of the WFA-CPU increases linearly until

16 threads, which is the number of cores of the POWER9 CPU. After 16 threads the parallel

efficiency drops because the threads have to share the resources of the CPU cores.

104

WFA FPGA Accelerator

1K_5% 1K_10% 1K_20%
FPGA design and input set

0

10

20

30

E
ne

rg
y
Im

pr
ov

em
en

t

1 1 1

11.2 10.2
8.3

20.2 18.8
14.9

WFA-CPU WFA-1FPGA WFA-2FPGAs

Figure 5.25: Energy improvement of the FPGA designs for medium reads with respect to
WFA-CPU.

Finally, Figure 5.24 shows the improvement in energy consumption of the different FPGA

designs of the WFA accelerator for long reads compared to the WFA-CPU. Similarly, Fig-

ure 5.25 shows the energy improvements of the FPGA designs for medium reads over WFA-

CPU. Results show that the different FPGA designs for long and medium reads consume

significantly less energy than the WFA-CPU, with energy improvements of 3.6× to 7.5×
with one FPGA and of 3.7× to 10.9× with two FPGAs for long reads. When input sets with

read lengths of 1K bases are applied to the designs for medium reads (8 to 10 in Table 5.1),

the energy improvements are significantly higher than the ones achieved by the designs for

long reads with read lengths of 1K bases (designs 11 to 13 in Table 5.1). In this case, energy

improvements are 8.3× to 11.2× with one FPGA and 14.9× to 20.2× with two FPGAs.

5.5.4 Results of Long Reads for Real Input Sets

This section evaluates our FPGA designs of the WFA accelerator for long reads using two real

input sets. Compared to the previous subsections using synthetic input sets, the real input sets

include sequences with very diverse characteristics in terms of read lengths and, thus, errors in

the alignments. For these reasons, some of the alignments cannot be computed by the FPGA,

so the functionality of the Rescue in Figure 5.8 becomes more relevant.

For this evaluation we use the two publicly available input sets of Table 3.1. These input

sets do not have a fixed length. Hence, we analyze the real input sets and summarize their

characteristics in Table 5.3. It can be observed that PacBio HiFi has longer reads with less

quality compared to PacBio CCS.

105

5.5 Evaluation and Results

Table 5.3: Real input sets specifications.

Input set Avg score Max score Avg len Max len
Reads including

unknown base ’N’
PacBio HiFi 370 11.8K 12.8K 24.6K 881
PacBio CCS 225 9.4K 9.6K 18.3K 175

Alignments with score >
Failed alignments in FPGA

design of Table 5.4
Input set

Reads with
len >16K 4K 8K 16K 1 2 3

PacBio HiFi 7.2K 4.9K 146 0 12.5K 8.2K 8.1K
PacBio CCS 1 131 1 0 284 175 175

Table 5.4: FPGA design configurations evaluated with real input sets.

NO Len k Max Score
Parallel
Sections

Backtrace Num Aligners

1 16K 2K 4K 64 CPU 17
2 16K 4K 8K 64 CPU 16
3 16K 8K 16K 64 CPU 14

Based on the characteristics of the input sets, we extend the FPGA designs 17, 18 and 19 of

Table 5.1 to support read length up to 16K bases, with almost the same resource utilization.

The resulted designs with their specifications are shown in Table 5.4.

Table 5.3 also shows the number of sequences that contain ’N’ bases, the number of

sequences with lengths larger than 16K bases, and alignments with scores higher than 4K,

8K and 16K (maximum supporting scores of the designs in Table 5.4). In all these cases, the

alignments cannot fully be performed by the FPGA designs, and they fall back to the CPU

implementation in the Rescue. The last three columns of the bottom part of the table indicate

the total number of alignments that cannot be done by the FPGA and have to be computed by

the Rescue.

We feed the real input sets to the three designs of Table 5.4. For each design we perform an

exploration of the number of sequences in every batch (batch size) and the distribution of the

total 64 threads performing the backtrace and Rescue. The best performance for both input sets

is achieved by the design 2 (read length of 16K and design parameter k=4K) with a batch size

of 5K sequences. For PacBio HiFi, the best thread distribution with one FPGA is 16 threads

doing backtrace and 32 threads doing Rescue, while with two FPGAs it is 8 threads doing

backtrace and 16 threads doing Rescue. For PacBio CCS, the best thread distribution with one

FPGA is 16 threads doing backtrace and 48 threads doing Rescue, while with two FPGAs it is

16 threads doing backtrace and 32 threads doing Rescue.

106

WFA FPGA Accelerator

PacBio HiFi PacBio CCS
Input set

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

1 1

3.9
3.0

6.6
5.6

WFA-CPU WFA-1FPGA WFA-2FPGAs

PacBio HiFi PacBio CCS
Input set

0

1

2

3

4

5

6

7

8

9

E
ne

rg
y
Im

pr
ov
em

en
t

1 1

4.4
3.8

7.3
6.5

WFA-CPU WFA-1FPGA WFA-2FPGAs

Figure 5.26: Speedup (left) and energy improvement (right) of the FPGA designs of long reads
with respect to WFA-CPU when applying real input sets.

Figure 5.26 shows the speedup (left) and energy improvement (right) achieved by the FPGA

design 2 with the aforementioned configurations over WFA-CPU when fed with real input sets.

Results show that the FPGA design, for PacBio HiFi, exhibits speedups of 3.9× and 6.6× with

one and two FPGAs, respectively. The speedups for PacBio CCS are 3.0× with one FPGA and

5.6× with two FPGAs. The energy improvements for PacBio HiFi with one and two FPGAs

are 4.4× and 7.3×, respectively, while for PacBio CCS with one and two FPGAs are 3.8× and

6.5×, respectively.

5.5.5 Performance Comparison

In this section we compare our FPGA-based accelerators with other FPGA accelerators which

perform exact gap-affine-based alignment. For this comparison we use Cell Updates Per

Second (CUPS) which is a common metric used to measure the performance of SW algorithms

independently of their target devices and implementation specifics. CUPS represent the number

of cells from the DP-matrix computed per second.

Table 5.5 shows the GCUPS (Giga CUPS) achieved by our accelerators, for all the con-

sidered input sets. It is important to note that the WFA algorithm avoids the full computation

of the DP-matrix, so GCUPS can be computed in two ways. On the one hand, the SWG

Equivalent column of Table 5.5 shows the GCUPS achieved by our co-designs considering

the equivalent number of DP-matrix cells that the SWG algorithm would need to compute the

optimal alignment. On the other hand, the Computed column of Table 5.5 shows the GCUPS

considering only the average number of wavefront cells computed by the WFA. The last column

of Table 5.5 shows the percentage of the average number of wavefront vector cells that the

WFA computes compared to the DP-matrix cells that the SWG computes. It can be seen that

107

5.5 Evaluation and Results

Table 5.5: Computed and equivalent GCUPS achieved by our co-designs for different inputs.

Input
Length - Error Rate

GCUPS WFA/SWG
Cell Update (%)SWG Equivalent Computed

1 FPGA 2 FPGAs 1 FPGA 2 FPGAs
100-5% 320.5 478.5 7.7 11.5 2.41
100-8% 238.1 367.6 14.3 22.1 6.01
150-3% 637.4 991.2 6.8 10.6 1.07
150-5% 409.1 661.8 10.9 17.7 2.67
150-8% 138.5 251.7 8.2 14.9 5.92
300-3% 1251.7 2073.7 10.5 17.4 0.84
300-5% 423.5 776.5 9.7 17.9 2.30
1K-5% 980.4 1923.1 22.2 43.6 2.27

1K-10% 322.6 641.0 29.1 57.9 9.03
1K-20% 103.4 206.2 37.3 74.4 36.06
5K-5% 802.3 1420.5 18.1 32.0 2.25

5K-10% 248.5 471.7 22.4 42.5 9.01
5K-20% 87.8 167.0 31.6 60.1 36.01
10K-5% 823.1 1519.8 18.5 34.2 2.25

10K-10% 252.7 473.9 22.7 42.7 9.00
10K-20% 81.9 162.5 29.5 58.5 36.01
25K-5% 679.5 1342.4 15.3 30.2 2.25

25K-10% 188.1 371.7 16.9 33.5 9.00
25K-20% 53.2 106.0 19.1 38.2 36.00
50K-5% 512.2 1016.3 11.5 22.9 2.25

50K-10% 134.8 268.2 12.1 24.1 9.00
50K-20% 34.5 63.3 12.4 22.8 36.00

reduction in the number of computed cells by the WFA is independent of the read length and

only depends on the error rate. It should be taken into account that the computation of a WFA

wavefront vector cell is more costly than the computation of a SWG DP-matrix cell. This is

because the computation of the WFA wavefront vector cell requires two operations, compute

and extend, while the computation of the DP-matrix cell in SWG only the requires the compute

operation.

In Table 5.6 we compare our peak GCUPS, for different input lengths, with other accelera-

tors. Our WFA accelerator achieves significantly higher performance than all the FPGA-SWG-

based state-of-the-art optimal solutions.

108

WFA FPGA Accelerator

Table 5.6: Peak GCUPS of different exact SWG FPGA accelerated methods.

Work Year Device Freq.
(MHz)

Read
Len. Algorithm GCUPS

Ours 2023 2x Virtex U+ 37P 200 5K∼50K WFA 1519.8
Ours 2023 1x Virtex U+ 37P 200 5K∼50K WFA 823.1
Ours 2023 2x Virtex U+ 37P 200 1K WFA 1923.1
Ours 2023 1x Virtex U+ 37P 200 1K WFA 980.4
Ours 2021 2x Virtex U+ 37P 200 100∼300 WFA 2073.7
Ours 2021 1x Virtex U+ 37P 200 100∼300 WFA 1251.7
[179] 2019 Virtex U+ VU9P 200 50∼200 SWG 8.71

[172] 2017 Virtex 7 200 128∼8.2K SWG 105.9
[177] 2017 Arria 10 N/A 10K∼67M SWG 268.82

[180] 2015 2x Stratix V N/A 144∼5.5K SWG 442
[187] 2013 Stratix V A7 193 JF801956.13 SWG 24.7
[181] 2011 Xilinx XC5VLX330T 130 N/A SWG 129.04

[186] 2009 Xilinx XC2V6000-4 47.6 362 SWG 8.0
[182] 2007 Altera EPS1S30 82 4K,40K,80K SWG 6.6
1 GCUPs for this accelerator are not reported explicitly, we calculate them from the data provided in the

original paper [179].
2 This accelerator does not perform backtrace.
3 Mamavirus’s complete genome.
4 This accelerator reports the theoretical FPGA peak performance, without considering I/O limitations.

5.6 Conclusions

This chapter presents efficient FPGA accelerators of the WFA algorithm that accelerates the

pairwise alignment of DNA sequences. We propose two different accelerators customized

for short and for long DNA sequences. The WFA accelerator for short sequences stores the

necessary data in the registers in order to have fast access to them. It calculates the backtrace in

compact CIGAR form inside the FPGA, while the computation of the full CIGAR is done in the

CPU. In contrast, the WFA accelerator for long reads stores the necessary data in RAMs instead

of registers, since the size of the sequences and the data structures of the WFA algorithm are

much larger. As the backtrace data is also immense, the FPGA sends the raw backtrace data to

the CPU and both the compact CIGAR and the full CIGAR computations are performed in the

CPU.

We implement and evaluate the proposed WFA accelerator in a POWER9-based system with

two FPGAs connected with OpenCAPI, which provides coherent access to the host memory

from the FPGAs and ideal data transfer speeds of up to 25GB/s. Results show that, for different

combinations of sequence lengths and error rates, the WFA accelerator largely outperforms

109

5.6 Conclusions

the reference WFA CPU-only implementation. The WFA accelerator for short reads achieves

speedups of 4.5× to 8.8× with one FPGA, and of 8.2× to 13.5× with two FPGAs, while

reducing energy to solution by 6.1× to 9.7× with one FPGA and by 11.4× to 14.6× with two

FPGAs. The WFA accelerator for long reads achieves speedups of 2.6× to 5.6× with one

FPGA, and of 2.7× to 9.9× with two FPGAs, while reducing energy to solution by 3.6× to

7.5× with one FPGA and by 3.7× to 10.9× with two FPGAs.

110

Chapter 6

WFA ASIC Accelerator

6.1 Introduction

Most of the SW-based FPGA and ASIC accelerators targeting long reads tend to implement a

heuristic method as there is not enough space on the FPGA or a big area is needed for the ASIC

to store the data of the exact method. This problem also results in low working frequencies of

the exact-based accelerators due to the routing complexity.

This chapter presents WFAsic, the first ASIC accelerator for exact pairwise alignment of

long reads based on the WFA algorithm. Our WFAsic implementation includes one Aligner core

and supports read lengths up to 10Kbp and error rates up to 10%. However, these parameters

are configurable depending on the available resources and input characteristics. As WFA only

computes a reduced number of the DP-matrix cells to find the optimal alignment, our WFAsic

accelerator is able to perform exact pairwise read alignment even for long reads, and fits in an

area of 1.6mm2 after PnR in GlobalFoundries 22nm technology, and reaches a frequency of

1.1GHz.

This chapter also presents the integration of the WFAsic accelerator in a Linux-capable

RISC-V SoC. The WFAsic accelerator is configured using a standard Linux driver and API.

In addition, the WFAsic accelerator runs as an independent process in parallel to other CPU

processes. Integrating the WFAsic accelerator with the CPU in the same SoC provides great

benefits to genomics applications, as it eliminates the need for external accelerators and their

costly communication. The integrated WFAsic accelerator provides performance improvements

of up to 1076× compared to the CPU implementation of the WFA running on Sargantana, the

in-order single-threaded RV64G RISC-V CPU of the chip, which also runs at 1.1GHz.

111

6.2 System on Chip Architecture

AXI LiteMemory
Controller

AXI Lite Crossbar

AXI Full Crossbar

R
IS

C
-V

C

P
U

WFAsic

M
ai

n
M

em
or

y

So
C

AXI Full (DMA)

WFA

L1 I Cache L1 D Cache

L2 Cache
Datapath SIMD

S
oC

Figure 6.1: SoC architecture including the RISC-V CPU, the WFAsic accelerator and their
connections.

6.2 System on Chip Architecture

The architecture of the SoC, including the WFAsic accelerator, the CPU and the intra-chip

connections, is illustrated in Figure 6.2. The CPU communicates with the WFAsic accelerator

through the AXI-Lite bus. The WFAsic accelerator includes a set of memory mapped registers,

and the CPU writes into this registers the configuration of the accelerator. The configuration

includes the backtrace functionality (enabled or disabled), the maximum sequence length of the

input set, and the DMA configurations, which consist of the address and the size of the input

set in the main memory, and the address where results should be written to the main memory.

The WFAsic accelerator also has two registers, Start and Idle, that communicate with the CPU

through the AXI-Lite bus. The CPU triggers the start of the accelerator by writing to the Start

register, and it checks the completion of the computation in the accelerator by polling the Idle

register. A dedicated interrupt could also be enabled to signal the job completion to the CPU.

The WFAsic accelerator has direct access to the off-chip main memory through the memory

controller via the AXI-Full bus. In contrast, the CPU can access the main memory in two

different ways: (1) via the AXI-Lite bus and the memory controller, and (2) via the AXI-Full

bus, the L2 cache, and the memory controller.

The processor used in the SoC is Sargantana [20], a 64 bit single-threaded in-order Linux-

capable RISC-V CPU that implements the RV64G ISA. For accelerating domain-specific

applications, it uses a Single Instruction Multiple Data (SIMD) unit and supports the vector

instructions defined in the vector extension RVV 0.7.1. The CPU has a 7-stage pipeline that

implements register renaming, out-of-order write-back, and a non-blocking memory pipeline.

112

WFA ASIC Accelerator

It has two first level caches: an instruction cache of 16KB, and a non-blocking data cache of

32KB. The system also has a 512KB L2 cache outside the CPU.

6.3 WFAsic Accelerator

The WFAsic accelerator is based on the FPGA accelerator of the WFA for long reads described

in Section 5.4. In this section we adapt the design for an SoC implementation, targeting the

alignment of sequences generated with third generation sequencing technologies up to 10K

bases.

Depending on the available area and resources, as explained in Section 5.4, the WFAsic

accelerator can include multiple Aligner modules to align sequences in parallel. The Aligner

module of the WFAsic accelerator remains almost the same as in WFA FPGA accelerator for

long reads. However, Extractor and Collector modules are adapted to the new platform. These

are the input and output modules that adapt input/output data formats compatible with the

Aligner/SoC data formats. In the SoC the data width of the AXI-Full is 16 bytes, which is

much smaller than that of the FPGA designs.

In the design of WFAsic, in order to be able to evaluate the accelerator design without being

limited by memory-accelerator bandwidth, we add an option to enable and disable the backtrace

functionality. We avoid transferring huge amount of data from accelerator to the memory by

disabling backtrace, and in this case only the alignment score is calculated. Therefore, if

backtrace is enabled, the Aligner computes the alignment scores and generates the backtrace

data, otherwise it only computes the alignment scores. Figure 6.2 shows the WFAsic design

and its Aligner.

6.3.1 Memory implementations

To implement the Input and Output FIFOs, and Input_Seq and Wavefront RAMs used in the

FPGA accelerator (see Figure 6.2 (bottom)) in the ASIC, we have to use GlobalFoundries

memory macros. There is only one input and one output FIFO. Both are show ahead FIFOs,

in which the next data is available on the FIFO output port and is cleared by triggering the

read request signal of the FIFO. These two FIFOs are the biggest memories in our design,

with a width of 16 bytes (AXI-Full data width) and a depth of 256 words. We have used

high-performance dual port register files to implement these FIFOs. To do this, we create a

wrapper for these memories, which handles the internal pointers and read/write procedures

to mimic the functionality of a show ahead FIFO for other modules (DMA, Extractor, and

113

6.3 WFAsic Accelerator

A
X

I
L

it
e

Extend 2

Extend 3

Extend n

Wavefront_M,I,D
RAM 2

Wavefront_M,I,D
RAM 3

Wavefront_M,I,D
RAM n

Compute 2

Compute 3

Compute n

Input_Seq a RAM 1
Extend 1 Wavefront_M,I,D

RAM 1 Compute 1Input_Seq b RAM 1

Input_Seq a RAM 2
Input_Seq b RAM 2

Input_Seq a RAM 3
Input_Seq b RAM 3

Input_Seq a RAM n
Input_Seq b RAM n

Collector BT
[Backtrace Enabled]

Collector NBT
[Backtrace Disabled]

E
xt

ra
ct

or

Aligner(s)

In
pu

t F
IF

O

O
ut

pu
t F

IF
O

128

128 32

320

128

12832

Backtrace En/Disable

DMA [AXI-Full]

32 32
or

320

WFAsic
A
lig
n
er

Figure 6.2: WFAsic structure and different modules.

Collector modules). Hence, the interactions of the modules with the Input/Output memories

remain the same as in the FPGA accelerator. In addition, to increase the frequency, we have

implemented single word show ahead FIFOs between DMA and Input FIFO, and Output FIFO

and DMA.

Depending on the design configuration, each Aligner could have multiple sets of Extend

and Compute sub-modules, called parallel sections. The number of parallel sections determines

the number of input and wavefront RAMs of the Aligner. These RAMs in the design of the

FPGA are implemented as dual port RAMs. one port for writing and another independent

port for reading. The number of each type of these RAMs, i.e., Input_SEQ a, Input_SEQ b,

Wavefront_M and Wavefront_ID, for a design of long reads is more than 16, and 64 in our case.

Hence, there are a lot of dual port RAMs in our design that should be replaced by memory

114

WFA ASIC Accelerator

macros. The large number of RAMs can reduce the frequency of the ASIC due to complicated

routing and their maximum frequency limitations. To attain elevated frequencies for our ASIC

accelerator, we select memory macros capable of achieving the utmost frequency, which in our

case are high performance single port memory macros. In this case, again, to avoid changing

the interaction protocols between RAMs and other modules, we design a wrapper that handles

pointers and read/write procedures of a single port memory, but from the perspective of other

modules, it looks like a dual port RAM.

6.3.2 Extractor Adaptation

The data width of the AXI-Full is 16 bytes, so the Extractor receives data (sequences to be

aligned) in batches of 16 bases. Therefore, as soon as new data is received, it is stored in one

row of the Input_Seq RAMs of the idle Aligner. At the beginning of a new sequence, the

alignment ID and the sequences lengths are received, each in one batch of 16 bytes. However,

they are stored in 4-byte rows of the Input_Seq RAMs. ID in address 0 of both types of

Input_Seq RAMs, a and b, lengths in address 1 of their corresponding Input_Seq RAMs, and

sequences bases from address 3 of their related Input_Seq RAMs.

6.3.3 Collector Adaptation

The Collector module must also provide data (alignment results) to the memory in batches

of 16 bases. We design two Collector modules, each with different input widths to handle

backtrace functionality. Collector BT is activated when backtrace is enabled and Collector

NBT is activated when it is disabled.

If backtrace is enabled, the Aligner provides data in batches of 40 bytes. In the design for

FPGA, the data width is 128 bytes, so the Collector merges three data of the Aligner, adds eight

bytes of information, and sends data to the memory. However, in the WFAsic, the output data

width is smaller than the Aligner data width. Hence, each output data of the Aligner should

be divided by 16 bytes and sent in multiple memory transactions. Here two problems arise.

First, the Aligner pause time increases compared to the FPGA accelerator. This is because the

Aligner is not allowed to generate new data before the previous data is sent to the memory by

the Collector. The memory bandwidth is decreased, and hence the Aligner pause time increases.

The second problem is that the overhead increases. 40-byte data of the Aligner fits in three

16-byte transactions. Still, when we divide it to be sent in multiple transactions, each part of

the split data requires attached information to be identifiable later in the CPU. Therefore, as

115

6.3 WFAsic Accelerator

shown in Figure 6.3 (A), in each transaction, we combine 10 bytes of the Aligner backtrace

data with six bytes of information in one block of 16 bytes and send each Aligner backtrace

data to the memory in four transactions. In the Figure 6.3 (A) it is assumed that there is only

one Aligner in the design, otherwise the data of different Aligners are sent randomly to the

memory (as in Figure 5.15).

When backtrace is enabled, the last data that the Aligner provides to the Controller BT is

the alignment result, which is identifiable by the Last flag. The Aligner sends the alignment

result to the Controller BT in 40 bytes, but only seven bytes of it are useful and 10 bytes of it

are sent to the memory. Unlike the backtrace data, the alignment result is sent to the memory in

one transaction. Figure 6.3 (B) shows the format of the alignment result field. In addition to

Success flag and error score, it includes the kmax and Length_difference required for performing

the backtrace.

The accelerator computes the backtrace data of 64 cells of the three wavefront vectors of M̃,

Ĩ, and D̃ wavefronts and concatenates them in a backtrace block of 320 bits. However, it divides

each block of backtrace data into four 80-bit sub-blocks of A, B, C, and D. Figure 6.3 (C)

depicts the format of a 320-bit backtrace block. The origin of each cell of M̃, Ĩ, and D̃ wavefront

vectors are encoded in 3, 1, and 1 bits, respectively. The first 192 bits (3×64) of each backtrace

block include the origins of 64 cells of the M̃ wavefront. The next 64 bits include the origins of

64 cells of the Ĩ wavefront, and the last 64 bits include the origins of 64 cells of the D̃ wavefront.

In a backtrace data block, the origins of cells 0 to 63 are positioned from left to right. For

example, in a backtrace block, the origin of cells 0 and 1 of M̃ wavefront are located at bits

0 to 2, and 3 to 5, respectively, which are located in sub-block A. The origin of cells 0 and 1

of Ĩ wavefront are located at bits 192 and 193, respectively, which are located in sub-block C.

Similarly, the origin of cells 0 and 1 of D̃ wavefront are located at bits 256 and 257, respectively,

which are located in sub-block D.

If backtrace is disabled, the Aligner only provides the alignment results to the Controller

NBT in four bytes. These four bytes include the Success flag in one bit, the alignment error

score in 15 bits, and the alignment ID in two bytes. Controller NBT merges the alignment

results of four alignments and sends them to the memory in one transaction. The Controller

NBT does not attach any extra information to this data as the Aligner adds all the necessary

information in four bytes, as explained. This way, the design is less limited by the memory

bandwidth, and Aligner(s) pause time decreases significantly compared to when backtrace is

enabled.

116

WFA ASIC Accelerator

When the accelerator job is finished, the accelerator writes into the MMIO registers (ex-

plained in Section 3.1.1) the amount of 16-byte results data it has sent to the memory. Regardless

of the backtrace functionality, the accelerator sends three 16-byte debug data at the end of all

alignments. The amount of results data, that the accelerator reports, also includes these three

blocks of debug data.

6.3.4 Backtrace

If the backtrace is enabled, as in the design of the FPGA, the CPU computes it when the

alignment in the accelerator is finished. The backtrace data generated by the Compute sub-

module is stored in memory. The backtrace operation starts from the backtrace data of the

last cell, which determines the alignment score. The backtrace procedure is the same as in the

FPGA design as shown in Figure 5.16. However, in the WFAsic, the layout of storing backtrace

data in memory is different from the FPGA design. The backtrace data is now divided into

groups of 10 bytes with information data of six bytes between them. So when separating

data, the information data are removed and sub-blocks of each backtrace block are written

consecutively in memory.

However, if there is only one Aligner in the ASIC accelerator, the data separation is unnec-

essary, as the alignments data (alignment result and backtrace data) are written consecutively in

the memory (as shown in Figure 6.3 (A)). The only important matter is determining the data

boundaries of each alignment ID, and handling the gaps between backtrace sub-blocks correctly.

We implement a method that identifies these boundaries and performs the backtrace of each

alignment ID sequentially, as the CPU is single-threaded. Hence, the CPU code includes both

single-Aligner and multi-Aligner backtrace computation methods.

Unlike in the FPGA design format, the Success flag of each alignment, which determines a

successful alignment in the accelerator for each ID, is written in alignment result block. The

alignment result format is shown in Figure 6.3 (B). Figure 6.3 (C) indicates how each backtrace

block is divided in to 4 sub-blocks. The definition of each field is exactly the same as explained

in Section 5.4.4 for the WFA-FPGA accelerator.

117

6.4 Evaluation

319 240 239 160 159 80 79 0

xD xC xB xA

80 bits 24 bits 1 bit 23 bits

Backtrace Data
Alignment Result Block Counter Last Flag ID

Results Address BT Data = 0A 0 0 1

BT Data = 0B 1 0 1

BT Data = 0C 2 0 1

BT Data = 0D 3 0 1

...

BT Data = n
1
A 4n

1
0 1

BT Data = n
1
B 4n

1
+1 0 1

BT Data = n
1
C 4n

1
+2 0 1

BT Data = n
1
D 4n

1
+3 0 1

Alignment Result 4n
1
+4 1 1

...

BT Data = 0A 0 0 m

...

BT Data = n
m
D 4n

m
+3 0 m

Results Address+n-16 Alignment Results 4n
m
+4 1 m

Results Address+n Debug Data 1

Results Address+n+16 Debug Data 2

Results Address+n+32 Debug Data 3

Backtrace Data Format (blocks of 64 cells of 3 wavefront vectors [concatenated in 320 bits])

64x1 bits 64x1 bits 64x3 bits

BT Data = x{D,C,B,A}
D wavefront

Origins
I wavefront

Origins
M wavefront

Origins

Alignment Result Format (80 bits)

24 bits 16 bits 16 bits 16 bits 5 bits 1 bit 2 bits

0 Length difference k
max

Error Score 0 Success Flag 1

A

B

C

Figure 6.3: The format of writing the alignment and backtrace data in memory for the WFAsic.

118

WFA ASIC Accelerator

Figure 6.4: Accelerator layout. The size is 1330um×1200um with all the connectivity on the
right side.

6.4 Evaluation

6.4.1 ASIC Synthesis and Place and Route

The design parameters of the WFAsic accelerator can be configured to fulfill the desired design

constraints. Due to the area restrictions of our ASIC, we configure the WFAsic accelerator

with one Aligner module, 64 Extend and Compute sub-modules (parallel sections = 64), and

support for input reads with lengths up to 10Kbp and error rates up to 10%.

The tools of synthesis, place and route, and verification are described in Chapter 3. In the

post-synthesis netlist, the WFAsic accelerator reaches a frequency of 1.5GHz and requires an

area of 1.107mm2 (1.057mm2 is cell area and 0.05mm2 is net area). In the post-PnR netlist,

the WFAsic accelerator reaches a frequency of 1.1GHz in typical corner with 0.8V supply

and at 85oC, and it has a power consumption of 312mW. Figure 6.4 shows the layout of the

WFAsic accelerator in the GF22FDX technology. The WFAsic accelerator occupies an area of

119

6.4 Evaluation

1.6mm2 and uses 0.48MB of memory. The memories are implemented as register file memory

macros. There are 260 memory macros that occupy 85% of the area. Two of them with a size

of 256×128 are input and output FIFOs. Input sequences, M wavefront and I/D wavefront data

are stored in 128 640×32, 66 640×15 and 64 256×30 memory macros, respectively.

6.4.2 FPGA Prototype Performance Results

We compare the performance of the WFAsic accelerator with a publicly available C implemen-

tation of the WFA [200] executed on the RISC-V CPU of the SoC. The comparison is done on

an FPGA prototype of the chip. The performance is measured in clock cycles, regardless of the

FPGA frequency. In the FPGA prototype, both the core and accelerator are running at the same

frequency of 50MHz. However, in ASIC, they both achieve a frequency of 1.1GHz.

We evaluate the WFAsic accelerator with six different input sets of Table 3.1. Although

the accelerator is designed for long sequences, we evaluate its performance for short (100bp),

medium (1Kbp) and long (10Kbp) sequences with error rates of 5% and 10%. We generate syn-

thetic input sets with random mismatches, insertions and deletions, using the same methodology

as in [19, 173].

Figure 6.5 shows the speedup of the WFAsic accelerator with and without calculating the

backtrace with respect to the execution of the CPU scalar code. The figure also compares the

CPU vector code with the scalar code. The vector register size is 128 bits. The extend step is

vectorized in a way that it compares 16 bases in parallel. Also, the compute step is vectorized

using eight 16-bit elements per vector. Our accelerator achieves speedups over the CPU

scalar code of 143× to 1076× without performing the backtrace, and of 2.8× to 344× when

performing the backtrace. The next paragraphs explain the reasons of the different speedups

obtained for the different read lengths and after enabling and disabling the computation of

backtrace.

Figure 6.6 shows the scalability of the WFAsic accelerator with different numbers of

Aligners over a design with only one Aligner. The available resources in the FPGA prototype

are larger than in the final chip, so we can fit multiple Aligners and evaluate the scalability

of the WFAsic accelerator on the FPGA. To this end, first we disable the backtrace to avoid

memory bandwidth limitations. Results show that, for input sets with long sequences, the

design scales perfectly. In particular, for the input sets of 10K-10% and 10K-5%, the accelerator

with 10 Aligners provides speedups of 9.87× and 9.67× over the accelerator with one Aligner,

respectively. This represents speedups of 10621× and 10062× over the WFA-CPU scalar code,

respectively. The speedup is saturated with less Aligners for inputs with short sequences and

120

WFA ASIC Accelerator

100-5% 100-10% 1K-5% 1K-10% 10K-5% 10K-10%
Input set

10−1

100

101

102

103

104

Sp
ee
du
p

1 1 1 1 1 11.5 1.7 1.8 1.9 2.1 2.2

143.5
241.1

652.0 778.7 1040.5 1076.1

2.8
5.5

13.6
33.7

163.7
344.1

CPU-scalar CPU-vector Accelerator No BT Accelerator BT

Figure 6.5: Speedup with respect to the CPU-scalar code.

smaller error rates. This is because the design is bound to the accelerator memory bandwidth

for these inputs. This justification confirms the lower speedups of inputs with short lengths in

Figure 6.5.

Next we explain the accelerator memory bandwidth restrictions, especially for short se-

quences, when having more than one Aligner in the accelerator. Table 6.1 shows, for each

input, how many clock cycles are required to read a pair of sequences from main memory and

to perform the alignment of the pair of sequences. Note that, first, the pairs of sequences are

stored in the RAMs of the Aligners, and then the Aligners compute the alignments in parallel.

Using Equation 6.1, the maximum efficient number of Aligners for each input set is calculated

and shown in the last column of Table 6.1. For example, the design of 100-5% does not scale

further than four Aligners because reading four pairs of sequences (4×75=300) takes more

time than computing the four alignments in parallel (214 alignment cycles + 75 reading cycles

= 289). Increasing the accelerator memory bandwidth would reduce the time for reading the

sequences and, thus, improve the scalability of the designs for short reads.

MaxAligners = Roundup(
Alignment_cycles
Reading_cycles

)+1 (6.1)

When the backtrace is enabled, first the accelerator performs the alignment and then the

CPU performs the backtrace. The backtrace time on the CPU dominates the total execution

time, as it is much higher than the accelerator alignment time. This situation does not take

place in the CPU executions of the WFA because the computations of the alignments is much

121

6.4 Evaluation

2 4 6 8 10
Number of Aligners

0

2

4

6

8

10

Sp
ee
du

p

10K-10%
10K-5%

1K-10%
1K-5%

100-10%
100-5%

Figure 6.6: Speedup of adding Aligners with respect to one Aligner.

Table 6.1: Maximum number of Aligners for each input based on the execution cycles of
reading and aligning one pair of reads.

Input Alignment
Cycles

Reading
Cycles

Max Efficient
AlignersLength Error Rate (%)

100 5 214 75 4
100 10 327 75 6
1K 5 2541 376 8
1K 10 8461 376 24

10K 5 278083 3420 83
10K 10 937630 3420 276

slower. More importantly, the backtrace computation on the CPU is bound to the CPU memory

bandwidth, which quickly becomes saturated. For these reasons, the speedups achieved by

the WFAsic accelerator when the backtrace is disabled are higher than when the backtrace is

enabled.

As mentioned earlier, due to area restrictions we are only able to fit one Aligner with 64

parallel sections in the WFAsic design. However, it is also possible to reduce the Aligner

size by reducing the number of parallel sections and fit two smaller Aligners with 32 parallel

sections in the chip. We have chosen the best configuration by comparing the performance of

different configurations, WFAsic with one Aligner of 64 parallel sections versus WFAsic with

two Aligners of 32 parallel sections. Note that as explained in Section 6.3.4, if there is one

Aligner in the design, the time-consuming step of separating data of different alignments is not

needed. The performance results shown in Figure 6.7 also compares both backtrace methods

for the design with one Aligner and 64 parallel sections.

122

WFA ASIC Accelerator

100-5% 100-10% 1K-5% 1K-10% 10K-5% 10K-10%
Input se

10−1

100

101

102

103

104
Sp

ee
du

p

1 1 1 1 1 11.7 1.8 1.2 1.1 1.0 1.0

6.7 9.7 11.4
24.2

87.4
180.4

1-64PS Aligner [Sep] 2-32PS Aligners [Sep] 1-64PS Aligner [No Sep]

Figure 6.7: Performance comparison between WFAsic with one Aligner of 64 parallel sections
(64PS) performing data separation (Sep), two Aligners of 32 parallel sections (32PS)

performing data separation (Sep), and one Aligner of 64 parallel sections (64PS) without
performing data separation (No Sep).

Figure 6.7 shows that by eliminating data separation step in 1-64PS Aligner design, it

outperforms other configurations for all inputs, specially longer inputs. Comparing two

other configurations which perform data separation, the design with two Aligners and 32

parallel sections, performs better for shorter reads. However, for longer reads the performance

improvement is negligible. In principle, doubling the number of parallel section doubles the

execution time. While in the case of very short reads this is not true. This is because for short

reads the wavefront matrix is very small and most of the parallel sections are idle. So increasing

parallel sections does not improve performance while increasing number of Aligners does.

We chose to have one Aligner with 64 parallel section, in which the backtrace method does

not separate data of different alignments. Apart from the big performance improvement we

get with this configuration, below is listed other reasons justifying why the design with one

Aligner and 64 parallel sections, regardless of the backtrace method, is better than the one with

two Aligners and 32 parallel sections.

• One Aligner with 32 parallel sections is only 1.5× smaller than one Aligner with 64

parallel sections. So using two Aligners with 32 parallel sections require more area than

one Aligner with 64 parallel sections.

• Having one Aligner is more simple in terms of distributing inputs to, and collecting

outputs from, the Aligner.

• Our target in this project is third generation sequencing technologies which provide

longer reads where both accelerator designs, when performing data separation, perform

equally fast.

123

6.4 Evaluation

Table 6.2 compares the GCUPS, the area, and the GCUPS per mm2 of the WFAsic acceler-

ator with other methods/platforms when aligning reads of 10Kbp.

Darwin is the state-of-the-art accelerator that uses a heuristic method which does not

process the whole DP-matrix, but some tiles of it. Hence, the CUPS achieved by Darwin is

calculated based on the peak performance reports of the tiles computations (20.8M tiles/sec)

and the tile size (320×320) in the original paper [174]. The AMD EPYC is a high-end server-

class processor with 64 cores. The table shows the GCUPS obtained when running the CPU

implementation of the WFA algorithm on the AMD EPYC processor with 1 and 64 threads.

The GCUPS of the WFAsic accelerator on the ASIC is estimated by scaling the cycle counts

measured on the FPGA prototype to the ASIC frequency. For example, if the cycle count for

aligning sequences in the FPGA prototype is 1.1 billion cycles, its execution time on an ASIC

with a frequency of 1.1GHz is estimated to be one second. The GCUPS of WFA algorithm

on AMD EPYC, GPU and ASIC are calculated for input sets with reads of length 10K and

error rate of 5%. Note that the WFA algorithm running on the AMD EPYC, GPU and on the

WFAsic avoids the full computation of the DP-matrix, but as this algorithm is an exact method,

in Table 6.2, we compute the CUPS considering the equivalent number of DP cells that the

SWG algorithm would need to compute the optimal alignment.

The last column of Table 6.2 shows GCUPS per mm2, in which we can see that the

WFAsic accelerator (with and without backtrace) outperforms Darwin, WFA-GPU and the

CPU implementation of the WFA running on the high-end AMD EPYC processor. Note that

Darwin achieves the highest total GCUPS, but with a much larger area budget than WFAsic.

The AMD EPYC processor is the slowest of the three, both in terms of absolute GCUPs and of

GCUPS per mm2.

Table 6.3 compares the GCUPS per aligner of WFAsic and WFA-FPGA. As in the previous

Section 5.5.5, the column SWG Equivalent shows the GCUPS considering the equivalent

number of DP-matrix cells that SWG should calculate to do the alignment, while the column

Computed shows the GCUPS considering the average actual number of computed wavefront

vector cells by the WFA. For WFA-FPGA for short reads, we compare against the design

which achieves the best GCUPS. However, for WFA-FPGA for long reads, we compare against

the design with the same configuration as the WFAsic. Note that the computation of a WFA

wavefront vector cell is more costly than the computation of a SWG DP-matrix cell because the

former requires two operations, compute and extend, while the latter only requires the compute

operation.

124

WFA ASIC Accelerator

Table 6.2: GCUPS and area comparison of different platforms/methods aligning reads of
10Kbp.

Platform GCUPS Area
(mm2)

GCUPS
per mm2

Darwin [GACT1 - heuristic] 2129 85.6 25
WFA-GPU[130] [NVIDIA GeForce 3080] 476 628 0.076
AMD EPYC2 [WFA 1 thread] 7.5 1008 0.0074
AMD EPYC2 [WFA 64 threads] 98 1008 0.0972
WFAsic [without backtrace] 390 1.6 244
WFAsic [with backtrace] 61 1.6 38
1 Darwin is a full mapper. The GACT module of Darwin is responsible for the pairwise

alignment, which is the focus of our work.
2 The AMD EPYC processor contains 8 Core Complex Dies (CCDs) and a central I/O Die

(IOD) [CTE-AMD]. The die size of each CDC is 74mm2 and that of IOD is 416mm2.

Table 6.3: GCUPS comparison of WFA-1FPGA and WFAsic per Aligner.

Platform GCUPS per Aligner
SWG Equivalent Computed

WFA-1FPGA (short reads: 300-3%) 22.7 0.2
WFA-1FPGA (long reads: 10K-5%) 48.5 1.1
WFAsic (without backtrace: 10K-5%) 390 8.8
WFAsic (with backtrace: 10K-5%) 61 1.4

6.5 Conclusions

This chapter presents the first WFA ASIC accelerator integrated in a RISC-V processor SoC.

The accelerator is designed for long reads and evaluated for reads up to 10Kbp. WFAsic

provides optimal results based on gap-affine scoring. The design is well parallelized by

efficiently storing and distributing necessary data into multiple RAMs, so that 64 cells of

the wavefront matrix are calculated in parallel. WFAsic is able to perform the alignment

independently and in parallel with other CPU processes as it includes a DMA which has direct

access to the main memory through the AXI-Full bus. Results show that the accelerator reaches

speedups of up to 1076× and 344× when backtrace is disabled and enabled, respectively, over

the CPU implementation of the WFA running on the RISC-V of the chip. In addition, the

accelerator perfectly scales by increasing the number of the Aligners in the accelerator, if the

accelerator-memory bandwidth is not saturated. The post-layout of the WFAsic, in GF22nm

technology, reaches a frequency of 1.1GHz, fits in an area of 1.6mm2 and consumes a power of

312mW.

125

Chapter 7
Conclusions

This thesis has accelerated two important genomics application, k-mer counting and pairwise

read alignment, using FPGAs and ASICs. The proposed accelerated designs have provided per-

formance improvements as well as energy efficiency. This chapter details the main conclusions

from the contributions of this thesis and then outlines the possibilities for future research they

suggest. Finally, this chapter lists the publications resulting from this thesis and acknowledges

the financial and technical support that made it possible.

7.1 Goals, Contributions and Main Conclusions

Although next generation and third generation sequencing technologies have significantly

accelerated the pace of DNA sequencing, the process of DNA assembly remains a bottleneck in

genomics research. Next generation sequencing technologies, such as Illumina, generate large

volumes of short read data, while third generation technologies, such as Pacific Biosciences

(PacBio), produce long read data. However, assembling these reads into a complete genome is

still a computationally intensive process. To address this challenge, domain-specific genomics

accelerators such as FPGAs and ASICs have been developed. These accelerators are specifi-

cally designed to handle the complex computations involved in DNA assembly, significantly

reducing the time and cost involved in the process. By combining next generation and third gen-

eration sequencing technologies with specialized genomics accelerators, researchers can greatly

accelerate their genomics research and make new discoveries that can lead to improvements in

human health and medicine.

In the first contribution of this thesis we have targeted the k-mer counting application. In

this work we proposed an FPGA-based hardware/software co-design to accelerate the k-mer

counting, and implemented it in SMUFIN. SMUFIN is a genomics application for finding

somatic mutations, and its first step is counting the frequency of k-mers appearance in all

127

7.1 Goals, Contributions and Main Conclusions

reads of the dataset. This contribution not only includes designing an FPGA accelerator for

k-mer counting, but also restructuring and modifying the SMUFIN C code to achieve better

performance as well as using less memory. The software modifications consist of identifying

and removing/modifying time-consuming functions, removing dependencies between parallel

threads, reducing overheads and exploiting data compaction mechanisms. Compared to the

baseline 160-threaded C implementation of the k-mer counting of SMUFIN, running on 40

cores of the POWER9 HPC machine, our co-design, using one Xilinx Virtex UltraScale+

(XCVU3P) FPGA running at 250MHz, is 2.14× faster while consuming 2.93× less energy

and 1.57× less memory.

In the second contribution we have targeted the pairwise read alignment of short reads

generated by next generation sequencing technologies. NGS technologies currently are the

most widely used sequencing technologies in the market. In this work we designed the first

WFA-FPGA accelerator for short reads, performing exact alignments based on the gap-affine

WFA algorithm. Our design implements a hardware/software co-designed scheme, in which

the FPGA accelerator by including multiple aligner cores, computes the alignment of multiple

pairs of reads in parallel and performs the backtrace. However, in a novel approach it generates

the backtrace results in a compacted form that eases CPU-FPGA communication. Then the

CPU threads can unpack the compacted forms and achieve the final backtrace results in parallel.

In the proposed design of the accelerator, the maximum supported read length and error score

between the reads are configurable. It allows the design to be tailored to the characteristics of

reads produced by various sequencing machines. By adjusting these two design parameters, the

aligner resources can be optimized, which in turn, affects the number of parallel aligners that

can be placed in the FPGA. We have evaluated our design with one and two FPGAs by applying

seven different input sets with different read lengths of 100 to 300 bases and with different error

rates of 3% to 8%. Compared to the 64-threaded WFA CPU-only implementation running on

16 cores of the POWER9 HPC machine, the FPGA accelerator, using Xilinx Virtex UltraScale

Plus (XCVU37P) FPGAs running at 200MHz, achieves speedups of 4.5× to 8.8× with one

FPGA, and of 8.2× to 13.5× with two FPGAs, while reducing the energy-to-solution by 6.1×
to 9.7× with one FPGA, and by 11.4× to 14.6× with two FPGAs.

In the third contribution we have targeted the pairwise read alignment of long reads gener-

ated by third generation sequencing technologies. Third generation sequencing technologies

are expected to be widely used in the future due to their developing benefits over the NGS

technologies. In this work we have significantly modified the previous design of WFA-FPGA

of short reads to make it suitable for long reads of up to 50K bases. To this end, to fit the

128

Conclusions

necessary data for doing the alignment of long reads in the FPGA, we have exploited on-chip

FPGA RAMs instead of storing data in registers and using LUTs as in the design of short reads.

We have intelligently distributed data in RAMs in a way that it maximizes the parallelism

and minimizes the RAM usage. In addition, we also propose a reorganization of the tasks

performed by the FPGA and by the CPU in the hardware/software co-design. In this design

also the maximum supported read length, error score, and number of aligner are configurable.

We have evaluated our design with one and two FPGAs by applying 15 different synthetic input

sets and two real input sets. The length of the synthetic inputs ranges from 1K to 50K bases,

and their error rates ranges from 5% to 20%. Compared to the 64-threaded WFA CPU-only

implementation running on 16 cores of the POWER9 HPC machine, our co-design, using

Xilinx Virtex UltraScale Plus (XCVU37P) FPGAs running at 200MHz, for synthetic input sets,

achieves speedups of 2.6× to 5.6× with one FPGA and of 2.7× to 9.9× with two FPGAs, and

energy-to-solution is reduced by 3.6× to 7.5× with one FPGA, and by 3.7× to 10.9× with

two FPGAs. While, for real input sets, sequenced by PacBio machines, the accelerator design

exhibits speedups of 3.0× to 3.9× and 5.6× to 6.6× with one and two FPGAs, respectively,

and the energy improvements of 3.8× to 4.4× and 6.5× to 7.3× with one and two FPGAs,

respectively.

In the forth contribution we have presented the first ASIC implementation of the WFA

algorithm, WFAsic. This work presents the integration of the WFAsic accelerator in a Linux-

capable RISC-V SoC. The WFAsic accelerator is configured using a standard Linux driver and

API. In addition, the WFAsic accelerator runs as an independent process in parallel to other

CPU processes. Integrating the WFAsic accelerator with the CPU in the same SoC provides

great benefits to genomics applications, as it eliminates the need for external accelerators

and their costly communication. Our WFAsic implementation includes one aligner core and

supports read lengths up to 10Kbp and error rates up to 10%. However, these parameters are

configurable depending on the available resources and input characteristics. After synthesis and

PnR in GlobalFoundries 22nm technology, the WFAsic accelerator fits in an area of 1.6mm2

and reaches a frequency of 1.1GHz. Although the WFAsic is designed for long reads, we have

evaluated it with three input sets of length 100 to 10K bases and with error rates of 5% to

10%. The integrated WFAsic accelerator provides performance improvements of up to 1076×
compared to the CPU implementation of the WFA running on Sargantana, the single-threaded

64 bit in-order Linux-capable RISC-V CPU of the chip running at the same frequency as the

accelerator.

129

7.2 Future Work

7.2 Future Work

The work presented in this thesis suggests many possible avenues for future work. Detailed

below are four which stand out as of particular potential.

• In the first contribution of SMUFIN, the time-consuming step of generating Bloom

filters is removed and the elimination of unique k-mers is postponed to the last step

of the SMUFIN. By doing this, although we gained performance improvements, the

application requires writing unnecessary data on disk and consequently using twice

more disk space as needed. Hence, the performance is limited by I/O constraints and

therefore the FPGA-CPU data transactions cannot benefit from a double buffering design.

As a future work, removing unique k-mers intelligently before they are written to the

disk, would remove the I/O constrains and push the performance more. To do this,

unlike the original SMUFIN design, the Bloom filters generation is done at the same

time as counting k-mers, instead of as prior step. In addition to k-mer generation, the

time-consuming hash function of Bloom filters is offloaded to the FPGA, but the tables

remain in the CPU as they do not fit in the FPGA memory. With this approach we aim at

removing the I/O bottleneck, as less data needs to be written to disk, and enable a double

buffering scheme that further improves performance.

• In second and third contributions we observed that the performance scales perfectly

by increasing the number of FPGAs. Hence, implementing the WFA algorithm on a

cluster of many FPGAs [209] can achieve significant performance improvements. Unlike

traditional CPU-FPGA direct link connections, in this cluster the FPGAs and the CPUs

can communicate with each other through a data center network. In this case, as both

the resources and the bandwidth of each FPGA is smaller than in our FPGA platforms

in our contributions, a smaller number of WFA cores could fit in each FPGA of the

cluster. However, since the amount of FPGAs in the cluster is much larger (at least 64

FPGAs in the envisioned setup), a huge amount of parallelism can be achieved. This

new perspective opens the door to aligning different reads against potential positions of

the reference genome in parallel, or to minimize data transfers if all the FPGAs align

the same one or two reads against different potential positions of the reference genome.

This task requires to re-think the parallelization strategy of the previously proposed

WFA accelerators for short and long reads, which in turn requires to re-think the whole

communication and synchronization mechanisms between modules, as well as potentially

130

Conclusions

re-designing some modules to adapt them to the cluster characteristics while avoiding

potential new bottlenecks.

• In the fourth contribution, our WFAsic accelerator is implemented in an SoC with one

CPU core, without having access to the L2 cache. As a future work, the ASIC accelerator

can be implemented in a multiple core SoC, with one accelerator per each core, and

with direct connections to the L2 cache. This way multiple aligners work in parallel

and receive input data faster as they read from L2 cache. In addition, the WFAsic could

be modified based on the newly proposed improved WFA, WFA_bidirectional [210],

in which less memory is required, and therefore WFAsic size reduces, and hence it

occupies less area. These tasks require accelerator to implement the new methods of

WFA_bidirectional and the cache coherency protocol.

• The WFA contributions have tested the WFA accelerator as an independent application,

however the WFA could serve as the pairwise read aligner of a full mapper. Integrating

the WFA accelerator in a full mapper would be interesting specially for the industrial

section, as the improvements it may provide significantly changes the speed of read

alignment. Implementing the WFA accelerator in a full mapper requires adapting and

modifying the software code of the mapper in order to make it more suitable for a

co-designed structure.

7.3 Publications

This section lists below the publications that resulted from the work on this thesis.

• Haghi A, Alvarez L, Polo J, Diamantopoulos D, Hagleitner C, Moreto M. A Hardware/-

Software Co-Design of K-mer Counting Using a CAPI-Enabled FPGA. In 2020 30th

International Conference on Field-Programmable Logic and Applications (FPL) 2020

Aug 31 (pp. 57-64). IEEE.

• Haghi A, Marco-Sola S, Alvarez L, Diamantopoulos D, Hagleitner C, Moreto M. An

FPGA accelerator of the wavefront algorithm for genomics pairwise alignment. In 2021

31st International Conference on Field-Programmable Logic and Applications (FPL)

2021 Aug 30 (pp. 151-159). IEEE.

131

7.3 Publications

• Haghi A, Marco-Sola S, Alvarez L, Diamantopoulos D, Hagleitner C, Moreto M. WFA-

FPGA: An efficient accelerator of the wavefront algorithm for short and long read

genomics alignment. Future Generation Computer Systems. 2023 Dec 1;149:39-58.

• Haghi A, Alvarez L, Fornt J, de Haro Ruiz J.M, Figueras R, Doblas M, Marco-Sola S,

Moreto M. WFAsic: A High-Performance ASIC Accelerator for DNA Sequence Align-

ment on a RISC-V SoC. In 2023 52nd International Conference on Parallel Processing

(ICPP) 2023 Aug 7. ACM.

Author contributions to each paper are as follows:

• Paper 1:
Abbas Haghi: Conceptualization, Methodology, Software, Validation, Formal analysis,

Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing.

Lluc Alvarez: Conceptualization, Methodology, Writing - Original Draft, Writing -

Review & Editing, Visualization, Supervision.

Jordà Polo: Methodology, Software, Resources.

Dionysios Diamantopoulos: Conceptualization, Methodology, Writing - Review &

Editing, Visualization, Supervision.

Christoph Hagleitner: Supervision, Project administration, Funding acquisition.

Miquel Moreto: Methodology, Visualization, Supervision, Project administration, Fund-

ing acquisition.

• Papers 2 & 3:
Abbas Haghi: Conceptualization, Methodology, Software, Validation, Formal analysis,

Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing.

Lluc Alvarez: Conceptualization, Methodology, Writing - Original Draft, Writing -

Review & Editing, Visualization, Supervision.

Santiago Marco-Sola: Conceptualization, Methodology, Software, Resources, Supervi-

sion.

Dionysios Diamantopoulos: Conceptualization, Methodology, Writing - Review &

Editing, Visualization, Supervision.

Christoph Hagleitner: Supervision, Project administration, Funding acquisition.

Miquel Moreto: Methodology, Visualization, Supervision, Project administration, Fund-

ing acquisition.

132

Conclusions

• Paper 4:
Abbas Haghi: Conceptualization, Methodology, Software, Validation, Formal analysis,

Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing.

Lluc Alvarez: Conceptualization, Methodology, Writing - Original Draft, Writing -

Review & Editing, Visualization, Supervision.

Jordi Fornt: Support for GLS, Software, Review & Editing.

Juan Miguel de Haro Ruiz: Support for FPGA prototyping, Review & Editing.

Roger Figueras: Physical design, Review & Editing.

Max Doblas: Support for the RISC-V core, Software.

Santiago Marco-Sola: Conceptualization, Methodology, Software, Resources, Supervi-

sion.

Miquel Moreto: Methodology, Visualization, Supervision, Project administration, Fund-

ing acquisition.

7.4 Financial and Technical Support

This thesis has been supported by the European HiPEAC Network of Excellence, by the

Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 (contracts

TIN2015-65316-P, PID2019-107255GB-C21 and TED2021-132634A-I00), by the Generalitat

de Catalunya (contracts 2017-SGR-1328 and 2021-SGR-00763), by the European Union within

the framework of the ERDF of Catalonia 2014-2020 under the DRAC project (contract 001-P-

001723), by the European NextGenerationEU/PRTR, by the Lenovo-BSC Contract-Framework

(2022), and by the IBM/BSC Deep Learning Center initiative.

133

Bibliography

[1] Karl Rupp. 50-year trends in microprocessors. URL: https://github.com/karlrupp/

microprocessor-trend-data/tree/master/50yrs.

[2] Darrell Boggs et al. “The Microarchitecture of the Intel Pentium 4 Processor on 90nm

Technology.” In: Intel Technology Journal 8.1 (2004).

[3] Nikhil Bansal, Kirk Pruhs, and Cliff Stein. “Speed scaling for weighted flow time”. In:

SIAM Journal on Computing 39.4 (2010), pp. 1294–1308.

[4] Roddy Urquhart. Semiconductor Scaling is Failing. White paper. March, 2022. URL:

https://codasip.com/papers/semiconductor-scaling-is-failing/.

[5] William J Dally, Yatish Turakhia, and Song Han. “Domain-specific hardware accelera-

tors”. In: Communications of the ACM 63.7 (2020), pp. 48–57.

[6] Erin D Pleasance et al. “A comprehensive catalogue of somatic mutations from a human

cancer genome”. In: Nature 463.7278 (2010), pp. 191–196.

[7] André Lacour et al. “Genome-wide significant risk factors for Alzheimer’s disease:

role in progression to dementia due to Alzheimer’s disease among subjects with mild

cognitive impairment”. In: Molecular psychiatry 22.1 (2017), pp. 153–160.

[8] Yangrae Cho et al. “Prevalence of rare genetic variations and their implications in

NGS-data interpretation”. In: Scientific reports 7.1 (2017), p. 9810.

[9] Niklas Krumm et al. “Excess of rare, inherited truncating mutations in autism”. In:

Nature genetics 47.6 (2015), pp. 582–588.

[10] Olga Spichenok et al. “Prediction of eye and skin color in diverse populations using

seven SNPs”. In: Forensic Science International: Genetics 5.5 (2011), pp. 472–478.

135

https://github.com/karlrupp/microprocessor-trend-data/tree/master/50yrs
https://github.com/karlrupp/microprocessor-trend-data/tree/master/50yrs
https://codasip.com/papers/semiconductor-scaling-is-failing/

BIBLIOGRAPHY

[11] Chimpanzee Sequencing and Analysis Consortium Waterson Robert H. waterston@

gs. washington. edu Lander Eric S. lander@ broad. mit. edu Wilson Richard K. rwil-

son@ watson. wustl. edu. “Initial sequence of the chimpanzee genome and comparison

with the human genome”. In: Nature 437.7055 (2005), pp. 69–87.

[12] Cory Y McLean et al. “Human-specific loss of regulatory DNA and the evolution of

human-specific traits”. In: Nature 471.7337 (2011), pp. 216–219.

[13] Margaret A Hamburg and Francis S Collins. “The path to personalized medicine”. In:

New England Journal of Medicine 363.4 (2010), pp. 301–304.

[14] Sahand Salamat and Tajana Rosing. “FPGA Acceleration of Sequence Alignment: A

Survey”. In: arXiv preprint arXiv:2002.02394 (2020).

[15] NovaSeq 6000 Sequencing System. URL: https : / / www . illumina . com / systems /

sequencing-platforms/novaseq.html.

[16] Mohammed Alser et al. “Accelerating genome analysis: a primer on an ongoing

journey”. In: IEEE Micro 40.5 (2020), pp. 65–75.

[17] DNA Sequencing Costs: Data. URL: https://www.genome.gov/about-genomics/fact-

sheets/DNA-Sequencing-Costs-Data.

[18] Valentıé Moncunill et al. “Comprehensive characterization of complex structural varia-

tions in cancer by directly comparing genome sequence reads”. In: Nature biotechnol-

ogy 32.11 (2014), p. 1106.

[19] Santiago Marco-Sola et al. “Fast gap-affine pairwise alignment using the wavefront

algorithm”. In: Bioinformatics 37.4 (2021), pp. 456–463.

[20] Vıéctor Soria-Pardos et al. “Sargantana: A 1 GHz+ In-Order RISC-V Processor with

SIMD Vector Extensions in 22nm FD-SOI”. In: 2022 25th Euromicro Conference on

Digital System Design (DSD). IEEE. 2022, pp. 254–261.

[21] Factsheet: Deoxyribonucleic Acid (DNA). national human genome research institute.

URL: https://www.genome.gov/about-genomics/fact-sheets/Deoxyribonucleic-Acid-

Fact-Sheet.

[22] Santiago Marco-Sola. “Efficient approximate string matching techniques for sequence

alignment”. PhD thesis. Universitat Politècnica de Catalunya (UPC), 2017.

[23] Tobias Pascal Loka. “Advanced Strategies for Alignment-based Real-time Analysis

and Data Protection in Next-Generation Sequencing”. PhD thesis. Freien Universität

Berlin, 2020.

136

https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/Deoxyribonucleic-Acid-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/Deoxyribonucleic-Acid-Fact-Sheet

BIBLIOGRAPHY

[24] The Genome Reference Consortium. URL: https://www.ncbi.nlm.nih.gov/grc/human.

[25] Bonnie Berger, Noah M. Daniels, and YU Y.WILLIAM. “Algorithm advances take

advantages of the structure of massive biological data landscape”. In: Commun Can

59.8 (2016), pp. 71–78.

[26] Boluwatife A Adewale. “Will long-read sequencing technologies replace short-read

sequencing technologies in the next 10 years?” In: African journal of laboratory

medicine 9.1 (2020), pp. 1–5.

[27] Nathaniel S McVicar. “FPGA Accelerated Bioinformatics: Alignment, Classification,

Homology and Counting”. PhD thesis. University of Washington, 2018.

[28] Illumina. Measuring sequencing accuracy. URL: https://www.illumina.com/science/

technology/next-generation-sequencing/plan-experiments/quality-scores.html.

[29] David Sims et al. “Sequencing depth and coverage: key considerations in genomic

analyses”. In: Nature Reviews Genetics 15.2 (2014), pp. 121–132.

[30] Eric S Lander et al. “Initial sequencing and analysis of the human genome”. In: nature

409.6822 (2001), pp. 860–921.

[31] Illumina. Coverage depth recommendations. URL: https://www.illumina.com/science/

technology/next-generation-sequencing/plan-experiments/coverage.html.

[32] Your Essential Guide to Different File Formats in Bioinformatics. URL: https://www.

formbio.com/blog/your-essential-guide-different-file-formats-bioinformatics.

[33] Xingyu Liao et al. “Current challenges and solutions of de novo assembly”. In: Quanti-

tative Biology 7 (2019), pp. 90–109.

[34] Abdul Rafay Khan et al. “A comprehensive study of de novo genome assemblers:

current challenges and future prospective”. In: Evolutionary Bioinformatics 14 (2018),

p. 1176934318758650.

[35] Sergey Koren et al. “Hybrid error correction and de novo assembly of single-molecule

sequencing reads”. In: Nature biotechnology 30.7 (2012), pp. 693–700.

[36] Xiaoqiu Huang et al. “PCAP: a whole-genome assembly program”. In: Genome re-

search 13.9 (2003), pp. 2164–2170.

[37] Todd J Treangen et al. “Next generation sequence assembly with AMOS”. In: Current

Protocols in Bioinformatics 33.1 (2011), pp. 11–8.

137

https://www.ncbi.nlm.nih.gov/grc/human
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/coverage.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/coverage.html
https://www.formbio.com/blog/your-essential-guide-different-file-formats-bioinformatics
https://www.formbio.com/blog/your-essential-guide-different-file-formats-bioinformatics

BIBLIOGRAPHY

[38] David B Jaffe et al. “Whole-genome sequence assembly for mammalian genomes:

Arachne 2”. In: Genome research 13.1 (2003), pp. 91–96.

[39] Eugene W Myers et al. “A whole-genome assembly of Drosophila”. In: Science

287.5461 (2000), pp. 2196–2204.

[40] Jang-il Sohn and Jin-Wu Nam. “The present and future of de novo whole-genome

assembly”. In: Briefings in bioinformatics 19.1 (2018), pp. 23–40.

[41] Rayan Chikhi and Guillaume Rizk. “Space-efficient and exact de Bruijn graph repre-

sentation based on a Bloom filter”. In: Algorithms for Molecular Biology 8.1 (2013),

pp. 1–9.

[42] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. “An Eulerian path approach to

DNA fragment assembly”. In: Proceedings of the national academy of sciences 98.17

(2001), pp. 9748–9753.

[43] Daniel R Zerbino and Ewan Birney. “Velvet: algorithms for de novo short read assembly

using de Bruijn graphs”. In: Genome research 18.5 (2008), pp. 821–829.

[44] Mark J Chaisson, Dumitru Brinza, and Pavel A Pevzner. “De novo fragment assembly

with short mate-paired reads: Does the read length matter?” In: Genome research 19.2

(2009), pp. 336–346.

[45] Jonathan Butler et al. “ALLPATHS: de novo assembly of whole-genome shotgun

microreads”. In: Genome research 18.5 (2008), pp. 810–820.

[46] Jared T Simpson et al. “ABySS: a parallel assembler for short read sequence data”. In:

Genome research 19.6 (2009), pp. 1117–1123.

[47] Shaun D Jackman et al. “ABySS 2.0: resource-efficient assembly of large genomes

using a Bloom filter”. In: Genome research 27.5 (2017), pp. 768–777.

[48] Yu Peng et al. “IDBA–a practical iterative de Bruijn graph de novo assembler”. In:

Annual international conference on research in computational molecular biology.

Springer. 2010, pp. 426–440.

[49] Binghang Liu et al. “Estimation of genomic characteristics by analyzing k-mer fre-

quency in de novo genome projects”. In: arXiv preprint arXiv:1308.2012 (2013).

[50] Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, and Szymon Grabowski. “Disk-

based k-mer counting on a PC”. In: BMC bioinformatics 14.1 (2013), p. 160.

138

BIBLIOGRAPHY

[51] Robert C Edgar. “MUSCLE: multiple sequence alignment with high accuracy and high

throughput”. In: Nucleic acids research 32.5 (2004), pp. 1792–1797.

[52] Guillaume Marçais and Carl Kingsford. “A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers”. In: Bioinformatics 27.6 (2011), pp. 764–770.

[53] Pall Melsted and Jonathan K Pritchard. “Efficient counting of k-mers in DNA sequences

using a bloom filter”. In: BMC bioinformatics 12.1 (2011), p. 333.

[54] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. “DSK: k-mer counting with

very low memory usage”. In: Bioinformatics 29.5 (2013), pp. 652–653.

[55] Yang Li and Xifeng Yan. “MSPKmerCounter: a fast and memory efficient approach for

k-mer counting”. In: arXiv preprint arXiv:1505.06550 (2015).

[56] Rajat Shuvro Roy, Debashish Bhattacharya, and Alexander Schliep. “Turtle: Identifying

frequent k-mers with cache-efficient algorithms”. In: Bioinformatics 30.14 (2014),

pp. 1950–1957.

[57] Sebastian Deorowicz et al. “KMC 2: fast and resource-frugal k-mer counting”. In:

Bioinformatics 31.10 (2015), pp. 1569–1576.

[58] Stephen F Altschul et al. “Basic local alignment search tool”. In: Journal of Molecular

Biology 215.3 (1990), pp. 403–410.

[59] Heng Li. “Aligning sequence reads, clone sequences and assembly contigs with BWA-

MEM”. In: arXiv preprint arXiv:1303.3997 (2013).

[60] Heng Li. “Minimap2: pairwise alignment for nucleotide sequences”. In: Bioinformatics

34.18 (2018), pp. 3094–3100.

[61] Santiago Marco-Sola et al. “The GEM mapper: fast, accurate and versatile alignment

by filtration”. In: Nature methods 9.12 (2012), p. 1185.

[62] Santiago Marco-Sola and Paolo Ribeca. “Efficient Alignment of Illumina-Like High-

Throughput Sequencing Reads with the GEnomic Multi-tool (GEM) Mapper”. In:

Current Protocols in Bioinformatics 50.1 (2015), pp. 11–13.

[63] Lecture Notes in Sequence Alignment. URL: http://www.cs.cmu.edu/~durand/03-

711/2017/Lectures/Sequence-Alignment-2017.pdf.

[64] Ankit Agrawal and Xiaoqiu Huang. “Pairwise statistical significance of local sequence

alignment using multiple parameter sets and empirical justification of parameter set

change penalty”. In: BMC bioinformatics. Vol. 10. Springer. 2009, pp. 1–9.

139

http://www.cs.cmu.edu/~durand/03-711/2017/Lectures/Sequence-Alignment-2017.pdf
http://www.cs.cmu.edu/~durand/03-711/2017/Lectures/Sequence-Alignment-2017.pdf

BIBLIOGRAPHY

[65] Vladimir I Levenshtein et al. “Binary codes capable of correcting deletions, insertions,

and reversals”. In: Soviet physics doklady. Vol. 10. 8. Soviet Union. 1966, pp. 707–710.

[66] Saul B Needleman and Christian D Wunsch. “A general method applicable to the search

for similarities in the amino acid sequence of two proteins”. In: Journal of molecular

biology 48.3 (1970), pp. 443–453.

[67] Temple F Smith, Michael S Waterman, et al. “Identification of common molecular

subsequences”. In: Journal of Molecular Biology 147.1 (1981), pp. 195–197.

[68] Osamu Gotoh. “An improved algorithm for matching biological sequences”. In: Journal

of Molecular Biology 162.3 (1982), pp. 705–708.

[69] Ho-Cheung Ng. “FPGA acceleration of DNA sequence alignment: design analysis and

optimization”. PhD thesis. Imperial College London, 2021.

[70] Graham Singer. The History of the Modern Graphics Processor. December, 2022. URL:

https://www.techspot.com/article/650-history-of-the-gpu/.

[71] Peter N Glaskowsky. NVIDIA’s Fermi: the first complete GPU computing architecture.

White paper. 2009.

[72] Gabriel Campeanu. “GPU Support for Component-based Development of Embedded

Systems”. PhD thesis. Mälardalen University, 2018.

[73] NVIDIA A100 Tensor Core GPU Architecture. Tech. rep. NVIDIA, 2020. URL: https:

/ / images . nvidia . com / aem - dam / en - zz / Solutions / data - center / nvidia - ampere -

architecture-whitepaper.pdf.

[74] CUDA Refresher: The CUDA Programming Model. June, 2020. URL: https://developer.

nvidia.com/blog/cuda-refresher-cuda-programming-model/.

[75] Dion Harris. NVIDIA Hopper GPU Architecture. March, 2022. URL: https://blogs.

nvidia.com/blog/2022/03/22/nvidia-hopper- accelerates-dynamic-programming-

using-dpx-instructions/.

[76] NVIDIA H100 Tensor. URL: https://www.nvidia.com/en-us/data-center/h100/.

[77] Luca Cadenelli. “Hardware/software co-design for data-intensive genomics workloads”.

PhD thesis. Universitat Politècnica de Catalunya, 2019.

[78] Quim Aguado-Puig et al. “Accelerating Edit-Distance Sequence Alignment on GPU

Using the Wavefront Algorithm”. In: IEEE access 10 (2022), pp. 63782–63796.

140

https://www.techspot.com/article/650-history-of-the-gpu/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/
https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/
https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/
https://www.nvidia.com/en-us/data-center/h100/

BIBLIOGRAPHY

[79] Mark LaPedus. In-Memory Vs. Near-Memory Computing. Februery, 2019. URL: https:

//semiengineering.com/in-memory-vs-near-memory-computing/.

[80] Shaahin Angizi. “Processing-in-memory for data-intensive applications, from device to

algorithm”. PhD thesis. Arizona State University, 2021.

[81] Rahul Awati. Processing in memory. URL: https://www.techtarget.com/searchbusinessanalytics/

definition/processing-in-memory-PIM.

[82] In-Memory Processing. URL: https://hazelcast.com/glossary/in-memory-processing/.

[83] Ping Chi et al. “Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory”. In: ACM SIGARCH Computer Architecture

News 44.3 (2016), pp. 27–39.

[84] Ming Cheng et al. “Time: A training-in-memory architecture for memristor-based deep

neural networks”. In: Proceedings of the 54th Annual Design Automation Conference

2017. 2017, pp. 1–6.

[85] Shuangchen Li et al. “Pinatubo: A processing-in-memory architecture for bulk bitwise

operations in emerging non-volatile memories”. In: Proceedings of the 53rd Annual

Design Automation Conference. 2016, pp. 1–6.

[86] Zhezhi He et al. “Leveraging dual-mode magnetic crossbar for ultra-low energy in-

memory data encryption”. In: Proceedings of the on Great Lakes Symposium on VLSI

2017. 2017, pp. 83–88.

[87] Shihui Yin et al. “XNOR-SRAM: In-memory computing SRAM macro for bina-

ry/ternary deep neural networks”. In: IEEE Journal of Solid-State Circuits 55.6 (2020),

pp. 1733–1743.

[88] Zhewei Jiang et al. “C3SRAM: An in-memory-computing SRAM macro based on

robust capacitive coupling computing mechanism”. In: IEEE Journal of Solid-State

Circuits 55.7 (2020), pp. 1888–1897.

[89] Xiaoyu Sun et al. “XNOR-RRAM: A scalable and parallel resistive synaptic architecture

for binary neural networks”. In: 2018 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE. 2018, pp. 1423–1428.

[90] Shaahin Angizi et al. “Cmp-pim: an energy-efficient comparator-based processing-

in-memory neural network accelerator”. In: Proceedings of the 55th Annual Design

Automation Conference. 2018, pp. 1–6.

141

https://semiengineering.com/in-memory-vs-near-memory-computing/
https://semiengineering.com/in-memory-vs-near-memory-computing/
https://www.techtarget.com/searchbusinessanalytics/definition/processing-in-memory-PIM
https://www.techtarget.com/searchbusinessanalytics/definition/processing-in-memory-PIM
https://hazelcast.com/glossary/in-memory-processing/

BIBLIOGRAPHY

[91] Shaahin Angizi et al. “IMCE: Energy-efficient bit-wise in-memory convolution engine

for deep neural network”. In: 2018 23rd Asia and South Pacific Design Automation

Conference (ASP-DAC). IEEE. 2018, pp. 111–116.

[92] Shaizeen Aga et al. “Compute caches”. In: 2017 IEEE International Symposium on

High Performance Computer Architecture (HPCA). IEEE. 2017, pp. 481–492.

[93] Charles Eckert et al. “Neural cache: Bit-serial in-cache acceleration of deep neural

networks”. In: 2018 ACM/IEEE 45Th annual international symposium on computer

architecture (ISCA). IEEE. 2018, pp. 383–396.

[94] Vivek Seshadri et al. “Ambit: In-memory accelerator for bulk bitwise operations

using commodity DRAM technology”. In: Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture. 2017, pp. 273–287.

[95] Shuangchen Li et al. “Drisa: A dram-based reconfigurable in-situ accelerator”. In: Pro-

ceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture.

2017, pp. 288–301.

[96] Benjamin C Lee et al. “Architecting phase change memory as a scalable dram alter-

native”. In: Proceedings of the 36th annual international symposium on Computer

architecture. 2009, pp. 2–13.

[97] Mohsen Imani, Yeseong Kim, and Tajana Rosing. “Mpim: Multi-purpose in-memory

processing using configurable resistive memory”. In: 2017 22nd Asia and South Pacific

Design Automation Conference (ASP-DAC). IEEE. 2017, pp. 757–763.

[98] Juan Gómez-Luna et al. “Benchmarking a new paradigm: Experimental analysis and

characterization of a real processing-in-memory system”. In: IEEE Access 10 (2022),

pp. 52565–52608.

[99] Sukhan Lee et al. “Hardware architecture and software stack for PIM based on com-

mercial DRAM technology: Industrial product”. In: 2021 ACM/IEEE 48th Annual

International Symposium on Computer Architecture (ISCA). IEEE. 2021, pp. 43–56.

[100] Yongkee Kwon et al. “System architecture and software stack for GDDR6-AiM”. In:

2022 IEEE Hot Chips 34 Symposium (HCS). IEEE. 2022, pp. 1–25.

[101] Ian Kuon, Russell Tessier, Jonathan Rose, et al. “FPGA architecture: Survey and

challenges”. In: Foundations and Trends® in Electronic Design Automation 2.2 (2008),

pp. 135–253.

142

BIBLIOGRAPHY

[102] Yupeng Chen. “Design and analysis of bioinformatics algorithms on an FPGA platform”.

PhD thesis. 2014.

[103] FPGAs: structure, elements and configuration. URL: https://community.element14.com/

technologies/fpga-group/b/blog/posts/fpgas-structure-elements-and-configuration.

[104] Ajay Kumar Singh. “Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA

Architecture”. In: Field-Programmable Gate Array. IntechOpen, 2017.

[105] Jeremy Soh. “A scalable, portable, FPGA-based implementation of the Unscented

Kalman Filter”. PhD thesis. The University of Sydney, 2017.

[106] ARM Holdings. AMBA AXI and ACE Protocol Specification. Tech. rep. Tech. rep. 2011.

url: https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi _protocol_spec.pdf,

2013.

[107] AXI Xilinx. “Reference Guide, UG761 (v13. 1)”. In: URL https://www.xilinx .com/sup-

port/documentation/ip_documentation/ug761_axi_reference _guide.pdf (2011).

[108] RISC-V Specifications. URL: https://github.com/riscv.

[109] History of RISC-V. URL: https://riscv.org/about/history/.

[110] Andrew Waterman et al. “The risc-v instruction set manual, volume i: Base user-level

isa”. In: EECS Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

[111] Matthew Connatser. What is RISC-V. May, 2022. URL: https://www.digitaltrends.com/

computing/what-is-risc-v/.

[112] Trong-Thuc HOANG and Cong-Kha PHAM. RISC-V-based System-on-Chip (SoC)

Fully Equipped with Cryptographic Accelerators for Transport Layer Security (TLS)

1.3.

[113] Farzad Farshchi, Qijing Huang, and Heechul Yun. “Integrating NVIDIA deep learning

accelerator (NVDLA) with RISC-V SoC on FireSim”. In: 2019 2nd Workshop on En-

ergy Efficient Machine Learning and Cognitive Computing for Embedded Applications

(EMC2). IEEE. 2019, pp. 21–25.

[114] L Calicchia et al. “Digital signal processing accelerator for RISC-V”. In: 2019 26th

IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE.

2019, pp. 703–706.

143

https://community.element14.com/technologies/fpga-group/b/blog/posts/fpgas-structure-elements-and-configuration
https://community.element14.com/technologies/fpga-group/b/blog/posts/fpgas-structure-elements-and-configuration
https://github.com/riscv
https://riscv.org/about/history/
https://www.digitaltrends.com/computing/what-is-risc-v/
https://www.digitaltrends.com/computing/what-is-risc-v/

BIBLIOGRAPHY

[115] Extending RISC-V ISA With a Custom Instruction Set Extension. URL: https://www.

design-reuse.com/articles/46237/extending-risc-v-isa-with-a-custom-instruction-set-

extension.html.

[116] Hao Cheng et al. “RISC-V Instruction Set Extensions for Lightweight Symmetric

Cryptography”. In: IACR Transactions on Cryptographic Hardware and Embedded

Systems (2023), pp. 193–237.

[117] Seyed Kian Mousavikia et al. “Instruction Set Extension of a RiscV Based SoC for

Driver Drowsiness Detection”. In: IEEE Access 10 (2022), pp. 58151–58162.

[118] Marius Erbert, Steffen Rechner, and Matthias Müller-Hannemann. “Gerbil: a fast and

memory-efficient k-mer counter with GPU-support”. In: Algorithms for Molecular

Biology 12.1 (2017), p. 9.

[119] Huiren Li, Anand Ramachandran, and Deming Chen. “GPU Acceleration of Advanced

k-mer Counting for Computational Genomics”. In: 2018 IEEE 29th International

Conference on Application-specific Systems, Architectures and Processors (ASAP).

IEEE. 2018, pp. 1–4.

[120] Nicola Cadenelli, Jordà Polo, and David Carrera. “Accelerating K-mer frequency count-

ing with GPU and non-volatile memory”. In: 2017 IEEE 19th International Conference

on High Performance Computing and Communications. IEEE. 2017, pp. 434–441.

[121] Wenqin Huangfu et al. “Nest: Dimm based near-data-processing accelerator for k-mer

counting”. In: Proceedings of the 39th International Conference on Computer-Aided

Design. 2020, pp. 1–9.

[122] Biresh Kumar Joardar et al. “NoC-enabled software/hardware co-design framework

for accelerating k-mer counting”. In: Proceedings of the 13th IEEE/ACM International

Symposium on Networks-on-Chip. 2019, pp. 1–8.

[123] Nicola Cadenelli et al. “Considerations in using OpenCL on GPUs and FPGAs for

throughput-oriented genomics workloads”. In: Future Generation Computer Systems

94 (2019), pp. 148–159.

[124] Nathaniel Mcvicar, Chih-Ching Lin, and Scott Hauck. “K-mer counting using Bloom

filters with an FPGA-attached HMC”. In: 2017 IEEE 25th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM). IEEE. 2017,

pp. 203–210.

144

https://www.design-reuse.com/articles/46237/extending-risc-v-isa-with-a-custom-instruction-set-extension.html
https://www.design-reuse.com/articles/46237/extending-risc-v-isa-with-a-custom-instruction-set-extension.html
https://www.design-reuse.com/articles/46237/extending-risc-v-isa-with-a-custom-instruction-set-extension.html

BIBLIOGRAPHY

[125] Minh Pham, Yicheng Tu, and Xiaoyi Lv. “Accelerating BWA-MEM Read Mapping

on GPUs”. In: Proceedings of the 37th International Conference on Supercomputing.

2023, pp. 155–166.

[126] Harisankar Sadasivan et al. “Accelerating Minimap2 for accurate long read alignment

on GPUs”. In: bioRxiv (2022).

[127] Sita Rani and OP Gupta. “CLUS_GPU-BLASTP: accelerated protein sequence align-

ment using GPU-enabled cluster”. In: The Journal of Supercomputing 73.10 (2017),

pp. 4580–4595.

[128] André Müller et al. “AnySeq/GPU: A Novel Approach for Faster Sequence Alignment

on GPUs”. In: arXiv preprint arXiv:2205.07610 (2022).

[129] André Müller et al. “AnySeq: a high performance sequence alignment library based on

partial evaluation”. In: 2020 IEEE International Parallel and Distributed Processing

Symposium (IPDPS). IEEE. 2020, pp. 1030–1040.

[130] Quim Aguado-Puig et al. “WFA-GPU: Gap-affine pairwise alignment using GPUs”. In:

bioRxiv (2022).

[131] Giulia Gerometta, Alberto Zeni, and Marco D Santambrogio. “TSUNAMI: A GPU

implementation of the WFA algorithm”. In: 2023 32nd International Conference on

Parallel Architectures and Compilation Techniques (PACT). IEEE. 2023, pp. 150–161.

[132] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. “CUDASW++ 3.0: acceler-

ating Smith-Waterman protein database search by coupling CPU and GPU SIMD

instructions”. In: BMC bioinformatics 14.1 (2013), pp. 1–10.

[133] Bertil Schmidt et al. “CUDASW++ 4.0: Ultra-fast GPU-based Smith-Waterman Protein

Sequence Database Search”. In: bioRxiv (2023), pp. 2023–10.

[134] Sven Warris et al. “pyPaSWAS: Python-based multi-core CPU and GPU sequence

alignment”. In: PLoS One 13.1 (2018), e0190279.

[135] Liang-Tsung Huang et al. “Improving the mapping of Smith-Waterman sequence

database searches onto CUDA-enabled GPUs”. In: BioMed research international 2015

(2015).

[136] Jacek Blazewicz et al. “Protein alignment algorithms with an efficient backtracking

routine on multiple GPUs”. In: BMC bioinformatics 12.1 (2011), pp. 1–17.

145

BIBLIOGRAPHY

[137] Mohammed A Shehab et al. “A hybrid CPU-GPU implementation to accelerate multi-

ple pairwise protein sequence alignment”. In: 2017 8th International Conference on

Information and Communication Systems (ICICS). IEEE. 2017, pp. 12–17.

[138] Farzaneh Zokaee, Hamid R Zarandi, and Lei Jiang. “Aligner: A process-in-memory

architecture for short read alignment in reRAMs”. In: IEEE Computer Architecture

Letters 17.2 (2018), pp. 237–240.

[139] Wenqin Huangfu et al. “Radar: a 3D-reRAM based DNA alignment accelerator archi-

tecture”. In: Proceedings of the 55th Annual Design Automation Conference. 2018,

pp. 1–6.

[140] Zamshed I Chowdhury et al. “A DNA read alignment accelerator based on computa-

tional RAM”. In: IEEE Journal on Exploratory Solid-State Computational Devices and

Circuits 6.1 (2020), pp. 80–88.

[141] Nika Mansouri Ghiasi et al. “GenStore: A High-Performance and Energy-Efficient

In-Storage Computing System for Genome Sequence Analysis”. In: arXiv preprint

arXiv:2202.10400 (2022).

[142] Ting Wu et al. “RePAIR: a ReRAM-based processing-in-memory accelerator for indel

realignment”. In: 2022 Design, Automation & Test in Europe Conference & Exhibition

(DATE). IEEE. 2022, pp. 400–405.

[143] Roman Kaplan, Leonid Yavits, and Ran Ginosasr. “BioSEAL: In-Memory Biological

Sequence Alignment Accelerator for Large-Scale Genomic Data”. In: Proceedings of

the 13th ACM International Systems and Storage Conference. 2020, pp. 36–48.

[144] Roman Kaplan et al. “A resistive CAM processing-in-storage architecture for DNA

sequence alignment”. In: IEEE Micro 37.4 (2017), pp. 20–28.

[145] Saransh Gupta et al. “RAPID: A ReRAM processing in-memory architecture for DNA

sequence alignment”. In: 2019 IEEE/ACM International Symposium on Low Power

Electronics and Design (ISLPED). IEEE. 2019, pp. 1–6.

[146] Safaa Diab et al. “High-throughput pairwise alignment with the wavefront algorithm

using processing-in-memory”. In: arXiv preprint arXiv:2204.02085 (2022).

[147] Safaa Diab et al. “A framework for high-throughput sequence alignment using real

processing-in-memory systems”. In: Bioinformatics 39.5 (2023), btad155.

146

BIBLIOGRAPHY

[148] DS Nurdin, MN Isa, and SH Goh. “DNA sequence alignment: A review of hardware

accelerators and a new core architecture”. In: International Conference on Electronic

Design (ICED). IEEE. 2016, pp. 264–268.

[149] Laiq Hasan and Zaid Al-Ars. “An overview of hardware-based acceleration of bio-

logical sequence alignment”. In: Computational Biology and Applied Bioinformatics

(2011), pp. 187–202.

[150] Brian Hill et al. “Precision medicine and FPGA technology: Challenges and opportuni-

ties”. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems

(MWSCAS). IEEE. 2017, pp. 655–658.

[151] Licheng Guo et al. “Hardware acceleration of long read pairwise overlapping in genome

sequencing: A race between FPGA and GPU”. In: International Symposium on Field-

Programmable Custom Computing Machines (FCCM). 2019, pp. 127–135.

[152] Yu-Ting Chen et al. “A novel high-throughput acceleration engine for read alignment”.

In: International Symposium on Field-Programmable Custom Computing Machines

(FCCM). 2015, pp. 199–202.

[153] James Arram et al. “Reconfigurable acceleration of short read mapping”. In: Inter-

national Symposium on Field-Programmable Custom Computing Machines (FCCM).

2013, pp. 210–217.

[154] Ho-Cheung Ng et al. “Acceleration of Short Read Alignment with Runtime Recon-

figuration”. In: 2020 International Conference on Field-Programmable Technology

(ICFPT). IEEE. 2020, pp. 256–262.

[155] Daichi Fujiki et al. “SeedEx: A Genome Sequencing Accelerator for Optimal Align-

ments in Subminimal Space”. In: 2020 53rd Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO). IEEE. 2020, pp. 937–950.

[156] Ernst Joachim Houtgast et al. “An FPGA-based systolic array to accelerate the BWA-

MEM genomic mapping algorithm”. In: 2015 international conference on embed-

ded computer systems: Architectures, modeling, and simulation (samos). IEEE. 2015,

pp. 221–227.

[157] Subho Sankar Banerjee et al. “Asap: Accelerated short-read alignment on programmable

hardware”. In: IEEE Transactions on Computers 68.3 (2018), pp. 331–346.

147

BIBLIOGRAPHY

[158] Damla Senol Cali et al. “Genasm: A high-performance, low-power approximate string

matching acceleration framework for genome sequence analysis”. In: 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE. 2020,

pp. 951–966.

[159] Damla Senol Cali et al. “SeGraM: a universal hardware accelerator for genomic

sequence-to-graph and sequence-to-sequence mapping”. In: arXiv preprint arXiv:2205.05883

(2022).

[160] Carlos AC Jorge et al. “A CPU-FPGA heterogeneous approach for biological sequence

comparison using high-level synthesis”. In: Concurrency and Computation: Practice

and Experience (2020), e6007.

[161] Scott Lloyd and Quinn O Snell. “Hardware accelerated sequence alignment with

traceback”. In: International Journal of Reconfigurable Computing (2009).

[162] Riadh Ben Abdelhamid and Yoshiki Yamaguchi. “A Block-Based Systolic Array on an

HBM2 FPGA for DNA Sequence Alignment”. In: International Symposium on Applied

Reconfigurable Computing. 2020, pp. 298–313.

[163] Ernst Houtgast, Vlad-Mihai Sima, and Zaid Al-Ars. “High performance streaming

Smith-Waterman implementation with implicit synchronization on intel FPGA us-

ing OpenCL”. In: 2017 IEEE 17th International Conference on Bioinformatics and

Bioengineering (BIBE). IEEE. 2017, pp. 492–496.

[164] Lorenzo Di Tucci et al. “Architectural optimizations for high performance and energy

efficient Smith-Waterman implementation on FPGAs using OpenCL”. In: Design,

Automation & Test in Europe Conference (DATE). 2017, pp. 716–721.

[165] Barry Strengholt and Matthijs Brobbel. Acceleration of the Smith-Waterman algorithm

for DNA sequence alignment using an FPGA platform. 2013.

[166] Juan M Marmolejo-Tejada et al. “Hardware implementation of the Smith-Waterman

algorithm using a systolic architecture”. In: 2014 IEEE 5th Latin American Symposium

on Circuits and Systems. IEEE. 2014, pp. 1–4.

[167] Lars Wienbrandt. “Bioinformatics applications on the FPGA-based high-performance

computer RIVYERA”. In: High-Performance Computing Using FPGAs. Springer,

2013, pp. 81–103.

[168] EP Vermij. Genetic sequence alignment on a supercomputing platform. 2011.

148

BIBLIOGRAPHY

[169] Chi Wai Yu et al. “A Smith-Waterman systolic cell”. In: International Conference on

Field Programmable Logic and Applications. Springer. 2003, pp. 375–384.

[170] Kiran Puttegowda et al. “A run-time reconfigurable system for gene-sequence search-

ing”. In: 16th International Conference on VLSI Design, 2003. Proceedings. IEEE.

2003, pp. 561–566.

[171] Tom Van Court and Martin C Herbordt. “Families of FPGA-Based Algorithms for

Approximate String Matching.” In: ASAP. 2004, pp. 354–364.

[172] Xia Fei et al. “FPGASW: Accelerating large-scale Smith-Waterman sequence alignment

application with backtracking on FPGA linear systolic array”. In: Interdisciplinary

Sciences: Computational Life Sciences 10.1 (2018), pp. 176–188.

[173] Yi-Lun Liao et al. “Adaptively Banded Smith-Waterman Algorithm for Long Reads

and Its Hardware Accelerator”. In: International Conference on Application-specific

Systems, Architectures and Processors (ASAP). IEEE. 2018, pp. 1–9.

[174] Yatish Turakhia, Gill Bejerano, and William J Dally. “Darwin: A genomics co-processor

provides up to 15,000x acceleration on long read assembly”. In: ACM SIGPLAN Notices

53.2 (2018), pp. 199–213.

[175] Yatish Turakhia et al. “Darwin: A hardware-acceleration framework for genomic

sequence alignment”. In: bioRxiv (2017), p. 092171.

[176] Yatish Turakhia et al. “Darwin-WGA: A co-processor provides increased sensitivity in

whole genome alignments with high speedup”. In: 2019 IEEE International Symposium

on High Performance Computer Architecture (HPCA). IEEE. 2019, pp. 359–372.

[177] Enzo Rucci et al. “SWIFOLD: Smith-Waterman implementation on FPGA with

OpenCL for long DNA sequences”. In: BMC systems biology 12.5 (2018), p. 96.

[178] Cuong Pham-Quoc, Binh Kieu-Do, and Tran Ngoc Thinh. “A high-performance FPGA-

based BWA-MEM DNA sequence alignment”. In: Concurrency and Computation:

Practice and Experience 33.2 (2021), e5328.

[179] Konstantina Koliogeorgi et al. “Dataflow acceleration of Smith-Waterman with trace-

back for high throughput next generation sequencing”. In: 2019 29th International

Conference on Field Programmable Logic and Applications (FPL). IEEE. 2019, pp. 74–

80.

149

BIBLIOGRAPHY

[180] Enzo Rucci et al. “OSWALD: OpenCL Smith-Waterman on Altera’s FPGA for Large

Protein Databases”. In: The International Journal of High Performance Computing

Applications 32.3 (2018), pp. 337–350.

[181] Yoshiki Yamaguchi, Hung Kuen Tsoi, and Wayne Luk. “FPGA-based Smith-Waterman

algorithm: Analysis and novel design”. In: International Symposium on Applied Recon-

figurable Computing. Springer. 2011, pp. 181–192.

[182] Xianyang Jiang et al. “A reconfigurable accelerator for Smith-Waterman algorithm”. In:

IEEE Transactions on Circuits and Systems II: Express Briefs 54.12 (2007), pp. 1077–

1081.

[183] Isaac TS Li, Warren Shum, and Kevin Truong. “160-fold acceleration of the Smith-

Waterman algorithm using a field programmable gate array (FPGA)”. In: BMC bioin-

formatics 8.1 (2007), p. 185.

[184] Jeff Allred et al. “Smith-Waterman implementation on a FSB-FPGA module using

the Intel Accelerator Abstraction Layer”. In: 2009 IEEE International Symposium on

Parallel & Distributed Processing. IEEE. 2009, pp. 1–4.

[185] Peiheng Zhang, Guangming Tan, and Guang R Gao. “Implementation of the Smith-

Waterman algorithm on a reconfigurable supercomputing platform”. In: International

Workshop on High-Performance Reconfigurable Computing Technology and Applica-

tions (HPRCTA). 2007, pp. 39–48.

[186] Khaled Benkrid, Ying Liu, and AbdSamad Benkrid. “A highly parameterized and

efficient FPGA-based skeleton for pairwise biological sequence alignment”. In: IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 17.4 (2009), pp. 561–570.

[187] Sean O Settle et al. “High-performance dynamic programming on FPGAs with OpenCL”.

In: IEEE High Performance Extreme Computing Conference (HPEC). 2013, pp. 1–6.

[188] Peng Chen et al. “Accelerating the next generation long read mapping with the FPGA-

based system”. In: IEEE/ACM transactions on computational biology and bioinformat-

ics 11.5 (2014), pp. 840–852.

[189] Daichi Fujiki et al. “Genax: A genome sequencing accelerator”. In: 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA). IEEE. 2018,

pp. 69–82.

150

BIBLIOGRAPHY

[190] Jing-Ping Wu et al. “A Memory-Efficient Accelerator for DNA Sequence Alignment

with Two-Piece Affine Gap Tracebacks”. In: 2021 IEEE International Symposium on

Circuits and Systems (ISCAS). IEEE. 2021, pp. 1–4.

[191] TOP500. The 500 most powerful commercially available computer systems. URL:

https://www.top500.org/lists/top500/2022/06.

[192] Jeffrey Stuecheli et al. “CAPI: A coherent accelerator processor interface”. In: IBM

Journal of Research and Development 59.1 (2015), pp. 7–1.

[193] Jeffrey Stuecheli et al. “IBM POWER9 opens up a new era of acceleration enablement:

OpenCAPI”. In: IBM Journal of Research and Development 62.4/5 (2018), pp. 8–1.

[194] IBM. CAPI2 and SNAP repository. URL: https://github.com/open-power/snap.

[195] IBM. How is data managed in the SNAP environment? English. Version 1.0. IBM.

Apr. 30, 2018. 21 pp. URL: https://github.com/open-power/snap/blob/master/doc/AN_

CAPI_SNAP-How_is_data_managed.pdf.

[196] IBM. OpenCAPI repository. URL: https://github.com/OpenCAPI/oc-accel.

[197] Alpha Data. ADM-PCIE-9V3 board. URL: https://www.alpha-data.com/product/adm-

pcie-9v3/.

[198] Alpha Data. ADM-PCIE-9H7 board. URL: https://www.alpha-data.com/product/adm-

pcie-9h7/.

[199] AMD. Alveo U280 FPGA board. URL: https://www.xilinx.com/products/boards-and-

kits/alveo/u280.html.

[200] Santiago Marco-Sola. WFA open source C implementation. URL: https://github.com/

smarco/WFA.

[201] Hak-Min Kim et al. “Comparative analysis of 7 short-read sequencing platforms using

the Korean Reference Genome: MGI and Illumina sequencing benchmark for whole-

genome sequencing”. In: GigaScience 10.3 (Mar. 2021).

[202] U.S. Food and Drug Administration. PacBio HIFI input set. URL: https://precision.fda.

gov/challenges/10.

[203] Chunlin Xiao. PacBio CCS input set. URL: https://github.com/genome-in-a-bottle/

giab_data_indexes.

151

https://www.top500.org/lists/top500/2022/06
https://github.com/open-power/snap
https://github.com/open-power/snap/blob/master/doc/AN_CAPI_SNAP-How_is_data_managed.pdf
https://github.com/open-power/snap/blob/master/doc/AN_CAPI_SNAP-How_is_data_managed.pdf
https://github.com/OpenCAPI/oc-accel
https://www.alpha-data.com/product/adm-pcie-9v3/
https://www.alpha-data.com/product/adm-pcie-9v3/
https://www.alpha-data.com/product/adm-pcie-9h7/
https://www.alpha-data.com/product/adm-pcie-9h7/
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://github.com/smarco/WFA
https://github.com/smarco/WFA
https://precision.fda.gov/challenges/10
https://precision.fda.gov/challenges/10
https://github.com/genome-in-a-bottle/giab_data_indexes
https://github.com/genome-in-a-bottle/giab_data_indexes

BIBLIOGRAPHY

[204] Rick Wertenbroek and Yann Thoma. “k-mer counting with FPGAs and HMC in-

memory operations”. In: 2018 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS). IEEE. 2018, pp. 233–240.

[205] David Carrera Perez et al. A computer-implemented and reference-free method for

identifying variants in nucleic acid sequences. US Patent App. 16/315,982. Jan. 2020.

[206] Todd Rosedahl et al. “Power/performance controlling techniques in OpenPOWER”. In:

International Conference on High Performance Computing. Springer. 2017, pp. 275–

289.

[207] Abbas Haghi. WFA FPGA implementation. URL: https://gitlab.bsc.es/ahaghi/wfa%5C_

fpga%5C_accelerator.

[208] UltraScale Architecture Memory Resources User Guide. English. Version Version 1.13.

Xilinx. 139 pp. September 24, 2021.

[209] IBM. CloudFPGA. URL: https://www.zurich.ibm.com/cci/cloudFPGA/.

[210] Santiago Marco-Sola et al. “Optimal gap-affine alignment in O(s) space”. In: Bioinfor-

matics 39.2 (2023), btad074.

152

https://gitlab.bsc.es/ahaghi/wfa%5C_fpga%5C_accelerator
https://gitlab.bsc.es/ahaghi/wfa%5C_fpga%5C_accelerator
https://www.zurich.ibm.com/cci/cloudFPGA/

BIBLIOGRAPHY

153

	Acknowledgements
	Abstract
	Resumen
	Resum
	List of Figures
	List of Tables
	Table of contents
	Contents
	1 Introduction
	1.1 Thesis Objectives and Contributions
	1.1.1 Accelerating K-mer Counting
	1.1.2 Accelerating Pairwise Read Alignment

	1.2 Thesis Outline

	2 Background
	2.1 Genomics
	2.1.1 DNA Sequencing
	2.1.2 DNA Assembly

	2.2 Hardware Accelerators
	2.2.1 GPU
	2.2.2 PIM
	2.2.3 FPGA
	2.2.4 ASIC
	2.2.5 Genomics Hardware Accelerators

	3 Experimental Methodology
	3.1 Platforms
	3.1.1 POWER9 Platform
	3.1.2 ASIC Platform

	3.2 Baselines and Input Sets
	3.2.1 K-mer Counting in SMUFIN
	3.2.2 WFA for Pairwise Read Alignment

	4 K-mer Counting FPGA Accelerator
	4.1 Introduction
	4.2 Background
	4.2.1 DNA Reads, K-mers and K-mer Counting
	4.2.2 SMUFIN Overview
	4.2.3 SMUFIN K-mer Counting Structure

	4.3 Acceleration Method of K-mer Counting in SMUFIN
	4.3.1 Prune Step
	4.3.2 Count Step
	4.3.3 Unify Step

	4.4 Evaluation and Results
	4.4.1 Experimental Setup
	4.4.2 Results

	4.5 Conclusions

	5 WFA FPGA Accelerator
	5.1 Introduction
	5.2 Background
	5.3 WFA Accelerator for Short Reads
	5.3.1 Extractor Module
	5.3.2 Collector Module
	5.3.3 Aligner Module

	5.4 WFA Accelerator for Long Reads
	5.4.1 Hardware/Software Co-design Structure
	5.4.2 Extractor Module
	5.4.3 Aligner Module
	5.4.4 Collector Module
	5.4.5 Backtrace in CPU

	5.5 Evaluation and Results
	5.5.1 Experimental Setup
	5.5.2 Results of Short Reads for Synthetic Input Sets
	5.5.3 Results of Long Reads for Synthetic Input Sets
	5.5.4 Results of Long Reads for Real Input Sets
	5.5.5 Performance Comparison

	5.6 Conclusions

	6 WFA ASIC Accelerator
	6.1 Introduction
	6.2 System on Chip Architecture
	6.3 WFAsic Accelerator
	6.3.1 Memory implementations
	6.3.2 Extractor Adaptation
	6.3.3 Collector Adaptation
	6.3.4 Backtrace

	6.4 Evaluation
	6.4.1 ASIC Synthesis and Place and Route
	6.4.2 FPGA Prototype Performance Results

	6.5 Conclusions

	7 Conclusions
	7.1 Goals, Contributions and Main Conclusions
	7.2 Future Work
	7.3 Publications
	7.4 Financial and Technical Support

	Bibliography

