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Abstract

Meshless methodologies have emerged as a valuable tool in the field of compu-
tational acoustics, offering an efficient approach to model complex acoustic phe-
nomena. These innovative numerical techniques offer a promising alternative to
traditional mesh-based methods to deal with scattering and radiation acoustic
wave propagation problems. Unlike conventional mesh-based approaches, mesh-
less methods do not rely on structured grids of the domain or its boundary, en-
abling more flexible and adaptive discretisation. The absence of a mesh eliminates
the need for time-consuming grid generation and refinement, simplifying the simu-
lation process and reducing the computational effort. This efficiency is especially
valuable in addressing large-scale acoustic simulations, such as those encountered
in environmental noise assessments and underwater acoustics.

This dissertation is particularly centred on the study and development of a novel
group of numerical meshless methods related to boundary collocation approaches.
These methods are employed to address problems involving the propagation of
acoustic waves in unbounded domains. The novel approaches presented in this
research offer several benefits with respect to existing methodologies, in terms of
robustness, accuracy and computational efficiency. Furthermore, in contrast to a
fully three-dimensional analysis, the approaches presented in this dissertation are
formulated in the two-and-a-half-dimensional domain. This domain is particularly
suited for scenarios where the system is subjected to longitudinally moving loads
or sources and where the geometry of the system remains longitudinally invariant.

The meshless methodologies developed in this thesis mainly rely on two of the
most well-established meshless methods in the field: the singular boundary me-
thod and the method of fundamental solutions. In the first instance, an approach
based on a two-and-a-half-dimensional version of the singular boundary method
is proposed and studied to address acoustic radiation and scattering problems.
Subsequently, its applicability for real case acoustic scenarios is evaluated through
simulations involving point source diffraction in the presence of thin noise bar-
riers. As probably representing the most significant novelty of this dissertation, a
hybrid method that combines the singular boundary method and the method of
fundamental solutions is introduced. It is specifically devised to tackle acoustic
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wave propagation problems featuring complex boundary geometries with corners
and sharp edges. Finally, two modification techniques are proposed to enhance
the previously mentioned approach based on the two-and-a-half-dimensional sin-
gular boundary method. The Burton–Miller formulation in a first instance, and a
dual surface scheme in the second. These modifications aim to overcome the issue
of spurious eigensolutions, which arises from the non-uniqueness solution prob-
lem associated with boundary collocation methods. To comprehensively assess
the capabilities and performance of the proposed meshless methods, the available
analytical solutions and alternative numerical strategies such as the well-known
boundary element method are also utilised in various designed benchmark pro-
blems.
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Chapter 1

Introduction

This chapter serves as the introductory section of the present thesis. It commences
by providing an overview of the importance of numerical meshless methodologies
in the field of computational acoustics. Afterwards, a justification for the emphasis
on introducing practical numerical meshless methodologies to deal with acoustic
wave propagation problems is presented. Finally, the chapter ends with a brief
outline of the contents addressed in each subsequent chapter of the thesis.

1
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1.1 Overview

The work presented in this thesis concerns the study and development of a par-
ticular class of numerical meshless methods belonging to the boundary collocation
strategies. The research is specifically oriented towards the field of computational
acoustics, addressing the simulation of acoustic wave propagation problems such
as radiation and scattering in unbounded domains, relevant to several science and
engineering applications.

In a general perspective, approaches to simulate acoustic wave propagation pro-
blems can be classified into two categories: analytical solutions and numerical
approaches. Analytical solutions are mostly restricted to a few basic and simple
geometries, which limits their applicability to real engineering problems. However,
due to their outstanding accuracy, they are highly regarded to be considered as
a reference for validating numerical approaches. On the other hand, numerical
methods are mainly utilised to simulate problems involving boundaries featur-
ing intricate geometries, despite they are typically less accurate and incur higher
computational costs in comparison to analytical methods.

Alongside the extensive adoption of conventional numerical mesh-based techniques
for simulating acoustic wave propagation problems in large-scale domains, meshless
methods have also been introduced in order to overcome the inherent numerical
challenges posed by the former class of methods in this sort of problems. These
challenges include diverse aspects in mesh generation, the significant influence of
mesh quality on numerical results, the complexity of their formulations and corres-
ponding implementations and the considerable computational resources required
when employing mesh-based methods.

Most numerical mesh-based methods rely on the discretisation of either the do-
main or its boundary. Speaking specifically about two of the most widely used
methods in computational acoustics, the finite element method (FEM) [1] is built
upon the principle of domain discretisation, while the boundary element method
(BEM) [2] is based on the discretisation of the boundary. With respect to the
FEM, the BEM has been typically considered to be more effective when solving
problems with unbounded domains, because of two outstanding advantages: the
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order of dimensionality of its associated domain is reduced by one and its ability of
naturally fulfil the Sommerfeld’s radiation condition at infinity. Despite this sig-
nificant superiority, it is worth mentioning that the BEM still suffers the already
mentioned numerical issues associated with the meshing process.

In this context, emerging boundary-type meshless methods such as the method of
fundamental solutions (MFS) [3, 4] and the singular boundary method (SBM) [5, 6]
have demonstrated their merits as excellent alternatives to the standard BEM.
These methods rely on a completely distinct discretisation strategy, which need
only a collocation point distribution along the boundary, together with a set of
source points offering significant advantages over the standard BEM. They cir-
cumvent challenges associated with the meshing process and eliminate the need
for connectivity information existing in the mesh-based methods resulting in op-
timal, fast and computationally efficient strategies. Furthermore, these methods
are mathematically simpler and generally easier to implement compared to mesh-
based methods due to the simplicity of their formulation, since the boundary
conditions are discretised only at discrete collocation points and there is no need
for an estimation of the continuous distribution of the field variables along the
boundary, as is required by the BEM.

As an alternative to fully three-dimensional (3D) analysis of acoustic wave propa-
gation problems within large-scale domains, this dissertation specifically examines
an efficient approach formulated in the two-and-a-half-dimensional (2.5D) domain
for modelling acoustic wave propagation problems. This approach can be adop-
ted to exploit the invariability of the system under study along its longitudinal
direction to simplify the simulation process. Particularly, this scheme only re-
quires cross-section discretisation of the system, as the spatial coordinate along
the invariant direction is subjected to a domain transformation using the Four-
ier transform. This modelling strategy has been widely employed in engineering
applications, particularly in acoustical and structural dynamics analyses [7–13].
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1.2 Justification of the research

Due to the presented benefits over mesh-based methods, meshless methods are
receiving growing attention in the field of computational acoustics. In this context,
the present thesis particularly focuses on studying and developing one of the most
well-known and novel meshless methods in the field: the SBM approach. In the
computational acoustics field, this method has been proposed in the last decade to
model bounded and unbounded acoustic domains. The developments presented in
this thesis concentrate on exterior acoustic problems, while it is worth mentioning
that they could be easily adapted to deal with bounded acoustic domains, as well.

The SBM stands as a highly promising alternative to the BEM because of its out-
standing benefits regarding computational implementation and efficiency. Apart
from the known merits associated with its boundary-based nature, the SBM demon-
strates the following advantages in computational acoustics with respect to the
BEM:

1. The SBM eliminates the need for a boundary mesh and the numerical integ-
rations required to deal with the singularities arising in the application of
the BEM, mitigating the numerical challenges encountered in the simulation
of acoustic problems using the BEM.

2. The SBM typically demands less computer memory to achieve a similar ac-
curacy levels since it reduces the number of fundamental solution evaluations.

3. The SBM offers mathematical simplicity, ease of programming, and high
suitability to result in fast algorithms.

4. Recent investigations shown that the SBM provides higher numerical accur-
acy and convergence rates than the BEM.

The MFS is another well-known numerical meshless method that has been further
investigated in the context of the present thesis. The MFS offers notable ad-
vantages in computational efficiency and formulation simplicity. A key distinction
between the MFS and SBM is the superior accuracy of the MFS, particularly for
non-complex smooth boundary geometries. However, strong numerical challenges
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when implementing the MFS for problems involving intricate boundary geometries
have been reported in the literature as well as in this PhD thesis. In general, this
thesis concludes that the SBM demonstrates higher stability and broader applic-
ability for practical engineering problems compared to the MFS.

The main goal of this dissertation is the development of fast, computationally ef-
ficient and practical numerical meshless methodologies to deal with acoustic wave
propagation problems in unbounded domains. This objective has been achieved
by taking the distinct advantages offered by the SBM and MFS methodologies to
a more advanced development stage, resulting in methods with significantly en-
hanced capabilities in comparison with state-of-the-art approaches. To accomplish
this, the following tasks have been pursued:

1. To develop a 2.5D SBM approach for acoustic radiation and scattering pro-
blems in the framework of longitudinally invariant and infinite structures.

2. To assess the effectiveness of the proposed 2.5D SBM for practical scenarios,
specifically focusing on the application to acoustic thin barriers utilised in
road and railway traffic contexts.

3. To devise a novel hybrid SBM-MFS methodology for acoustic wave propa-
gation problems involving complex or intricate boundary geometries that
may inherently possess the benefits of both SBM and MFS methods.

4. To study the influence on the performance of the 2.5D SBM, induced by fic-
titious eigenfrequencies resulting from the non-uniqueness solution problem
in the 2.5D context.

5. To develop modification techniques to effectively address the issue of ficti-
tious eigensolutions that arise in the 2.5D SBM.

1.3 Thesis Outline

This dissertation is organised in six chapters. Except for Chapters 1 and 6, which
present the introduction and conclusions of this work, respectively, each chapter
incorporates its own literature review within its introduction.
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As evidenced, Chapter 1 provides an overview of the issues under consideration,
the justification for conducting this research, and a breakdown of the content of
each chapter.

In Chapter 2, a 2.5D SBM approach for acoustic radiation and scattering problems
in the framework of longitudinally infinite and invariant structures is presented and
studied. The chapter begins with an introduction to the proposed method along
with a review of other existing numerical methodologies in the field. Afterwards,
the mathematical formulation of the proposed 2.5D SBM approach is presented.
Subsequently, the performance of the method is demonstrated in the framework
of different acoustic benchmark examples. In this context, the feasibility, validity
and numerical accuracy of the proposed 2.5D SBM are assessed in a detailed com-
parison with the available analytical solutions and alternative numerical strategies
including the 2.5D MFS and the 2.5D BEM strategies.

Chapter 3 focuses on the applicability of the proposed 2.5D SBM methodology
for practical engineering problems. To do so, the 2.5D SBM approach is employed
to simulate a typical point source diffraction problem in the presence of acoustic
thin barriers. The chapter commences with an introduction consisting of a liter-
ature review of the numerical approaches to analyse this kind of problems. In the
following, the 2.5D SBM is particularly examined as a tool for the simulation of
the acoustic response in both spatial and temporal domains with non-moving and
moving source scenarios, respectively. The calculations are done by considering
the barrier to be subjected to both rigid and absorbing boundary conditions.

Chapter 4 is concerned with proposing a novel hybrid SBM-MFS methodology for
acoustic wave propagation problems. The proposed methodology is particularly
devised to solve problems with complex boundary geometries containing geomet-
ric singularities such as corners and sharp edges. The chapter starts reviewing
modification strategies to overcome the geometric singularity problem in the con-
text of the MFS and the SBM approaches. Afterwards, the numerical formulation
of the proposed hybrid methodology is described. Subsequently, designed bench-
mark examples to demonstrate the validity and accuracy of the proposed hybrid
scheme are presented. In the final step, the applicability of the proposed hybrid
SBM-MFS methodology to predict the acoustic performance of a T-shaped thin
barrier is also investigated.
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Chapter 5 investigates the problem of spurious eigensolutions in the context of the
2.5D SBM adopted for exterior acoustic wave propagation problems. It proposes
two numerical modification techniques based on the Burton–Miller’s formulation
in one case and the dual surface method in the other, aiming to mitigate this nu-
merical difficulty in the 2.5D SBM. After a brief literature review on the fictitious
eigenfrequency problem in the SBM and BEM approaches, the chapter proceeds
to outline the mathematical formulations governing the enhanced versions of the
2.5D SBM within proposed modification strategies. In the next step, the acoustic
radiation problems of an infinitely circular cylinder and star-like object are con-
sidered to study the validity, feasibility and effectiveness of the proposed modified
schemes to deal with the spurious eigensolutions problem in the 2.5D SBM.

Finally, the conclusions from this research are summarised in Chapter 6, together
with some guidelines for future work.



Chapter 2

2.5D singular boundary method for

exterior acoustic radiation and

scattering problems

In this chapter, a numerical methodology based on a 2.5D SBM to deal with acous-
tic radiation and scattering problems in the context of longitudinally invariant
structures is proposed and studied. In the proposed 2.5D SBM, the desingularisa-
tion provided by the subtracting and adding-back technique is used to determine
the origin intensity factors. These origin intensity factors are derived by means of
the origin intensity factors of the Laplace equation. The feasibility, validity and
accuracy of the proposed method are demonstrated for two acoustic benchmark
problems: the acoustic radiation and wave scattering problems for an infinite cylin-
der. In order to comprehensively assess the proposed 2.5D SBM schemes in terms
of numerical accuracy and computational efficiency, the analyses are conducted by
employing the available analytical solutions and other numerical methodologies,
including the 2.5D MFS and the 2.5D BEM.

The chapter is organised as follows: In Section 2.1, a brief literature overview
of numerical methodologies addressing acoustic radiation and scattering problems
is presented. Section 2.2 outlines the mathematical modelling of the proposed
2.5D SBM approach. In Section 2.3, the numerical results and the corresponding
discussions are presented, including the verification study of the proposed 2.5D

8
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SBM method, evaluated within the context of two acoustic benchmark examples.
Finally, the chapter concludes in Section 2.4 with important remarks derived from
the discussions presented.
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2.1 Introduction

Problems related to acoustic waves propagation in unbounded domains are fre-
quently encountered in many engineering applications. The domain-type discret-
isation methods, such as the FEM, are not efficient when dealing with this kind
of problems, since they require a massive domain meshing, especially at high fre-
quencies, which is often computationally costly [1]. As an alternative approach,
the BEM is found to be more efficient for unbounded domain problems, since its
boundary-oriented modelling inherently allows for an efficient treatment of such
domains [2]. However, despite the fact that the BEM only requires a mesh of the
boundary instead of the full domain, it involves an intricate mathematical formula-
tion together with some numerical issues, such as regularisation procedures to deal
with the singularities arisen from the fundamental solutions, fully populated sys-
tem matrices and troublesome surface meshing in 3D complex domains. Leaving
the complex formulae aside, these circumstances result in an increase on compu-
tational time and memory requirements, which is probably the main drawback of
the BEM.

Due to these disadvantages, a new generation of boundary-type meshless numer-
ical methods that require neither domain nor boundary meshing have been de-
veloped in the last two decades. Among meshless methods, the MFS has been
extensively used to solve a variety of acoustic problems thanks to its merits on
being mathematically simple, easy-to-program, and automatically satisfying the
Sommerfeld’s radiation condition at infinity. Two of the earliest works regarding
the application of the MFS to acoustic problems were presented by Shippy and
Kondapalli [14, 15]. Later, Karageorghis [16] used the MFS with fixed sources for
the solution of Helmholtz eigenvalue problems. Fairweather et al. [3] reviewed the
previous developments of the MFS for scattering and radiation problems in fluids
and solids, establishing a general benchmark for its application. Karageorghis et
al. [17] employed the MFS for detecting a sound-soft scatterer surrounding a host
acoustic homogeneous medium due to a given point source inside it. Qu et al. [18]
applied the localised MFS (LMFS) to solve the 2D interior Helmholtz equation at
high frequencies. The presented numerical examples showed that the LMFS has a
lower computational complexity than the traditional MFS and it can be used for
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simulating large-scale acoustic problems with complicated geometries. Although
a significant amount of research has been carried out to enhance the applicability
of the MFS, the method still has a serious disadvantage: it is strongly sensible
to the location of the virtual boundary, particularity for geometrically complex
problems, and there is a lack of systematic and efficient approaches to determine
its optimal position which restrains the application of MFS to real engineering
problems. Several modification schemes have been devised to solve this drawback
by investigating approaches where the virtual sources are placed directly on the
physical boundary. Some of these methods include the boundary collocation me-
thod (BCM) [19], the boundary knot method (BKM) [20], the localised boundary
knot method (LBKM) [21, 22], the singular meshless method (SMM) [23] and the
singular boundary method (SBM) [24], to name just a few.

The SBM was firstly presented by Chen and Wang [24]. Research conducted last
years on the topic have shown that this method is an effective alternative to over-
come some drawbacks of the other techniques, like the limited applicability, low
accuracy and ill-conditioning problems. In the following, some studies regarding
the method applicability for acoustics analysis are listed. Fu et al. [25] pro-
posed the improved singular boundary method (ISBM) for acoustic radiation and
scattering problems, which is a combination of the classical SBM with the Burton-
Miller’s formulation. Numerical results demonstrate that this modification scheme
enhances the accuracy of the solution in the vicinity of the corresponding interior
eigenfrequencies. Fu et al. [26] applied the SBM for solving water wave-structure
interaction and SH wave scattering problems. Qu et al. [27] applied a fast mul-
tipole accelerated SBM for the 3D Helmholtz equation in low-frequency regimes.
In another study, Qu et al. [28] introduced a diagonal form of the fast multipole
SBM to overcome the high computational requirements of the SBM interpolation
matrix for high-frequency acoustic radiation and scattering problems. To reduce
the high computational requirements of the SBM in 3D problems, Li [29] presen-
ted a fast SBM to solve 3D Helmholtz equations that employs the pre-corrected
fast Fourier transform (PFFT) to accelerate the SBM numerical process. The
results showed that the PFFT-SBM has an advantage over the standard SBM in
terms of memory and CPU time. Fu et al. [30] developed the SBM in conjunction
with the fast Toeplitz-type matrix solvers (FTMS) for acoustic wave propagation
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analysis at low and moderate frequencies in periodic structures. The numerical
results demonstrated that by employing this method, the computational time and
storage requirements are significantly reduced with respect to traditional SBM
routines. Recently, Wang et al. [31] proposed the localised singular boundary
method (LSBM) to solve the Laplace and Helmholtz equations in 2D arbitrary
domains. Compared with the traditional SBM, the proposed LSBM can effect-
ively avoid the boundary layer effect (appearing for field points located close to
the boundary) and requires less memory storage and computational effort because
the produced interpolation system matrices are sparse and banded.

Typically, the SBM utilises the single-layer fundamental solutions as kernel func-
tions and introduces the so-called origin intensity factors (OIFs) to circumvent the
singularities of the fundamental solutions where the collocation and source points
coincide. It approximates the solution of the problem with a linear combination of
fundamental solutions of the governing equation of interest. The vital issue in the
SBM is the determination of the OIFs, which can be calculated through empirical,
analytical or numerical techniques. In the original SBM, the inverse interpolation
technique (IIT) [24] was proposed to evaluate the OIFs by using sample solu-
tions of the governing equation of the problem. Gu and Chen [32] adopted the
subtracting and adding-back (SAB) technique to efficiently calculate the OIFs in
the case of Neumann boundary condition, avoiding the need for sample solutions
used in earlier SBM developments. Fu et al. [33] compared three methodologies
for the OIFs determination on Neumann and Dirichlet boundaries in exterior wave
propagation problems: the IIT; a semi-analytical technique that combines the SAB
technique and the IIT; and a semi-analytical technique based on the integral mean
value of the Laplace fundamental solution. Results show that semi-analytical solu-
tions provided a higher numerical stability, being the second methodology the one
showing the best accuracy. Li et al. [34] presented new explicit empirical formulas
to determine the OIFs on Neumann and Dirichlet boundary conditions for 2D and
3D Laplace and Helmholtz equations. With these empirical formulas, the OIFs
can be obtained without the need of using the SAB or numerical integration. A
strictly mathematical regularised approach for the evaluation of the OIFs for the
3D Helmholtz equation at high frequencies was provided in [35]. The novelty of
the work is to propose two artificially constructed general solutions that can be
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used to directly evaluate the OIFs by using the SAB technique, which yields on
a fully integration- and mesh-free technique. The numerical demonstrations show
that the proposed OIF formulas can be successfully used to avoid the singularity
and hyper singularity problems encountered in the application of the SBM or the
BEM. Nevertheless, accurately determining the OIFs for problems with Dirichlet
boundary condition still remains an open issue. Recent studies have introduced
some numerical and empirical formulas to evaluate the OIFs for Dirichlet boundary
condition case [36–38].

In some acoustic wave propagation analyses required in engineering applications,
such as environmental noise assessments for road and railway transportation sys-
tems, the computational domain can be assumed to be longitudinally invariant,
meaning that the geometry of the system is considered to have a constant cross-
section along its longitudinal direction. The methodologies to solve these problems
can be constructed in the framework of the two-and-a-half-dimensional (2.5D) do-
main. The 2.5D domain is reached by the application of the Fourier transform to
the governing equations along the coordinate associated with the invariant direc-
tion. Then, the system can be solved in a 2D framework and the 3D solutions
can be obtained by using the corresponding Fourier inverse transform. Thus, the
advantage of this approach is the reduction of the discretisation domain dimen-
sionality by one, which results in strong reduction of the computational costs
and memory requirements in the context of mesh-based approaches [39]. Regard-
ing this benefit, the computational efficiency can be further enhanced if meshless
methods are employed when dealing with unbounded domain problems.

Methodologies based on the 2.5D formulation are being used nowadays to model
engineering acoustic problems. Sheng and Zhong [40] proposed a 2.5D acoustic
BEM to simulate the sound radiation of high-speed railway slab tracks subjected
to a moving harmonic load. A similar model has been used recently by Li et
al. [10] to simulate the noise transmission from the wheels, rails and sleepers
to the external surfaces of a train, and by Deng et al. [11] to study the noise
insulation capabilities of poro-elastic panels. Ghangale et al. [8] presented a
combined methodology based on a 2.5D structural FEM-BEM and a 2.5D acoustic
BEM for the prediction of re-radiated noise in underground simple tunnels. Also,
some studies have employed 2.5D meshless methodologies to analyse engineering
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acoustic problems. In this regard, the potential applications of the 2.5D MFS
for the prediction of re-radiated noise in railway traffic systems were discussed in
[7, 8]. Recently, the 2.5D SBM [41] has been preliminary proposed and tested
for acoustic problems excited by harmonic point sources. The numerical results
verified the effectiveness and accuracy of the proposed approach and reported a
significant reduction of memory storage in comparison with the 3D acoustic SBM.

The objective of this chapter is to propose and study, in a computational con-
text, a 2.5D SBM approach to deal with acoustic wave propagation problems in
where the geometry and mechanical properties of the system are longitudinally
constant. In the proposed 2.5D SBM, the desingularisation provided by the SAB
technique is used to determine the OIFs. These OIFs are derived by means of
the OIFs of the Laplace equation due to the same order of the singularities in the
fundamental solutions of Laplace and Helmholtz equations. The feasibility, valid-
ity and accuracy of the proposed 2.5D SBM are investigated in the framework of
two benchmark examples: the acoustic radiation and wave scattering problems
of an infinite cylinder. In order to make a detailed assessment of the proposed
approach, other methodologies are applied and then compared in terms of numer-
ical accuracy and computational efficiency. These alternative approaches are the
2.5D MFS and the 2.5D BEM considering linear and quadratic boundary elements
(referred to as the 2.5D LE-BEM and the 2.5D QE-BEM, respectively, from now
on). In all examples, the available analytical solutions are used as a reference
method for the accuracy comparisons. Furthermore, the effect on the 2.5D SBM
accuracy induced by considering the exact geometry of the boundary instead of
the node-based approximation is also investigated in this study.

2.2 Mathematical formulation

In this section, the formulation of the proposed 2.5D SBM is presented. In a first
instance, the acoustic problem is formulated in the 2.5D domain. Secondly, the
proposed SBM approach is described in detail in the 2.5D context.
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2.2.1 2.5D formulation for acoustic problems

The problem under consideration is the propagation of acoustic waves in a 3D ho-
mogeneous isotropic medium Ω. In this problem the pressure field can be modelled
in the frequency domain by the well-known Helmholtz equation

∇2p (x) + k2 p (x) = 0 for x ∈ Ω, (2.1)

where ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
denotes the Laplacian operator, p(x) represents

the acoustic pressure at a generic point x = {x, y, z}T inside the domain, k is the
acoustic wavenumber, in a 3D context, equal to ω/c, ω is the angular frequency
and c is the sound wave speed in the medium. Two kinds of boundary conditions
are usually considered: the Dirichlet boundary condition

p(x) = pb(x) for x ∈ Γ, (2.2)

or the Neumann boundary condition

v(x) =
1

iρω
∂p(x)

∂nb

= vb(x) for x ∈ Γ, (2.3)

where nb is the unit outward normal vector to the physical boundary at the point
x, pb and vb are the prescribed pressure and normal velocity fields at the boundary,
respectively, ρ is the medium density and i =

√
−1. If the geometry of the problem

can be considered invariant in the x direction, Eq. (2.1) can be transformed to
the wavenumber domain using a Fourier transform of the form

f̄ (kx, y, z, ω) =

∫ +∞

−∞
f (x, y, z, ω) eikxxdx, (2.4)

where kx is the wavenumber associated with the longitudinal direction x and f

can be the pressure p or the velocity v fields. The bar notation is used to denote
that the variable is expressed in the wavenumber domain. This transformation
results in the 2.5D version of the system equations, represented by the 2D modified
Helmholtz equation

∇2p̄(x)− k2
a p̄(x) = 0 for x ∈ Ω, (2.5)
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where ∇2 =
∂2

∂y2
+

∂2

∂z2
, ka =

√
k2
x − k2 can be seen as the acoustic wavenumber

for the 2.5D domain and the generic point x has become x = (y, z). The Dirichlet
and Neumann boundary conditions can be also transformed to the 2.5D domain,
resulting in

p̄(x) = p̄b(x) for x ∈ Γ, (2.6a)

v̄(x) =
1

iρω
∂p̄(x)

∂nb

= v̄b(x) for x ∈ Γ. (2.6b)

2.2.2 SBM for 2.5D acoustic problems

The SBM approximates the solution of the problem in a given domain with a linear
combination of fundamental solutions of the governing differential equation. To
achieve this, the SBM firstly determines a set of virtual sources that complies with
the prescribed boundary conditions evaluated in a set of collocation points placed
along the boundary Γ. In contrast to the MFS, the collocation and source points
of the SBM are placed on the physical boundary, avoiding the need of an auxiliary
one. For the proposed 2.5D SBM approach described in this chapter, it is also
assumed that the set of collocation points is geometrically coincident with the set
of virtual sources. This scheme is illustrated in Figure 2.1. Virtual sources can
be then subsequently used to evaluate the response in the domain. The method
employs the OIFs to evaluate the interpolation matrix terms associated with the
coincident source–collocation points.
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Figure 2.1: Schematic sketch of the SBM approach with the adopted sources
and collocation points distributions. Red circles denote virtual sources and

brown dots represent collocation points.

Thus, the SBM approximates the acoustic pressure p̄ and particle velocity v̄ at a
generic point x considering the effect of N sources located at positions sj, being
(j = 1, 2, ..., N), resulting in the expressions

p̄(x) =
N∑
j=1

αj Ḡ(x, sj, ka) for x ∈ Ω, (2.7a)

iρωv̄(x) =
N∑
j=1

αj H̄(x, sj, ka,nx) for x ∈ Ω, (2.7b)

where αj (j = 1, 2, ..., N) are the unknown source strengths and

Ḡ(x, s, ka) =


1

2π
K0(kar) for ka ̸= 0,

GL(x, s) for ka = 0,

(2.8a)

H̄(x, s, ka,nx) =
∂Ḡ(x, s, ka)

∂nx

=


− ka
2π

K1(kar)
∂r

∂nx

for ka ̸= 0,

HL(x, s,nx) for ka = 0,

(2.8b)
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are the 2.5D fundamental solutions of the sound pressure and particle velocity,
respectively, for the modified Helmholtz equation. K0 and K1 are the modified
Bessel functions of the second kind of order zero and one, respectively, r is the
distance between the source point s and the arbitrary field point x, nx arbitrary
unit vector that represents the direction along which the particle velocity is calcu-
lated, while GL(x, s) and HL(x, s,nx) are the fundamental solutions of potential
and flux of the 2D Laplace equation, respectively, which take the form

GL(x, s) = − 1

2π
ln(r), (2.9a)

HL(x, s,nx) =
∂GL(x, s)

∂nx

= − 1

2πr

∂r

∂nx

. (2.9b)

Eqs. (2.7a) and (2.7b) can be transformed to evaluate the response at the mth
collocation point sm as

p̄(sm) = αmḠmm +
N∑

j=1,j ̸=m

αj Ḡ(sm, sj, ka) for sm ∈ Γ, (2.10a)

iρωv̄(sm) = αmH̄mm +
N∑

j=1,j ̸=m

αj H̄(sm, sj, ka,nb) for sm ∈ Γ, (2.10b)

where Ḡmm and H̄mm are defined as the OIFs of the 2.5D fundamental solutions
of Helmholtz equation. Thus, the source strengths for the Dirichlet boundary
condition can be obtained by

α = Ḡ−1p̄b, (2.11)

while for the Neumann boundary condition they can be computed as

α = H̄−1v̄b, (2.12)

where Ḡ and H̄, the latter one contains 1
iρω , are the SBM interpolation matrices,

being their diagonal terms the previously mentioned OIFs, and where α is a vector
that collects all source strengths while p̄b and v̄b are vectors that collect the
imposed boundary conditions evaluated at all collocation points.

Due to the same order of the singularities arising for small source-receiver distances



Chapter 2. 2.5D SBM methodology 19

in both fundamental solutions of Laplace and Helmholtz equations, Ḡmm and H̄mm

can be derived via the asymptotic form of the fundamental solutions of the 2D
Laplace equation when the source-receiver distance is small, as [42]

Ḡmm =


GL

mm − 1

2π

(
ln

(
ka
2

)
+ γ

)
for ka ̸= 0,

GL
mm for ka = 0,

(2.13a)

H̄mm = HL
mm, (2.13b)

where GL
mm and HL

mm are respectively the OIFs of the fundamental solutions of
2D Laplace equation and γ is the Euler constant. The detailed derivations of
Eqs. (2.13a) and (2.13b) are given in Appendix B. By using the desingularisation
provided by the SAB technique, the OIFs for the fundamental solutions of 2D
Laplace equation can be derived as [30, 32, 33]

GL
mm =

1

Lm

∫
Γs

GL(xm, sj) dΓs(s) = − 1

2π
ln

(
Lm

2π

)
, (2.14a)

HL
mm =

1

Lm

1−
N∑

j=1,j ̸=m

LjH
L(xm, sj,nb)

, (2.14b)

where Lj is the half length of the curve between the (j−1)th collocation or source
point and the (j+1)th ones, as shown in Figure 2.2. Note that, for the special case
when ka = 0, the modified Helmholtz equation reduces to the Laplace equation.
Accordingly, the chosen fundamental solutions and OIFs for this particular case
should be the ones associated to the Laplace equation.
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+2

Figure 2.2: Schematic configuration of the source points and the corresponding
Lj to the jth source. The same configuration applies for the collocation points

and the distance Lm.

2.3 Numerical results and discussions

In this section, a study of the validity and accuracy of the proposed 2.5D SBM
is presented. Two benchmark examples are used in this regard: the acoustic
radiation and wave scattering problems of an infinite cylinder. For these problems,
the proposed method is compared with the available analytical solutions as well
as three other numerical methods: the 2.5D LE-BEM, the 2.5D QE-BEM and
the 2.5D MFS approaches. Both 2.5D LE-BEM and 2.5D QE-BEM approaches
have been constructed based on OpenBEM software presented in [43]. In all
calculations, the sound wave speed has been considered to be as c = 340 m/s,
while the density of the medium adopted is ρ = 1.225 kg/m3.

Along this study, the pressure and velocity at x = 0 due to unitary harmonic
boundary conditions of the general form δ(x) eiωt are used for comparison purposes
and they can be computed from the inverse Fourier transform, corresponding to
the Fourier transform defined in Eq. (2.4), as

f0 = f (0, y, z, ω) =
1

2π

∫ +∞

−∞
f̄ (kx, y, z, ω) dkx, (2.15)

where f could represent either pressure p or velocity v fields, as before. Moreover,
the numerical accuracy is proposed to be evaluated in a set of Nt test points by



Chapter 2. 2.5D SBM methodology 21

the root mean square error (RMSE) defined as

RMSE =

√√√√ 1

Nt

Nt∑
k=1

|p0n(xk)− p0a(xk)|2√√√√ 1

Nt

Nt∑
k=1

|p0a(xk)|2
, (2.16)

where p0n(xk) and p0a(xk) are the acoustic pressures computed at the kth test
point by the numerical methods and analytical solutions, respectively.

For the implementation of the 2.5D MFS, it is also assumed the same number
of virtual sources than collocation points. Regarding both boundary element ap-
proaches, the amount of Gaussian points adopted for the integration is 8. To imple-
ment the 2.5D SBM, two scenarios are considered. In the first one, it is supposed
that the 2.5D SBM uses the exact geometrical data from the curve equation of the
boundary to determine the influence lengths Li, used to calculate the OIFs, and to
obtain the normal vectors, required for the computation of the 2.5D fundamental
solutions. To facilitate the comparisons, this method is called 2.5D SBM-EGD in
this study. In the second scenario, the 2.5D SBM utilises only the nodal geometry
data, and it is referred to as 2.5D SBM-NGD approach. Hereby, it is assumed that
the 2.5D SBM discretises the boundary to the collocation points by considering a
linear shape of the boundary between them. For the 2.5D SBM-NGD approach,
the OIFs are calculated numerically considering this approximated boundary.

2.3.1 Example 2.1. Radiation problem of an infinite pulsat-

ing cylinder

The problem under consideration in this example is the sound field generated by
an infinitely long pulsating cylinder. For this case, the analytical solution of the
induced pressure field in the wavenumber-frequency domain is [40]

p(r, ka) =
iρωvnK0 (kar)

kaK1 (kaa)
for r ≥ a, (2.17)
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where a is the radius of the cylinder, r is the distance between the evaluation point
and the cylinder axis, vn is the amplitude of the vibration velocity of the cylinder
boundary in the radial direction.

In this simulation, a cylinder of unit radius is considered and a radial pulsating
displacement of the form un(t) = δ(x)eiωt is adopted as a Neumann boundary
condition. In this boundary condition, the radial displacement is applied uniformly
in all points of the boundary. A δ(x) distribution of the boundary condition in the
longitudinal direction is selected since it is an adequate choice to verify the method
for any potential longitudinal distribution of the boundary condition. This comes
from the fact that a delta distribution δ(x) transforms into a constant spectrum
in the wavenumber domain, allowing for a verification of the method all along the
wavenumber spectrum at once. Regarding the 2.5D MFS, the auxiliary boundary
where the virtual sources are uniformly distributed is a concentric circle of radius
a− d, being d the distance between the physical and auxiliary boundaries.

To obtain the RMSE, a set of Nt = 100 test points, uniformly distributed along
the y-z plane over a circumference of radius r = 1.1 m, centred at the cylinder axis,
is adopted. Two frequencies are considered for the present RMSE analysis: 100
Hz and 2000 Hz. The pressures p0 delivered by the different methods at each test
point are computed via (2.15), in which the numerical integration is carried out by
the trapezoidal rule using a logarithmic sampling for the wavenumber with a total
amount of 28 sampling points ranging between 10−3 rad/m and a higher limit, the
latter being specifically determined for each frequency. The number of collocation
points or nodes per wavelength (referred to also as N/λ or nodes/wavelength from
now on) is varying in the range of 2− 20, where λ = 2πc/ω.

The results of the described error analysis comparing the different numerical ap-
proaches are illustrated in Figure 2.3. Overall, it can be observed that with an
increasing number of collocation points or boundary nodes at the two selected
frequencies, the error associated with each numerical method decreases. Con-
sequently, it can be stated that all methods are verified against the analytical
solution for this calculation example. Going into detail in Figure 2.3, it can be
observed that the 2.5D MFS shows the most accurate solutions among all meth-
ods, with one exception occurring at the frequency of 100 Hz when the MFS is
employed with an auxiliary boundary with d = 0.1 m. As depicted, the 2.5D MFS
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solutions are sensitive to the placement of the fictitious boundary and only using
the optimal fictitious boundary leads to much higher accuracy for all N/λ values
considered. Comparing the results obtained from the 2.5D SBM and the 2.5D
BEM, it is found that the 2.5D SBM-NGD presents a higher numerical accur-
acy than the 2.5D LE-BEM. On the other hand, the 2.5D SBM-EGD converges
rapidly, in this particular case, to the analytical solution. Thus, it can be ob-
served that the 2.5D SBM-EGD shows more accuracy than the 2.5D QE-BEM at
the frequency of 2000 Hz for N/λ > 6. However, this situation is reversed when
considering the 2.5D SBM-NGD, which delivers solutions with less accuracy than
the 2.5D QE-BEM. The results obtained indicate how strongly the accuracy of
the SBM solutions is affected by the exact or the approximated definitions of the
boundary shape. This conclusion is specially relevant to denote the strong effect
that the uncertainty of the geometrical definition of the boundary has over the
accuracy of the proposed method. This is of special importance in the application
of the proposed scheme to real engineering problems, which retain an inherent
uncertainty on the parametric definition of boundary geometries.
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Figure 2.3: RMSE analysis of the different methods considered for the radi-
ation problem of an infinite pulsating cylinder obtained at the frequencies of (a)
100 Hz and (b) 2000 Hz. The corresponding upper limit of the wavenumber
sampling considered for integration at the frequency of 100 Hz is 10 rad/m. At

the frequency of 2000 Hz, the corresponding higher limit is 60 rad/m.
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2.3.2 Example 2.2. Wave scattering problem of an infinite

cylinder

In this case, the scattering problem of an infinite cylinder subjected to an incident
plane wave of the form δ(x)eikyeiωt propagating along the horizontal direction y is
considered. The analytical solution of the scattering field is [44]

p(r, θ) = − J ′
0 (kaa)

H ′
0 (kaa)

H
(1)
0 (kar)− 2

∞∑
n=1

in
J ′
n (kaa)

H ′
n (kaa)

H(1)
n (kar) cosnθ

for r ≥ a, 0 ≤ θ ≤ 2π,

(2.18)

where (r, θ) represents the location of the evaluation point in the polar coordinate
system, Jn is the Bessel function of the order n, H(1)

n is the Hankel function of the
first kind of order n and the prime denotes their differentiation with respect to
its argument. As before, a cylinder of unit radius has been considered. As in the
previous example, the analysis is done for the frequencies of 100 Hz and 2000 Hz.
The analytical solution is calculated by using 150 terms for the series appearing
in (2.18), which ensures double precision accuracy.

Figure 2.4 displays the results of the RMSE analysis for the wave scattering prob-
lem under consideration and for the different numerical methods studied. The
same set of test points presented in the previous example is also adopted here. The
results illustrate that, at both frequencies selected, the 2.5D MFS approach con-
sistently shows the most accurate performance, expect when its auxiliary boundary
is positioned at a distance of d = 0.1 m. However, the method strongly relies on
an optimal placement of the fictitious boundary, specially at low N/λ. All the
other methods stably converge to the analytical solution by increasing N/λ. Com-
paring the 2.5D SBM and 2.5D BEM approaches, it can be observed that, at the
frequency of 100 Hz, similar to Example 1, the 2.5D SBM-NGD competes with
the accuracy levels of the 2.5D LE-BEM under the same N/λ. For this frequency,
these two methods are delivering errors one or two orders of magnitude higher
than the 2.5D QE-BEM at large N/λ. For this problem, as seen in the previous
example, the 2.5D QE-BEM shows higher accuracy than the 2.5D SBM-EGD as
N/λ increase. On the other hand, at the frequency of 2000 Hz different trends
are observed. As N/λ increase, the 2.5D SBM-NGD shows a numerical accuracy
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one or two orders of magnitude better than the 2.5D LE-BEM. The 2.5D SBM-
NGD also delivers more accurate solutions than the 2.5D QE-BEM at N/λ ≤ 6,
a behaviour not observed in Example 1. In contrast to the behaviour observed in
Example 1, the 2.5D SBM-EGD exhibits lower accuracy than the 2.5D QE-BEM
when N/λ > 6.
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Figure 2.4: RMSE analysis of the different methods considered for the scat-
tering problem of an infinite cylinder obtained at the frequencies of (a) 100 Hz
and (b) 2000 Hz. The corresponding upper limit of the wavenumber sampling
considered for integration at the frequency of 100 Hz is 1.8 rad/m. At the fre-

quency of 2000 Hz, the corresponding higher limit is 36.9 rad/m.

2.4 Conclusions

This chapter presents a 2.5D SBM approach for the simulation of acoustic ra-
diation and scattering problems in the framework of longitudinally infinite and
invariant structures. The method determines the OIFs associated with the 2.5D
fundamental solutions of the Helmholtz equation by means of the OIFs of the
fundamental solutions of the Laplace equation, taking advantage of the same sin-
gularity order in both fundamental solutions. These OIFs are derived by applying
a desingularisation procedure based on the SAB technique. The proposed 2.5D
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SBM has been implemented considering two different calculation scenarios of the
influence lengths and unit normals. The first scenario is considering the exact
shape equation of the boundary while the second one performs a nodal-based
approximation, being these methods referred to as the 2.5D SBM-EGD and the
2.5D SBM-NGD, respectively. The feasibility and accuracy of the present schemes
are studied through two benchmark examples: the acoustic radiation and wave
scattering problems of an infinitely long cylinder. In order to make a detailed as-
sessment of the proposed 2.5D SBM schemes, the available analytical solutions and
other numerical methodologies including the 2.5D MFS and the 2.5D BEM with
linear and quadratic elements are employed and compared in terms of numerical
accuracy and computational efficiency.

The detailed comparison performed demonstrates the validity and accuracy of the
present 2.5D SBM schemes. As a newfound conclusion, it is indicated that the 2.5D
SBM-NGD provides higher numerical accuracy compared to the 2.5D LE-BEM but
lower than the 2.5D QE-BEM. On the other hand, the 2.5D SBM-EGD consistently
delivers higher accuracy levels compared to the 2.5D LE-BEM across all scenarios.
It also competes with the accuracy levels of the 2.5D QE-BEM at high frequencies
being the scattering problem a case where the 2.5D SBM-EGD is not reaching
the quadratic BEM performance at N/λ>6. It is worth noting that, although the
2.5D MFS performs the most accurate results in the circular domain examples, its
solutions are highly sensitive to the optimal placement of the fictitious boundary,
demonstrating the robustness issues of that method with respect to the other
ones studied. It should be highlighted that the numerical accuracy of the 2.5D
SBM solutions is intensely affected by the exact or approximated definitions of
the boundary shape. The results indicate that choosing the approximate nodal
data of the boundary over its exact one significantly reduces the accuracy and
convergence trend of the 2.5D SBM. This is particularly crucial when applying
the proposed scheme to real engineering problems, where accurately defining the
boundary geometry poses a significant challenge, prompting a preference for the
approximated boundary definition.

In terms of computational efficiency, the present 2.5D SBM schemes inherits vari-
ous advantages with respect to the former methods. Due to its meshless nature,
the proposed 2.5D SBM scheme performs more efficiently than equivalent 2.5D
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BEM approaches thanks to avoiding two procedures: the construction of a bound-
ary mesh and the sophisticated numerical integration over the singularities that
BEM approaches normally carry out. Furthermore, the method is found to be
more robust than the 2.5D MFS, since it does not need to deal with the trouble-
some placement of the fictitious boundary which is revealed to be a complex and
time-consuming procedure especially in the case of irregular boundary geometries.

Overall, the 2.5D SBM is an accurate and computationally fast numerical method
and it is suggested as a potential alternative to other available 2.5D numerical
methods for acoustic analysis.



Chapter 3

Application of the 2.5D singular

boundary method for assessing the

acoustic performance of thin

barriers

This chapter is mainly dedicated to investigate the applicability and feasibility
of the proposed 2.5D SBM approach, outlined in Chapter 2, to address practical
engineering problems regarding to the propagation of acoustic waves in unboun-
ded domains. Specifically, this chapter focuses on studying the problem of point
source diffraction in the presence of thin noise barriers. To tackle this particular
problem, the proposed 2.5D SBM is implemented considering a half-space medium
instead of a fully unbounded one. The investigation is conducted for two distinct
scenarios: the first involves a non-moving source, while the second scenario deals
with a moving source problem. Furthermore, the chapter presents a study on
the potential use of noise-absorbing materials combined with the barrier, which
are introduced by imposing acoustic absorption boundary conditions within the
framework of the developed 2.5D SBM approach.

The chapter is organised as follows. In Section 3.1, a brief literature overview of the
importance of the barrier utilisation in reduction of noise pollution, along with the
numerical strategies to simulate this sort of problems are presented. Section 3.2

28
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outlines the mathematical formulation of the proposed 2.5D SBM approach when
dealing with half-space problems. Based on this formulation, the acoustic response
due to non-moving and moving sources is derived. Section 3.3 discusses the nu-
merical results of the simulations conducted, including non-moving and moving
source scenarios, subsequently. Finally, the chapter ends in Section 3.4, providing
key insights drawn from the earlier discussions.
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3.1 Introduction

Nowadays, due to the extensive construction of roadways, railways, and mass
rapid transit systems worldwide, many developed cities and metropolitan areas
are encountering problems related to inevitable proximity of roads and rail tracks
to residential areas. A prominent issue arising from this proximity is the noise
generated by the passage of vehicles and trains, whereby airborne noise travels
through the air and impacts nearby buildings. Consequently, traffic noise pollu-
tion is being emerged as a critical urban sustainability concern that significantly
influences human health and, overall, quality of life. Within this context, there
is a growing emphasis on devising effective strategies to mitigate noise resulting
from traffic. Scientific community and technical research are increasingly focusing
on this matter, leading to the proposal of various practical solutions. One such
approach involves the installation of barriers placed between the noise source and
the nearby buildings, which is one of the most common protection solutions used
against traffic noise pollution.

In recent years, many empirical and numerical methods have been employed to
evaluate the effectiveness of sound barriers in reducing noise levels. Among these
methods, the BEM has gained widespread utilisation for achieving this objective.
This preference for the BEM stands up from its capability to efficiently analyse
acoustic barriers characterised by intricate shapes and complex boundary condi-
tions. Duhamel [45] employed the BEM to calculate the sound pressure distri-
bution around a longitudinally invariant noise barrier with arbitrary cross-section
and, through this approach, a comparison was presented to assess the effectiveness
of barriers with different cross-sectional shapes. Ishizuka and Fujiwara [46] con-
ducted experiments to assess the effectiveness of road traffic noise barriers with
different shapes and surface characteristics, employing the BEM in a 2D frame-
work. Their findings demonstrated that incorporating absorbing and soft edges
significantly enhances the barrier efficiency. However, it is found that barrier shape
modifications result in a slight improvement in efficiency. The BEM, formulated in
the a 2.5D framework, has also been employed for simulating problems related to
3D acoustic wave diffraction by barriers [47, 48]. The concept of the dual BEM, a
formulation that combines both standard and hyper-singular integral equations to
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deal with radiation and scattering problems involving thin bodies, has been pro-
posed to evaluate the acoustic effectiveness of thin noise barriers [49, 50]. More
recently, some investigations have employed isogeometric analysis (IGA) in the
context of the BEM, introducing the IGA-BEM strategy. This approach has been
utilised to study the shape optimisation of acoustic barriers, offering notable ad-
vantages by overcoming the challenges associated with time-consuming meshing
and re-meshing strategies during the optimisation process [51, 52].

In the last years, meshless methods have been employed alongside the BEM to
tackle problems related to acoustic barriers. Various investigations have discussed
the potential of the MFS to address problems involving barriers. Costa et al. [53]
applied the MFS to assess the acoustic behaviour of thin T-shaped barriers. The
model was developed by employing appropriate Green’s functions, derived from
the image-source technique, which enable limiting the number of discretised sur-
faces and reducing the computational cost associated with the model. Veloso et
al. [54] employed the MFS to evaluate the effectiveness of noise barriers based on
the concept of periodic metamaterials, in this case implemented with cylinders
covered by porous and granular materials. The periodic fundamental solutions
were introduced in the context of the proposed MFS model to impose the peri-
odicity characteristics of the resulting acoustic field. Martins et al. [55] proposed
the application of the MFS to evaluate the insertion loss provided by sonic crys-
tal barriers when mitigating traffic noise in a 2D simulation context. The results
obtained show that the MFS is particularly well suited to the requirements of the
problem, largely due to the geometric characteristics of the circular shaped bar-
riers employed, showing clear advantages regarding discretisation procedures and
computational efficiency, when compared to BEM- and FEM-based approaches.
Godinho et al. [56] proposed to combine the MFS with an adaptive-cross approx-
imation (ACA) strategy introducing an effective ACA–MFS technique in order to
efficiently analyse very large sonic crystal barriers, which can incorporate several
hundreds of scatterers. Although previous studies have demonstrated the efficiency
of MFS when dealing with noise barrier-related problems, it is also known that
the method requires modification strategies to manage the complexity of barrier
geometries.
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Aside the MFS, the SBM has also been found as a promising meshless alternat-
ive strategy for the numerical simulation of problems related to sound barriers.
However, due to its recent development, there are relatively few studies in the
literature that explore its applicability to noise barrier-related problems. Wei et
al. [41] employed the 2.5D SBM to solve the problem of point source diffraction in
the presence of a T-shaped thin barrier. Their numerical results show the distinct
advantages of the 2.5D SBM, including its formulation simplicity and the reduc-
tion of computer memory needs, in comparison to the 3D FEM and 3D SBM.
In another study, Wei et al. [57] applied the 2.5D SBM in conjunction with the
direct differentiation method (DDM) as a method to develop acoustic sensitivity
analysis for the scattering problem of a rigid T-shaped barrier. The numerical
experiments demonstrate that the proposed 2.5D SBM-DDM is able to obtain the
accurate pressure sensitivities with less CPU time and memory compared with
numerical methods formulated in a 3D framework, including the 3D FEM and 3D
SBM. Recently, Liu and Wang [58] has proposed a novel SBM-based technique, in
a 2D framework, for the thickness optimisation of porous materials distributed on
sound barriers. In the proposed scheme, the Burton–Miller-type SBM is utilised to
simulate the external sound field problem, while the method of moving asymptotes
is employed to solve the corresponding optimisation problem. Numerical simula-
tions were conducted for two case studies, involving T-shaped and Y-shaped sound
barriers. The results show a good agreement between the proposed algorithm and
a 2D FEM, indicating the reliability and effectiveness of this novel approach.

Nevertheless, the SBM encounters fully populated coefficient matrix in mid-high
frequency 3D acoustic problems, demanding at least six discretisation points per
wavelength to deliver accurate solution [5, 59] and resulting in huge computational
costs when dealing with complex/large systems arising in engineering applications.
Despite the advantage of discretisation simplicity and that no integration along
the boundary is required, the SBM is still computationally expensive when sim-
ulating problems of this type. When the problem in hands can be approximated
to a longitudinally invariant system, 2.5D schemes are the ideal choice to save
computational effort. This is the case of the acoustic performance of noise bar-
riers, a problem that can be naturally handled with 2.5D strategy. In this context,
this chapter specifically investigates the applicability of the 2.5D SBM approach,



Chapter 3. Application of the 2.5D SBM approach 33

presented in the previous chapter, for modelling the problem of acoustic point
source diffraction in the presence of noise thin barriers. To tackle this problem,
the proposed 2.5D SBM approach has been adapted to account for a half-space
acoustic medium instead of an entirely unbounded one by using the corresponding
fundamental solutions based on the image-source technique. Two specific point
source are investigated in the analyses: the first one considers a stationary sound
source, while the second deals with a moving one. Moreover, this study further in-
vestigates the feasibility of using noise-absorbing materials distributed on barriers
which involves imposing acoustic absorption boundary conditions in the context
of the developed 2.5D SBM approach.

3.2 Mathematical formulation

3.2.1 Problem specification

Let’s consider the problem of acoustic wave propagation in a 3D homogeneous
isotropic medium Ω, extended infinitely along the x direction, in the presence of
a thin barrier situated above an infinite plane ground, as illustrated in Figure 3.1.
For this problem, when the system equations are transformed into the 2.5D do-
main, as described in Section 2.2.1, the representation of the pressure field in the
wavenumber-frequency domain is obtained through the 2D modified Helmholtz
equation as

∇2p̄(x)− k2
a p̄(x) = 0 for x ∈ Ω. (3.1)

Due to the nature of the problem described, employing half-space fundamental
solutions to model the unbounded domain is more adequate than using full-space
ones since they naturally handle the ground surface. Using these fundamental
solutions, the ground is treated as an infinite plane on which the sound waves are
reflected. Half-space fundamental solutions can be derived using the image-source
technique. When the ground is assumed to be perfectly reflecting, an hypothesis
adopted here, the mirrored source is equal to the original one. Thus, by introducing
an image source mirrored relative to the horizontal axis y, as depicted in Figure 3.2,
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the associated 2.5D fundamental solutions for addressing such scenarios can be
represented as

Ḡ(x, s, ka) =


1

2π

(
K0(kar) +K0(kar

′)
)

for ka ̸= 0,

− 1

2π

(
ln(r) + ln(r′)

)
for ka = 0,

(3.2a)

H̄(x, s, ka,nx) =


− ka
2π

(
K1(kar) +K1(kar

′)
) ∂r

∂nx

for ka ̸= 0,

− 1

2π

(
1

r
+

1

r′

)
∂r

∂nx

for ka = 0,

(3.2b)

where r =
√
(x− x0)2 + (y − y0)2 and r′ =

√
(x− x0)2 + (y + y0)2.

Figure 3.1: Geometry of the problem under consideration.

Figure 3.2: Illustrative representation of the image-source technique employed
in half-space domain problems.
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The incident wave field at the barrier due to the external harmonic pressure source
positioned at x0 should also be determined using the half-space fundamental solu-
tions. Thus, accounting for a perfectly reflecting ground, the incident pressure
field in wavenumber-frequency domain at any arbitrary point x can be given by

p̄inc (x,x0) =
i
4

(
H

(1)
0 (kar) +H

(1)
0

(
kar

′)) . (3.3)

For the above-stated problem, three different boundary conditions for the barrier
free surfaces are usually considered:

1. A soft barrier. This is the Dirichlet boundary condition where the total
pressure is zero at the boundary. It should be pointed out that the soft
surface represents ideal conditions and no practical materials are presenting
these conditions over the whole frequency range.

2. A hard barrier. This is the Neumann boundary condition where the normal
component of the particle velocity is zero at the boundary.

3. An absorbing barrier. This is the Robin boundary condition that can be
used to model barriers that included absorbing materials at their surfaces.

The Dirichlet, Neumann and Robin boundary conditions can be represented in the
wavenumber-frequency domain as

p̄tot(x) = p̄inc(x) + p̄dif(x) = 0 for x ∈ Γ,

p̄dif(x) = −p̄inc(x) = p̄b(x) for x ∈ Γ,
(3.4)

∂p̄tot(x)

∂nb

=
∂p̄inc(x)

∂nb

+
∂p̄dif(x)

∂nb

= 0 for x ∈ Γ,

∂p̄dif(x)

∂nb

= −∂p̄inc(x)

∂nb

= iρωv̄b(x) for x ∈ Γ,

(3.5)
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∂p̄tot(x)

∂nb

+ iZp̄tot(x) = 0 for x ∈ Γ,(
∂p̄inc(x)

∂nb

+
∂p̄dif(x)

∂nb

)
+ iZ

(
p̄inc(x) + p̄dif(x)

)
= 0 for x ∈ Γ,

∂p̄dif(x)

∂nb

+ iZp̄dif(x) = −∂p̄inc(x)

∂nb

− iZp̄inc(x) = iρωv̄b(x) + iZp̄b(x) for x ∈ Γ,

(3.6)

respectively, where p̄tot and p̄dif denote the total pressure field and the diffracted
pressure field, respectively, and Z represents the surface impedance parameter
which relates the boundary conditions as

Z =
p̄b(x)

v̄b(x)
for x ∈ Γ. (3.7)

3.2.2 2.5D SBM for half-space medium

The previously proposed 2.5D SBM, detailed in Chapter 2, is now applied to solve
the above-specified problem. A general representation of the 2.5D SBM approach
utilised for this problem is schematically illustrated in Figure 3.3.

s 

Figure 3.3: Schematic representation of the 2.5D SBM approach adopted with
an example of collocation and source points distributions. Collocation points are
denoted by brown solid dots while virtual sources are indicated by red circles.

Thus, the system responses including acoustic pressure and particle velocity can
be obtained using Eqs. (2.7a) and (2.7b), respectively, taking into account that
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the half-space 2.5D fundamental solutions specified in Eqs. (3.2a) and (3.2b)
are replacing with the full-space ones. Note that the calculation of unknown
source strengths and associated OIFs for the cases with the Dirichlet and Neu-
mann boundary conditions in the current half-space problem follows the same
procedures outlined in the previous chapter. However, for scenarios involving the
Robin boundary condition, a combination of the Dirichlet and Neumann boundary
conditions must be established for the relevant collocation points, resulting in

iρωv̄(sm) + iZp̄(sm) = αm

(
iZḠmm + H̄mm

)
+

N∑
j=1,j ̸=m

αj

[
iZḠ(sm, sj, ka) + H̄(sm, sj, ka,nb)

]
for sm ∈ Γ.

(3.8)

Consequently, the source strengths when the Robin boundary condition is imposed
can be obtained as

α =

(
Z

ρω
Ḡ+ H̄

)−1(
Z

ρω
p̄b + v̄b

)
, (3.9)

note that within the matrix H̄, (iρω)−1 is incorporated.

3.2.3 Moving sources

In the previous sections, the mathematical expressions describing the acoustic
responses of the system in the wavenumber-frequency domain were presented.
This formulation allows for obtaining the response of the system due to sources
with any time and longitudinal space distributions. Specifically, moving sources
can be naturally handled in this domain. In this section, the formulation of the
pressure field response around the barrier due to the action of a moving source in
the longitudinal direction is presented in the basis of the wavenumber-frequency
domain responses obtained with the proposed 2.5D SBM.

The wave equation for the sound pressure field in the time domain produced by a
source moving along the longitudinal direction can be mathematically expressed
as

∇2p (x, t)− 1

c2
∂2p (x, t)

∂t2
= s(t) δ

(
x− x0(t)

)
for x ∈ Ω, (3.10)
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where p (x, t) is the acoustic pressure evaluated at a generic point x in space and
time t and where x0 = {x0(t), y0, z0}T denotes the position of the source, which
has an amplitude of s(t). Taking into account the longitudinal invariance of the
system, a double Fourier transform can be applied on Eq. (3.10), leading to

∇2p̄ (kx, y, z, ω)− ka p̄ (kx, y, z, ω) =

=

∫ ∞

−∞

∫ ∞

−∞
s(t)δ

(
x− x0(t)

)
e−iωteikxxdxdt

=

(∫ ∞

−∞

∫ ∞

−∞
s(t)δ

(
x− x0(t)

)
eikxxe−iωtdxdt

)
δ (y − y0) δ (z − z0)

= S (kx, ω) δ (y − y0) δ (z − z0) ,

(3.11)

where

S (kx, ω) =

∫ ∞

−∞
s(t) eikxx0(t) e−iωt dt. (3.12)

By applying a double inverse Fourier transform over ω, the time domain signal of
the pressure recorded at the receiver can be obtained as

p (x, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
S (kx, ω) q (kx, y, z, ω) e−ikxx eiωtdkxdω, (3.13)

where q (kx, y, z, ω) = q (y, z, ka) is the pressure response in the wavenumber-
frequency domain due to a source of the form δ (y − y0) δ (z − z0) eiωte−ikxx that
can be obtained as described in previous sections.

Let’s consider a scenario of uniform motion with a constant speed U, described by
the expression x0(t) = x0 + Ut. Thus, Eq. (3.12) can be rewritten as

S (kx, ω) =

∫ ∞

−∞
s(t) eikx(x0+Ut) e−iωt dt = eikxx0 ŝ (ω − kxU) . (3.14)

where ŝ denotes the Fourier transform of s from time to frequency domain. The
speed of the source induces a frequency shift, known as the Doppler effect. Con-
sequently, the pressure can be expressed as

p (x, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−kxx0 ŝ (ω − kxU) q (y, z, ka) e−ikxx eiωt dkxdω. (3.15)
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For a harmonic source with a unit amplitude pulsating at the angular frequency
ω0, the source signal is expressed as s(t) = cos(ω0t) = Re(eiω0t). It can be demon-
strated that the response to this source can be obtained by adopting s(t) = eiω0t

and taking the real part of the resulting response. Consequently, the response to
the considered harmonic source can be written from Eq. (3.15) as

p (x, t) = Re

[
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−kxx0δ (ω − ω0 − kxU) q (y, z, ka) e−ikxx eiωt dkxdω

]

= Re

eiω0t

2π

∫ ∞

−∞
eikx(x0+U−x) q

y, z,

√(
ω0 + kxU

c

)2

− kx
2

 dkx

 ,

(3.16)

where the time evolution of response amplitude can be simply written as

A(t) =
1

2π
Re

∫ ∞

−∞
eikx(x0+U−x) q

y, z,

√(
ω0 + kxU

c

)2

− kx
2

 dkx

 . (3.17)

3.3 Numerical results and discussion

In this section, a study on the feasibility of the proposed 2.5D SBM to solve
practical acoustic scenarios involving noise barriers in the context of road and
rail transport applications is presented. In this respect, the proposed method
is employed to analyse the problem of a point source diffraction in the presence
of a noise thin barrier. Figure 3.4 illustrates a schematic configuration of the
problem currently under investigation. In this analysis, a straight-wall barrier of
2 m height having a uniform thickness of 0.1 m located over a rigid ground is
considered. The base of the barrier is located at the origin of coordinates and its
geometry is assumed to be constant along the x direction. To study the problem
of non-moving source diffraction on the barrier, a point source is located at the
position (0, 2, 0.5) m and the pressure is calculated at a receiver positioned at
(0,−2, 0.5) m.



Chapter 3. Application of the 2.5D SBM approach 40

0, 0, 

Figure 3.4: Schematic sketch depicting the straight-wall noise barrier, the
acoustic point source under consideration, and the selected receiver point.

Considering the potential utilisation of the barrier composed of various mater-
ials, this analysis also studies the influence of different material impedances on
the acoustic response of the barrier. To preserve the generality of the develop-
ments, the material impedance can be characterised using the absorption coeffi-
cient (α), taking into account pr = Rpinc and vr = Rvinc, where R is determined
by R =

√
1− α. Here, R represents the reflection coefficient, pr and pinc denote

the reflected pressure and incident pressure, respectively, and vr and vinc corres-
pond to the reflected velocity and incident velocity, respectively. In other words,
the material impedance (Z) can be expressed as [55, 60]

Z =
pinc +Rpinc

vinc +Rvinc
=

pinc

vinc

(
1 +

√
1− α

1−
√
1− α

)
= ρc

(
1 +

√
1− α

1−
√
1− α

)
. (3.18)

The analysis is conducted for various values of α, including α = 0 which corres-
ponds to the scenario of a totally rigid barrier, as well as α = 0.1, 0.3 and 0.5.
For cases where α ̸= 0, the calculations are carried out considering the Robin
boundary condition at the barrier boundary.

In order to implement the 2.5D SBM method for this problem, a total of 168 col-
location points, uniformly distributed along the barrier boundary, are considered.
Moreover, a set of source points is positioned to coincide entirely with the colloc-
ation points. Furthermore, the 2.5D QE-BEM is used as the reference model. In
this evaluation, the 2.5D QE-BEM is employed with a very dense mesh considering
N/λ = 100. This quite large density selection was made to guarantee a reference
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solution capable of providing highly accurate results. The calculations have been
conducted at two selected frequencies considering that the source pulsates at 200
Hz in the first case and 500 Hz in the second one.

Figure 3.5 displays the results obtained for the pressure amplitude at different
longitudinal positions for the scenario where α = 0, representing a totally rigid
barrier under investigation. It can be observed, in a general point of view, that
the proposed 2.5D SBM exhibits a good agreement with the reference solution,
the 2.5D QE-BEM, across the two selected frequencies. Considering a scenario
without presence of the barrier, it is also interesting to note that the addition of
the barrier results in a significant decrease in pressure level at receiver.
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Figure 3.5: Sound pressure at the receiver point calculated by the 2.5D QE-
BEM (solid blue line) and the proposed 2.5D SBM (dashed black line) at the
frequencies of (a) 200 Hz and (b) 500 Hz, for the case when α = 0. Solid gray

lines depict results obtained when the barrier is not taken into account.

In Figure 3.6, which presents the results delivered by the 2.5D SBM for various
sound absorption coefficients at the selected frequencies, a noticeable trend is
found. As the sound absorption coefficient increases, the pressure levels at the
receiver decrease steadily. Indeed, considering the results for the higher absorption
coefficient i.e. α = 0.5, it can be seen that lowest sound pressure levels are
computed, which demonstrates a remarkable improvement when compared with
the results computed for α = 0. Similar trends have been documented in prior
studies addressing barriers made of diverse materials [53, 55].



Chapter 3. Application of the 2.5D SBM approach 42

-100 -75 -50 -25 0 25 50 75 100
x (m)

0

2

4

6

8

|p
| 
(P

a
)

10
-3 (a)

 = 0

 = 0.1

 = 0.3

 = 0.5

-100 -75 -50 -25 0 25 50 75 100
x (m)

0

2

4

6

8

|p
| 
(P

a
)

10
-3 (b)

 = 0

 = 0.1

 = 0.3

 = 0.5

Figure 3.6: Pressure at the receiver calculated by the proposed 2.5D SBM for
various values of the sound absorption coefficient at the frequencies of (a) 200

Hz and (b) 500 Hz.

In the following, the previous study is extended to the case of a moving source,
wherein the source point moves longitudinally, in parallel with the barrier. In this
context, it becomes particularly interesting to present and discuss the results in
the temporal domain. Hereby, it is supposed that the source speed is constant,
having a position that is a function of the time as (x0 + Ut, 2, 0.5) m, while the
pressure is being calculated at the receiver point. The calculations have been done
considering two selected speeds of the source: 50 m/s and 100 m/s, and, again,
taking into account a monopole source pulsating at 200 Hz in one case and and
500 Hz in the second one, at each speed. In all considered scenarios, it is presumed
that the source is at x = 0 at t = 0. Thus, the source is at the same longitudinal
position as the receiver at this moment. The source strength can be written as
s(t) = cos(ω0t). At the receiver point, the acoustic pressure response induced by
this source is characterised by Eq. (3.16). To avoid excessive complexity in the
figures that subsequently present the results, the amplitude A(t) of the pressure
time histories defined in Eq. (3.17) is chosen to illustrate the response.

Results for a rigid barrier, i.e. α = 0, computed by the proposed 2.5D SBM is
presented in Figure 3.7. From a general perspective, one can observe different
behaviours for negative and positive times, induced by the Doppler effect. Note
that the Doppler effect becomes stronger when the source travels at a speed of 100
m/s, compared to the case when the source moves at a speed of 50 m/s. Conversely,
when the source moves at 100 m/s, the transient signal gets compressed compared
to the one associated with 50 m/s, resulting in a correspondingly higher perceived
frequency. When comparing the results obtained at the two selected frequencies, it
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is seen that the barrier attenuation effect is more stronger for the source pulsating
at 500 Hz compared to that at 200 Hz.
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Figure 3.7: Amplitude of the pressure time history at the receiver point cal-
culated by the proposed 2.5D SBM at the frequencies of (a) 200 Hz and (b) 500
Hz and at the speeds of (i) 50 m/s and (ii) 100 m/s, for the case of a totally
rigid barrier. Solid gray lines depict pressures obtained when the barrier is not

taken into account.

In Figure 3.8, a comparison is depicted, illustrating the pressure time histories
recorded at the receiver in two scenarios: one with a totally rigid barrier and the
other with a barrier featuring a sound absorption coefficient of α = 0.3. The results
have been computed using the 2.5D SBM, adopted with an imposed Neumann
boundary condition when α = 0 and with a Robin boundary condition when
α = 0.3. It is seen from Figure 3.8 that a greater reduction in sound pressure level
is achieved when the barrier is enhanced with sound absorption materials.



Chapter 3. Application of the 2.5D SBM approach 44

-0.5 -0.25 0 0.25 0.5
Time (s)

-0.01

-0.005

0

0.005

0.01

 p
 (

P
a

)

(a-i)

-0.5 -0.25 0 0.25 0.5
Time (s)

-0.01

-0.005

0

0.005

0.01

 p
 (

P
a

)

(a-ii)

-0.5 -0.25 0 0.25 0.5
Time (s)

-0.01

-0.005

0

0.005

0.01

 p
 (

P
a

)

(b-i)

-0.5 -0.25 0 0.25 0.5
Time (s)

-0.01

-0.005

0

0.005

0.01

 p
 (

P
a

)

(b-ii)

Figure 3.8: Amplitude of the pressure time history at the receiver point cal-
culated by the proposed 2.5D SBM at the frequencies of (a) 200 Hz and (b) 500
Hz and at the speeds of (i) 50 m/s and (ii) 100 m/s, in the presence of a totally
rigid barrier (solid black lines) and when a barrier with absorption coefficient of

α = 0.3 is considered (dashed green lines).

3.4 Conclusions

This chapter has particularly focused on investigating the applicability and ef-
fectiveness of the proposed 2.5D SBM approach for addressing real and practical
engineering noise wave propagation problems. In this regard, the method has been
specifically utilised to analyse the problem of point source diffraction in the pres-
ence of a thin barrier. This problem is of considerable importance in the context
of mitigating noise pollution, particularly concerning road and rail transportation
systems.

In order to analyse this particular problem, the proposed 2.5D SBM was imple-
mented considering the medium to be a half-space instead of a fully unbounded
medium. To do so, the image-source technique is employed to account for a totally
reflecting plane surface representing the ground surface. The 2.5D SBM allows for
converting the original 3D problem into a combination of 2D problems in which the
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barrier boundary is defined by just a line. This, combined with the computational
benefits of the SBM offers an efficient evaluation of the noise mitigation induced
by barriers with constant cross-sections, compared to the former state-of-the-art
strategies. In this context, two distinct scenarios have been studied: the case
where the source is harmonic but remains at the same position and the case where
the harmonic source is moving, at a constant speed, in the longitudinal direction.
Obtained results showed that the method is giving similar responses to a densely
meshed implementation of the 2.5D QE-BEM, demonstrating a satisfactory agree-
ment between these methods. Particularly, the results show the expected strong
Doppler effect observed when the source travels at higher velocities. Additionally,
it is observed that the barrier attenuation effect is more stronger at higher fre-
quencies and when absorbing boundaries are included, being these results in line,
again, with previous numerical and experimental studies on the topic.



Chapter 4

A novel hybrid SBM-MFS

methodology for acoustic wave

propagation problems

In this chapter, a novel hybrid meshless approach that combines the SBM and the
MFS to deal with 2D exterior acoustic wave propagation problems is proposed and
studied. The methodology is particularly devised to solve problems with complex
boundary geometries containing geometric singularities such as corners and sharp
edges. It employs the SBM to model intricate segments of these geometries and
the MFS for the smooth ones. The proposed hybrid SBM-MFS method is studied
in a 2D context in the framework of three benchmark examples involving acous-
tic radiation problems of circular-, square- and L-shaped objects in a full-space
acoustic medium. In addition, the applicability of the proposed hybrid SBM-MFS
methodology to predict the acoustic performance of a T-shaped thin barrier is
also investigated. These examples are specifically designed to assess the feasibil-
ity, validity and accuracy of the hybrid SBM-MFS approach in comparison with
the available analytical solutions and alternative numerical strategies such as the
MFS, the SBM and the BEM.

This chapter is organised as follows: In Section 4.1, a brief overview of modifica-
tion techniques employed in the context of the SBM, MFS and BEM approaches to
tackle problems involving geometric singularities along the boundary is provided.

46
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Section 4.2 presents the proposed formulation of the novel hybrid SBM-MFS me-
thod. Section 4.3 lays on an assessment of the validity and accuracy of the proposed
methods in the context of the three benchmark examples involving the acoustic
radiation problems. In Section 4.4, the applicability of the proposed method ad-
dressing the problem of acoustic line source diffraction through a T-shaped thin
barrier is investigated. Finally, Section 4.5 concludes this chapter with the most
important findings extracted from the conducted numerical analyses.
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4.1 Introduction

Problems related to acoustic wave propagation radiated or scattered by structures
with complex geometries need to be solved in many practical engineering applic-
ations. One of the major difficulties in these problems is how to accurately deal
with geometrical singularities when sharp edges and/or corners are present on
the boundary of the structure involved. Analytical methods are mostly restricted
for simple geometries, such as circular cylinders and spheres and, therefore, they
are generally not suitable for problems involving complex geometries, since exact
solutions are not typically available for many of these cases. As an alternative
approach, the BEM has been extensively employed for studying the radiation and
scattering of sound when dealing with complex geometries of the boundary. How-
ever, it is widely acknowledged that the classical BEM exhibits a significant loss of
accuracy when dealing with boundary geometrical singularities. This is primarily
attributed to the discontinuity of normal vectors at these singularities [61].

In order to overcome this BEM drawback, some modification techniques or com-
plementary procedures have been suggested by various authors. In this regard,
Chen et al. [62] employed the dual BEM in order to obtain an efficient solution
of the Helmholtz equation in the presence of geometric singularities when solv-
ing time-harmonic wave problems in a membrane containing one or more fixed
edge stringers or cracks. An effective treatment for the singularities in both iso-
tropic and anisotropic 2D Helmholtz-type equations has been proposed by Marin
et al. [63], in where the standard BEM is modified by a change of variables to
account for the presence of singularities. To tackle the issues of indefinite normal
vector and discontinuity of the normal velocity at sharp edges or corners, Yan [61]
defined the normal vectors at the nodes rather than the elements. Then, instead
of using the normal velocity, the module of the velocity was proposed since it is
unique even at sharp edges and corners, ensuring that all variables in the acous-
tic boundary element method are always well-defined. Gilvey et al. [64] used an
enriched approximation for the BEM based on the asymptotic singular behaviour
of scattered fields at sharp corners that enables efficient and accurate solutions of
the Helmholtz equation in the context of wave scattering problems involving poly-
gonal obstacles. Numerical examples demonstrate that this approach is a suitable
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choice for convex scatterers and also for multiple scattering objects that give rise
to multiple reflections.

Instead of the BEM, the MFS has been found as a very popular alternative nu-
merical strategy to solve acoustic wave propagation problems featuring intric-
ate boundary geometries. Nevertheless, it’s worth noting that the classical MFS
encounters significant difficulties when handling boundary domains containing
corners or cracks, clearly stronger than the complications arising when analys-
ing this kind of geometrically complex domains with BEM. Thus, a modification
of the MFS formulation is required in order to make it applicable to such singular
problems. In this context, Marin [65] proposed a combination of the MFS and
the singularity subtraction technique (SST) to overcome this difficulty by sub-
tracting the corresponding singular functions from the original MFS solution, as
given by the asymptotic expansion of the solution near the singularity point. The
proposed MFS-SST was successfully examined for problems associated with the
Helmholtz and the modified Helmholtz equations in 2D complex domains contain-
ing edge cracks and V-notches. Antunes et al. [66] proposed an enrichment tech-
nique for the standard MFS to address Helmholtz problems occurring in domains
with corners and cracks. This technique involved incorporating an additional set
of corner-adapted non-smooth shape functions. Koochak Dezfouli et al. [67] pro-
posed a modification of the MFS to deal with geometrically complex boundaries
for which particular sources are split in several sub-sources with equal intensities.
Results obtained by using the proposed method showed a significant reduction of
the computational time and the condition number of the MFS coefficient matrix.

Although the SBM demonstrates to be more suitable to deal with geometrically
complex boundaries than MFS, it is worth noting that this method still encounters
significant challenges in delivering accurate solutions when it is applied to solve
problems involving geometrical singularities of the boundary such as corners, sharp
edges and cracks. In order to remedy this numerical issue, some studies proposed
to modify the SBM using specific techniques. In this regard, Lin et al. [68] em-
ployed the SBM in conjunction with the SST for acoustic problems to remove the
severely adverse effect of the boundary singularities on the SBM solution accuracy
and stability. Ma et al. [69] introduced an enriched SBM formulation, referred
to as the DDE-SBM, which incorporates the domain decomposition technique to
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deal with the singular behaviour of the acoustic response near cracks. The results
obtained show that the proposed DDE-SBM can accurately characterise the sin-
gular behaviour of the solution in the neighbourhood of the crack tip, providing a
simpler modelling process while ensuring both high solution accuracy and a well-
conditioned coefficient matrix. Lin et al. [70] made the first attempt to employ the
LSBM in conjunction with the Chebyshev collocation scheme (CCS), named as
the CCS-LSBM, for the numerical simulation of inhomogeneous elliptic boundary
value problems when dealing with complex geometries. The proposed CCS-LSBM
method demonstrates high accuracy and efficiency in solving problems with mixed
boundary conditions and complex computational domains.

Thus, the previous review demonstrates the availability of various techniques that
offer effective methodologies based on the MFS or the SBM to tackle problems in-
volving complex boundary geometries. However, the use of these techniques may
compromise some of the most important advantages of the MFS and the SBM,
such as their simplicity of formulation and superior computational efficiency, par-
ticularly in the case of the MFS. The present chapter proposes a novel hybrid
SBM-MFS approach for exterior acoustic problems that may preserve the ad-
vantages of the conventional MFS while also providing the ability to accurately
handle problems with complex boundary geometries, overcoming one of the most
important drawbacks of the traditional MFS. The proposed novel method ad-
opts a SBM-based approach by placing virtual sources on the physical boundary,
specifically targeting the intricate segments such as those containing sharp edges.
Meanwhile, the remaining sources are positioned on an auxiliary boundary, follow-
ing the approach suggested by the MFS. The feasibility, validity and accuracy of
the proposed method are studied in detail for three acoustic benchmark examples
in the context of an error analysis framework. The first example considers the
acoustic radiation problem of a circular object, representing a case with a smooth
boundary geometry. The second and third examples, which are specifically devised
to assess the applicability of the proposed method to deal with problems including
geometrical singularities, deal with the acoustic radiation problems of square- and
L-shaped objects, respectively. Furthermore, the applicability of the proposed hy-
brid SBM-MFS methodology to predict the acoustic performance of thin barriers
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is also investigated in this study. Numerical simulations are performed for evalu-
ating the insertion loss in a typical line source diffraction problem in the presence
of a T-shaped acoustic barrier.

4.2 Mathematical formulation

The problem under consideration is the propagation of acoustic waves in an infinite
2D homogeneous isotropic medium induced by a boundary condition on a closed
surface Γ to its corresponding exterior domain Ω. In this context, the pressure
field in the domain can be mathematically expressed in the frequency domain by
the well-known Helmholtz equation

∇2p (x) + k2 p (x) = 0 for x ∈ Ω, (4.1)

where ∇2 =
∂2

∂y2
+

∂2

∂z2
, p (x) represents the acoustic pressure at a generic point

x = {x, y}T inside the domain, k is the acoustic wavenumber, which is equal to
ω/c, ω is the angular frequency and c is the sound wave speed in the medium. For
this boundary value problem, the Dirichlet or Neumann boundary conditions are
typically prescribed as

p (x) = pb (x) for x ∈ Γ, (4.2a)

v (x) =
1

iρω
∂p (x)

∂nb

= vb (x) for x ∈ Γ, (4.2b)

respectively, where nb is the unit outward normal vector to the physical bound-
ary, pb and vb are the prescribed pressure and normal velocity at the boundary,
respectively, ρ is the medium density and i =

√
−1.

4.2.1 Hybrid SBM-MFS approach for exterior acoustic pro-

blems

In this section, a novel hybrid SBM-MFS methodology to deal with the above-
stated problem is developed and formulated. The method is particularly devised
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to be applied for arbitrary boundaries with complex geometries involving geomet-
ric singularities such as corners or sharp edges. The proposed method employs
a combination of MFS and SBM sources for which the latter ones are placed at
the intricate segments of the geometry, especially those consisting of sharp edges.
A general overview of the proposed hybrid methodology is schematically illus-
trated in Figure 4.1, where a framework example of sources and collocation points
distributions is presented. As depicted, this methodology considers a set of NC col-
location points and distributes them along the physical boundary. As mentioned,
the method adopts two different sets of virtual sources: the first set consists of NS

virtual sources positioned along the boundary, referred to as source points of the
SBM nature, while the second set contains NM virtual sources distributed outside
the computational domain on an auxiliary boundary, referred to as source points
associated to the MFS. In the present work, this virtual boundary is considered
to be a reduced scale version of the physical boundary, a common practice when
employing the MFS. As shown in Figure 4.1, j and h indices are used to iterate
over the sets of SBM and MFS sources, respectively. Thus, it is considered that
the jth virtual source is located at a position sSj and the hth virtual source at sMh .
In the following, the mathematical formulation of the described hybrid scheme is
outlined in detail.

)

   

 

 

Figure 4.1: Schematic sketch of the hybrid SBM-MFS approach. The colloc-
ation points are denoted by brown solid dots and the virtual sources associated

with the SBM and MFS are denoted by red and blue circles, respectively.
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Similarly to the MFS and SBM approaches, the proposed hybrid SBM-MFS meth-
odology is also a collocation approach that uses the single-layer fundamental solu-
tions as its kernel functions. Thus, the method estimates the acoustic responses in
the given medium through a linear combination of those single-layer fundamental
solutions of the governing differential equation, in this example represented by Eq.
(4.1). To achieve this, the method discretises the boundary conditions on the set
of collocation points and places the virtual sources within the physical boundary
and also the virtual boundary located outside the computational domain, following
the previously described scheme. The virtual sources strengths are determined by
forcing them to generate the prescribed boundary conditions at the stipulated set
of collocation points. These virtual sources can be then used to evaluate the re-
sponse in the domain. Accordingly, the proposed hybrid SBM-MFS approximates
the acoustic pressure p and particle velocity v at a generic point x in the domain
Ω by the combined response induced by the NS +NM virtual sources as

p (x) =

NS∑
j=1

αS
j G

(
x, sSj , k

)
+

NM∑
h=1

αM
h G

(
x, sMh , k

)
for x ∈ Ω, (4.3a)

iρωv (x) =
NS∑
j=1

αS
j H

(
x, sSj , k,nx

)
+

NM∑
h=1

αM
h H

(
x, sMh , k,nx

)
for x ∈ Ω,

(4.3b)

where αS
j and αM

h represent the strengths of the jth and hth virtual sources,
associated with the SBM and MFS sources, respectively, and

G (x, s, k) =
1

2π
K0 (kr) , (4.4a)

H (x, s, k,nx) =
∂G (x, s, k)

∂nx

= − k

2π
K1 (kr)

∂r

∂nx

, (4.4b)

are the 2D fundamental solutions of the sound pressure and particle velocity,
respectively, for the modified Helmholtz equation.

In the case that the problem in hands could be better modelled using a half-
space instead of a fully unbounded medium, the presence of totally reflecting
plane surface can be taken into account by utilising the image-source technique,
as described in Section 3.2.1. Thus, the corresponding fundamental solutions to
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be used in this type of problems can be written as

G (x, s, k) =
1

2π
K0 (kr) +

1

2π
K0

(
kr′
)
, (4.5a)

H(x, s, k,nx) =
∂G (x, s, k)

∂nx

=

(
− k

2π
K1 (kr)−

k

2π
K1

(
kr′
)) ∂r

∂nx

, (4.5b)

where r =
√
(x− x0)2 + (y − y0)2 and r′ =

√
(x− x0)2 + (y + y0)2.

In the MFS, there is typically a certain degree of flexibility regarding the placement
of the collocation points. However, in the SBM, they are deliberately selected to
coincide precisely with the virtual source locations. Therefore, two sets of colloc-
ation points are considered in the proposed hybrid SBM-MFS strategy: the set of
collocation points that are coincident with SBM sources and another set for the re-
maining sources. The former set consists of N s

C sources, while the latter set consists
of Nns

C sources. Moreover, it is considered that the mth collocation point coincident
with a virtual source is located at xs

m, and that the nth collocation point not coin-
cident with one is located at xns

n , as illustrated in Figure 4.1. Specifically, the whole
distribution of the collocation points can be formally defined as {x1, . . . , xNC

} =

{xs
1, . . . , xs

m, . . . , xs
Ns

C
} ∪ {xns

1 , . . . , xns
n , . . . , xns

Nns
C
}. Note that the set of col-

location points coincident with virtual sources fully corresponds to the set of SBM
sources positions as {xs

1, . . . , xs
m, . . . , xs

Ns
C
} = {sS1 , . . . , sSj , . . . , sSNS

}, express-
ing that both sets are equal and equally sorted. Noting, too, that in the particular
scenario where no SBM virtual sources are considered (NS = N s

C = 0) the hybrid
method appears to be a fully MFS. Conversely, when no MFS virtual sources are
adopted (NM = Nns

C = 0), it transitions into a fully SBM approach.

In order to determine the unknown source strengths, Eqs. (4.3a) and (4.3b) can
be transformed to evaluate the response at the collocation points located on the
boundary. In particular, to avoid the singularities of the fundamental solutions
arising when those expressions are utilised to obtain the solution on the collocation
points geometrically coincident with SBM sources, the OIFs should be included in
the expressions. Taking this into account, Eqs. (4.3a) and (4.3b) are transformed
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to different expressions depending on which is the targeted collocation point, as

p (xs
m) = αS

m Gmm +

NS∑
j=1,j ̸=m

αS
j G

(
xs
m, s

S
j , k
)
+

NM∑
h=1

αM
h G

(
xs
m, s

M
h , k

)
for m = 1, 2, ..., N s

C ,

(4.6a)

iρωv (xs
m) = αS

m Hmm +

NS∑
j=1,j ̸=m

αS
j H

(
xs
m, s

S
j , k,nb

)
+

NM∑
h=1

αM
h H

(
xs
m, s

M
h , k,nb

)
for m = 1, 2, ..., N s

C ,

(4.6b)

p (xns
n ) =

NS∑
j=1

αS
j G

(
xns
n , sSj , k

)
+

NM∑
h=1

αM
h G

(
xns
n , sMh , k

)
for n = 1, 2, ..., Nns

C ,

(4.6c)

iρωv (xns
n ) =

NS∑
j=1

αS
j H

(
xns
n , sSj , k,nb

)
+

NM∑
h=1

αM
h H

(
xns
n , sMh , k,nb

)
for n = 1, 2, ..., Nns

C ,

(4.6d)

where Gmm and Hmm are the OIFs of the fundamental solutions of the modi-
fied Helmholtz equation in the considered problem, which are described in Sec-
tion 4.2.2. Therefore, the source strengths resulting from the prescribed Dirichlet
and Neumann boundary conditions can be obtained, respectively, as

α = G−1pb, (4.7a)

α = H−1vb, (4.7b)

where G and H, the latter one contains (iρω)−1, are the hybrid SBM-MFS inter-
polation matrices that consolidate the information in Eqs. (4.6a), (4.6b), (4.6c)
and (4.6d) in a matrix form, α is the vector that collects all source strengths, and
pb and vb are vectors that collect the imposed boundary conditions evaluated at
all collocation points. Once the source strengths have been computed, the acoustic
responses are obtained by means of Eqs. (4.3a) and (4.3b).
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4.2.2 Determining the OIFs in the context of the proposed

approach

In this section, the required OIFs to be utilised in the context of the proposed
hybrid SBM-MFS formulation are derived. To achieve this, the present study
assumes that these OIFs can be determined through the ones that are extracted
out by formulating the problem using a fully SBM approach. It is reached by
adopting a particular case when no MFS sources are considered (NM = 0) and,
additionally, when the sets of collocation points and SBM virtual sources are fully
coincident (N s

C = NS).

Thus, in order to derive the OIFs associated by the SBM approach, this me-
thod proposes adopting a desingularization process based on the subtracting and
adding-back technique [26, 33]. Moreover, due to the fact that the order of the
singularities arising in both fundamental solutions of Laplace and Helmholtz equa-
tions is equal, Gmm and Hmm can be derived via the asymptotic form of the fun-
damental solutions of the 2D Laplace equation when the source-receiver distance
is small, as [42]

Gmm = GL
mm − 1

2π

(
ln

(
k

2

)
+ γ

)
, (4.8a)

Hmm = HL
mm, (4.8b)

where

GL
mm =

1

Lm

∫
Γs

GL(xs
m, s

S) dΓs(s) = − 1

2π
ln

(
Lm

2π

)
, (4.9a)

HL
mm =

1

Lm

1−
NS∑

j=1,j ̸=m

LjH
L(xs

m, s
S
j ,nb)

 , (4.9b)
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are, respectively, the OIFs on Dirichlet and Neumann boundary conditions for 2D
exterior Laplace problems, being

GL (x, s) = − 1

2π
ln (r) , (4.10a)

HL (x, s,nx) =
∂GL (x, s)

∂nx

= − 1

2πr

∂r

∂nx

, (4.10b)

the fundamental solutions of potential and flux associated with the 2D Laplace
equation, respectively.

Finally, it should be noted that, even a fully SBM approach is employed, only
the OIFs associated with coincident collocation and source points appearing when
employing the hybrid SBM-MFS method should be finally computed. Therefore,
one key advantage of the hybrid method to be highlighted is a reduction of the
computational costs due to the fact that OIFs calculations are reduced with respect
to a fully SBM approach.

4.3 Numerical verification of the proposed hybrid

SBM-MFS method

In this section, a study on the feasibility, validity and accuracy of the proposed
hybrid SBM-MFS is presented. This study is carried out through three benchmark
2D acoustic problems. The first one involves the radiation problem of a circular
object representing a case where a totally smooth boundary geometry is adopted.
The second and third examples deal with the radiation problems of square- and
L-shaped objects, respectively, within the context of complex boundaries that
include geometric singularities. Furthermore, the MFS, the SBM and the BEM
approaches are also employed in the framework of these examples for comparative
purposes, in order to conduct a detailed assessment between the proposed and
classical numerical methods in terms of numerical accuracy and computational
efficiency. It is worth emphasising that the inclusion of these BEM strategies in
the comparison studies presented in this study serves the sole purpose of providing
a benchmark from a well-established method. A discussion about the performance
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of BEM, SBM and MFS approaches dealing with these types of problems can be
found in [71].

The results of the study discussed in this section are generally presented within
the framework of the RMSE analysis, initially outlined in Section 2.3, and have
been reformulated here to account for 2D calculations as

RMSE =

√√√√ 1

Nt

Nt∑
k=1

|pn(xk)− pa(xk)|2√√√√ 1

Nt

Nt∑
k=1

|pa(xk)|2
, (4.11)

where pn(xk) and pa(xk) represent the acoustic pressures computed at the kth test
point by numerical methods and analytical solutions, respectively.

To obtain the described RMSE in all benchmark examples, a set of Nt = 100

test points uniformly distributed over a circumference that surrounds the studied
physical object, centred at (0, 0) and with a radius of 2a, where a is a geometrical
parameter being later specifically defined in each example, is considered. Two
frequencies are selected to carry out the error analysis in the present study: 100
Hz and 2000 Hz. The analysis is carried out for a varying number of collocation
points (or nodes, for the case of the BEM) per wavelength, referred compactly
as N/λ or nodes/wavelength from now on, in a range of 2 ≤ N/λ ≤ 22, where
λ = 2πc/ω. For all computations, the acoustic medium is considered to be air,
with an assumed density of ρ = 1.225 kg/m3 and a corresponding wave speed of
c = 340 m/s.

4.3.1 Example 4.1. Radiation problem of a circular object

The problem under consideration in this example is the 2D acoustic radiation of a
circular object. This problem is separately investigated for Dirichlet and Neumann
boundary conditions. For the Dirichlet boundary condition case, the distribution
of the pressure along the boundary is proposed to be

pb = cos (4θ) , (4.12)



Chapter 4. Hybrid SBM-MFS methodology 59

and, consequently, the analytical solution of the induced pressure field due to the
proposed boundary condition in the frequency domain is given by [26]

p (r, θ) = −H
(1)
4 (kr)

H
(1)
4 (ka)

cos (4θ) for r ≥ a and 0 ≤ θ ≤ 2π. (4.13)

In the second case, the adopted acoustic normal velocity prescribed along the
boundary (vb) is

iρωvb = k cos (4θ) , (4.14)

and the analytical solution of the radiation field in the frequency domain is [25]

p(r, θ) = − kaH
(1)
4 (kr)

kaH
(1)
3 (ka)− 4H

(1)
4 (ka)

cos (4θ) for r ≥ a and 0 ≤ θ ≤ 2π,

(4.15)

where a is the radius of the circular object, (r, θ) represents the location of the
evaluation point in the polar coordinate system and H

(1)
n is the Hankel function of

the first kind of order n. These analytical solutions of the considered problems are
adopted as the reference methods in all comparative studies for the assessment of
the proposed numerical methods through the RMSE.

In this simulation, a circular object of radius a = 1 m centred at (0, 0) is considered
and, accordingly, the collocation points are uniformly distributed along a circum-
ference of radius a = 1. In order to implement the MFS method, it is supposed
that the number of virtual sources are equal to the collocation points and the
sources are uniformly arranged on a circumference, being this virtual boundary a
reduced scale version of the physical one, with radius rs, defined within the range
of 0 < rs < a. In the calculation, three trial values of rs are adopted: 0.1 m,
0.5 m and 0.9 m. The schematic configuration of the MFS approach adopted for
rs = 0.5 m is illustrated in Figure 4.2a. To deploy the hybrid SBM-MFS method,
two different arrangements of virtual sources are assumed, being referred to as
the one-in-between (OIB) and part-to-part (PP) configurations, as illustrated in
Figure 4.2b and c, respectively. In the OIB configuration, the neighbouring points
of each SBM source point serve as collocation points without coincident sources
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at those locations. In the PP configuration, all SBM sources are grouped in four
equal sectors distributed along the boundary. In both arrangements, 50 % of the
virtual sources are SBM-type sources and the remaining source are of MFS type.
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Figure 4.2: Distributions of the collocation points (black circles) and virtual
sources (red dots) in Example 1 for the case of a fictitious boundary of radius
rs = 0.5 m, adopted for (a) the MFS method and the hybrid SBM-MFS method

with (b) the OIB and (c) PP configurations.

The results in terms of RMSE analysis comparing the different numerical ap-
proaches when dealing with Example 1 are illustrated in Figures 4.3 and 4.4, for
the case of the Dirichlet and Neumann boundary conditions, respectively. Overall,
it can be observed that for the two frequencies selected, as the number of colloc-
ation points increase, the associated error delivered by each numerical method
studied decrease and, consequently, all methods are converging to the analytical
solutions. Therefore, it can be stated that all methods are verified for this calcula-
tion example when the Dirichlet and Neumann boundary conditions are imposed.
A detailed examination of the results obtained using the different methods reveals
that, at the frequency of 100 Hz, both the MFS and hybrid SBM-MFS methods
demonstrate superior accuracy compared to the SBM or BEM approaches when
considering fictitious boundaries of radii rs = 0.1 m and rs = 0.5 m. Conversely,
both SBM and BEM deliver more accurate results than the MFS and SBM-MFS
methods when adopting rs = 0.9 m. At the frequency of 2000 Hz, the MFS and
hybrid SBM-MFS with OIB configuration generally provide more accurate res-
ults than both SBM and BEM approaches for all fictitious boundaries considered.
However, the hybrid SBM-MFS with PP configuration adopted with rs = 0.9 m
shows to be less accurate than the SBM and BEM. It can be also observed that
for the two frequencies selected, the most accurate results are delivered when the
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associated auxiliary boundary of the MFS and its hybrid version is located at
rs = 0.1 m. Focusing on the particular results obtained with the hybrid SBM-
MFS, it can be noted that the method is generally delivering solutions with more
accuracy when the OIB configuration is adopted instead of the PP one. It can be
also seen that both the MFS and hybrid SBM-MFS solutions are strongly sensit-
ive to the placement of the fictitious boundary and, in some situations when the
fictitious boundary is close to the physical one, these methods could even shown to
be less accurate than SBM and BEM approaches. Finally, a comparison between
the MFS and the hybrid SBM-MFS approaches leads to the conclusion that the
hybrid method is able to achieve accuracy levels as high as the MFS for such a
geometrically smooth problem as the radiation of a circular object.
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Figure 4.3: RMSE analysis of the different methods for the radiation problem
of a circular boundary subjected to a Dirichlet boundary condition at the fre-

quencies of (a) 100 Hz and (b) 2000 Hz.



Chapter 4. Hybrid SBM-MFS methodology 62

2 4 6 8 10 12 14 16 18 20 22

Nodes/wavelength (N/ )

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

lo
g

1
0
(R

M
S

E
)

(a)

2 4 6 8 10 12 14 16 18 20 22

Nodes/wavelength (N/ )

10
-15

10
-10

10
-5

10
0

lo
g

1
0
(R

M
S

E
)

(b)

QE-BEM

MFS ( s = 0.9 m)

SBM-MFS (OIB configuration   = 0.9 m)

SBM-MFS (PP configuration  = 0.9 m)

LE-BEM

MFS ( s = 0.5 m)

SBM-MFS (OIB configuration   = 0.5 m)

SBM-MFS (PP configuration   = 0.5 m)

SBM

MFS (rs = 0.1 m)

SBM-MFS (OIB configuration  = 0.1 m)

SBM-MFS (PP configuration   = 0.1 m)

Figure 4.4: RMSE analysis of the different methods for the radiation problem
of a circular boundary subjected to a Neumann boundary condition at the fre-

quencies of (a) 100 Hz and (b) 2000 Hz.

After evaluating the accuracy and convergence trends of the proposed method
with respect to other existing approaches in the case of a circular boundary, the
frequency response functions for the acoustic radiation problems defined in Ex-
ample 1 employing the studied methods are hereafter investigated. In this regard,
the RMSE is computed for frequencies varying from 1 Hz to 2000 Hz using a
discretisation scheme which adopts 6 N/λ at the maximum frequency of interest
(referred compactly as N/λ2kHz = 6), which results in a total of 222 uniformly
distributed collocation points/nodes. Results are plotted in Figure 4.5. It can be
observed that due to the non-uniqueness solution problem, the SBM and BEM
approaches perform to deliver low levels of accuracy at the vicinity of the ficti-
tious eigenfrequencies of the corresponding interior problems associated with both
Dirichlet and Neumann boundary conditions scenarios. These fictitious eigenfre-
quencies arise at the zeros of J4 (ka) = 0, being Jn the Bessel function of the
first kind of order n, as discussed and concluded in [72, 73]. Regarding the MFS
and the hybrid SBM-MFS, it has been observed that, from a general perspective,
these methods demonstrate high accuracy across the entire frequency spectrum for
the adopted boundary conditions, with the incurred errors being consistently very
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small. In particular, errors associated with these methods are approximately 10
orders of magnitude lower than those of the LE-BEM in these calculations. Thus,
it is found that the devised hybrid SBM-MFS method can naturally overcome the
non-uniqueness solution problem exhibited by purely boundary-type methods such
as the SBM or the BEM. This feature of the proposed hybrid method comes from
its particular formulation which considers some MFS-type virtual sources outside
the domain of interest.
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Figure 4.5: RMSE analysis of the different methods for the radiation problem
of the infinite cylinder under (a) Dirichlet boundary condition and (b) Neumann

boundary condition, obtained at frequencies varying from 1 Hz to 2000 Hz.

Once again, it is demonstrated that the MFS remains the superior method for
handling circular boundary geometries. However, it is found that the novel hybrid
SBM-MFS approach can reach similar performance levels to the MFS for this
specific case. The real benefits of the proposed hybrid approach will be observed
in the following cases, in where the boundary geometry is not smooth, containing
sharp edges or corners.
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4.3.2 Example 4.2. Radiation problem of a square-shaped

object

In this example, the 2D radiation problems of a square-shaped object under a
Dirichlet boundary condition as well as when subjected to a Neumann boundary
condition are separately studied. In order to rely on an analytical solution when
conducting the numerical studies for this complex boundary case, the prescribed
boundary conditions are set to produce the exact response of the problem in Ex-
ample 1 when considering a radius rc for the circular object. To do so, Eq. (4.13)
is employed to determine the prescribed boundary condition in the Dirichlet case
as

pb (rb, θ) = −H
(1)
4 (krb)

H
(1)
4 (krc)

cos (4θ) for 0 ≤ θ ≤ 2π, (4.16)

being (rb, θ) the pasteurisation of the squared boundary in polar coordinates. In
the Neumann boundary condition case, the imposed acoustic velocity along the
boundary should be defined by

iρωvb (rb, θ) = ∇pb · nb for 0 ≤ θ ≤ 2π. (4.17)

As a consequence of imposing this specially designed boundary conditions, the
radiation patterns on the acoustic medium are exactly defined by the analytical
solutions of a circular object of radius rc given by Eqs. (4.13) and (4.15) for the
Dirichlet and Neumann boundary conditions, respectively. In this example, rc is
set to be 0.3 m.

The particular problem considered in this Example 2 is a square with side length
of a = 1 m. Accordingly, the collocation points are distributed with a uniform ar-
rangement along the square’s boundary, ensuring that there is always a collocation
point at each corner of the geometry. Regarding the MFS and hybrid SBM-MFS
implementations, it is supposed that the fictitious boundaries adopted for these
methods have also a square shape scaled with respect to the physical boundary.
Thus, the parameter d, constrained to be 0 < d < 1, is here defined as the scale
factor for the fictitious boundary in these methods. In the current calculation,
a uniform sampling of 100 values for the scale factor d ranging between 0.2 and
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0.8 is considered. The underlying idea of this specific comparison is to examine
the extent to which the methods are dependent on the location of the fictitious
boundary. The described configurations of the MFS and hybrid SBM-MFS meth-
odologies are schematically illustrated in Figure 4.6, for the case when d = 0.5.
In these distributions, it is assumed that the number of sources is 20% less than
the number of collocation points. This strategy is assumed for this Example to
examine the feasibility of reducing the number of source points below the number
of collocation points, which increases the computational efficiency of the method.
In addition, for the hybrid SBM-MFS approach, 70% of the virtual sources are
assumed to be of the MFS type and the remaining 30% are SBM-type sources.
The latter ones are intentionally located at the corners of the square.
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Figure 4.6: Distributions of the collocation points (black circles) and virtual
sources (red dots) adopted for (a) the MFS and (b) the hybrid SBM-MFS ap-

proaches in the context of Example 2. Fictitious boundary case: d = 0.5.

Figures 4.7 and 4.8 display the RMSE analysis of the different numerical meth-
ods for benchmark Example 2 adopted for the Dirichlet and Neumann boundary
conditions, respectively. The results obtained show that both MFS and hybrid
SBM-MFS methods are consistently providing high accurate results for the two
boundary condition scenarios studied. This holds true for all considered values
of the scale factor of the fictitious boundary, for both selected frequencies and
approximately for N/λ > 4. Although the performances of the methods are found
to be sensitive to the placement of the virtual boundary, the delivered levels of
accuracy are demonstrated to be significantly higher than the other methods stud-
ied. It is worth mentioning that a considerable enhancement in the performance
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of the hybrid method, when compared to the SBM, is achieved just with 30% of
the sources to be of the SBM type, being an important point to highlight the com-
putational benefits of the proposed hybrid approach saving computational costs
along the OIFs calculation. Benefits of using the MFS and hybrid SBM-MFS
methods are especially remarkable in the Neumann boundary condition case, for
which both the SBM and BEM strategies display very low levels of accuracy along
with low convergence rates. This is due to the fact that these methods encounter
difficulties when handling the discontinuities of the normal vectors at the corners
of the square.
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Figure 4.7: RMSE analysis of the different methods for the radiation problem
of a square-shaped object subjected to a Dirichlet boundary condition at the

frequencies of (a) 100 Hz and (b) 2000 Hz.
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Figure 4.8: RMSE analysis of the different methods for the radiation problem
of a square-shaped object subjected to a Neumann boundary condition at the

frequencies of (a) 100 Hz and (b) 2000 Hz.

In the two previous examples, the proposed hybrid version of the SBM and MFS
methods has been verified for the acoustic radiation problems involved with bound-
ary geometry of the circular and square types. Nevertheless, among the strategies
investigated, the MFS remains the most effective approach for addressing problems
involving regular geometries with moderate geometrical singularities, such as the
square geometry studied in this example. The next example is provided with the
aim of demonstrating the capabilities of the proposed approach when dealing with
more pronounced geometrical complexity. In this regard, the acoustic radiation
problem of a L-shaped object is hereafter devised and analysed.

4.3.3 Example 4.3. Radiation problem of a L-shaped object

In this example, the problem of the sound field radiated by a L-shaped object is
considered. The corresponding pressure and acoustic velocity on the boundary,
as Dirichlet and Neumann boundary conditions, are supposed to be prescribed
in a similar way as explained in Example 2. In order to compute the RMSE, a
L-shaped geometry with a long side length of a = 1 m is considered, as shown
in Figure 4.9a. Regarding the implementation of the MFS and hybrid SBM-MFS
approaches, it is supposed that the virtual boundary also consists of a L-shaped
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geometry scaled with respect to the physical one. Following the same conceptual
ideas as in Example 2, a uniform sampling of 100 values of the scale factor of the
fictitious boundary d varying in an interval from 0.2 ≤ d ≤ 0.8 are considered in the
current calculation. Once again, 20% less virtual sources than collocation points
are considered and only the 30% of the ones employed in the hybrid SBM-MFS
approach are of the SBM nature. Examples of the discretisation patterns of the
MFS and hybrid SBM-MFS methods are shown in Figure 4.9b and c, respectively.
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z

Figure 4.9: Sketch of Example 3 L-shaped problem: (a) adopted geometry
and distributions of the collocation points (black circles) and virtual sources (red
dots) adopted for (b) the MFS method and (c) the hybrid SBM-MFS method.

Fictitious boundary case: d = 0.5.

Figures 4.10 and 4.11 illustrate a comparison in terms of the RMSE between the
different numerical approaches adopted for Example 3 when the Dirichlet and Neu-
mann boundary conditions are respectively considered. On the one hand, it can be
seen that both the SBM and BEM approaches demonstrate low accuracy and slow
convergence to the analytical solutions at the selected frequencies, especially in
the case of the Neumann boundary condition problem. Compared with the results
obtained in Example 1, i.e. the case of a circular boundary, it can be observed that
the performance of these methods is significantly influenced by the presence of the
geometric singularities that the corners of the boundary represent. On the other
hand, the results obtained by the MFS method are also subjected to instabilit-
ies and errors for a majority of the fictitious boundaries adopted, particularly at
the frequency of 100 Hz. Reversely, thanks to the significant capabilities of the
hybrid method due to the combination of SBM- and MFS-type sources and the
placement of the SBM ones at the corners of the boundary, the hybrid SBM-MFS
methodology not only surprisingly remedies the errors delivered by the MFS, but
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also significantly enhances the accuracy delivered by the SBM, for all fictitious
boundaries adopted.
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Figure 4.10: RMSE analysis of the different methods for the radiation problem
of a L-shaped object subjected to a Dirichlet boundary condition obtained at

the frequencies of (a) 100 Hz and (b) 2000 Hz.
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Figure 4.11: RMSE analysis of the different methods for the radiation problem
of a L-shaped object subjected to a Neumann boundary condition obtained at

the frequencies of (a) 100 Hz and (b) 2000 Hz.
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4.4 Application of the hybrid SBM-MFS method

In this section, the applicability of the hybrid SBM-MFS methodology to real case
scenarios is investigated. Thus, the proposed method is employed to analyze the
2D problem of line source diffraction in the presence of a T-shaped acoustic barrier.
The schematic configuration of the problem under consideration is presented in
Figure 4.12. In this analysis, a rigid T-shaped barrier of 2 m height with a cap
width of 0.4 m located over a rigid ground is considered. The barrier is assumed
to have a uniform thickness of 0.08 m. A line source is located at the position (-3,
0.5) m and the base of the T-shaped barrier is located at the origin of coordinates.
The insertion loss (IL) is used to show the influence of the T-shaped barrier on the
noise field generated at the right side of the barrier, opposite to where the source
is located. It is defined as

IL = −20 log10

(
| ptot |
| pinc |

)
, (4.18)

where ptot is the total pressure in an arbitrary point, defined as ptot = pdif + pinc,
pdif is the diffracted acoustic pressure field to be computed by the proposed hybrid
SBM-MFS method employing half-space fundamental solutions presented in Eq.
(4.5) and pinc represents the incident acoustic pressure generated by the source
considered in the problem without the presence of the barrier, which is given by

pinc =
i
4
H0 (kr) , (4.19)

for the case of a unitary acoustic source strength, where r is the Euclidean distance
between the source and the receiver and H0 denotes the Hankel function of the
first kind of order zero. In this simulation, the IL responses are calculated at
one horizontal line of receivers placed at 1 m above the ground and reaching a
maximum distance away from the barrier of 30 m, as shown in Figure 4.12.
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z y

Figure 4.12: Schematic sketch of the T-shaped acoustic barrier, the acoustic
line source considered and the evaluation points adopted.

In order to implement the hybrid SBM-MFS method, 245 collocation points hav-
ing a uniform distribution along the boundary of the barrier are considered, as
shown in Figure 4.13. The SBM-type sources are positioned at two parts of the
barrier boundary. The first part is the cap, for which a total of 47 SBM-type
sources including 2 placed at the neighbouring points where the cap is connected
to the wall are considered. The second section, where the barrier is connected
to the ground, consists of 4 SBM-type sources as depicted in Figure 4.13. The
140 MFS-type sources adopted are uniformly placed on two vertical lines inside
the barrier geometry, as also shown in the discretisation sketch. Thus, a total
number of 191 virtual sources are considered to implement the hybrid SBM-MFS
method in this simulation. Moreover, the SBM approach is also adopted in this
analysis for comparative studies between these two schemes. For this method, the
same configuration of collocation points as presented for the hybrid SBM-MFS
method is employed, together with a set of source points fully coincident with the
collocation ones. Comparing the two methods, it can be seen that the hybrid me-
thod uses 54 source points less than the SBM. Furthermore, the QE-BEM is used
as the reference model for comparison of the results computed by the proposed
meshless methods. In this analysis, the QE-BEM was implemented with a high
density of nodes per wavelength at the maximum frequency of interest, specifically
N/λ0.7kHz = 100. This choice was made to ensure a reference solution delivering
highly accurate results.

Figure 4.14 illustrates the IL curves associated with the T-shaped barrier problem
in hands computed by the proposed numerical methods at the frequencies of 100
Hz, 350 Hz, 500 Hz and 700 Hz. It can be observed, in a general point of view,
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that the proposed hybrid SBM-MFS method exhibits a good agreement with the
reference solution, the QE-BEM, across the four selected frequencies. Specifically,
this method performs to effectively reduce the significant discrepancies near the
peaks and valleys in the IL curves that are obtained through the SBM approach.
It is worth emphasising that the hybrid SBM-MFS method achieves this perform-
ance while utilising 22% fewer virtual sources compared to the SBM strategy.
Furthermore, it only requires the calculation of OIFs for the 51 SBM-type sources,
which amounts to a significant 80% reduction compared to the SBM. This con-
siderable decrease in virtual sources amount and OIFs calculation requirements
demonstrates the significant advantages in terms of computational efficiency and
reduced memory demands offered by the hybrid SBM-MFS approach compared to
traditional SBM or BEM approaches. Noting that considering the inherent limit-
ations of the conventional MFS and its tendency to yield unstable and inaccurate
results for such complex geometries, this method was excluded from the studied
methodologies for this analysis.
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Figure 4.13: Configuration of the collocation points and sources used to adopt
the hybrid SBM-MFS for the considered T-shaped barrier problem.
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Figure 4.14: IL along the horizontal line of receivers, computed by the QE-
BEM (solid blue line), the hybrid SBM-MFS (dashed red line) and the SBM
(dashed black line) at the frequencies of (a) 100 Hz, (b) 350 Hz, (c) 500 Hz and

(d) 700 Hz.

4.5 Conclusions

In this chapter, a novel numerical methodology to simulate 2D exterior acoustic
wave propagation problems has been developed and studied. The methodology
combines the SBM and MFS approaches to present a hybrid SBM-MFS formula-
tion which is particularly devised to deal with problems including complex bound-
aries involved with geometric singularities of corner and sharp edge types. The
proposed hybrid method uses a combination of SBM- and MFS-like sources to
tackle problems involving complex geometries, placing the SBM-like sources at
the intricate parts of the boundary. The validity and accuracy of the proposed
hybrid method have been examined in comparison with the available analytical
solutions in the context of three benchmark examples involving the acoustic radi-
ation problems of circular-, square- and L-shaped objects in a full-space acoustic
medium. Alternative numerical modelling techniques such as the MFS, the SBM
and the BEM are also included in the comparisons to conduct a detail assessment
of the proposed hybrid method in terms of numerical accuracy. Computational
efficiency of the proposed method in comparison to the alternative approaches
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presented has also been discussed. Furthermore, to investigate the applicability
of the hybrid SBM-MFS methodology, the problem of acoustic pressure field pro-
duced by an acoustic line source in the presence of a T-shaped thin barrier has
been studied. The most important findings extracted from the conducted numer-
ical analysis can be summarised as follows:

• In the context of the three calculation examples studied in this chapter, it is
found that the hybrid SBM-MFS methodology provides higher (or at least
comparable) levels of accuracy and higher convergence rates than both BEM
strategies considered, based on linear or quadratic boundary elements, and
than the SBM in the majority of the situations. Notably, these results are
found for both selected frequencies, being the smaller one (100 Hz) below
the first fictitious eigenfrequency of the corresponding interior problem in all
situations, demonstrating that this finding is not conditioned by the non-
uniqueness solution problem. On the other side, the MFS has been demon-
strated to be a strong competitor in the case of regular geometries such as
circular- or square-shaped ones, while it shows poor performance as the geo-
metry complexity increases. Further detailed conclusions derived from the
comparisons between the hybrid SBM-MFS and pure MFS approaches are
provided below.

• For the calculation example involving the acoustic radiation of a circular
object, the hybrid SBM-MFS approach shows to be a highly accurate method
and can compete with the levels of accuracy of the MFS. This is due to the
fact that the MFS scheme performs particularly well in problems involving
smooth circular boundaries [55, 71, 73, 74]. In any case, the pure MFS
approach is still the best choice, among the studied methods, to deal with
such a regular geometry in terms of accuracy, computational efficiency and
method simplicity. However, in terms of the stability, the SBM demonstrates
superior stability among all studied meshless methods. The combination of
the SBM with the MFS method further enhances stability, making the hybrid
SBM-MFS method more stable than the pure MFS approach.

• For the case of the square-shaped geometry, the feasibility of reducing source
points against the collocation points in the implementation of both MFS and
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hybrid SBM-MFS methods has been investigated by considering 20% fewer
virtual sources than collocation points. For this specific configuration, the
hybrid SBM-MFS method performs to effectively deal with the geometric
singularities and it delivers highly accurate results compared with the SBM
and BEM strategies. For this case, the MFS approach also performs even
better than the hybrid one due to the symmetry of the boundary geometry
of this problem.

• In the problem where the L-shaped geometry is studied, the MFS approach
is found to be providing results with low levels of accuracy being highly
sensitive to the placement of the fictitious boundary, demonstrating that
this method is not an adequate approach for geometries involving geomet-
ric singularities. Conversely, the hybrid SBM-MFS method performs to be
the most accurate strategy among all methods studied. Specifically, this
methodology not only remedies the errors delivered by the MFS, but also
surpasses the SBM in terms of accuracy.

• Due to the particular formulation of the hybrid SBM-MFS, which considers
some virtual source of the MFS nature, i.e. located outside the domain of
interest, the method naturally avoids the non-uniqueness problem arising at
the vicinity of the fictitious eigenfrequencies of the corresponding interior
problems.

• Finally, the investigation into the applicability of the proposed method in a
real case scenario involving the line source diffraction problem in the pres-
ence of a T-shaped barrier has highlighted two important benefits of the
proposed method. In comparison to the SBM, the hybrid SBM-MFS proves
to be computationally efficient due to the strong reduction on the amount
of OIFs to be computed. Additionally, the hybrid SBM-MFS demonstrates
the potential to employ fewer virtual sources than collocation points without
compromising numerical accuracy. Taking into account the already demon-
strated computational benefits of the SBM with respect to the BEM [71],
the proposed method offers a notably faster computational alternative to the
latter. Finally, accounting for the discussed inability of conventional MFS to
effectively tackle these complex geometric scenarios, the superiority of the
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hybrid SBM-MFS with respect to the other studied numerical approaches in
this context can be stated.

In conclusion, the hybrid SBM-MFS method presented in this work is found to be
a potential alternative for the numerical simulation of acoustic problems involving
complex boundaries, demonstrating a superiority in terms of numerical accuracy
with respect traditional approaches such as the BEM, the SBM and the MFS when
dealing with intricate domains. Furthermore, the method inherits the formulation
simplicity of the MFS and SBM approaches as well as the superior computational
efficiency with respect to the BEM.



Chapter 5

Modified 2.5D singular boundary

methods to deal with spurious

eigensolutions in exterior acoustic

problems

This chapter studies the problem of spurious eigensolutions in the context of
the SBM approach in the 2.5D domain and proposes two numerical schemes to
overcome this numerical difficulty. Similar to other boundary-type discretisation
schemes, the SBM also encounters the non-uniqueness problem at the vicinity
of the eigensolutions of the corresponding interior problem. In the 2.5D domain
framework, the so-called fictitious eigenfrequencies appearing in 3D problems arise
in the form of spurious dispersion curves associated with propagation modes of
the corresponding interior problem. The two enhanced 2.5D SBM approaches
proposed in this chapter, based on the Burton–Miller method in one case and the
dual surface method in the other, are designed to filter out the spurious eigenvalues
from the simulation results and deliver accurate solutions along the wavenumber-
frequency spectrum. Three benchmark examples including the radiation problems
of an infinitely long cylinder under Dirichlet and Neumann boundary conditions
and the radiation problem of a longitudinally infinite object with a constant star-
like cross-section subjected to a Dirichlet boundary condition are considered to

77
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study the proposed methods.

The following sections outline the organisation of the current chapter: Section 5.1
presents a brief overview of modification techniques used in the framework of the
SBM and BEM approaches in order to overcome the fictitious eigenfrequency prob-
lem. Section 5.2 presents the formulations of the enhanced versions of the 2.5D
SBM based on the Burton–Miller and dual surface techniques. In Section 5.3,
an assessment of the feasibility and validity the proposed methods in the con-
text of benchmark examples involving acoustic radiation problems of an infinitely
long circular cylinder and an infinitely long star-like object is conducted. Finally,
Section 5.4 concludes this chapter with some remarks.
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5.1 Introduction

It is well known that one of the inherent drawbacks of the boundary integral
equations (BIEs) and the BEM is the non-uniqueness of the solution of the res-
ulting system of equations due to the spurious eigenvalue problem. In the field of
acoustics, this problem arises in exterior acoustic problems, where interior prob-
lem eigenfrequencies are fictitiously arising. Consequently, the conventional BEM
may fail to offer unique solutions at frequencies in the neighbourhood of the eigen-
frequencies of the associated interior problem. These eigenfrequencies are usually
called fictitious eigenfrequencies because they have no physical meaning, but just
arise from the drawback of the boundary integral representation when solving
exterior acoustic problems.

To solve this numerical issue, some techniques have been suggested by various au-
thors. In this regard, the singular value decomposition (SVD) technique has been
widely employed in contexts of the BIEs and BEM to overcome the non-uniqueness
problem. Chen et al. [75] applied the dual multiple reciprocity method (MRM)
in conjunction with the SVD technique to determine the critical wavenumbers of
a cavity with or without a thin partition in where the SVD technique was pro-
posed to filter out the spurious eigenvalues and to determine the multiplicity of
the true eigenvalues for the case of square cavities. The SVD technique is also
utilised in combination with the real-part dual BEM for solving acoustic problems
of 2D cavities in [76, 77]. Kuo et al. [78] employed the generalised singular value
decomposition (GSVD) method to eliminate spurious eigensolutions arisen in in-
complete boundary element formulations used for solving the Helmholtz equation
in circular domains.

Several studies proposed the combined Helmholtz integral equation formulation
(CHIEF) method to deal with the non-uniqueness problem. For instance, Chen
et al. [79] applied the CHIEF method to overcome the spurious eigensolutions
of circular and rectangular cavities subjected to Dirichlet boundary conditions.
In another study, Chen et al. [80] employed the CHIEF method in conjunction
with the SVD technique to avoid the appearance of fictitious eigenfrequencies in
exterior radiation and scattering problems. The application of the CHIEF method
to deal with the spurious eigensolutions of the Helmholtz BIEs and the BEM for
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2D acoustic cavity problems is investigated in [72].

The Burton–Miller formulation is another popular scheme in this regard and it has
been extensively applied in the context of the BEM to obtain unique solutions.
Chen et al. [81] employed the Burton–Miller method combined with the complex-
valued BEM to solve Helmholtz eigenvalue problems with a multiply connected
domain. More recently, the Burton–Miller method has been applied in the context
of a modified version of the BEM based on the dual-level fast multipole (DL-FM)
method for large-scale 3D sound field analysis [82]. On the one hand, the CHIEF
method is based on adding additional constraints to the system by including the
so-called CHIEF points, which are collocation points outside the domain that also
satisfy the Helmholtz equation. Consequently, the resulting system of equations
becomes overdetermined and inherently filters out the spurious solutions at low
frequencies. On the other hand, the Burton–Miller method adds the imaginary
double layer integral equation to the original one, resulting in a shift of the ficti-
tious eigenfrequencies to the complex plane and allowing for computing the unique
solutions, especially in the high frequency range. However, it should be noted that
both methods involve more complex procedures and require higher computational
times than conventional approaches.

Recently, the dual surface method has also been effectively utilised in a BEM
context to remedy the non-uniqueness problem in exterior acoustic analysis [83].
The dual surface method creates a virtual surface, located outside the medium,
to shift the fictitious eigenfrequencies to the complex plane and overcome the
non-uniqueness instabilities in the BEM. Compared with the CHIEF method,
the dual surface method employs 100% additional points but without building
additional equations because the fundamental solution at these points is added
to the conventional coefficients, multiplied by a combination factor, resulting in a
linear combination like in Burton–Miller-based approaches.

Like the BEM, the non-uniqueness solution problem can also arise in boundary-
type meshless methodologies, as their structural formulations rely on the boundary
integral equation. In order to remedy this problem in the context of meshless meth-
ods, some modification approaches has been presented in different works during
the last years. In this regard, Chen et al. [84] employed the MFS for solving the
eigenfrequencies of multiply connected membranes and utilised the SVD technique
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and the Burton–Miller method to filter out the spurious eigensolutions from the
MFS solutions. Liu [85] proposed the regularised meshless method (RMM) for 3D
exterior acoustic problems. In this study, two modification strategies are employed
to circumvent the fictitious eigenfrequencies associated with the RMM solutions.
These strategies involve combining the RMM with the Burton–Miller approach
in one case and utilising the dual surface method in the other. The results ob-
tained confirm that these modification methods effectively eliminate the fictitious
eigenfrequencies in the RMM solutions, leading to satisfactory results.

The numerical issues related to the fictitious eigenfrequency difficulty appeared in
the SBM has been discussed in several studies. For instance, Fu et al. [25] pro-
posed to combine the SBM with the Burton and Miller’s formulation to deal with
fictitious eigenfrequencies arisen in the SBM solutions when dealing with exterior
acoustic radiation and scattering problems. The numerical results demonstrated
that the proposed scheme enhances the accuracy of the solution of exterior acous-
tic problems, particularly in the vicinity of the corresponding interior eigenfre-
quencies. Also, due to the OIFs, the present Burton–Miller SBM overcomes the
troublesome numerical calculation of singular and hyper-singular integrals in the
Burton–Miller BEM. Li et al. [86] applied the SBM along with the SVD technique
and the Burton–Miller method to 2D and 3D acoustics eigenproblems in simply-
and multiply-connected domains. The numerical results presented show that both
SVD and Burton–Miller techniques are effective strategies to treat the spurious
eigensolutions. However, the SVD updating terms may filter out the true eigen-
values by mistake in some Dirichlet cases. Thus, this work concludes that it is
more reliable for engineering applications to use the SBM in conjunction with a
particular SVD technique called SVD updating document or the Burton–Miller
method. More recently, studies about the applicability of the SBM combined with
the Burton–Miller method for 2D and 3D acoustic design sensitivity analysis have
been reported in [87, 88]. The numerical examples presented, considering different
design variable parameters, show that this scheme is robust and accurate when
dealing with acoustic design sensitivity analysis, guaranteeing results devoid of fic-
titious frequencies. Wu et al. [89] introduced a modified formulation of the SBM
by employing the CHIEF and the self-regularisation (SR) techniques, namely SR-
CHIEF-SBM scheme, for 2D and 3D exterior acoustic problems. In contrast to the
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CHIEF-SBM approach which adopts additional CHIEF points, as the collocation
points outside the domain, in the SBM formulations, the SR-CHIEF-SBM scheme
applies the CHIEF points as the extra source points to the SBM equations. Their
numerical investigations demonstrate that, although the CHIEF-SBM can elimin-
ate the non-uniqueness problem at the relatively small wavenumbers, it may still
fail at large wavenumbers. In contrast, the proposed SR-CHIEF-SBM successfully
resolves the non-uniqueness issue and consistently delivers accurate results across
the entire wavenumber range in the conducted numerical experiments.

The objective of this chapter is to study the spurious eigensolution problem in
the context of the previously developed 2.5D SBM and to propose modification
strategies to effectively eliminate this problem from the 2.5D SBM solutions. In
3D acoustic problems, the terms fictitious frequencies or fictitious eigenfrequen-
cies are normally used for exterior problems since its associated interior problem
is bounded: the eigenvalues of the interior problem are representing natural fre-
quencies of the cavity. In contrast, the terms spurious eigenvalues or spurious ei-
gensolutions are typically employed when dealing with interior problems because
the corresponding exterior problem is unbounded: the eigenvalues of this problem
are not associated to eigenfrequencies, but to wave propagation modes. The term
spurious refers to the fact that these waves vanish when they are propagating due
to the unboundedness of the corresponding exterior medium. However, for pro-
blems simulated in a 2.5D context, the interior problem is also unbounded, due to
the longitudinal invariancy condition of the 2.5D systems. Therefore, in the 2.5D
domain, unlike 2D or 3D ones, the so-called fictitious eigenfrequencies become
spurious dispersion curves associated to propagation modes of the correspond-
ing interior problem. Dispersion curves are groups of eigenvalues related to the
same wave pattern that typically occur at variable frequencies, being therefore not
defined by a specific eigenfrequency but by pairs of frequencies and wavenumbers
arising from the eigenvalues. The term spurious is employed since the eigenvalues
of the corresponding interior problem are associated to wave propagation modes
that may vanish along the cavity longitudinal direction. Thus, filtering spurious
eigenvalues in the 2.5D SBM turns out to be more vital, since the accuracy of the
method may be compromised at any frequency, while in 2D or 3D domains the
problems arise just at the proximity of the fictitious eigenfrequencies.
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In order to overcome the spurious eigensolutions problem in the 2.5D SBM and
obtain unique solutions all along the wavenumber-frequency spectrum, this chapter
proposes the Burton–Miller and dual surface methods to be used in conjunction
with the 2.5D SBM. The feasibility, validity and accuracy of the proposed 2.5D
modified approaches are studied in the framework of two benchmark examples: the
acoustic radiation problem of an infinite cylinder with, separately, the Dirichlet
and Neumann boundary conditions based on a simple geometry of the boundary.
Furthermore, in order to assess the applicability of the proposed methods to deal
with problems with arbitrary complex geometries, the acoustic radiation problem
of a longitudinally infinite object with a constant star-like cross-section subjected
to a Dirichlet boundary condition is devised and investigated. In addition, a
detailed assessment in terms of the non-uniqueness problem of the 2.5D SBM
developed in the basis of both single- and double-layer fundamental solutions is
also presented in an error analysis framework. Furthermore, the MFS and BEM
are classical approaches also included in the comparative study in order to better
assess the performance of the proposed methods.

5.2 Mathematical formulation

The basic formulations of the proposed 2.5D SBM for solving exterior acoustic
problems were presented in Section 2.2. These formulations were initially derived
using the single-layer fundamental solutions. In order to enhance the methodology
and incorporate the Burton–Miller technique, both single- and double-layer funda-
mental solutions are required. In this section, a unified framework is established by
initially reviewing the formulations of the 2.5D SBM based on the single-layer fun-
damental solutions. Subsequently, the development of the 2.5D SBM in the basis
of the double-layer fundamental solutions is introduced. Following this, the exten-
ded versions of the 2.5D SBM obtained from the combination with Burton–Miller
and dual surface approaches are described in detail.
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5.2.1 2.5D SBM in the basis of single-layer fundamental

solutions

In this section, the required fundamental solutions and OIFs employed by the 2.5D
SBM in the basis of single-layer potential, which referred to as the 2.5D SL-SBM
from now on, are presented. In this context, the single-layer fundamental solutions
of the 2.5D modified Helmholtz equation are presented as

ḠSL(x, s, ka) =


1

2π
K0(kar) for ka ̸= 0,

GSL
0 (x, s) for ka = 0,

(5.1a)

H̄SL(x, s, ka,nx) =


− ka
2π

K1(kar)
∂r

∂nx

for ka ̸= 0,

HSL
0 (x, s,nx) for ka = 0,

(5.1b)

where

GSL
0 (x, s) = − 1

2π
ln(r), (5.2a)

HSL
0 (x, s,nx) = − 1

2πr

∂r

∂nx

, (5.2b)

are the single-layer fundamental solutions of potential and flux associated to the
2D Laplace equation, respectively.

By adopting a desingularisation process based on the subtracting and adding-back
technique [25, 26, 33], the 2.5D OIFs, denoted by the terms ḠSL

mm and H̄SL
mm for the

single-layer fundamental solutions, can be derived. Due to the fact that the order
of the singularities arising for small source-receiver distances in both fundamental
solutions of Laplace and Helmholtz equations is equal, ḠSL

mm and H̄SL
mm can be

derived via the asymptotic form of the fundamental solutions of the 2D Laplace
equation when the source-receiver distance is small, as [25, 42]

ḠSL(sm, sj, ka) = GSL
0 (sm, sj)−

1

2π

(
ln

(
ka
2

)
+ γ

)
when r → 0, (5.3a)

H̄SL(sm, sj, ka,nx) = HSL
0 (sm, sj,nx) when r → 0. (5.3b)
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Accordingly, developing the 2.5D SBM in the basis of these single-layer funda-
mental solutions of the modified Helmholtz equation for exterior acoustic problems
results in the following expression of the OIFs [71]

ḠSL
mm =


GSL

0 mm − 1

2π

(
ln

(
ka
2

)
+ γ

)
for ka ̸= 0,

GSL
0 mm for ka = 0,

(5.4a)

H̄SL
mm = HSL

0 mm, (5.4b)

where

GSL
0 mm =

1

Lm

∫
Γs

GSL
0 (xm, sj) dΓs(s) = − 1

2π
ln

(
Lm

2π

)
, (5.5a)

HSL
0 mm =

1

Lm

1−
N∑

j=1,j ̸=m

LjH
SL
0 (xm, sj,nb)

 , (5.5b)

are, respectively, the OIFs for the single-layer fundamental solutions of the 2D
exterior Laplace equation.

5.2.2 2.5D SBM in the basis of double-layer fundamental

solutions

Let consider that the fundamental solutions in which the 2.5D SBM is based are
the double-layer ones. This approach will be referred to as the 2.5D DL-SBM from
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now on. These fundamental solutions can be written as

ḠDL(x, s, ka,nx) =


− ka
2π

K1(kar)
∂r

∂nx

for ka ̸= 0,

GDL
0 (x, s,nx) for ka = 0,

(5.6a)

H̄DL(x, s, ka,nx) =



ka
2πr

((
2K1(kar) + karK0(kar)

)
∂r

∂nx

∂r

∂nb

+

K1(kar)⟨nx,nb⟩

)
for ka ̸= 0,

HDL
0 (x, s,nx) for ka = 0,

(5.6b)

where ⟨nx,nb⟩ denotes the inner product of the vectors nx and nb. Moreover, for
the special case when ka = 0, the fundamental solutions are the ones associated
to the 2D Laplace equation which can be read as

GDL
0 (x, s,nx) = − 1

2πr

∂r

∂nx

, (5.7a)

HDL
0 (x, s,nx) =

1

2πr2

(
2
∂r

∂nx

∂r

∂nb

+ ⟨nx,nb⟩
)
. (5.7b)

The 2.5D OIFs for the double-layer fundamental solutions of the exterior modi-
fied Helmholtz equation are proposed to be derived based on the subtracting and
adding-back technique [25]. Considering the asymptotic relationships between the
double-layer fundamental solutions of the Laplace and Helmholtz equations for
small source-receiver distances as

ḠDL(sm, sj, ka,nx) = GDL
0 (sm, sj,nx) when r → 0, (5.8a)

H̄DL(sm, sj, ka,nx) = HDL
0 (sm, sj,nx) +

k2
a

2
(GSL

0 (sm, sj)−

1

2π

(
ln

(
ka
2

)
+ γ

)
when r → 0,

(5.8b)
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the 2.5D OIFs for the double-layer fundamental solutions of the exterior modified
Helmholtz equation can be now expressed as

ḠDL
mm = GDL

0 mm, (5.9a)

H̄DL
mm =


HDL

0 mm +
k2
a

2

GSL
0 mm − 1

2π

(
ln

(
ka
2

)
+ γ

) for ka ̸= 0,

HDL
0 mm +

k2
a

2
GSL

0 mm, for ka = 0.

(5.9b)

where

GDL
0 mm = − 1

Lm

N∑
j=1,j ̸=m

LjG
DL
0 (xm, sj,nb), (5.10a)

HDL
0 mm = − 1

Lm

N∑
j=1,j ̸=m

LjH
DL
0 (xm, sj,nb), (5.10b)

are, respectively, the OIFs for the double-layer fundamental solutions of 2D exterior
Laplace equation.

5.2.3 2.5D Burton–Miller SBM

The Burton–Miller method is usually used to deal with fictitious eigenfrequencies
in the BEM. It proposes a formulation solved by a linear combination of the
singular integral equation and its normal derivative multiplied by a combination
factor to yield unique solutions. Taking this concept into consideration, the 2.5D
Burton–Miller method applied in the framework of a 2.5D SBM, referred to as the
2.5D BM-SBM, is proposed in the present study. This approach takes together
both single-layer and double-layer fundamental solutions of the Helmholtz equation
as its basis functions. Specifically, the 2.5D BM-SBM proposes to compute the
acoustic responses in the domain using an extended version of Eqs. (2.7a) and
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(2.7b) of the form

p̄(x) =
N∑
j=1

αj

(
ḠSL(x, sj, ka) + γBMḠDL(x, sj, ka,nx)

)
for x ∈ Ω,

(5.11a)

iρωv̄(x) =
N∑
j=1

αj

(
H̄SL(x, sj, ka,nx) + γBMH̄DL(x, sj, ka,nx)

)
for x ∈ Ω,

(5.11b)

where γBM is the coupling parameter, and it is typically defined as −i/k [86, 90].
The alternative form of the coupling factor presented in [25], γBM = −i/(k + 1),
has also been tested in the framework of the present research, demonstrating a
very similar behaviour. The associated OIFs required in the 2.5D BM-SBM can
be now set as a linear combination of the OIFs of the single-layer and double-layer
fundamental solutions given by

ḠBM
mm = ḠSL

mm + γBMḠDL
mm, (5.12a)

H̄BM
mm = H̄SL

mm + γBMH̄DL
mm. (5.12b)

Thus, acoustic responses computed via the proposed 2.5D BM-SBM can be ob-
tained following the same process as in the conventional SBM but using Eqs.
(5.11a) and (5.11b) instead of Eqs. (2.7a) and (2.7b).

5.2.4 2.5D dual surface SBM

The dual surface method operates with the single-layer fundamental solutions as
its kernel functions. Its particularity is to use a virtual surface (boundary) located
outside the computational domain, apart from the physical one. This virtual
surface is typically a reduced scale version of the physical boundary, as shown in
Figure 5.1, being δDS the constant normal distance between the two surfaces. A
new set of source points is arranged on this virtual surface based on the same
(scaled) distribution defined for the physical boundary. The method’s solution
can be then obtained by considering the effect of two sets of virtual sources, the
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original sources s on physical boundary and the additional sources sDS on the
virtual one. The combination of this method with the 2.5D SBM leads to a 2.5D
dual surface SBM approach, referred to as the 2.5D DS-SBM, which computes the
acoustic responses in the domain based on Eqs. (2.7a) and (2.7b) as

p̄(x) =
N∑
j=1

αj

(
ḠSL(x, sj, ka) + γDSḠSL(x, sDS

j , ka)
)

for x ∈ Ω, (5.13a)

iρωv̄(x) =
N∑
j=1

αj

(
H̄SL(x, sj, ka,nx) + γDSH̄SL(x, sDS

j , ka,nx)
)

for x ∈ Ω,

(5.13b)

where γDS is the coupling parameter and it is typically set to be the imaginary unit
[83, 85]. The associated OIFs required in the 2.5D DS-SBM are the ones used for
the 2.5D SL-SBM. Finally, the unique solutions via the proposed 2.5D DS-SBM
are obtained through the same process in the conventional SBM but utilising Eqs.
(5.13a) and (5.13b) instead of Eqs. (2.7a) and (2.7b). It is interesting to note
that the proposed 2.5D DS-SBM approach can be seen as a particular linear com-
bination between the 2.5D MFS and 2.5D SBM approaches, since the classical
MFS typically uses an auxiliary boundary, outside of the computational domain,
to place the sources, working in a similar manner than the virtual boundary in
the dual surface method. It is worthwhile to note that compared with the Bur-
ton–Miller formulation, which involves both singular and hyper-singular kernels,
one key advantage of the dual surface method is that no hyper-singularities arise.
However, the additional set of source points used in the dual surface method leads
to an increase in the computational cost.
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Figure 5.1: Schematic sketch of the dual surface model.

5.3 Numerical examples and discussions

In this section, the applicability, effectiveness and accuracy of the proposed 2.5D
SBM-based schemes to deal with the spurious eigenvalue problem are verified and
compared. In this study, three benchmark examples are considered: the first two
examples involve the radiation problem of an infinitely long cylinder subjected,
separately, to a Dirichlet boundary condition and a Neumann one, respectively,
while the third example deals with the radiation problem of an infinitely long
object with a constant star-like cross-section subjected to a Dirichlet boundary
condition. The results are generally discussed in the basis of an error analysis
framework and are separately presented in two sections for the cylinder and star-
like object, respectively, as following. Furthermore, the 2.5D MFS and 2.5D BEM
approaches are also utilised in the framework of these examples for comparative
purposes, in order to present a detailed assessment between the proposed and
the classical numerical methods to deal with non-uniqueness problem in a 2.5D
context. Note that no technique for dealing with the arising spurious eigenvalues
in the 2.5D MFS or 2.5D BEM is used in this work.
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5.3.1 Example 5.1. Radiation problem of an infinite cylin-

der

The problem under consideration here is the radiation of an infinitely long cylinder
of constant circular cross-section in the framework of two benchmark examples in
which a Dirichlet boundary condition and a Neumann one are imposed, respect-
ively. For the problem under Dirichlet boundary condition, the distribution of the
prescribed pressure along the boundary is proposed to be

p̄b (θ) = cos (4θ) , (5.14)

and, consequently, the analytical solution of the induced pressure field due to the
proposed boundary condition in the wavenumber-frequency domain is given by
[26]

p̄ (r, θ) = −H
(1)
4 (kar)

H
(1)
4 (kaa)

cos (4θ) for r ≥ a and 0 ≤ θ ≤ 2π. (5.15)

In the second example, the adopted acoustic velocity prescribed along the bound-
ary is

iρωv̄b (θ) = k cos (4θ) , (5.16)

and the analytical solution of the radiation field in the wavenumber-frequency
domain is [25]

p̄ (r, θ) = − kaH
(1)
4 (kar)

kaaH
(1)
3 (kaa)− 4H

(1)
4 (kaa)

cos (4θ) for r ≥ a

and 0 ≤ θ ≤ 2π.

(5.17)

These analytical solutions of the considered problems are adopted as the refer-
ence methods in all comparative studies for the assessment of the proposed 2.5D
numerical methods.

Furthermore, the available analytical solutions of the eigenvalues of the corres-
ponding interior problems are employed to demonstrate the correspondence between
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the numerical instabilities of the proposed numerical approaches and the eigen-
values of the corresponding interior problems. Depending whether the boundary
condition is of Dirichlet or Neumann type, these eigenvalues can be computed by
the following analytical equations

Jn (kaa) = 0 for n = 0, 1, 2, ..., (5.18a)

J ′
n (kaa) = 0 for n = 0, 1, 2, ..., (5.18b)

respectively, where Jn and J ′
n are the Bessel functions of the first kind of order

n and its derivative, respectively. In all calculations, the radius of the cylinder is
a = 1 m and the acoustic medium is assumed to be air with a density of ρ = 1.225

kg/m3 and an associated wave speed of c = 340 m/s. Moreover, it is assumed
that the virtual boundary of the 2.5D DS-SBM is adopted by a uniform angular
distribution of the virtual sources, being equal to the number of collocation points,
on a circle scaled with respect to the physical boundary such that the distance δDS

is equal to 0.5 m.

5.3.1.1 Assessment of the methods in the wavenumber-frequency do-

main

In this section, the accuracy of the proposed 2.5D numerical schemes is assessed
in the wavenumber-frequency domain in the basis of the RMSE analysis. The
RMSE, initially described in Section 2.3, have been reformulated here to account
for calculations in the wavenumber-frequency domain as as expressed by

RMSE =

√√√√ 1

Nt

Nt∑
k=1

|p̄n(xk)− p̄a(xk)|2√√√√ 1

Nt

Nt∑
k=1

|p̄a(xk)|2
, (5.19)

where p̄n(xk) and p̄a(xk) are the acoustic pressure responses computed by the nu-
merical methods and the analytical solutions, respectively, at the kth test point.
To obtain the RMSE in all benchmark examples, Nt = 100 test points uniformly
distributed along a circumference of radius 1.1 m centred at the cylinder axis are
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considered. The RMSE has been computed for frequencies varying from 1 Hz to
2000 Hz and wavenumbers ranging from 0 to 50 rad/m and the results are presen-
ted in the colour map plots shown in Figure 5.2 and Figure 5.3, which display
the RMSE analysis of the different 2.5D numerical approaches for both bench-
mark examples. In addition, Figure 5.4 distinctly illustrates the described RMSE
analysis for the 2.5D MFS method. All computations have been carried out us-
ing the same discretisation scheme, which adopts 10 collocation points (or nodes,
depending on the method) per wavelength at the maximum frequency of interest
(referred compactly as N/λ2kHz = 10): a total of 370 uniformly distributed colloc-
ation points/nodes. Furthermore, the black dashed curves illustrate the dispersion
curves of the eigenvalues of the corresponding interior problem analytically com-
puted via Eqs. (5.18a) and (5.18b). In the following, the numerical behaviour
demonstrated by each method is discussed and compared in detail.

Regarding the 2.5D SL-SBM approach, it is found that this method delivers low
levels of accuracy at high frequencies for the case of the Dirichlet boundary con-
dition problem, as shown in Figure 5.3. Specifically, due to the non-uniqueness
problem, the 2.5D SL-SBM is severely in error at the vicinity of the dispersion
curves of the spurious eigenvalues associated with propagation modes of the cor-
responding interior problem. These dispersion curves represent the zeros of Eq.
(5.18a) considering a fourth order Bessel function in accordance to the angular
distribution of the adopted boundary condition shown in Eq. (5.14). In con-
trast, in the case of the Neumann boundary condition problem, the 2.5D SL-SBM
is delivering, in a general point of view, more accurate results across the whole
wavenumber-frequency spectrum, as depicted in Figure 5.3. However, it can be
observed that this method is also affected by spurious eigenvalues when the Neu-
mann boundary condition is adopted. As seen, the corresponding dispersion curves
of the spurious eigenvalues that are relevant in this situation are the same as be-
fore: the associated eigenvalues of the corresponding interior problem subjected
to the Dirichlet boundary condition. Thus, it is shown that the nature of the
corresponding spurious eigenvalues is not controlled by the boundary condition
of the exterior problem under study, but governed by the type of virtual sources
adopted. Particularly, since the single-layer potential assumes a discontinuity on
the pressure field as the auxiliary source density, the relevant spurious eigenvalues
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come from the interior problem under Dirichlet boundary condition.

On the other hand, the accuracy trends delivered by the 2.5D DL-SBM are quite
reversed compared with the ones provided by the 2.5D SL-SBM with respect to the
type of boundary condition adopted. Overall, the 2.5D DL-SBM demonstrates to
be more accurate than the 2.5D SL-SBM for the problem under Dirichlet bound-
ary condition. Reversely, the 2.5D DL-SBM suffers of accuracy problems in the
Neumann case, while the 2.5D SL-SBM is found to be more accurate. Particu-
larly, it can be seen from Figure 5.2 and Figure 5.3 that the spurious eigenvalues
produced by the 2.5D SL-SBM in the Dirichlet example are inducing higher errors
than the ones appearing in the 2.5D DL-SBM, while the reversed trend can be ob-
served in the results obtained for the Neumann example. Furthermore, it is found
that the 2.5D DL-SBM encounters non-uniqueness problems, for both Dirichlet
or Neumann boundary conditions, at the vicinity of the dispersion curves associ-
ated to the corresponding interior problem under Neumann boundary condition,
occurring at the zeros of Eq. (5.18b), following the same conceptual idea for the
spurious eigenvalues appearance explained previously.

The results obtained reveal that, in a 2.5D domain context, the spurious eigenval-
ues appear in the form of dispersion curves that can potentially compromise the
accuracy of the response at any frequency above the 2D eigenfrequency of the first
propagation mode involved, which are 410.7 Hz and 287.8 Hz for this particular
case study, for the 2.5D SL-SBM and 2.5D DL-SBM, respectively. This is in con-
trast to the numerical issues arising in the framework of 2D or 3D modelling, in
which the problems appear just at the proximity of the fictitious eigenfrequencies.
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Figure 5.2: RMSE analysis of the proposed 2.5D numerical methods in the
wavenumber-frequency domain for the radiation problem of the infinite cylin-
der under Dirichlet boundary condition considering N/λ2kHz = 10. The black
dashed lines illustrate the dispersion curves associated to the corresponding in-

terior problem.

Regarding the 2.5D BM-SBM and 2.5D DS-SBM approaches, these modified ver-
sions of the 2.5D SBM approach are found to successfully avoid the spurious
eigenvalue issues arisen in the 2.5D SL-SBM and 2.5D DL-SBM whatever the
boundary condition is of Dirichlet or Neumann type. Using these methods, the
accuracy of the solutions is particularly enhanced at the corresponding spurious
eigenvalues. Consequently, the 2.5D BM-SBM and 2.5D DS-SBM are presenting
a good agreement with the analytical solutions along all wavenumber-frequency
spectrum, confirming the effectiveness of the Burton–Miller and dual surface modi-
fication techniques to solve the non-uniqueness problem in a 2.5D SBM context.
Although the colour maps shown here provide an overview of the benefits asso-
ciated to the 2.5D BM-SBM and 2.5D DS-SBM approaches, a more quantitative
evaluation of the advantages of these methods is presented and discussed in the
next section.
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Figure 5.3: RMSE analysis of the proposed 2.5D numerical methods in the
wavenumber-frequency domain for the radiation problem of the infinite cylin-
der under Neumann boundary condition considering N/λ2kHz = 10. The black
dashed lines illustrate the dispersion curves associated to the corresponding in-

terior problem.

With respect to the 2.5D BEM approach, the method overally delivers the lowest
levels of accuracy among all for the problem under Dirichlet boundary condition,
as depicted in Figure 5.2. However, for the Neumann case presented in Figure 5.3,
a different scenario is found: the 2.5D BEM shows to be more accurate than the
2.5D DL-SBM; instead, it is performing less accurately than the 2.5D SL-SBM and
2.5D DS-SBM. These behaviours are found to be in accordance to the previous
studies in the topic [25, 26, 71]. Since the 2.5D BEM employs the single-layer
potential, it is expected to be encountering similar non-uniqueness issues than
the 2.5D SL-SBM. Results are demonstrating this hypothesis, since the dispersion
curves of the spurious eigenvalues of the 2.5D BEM and 2.5D SL-SBM methods
are matching.

The RMSE delivered by the 2.5D MFS method for both Dirichlet and Neumann
examples is presented in Figure 5.4. In the current calculation, the 2.5D MFS is
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implemented in the basis of the single-layer fundamental solution, considering the
same number of virtual sources and collocation points and imposing a uniform
distribution of the virtual sources on a circle of radius rs, being 0 < rs < a. In
the calculation, two trial values of rs are adopted: rs1 = 0.5 m and rs2 = 0.9 m.
According to Figure 5.4 and in a general point of view, it can be seen that the 2.5D
MFS delivers the most accurate solutions among all discussed methods for both
Dirichlet and Neumann examples, in accordance to previous studies in the topic
[71, 74]. As expected, the 2.5D MFS solutions are sensitive to the placement of the
virtual boundary, although the incurred error is generally highly small. However,
it is observed that the 2.5D MFS solutions are also affected by spurious eigenvalues
but, in this case, arising in different groups of spurious dispersion curves than the
ones given by the SBM and BEM approaches shown in Figures 5.2 and 5.3. The
results show that the spurious eigensolutions associated with the MFS depend on
the location of the virtual boundary where the sources are distributed, as also
concluded and proved in [84]. Therefore, for the 2.5D MFS implemented based on
the single-layer fundamental solutions and whatever the boundary condition is of
Dirichlet or Neumann type, the spurious dispersion curves appearing here occur at
the vicinity of the zeros of Jn (kars1) = 0 and Jn (kars2) = 0, as illustrated with red
dashed lines in sub-figures (i) and (ii), respectively, i.e. depending on the location
of the virtual boundary adopted: rs1 = 0.5 m and rs2 = 0.9 m, respectively.
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Figure 5.4: RMSE analysis of the 2.5D MFS approach in the wavenumber-
frequency domain for the radiation problem of the infinite cylinder under (a)
Dirichlet boundary condition and (b) Neumann boundary condition, adopting
virtual boundaries placed at (i) rs1 = 0.5 m and (ii) rs2 = 0.9 m and considering
N/λ2kHz = 10. The red dashed lines illustrate the dispersion curves associated
to the corresponding eigenvalues of the interior problem bounded by the virtual

boundary adopted.

5.3.1.2 Assessment of the methods in the spatial-frequency domain

In order to investigate in detail the accuracy of the discussed methods, the acoustic
responses in the spatial-frequency domain for the two benchmark examples defined
are evaluated and compared. In this context, the acoustic pressure response at
x = 0 induced by unitary boundary conditions with spatial-temporal distribution
of the form δ(x)eiωt are used for comparison purposes. These responses, referred to
as transfer functions from now on, are computed employing Eq. (2.4) for which the
numerical integration is carried out by the trapezoidal rule along a wavenumber
sampling with 28 points logarithmically distributed between 10−3 rad/m and 50
rad/m. In this analysis, the previously RMSE formula in terms of the transfer
functions is used as denoted by Eq. (2.16).

The results of the proposed RMSE analysis are presented in Figure 5.5, where the
methods studied are compared in the framework of the two benchmark examples
with a cylindrical boundary. Focusing firstly on the 2.5D SBM-based approaches,
severe numerical instabilities can be clearly observed for both 2.5D SL-SBM and
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2.5D DL-SBM methods at frequencies above the first relevant eigenfrequencies of
the corresponding 2D interior problem, in accordance to the results shown in Fig-
ures 5.2 and 5.3. In contrast, it can be observed that the enhanced 2.5D SBM ap-
proaches based on the Burton–Miller and dual surface methods are able to remove
the numerical instabilities induced by the spurious eigenvalues, in accordance to
the findings reported for the error analysis performed in the wavenumber-frequency
domain. Due to that ability, these methods are producing smooth transfer func-
tion spectra. Going into detail on the results presented for these two methods,
it is found that the 2.5D BM-SBM provides more accurate results than the 2.5D
DS-SBM for frequencies lower than 1022 Hz in the case of the Dirichlet boundary
condition problem. In contrast, the 2.5D DS-SBM is the one performing more ac-
curately at higher frequencies. For the Neumann boundary condition example, the
2.5D DS-SBM shows a much more accurate performance than the 2.5D BM-SBM
at all frequencies due to the fact that it only uses the single-layer fundamental
solutions, which has been found to be quite effective in this problem, as the res-
ults of the 2.5D SL-SBM point out. The accuracy of the 2.5D BM-SBM is severely
compromised due to the hyper-singularities arisen in this method, but its results
are still acceptable with less than 2% for 10 collocation points per wavelength.

Regarding the 2.5D BEM approach, it can be seen that this method also exper-
iences tremendous numerical instabilities rising up from frequencies greater than
the first relevant eigenfrequency of the corresponding 2D interior problem, which
is in similarity with the behaviour found in the 2.5D SL-SBM. This is expected,
since BEM approach adopted here is based also on the single-layer fundamental
solutions. Regarding the 2.5D MFS approach, this method operates with errors
approximately ten orders of magnitude lower than the other approaches, although
the incurred error also experience an unstable behaviour in a similar manner than
the 2.5D SL-SBM and 2.5D BEM approaches, having in mind that the spurious
eigenvalues come, in this case, from the interior problem bounded by the virtual
boundary.
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Figure 5.5: RMSE analysis for the transfer functions computed by the pro-
posed 2.5D numerical methods for the radiation problems of an infinite cylinder
under (a) Dirichlet boundary condition and (b) Neumann boundary condition.

Complementary to the previous analysis, simulations were performed to study
the evolution of the RMSE for the transfer functions of the 2.5D BM-SBM and
2.5D DS-SBM with respect to the number of collocation points per wavelength
(N/λ). This analysis has been done for collocation points per wavelength ranging
between 2 and 20 at two selected frequencies of interest: 500 Hz and 2000 Hz.
The corresponding results for the radiation problem of a cylinder under Dirichlet
and Neumann boundary conditions are presented in Figure 5.6. Overall, it can
be observed that the RMSE associated to both 2.5D BM-SBM and 2.5D DL-SBM
methods smoothly approach the analytical solutions by increasing the number of
collocation points, following different trends depending on the type of boundary
condition adopted. On the one hand, the curves associated to both 2.5D BM-
SBM and 2.5D DS-SBM methods have almost the same slopes in the Dirichlet
example. Results show a slightly better performance of the 2.5D BM-SBM at 500
Hz while reversed behaviour can be observed at 2000 Hz. On the other hand, in the
Neumann boundary condition example, the results of the 2.5D DS-SBM method
approach the analytical solution significantly faster than the 2.5D BM-SBM, as
expected from the previous results.
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Figure 5.6: RMSE analysis for the acoustic pressure transfer functions with
respect to the number of collocation points per wavelength computed associated
to the 2.5D BM-SBM and 2.5D DS-SBM schemes for the radiation problems of
an infinite cylinder under (a) Dirichlet boundary condition and (b) Neumann
boundary condition obtained for the frequencies of (i) 500 Hz and (ii) 2000 Hz.

In the two previous examples, the proposed modified versions of the 2.5D SBM to
deal with the spurious eigensolutions issue have been verified for the acoustic radi-
ation problem of an infinitely long circular cylinder. The accuracy of the proposed
methods is discussed in detail and compared with the traditional BEM, MFS and
SBM approaches. However, the feasibility of using the proposed methods to deal
with problems having arbitrary complex geometries can not be demonstrated only
with these calculation examples. In order to study the capabilities of the proposed
methods in the context of arbitrary complex boundaries, the acoustic radiation
problem of a longitudinally infinite object having a constant star-like cross-section
is hereafter devised and analysed.
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5.3.2 Example 5.2. Radiation problem of an infinitely long

object with a constant star-like cross-section

In this example, the problem of the sound field radiated by a longitudinally infinite
object with an invariant star-like cross-section subjected to a Dirichlet boundary
condition is considered. The star-like shape adopted in this example, as shown in
Figure 5.7a, is parametrically given by

rb (θ) =
d

2m2

[
m2 + 2m+ 2− 2 (m+ 1) sin (mθ)

]
,

y (θ) = rb (θ) cos θ, z (θ) = rb (θ) sin θ,

(5.20)

where d = 1 and m = 5.
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Figure 5.7: (a) Star-like shape captured by Eq. (5.20) with d = 1 and m = 5.
(b) Discretised physical boundary (blue) and the virtual boundary adopted for

the 2.5D DS-SBM with d = 0.5 (red).

For the problem described, if a distribution of the prescribed pressure along the
boundary of the form

p̄b (rb, θ) = −H
(1)
4 (karb)

H
(1)
4 (kaa)

cos (4θ) (5.21)

is imposed, the radiation pattern on the acoustic medium is exactly defined by the
analytical solution of a circular cylinder of radius a, given by Eq. (5.15).

Regarding the implementation of the 2.5D DS-SBM in this example, it is supposed
that the virtual boundary has also a star-like shape scaled with respect to the
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physical one. Accordingly, the virtual boundary is parametrically defined by Eq.
(5.20) where d, being 0 < d < 1, refers to the scale factor of the virtual boundary.
Thus, by considering the same number of the virtual sources than the collocation
points, as before, it is assumed that the virtual sources also form a uniform angular
distribution along the virtual boundary with the scale factor d, as captured in
Figure 5.7b for the case of d = 0.5.

To study the proposed methods in the context of this example, the RMSE of
the transfer functions in the spatial-frequency domain has been computed via
Eq. (2.16), taking into account the same assumptions adopted for the previous
examples. The computation is carried out using a discretisation scheme which ad-
opts 10 collocation points per wavelength at the maximum frequency of interest, re-
ferred compactly as N/λ2kHz = 10, resulting in a total of 408 uniformly distributed
collocation points/nodes. The results obtained are illustrated in Figure 5.8. As
shown, due to the non-uniqueness problem, both 2.5D SL-SBM and 2.5D DL-SBM
approaches are experiencing strong numerical instabilities at frequencies above the
first relevant eigenfrequencies of the corresponding 2D interior problem. Instead,
the modified versions of the 2.5D SBM based on the Burton–Miller and dual surface
methods are able to overcome the instabilities induced by the spurious eigenval-
ues and, consequently, they exhibit low RMSE along the whole spatial-frequency
domain. Specifically, it is found that the 2.5D BM-SBM delivers stable responses
with approximately 0.1 % error along all frequency range of interest for 10 colloca-
tion points per wavelength. In contrast, the 2.5D DS-SBM approach demonstrates
a more accurate performance than the 2.5D BM-SBM at frequencies lower than
1383 Hz, while at high frequencies this method incurs to higher errors due to its
stronger sensitivity to the spurious eigenvalues compared the 2.5D BM-SBM. Re-
garding the 2.5D BEM approach, it can be seen that this method overally operates
similarly to the 2.5D SL-SBM when encounters the non-uniqueness problem, due
to utilising the single-layer potential, but delivers solutions with errors severely
higher than the 2.5D SL-SBM, specifically at frequencies above 334 Hz.
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Figure 5.8: RMSE analysis for the transfer functions in spatial-frequency do-
main computed by the proposed 2.5D numerical methods for the radiation prob-

lem of an infinite star-like object under Dirichlet boundary condition.

5.4 Conclusions

In this chapter, the 2.5D SBM approach to deal with exterior acoustic wave propa-
gation problems in which the geometry of the boundary has a constant cross-
section along its longitudinal direction is studied, with focusing on the spurious
eigenvalue problem. In a similar manner as the BEM when dealing with exterior
acoustic problems, the SBM formulated in the spatial-frequency domain also suf-
fers the spurious eigenvalue problem which yields to exhibit non-unique solutions
at the vicinity of the corresponding interior problem eigenvalues. This numerical
phenomenon arises differently in 2.5D domain problems: the spurious eigenvalues
appear in the form of spurious dispersion curves associated to propagation modes
of the corresponding interior problem. This study proposes two approaches to
overcome this numerical difficulty and to produce unique solutions in 2.5D model-
ling based on the SBM: the 2.5D BM-SBM, which combines the traditional SBM
with the Burton–Miller approach, and the 2.5D DS-SBM, which employs the dual
surface method instead. The validity and accuracy of the proposed numerical
schemes are examined in comparison with the available analytical solutions in
the context of three benchmark examples: the acoustic radiation of an infinitely
long cylinder under, separately, Dirichlet and Neumann boundary conditions, and
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the problem of the sound field radiated by a longitudinally infinite object with a
constant star-like cross-section subjected to a Dirichlet boundary condition.

The detailed comparison carried out in this chapter demonstrates the validity and
accuracy of the proposed 2.5D BM-SBM and 2.5D DS-SBM schemes to remedy
the severe numerical instabilities arisen in the 2.5D SBM using the single-layer
or double-layer fundamental solutions. Both 2.5D BM-SBM and 2.5D DS-SBM
successfully avoid the non-uniqueness problem and, as a consequence, signific-
antly enhance the accuracy of the simulations at frequencies in the range where
the dispersion curves of the corresponding interior problem are present. For the
benchmark example considered for the circular cylinder where the Dirichlet bound-
ary condition is adopted, these modified versions of the 2.5D SBM deliver similar
accuracy rates. The 2.5D BM-SBM shows a slightly more accurate performance
at frequencies lower than 1022 Hz, while the opposite trend is observed at higher
frequencies. In contrast, it is found that the 2.5D DS-SBM is clearly the best
alternative in the problem under Neumann boundary condition, since it operates
with errors approximately three orders of magnitude lower than the ones associ-
ated with the 2.5D BM-SBM along all wavenumber-frequency spectrum and it ap-
proaches rapidly to the analytical solution by increasing the number of collocation
points. The low levels of accuracy as well as slow convergence rates demonstrated
by the 2.5D BM-SBM in this case are induced by the hyper-singularities associated
to the double-layer fundamental solutions. In the case study of the star-like object,
the 2.5D BM-SBM and 2.5D DS-SBM are also showing an effective performance
when dealing with spurious eigenvalues, delivering accurate solutions along the
whole wavenumber-frequency spectrum and demonstrating the feasibility of the
proposed methods to solve problems with a complex boundary geometry.

Along this study, it is found that the spurious eigenvalues arising in the 2.5D
SBM depend on the employed potentials instead of the type of boundary con-
dition. Thus, all the examples show that the 2.5D SL-SBM approach involves
spurious eigenvalues associated with the corresponding interior problem under Di-
richlet boundary condition, since the method is based on single-layer potential. In
contrast, the spurious eigenvalues affecting the 2.5D DL-SBM scheme are those of
the corresponding interior problem under Neumann boundary condition, since the
method is based on double-layer fundamental solutions.
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Additionally, results from classic approaches such as the 2.5D BEM and 2.5D
MFS are included in the comparisons to study the appearance and severity of
the spurious eigenvalues in the 2.5D SL-SBM and 2.5D DL-SBM with respect to
those traditional methods. The presented numerical studies confirm that the 2.5D
SL-SBM suffers from the non-uniqueness issue in a similar manner than the 2.5D
BEM, since both methods employ the single-layer fundamental solutions as their
kernels, while it shows a higher accuracy than the 2.5D BEM. This work also shows
that 2.5D MFS is affected by the spurious eigenvalues associated to the interior
problem bounded by the virtual boundary, as proved for 2D cases in previous works
[84]. Results for the 2.5D MFS approach are not presented for the benchmark
example of the star-like object since the strong challenges associated with finding
an optimal virtual boundary in the case of complex boundary geometries are out
of scope of this study. However, it is worth mentioning that the non-uniqueness
difficulty should be taken in serious consideration in those cases.

In conclusion, the enhanced versions of the 2.5D SBM scheme that involve the
Burton–Miller and dual surface methods are found to be competitive alternatives
for exterior acoustic analysis that not only significantly reduce the computational
costs of mesh-based methods, but also robustly overcome the troublesome non-
uniqueness problem of boundary-type discretisation methods.



Chapter 6

Conclusions and future work

In this chapter, an overview of the most important contributions of the present
thesis is provided. Furthermore, a number of recommendations for advancing
research on this topic is conveyed.
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6.1 Thesis conclusions

The main objective of the PhD studies that resulted in the present dissertation
present was to investigate and develop new numerical meshless methodologies to
address various acoustic radiation and scattering problems. In pursuit of this ob-
jective, the present thesis has particularly centred on developing a novel generation
of boundary-type numerical meshless methodologies, owing to their remarkable
advantages in terms of computational efficiency and the simplicity of formulation
compared with domain-type numerical approaches. In this regard, this thesis has
specifically focused on studying and developing a novel method: the 2.5D SBM,
that combines the computational benefits of the 2.5D formulation and the SBM
itself. Additionally, a hybrid scheme combining the SBM and MFS methods has
been pursued along the doctoral studies resulting in the proposition of a novel
SBM-MFS methodology specially devised to tackle problems involving geometric
singularities such as corners and sharp edges. Furthermore, modified versions of
the 2.5D SBM based on the Burton–Miller and dual surface techniques, referred to
as the 2.5D BM-SBM and the 2.5D DS-SBM, respectively, have been proposed spe-
cifically to mitigate the effect of the spurious eigensolutions arising in the proposed
2.5D SBM. Drawing upon the studies presented and the conducted numerical ex-
periments employing the proposed SBM-based strategies, the following conclusions
can be inferred from this thesis.

The detailed comparisons conducted across various calculation scenarios demon-
strate the computational advantages of the proposed 2.5D SBM approach over
former numerical methods. Due to its meshless nature and the discretisation
strategy deployed the proposed 2.5D SBM scheme operates with higher efficiency
compared to equivalent 2.5D BEM approaches. This remarkable superiority arises
from its ability to avoid two procedures that are typically associated with BEM-
based approaches: the construction of a boundary mesh and the numerical in-
tegration over the boundary. Furthermore, the proposed 2.5D SBM is found to
offer an enhanced accuracy compared to the BEM approach constructed using
constant and linear elements. The proposed 2.5D SBM also demonstrates greater
robustness compared to the 2.5D MFS. Unlike the latter method, the 2.5D SBM
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does not need to deal with the challenging task of the fictitious boundary place-
ment, a process known to be complex and time-consuming, especially for complex
boundary geometries. Moreover, it has been found that the proposed 2.5D SBM
exhibits a higher stability and boarder applicability than the 2.5D MFS, as shown
by several benchmark examples.

This thesis has also studied the proposed 2.5D SBM in the framework of the prac-
tical benchmark scenario of the point source diffraction in the presence of a noise
thin barrier, where the advantages of this method over previous state-of-the-art
modelling strategies become quite evident. The 2.5D SBM enables the transform-
ation of the original 3D problem into a series of 2D problems, where the barrier
boundary is represented by just a line. This, coupled with the computational
advantages of the SBM, allows for an efficient assessment of the noise mitigation
induced by barriers with constant cross-sections. The performance of the proposed
2.5D SBM has been assessed in scenarios involving a harmonic source at a fixed
position and a scenario with a moving harmonic source at a constant speed. The
obtained results are consistent with findings from previous numerical studies on
the same subject.

The numerical experiments conducted with the proposed hybrid SBM-MFS meth-
odology have demonstrated several significant advantages of the new method over
the traditional MFS, SBM, and BEM approaches. Firstly, it has been observed
that the hybrid SBM-MFS methodology consistently provides higher levels of ac-
curacy and faster convergence rates when compared to the SBM and BEM ap-
proaches, and it matches or surpasses the accuracy of the MFS, especially in
problems characterised by smooth circular boundary geometries. However, this
scenario changes when dealing with geometries featuring corners and sharp edges,
where the hybrid method effectively mitigates errors induced by MFS and SBM,
resulting in highly accurate solutions. Lastly, due to the specific formulation of
the hybrid SBM-MFS methodology, it naturally avoids the problem of the non-
uniqueness solution arising near the fictitious eigenfrequencies of the corresponding
interior problems, a characteristic that neither SBM nor BEM inherently possess.

The investigation into the issue of fictitious eigenfrequencies, which arises due to
the non-uniqueness solution problem, reveals that this numerical phenomenon ap-
pears differently in 2.5D domain problems. In these scenarios, spurious eigenvalues
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take the form of spurious dispersion curves, which are associated with the propa-
gation modes of the corresponding interior problem. The proposed 2.5D BM-SBM
and 2.5D DS-SBM methodologies, adopted in the basis of both single- and double-
layer potentials, successfully mitigate this numerical issue in the 2.5D SBM. As
a result, these approaches significantly improve the accuracy of simulations, par-
ticularly in the frequency range where the dispersion curves of the corresponding
interior problem are present. Furthermore, results obtained from conventional
methods like the 2.5D BEM confirm that the 2.5D SL-SBM experiences the non-
uniqueness issue in a similar manner to the 2.5D BEM. This similarity arises
because both methods employ single-layer fundamental solutions as their kernel
functions. However, the spurious eigensolutions associated with the 2.5D MFS
depend on the location of the virtual boundary where the sources are distributed.

6.2 Recommendations and future work

This thesis sets the stage for future investigations within this specific field and
domain, offering valuable insights into various directions. While the methodolo-
gies presented here are promising, there are several ideas for their improvement.
Looking ahead, the following section provides a concise overview of ideas for future
work.

1. Throughout the research presented in this work, a uniform distribution of
collocation points was consistently utilised in the framework of the proposed
SBM approach. It would be of considerable interest to conduct a compre-
hensive study of the effects of collocation points distribution on the solutions,
with the goal of determining the most effective and optimal distribution
strategy for the employed SBM approach.

2. In the analyses carried out using the proposed hybrid SBM-MFS approach
throughout this thesis, a common practice was to distribute MFS sources on
the virtual boundary, typically constructed to be as a scaled version of the
physical boundary. It is advisable to conduct a more thorough examination
of the virtual source distribution in this method, with a concerted effort
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to investigate any limitations on source placement to ensure more precise
responses.

3. As a preliminary step, the hybrid SBM-MFS methodology has been intro-
duced to address 2D acoustic wave propagation problems within the scope
of this thesis. Thus, in future research, it would be valuable to explore the
applicability of this approach for more complex scenarios in the context of
2.5D and 3D modelling.

4. Apart from the Burton–Miller and dual surface modification techniques used
to address the non-uniqueness problem in this study, alternative modification
strategies such as the SVD or CHIEF techniques have also been discussed
in existing literature. An interesting direction for future research would in-
volve examining how these approaches perform when combined with the 2.5D
SBM, allowing for a detailed comparative analysis among these strategies to
evaluate the most accurate and computationally efficient method for address-
ing the non-uniqueness solution problem in 2.5D SBM context.

5. Although this thesis demonstrates the potentialities of the proposed 2.5D
SBM for effectively dealing with common practical acoustic problems, i.e.
noise diffracted by thin barriers, it is expected to find even more complex
engineering applications for this method. For instance:

• Evaluating the performance of noise barriers with various shapes.

• To study the suitability of the method to conduct acoustic sensitivity
analyses to optimise the acoustic characteristics of structures, particu-
larly in cases with a large number of design variables where conventional
methods may be computationally inefficient.
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OIFs for the 2.5D fundamental

solutions of the modified Helmholtz

equation

In this appendix, the 2.5D OIFs associated with the modified Helmholtz equa-
tion are derived. To accomplish this, applying the subtracting and adding back
technique to Eq. (2.7b) at collocation points on the boundary yields:

iρωv̄(sm) =
N∑
j=1

αjH̄(sm, sj, ka,nb) =
N∑
j=1

(αj − αmΠjm)H̄(sm, sj, ka,nb)

+ αm

N∑
j=1

Πjm

(
H̄(sm, sj, ka,nb)−HL(sm, sj,nb)

)

+ αm

N∑
j=1

Πjm

(
HL(sm, sj,nb) +HL

I (sm, sj,nb)

)

− αm

N∑
j=1

ΠjmH
L
I (sm, sj,nb),

(B-1)

where HL
I (sm, sj,nb) denotes the fundamental solutions of the flux for the Laplace

equation in interior problems and where Πjm = Lj/Lm, noting that Πmm = 1.
According to the dependency of the outward normal vectors on the fundamental
solutions of interior and exterior problems for the Laplace equation, the following
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identities can be stated:

HL(sm, sj,nb) = −HL
I (sm, sj,nb) for sm ̸= sj

HL(sm, sj,nb) = HL
I (sm, sj,nb) for sm = sj

(B-2)

and

lim
sj→sm

(
∂GL(sm, sj)

∂nbm

+
∂GL(sm, sj)

∂nbj

)
= 0. (B-3)

If the boundary is a straight line, the above equation is explicitly equal to zero,
since nbm(sm) is equal to nbj(sj) at all points. For problems with arbitrarily smooth
geometries, fundamental solutions as well as normal vectors smoothly approach to
their corresponding ones when source sj and collocation sm points get closer to each
other along a line segment. In those situations, Eq. (B-3) is valid. Considering
the relationship between the fundamental solutions of the Laplace and Helmholtz
equations for small source-receiver distances as follows:

H̄(sm, sj, ka,nb) = HL(sm, sj,nb) when r → 0, (B-4)

and also using the help of Eqs. (B-2) and (B-3), Eq. (B-1) can be regularised as:

iρωv̄(sm) =
N∑

j=1,j ̸=m

(αj − αmΠjm)H̄(sm, sj, ka,nb)

+ αm

N∑
j=1,j ̸=m

Πjm

(
H̄(sm, sj, ka,nb)−HL(sm, sj,nb)

)

+ αm

N∑
j=1,j ̸=m

Πjm

(
HL(sm, sj,nb) +HL

I (sm, sj,nb)

)

− αm

N∑
j=1

ΠjmH
L
I (sm, sj,nb).

(B-5)

Now, the above equation is regularised except for its last term which still involves
singularity. However, it has a finite value equal to Vm = −1/Lm, which can be
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derived based on the following direct boundary integral equation:

u(xm) =

∫
Γ

(
GL

I (xm, s)
∂u(s)

∂nb

−u(s)HL
I (xm, s,nb)

)
dΓ (s) for xm ∈ ΩI. (B-6)

Substituting the simple test solution u(s) = 1 and ∂u(s)/∂nb = 0 into Eq. (B-6),
we can obtain the following equation:∫

Γ

HL
I (xm, s,nb)dΓ (s) = −1 for xm ∈ ΩI. (B-7)

When the field point xm approaches the boundary, we can discretize Eq. (B-7) as
follows:∫

Γ

HL
I (xm, s,nb)dΓ (s) =

N∑
j=1

∫
Γj

HL
I (xm, s,nb)dΓj(s)

≈
N∑
j=1

HL
I (xm, sj,nb)Lj = −1 for xm ∈ Γ.

(B-8)

Dividing by non-zero value Lm, we have

N∑
j=1

ΠjmH
L
I (xm, sj,nb) = Vm for xm ∈ Γ, (B-9)

where Vm = −1/Lm. Then, the regular formulation of Eq. (B-1) is represented
as:

iρωv̄(sm) =
N∑

j=1,j ̸=m

αjH̄(sm, sj, ka,nb) + αm

N∑
j=1,j ̸=m

ΠjmH
L
I (sm, sj,nb)− αmVm

=
N∑

j=1,j ̸=m

αjH̄(sm, sj, ka,nb)− αm

N∑
j=1,j ̸=m

ΠjmH
L(sm, sj,nb)− αmVm.

(B-10)

Compared with Eq. (2.10b) at sm = sj, it is obtained that:

H̄mm = HL
mm = −Vm −

N∑
j=1,j ̸=m

ΠjmH
L(sm, sj,nb), (B-11)
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which is the OIFs of the 2.5D fundamental solutions of Helmholtz equation for
Neumann boundary conditions in Eq.(2.10b). Thanks to the following asymptotic
expression between the Helmholtz and Laplace fundamental solutions:

Ḡ(sm, sj, ka) = GL(sm, sj)−
1

2π

(
ln

(
ka
2

)
+ γ

)
when r → 0 (B-12)

the OIFs Ḡmm of the 2.5D fundamental solutions of Helmholtz equation in (2.10a)
can be determined indirectly by calculating the OIFs GL

mm of the Laplace equation,
namely,

Ḡmm = GL
mm − 1

2π

(
ln

(
ka
2

)
+ γ

)
, (B-13)

where the OIFs GL
mm can be derived as [30, 33]:

GL
mm =

1

Lm

∫
Γs

GL(xm, s) dΓs(s) = − 1

2π
ln

(
Lm

2π

)
. (B-14)
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