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Abstract

Earth System Models (ESMs) are crucial for understanding climate change, pro-
viding valuable insights into real-world phenomena and systems, with numerous
applications in science and engineering. However, the scientific community requires
greater computational power to reduce uncertainties in these models. Significant
progress is being made by transitioning to heterogeneous computing systems that
combine Central Processing Units (CPUs) and Graphics Processing Units (GPUs).
These models can be accelerated notably by optimizing the most time-consuming
components, such as chemistry, thereby reducing uncertainties and enhancing our
understanding of climate dynamics.

The primary objective of this thesis is to improve the performance of chemistry
solvers in atmospheric models by developing efficient solutions tailored to GPU-
based heterogeneous architectures. Specifically, the focus is maximizing GPU per-
formance, enhancing accuracy, ensuring portability, and minimizing development
effort by minor modifications to the existing chemistry solver.

This thesis’s critical contribution is developing a CPU-GPU version of the CAMP
chemistry solver for the atmospheric model MONARCH, achieving significant accel-
eration. Furthermore, the developed chemical solver can be easily adapted to solve
generic systems of Ordinary Differential Equations (ODEs) on the GPU due to its
similarity to the CVODE library used in the CAMP CPU solver.

The open-source code has been released as an upgrade to CAMP to facilitate porta-
bility. The main contributions include a method for seamlessly integrating GPU code
into chemistry solvers (Multi-cells), distributing computational loads across GPU
threads (Block-cells), and an automatic load-balancing algorithm for concurrent
CPU-GPU execution. Notably, the automatic load-balancing algorithm is designed
to be simple, ensuring portability while delivering accelerated execution. Further-
more, a GPU linear solver has been developed following the Block-cells approach,
enabling further exploration of Block-cells in iterative solvers and facilitating cou-
pling with other systems—an important consideration given the widespread use of
linear solvers in scientific and mathematical communities.

The results demonstrate a 250x speedup compared to the single-threaded CPU ver-
sion when using four GPUs in a single node. In a node-to-node comparison, utilizing
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four GPUs versus 80 CPU cores, the speedup achieved is 8.14x. When normaliz-
ing the cores used against other state-of-the-art solutions, the speedup is 16x. The
substantial speedup achieved with minimal algorithmic changes underscores the sig-
nificance of the new strategies developed in this thesis.
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Resumen

Los modelos del sistema terrestre (ESMs) son cruciales para comprender el cambio
climático, ya que brindan información valiosa sobre fenómenos y sistemas del mundo
real, con numerosas aplicaciones en ciencia e ingenieŕıa. Sin embargo, la comunidad
cient́ıfica requiere una mayor potencia computacional para reducir las incertidumbres
en estos modelos. Se están logrando avances significativos mediante la transición
a sistemas informáticos heterogéneos que combinan Unidades Centrales de Proce-
samiento (CPUs) y Unidades de Procesamiento Gráfico (GPUs). Estos modelos
se pueden acelerar notablemente mediante la optimización de los componentes que
consumen más tiempo, como la qúımica, lo que reduce las incertidumbres y mejora
nuestra comprensión de la dinámica climática.

El objetivo principal de esta tesis es mejorar el rendimiento de los solucionadores de
qúımica en modelos atmosféricos mediante el desarrollo de soluciones eficientes adap-
tadas a arquitecturas heterogéneas basadas en GPU. Espećıficamente, el enfoque se
centra en maximizar el rendimiento de la GPU, mejorar la precisión, garantizar la
portabilidad y minimizar el esfuerzo de desarrollo mediante la realización de modi-
ficaciones menores al solucionador de qúımica existente.

La contribución fundamental de esta tesis es el desarrollo de una versión CPU-
GPU del solucionador de qúımica CAMP para el modelo atmosférico MONARCH,
logrando una aceleración significativa. Además, el solver qúımico desarrollado se
puede adaptar fácilmente para resolver sistemas genéricos de Ecuaciones Diferen-
ciales Ordinarias (ODE) en la GPU, gracias a su similitud con la libreria CVODE
utilizada para el solver CPU de CAMP.

El código fuente abierto se ha publicado como una actualización de CAMP para
facilitar la portabilidad. Las principales contribuciones incluyen un método para
integrar fácilmente código GPU en los solucionadores de qúımica (Multi-cells), dis-
tribuir las cargas computacionales entre los procesos de la GPU (Block-cells) y un
algoritmo de equilibrio de carga automático para la ejecución concurrente de la CPU
y la GPU. En particular, el algoritmo de equilibrio de carga automático está diseñado
para ser simple, garantizando la portabilidad y ofreciendo una ejecución acelerada.
Además, se ha desarrollado un solucionador lineal de GPU siguiendo el enfoque
Block-cells, permitiendo una mayor exploración de Block-cells en solucionadores
iterativos y facilitando el acoplamiento con otros sistemas, una consideración im-
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portante dado el uso generalizado de solucionadores lineales en las comunidades
cient́ıficas y matemáticas.

Los resultados demuestran una aceleración de 250x en comparación con la versión
de CPU de un solo proceso utilizando cuatro GPU en un solo nodo. En una com-
paración de nodo a nodo, utilizando cuatro GPU frente a 80 núcleos de CPU, la
aceleración lograda es de 8,14x. Al normalizar los núcleos utilizados frente a otras
soluciones de última generación, la aceleración es de 16x. La aceleración sustan-
cial lograda con cambios algoŕıtmicos mı́nimos subraya la importancia de las nuevas
estrategias desarrolladas en esta tesis.
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Resum

Els Models del Sistema Terrestre (ESMs) són crucials per a comprendre el canvi
climàtic, ja que brinden informació valuosa sobre fenòmens i sistemes del món real,
amb nombroses aplicacions en ciència i enginyeria. No obstant això, la comunitat
cient́ıfica requereix una major potència computacional per a reduir les incerteses en
aquests models. S’estan aconseguint avanços significatius mitjançant la transició a
sistemes informàtics heterogenis que combinen Unitats Centrals de Processament
(CPUs) i Unitats de Processament Gràfic (GPUs). Aquests models es poden accel-
erar notablement mitjançant l’optimització dels components que consumeixen més
temps, com la qúımica, aix́ı reduint les incerteses i millorant la nostra comprensió
de la dinàmica climàtica.

L’objectiu principal d’aquesta tesi és millorar el rendiment dels solucionadors de
qúımica en models atmosfèrics mitjançant el desenvolupament de solucions eficients
adaptades a arquitectures heterogènies basades en GPU. Espećıficament, la tesis
es centra en maximitzar el rendiment de la GPU, millorar la precisió, garantir la
portabilitat i minimitzar l’esforç de desenvolupament mitjançant la realització de
modificacions menors al solucionador de qúımica existent.

La contribució fonamental d’aquesta tesi és el desenvolupament d’una versió CPU-
GPU del solucionador de qúımica CAMP per al model atmosfèric MONARCH,
aconseguint una acceleració significativa. A més, el solver qúımic desenvolupat es
pot adaptar fàcilment per a resoldre sistemes genèrics d’Equacions Diferencials Or-
dinàries (ODE) a la GPU, gràcies a la seva similitud amb la llibreria CVODE util-
itzada per al solver CPU de CAMP.

El codi font obert s’ha publicat com una actualització de CAMP per a facilitar la
portabilitat. Les principals contribucions inclouen un mètode per integrar fàcilment
codi GPU als solucionadors de qúımica (Multi-cells), distribuir la càrrega com-
putacional entre els processos de la GPU (Block-cells) i un algoritme d’equilibri
de càrrega automàtic per a l’execució concurrent de la CPU i la GPU. Particular-
ment, l’algoritme d’equilibri de càrrega automàtic està dissenyat per ésser simple,
garantint la portabilitat i oferint una execució accelerada. A més, s’ha desenvolupat
un solucionador lineal de GPU seguint l’enfocament Block-cells, la qual cosa permet
una major exploració de Block-cells en solucionadors iteratius i facilita l’acoblament
amb altres sistemes, una consideració important donat l’ús generalitzat de solu-
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cionadors lineals en les comunitats cient́ıfiques i matemàtiques.

Els resultats demostren una acceleració de 250x en comparació amb la versió de CPU
d’un sol procés utilitzant quatre GPU en un sol node. En una comparació de node
a node, utilitzant quatre GPU enfront de 80 nuclis de CPU, l’acceleració obtinguda
és de 8,14x. Normalitzant els nuclis utilitzats enfront d’altres solucions d’última
generació, l’acceleració és de 16x. L’acceleració substancial aconseguida amb canvis
algoŕıtmics mı́nims subratlla l’importància de les noves estratègies desenvolupades
en aquesta tesi.
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Chapter 1

Introduction

This chapter provides a general overview of the thesis, organized into the following
subsections: the primary motivation driving this research and scientific context, the
state-of-the-art in the field, the primary and subsequent objectives of the study,
and its fundamental contributions. The chapter concludes with a subsection that
outlines and summarizes the content of the thesis, offering a chapter-by-chapter
breakdown of what is to come.

1.1 Motivation and Context

Climate change is a complex intergovernmental challenge, influencing various ecolog-
ical, environmental, political, and economic disciplines [1]. Understanding climate
change is vital for developing adaptation initiatives and preparing for extreme events
like wildfires, floods, and droughts [2].

In the last decade, our understanding of climate change has significantly increased
[3], alongside the demand for policy-relevant climate information. While there is
great confidence that climate change is occurring, uncertainties remain [4], par-
ticularly regarding the amount of greenhouse gas and aerosol emissions and, even
more significantly, the degree of warming and the likely impacts [5]. To reduce
these uncertainties, enhancing the capability and comprehensiveness of Earth Sys-
tem Models (ESMs) is essential to represent new scenarios for our future climate
with ever-increasing realism and detail [6].

Earth system models (ESM) aim to represent all relevant interactions of the Earth
system components (i.e., atmosphere, ocean, sea ice, land surface, biosphere, ice
sheets). They provide valuable information on the nature of real-world phenomena
and systems [7], with many applications in science and engineering [8]. Remarkably,
these models play an increasingly important role in understanding the potential
implications of climate change [9].
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1.1. MOTIVATION AND CONTEXT

Therefore, the scientific community necessitates higher model resolution, more ex-
periments and ensembles to quantify uncertainty, increased complexity of ESMs, and
more extended simulation periods compared to the current capabilities of climate
models [6]. However, the enhancement of ESMs heavily depends on the availability
of substantial computing power and data storage capacity [10].

High-Performance Computing (HPC) has evolved significantly over the past few
years, transitioning from a supportive technology within the academic research com-
munity to a critical component of the numerical modeling framework [11], being
essential for Earth System Modeling [12].

The advancements in HPC necessitate some degree of rewriting to fully leverage new
and emerging architectures. As HPC technology evolves, the Earth Sciences com-
munity is shifting towards heterogeneous computing systems consisting of various
processors. In these systems, different software and hardware components interact
to enhance the computational power of HPCs [13]. Many applications face severe
challenges in exploiting the unique characteristics of modern heterogeneous systems.

Current compute nodes typically combine a Central Processing Unit (CPU) with
multiple Graphics Processing Units (GPUs). Integrating GPUs into Earth System
Models (ESMs) requires refactoring the code to fit a different computing paradigm.
This task is complex and time-consuming, especially for models with hundreds of
thousands of lines of code, such as ESMs [14]. Hence, most optimization work on
ESMs generally focuses on specific components of the model rather than the entire
system. This approach preserves the CPU version for portability while leveraging
the computational power of accelerators for particular parts of the code [15].

The atmospheric components of ESMs (i.e. atmospheric models) are a computer-
coded representation of the atmosphere’s dynamical, physical, chemical, and radia-
tive processes [16]. Among ESM components, chemistry stands out for its significant
computational burdens, typically accounting for between 50% and 95% of the total
execution time [17] [18] [19].

Different levels of complexity are required in the chemistry representation of atmo-
spheric components. Detailed gas-phase chemistry is necessary to model air quality
and its impacts on health and greenhouse gas lifetimes. In addition, further detailed
particulate matter modeling is required to understand its direct and indirect effects
on climate and how it can affect health and ecosystems (terrestrial and water). Over-
all, the solution of a chemical mechanism (a set of chemical reactions describing the
fate of dozens to thousands of chemical species with a wide range of lifetimes from
seconds to weeks) can be the most expensive part of the problem. The resulting
ODE system is mathematically stiff [20], and special care needs to be exercised in
choosing the numerical integration scheme [17]. Other factors that can affect the
computational cost of the solution of an ODE system are the desired accuracy and
the hardware architecture used.

A key motivation behind this work is the under-utilization of GPUs in atmospheric
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1.1. MOTIVATION AND CONTEXT

models despite the availability and power of these resources for several years. This
thesis uses as a test bed the Multiscale Online Nonhydrostatic Atmosphere Chem-
istry (MONARCH) model [21] [22] [23] [24], a chemical weather prediction sys-
tem developed and maintained by the Atmospheric Composition and Computa-
tional Earth Sciences groups at the Barcelona Supercomputing Center (BSC). The
model provides operational regional mineral dust forecasts for the World Meteo-
rological Organization (WMO; https://dust.aemet.es/) and participates in the
WMO Sand and Dust Storm Warning Advisory and Assessment System for North-
ern Africa-Middle East-Europe (http://sds-was.aemet.es/). Since 2012, the sys-
tem has contributed daily global aerosol forecasts to the multi-model ensemble of
the International Cooperative for Aerosol Prediction (ICAP) initiative [25]. Since
2022, MONARCH is one of the members of the multi-model system of the Coper-
nicus Atmosphere Monitoring Service (CAMS)—Air Quality Regional Production
(https://www.regional.atmosphere.copernicus.eu).

The chemistry component in MONARCH serves as a prime example of being the
most time-consuming element among the atmospheric components, consuming around
80% of the total execution time. This significant computational burden motivated
our focus on optimizing this aspect of the model.

At the start of this thesis, MONARCH was integrating a new and promising chem-
istry component: the Chemistry Across Multiple Phases (CAMP) library [26]. CAMP
is designed to streamline development by minimizing hard-coded elements within the
code. Its library-based structure accelerates developments by enabling independent
execution from the rest of the atmospheric model, avoiding unnecessary computa-
tions. CAMP can handle various types of chemistry, including gases and aerosols,
using a unified solving procedure, in contrast to the default MONARCH and tra-
ditional approach that employs highly unrelated solvers for different components.
Thus, enhancing CAMP effectively improves multiple solvers simultaneously, which
would otherwise be much more complex. These advantages make CAMP an ideal
host for our development. The contributions of this thesis further motivate the in-
tegration of CAMP into the broader atmospheric science community, solidifying its
potential as a critical component for future advancements.

A key benefit of applying GPU computing to MONARCH and CAMP is the abil-
ity to effectively handle highly parallel computational workloads. An atmospheric
domain typically contains millions of chemical concentrations. While a node may
have access to tens of CPU processes, a GPU can manage millions of threads si-
multaneously. Implementing GPU computing thus offers a significant performance
advantage due to the high degree of parallelization inherent in GPU architecture.
Moreover, the simultaneous use of CPU and GPU architectures allows for an even
greater computation acceleration by leveraging each of its strengths. Therefore,
the primary motivation of this thesis is to enhance the performance of atmospheric
models by exploiting the substantial computational resources provided by GPUs.
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1.2. STATE OF THE ART

1.2 State of the art

The state-of-the-art discussion is divided into two categories: historical approaches
to parallelized chemistry and available parallel computing paradigms for GPUs.
The first category sets the background leading up to our contributions, highlight-
ing the evolution of techniques and methodologies in parallelized chemistry. The
second category presents the current GPU-related tools and paradigms for acceler-
ating chemistry to enhance and build upon the established background, offering new
opportunities for performance improvements in computational chemistry.

1.2.1 Parallel strategies to solve chemistry mechanisms

Historically, chemical solvers have been designed for single-thread execution. For
example, this approach is employed by the Kinetic PreProcessor [27], which has
been widely used to generate gas-phase mechanism code with several ODE solver
options.

However, chemical systems in ESMs can benefit from massive parallelization. The
initial implementations relied on domain decomposition across multiple intercon-
nected CPUs, using MPI for communications between them [28]. This technique
divides the computational domain (covering a global or regional geographical area)
into smaller regions representing a fractional volume of the atmosphere, typically
called grid cells in the community, which will be called cells from now on. The model
assigns collections of cells to independent threads to solve the many physical and
chemical processes in the atmosphere in parallel.

ESMs have gradually integrated more parallel programming interfaces such as Ope-
nACC, OpenMP, and CUDA. MPI is the most used tool to distribute work across
independent supercomputer nodes. MPI can further be used along another parallel
approach to divide the load across individual CPU or GPU threads.

The typical alternatives for CPU parallelization are MPI-Only and OpenMP + MPI.
Typically, MPI is preferred for simplicity in parallelizing most of the model, while
OpenMP is used for small code sections. However, various studies on similar models
reported that using MPI achieves the same efficiency as OpenMP [29] [30].

The GPU alternatives have reported in multiple studies positive results [31] [32]
[33]. The main advantage is the combination of the MPI and GPU, leading to
a CPU+GPU implementation. Both architectures can run simultaneously in this
combination, leading to high accelerations.

However, GPU development in the chemistry field is at an early stage, where the
usual approach is to choose between the two architectures. The GPU approach has
shown performance improvements in several studies, even in this situation. A stan-
dard comparison metric is the speedup of a GPU against a single-thread execution
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of the CPU version, which can differ considerably between studies. For example,
a Rosenbrock solver in the CAM4-chem model achieves an 11.7× speedup [34]. A
chemistry module Kinetic PreProcessor (KPP) version in the climate model EMAC
achieves 20.4× speedup using 1 GPU against the single-thread CPU version [35]. A
Runge-Kutta-Chebyshev (RKC) algorithm explicitly developed for GPU execution
achieves up to a 59× speedup [36]. The first and second studies solve gas-phase
chemical kinetics, a time-expensive part of the chemistry in atmospheric models.
However, the last example is only available for slightly stiff chemical kinetics and
not for the complex chemistry of an atmospheric model.

The significant difference in speedup between studies highlights the difficulty and
potential of porting the code to the GPU. Generally speaking, faithful translations
of the original version ensure portability, while less faithful adaptations (for exam-
ple, a different algorithm) can achieve more significant speedups and require more
development effort.

Most current GPU solutions for chemistry solvers follow a similar parallelization
strategy. Specifically, each computational process (i.e., GPU thread) solves the
workload of a cell. A cell is the smallest unit obtained by discretizing the domain
of study (e.g., the atmosphere in atmospheric models). Each cell describes the
state of the atmosphere in that specific domain region (including variables such
as chemical species concentrations, temperature, pressure, etc.). In each cell, the
prognostic equations describing the evolution of state variables are solved through
multiple algebraic operations over the concentrations array. During solving, many
calculations related to specific species are independent. This means that they can
be computed in parallel.

Recent works are adopting similar concepts. Specifically, a GPU implementation for
calculating chemical rates in the MCIM chemistry solver achieves 66x speedup with-
out data transfer time [37] [38]. This approach ensures portability as the algorithm is
untouched while achieving outstanding performance by adapting the routine specif-
ically for GPUs. Although the ported code is tiny compared to the entire chemistry
solver, the approach reflects the potential advantages of a GPU implementation.

1.2.2 Parallel computing paradigms for GPU

From the code languages used to work with the GPU, CUDA stands out as the
most utilized in relevant state-of-the-art chemistry modules, such as KPP or CAM4-
Chem [35] [34]. Nvidia has developed and extensively documented CUDA. Nvidia
also provides robust profiling tools and libraries, such as Nsight and cuBLAS https:

//developer.nvidia.com/cublas, which are only available for CUDA. In addition,
the CUDA lower-level interface with the GPU, which is very similar to the base CPU
implementation in C, C++, or Fortran, adds flexibility to develop optimization
strategies.
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Languages based on compiler directives (or pragmas), such as OpenACC [39] or
OpenMP [40], are adopted by various weather and climate modeling groups [41]
[42] [43] [33]. Directive languages offer a higher-level interface than CUDA, aiming
for more productivity and portability. However, the programmer loses flexibility
compared to the lower-level CUDA language, which could make it challenging to
find optimizations. Also, these directive-based approaches generate automated ker-
nel code, which can obscure the underlying operations and make it challenging to
analyze and address performance issues effectively.

An advantage of some directive languages is their support for multiple GPU ven-
dors. For instance, OpenMP supports both Nvidia and AMD GPUs. This is
an advantage over CUDA, which is specific to Nvidia GPUs. However, trans-
lating CUDA to AMD’s HIP (Heterogeneous-Compute Interface for Portability)
https://github.com/ROCm/HIP is relatively straightforward due to the similari-
ties between the two languages. HIP is compatible with Nvidia GPUs but lacks
the latest utilities from Nvidia’s profiling tools, such as the Roofline model from
Nsight. Therefore, while directive languages offer immediate portability across dif-
ferent GPUs, CUDA’s detailed performance tools and mature ecosystem remain
beneficial for in-depth optimization. In the future, adding support for other GPU
vendors could be achieved without extensive effort, maintaining a balance between
performance and portability.

Another solution is the use of source-to-source parsers. For example, the authors
of the GPU EMAC-KPP study [35] wrote a parser to translate the Fortran code to
CUDA [35], suggesting that parsers can facilitate the development work. However,
this parser lacks portability and is only available for the KPP library, making it
difficult to use in other chemistry solvers.

Nevertheless, the climate community is also developing parsers with portability in
mind. For example, the CLAW translator aims to facilitate the transition from
Fortran to OpenACC with minimal or no changes to the original code [44]. This ap-
proach is highly useful for physical parameterizations written in Fortran. However,
CLAW may not be applicable for codes programmed in C, especially considering its
focus on Fortran, as indicated by the examples available on its GitHub repository
https://github.com/claw-project/claw-language-specification. This limi-
tation makes using CLAW for C code challenging and may even result in missing
routines necessary for accurate translation.

Another example of a source-to-source tool is LOKI https://github.com/ecmwf-
ifs/loki, which offers more comprehensive documentation than CLAW. However,
LOKI is also designed primarily for Fortran routines. Despite this, LOKI is in an
early stage of development with frequent updates, suggesting it could become a
valuable tool in the future. As it evolves, LOKI may offer greater flexibility and
support for a broader range of programming languages, including C, making it a
promising option to watch for future developments.

Another possibility for porting available solvers is utilizing GPU libraries, such as
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cuBLAS or cuSOLVER https://docs.nvidia.com/cuda/cusolver/index.htmls,
designed to maximize performance and continually updated. These libraries offer
highly optimized routines for linear algebra operations and solvers, leveraging the
total computational power of GPUs. However, they present a significant limitation:
not all parts of the code can be run exclusively on the GPU. Specifically, the con-
vergence condition of iterative algorithms cannot be evaluated on the GPU. This
condition determines whether the algorithm should terminate or continue with more
iterations. In other words, while the variable containing the error could theoreti-
cally reside on the GPU, the need for communication between the GPU and the
CPU arises because these libraries are invoked from the CPU. Each iteration would
necessitate transferring data between the CPU and GPU to check the convergence
condition and then re-invoke the GPU for further computations. This frequent com-
munication overhead can considerably slow down the performance, diminishing the
benefits of using these high-performance libraries for the solver.

In summary, while GPU libraries like cuBLAS and cuSOLVER offer powerful capa-
bilities, their reliance on CPU-GPU communication for convergence checking and
other iterative controls would result in substantial time overhead.

In addition, various studies have reported optimizations to routines of the cuBLAS
and cuSolver libraries. For instance, a Cholesky factorization approach outper-
forms cuSolver by 10% in single precision [45]. Similarly, another study evaluated
and optimized BLAS operations on GPUs, achieving significant performance gains
over standard implementations [46]. These findings suggest that while cuBLAS and
cuSolver provide robust and high-performing solutions, there are instances where
tailored optimizations can yield better performance.

This indicates that more effective optimizations may be available than these libraries
offer. Custom optimization strategies tailored to the requirements and characteris-
tics of a specific application or code might achieve superior performance, particularly
by addressing specific bottlenecks and leveraging the unique aspects of the compu-
tational workload.

1.3 Objectives

The main objective of this thesis is to improve the computational performance of
existing chemistry solvers used in atmospheric chemistry models, developing effi-
cient solutions for GPU heterogeneous architectures. Our proposal is a novel data
partitioning to increase the parallel workload, aiming for higher GPU performance,
high accuracy, portability, and low development effort with minimal changes to the
existing chemistry solver.

To achieve the main goal of the thesis, the following specific objectives are defined:
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1. Lay the groundwork of a GPU implementation, defining how to adapt chem-
istry models for GPU execution, usually designed for the CPU. Adaptation
must require an affordable development effort while maintaining accuracy.

2. Design a novel strategy to increase the parallel workload. Ensure higher perfor-
mance than traditional approaches while keeping the accuracy and capabilities
of the chemistry solver.

3. Extend the strategy to the whole chemistry solver and test the solution in a 3D
complex atmospheric chemistry model, quantifying the accuracy and achieved
performance.

4. Design and deploy an optimal GPU load-balancing implementation to maxi-
mize the utilization of CPU and GPU resources in heterogeneous runs.

An iterative and incremental methodology has been followed, in which each previ-
ously defined specific objective has been documented, tested, and analyzed. This
includes exploring new optimization techniques, improving and standardizing the
code, validating the code in an atmospheric model, and making final adjustments
and optimizations. This approach ensures that each step builds on the previous one,
resulting in a robust and efficient solution.

By focusing on custom optimizations and potentially integrating or even enhanc-
ing standard GPU libraries with additional tailored strategies, the thesis can aim
to achieve significant performance improvements. This approach aligns with the
iterative and incremental methodology of testing and analyzing each optimization
step, ensuring that the final implementation is highly efficient and well-suited to the
complex requirements of atmospheric chemistry modeling.

1.4 Contributions

The ultimate contribution of this thesis is developing a new solution that advances
state-of-the-art performance and utilization of GPU and CPU resources in atmo-
spheric chemistry models. The key contributions of this work can be summarized
as follows:

1. Algorithmic contributions to chemistry solvers. These algorithms balance min-
imal development effort and optimal efficiency, representing an improvement
over the state-of-the-art. The specific algorithms include:

(a) The Multi-cells approach to easily integrate GPU functions in chemistry
solvers (details in chapter 3).

(b) The Block-cells distribution of the computational load for GPU comput-
ing (details in chapter 4).
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(c) An automatic load balancing algorithm for simultaneous CPU-GPU ex-
ecution (details in chapter 6).

2. Release of our developments as an upgrade to CAMP. Our contributions in-
clude the CPU-GPU version with the load balance algorithm following the
Block-cells implementation. The GPU code introduced corresponds to a new
ODE solver for CAMP, replicating the CPU solver algorithm to port its ca-
pabilities. Consequently, our developments provide a GPU ODE solver for
chemistry that can be easily adapted to solve generic ODE systems. This
adaptability is particularly notable since the CAMP CPU solver corresponds
to a slightly modified version of the CVODE library [47].

3. The release of a GPU linear solver following the Block-cells strategy [48]
https://github.com/cguzman95/BCG-CAMP-MONARCH. This code is an iso-
lated version of the linear solver used within the ODE solver, making it easier
to understand the performance limitations of Block-cells on iterative solvers.
Additionally, it enables coupling with other systems, which is significant given
the widespread use of linear solvers in the scientific and mathematical com-
munities.

4. Coupling our developments with MONARCH, enabling it to utilize CPU and
GPU resources and benefit from an accelerated version of CAMP.

5. One manuscript, currently in progress and divided into Chapters 5 and 6, will
be submitted for publication as soon as possible.

6. One peer-reviewed publication included as Chapter 4 and published in [49]
C. Guzman Ruiz, M. Acosta, O. Jorba, E. Cesar Galobardes, M. Dawson, G.
Oyarzun, C. Perez Garcia-Pando, and K. Serradell, ”Optimized thread-block
arrangement in a GPU implementation of a linear solver for atmospheric chem-
istry mechanisms,” Computer Physics Communications, vol. 302, p. 109240,
Sep. 2024

7. One proceeding publication included as Chapter 3 and published in [50] C. G.
Ruiz, M. Dawson, M. C. Acosta, O. Jorba, E. C. Galobardes, C. P. Garcia
Pando, and K. Serradell, ”Adapting Atmospheric Chemistry Components for
Efficient GPU Accelerators”, in Proceedings of Eighth International Congress
on Information and Communication Technology, X.-S. Yang, R. S. Sherratt,
N. Dey, and A. Joshi, Eds. Singapore: Springer Nature Singapore, 2023,
pp.129–138. Proceedings of Eighth International Congress on Information and
Communication Technology, Springer Nature Singapore, 2023, pp.129-138.

8. Participation in conferences and workshops:

(a) [51] C. Guzman Ruiz, M. C. Acosta, O. Jorba, and C. P. Garćıa-
Pando, “Novel approaches to accelerate chemistry for climate models,”
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in Platform for Advanced Scientific Computing (PASC) 2023, Congress-
center Davos, Switzerland, Jun. 2023. [Online]. Available: https:

//pasc23.pasc-conference.org/presentation/

(b) [52] C. Guzman Ruiz, M. C. Acosta, M. Dawson, O. Jorba, C. P. Garćıa-
Pando, and S. Kim, “CAMP First GPU Solver: A Solution to Accel-
erate Chemistry in Atmospheric Models,” in 9th BSC Doctoral Sym-
posium, Universitat Politècnica de Catalunya, Spain, May 2022. [On-
line]. Available: https://www.bsc.es/education/predoctoral-phd/

doctoral-symposium/9th-bsc-doctoral-symposium-2022

(c) [53] C. Guzman Ruiz, M. C. Acosta, M. Dawson, O. Jorba, C. P.
Garćıa-Pando, and S. Kim, “CAMP First GPU Solver: A Solution to
Accelerate Chemistry in Atmospheric Models,” in 7th HPC Workshop
of the European Network for Earth System Modelling, Barcelona Su-
perComputing Center, Spain, May 2022. [Online]. Available: https:

//portal.enes.org/hpc-workshops-detailed/#hpc7

(d) [54] C. Guzman Ruiz, M. C. Acosta, M. Dawson, O. Jorba, C. P. Garćıa-
Pando, and S. Kim, “Studying a new GPU treatment for chemical mod-
ules inside CAMP,” in 19th Workshop on HPC in Meteorology, Online,
Sep. 2021. [Online]. Available: https://events.ecmwf.int/event/

169/timetable/

(e) [55] C. Guzman Ruiz, M. C. Acosta, M. Dawson, O. Jorba, C. P. Garćıa-
Pando, and S. Kim, “Exploiting parallelism for CPU and GPU linear
solvers on chemistry for atmospheric models,” in 8th BSC Doctoral Sym-
posium, Online, May 2021. [Online]. Available: https://www.bsc.es/

education/predoctoral-phd/doctoral-symposium/8th-bsc-doctoral-

symposium-2021

(f) [56] C. Guzman Ruiz, M. C. Acosta, M. Dawson, O. Jorba, C. P. Garćıa-
Pando, and S. Kim, “Accelerating Atmospheric Models using GPU,” in
The 2020 International Conference on High Performance Computing &
Simulation (HPCS 2020), Mar. 2021. [Online]. Available: https://

hpcs2020.cisedu.info/

(g) [57] C. Guzman Ruiz, M. C. Acosta, M. Dawson, O. Jorba, C. P. Garćıa-
Pando, and S. Kim, “Accelerating Chemistry Modules in Atmospheric
Models Using GPUs,” in 6th ENES Workshop on High Performance
Computing for Climate and Weather, Online, May 2020. [Online]. Avail-
able: https://www.esiwace.eu/events/6th-hpc-workshop

(h) [58] C. Guzman Ruiz, M. C. Acosta, M. Dawson, O. Jorba, C. P.
Garćıa-Pando, and S. Kim, “Accelerating Chemistry Modules in Atmo-
spheric Models Using GPUs,” in NVIDIA GTC 2020 Spring, Online,
Mar. 2020. [Online]. Available: https://www.nvidia.com/en-us/on-

demand/session/gtcsj20-s22005/
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1.5 Outline of the thesis

This thesis is organized into seven chapters, each addressing different contributions
of the research. Chapter 2 introduces the numerical models employed in this thesis
and the performance tools used to derive performance metrics on the GPU. The
chapter briefly describes the atmospheric chemistry model MONARCH and the
chemistry library CAMP. Both are the primary tools for solving reactive chemistry
in the atmosphere and have been adopted as test beds for the new GPU solutions
designed and developed in this thesis.

Chapter 3 corresponds to the first steps of adapting CAMP to a GPU computing
paradigm. It presents the Multi-cells strategy, where multiple cells are solved as a
single system. Originally, CAMP was designed to contain data from a single chem-
ical system, and the parallelization, based on parallelizing the solving of chemical
systems, was handled with MPI. Consequently, the call to the solving routine of
CAMP from the atmospheric model contains a cell loop, calling the CAMP solving
routine for each cell individually. Therefore, using any GPU routine in CAMP would
result in a call to that routine for each cell. Considering that a typical experiment
generates millions of cells, with a minimal load for each, the data transfer cost with
the GPU would be very high many times. Ideally, a single call with the maximum
load possible is desirable. The Multi-cells implementation achieves this.

The chapter also includes a GPU strategy for CAMP’s most time-consuming func-
tion, including the time expended in data transfers between CPU and GPU.

Chapter 4 upgrades the Multi-cells strategy to a new one called Block-cells, compar-
ing both approaches in a small linear solver routine to find the best configuration.
The current state of the art for GPUs distributes the workload of solving a cell to
a GPU thread. The Block-cells solution further divides the cell’s load into smaller
parallel computations, where each GPU thread solves a chemical concentration of
a cell. This technique is already used to solve linear systems of equations in GPU,
where each thread solves an equation [59]. As a disadvantage, translating the CPU
code to CUDA requires more development effort due to handling synchronizations
between threads, such as sharing an error between the threads of the same cell when
a negative-signed concentration is found. As an advantage, it exploits the high
parallelization capacity of the GPU, improving the performance.

The chapter also includes a performance assessment of Multi-cells and multiple
Block-cells configurations and profiling metrics.

Chapter 5 validates the Block-Cells implementation in a MONARCH experiment, in-
cluding its accuracy and performance evaluation. This involves extending Block-cells
from a linear solver routine within CAMP to the ODE-solving procedure, translating
nearly all the ODE solver code utilized in CAMP.

Chapter 6 updates the CAMP GPU version to a CPU-GPU heterogeneous compu-
tation model. This includes evaluating the optimal load distribution between the
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CPU and GPU. The validation is performed again on MONARCH, but the results
correspond to Marenostrum 5 HPC facility since the previous Marenostrum 4 ar-
chitecture was replaced for this new version. It also includes a discussion of the
performance achieved on Marenostrum 5 against Marenostrum 4.

Finally, Chapter 7 summarizes the main findings of the research and discusses the
perspectives for future works.
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Chapter 2

Methods

This chapter extends on MONARCH and CAMP as the atmospheric and chemistry
components used to test our developments. It also includes the profiling tools and
metrics used to assess performance.

The first section provides an overview of MONARCH, including its relevance, com-
ponents, and mathematical and computational description. The second section offers
a mathematical and computational description of CAMP and the chemistry solved
in this thesis. The final section discusses the profiling tools and metrics employed
to evaluate performance.

2.1 The atmospheric chemistry model MONARCH

An atmospheric model is a mathematical representation of the spatial and tempo-
ral distribution of state variables in the atmosphere. The computational domain
is either global or regional, composed of cells representing a fractional volume of
the atmosphere [60]. If chemistry processes are considered, such models are known
as atmospheric chemistry models or chemical transport models [61]. The physico-
chemical processes considered in such a model are the emissions of inert or reactive
chemical species from anthropogenic or natural sources, the transport by advection
in the direction of the wind and lateral and vertical diffusion, the photochemical
transformations in the atmosphere, and the dry and wet deposition towards the
surface.

Atmospheric chemistry models solve the mass balance equations:

yt = −∇ · (ūy)︸ ︷︷ ︸
advection

+ ∇ ·
(
¯̄K∇y

)
︸ ︷︷ ︸

turbulent diffusion

+ f(t, y)︸ ︷︷ ︸
chemical kinetics

+
i=1∑
p

ri(t, y)︸ ︷︷ ︸
other processes

(2.1)
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The combined effects of advection, diffusion, chemical kinetics, and additional pro-
cesses such as emission, deposition, aerosol thermodynamics, and interphase mass
transfer govern the evolution of the vector field y representing chemical tracer con-
centrations. These processes are subject to appropriate initial and boundary con-
ditions. The wind field vector ū and the turbulent diffusion tensor ¯̄K are typically
pre-computed by a numerical weather prediction model and are constrained by ob-
servations through offline data assimilation [17].

In this thesis, the Multiscale Online Non-hydrostatic Atmosphere Chemistry model
(MONARCH) is used as a testbed for the GPU solutions investigated to speed up the
computation of the chemistry solver. MONARCH is a chemical weather modeling
system that can be used at multiple spatial scales, ranging from regional scales
at single-digit kilometer resolutions with explicit convection to coarse-resolution
global scales with parameterized convection [21] [62]. MONARCH is continuously
developed at the Barcelona Supercomputing Center (BSC) with a focus on mineral
dust and other aerosols [21] [63] [64] [65], atmospheric chemistry [23] [24] [22] [24],
emissions [66], data assimilation [67], workflow management [68], and operational
forecasting [69] [25]. As introduced in Chapter 1, MONARCH contributes to several
operational activities, from global aerosol forecasting (ICAP) to air quality over
Europe under the Copernicus Programme (CAMS).

MONARCH consists of advanced chemistry and aerosol packages coupled online with
the Non-hydrostatic Multiscale Model on the B-grid (NMMB) [70] [71]. MONARCH
runs on both global and regional simulations. Different chemical processes are im-
plemented following a modular operator-splitting approach to solving the advection,
diffusion, chemistry, dry and wet deposition, and emission processes. NMMB is the
model taking care of meteorology, making the meteorological state variables avail-
able at each internal time step of the model to solve the chemistry. To maintain
consistency with the meteorological solver, the chemical species are advected and
mixed at the corresponding time step of the meteorological tracers using the same
numerical schemes implemented in the NMMB. The advection scheme is Eulerian,
positive definite and monotone, maintaining consistent mass conservation of the
chemical species within the study domain.

Table 2.1 summarizes the chemistry processes currently considered in the default
version of MONARCH. The gas-phase chemistry solves an extended version of the
Carbon Bond 2005 chemical mechanism (CB05) [72] [73]. The CB05 is well for-
mulated for urban to remote tropospheric conditions, and it uses photolysis rates
computed with the Fast-J photolysis model [74]. A mass-based aerosol module de-
scribes the life cycle of dust, sea salt, black carbon, organic matter (primary and
secondary), sulfate (HSO−

4 , SO
2−
4 )), ammonium (NH+

4 ), and nitrate (NO−
3 ) aerosol

components [65]. The resulting ODE system of the gas-phase chemistry is solved by
default with an Eulerian backward iterative (EBI) solver. A modular coupling with
the CAMP [26] library was recently introduced in MONARCH to allow a flexible
chemistry configuration. CAMP is further described in the following section.
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Table 2.1: Chemistry and aerosol processes available in MONARCH through con-
figuration setup.

Process Scheme
Tropospheric gas-
phase chemistry

Carbon Bond 2005 (CB05) ex-
tended mechanism [72]

Aqueous sulfate for-
mation

SO2 oxidation by O3 and H2O2

[65]
Inorganic Aerosol
mechanism

EQSAM thermodynamic equilib-
rium model [75]

Organic Aerosol
mechanism

Two-product scheme [76] or Sim-
ple non-volatile scheme [77]

Photolysis rates Online Fast-J photolysis scheme
[74]

Dry deposition of gas
species

Wesley resistance approach [78]

Dry deposition of
aerosols

Zhang scheme [79]

Wet deposition of
gas species

Grid and sub-grid scale scaveng-
ing [80]

Wet deposition of
aerosols

Adjustment scheme [21]

Biogenic emissions Online MEGANv2.04 biogenic
model [81]

Dust emissions multiple mineral dust schemes
[21] [82]

Sea salt emissions multiple sea salt schemes [64] [83]
Pollen emissions 5 taxon emission scheme [84]
Dust Mineralogical
composition

Explicit representation [85]

2.1.1 Mathematical considerations

This section focuses on the algorithmic and scientific approaches in the NMMB
dynamics, covering aspects such as the primary model equations and discretization
in time and space.

Model equations

Let s represent a generalized mass-based, terrain-following vertical coordinate that
varies from 0 at the top of the model atmosphere to 1 at the surface [86]. Let π denote
the hydrostatic pressure, and let πsfc and πT be the hydrostatic pressures at the
surface and the top of the model atmosphere. The difference in hydrostatic pressure
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between the surface and the top of the model column is given by µ = πsfc − πT . πT

is a nonnegative constant, while πsfc varies with time and horizontal position.

In this hybrid coordinate system, the hydrostatic pressure is computed using the
formula:

π(x, y, s, t) = πT + σ1(s)Π + σ2(s)µ(x, y, t), (2.2)

where Π is the constant depth of the hydrostatic pressure layer at the top of the
model atmosphere, σ1(s) is zero at both the top and bottom of the atmosphere, and
σ2(s) increases from 0 at the top to 1 at the bottom. The hypsometric equation,

∂Φ

∂π
= −α, (2.3)

relates the geopotential Φ to the hydrostatic pressure π. Assuming the atmosphere
is dry, the specific volume α is related to the temperature T and pressure p by the
ideal gas law:

α =
RT

p
, (2.4)

where R is the gas constant. The ideal gas law involves the actual pressure p, also
called nonhydrostatic pressure, rather than the hydrostatic pressure π. Using the
ideal gas law in equation 2.3, we obtain:

∂Φ

∂π
= −RT

p
. (2.5)

Integrating equation 2.5 from the surface, where the geopotential is denoted by Φsfc,
to an arbitrary level s, we have:

Φ(s) = Φsfc +

∫ 1

s

RT

p

∂π

∂s′
ds′. (2.6)

Using equation 2.3, the third equation of motion can be written as:

dw

dt
= g

(
∂p

∂π
− 1

)
. (2.7)

Defining the ratio of the vertical acceleration to gravity g as:

ϵ ≡ 1

g

dw

dt
, (2.8)

equation 2.7 can be rewritten as:

∂p

∂π
= ϵ+ 1, (2.9)

which defines the relationship between hydrostatic and nonhydrostatic pressures.
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In the hydrostatic s coordinate system, the time derivative of a fluid property q,
following the motion of an air parcel, can be expressed as:

dq

dt
=

(
∂q

∂t

)
s

+ v · ∇sq +

(
ṡ
∂π

∂s

)
∂q

∂π
, (2.10)

where ṡ represents the vertical velocity, and the subscripts indicate the variables
that are held constant during differentiation.

The nonhydrostatic continuity equation is given by:

w =
1

g

[(
∂Φ

∂t

)
s

+ v · ∇sΦ +

(
ṡ
∂π

∂s

)
∂Φ

∂π

]
+W (λ, ϕ, t), (2.11)

where w represents the vertical velocity, and W is an integration constant that may
depend on horizontal coordinates (λ, ϕ) and time (t). For simplicity, we assume
W = 0.

The hydrostatic mass continuity equation is given by:[
∂

∂t

(
∂π

∂s

)]
s

+∇s ·
(
v
∂π

∂s

)
+

∂

∂s

(
ṡ
∂π

∂s

)
= 0, (2.12)

which follows from the nonhydrostatic continuity equation.

The list of variables dealt with by the model dynamics is as follows:

• µ, π: hydrostatic pressure [Pa]

• p: nonhydrostatic pressure [Pa]

• T : temperature [K]

• q: specific humidity [kg/kg]

• c: total water condensate [kg/kg]

• u, v: wind components (velocities) [m/s]

Vertical coordinate

A hybrid pressure-sigma coordinate model [86] is used in the NMMB. The hydro-
static pressure is computed from Equation 2.2 with the hybrid coordinate. The
transition to the hydrostatic pressure vertical coordinate occurs around 300 hPa.
Over elevated terrain, the hybrid coordinate increases the vertical resolution, and
the equations remain continuous without the need for computational internal bound-
ary conditions that are typically required with steep mountains.

The Lorenz staggering of the variables is used in the vertical grid [87]. The geopo-
tential and the nonhydrostatic pressure are defined at the interfaces of the layers,
while all three velocity components and temperature are carried at the midpoints
of the model layers.
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2.1. THE ATMOSPHERIC CHEMISTRY MODEL MONARCH

Figure 2.1: Time stepping process in the NMMB. Source: [71]

Temporal discretization

The NMMB employs the following types of time integration: Adams-Bashforth for
horizontal advection, Crank Nicholson for vertical advection, and forward-backward
scheme for adjustment terms [88] [89].

The Adams-Bashforth method is a linear multistep method. The next value, yn+1,
is calculated as a linear combination of the previous values yn from earlier steps [90].
In NMMB, it is represented as:

yn+1 − yn

∆t
= 1.533f(yn)− 0.533f(yn−1). (2.13)

The Crank-Nicholson scheme is represented as:

yn+1 − yn

∆t
=

1

2

[
f(yn+1) + f(yn)

]
, (2.14)

Figure 2.1 demonstrates the time-stepping process in NMMB. The fundamental time
step, ∆t = t2−t1, represents the interval used for the dynamical processes (indicated
by the short, thin arrows). The time step for advection is typically twice as long,
2∆t, as shown by the longer, wider arrows.

Spatial discretization

The horizontal grid corresponds to the Arakawa B-grid staggering. Figure 2.2 il-
lustrates the staggering on the B-grid, where h represents mass points (such as
temperature, pressure, height, or any mass or passive variable), v represents the
horizontal velocity vector, and ∆x, ∆y, and d are grid distances.

Consider the fluxes in the directions of the four coordinate axes connecting h points,
as shown in Figure 2.3.

The following relationships define the velocity components in terms of the mass
fluxes:

U∆y = ∆πu∆y, V∆x = ∆πv∆x, (2.15)

where ∆x, ∆y, and d are as defined in Figure 2.
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Figure 2.2: Representation of the B-grid staggering used in NMMB. Source: [71]

Figure 2.3: Representation of mass fluxes on the B grid. Source: [71]
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Figure 2.4: Lateral boundary conditions are used in NMMB. Source: [71]

Similarly, the mass fluxes in the diagonal directions are:

U ′d = (u∆y + v∆x), V ′d = (−u∆y + v∆x). (2.16)

The mass divergence term is then given by:

D = −1

3

[
2∆x(U∆y) + ∆y(V∆x)

∆x∆y
+

∆x′(U ′d) + ∆y′(V ′d)

2∆x∆y

]
. (2.17)

The following approximation is used for horizontal discretization:

∇ · (vδsπ)k∆sk = ∇ · (v∆sπ)k = −Dk, (2.18)

Boundary conditions

Figure 2.4 illustrates the lateral boundary conditions applied in the regional NMMB
model. Velocity and mass variables are specified only on the outermost rows and
columns, with the outer boundary passing through mass points. In the first three
rows inside the domain, upstream differencing is used for advection. Additionally, a
boundary blending zone is introduced. In this zone, the solution obtained by solving
the model’s equations gradually blends with the prescribed boundary conditions.
The blending zone is five rows wide, with the weight of the prescribed boundary
conditions decreasing linearly as the distance from the boundary increases [91].
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The “across the pole” polar boundary conditions were implemented by introducing
two ghost rows for the wind and mass variables. In this approach, the polar rows
of points carry the mass variables. The mass points along the ghost lines are as-
signed values of mass variables from the opposite sides of the poles, aligned with
the same meridians. Similarly, the wind points along the ghost lines carry the wind
components from the other sides of the poles, but with reversed signs, because the
coordinate axes change direction as the poles are crossed along a meridian.

The vertical boundary conditions are defined as follows:

ṡ = 0 and p = π at s = 0, (2.19)

ṡ = 0 and
∂(p− p∗)

∂s
= 0 at s = 1, (2.20)

where the pressure p∗ is defined to satisfy the equation:

∂p∗

∂s
= (1 + ϵ1)

(
∂π

∂s′

)n+1

, (2.21)

subject to the boundary condition:

p∗ = π∗
T at s = 0. (2.22)

2.1.2 Computational implementation

The computational implementation of MONARCH generally follows the next steps:

1. Read initial atmospheric data and MONARCH configuration, such as the num-
ber of MPI processes.

2. Solve transport by advection.

3. Solve turbulent diffusion and exchange wind components.

4. Solve microphysics.

5. Solve chemistry (using EBI or CAMP solver).

6. Exchange poles, East-West boundary, and chemistry.

7. Update time-step and output data. Repeat from step 2 until the last time
step is reached.
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The domain decomposition is applied horizontally across the atmospheric domain,
segmenting it into regions, with each area being computed by an individual MPI
process. The Earth System Modelling Framework https://earthsystemmodeling.
org/ [92] manages the MPI workflow. The output data is saved asynchronously
to compute the next time step, while the remaining processes are dedicated to
computation tasks. MONARCH supports saving output using 4 or 8 MPI processes,
while any number of processes can be used for computation tasks.

The atmospheric input and output data of MONARCH is stored following the
NetCDF (Network Common Data Form) format https://www.unidata.ucar.edu/
software/netcdf/ [93]. NetCDF was created by UCAR (University Corporation
for Atmospheric Research) to store efficiently geolocalized data, mainly used in the
Earth Sciences community, for applications using structured and unstructured data
from models, satellites, or in-situ observation. Data in a netCDF file are stored
in n-dimensional matrices that can be accessed through any subset without load-
ing all the data. Its use to store the vast majority of the data generated by the
community (from meteorology to decadal climate simulations) has led to the cre-
ation of an extensive ecosystem of analysis tools in numerous languages (Python,
R, Matlab, Fortran, C++,...) and a joint agreement on standards to define the
content of the files: variable names (short and standard), units, description, etc
that are contained in the netCDF files and allow their immediate comparisons
https://cfconventions.org/https://github.com/PCMDI/cmip6-cmor-tables.

2.2 The chemistry solver CAMP

We use the Chemistry Across Multiple Phases (CAMP) framework [26] as our test
bed for solving chemical mechanisms. CAMP is a novel framework permitting run-
time configuration of chemical mechanisms for mixed gas- and aerosol-phase chem-
ical systems. In this thesis, we focus exclusively on gas-phase chemistry systems to
maintain simplicity and effectively translate this time-intensive component of the
chemistry process.

CAMP is designed to use external ODE solvers to solve the chemistry time-dependent
equation ( y′ = f(t, y) ). The default version of CAMP is coupled to the ex-
ternal CVODE solver of the SUNDIALS package using backward differentiation
formulas (BDF) and Newton iteration https://computing.llnl.gov/projects/

sundials/cvode [47] [94]. This algorithm is suitable for mathematically stiff sys-
tems. The variable-order, variable time-step CVODE solver with time-step error
control provides accurate solutions. Thus, it was chosen as the initial solver option
for CAMP [26]. The BDF algorithm requires the solution of a linear system at each
integration step. CAMP is configured by default to use the KLU Sparse solver [95].
The sparse structure avoids storing zero values in the Jacobian matrix, typical for
chemical systems [96]. Figure 2.5 summarizes the models used in this thesis and the
primary process of interest, namely the gas-phase chemical mechanism solver.
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2.2. THE CHEMISTRY SOLVER CAMP

Figure 2.5: Modules encapsulated from the MONARCH atmospheric model to the
KLU linear solver.

2.2.1 Mathematical considerations

The mass balance partial differential Equation 2.1 is typically discretized in at-
mospheric models using an operator split approach [97]. In this method, indi-
vidual processes in the equation are solved sequentially over each time interval
[T, T + ∆Tsplitting], where ∆Tsplitting represents the model time split step size. This
step size is distinct from the integration step size, denoted as h, used by a chemical
integrator. The integrator may take multiple steps of size h within each ∆Tsplitting,
resulting in simplified problems for advection, diffusion, chemistry, and other pro-
cesses. The solution of the chemical kinetic process, in particular, reduces to a
system of ordinary differential equations (ODEs) within each cell of the model:

y′ = f(t, y), T ≤ t ≤ T +∆Tsplitting, y ∈ Rd (2.23)

, where y′ is solved following the BDF implementation from the CVODE library,
which reads as:

q∑
i=0

αn,iyn−i + hnβn,iy
′
n−i = 0. (2.24)

Here, the yn are computed approximations to y(tn), hn = tn − tn−1 is the step size,
and the order q varies between 1 and 5. The coefficients α and β are uniquely
determined by the method type, its order, the recent history of the step sizes, and
the normalization αn,0 = −1 [98] [99].

A nonlinear system is solved (approximately) at each integration step, formulated
as the root-finding problem:

F (yn) ≡ yn − hnβn,0f(tn, yn)− an = 0, (2.25)

where

an ≡
∑
i>0

(
αn,iyn−i + hnβn,iy

′
n−i

)
. (2.26)
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The root-finding problem is solved with a Newton iteration, which requires the
solution of linear systems

M [y(m+1)
n − y(m)

n ] = −F (y(m)
n ) (2.27)

where

M ≈ I − γJ, J =
∂f

∂y
, and γ = hnβn,0. (2.28)

in which I is the identity matrix and J is the Jacobian matrix . The Jacobian is
held constant during the Newton iteration, resulting in a Modified Newton method.

CVODE employs a weighted root-mean-square norm in controlling errors at various
levels, denoted ∥ · ∥WRMS, for all error-like quantities. The multiplicative weights
used in this norm are based on the current solution and the input of the user’s
relative and absolute tolerances.

Wi =
1

rtol · |yi|+ atoli
(2.29)

Since 1/Wi represents tolerance for the component yi, a vector with a norm of one
is considered “small.” We will generally omit the subscript WRMS on norms for
brevity.

CVODE estimates the local error at each step and ensures it meets tolerance con-
ditions; if the error test fails, the step size is reduced, and the step is recomputed.
In addition to adjusting the step size to satisfy the local error test, CVODE pe-
riodically adjusts the integration order to maximize the step size. Integration be-
gins at order one and dynamically changes after that. The core idea is to select
an order q such that a polynomial of order q best fits the discrete data involved
in the multistep method https://sundials.readthedocs.io/en/latest/cvode/

Mathematics_link.html.

2.2.2 Computational implementation

CAMP is designed to decouple the specification of chemical mechanisms from the
implementation of the solving procedure, facilitating the adaptation in host mod-
els like MONARCH. This approach contrasts with traditional implementations in
several ways, as Figure 2.6 illustrates.

In the conventional approach (Figure 2.6a), the code for individual model com-
ponents is usually adapted to facilitate interaction with the infrastructure of the
atmospheric model. Often, the configuration for model components is hard-coded,
and solvers are tightly linked with the representation of the chemical system. This
rigidity complicates new configurations, such as adding new chemical species, tuning
the solver tolerances, or preconditioning.
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2.2. THE CHEMISTRY SOLVER CAMP

On the other hand, CAMP compiles separately from other model components and
provides an interface based on configuration files to set a specific chemical system,
update rates for processes such as emissions or photolysis (which are usually com-
puted in separate modules), and solve the multi-phase chemical system at each time
step (Figure 2.6b). This design means optimizing the CAMP solver, which is equiva-
lent to optimizing multiple individual solvers in a traditional setup and streamlining
development efforts. Additionally, CAMP is built to interface with various external
solver packages, further separating the chemical system specification from the solver
implementation.

CAMP has been designed with extensibility, accommodating various solver strate-
gies, including GPU-based solvers, as developed in this thesis. Additionally, CAMP
supports the scalability of chemical complexity by using a standardized JSON format
for specifying multi-phase chemical systems at runtime. Figure 2.7 shows two ex-
amples of JSON configuration objects used by CAMP. The first example showcases
a relatively simple Arrhenius-type reaction:

k = A exp

(
− Ea

kbT

)(
T

D

)B

(1.0 + EP ) , (2.30)

where A is a pre-exponential factor ( (cm−3)−(n−1)s−1), k is referred to as the rate
constant, , Ea is the activation energy (J), kb is the Boltzmann constant (kb =
1.38× 10−23 J/K), D (K), B (unitless) and E ( Pa−1) are reaction parameters, T is
the temperature (K), and P is the pressure (Pa). Finlayson-Pitts and Pitts describe
the first two terms [100]. The final term accommodates rate constants used by the
solver scheme.

The second example illustrates a more complex configuration dataset, specifically
the UNIFAC activity model [101]. This JSON configuration defines the components,
their parameters, and the interaction parameters between different substances. This
approach eliminates the need to hard-code these complex data sets into the model,
which typically requires re-compilation and extensive modifications when adding
new functional groups or interactions. Using JSON, CAMP allows runtime access
to this data, making it easier for users to modify sub-models or parameterizations
by simply updating the configuration files.

CAMP employs an object-oriented design to ensure scalability and extensibility.
In contrast, atmospheric models often use a more straightforward approach with
hard-coded parameters, which can limit flexibility. For example, the current default
MONARCH model does not utilize an object-oriented framework, reflecting a more
traditional, less adaptable design.

CAMP can run as an independent library without relying on an atmospheric model
like MONARCH (i.e., in a box model configuration). It includes various validation
tests with different chemistry configurations. This thesis employs two chemical
mechanisms to validate our developments: (i) a simple chemical reaction where
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Figure 2.6: Interactions of chemistry and related modules in (a) a typical at-
mospheric model and (b) an atmospheric model using CAMP. Model components
calculate rates or rate constants for physicochemical processes (green), calculate
physical parameters (orange), or directly update the host model state (blue). Some
modules that typically directly update the model state—deposition and emissions in
(a)—now provide rates for these processes to CAMP (b). Parameter calculations—
activity and vapor pressure models in (a)—are now integrated into the combined
chemical mechanism (purple). Arrows indicate the primary flow of information
among components. Source: [26]
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(a) Arrhenius reaction

(b) UNIFAC activity model

Figure 2.7: Two examples of CAMP configuration data in JSON format: an Ar-
rhenius reaction (a), and a portion of a UNIFAC activity model configuration (b).
Ellipses (...) indicate portions of the data omitted for brevity. Source: [26]
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species A generates B and C, and (ii) the Carbon Bond 2005 (CB05) mechanism
used in MONARCH [72]. The first configuration is utilized in Chapter 3, while the
second is used in the remaining chapters. The latter configuration is a Box model
that solves multiple cells to emulate a MONARCH experiment involving thousands
of atmospheric cells.

The computational implementation of MONARCH-CAMP is detailed in Figure 2.8.
The process begins with MONARCH reading input data and initializing the model
based on atmospheric initial conditions and configuration. Following initialization,
MONARCH predicts future atmospheric variables by solving meteorological pro-
cesses, including advection, diffusion, and physics. The chemistry-solving process
starts by updating the time-step size (∆Tsplitting). The function f(y) then solves the
chemical equations for the current time step. The Jacobian matrix of the system
is computed through the reaction rates (J = ∂f

∂y
), similarly to f(y), and utilized

in the linear solver as part of the Newton integration process. If the solution con-
verges—meaning the accuracy error is within acceptable limits—the solver returns
the updated chemical concentrations to MONARCH, which continues with the at-
mospheric processes. After completing the chemistry calculations, MONARCH per-
forms post-chemistry operations and determines whether to proceed to the next
integration time step or to conclude the simulation.

In computational terms, CAMP is a complex model with more than 40,000 code
lines without considering validation tests.

CAMP has been adapted to follow the atmospheric model’s MPI (Message Pass-
ing Interface) approach. The atmospheric domain, which represents the numerous
chemical concentrations within the atmosphere, is segmented into several hierarchi-
cal levels: Regions or sub-domains, Cells, and Chemical Concentrations.

• Regions: Each MPI process is assigned to compute a specific sub-domain
region.

• Cells: Within each region, multiple cells exist, each representing the concen-
trations of a set of chemical species under study. The chemical mechanism
describes how the different chemical species react in time. The cells can be
interpreted as the smallest units in the atmosphere, similar to a point on a
map.

• Chemical Concentrations: Within each cell, the chemical concentrations
are treated as part of an ODE system derived from the chemical mechanism
and solved accordingly.

Figure 2.9 illustrates this segmentation. Each ODE system in CAMP involves mul-
tiple chemical concentrations, which are solved using algebraic operations. For in-
stance, vector multiplication is performed on concentration arrays, which are then
used to update the system’s state.
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Figure 2.8: Workflow of CAMP coupled in MONARCH.
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Figure 2.9: Segmentation of the atmospheric domain into chemical ODEs. During
MONARCH initialization, the atmospheric domain is segmented into regions, each
assigned to an MPI process for computation. CAMP then sequentially processes
the cells containing chemistry data within these regions. Each cell represents a
set of chemical species concentrations (state) that CAMP solves as a system of
Ordinary Differential Equations (ODEs) to determine the updated concentration
state. The solving process involves sequentially calculating these concentrations
through algebraic operations, such as vector multiplications.
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Solving the numerous cells within a region is computed sequentially due to the lim-
ited number of CPU processors compared to the number of chemical concentrations
typically present in a domain. For example, while a node may have tens of CPU
processes available, a domain may contain millions of chemical concentrations.

In contrast, GPUs are not constrained by such limitations. They can execute mil-
lions of threads simultaneously, making them highly suitable for parallel computa-
tion. Consequently, this thesis represents a transition from sequential models to a
highly parallel paradigm, leveraging GPU capabilities to handle the extensive com-
putational demands of atmospheric chemistry more efficiently.

2.3 Profiling tools

This work employed two profiling tools to assess GPU performance: Nvidia Visual
Profiler (NVVP) and Nvidia Nsight Compute (NCU). NCU is the updated tool and
has recently replaced NVVP, which has been deprecated. NVVP was used in the
earlier stages of this thesis (as detailed in Chapter 4), while NCU was utilized for
the latter parts.

Both tools provide performance and resource utilization metrics, albeit with different
terminologies. Specifically, we focus on metrics related to Memory and Arithmetic
resources. In NVVP and NCU, Arithmetic resources are called Computation Inten-
sity and SM, respectively.

Beyond these, the tools offer different metrics, which we describe below.

2.3.1 NVVP metrics

We utilize the percentage of time consumed by different types of instructions, such as
memory dependence or synchronization, to identify areas for potential improvement.
For example, if a lot of time is spent on memory operations, this suggests focusing
on optimizations like vectorization to improve performance. This metric is only
available in NVVP, as we have not found an equivalent for NCU.

To evaluate the efficiency of our implementation and determine how closely it ap-
proaches the ideal case, we consider the following metrics:

• Global load efficiency is the ratio of requested global memory load throughput
to required global memory load throughput expressed as a percentage. This
metric is used to measure memory efficiency.

• Warp execution efficiency is the ratio of the average active threads per warp
to the maximum number of threads per warp expressed as a percentage. This
metric is used to measure computational efficiency.
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• Occupancy is the ratio of the average active warps per active cycle to the max-
imum number of warps supported (a warp in CUDA is a group of 32 threads).
This metric is used to measure computational efficiency by accounting for syn-
chronization overhead. When combined with ”Warp execution efficiency,” it
can provide an approximate quantification of the time spent on synchroniza-
tion activities.

2.3.2 NCU metrics

To evaluate the efficiency of our implementation and determine its proximity to the
ideal performance, we employ the Roofline model [102] [103] as provided by Nvidia
Nsight Compute (NCU). Figure 2.10 illustrates a typical Roofline plot. The X-axis
represents the Arithmetic Intensity, the ratio of floating-point operations (FLOPs) to
the number of bytes processed. This metric gives insight into the memory efficiency
of our application by indicating how many operations are performed per byte of
data moved.

The Y-axis represents Performance, quantified as the number of FLOPs per second,
reflecting the arithmetic throughput of our application. The graph’s blue lines
indicate the performance bound, with the left and right squares representing the
optimal values for single and double-precision floating-point operations, respectively.
These points indicate how close our implementation is to the theoretical maximum
performance.

In the Roofline model, the left and right points correspond to single-precision and
double-precision floating-point operations, where single precision uses 4 bytes and
double precision uses 8 bytes to represent floating-point numbers. Since CAMP
primarily handles critical variables, such as chemical concentrations, using double
precision, this thesis emphasizes the evaluation and optimization of double-precision
operations.

The Roofline model also highlights application bottlenecks. If the application’s
performance point is located to the left of the optimal square, it indicates that the
application is memory-bound, meaning the performance is limited by memory band-
width. Conversely, suppose the point is closer to the right and nearer to the blue
performance bound line. In that case, the application is compute-bound, meaning
the performance is constrained by the computational power of the processor rather
than memory throughput. This distinction is crucial for guiding optimization ef-
forts, as it helps identify whether improving memory access patterns or enhancing
computational efficiency should be prioritized.

Another essential metric is the cache hit rate, which indicates the percentage of
memory requests successfully retrieved from the cache rather than slower memory.
A high cache hit rate suggests efficient memory distribution and access patterns,
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Figure 2.10: Example of a Roofline model from NCU.

meaning that most required data is readily available in the cache. This metric is
beneficial for identifying inefficient implementations.

For example, if a matrix is accessed in reverse order or non-contiguous, the program
might access memory locations that are far apart, leading to poor cache utilization.
In such scenarios, the cache hit rate would be notably low, signaling the need for
optimizations to improve memory access patterns. Increasing the cache hit rate can
reduce memory latency and improve overall performance.
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Chapter 3

Efficient data arrangement for
GPU adaptation of ODE systems
in atmospheric chemistry solvers
as multiple cells

3.1 Introduction

Atmospheric chemistry models are parallelized following a domain decomposition
approach. This method simplifies parallelization without requiring extensive de-
velopment associated with more complex alternatives. Each parallel process solves
thousands of cells, as the number of cells within the domain significantly exceeds
the number of parallel processes. As these models have been historically developed
for CPU–based architectures, MPI and OpenMP parallelization paradigms are com-
monly used. However, computation can be further parallelized using other parallel
architectures, such as GPUs, in combination with MPI parallelization.

This chapter presents a new implementation to simultaneously solve the chemical
mechanism integration of multiple cells in a single-thread execution. This adaptation
facilitates the integration of GPU functions capable of simultaneously solving the
entire domain of interest. Otherwise, utilizing the GPU solution would entail solving
a single cell, resulting in a workload that is too insignificant to justify launching a
GPU kernel. This approach requires less development effort to test GPU implemen-
tations than translating the entire solver to GPU. We refer to this implementation
as Multi-cells.

Also, we present a GPU implementation that divides the workload between chem-
istry equations instead of the classical domain division used in CPU execution. In
the classical implementation, the chemistry of each grid cell within a sub-domain
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is solved sequentially through a loop. On the other hand, the GPU approach al-
lows for greater parallelization as each grid cell has multiple chemical reactions to
solve. This approach is tested on the most time-consuming function of the chemical
module, the partial derivatives of y to time f(y)), and is responsible for solving the
chemistry reactions without advancing the time step.

This chapter is organized as follows. In section 3.2, we briefly describe CAMP, plus
present the most time-consuming function of CAMP. In section 3.3, we present the
GPU implementation of this function, an optimization to reduce GPU accesses, and
the Multi-cells implementation for the whole CAMP module. In section 3.4, we de-
fine the software configuration. Section 3.5 shows the result of the implementations
presented. Finally, section 3.6 concludes the work and overviews possible future
work.

3.2 Background

This section describes the state-of-the-art and computational description as the
starting point before our developments.

3.2.1 State of the art

The state-of-the-art related to GPU chemistry modules is explained previously in
Section 1.2. This section details current approaches to implementing GPU comput-
ing in chemistry modules and the available GPU tools. For example, it explains why
CUDA is used over other parallel languages such as OpenMP or OpenACC.

Section 1.1 defines the motivation behind using CAMP instead of other chemistry
modules. Section 2.2 provides more details about the benefits of CAMP and includes
a computational description of CAMP in Section 2.2.2. This description serves as
the starting point for the implementation presented in this chapter.

3.2.2 Computational description

In this section, we extend the description of CAMP provided in Section 2.2.2 to
include more details about specific elements related to our implementation. Specif-
ically, this section describes data structures and workflow associated with the most
time-consuming functions.

The chemical reactions in CAMP can include integer parameters (e.g., array indices,
stoichiometric coefficients, ionic charge, etc.) and floating-point parameters (e.g.,
conversion factors, rate parameters, etc.). The set of chemical species concentrations
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(y) is named the state array, and the set of partial Derivatives of these species to
time ( f(y) ) is called the deriv array.

CAMP predicts future concentrations after the data is read using the external ODE
solver CVODE https://computing.llnl.gov/projects/sundials/cvode [47] [94].
CVODE solves the time-dependent equation ( y′ = f(t, y) ) using the CAMP-
provided set of Derivatives ( f(y) ) stored in the deriv array. CVODE also uses
a Jacobian matrix provided by CAMP. From the matrix structure options that
CVODE offers, we choose the SPARSE structure [104] to store the Jacobian, as this
is a good choice for Jacobian structures with few non-zero elements, as is the case
for many chemical mechanisms.

Derivative and Jacobian functions have similar input and output, following the same
structure. The only difference is the structure where we store the data (an array
for the Derivative and a sparse matrix for the Jacobian) and some extra linear
operations. So, we only need to analyze one of them since we can extrapolate the
optimization ideas and techniques.

Inside MONARCH, CAMP is required to solve chemistry multiple times—one time
for each MONARCH time-step and cell. A cell represents a volume of the at-
mosphere; the collection of all the cells composes a 3-dimensional domain repre-
senting the region under study. The number of cells depends on the user-selected
MONARCH configuration. MONARCH typically computes many cells in a large
geographical area with high precision. Each cell has its own state, which, in terms
of chemical processes, is independent of other cell state values during the chemistry
time integration. In Figure 3.1, we summarize the flow described in a diagram.

The CAMP functions executed during the solving take a considerable execution
time. We configured a box model experiment in CAMP (without MONARCH) to
measure this impact with a CB05 chemical mechanism. The experiment results show
that CVODE occupies 70% of the total execution time, and Derivative and Jacobian
are around 30%. Despite being small functions compared to the whole ODE solver,
the Derivative and Jacobian have a relevant impact on general performance, with
the Derivative generally more time-expensive than the Jacobian. So, in a similar way
to selecting the chemistry component of MONARCH, we choose to work around the
Derivative to analyze our GPU implementation and search for a relevant reduction
of the model execution time.

In general, chemistry models try to predict future concentrations of a set of chemical
species by solving ordinary differential equations that represent the reactions that
compose a chemical mechanism. Reactions take the general form:

c1y1 + · · ·+ cmym ↔ cm+1ym+1 + · · ·+ cnyn,

where species yi participates in the reaction with stoichiometric coefficient ci. The
rate of change for each participating species yi to reaction j is given by
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Figure 3.1: MONARCH overall flow diagram with CAMP as chemistry solver.

(
dyi
dt

)
j

=

{
−cirj(y, T, P, . . . ) for i ≤ m

cirj(y, T, P, . . . ) for m < i ≤ n
,

where the rate rj of reaction j is an often complex function of the entire model state
(including species concentrations y, environmental conditions, such as temperature,
T , and pressure, P , physical aerosol properties, such as surface area density and
number concentration, etc.). The overall rate of change for each species yi at any
given time is, thus,

fi ≡
dyi
dt

=
∑
j

(
dyi
dt

)
j

,

where f is referred to as the derivative of the system throughout this chapter.

Then, in the Derivative function, we multiply the rate constants saved on the re-
action parameters array with the corresponding concentrations on the state array,
filling the following concentration array (deriv). This operation is done for each
reaction, adding all the results obtained from the reactions in the corresponding
place of the deriv array. So, we can say that each reaction contributes to the state
concentrations, increasing or decreasing the value.
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Figure 3.2: Figure 3.2a: Comparison of original and Multi-cells overall workflows
from the MONARCH point of view. Figure 3.2b: Derivative workflow diagram for
GPU execution.

3.3 Implementations

The Multi-cells implementation groups the input data from each cell into a single
data structure to be computed. The MONARCH workflow described in figure 3.1 is
updated to figure 3.2a. The cell loop disappears inside the solving internal functions,
avoiding the process of updating the input data from cells and re-initializing the
ODE solver. As an example, the Derivative equation is updated as follows:

fi ≡
dyik
dt

=
∑
j

(
dyik
dt

)
j

Where yik refers to the species yi from cell k.

Our GPU strategy is the parallelization of each reaction data packet. Figure 3.2b
shows the resultant GPU-based Derivative flow diagram.

We compute the sum of contributions to f using the CUDA operation atomicAdd.
This function avoids a possible thread overlapping when updating the same variable.
Reactions between common species can produce this interference.

Reaction data is allocated on global memory at the initialization of the program.

38



3.4. TEST ENVIRONMENT

Figure 3.3: Data structure inversion for GPU Derivative. “Value” numbers represent
the GPU memory arrangement and access order, “j” is the number of reactions, and
“p” is the number of parameters.

To send and receive the rest of the data (state array) from the GPU, we first check
the size of this array. If it contains few data variables, state is passed as a function
parameter, taking advantage of the constant memory. Otherwise, the data is copied
directly into global memory.

The number of GPU threads initialized is equal to the number of reactions. Another
relevant GPU parameter, the number of blocks per thread, is configured to the
maximum available for the GPU used (1024 threads/block). Lower configurations
of threads/blocks don’t show performance improvement in our tests. Due to the
possibility of using a GPU with less capacity in the future, we add a run-time
checking of GPU hardware specifications to ensure the correct execution of the
program regardless of the GPU used (for example, avoid demanding more threads
than the GPU limit).

In the still CPU-based implementation, all the reaction data packets are initially
stored consecutively in memory. Then, the parallelization by reactions results in
each thread accessing no-consecutive values of the reaction data structure. We
reordered this structure to follow a sequential reading of the data in the GPU.
The first reaction parameters accessed are stored consecutively in the reaction data
structure, and so on. Figure 3.3 illustrates the changes in the data packet structure,
simulating the structure as a matrix where initially, the rows are the data packets
and columns are the parameter values.

3.4 Test environment

All the tests were performed on the CTE-POWER cluster provided by the Barcelona
Supercomputing Center [105]. The detailed hardware specifications of each node are
described below.
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• Operating system: Red Hat Enterprise Linux Server 7.5 (Maipo).

• 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and four
threads/core, total 40 physical cores per node and 160 virtual threads using
hyper-threading)

• 512GB of main memory distributed in 16 dimms × 32GB @ 2666MHz

• 2 x SSD 1.9TB local storage

• 2 x 3.2TB NVME

• 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.

• Single Port Mellanox EDR

• GPFS via one fiber link 10 GBit

• Compilers: GCC version 7.3.0 and NVCC version 10.1.105 for CPU and GPU
code, respectively.

We work around a basic chemical mechanism of 3 species, where species A generates
B and C through 2 Arrhenius reactions. A is initialized at 1.0, while B and C are set
to zero. Each cell has a small offset of 0.1 on the initial concentrations to generate
different results. For example, at the first concentration value, we sum a 0.1 offset
value, at the second 0.2, and so on till Multi-cells species. The rest of the variables,
like temperature, pressure, or reaction data parameters, are initialized to the same
values for all the cells.

3.5 Results and discussion

In figure 3.4a, we can see how Multi-cells speedups CAMP a factor of 8× for multiple
numbers of cells. Most of this speed-up is produced by the reduction of solving
iterations. In the One-cell case, the number of iterations scales linearly with the
number of cells factor, while in the Multi-cells case, the number of iterations is
independent of the number of cells computed, keeping almost the same number of
iterations for the number of cells. For example, One-cell takes around 6e6 iterations
to solve 10,000 cells (an average of 600 iterations per cell). In contrast, Multi-cells
take around 700 to solve all cells independently of the number of cells.

The GPU implementation speeds up the Derivative function for many cells. In figure
3.4b, we can see how, for 10,000 cells, the GPU version achieves 1.2× speedup. On
the other hand, a lower number of cells slows down the function, shown as a speedup
below 1× for less than 10,000 cells. We can also see that optimizing memory access
improves the overall speedup by 1.3× approximately for all numbers of cells.
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Figure 3.4: On the left (figure a)): CAMP speedup using Multi-cells optimization
in front of the original One-cell version. On the right (figure b)): Speedup of base
and final single-GPU versions compared to single-thread CPU versions. The final
version applies the optimization on GPU memory access to the base version.

We also compare the final GPU version against a CPU case parallelized with MPI,
emulating the parallelization used in MONARCH. The number of MPI processes is
configured to follow the proportion of GPUs used for available GPUs. So, we use
40 MPI threads from the 160 available, like the GPU experiments presented, and 1
GPU from the four available. We obtained that the GPU execution is three times
slower than the MPI, but only because the time of data movements between CPU
and GPU takes nearly 90% of the GPU execution time. The GPU computation
time is 3.5× times faster than the MPI time (0.04s for GPU and 0.14s for MPI).
This data movement is produced by updating the species concentrations on each
call to Derivative. We can conclude that the GPU Derivative function has a small
computation load for data movement produced (reaction data, concentration values,
etc.)

3.6 Conclusions

In this chapter, we focused on improving the performance of CAMP for execution
in an atmospheric model environment like MONARCH. MONARCH simulations
perform one CAMP simulation for each grid cell of the geographic simulation region
for each MPI thread. These cells have no inter-dependencies during the chemistry
solving; thus, they have the potential to be parallelized by the GPU. However, the
classical MONARCH implementation calls the CAMP-solving process for each grid
cell. The CAMP solving library (CVODE) needs to reinitialize its internal solving
variables for each cell iteration.
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Furthermore, to implement a GPU implementation over the cells, it would be nec-
essary to translate the complete solving code into GPU format, which can be ex-
haustive work. The first implementation presented in this chapter aims to solve
these issues. This strategy is relatively novel in the atmospheric community and
can be used as an example to speed up the model. In the paper, we refer to this
implementation using the name Multi-cells.

The Multi-cells strategy groups the data for each cell into a single structure to be
solved. MONARCH’s cell loop is moved into CAMP’s internal solving functions.
The results show a considerable reduction in the calls to the Derivative function.
The solving module uses approximately the same number of iterations to solve all
the cells than to solve a single cell. Concerning the improvement in execution time,
the Multi-cells implementation achieves nearly 8× speedup for all the cells tested,
up to 9× speedup.

Next, we developed a CUDA version of the Derivative function by parallelizing its
reaction loop among GPU threads. The new version obtains nearly 1.2× speedup
for approximately 10,000 cells. The CPU version performs better than the GPU
for fewer cells. The third implementation reorders the reaction data structure to
improve its access in the GPU Derivative version, increasing the GPU speedup by
1.3× for all the cells tested.

Finally, we inspect the time execution consumed on moving data between GPU
and CPU. For 10,800 cells, data movement takes 90% of the total time execution.
Comparing the results with a 40 MPI process execution, the computation time for
the GPU version is 3.5× faster. Thus, the next chapter will focus on reducing
GPU data movement by translating more CPU functions to the GPU, for example,
the Jacobian or tasks from the ODE solving and overlapping some CPU and GPU
work. This should increase the computation performed on the GPUs and reduce data
movement by transferring data only at the start and the end of the solving, reducing
data movement during solver iterations. This can be done by parallelizing the
following solver functions executed after or before the Derivative calculation until all
the solvers are executed in GPU. In future chapters, we expect to evaluate the GPU-
based chemistry solving in MONARCH, checking the impact for various atmospheric
experiments with an MPI implementation alongside the GPU–CUDA chemistry.
Lastly, we expect to explore load balancing the CPU and GPU using overlapping
and asynchronous communication since the CPU is not currently performing any
work during GPU execution.
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Chapter 4

Optimized thread-block
arrangement in a GPU
implementation of a linear solver
for atmospheric chemistry solvers

4.1 Introduction

In this chapter, we present a new strategy to improve the computational load dis-
tribution of a GPU chemical solver. The current solutions assign to each thread the
workload of a cell [34] [35] [36]. This workload can be further divided into solving
each species concentration of a cell since many of these calculations are independent.
In this way, we increase the distribution or parallelization of the load beyond the
work assigned to one cell per thread to a total number of cells times the number
of chemical species. This leads to significantly improved exploitation of the GPU’s
high bandwidth capacity. Applying this change requires extra development work
to efficiently communicate data dependencies between species in the same cell and
transform concentration array loops into parallel tasks. However, we demonstrate
the rewards of this effort in terms of improved performance and present a novel ap-
proach that should encourage the community to consider seriously porting complex
chemical solvers to accelerators. We name this approach Block-cells.

The Block-cells solution also offers functionality unavailable in efficient CUDA li-
braries such as cuBLAS or cuSolver. For context, some algebraic operations require
communication between GPU blocks, such as finding the minimum value of an array.
Inter-block communication can consume over 50% of the total execution time [106].
In the context of atmospheric chemistry, the cells to solve are typically small enough
to fit within individual GPU blocks, obviating the need for inter-block communica-
tion. Ideally, having an option within these libraries to indicate this scenario would
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be beneficial, allowing for more efficient handling.

However, such an option is not available in current CUDA libraries. Consequently,
sending the cells as a single data structure results in excessive and unnecessary
communication overhead. Alternatively, invoking these libraries for each cell indi-
vidually would lead to millions of calls, introducing a significant overhead due to
the initialization of each GPU call.

To circumvent these inefficiencies, we manually implemented the Block-cells ap-
proach, which avoids the limitations of existing libraries and optimizes performance
by eliminating unnecessary communication and minimizing the overhead of GPU
calls. This manual implementation allows for efficient parallelization of the ODE
solver while maintaining the flexibility to handle the specific requirements of at-
mospheric chemistry simulations. By doing so, we achieve a more tailored and
high-performing solution that leverages the strengths of GPU computing without
being constrained by the limitations of existing CUDA libraries.

We have extended the work from the previous Chapter 3 with the implementation
in CAMP of a linear solver optimized for use on GPUs: a Biconjugate Gradient
(BCG) linear solver [59]. We compare the default CPU-Based KLU linear solver [95]
available in CAMP with the new GPU-based linear solver to evaluate the Block-cells
approach.

The application context used in this chapter is described in Section 4.2. Section 4.3
introduces the new Block-cells approach. In Section 4.4, we present the software
configuration for the tests performed. Results are discussed in Section 4.5. Finally,
Section 4.6 presents concluding remarks and future work.

4.2 Background

This section describes the state-of-the-art and computational description as the
starting point before our developments.

4.2.1 State of the art

The state-of-the-art related to GPU chemistry modules is explained previously in
Section 1.2. This section details current approaches to implementing GPU comput-
ing in chemistry modules and the available GPU tools. For example, it explains why
CUDA is used over other parallel languages such as OpenMP or OpenACC.

Section 1.1 defines the motivation behind using CAMP instead of other chemistry
modules. Section 2.2 provides more details about the benefits of CAMP and includes
a computational description of CAMP in Section 2.2.2.
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Our starting point is defined in the previous Chapter 3. In that chapter, the Multi-
cells strategy is presented to easily integrate GPU functions into chemistry modules.
The chapter includes a GPU version of the most time-consuming function, following
the Multi-cells strategy. This chapter extends this work by adding a GPU imple-
mentation of another time-consuming function, the linear solver. The linear solver
was chosen because it shares many operations with the ODE solver, such as two-
vector multiplication, facilitating the future development of a GPU version of the
entire ODE solver. However, translating the whole ODE solver involves a signif-
icant amount of code. Therefore, the approach followed in this chapter aims to
be as efficient as possible to minimize future development efforts related to code
re-writing.

4.2.2 Computational description

This section defines the base implementation of CAMP before this thesis and the
implementation presented in the previous Chapter 3.

CAMP can easily be implemented in an atmospheric host model following one of two
approaches: One-cell or Multi-cells [50]. Figure 4.1 shows a schematic workflow of
the One-cell or Multi-cells configurations for CAMP. One-cell corresponds to most
models’ classical implementation of chemical mechanism solvers. In this configura-
tion, CAMP is employed to advance the concentrations of the chemical species in
each model grid cell sequentially in time. The overall rate of change for each species
yi and reaction j at any given time is, thus,

fi ≡
dyi
dt

=
∑
j

(
dyi
dt

)
j

,

In contrast, the Multi-cells approach takes advantage of the flexibility of CAMP
by grouping multiple cells in batches and solving the chemical mechanism for each
batch of cells simultaneously. As an example, the equation is updated as follows:

fi ≡
dyik
dt

=
∑
j

(
dyik
dt

)
j

where yik refers to the species yi from cell k.

With this approach, there is no need to loop over cells or re-initialize ODE solver
parameters and data structures for each cell, and solver iterations could be reduced
by a factor of 104, resulting in up to a 14× speedup over the One-cell approach [50].
Moreover, the Multi-cells approach maximizes the amount of information passed to
the solver simultaneously, making it possible to explore massive parallelism. How-
ever, Multi-cells could lead to less accuracy since it solves a single enormous struc-
ture with all the ODE equations coming from each cell instead of solving them
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Figure 4.1: Workflow diagram of the One-cell (left) and Multi-cells (right) solving
strategies.

separately. For this reason, we present a different approach, named Block-cells,
explained in Section 4.3.

4.3 Block-cells implementation

In this Section, we present our methodology to optimize the computational load
of a linear solver using GPUs, namely the Block-cells approach. As a first step,
we have coupled a GPU–based linear solver in CAMP to analyze the performance
of different GPU–based parallelization strategies: One-cell, Multi-cells and Block-
cells. As a second step, we evaluated different kernel configurations of the Block-cells
approach.

4.3.1 Coupling a GPU BCG linear solver in CAMP

Originally, CAMP’s only linear solving option was the CPU–based KLU sparse linear
solver. However, to leverage the benefits of GPU architecture, we have coupled
CAMP to a sparse CUDA version of the Biconjugate Gradient (BCG) algorithm
developed at the Barcelona Supercomputing Center [59]. The BCG algorithm was
chosen because multiple studies have found it performs better than other Conjugate

46



4.3. BLOCK-CELLS IMPLEMENTATION

Gradient (CG) methods [107]. Moreover, it is designed specifically for use on GPUs,
making it a better candidate for this application than simply translating a CPU-
focused algorithm like KLU.

We applied the BCG solver to the One-cell and Multi-cells implementations. In the
One-cell version, each call made to the GPU passes the state of a single cell. As a cell
comprises hundreds of species, this under-utilizes the millions of threads available
on modern GPUs. The Multi-cells approach, in contrast, gathers all the cells into
a single data structure before any GPU computation, preparing all the data for
parallel execution, resulting in a promising solution to the problem of adequately
exploiting the capacity of the GPU. In this approach, the GPU can simultaneously
compute the states of thousands of cells.

However, the Multi-cells implementation requires an extra reduction operation on
the CPU. This operation involves summing each element of an array to obtain
a final single value, which determines if the BCG performs another iteration or
finishes. Figure 4.2 illustrates how, in the Multi-cells approach, data is transferred
to the CPU during each solving iteration to perform the reduction and convergence
checking. This data reduction can account for more than 50% of the total execution
time [106].

This extra reduction is necessary with the Multi-cells approach, as convergence
must be evaluated for the entire system comprising all cells. However, the whole
system can also be treated as multiple independent systems of cells as in the One-
cell implementation and form the basis for a new parallel implementation. The
computational load for the system’s cells can be distributed across blocks, following
a CUDA thread block distribution [108]. This way, the CPU reduction operation
can be avoided, encapsulating the BCG operations in a single kernel call. This
implementation is called the Block-cells approach, illustrated in Figure 4.3.

However, calculating chemical species concentrations should be equal to or less than
the maximum block size to avoid communication between GPU blocks. In modern
GPUs, this block size is usually 1024 threads. Only in rare cases do ESMs use
mechanisms with more than 1024 species. Often, chemical mechanisms comprise
less than two hundred species. Therefore, each block can accommodate one or more
cells. For example, a mechanism with 100 species can be solved with up to 10
cells in a block. In this chapter, we evaluate the performance of various block size
configurations.

4.3.2 Block-cells kernel configurations

In the following, we refer to the number of species in a cell as the “cell size.”

In Block-cells (1), the number of threads per block corresponds to the number of
species concentrations in a cell. The number of blocks corresponds directly to the
number of cells.
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Figure 4.2: Diagram of BCG Multi-cells interactions between CPU and GPU (ex-
cluding data transfers). GPU1 contains all the BCG operations in the GPU except
for Reduce (e.g., functions like dot vector, SPMV, etc.). The Reduce computation
is divided between CPU and GPU. Each thread block performs a reduction oper-
ation on the GPU, resulting in a convergence error for each block. Then, another
reduction is performed over these errors on the CPU side. The final value of the
reduction is used to check for convergence, i.e., if the algorithm needs to iterate
again or finish.

In Block-cells (N), we calculate the maximum number of cells per block without
partitioning any cell. It is calculated by dividing the block size by the cell size and
rounding down the result. The residual of the division is calculated in a separate
kernel. For example, in an experiment with 11 cells, 100 chemical species, and 1024
threads per block, the GPU would run a kernel with 1000 threads corresponding to
10 cells and another kernel of 100 threads for the last cell.

In Block-cells (2) and Block-cells (3), we test 2 and 3 cells per block, respectively.
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Figure 4.3: Diagram of Multi-cells and Block-cells interactions between CPU and
GPU (excluding data transfers).

This range is in the middle of Block-cells (1) and Block-cells (N), allowing us to see
how the performance varies with block size and to find the optimal value. Table 4.1
summarizes the cells-per-block and threads-per-block configurations.

The reduction operation in the GPU uses a shared memory array, whose length is
always set to a power of two, following recommendations from NVIDIA developers
intended to improve the efficiency of reduction operations [109]. Therefore, if the
number of threads per block is not a power of two, the shared memory is set to
the next power of two (e.g., for 100 threads per block, the next power of two is
128). Table 4.2 lists the shared memory configurations for the Multi-cells and both
Block-cells (1) and (N) implementations.
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Table 4.1: Cells per block and threads per block of Multi-cells, Block-cells (1), and
Block-cells (N). float(Cells/block) indicates that part of a cell can be computed in
a block while another block would compute the rest. int(Cells/block) indicates the
opposite; each cell should be computed by a single block. Chemical Species depends
on the chemical configuration used.

Case Cells/block Threads/block
Multi-cells float(Cells/block) Maximum
Block-cells (1) 1 Species
Block-cells (2) 2 Species
Block-cells (3) 3 Species
Block-cells (N) int(Cells/block) int(Cells/block)*Species

Table 4.2: Shared memory of Multi-cells, Block-cells (1), and Block-cells (N).

Case Shared memory
Multi-cells Maximum
Block-cells (1 to N) NextPowerOfTwo(Threads/block)

Block-cells (N) and Multi-cells solve a system composed of multiple cells. These
require fewer solver iterations than Block-cells (1), as is the case for the Multi-cells
and One-cell configurations of the CPU solver [50].

The number of solver iterations is measured differently between the CPU and GPU
Block-cells cases. The iterations for the CPU One-cell case correspond to the sum of
iterations for all cells, as they are solved sequentially. However, for the GPU Block-
cells cases, the cells are solved simultaneously across multiple threads. Therefore,
the effective solver iterations correspond to those performed on the last thread block
to finish the algorithm.

We expect Block-cells (1) to require fewer iterations than Block-cells (N) because
solving a system of a single cell should be less complex than solving a system with
multiple cells.

Nevertheless, the Block-cells (N) approach still has the advantage of reducing in-
termediate variables. For example, instead of storing an error of convergence for
each cell, a single variable can be used for multiple cells. In addition, this approach
can reduce the number of idle threads. For example, consider a system of 10 cells
and 100 threads per block. By design, threads in CUDA are always launched in
groups of 32, called warps. Thus, for Block-cells (1), each cell launches 128 threads,
resulting in 28 idle threads per cell and 280 idle threads per block. In contrast, for
Block-cells (N), the block is composed of 1000 threads, resulting in 24 idle threads,
256 less than Block-cells (1). In other words, grouping cells can be considered a
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trade-off between a higher utilization of the GPU resources (specifically, memory
storage and threads) and more solver iterations.

4.4 Test environment

4.4.1 Hardware

All the tests were performed on the CTE-POWER cluster provided by the Barcelona
Supercomputing Center [105]. The detailed hardware specifications of each node are
described below.

• Operating system: Red Hat Enterprise Linux Server 7.5 (Maipo).

• CPU Compiler: GCC version 7.3.0

• GPU Compiler: NVCC version 10.1.105

• 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and four
threads/core, total 40 physical cores per node and 160 virtual threads using
hyper-threading)

• 512GB of main memory distributed in 16 dimms × 32GB @ 2666MHz

• 2 x SSD 1.9TB local storage

• 2 x 3.2TB NVME

• 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.

• Single Port Mellanox EDR

• GPFS via one fiber link 10 GBit

In addition, we use the NVIDIA Visual Profiler (NVVP) from the CUDA toolkit
v11.5.1 to visualize the profiling data of the GPU experiments and assess the per-
formance of the tests under analysis.

4.4.2 Experimental setup

CAMP allows the solving of chemical mechanisms of a wide range of complexity and
can treat a combination of gas and aerosol reactions. Here, we select an intermediate
complexity gas and aerosol problem used in [26]. The gas phase chemistry is the
Carbon Bond 2005 (CB05) mechanism [72] with fixed photolysis reaction rate con-
stants during the integration. The mechanism is extended with secondary aerosol
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production from isoprene using a two-product model approximation. In addition,
we add emissions at each time step that shift the species concentrations away from
equilibrium. The reader is referred to [26] for further details of the chemical system
solved here.

The relative tolerance of the CVODE solver is set to 1.0e−4, while the absolute tol-
erance ranges between 1.0 and 1.0e−3 depending on the chemical species (the spe-
cific configuration corresponds to the CAMP-CB05 mechanism [72] [26] and can be
found in the JSON file https://github.com/open-atmos/camp/blob/main/test/
chemistry/cb05cl_ae5/cb05cl_ae5_abs_tol.json. Any error of accuracy below
this level of tolerance is considered negligible. The KLU solver uses the same tol-
erance. The tolerance of the BCG linear solver is set to 1.0e−30. This tolerance
corresponds to the lowest level of accepted tolerance in CAMP. CAMP uses this
low tolerance level to keep chemistry systems positive-definitive, avoiding negative
concentrations produced during the CVODE solving. Any negative value greater
than −1.0e−30 produces an extra iteration in the CVODE solving algorithm. Thus,
this tolerance avoids any possible extra iterations the BCG algorithm produces.

We use CAMP as a box model where the number of cells to be solved can be
configured from 1 to 10,000 cells. The domain decomposition of some atmospheric
models allocates around 40,000 cells per MPI process (distributed as 20×20×100
for axes x, y, and z). The 10,000 cells correspond to levels where the performance
results are stabilized, and any greater number of cells gives similar results.

The timing results are averaged over 720 time steps, with a time-step size of 2 min,
representing 24 simulation hours. The profiling metrics obtained through NVVP
are from the first time-step.

In addition, we evaluate the performance of Multi-cells with various initial conditions
as our implementation depends on using CAMP with Multi-cells. Thus, we design
two configurations with different initial conditions among cells. One configuration
uses the same initial values for all cells. This is referred to as the ideal case. The
other uses different initial conditions for each cell, referred to as the realistic case.

Specifically, the realistic case tries to emulate an atmospheric environment. Each
cell is considered to be located at a different altitude in the atmosphere, resulting
in different initial conditions. First, the pressure is configured to scale linearly with
the number of cells from 1000 to 100 hPa. Second, the chemical reactions of type
emissions also scale linearly with a rate from 1 to 0. In this way, a cell at 100 hPa
has 0 emissions, while a cell at 1000 hPa has the maximum emissions value. Finally,
the temperature is calculated from the pressure for dry adiabatic conditions [110].

Table 4.3 shows the various configurations of threads-per-block and shared memory
analyzed for the GPU implementations. The Multi-cells case solves 6.6 cells per
block, which means that part of a cell is computed in another block. Block-cells (1)
solves the same threads-per-block as the number of species per cell. Finally, Block-
cells (N) truncates the 6.6 cells of Multi-cells to 6 cells, resulting in 924 threads per
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Table 4.3: GPU kernel configuration of the implementation presented in Section 4.3
and tested in this chapter

Case Cells/block Threads/block Shared memory
Multi-cells 6.6 1024 1024
Block-cells (1) 1 156 256
Block-cells (2) 2 312 512
Block-cells (3) 3 468 512
Block-cells (N) 6 924 1024

block. The shared memory length is always configured to a power of two.

4.5 Results and discussion

This Section presents and discusses the accuracy, performance metrics, and speedup
of the BCG implementations for GPU compared to the default CAMP version based
on the KLU solver and One-cell approach. The relative error between the species
concentrations using the BCG implementations is below the CVODE tolerance of
0.01%. Hence, results from the new BCG linear solver implementation are not
significantly different from those of the base implementation.

4.5.1 NVVP profiling

The NVVP profiling shows that both Block-cells configurations, (1) to (N), spend a
similar amount of time executing various types of instructions (memory dependence,
synchronization, etc.). Memory operations account for 50% of the Block-cells exe-
cution time, while for Multi-cells this value is 89%. Thus, the memory dependence
bottleneck is reduced by 39% going from the Multi-cells to the Block-cells configu-
ration as the synchronization is moved to the GPU. Block-cells spends 35% of the
time performing synchronization tasks, as the synchronizations are now performed
on the GPU instead of the CPU. Overall, these metrics indicate a performance
improvement from Multi-cells to Block-cells.

Table 4.4 shows that all Block-cells configurations have similar computation inten-
sity, which is greater than for Multi-cells. This is because Multi-cells applies multiple
kernel calls, one for each vector operation—such as a matrix multiplication, a vector
by another vector, or a reduction kernel. Thus, the scheduler concatenates oper-
ations between kernels, increasing the kernel synchronization overhead. Memory
utilization and bandwidth are higher than Block-cells. However, these metrics de-
crease linearly from Block-cells (1) to (N), indicating that grouping cells reduces the
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Table 4.4: Device memory bandwidth and utilization of computation intensity and
Memory metrics from the NVVP for 10,000 cells run.

Case Computation intensity Memory Bandwidth(GB/s)
Multi-cells 7% 75% 715
Block-cells (1) 11% 65% 597
Block-cells (2) 11% 65% 568
Block-cells (3) 11% 55% 474
Block-cells (N) 11% 45% 445

Table 4.5: Efficiency and occupancy from the Properties view of NVVP for 10,000
cells run.

Case Global Load Eff. Warp Execution Eff. Occupancy
Multi-cells 24.2% 35.1% 68.6%
Block-cells (1) 36.5% 75.4% 61.5%
Block-cells (2) 36.3% 75.3% 61.5%
Block-cells (3) 37% 72% 46.7%
Block-cells (N) 36.8% 75.5% 45.3%

efficiency of processing memory operations.

Next, we evaluate the NVVP metrics of Global load efficiency, Occupancy and Warp
execution efficiency, which are defined as follows [111]:

• Global load efficiency is the ratio of requested global memory load throughput
to required global memory load throughput expressed as a percentage;

• Occupancy is the ratio of the average active warps per active cycle to the
maximum number of warps supported (a warp in CUDA is a group of 32
threads);

• Warp execution efficiency is the ratio of the average active threads per warp
to the maximum number of threads per warp expressed as a percentage.

Table 4.5 demonstrates that both global load and warp efficiencies improve across
all Block-cells configurations compared with the Multi-cells approach. However,
Block-cells (1) and (2) exhibit higher occupancy compared with (3) and (N). This
discrepancy arises because Block-cells (1) and (2) are powers of two, whereas the
others are not. Consequently, the GPU architecture, optimized for powers of two,
organizes resources more efficiently in these cases.

We conducted memory requirement estimations by tallying the memory-allocated
arrays of the various methods. The memory required is as follows:
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• KLU One-cell: 18KB

• KLU Multi-cells: 18 KB per cell

• BCG Multi-cells and Block-cells (1) to (N): 29KB per cell

It is worth noting that the Multi-cell and Block-cell approaches utilize identical
arrays; the only distinction lies in how they organize the data. At most, the Multi-
cells approach requires two additional variables, each with a length equal to the
number of cells, for computing the reduction on the CPU. The increased memory
requirements of BCG compared with KLU stem from the BCG requirement of nine
additional auxiliary arrays.

4.5.2 Speedup

The One-cell CPU-based KLU solver is 2× faster than the GPU–based One-cell
BCG solver. This is a consequence of the GPU One-cell approach, which launches
a kernel and transfers data between CPU and GPU for each cell, resulting in signif-
icant overhead. This overhead is sharply reduced in the Multi-cells approach, which
performs these operations only once for all cells.

We tested a GPU Multi-cells configuration with the reduction operation on the CPU
to quantify the impact of the data transfers. The original configuration transfers
one variable from the GPU to the CPU for each GPU block, corresponding to the
convergence error explained in Figure 4.2. The modified configuration transfers the
full array of data concentrations. As the original configuration uses 1024 threads
per block, the new configuration transfers 1024× more data. Consequently, the new
configuration is 12× slower for 10,000 cells, indicating that the data transfers are
very expensive.

Figure 4.4 shows that Block-cells (1) iterates less than Block-cells (N) (1.7× fewer
iterations for 10,000 cells and realistic conditions). This confirms our expectation
that the Block-cells (N) approach generates a more complex system, which takes
longer to solve than the slowest cell in Block-cells (1).

Results also indicate that varying initial conditions between the cells increase the
performance improvement of Block-cells (1) compared with Block-cells (N), as more
iterations are reduced under realistic than ideal conditions. Moreover, these vari-
ations of the initial conditions increase the standard deviation. The plots show a
low standard deviation (0.1 for a 1.8× reduction). However, the standard deviation
and reduced iterations could be relatively greater when large initial differences exist
among the cells. Thus, the computational cost could be higher and more volatile
(due to a higher standard deviation) in complex scenarios, such as in actual atmo-
spheric simulations.
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Figure 4.4: Reduction in the number of solving iterations of Block-cells (1) against
Block-cells (N) using ideal (orange dashed line) or realistic (blue line) initial condi-
tions. This reduction is calculated by dividing the solving iterations of Block-cells
(N) by Block-cells (1) and corresponds to the iterations of the last thread block to
finish the algorithm. The reduction is averaged over 720 time steps. The blue shade
indicates the standard deviation of the reduced iterations for all time steps using
realistic conditions.

We use the MPI library in the one-core CPU base case experiments instead of
disabling it because it is simpler to configure, and the differences are negligible.
Specifically, in our tests, disabling the MPI library only reduces the execution time
by 0.2%. This is because MPI is only used for initialization and measuring the
execution time.

Figure 4.5 shows that the speedup decreases linearly as the block size increases, with
Block-cells (1) demonstrating the highest performance. This suggests that solving
cells individually is faster compared with grouping them. However, despite achieving
a reduction of approximately 70% in the number of solver iterations, the speedup of
Block-cells (1) is not as high as expected. This discrepancy implies that there are
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Figure 4.5: Speedups and iterations of GPU linear solver configurations. The
speedup and iterations are normalized over the worst case, which corresponds to
Block-cells (N) and Block-cells (3), respectively. The Block-cells (1), (2),(3), and
(N) implementations correspond to block sizes 1,2,3 and 6. The results are averaged
over 720 time steps and are configured with 10,000 cells and realistic conditions.

additional benefits associated with other configurations. We attribute this to using
the same solver parameters across multiple cells, which reduces data requirements
and subsequently lowers memory usage compared with Block-cells (1).

The figure also reveals a linear decrease in the number of solver iterations with
increasing block size, as anticipated due to the increased complexity of the system
with more cells involved. Similarly, the speedup exhibits a comparable trend, except
for block size 2, where the speedup closely mirrors that of block size 3, despite a
significant reduction in iterations between the two cases. This discrepancy suggests
another metric influences the speedup besides the iterations, although we have not
identified a clear metric in the NVVP report. Further investigation into this behavior
may be warranted in the future.

Figure 4.6 illustrates the speedups of Multi-cells, Block-cells (N), and Block-cells (1)
against the CPU–based One-cell implementation using a single core. The standard
deviation depicted in Figure 4.6 arises from the inherent differences between the
BCG and KLU linear solvers. For instance, BCG is an iterative solver, and the
sequence of floating point operations differs between the CPU and GPU, introduc-
ing variability into the comparison. The Multi-cells approach exhibits the smallest
standard deviation, whereas those for Block-cells (N) and Block-cells (1) are larger.
This discrepancy stems from configuring the remainder of the ODE solver code fol-
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Figure 4.6: Speedups of GPU linear solver implementations compared to One-cell
version executed by one CPU core. The implementations presented are Multi-cells
(dotted line), Block-cells (N) (dashed line), Block-cells (1) (continuous line). The
speedups are averaged over 720 time steps (as explained in Section 4.4). The area
covering the speedups is the standard deviation.

lowing the Multi-cells approach. Specifically, Block-cells (1) and Block-cells (N)
solve the system differently from the ODE solver they are embedded in, resulting
in divergent results and increased variance. Block-cells (1) displays more variability
than Block-cells (N) because they diverge more significantly from Multi-cells, as the
Block-cells (N) approach solves some cells as a single system.

All the analyzed implementations result in speedups over the single-core CPU im-
plementation. Specifically, Block-cells (N) achieves a 27× speedup, compared with
a 17× speedup from Multi-cells, indicating an improvement in computational time
associated with data transfers between GPUs. Block-cells (1) is the fastest imple-
mentation with a 35× speedup.

Introducing a preconditioner to the linear solver could potentially alter the associ-
ated speedups. If the preconditioner effectively reduces the number of iterations re-
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Figure 4.7: Speedups of GPU linear solver using 1 MPI core (continuous line) and
CPU solver using 40 MPI cores (dashed line), both against the base CPU version
using 1 MPI core. The speedups are averaged over 720 time steps. The area covering
the speedups is the standard deviation.

quired, this reduces more iterations on implementations with higher iteration counts.
Consequently, the speedup of Block-cells (N) may approach that of Block-cells (1),
given that Block-cells (N) typically entails more iterations than Block-cells (1), as
demonstrated in Figure 4.4. However, a good scaling is not compromised indepen-
dently of the use or not of a preconditioner. In any case, pursuing an effective
preconditioner represents a promising avenue for optimization in future research
endeavors.

Figure 4.7 shows that Block-cells (1) achieves a greater speedup than the 40 cores
MPI implementation (35× vs. 23×). This highlights the performance improvements
made possible through the efficient use of the GPU. Moreover, these results can be
expected to improve by a factor of 4 when using the 4 GPUs available in the node
since no communication is required among the GPUs. We will explore this possibility
in future work.
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Finally, we inspect the time execution consumed on moving data between GPU and
CPU of the best configuration, Block-cells (1). For 10,000 cells, this time on data
movement takes 36% of the total time execution, which is significant. Data transfers
cannot be reduced as the implementation already transfers a minimal amount of
information, that is, the input and output concentrations. Alternatively, we can
augment computational operations by incorporating more code from CVODE into
the GPU kernel. However, this approach may require additional data transfers
because CVODE uses numerous auxiliary variables. Thus, to offset these transfers,
we must translate a substantial portion of the computational workload to the GPU
approach, such as developing a GPU–based Block-cells (1) version of CVODE. This
option requires further exploration in future investigations.

4.6 Conclusions

The main goal of this chapter has been to achieve an optimized distribution of
the computational load of a chemical solver for use on GPUs. We used the CAMP
framework to benchmark our developments. The standard approach in CAMP, as in
most atmospheric packages, is to compute the chemical state of each cell separately.
We refer to this implementation as One-cell. As in the non-parallelized CPU–based
solver, these cells are computed one-by-one sequentially. In contrast, the Multi-cells
approach is based on grouping the cells of the model into a single system and solving
them simultaneously.

Compared with the single-threaded (sequential; not parallelized) solver used by
CAMP, Multi-cells has the advantage of requiring significantly fewer solver itera-
tions, as the total number of iterations required for the One-cell approach is the
sum of the individual number of iterations needed for each cell [50]. This chapter
shows that the Multi-cells performance strongly depends on the initial conditions.
The speedup can be as low as 1× under idealized conditions where all cells have the
same initial conditions (i.e., same initial concentrations, temperature, pressure, etc).
Nevertheless, the speedup can be as much as 6× when the initial conditions vary
among cells. Therefore, we expect Multi-cells to outperform the single-threaded
One-cell approach in CAMP under realistic conditions.

We also evaluated the GPU implementation of the BCG linear solver for the One-
cell and Multi-cells cases against the CPU–based KLU solver using the One-cell
approach. For the BCG One-cell configuration, the speedup is less than 1×, as there
are CPU-executed instructions between the execution of each kernel, preventing the
cells from being computed in parallel. The Multi-cells approach solves this problem
by computing cells in parallel, resulting in up to a 17× speedup for 10,000 cells.
However, the Multi-cells implementation allows the load of an individual cell to be
divided between two thread blocks, requiring communication between blocks that
can account for more than 50% of the execution time.
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To improve the performance of the Multi-cells approach, we proposed the novel
Block-cells strategy to avoid communication across thread blocks. The Block-cells
approach ensures that each cell is computed within a single block, avoiding com-
munication and synchronization across thread blocks. Block-cells can be configured
differently depending on the number of cells assigned per block. This paper com-
pares configuring one cell per block versus using the maximum number of cells per
block. We call these configurations Block-cells (1) and Block-cells (N), respectively.
Configurations with multiple cells per block but less than the maximum possible
result in performance between these two extremes.

We find that both configurations increase the overall memory efficiency by 12%
relative to the Multi-cells approach, indicating improved use of hardware resources.
We also show that Block-cells (1) has 15% more kernel occupancy than Block-cells
(N), meaning it has more active threads per warp. Moreover, we show that Block-
cells (1) requires ∼80% fewer solver iterations than Block-cells (N). This leads to
different performance improvements for Block-cells (N) and Block-cells (1), which
attain up to 27× and 35× speedups, respectively, relative to the CPU–based One-cell
configuration.

We also compare the speedup obtained over an equivalent MPI implementation,
which uses the maximum number of physical cores available on a node (40). In this
MPI implementation, we emulate an actual ESM experiment and solve the number
of cells in each process equal to the total cells divided by the number of processes.
Block-cells (1) is up to 50% faster than this MPI implementation. This highlights
the advantage of the GPU–based Block-cells approach over traditional CPU-based
approaches for the specifications used in this study.

In summary, the new Block-cells strategy improves upon the previously developed
GPU-based Multi-cells approach and a traditional CPU-based parallel implementa-
tion using MPI. Moreover, we present evidence that the Block-cells approach can
be an excellent alternative to other GPU-based deployments, in which the workload
of a cell is handled by a single thread, not by a thread block. It should also be
noted that the Block-cells approach can be applied to the rest of the CAMP ODE
solver algorithm, which now represents ∼95% of the total solving time after using
the Block-cells strategy to the linear solver.

Thus, in the next chapter, we will apply the Block-cells strategy to the rest of the
BDF algorithm. We expect this to improve the performance relative to other GPU-
based chemical solvers, as the complete algorithm will be ported to GPUs. More
specifically, we hope to obtain a speedup similar to that found for the linear solver,
as the BDF algorithm is conceptually identical to the BCG algorithm: both are
iterative algorithms based on similar algebraic operations (i.e., vector multiplication
or vector reduction to a variable). However, the BDF algorithm is more complex
than the linear solver and may present unique challenges. We also expect to evaluate
the Block-cells GPU-based chemistry solver in MONARCH. In future chapters, we
can use the CPU and GPU solvers in a hybrid implementation.
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Chapter 5

Extending the Block-Cells
Approach for GPU-Accelerated
ODE Solvers: Implementation,
Testing, and Profiling in Box and
3D MONARCH Models

5.1 Introduction

This chapter presents a GPU version of the ODE-solving procedure of the chemistry
module CAMP. The method used to adapt the ODE solver for GPU computing is
introduced in the previous Chapter 4. This chapter includes results using the CAMP
GPU version within the atmospheric model MONARCH to validate our approach
in a more realistic case scenario. The primary goal of this work is to accelerate
MONARCH while maintaining high accuracy. This chapter details the significant
changes made during the porting process and presents the performance and accuracy
results of the MONARCH-CAMP GPU simulations.

This chapter is organized as follows: Section 4.2 provides the application context
relevant to this chapter. Section 5.3 explains the porting of the chemistry solver to
Block-Cells. Section 5.4 presents the software configuration for the tests performed.
Accuracy losses, acceleration, and performance are discussed in Section 5.5. Finally,
Section 5.6 presents concluding remarks and future work.
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5.2 Background

This section describes the state-of-the-art and computational description as the
starting point before our developments.

5.2.1 State of the art

The state-of-the-art related to GPU chemistry modules is explained previously in
Section 1.2. This section details current approaches to implementing GPU comput-
ing in chemistry modules and the available GPU tools. For example, it explains why
CUDA is used over other parallel languages such as OpenMP or OpenACC.

Section 1.1 defines the motivation behind using MONARCH and CAMP instead of
other atmospheric and chemistry modules. Section 2 provides more details about
the benefits of MONARCH and CAMP, including a computational description of
CAMP in Section 2.2.2.

Our starting point is defined in the previous Chapter 4. In that chapter, the Block-
cells strategy is presented to accelerate a linear solver deployed for atmospheric
chemistry [49], achieving a 35x speedup compared to the single-thread CPU version.
This strategy was designed to be implemented keeping the same applicability as the
base algorithm, avoiding changes to the solving algorithm. It can be applied to the
rest of the chemistry solver, which shares many operations with the linear solver,
making the porting process more straightforward.

The linear solver shares many operations with the ODE solver, such as two-vector
multiplication, facilitating the future development of a GPU version of the entire
ODE solver. This chapter extends this work by applying the Block-cells strategy to
most of the code related to the ODE-solving function.

5.2.2 Computational description: introduction to Block-cells

The starting point is the Block-cells strategy applied to the linear solver routine,
which we call BCG since it follows the Biconjugate Gradient algorithm described
in Chapter 4 [49]. The Block-cells approach differs from the usual implementation
of GPU chemistry modules. In the traditional implementation, each CPU process
solves an atmospheric grid cell, a method referred to in this thesis as One-cell and
sometimes as One-cell-per-thread. Each cell contains a chemical system that
can be further parallelized to solve each chemical concentration, leveraging GPUs’
high parallel computation capacity. This concept forms the basis of the Block-cells
strategy, where each thread solves a chemical concentration, and each cell is grouped
in a CUDA thread block, utilizing the shared memory of the block to transfer data
rapidly between threads. Figure 5.1 illustrates the difference between the Block-cells
and traditional implementations.
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Figure 5.1: Differences between the traditional parallelization approach for CPU and
GPU and our Block-cells strategy. The relations are one-to-one and one-to-many,
so, for example, an MPI process contains multiple cells.

5.3 Implementations

5.3.1 Porting

When porting the CAMP solver to the Block-cells approach, it is noted that BCG
(Bi-Conjugate Gradient method) accounts for approximately 20% of the total code
lines from the CAMP solver. The translation of the remaining code could be a con-
siderable task. Fortunately, many CVODE operations, such as vector multiplication
and vector-by-matrix operations, are already utilized in the linear solver, simplify-
ing the development process. The operations not included in the linear solver are
introduced below, including the approach to adapt them to the GPU.

One operation is illustrated in Figure 5.2. The central concept is handling the
synchronization between thread blocks to ensure they follow the same path. For
instance, if a thread detects an invalid value, such as a negative concentration, this
information should be shared with the rest of the threads in the same block. A
similar operation is already implemented in the linear solver, known as the Reduce
operation. In the Reduce operation, each thread holds a value from an array; these
values are then summed up to a single value, which is shared among all threads to,
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Figure 5.2: Handling of data communications between the same thread block.

for example, check for convergence. This operation can be extrapolated to find an
array’s maximum or minimum value.

Another new concept not present in the linear solver is calculating the f(y) and
Jacobian matrix. In these functions, the chemical rates of the species are multiplied
by the current time-step concentration. For example, a chemical reaction can in-
crease the oxygen atom concentration by A, and another can reduce it by B, and
so on. The code is organized as follows: First, a reaction is selected, then a rate
is multiplied and added to the output concentration array. Thus, there is a rate
loop inside a reaction. Often, chemical mechanisms comprise hundreds of reactions,
while the concentrations updated in a reaction are around ten. Consequently, it is
better to parallelize the reaction loop than the rate loop.
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Figure 5.3: Matrix multiplication in linear solver and reactions functions.

Interestingly, this operation is equivalent to matrix-vector multiplication, where mul-
tiple factors are multiplied by a vector and summed. This operation is already per-
formed in the linear solver, with the matrix stored in the Compressed Sparse Row
(CSR) format. However, since parallelized reactions can update the same concen-
tration simultaneously, this operation must be atomic to prevent data overlap, while
the CSR format does not require atomic operations. Due to the atomic requirement,
the code is much closer to the Compressed Sparse Column (CSC) format. We use
the function atomicAdd from the CUDA library to perform the atomic operation.
Figure 5.3 summarizes the main differences between these formats.

This atomic operation is usually notably time-expensive. Thus, adapting the code
to follow the CSR format could save execution time. However, it would require
isolating the matrix multiplication from other operations performed during the re-
action calculation, such as checking for negative concentrations. This could be an
extensive work that may be investigated in the future.

Figure 5.4 illustrates the components that remain on the CPU, those translated to
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Figure 5.4: Components on CPU and GPU code. f(y), Jacobian, and Linear solver
are relevant elements of the ODE solver.

the GPU, and the data exchanged with the host model MONARCH. For instance,
the Update reactions function calculates the reaction rates using environmental vari-
ables from the model or those passed by the model. The Update time-step size in-
volves initialization steps performed by CVODE before entering the main solving
loop, which includes checks and calculating the time-step size. These functions are
executed on the CPU because they represent a low computational load and involve
extensive code, particularly for the time-step size calculation.

Concerning the MONARCH coupling, we followed the Multi-cells implementation for
running GPU code, as explained in Chapter 5. Specifically, in the CPU base version,
single-cell data is sent to the CAMP-solving routine, which is encapsulated inside a
loop that iterates over all cells. In the GPU adaptation, this loop is removed, and the
CAMP-solving routine is called with data from all cells, enabling the parallelization
of these cells.

Grouping the cell data involves identifying and extracting this data from the inter-
face between MONARCH and CAMP. The data is compressed by multiple values,
such as temperature, pressure, and reaction rates, which require a minor modifica-
tion to the code. Ultimately, the primary challenge was understanding and managing
the complex and extensive interface between MONARCH and CAMP, comprising
thousands of code lines.
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5.4 Test environment

All the tests were performed on the CTE-POWER cluster provided by the Barcelona
Supercomputing Center [105]. The detailed hardware specifications of each node are
described below.

• Operating system: Red Hat Enterprise Linux Server 7.5 (Maipo).

• CPU Compiler: GCC version 7.3.0

• GPU Compiler: NVCC version 10.1.105

• 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and four
threads/core, total 40 physical cores per node and 160 virtual threads using
hyper-threading)

• 512GB of main memory distributed in 16 dimms × 32GB @ 2666MHz

• 2 x SSD 1.9TB local storage

• 2 x 3.2TB NVME

• 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.

• Single Port Mellanox EDR

• GPFS via one fiber link 10 GBit

In addition, we use the profiler Nsight Compute Version 2020.1.0 to visualize the
profiling data of the GPU experiments and assess the performance of the tests under
analysis. The chemistry time steps are set to one when profiling. These metrics are
from the first time step. This is because the performance remains consistent between
time steps. Different initial conditions lead to varying numbers of iterations in the
ODE solver. Despite the difference in iterations, these iterations execute the same
operations, such as the linear solver. We observed this behavior in the Box model
simulations, validating this reasoning.

To measure accuracy between the CPU and GPU versions, we use the Normalized
Root Mean Square Error (NRMSE), represented as a percentage and calculated as

NRMSE =

√
1
n

∑n
i=1(xi − yi)2

xmax − xmin

Where x is the concentration of a chemical species from cell i, obtained from the last
time-step of the model execution and the Base version of CAMP, y is the equivalent
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of x for the optimized version, n is the number of cells, and xmax and xmin are the
maximum and minimum value from x.

The absolute tolerance of the CVODE solver is set to 1.0e−4. Any error of accuracy
below this level of tolerance is considered negligible. The KLU solver uses the same
tolerance. The tolerance of the BCG linear solver is set to 1.0e−30. Any negative
value greater than −1.0e−30 produces an extra iteration in the CVODE solving
algorithm.

5.4.1 Box model runs

During the development process, we used CAMP as a simplified box model with
a trimmed configuration. This model runs the gas-phase CAMP chemical setup,
specifically the Carbon Bond 5 (CB05) mechanism used in MONARCH, and enables
us to scale the number of cells.

We believe it is valuable to compare the results of this test with a MONARCH run.
If the results are very similar, this test can be reliably used for future developments
with greater confidence. The details of this configuration are outlined in Chapter 4
on the linear solver. The main elements of the configuration are:

• Time-step size: 120 seconds

• Number of time-steps: 720

• Threads per block: 86

• MPI processors of the CPU version: 1 to 40, corresponding to a single thread
and a node execution. This is used to calculate the speedup of the GPU
implementation against the CPU version, providing a comparison against the
single-thread and full node-to-node cases.

• Cells: 1,000 to 100,000. This range of cells is used because the GPU perfor-
mance increases with the amount of parallel computational workload. Specif-
ically, launching the GPU introduces a significant time overhead compared
to the CPU case, making the GPU surpass the CPU when enough data is
computed. For example, the previous work reported that launching the GPU
with a single cell is 27 times faster than the CPU single-thread version while
launching 10,000 cells is 35 times faster (see Chapter 4, [49]).

• GPUs: 1 to 4. Four GPUs are used to measure the speedup scaling with the
number of cells, while 1 to 4 GPUs are used to measure the speedup scaling
with the number of GPUs. This ensures that the speedup scales linearly with
the number of GPUs. This is the expected outcome because there are no
communications between GPUs, and the computational load is distributed
evenly among them.
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• Pressure: Scales linearly with the number of cells from 1000 to 100 hPa. Emis-
sions are also scaled linearly from 1 to 0. In this way, a cell at 100 hPa has 0
emissions, while a cell at 1000 hPa has the maximum emissions value.

• Temperature: Follows dry adiabatic conditions [110].

5.4.2 MONARCH run

MONARCH was configured very similarly to the CAMP paper [112], with the dif-
ference of disabling the aerosol chemistry as the CAMP GPU porting has focused
only on the gas-phase chemical reactions. This configuration is detailed below.

The regional domain covers Europe and northern Africa. We used a rotated latitude–
longitude projection with a regular horizontal grid spacing of 0.2 degrees. The top
of the atmosphere was set at 50 hPa with 48 vertical layers. The computational
resources required are two nodes (80 cores). A smaller domain was configured,
scaling the cores and the region to run in 20 cores. The 20-core and 80-core (2-
node) configurations allow us to evaluate the scalability of the GPU speedup with
the number of GPUs. In addition, the 20-core configuration facilitates development
thanks to lower execution times. In the 20-core case, only 2 GPUs are used; for the
80-core configuration, 4 GPUs are used for each node. This scalability should align
with the expected linear scalability and the results from the box model experiments.
Figure 5.5 displays the domains of study.

Figure 5.5: The domains of study extracted from Ncview version 2.1.10.

Meteorological initial and boundary conditions were obtained from the ECMWF
global model forecasts at 0.125 degrees [113] and chemical boundary conditions
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from the CAMS global model forecasts at 0.4 degrees [114]. The applied anthro-
pogenic emissions are based on the CAMS-REG-APv3.1 database [115] [116], and
the biomass burning emissions (forest, grassland, and agricultural waste fires) are
from the GFASv1.2 analysis [117]. Both datasets were processed using the HER-
MESv3 system, an open-source, stand-alone multi-scale atmospheric emission mod-
eling framework developed at the BSC that computes gaseous and aerosol emis-
sions for use in atmospheric chemistry models [118] [119]. The HERMESv3 system
was used to remap the original datasets and to derive hourly and speciated emis-
sions. Aggregated annual emissions were broken down into hourly resolutions using
the emission temporal profiles reported by [120]. The emissions of non-methane
volatile organic compounds were speciated using the split factors reported by [115].
The Autosubmit workflow manager efficiently executed the MONARCH modeling
chain [68].

The selected chemistry configuration is designed to compute the gas-phase chemistry
of the mechanism CB05, neglecting aerosol processes. Therefore, MONARCH is
configured as shown in Table 5.1.

The simulation lasts one day, corresponding to 480 chemistry time steps with a time
step size of 45 seconds. While validation simulations in the community typically
extend longer than one day—up to two years, as in the KPP GPU study [35]—our
hardware transition from Marenostrum 4 to Marenostrum 5 limited our metrics to
those from Marenostrum 4. We decided to present these metrics here and plan to
conduct future work on Marenostrum 5, comparing the performance of both systems.

We also tested 20 steps to evaluate the variation of the NRMSE with the number
of time steps. This evaluation is crucial because, in atmospheric models, an initial
accuracy error can propagate and increase over subsequent time steps. However,
we use the same algorithm as the CPU version with only minor changes, the most
significant being using a different linear solving algorithm. Thus, we expect some
slight deviations, but overall, the accuracy error should be acceptable and remain
constant throughout the time steps.

We use 4 GPUs, while the CPU cores vary based on the domain size: 20 for the
small domain and 80 for the large domain. The 20-core experiment is a quick test,
while the 80-core experiment shows if the results change when scaling the domain.
The speedup against the 4 GPUs in the 20-core setup allows for comparison with
the Box model, while the 80-core experiment provides a fairer comparison since a
node has 80 cores and 4 GPUs available.

Regarding the GPU configuration, the number of threads per block increases from
the Box case (86 to 127) to accommodate species specific to MONARCH but ab-
sent in the CAMP chemical mechanism. These additional threads are initialized
with data arrays but do not involve computations within CAMP. Therefore, the
performance impact of this increase is negligible.

After configuring the domain, the number of cells is approximately 10,000 per CPU
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Table 5.1: Configured chemistry schemes in MONARCH for CAMP experiments.

Process Scheme Comments
Gas-phase mecha-
nism

CB05 [72] solved using CAMP [26]

Aqueous sulfate for-
mation

Described by Spada
[65]

Deactivated

Inorganic Aerosol
mechanism

EQSAM [75] Deactivated

Organic Aerosol
mechanism

Two-product or Sim-
ple scheme [77]

Deactivated

Photolysis rates Fast-J [74] Activated
Dry deposition of gas
species

Resistance approach
[78]

Activated

Dry deposition of
aerosols

[79] Deactivated

Wet deposition of
gas species

Grid and sub-grid
scale [80]

Activated

Wet deposition of
aerosols

[21] Deactivated

Biogenic emissions MEGANv2.04 [81] Activated
Dust emissions [21] [82] Activated but not involved in

chemistry
Sea salt emissions [64] [83] Activated but not involved in

chemistry
Pollen emissions [84] Deactivated
Dust Mineralogical
composition

[85] Deactivated

core. This quantity should be sufficient to saturate the speedup since in the previous
Chapter 4, the saturation is around 10,000 cells for the whole node, corresponding to
250 cells per CPU core. To confirm this, in Section 5.5, we will present a scalability
plot of the box model with varying numbers of cells.

5.5 Results and discussion

5.5.1 Box model runs

For all the Box model experiments increasing the number of cells, the NRMSE
is below 0.02%. Table 5.2 shows that the speedup stops scaling beyond 100,000
cells. It’s worth noting that the speedup remains positive from 5,000 cells onwards,
indicating that even smaller configurations can benefit from GPU acceleration. The
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speedup scales with the number of cells because launching the computation (also
considering the overhead of data transfers) introduces a significant time overhead.
The GPU must process a substantial amount of data to overcome this overhead. The
table shows that the speedup stops scaling at 100,000 cells. A typical MONARCH
execution uses 400,000 cells per node (or even more), corresponding to 100,000 cells
per GPU since a node contains 4 GPUs. Therefore, we are processing enough data
on the GPU to minimize the overhead of launching the computation.

Nº of Cells Speedup vs CPU node

1000 0.4
5000 1.7
10 000 4.7
50 000 5.5
100 000 5.9

Table 5.2: Speedup scaling the number of cells, using 4 GPUs against all the node
cores (40).

Table 5.3 shows that the speedup scales linearly with the number of GPUs, which
is expected since there is no communication between the GPUs. Additionally, the
speedup for a single GPU is very similar to the linear solver speedup achieved in
the previous Chapter 4 (31x and 35x), which is a consequence of being composed
by many similar operations to the BCG.

Nº of GPUs Speedup vs 1 CPU Core

1 31
2 69
3 103
4 137

Table 5.3: Speedup scaling the number of GPUs. Speedup using 1 to 4 GPUs against
1 CPU core and 100,000 cells.

5.5.2 MONARCH model runs

The results for MONARCH are divided into two parts. The first presents the
speedup and accuracy results, while the second covers the profiling results and per-
formance evaluation.
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Speedup and accuracy

We first show the results of MONARCH using the 20 cores MPI setup. Figure 5.6
presents the box plot of the six gas-phase species of CB05 with the highest NRMSE,

showing the quantiles and median of the relative error (100∗ (
∣∣∣1− x

y

∣∣∣)). The median

error is considerably low, below 0.5%. The 75th percentile is 2%, indicating that
some species are less accurate, but the median below 0.5% shows that the errors are
acceptable. Additionally, Table 5.4 indicates that the highest NRMSE is below 1%,
which is low enough to be considered acceptable.

Figure 5.6: Relative error of the species with the highest NRMSE in MONARCH-
CAMP for 20 CPU cores and 480 time steps.

NO3 CRO CO OH PNA HO2

NRMSE [%] 0.68 0.2 0.17 0.16 0.15 0.13

Table 5.4: Species with the highest NRMSE in MONARCH-CAMP for 20 CPU
cores.

Table 5.5 shows the error and speedup metrics for the Box and MONARCH tests us-
ing the 20-core domain configuration. The error is more significant in MONARCH,
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which is reasonable given MONARCH’s more diverse initial conditions. Despite
this, the error remains acceptable as it is below 1%. The difference in speedup is
13% (16.6 and 14.7). These low differences arise because the MONARCH and Box
tests are similar but not completely identical. Specifically, both share the same
chemical configuration, but the initial concentration and environmental variables
differ. For instance, the Box model emulates cells of different altitudes with differ-
ent temperatures and pressures, similar to the MONARCH configuration. However,
MONARCH also contains cells at the same altitude and pressure levels, which vary
from time step to time step due to factors like the day and night cycle. Neverthe-
less, the speedups are similar enough to indicate that the Box test reliably assesses
MONARCH’s performance.

Test NRMSE Max. [%] Speedup

Box 0.02 16.6
MONARCH 0.68 14.7

Table 5.5: Speedup and accuracy error using 4 GPUs against 20 CPU cores.

Next, we evaluate the configuration results for the 80-core (2-node) setup. This
evaluation aims to validate our assumptions and the results from the Box model,
where the speedup is expected to scale linearly with the number of GPUs and MPI
processors. Additionally, we hope that the accuracy should also be very similar.
The NRMSE for 1-hour and 24-hour simulation (20 and 480 chemistry time-steps)
is 0.42% and 0.45%, respectively. The decay and the low variation suggest that the
NRMSE maintains stability with the time steps.

Figure 5.7 shows the six species with the highest NRMSE as shown in Figure 5.6 but
for the 80-core case. Results show a 75 quantile of 1.4, lower than the two presented
for the 20 cores experiment. These differences are likely due to the varying initial
conditions between the two cases.

Table 5.6 presents the error and speedup metrics for the Box and MONARCH tests
using the 80-core domain configuration. The accuracy error decreases from 0.68% to
0.42%, indicating that increasing the experiment data still maintains an acceptable
NRMSE below 1%. Additionally, the table shows the theoretical speedup normalized
to 20 cores. Remarkably, the actual speedup achieved is higher than expected,
increasing from 7x to 9.8x.

Upon investigation, we discovered that the CPU version frequently reaches the max-
imum number of solving iterations, resulting in more execution time and, conse-
quently, enhanced speedup of the GPU version. This behavior is produced by an
update between the initial CAMP paper [26] and this study, related to the function
guess helper detailed below.

/* Code extracted from the function "guess_helper" */
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Figure 5.7: Relative error of the species with the highest NRMSE in MONARCH-
CAMP for 80 CPU cores (2 nodes) and 480 time-steps.

Test Accuracy error [%] Speedup

Box 0.02 8x
MONARCH 0.42 9.8x
MONARCH 20 (Normalized from 20 cores) 0.68 7x

Table 5.6: Speedup and accuracy error using 8 GPUs against 40 CPU cores normal-
ized and not normalized.

h_j *= 0.95 + 0.1 * rand() / RAND_MAX; // Previous version

h_j *= 0.95 + 0.1 * iter / GUESS_MAX_ITER; // Current version

This update was initially introduced to reduce solving iterations but was not tested
in MONARCH. Interestingly, the GPU version does not encounter the issue of solver
failures, likely because it uses a different linear solving algorithm, which is the most
significant difference apart from the compiler. This hidden improvement in the
speedup is produced because the CPU performs slower than expected. Since this

76



5.5. RESULTS AND DISCUSSION

work focuses primarily on GPU advancements, investigating this CPU issue will be
deferred to future work.

Profiling

The Nsight profiler reports that arithmetic resources (SM) utilization is 12%, and
memory is 24%. The profiler indicates low utilization, which should be at least 60%
to avoid this warning. The previous linear solver reported utilization of 11% for
SM and 65% for memory. Thus, this new version worsens memory utilization from
65% to 24%. This likely results from the numerous synchronizations of the added
Reduce or Atomic operations. This indicates room for improvement, but removing
the atomic operation requires a significant development effort due to the many data
structures involved, as we state in section 5.3.1. This work limits our focus to a
GPU adaptation with low development efforts; therefore, we will aim to improve
this utilization in future work.

Figure 5.8 shows the performance represented as a Roofline model from Nsight.
The red point represents the double-level floating point operations. The arithmetic
intensity is 4 FLOPs/byte, close to the ideal value of 7. Being less than the perfect
value indicates that our application is memory-bound. However, being close to the
ideal is positive, suggesting that the bottleneck is likely in other areas.

Additionally, the cache L1 and L2 hit rates are 82% and 99%, respectively, indicating
that the memory accesses are highly efficient. This is because most of the operations
in the GPU ODE solver involve sequential access. For instance, typical operations
include the sum or multiplication of two vectors of the same length. The only
exceptions to this pattern are the synchronization operations between thread blocks
(such as Atomic, Reduce, and using shared memory as described in Figure 5.2) and
matrix-vector multiplication. This suggests the CPU algorithm was already efficient,
as our GPU implementation replicates it. Thus, we leveraged this performance
benefit of the CPU algorithm in our GPU implementation.

On the other hand, the performance in terms of FLOPs/s is 67 times less than the
ideal case (6.7 Tera-FLOPS/s against 0.1 Tera-FLOPS/s). Thus, while our memory
accesses are almost optimal, our arithmetic throughput and utilization of SM and
memory are low. A possible explanation for this behavior is that many threads
remain idle for a considerable time, indicating a synchronization problem. While
waiting for synchronization, the throughput is halted, although memory accesses
can continue with a high hit rate. This synchronization issue likely belongs to the
atomicAdd operation. In future work, we aim to improve this synchronization issue.
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Figure 5.8: Roofline model for first time-step, GPU 0, and process 0 of MONARCH-
CAMP. The performance bound is represented as the blue curve. The green and
red points represent the performance for single- and double-level floating point op-
erations, respectively.

5.6 Conclusions

This chapter presented an enhanced GPU version of an atmospheric chemistry
solver. We utilized the CVODE library for the ODE solver, the CAMP chemistry
framework, and the MONARCH atmospheric model.

We extended the Block-cells strategy from the BCG linear solver to the BDF ODE
solver, which involves approximately five times more lines of code. The linear solver
has already implemented many operations, so we focused on detailing the new ad-
ditions. These include handling data communications between threads and imple-
menting the atomicAdd operation to solve the chemical reactions during the f(y)
function.

Our initial results focus on a Box model emulating MONARCH input, facilitating
development. The Normalized Root Mean Square Error (NRMSE) is below 0.02%.
The speedup achieved in a node-to-node comparison between the GPU and CPU
versions is up to 5.9x. The speedup against 1 CPU core is 31x for 1 GPU, similar
to the 35x speedup of just the linear solver. This indicates that the new additions
slightly reduced the speedup and that the similarities between the linear and ODE
solvers are significant. Scaling the test to 4 GPUs shows a linear increase in speedup,
reaching an outstanding 137x speedup against 1 CPU core.

We coupled our CAMP GPU version into MONARCH. Adapting from the CPU to
the GPU version required only slight code modifications, but the interface between
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CAMP and MONARCH involved thousands of lines of code, requiring careful ad-
justments. In our initial experiments with a small domain of 20 cores, we observed
an NRMSE of 0.68% and a speedup of 14.7x against 4 GPUs. The NRMSE was
notably higher than the Box model for the same configuration, with an NRMSE
of 0.02%. However, this error is still acceptable as it remains below 1%. In terms
of performance, the results are very similar to the Box model, with a speedup of
14.7x compared to 16.6x. This difference in speedups is due to the increased com-
plexity of the MONARCH simulation compared to the Box model, incorporating
factors like the day and night cycle. However, this similarity indicates that the Box
model reliably assesses performance without needing to run a complex system like
MONARCH.

The NRMSE of the two nodes experiment at 20 and 480-time steps is 0.45%, and
0.42%, respectively. This small variation in NRMSE and the slight decay from 20
to 480 time steps suggests that the NRMSE remains stable as the number of time
steps increases.

Additionally, the experiment with the 80-core domain shows an NRMSE of 0.42%,
lower than the 0.68% of the 20-core experiment. This confirms that scaling the
domain retains a low NRMSE. The expected speedup, after normalizing the 20-core
version, is 7x. The node-to-node comparison yielded a 9.8x speedup, higher than
expected due to slower CPU performance—a factor we aim to address in future
versions.

We want to highlight this 9.8x speedup since it is notably higher than other state-
of-the-art modules. For instance, the KPP GPU study reports a 1.75x speedup, and
the CAM4-Chem reports 1.95x [35] [36]. This remarks the benefits of the Block-cells
implementation.

About profiling, the memory performance, represented as arithmetic intensity, is 4
FLOPs/byte, close to the ideal value of 7. Furthermore, the cache L1 and L2 hit
rates are 82% and 99%, respectively, close to the ideal.

In the next chapter, we will show a heterogeneous CPU-GPU version primarily
because it can be implemented without significant changes, such as altering the al-
gorithm. Moreover, our GPU version operates under a single kernel call, facilitating
the asynchronous execution of CPU code. This implementation was tested on the
new Marenostrum 5, which features significant hardware upgrades, such as updat-
ing the GPUs from those released in 2017 (Nvidia Volta) to those released in 2022
(Nvidia Hopper).
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Chapter 6

Design and Performance
Assessment of an Automatic Load
Balancing CPU-GPU Algorithm
for Atmospheric Chemistry
Solvers across Marenostrum 4 and
5

6.1 Introduction

This chapter presents a heterogeneous CPU-GPU implementation where both re-
sources solve atmospheric chemistry simultaneously. The objective is to develop
efficient code with minimal changes. To accomplish this objective, this chapter in-
troduces two different load balancing strategies: a Fixed case, where the computa-
tional load on the GPU is fixed during execution, and an Automatic implementation,
where the computational load between the CPU and GPU is adjusted at runtime.
The second strategy is designed to balance load differences during runtime due to
the many atmospheric processes involved, such as the day and night cycle. This
chapter also presents a load balance metric to quantify the degree of load balance
achieved.

Additionally, we provide metrics on the Marenostrum 5 cluster, the next generation
of the machine previously used in Chapter 5. Comparing old and new metrics will
quantify the advantages of this new architecture for our code, shedding light on
which new architectural features could help accelerate this type of computation.

This chapter is organized as follows: Section 6.2 provides the application context
relevant to this chapter. Section 6.3 describes the code modifications implemented
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for the heterogeneous CPU-GPU computation strategy. Section 6.4 presents our
experiments’ software configuration and testing environment. Accuracy losses, ac-
celeration, and performance results are discussed in Section 6.5. Finally, Section 6.6
provides concluding remarks.

6.2 Background

This section describes the state-of-the-art and computational description as the
starting point before our developments.

6.2.1 State of the art

The state-of-the-art related to GPU chemistry modules is explained in a previous
chapter, specifically in Section 1.2. This section details current approaches to im-
plementing GPU computing in chemistry modules and the available GPU tools.
For example, it explains why CUDA is used over other parallel languages such as
OpenMP or OpenACC.

Section 1.1 defines the motivation behind using MONARCH and CAMP instead of
other atmospheric and chemistry modules. Section 2 provides more details about
the benefits of MONARCH and CAMP, including a computational description of
CAMP in Section 2.2.2.

This chapter continues the development of a GPU ODE solver for atmospheric chem-
istry, which, in the previous Chapter 5, was deployed in the MONARCH atmospheric
model, achieving a speedup of 9.8x in a node-to-node comparison against the CPU
version. This was accomplished with minor modifications to the code by following a
parallelization strategy called Block-cells [49], where each GPU thread predicts the
concentration of a chemical species.

This work aims to continue that effort by implementing an efficient heterogeneous
computation strategy, upgrading from a solely GPU-based version to one that runs
on both CPU and GPU architectures. The GPU code was designed with this objec-
tive, specifically by coding all the GPU processes within a single kernel call. This
facilitates the development, continuing the methodology of developing an efficient
code with minor changes.

One requisite for efficient implementation is the simultaneous high utilization of
CPU and GPU resources. This is complex to achieve mainly because the compu-
tational power of both resources is uneven. Additionally, the computational load
can substantially differ depending on the experiment configuration, such as the at-
mospheric region or the chemistry mechanism used in the simulation. Moreover,
the load can vary during runtime due to the many changing atmospheric conditions
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involved, such as the day and night cycle. Therefore, an efficient implementation
requires a runtime configuration that dynamically balances the load.

We aim to achieve an efficient CPU-GPU implementation by balancing the compu-
tational load such that the execution times between the CPU and GPU are nearly
equal. We explored existing CPU-GPU load balancing algorithms to integrate with
our model. Still, the available solutions fall into two extremes: too simplistic to
achieve effective load balancing or too complex and challenging to port. A study
presents different load-balancing strategies highlighting this dichotomy [121]. The
simpler algorithms are tailored for specific cases and lack general applicability, while
the more complex solutions require extensive machine learning and OpenCL knowl-
edge and are not open source.

An example of a simple algorithm studied is the Alternate Assignment [122]. In this
scheduler, all jobs are added randomly to the job pool. The jobs are then assigned
alternately between the CPU and GPU. This policy demonstrates that assigning
each processor an almost equal number of jobs without considering the jobs’ device
suitability results in sub-optimal execution [121].

An example of a complex load-balancing method is the Troodon machine-learning-
based approach [121]. The model is trained through multiple benchmark suites
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-8 (a link unavail-
able as of today), [123] [124] http://impact.crhc.illinois.edu/parboil/parboil.
aspx. In this scheduler, the jobs are mapped according to their suitability with the
CPU and GPU. In our case, it is complex to calculate this suitability due to the
many variables involved. In addition, the coupling of this wellspring method is con-
siderably complex because the code is unavailable, as far as we know. However,
on average, the method achieves up to 2.82x speedup for a single-node heteroge-
neous system. This high speedup highlights the potential of a well-balanced load.
Thus, the complex code complicates the method in our case, but the high speedup
encourages us to aim for an efficient load-balancing strategy.

As a middle point, a study presents a load-balancing strategy where the compu-
tational workload is organized into a grid, similar to the grid cells in our imple-
mentation [33]. This study introduces a metric to balance the load across multiple
MPI processors and to enable CPU-GPU co-execution of different tasks. However,
the focus of this algorithm is limited to balancing CPU resources without address-
ing GPU load balancing. Additionally, the algorithm is not open source and relies
on complex concepts like weighted linear regression, which are only briefly defined.
Due to these complexities and limitations, we find it more practical to develop our
load-balancing algorithm rather than attempting to port this method.

In our context, we can speculate on the impact of manually distributing the load.
Given that the chemical mechanism remains consistent across time steps, the com-
putational load should also remain similar. The primary factors influencing load
variability are environmental variables such as temperature and reaction rates, which
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fluctuate significantly from day to night. Consequently, some variation in load dis-
tribution is expected over a daily cycle.

To address these dynamic changes, we propose an automatic load-balancing algo-
rithm that adjusts in run time. Our objective for this algorithm is to ensure ease
of portability across different modules while reserving more complex optimizations
for future work. Nonetheless, we expect this algorithm to outperform static load
distributions. Furthermore, this algorithm will benefit experiments involving differ-
ent domain regions and sizes, as the optimal fixed load distribution may vary. Our
goal is for the algorithm to identify the optimal load distribution within a few time
steps.

6.2.2 Computational description

Our base code is the GPU Block-cells version of CAMP from Chapter 5. This version
utilizes a single kernel to execute the entire GPU-solving code. This approach
simplifies development compared to using multiple kernels, such as those calling
cuBLAS routines or small OpenACC kernels mixed with CPU code. We streamline
the development process and reduce complexity by isolating the GPU code from the
CPU code.

Figure 6.1 summarizes the concept of running both architectures in parallel. How-
ever, we must define the data distribution between the GPU and CPU.

Figure 6.1: Workflow of the CPU-GPU implementation. Data refers to the atmo-
spheric data containing chemical concentrations, temperature, pressure, and reaction
rates. Results refer to the solved concentrations of the chemical species.
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The data we refer to are atmospheric cells to solve. These independent cells allow
us to divide them freely between the GPU and CPU. For example, we can distribute
70% of the cells to the GPU and 30% to the CPU. For simplicity, we will refer to
the cells as a load when referring to the percentage of cells that a GPU or CPU
computes.

6.3 Implementations

6.3.1 Porting

The CPU code differs slightly from the base CPU version. In the base version, the
host model calls the CAMP-solving routine once for each cell. In the CPU-GPU
case, the host model calls the CAMP-solving routine once, sending a pointer with
all the cells. Then, the cells are computed sequentially inside the CAMP-solving
routine just after the call to the GPU kernel. Below, we show a pseudo-code of the
resulting implementation:

factor_of_cells_to_gpu=0.7; //70%

solve(cells){

/* Solve GPU asynchronously*/

n_cells_gpu=n_cells*factor_of_cells_to_gpu;

send_cells_to_gpu(cells_pointer,n_cells_gpu);

solve_gpu(cells_pointer,n_cells_gpu);

/* Solve CPU */

n_cells_cpu=n_cells*(1-factor_of_cells_to_gpu);

cells_pointer_cpu=update_cells_pointer_to_first_cell_cpu(

cells_pointer,n_cells_cpu);

for (i_cell = n_cells_gpu; i_cell < n_cells; i_cell++){

solve_CVODE(cells_pointer_cpu)

update_cells_pointer_to_next_cell_cpu(cells_pointer_cpu)

}

/* Merge GPU and CPU data */

receive_data_from_GPU(cells_pointer,n_cells_gpu);

wait_for_GPU_to_finish();

}

As a technical note, cells consist of multiple arrays, including temperature, pres-
sure, reaction rates, and concentrations. Therefore, updating cells pointer refers to
updating the pointers of these arrays.
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In the updated implementation, we have decoupled the time-step size calculation
from the CVODE library. Previously, CVODE was used to create structures that
grouped data from all cells. For the CPU-GPU version, we separated these structures
so the GPU handles data for all cells, while the CPU uses CVODE to manage data
for a single cell. This simplifies the code and facilitates a possible deployment as an
independent library of the GPU solver.

To ensure consistent performance between the CPU-only and the CPU part of the
CPU-GPU version, we utilized the Extrae profiler (version 4.2.1) https://tools.
bsc.es/extrae [125]. Specifically, we extracted the IPC (Instructions Per Cycle)
metric, referred to by Extrae as Useful IPC, which measures the execution of in-
structions, excluding those related to waiting or data transfer, such as MPI WAIT.
The experiments were conducted with multiple MPI processors, and since the load
was evenly distributed, the IPC remained consistent across all processors. The IPC
was averaged over the ODE-solving execution, which corresponds to the function
that calls the external CVODE solver https://computing.llnl.gov/projects/

sundials/cvode [47]. The results showed that the IPC of the CPU part of the
CPU-GPU version was identical to that of the CPU-only version, with a value of
4, indicating good performance. This consistency is expected since the CVODE
routine remains unchanged between versions. Future work will focus on further
detailing and analyzing the performance metrics of the CPU solver to enhance its
efficiency.

We also ported part of the solving routine from the CPU to the GPU. Figure 6.2
illustrates the workflow differences between the previous and current implementa-
tions, while the diagram representing the state before this thesis work is shown in
Figure 2.8. In the last work, most of the ODE solver from CVODE was translated
to run on the GPU, while the remaining CPU parts corresponded to calculating the
reaction rates and the time-step size. The reaction rates are part of the CAMP li-
brary, already prepared for CPU-GPU implementation. Precisely, the reaction rates
are calculated for all the cells on the CPU side before any call to the solver.

In the current work, the time-step size update was moved to the GPU, whereas in
the CPU code, this update remains unchanged. In the previous work, we deferred
the porting of this routine for two reasons: it involves hundreds of lines of code,
which seemed to require significant development effort, and its execution time was
relatively low compared to the other components of the ODE solver.

Notably, this development was less complex than anticipated because most of the
time-step size calculation code was tied to conditionals that were never triggered in
the CAMP configuration. For example, most of the code was only executed after
the first iteration of the ODE solver. However, CAMP resets the solver state at each
iteration, making each time step akin to the first call of the solver. Thus, this part
of the code was not integrated into the GPU code, simplifying the porting.

Porting this code to the GPU reduces the data transfer between the CPU and
GPU by 4x. Previously, 13 arrays were transferred, each with a size equal to the
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Figure 6.2: Workflows between MONARCH and the CAMP solver for the previous
GPU version (a) and the new CPU-GPU implementation (b).

concentrations to solve. Ten of these arrays correspond to auxiliary variables of
the ODE solving. Specifically, the input data required for the ODE solving is two
arrays corresponding to concentration and environmental variables. The output data
is the updated array of concentrations. However, during the routine of updating the
time-step size, ten arrays were updated with the values of the initial concentration
array. Thus, moving the time-step size calculation to the GPU eliminates the need to
transfer these ten arrays, simplifying the implementation and enhancing performance
by reducing data transfer overhead between the CPU and GPU.

We also changed the CSC (Compressed Sparse Column) Sparse structure for a CSR
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(Compressed Sparse Row) structure. This gives more stable concentrations due
to avoiding atomic operations, which have an element of randomness. Also, the
execution time was around 4% better.

6.3.2 Load balance

We define the load balance as:

LoadBalance[%] = Avg(100 ∗ min(timeGPU, timeCPU)

max(timeGPU, timeCPU)

Where timeCPU corresponds to the time taken by the CPU-related code, starting
from the completion of the GPU solver call to the point where the CPU waits for
the GPU to finish. timeGPU corresponds to the time of the data transfers between
CPU and GPU, kernel, and waiting time for the GPU to finish. As a side note, two
timers are required to measure timeGPU . This is because the CPU code is located
between the kernel call and the data transfers from the GPU to the CPU. The Avg
represents the average load balance across different time steps.

We define the percentage of computational load handled by the GPU as LoadGPU .
Similarly, the percentage of computational load managed by the CPU is denoted as
LoadCPU , and it is calculated using the formula.

LoadCPU = 100− LoadGPU

We define the metric ShortGPU to determine whether the execution time on the
GPU is shorter than the CPU time. ShortGPU is defined as

ShortGPU =

{
True, if timeGPU < timeCPU

False, otherwise

Automatic load balance

To explain the automatic load balance, we start with a simple example. Suppose
we set LoadGPU to 95%, resulting in a LoadBalance of 20% and ShortGPU being
True. This indicates that we are 80% away from the ideal load balance of 100%.
We can define this distance from the ideal case as:

RemainingLB = 100− LoadGPU

We want to reduce the LoadGPU to increase LoadBalance closer to the ideal
100%. Reducing LoadGPU by another 5% (from 95% to 90%) would increase the
LoadBalance by at least 20%. However, we want to reach 100% as fast as possible.
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Thus, we reduce LoadGPU by more than 5%, for example, 7.5%. We can define the
new LoadGPU as:

LoadGPUt+1 = LoadGPUt + IncreaseLG

Where t represents the current time step, t+ 1 is the next step, and IncreaseLG is
the amount by which LoadGPU is reduced, 7.5% in this example.

Suppose the current LoadBalance rises to 80% after advancing a time step. Thus,
the LoadBalance has increased by 60% (from 20% to 80%). We can define this
increase as:

DiffLB = LoadGPUt − LoadGPUt+1

Then, the RemainingLB is 20%. Since the previous IncreaseLG increased the
LoadBalance by 60%, we want to reduce that. For example, we can use 7.5%
instead of 3.25%. Therefore, we must define how to identify whether to increase or
decrease IncreaseLG. This distinction proceeds as follows:

IncreaseLGt+1 =

{
IncreaseLGt ∗ 1.5, RemainingLB > DiffLB

IncreaseLGt/2, otherwise

The multiplication factor IncreaseLG must be smaller than the division factor to
ensure stable convergence of the load balance adjustments. If these factors were
equal, the load balance could oscillate between two values, leading to a perpetual
adjustment cycle without achieving convergence. For example, if both factors are
equal, the LoadBalance might increase by 2 in one iteration and decrease by 2 in
the next, resulting in no net progress towards a stable load balance. By setting
IncreaseLG to be smaller than the division factor, the adjustments are made more
gradually, allowing the load balance to move smoothly and progressively toward an
optimal state, thus ensuring a stable convergence process.

If the variable ShortGPU changes from True to False, indicating that the CPU is
now faster than the GPU, the calculation of DiffLB should account for the change
in the computational load balance. The formula for DiffLB in this situation is:

DiffLB = 100− LoadGPUt−1 + 100− LoadGPUt

In addition, the IncreaseLG must change the sign since we want to increase the
LoadGPU instead of decreasing it more.

We implement constraints in our adjustment algorithm to prevent the GPU load
percentage (LoadGPU) from exceeding practical limits, such as 100% or dropping
to 0%.

Here is the full algorithm in pseudo-code:
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/* Set if GPU time is less than CPU */

shortGPU=0;

if(timeGPU<timeCPU) shortGPU=1;

/* Set how much the load balance has increased */

DiffLB=LoadBalance-LastLoadBalance;

if(shortGPU != LastShortGPU){

DiffLB=100-LastLoadBalance+100-LoadBalance;

/* Change the increase sign because we surpass the limit of 100%,

swapping from one architecture being short in time to the other */

IncreaseLG*=-1;

}

/* Set the remaining load balance to reach the ideal case of 100% */

RemainingLB=100-LoadBalance;

/* Set the Increase in Load GPU */

if(RemainingLB > DiffLB) IncreaseLG*=1.5;

else IncreaseLG/=2;

/* Update values for next iteration */

LastShortGPU=shortGPU;

LastLoadBalance=LoadBalance;

LastLoadGPU=LoadGPU;

if(LoadBalance!=100) LoadGPU+=IncreaseLG;

/* Avoid the GPU percentage reaching or exceeding 100\% and 0\% */

if(sd->load_gpu>99) sd->load_gpu=99;

if(sd->load_gpu<1) sd->load_gpu=1;

/* Set the amount of load to GPU */

nCellsGpu=nCells*LoadGPU/100;

6.4 Test environment

All the tests were performed on the cluster Marenostrum 5 ACC (Accelerated par-
tition) provided by the Barcelona Supercomputing Center [126]. The detailed hard-
ware specifications of each node are described below.

• 2x Intel Sapphire Rapids 8460Y+ at 2.3Ghz and 32c each (64 cores node)

• 4x Nvidia Hopper GPUs with 64 HBM2 memory
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• 512 GB of Main memory, using DDR5

• 4x NDR200 (BW per node 800Gb/s)

In addition, we use the profiler Nsight Compute Version 2023.2.1.0 to visualize the
profiling data of the GPU experiments and assess the performance of the tests under
analysis. When profiling, the chemistry time steps are set to one. The remaining
time steps perform very similarly to the Box model simulations, which is expected
since the operations carried out by the ODE solver are similar between time steps.

We compare the performance metrics with the results from the previous GPU-only
version presented in Chapter 5, which was executed on the GPU partition of the
Marenostrum 4 cluster, MN4 CTE-POWER https://www.bsc.es/marenostrum/

marenostrum/technical-information. For simplicity, we refer to this cluster as
Marenostrum 4, which is consistent with the updated GPU version named Marenos-
trum 5. This comparison allows us to evaluate the performance effects resulting from
the different architectures.

To measure accuracy between the CPU and GPU versions, we use the Normalized
Root Mean Square Error (NRMSE), represented as a percentage and calculated as

NRMSE of a chemical specie =

√
1
n

∑n
i=1(xi − yi)2

xmax − xmin

where x is the concentration of a chemical species from cell i, obtained from the last
time-step of the model execution and the Base version of CAMP, y is the equivalent
of x for the optimized version, n is the number of cells, and xmax and xmin are the
maximum and minimum value from x. In addition, while we refer to the Error of an
experiment, we refer to the maximum NRMSE between the chemical species, that
is:

Error = max{NRMSEs1, ...NRMSEsN}
NRMSEs1 refers to the NRMSE of the first chemical species s1, and sN refers to
the last chemical species.

The absolute tolerance of the CVODE solver is set to 1.0e−4. Any error of accuracy
below this level of tolerance is considered negligible. The KLU solver uses the
same tolerance. The tolerance of the BCG linear solver is set to 1.0e−30. Any
negative value greater than −1.0e−30 produces an extra iteration in the CVODE-
solving algorithm.

6.4.1 Box model experiments

During the porting development, we employed a simplified configuration called the
”Box model,” which emulates the input from MONARCH. This approach was also
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utilized in the previous GPU version discussed in Chapter 5. The Box model yielded
performance results comparable to MONARCH, with an accuracy error approxi-
mately 0.5% smaller. This configuration allows us to work with smaller setups, such
as a single CPU process or one cell, which facilitates development and testing. This
is advantageous compared to MONARCH, which does not support such granular
configurations.

Here, we configure the test to get the speedup against the single-thread CPU core.
This is useful to compare other state-of-the-art studies that do not report a node-
to-node comparison, such as RKC [36].

• Time-step size: 120 seconds

• Number of time steps: 720

• Number of cells: 100,000.

• Threads per block: 86

• Pressure: Scales linearly with the number of cells from 1000 to 100 hPa. Emis-
sions are also scaled linearly from 1 to 0. In this way, a cell at 100 hPa has 0
emissions, while a cell at 1000 hPa has the maximum emissions value.

• Temperature: Follows dry adiabatic conditions [110].

Configuration for comparison with Marenostrum 4

We find it interesting to compare the GPU-only version of Marenostrum 5 to as-
sess the impact of the newer architecture. This version utilizes the GPU code
from Marenostrum 4, with updated compilation scripts to run on Marenostrum
5 https://github.com/open-atmos/camp/tree/GPUOnly. This configuration sets
the number of cells to 10,000, with time-steps configured to 1 and MPI processors
to 1 since we only do profiling. Using 1 MPI processor instead of a full node is faster
to profile, while increasing the number of processors shows less than a 2% difference
in performance metrics. The Box model configuration demonstrates performance
and speedup comparable to MONARCH as shown in Chapter 5. Consequently, the
results from this Box model on Marenostrum 5 are expected to be similar to those
from the MONARCH case on Marenostrum 4.

We also included the CPU-GPU version in the comparison. However, many changes
in the porting process could affect the performance, such as incorporating additional
code on the GPU, cleaning up variables, or using the CSR Sparse structure instead
of CSC. A detailed investigation of these results will be deferred to future work,
mainly because these aspects offer potential avenues for optimization.
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6.4.2 MONARCH experiments

The MONARCH experiment is configured similarly to the setup described in Chap-
ter 5, covering the regional domain of Europe and northern Africa. In the previous
chapter, we evaluated two configurations of this domain: one representing the whole
domain and a smaller version of the domain. For this chapter, the smaller configu-
ration is used to facilitate development.

Additionally, we employed both configurations to assess the linear scalability of
speedup concerning MPI processes and GPUs. The results indicated that speedup
approached linearity, although a gap remained due to the CPU solver’s unexpected
behavior, which required more iterations for larger configurations, thereby slowing
simulations. With this factor accounted for, we anticipate that speedup should be
linear, as demonstrated in the Box model configuration.

Additionally, scaling the number of nodes should proportionally scale CPU and GPU
resources. Consequently, a single-node configuration should exhibit similar speedup
characteristics to a two-node configuration for CPU and CPU-GPU versions. This
approach also streamlines the profiling task and allows us to utilize the faster queue
of Marenostrum 5, thereby accelerating development. Furthermore, it simplifies the
comparison by focusing on a single-node setup, making it easier for readers to un-
derstand node-to-node performance. Therefore, in this chapter, we have replaced
the 20-core and two-node configurations with a single node featuring 80 cores. This
adjustment simplifies the analysis by concentrating on a single configuration, ex-
pecting that scaling to larger runs with additional nodes will follow a linear trend
from the single-node results.

We tested different numbers of chemistry time steps: 6 and 480. The 6-time-step
configuration detects and resolves early issues and determines the optimal value for
LoadGPU . Once this value is established, we use the 480-time-step configuration to
evaluate fixed and automatic load balancing. This extended configuration assesses
whether the results are consistent over multiple time steps. In the previous approach
of Chapter 5, the accuracy error remains acceptably low for the 480-time-step con-
figuration. Therefore, we expect a similar result here. However, the performance
of the automatic and fixed configurations may vary due to run-time processes, such
as the day and night cycle, which affect solving complexity and result in different
computational loads.

Load balance configuration

To obtain the execution time for the fixed load balance, we exclude the measure-
ments of timeCPU and timeGPU from the execution. This approach provides a
more accurate comparison against the automatic load balance, which relies on these
metrics. Additionally, we performed an extra run with these timers to calculate the
LoadBalance metric.
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For the automatic load balance, we explore starting values of LoadGPU ranging
from 84% to 98%. This range helps identify the optimal value and observe how the
speedup varies with different LoadGPU settings. The best value found within this
range is then used for extended runs.

6.5 Results and discussion

6.5.1 Box model runs

Speedup against 1 CPU core

Table 6.1 shows that in Maresnostrum 5, we have doubled the speedup of a single
GPU compared to the Marenostrum 4 version (from 31x to 70x). The speedup scales
linearly with the number of GPUs. In a node-to-node comparison, the CPU-GPU
version achieves a speedup of 250x, compared to 137x for the GPU-only Marenos-
trum 4 version. We consider this a significant improvement.

Version Nº of GPUs Speedup vs 1 CPU Core

Marenostrum 5 1 70
Marenostrum 5 4 250

Marenostrum 4 1 31
Marenostrum 4 4 137

Table 6.1: Speedup using 1 and 4 GPUs against 1 CPU core. The 1 GPU case uses
20 cores for the CPU execution, while the 4 GPU case uses 80. The GPU computes
95% of the load with automatic load balance, which is the best value between other
simulations with values from 84% to 9%.

Profiling

Figure 6.3 shows that Marenostrum 5 increases the utilization of SMs and Memory
by 5% and 28%, respectively, compared to Marenostrum 4. We attribute this im-
provement to the higher capabilities of the Marenostrum 5 GPU, which has more
SMs and Memory available to handle the high computational load. The figure also
indicates that memory utilization decreases by 10% when comparing the GPU-only
version to the CPU-GPU version.

Figure 6.4 shows that Marenostrum 5 exhibits approximately 9x times more Perfor-
mance and 6x higher Arithmetic Intensity than Marenostrum 4, underscoring the
advantages of the newer GPU. However, the Arithmetic Intensity decreases by 3x
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Figure 6.3: Utilization of GPU resources. The first (Blue), second (Green), and
third (Purple) bars correspond to the versions CPU-GPU Marenostrum 5, GPU-
Only Marenostrum 4, and GPU-only Marenostrum 5.

in the CPU-GPU version compared to the GPU-only version. This indicates that
there is potential for further improvement. Identifying the cause of this reduction
amid all the code changes would require a detailed investigation. As this chapter
focuses on developing a CPU-GPU version with manageable effort, we defer this
investigation and additional optimizations to future work. The cache L1 and L2
hit rates improved from 82% and 99% in the GPU-Only version to 92% and 99%,
respectively. This enhancement is attributed to using the CSR sparse structure in-
stead of the CSC structure in the GPU-only version. The transition to CSR was
primarily made to achieve more stable results by avoiding atomicAdd operations.
These improved cache hit rates further support the use of CSR.

6.5.2 MONARCH model runs

Speedup and load balance in MONARCH

Table 6.2 shows that LoadBalance varies slightly after the first time-step, with a
difference of 10% between the best and worst values. Therefore, the load balance
should remain consistent over a longer run, barring significant changes in reaction
rates, such as the transition from day to night. Even with these changes, the load
balance should stabilize rapidly. The table reveals that the automatic configuration
achieves nearly three times better load balance than the fixed case. This suggests
that the optimal load balance is not well represented by the fixed settings tested,
and the automatic configuration is closer to this optimal value.

Table 6.3 shows that the optimal configurations for both fixed and automatic load
balancing are achieved at 85% and 95% GPU load, resulting in speedups of 5.13
and 4.71, respectively. In short runs, such as those with six-time steps, the fixed
load balance yields a speedup that is 1.09 times faster compared to the automatic
load balance. Additionally, the figures demonstrate that the error decreases as the
load balance improves. This is expected because a more significant portion of the
computation is offloaded to the GPU, similar to the original CPU-only version. The
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Figure 6.4: Roofline model. The performance bound is represented as the blue
curve. Starting from the left, the first and second points are single floating point
operations, while the rest are double. The third, fourth, and fifth points correspond
to versions GPU-Only Marenostrum 4, CPU-GPU Marenostrum 5, and GPU-Only
Marenostrum 5. We are interested in doubles since chemical concentrations are
represented in double.

Time-step Load balance [%]
(not averaged) - Fixed 95%

Load balance [%]
(not averaged) - Automatic 95%

1 16 15
2 30 87
3 27 84
4 28 86
5 28 85
6 29 84

Table 6.2: Load balance evolution between time steps.

automatic load balance configuration also improves the load balance by a factor
of 1.12 compared to the fixed load balance. Thus, while a fixed load balance is
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preferable for short runs due to its higher speedup, it is worth noting that these
short runs are primarily for debugging and performance estimation purposes. In the
long run, the performance and load balance might differ.

Load to GPU [%] Speedup Error Load balance [%]

100 4.29 0.5 0
98 4.44 0.49 10
95 4.59 0.48 28
90 4.84 0.47 56
85 5.13 0.46 87
84 5.07 0.45 87

Automatic (90) 4.37 0.47 73
Automatic (95) 4.71 0.48 77
Automatic (98) 4.7 0.49 60

Table 6.3: Speedup, error, and load balance with different fixed and automatic loads
to GPU. The time steps are set to 6. The number after ”Automatic” refers to the
starting LoadGPU value.

As a side note, the speedup for the Fixed 85% configuration when measuring the
load balance is 6.22x, slightly lower than the 6.51x speedup observed without these
measurements. This indicates an overhead of approximately 5% due to the load-
balancing calculations.

Table 6.4 shows that the automatic load balance achieves a speedup of 8.14x, 1.25
times faster than the fixed configuration. Interestingly, despite the higher speedup,
the load balance in the automatic case is 3% lower compared to the fixed load case.
This suggests that the average load balance does not directly correlate with long-run
speedup. Consequently, exploring alternative metrics for performance evaluation in
future work would be worthwhile.

Load to GPU [%] Speedup Error Load balance [%]

Fixed 6.51 0.56 61
Automatic 8.14 0.59 58

Table 6.4: Speedup, error, and load balance for GPU’s best fixed and automatic
loads. The fixed LoadGPU is set to 85% for the Fixed case, while the Automatic
case is initially set to 95%. The time steps are set to 480.

In the previous GPU-only Marenostrum 4 version, the node-to-node speedup was
measured at 9.8x; see Chapter 5. However, this result was partly influenced by
the CPU version experiencing a slowdown due to numerous convergence failures.
In the current experiment, no convergence failures were observed. Consequently, a
fairer comparison is with the previous normalized speedup of 8x from the 20-core
experiment, where no convergence failures occurred.
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Thus, the speedup of 8.14x is 1.16 times greater than the previous GPU-Only
Marenostrum 4 version, Chapter 5. This improvement may appear modest com-
pared to the 2x speedup observed against a single core in the new configuration
from Table 6.1. The discrepancy arises because Marenostrum 5 nodes have doubled
the number of MPI processes compared to Marenostrum 4 while maintaining the
same number of GPUs. This doubling of MPI processes results in a 2x acceleration
for the CPU version due to the increased parallelism in computation. When normal-
izing for the number of GPUs, the speedup relative to the GPU-Only Marenostrum
4 version is 2.32x. This enhancement reflects the improvements in GPU perfor-
mance and the effectiveness of our CPU-GPU implementation. Consequently, we
can consider our objective of reducing execution time through the CPU-GPU load
balance a success.

Profiling MONARCH

Figure 6.5 illustrates that the CPU-GPU version on Marenostrum 5 achieves 5%
more utilization of SM and Memory than the GPU-only version on Marenostrum 4.
However, it is notable that memory usage decreases by 23% from the same CPU-
GPU version on the Box model, as shown in Figure 6.3. We attribute this reduction
to the increase in threads, from 86 to 127. Even though these additional threads
are idle, the compiler allocates memory registers. Adjusting this distribution could
involve significant effort due to the complexity of the CAMP-MONARCH structure,
which comprises thousands of lines of code. Consequently, we plan to explore this
optimization in future work.

Figure 6.5: Utilization of GPU resources. The upper (Blue) and lower (Green) bars
correspond to the versions CPU-GPU Marenostrum 5 and GPU-Only Marenostrum
4.

Figure 6.6 demonstrates that the CPU-GPU version on Marenostrum 5 achieves
approximately 9x times higher performance and 2x times greater Arithmetic Inten-
sity than the GPU-only version on Marenostrum 4. Notably, these results for the
CPU-GPU configuration are consistent with the Box model results shown in Figure
6.4. This consistency suggests that the Box model effectively represents the GPU
performance of MONARCH.

97



6.6. CONCLUSIONS

Figure 6.6: Roofline model. The performance bound is represented as the blue curve.
Starting from the left, the first point represents single floating point operations, while
the rest are double. The second and third points correspond to GPU-only Marenos-
trum 4 and CPU-GPU Marenostrum 5 versions. We are interested in doubles since
chemical concentrations are represented in double.

The cache L1 and L2 hit rates match those observed in the Box model case, showing
improvements from 82% and 99% in the previous version to 92% and 93%, respec-
tively.

In summary, the utilization, performance, and cache hit rates have all improved com-
pared to the previous version, highlighting the advantages of the newer architecture
and our CPU-GPU implementation. However, there is still room for improvement
in the CPU-GPU version. Despite high cache hit rates, the low utilization suggests
potential synchronization issues, possibly due to atomic operations. Future work
will focus on enhancing utilization and performance.

6.6 Conclusions

This chapter presented a heterogeneous CPU-GPU atmospheric chemistry solver and
an automatic load-balancing algorithm. The main goal has been to achieve an easy-
to-port and efficient implementation. We utilized the GPU and CPU solvers of the
CAMP chemistry framework and integrated them into the MONARCH atmospheric
model.
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We merged the GPU and CPU solvers into an asynchronous execution, allowing
the GPU and CPU to compute the workload concurrently. During this merge, we
completely separated the CVODE library from the GPU execution, thereby reducing
the amount of code and simplifying the GPU library’s porting process for future
developers.

Moreover, we ported additional CPU code to the GPU, specifically the time step size
calculations from the solving algorithm. We removed unused variables and reduced
the amount of data transferred between CPU and GPU by 4x times. Additionally, we
changed the sparse storage structure from CSC to CSR. These changes collectively
reduce the execution time.

Then, we presented an automatic load-balancing algorithm, which adjusts the load
for each chemistry time step based on the distribution from the previous time step.
The algorithm is designed to stabilize at the optimal load balance, where the CPU
and GPU times are nearly equal. The speed of achieving stabilization depends on
the initial load value assigned to the GPU. The algorithm’s code is open source
and compressed into less than a hundred lines, facilitating future porting to other
software.

We configured experiments to evaluate the performance of our load-balancing al-
gorithm against a fixed load value for all the time steps (Fixed and Automatic
implementations). The hardware used is the recent Marenostrum 5 cluster. This
cluster represents a significant update from previous results, where a GPU-Only ver-
sion was presented on Marenostrum 4 (see Chapter 5). Therefore, we also set up a
GPU-only version on Marenostrum 5 to assess the performance impact of this newer
cluster by comparing the GPU-only version on Marenostrum 5 with the previous
results on Marenostrum 4.

Our initial results focus on a Box model emulating MONARCH input. The best
case is the automatic load balance, starting at 95% of the load to the GPU. This
case reports a 70x speedup against the single-thread CPU version using a single
GPU. Increasing the GPUs to 4, the speedup scales to 250x. This speedup doubles
the previous results from the GPU-Only Marenostrum 4 version.

Additionally, the Marenostrum 5 GPU-Only version shows a 5% and 28% increase in
SM and Memory utilization, respectively, compared to the Marenostrum 4 version.
It also exhibits a 9x and 6x improvement in Performance and Arithmetic Intensity
metrics. These results underscore the advantages of the newer architecture.

Compared to the GPU-Only Marenostrum 5 version, the CPU-GPU version shows
a 10% decrease in memory utilization and a 3x reduction in Arithmetic Intensity.
The cause of this decline is attributed to the numerous code changes implemented,
which will be investigated further in future work to enhance utilization. However,
improvements are seen in the cache L1 and L2 hit rates, which increased from 82%
and 99% to 92% and 99%, respectively, due to the change from the CSC to the CSR
structure.
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The MONARCH results reveal a stable load balance (with only a 10% deviation)
after the first time step for the subsequent five steps. This stability suggests that
the fixed load balance would likely outperform the automatic load balance in shorter
runs. Specifically, the best-fixed configuration, with 85% of the load assigned to the
GPU, achieves a 5.13x speedup. In comparison, the best automatic configuration,
with 95% load to the GPU, results in a 4.71x speedup. Thus, the fixed load balance
is 9% faster than the automatic case for very short runs.

The 1-day MONARCH results indicate that the automatic load balance outperforms
the fixed load balance by 25%, achieving a total speedup of 8.14x. Interestingly,
despite this increased speedup, the load balance metric is 3% lower than that of the
fixed case, suggesting that the load balance may not directly correlate with improved
performance. This discrepancy highlights the need to explore alternative metrics to
understand performance dynamics better. Future work will focus on identifying and
analyzing these metrics to optimize the load-balancing approach further.

The presented CPU-GPU version of MONARCH demonstrates a 2.32x improve-
ment in speedup over the previous GPU-Only Marenostrum 4 version. This notable
enhancement underscores the advantages of the heterogeneous implementation, par-
ticularly with optimizations such as reduced CPU-GPU data transfers. The high
speedup achieved with our streamlined algorithm reflects our success in meeting the
objectives of an efficient and straightforward implementation.
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Chapter 7

Conclusions

This thesis presented the porting of an atmospheric chemistry solver to parallel
execution on CPUs and GPUs. We used the CAMP chemistry solver and the
MONARCH atmospheric model to assess the effectiveness of our adaptations. The
main conclusions and recommendations for future research are summarized in Sec-
tions 7.1 and 7.2.

7.1 Main findings

In Chapter 3, we introduced Multi-cells, a data arrangement designed to facilitate
the integration of GPU functions into a chemistry solver. In this approach, atmo-
spheric cells are grouped and treated as a single system for solving. We tested this
method using a simple chemical mechanism involving three species, where species
A generates species B and C, with minor variations in initial concentrations across
the cells. This approach reduced the number of iterations required to solve all cells
to match the number needed to solve a single cell. This optimization resulted in
an 8× speedup compared to the base version, which solves cells independently and
sequentially in a loop.

Additionally, we developed a CUDA version of the most time-consuming function,
the f(y) function, by parallelizing its reaction loop across GPU threads. We en-
hanced data access by reorganizing the reaction data structure, resulting in a 1.3x
acceleration of the GPU function. Overall, the optimized GPU function achieved a
1.6x speedup compared to the single-threaded CPU version.

In Chapter 4, we introduced Block-cells, a novel approach to distributing the com-
putational load in a GPU-based chemical solver. In this method, each GPU thread
computes the concentration of a species within a cell, thereby increasing the level
of parallelization beyond traditional implementations, which typically assign one
thread per cell. This approach significantly enhances the utilization of the GPU’s
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high bandwidth capacity. We tested Block-cells using the CB05 chemical mecha-
nism, commonly used in atmospheric models, under varying and identical initial
conditions across cells. Notably, these initial conditions also influenced Multi-cells’
speedup, which ranged from 1x to 6x depending on whether the initial conditions
were uniform or varied between cells.

We evaluated the Block-cells strategy by integrating a GPU-accelerated Biconjugate
Gradient (BCG) linear solver into CAMP. The performance was compared to the
base implementation, which utilizes the KLU linear solver on the CPU. When using
the GPU BCG function within the base version of CAMP, without Multi-cells, the
speedup was less than 1x. However, incorporating Multi-cells resulted in a 17x
speedup. This outcome highlights the crucial role of approaches like Multi-cells in
effectively integrating GPU functions.

We tested various configurations of the Block-cells strategy by varying the number
of cells per block from 1 to 6. Using one cell per block resulted in a 35x speedup,
while increasing the number of cells per block reduced the speedup to 27x. Notably,
the highest speedup was 50% faster than the node-to-node comparison using MPI,
underscoring the superiority of the GPU-based Block-cells approach over traditional
CPU-based methods.

In chapter 5 we extended the Block-cells strategy from the BCG linear solver to
the whole ODE solver of CAMP, which involves approximately five times more
lines of code. Our initial results focus on a Box model emulating MONARCH
input, facilitating development. The error, represented as Normalized Root Mean
Square Error (NRMSE), is below 0.02%. The speedup achieved in a node-to-node
comparison between the GPU and CPU versions is up to 5.9x. The speedup against
1 CPU core is 31x, similar to the 35x speedup of just the linear solver. This indicates
that the new additions slightly reduced the speedup and that the similarities between
the linear and ODE solvers are significant. Scaling the test to 4 GPUs shows a linear
increase in speedup, reaching an outstanding 137x speedup against 1 CPU core.

We integrated our CAMP GPU version into MONARCH and compared the results
against the CPU version in a node-to-node comparison. The error is stabilized at
0.42% for a 24-hour simulation (20 and 480 chemistry time steps), indicating that
the NRMSE remains stable for short runs as the number of time steps increases.
The speedup in this node-to-node comparison was 9.8x, significantly surpassing
other state-of-the-art modules. For example, the KPP GPU study reported a 1.75x
speedup, and CAM4-Chem achieved a 1.95x speedup. These results highlight the
advantages of the Block-cells implementation.

In Chapter 6, we introduced a parallel CPU-GPU implementation and a simple
and effective automatic load-balancing algorithm. This approach integrates the
GPU and CPU solvers into an asynchronous execution model, enabling concurrent
computation of the workload by both processors. The load-balancing algorithm is
designed to achieve optimal performance by stabilizing when the CPU and GPU
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times are nearly equal. Additionally, we implemented multiple optimizations, such
as reduced CPU-GPU data transfers.

Our initial results focus on a Box model emulating MONARCH input. We assessed
the previous GPU-only version on the Marenostrum 4 and 5 clusters. Comparing
the execution on Marenostrum 5 against Marenostrum 4, it exhibits a 9x and 6x
improvement in Performance and Arithmetic Intensity metrics. These results un-
derscore the high capabilities of the new architecture. We compared our automatic
load-balancing algorithm (Automatic case) to a fixed computational load method
applied across all time steps (Fixed case). The best case is the automatic load
balance, starting at 95% of the load to the GPU. This case reports a 70x speedup
against the single-thread CPU version using a single GPU. Increasing the GPUs to
4, the speedup scales to 250x. This speedup doubles the previous results from the
GPU-Only Marenostrum 4 version.

The 1-day MONARCH results indicate that the automatic load balance outperforms
the fixed load balance by 25%, achieving a total speedup of 8.14x in a node-to-node
comparison. This speedup is similar to the previous version, while the number of
cores was doubled in the new architecture Marenostrum 5. Thus, the normalized
speedup against the GPU-Only version is 2.32x. This notable enhancement un-
derscores the advantages of the heterogeneous implementation, particularly with
optimizations such as reduced CPU-GPU data transfers.

Throughout this thesis, we focused on accelerating atmospheric chemistry computa-
tions using GPUs. Our results demonstrate a significant performance improvement
compared to other state-of-the-art chemistry modules. For instance, the KPP and
CAM4-chem achieve speedups of 1.75x and 1.95x in node-to-node comparisons, re-
spectively, while our approach achieves a speedup of 8.14x, over four times greater.
This advantage is particularly notable considering that the Marenostrum 5 cluster
uses 20 CPU cores per GPU, compared to the 5 CPU cores per GPU used in KPP
GPU experiments. When normalizing for CPU cores, our implementation is 16
times faster. Additionally, even when compared to the RCK study, which reports
a 59x speedup in a more complex scenario not available on atmospheric models,
our implementation achieves a remarkable 250x speedup. Thus, our implementa-
tion is 4.2 times faster than other complex developments that require extensive code
modifications.

The high speedup against other state-of-the-art solutions is achieved with minimal
changes to the algorithm, thanks to the Block-cells strategy, resulting in a solution
that is both low in development effort and high in performance.

7.2 Future work

The work developed in this thesis opens several avenues for future research. The
immediate future work will involve publishing a paper that combines the content
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from Chapters 5 and 6.

In the short term, further optimizations can be pursued with a focus on the two key
priorities of this thesis: performance and simplicity. One area of improvement is
the load-balancing algorithm. This could involve studying how load balance evolves
between time steps and refining the algorithm to better align with this evolution by
fine-tuning the parameters involved. Additionally, alternatives to the averaged load
balance, such as using the median, could be explored to better correlate with the
observed acceleration. This possible improvement in load balancing could ultimately
result in even greater acceleration.

Another research direction involves analyzing the CPU and GPU solvers’ perfor-
mance metrics to identify areas for improvement. This includes understanding the
underlying causes of the low-performance metrics highlighted in this thesis and ex-
ploring optimizations, such as replacing atomic operations to improve thread syn-
chronization.

For future optimizations, one approach is to examine the changes made between the
GPU-Only and CPU-GPU versions, such as transitioning from the CSC to the CSR
structure. Additionally, MONARCH’s chemical mechanism configuration modifica-
tions are worth exploring to resemble the Box model case closely. Specifically, align-
ing the 86 threads per block used in the Box configuration with the 127 threads used
in MONARCH could improve memory usage by eliminating idle threads that con-
sume memory registers, thereby accelerating execution. These efforts aim to refine
the GPU implementation, ensuring it operates at peak efficiency while maintaining
or improving the accuracy of atmospheric modeling results.

In the long term, a potential research direction is to explore integrating the methods
presented in this thesis with other chemistry solvers. While the CVODE solver is
designed to handle simple and complex chemistry mechanisms, other solvers, such
as KPP, may be better suited for specific chemical reactions. Since the CAMP
framework and our methods are designed with portability in mind, this approach
should be a viable way to accelerate execution further.

Notably, the portability of the implementations presented in this thesis is primarily
limited by the GPU’s block size. Therefore, these methods can be applied to any
solver with fewer unknowns than the maximum threads per block, typically 1024
threads, which is a considerable number. This opens the door to exploring the effi-
ciency of our solvers in other fields, such as Computational Fluid Dynamics (CFD).
We anticipate that our methods will generally enhance the state-of-the-art use of
GPUs, leading to higher performance on HPC.

In my opinion, investing time in designing efficient strategies is crucial for enhanc-
ing performance. While many optimizations focus on extracting the last bit of
performance, this often results in complex applications that are difficult to port and
optimize further. The Earth Science Model is a clear example, which has gradually
incorporated optimizations tailored for CPU architecture. When GPU computing
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emerged as a viable alternative, these CPU-specific optimizations usually compli-
cated the transition to GPUs. Therefore, while all optimizations have value, simplic-
ity is essential to facilitate new developments and provide portability across various
applications.
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