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R E S U M E N

Esta tesis se centra en el avance de la comprensión fundamental de una amplia
clase de propiedades de dispersión espacial en el campo de la física de la materia
condensada. Para ello desarrollamos y aplicamos métodos novedosos, precisos y
eficientes basados en primeros principios. Nos centramos en tres ejemplos repre-
sentativos, respectivamente en óptica (actividad óptica natural) dinámica de redes
(fuerzas de Lorentz y factores g moleculares) y electromecánica (flexoelectricidad
en metales polares). Los cálculos de estructura electrónica a primeros principios
se realizan en el marco de la teoría del funcional de la densidad (DFT) y de la
teoría perturbacional del funcional de la densidad (DFPT), con ondas planas y
pseudopotenciales. Las propiedades de dispersión espacial se estudian en el marco
teórico del recién implementado “long-wave DFPT”, sobre lo que desarrollamos
nuestras nuevas implementaciones teóricas y computacionales.

Generalizamos el método “long-wave DFPT” a metales, logrando un nivel de
precisión y eficiencia computacional comparables al alcanzado en aislantes. Aplica-
mos nuestro nuevo método en el contexto de fonones y gradientes de deformación,
calculando los coeficients de dispersión espacial de los fonones ópticos en Γ y el
tensor de fuerza-respuesta flexoeléctrico en estructuras metálicas seleccionadas.

Aprovechamos las ventajas de nuestra nueva implementación para la dispersión
espacial en metales para demostrar que la flexoelectricidad puede resolver uno de
los problemas persistentes de los metales polares, a saber, el cambio de dirección
del parámetro de orden polar mediante un campo externo. Tomamos LiOsO3

como caso de prueba y demostramos que el cambio del parámetro de orden polar
mediante gradientes de deformación debería ser experimentalmente factible.

Exploramos, en el contexto DFPT, la íntima conexión entre dispersión espacial
y magnetismo orbital estudiando los efectos de un campo magnético sobre la
dinámica de moléculas (factores g rotacionales) y sólidos (fuerzas de Lorentz
generalizadas). La magnetización inducida bien por una rotación rígida de una
muestra finita o por una pseudorrotación producida por fonones circularmente
polarizados se describe en términos de sólo dos propiedades de respuesta lineal:
un término de carga puntual procedente de la polarización macroscópica inducida
por un desplazamiento atómico (tensor de carga efectiva de Born) y un término
dispersivo procedente de su dispersión espacial a primer orden. Encontramos que
esta última contribución, que había sido sistemáticamente ignorada en estudios
anteriores, puede dominar la respuesta.

Establecemos, bajo el marco teórico “long-wave DFPT”, una novedosa metodolo-
gía a primeros principios para calcular la actividad óptica natural, que supera la
mayoría de las limitaciones de los métodos actualmente disponibles. En particu-
lar, nuestra metodología evita sumas sobre estados vacíos, trata adecuadamente
los términos de campos autoconsistentes, toma las derivadas con respecto a q
analíticamente y es igualmente válida tanto en moléculas como en sólidos.
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S U M M A RY

This thesis focuses on advancing the fundamental understanding of a broad class
of spatial dispersion properties within the field of condensed matter physics, by
developing and applying novel, accurate, and efficient first-principles methods. We
target three representative examples, respectively in optics (natural optical activity),
lattice dynamics (Lorentz forces and molecular g factors), and electromechanics
(flexoelectricity in polar metals). First-principles electronic structures calculations
are performed within the framework of density-functional theory (DFT) and density-
functional perturbation theory (DFPT), with plane waves and pseudopotentials.
Spatial dispersion properties are studied under the framework of the recently
implemented long-wave DFPT, on top of which we further develop our new
theoretical and computational implementations.

We generalize the long-wave DFPT method to metals, achieving a level of accu-
racy and computational efficiency comparable to that attained in insulators. We
test our implementation with phonons and strain gradients, by computing the
spatial dispersion coefficients of zone-center optical phonons and the flexoelectric
force-response tensor of selected metal structures.

We exploit the advantages of our new implementation for spatial dispersion in
metals to demonstrate that flexoelectricity can solve one of the long-standing issues
that polar metals have been facing over the last years, namely the switching of
the polar order parameter via an external field. We take LiOsO3 as a test case and
conclude that the switching of its bulk polar order parameter mediated by strain
gradients should be experimentally feasible.

We further explore, within a DFPT context, the intimate connection between
spatial dispersion and orbital magnetism by studying the effects of an applied
magnetic field on the lattice dynamics of molecules (rotational g factors) and solids
(generalized Lorentz forces). The magnetization induced either by a rigid rotation
of a finite sample or by a pseudorotation produced by circularly polarized phonons
is described in terms of only two linear-response properties: a point-charge term
coming from the macroscopic polarization induced by an atomic displacement
(Born effective charge tensor) and a dispersive term coming from its first-order spatial
dispersion. We find that the latter contribution, which had been systematically
neglected in previous studies, can dominate the response.

We establish, within the framework of long-wave DFPT, a novel first-principles
approach to calculate the natural optical activity, which overcomes most of the
limitations of currently available methods. In particular, our methodology avoids
cumbersome sums over empty states, treats self-consistent field terms appropriately,
takes the derivatives with respect to q analytically and is equally valid both in
molecules and solids.
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1
I N T R O D U C T I O N

The objective of this thesis is to advance our fundamental understanding of a broad
class of materials properties that relate to spatial dispersion, by developing and
applying novel, accurate, and efficient first-principles methods. In short, spatial dis-
persion deals with properties that depend on the spatial modulation of an external
perturbation, i.e., gradients in real space. Equivalently, if one works in reciprocal or
Fourier space, this reduces to the dependence of the response function on the wave
vector q that modulates the external perturbation. Spanning over several scientific
disciplines, including physics, chemistry, biology, material science and engineering,
manifestations of spatial dispersion can be observed in a wide range of areas. Here,
we will focus our attention on the field of condensed matter physics. Representative
examples thereof include optics, strain gradient mediated effects either in elasticity
or flexoelectricity, and phonon or magnon spatial dispersion phenomena, among
others. In particular, we target three representative examples, respectively in optics
(natural optical activity), lattice dynamics (Lorentz forces and molecular g factors),
and electromechanics (flexoelectricity in polar metals).

From a historical perspective, the first observation of spatial dispersion phenom-
ena in crystals is often attributed to early research studies in optics, which concerns
the interaction between an electromagnetic wave (e.g., visible light) with atoms.
Amid the entire spectrum of optical spatial dispersion phenomena, natural optical
activity (NOA) can be regarded as the most fundamental. Mathematically, the natu-
ral optical activity describes the first-order spatial dispersion of the macroscopic
dielectric permittivity tensor. At difference with the Faraday effect [1], NOA does
not require the presence of an external magnetic field (B) to be present. Empirically,
it manifests as optical rotation (OR), which is a property of certain structures
to rotate the plane of the polarization of light [2] that travels through them [a
schematic representation of this phenomenon is provided in Fig. 1.1 (c)]. It was
first measured in quartz crystals back in 1811 by Arago, and historically, most of
the studied optically active materials turned out to be chiral. In fact, chirality is a
sufficient but not necessary condition for NOA to be present, as optically active
achiral systems also exist [3, 4]. Since its discovery, natural optical activity has been
attracting increasing research interest, and reliable experimental measurements
now exist for many materials, both in molecular [5–9] and crystalline form [10–16].

Generalized Lorentz forces in solids and molecules originate from a time-reversal
(TR) symmetry breaking that is caused by an external magnetic field, B. Their main
physical consequence can be regarded as the phonon counterpart of the optical
Faraday effect, resulting in a frequency splitting between circularly polarized
phonons or molecular rotation modes; because of this, their inclusion in the present
list of spatial dispersion properties may appear surprising at first sight. As we
shall explain shortly, however, an orbital B field enters the electronic Hamiltonian
via the electromagnetic vector potential, and more specifically corresponds to
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2 introduction

the spatial gradients thereof. This observation implies that orbital magnetism is
ubiquitous in the physics of spatial dispersion, and the study of Lorentz forces will
help us emphasize this important fact. These are of great fundamental interest as
manifestations of “geometric magnetization” [17], and enjoy an elegant formulation
in terms of geometric phases [18] and Berry curvatures [19]. They are also related
to the angular momentum of phonons via the “phonon Zeeman effect” [20, 21],
and are a crucial ingredient in the theory of the phonon Hall effect (PHE) [19, 22].
In this context, the study of molecules has been the most prevalent up to date;
in particular, in regard to the orbital magnetic moment generated by a rotation
in a molecule and the associated g factor, which is commonly referred to as the
“molecular g factor” or “rotational g factor”. In a nutshell, the rotational g factor of
a molecule is the ratio between the total molecular magnetic moment (including
both ionic and electronic effects) and the angular momentum that is associated with
a rigid rotation of the body. In general, the magnetic moment contains a crucial
contribution from the adiabatic orbital currents, which can partially or completely
screen (or even overscreen in some cases) the contribution of the bare nuclear
point charges. In addition to pure rotations, a magnetic moment can also arise
from pseudorotations where individual atoms describe closed orbits around their
equilibrium positions [see Fig. 1.1 (a)]. These are generated, for example, as a result
of circularly polarized phonons, to which, in close analogy to the molecular case, a
phonon g factor can be attributed. In the presence of an external magnetic field,
degenerate phonon modes undergo the commonly referred to as “phonon Zeeman
effect” or “phonon Zeeman frequency splitting”. This phenomenon is characterized
by a linear dependence of the phonon frequencies on the applied B field, where
the proportionality constant is determined by the phonon g factor [see Fig. 1.1 (b)].

Flexoelectricity describes the coupling between a strain gradient and the macro-
scopic polarization and can be regarded as the spatially dispersive counterpart
of piezoelectricicty. Unlike the latter, it does not require any particular crystal
symmetry to be present: it is a universal property of all insulators. It was first
predicted back in 1964 by Kogan [23], but until quite recently it has not been given
much attention, since flexoelectric effects are practically negligible in macroscopic
samples. Only in the past few years flexoelectricity has become a popular topic
within the material science community, owing to the impressive progress in the
microscopic theoretical understanding of this phenomenon and in the experimental
control of nanoscale structures, where strain gradient effects can be large. As a
consequence, nowadays applications of flexoelectric materials can be found in
many different fields: flexoelectric energy harvesters [24], actuators that do not
depend on the crystal symmetries [25], sensors (such as curvature detectors [26]),
and so on. Even if strain gradients are ubiquitous both in insulators and metals,
the vast majority of studies have targeted the former class of materials. This seems
reasonable, as it is universally known that the electric polarization is ill-defined in
metals. As a consequence, one could naively expect flexoelectricity to be completely
irrelevant to conductors. One of the goals of this thesis is to show that this is by no
means the case: a strain gradient does induce polar distortions on the crystal lattice
regardless of the nature of the electronic ground state [see Fig. 1.1 (d)], and this
effect can be of great importance in the context of the so-called “ferroelectric” or
polar metals.
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These are materials in which metallicity and polarity coexist, two properties
that were initially considered as mutually exclusive. They were first proposed
more than a half century ago by Anderson and Blount [27] in the context of
martensitic transformations. They have been attracting a lot of attention recently,
particularly after the experimental observation in 2013 of LiOsO3, a material which
undergoes a ferroelectric-like transition at 140 K from the centrosymmetric R3̄c to
the noncentrosymmetric and polar R3c space group [28]. (Note that all crystals
belonging to polar space groups are noncentrosymmetric; however, the other way
around is not true.) Polar metals are not only interesting for the their potential
novel applications, ranging from electronic to thermoelectric devices and detectors
[29], but they are also really interesting from a fundamental physical perspective,
as they offer exciting opportunities to study exotic quantum phenomena such as
superconductivity in polar systems [30, 31] or spin-polarized currents [32].

Despite the remarkably rapid growth witnessed in this field over recent years
[33–35], a fundamental aspect still remains unresolved, which is the ability to switch
their polar order parameter through the application of an external field. Due to the
presence of free carriers in the bulk, the most obvious method for switching polarity
in ferroelectrics, i.e., an external electric field, is apparently ruled out. Indeed, while
electrical switching of thin 2D metals [36] has been previously achieved, a general
method for reversing polarity at the bulk level is still missing. In this thesis we will
demonstrate that strain gradients can be a viable solution. Note that flexoelectric
switching of polar domains in insulators, and in particular in the prototypical
ferroelectric barium titanate [37, 38], has already been accomplished. Still, whether
the same switching mechanism is even applicable in metals was an open question
at the time this thesis started.

methods and existing challenges

In the context of condensed matter theory, quantum mechanical first-principles
calculations have been demonstrated to be extremely effective, especially with the
increasingly growing computational capabilities and methodological tools. Among
the latter, density functional theory (DFT) has emerged as one of the most popular
and reliable techniques. Its appeal rests on the perfect balance that this method
exhibits between numerical accuracy and computational efficiency. The success of
DFT is particularly manifest in its linear-response implementation, widely known as
density functional perturbation theory (DFPT), with calculated phonon frequencies
that are often [40] within 2% of the experiment. One key advantage of DFPT is
that it allows the computation of response functions at any wave vector q just by
considering the unit cell of the system, even if q is incommensurate with respect
to the periodicity of the lattice. In other words, building supercells as is common
practice with frozen phonon techniques, can be completely avoided.

General methods to treat spatial dispersion effects in crystals have been elusive
until very recently. The problem has been solved with the newly implemented [41]
analytical long-wavelength approach, which works within the framework of DFPT.
This is a computationally efficient and powerful method that is nowadays a publicly
available feature of the abinit [42, 43] software. Successful applications of the long-
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wavelength DFPT technique for the calculation of first-order spatial dispersion
coefficients have been demonstrated in several contexts, including flexoelectric
coefficients [41, 44] or dynamical quadrupoles [41]. In fact, flexoelectricity can be
regarded as the finest illustration of the advances that the first-principles theory of
spatial dispersion has undertaken over the last few years. The progress in the theory

Figure 1.1: (a) Cartoon illustrating the local magnetic moments,
mA and mB, generated from ions, A+ and B−, describing closed
orbits around their equilibrium positions. If the sum of all local
magnetic moments does not cancel out, a macroscopic magnetic
moment, M, is produced. (b) Illustration of the phonon Zeeman
frequency splitting, where ω0 represent the phonon frequency in
absence of the applied B field and g is the phonon gyromagnetic
factor. (c) Cartoon illustrating the optical rotation of an optically
active crystal. The incipient linearly polarized light travels along
the optical axis, and the plane of the polarization of light is
changed. The angle of rotation, denoted here by the symbol θ,
is the quantity that is observed in experiments. (d) Flexoelectric
polarization (Pflexo) induced by an applied vertical strain gradient.
Subfigure (1) shows the unit cell of a centrosymetric crystal at
mechanical equilibrium, where Pflexo = 0. Subfigure (2) shows
the distorted unit cell with a polar distortion induced by flexo-
electricity, Pflexo ̸= 0. (Figures (a) and (b) are adapted from Ref.
[21]; and figure (d) is adapted from Ref. [39].)
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and calculation of flexoelectricity has been especially impressive, reaching the point
where it is nowadays possible to routinely compute the full flexoelectric tensor, both
electronic and lattice-mediated [44] contributions, completely from first-principles.
Although the majority of existing literature is about 3D bulk crystals, exciting
advancements have been made in relation to 2D materials as well [45, 46].

While the aforementioned long-wavelength DFPT technique is, in principle, com-
pletely general (i.e., it can be applied in any physical context), there is still abundant
work to be done both from the theoretical and computational perspectives. At the
time this thesis was initiated, the contributions of orbital magnetization (M) to spa-
tial dispersion were systematically neglected [41] in the available implementation of
long-wave DFPT, ruling out the calculation of many outstanding physical properties
where M plays a crucial role, including natural optical activity and Lorentz forces
in solids. In addition, the implementation was restricted to insulators, meaning
that metallic systems remained out of the discussion. Indeed, the problem with
metallic systems seemed to be more profound, as a well-established variational
perturbative formulation for metals was missing in the literature. As we shall see in
the next chapters, both limitations have been lifted in the course of this thesis, thus
significantly broadening the scopes of linear-response methods based on DFPT.

Regarding natural optical activity, ab-initio methods like Hartee-Fock (HF) [8],
coupled-cluster (CC) [47] and density functional theory (DFT) [5, 6, 48] have recently
become popular for the computation of gyration coefficients, which quantify the
strength of natural optical activity. While most of the available literature is about
small molecules, notable attempts at calculating optical activity in solids do exist. It
is worth mentioning, for example, the pioneering works by Zhong, Levine, Allan
and Wilkins, [49, 50] based on a numerical long-wavelength expansion of the
electromagnetic vector potential response. Later, Malashevich and Souza [51] and
Pozo and Souza [52] derived analytical expressions for the NOA, thus reviving the
interest in the field; their formalism has been implemented very recently within an
ab initio context [53]. The agreement between theory and experiment achieved in
these works is quite good, e.g., for trigonal Se [51, 52], α-quartz [49, 50] and trigonal
Te [54]. In spite of the remarkable progress, however, a systematic, quantitatively
predictive, first-principles-based and computationally efficient methodology to
compute the NOA both in molecules and solids has not been established yet.
The first issue concerns the treatment of self-consistent fields (SCF). These have
been accounted for, by instance, in Ref. [55] by Jönsson, Levine and Wilkins, and
found to be of crucial importance, but the numerical differentiation with respect
to the wave vector q that was used therein has limited a widespread application
of their method. The existing analytical expressions [51, 52] for the NOA are, in
principle, better suited to an ab initio implementation [53], but the SCF contributions
are systematically neglected therein. Another disadvantage with the prevailing
techniques lies in that they require cumbersome sums over empty states; this
introduces an additional potential source of error, as the convergence with respect
to the number of bands tends to be slow.

Concerning rotational g factors, first-principles electronic-structure methods have
traditionally been highly successful in this regard. Reference values with chemical
accuracy have been obtained long ago [56, 57] in the context of post–Hartree–Fock
ab initio methods, like coupled-cluster (CC) or Møller–Plesset (MP) perturbation
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theory. Ceresoli and Tosatti [58, 59] later demonstrated that DFT can provide
reliable values at a significantly lower computational cost. The strategy of Ceresoli
and Tosatti consists in identifying the magnetization induced by a rigid rotation
of the molecule with the Berry phase [60] accumulated around a closed orbit in
presence of a uniform magnetic field. Additionally, their pioneering Berry-phase
approach has paved the way towards the development of the “modern theory of
magnetization” [61–63].

The case of extended solids has been comparatively much less explored. The
reason is that previous approaches required performing calculations in the presence
of a finite external magnetic field, which is a challenge to incorporate with periodic
boundary conditions. Though there has been theoretical work in this direction
[64, 65], so far a widespread implementation is lacking. This situation is in stark
contrast with the case of isolated molecules, where finite-B methods are well
established in existing codes [66, 67]. As a result, reference theoretical values for
the coupling constants between phonons in solids and an external magnetic field
are still scarce. Recent works by Spaldin and coworkers [20, 21] do report first-
principles values for the phonon g factors in a broad range of crystalline insulators;
however, a point-charge model for the microscopic currents associated with the
ionic orbits was assumed therein. This certainly constitutes a drastic simplification
from the computational perspective, as it only requires calculating standard linear-
response properties (e.g., the Born effective charge tensor). Nevertheless, whether
this approximation is reasonable remains to be proved.

Last but not least, regarding flexoelectricity and related effects in metals, we are
unaware of previous attempts at theoretical calculations. Thus, it entails exploring
hitherto uncharted territories. As we shall explain shortly, we have developed
two distinct approaches for estimating strain gradient-induced polar distortions
in metals. First, we have developed a method based on lattice sums of real space
interatomic force-constants (IFCs). This method requires only modest coding efforts,
as it builds on the standard implementation of phonons withing DFPT. At a later
stage, we have generalized the long-wave DFPT to conductors, thus closing the gap
between insulators and metals in regard to first-principles spatial dispersion theory.
Strain gradient-induced polar distortions in metals represent only a special case
of the capabilities of the method we have developed, which opens many exciting
avenues for future work.

outline of the thesis

The remainder of the thesis is organized as follows. Before presenting our original
work (Chapters 3, 4, 5 and 6), we provide in Chapter 2 a short introduction to the
electronic structure methods that are used in this thesis. In particular, we summarize
the fundamentals of density-functional theory, density-functional perturbation
theory and the long-wavelength DFPT [41] technique that is employed to access
spatial dispersion coefficients.

In Chapter 3 we generalize the long-wavelength DFPT method of Ref. [41] to
metals, thus enabling an accurate and efficient calculation of spatial dispersion
coefficients in conductors. As a first step towards achieving this ambitious goal, we
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focus on the static regime and validate our methodology by computing the first-
order spatial dispersion coefficients of zone-center optical phonons of selected metal
structures. As a necessary intermediate step, we have also formally established a
variational perturbative framework for metals, which was lacking in the literature.

In Chapter 4, we explore flexoelectricity as a viable means of switching the polar
order parameter of the well-known polar metal LiOsO3. Our main conclusion is
that the switching of the polar order parameter in LiOsO3 mediated by strain
gradients should be experimentally attainable. More broadly, Chapter 4 represents
a natural step forward of Chapter 3, as it allows to test our long-wavelength
DFPT implementation of spatial dispersion in metals within the context of strain
gradients in a real-world practical case. This enables us to report, for the first time,
the flexoelectric force-response tensor and the flexocoupling coefficients of a metal.

In Chapter 5 we develop an efficient first-principles methodology based on DFPT
to calculate, up to linear order in the applied magnetic field, rotational g factors and
Lorentz forces of molecules and solids. Our method only requires the knowledge
of two linear-response quantities: the macroscopic polarization induced by an
atomic displacement, corresponding to the Born effective charges, and its first-order
spatial dispersion. We validate our methodology in finite systems by computing
the rotational g factor of several simple molecules, showing excellent agreement
with experiment and previous theoretical calculations. In addition, we compute the
Lorentz forces and the splitting of the low-frequency transverse-optical phonon
mode of cubic SrTiO3 in the presence of a magnetic field. We find that the dispersive
contribution to the phonon g factor coming from the first-order spatial dispersion of
the induced polarization, which had been neglected in some previous approaches,
dominates the response.

In Chapter 6 we present a new strategy for the computation of the natural
optical activity, which is based on the long-wave DFPT methodology of Ref. [41],
and addresses most of the shortcomings of currently available approaches. We
demonstrate the accuracy and efficiency of our method with representative chiral
crystals and molecules. Our results corroborate that SCF contributions have a huge
impact on the final result for the NOA, thus bringing us to the conclusion that
neglecting SCF terms, as is common practice with some established methods, is
not justified. Last but not least, we have found out that the analytical expression
for the gyration coefficients in crystals is not unique, which can be traced back to
the electromagnetic gauge freedom.

We conclude this thesis in Chapter 7 with the conclusions.





2
M E T H O D O L O G I C A L F R A M E W O R K

The main objective of this chapter is to summarize the required first-principles
theoretical techniques that we will use throughout this thesis. In particular, our
work will be carried out within the context of density-functional theory (DFT) and
density-functional perturbation theory (DFPT). Excellent reviews on these topics
are available in the literature [68–71], and it is a matter of personal preference to
choose one over the other.

This chapter is organized as follows. First, we shall explain the foundations
of DFT as formulated by Hohenberg and Kohn [72] in 1964, where the density
becomes the central quantity of the theory. Next, we shall discuss the Kohn and
Sham ansatz [73], which asserts that the many-body problem of interacting electrons
can be completely described through an auxiliary system of non-interacting parti-
cles, where all the many-body effects are reabsorbed into an exchange-correlation
functional. In Sec. 2.3, the necessary linear-response techniques to access second
and higher order energy derivatives are described. The main references here are the
works by Xavier Gonze and coworkers [74–77]. The last section will be devoted to
discuss the analytical long-wavelength expansion of the second-order energy func-
tional, which allows the computation of first-order spatial dispersion coefficients
with essentially the same computational cost as standard linear-response quantities.
This methodology, developed by Royo and Stengel [41] in 2019, constitutes the
current state-of-the-art first-principles theory of spatial dispersion on top of which
we further develop our new theoretical and computational implementations.

2 .1 the schrödinger equation

A first-principles or an ab-initio approach in our context means describing our
many-body system of interacting electrons and nuclei without relying on empirical
data; i.e., using only the fundamental quantum-mechanical laws. Except for the
simplest textbook systems (hydrogen atom) this is a very complex many-body
problem, generally intractable even with the most powerful computers available
nowadays. Thus, for all practical applications of the first-principles approach,
several approximations are required. First, it is common practice to decouple the
motion of the electrons from that of the nuclei, and treat the latter as classical point
particles, by means of the Born-Oppenheimer [78] (also known as the adiabatic)
approximation. This approximation is founded on the premise that the nuclei move
much more slowly than electrons due to their greater mass and, therefore, the
electrons are able follow the motion of the nuclei adiabatically while remaining
in their ground state. In other words, if we assume a Hamiltonian formulation,1

the many-body wave function Ψ for the electrons from which we can extract all

1 Not that a Hamiltonian description of the system is not strictly necessary, since a Lagrangian
formulation is in some cases advantageous. In fact, we take this approach in Chapter 5.
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the information can be obtained from the following time-independent Schrödinger
equation,

Ĥ |Ψ⟩ = E |Ψ⟩ , (2.1)

which is solved for a given configuration of the nuclei. In Hartree atomic units,2

the Hamiltonian of Eq. (2.1) is given by

Ĥ = −1
2 ∑

i
∇2

i − ∑
i

∑
I

ZI

|RI − ri|
+

1
2 ∑

i ̸=j

1∣∣ri − rj
∣∣ . (2.2)

The first term in Eq. (2.2) is the kinetic energy of the electrons, where ∇i = ∇ri

and ri represents the position of the i-th electron. The second term accounts for
the electron-nucleus interaction, where RI are the (fixed) nuclear positions and
ZI their atomic number. This term will be referred to as Vext(r) hereafter, and
the dependence on the nuclear coordinates will be kept implicit. The last term
describes the electron-electron interaction. Notice that in the Born-Oppenheimer
approximation the nucleus-nucleus interaction term becomes a constant and has
not been included in Eq. (2.2). Nevertheless, for a correct treatment of the Coulomb
electrostatics in solids, it is crucial to incorporate this contribution in the final
energy expression of the system.

Of course, finding a solution for the electronic system described by Eq. (2.1) is
still beyond reach, as the equations that need to be solved depend on 3N degrees
of freedom, where N is the number of electrons in the system. Already in the
1920s a parading shift occurred when Thomas and Fermi [79] formulated a theory
for a many-body system of interacting electrons in terms of the electron density,
which depends only on 3 variables. This is sometimes considered as the first density-
functional theory (DFT), though it was not until 1964 when Hohenberg and Kohn [72]
formulated their renowned theorems and Kohn and Sham (1965) [73] introduced
their auxiliary non-interacting system that DFT became a useful theory for studying
real physical problems. In the next section we shall recap the main ideas of DFT as
formulated by Hohenberg and Kohn and we will briefly discuss the limitations of
the theory, emphasizing the required approximations that need to be made in view
of a practical implementation.

2 .2 density-functional theory

Density-functional theory is nowadays the most widely used electronic structure
method for describing many-body effects through independent particle equations.
The basic idea of DFT rests on the fact that all the information of the system
can be extracted merely from the knowledge of the ground-state electron density.
Mathematically, this principle is expressed by stating that any property of the
interacting electron system can be described as a functional of the ground-state
electron density, denoted as n(r), which is a function of the three dimensional
real-space vector, r. In practice, one could naively think that some fundamental
information is necessarily lost when going from 3N degrees of freedom to just 3.

2 h̄ = e = 4πϵ0 = 1, where h̄ = h/2π is the reduced Planck constant, −e is the electron charge and ϵ0
is the vacuum permittivity. Notice that, in those units, the speed of light is c ∼ 137.
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Yet, this approach is justified with the iconic Hohengerg-Kohn theorems, whose
formulation and prove is remarkably simple, despite their profound significance.

2 .2 .1 the hohenberg-kohn theorems

In 1964, in their seminar paper “Inhomogeneous Electron Gas" [72] Hohenberg and
Kohn stated that the energy of the many-body interacting electron system can be
expressed as a functional of the electron density,

E[n(r)] = F[n(r)] +
∫

Vext(r)n(r) d3r, (2.3)

where F[n] is a universal functional, independent of the external potential, given by

F[n(r)] = Te[n(r)] + Ve–e[n(r)]. (2.4)

Here, Te is the kinetic energy and Ve–e stands for the electron-electron interaction.
It can be proven that:

1. For a system of interacting electrons in an external potential Vext(r), the
potential Vext(r) is a unique functional of the ground-state electron density
n(r), apart from an additive constant. In other words, there is a one-to-one
correspondence between the external potential and the ground-state electron
density.

2. The energy functional E[n(r)] given by Eq. (2.3) can be defined for any
external potential, Vext(r). For a particular external potential, the ground-state
energy of the system is the global minimum of E[n(r)], and the density that
minimizes that functional is the exact ground-state electron density of the
system.

The major achievement of the Hohenberg-Kohn theorems resides in the demonstra-
tion that finding the ground state of a system of N interacting electrons boils down
to minimizing the energy functional E[n(r)] = F[n(r)] +

∫
Vext(r)n(r) d3r with re-

spect to the electron density, which depends only on three spacial coordinates.
Mathematically,

δ

δn(r)

[
F[n(r)] +

∫
Vext(r)n(r) d3r − µ

(∫
n(r) d3r − N

)]
= 0, (2.5)

where the Lagrange multiplier µ ensures that the density integrates to N. The
Euler-Lagrange equation associated to Eq. (2.5) is given by

δF[n(r)]
δn(r)

+ Vext(r) = µ. (2.6)

The main obstacle resides in finding an expression for the universal functional
F[n(r)], and the Hohenberg-Kohn theorems offer no guidance whatsoever on how
to construct it. As a preliminary step, one could extract from F[n(r)] the classical
Coulomb interaction, denoted here as the Hartree (H) term, and write

F[n(r)] = EH[n(r)] + G[(r)]. (2.7)
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While the functional form of EH[n(r)] is well-established,

EH[n(r)] =
1
2

∫ n(r)n(r′)
|r − r′| d3r d3r′, (2.8)

G[n(r)] still is, unfortunately, an unknown universal functional, just like F[n(r)].

2 .2 .2 the kohn-sham auxiliary system

From the Hohenberg-Kohn theorems we know that the ground-state density of
a many-body interacting electrons under an external potential can be found by
solving Eq. (2.5), the only problem being that the universal functional F[n(r)] is
unknown. In 1965 Kohn and Sham (KS) [73] asserted that it is possible to find
an auxiliary system of non-interacting particles, which are subject to an effective
potential, VKS(r), whose ground-state density is the one that enters the Hohenberg-
Kohn functional, F[n(r)]. Starting from Hohenberg and Kohn energy functional,

E[n(r)] = G[n(r)] + EH[n(r)] +
∫

Vext(r)n(r) d3r, (2.9)

Kohn and Sham then proceed to express the universal functional as follows,

G[n(r)] = Ts[n(r)] + Exc[n(r)], (2.10)

where Ts[n(r)] is the kinetic energy functional of a system of non-intercating electrons
with density n(r) and Exc[n(r)] is the exchange and correlation (XC) energy functional
of an interacting system with density n(r). This term encapsulates the non-classical
electrostatic contributions of the electron-electron interaction and the difference
between the real kinetic energy of the interacting system and Ts[n(r)]. Minimizing
the functional given by Eq. (2.9),

δ

δn(r)

[
Ts[n(r)] + EH[n(r)] + Exc[n(r)] +

∫
Vext(r)n(r) d3r

]
= 0, (2.11)

under the constraint that
∫

n(r) d3r = N, is equivalent to solving the following
independent-particle Schrödinger equation,(

−1
2
∇2 + V̂KS

)
|ψi⟩ = ϵi |ψi⟩ , (2.12)

under the constraint that the KS wave functions are orthonormal, ⟨ψi|ψj⟩ = δij. In
Eq. (2.12), − 1

2∇2 is the kinetic energy operator, ϵi denotes the energy eigenvalue
and the KS effective potential is given by

V̂KS = V̂H + V̂xc + V̂ext, (2.13)

with

VH(r) =
δEH[n(r)]

δn(r)
=
∫ n(r)

|r − r′| d3r′,

Vxc(r) =
δVxc[n(r)]

δn(r)
.

(2.14)
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In the Kohn-Sham approach, the electron density is expressed as a function of the
one-particle wave functions,

n(r) = ∑
i

fi ⟨ψi|r⟩ ⟨r|ψi⟩ , (2.15)

where fi is the occupation factor of the i-th state. Likewise, even though Ts[n(r)]
still remains an unknown functional of the density, it can be now expressed in
terms of the KS orbitals,

Ts[n(r)] = −1
2 ∑

i
fi ⟨ψi| ∇2 |ψi⟩ . (2.16)

If the exchange-correlation functional Exc[n(r)] was known, one could determine
the ground-state of the many-body electron problem by solving the associated
Kohn-Sham equations. These are a set of independent-particle equations that need
to be solved self-consistently until convergence is reached. A schematic approach to
tackle them involves the following steps. First, one starts from a trial electron density
n(r) and builds the Hartree and exchange-correlation potentials as described in
Eq. (2.14). Second, the Schrödinger equation for the non-interacting particle system
given by Eq. (2.12) is solved, obtaining the corresponding KS wave functions, and a
new density is constructed by means of Eq. (2.15). The energy of the system is then
given by

E = ∑
i

fi ⟨ψi| Ĥ |ψi⟩+ EH[n(r)] + Exc[n(r)] + En–n, (2.17)

where we have added the nucleus-nucleus constant term, En–n, and the Hamiltonian
is given by Ĥ = − 1

2∇2 + V̂ext. The process is repeated with the updated density
until convergence is achieved. Notice that in Eq. (2.17) the self-consistent field (SCF)
contributions are encompassed in the Hartree and exchange-correlation (Hxc) terms.
In the following, whenever we want to highlight the SCF nature of the Hamiltonian,
we shall use a calligraphic symbol, such that

Ĥ = Ĥ + V̂SCF, (2.18)

where V̂SCF = V̂H + V̂xc.

2 .2 .3 the exchange and correlation functional

It should be noted that without an expression for the exchange and correlation
functional, the density-functional theory formalism described in the previous sec-
tion has no real practical utility. Already in 1964 Kohn and Sham [73] introduced an
approximation for Exc[n(r)], which is suitable for systems where n(r) is sufficiently
slowly varying. This is nowadays known as the local density approximation (LDA),
and despite its apparent simplicity, it stands as one of the most widely utilized
approximations for the exchange-correlation functional. It is formulated as

ELDA
xc [n(r)] =

∫
n(r)ϵLDA

xc [n(r)] d3r, (2.19)
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where ϵxc[n(r)] is the exchange and correlation energy per electron of a uniform
electron gas with density n(r). Within this approximation, the potential V̂LDA

xc
entering the KS equations is given by

VLDA
xc (r) =

δELDA
xc [n(r)]
δn(r)

= ϵLDA
xc [n(r)] +

∂ϵLDA
xc [n(r)]
∂n(r)

n(r). (2.20)

Diverse parametrizations for ϵLDA
xc [n(r)] exist and the parametrized coefficients

are usually extracted via quantum Monte Carlo simulations [80] or other semi-
empirical methods. Throughout this work, we shall use the Perdew-Wang [81]
parametrization for ϵLDA

xc [n(r)].
However, the LDA is by no means the end of the story, and nowadays a plethora of

different approaches are employed for approximating the exchange and correlation
functional. Indeed, we shall also make use of the Perdew-Burke-Ernzerhof (PBE)
[82] parametrization of the generalized gradient approximation (GGA). This will
serve us as a test of the robustness of our results with respect to different XC
schemes. Without going into details, the GGA aims to improve the accuracy of LDA
by incorporating gradient information,

EGGA
xc [n(r)] =

∫
n(r)ϵGGA

xc [n(r),∇n(r)] d3r. (2.21)

2 .2 .4 the plane wave basis set

The systems we shall consider in this thesis are solids composed by electrons
and nuclei, which are repeated periodically in space. We shall assume Born-von
Karman periodic boundary conditions (PBC) and we shall focus exclusively on bulk
properties of perfect solids.3 The crystal structure is entirely determined by the
position of the atoms within the unit cell and the Bravais lattice, which is described
by the vectors

Rl = l1a1 + l2a2 + l3a3, (2.22)

where ai are the real space primitive lattice vectors and l ≡ {l1, l2, l3} determines
the position of the unit cell (l1, l2 and l3 are integer numbers). The periodicity of the
solid manifests itself through the periodicity of the external potential, Vext(r), which
in turn, imposes that the wave functions must respect the translational symmetries.
By invoking the Bloch’s theorem, each wave function can be written as a product
of a phase factor times a cell-periodic function,

ψmk(r) = eik·rumk(r), with umk(r + Rl) = umk(r). (2.23)

Here, m is a band index and k a reciprocal-space vector, which is restricted to the
first Brillouin Zone (BZ), spanned by the primitive reciprocal space lattice vectors,
bi, fulfilling the following relationship,

bi · aj = 2πδij. (2.24)

3 We will also study isolated molecules in Chapters 5 and 6. These can be described with the same
techniques employed for periodic solids by considering a molecule surrounded by empty space
in a large “unit cell” that is repeated periodically in space. If sufficient empty space is added, the
interaction among repeated images is negligible, allowing us to describe an isolated molecule.
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A plane wave basis set is one of the most commonly used options for representing
Bloch functions in solid-state calculations,

umk(r) = ∑
G

eiG·rumk(G), (2.25)

where G are reciprocal-space lattice vectors,

G(m1, m2, m3) = m1b1 + m2b2 + m3b3, (2.26)

where m1, m2 and m3 are integer numbers. In Eq. (2.25), umk(G) are the Fourier
transform coefficients of umk(r), defined as

umk(G) =
1
Ω

∫
Ω

e−iG·rumk(r) d3r, (2.27)

where Ω represents the volume of the unit cell. By means of the fast Fourier trans-
form (FFT) one can efficiently shift from real to reciprocal space representations,
and vice versa. The orthonormalization condition translates to

⟨umk|unk⟩ =
1
Ω

∫
Ω

u∗
mk(r)unk(r) d3r = ∑

G
umk(G)unk(G) = δnm. (2.28)

The electron density given by Eq. (2.15) can be expressed more conveniently in
terms of the Bloch periodic functions as

n(r) =
∫

BZ
[d3k]∑

m
fmk ⟨umk|r⟩ ⟨r|umk⟩ , (2.29)

where fmk is the occupation factor and we have used the following shorthand
notation for the BZ integration,∫

BZ
[d3k] =

Ω
(2π)3

∫
BZ

d3k. (2.30)

The KS energy, Eq. (2.17), can be equivalently expressed in terms of the cell-periodic
Bloch functions as

E =
∫

BZ
[d3k]∑

m
fmk ⟨umk|

(
T̂k + V̂ext,k

)
|umk⟩+ EH[n(r)] + Exc[n(r)] + En–n, (2.31)

where the kinetic and the external potential operators are represented in momentum
space. For a generic operator Ô, we define

Ôk =e−ik·rÔeik·r′ , (2.32)

such that the corresponding matrix elements on two plane waves are given by

Ok(G, G′) = ⟨G + k| Ô |G′ + k⟩ . (2.33)

For example, the kinetic energy operator acquires a diagonal representation in
reciprocal space,

Tk(G, G′) =
1
2

δGG′ |k + G|2, (2.34)
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and the Hartree potential is given by

VH(G) =


4πn(G)

|G|2 , G ̸= 0

0, G = 0,
(2.35)

where n(G) is the Fourier transform of the electron density and we have excluded
the divergent [74] G = 0 term in Eq. (2.35).

Before concluding with our summary of DFT and related practical computational
methods for its implementation, we should address two important points that have
been overlooked, which are covered in the following two subsections. The first
topic is related to Brillouin Zone integration, whereas the second one deals with
the pseudopotential method.

2 .2 .5 brillouin zone integration

The integrals in k space as defined by Eq. (2.30) need to be evaluated as discrete
sums for a finite number of k points,∫

BZ
[d3k]g(k) ≃ ∑

k
wkg(k), (2.36)

where g(k) is a generic function and wk is the weight associated to each k point.
Current integration methods, such as the tetrahedron method, allow for the evalua-
tion of BZ integrals with high accuracy. Additionally, thanks to the use of crystal
symmetries, the number of k points considered in the calculation can be sub-
stantially reduced. Nonetheless, special care is required with metals in order to
accurately describe Fermi surface discontinuities, originated from abrupt changes
in the Fermi-Dirac (FD) occupation distribution at zero temperature (T = 0), which
might lead to considerable errors in the evaluation of the integrals in k space. The
most effective and widely used strategy to deal with this issue at the ground-state
level is the smearing technique [83]. In the latter approach, the sharp Fermi-Dirac
distribution at T = 0, represented by the Heaviside step function, is approximated
by a smoother function that is a broadened approximation of the former,

fmk = s
∫ µ−ϵmk

σ

−∞
δ̃(t) dt, (2.37)

where s = 2 is the spin multiplicity, µ is the Fermi level (also known as the chemi-
cal potential) and δ̃(x) is a (normalized) broadening function. If the equilibrium
distribution of the occupancies is chosen to follow the Fermi-Dirac (FD) statistics, σ

plays the role of a finite (electronic) temperature, σ = KBT, where KB is the Boltz-
mann’s constant. In practice, using a smeared distribution function is primarily
aimed at accelerating the convergence with k-mesh density. As a consequence,
non-FD forms are often preferred [83, 84]. In this thesis, we will only consider the
Gaussian smearing, which provides a smooth and differentiable representation of
the Fermi-Dirac distribution via the following broadening function,

δ̃(x) =
1√
π

e−x2
. (2.38)
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2 .2 .6 the pseudopotential method

It is essential to point out that in practical calculations only a finite set of plane
waves is taken into account, with their kinetic energy confined to a specified cutoff,
such that 1

2 |k + G|2 < Ecut. However, accurately representing the rapid oscillating
features of core electron orbitals near the nuclei would require considering numer-
ous plane wave coefficients in the calculation. Given that most of the chemical and
physical properties of real crystals can be characterized by considering only valence
electrons, one could try to remove the problematic core orbitals from the simulation
by replacing the original Coulomb potential with a smoother effective potential that
captures the essential features of the former. This is precisely the idea behind the
pseudopotential method [85], which is based on the following points:

• The core electrons, which are chemically inert, are dropped from the calcula-
tion altogether, as they do not directly participate in chemical bonding.

• The all-electron wave functions, ψae, which have many radial nodes inside the
core region (rc), and thus, would require high Fourier components for their
description, are replaced with smoother pseudo wave functions, ψps, that have
no radial nodes for r < rc. This is done in practice by replacing the nuclear
point-charge potential with a pseudopotential.

• Outside a selected core region delimited by rc, the pseudo wave functions
coincide with the all-electron wave functions.

• The energy eigenvalues that are extracted using the pseudopotential coincide
with the energy eigenvalues one would obtain with the real potential.

• A “good” pseudopotential should be able to reproduce the scattering proper-
ties of the actual potential and one should be able to use it in different atomic
environments without losing accuracy. The latter is commonly referred to as
transferability.

Another important property that is often enforced is norm-conservation [86]. In
short, norm-conservation requires that the probability density of both the all-
electron and the pseudo wave functions is the same inside the selected core region
delimited by rc, ∫ rc

0
r2|ψae(r)|2 dr =

∫ rc

0
r2∣∣ψps(r)

∣∣2 dr. (2.39)

While the pseudopotential method enables to accurately describe the physical
properties of crystals while keeping the number of plane wave sufficiently low, the
price one needs to pay is that, in general, locality is not preserved, i.e., most modern
DFT calculations are performed with non-local pseudopotentials. In practice, this
means that the pseudopotential is expressed as sum of a local (loc) plus a non-local
separable (sep) term,

Vpsp(r, r′) = Vloc(r)δ(r − r′) + Vsep(r, r′), (2.40)
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which, in turn, can be written as a sum of individual sublattice contributions,4

Vloc(r) = ∑
l,κ

vloc
κ (r − Rl

κ), (2.42)

Vsep(r, r′) = ∑
l,κ

vsep
κ (r − Rl

κ, r′ − Rl
κ). (2.43)

In the latter equations, Rl
κ = Rl + τκ, where τκ represents the position of the

sublattice κ within the unit cell. A widely used class of pseudopotentials are
norm-conserving pseudopotentials where the separable term is written in the
Kleinman-Bylander (KB) [87] form,

Vsep(r, r′) = ∑
l,κ,µ

eµκζ(r − Rl
κ)ζ

∗
µκ(r

′ − Rl
κ), (2.44)

where the index µ takes into account both the azimuthal and magnetic quantum
numbers, {l, m}, ζµκ(r) represents the KB projector function and eµκ are the ex-
pansion coefficients. It should be noted, however, that a single projector for each
angular momentum channel is oftentimes insufficient to guarantee that all the afore-
mentioned criteria are satisfied. Without entering into the very specifics, in this
thesis we will make use of optimized norm-conserving Vanderbilt pseudopoten-
tials (ONCVPSPs) as introduced by Hamann in Ref. [88], where norm-conserving
multiprojector pseudopotentials are presented. (The interested reader is encouraged
to refer to Ref. [88], where it is demonstrated through first-principles calculations
that going beyond the KB form yields results for lattice constants and bulk moduli
that are in better accordance with those of all-electron calculations essentially in all
studied cases.)

2 .3 density-functional perturbation theory

In the previous section we have briefly discussed the strategy to obtain the ground-
state properties of a system of interacting electrons by means of density-functional
theory and we have outlined the required approximations that need to be made for
a practical implementation. In this section, we shall be interested in describing how
the physical properties of the system are changed under an external perturbation.
Even though different first-principles techniques are available for extracting re-
sponse properties of solids, e.g., frozen phonon techniques [89], density-functional
perturbation theory (DFPT) has emerged as the most favored approach. One key
advantage that sets DFPT apart from alternative methods is its unique ability to
handle incommensurate lattice distortions with arbitrary wave vectors q without

4 The local part in Eq. (2.42) is spherically symmetric and diverges as vloc
κ ∼ −Zκ/r, where Zκ is the

(pseudo) charge of sublattice κ. In reciprocal space, this divergence is associated with the G = 0
component, and goes as [74]

vloc
κ (q) ∼ −4π

q2 Zκ . (2.41)

The latter is treated together with the Hartree divergence [see Eq. (2.35)] and, in the end, the
divergences cancel out, leaving a residual contribution [68] that is typically added to the ion-ion
energy.
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the requirement of building supercells, i.e., one can compute the response to a
perturbation at any q within the primitive unit cell, thus making it computationally
superior.

We start by assuming a parametric dependence of the Hamiltonian on a small
parameter λ, which describes the external perturbation. Taking advantage of stan-
dard time-independent perturbation theory techniques [90], the physical properties
of the system are expanded in powers of λ,

X(λ) = ∑
n

1
n!

λnX(n), (2.45)

where X can be the Hamiltonian Ĥ, the electron density n(r), the wave func-
tions ψm(r) or the energy E. The expansion coefficients are directly related to the
derivatives of X with respect to λ,

X(n) =
dX(λ)

dλn

∣∣∣∣
λ=0

. (2.46)

(Note that this convention differs from some earlier works [74, 76] by a 1/n!
factor.) Due to the variational character of the Kohn-Sham energy functional, the
application of perturbation theory results in a 2n + 1 theorem, i.e., knowledge of
the n-th order wave functions are enough to describe (2n + 1)-th order energies,
and even derivatives of the energies acquire a variational character [76, 91]. At
zero order, one recovers the ground-state objects defined in the previous section,
whereas at first order in the perturbation, we obtain the following well-known
expression for the energy,

E(1) = ∑
m∈V

fm ⟨ψ(0)
m | Ĥ(1) |ψ(0)

m ⟩ , (2.47)

which is essentially the Hellmann-Feynman theorem [92]. Notice that in Eq. (2.47)
we have explicitly indicated that the sums are carried out for states belonging to the
valence (V) manifold only, which are the occupied states in insulators; however, if
m runs over all states, Eq. (2.47) is equally valid for metals as well (a more detailed
treatment of DFPT in metals is deferred to Sec. 2.3.2). Pushing the expansion to
second order in the perturbation, one can show that

E(2) = ∑
m∈V

fm

(
⟨ψ(1)

m | Ĥ(1) |ψ(0)
m ⟩+ ⟨ψ(0)

m | Ĥ(1) |ψ(1)
m ⟩+ ⟨ψ(0)

m | Ĥ(2) |ψ(0)
m ⟩
)

, (2.48)

where the first-order wave functions are obtained from the following Sternheimer
equation [74, 93],

Q̂(Ĥ(0) − ϵ
(0)
m )Q̂ |ψ(1)

m ⟩ = −Q̂Ĥ(1) |ψ(0)
m ⟩ . (2.49)

Here, Q̂ is the conduction band projector,

P̂ = ∑
m∈V

|ψ(0)
m ⟩ ⟨ψ(0)

m | , Q̂ = 1− P̂, (2.50)

where 1 is the identity operator and P̂ represents the valence band projector. The
calligraphic symbol Ĥ(1) is the first order counterpart of Eq. (2.18), with

Ĥ(1) = Ĥ(1) + V̂(1), (2.51)
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where V̂(1) is the first-order SCF potential, given by

V(1)(r) =
∫

KHxc(r, r′)n(1)(r) d3r′. (2.52)

KHxc(r, r′), on the other hand, is the Hartree and exchange-correlation (Hxc) kernel,
which we define as

KHxc(r, r′) =
δVHxc(r)

δn(r′)
=

δ2EHxc

δn(r)n(r′)
, (2.53)

and the first-order electron density is given by

n(1)(r) = ∑
m∈V

fm ⟨ψ(1)
m |r⟩ ⟨r|ψ(0)

m ⟩+ c.c., (2.54)

where c.c. stands for complex conjugate. Equivalently, the linear-response problem
can be recast as finding the variational minimum (with respect to the first-order
wave functions) of the following second-order energy functional,

E(2)
con =2 ∑

m∈V
fm ⟨ψ(1)

m | (Ĥ(0) − ϵ
(0)
m ) |ψ(1)

m ⟩

+ 2 ∑
m∈V

fm ⟨ψ(1)
m | Ĥ(1) |ψ(0)

m ⟩+ c.c.

+
∫

Ω

∫
KHxc(r, r′)n(1)(r)n(1)(r′) d3r d3r′

+ ∑
m∈V

fm ⟨ψ(0)
m | Ĥ(2) |ψ(0)

m ⟩ .

(2.55)

[The first three lines in Eq. (2.55) are typically referred to as the stationary (st)
part, and the last line in Eq. (2.55), which is independent of the first-order wave
functions, is the geometric (ge) term. It is common practice to encapsulate the
latter, along with the ion-ion contributions, into the nonvariational (nv) term. In
other words, E(2) = E(2)

st + E(2)
nv , with E(2)

nv = E(2)
ge + E(2)

ion-ion.] The subscript “con” in
Eq. (2.55) means that the second-order energy functional is minimized subject to
the constraint that the first-order wave functions are orthogonal to the valence (V)
manifold,

⟨ψ(0)
m |ψ(1)

n ⟩ = 0, ∀m, n ∈ V , (2.56)

which is also known as the parallel transport gauge [76]. Imposing the stationary
condition on the first-order wave functions, δE(2)

con/δ ⟨ψ(1)
m | = 0 , immediately leads

to the Sternheimer equation as defined in Eq. (2.49).

2 .3 .1 monochromatic perturbations

We now apply the general formalism of the previous section to the case of a
monochromatic perturbation that is modulated by a wave vector q. The response
to an incommensurate perturbation can be mapped onto an equivalent problem
that respects the symmetries of the lattice by performing the appropriate shifts in
momentum space in operators and wave functions. We follow the well-established
procedure [74] and work with the cell-periodic part of the Bloch functions. The
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operators are more conveniently expressed in momentum space (see Sec. 2.2.4). For
example, the first-order Hamiltonian is written as a phase times a cell-periodic part,
Ĥ(1)

k,q, such that

Ĥ(1)
k,q = e−i(k+q)·rĤ(1)eik·r. (2.57)

Similarly, the first-order wave functions are given by

|ψ(1)
mk,q⟩ = ei(k+q)·r |u(1)

mk,q⟩ , (2.58)

and the cell-periodic part of the first-order electron density, n(1)
q (r) = e−iq·rn(1)(r),

reads as follows

n(1)
q (r) = 2

∫
BZ
[d3k] ∑

m∈V
fmk ⟨u(0)

mk|r⟩ ⟨r|u
(1)
mk,q⟩ . (2.59)

[Unless otherwise stated, we implicitly assume that the system under study is a
time reversal (TR) symmetric insulator, which helps simplify some expressions.]
For the sake of generality, we shall consider a mixed derivative with respect to two
distinct perturbations, λ1 and λ2. In this context, the nonstationary expression for
the second-order energy functional, analogous to Eq. (2.48), can be expressed as

Eλ1λ2
q =

∫
BZ
[d3k]Eλ1λ2

k,q , (2.60)

where the quantity that needs to be integrated over the BZ is

Eλ1λ2
k,q = ∑

m∈V
fmk

(
⟨u(0)

mk| (Ĥλ1
k,q)

† |uλ2
mk,q⟩+ ⟨uλ2

mk,−q| Ĥλ1
k,−q |u

(0)
mk⟩
)

+ ∑
m∈V

fmk ⟨u(0)
mk| Ĥλ1λ2

k,q |u(0)
mk⟩ .

(2.61)

The stationary expression for the second-order energy at finite q will be deferred
to Sec. 2.4.4, where it will be discussed in greater detail in the context of a long-
wavelength expansion. In the following, we will introduce the specific perturbations
that will be central to this thesis: atomic displacements, strain, and electric fields.
However, before doing so, we will provide a brief overview of the application of
perturbation theory to metals.

2 .3 .2 dfpt in metals

Even at the ground-state level, we have seen that due to the sharp discontinuities
of the occupation function, special care is required when dealing with metals.
Although perturbation theory in metals has been studied following slightly different
techniques [94], we shall stick to de Gironcoli’s approach [95], which is based on
the application of the smearing technique to metals within the pseudopotential
method. (We will try to maintain a notation that is close to that used in Ref. [95]
by de Gironcoli.) This has enabled the computation of phonons in metals and,
in turn, of a number of thermodynamic properties that depend on phonons and
electron-phonon interactions, e.g., electrical and thermal conductivity.
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As a starting point, consider the well known (nonstationary) Kubo-like sum-over-
all-states expression for the second-order energy,

Eλ1λ2
q =

∫
BZ
[d3k] ∑

m,n

θ̃Fmk − θ̃Fnk

ϵ
(0)
mk − ϵ

(0)
nk

⟨u(0)
mk| (Ĥ

λ1
k,q)

† |u(0)
nk+q⟩ ⟨u

(0)
nk+q| Ĥλ2

k,q |u
(0)
mk⟩

+
∫

BZ
[d3k]∑

m
θ̃Fmk ⟨u(0)

mk| Ĥλ1λ2
k,q |u(0)

mk⟩ .
(2.62)

Unless specified otherwise, the summations over m and n include all states. The
first-order electron density enjoys a similar expression, with the sole difference
being that the Ĥλ1

k,q external perturbation is replaced with the operator |r⟩ ⟨r|,

nλ
q(r) =

∫
BZ
[d3k] ∑

m,n

θ̃Fmk − θ̃Fnk

ϵ
(0)
mk − ϵ

(0)
nk

⟨u(0)
mk|r⟩ ⟨r|u

(0)
nk+q⟩ ⟨u

(0)
nk+q| Ĥλ

k,q |u
(0)
mk⟩ . (2.63)

The new symbol appearing in Eqs. (2.62) and (2.63), θ̃mnk, is the smeared occupation
function defined by de Gironcoli in Ref. [95],

θ̃mnk = s
∫ ϵ

(0)
mk−ϵ

(0)
nk

σ

−∞
δ̃(t) dt, (2.64)

which is a generalization of our definition of the smeared occupation function, Eq.
(2.37), where δ̃(t) is the broadening function. In Ref. [95] de Gironcoli realized that
one can get rid of the double sum over all states of the previous equations; we shall
focus on the electron density in the following, but analogous expressions can be
obtained for the second-order energy. It is shown in Ref. [95] that Eq. (2.63) can be
expressed as

nλ
q(r) = 2

∫
BZ
[d3k] ∑

m∈M
∑

n∈O

θ̃Fmk − θ̃Fnk

ϵ
(0)
mk − ϵ

(0)
nk

θ̃nmk ⟨u(0)
mk|r⟩ ⟨r|u

(0)
nk ⟩ ⟨u

(0)
nk | Ĥλ

k,q |u
(0)
mk⟩ ,

(2.65)
where M and O represent, respectively, the partially occupied and unoccupied set
of bands.5 Eq. (2.65) can be further simplified as

nλ
q(r) = 2

∫
BZ
[d3k] ∑

m∈M
θ̃Fmk ⟨u(0)

mk|r⟩ ⟨r|∆uλ
mk,q⟩ , (2.66)

where the ∆uλ
mk,q first-order wave functions are obtained from the following modified

Sternheimer equation,

(Ĥ(0)
k+q + Q̂k+q − ϵ

(0)
mk) |∆uλ

mk,q⟩ = −(θ̃Fmk − P̂mk+q)Ĥλ
k,q |u

(0)
mk,q⟩ , (2.67)

with the following projectors

Q̂k+q = ∑
n∈M

αn |u(0)
nk+q⟩ ⟨u

(0)
nk+q| , P̂mk+q = ∑

n∈M
βmnk |u(0)

nk+q⟩ ⟨u
(0)
nk+q| , (2.68)

5 We are anticipating the notation that we will use in Chapter 3, where M will be referred to as the
active subspace.
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and coefficients

αnk = max(ϵFk + 3σ − ϵ
(0)
nk , 0),

βmnk = θ̃Fmk θ̃mnk + θ̃Fnk θ̃nmk + αnk
θ̃Fmk − θ̃Fnk

ϵ
(0)
mk − ϵ

(0)
nk

θ̃nmk.
(2.69)

It is straightforward to verify that βmnk vanishes whenever one of the indices refers
to an empty state; the same holds for αnk. The downsides of de Gironcoli’s approach
are that i) because of the presence of the P̂mk+q projectors in Eq. (2.67), a different
Sternheimer equation needs to be defined for each state m and, most importantly,
ii) it lacks a straightforward variational formulation.

2 .3 .3 phonon perturbation

We shall characterize a phonon perturbation via the following monochromatic
atomic displacements [74],

Rl
κβ −→ Rl

κβ + ul
κβ, with ul

κβ = λ
q
κβeiq·Rl

, (2.70)

where β is a Cartesian direction and Rl
κ = Rl + τκ, as introduced earlier in Sec.

2.2.6. The present perturbation is of special significance in the context of lattice
dynamics. In particular, the force-constant (FC) matrix is defined as the second
derivative of the total energy with respect to λ

q
κβ,

Cq
κα,κ′β =

∂2E
∂λ

−q
κα ∂λ

q
κ′β

= E
τκατκ′β
st,q + E

τκατκ′β
nv,q , (2.71)

where the nonvariational contribution includes the ionic Ewald (Ew) energy, whose
explicit expression can be found in Ref. [77]. Equivalently, the FC matrix can be
expressed as a sum of the real-space inter-atomic forces,

Cq
κα,κ′β = ∑

l
Cκα,κ′β(0, l)eiq·Rl

, Cκα,κ′β(0, l) =
∂2E

∂R0
κα∂Rl

κ′β

. (2.72)

The knowledge of the full FC matrix provides the necessary information to compute
phonon frequencies and modes of the crystal. Starting from the real-space equations
of motion of the ions,

Mκ ü0
κα(t) = − ∑

κ′,β
Cκα,κ′β(0, l)ul

κ′β(t), (2.73)

one seeks a solution of the following type

ul
κα(t) = Uq

καei(q·Rl−ωt), (2.74)

where ul
κα(t) are the ionic displacements, Mκ is the mass of the sublattice κ and ω

is the phonon frequency. Substitution of Eq. (2.74) into Eq. (2.73) immediately leads
to the following eigenvalue problem,

Mκω2
qUq

κα = ∑
κ′,β

Cq
κα,κ′βUq

κ′β. (2.75)
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Notice that the phonon frequencies are insensitive to the phase eiq·Rl
of the pertur-

bation defined in Eq. (5.48). We will exploit this freedom to redefine the atomic
displacements pattern with the phase eiq·Rl

κ , instead of the standard eiq·Rl
, i.e.,

Rl
κβ −→ Rl

κβ + λ
q
κβeiq·Rl

κ . (2.76)

The FC matrix that results from a displacement pattern defined by Eq. (2.76), which
we identify with the symbol Φq from now on, is trivially related to the standard
FC matrix given in Eq. (2.72),

Φq
κα,κ′β = Cq

κα,κ′βeiq·(τκ′−τκ). (2.77)

This phase choice poses great advantages in the context of spatial dispersion, as
it leads to much simpler expressions in the long-wavelength limit. Of course, at
q = 0, we recover the standard treatment of phonons as defined in Refs. [74, 77]. In
addition, the real-space IFCs remain invariant, i.e., Φκα,κ′β(0, l) = Cκα,κ′β(0, l).

2 .3 .4 electric field perturbation

The electric field perturbation in crystals requires special care, as the potential
associated to an external electric field is linear in space, V(r) = E · r, and therefore,
breaks the periodicity of the lattice. To overcome this issue, the standard treatment
[74] of a homogeneous and static electric field is based on the long-wavelength
response to a monochromatic scalar potential, φeiq·r, with Ĥφ

q = −1+ V̂φ
q , where

V̂φ
q is the SCF contribution [41] and the external perturbation is the unity operator

at any q (the minus sign comes from the electron charge). The first-order wave
functions are obtained from the following Sternheimer equation,

Q̂k+q

(
Ĥ(0)

k+q − ϵ
(0)
mk

)
Q̂k+q |uφ

mk,q⟩ = −Q̂k+q
(
−1+ V̂φ

q
)
|u(0)

mk⟩ . (2.78)

Note that the scalar potential perturbation vanishes at q = 0, whereas at first order
in the wave vector one obtains the first-order wave functions to an electric field
perturbation,

|uEδ
mk⟩ = |iuφ

mk,δ⟩ , (2.79)

which are usually extracted from the following Sternheimer equation [74],

Q̂k

(
Ĥ(0)

k − ϵ
(0)
mk

)
Q̂k |uEα

mk⟩ = −Q̂kĤEα
k |u(0)

mk⟩ , (2.80)

with

ĤEα
k = ∑

m∈V

(
|i ukα

mk⟩ ⟨u
(0)
mk|+ |u(0)

mk⟩ ⟨i ukα
mk|
)
+ V̂Eα , (2.81)

where |ukα
mk⟩ are the derivatives in kα in the parallel transport gauge of the ground-

state wave functions, i.e., the d/dkα wave functions. Self-consistency is included via
the SCF potential V̂Eα , which is independent of the wave vector k.

The electric field perturbation allows for the calculation of various physical
quantities [77], including the electronic contribution to the dielectric permittivity
tensor,

ϵ∞
αβ = δαβ −

4π

Ω
E
EαEβ

st , (2.82)



2.3 density-functional perturbation theory 25

and the so-called Born effective charges, Z∗
α,κβ. These are calculated either as the first

derivative of the macroscopic polarization with respect to an atomic displacement
(at zero macroscopic electric field) or as the second derivative of the total energy
with respect to an electric field and an atomic displacement,

Z∗
α,κβ = Zκδαβ + E

τκβEα

st , (2.83)

where Zκ is the (pseudo) charge of ion κ. (Note that our notation slightly differs
from that of earlier references [77], where the indices in Eq. (2.83) are commonly
rearranged as Z∗

κ,αβ.)

2 .3 .5 uniform strain perturbation

Another basic type of perturbations are mechanical deformations that are applied
to the crystal lattice. However, their treatment within the context of DFPT is not
straightforward, even for the simplest case, i.e., a homogeneous strain. When a
uniform strain (denoted from now on with the symbol ηαβ) is applied to a crystal
lattice, the boundary conditions of the initial problem are unavoidably altered
and, as a result, it becomes unclear whether one can expand the perturbed first-
order wave functions in terms of the unperturbed wave functions. Therefore, the
application of standard DFPT is not possible. The solution that Hamann, Wu,
Rabe and Vanderbilt (HWRV) proposed [96] is to capture all the effects of the
homogeneous strain within the metric tensor by working out the strain perturbation
expressions in reduced coordinates. Mathematically, one expresses any real (r) or
reciprocal (K = k + G) space vectors as

r = ∑
i

ai r̃i, K = ∑
i

biK̃i, (2.84)

where ai and bi are, respectively, the real and reciprocal space primitive lattice
vectors [see Eq. (2.24)], and the tilde symbol is used to indicate reduced coordinates,
which are unaffected by strain,

∂r̃
∂ηαβ

=
∂K̃

∂ηαβ
= 0. (2.85)

The central quantity in the HWRV approach is the metric tensor, which can be
defined either in real (Ξ) or in reciprocal (Υ) space as follows,

Ξij = ai · aj, Υij = bi · bj. (2.86)

As noted in Ref. [96], all the terms that appear in the energy functional of the
Kohn-Sham auxiliary system as defined in Eq. (2.17) depend on r and K exclusively
via their scalar products. Therefore, the strain derivatives only act on the metric
tensors [96],

Ξ
ηαβ

ij =
∂Ξij

∂ηαβ
= aiαajβ + aiβajα,

Υ
ηαβ

ij =
∂Υij

∂ηαβ
= −biαbjβ − biβbjα,

(2.87)
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where aiα (biα) is the α Cartesian component of the ai (bi) lattice vector. As a
consequence,

∂(K′ · K)

∂ηαβ
= ∑

i,j

∂
(
K̃′

iΥijK̃j
)

∂ηαβ
= ∑

i,j
K̃′

iΥ
ηαβ

ij K̃j. (2.88)

It is also straightforward to see that the scalar products between real and reciprocal
space vectors are independent of the metric tensor,

K · r = 2πK̃ · r̃, (2.89)

and thus, their derivative with respect to the strain trivially vanishes. In the end,
the first-order strain Hamiltonian can be written as

Ĥ
ηαβ

k,q =
∂Ĥk,q

∂Ξij
× Ξ

ηαβ

ij =
∂Ĥk,q

∂Υij
× Υ

ηαβ

ij . (2.90)

The implementation of the strain perturbation as proposed by HWRV enables
the calculation of the camped-ion elastic tensor,

C̄HWRV
αβ,γδ =

1
Ω

∂2E
∂ηαβ∂ηγδ

=
1
Ω

(
E

ηαβηγδ

st + E
ηαβηγδ
nv

)
, (2.91)

where the nonvariational term contains the second derivative of the Ewald energy
with respect to the strain; explicit expressions for the latter can be found in Ref.
[96]. In Eq. (2.91), the bar symbol indicates that the response is carried out at the
clamped-ion (CI) level, i.e., without taking into account contributions coming from
ionic relaxations. Similarly, the clamped-ion piezoelectric [97] tensor is given by

ēα,βγ =
∂Pα

∂ηβγ
= − ∂2E

∂Eα∂ηβγ
= −E

Eαηβγ

st . (2.92)

2 .4 long-wave density-functional perturbation

theory

Our primary interest is to describe spatial dispersion properties of crystals, which
involves accessing first (or higher order) q derivatives of external perturbations. The
phonon perturbation as described in Sec. 2.3.3 is valid at any arbitrary q, meaning
that, in principle, it is suitable as is for a long-wavelength analysis. However, it will
be necessary to revisit the strain and electric field perturbations. In particular, we
will explain how the HWRV approach can be generalized to account for inhomoge-
neous mechanical deformations, and we will discuss the finite q generalization of
the electric field perturbation. In light of the importance of this topic, we will also
dedicate a section to discussing the polarization response to an inhomogeneous
perturbation, which is based on the current-density operator [98] formulation.
Finally, we will return to the second-order energy functional as introduced in Sec.
2.3, and we will see that, after its reformulation as an unconstrained variational
functional, it becomes feasible [41] to take its long-wavelength limit analytically.
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2 .4 .1 treatment of inhomogeneous strain

Although the methodology proposed by HWRV is the standard procedure that is
employed in order to describe elastic and piezoelectric properties, this formulation
is not suitable for a long-wavelength expansion, and therefore, turns out to be
impractical for spatial dispersion. In Ref. [99], a more general theory of mechanical
deformations was developed, valid at any order in the wave vector q, by taking
a monochromatic acoustic phonon as the starting point. The main idea of the
metric wave approach as formulated in Ref. [99] consists in describing a mechanical
deformation as an acoustic phonon perturbation in the curvilinear frame that is
comoving with the atoms, which means that all the effects of the perturbation are
reabsorbed into the first-order metric tensor, while the ions remain still in the
curvilinear comoving frame.

We will loosely follow the notation of Ref. [99] and indicate the metric wave
perturbation with the (β) symbol. In the laboratory frame, we describe an acoustic
phonon perturbation (uβ) as a linear combination of the atomic displacements as
defined in Sec. 2.3.3,

Ĥ
uβ

k,q = ∑
κ

Ĥ
τκβ

k,q. (2.93)

It is shown in Ref. [99] that the following relationship hold between the metric
wave and the phonon perturbations,

∑
κ

Ĥτκβ

k,q = Ĥ(β)
k,q + iĤ(0)

k+q

(
p̂kβ +

qβ

2

)
− i
(

p̂kβ +
qβ

2

)
Ĥ(0)

k , (2.94)

where p̂kβ = −i∇̂β + kβ is the canonical momentum operator. The first term on the
right hand side of Eq. (2.94) is the metric wave Hamiltonian as defined in Ref. [99].
The remaining terms describe an effective potential [100] contribution that arises as
a consequence of the coordinate transformation from the laboratory frame to the
curvilinear reference frame that is comoving with the crystal. (For a comprehensive
analysis of this subject, see Ref. [99].) In a nutshell, the key points regarding the
metric-wave perturbation that we should keep in mind for the scopes of this thesis
are the following:

• At O(q0) an acoustic phonon reduces to a rigid translation of the whole
crystal, which cannot have any effect on the reference frame that is comoving
with the crystal itself. This means that the metric-wave perturbation trivially
vanishes: Ĥ(β)

k,q = 0.

• At O(q1) the metric tensor formulation of the uniform strain as proposed by
HWRV is recovered: Ĥ(β)

k,δ = iĤηβδ

k .

• At O(q2) strain gradient mediated effects are described, e.g., flexoelectricity.

2 .4 .2 revisiting the electric field perturbation

The drawback of the standard treatment of the electric field perturbation [74] based
on the scalar potential is that it is limited to the longitudinal response, in which the
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homogeneous electric field and the wave vector are parallel, E ∥ q. If the transverse
components of the response functions are required, one needs to consider a vector
potential, A, instead of a scalar perturbation, φ. We shall follow the prescriptions of
Ref. [41] and work in an electromagnetic gauge where the scalar potential vanishes
(φ = 0) and E = −∂tA. (The latter is broadly known as the “velocity gauge” as
opposed to the “length gauge” discussed earlier in Sec. 2.3.4.) The response to an
electric field is then computed within a time-dependent framework, using adiabatic
perturbation theory. In particular, the following Sternheimer equation

(Ĥ(0) − ϵ(0)) |∂λ̇n⟩ = i |∂λn⟩ (2.95)

allows the computation of the first-order adiabatic wave functions in response to
λ̇, |∂λ̇n⟩, once the first-order wave functions in response to the static perturbation
λ are known, |∂λn⟩. For the present case, considering a monochromatic vector
potential, Aβ = Aq

βeiq·r, we obtain

Q̂k+q(Ĥ(0)
k+q − ϵ

(0)
mk)Q̂k+q |u

Eβ

mk,q⟩ = −i |uAβ

mk,q⟩ − Q̂k+qV̂Eβ |u(0)
mk⟩ , (2.96)

where the usual SCF term, V̂Eβ , has been added. Direct comparison with a con-
ventional Sternheimer equation leads to the conclusion that the A-field response
function acts like an external perturbation [41] in the context of the electric field
response,

Q̂k+qĤ
Eβ

k,q |u
(0)
mk⟩ −→ |iuAβ

mk,q⟩ . (2.97)

Similar to the standard treatment of the electric field perturbation as introduced in
Sec. 2.3.4, where the previous knowledge of the d/dkβ wave functions was needed,
the present treatment based on the vector potential requires the computation of the

|uAβ

mk,q⟩ wave functions. These are solutions of a Sternheimer equation, where the

external perturbation is set to Ĥ
Aβ

k,q = ∂Ĥk,q/∂Aq
β .

When dealing with nonlocal pseudopotentials, which is almost always the case,
it is important to take special care in establishing the coupling between a generic
Hamiltonian and a vector potential. In Ref. [101], Ismail-Beigi, Chang and Louie
developed a rigorous and exact formalism, based on Feynman path integrals, for
the coupling between a nonlocal potential to an electromagnetic vector potential
A. It can also be proven that the latter approach is equivalent to the straight-
line formulation of Essin et al. [102], where the A dependence of the first-order
Hamiltonian is exclusively included in the phase. In real-space representation,

H(r, r′) = H(0)(r, r′)e−i
∫ r

r′ A·dℓ, (2.98)

where H(r, r′) = ⟨r| Ĥ |r′⟩ and the integral is taken along a straight path from r′ to
r. Expanding Eq. (2.98) up to first order in A,

H(r, r′) ≃ H(0)(r, r′)− iH(0)(r, r′)
∫ r

r′
A · dℓ. (2.99)

By carrying out the integral, one obtains the following real-space representation for
the first-order Hamiltonian in response to a monochromatic vector potential,

H
Aβ
q (r, r′) = −iH(0)(r, r′)(rβ − r′β)

eiq·r − eiq·r′

iq · (r − r′)
. (2.100)
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At q = 0, it is easy to see that, in momentum space, Eq. (2.100) reduces to the
well-known velocity operator [41],

Ĥ
Aβ

k,q=0 =
∂Ĥ(0)

k
∂kβ

= Ĥ
kβ

k . (2.101)

2 .4 .3 treatment of inhomogeneous polarization response

We will devote this section to describing the polarization response to a spatially
varying perturbation. At the linear-response level, this can be recast as the micro-
scopic current-density response to the time-derivative of the perturbation [103],

∂Pα(r)
∂λq =

∂Jα(r)
∂λ̇q

. (2.102)

The problem here is to find a proper definition for the current-density operator
that meets the following two basic criteria: i) the continuity equation must hold
and ii) at q = 0 the current-density operator should reduce to the (minus) velocity
operator,

∇ · J(r) = −∂tn(r), Ĵαk,q=0 = −Ĥkα
k . (2.103)

If the Hamiltonian is local, it can be shown that the textbook form for the current-
density operator,

Ĵloc
α = −1

2

(
|r⟩ ⟨r| p̂α + p̂α |r⟩ ⟨r|

)
(2.104)

nicely meets all the required physical properties, where p̂α is the α-th component
of the momentum operator. However, in presence of nonlocal potentials, the total
current-density operator acquires an additional contribution from the nonlocal
(nl) terms, Ĵα = Ĵloc

α + Ĵnl
α , and Eq. (2.103) no longer holds. It was demonstrated

in Ref. [98] that both conditions in Eq. (2.103) are automatically satisfied if the
current-density operator is defined as the first-order Hamiltonian in response to an
electromagnetic vector potential as defined in the previous section,

Ĵαk,−q = −ĤAα
k,q. (2.105)

By employing a reciprocal-space formulation, the macroscopic polarization response
at any q can then be defined and calculated using a primitive unit cell as [98]

Jq
α,λ = −2

∫
BZ
[d3k] ∑

m∈V
fmk ⟨iuAα

mk,q|uλ
mk,q⟩ , (2.106)

where we have defined Jq
α,λ = Ω ∂Pq

α /∂λq; remember that Ω represents the volume
of the unit cell.

2 .4 .4 analytical long-wave expansion of the second-order

energy

Although density-functional perturbation theory, as described in Sec. 2.3, is a really
powerful tool for computing linear-response physical properties in solids, it was not
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until quite recently that it also became practical for computing spatially dispersive
responses, i.e., computing gradients with respect to the wave vector q. In order
to understand why, consider the polarization response given in Eq. (2.106) as an
illustrative example, and let’s compute its first q gradient,

dJq
α,λ

dqγ

∣∣∣∣
q=0

= −2
∫

BZ
[d3k] ∑

m∈V
fmk

(
⟨iuAα

mk,γ|uλ
mk⟩+ ⟨iuAα

mk|uλ
mk,γ⟩

)
, (2.107)

where the following notation is used,

|uλ
mk,γ⟩ =

∂ |uλ
mk,q⟩

∂qγ

∣∣∣∣
q=0

, |uλ
mk⟩ = |uλ

mk,q=0⟩ . (2.108)

The principal issue here is that the |uλ
mk,γ⟩ wave functions are not a standard

capability of publicly available DFT codes (neither are the |uAα
mk,γ⟩ wave functions,

but we address this point in Appendix D). As a consequence, Eq. (2.107) seems
unlikely to be useful. Is there any way of avoiding gradients of the first-order wave
function responses? A simple route forward consists in repeating the desired linear-
response calculation, e.g., the polarization response via Eq. (2.106), for different
values of the wave vector q and computing the derivative via finite differences.
However, the detrimental consequences of such a procedure are clear as i) it
becomes computationally very demanding and ii) the final result will suffer from
undesired errors coming from numerical derivatives.

To overcome these obstacles, Royo and Stengel reformulated the linear-response
problem as follows. To begin with, as is customary, the second-order energy is
defined as a stationary functional plus a nonvariational contribution,

Eλ1λ2
q = Eλ1λ2

st,q + Eλ1λ2
nv,q , (2.109)

where the form of the nonvariational term depends on the specific perturbations.
The key idea of Royo and Stengel [41] is to recast the stationary contribution as
finding the variational minimum of the following unconstrained second-order energy
functional,

Eλ1λ2
st,q = 2

∫
BZ
[d3k]Eλ1λ2

k,q +
∫

Ω

∫
nλ1∗

q (r)Kq(r, r′)nλ2
q (r′) d3r d3r′, (2.110)

where Kq(r, r′) = KHxc(r, r′)eiq·(r′−r) is the phase-corrected Coulomb and exchange-
correlation kernel. The integrand in the first term of Eq. (2.110) is given by

Eλ1λ2
k,q = ∑

m∈V
fmk ⟨uλ1

mk,q| (Ĥ(0)
k+q + aP̂k+q − ϵ

(0)
mk) |u

λ2
mk,q⟩

+ ∑
m∈V

fmk ⟨uλ1
mk,q| Q̂k+qĤλ2

k,q |u
(0)
mk⟩

+ ∑
m∈V

fmk ⟨u(0)
mk| (Ĥλ1

k,q)
†Q̂k+q |uλ2

mk,q⟩ .

(2.111)

Notice the explicit inclusion of the conduction band projectors in the second and
third lines of Eq. (2.111), which enforces orthogonality between the first-order wave
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functions and the valence manifold, without the need of incorporating additional
constraints. These projectors are also present in the first-order electron densities,

nλ
q(r) = 2

∫
BZ
[d3k] ∑

m∈V
fmk ⟨u(0)

mk|r⟩ ⟨r| Q̂k+q |uλ
mk,q⟩ . (2.112)

The stationary condition on the first-order wave functions results in the following
Sternheimer equation, as proposed by Baroni et al. [104],

(Ĥ(0)
k+q + aP̂k+q − ϵ

(0)
mk) |uλ

mk,q⟩ = −Q̂k+qĤλ
k,q |u

(0)
mk⟩ , (2.113)

where the parameter a is a constant with dimension of energy that ensures that the
left-hand side of Eq. (2.113) does not become singular and that the second-order
energy functional of Eq. (2.111) is stable.

It should be noted that both the constrained second-order energy functional as
initially proposed by Gonze, Eq. (2.55), and the minimization of the unconstrained
functional given by Eq. (2.111) are equivalent and lead to the exact same solution.
However, we shall stick to Eq. (2.111) in the following, as it poses great advantages
in light of performing a long-wavelength expansion. The are two key reasons for
this. First, note that in the constrained variational formulation proposed by Gonze,
the second-order energy functional is minimized under the constraint that the
first-order wave functions are orthogonal to the valence manifold [74],

⟨u(0)
mk+q|uλ

nk,q⟩ = 0, ∀n, m ∈ V , (2.114)

which is the finite q counterpart of Eq. (2.56). Taking the q derivative of the
constrained second-order energy functional is far from obvious, as the ground-
state Bloch functions evaluated at k + q, |u(0)

mk+q⟩, suffer from the typical phase
indeterminacy. Conversely, in the unconstrained variational formulation proposed
by Royo and Stengel, the only objects that explicitly depend on the wave vector
q are operators, which are gauge-independent mathematical objects without the
inherent phase indeterminacy of the Bloch functions. Note that the dependence on
q of the first-order wave functions, |uλ

mk,q⟩, arises due to the stationary condition
imposed on them, since they should be regarded as trial solutions to the variational
problem. The latter implies that they depend on q only implicitly. Second, the
wave vector q can be regarded as a perturbation parameter in the unconstrained
second-order energy functional, meaning that it allows the application of the well-
established machinery of standard perturbation theory and, in particular, the 2n + 1
theorem.

2.4.4.1 First order in q

At first-order in q, straightforward application of the 2n + 1 theorem leads to

Eλ1λ2
γ =

dEλ1λ2
q

dqγ

∣∣∣∣
q=0

=
∂Eλ1λ2

q

∂qγ

∣∣∣∣
q=0

, (2.115)

which means that the total derivative in q coincides with the partial derivative of
the second-order energy functional, where the first-order wave functions, |uλ

mk,q⟩,
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are excluded from differentiation. This implies that the knowledge of the wave
function responses to uniform (q = 0) field perturbations, |uλ

mk⟩, is enough to
access first-order spatial dispersion coefficients. We write the first q gradient of the
second-order energy as

Eλ1λ2
γ = Eλ1λ2

st,γ + Eλ1λ2
nv,γ . (2.116)

The stationary part reads as [41]

Eλ1λ2
st,γ = 2

∫
BZ
[d3k]Eλ1λ2

k,γ +
∫

Ω

∫
nλ1∗(r)Kγ(r, r′)nλ2 d3r d3r′, (2.117)

where

Kγ(r, r′) =
∂Kq(r, r′)

∂qγ

∣∣∣∣
q=0

(2.118)

represents the first q gradient of the Hxc kernel, and the quantity that needs to be
integrated over the whole BZ in Eq. (2.117) is given by

Eλ1λ2
k,γ = ∑

m∈V
fmk ⟨uλ1

mk| Ĥkγ

k |uλ2
mk⟩

− ∑
m,n∈V

fmk

(
⟨uλ1

mk|u
kγ

nk⟩ ⟨u
(0)
nk | Ĥ

λ2
k |u(0)

mk⟩+ ⟨u(0)
mk| (Ĥ

λ1
k )† |u(0)

nk ⟩ ⟨u
kγ

nk|u
λ2
mk⟩
)

+ ∑
m∈V

fmk

(
⟨uλ1

mk| Ĥλ2
k,γ |u

(0)
mk⟩+ ⟨u(0)

mk| (Ĥλ1
k,γ)

† |u(0)
mk⟩
)

.

(2.119)

The new symbol appearing in the last equation is

Ĥλ
k,γ =

∂Ĥλ
k,q

∂qγ

∣∣∣∣
q=0

. (2.120)

The analytical long-wave methodology presented here has been successfully ap-
plied, e.g., in the context of flexoelectricity: it is now possible to compute the
complete flexoelectric tensor, both the electronic [41] and lattice mediated [44]
contributions, completely from first-principles. It has been also proven to be very
useful for the computation of the dynamical quadrupoles [41].

We have deliberately excluded from our analysis an important aspect: for the
long-wavelength expansion we have considered to be true, the second-order energy
must be an analytic function of q around q = 0. However, the Coulomb potential
diverges in the q → 0 limit. In insulators, the latter results in a nonanalytic
contribution to the response that is caused by long-range electric fields. Prior to
the long-wave expansion, those macroscopic electric fields must be suppressed,
which corresponds physically to imposing short-circuit [103] electrical boundary
conditions. However, there is more than one way of doing so: this ambiguity is the
cause of the well-known potential energy reference [105, 106] issue inherent to spatial
dispersion in insulators. (More details are given in the Appendix in Sec. A.1 and
Sec. B.2.)

Our original work starts in the next chapter, where we generalize the long-
wavelength DFPT methodology to metals.



3
E N S E M B L E D F P T: S PAT I A L D I S P E R S I O N I N M E TA L S

In this chapter we generalize the analytical long-wavelength DFPT methodology,
which was introduced at the end of the previous chapter, to metals. Through this
approach, we were able to overcome some of the long-standing methodological
challenges that have characterized most earlier attempts at calculating spatial
dispersion in metals, namely the treatment of SCF fields and cumbersome sums
over unoccupied states.

Ideally, one would want to directly apply the analytical long-wave DFPT method-
ology of Sec. 2.4.4 to an energy functional that describes a metallic system. However,
this unavoidably requires working within a variational framework. As previously
discussed in Sec. 2.3.2, the methodology proposed by de Gironcoli lacks a straight-
forward variational formulation, which prevents the application of the 2n + 1
theorem, essential for our scopes. It is therefore of the utmost importance to figure
out an alternative starting point.

Here we develop a general perturbative framework for metallic systems by
using the ensemble density-functional theory formalism of Marzari, Vanderbilt
and Payne (MVP) [107] as a conceptual basis. The invariance of the latter with
respect to unitary transformations within the active subspace allows us to write an
unconstrained second-order energy functional at an arbitrary q vector, which is
stationary both in the first-order wave functions and in the first-order occupation
matrix. Then, mimicking the well-established procedure that is employed with
insulators [41], the wave vector q is treated as a perturbation parameter, which
provides (via the 2n + 1 theorem) an analytic long-wavelength expansion of the
second-order energy functional at any desired order. Our methodology brings the
first-principles calculation of spatial dispersion properties in metals to the same
level of accuracy and efficiency as in insulators, i.e., only the knowledge of uniform
field perturbations is required to access first-order spatial dispersion coefficients.

Before moving forward, we would like to mention Ref. [108], where Gonze et al.
developed a variational formulation of density functional perturbation theory for
metals, essentially at the same time as we did. (We became aware of their work after
submission of our manuscript.) Even if they reach the same formal conclusions
for the second-order energy functional at finite q, we will see shortly that our
unconstrained formulation proves to be essential for a long-wavelength expansion,
and therefore, for spatial dispersion.

This chapter is organized as follows. First of all, we summarize the fundamentals
of ensemble density-functional theory as described in Ref. [107] by Marzari, Van-
derbilt and Payne. Next, we perform a perturbation expansion of the ensemble DFT
energy functional of MVP, obtaining an unconstrained second-order energy func-
tional of the first-order wave functions and occupation matrices at an arbitrary wave
vector q. In Sec. 3.3, following the guidelines of Ref. [41], we take the first-order
long-wavelength expansion of the aforementioned second-order energy. In Sec. 3.4,

33
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we validate our methodology by computing the spatial dispersion coefficients of
zone-center optical phonons of selected crystal structures. We conclude this chapter
in Sec. 3.5, where we discuss both the strengths and limitations of the current
formalism and give a brief outlook.

3 .1 mvp’s formulation of ensemble dft

Here we recap the basics of ensemble DFT as formulated by Marzari, Vanderbilt and
Payne [107], which can be regarded as a generalization of Mermin’s formulation
of finite temperature DFT [109]. The key assumption of MVP consists in adopting
a matrix representation for the occupancies ( fmn) via the following [107] energy
functional,1

E[{ψm}, { fmn}] = ∑
m,n∈M

fnm ⟨ψm| (T̂ + V̂ext) |ψn⟩+ EHxc[n]− σS[{ fmn}]

− ∑
m,n∈M

Λmn ( ⟨ψm|ψn⟩ − δmn)− µ (Tr (f)− N) .
(3.1)

Here, T̂ is the kinetic energy operator, V̂ext refers to the atomic pseudopotentials
and EHxc is the Hartree exchange and correlation energy, which is a functional of
the electron density,

n(r) = ∑
m,n∈M

fnm ⟨ψm|r⟩ ⟨r|ψn⟩ . (3.2)

In Eq. (3.1), σ and S are, respectively, the smearing parameter and the entropy. The
Lagrange multipliers Λmn and µ enforce the orthonormality of wave functions and
particle number conservation, where N is the total number of electrons. Sums are
carried out for a number of states M with nonzero occupancies that belong to the
active subspace, M. As long that the occupancies of the highest energy states within
this active subspace are vanishingly small, further increasing M does not produce
any change in the total energy or in any other observable derived from Eq. (3.1).

If a diagonal representation for the occupation matrix f is enforced at all times,
Eq. (3.1) reduces to the standard formulation [110–112] of Mermin’s approach.
As the system evolves adiabatically in parameter space, however, the numerical
integration of the resulting electronic equations of motion suffers from severe
ill-conditioning issues [111]. Indeed, whenever level crossings occur near the Fermi
surface, the orbitals need to abruptly change in character (via a subspace rotation)
along the trajectory due to the explicit imposition of the Hamiltonian gauge.
(Sharp symmetry-protected crossings are the most catastrophic, as they imply a
discontinuity in the adiabatic evolution of the orbitals involved.) This is obviously
not an issue in insulators, where the energy is invariant with respect to arbitrary
unitary transformations within the occupied manifold.

The breakthrough idea of ensemble density-functional theory consists in allowing
for nonzero off-diagonal elements of the occupation matrix ( fmn), and to treat them
together with the wave functions (ψm) as variational parameters. By doing so, it is

1 To avoid overcomplicating the notation, we will initially avoid explicit reference to the quantum
number k.
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easy to prove that Eq. (3.1) is covariant under any unitary rotation U of the following
type [107],

f′ = UfU†,

|ψm⟩′ = ∑
n∈M

U†
mn |ψn⟩ , (3.3)

which implies that one is no longer forced to stick to the Hamiltonian gauge. This
way, the problematic [113, 114] subspace rotations can be conveniently reabsorbed
into fmn.

Before moving forward, it is noteworthy to observe the various forms the entropy
can acquire depending on the smearing scheme that is chosen. To see this, consider
the stationary conditions on the energy functional given in Eq. (3.1),

δE
δ fnm

= 0 −→ hmn − µδnm = σ
∂S

∂ fnm
,

δE
δ ⟨ψm|

= 0 −→ ∑
m∈M

(
fnmĤ |ψn⟩ − Λnm |ψn⟩

)
= 0,

(3.4)

where we have defined hmn = ⟨ψm| Ĥ |ψn⟩ and µ plays the role of the Fermi
energy. The first stationary condition in Eq. (3.4) provides a formal link between
the functional form of the entropy with respect to the occupation matrix and
the ground-state energy eigenvalues of the Hamiltonian, hmn. All the matrices
appearing in Eq. (3.4) commute, and consequently, it can be solved in the diagonal
gauge, where it reduces to the usual equation for the occupation numbers,

ϵm − µ = σ
∂S

∂ fm
, (3.5)

with ϵm = hmm. Following the Kohn-Sham scheme, a non-interacting picture is
assumed, which implies that [107] the total entropy can be written as a sum of
individual contributions, S = ∑m Sm. By combining Eq. (3.5) with the definition of
the smeared occupation function, Eq. (2.37), the entropy can be expressed as

Sm = −s
∫ µ−ϵm

σ

−∞
tδ̃(t) dt, (3.6)

where s is, as usual, the spin multiplicity. It can be readily observed that a Gaussian
smearing [see Eq. (2.38)] generates the following Gaussian entropy,

Sm =
1√
π

e−(
µ−ϵm

σ )
2

. (3.7)

Had we stick to the Fermi-Dirac smearing, we would have obtained the well-
known result for the entropy as a function of the occupation numbers, Sm( f ) =
fm ln( fm) + (1 − fm) ln(1 − fm). The price one needs to pay for going beyond the
Fermi-Dirac distribution function is that the entropy is no longer a function of the
occupation numbers, but of the energy eigenvalues, ϵm.
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3 .2 perturbation expansion

We now assume that the Hamiltonian of the system under study depends on some
adiabatic parameter λ and apply the time-independent perturbation theory as
described in Sec. 2.3 to the energy functional given in Eq. (3.1). The parametric
dependence of the Hamiltonian propagates to the wave functions and to the
occupation matrix [see Eq. (2.45) and (2.46)],

fmn(λ) = f (0)mn + λ f (1)mn + . . . (3.8)

The second-order energy can be recast as a constrained variational minimum of
a functional that depends on both the first-order wave functions, |ψ(1)

m ⟩, and the
first-order occupation matrix, f (1)mn . We find

E(2)
con =2 ∑

m,n∈M

(
f (0)mn ⟨ψ(1)

n | Ĥ(0) |ψ(1)
m ⟩ − Λ(0)

mn ⟨ψ(1)
n |ψ(1)

m ⟩
)

+ 2 ∑
m,n∈M

f (0)mn

(
⟨ψ(1)

n | Ĥ(1) |ψ(0)
m ⟩+ ⟨ψ(0)

n | Ĥ(1) |ψ(1)
m ⟩
)

+ 2 ∑
m,n∈M

f (1)mn ⟨ψ(0)
n | Ĥ(1) |ψ(0)

m ⟩ − σ ∑
m,n,l,k∈M

f (1)mn
∂2S

∂ f (0)nm ∂ f (0)lk

f (1)lk

+
∫

Ω

∫
n(1)(r)KHxc(r, r′)n(1)(r′) d3r d3r′ + ∑

m,n∈M
f (0)mn ⟨ψ(0)

n | Ĥ(2) |ψ(0)
m ⟩ ,

(3.9)

where the Lagrange multipliers Λ(0)
mn are related to the matrix elements of the

ground-state Hamiltonian, Λ(0)
mn = f (0)nm ⟨ψ(0)

m | Ĥ(0) |ψ(0)
n ⟩, with f (0)nm = fmδnm. The

constrained energy functional is minimized under the following condition,

⟨ψ(0)
m |ψ(1)

n ⟩ = 0, ∀m, n ∈ M. (3.10)

There is a new term appearing in the third line of Eq. (3.9), which is the second
derivative of the entropy with respect to the occupation matrix. By assuming a
diagonal representation for the unperturbed occupation matrix, one can show that
the following relationship holds,

σ
∂2S

∂ f (0)mn ∂ f (0)kl

=
δmkδnl

f̄mn
, (3.11)

where the matrix f̄mn ≡ G(ϵm, ϵn) is defined as [114]

G(x, y) =


f (x)− f (y)

x−y , if x ̸= y,

1
2

(
∂ f (x)

∂x + ∂ f (y)
∂y

)
, if x = y.

(3.12)

Here, fm ≡ f (ϵm) represents the occupation function. In our numerical implemen-
tation, we set a finite tolerance to test the equality of x and y, hence the need for
the symmetrization in the second line of Eq. (3.12). The stationary condition on the
first-order occupation matrix allows us to find a solution for f (1)mn ,

δE(2)

δ f (1)mn

= 0 −→ f (1)mn = f̄mn ⟨ψ(0)
m | Ĥ(1) |ψ(0)

n ⟩ . (3.13)
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3 .2 .1 unconstrained variational formulation

At this stage, in complete analogy with the insulating case and with the forthcoming
goal of performing an analytical long-wavelength expansion of the energy func-
tional, we write the second-order energy as the following unconstrained variational
functional,

E(2) =2 ∑
m∈M

fm ⟨ψ(1)
m | (Ĥ(0) + aP̂ − ϵ

(0)
m ) |ψ(1)

m ⟩

+ 2 ∑
m∈M

fm

(
⟨ψ(1)

m | Q̂Ĥ(1) |ψ(0)
m ⟩+ c.c.

)
+ 2 ∑

m∈M
f (1)mn ⟨ψ(0)

n | Ĥ(1) |ψ(0)
m ⟩ − ∑

m,n∈M
f (1)mn

ϵ
(0)
n − ϵ

(0)
m

fn − fm
f (1)nm

+
∫

Ω

∫
n(1)(r)KHxc(r, r′)n(1)(r′) d3r d3r′ + ∑

m∈M
fm ⟨ψ(0)

m | Ĥ(2) |ψ(0)
m ⟩ ,

(3.14)

where the operators

P̂ = ∑
m∈M

|ψ(0)
m ⟩ ⟨ψ(0)

m | , Q̂ = 1− P̂ (3.15)

are projectors onto and out of the active subspace, respectively. Note that, unlike
in the insulating case, P̂ does not correspond to the ground-state density operator.
The first-order electron density is given by

n(1)(r) = ∑
m∈M

fm

(
⟨ψ(1)

m | Q̂ |r⟩ ⟨r|ψ(0)
m ⟩+ c.c.

)
+ ∑

m,n∈M
f (1)mn ⟨ψ(0)

n |r⟩ ⟨r|ψ(0)
m ⟩ .

(3.16)
It is interesting to observe that the stationary condition on the first-order wave
functions leads to a standard Sternheimer equation as defined by Baroni et al.
[104] [see Eq. (2.113)]. This implies that, from a computational standpoint, the
first-order wave functions for metals are calculated in an identical manner to those
for insulators; i.e., the subroutine that solves the Sternheimer problem does not even
need to know that the system is metallic or not. The formalism presented in this
section therefore solves the two weaknesses of de Gironcoli’s approach that were
highlighted in Sec. 2.3.2: apart from the obvious advantage of having a variational
formulation, the first-order wave functions are extracted from Eq. (2.113), which
avoids constructing m-dependent projectors for each state, |ψ(1)

m ⟩. A more formal
link to de Gironcoli’s approach will be made in subsequent subsections, once the
nonstationary expressions for the present methodology have been derived.

3 .2 .2 nonstationary formulas

Simpler nonstationary expressions for the second-order energy can be obtained by
plugging the stationary conditions for f (1)mn and |ψ(1)

m ⟩ into Eq. (3.14),

E(2) = ∑
m∈M

fm

(
⟨ψ(1)

m | Ĥ(1) |ψ(0)
m ⟩+ c.c.

)
+ ∑

m,n∈M
f (1)mn ⟨ψ(0)

n | Ĥ(1) |ψ(0)
m ⟩

+ ∑
m∈M

fm ⟨ψ(0)
m | Ĥ(2) |ψ(0)

m ⟩ .
(3.17)
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Interestingly, the only difference between the nonstationary expression of the
second-order energy, Eq. (3.17), and the first-order electron density, Eq. (3.16),
is that the first-order external perturbation, Ĥ(1), appearing in the second-order
energy is replaced with the operator |r⟩ ⟨r| in the first-order electron density
expression. A more compact version of the latter quantities can be achieved by
writing both the second-order energy and the first-order electron density as a trace,

E(2) = Tr
(

ρ̂(1)Ĥ(1) + ρ̂(0)Ĥ(2)
)

,

n(1)(r) = Tr
(

ρ̂(1) |r⟩ ⟨r|
)

,
(3.18)

where the ground-state density operator is given by

ρ̂(0) = ∑
m∈M

|ψ(0)
m ⟩ fm ⟨ψ(0)

m | , (3.19)

and we have defined the first-order density operator as

ρ̂(1) = ∑
m∈M

(
|ψ(0)

m ⟩ fm ⟨ψ(1)
m |+ c.c.

)
+ ∑

m,n∈M
|ψ(0)

m ⟩ f (1)mn ⟨ψ(0)
n | . (3.20)

3 .2 .3 relation to de gironcoli’s approach

The formalism that we have presented so far in this chapter naturally recovers de
Gironcoli’s approach, which was briefly summarized in Sec. 2.3.2. To see this, it is
useful to introduce the following tilded first-order wave functions,

|ψ̃(1)
m ⟩ = |ψ(1)

m ⟩+ 1
2 fm

∑
n∈M

|ψ(0)
n ⟩ f (1)mn . (3.21)

The first-order density matrix is then given by

ρ̂(1) = ∑
m∈M

|ψ(0)
m ⟩ fm ⟨ψ̃(1)

m |+ c.c., (3.22)

which, in turn, exactly reduces to our Eq. (3.20). The nonstationary second-order
energy and the first-order electron density can then be expressed more compactly
using this notation as

E(2) = ∑
m∈M

fm

(
⟨ψ̃(1)

m | Ĥ(1) |ψ(0)
m ⟩+ c.c.

)
+ ∑

m∈M
fm ⟨ψ(0)

m | Ĥ(2) |ψ(0)
m ⟩ ,

n(1) = ∑
m∈M

fm ⟨ψ̃(1)
m |r⟩ ⟨r|ψ(0)

m ⟩+ c.c.
(3.23)

Those expressions for the first-order electron density and the second-order energy
are equivalent to those obtained by de Gironcoli [95]. (In fact, our tilded first-
order wave functions defined here are directly related to the “∆” first-order wave
functions of de Gironcoli’s methodology as introduced in Sec. 2.3.2. Note that
the projection of Eq. (2.67) into the space perpendicular to the active subspace
immediately gives rise to a Sternheimer equation as that obtained by imposing the



3.3 analytical long-wavelength expansion 39

stationary condition on the first-order wave functions in our variational second-
order energy functional.) Interestingly, our expressions given in Eq. (3.23) resemble
the ones that are commonly employed in insulators. Here, however, the tilded
first-order wave functions take into account the subspace unitary rotations in the
active subspace, via the second term on the right-hand side of Eq. (3.21); this term
is absent in insulators.

3 .2 .4 parametric derivative of operators

The first-order electron density operator given by Eq. (3.20) is special case of a
more general rule for differentiating operators along adiabatic paths in parameter
space. We establish this rule in the following, since it is key to the long-wavelength
expansion of the second-order energy functional that we aim to perform in the next
section. Consider an operator of the following form,

Ô = ∑
m∈M

|ψ(0)
m ⟩ h(ϵ(0)m ) ⟨ψ(0)

m | , (3.24)

where h(ϵ(0)m ) is a real and differentiable function of the ground-state energy
eigenvalues of the system, ϵ

(0)
m . The derivative of Ô with respect to an adiabatic

parameter λ is then given by

∂Ô
∂λ

= ∑
m∈M

(
|ψ(0)

m ⟩ h(ϵ(0)m ) ⟨ψλ
m|+ c.c.

)
+ ∑

m,n∈M
G(ϵ(0)m , ϵ

(0)
n ) |ψ(0)

n ⟩ ⟨ψ(0)
n | Hλ |ψ(0)

m ⟩ ⟨ψ(0)
m | ,

(3.25)

where G is defined as in our Eq. (3.12), only replacing the occupation function
f with h therein. This result essentially corresponds to Eq. (20) of Ref. [115], but
recast within a DFPT context. Its proof rests on the following two rules,

∂h(ϵ(0)m )

∂λ
=

∂h(ϵ(0)m )

∂ϵ
(0)
m

⟨ψ(0)
m | Ĥλ |ψ(0)

m ⟩ ,

∂ |ψ(0)
m ⟩

∂λ
= |ψλ

m⟩+
′

∑
n∈M

|ψ(0)
n ⟩ ⟨ψ(0)

n | Ĥλ |ψ(0)
m ⟩

ϵ
(0)
m − ϵ

(0)
n

,

(3.26)

where the prime symbol in the summation indicates that term n = m is not included.
Note that, when applied separately, Eq. (3.26) require that there be no degeneracies
in the spectrum; conversely, Eq. (3.25) is valid in the general case. Notice that
if h corresponds to the occupation function fm, the operator Ô reduces to the
ground-state density operator and Eq. (3.25) becomes Eq. (3.20).

3 .3 analytical long-wavelength expansion

In this section, our attention will be drawn to our primary objective, which is
taking the long-wavelength limit of the second-order energy functional. Before
doing so, however, and after rewriting Eq. (3.14) for the case in which the external
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perturbations are modulated by a wave vector q, we will discuss an important
subtlety related to time reversal symmetry. Once the theoretical grounds are well
established, including the electrostatic issues related to taking the q → 0 limit of
the potentials, we will give the main result of this chapter in Sec. 3.3.3, which is an
analytical expression for first-order spatial dispersion coefficients in metals.

3 .3 .1 variational second-order energy at finite q

We now apply the formalism presented in the previous subsection to the case
of a monochromatic perturbation, which is modulated at a wave vector q, as
described in Sec. 2.3.1. As is customary, we shall work with the cell-periodic part
of the wave functions and operators. The starting point is once again Eq. (2.109),
which decomposes the total energy as a stationary functional plus a nonvariational
contribution. Nevertheless, in contrast to Sec. 2.4.4, where TR symmetry is used
everywhere to simplify the expressions for insulators, we shall write down the
stationary part at finite q for the most general case; the reason why we do not
assume TR symmetry for the time being shall become clear soon. We find,

Eλ1λ2
st,q =

∫
BZ
[d3k]

(
Ēλ1λ2

k,q + Ēλ1λ2 ∗
k+q,−q + ∆Eλ1λ2

k,q

)
+
∫

Ω

∫
nλ1∗

q (r)Kq(r, r′)nλ2
q (r′) d3r d3r′.

(3.27)

We shall name the new symbols appearing in Eq. (3.27) as the wave function (Ē) and
occupation (∆E) contributions, which are given by

Ēλ1λ2
k,q = ∑

m∈M
fmk ⟨uλ1

mk,q| (Ĥ(0)
k+q + aP̂k+q − ϵ

(0)
mk) |u

λ2
mk,q⟩

+ ∑
m∈M

fmk ⟨uλ1
mk,q| Q̂k+qĤλ2

k,q |u
(0)
mk⟩

+ ∑
m∈M

fmk ⟨u(0)
mk| (Ĥλ1

k,q)
†Q̂k+q |uλ2

mk,q⟩ ,

(3.28)

and

∆Eλ1λ2
k,q = ∑

m,n∈M
f λ1
mk,nk+q ⟨u

(0)
nk+q| Ĥλ2

k,q |u
(0)
mk⟩

+ ∑
m,n∈M

⟨u(0)
mk| (Ĥλ1

k,q)
† |u(0)

nk+q⟩ f λ2
nk+q,mk

− ∑
m,n∈M

f λ1
mk,nk+q

ϵ
(0)
nk+q − ϵ

(0)
mk

fnk+q − fmk
f λ2
nk+q,mk.

(3.29)

In absence of TR symmetry, the first-order electron density is given by

nλ
q(r) =

∫
BZ
[d3k] ∑

m∈M
fmk ⟨u(0)

mk|r⟩ ⟨r| Q̂k+q |uλ
mk,q⟩

+
∫

BZ
[d3k] ∑

m∈M
fmk+q ⟨uλ

mk+q,−q| Q̂k |r⟩ ⟨r|u(0)
mk+q⟩

+
∫

BZ
[d3k] ∑

m,n∈M
fmk ⟨u(0)

mk|r⟩ ⟨r|u
(0)
nk+q⟩ f λ

nk+q,mk.

(3.30)
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Before moving forward, it is useful to recall the following Hermiticity conditions
for first-order occupation matrices (fλ) and operators (Ôλ = {Ĥλ, Ĥλ, ρ̂λ}),

f λ†
nk+q,mk = f λ

mk,nk+q, Ôλ†
k,q = Ôλ

k+q,−q, (3.31)

which guarantees that the Fourier transforms of the response functions defined
here are real. The stationary conditions on ⟨uλ

mk,q| and f λ†
nk+q,mk of the second-order

energy functional give us, respectively, the standard Sternheimer equation for the
first-order wave functions, Eq. (2.113), and the finite q counterpart of Eq. (3.13),
which reads as

f λ
nk+q,mk =

fnk+q − fmk

ϵ
(0)
nk+q − ϵ

(0)
mk

⟨u(0)
nk+q| Ĥλ

k,q |u
(0)
mk⟩ . (3.32)

To simplify notation, we shall write f λ
mnk to indicate f λ

mk,nk (the same holds for
f̄mnk). As a result, the finite q counterpart of the nonstationary expression for the
second-order energy reported in Sec. 3.2.2 is given by

Eλ1λ2
nonst,q =

∫
BZ
[d3k]Tr

(
Ĥλ1

k+q,−qρ̂λ2
k,q

)
, (3.33)

where the integrand is written in a compact form as a trace, and the first-order
density operator can be written as

ρ̂λ
k,q = ∑

m∈M

(
|uλ

mk,q⟩ fmk ⟨u(0)
mk|+ |u(0)

mk+q⟩ fmk+q ⟨uλ
mk+q,−q|

+ |u(0)
nk+q⟩ f λ

nk+q,mk ⟨u
(0)
mk|
)

.
(3.34)

As outlined at the very beginning in Sec. 3.1, observable quantities must not
depend on the size of the active subspace. It can be readily demonstrated that
the nonstationary second-order energy, Eλ1λ2

nonst,q, is also independent of M. The
proof relies on the M-independence of the first-order density operator, ρ̂λ2

k,q: if M
changes, part of the spectral weight is transferred from the first two terms to the
Kubo-like contribution in the second line of Eq. (3.34), but the overall sum remains
unchanged. In the limit where M tends to infinity, the active space M coincides
with the entire Hilbert space; then, the first two terms vanish and the entire operator
is expressed in a Kubo-like sum-over-all-states [third contribution in Eq. (3.34)]
form [116]. Conversely, in gapped systems at zero temperature, i.e., insulators, it
is common practice to restrict the active subspace to its bare minimum (i.e., to
the valence manifold). In this case, ∆Eλ1λ2

k,q vanishes identically, and the remainder
contributions recover the well-known DFPT expressions for insulators that were
introduced in Sec. 2.3.

3 .3 .2 time-reversal symmetry

The formulas presented in the previous subsection have the drawback that they
require, in principle, solving the Sternheimer problem simultaneously at q and −q.
In the following, we shall specialize our theory to crystals that enjoy TR symmetry,
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where this inconvenience can be avoided. Indeed, assuming that both perturbations
λ1 and λ2 are even under a TR operation, we have

⟨r|u(0)
mk⟩ = ⟨u(0)

m−k|r⟩ , ⟨r|uλ
mk,q⟩ = ⟨uλ

m−k,−q|r⟩ , (3.35)

which implies
Ēλ1λ2 ∗

k+q,−q = Ēλ1λ2
−k−q,q −→ Ēλ1λ2

k,q . (3.36)

Since the latter quantity must be anyway integrated over the Brillouin Zone, we are
allowed to operate an arbitrary shift in k-space, such that −k − q → k. This allows
us to write the stationary expression for the second-order energy as

Eλ1λ2
st,q =

∫
BZ
[d3k]

(
2Ēλ1λ2

k,q + ∆Eλ1λ2
k,q

)
+
∫

Ω

∫
nλ1∗

q (r)Kq(r, r′)nλ2
q (r′) d3r d3r′, (3.37)

with the first-order electron densities defined as

nλ
q(r) =

∫
BZ
[d3k]

[
2 ∑

m∈M
fmk ⟨u(0)

mk|r⟩ ⟨r| Q̂k+q |uλ
mk,q⟩

+ ∑
m,n∈M

⟨u(0)
mk|r⟩ ⟨r|u

(0)
nk+q⟩ f λ

nk+q,mk

]
.

(3.38)

Note that the first-order wave functions at −q are no longer needed. Similarly,
after imposing the stationary principles, we arrive at an analogous nonstationary
formula for the second derivative of the energy,

Eλ1λ2
nonst,q =

∫
BZ
[d3k]

[
2 ∑

m∈M
fmk ⟨u(0)

mk| (Ĥλ1
k,q)

† |uλ2
mk,q⟩

+ ∑
m,n∈M

⟨u(0)
mk| (Ĥλ1

k,q)
† |u(0)

nk+q⟩ f λ2
nk+q,mk

]
.

(3.39)

The use of TR symmetry in DFPT is, of course, well established; indeed, we
have employed it implicitly in Sec. 2.3 in order to simplify the expressions for
insulators. The reason for spelling it out explicitly here is related to an important
subtlety specific to the metallic case that we believe is worth mentioning. The
key point to note is that, because of the shift in k-space that we have operated
on the TR-rectified “−q” terms, the integrands (i.e., the quantities in the square
brackets) in Eq. (3.38) and (3.39) are no longer independent of M: such property
is restored only after integration over the full BZ is performed. This observation
has an undesirable consequence when operating the parametric differentiation in
q (see next subsection): the accuracy of the result depends on the vanishing of
the total k-derivative of Ēλ1λ2

k,0 . For this requirement to hold, we need Ēλ1λ2
k,0 to be a

differentiable function of k, which is only true if the active subspace M forms an
isolated group of bands; i.e., it must be separated from higher unoccupied states by
a gap. This is illustrated in Fig. 3.1.

There are, of course, some fortunate cases where it is possible to find well-defined
energy gaps in the conduction-band region of the spectrum and it is possible to
choose M in such a way that ϵ

(0)
Mk − ϵ

(0)
M+1k ̸= 0 over the whole BZ. Less fortunate
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Figure 3.1: Cartoon illustrating the electronic band structure of a
hypothetical crystal, where the active subspace M is separated
by an energy gap from the rest of bands forming the group O.
For the ensemble DFPT method we have presented in this chapter
to be applicable, this requirement needs to hold for all k points
in the Brillouin Zone. However, degeneracies are allowed within
each group.

cases might require choosing a different M for distinct k points, in order to avoid
degeneracies between M and M + 1. (When such degeneracies are present, the
linear-response Sternheimer problem becomes ill-conditioned, which makes it
difficult or impossible to reach numerical convergence.) Although in principle
possible, doing so would require using Eq. (3.27), in place of Eq. (3.37), as a starting
point for the long-wave expansion. This would entail a significant revision of the
spatial-dispersion formulas already implemented in abinit; for practical reasons,
we have decided to stick to the TR invariant equations in the following.

A natural question to pose is why the aforementioned energy gap in the spectrum
is essential for our scopes, if DFPT calculations on metals have been conducted for
decades without consideration of this issue. What is the distinction between the
two approaches? To gain a deeper understanding of this matter, it is sufficient to
examine the expressions in question. In the nonstationary second-order energy, Eq.
(3.39), the first-order wave functions are multiplied by the occupation number of
its corresponding state, fmk. If the occupation of such a state is vanishingly small,
i.e., fmk ∼ 0, there is no need for us to converge the corresponding first-order
wave functions. This is in fact the standard strategy employed when dealing with
metals: one selects M in such a way that the occupation of the last states in the
calculation are negligible, and one reserves the right to leave the highest first-order
wave functions unconverged. On the contrary, in the variational expression that we
have derived, Eq. (3.37), because of the presence of the terms f̄nk+q,mk, even if the
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occupation of a given state is negligible, its contribution to the second-order energy
is not. It is therefore imperative that all states that are included in the calculation
be converged.

3 .3 .3 first-order in q

Our next task consists in taking the analytical derivative of Eq. (3.37) with respect
to q. The advantages of the unconstrained variational formulation that have been
previously discussed in Sec. 2.4.4 for insulators are applicable in this context. In
particular, remember that at first-order in q, the 2n + 1 theorem states that the total
derivative in q coincides with the partial derivative of the second-order energy
functional. In the present case, this implies that both the first-order wave functions,
|uλ

mk,q⟩, and occupation matrices, f λ
mk,nk+q, are excluded from differentiation. The

final result for the q-derivative of the stationary part reads as

Eλ1λ2
st,γ =

∫
BZ
[d3k]

(
2Ēλ1λ2

k,γ + ∆Eλ1λ2
k,γ

)
+
∫

Ω

∫
nλ1∗(r)Kγ(r, r′)nλ2(r′) d3r d3r′. (3.40)

The wave function term is in the exact same form as in the insulating case [see Eq.
(2.119)]. We write it down here to indicate explicitly that the sums are carried out
for all states considered in the active subspace M,

Ēλ1λ2
k,γ = ∑

m∈M
fmk ⟨uλ1

mk| Ĥkγ

k |uλ2
mk⟩

− ∑
m,n∈M

fmk ⟨uλ1
mk|u

kγ

nk⟩ ⟨u
(0)
nk | Ĥ

λ2
k |u(0)

mk⟩

− ∑
m,n∈M

fmk ⟨u(0)
mk| (Ĥ

λ1
k )† |u(0)

nk ⟩ ⟨u
kγ

nk|u
λ2
mk⟩

+ ∑
m∈M

fmk

(
⟨uλ1

mk| Ĥλ2
k,γ |u

(0)
mk⟩+ ⟨u(0)

mk| (Ĥλ1
k,γ)

† |uλ2
mk⟩
)

.

(3.41)

The occupation term, specific to metals, is given by

∆Eλ1λ2
k,γ = ∑

m,n∈M
f̄mnk ⟨u(0)

mk| (Ĥ
λ1
k )† |u(0)

nk ⟩ ⟨u
(0)
nk | Ĥλ2

k,γ |u
(0)
mk⟩

+ ∑
m,n∈M

f̄mnk ⟨u(0)
mk| (Ĥλ1

k,γ)
† |u(0)

nk ⟩ ⟨u
(0)
nk | Ĥ

λ2
k |u(0)

mk⟩

+ ∑
m,n∈M

f̄mnk ⟨u(0)
mk| (Ĥ

λ1
k )† |u(0)

nk ⟩ ⟨u
kγ

nk| Ĥ
λ2
k |u(0)

mk⟩

+ ∑
m,n∈M

f̄mnk ⟨u(0)
mk| (Ĥ

λ1
k )† |ukγ

nk⟩ ⟨u
(0)
nk | Ĥ

λ2
k |u(0)

mk⟩

+ ∑
m,n,l∈M

Fmnlk ⟨u(0)
mk| (Ĥ

λ1
k )† |u(0)

nk ⟩ ⟨u
(0)
nk | Ĥkγ

k |u(0)
lk ⟩ ⟨u(0)

lk | Ĥλ2
k |u(0)

mk⟩ .

(3.42)

The proof of Eq. (3.42) rests on the rules for the differentiation of operators outlined
in Sec. 3.2.4, which we apply here to the case λ = qγ and h(ϵ(0)mk+q) = G(ϵ

(0)
nk , ϵ

(0)
mk+q).

This immediately gives rise to the calligraphic symbol Fmnlk ≡ F (ϵmk, ϵnk, ϵlk),
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which is invariant under any permutation of the three band indices. It is defined as
[114]

F (x, y, z) =


G(x,y)−G(x,z)

y−z , y ̸= z

1
6

(
∂2 f (x)

∂x2 + ∂2 f (y)
∂y2 + ∂2 f (z)

∂z2

)
, x = y = z.

(3.43)

The symmetrization with respect to all three indices in the second line follows
the same logic as that used for G(x, y) [see Eq. (3.12) and the comment right
after]. We have carefully tested that our implementation of the function F (x, y, z) is
continuous and smooth in the critical x ≃ y ≃ z region. To illustrate the qualitative
differences between F and G, in Fig. 3.2 we present two filled contour plots of
the functions G(x, y) and F (x, y, 0); their respective symmetric and antisymmetric
nature under the interchange of the two arguments is clear.

3 .3 .4 fermi level shifts

As outlined at the end of Sec. 2.4.4, long-wavelength expansions generally require
some care, as the Coulomb potential diverges in the q → 0 limit. In insulators,
this divergence results in a nonanalytic contribution to the response that is due
to long-range electric fields. In metals, however, such fields are screened by the
redistribution of free carriers, which tends to enforce local charge neutrality. The
requirement of charge neutrality becomes strict at q = 0, where it needs to be taken
care of explicitly, via the holonomic constraint on particle number in Eq. (3.1). Until
now, we have intentionally postponed addressing this matter. In the following
discussion, we will provide a comprehensive analysis.

At second-order in the perturbations, the constraint that enforces particle number
conservation propagates to the second-order energy functional as µλTr(fλ), where

G(x, y)
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Figure 3.2: Two-dimensional contour plots (in arbitrary units) of
the G and F functions as defined in Eq. (3.12) and Eq. (3.43),
respectively. The left panel shows G(x, y) and the right panel
F (x, y, 0).
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µλ plays the role of a first-order Lagrange multiplier [76]. By imposing the stationary
condition on the fλ matrix, one readily obtains the “Fermi level shifts” contribution,

f λ
nmk = f̄nmk

(
⟨u(0)

nk | Ĥλ
k |u

(0)
mk⟩ − δmnµλ

)
= f̄nmk ⟨u(0)

nk |
(
Ĥλ

k − µλ
)
|u(0)

mk⟩ .
(3.44)

A closed expression for µλ is can be obtained by imposing that the trace of fλ

should vanish. We obtain

µλ =

∫
BZ
[d3k]∑

m
f ′mk ⟨u(0)

mk| Ĥλ
k |u

(0)
mk⟩∫

BZ
[d3k]∑

m
f ′mk

, (3.45)

where f ′mk = ∂ f (ϵ)
∂ϵ

∣∣
ϵ=ϵ

(0)
mk

.

It is important to stress that the Fermi-shift-corrected second-order energy at Γ is
the exact q → 0 limit of the second-order energy calculated at a small but finite
q; in the latter, the diverging G = 0 term in the Coulomb kernel is still present,
and therefore, no correction is needed. Note that the limit is the same regardless of
the direction, which is equivalent to observing that adiabatic response functions in
metals at finite electronic temperature are always analytic functions of q. This means
that, unlike in insulators, the long-wave expansion of the force-constant matrix
can be carried out on the whole response function, without the need of artificially
suppressing the macroscopic electric field contribution prior to differentiation. This
also implies that special care is needed at correctly differentiating such macroscopic
electrostatic term with respect to q in Eq. (3.40). The macroscopic (mac) electrostatic
contributions are originated from three different sources: the first contribution
comes from the nonvariational term, the second contribution originates from the
electrostatic term in Eq. (3.40), and the third contribution arises from the first two
lines of the occupation term, Eq. (3.42). All the divergences nullify each other,
yielding an additional contribution that is proportional to the Fermi level shifts
(µλ) produced by the perturbations. For the phonon case,

E
τκατκ′β
mac,γ ≃ iδαγZκµτκ′β − iδβγµτκα Zκ′ , (3.46)

where Zκ is the bare nuclear pseudo-charge of sublattice κ. (A detailed derivation
of Eq. (3.46) can be found in Appendix A, Sec. A.2 and A.3.)

Since there is no need to remove the (ambiguous) macroscopic fields contributions
prior to the long-wave expansion, the adiabatic spatial dispersion coefficients are
well-defined bulk properties in metals. In other words, the far-away surfaces cannot
contribute electrostatically to the bulk response, and the problematic potential energy
reference [44] issue inherent to spatial dispersion in insulators is absent in metals.

3 .4 application to phonons

Up to now, our theory has been presented in a completely general form, and
is valid as it stands for any pair of perturbations λ1 and λ2. For a numerical
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validation of the formal results presented thus far, in the following we shall focus
our attention to atomic displacements. In particular, we will report first-order
spatial dispersion coefficients of zone-center optical phonons of selected metal
structures. This application, while primarily intended as a numerical illustration
of our methodology, has an obvious practical relevance as well, given the ongoing
interest in polar metals.2

The basic ingredient for what follows is the force-constant (FC) matrix, Φq, as
defined in Eq. (2.77). We write its long-wave expansion in a vicinity of q = 0 as
[103, 117]

Φq
κα,κ′β ≃ Φ(0)

κα,κ′β − i ∑
γ

qγΦ(1,γ)
κα,κ′β −

1
2 ∑

γ,δ
qγqδΦ(2,γδ)

κα,κ′β, (3.47)

were Φ(0) is the zone-center FC matrix, and Φ(1) and Φ(2) describe its spatial
dispersion at first and second order in the momentum q. We shall discuss their
physical relevance (and their relation to the theory developed insofar) separately:
the first-order in q case will be addressed in the following lines and we will defer
the discussion of Φ(2), which plays a central role in the context of flexoelectricity,
for Chapter 4. Φ(1,γ)

κα,κ′β is related to the force produced on sublattice κ along α

by a displacement pattern of the sublattice κ′ that is linearly increasing in space
along rγ. If the lattice Hamiltonian were local (i.e., if the atomic lattice behaved
like an array of noninteracting harmonic oscillators), such force would trivially
correspond to Rκ′γΦ(0)

κα,κ′β; Φ(1) describes the correction to that value that is due to

the nonlocality of the interatomic forces. Historically, Φ(1) was first introduced in
the context of bulk flexoelectricity, where it mediates an indirect contribution to the
lattice response to a macroscopic strain gradient [44, 103] (see Sec. 4.1.2 for a more
detailed discussion). Such a contribution is relevant whenever the crystal allows for
Raman-active lattice modes, e.g., in diamond-structure crystals (bulk Si or C) and
tilted perovskites like SrTiO3 or LiOsO3. More recently, its importance was pointed
out in ferroic crystals, where it acquires a central place in the context of nonlinear
gradient couplings (most notably, in the form of antisymmetric Dzyaloshinskii-
Moriya-like terms [118]) between lattice modes. In chiral crystals such as α-HgS,
the main physical consequence of Φ(1) consists in the appearance of chiral phonon
modes with opposite angular momentum that disperse linearly along the main
crystal axis [119]. Such an effect can be regarded as the phonon counterpart of the
natural optical activity [4], which we shall study in detail in Chapter 6.

Based on the theory developed thus far, and in combination with the established
methodology for insulators that was already presented in Sec. 2.4.4, we calculate
Φ(1) as

Φ(1,γ)
κα,κ′β = − Im

(
E

τκατκ′β
st,γ + E

τκατκ′β
Ew,γ

)
. (3.48)

The stationary part is straightforwardly obtained by substituting λ1 = τκα and
λ2 = τκ′β into Eq. (3.40), while the nonvariational contribution acquires the form of
the first q derivative of the ionic Ewald (Ew) energy, whose explicit expression can
be found in Appendix A of Ref. [44].

2 We shall bring our attention to this class of materials in Chapter 4.
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Figure 3.3: Cartoon illustrating the crystal structure of TiB (left)
and VO2 (right). Grey arrows indicate the crystallographic direc-
tions that form the Cartesian axes.

3 .4 .1 a useful sum rule

In order to validate our computational strategy for the calculation of the Φ(1) tensor,
it is useful to recall the following well-established relationship [117],

Λκ
αβγ = ∑

κ′
Φ(1,γ)

κα,κ′β + fκβδαγ, (3.49)

where fκβ represents the atomic force on the sublattice κ along the Cartesian
direction β and Λκ

αβγ is the piezoelectric force-response tensor, which can be
computed with the metric-tensor formulation as proposed by HWRV [96] (see
Sec. 2.3.5 for more details) and is a standard capability of publicly distributed
DFT codes. While the sum rule provided by Eq. (3.49) was initially established for
insulators [44], we will prove its validity in metals, demonstrating that no additional
modifications are required. It should be noted that, unless otherwise stated, we
assume that the system under study is at mechanical equilibrium, i.e., forces and
stresses tend to zero.

3 .4 .2 results

We will consider two types of different structures. First, we will study the zincblende-
type structure metals TiB and SiP, which constitute valuable theoretical models for
testing our implementation. The selection of the face-centered cubic (fcc) structures
for TiB and SiP, which belong to the space group F4̄3m and contain two atoms per
unit cell, is motivated by their high symmetry and their structural resemblance to
zincblende, an extensively studied compound. We will then turn our attention to
VO2, a more complex material with P42/mnm space group that contains 6 atoms
per unit cell, where each V atom is bonded to six oxygen atoms, forming a VO6

octahedron. A schematic representation of the employed crystal structures is given
in Fig. 3.3.
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3.4.2.1 Computational parameters

Our first principles calculations are performed with the DFT and DFPT imple-
mentations of the open-source abinit [42, 43] package with the Perdew-Wang
[81] parametrization of the local density approximation (LDA). Our long-wave
ensemble DFPT expressions for the computation of spatial dispersion properties
in metals, Eq. (3.40) to (3.42), are incorporated to the abinit package after minor
modifications to the recently implemented longwave module. Norm-conserving
pseudopotentials from the Pseudo Dojo [120] website are used as input to the
ONCVPSP [88] software, in order to regenerate them without exchange-correlation
nonlinear core corrections.3

We use a plane-wave cutoff of 60 Ha and a Gaussian smearing of 0.01 Ha for all
our test cases. The BZ is sampled with a dense Monkhorst-Pack mesh of 20× 20× 20
k points for TiB and SiP and 16 × 16 × 16 k points for VO2. The crystal structures
are relaxed until all the forces are smaller than 0.5× 10−7 Ha/bohr, obtaining a unit
cell parameter of a = 9.176 bohr and a = 9.879 bohr for TiB and SiP, respectively.
The calculated lattice parameters for VO2 are a = 8.540 bohr and c = 5.154 bohr.

The active subspace is chosen to be M = 8 for SiP, M = 34 for VO2 and either
M = 10 or M = 14 for TiB. These choices guarantee that the active subspace forms
an isolated group of bands in all cases, following the observations at the end of Sec.
3.3.2. Fig. 3.4 shows the electronic band structure of TiB, SiP and VO2, where the
M-th band is highlighted in red in SiP and VO2 and in green (M = 10) and red
(M = 14) in TiB. Using two different values for M in the case of TiB allows us to
test the consistency of our implementation and, more specifically, the independence
of the converged results on the dimension of the active subspace.

3.4.2.2 TiB and SiP

We shall start by testing our implementation with the zincblende-type structure
metals TiB and SiP. First of all, note that the crystal symmetries of the materials
substantially reduce the number of independent components of Φ(1). Eq. (3.49)
reduces to ϕ = λ, since [44]

Φ(1,γ)
κα,κ′β = (−1)κ+1(1 − δκκ′)ϕ

∣∣∣ϵαβγ
∣∣∣,

Λκ
αβγ = (−1)κ+1λ

∣∣∣ϵαβγ
∣∣∣, (3.50)

where ϵαβγ is the Levi-Civita symbol. In Table 3.1 we show the only independent
component of Φ(1) (Λ), indicated as ϕ (λ). The sum rule given by Eq. (3.49) is
validated to a remarkably high level of accuracy. As an additional test of our
implementation, we show in Fig. 3.5 the computed ϕ parameter for TiB as a function
of the k-point mesh resolution. Furthermore, in order to prove that our results
remain unaltered irrespective of variations in the parameter M (size of the active
subspace), we show a comparison between M = 10 and M = 14. The obtained
results reveal a high level of agreement, which corroborates the robustness of our

3 This is a limitation of the longwave module of abinit during the period this thesis was performed,
which affects (at least) versions v9.10 and before. This applies to all the calculations shown in this
thesis.
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Figure 3.4: Electronic band structures of TiB (top), SiP (middle)
and VO2 (bottom). For TiB, the M = 10-th and the M = 14-th
bands are highlighted, respectively, in green and red. The band
depicted in red for the other cases is M = 8 for SiP and M = 34
for VO2.

implementation. The discrepancies between the results obtained with M = 10 and
M = 14 in Fig. 3.5 for small k-point samplings can be attributed to the shift in
k space that we discussed in Sec. 3.3.2. Had we adhered to Eq. (3.27), instead of
utilizing Eq. (3.37), the results in Fig. 3.5 would have aligned perfectly, regardless
of the number of k points employed in the calculation.
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ϕ λ

TiB 224.360 224.368

SiP 287.126 287.340

Table 3.1: A comparison between ϕ and λ for TiB and SiP, in 10−3

Ha/bohr units (see Eq. 3.50). ϕ is computed with our long-wave
ensemble DFPT formalism presented in this chapter and λ with
the standard HWRV implementation.
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Figure 3.5: Convergence of the ϕ parameter [see Eq. (3.50)] for TiB
as a function of the k point mesh resolution, for M = 10 and M =
14. This is a numerical validation that, as long as the highest states
considered in the calculation have vanishing occupations, all the
observables that can be extracted from the energy functional are
independent of the size of the active subspace, M. Solid lines are
a guide to the eye.

To conclude with the zincblende structures and in order to validate the sum rule
given by Eq. (3.49) in presence of nonvanshing forces, we apply a displacement
of 0.3 bohr along the x Cartesian direction to the B atom in TiB. The resulting
crystal structure belongs to the space group Imm2 and we obtain, in absolute
value, maximum interatomic forces of 3 × 10−2 Ha/bohr and stress components of
3.5 × 10−4 Ha3/bohr. Table 3.2 shows selected tensor elements of Λ(1), computed
either directly with the HWRV approach or via the sum rule given by Eq. (3.49).
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HWRV [Eq. (3.49)]′ Eq. (3.49)

ΛTi
xxx 64.420 35.140 64.417

ΛTi
xyy −104.004 −104.876 −104.876

ΛTi
xzy −221.380 −220.530 −220.530

ΛTi
yxy −49.769 −78.171 −48.894

ΛTi
yzx −231.073 −231.070 −231.070

Table 3.2: Independent components of the piezoelectric force-
response tensor of distorted TiB, computed with the standard
HWRV implementation and with the sum rule of Eq. (3.49). The
prime symbol indicates that the contributions coming from the
interatomic forces have not been taken into account. Values are
given in 10−3 Ha/bohr.

HWRV Eq. (3.49)

ΛO1
xxx 64.941 64.914

ΛO1
xyx −15.186 −15.181

ΛO1
yxx 3.297 3.300

ΛO1
zzx 131.388 131.386

ΛO1
xzz 162.162 162.177

Table 3.3: Independent components of the piezoelectric force-
response tensor of VO2, obtained either with the standard HWRV
implementation or from the Φ(1) tensor with our ensemble DFPT
formalism via the lattice sum given by Eq. (3.49).

3.4.2.3 VO2

Due to the crystal symmetries of VO2, the sum rule given in Eq. (3.49) is non-trivial,
meaning that there are more independent components in the Φ(1) tensor than in
Λ. As a consequence, and in contrast with TiB and SiP, the equality only holds
after the contributions coming from different sublattices have been summed. This
will serve as a further test for the accuracy of our implementation. Fig. 3.6 shows
the convergence of selected entries of the piezoelectric force-response tensor as a
function of the k-mesh, and Table 3.3 displays the converged numerical results.

3 .5 summary and outlook

In this chapter, by combining the virtues of ensemble density-functional theory [107]
and density-functional perturbation theory [104], we have established a general
and powerful first-principles approach for calculating spatial dispersion proper-
ties —and more broadly, higher-order derivatives of the total energy— in metals.
We have focused our numerical tests on the calculation of the first-order spatial
dispersion coefficients of zone-center optical phonons in selected metal structures,
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Figure 3.6: Convergence of selected entries of the piezoelectric
force-response tensor of VO2 as a function of the k point mesh
resolution, where “sum rule” refers to the right hand side of Eq.
(3.49). Solid lines are a guide to the eye.

corroborating the accuracy and efficiency of the presented methodology. Our work
opens numerous exciting avenues for future studies; we will outline some of them
in the following.

• First, the advantages of the approach presented here can be immediately
extended to other adiabatic spatial dispersion properties via minor modifica-
tions to our formulas. For example, by combining the phonon perturbation
with a scalar potential in Eq. (3.40), our method would yield the “adiabatic
Born effective charges” as defined in Refs. [121, 122]. The present approach
works directly at the Γ point, and hence avoids the need for cumbersome
numerical fits. On the other hand, by targeting the adiabatic response to a
static (but spatially nonuniform) vector potential field, the present theory
could be used to generalize the theory of orbital magnetic susceptibility of
Ref. [123] to metals.

• Second, note that the scopes of our work go well beyond the specifics of long-
wavelength expansions. One of the main conceptual achievement consists
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in generalizing the 2n + 1 theorem [104], one of the mainstays of DFPT in
insulators, to metallic systems.4 This result opens exciting opportunities for
calculating not only spatial dispersion effects, but also nonlinear response
properties in metals, with comparable advantages at the formal and practical
level, with respect to the presently available methods, e.g., semiclassical or
tight-binding models. The study of nonlinear optics appears as a particularly
attractive topic in this context, although its inherent dynamical nature would
require generalizing the formalism presented here to the nonadiabatic regime.
We regard this as a promising avenue for future developments of our method.
We also feel that generalizing the formulas that are currently implemented to
TR-broken systems is one of the most pressing priorities; i.e., implementing
Eq. (3.27) instead of Eq. (3.37) (see the discussion of Sec. 3.3.2).

For the time being, we shall stick to Eq. (3.37) and our focus will remain on
the static regime. We will further prove in the next chapter the great utility of the
present approach by applying it in the context of flexoelectricity, i.e., strain gradient
mediated effects, with the well-known polar metal LiOsO3.

4 We would like to reiterate the importance of Ref. [108], whose study was carried out essentially in
parallel with ours and of which we were not aware at the time of developing our methodology.



4
S W I T C H I N G A P O L A R M E TA L V I A S T R A I N G R A D I E N T S

In this chapter, by pushing the study of flexoelectricity beyond insulators, we
demonstrate that strain gradients constitute a viable means to switch the polar
order parameter of the so-called “ferroelectric” or polar metals.

It is universally known that the electric polarization is not a well-defined physical
property in metals. As such, any parametric derivative of the polarization with
respect to an adiabatic parameter (a strain gradient, in the case of flexoelectricity) is
also ill-defined. However, as we shall demonstrate shortly, the flexocoupling between
polar lattice modes and a strain gradient survives even in presence of free carriers.
In brief, an applied strain gradient can push the polar order parameter of a material
by means of a geometric force, which is, at least theoretically, unaffected by the
presence of free carriers in the bulk. Still, whether the relevant couplings are
strong enough in order to switch the polar order parameter of a real polar metal
is currently unknown, as no reported values for the flexocoupling coefficients for
metals were available in the literature prior to this work.

This scenario is well-suited for testing our ensemble DFPT methodology of
Chapter 3 in the context of strain gradients. Note, however, that this represents
an additional challenge compared to the phonon case that was studied in Chapter
3, since it requires, in principle, pushing the long-wavelength expansion of the
second-order energy functional up to second order in q. This will enable us to
report, for the first time, the flexocoupling coefficients of a metal. As a consistency
check, we also develop an alternative method to calculate the flexocoupling tensor
in metals, which is based on lattice sums of real-space interatomic force constants.

To validate our strategy, we take LiOsO3 as an example and we try to answer
the following physical question: how much do we need to bend a lithium osmate
sample in order to reverse its polarity? In practice, everything boils down to
estimating the critical bending radius, Rcrit; i.e., the radius of curvature that needs
to be applied in order to switch the polar order parameter. As we shall see, achieving
this task involves combining the aforementioned flexocoupling coefficients with a
first-principles-based effective Hamiltonian that we will construct by expanding
the energy around the centrosymmetric cubic phase. We study the potential energy
landscape of LiOsO3 as a function of its main degrees of freedom, i.e., the strain,
the polar order parameter and the oxygen octahedral tilts, thus making it possible
to identify the most efficient switching paths and the required coercive fields in
each case. For comparison, and in order to discuss the experimental viability of our
results, we perform an analogous study with BaTiO3, which is arguably one of the
most renowned ferroelectric compounds. We find a comparable value of Rcrit for
both materials, and since mechanical switching of polar domains has already been
experimentally achieved in BaTiO3 [37] via strain gradients, our work indicates that
switching of LiOsO3 mediated by flexoelectricity should also be experimentally
feasible.

55



56 switching a polar metal via strain gradients

This chapter is organized as follows. First, in Sec. 4.1 we will make a very brief
introduction to flexoelectricity, by defining the fundamental mathematical and
physical concepts that are necessary for our intents, most notably the flexoelectric
force-response tensor and the flexocoupling coefficients. In Sec. 4.2 the problem
to be solved is formally presented and our computational strategy is introduced
in Sec. 4.3, where we apply our ensemble DFPT formalism of Chapter 3 in the
context of strain gradients. Some of the principal results of this chapter are shown
in Sec. 4.4, where the flexocoupling coefficients of LiOsO3 are provided. Sec. 4.5
gives a detailed analysis of the first-principles effective Hamiltonian that we use to
study the potential energy landscape of lithium osmate, where the most promising
switching paths are discussed. This chapter is concluded with our estimation of
the necessary bending radius to switch the polar order parameter of LiOsO3. A
comparison with BaTiO3 is also provided. The summary and outlook are presented
in Sec. 4.7.

4 .1 flexoelectricity in a nutshell

The theory of flexoelectricity has long been plagued with conceptual and method-
ological challenges that have been successfully addressed [124] over the years. The
current state-of-the-art first-principles theory of flexoelectricity allows an accurate
and efficient calculation of both electronic and lattice-mediated contributions to the
flexoelectric tensor with publicly available DFT codes [41–44]. For this discussion,
we will leave aside the continuum models, which have undoubtedly contributed to
the phenomenological understanding of flexoelectricity, and we will focus exclu-
sively on first-principles microscopic theories.

Our starting point for this brief introduction to flexoelectricity is the work by
Tagantsev [125] in 1985, which was inspired by previous works of Born and Huang
[117], and specifically by the method of long-waves. Tagantsev addressed the
problem of flexoelectricity in crystalline dielectrics with a microscopic point-charge
model. It should be noted, however, that only lattice-mediated contributions were
included in this approach. It was not until 2010 that Resta [126] made the first
attempt of incorporating the electronic contributions to a first-principles bulk
theory of flexoelectricity. By building on the microscopic charge density response
induced by a long-wavelength phonon, Resta was able to compute the longitudinal
components of the flexoelectric tensor in elemental cubic crystals. This methodology
was then generalized to arbitrary insulators by Hong and Vanderbilt [127, 128].
However, it became soon evident that in order to access the full tensorial form of the
flexoelectric tensor, the charge density response was insufficient. Later on, Stengel
[103] described the complete flexoelectric tensor in an arbitrary insulator within the
context of DFPT by means of the microscopic current-density response to a long-
wavelength acoustic phonon. Notably, this approach requires only the knowledge
of the lowest terms in the Taylor expansion in q around Γ of linear-response
functions that are readily available in standard DFT codes. Soon after, Dreyer et
al. [98] developed an efficient first-principles current-density implementation for
calculating the flexoelectric tensor, which avoided the construction of supercells by
directly working with a single unit cell. Yet, this methodology requires numerous
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linear-response calculations on a q mesh, followed by a numerical differentiation
in q. In the context of the electronic response, the latter issue was resolved in
2019 by Royo and Stengel [41], by means of the analytical long-wavelength DFPT
methodology that we have introduced in Sec. 2.4.4, where the flexoelectric tensor
represents only a particular case of the general theory. Following the same approach,
the lattice-mediated contributions were accounted for in 2022 [44], thus completing
the entire picture.

For our scopes, only a handful lattice-mediated contributions are relevant. After
providing some basic definitions, we shall study in the next section the ionic
flexoelectric response of a crystal from long-wavelength acoustic phonons, following
mainly the strategy by Stengel [103].

4 .1 .1 strain and strain gradients

We shall characterize the deformation of a crystal lattice with a three-dimensional
vector, u(r), which describes the displacement of an ion from its equilibrium
position, r, as follows,

r′α(r) = rα(r) + uα(r), (4.1)

where the primed vector, r′, represents the new configuration and α is a Cartesian
direction. The deformation gradient, i.e., the strain, is then defined as

uα,β(r) =
∂uα(r)

∂rβ
, (4.2)

which is usually indicated in the literature as the unsymmetrized strain tensor. By
symmetrizing the indices, one readily obtains its symmetrized counterpart,

εαβ(r) =
1
2
(
uα,β(r) + uβ,α(r)

)
. (4.3)

Flexoelectricity deals with spatial gradients of the strain tensor. Similarly to the
uniform strain case, the third-rank strain gradient tensor can be defined in two
different ways; either as the gradient of the unsymmetrized strain, commonly
known as type-I form,

uα,βγ(r) =
∂uα,β(r)

∂rγ
, (4.4)

manifestly invariant under β ↔ γ exchange, or in type-II form, i.e., as the gradient
of the symmetrized strain,

εαβ,γ(r) =
∂εαβ(r)

∂rγ
, (4.5)

which is invariant under the exchange α ↔ β by construction. It should be high-
lighted that both representations, type-I and type-II, contain the same number of
independent tensor entries and physical information, but arranged differently. In
other words, there exists a one-to-one correspondence between the two representa-
tions,

uα,βγ(r) = εαβ,γ(r) + εγα,β(r)− εβγ,α(r). (4.6)
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4 .1 .2 long-wavelength acoustic phonons

One of the most challenging obstacles that one faces when dealing with flexoelec-
tricity is that a strain gradient breaks the periodicity of the crystal lattice and, as
a consequence, all the DFT machinery that we have described in Chapter 2 (the
Bloch theorem, plane-waves, . . . ) seems, at first glance, impractical. To circumvent
this issue, one considers, following a similar philosophy to that of Sec. 2.4.1, a
long-wavelength acoustic phonon modulated by a wave vector q. It is then pos-
sible to prove [103] that at first and second orders in the wave vector, uniform
strain (piezoelectricity) and strain gradient (flexoelectricity) effects are described,
respectively. Mathematically, we represent a monochromatic phonon as

ul
κα(t) = Uq

καei(q·Rl
κ−ωt), (4.7)

which is Eq. (2.74) but with our phase convention. The eigenvalue problem, as
expressed by Eq. (2.75), then becomes

Mκω2
qUq

κα = ∑
κ′,β

Φq
κα,κ′βUq

κ′β. (4.8)

Following the long-wave strategy of Born and Huang [117], the latter equation is
solved perturbatively in a vicinity of q = 0 for the case of an acoustic phonon, i.e.,
ωq→0 −→ 0. It can be verified that [103, 117]

Uq
κα = ∑

β

Uβ

(
δαβ + i ∑

γ

qγΓκ
αβγ − ∑

γ,δ
qγqλNκ

αβγλ

)
+O(q3). (4.9)

Let us take a moment to discuss the respective significance of each item separately.
The piezoelectric internal-strain tensor, Γκ

αβγ, which appears at first-order in q,
describes ionic relaxations produced by a strain, uβ,γ, and can be obtained by
combining the piezoelectric force-response tensor, Λκ′

λβγ, with the pseudoinverse1 of

the singular zone-center FC matrix, Φ̃(0), as follows,

Γκ
αβγ = ∑

κ′,λ
Φ̃(0)

κα,κ′λΛκ′
λβγ. (4.10)

The piezoelectric force-response tensor is, in turn, obtained via a summation of one
of the sublattices of the first-order term in the long-wavelength expansion of the
interatomic force-constants [see Eq. (3.47)],2

Λκ
αβγ = ∑

κ′
Φ(1,γ)

κα,κ′β. (4.11)

Its physical interpretation is manifestly obvious: Λκ
αβγ accounts for the forces on

the sublattice κ along the Cartesian direction α, produced by an applied strain, uβ,γ;
it is invariant under β ↔ γ exchange. Note that the sublattice summation of Λκ

αβγ

identically vanishes,
∑
κ

Λκ
αβγ = 0, (4.12)

1 Prescriptions on how to properly build the pseudoinverse of a singular matrix in this context are
given in Ref. [129].

2 The generalization of Eq. (4.11) in presence of nonvanishing forces was given in Eq. (3.49).
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which states that a uniform strain does not produce a net force on the whole cell.
On the other hand, Nκ

αβγλ, which appears at second order in q in Eq. (4.9), is the
type-I flexoelectric internal-strain tensor, defined as

Nκ
αβγλ = ∑

κ′,ρ
Φ̃(0)

κα,κ′ρT̂κ′
ρβ,γλ, (4.13)

where we have also introduced the mass-compensated type-I flexoelectric force-
response tensor,

T̂κ
αβ,γλ = Tκ

αβ,γλ − Mκ

M
Tαβ,γλ, (4.14)

with
Tκ

αβ,γλ = [αβ, γλ]κ +
1
2

[
(αγ, βλ)κ + (αλ, βγ)κ

]
, (4.15)

where M = ∑κ Mκ is the total mass of the unit cell and T = ∑κ Tκ. In Eq. (4.15), the
square and round bracket symbols are given by

[αβ, γδ]κ =− 1
2 ∑

κ′
Φ(2,γδ)

κα,κβ , (4.16a)

(αλ, βγ)κ = ∑
κ′,ρ

Φ(1,γ)
κα,κ′ρΓκ′

ρβγ. (4.16b)

We have introduced a number of new symbols in the last few lines; let’s pause for a
moment to clarify their physical meaning. The (type-I) flexoelectric force-response
tensor, Tκ

αβ,γλ, describes the forces on the sublattice κ along the Cartesian direction
α produced by an applied strain gradient, uβ,γλ, where the square bracket symbol
accounts for the clamped-ion (CI) response and the round bracket symbol describes
the additional forces that are produced due to the ionic relaxations. The latter is
a type-II object, meaning that (αλ, βγ)κ describes the effect due to a symmetrized
strain gradient, εβγ,λ; this explains the symmetrization in Eq. (4.15), since Tκ is a
type-I object.

In contrast to the piezoelectric force-response tensor, the sublattice summation of
Tκ

αβ,γλ does not vanish. This means that some care is required when multiplying
it with the pseudoinverse of the zone-center FC matrix in Eq. (4.13). The issue in
question has been resolved in Eq. (4.14) by imposing the constraint that ∑κ T̂κ = 0
via the new mass-compensated [103] symbol. In principle, infinitely different flavors
of T̂κ exist,

T̂κ
αγ,βλ = Tκ

αγ,βλ − wκ

∑κ′′ wκ′′
∑
κ′

Tκ′
αγ,βλ, (4.17)

where wκ are arbitrary weights. Within our choice, the weights correspond to the
physical atomic masses of the sublattices, but other options are equally valid [128].

4.1.2.1 Type-II objects and the “elastic sum rule”

In type-II form, Eq. (4.13) translates to

Lκ
ρλ,βγ = ∑

κ′,γ
Φ̃(0)

κρ,κ′αĈκ
αλ,βγ, (4.18)
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where Lκ and Ĉκ are, respectively, the type-II flexoelectric internal-strain tensor
and the type-II mass-compensated flexoelectric force-response tensor. The latter is
related to its type-I counterpart by the following rearrangement of the indices,

Ĉκ
αλ,βγ = T̂κ

αβ,γλ + T̂κ
αγ,λβ − T̂κ

αλ,βγ. (4.19)

In a similar spirit as the approach taken with the type-I objects, Ĉκ is defined so
that the sublattice sum of its components trivially vanishes,

Ĉκ
αλ,βγ = Cκ

αλ,βγ − Mκ

M
ΩCαλ,βγ, (4.20)

where
Cκ

αλ,βγ = [αβ, γλ]κ + [αγ, λβ]κ − [αλ, βγ]κ + (αλ, βγ)κ (4.21)

and
Cαλ,βγ =

1
Ω ∑

κ

Cκ
αλ,βγ, (4.22)

where Ω is, as customary, the volume of the unit cell. The advantage of expressing
the tensors in their type-II form is that their physical meaning becomes more
aparent: C is, in fact, the elastic tensor [117]. The relationship between the sublattice
sum of the type-II flexoelectric force-response tensor and the macroscopic elastic
tensor also holds true at the CI level,

C̄HWRV
αλ,βγ =

1
Ω ∑

κ

C̄κ
αλ,βγ, (4.23)

with
C̄κ

αλ,βγ = [αβ, γλ]κ + [αγ, λβ]κ − [αλ, βγ]κ, (4.24)

where we have used the label “HWRV” in Eq. (4.23) to explicitly indicate that the
sublattice sum of the type-II CI flexoelectric force-response tensor gives rise to the
CI macroscopic elastic tensor, which is routinely computed in standard DFT codes
with the metric-tensor formulation as proposed by HWRV, as described in Sec.
2.3.5.

4 .1 .3 flexocoupling coefficients

One of the most notable physical manifestations of the flexoelectric force-response
tensor is the flexocoupling tensor, which accounts for the forces on the zone-center
polar modes of the system produced by the applied strain gradient, and can be
expressed in the following way [106, 130],

fαλ,βγ = ∑
κ,ρ

√
M
Mκ

P(α)
κρ C̄κ

ρλ,βγ. (4.25)

[Note that we are defining the flexocoupling coefficients in Eq. (4.25) in terms of the
CI type-II flexoelectric force-response tensor. In general, additional contributions
coming from the round bracket symbol are present, see Eq. (4.16b). However, as
we shall see shortly, we will restrict our analysis to materials enjoying Pm3̄m cubic
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Figure 4.1: (a) Unit cell of cubic LiOsO3. Grey arrows in indicate
the crystallographic directions that form the Cartesian axes. (b)
Schematic representation of the relevant phases of LiOsO3, where
u is the polar order parameter and q is used to described the
antiferrodistortive (AFD) oxygen tilts (see Sec. 4.5).

symmetry, where these contributions identically vanish by symmetry.] In Eq. (4.25),
P(α) is a normalized 3× N dimensional polar eigenvector of the zone-center (q = 0)
dynamical matrix, where N is the number of atoms in the cell and the label α

determines which of the eigenvectors that span the polar space is chosen. These
vectors satisfy the following eigenvalue problem,

[ω(α)]2P(α)
κρ = ∑

κ′,β
D(0)

κρ,κ′βP(α)
κ′β , (4.26)

where ω(α) is the frequency and D(0) is the zone-center dynamical matrix, which is
related to the zone-center FC matrix via the usual mass factor,

D(0)
κα,κ′β =

Φ(0)
κα,κ′β√

Mκ Mκ′
. (4.27)

Observe that Eq. (4.25) represents simply the projection of C̄κ on the zone-center
polar modes, where the prefactor

√
M/Mκ follows the convention of earlier works

[106, 130] and is consistent with the choice we made earlier of identifying the
arbitrary weights wκ with the physical atomic masses of the sublattices. Notice that,
by definition, if C̄κ is projected on the acoustic modes in Eq. (4.25), one readily
recovers (apart from a trivial volume factor) the CI elastic tensor as defined in Eq.
(4.23).

4 .2 statement of the problem

A cartoon representing the cubic phase of LiOsO3 is provided in Fig. 4.1, accompa-
nied by a schematic illustration of its relevant phases upon the release of different
degrees of freedom, where R3c is the polar phase of interest. The physical mecha-
nism that allows a strain gradient mediated switching of the polar order parameter
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Figure 4.2: A bending-type strain gradient is applied to a macro-
scopic crystal along the direction q̂. The external strain gradient
couples to the polar modes resulting in a displacement of the
atoms and, as a consequence, the structure evolves to another
symmetrically equivalent “ferroelectric” state.

is schematically illustrated in Fig. 4.2. The basic idea here is that the applied macro-
scopic strain gradient couples to the zone-center polar modes via the flexocouplings
defined in Sec. 4.1.3 and, by pushing the atoms via a geometric or elastic force,
the structure evolves into another symmetrically equivalent “ferroelectric” state. In
a prototypical ferroelectric material, e.g., BaTiO3, the different ferroelectric states
are distinguished by measuring the change in the electric polarization when the
system evolves from one ferroelectric state to another. When dealing with metals,
we will measure the polarity of the system by the amplitude of the polar order
parameter, and thus, the distinction between two “ferroelectric” states turns out
to be purely geometrical [39, 131, 132]. Within the bulk region, the polar order
parameter is assumed to be homogeneous and its amplitude will be described by a
three dimensional vector, u, with the physical dimension of length. Our goal is to
estimate the amount of bending that needs to be applied so that the polar order
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parameter can be switched between two equivalent “ferroelectric” states. This shall
be quantified by the critical bending radius, which we compute as

Rcrit =
feff

Fcoerc
, (4.28)

where feff is the effective flexocoupling coefficient associated with the flexural
deformation and Fcoerc is the generalized force that is required to cross the energy
barrier between two minima. Therefore, the problem can be divided into two
separate tasks: (i) determining the coupling between a strain gradient and the polar
mode, which is described by feff and depends on the crystallographic orientation,
and (ii) identifying the most likely switching paths and the corresponding energetics.
The main technical challenge here resides in (i), since no established methods exist
for the calculation of feff in metals: we shall explain in detail the strategy we
shall follow in the next section. In order to tackle task (ii), we will follow the
well-established practice with ferroelectrics and assume a Landau-like expansion
of the energy around the high-symmetry cubic phase as a function of the relevant
parameters, which involves mapping the potential energy landscape of the system
as a function of the main degrees of freedom; this procedure has been efficiently
applied to a wide variety of materials already [133, 134]. In this context, the
computation of Fcoerc entails no significant challenges.

4 .3 computational strategy

We now focus on describing the computational strategy that we will follow to
compute the flexocoupling coefficients in a metal. According to Eq. (4.25), only
two ingredients are required: the zone-center polar eigenvectors of the dynamical
matrix, which are straightforward to obtain, and the flexoelectric force-response
tensor. We will address the latter in the following.

4 .3 .1 analytical long-wavelength method

The first approach, which we shall prefer from a computational perspective, consists
in applying the ensemble DFPT formalism that we have developed in Chapter 3 in
the context of strain gradients, so that we can obtain the flexoelectric force-response
tensor of metals as an analytical long-wavelength expansion of the second-order
energy. Notice that directly applying the formulas of Sec. 3.3.3 to the calculation of
C̄κ is not possible, as they target first-order terms in q and C̄κ is, in fact, related
to the second q gradient of the FC matrix, as shown by Eq. (4.16a) and Eq. (4.24).
However, observe that the square bracket symbol, from which C̄κ is constructed,
only requires the sublattice sum of the Φ(2) coefficients, which physically corre-
sponds to the force-response to an acoustic phonon perturbation. We have already
seen in Sec. 2.4.1 that acoustic phonons can be conveniently recast, via a coordinate
transformation to the comoving frame, into a metric-wave perturbation. This allows
us to write the flexoelectric force-response coefficients as the first-order dispersion
of the piezoelectric force-response tensor [44]. In light of this, the whole story boils
down to applying the ensemble DFPT theory developed in Chapter 3 to the case
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in which λ1 = τκα and λ2 = ηβδ , where η denotes the uniform strain perturbation
as defined in Sec. 2.3.5. In practice, the type-II representation of the flexoelectric
force-response tensor exhibits the following formulation [44],

C̄κ
αγ,βδ = E

τκαηβδ

st,γ + E
τκαηβδ
nv,γ . (4.29)

Remarkably, the nonvariational contribution takes the exact same form as that
observed in insulators [44], the only difference being that, instead of assuming that
all the active states are completely filled (this is the case in insulators as the active
subspace is usually restricted to the valence manifold), the occupation function fmk
must be taken into account for each band m and k point. The stationary part is
given by

E
τκαηβδ

st,γ =
∫

BZ
[d3k]

(
2Ē

τκαηβδ

k,γ + ∆E
τκαηβδ

k,γ

)
+ i

∫
Ω

∫
nτκα∗(r)Kγ(r, r′)nηβδ(r′) d3r d3r′,

(4.30)

where the wave function term acquires [44] the same form as for the insulating
case,

Ē
τκαηβδ

k,γ =i ∑
m∈M

fmk ⟨uτκα
mk| Ĥkγ

k |uηβδ

mk⟩

− i ∑
m,n∈M

fmk ⟨uτκα
mk|u

kγ

nk⟩ ⟨u
(0)
nk | Ĥ

ηβδ

k |u(0)
mk⟩

− i ∑
m,n∈M

fmk ⟨u(0)
mk| (Ĥτκα

k )† |u(0)
nk ⟩ ⟨u

kγ

nk|u
ηβδ

mk⟩

+ ∑
m∈M

fmk

(
1
2
⟨uτκα

mk| Ĥ
ηβδ

k,γ |u
(0)
mk⟩+ i ⟨u(0)

mk| (Ĥτκα
k )† |uηβδ

mk⟩
)

,

(4.31)

and the occupation term, specific to metals, reads as

∆E
τκαηβδ

k,γ =i ∑
m,n∈M

f̄mnk ⟨u(0)
mk| (Ĥτκα

k,γ)
† |u(0)

nk ⟩ ⟨u
(0)
nk | Ĥ

ηβδ

k |u(0)
mk⟩

+
1
2 ∑

m,n∈M
f̄mnk ⟨u(0)

mk| (Ĥτκα
k )† |u(0)

nk ⟩ ⟨u
(0)
nk | Ĥ(βδ)

k,γ |u(0)
mk⟩

+ i ∑
m,n∈M

f̄mnk ⟨u(0)
mk| (Ĥτκα

k )† |ukγ

nk⟩ ⟨u
(0)
nk | Ĥ

ηβδ

k |u(0)
mk⟩

+ i ∑
m,n∈M

f̄mnk ⟨u(0)
mk| (Ĥτκα

k )† |u(0)
nk ⟩ ⟨u

kγ

nk| Ĥ
ηβδ

k |u(0)
mk⟩

+ i ∑
m,n,l∈M

Fmnlk ⟨u(0)
mk| (Ĥτκα

k )† |u(0)
nk ⟩ ⟨u

(0)
nk | Ĥkγ

k |u(0)
lk ⟩ ⟨u(0)

lk | Ĥηβδ

k |u(0)
mk⟩ .

(4.32)

The additional contributions coming from the macroscopic electrostatics, which
were discussed for phonons in Sec. 3.3.4, should also be taken into account in the
present context with strain gradients. Once again, the second derivatives in q can
be avoided by treating the acoustic phonon perturbation in the comoving frame as
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a metric-wave perturbation. It is straightforward to verify, starting from Eq. (3.46),
that the macroscopic electrostatic contribution reads as

E
τκαηβδ
mac,γ ≃ −δαγZκµηβδ , (4.33)

where µηβδ is the Fermi level shift produced by a uniform strain.

4 .3 .2 lattice sums of real-space ifc

An alternative, although less sophisticated approach, involves expressing the deriva-
tives in q of the FC matrix as real-space sums of the IFCs,

Φ(2,γδ)
κα,κ′β = ∑

l
Φκα,κ′β(0, l)(R0

κ − Rl
κ′)γ(R0

κ − Rl
κ′)δ. (4.34)

One can then obtain C̄κ via Eq. (4.16a) and Eq. (4.24). It is important to note that Eq.
(4.34) relies on an underlying assumption: the rapid decay of the IFCs as a function
of
∣∣R0

κ − Rl
κ′
∣∣. This condition is clearly violated in insulators, where the long-range

nature of the electrostatic interactions thwarts obtaining a convergent result for
the sums. Long-range interactions can also be present in metals when working at
very low temperatures. The reason for this, which was already briefly discussed
in Sec. 2.3.2, is that the Fermi-Dirac occupation function might suffer from sharp
discontinuities near the Fermi level, which leads to the so-called Kohn anomalies.
In practice, a finite electronic temperature, which we impose by smearing the
occupation function, guarantees that the IFCs are short-ranged and that the lattice
sums of Eq. (4.34) will eventually converge to the correct physical value when a
dense enough q-point mesh is used in the calculations.

4 .3 .3 effective flexocoupling coefficients in cubic crystals

It is also pertinent to stress that the flexocoupling coefficients computed from
Eq. (4.25) require manipulation prior to obtaining the effective flexocoupling that
appears in the denominator of Eq. (4.28). This involves two steps. First, one needs
to define the geometry of the system to which the flexural deformation is applied,
e.g., a beam or a slab. Here, we shall consider a beam sample, where one of the
dimensions of the system, e.g., the length, is much greater than its width and
height.

In cubic crystals, there are only three linearly independent components of the
flexocoupling tensor, which are commonly denoted in the literature as longitudinal
( f11 = fxx,xx), transverse ( f12 = fxx,yy) and shear ( f44 = fxy,xy); the same holds for
the elastic tensor as well. It is shown in Ref. [135] that

f 100
eff =

−C12

C11 + C12
f11 +

C11

C11 + C12
f12,

f 110
eff = A f11 + B f12 − 2(1 − A) f44,

f 111
eff =

C44

C11 + 2C12 + C44
( f11 + 2 f12)−

C11 + 2C12

C11 + 2C12 + C44
f44,

(4.35)
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with

A =
2C11C44

(C11 − C12)(C11 + 2C12) + 2C11C44
,

B =
2(C11 − 2C12)C44

(C11 − C12)(C11 + 2C12) + 2C11C44
,

(4.36)

where f 100
eff , f 110

eff and f 111
eff are the effective flexocoupling coefficients for the [100],

[110] and [111] orientations of the sample for the beam-bending limit. Notice that
an accurate calculation of C is a necessary and crucial preliminary step, since
the elastic tensor is by itself a key ingredient in the calculation of the effective
flexocoupling coefficients.

Second, one should take into account that for each surface orientation q̂, the
effective flexocoupling describes the force induced by the flexural deformation
acting on the polar modes along q̂. However, such force might not be parallel to
the direction ŝ along which the polar order parameter evolves during switching.
In such cases, the effective flexocoupling needs to be scaled by the projection q̂ · ŝ.
Implications of the latter shall be discussed in the following subsections with
LiOsO3 and BaTiO3 as test cases.

4 .4 flexocoupling coefficients of LiOsO3

We now turn to one of the central themes of this chapter: the computation of the
flexocoupling tensor in a metal.

Our calculations on cubic LiOsO3 are carried out with norm-conserving pseu-
dopotentials under the generalized gradient approximation (GGA) with Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functionals [82], which we take from
the Pseudo Dojo [120] website. In order to test the robustness of our analytical long-
wavelength DFPT methodology (see Sec. 4.3.1), we also employ pseudopotentials
with the Perdew-Wang [81] parametrization of the local density approximation
(LDA). With the long-wave DFPT methodology, we use a plane-wave cutoff of 60
Ha, a Gaussian smearing of 0.01 Ha and the Brillouin Zone is sampled with a dense
20 × 20 × 20 k-mesh. With the alternative method based on lattice sums of the
IFCs, we also employ a plane-wave cutoff of 60 Ha and a Gaussian smearing of
0.01 Ha, but the BZ is sampled with 16 × 16 × 16 k points.3

To start with, we show in Fig. 4.3 the convergence of the flexocoupling coefficients
of cubic LiOsO3 and the elastic tensor, computed either with our long-wave DFPT
approach via Eq. (4.23) or directly with the HWRV method. For comparison pur-
poses, we also present in Fig. 4.4 the convergence of the flexocoupling and elastic
tensor as a function of the two dimensional grid of q points, for a fixed k-point
mesh, computed with the alternative methodology based on sums of the real-space
IFCs, see Eq. (4.34). (For cubic systems, a two dimensional grid of q points is

3 The reason why we did not go up to 20 × 20 × 20 k points with the latter method is that, in
contrast to the analytical long-wave DFPT approach, which works directly at the Γ point, the method
based on sums of the IFCs involves computing the FC matrix in a dense q-point mesh, making it
computationally more demanding. It is, however, adequate to double check our recently implemented
long-wave DFPT methodology in metals.
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Figure 4.3: Convergence of the three independent components of
the flexocoupling tensor (top) and the elastic tensor (bottom) of
cubic LiOsO3, as a function of the k mesh. Results are obtained
with the Perdew-Wang parametrization of the LDA. Solids lines
are a guide to the eye.

enough to calculate the three independent components of the mentioned tensors.)
Note that in Fig. 4.4, for a 16 × 16 × 1 mesh of q points convergence is reached for
the elastic constants (the reference values obtained with the HWRV method are
indicated with dashed lines) and, as a consequence, for the flexocoupling tensor.
Remember that both calculations are carried out using the same method, so similar
convergence rates and errors are expected.

Table 4.1 presents the numerical values of the calculated independent components
for the flexoelectric force-response tensor, along with the numerical validation of
the elastic sum rule, Eq. (4.23), which is verified to a high degree of accuracy.
Additionally, the last two rows of Table 4.1 display the independent components
of the flexocoupling tensor, computed by means of Eq. (4.25). The penultimate
row shows the numerical values obtained with the analytical long-wave method,
whereas the last row corresponds to the results obtained via sums of real-space IFCs.
The agreement between the results derived from the analytical long-wave method
and those obtained through lattice sums of the real-space IFCs is remarkable,
particularly given the diverse computational strategies employed with each method.
Regarding the effect of different schemes for the exchange-correlation functional,
we observe that the equilibrium volume slightly differs between LDA and GGA,
following the expected trends: we obtain Ω = 362.756 bohr3 and Ω = 381.532 bohr3,
respectively. In general, the calculated values for the flexoelectric force-response
tensor and the flexocoupling coefficients show only a small dependence on the
choice of the exchange and correlation model.
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Figure 4.4: Convergence of the three independent components of
the flexocoupling (top) and the elastic (bottom) tensor, computed
via lattice sums of the real-space IFCs, Eq. (4.34), with respect
to the two-dimensional grid of q points. Dashed lines represent
the reference values of the elastic constants computed with DFPT.
Solids lines are a guide to the eye.

xx, xx xx, yy xy, xy

Atom LDA PBE LDA PBE LDA PBE

Li 0.95 0.75 10.22 9.99 0.30 0.32

Os 62.97 58.18 24.77 22.67 16.02 15.90

O1 −1.08 −0.99 −2.80 −2.44 −3.28 −3.37

O2 −1.08 −0.99 9.84 10.13 −0.63 −0.01

O3 85.00 71.51 6.17 5.07 1.54 2.70

C̄αγ,βδ 437.42 364.05 143.67 128.73 41.57 44.04

C̄HWRV
αγ,βδ 437.44 364.19 143.31 128.63 41.83 44.16

Sums of IFCs . . . 364.72 . . . 129.54 . . . 44.30

fαγ,βδ −14.10 −14.24 49.65 47.56 3.69 3.33

Sums of IFCs . . . −13.81 . . . 49.35 . . . 3.26

Table 4.1: Linearly independent components of the flexoelectric
force-response tensor (in eV), the clamped-ion elastic tensor (in
GPa) and the flexocoupling tensor (in eV) for cubic LiOsO3. Val-
ues are obtained either with the Perdew-Wang parametrization
of the LDA or with the PBE parametrization of the GGA.
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C11 C12 C44 f11 f12 f44

Long-wave 353.09 121.44 137.74 −55.75 3.87 −41.26

HWRV 353.47 121.79 137.75 · · · · · · · · ·

Table 4.2: Independent components of the calculated elastic (in
GPa) and flexocoupling (in eV) tensor of cubic BaTiO3. The n-type
flexocoupling coefficients [106] of BaTiO3 are shown.

∣∣ f 100
eff

∣∣ ∣∣ f 110
eff

∣∣ ∣∣ f 111
eff

∣∣
LiOsO3 40.1 5.3 2.5

BaTiO3 17.1 25.9 24.5

Table 4.3: Effective flexocoupling coefficients (absolute values
in eV units) for [100], [110] and [111] oriented samples, in the
beam-bending limit.

Clearly, the largest flexocoupling coefficient (in absolute value) of cubic LiOsO3 is
f12. It should be noted that prior to this study, there were no values in the literature
for flexocoupling coefficients in metals, which makes it difficult to evaluate whether
the obtained coupling parameters are in fact relevant in magnitude or not. To
contextualize these results, we show in Table 4.2 the calculated flexocoupling
coefficients of cubic BaTiO3, along with the elastic constants, which are calculated
either directly with DFPT via the HWRV method, or with the elastic sum rule given
by Eq. (4.23). (In order to avoid any potential disruption to the reading, we show in
the main text the final results and we shall defer all the details concerning the study
of BaTiO3 to Appendix B.) It is worth noting that BaTiO3 behaves very similarly to
SrTiO3 [106], which is natural to expect given the affinities in the electronic and
atomic structure. The absolute values of the flexocoupling coefficients of LiOsO3 and
BaTiO3 are similar overall, which provides a first indication that the flexocoupling
is comparably strong in these two materials.

To make further progress, we compute the effective flexocouplings for three
representative orientations of the sample by means of Eq. (4.35). The obtained
numerical results4 are shown in Table 4.3. It is indisputably [100] the bending
direction that produces the largest flexocoupling in lithium osmate. The situation
in BaTiO3 seems to be more balanced overall, with a slight preference for [110] and
[111] directions over [100].

Nevertheless, as we have previously stated, this is just one of the two necessary
ingredients for the computation of the critical bending radius, Eq. (4.28). In the
following, we shall study the possible switching paths of the polar order parameter
by means of a first-principles based effective Hamiltonian.

4 To construct the effective flexocoupling coefficients of lithium osmate, we use our calculations with
the PBE parametrization of the GGA from Table 4.1, obtained via the lattice sums of the IFCs. In any
case, the flexocoupling coefficients are sufficiently robust with respect to the employed computational
methodology (i.e., analytical long-wave DFPT method or lattice sums of the IFCs) to ensure that the
results of Table 4.3 remain consistent, regardless of the previous choice.
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4 .5 first-principles effective hamiltonian

In order to extract information about the possible switching paths for the polar
order parameter, we construct a Landau-Ginzburg-Devonshire-type first-principles
effective Hamiltonian by expanding the energy around the reference cubic phase,
with P3m̄3 symmetry, in terms of the relevant degrees of freedom. We consider the
strain in Voigt notation, si, the tilts of the oxygen ocathedra, qi, where qi represents
the displacements of the oxygen atoms perpendicular to the rotation axis and the
polar order parameter, ui. The continuum model for the effective Hamiltonian that
we shall use to describe the relevant phases in LiOsO3 (see Fig. 4.1) is given by the
following expression,

Heff[s, q, u] = Hs[s] + Hq[q] + Hu[u] + Hsq[s, q] + Hsu[s, u] + Huq[u, q], (4.37)

where the individual contributions are defined as

Hs[s] =
Ω̃
2
C11(s2

1 + s2
2 + s2

3) + Ω̃C12(s1s2 + s1s3 + s2s3) +
Ω̃
2
C44(s2

4 + s2
5 + s2

6), (4.38)

Hq[q] = β1(q2
1 + q2

2 + q2
3) + β2(q4

1 + q4
2 + q4

3) + β3(q2
2q2

3 + q2
1q2

3 + q2
1q2

2), (4.39)

Hu[u] =ζ1(u2
1 + u2

2 + u2
3) + ζ2(u4

1 + u4
2 + u4

3) + ζ3(u2
2u2

3 + u2
1u2

3 + u2
1u2

2)

+ ζ4(u6
1 + u6

2 + u6
3) + ζ5[u4

1(u
2
2 + u2

3) + u4
2(u

2
1 + u2

3) + u4
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2
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+ ζ6(u8
1 + u8

2 + u8
3),

(4.40)

Hsq[s, q] =λ1(s1q2
1 + s2q2

2 + s3q2
3) + λ2[s1(q2

2 + q2
3)

+ s2(q2
1 + q2

3) + s3(q2
1 + q2

2)]

+ λ3(s4q2q3 + s5q1q3 + s6q1q2) + λ4(s1q4
1 + s2q4

2 + s3q4
3)

+ λ5(s4q2
2q2

3 + s5q2
1q2

3 + s6q2
1q2

2),

(4.41)

Hsu[s, u] =ρ1(s1u2
1 + s2u2

2 + s3u2
3) + ρ2[s1(u2

2 + u2
3)

+ s2(u2
1 + u2

3) + s3(u2
1 + u2

2)]

+ ρ3(s4u2u3 + s5u1u3 + s6u1u2) + ρ4(s1u4
1 + s2u4

2 + s3u4
3)

+ ρ5(s4u2
2u2

3 + s5u2
1u2

3 + s6u2
1u2

2)

+ ρ6[s1(u4
2 + u4

3) + s2(u4
1 + u4

3) + s3(u4
1 + u4

2)]

(4.42)

and

Huq[u, q] =γ1(u2
1q2

1 + u2
2q2

2 + u2
3q2

3) + γ2(u2
1q4

1 + u2
2q4

2 + u2
3q4

3). (4.43)

(Ω̃ = 2Ω is the volume of the 10-atom cell and Cij are the components of the macro-
scopic elastic tensor, which are given in Table 4.1.) Hs[s], Hq[q] and Hu[u] describe
the energetics of the system under application of strain, oxygen octahedral tilts
and the polar order parameter, respectively; whereas the terms Hsq[s, q], Hsu[s, u]
and Huq[u, q] account for the coupling between different degrees of freedom. The
calculated parameters for the effective Hamiltonian, which are obtained by fitting
first-principles DFT calculations to our continuum model, are given in Table 4.4.

As a first step for the validation of Heff, we compute the energy of the most
relevant phases that can be obtained by combining antiferrodistortive (i.e., oxygen
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Parameter Value Units Parameter Value Units

β1 −4.31 eV/Å
2

λ3 −12.38 eV/Å
2

β2 8.03 eV/Å
4

λ4 −32.82 eV/Å
4

β3 5.97 eV/Å
4

λ5 16.33 eV/Å
4

ζ1 −35.43 eV/Å
2

ρ1 81.43 eV/Å
2

ζ2 8.68 × 102 eV/Å
4

ρ2 −1.36 × 102 eV/Å
2

ζ3 2.20 ×103 eV/Å
4

ρ3 −1.11 × 102 eV/Å
2

ζ4 −6.98 × 103 eV/Å
6

ρ4 −3.09 × 102 eV/Å
4

ζ5 5.91 × 104 eV/Å
6

ρ5 −1.43 × 104 eV/Å
4

ζ6 2.06 × 104 eV/Å
8

ρ6 −1.18 × 104 eV/Å
4

λ1 38.25 eV/Å
2

γ1 3.48 × 102 eV/Å
4

λ2 19.09 eV/Å
2

γ2 −9.90 ×102 eV/Å
6

Table 4.4: Calculated model parameters for the first-principles
Hamiltonian of LiOsO3. First-principles DFT calculations were
carried out with the PBE parametrization of the GGA, with a
plane-wave energy cutoff of 60 Ha, a Gaussian smearing of 0.01
Ha and the Brillouin Zone was sampled with 16 × 16 × 16 k
points.

octahedral tilts) and polar instabilities, compared with the cubic P3m̄3 structure,
whose energy is taken as reference. The structural ground state of R3c symmetry
contains both polar distortions and antiphase octahedral tilts (a−a−a− in Glazer
notation) oriented along the [111] pseudocubic direction. Other important phases
are the centrosymmetric R3̄c and the polar R3m, where either the polar or the
antiferrodistortive modes are suppressed.

Numerical minimization of our effective Hamiltonian is carried out with the
Monte Carlo simulated annealing method. The structure of the system is described
in a generalized parameter space by a state-vector, v, that contains the information
of the strain, the oxygen octahedral tilts and the polar order parameter. The state-
vector is randomly initialized and, in each time step, t, a new configuration is
proposed, such that vt+1 = vt + δ, where δ is the step that brings the system
from its current configuration into a new one. If the energy of the proposed new
configuration is lower that the present one, the new configuration is accepted, i.e.,
if ∆Et < 0 then vt → vt+1, where ∆Et = Heff[vt+1]− Heff[vt]. If ∆Et >= 0 , the new
configuration is accepted with a probability pt = e−∆Et/T, where T is the temperature
of the system and controls the randomness of the acceptance of configurations with
higher energies during the minimization procedure. The simulation is initialized
with a temperature large enough to allow to escape from local minima and it is
then constantly reduced in each time step until the global minimum is achieved.

As we can see from the calculated values in Table 4.5, our continuum model
accurately reproduces the first-principles results obtained by fully relaxing the
crystal cell within the given symmetry. In particular, this first-principles Hamilto-
nian almost perfectly describes the energy difference between the lowest-energy
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DFT Effective Hamiltonian

∆E ∆V(%) ∆E ∆V(%)

R3m −149 1.1 −157 1.3

R3̄c −908 −11.4 −906 −11.5

R3c −930 −12.0 −929 −11.9

Table 4.5: Volume and energy comparison between first-principles
calculations and our model. Energies are in meV / f.u. units.
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Figure 4.5: Energy per formula unit as a function of the volume
of the perovskite formula unit of Pm3̄m, R3m, R3̄c, and R3c
phases of LiOsO3. Data points are computed via explicit first-
principles calculations and solid lines are obtained from our
effective Hamiltonian.

R3̄c and R3c phases, which are the most relevant for the switching of the polar
order parameter: −22 meV/f.u. with DFT and −23 meV/f.u. with our effective
Hamiltonian, were f.u. stands for perovskite formula unit. As a further test, we
study the phase diagram of LiOsO3 as a function of cell volume, which we control
by applying uniaxial strain. The dots shown in Fig. 4.5 are obtained from DFT
calculations by fully relaxing the ionic positions for each fixed cell volume. These
results are in excellent agreement with experimental values [28] and previous
first-principles studies [136]. Solid lines represent the energies obtained with our
continuum model, again showing excellent agreement with first-principles results.

Now that the reliability of our effective Hamiltonian has been rigorously verified,
we are ready to study the most favorable switching paths for the polar order pa-
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rameter. We tackle this problem by constraining one of the components of the polar
vector (u1 in our case) and by minimizing the effective Hamiltonian with respect to
the other parameters, while the system evolves along some specific structural path.
Before doing so, however, it is useful to recall the structural properties of LiOsO3

(see Fig. 4.1). The ground state of LiOsO3, R3c, contains both polar distortions
and antiphase octahedral tilts, both oriented along the [111] pseudocubic direction.
Since the energy associated to the oxygen octahedral tilts is substantially larger
than that associated to u (see Fig. 4.5), the former are very unlikely to be affected
by the latter. In other words, the polar order parameter is forced to switch between
the [111] and [1̄1̄1̄] states, while the AFD oxygen tilts remain practically unaltered.
Nonetheless, different switching paths might be possible.

In Fig. 4.6 we show two potential switching paths. The first and probably more
naive option involves an homogeneous evolution of the polar modes along the [111]
direction (this means applying the constraint u1 = u2 = u3), while passing through
the noncentrosymmetric R3̄c phase. This is illustrated by the dashed lines in Fig. 4.6.
The coercive field associated to this switching path is Fcoerc = 0.69 eV/Å. However,
in order for this to be the actual switching path of the polar order parameter, the
R3̄c phase (characterized by u1 = u2 = u3 = 0) would need to be stable, and
previous first-principles calculations [136] have already shown that this is not to
be expected. This is nicely confirmed by the “butterfly-diagram” (solid lines in
Fig. 4.6) that we obtain when plotting the energy as a function of u1 and letting
the remaining parameters evolve freely (no constraints). To help better clarify the
meaning of this butterfly diagram, we also show in Fig. 4.6 the evolution of the
perpendicular components of the polar modes, i.e., u2 and u3, as a function of u1,
which indicates the presence of an in-plane polarization switching at u1 = 0. The
coercive field in this case is Fcoerc = 0.34 eV/Å. As expected, this is significantly
smaller than that of the constrained path along the [111] direction.

In this context, it is also beneficial to consider the case of barium titanate (more de-
tails can be found in Appendix B). For BaTiO3 the polarization cannot be constrained
by the oxygen tilts, since the latter are absent in this material. At low-temperature,
BaTiO3 has R3m symmetry, and we find that the lowest switching barrier occurs
when the polarization continuously rotates from [111] to [1̄11] by passing through
an orthorhombic [110] saddle point; see Fig. 4.7. (The path is roughly oriented along
[100]). We find a critical coercive field of Fcoerc = 0.14 eV/Å for such a switching
path. For comparison to room-temperature experiments, where BaTiO3 adopts a
tetragonal structure, we also calculate the hypothetical barrier that one would
obtain by constraining P ∥ [100] (i.e., by setting the in-plane components of P to
zero). We find Fcoerc = 0.29 eV/Å. This is a substantially larger value than the afore-
mentioned threshold for polarization rotation, in line with literature results. Since
the relevant paths in BaTiO3 involve [100]-oriented switching, such geometrical
factor reduces its [110] and [111] effective flexocoupling coefficients of Table 4.3 by√

2 and
√

3, respectively, bringing all three values of feff to a similar magnitude.
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Figure 4.6: (a) Potential energy landscape of LiOsO3 from our
first principles effective Hamiltonian, obtained by minimizing
the energy at fixed values of u1. A typical double-well like curve
is obtained when u1 = u2 = u3 is enforced (dashed line) and
a butterfly-like diagram emerges when all the parameters are
allowed to evolve freely (solid line). Colors and arrows are used
to illustrate the switching path, either for the case in which u1
linearly increases or decreases. (b) Evolution of u2 and u3 as a
function of u1.

4 .6 critical bending radius

We are now ready to estimate the critical bending radius needed to switch the polar
order parameter of LiOsO3. Combining the effective flexocoupling coefficients of
Table 4.3 with the critical coercive fields of the previous section, by means of Eq.
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Figure 4.7: Potential energy landscape of BaTiO3. The dashed line
represents the study under the u2 = u3 = 0 constraint, and the
solid line the case with no constraints.

(4.28), we obtain Rcrit ∼ 118 Å for LiOsO3 and Rcrit ∼ 130 Å for the rhombohedral
BaTiO3 and Rcrit ∼ 63 Å for tetragonal BaTiO3. Remarkably, the calculated critical
bending radius of LiOsO3 is twice as large as that of tetragonal BaTiO3, essentially
matching the calculated value of rhombohedral BaTiO3.

Our results for BaTiO3 are in good agreement with the ones reported in Ref. [137]
where a critical bending radius of 110 Å was estimated. This is substantially smaller
than the available experimental estimates (a value of Rcrit ∼ 300 Å was observed
in BaTiO3 [38]). This is expected, since theoretical estimations of coercive fields in
ferroelectrics that are based on the homogeneous Landau potential are typically
overestimated by one or two orders of magnitude [138]. Consideration of more
realistic mechanisms (e.g., domain wall nucleation and motion) would drastically
complicate our study, and bring us far from our main scope. We stress in any case
that our underestimation of the critical bending radii compared to experiments
should be ascribed to an overestimation of Fcoerc, while we regard our calculation of
the flexocoupling coefficients as accurate. In this context, it is necessary to mention
that in the R3̄c phase of LiOsO3, the flexocoupling coefficients are expected to
acquire additional contributions coming from the oxygen octahedral tilt gradients,
which are neglected in this work. While certainly present, we consider it unlikely
to qualitatively affect our conclusions.

4 .7 summary and outlook

The following points summarize the achievements of the work presented in this
chapter:
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• We have proposed strain gradients as a viable and promising way of switching
polarity at the bulk level in polar metals, thus solving one of the long-standing
issues that has been a challenge to unravel for some time.

• Our work also opens the door to a previously unexplored research field
of flexoelectricity in metals, where strain gradient mediated effects have
the potential to become as relevant as they are with standard insulating
ferroelectrics.

• We have computed, for the first time, the flexocoupling coefficients of a metal
from first-principles, by means of the ensemble DFPT approach presented in
Chapter 3. After extensively verifying the accuracy of our results via the elastic
sum rule that was presented in Sec. 4.23, we also proposed an alternative
methodology for computing the flexocouplings in metals, which is based on
lattice sums of real-space IFCs.

• We have estimated the needed critical bending radius to switch the polarity of
LiOsO3, which is comparable in magnitude to that of BaTiO3. Since mechanical
switching of polar domains in tetragonal barium titanate has already been
experimentally achieved [37, 38] via strain gradients, our results indicate that
this is very likely to be feasible in LiOsO3 as well.

As an outlook, we hope that the results presented here will stimulate further
experimental work to verify our theoretical predictions. Along these lines, it is
worth mentioning Ref. [139], where the spontaneous polarization of LiOsO3 is
found to be comparable to that of BaTiO3, in line with our predictions about
the critical bending radii of these materials. Additionally, it will be interesting to
estimate the magnitude of the flexocoupling coefficients in a broader range of polar
metals and identify candidates where the effect is especially strong. Our long-wave
DFPT methodology presented in Chapter 3 appears to be an excellent tool for this
task. We expect it to greatly facilitate the first-principles-based modeling of polar
metals, which are currently under intense scrutiny within the research community.



5
R O TAT I O N A L g FA C T O R S A N D L O R E N T Z F O R C E S

In this chapter we establish, in the framework of first-principles density-functional
perturbation theory (DFPT), an accurate and computationally efficient methodology
to compute both generalized Lorentz forces and g factors in molecules and solids.

Our strategy consists in defining both quantities in terms of the microscopic
electronic and nuclear currents, J(r), that accompany the adiabatic evolution of the
system along the atomic trajectories. In particular, the first spatial moment of J(r)
can be regarded as a geometric orbital magnetic moment, m, which couples linearly
to the external B field and acts as an effective vector potential in the classical ionic
Lagrangian. At the leading order in the ionic velocities, v, the calculation of m
can be carried out within the framework of DFPT via a long-wave expansion of
the macroscopic polarization response to a phonon. Such expansion, in turn, is
written [103] in terms of two linear-response tensors: the macroscopic polarization
induced by an atomic displacement, J(0), corresponding to the Born effective charges
(BECs), and its first-order spatial dispersion, J(1). The main technical challenge
resides in the calculation of J(1), since the BECs are routinely calculated in many
publicly-available DFT codes [77, 140].

We have implemented and used two different approaches for accessing J(1),
and compared their mutual consistency as part of our numerical tests. The first
method, based on Ref. [98], consists in performing the DFPT calculations of the
polarization response at finite q, and subsequently taking their long-wave expansion
via numerical differentiation. The second method, which we shall prefer from the
point of view of computational convenience, consists in taking the long-wave
expansion analytically [41], following the prescriptions of Sec. 2.4.4. Note, however,
that the implementation that is currently available in abinit doesn’t capture the
full tensorial form of J(1). For its implementation, we have further extended the
capabilities of abinit by incorporating the wave function response to an orbital
B field. One can show that the resulting formulation of the geometric orbital
magnetization recovers the theory of Ref. [17], including the additional topological
contribution derived therein (see Appendix E for more details).

To demonstrate our method, we first consider the rotational g factor, which de-
pends on the magnetic moment that is associated with a uniform and rigid rotation
of a finite body. We show that our formula, based on the calculation of J(1), consis-
tently yields a vanishing magnetic moment in the case of a neutral closed-shell atom,
and correctly transforms upon a change of the assumed center of rotation. Our nu-
merical results for several representative molecules show excellent agreement with
experiment and with earlier calculations, where available; the elements of J(1) that
we obtained via either finite-difference or analytical long-wave expansions nicely
match in all tested cases. For comparison, we also test an alternative formulation,
based on a coordinate transformation to the comoving frame [100] of the rotating

77
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molecule, and discuss its performance regarding numerical convergence and other
technical issues (e.g., related to the use of nonlocal pseudopotentials).

Next, we consider the magnetization induced by a circularly polarized optical
phonon, which we express as a generalized Lorentz force in presence of a uniform
magnetic field. As a physical manifestation of this effect, we calculate the splitting
of the soft polar transverse-optical (TO) mode frequencies of SrTiO3 at Γ due to an
external magnetic field. Our motivation for revisiting this system comes the very
recent measurement of a giant phonon Hall effect [141] in the same material. As
in the case of the molecular g factors, we base our discussion on the calculation
of the J(1) tensor, which we perform both via the approach of Ref. [98], and via
the analytical long-wave method; again, we find excellent numerical agreement
between the two.

The remainder of this chapter is organized as follows. Sec. 5.1 and Sec. 5.2
are devoted to introducing the formalism and computational implementation for
calculating molecular g factors and generalized Lorentz forces in extended solids.
In Sec. 5.3 we present our numerical results of the rotational g factors of selected
molecules and the generalized Lorentz force in cubic SrTiO3. The latter enables the
calculation of the frequency splitting of the TO modes in presence of a magnetic
field. We conclude the chapter in Sec. 5.4 with a summary and a brief outlook.

5 .1 theory

5 .1 .1 lagrangian for a solid under an applied magnetic

field

Our starting point is the following nonadiabatic Ehrenfest Lagrangian of a crys-
talline system under an applied magnetic field,

L = ∑
l,κ,α

1
2

Mκ(Ṙl
κα)

2 + ∑
l,κ

ZκṘl
κ · A(Rl

κ) + ∑
m

⟨ψm|
[
i∂t − Ĥ(A)

]
|ψm⟩ , (5.1)

where A(Rl
κ) is the magnetic vector potential (the electromagnetic gauge origin at

Rl
κ is explicitly indicated), Rl

κ represents, as usual, the position of ion lκ within the
crystal (κ is a sublattice index and l refers to the cell), Mκ is the mass of ion κ and
Zκ its bare pseudo-charge. Regarding the electronic part, ψm are the Kohn-Sham
orbitals and Ĥ(A) is the electronic Hamiltonian, depending parametrically on the
ionic positions,

Ĥ(A) =
1
2
(
p̂ + Â

)2
+ V̂KS, (5.2)

where V̂KS is the KS effective potential given in Eq. (2.13), and accounts for the
Hartree (H), exchange-correlation (xc) and and the electron-nucleus interaction.
(We shall distinguish between Ĥ(A), which takes into account the effects of the
applied B field via the incorporation of the vector potential in Eq. (5.2), and Ĥ,
which is the Hamiltonian in absence of any external fields. In addition, note that
the parametric dependence on ionic positions, {Rl

κ}, and velocities, {Ṙl
κ}, of the

objects entering the Lagrangian is kept implicit.) If we assume that the external



5.1 theory 79

magnetic field is small (an excellent approximation in the vast majority of cases),
we can work at linear order in the vector potential and write

L = ∑
l,κ,α

1
2

Mκ(Ṙl
κα)

2 + ∑
l,κ

ZκṘl
κ · A(Rl

κ) +
∫

A(r) · Jel(r)d3r

+ ∑
m

⟨ψm|
(
i∂t − Ĥ

)
|ψm⟩ ,

(5.3)

where the microscopic electronic (el) currents, in zero external field, are defined as

Jel(r) = −1
2 ∑

m
⟨ψm|

(
p̂|r⟩⟨r|+ |r⟩⟨r|p̂

)
|ψm⟩ . (5.4)

(Later on in this chapter we will apply the prescriptions of Sec. 2.4.3 for the correct
treatment of the current-density operator in presence of non-local pseudopotentials.)
As we treat the nuclei as classical point charges, the ionic (ion) currents read as

Jion(r) = ∑
l,κ

ZκṘl
κδ(r − Rl

κ). (5.5)

This allows us to reabsorb the effects of the external vector potential in a single
interaction term,

L = ∑
l,κ,α

1
2

Mκ(Ṙl
κα)

2 +
∫

A(r) · J(r) d3r + ∑
m

⟨ψm|
(
i∂t − Ĥ

)
|ψm⟩ , (5.6)

where J = Jel + Jion. By choosing the symmetric gauge, A = 1
2 B × r, we can

equivalently write ∫
A(r) · J(r) d3r = B · m, (5.7)

where m = 1/2
∫

r × J d3r is the geometric orbital magnetic moment associated
with the dynamical evolution of the ions along their trajectories, which implicitly
depends both on the ionic positions and velocities. We are now ready to take the
adiabatic approximation in a regime where the ionic velocities are small,

L = ∑
l,κ,α

1
2

Mκ(Ṙl
κα)

2 + B · ∑
l,κ,α

Ṙl
καml

κα − E, (5.8)

where the two new terms are the Born-Oppenheimer potential energy surface in
zero field, E, plus a term that depends on the dynamical orbital magnetic moment
tensor,

ml
κα =

∂m
∂Ṙl

κα

∣∣∣∣
Ṙl

κα=0
. (5.9)

The latter quantity differs from the Born effective charge (BEC) tensor in that
the adiabatic macroscopic m, rather than the adiabatic macroscopic current J, is
differentiated with respect to the ionic velocities. Note that ml

κα generally depends
on the electromagnetic gauge, unlike the BECs. However, as we shall see shortly,
its consequences on ionic dynamics are gauge-independent. This is a common
feature of physical problems that involve an applied external B field. Indeed, the
velocity-dependent potential

Al
κα = B · ml

κα, (5.10)
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can be regarded as an effective vector potential, Al
κ, acting on the ion lκ, whose

magnitude depends on the specific atom under consideration. This leads to the
following expression for the classical Hamiltonian of the ions,

Hion = ∑
l,κ,α

1
2Mκ

(
Pl

κα −Al
κα

)2
+ E, with Pl

κα = ∂L/∂Ṙl
κα, (5.11)

which is good up to linear order in the ionic velocities, and where the vector
potential emerges from the breakdown of time-reversal (TR) symmetry that is
associated with the external B field. One can show that this treatment is fully
consistent with more conventional expressions [142] where Al

κα is written as a
Berry connection in the parameter space of the ionic coordinates. The advantage of
the present formulation rests on the availability of efficient first-principles methods
to compute directly ml

κα, and hence the vector potential Al
κα, without the need of

incorporating an external B field in the simulation. We shall discuss this point in
the next subsection.

5 .1 .2 geometric orbital magnetization

The basic quantity we shall be dealing with is the microscopic polarization response
to the displacement of an isolated atom [103],

Pκβ(r − Rl
κ) =

∂J(r)
∂Ṙl

κβ

∣∣∣∣
Ṙl

κβ=0
. (5.12)

Eq. (5.12) always sets the coordinate origin to the atomic site; therefore, the functions
Pκβ(r) do not depend on the cell index l. Note that the vector fields contain both
electronic and ionic contributions, i.e.,

Pα,κβ(r) = Pel
α,κβ(r) + P ion

α,κβ(r), (5.13)

where the α subscript indicates the Cartesian component. The ionic contribution
comes in the form of a Dirac delta function that carries the bare nuclear (or
pseudopotential) charge Zκ,

P ion
α,κβ(r) = Zκδαβδ(r). (5.14)

The relationship between the localized functions we have just introduced, Pκβ(r),
and the polarization response to a collective phonon mode as described in Sec.
2.3.3, Pκβ(r), which can be obtained from Eqs. (2.102) and (2.106), is straightforward
[103],

Pq
κβ(r) = ∑

l
Pκβ(r − Rl

κ)e
iq·(Rl

κ−r). (5.15)

The Taylor expansion of Eq. (5.15) in q around q = 0 reads as

Pq
α,κβ ≃ P(0)

α,κβ − i ∑
γ

qγP(1,γ)
α,κβ − 1

2 ∑
γ,δ

qγqδP(2,γδ)
α,κβ , (5.16)
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where α is a Cartesian direction and we have followed the same sign conventions as
with the FC matrix in Eq. (3.47). In terms of the localized functions, for the lowest
orders in q, we obtain

P(0)
α,κβ(r) =∑

l
Pα,κβ(r − Rl

κ),

P(1,γ)
α,κβ (r) =∑

l
Pα,κβ(r − Rl

κ)(r − Rl
κ)γ,

P(2,γδ)
α,κβ (r) =∑

l
Pα,κβ(r − Rl

κ)(r − Rl
κ)γ(r − Rl

κ)δ.

(5.17)

For most practical purposes, it is convenient to introduce the moments of the
localized functions as the following integrals over all space,1

J(0)α,κβ =
∫

Pα,κβ(r) d3r,

J(1,γ)
α,κβ =

∫
Pα,κβ(r)rγ d3r.

(5.18)

Here, J(0) corresponds to the Born effective charge tensor and J(1) is the first moment
of the polarization response, whose symmetric part corresponds to the dynamical
quadrupole tensor [41, 103]

Q(2,αγ)
κβ = J(1,γ)

α,κβ + J(1,α)
γ,κβ . (5.19)

On the other hand, the antisymmetric part of J(1) contributes to the magnetization
response to the atomic velocity, and can be expressed as

Mα,κβ =
1
2 ∑

γ,δ
ϵαγδ J(1,γ)

δ,κβ , (5.20)

where ϵαγδ is the Levi-Civita symbol. More precisely, M is the magnetic moment of
the electronic currents calculated with respect to the unperturbed atomic position,
which follows from the definition of J(1) in Eq. (5.18).

The above definitions lead to the following formula for the geometric magnetic
moment associated with the adiabatic motion of the ion lκ,

ml
κβ =

1
2

∫
r ×Pκβ(r − Rl

κ) d3r

=
1
2

Rl
κ × Z∗

κβ +Mκβ,
(5.21)

where Z∗
α,κβ = J(0)α,κβ is the α Cartesian component of the polarization induced by

a displacement of atom κ along β, i.e., the Born effective charge, as defined in
Eq. (2.83). This expression clarifies the gauge-dependence of ml

κβ that we have

1 Note that this is completely equivalent to performing the cell-average of the extended functions; for
example, at first-order in q,

J(1,γ)
α,κβ =

∫
Ω

P(1,γ)
α,κβ (r) d3r =

∫
P (1,γ)

α,κβ (r)rγ d3r,

where the first integral is carried out only for the unit cell, and the second one over the whole space.
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anticipated in the previous subsection: this quantity depends explicitly on the
absolute atomic position, and hence on the arbitrary choice of the coordinate origin.

In the case of an isolated and neutral molecule, it is insightful to consider
the sublattice sum of mκβ = m0

κβ, which corresponds physically to the magnetic
moment associated with a rigid translation of the body. Because of the acoustic
sum rule, the origin indeterminacy disappears. Then, by using the following dipolar
sum rule for molecules (see Appendix C for a detailed derivation),

∑
κ

(
J(1,γ)
α,κβ + τκαZ∗

α,κβ

)
= δαβDγ, (5.22)

we arrive at

∑
κ

mα,κβ =
1
2 ∑

γ

ϵβαγDγ, (5.23)

where D is the static dipolar moment of the molecule,

D =
∫

r n(0)(r) d3r. (5.24)

This is precisely the expected result for the uniform rigid motion of a distribution
of classical charges whose local density equals n(0)(r).

5 .1 .3 magnetization by rotation : rotational g factors

We now derive the rotational g factor, which is relevant for molecules and other
finite systems. Consider an isolated molecule to which we apply a time-dependent
counter-clockwise rotation along the axis b by an angle θb. In general, the magnetic
moment can be expressed as [143, 144]

ma =
1
2 ∑

j
gajLj, (5.25)

where gaj is the rotational g tensor. On the other hand, Lj is the angular momentum,
given by

Lj = ∑
b

Ijbωb, (5.26)

where I is the moment of inertia matrix and ωb = θ̇b is the angular velocity, defined
as time derivative of the rotation angle. Thus,

∂ma

∂ωb
=

1
2 ∑

j
gaj Ijb. (5.27)

In the reference frame where I is diagonal, the g tensor can then be written as

gab =
2

Ibb

∂ma

∂ωb
. (5.28)

We will now derive a closed formula for the magnetic moment induced by a
uniform rotation of the molecule. We shall present two alternative results, the first
calculated in the standard Cartesian frame based on the quantities introduced in
the previous section, and the second based on the comoving frame theory of Ref.
[100].
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5.1.3.1 Cartesian frame

A rigid rotation about an arbitrary axis can be represented as the following dis-
placement of the individual atoms [100],

uκ = θ× τκ, (5.29)

where we have introduced the rotation pseudovector θ = θr̂b. By combining
Eq. (5.29) with Eq. (5.21), the magnetic moment associated with the rigid rotation
of the sample can be expressed in terms of the Born effective charge tensor and the
dynamical magnetization defined in the previous subsection,

∂ma

∂ωb
= ∑

κ,ρ,β
ϵbρβτκρ

[
Ma,κβ +

1
2 ∑

γ,α
ϵaγατκγ J(0)α,κβ

]
. (5.30)

This formula, containing the first moment of the dynamical magnetic dipoles
and the second moment of the dynamical electrical dipoles, is valid only if the
electromagnetic gauge origin coincides with the center of rotation of the molecule;
this ensures, via rotational symmetry, that the linear-response result corresponds
with the average geometric magnetization accumulated in a cyclic loop [100].

Consider now a simultaneous shift of the gauge origin and center of rotation by
R in Eq. (5.30), giving rise to ∂ma(R)

∂ωb
. We want to see how that quantity is related to

∂ma(0)
∂ωb

≡ ∂ma
∂ωb

, which is indeed Eq. (5.30). Following the above considerations,

∂ma(R)

∂ωb
= ∑

κ,ρ,β
ϵbρβ(τκρ − Rρ)

[
Ma,κβ +

1
2 ∑

γ,α
ϵaγα(τκγ − Rγ)J(0)α,κβ

]

=− ∑
κ,ρ,β

ϵbρβRρ

[
Ma,κβ +

1
2 ∑

γ,α
ϵaγατκγ J(0)α,κβ

]

− 1
2 ∑

κ,ρ,β
ϵbρβτκρ ∑

γ,α
ϵaγαRγ J(0)α,κβ +

∂ma(0)
∂ωb

.

(5.31)

We will now rearrange some terms and make use of i) the definition of the dynami-
cal orbital magnetic moment tensor given in Eq. (5.21) and ii) the sum rule of Eq.
(5.23), in order to obtain

∂ma(R)

∂ωb
− ∂ma(0)

∂ωb
=− 1

2 ∑
ρ,β,γ

ϵbρβϵaγβRρDγ

+
1
2 ∑

ρ,β
ϵbρβ ∑

γ,α
ϵaγαRγ

(
∑
κ

J(1,ρ)
α,κβ −Dρδαβ

)
.

(5.32)

For the first term on the right hand side of Eq. (5.32), it is useful to observe the
following property of the Levi-Civita symbol,

∑
α

ϵαmkϵαnl = δmnδkl − δmlδnk, (5.33)

which leads to

−1
2 ∑

ρ,βγ

ϵbρβϵaγβRρDγ = −1
2
(δabR ·D − RaDb) . (5.34)
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For the second contribution on the right hand side of Eq. (5.32), we will once again
invoke the dipolar sum rule given in Eq. (5.22) and observe that the sublattice sum
of the J(1,γ)

α,κβ tensor coincides with the clamped-ion proper piezoelectric tensor times
a trivial volume factor [see Eq. (C.4) in Appendix C], and is therefore symmetric
with respect to β ↔ γ exchange. As a consequence, the latter contribution vanishes.
(An antisymmetric contribution would describe a steady macroscopic current that
is generated by a rotating body in its comoving reference frame, and must vanish
[100] on general physical grounds.) We obtain,

−1
2 ∑

ρ,β
ϵbρβ ∑

γ,α
ϵaγαRγDγδαβ = −1

2
(δabR ·D − RaDb) . (5.35)

Collecting all the contributions, we finally arrive at the following expression,

∂ma(R)

∂ωb
− ∂ma(0)

∂ωb
=

1
2
(RaDb + RbDa)− δabR ·D, (5.36)

which describes the translational symmetry properties of the geometric magneti-
zation derived in Eq. (5.30) upon a simultaneous shift of the gauge origin and the
center of rotation. What are the key conclusions we can deduce from the above
derivations? In short, Eq. (5.36) is telling us that ∂ma(R)/∂ωb is origin independent
in nonpolar molecules, i.e., molecules with vanishing static dipole. In all other
cases, the result depends on the assumed center of rotation, which is usually set as
the center of mass of the system.

5.1.3.2 Comoving frame

In the reference that is comoving (rotating) with the system, the rotational geometric
magnetization can be expressed as [100, 145]

∂ma

∂ωb
=− 2χ

mag
ab +

1
2

∫
∂[r × (ω × r)]a

∂ωb
n(0)(r) d3r

=− 2χ
mag
ab +

1
2 ∑

α,δ,β
ϵaαβϵbδβ

∫
rαrδn(0)(r) d3r

=− 2χ
mag
ab +

1
2

∫
(δabr2 − rarb)n(0)(r) d3r.

(5.37)

The first term is proportional to the magnetic susceptibility, and originates from the
electronic currents in the reference frame that is rigidly rotating with the sample;
the second term describes the magnetic moment generated by the rigid rotation of
the ground-state charge density of the molecule, and serves to convert the result
to the laboratory frame. Upon a shift of the gauge origin, χ

mag
ab remains unaltered

while the second term trivially transforms as in Eq. (5.36). (Clearly, the quadrupole
becomes origin-dependent whenever a nonzero dipolar moment is also present,
consistent with the above arguments.)

As part of the validation of our implementation, we shall compute the geometric
magnetization by using both methods, Eq. (5.30) and Eq. (5.37). We can anticipate,
however, that Eq. (5.30) is preferable in practical applications, for the following
reasons. First, the widespread use of nonlocal pseudopotentials is a concern in
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regard to Eq. (5.37). [In particular, the equivalence between Eq. (5.30) and Eq. (5.37)
rests on the translational invariance at the quadrupolar order, see the discussion
around Eq. (C.18) in Appendix C.] Because of this issue, we find that Eq. (5.37) yields
qualitatively incorrect results for systems where ∂ma/∂ωb must vanish identically,
e.g., in isolated noble gas atoms or molecular dimers that rotate about their axis.
Second, even in cases where Eq. (5.37) is exact (e.g., in the H2 molecule whenever
hydrogen is described by a local pseudopotential), its numerical implementation
involves the calculation of the static quadrupolar moment of the molecule, which
might converge slowly as a function of the cell size. We shall illustrate this point in
practice in Sec. 5.3.1.

5 .1 .4 magnetization induced by circularly polarized opti-
cal phonons : generalized lorentz force

We now turn to extended systems, and consider the case of a circularly polarized
optical phonon describing a cyclic path along orbits in a given plane. In presence
of time-reversal (TR) symmetry, the clockwise and counterclockwise orbits are
degenerate. Here, we take the approach of breaking TR symmetry via an external
B field oriented along γ, and discuss the implications on lattice dynamics within
the harmonic regime of small displacements.

The starting point is the Lagrangian of Eq. (5.8). The Euler-Lagrange equations
of motion are obtained from

d
dt

∂L
∂u̇0

κα

− ∂L
∂u0

κα

= 0, (5.38)

where ul
κ and u̇l

κ are, respectively, the ionic displacements and velocities. (The
former brings the position of ion lκ from Rl

κ to Rl
κ + ul

κ.) In order to compute the
derivatives of the Lagrangian with respect to the ionic displacements and velocities,
we expand the total orbital magnetic moment of the system up to first order both
in ul

κ and u̇l
κ, and the Kohn-Sham energy up to second order in ul

κ (harmonic
approximation). The Lagrangian of Eq. (5.8) then reads as

L = ∑
l,κ,α

1
2

Mκ(u̇l
κα)

2 + ∑
l,κ,α

(
∂mγ

∂Ṙl
κα

u̇l
καBγ − ∂E

∂Rl
κα

ul
κα

)

+ ∑
l,κ,α

l′,κ′,β

(
∂2mγ

∂Rl
κα∂Ṙl′

κ′β

ul
καu̇l′

κ′βBγ − 1
2

∂2E
∂Rl

κα∂Rl′
κ′β

ul
καul′

κ′β

)
.

(5.39)

The first line consists, next to the kinetic term, in a constant vector potential field
acting on individual ions, which can be gauged out; and in the static forces in the
initial configuration, which we assume to vanish. Based on these observations, the
Euler-Lagrange equations of motion immediately lead to

Mκ ü0
κα(t) =− ∑

l,κ′,β

(
Φκα,κ′β(0, l)ul

κ′β(t)− Φγ
κα,κ′β(0, l)u̇l

κ′β(t)Bγ

)
, (5.40)
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where the time dependence of ul
κ(t) has been made explicit. Φκα,κ′β(0, l) is the usual

real-space interatomic force-constant matrix and we have defined

Φγ
κα,κ′β(0, l) =

∂2mγ

∂R0
κα∂Ṙl

κ′β

− ∂2mγ

∂Ṙ0
κα∂Rl

κ′β

, (5.41)

which is the (antisymmetric) generalized Lorentz force produced by the external
magnetic field. In accordance with the treatment of the FC matrix [see Eq. (2.72)],
we can sum all cell contributions and write the following for the q = 0 case,

Φγ
κα,κ′β = ∑

l
Φγ

κα,κ′β(0, l). (5.42)

By using this result in combination with Eq. (5.9) and Eq. (5.21), we obtain

Φγ
κα,κ′β = Φpc,γ

κα,κ′β + Φdi,γ
κα,κ′β + Φea,γ

κα,κ′β. (5.43)

The meaning of the three terms on the right hand side goes as follows. First, we
have an on-site contribution that only depends on the Born effective charges,

Φpc,γ
κα,κ′β =

1
2

δκκ′ ∑
ρ

(
ϵγαρZ∗

ρ,κβ − ϵγβρZ∗
ρ,κα

)
. (5.44)

The “point-charge” (pc) denomination indicates that, in absence of electrons, the
BEC tensor becomes a constant, Z∗

ρ,κα = Zκδαρ, and Eq. (5.44) reduces to the well-
known Lorentz force (L) acting on a classical test particle of charge Zκ,

ΦL,γ
κα,κ′β = δκκ′Zκϵγαβ. (5.45)

This term was described in Refs. [20] and [21]. Next, we have a “dispersion” (di)
contribution, which stems from the fact that the electronic currents associated with
ionic motion are spread out in space around the nuclear site,

Φdi,γ
κα,κ′β =

∂Mγ,κ′β

∂τκα
− ∂Mγ,κα

∂τκ′β
. (5.46)

This additional term was neglected in earlier studies; its explicit calculation con-
stitutes one of the main technical advances of this work. Finally, we have a third
contribution in the form

Φea,γ
κα,κ′β =

1
2 ∑

δ,ρ
ϵγδρ

(
τκ′δ

∂Z∗
ρ,κ′β

∂τκα
− τκδ

∂Z∗
ρ,κα

∂τκ′β

)
, (5.47)

which is different from zero only when κ ̸= κ′, and corresponds to the electrical
anharmonicity (ea) tensor discussed by Roman et al. [146]. This term is present only
if the site symmetries of the occupied Wyckoff position lack the space inversion
operation; if, on the other hand, every atom in the crystal sits at an inversion center
(e.g., cubic perovskites like SrTiO3), Φea,γ

κα,κ′β vanishes identically. One can also verify
that all three contributions are antisymmetric under κα ↔ κ′β exchange, consistent
with the definition of Eq. (5.41) and that they are independent of the choice of
the coordinate origin. In addition, note that Eqs. (5.44), (5.46) and (5.47) can be



5.1 theory 87

computed with DFPT by considering only the unit cell of the system; details about
our computational implementation are given in Sec. 5.2.

As a final comment, we expect all the three terms contributing to Eq. (5.41) to
vanish for large interatomic distances, although there may be long-range contri-
butions mediated by electrostatic forces; their detailed analysis, while interesting,
goes beyond the scope of our work, as we will only focus on zone-center phonons.

5 .1 .5 phonon g factor and frequency splitting

We now demonstrate how the formalism of the last subsection can be used to
calculate the g factor for the phonon modes of an extended solid [20, 21, 59]. In
order to find a solution for the equations of motion of the ions given by Eq. (5.40),
as usual, we try the following ansatz,

ul
κβ(t) = Uq

κβei(q·Rl
κ−ωt), (5.48)

where ω is the frequency. We shall specialize to the q = 0 case henceforth, and thus
remove the q subscript. We obtain,

ω2Ũκα = ∑
κ′,β

(
D(0)

κα,κ′β + iωBγDγ
κα,κ′β

)
Ũκ′β, (5.49)

with Uκα = Ũκα/
√

Mκ and

D(0)
κα,κ′β =

1√
Mκ Mκ′

∑
l

Φκα,κ′β(0, l),

Dγ
κα,κ′β =

1√
Mκ Mκ′

∑
l

Φγ
κα,κ′β(0, l).

(5.50)

The term that is linear in B in Eq. (5.49) shall be treated as a perturbation of the
B = 0 phonon dynamics in the following. The system we shall consider is a cubic
crystal with a two-fold degenerate transverse optical mode at the Γ point (e.g., the
“soft” [147] polar mode in cubic SrTiO3). The unperturbed (B = 0) frequency, ω(0),
can be determined from the following eigenvalue problem,

[ω
(0)
i ]2V(i)

κα = ∑
κ′,β

D(0)
κα,κ′βV(i)

κ′β, (5.51)

where i runs over the degenerate modes and V(i)
κ′β are the eigenvector components,

where κ′ runs from 1 to N (number of ions in the cell) and β runs over the Cartesian
directions. We choose i = 1, 2 to span the plane orthogonal to B in such a way
that they form a right handed coordinate system. We can now apply degenerate
perturbation theory to Eq. (5.51) by choosing the unperturbed eigenvectors as

|+⟩ = 1√
2

(
|V(1)⟩+ i |V(2)⟩

)
,

|−⟩ = 1√
2

(
|V(1)⟩ − i |V(2)⟩

)
,

(5.52)
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where ⟨κ′β|V(i)⟩ = V(i)
κ′β. Here |κ′β⟩ stands for a unit displacement of ion κ′ along

the Cartesian direction β while the rest of ions remain still; |V(i)⟩ is therefore a
3 × N dimensional vector. |+⟩ and |−⟩ are circularly polarized phonon modes
expressed as a superposition of linearly polarized modes. In order to account
for the frequency splitting and to verify that the eigenvectors given by Eq. (5.52)
diagonalize the perturbation, we build the perturbation matrix gij,

gij = i

(
⟨+|Dγ |+⟩ ⟨+|Dγ |−⟩
⟨−|Dγ |+⟩ ⟨−|Dγ |−⟩

)
, (5.53)

which we identify with the gyromagnetic gij tensor of the phonon modes [20, 21,
58, 59]. Assuming cubic symmetry, this reduces to

gij =

(
g 0

0 −g

)
, (5.54)

where

g = i ⟨+|Dγ |+⟩
= i ⟨+| (Dpc,γ + Ddi,γ) |+⟩
= gpc + gdi

(5.55)

is the g factor of the phonon modes. We have explicitly indicated the two contri-
butions on Dγ coming from Eq. (5.44) and Eq. (5.46); there is only a difference of
a mass factor between Φγ and Dγ, which is indicated in Eq. (5.50). Once the g
factor is computed it is easy to give an expression for the frequency splitting of the
modes,

ω(±) ≃ ω(0) ± 1
2

gBγ. (5.56)

Before closing this section, we will briefly comment on the relationship between
our methodology to calculate the phonon g factors and previous first-principles ap-
proaches. Spaldin and coworkers [20, 21] calculated the “pc” contribution, while the
“di” term was systematically neglected, resulting in a point-charge approximation
to the full g factor; we will show later that for the soft polar mode in SrTiO3, both
terms are of the same order of magnitude. In Ref. [59], Ceresoli presents a point
charge model, in addition to a similar perturbative treatment to our Eq. (5.49). In
the latter, it was assumed that the Born effective charge tensor was isotropic for each
sublattice κ, which is not the case for cubic perovskites like SrTiO3. Also, Ceresoli’s
version of our dispersion contribution Ddi,γ was in the form of a Berry curvature.
While formally equivalent to our expression, which can be seen by writing the
Lagrangian in terms of the effective vector potential given by Eq. (5.10), it is more
computationally demanding compared to the DFPT implementation given here.

5 .2 implementation

We now discuss the practical calculation of the dynamical magnetic moments,
M, in the framework of density-functional perturbation theory. The other phys-
ical property entering the g factors, i.e., the Born effective charge tensor Z∗, is
straightforward to calculate within standard implementations of DFPT [77, 140].
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5 .2 .1 polarization response to a long-wavelength phonon

The polarization response to a phonon (times a trivial volume factor) is just a
particular case of Eq. (2.106), where the perturbation is identified with λ = τκα. For
clarity, we write it down explicitly,

Jq
α,κβ = −2

∫
BZ
[d3k] ∑

m∈V
fmk ⟨iuAα

mk,q|u
τκβ

mk,q⟩ . (5.57)

The implementation described in Ref. [98] allows for the calculation of Jq
κβ directly

via Eq. (5.57); J(1,γ)
α,κβ can be then obtained by taking numerical derivatives around

q = 0. The same finite-q implementation [98] enables the computation of the
magnetic susceptibility of the system, which we shall use in our numerical tests of
Eq. (5.37). This finite-q methodology will be used to double check the results that
will be obtained from an alternative method, which consists in the application of
the analytical long-wave DFPT approach described in Sec. (2.4.4) to the polarization
case.

5 .2 .2 analytical long-wave expansion

The treatment of the polarization response to a long-wavelength phonon is de-
scribed in detailed in Ref. [41], where the long-wave limit of a second-order energy,
with respect to a modulated electric field and a phonon perturbation, is taken
analytically. The final expression reads as

J(1,γ)
α,κβ = −Im E

Eατκβ
γ , (5.58)

where
E
Eατκβ
γ = 2

∫
BZ
[d3k]E

Eατκβ

k,γ +
∫

Ω

∫
nEα(r)Kγ(r, r′)nτκβ d3r d3r′, (5.59)

and the quantity that needs to be integrated over the BZ is given by

E
Eατκβ

k,γ = ∑
m∈V

fmk ⟨uEα
mk| Ĥkγ

k |uτκβ

mk⟩

− ∑
m,n∈V

fmk

(
⟨uEα

mk|u
kγ

nk⟩ ⟨u
(0)
mk| Ĥ

τκβ

k |u(0)
mk⟩+ ⟨u(0)

mk| V̂Eα |u(0)
nk ⟩ ⟨u

kγ

nk|u
τκβ

mk⟩
)

+ ∑
m∈V

fmk

(
⟨uEα

mk| Ĥ
τκβ

k,γ |u
(0)
mk⟩+ ⟨iuAα

mk,γ|u
τκβ

mk⟩
)

.

(5.60)

The reason why we think it is worth writing down those expressions explicitly is
related to a term that appears in the third line of Eq. (5.60), |uAα

mk,γ⟩, which describes
the wave function response to a long-wavelength electromagnetic vector potential
field. Although the theoretical basis for its computation within a DFPT framework
is well established (see Appendix A of Ref. [41]), this is not a standard capabil-
ity of publicly available codes like abinit. In fact, the existing implementation
[41] focuses on the dynamical quadrupoles Q(2,αγ)

κβ , which are symmetric under
exchange of Cartesian indices α ↔ γ, as shown in Eq. (5.19). Therefore, only the
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Molecule Geometry Molecule Geometry

H2 d = 1.446 FCCH dFC = 2.396, dCC = 2.260, dCH = 2.022

N2 d = 2.066 HNC dHN = 1.908, dNC = 2.202

F2 d = 2.622 H2O dHO = 1.835, ̸ HOH = 104.8◦

HF d = 1.760 HN3 dNH = 1.930, ̸ HNH = 107.3◦

CH4 dCH = 2.070 · · · · · ·

Table 5.1: Geometry of selected molecules after relaxation. Dis-
tances are in bohr and ̸ ABC represents the bond angle of atoms
A, B and C.

symmetric components of |uAα
mk,γ⟩ are currently available. To access the antisymmetric

components, as required for the full tensorial form of J(1,γ)
α,κβ , additional coding effort

is required.
Even though the implementation of the wave function response |uAβ

mk,γ⟩ consti-
tutes a crucial aspect of the methodology we have presented in this chapter, we
have decided to leave all the details for Appendix D.

5 .2 .3 computational parameters

For the numerical validation of the methodology presented in the previous sections,
we use the Perdew-Wang [81] parametrization of the local density approximation
(LDA) and Optimized Norm-Conserving Vanderbilt Pseudopotentials (ONCVPSP)
[88] in all the DFT and DFPT calculations.

Our numerical results on rotational g factors of molecules are obtained employing
a large cell of 20× 20× 20 bohr3 to avoid interactions between neighboring images.
A maximum plane-wave cutoff of 100 Ha (60 Ha for CH4, C5H5N and C6H5F) is
used and the Brillouin Zone is sampled with a single k point at Γ. The structural
optimization for the geometry of the molecules is performed to a tolerance of 5 ×
10−7 Ha/bohr on the residual forces. The relaxed molecular geometries employed
in our calculations are shown in Table 5.1 and Table 5.2.

For our calculations on SrTiO3, we use the five-atom primitive cubic cell, with
a plane-wave cutoff of 80 Ha and an 8 × 8 × 8 mesh of k points to sample the
Brillouin Zone; with this setup we obtain an optimized cell parameter of a0 = 7.288
bohr. For the derivative with respect to the displacement of atoms appearing in Eq.
(5.46), ∂/∂τκα, we apply a displacement of 0.01 bohr to atom κ along the Cartesian
direction α and compute the derivative via finite differences; this means that 3N
(where N is the number of atoms in the cell) of such calculations are needed to
compute the full Dγ matrix. This number could be reduced significantly via use of
symmetries; however, in our calculations we opt for a straightforward calculation
of all components, and check that the resulting generalized Lorentz force tensor
enjoys the expected symmetries as part of the validation procedure.
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Atom x y Atom x y

F 0.000 −4.138 C1 2.510 0.070

C1 0.000 −1.605 C2 1.303 −2.249

C2 −2.281 −0.352 C3 −1.308 −2.295

C3 2.281 −0.352 C4 −2.599 −0.026

C4 −2.264 2.262 C5 −1.219 2.196

C5 2.264 2.262 N 1.289 2.261

H1 0.000 3.573 H1 4.577 0.172

H2 −4.034 −1.435 H2 2.402 −3.993

H3 4.034 −1.435 H3 −2.328 −4.088

H4 −4.051 3.289 H4 −4.659 0.034

H5 4.051 3.289 H5 −2.185 4.026

H6 0.000 5.633 · · · · · · · · ·

Table 5.2: Relaxed Cartesian coordinates (in bohr) of C6H5F (left)
and C5H5N (right) molecules, which lie in the xy plane with
z = 0.

5 .3 results

5 .3 .1 rotational g factor of molecules

To begin with, we present a detailed study of the H2, N2, and F2 molecules, since
they constitute the simplest nontrivial test of our methodology. In the case of
elemental diatomic molecules, the rotational g factor is only defined for rotations
about an axis that is perpendicular to the bond. Assuming that the bond is aligned
with the x Cartesian direction, and that the rotation axis passes through the center
of mass, the g factor reduces to

g =
J(1,x)
y,1y − J(1,y)

x,1y

I
, (5.61)

where I = Md2/2 is the moment of inertia and κ = 1 is the label for one of the
ions of the elemental diatomic molecule; d stands for the interatomic distance, and
M is the atomic mass in units of the proton mass. Fig. 5.1 shows the convergence
with respect to the plane-wave energy cutoff of the g factor of H2 using the
experimental geometry (dexp=1.4 bohr), calculated with the analytical long-wave
approach described in Sec. 5.2.2. We see that the result is well-converged at a
relatively modest (for a molecule in a box) energy cutoff of 50 Ha. We can compare
the converged value of 0.8956 to the finite-q calculations, which gives precisely
0.8956. For N2 (dexp=2.074 bohr) and F2 (dexp=2.668 bohr), the analytical long-wave
approach gives −0.2704 and −0.1043, also in excellent agreement with the finite-
difference method, which yields −0.2708 and −0.1045, respectively. The excellent
agreement confirms the accuracy of our implementation described in Sec. 5.2.2.
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Figure 5.1: Convergence of the g factor of H2 (with dexp = 1.4
bohr) with respect to the plane-wave cutoff, Ecut. Calculations
are performed using a single k point (Γ) with a box size of
20 × 20 × 20 bohr3. Solids lines are a guide to the eye.

Since the H atom is well described by a local pseudopotential, we can use the
H2 molecule to benchmark the performance of the two alternative formulations of
∂ma/∂ωb; i.e., Eq. (5.30) —which reduces to Eq. (5.61) in this case— and Eq. (5.37).
In Fig. 5.2 (a) we the plot the calculated g factor of H2 versus inverse cell size by
using both methods. As anticipated in Sec. 5.1.3.2, we find that Eq. (5.37) is quite
challenging to converge, while the corresponding results of Eq. (5.61) display an
optimally fast convergence. To understand the origin of such a behavior, we show
in Fig. 5.2 (b) a decomposition of Eq. (5.37) into the two contributions on the right
hand side. This analysis clarifies that the convergence is limited by the quadrupole
term [i.e., the second term in Eq. (5.37)], while the magnetic susceptibility of the
molecule is already converged at a relatively small box size. If we extrapolate this
term to the limit of an infinitely large cell parameter (1/a → 0, purple dashed
curve), then we see that our g factor indeed converges to the value we obtain using
the methodology of Sec. 5.2.2 [purple cross on Fig. 5.2 (a)]. The agreement for large
cell sizes provides an independent confirmation of the accuracy of our approach,
though the methodology of Sec. 5.2.2 is clearly superior from a computational
perspective.

As anticipated, a further issue with Eq. (5.37) consists in the fact that it may yield
qualitatively incorrect results when nonlocal pseudopotentials are used, i.e., in the
vast majority of first-principles simulations that are being performed nowadays.
An obvious example is that of a neutral (and isolated) closed-shell atom, where
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Figure 5.2: (a) Calculation of rotational g factor of H2 (with
dexp=1.4 bohr) using the expression for ∂ma/∂ωb from Eq. (5.37)
(dots) and from Eq. (5.30) (triangles) versus inverse of the simula-
tion cell size side length. (b) Convergence of terms in Eq. (5.37)
versus inverse of the simulation cell size. Purple dashed line in
(b) is the extrapolated value for the quadrupole term; the pur-
ple cross in (a) is the g factor calculated with the extrapolated
quadrupole term.

the rotationally induced magnetization must vanish exactly. This requirement is
trivially fulfilled by our Eq. (5.30): both dynamical charges and dynamical magnetic
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moments identically vanish in this system due to charge neutrality and inversion
symmetry. In the context of Eq. (5.37) one would also expect a vanishing result:
Langevin’s theory of diamagnetism expresses the susceptibility as the quadrupolar
moment of the spherical atomic charge, which should cancel out exactly with the
second term on the right hand side. In presence of nonlocal pseudopotentials,
however, Langevin’s result no longer holds, and Eq. (5.37) yields a nonzero value
for all noble gas atoms except He. (The latter, just like H, is well described by a
local pseudopotential.) We regard this as a serious concern in this context, and
we therefore caution against a straightforward application of Eq. (5.37) to the
calculation of rotational g factors.

In addition to the aforementioned elemental diatomic molecules, we consider
several other examples: HF, HNC, and FCCH (still linear, but with a finite dipole
moment), nonlinear molecules such as NH3, H2O, and CH4, and the aromatic
compounds C5H5F and C6H5F. At difference with H2 and related structures, in
all these cases Eq. (5.28) contains a nonzero contribution from the Born effective
charges; therefore, these additional examples offer the opportunity to test the full
formula, Eq. (5.30) —in combination with Eq. (5.28)—, rather than its simplified
version, Eq. (5.61). In order to calculate the g factor, the rotation axis is taken to be
perpendicular to the molecular axis in linear molecules (H2 , N2 , F2 , HF, HNC,
and FCCH), perpendicular to the molecular plane for C5H5N, C6H5F and H2O,
along one of the bonds in CH4 and perpendicular to the plane formed by the H
atoms in NH3; it is assumed that the magnetic field is parallel to the rotation axis
in all cases.

In Table 5.3 we compare our results for the rotational g factors to experimental
measurements from Refs. [148] and [56]. In addition, we report the results of
previous calculations using Hartree-Fock (HF) and post Hartree-Fock methods
[57], as well as DFT calculations using the Berry-phase method [58, 149]. Since the
inclusion of electron-electron correlations, either at the level of Møller-Plesset (MP)
perturbation theory or coupled cluster with double excitations (CCD), seems to
improve the agreement with experiment in many cases, [57] we include those data
as well for comparison. We see that our DFPT based method compares well even
with the best theoretical values obtained via more computationally demanding
methods. Our results in Table 5.3 are also in excellent agreement with experiment,
where available; CH4 appears to be the only exception, though the reason for the
larger discrepancy is not clear.

5 .3 .2 soft-mode frequency splitting of cubic SrTiO3

We now turn our attention to the splitting of the soft polar TO mode at the zone-
center in cubic SrTiO3. As we did in the case of the rotational g factors in Sec.
5.3.1, we can test the accuracy of the generalized Lorentz forces by comparing
the implementation described in Sec. 5.2.2 with the alternative finite-q approach
of Sec. 5.2.1. In Table 5.4, we present the linearly independent components of
Ddi,γ=z

κα,κ′β for cubic SrTiO3 using both methods. Note that our labeling convention
for the oxygen is, in reduced coordinates: O1 = (0, 1/2, 1/2), O2 = (1/2, 0, 1/2),
O3 = (1/2, 1/2, 0). The additional (κα, κ′β) tensor components can be determined
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Rotational g factor

This work HF/DFT MP/CDD Exp.

H2 0.8901
0.9103 a

0.8899 a 0.8829 c

0.8755 b

N2 −0.2699 −0.2872 a −0.2653 a −0.2593 c

F2 −0.1003 −0.0900 a −0.1136 a −0.1208 c

HF 0.7603 0.7624 a 0.7488 a 0.7392 c

HNC −0.1004 −0.0996 a −0.0968 a · · ·
FCCH −0.0065 · · · · · · −0.0077 d

H2O 0.6699 0.6640 a 0.6507 a 0.6450 c

NH3 0.5289 0.5061 a 0.5044 a · · ·

CH4 0.3629
0.3019 a

0.3190 a 0.3133 c

0.2985 e

C5H5N 0.0411 · · · · · · 0.0428 d

C6H5F 0.0276 · · · · · · 0.0266 d

Table 5.3: Calculated rotational g factors for selected simple
molecules compared with the relevant literature data. “HF/DFT”
and “MP/CCD” stand for computational results at various level
of theory (Hartree-Fock / Density Functional Theory, and Møller-
Plesset perturbation theory / Coupled-Cluster with Double exci-
tations); “Exp.” refers to experimental measurements. Theoretical
values from other works are taken from:
a Ref. [57]
b Ref. [58]
c Ref. [148]
d Ref. [56]
e Ref. [149]

from symmetry considerations. Overall, we see quite good agreement, to the second
or third decimal places, between the very distinct implementations; this confirms
the accuracy of our methodology.

With the information of Table 5.4 we can readily obtain the g factor for the
low-frequency TO phonon modes by means of Eq. (5.55), where we can identify
contributions coming from J(0) (gpc) and J(1) (gdi) terms. We obtain, in atomic units,
the following numerical values,

g = −1.2083 × 10−4, gpc = 0.6679 × 10−4, gdi = −1.8763 × 10−4. (5.62)

As mentioned earlier, some works [20, 21] have only accounted for the terms
depending on the Born effective charges within a point-charge approximation,
roughly corresponding to our calculated gpc. It is immediately clear from our
results in Eq. (5.62) that such an approximation is inappropriate: the remainder
(gdi) has opposite sign and is almost three times larger (in absolute value) than
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(κα, κ′β) DFPT Finite q (κα, κ′β) DFPT Finite q

(Sr x, Sr y) 1.5320 1.5317 (Ti x, O3 y) 3.7315 3.7336

(Sr x, Ti y) 2.4483 2.4526 (O1 x, O2 y) −6.3272 −6.3416

(Sr x, O1 y) −0.4487 −0.4489 (O2 x, O1 y) 3.9400 3.9416

(Sr x, O2 y) −2.3829 −2.3874 (O2 x, O2 y) 8.3977 8.3987

(Sr x, O3 y) −1.1537 −1.1542 (O3 x, O1 y) −0.3842 −0.3845

(Ti x, Ti y) 8.4125 8.4037 (O3 x, O2 y) −2.0026 −2.0041

(Ti x, O1 y) −9.6112 −9.6131 (O3 x, O3 y) 0.0642 0.0653

(Ti x, O2 y) −2.4061 −2.3937 · · · · · · · · ·

Table 5.4: Ddi,z
κα,κ′β elements [see Eq. (5.46)] for cubic SrTiO3 cal-

culated with the analytical long-wave DFPT implementation de-
scribed in Sec. 5.2.2, and the finite-q implementation described
in Sec. 5.2.1. Values are given in Hartree atomic units.

the contribution coming from gpc; as a result, the total g factor disagrees with gpc

both in magnitude and sign. This indicates that an accurate computation of the J(1)

tensor is crucial in this particular case and that these terms should not be neglected.
For a more quantitative comparison, note that Ref. [59] and Ref. [21] computed

gpc for tetragonal SrTiO3, obtaining values of gpc = 5.76 × 10−5 cm−1/T and gpc =

4.78 × 10−5 cm−1/T, respectively. In those units, our result for cubic SrTiO3 is
gpc = 6.23 × 10−5cm−1/T. The agreement is rather good, especially considering
that: (i) we are considering the full tensorial form of the Born effective charge
tensor and (ii) our analysis is carried out in the cubic, and not tetragonal, phase of
SrTiO3. Note that Ref. [59] also reports a result for the total g factor; they obtain
g = −7.95 × 10−5 cm−1/T, which again compares well to our calculated value of
g = −11.28 × 10−5 cm−1/T.

To gain some insight on the physics, we perform a further decomposition of
gpc and gdi into the individual contributions of each atomic sublattice. In the case
of gpc, such a decomposition is straightforward, as this term mediates an on-site
coupling between the displacement of each atom and its own velocity. (This can be
appreciated by observing that the corresponding contribution to the generalized
Lorentz force, Eq. (5.44), contains a δκκ′ prefactor.) The case of gdi is less obvious:
the nondiagonal (on the atomic index) nature of Ddi,γ implies that the velocity of a
given atom can produce forces not only onto itself, but also on its neighbors. Thus,
prior to attempting a decomposition of gdi, we first isolate the basis-diagonal κ = κ′

terms in Ddi,γ, and use them to define an on-site contributions to gdi (indicated
as gdi

κ=κ′ henceforth). Apart from enabling the aforementioned decomposition, this
analysis also gives a flavor of the overall importance of the off-site contributions
to gdi. The results are summarized in Table 5.5. Regarding gpc, we find that the
contribution of the oxygen atoms largely dominates over the rest, consistent with
the conclusions of Ref. [59]. Due to their smaller mass, oxygens evolve along larger
orbits, which amplifies their contribution to the magnetic moment. Regarding gdi,
we find that the on-site terms represent more than the 75% of the total gdi factor,
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Sr Ti O1 O2 O3 Total

gpc −0.0197 −0.1082 0.2985 0.2985 0.1987 0.6679

gdi
κ=κ′ −0.0118 −0.1246 −0.6429 −0.6429 −0.0062 −1.4284

Table 5.5: Contribution of each atom to gpc and gdi
κ=κ′ , which are

defined as the on-site (κ = κ′) contributions to gdi. Values are in
10−4 atomic units.

which indicates that intersite couplings have a relatively minor importance. At the
level of gdi

κ=κ′ , we find that the contribution of the equatorial oxygens is by far the
largest, and primarily responsible for reversing the sign of the overall g factor.

Finally, we use the above results to calculate the frequency splitting of the TO
modes. Considering a magnetic field of B = 100 T we obtain gB ∼ 0.01 cm−1, of
the same order as predicted in Ref. [20]. This is, however, a very small value that
appears challenging to resolve even for the most powerful experimental techniques
available nowadays.

It is noteworthy to mention that spin-orbit coupling (SOC) effects have also been
discussed in the literature [22] in this context. Although SOC has been systemati-
cally neglected in our calculations, it can make an impact on the calculated phonon
g factor primarily in two different ways. First, the inclusion of SOC could directly
affect the phonon dispersion of SrTiO3; however, previous first-principles calcula-
tions [22] have demonstrated that these effects are almost negligible and therefore
insufficient to alter the phonon band structure of cubic SrTiO3 significantly. Second,
the effects of SOC on our calculated J(1) remain to be tested. For the time being,
the implementation we have described in Sec. 5.2.2 prevents the use of SOC in our
first-principles calculations. The main limitation in this regard is our implementa-
tion for the wave function response to a long-wavelength electromagnetic vector
potential, as described in Appendix D. However, we do not expect SOC to have
considerable impact on the final numerical results.

5 .4 summary and outlook

In this chapter we have developed a complete theoretical approach for calculating
orbital magnetization from rotations and pseudorotations (circularly polarized
optical phonons) within the context of first-principles theory. The following points
summarize the accomplishments of this chapter along with the primary strengths
of our method.

• Our approach is based on density-functional perturbation theory calculations
of the polarization induced by an atomic displacement (i.e., Born effective
charges), and its first real-space moment, denoted as J(1). We have demon-
strated an implementation to calculate the latter quantity via generalization
of the existing long-wave approach [41] to the dynamical quadrupoles; thus
establishing a connection between spatial dispersion phenomena and orbital
magnetism. Our coding efforts have resulted in new capabilities that have
been incorporated to the abinit package; namely the wave function response
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to an orbital magnetic field, as described in Appendix D. (This is also a key
ingredient for the natural optical activity, which we shall study in the next
chapter.)

• Our methodology allows for an efficient and optimally accurate computation
of J(1), and works equally well for molecules and solids. Finite-q calculations
have been used to corroborate the accuracy of our implementation.

• We have used this approach to determine rotational g factors of some simple
molecules, and demonstrated excellent agreement with experimental results,
where available.

• Finally, we have developed a strategy to calculate the generalized Lorentz
force that enters the equations of motion of the ions in presence of a magnetic
field, and utilized it to study the splitting of the soft TO phonons modes in
cubic SrTiO3. In this case, we have demonstrated that contributions to the
phonon g factor from the first moment of the induced polarization, which
had been neglected in some previous approaches, dominate the response.

As a last note, we would like the mention that in spite of the additional contri-
butions coming from J(1), our calculated overall phonon g factor for cubic SrTiO3

remains of the same order of magnitude as the values quoted in Refs. [20, 59].
Therefore, our theory as it stands appears unlikely to explain the large phonon
Hall [141] effects reported experimentally. To move forward in this direction and
find an explanation for the large discrepancy between experiments and microscopic
theories, we suspect that it may be necessary to take into account the quantum para-
electric nature of SrTiO3 at low temperatures, e.g., by going beyond the Ehrenfest
Lagrangian of Eq. (5.1). We regard this as an exciting avenue for further study.
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N AT U R A L O P T I C A L A C T I V I T Y

In this chapter we introduce, within the framework of long-wave DFPT, a novel first-
principles approach to calculate the natural optical activity (NOA), which overcomes
most of the limitations that currently available methods have been facing. These
include numerical differentiation with respect to the wave vector, the appropriate
treatment of SCF terms and cumbersome sums over empty states. In addition, our
approach addresses an additional technical subtlety, namely the correct treatment
of the current-density response in presence of nonlocal pseudopotentials [98]. Our
methodology is equally valid for molecules and extended solids and brings the
calculation of the natural optical activity to comparable accuracy and computational
efficiency to that of standard linear-response properties, e.g., the dielectric tensor.

This chapter is organized as follows. We start in Sec. 6.1 by providing some
fundamental concepts and mathematical definitions. In Sec. 6.2 we give a detailed
explanation of the computational approach that we use to study the NOA, high-
lighting the advantages with respect to the currently available implementations
and establishing a formal connection between our methodology and commonly
used formulas for the NOA in molecules. In addition, we also address some formal
aspects of the theory; in particular, the non-uniqueness of the analytic expression
for the gyration coefficients. Our numerical results are presented in Sec. 6.3, where
we validate our implementation by computing the natural optical activity tensor
both in representative chiral crystals (trigonal Se, α-HgS, and α-SiO2) and molecules
(C4H4O2). The summary and prospects for future research are presented in Sec. 6.4.

6 .1 preliminary considerations

Our starting point is the double Fourier transform in frequency ω and wave vector q
of the dielectric permittivity function, ϵαβ(ω, q). By expanding ϵαβ(ω, q) in powers
of the wave vector q, around q = 0, we obtain

ϵαβ(ω, q) = ϵαβ(ω, q = 0) + i ∑
γ

qγηαβγ(ω) + . . . , (6.1)

where ηαβγ(ω) is the natural optical activity tensor [4]. In absence of dissipation
(i.e., in the transparent regime), ϵαβ(ω, q) is a 3 × 3 Hermitian matrix. At q = 0 it
becomes real symmetric in crystals with time-reversal (TR) symmetry, which we
assume in the following. The frequency-dependent natural optical activity tensor is
then also real and satisfies ηαβγ(ω) = −ηβαγ(ω), which means that only 9 of the 27
components of ηαβγ are independent. As a consequence, ηαβγ is often rearranged
into the second-rank gyration or gyrotropic tensor, gαβ, [4]

gαβ(ω) =
1
2 ∑

γ,δ
ϵγδαηγδβ(ω), (6.2)

99
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where ϵγαδ is the Levi-Civita symbol. Due to crystal symmetries, the number of
independent components of gαβ can be further reduced. To avoid unnecessary
complexity, we will assume from now on that the symmetries of the solid under
study are compatible with the crystallographic point group 32 (trigonal Se, α-HgS
and α-SiO2, which are the solids that we analyse in Sec 6.3, belong to this crystal
class). Considering that the optical axis is oriented along the z Cartesian direction
[49], we obtain

g(ω) =

g11(ω) 0 0

0 g11(ω) 0

0 0 g33(ω)

 , (6.3)

where g11 = η231 and g33 = η123. Even for simple cases, extracting all individual
components of the gyration tensor in an experiment is a challenging task. Instead,
it is easier to measure the optical rotation, ρ(ω), also known as the optical rotatory
power, which quantifies the extent to which the plane of polarization of the incident
light is rotated as it passes through the system. For a crystal with the 32 point
group, this is directly related [49] to the g33 component of the gyration tensor,

ρ(ω) =
ω2

2c2 g33(ω), (6.4)

where c is the speed of light. In this work, we shall focus on the ω → 0 limit, where
the components of both g and η tend to a finite constant [4],

ηαβγ = ηαβγ(ω → 0), gαβ = gαβ(ω → 0). (6.5)

At leading order in the frequency, this yields a rotatory power of

ρ(ω) ≃ (h̄ω)2ρ̄, ρ̄ =
g33

2(h̄c)2 , (6.6)

where h̄ is the reduced Planck constant. The constant ρ̄ is usually expressed in units
of deg/[mm (eV)2] and can be directly compared to experimental measurements.

6 .2 computational approach

The strategy we shall follow in order to obtain a first-principles expression for the
natural optical activity is based on the analytical long-wavelength DFPT methodol-
ogy introduced in Sec. 2.4.4. First of all, we express the electronic contribution1 to
the dielectric permittivity function in the low-frequency limit as a second derivative
of the ground state energy with respect to two spatially modulated [77] electric
fields (E) as described in Sec. 2.4.2,

ϵαβ(q) = δαβ −
4π

Ω
E
EαEβ
q , (6.7)

1 While undoubtedly present [77], the lattice-mediated contributions are not accounted for in the
present work.
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where Ω is the volume of the unit cell. This allows us to write the natural optical
activity tensor as the first derivative of ϵαβ(q) with respect to qγ,

ηαβγ = −4π

Ω
Im E

EαEβ
γ , E

EαEβ
γ =

∂E
EαEβ
q

∂qγ

∣∣∣∣
q=0

. (6.8)

At this stage, we invoke the 2n + 1 theorem and follow the logic of Sec. 2.4.4 for
the case in which both perturbations are electric fields modulated by a wave vector
q (see Sec. 2.4.2). We obtain

E
EαEβ
γ = 2

∫
BZ
[d3k]E

EαEβ

k,γ +
∫

Ω

∫
nEα(r)Kγ(r, r′)nEβ d3r d3r′, (6.9)

where
E
EαEβ

k,γ = X EαkγEβ

k + YEαEβkγ

k + Y kγEαEβ

k +Wα,βγ
k +

(
W β,αγ

k

)∗
. (6.10)

For the sake of convenience, we have expressed Eq. (6.10) in terms of the Xk, Yk and
Wk symbols, which we shall explain in the following. (This notation, which might
look unnecessary now, will become useful shortly.) For three generic perturbations,
λ1, λ2 and λ3, we define

X λ1λ2λ3
k = ∑

m∈V
fmk ⟨uλ1

mk| Ĥ
λ2
k |uλ3

mk⟩ (6.11)

and
Yλ1λ2λ3

k = − ∑
m,n∈V

fmk ⟨uλ1
mk|u

λ3
nk⟩ ⟨u

(0)
nk | Ĥ

λ2
k |u(0)

mk⟩ , (6.12)

which are well-known objects in the context of DFPT. Note that Ĥkγ

k = Ĥkγ

k as
there is no SCF contribution to the derivative in k-space, and ĤEα

k = V̂Eα in the
above equations since the “external potential” is a purely cross-gap operator in the
electric-field case [41] (see Sec. 2.3.4). The third contribution in Eq. (6.10), denoted
by the symbol Wk, is given by

Wα,βγ
k = i ∑

m∈V
fmk ⟨uEα

mk|u
Aβ

mk,γ⟩ , (6.13)

where |uAβ

mk,γ⟩ is the wave function response to a long-wavelength electromagnetic
vector potential (see Appendix D for more details). By exploiting the symmetric
and antisymmetric nature of its corresponding perturbing operator, we can express
Wα,βγ

k as a sum of two contributions that are symmetric (Sα,βγ
k ) and antisymmetric

(Aα,βγ
k ) with respect to β ↔ γ exchange:

Wα,βγ
k = Sα,βγ

k +Aα,βγ
k , (6.14)

where
Sα,βγ

k =
i
2 ∑

m∈V
fmk ⟨uEα

mk|∂2
βγu(0)

mk⟩ (6.15)

and
Aα,βγ

k =
1
2 ∑

δ

ϵδβγ ∑
m∈V

fmk ⟨uEα
mk|u

Bδ
mk⟩ . (6.16)
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In Eq. (6.15), ∂2
βγ = ∂2/∂kβ

∂kδ
represents a second derivative in k space. The

|∂2
βγu(0)

mk⟩ functions in Sk are the well-known d2/dkβdkγ wave functions; whereas

in Eq. (6.16), |uBδ
mk⟩ gives the orbital contribution of the wave function response

to a uniform magnetic field, Bδ, as defined by Essin et al. [102]. Upon preliminary
inspection of Eq. (6.9) to Eq. (6.16), we can already highlight some of the advantages
that the present methodology exhibits over previous approaches:

• Only occupied states are included in our equations, which avoids cumbersome
sums over empty states of previous methods.

• Differentiation with respect to the wave vector q is taken analytically. Thus,
undesired numerical errors caused by taking the derivative via finite differ-
ences are completely absent.

• Our methodology complies with the necessary prescriptions for the appro-
priate treatment of the current-density response in the presence of nonlocal
pseudopotentials [98].

• SCF terms are naturally included in the formalism, either explicitly via
ĤEβ

k = Ĥ
Eβ

k + V̂Eβ , where V̂Eβ is the SCF potential, or implicitly via the first-

order wave functions, |uEβ

mk⟩. (The effect of SCF terms are studied in detail in
Sec. 6.3, both for crystals and molecules.)

• Thanks to the 2n + 1 theorem, only response functions to uniform field
perturbations are needed. (Strictly speaking, |uAβ

mk,γ⟩ should be considered an
exception, but as shown in Appendix D, its calculation solely involves solving
a standard Sternheimer equation.)

• Our methodology is equally applicable to both extended and finite systems;
i.e., solids and molecules.

6 .2 .1 molecular limit

Historically, the natural optical activity has been mostly studied in finite system like
molecules, where the NOA tensor acquires contributions from well-defined [150]
physical observables: magnetic dipoles, as well as electric dipoles and quadrupoles.
Consequently, it is expected that the expression for the NOA that we have obtained
in the last section might seem unfamiliar at first sight. The goal of this section is to
establish a formal link between our method and previous approaches for the NOA,
and prove that our Eq. (6.9) exactly recovers, in the molecular limit, the established
formulas that have been used for years in quantum chemistry calculations.

We start by removing SCF terms from the NOA tensor, which involves excluding
the electrostatic Hxc term from Eq. (6.9) and the Yk contributions from Eq. (6.10), as
well as replacing the first-order wave functions, |uEα

mk⟩, with their non-self-consistent
counterparts, |ũEα

mk⟩. These are obtained from Eq. (2.80) once the SCF potential V̂Eα

is suppressed:
(Ĥ(0)

k + aP̂k − ϵ
(0)
mk) |ũEα

mk⟩ = −i |ukα
mk⟩ . (6.17)
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(We use the “tilde” symbol to indicate that SCF terms are excluded.) Without
self-consistency, the natural optical activity tensor reads as

η̃αβγ = −4π

Ω
Im Ẽ

EαEβ
γ , (6.18)

where
Ẽ
EαEβ
γ = 2

∫
BZ
[d3k]Ẽ

EαEβ

k,γ . (6.19)

The quantity that needs to be integrated over the whole BZ is given by

Ẽ
EαEβ

k,γ = X̃ EαkγEβ

k + W̃α,βγ
k +

(
W̃ β,αγ

k

)∗
, (6.20)

where

X̃
EαkγEβ

k = ∑
m∈V

fmk ⟨ũEα
mk| Ĥkγ

k |ũEβ

mk⟩ ,

W̃α,βγ
k = i ∑

m∈V
fmk ⟨ũEα

mk|u
Aβ

mk,γ⟩ .
(6.21)

For finite samples like molecules, it is useful to recall the following relationships:

ĤEα
k → r̂α, ∂γĤ(0)

k → v̂γ = i[Ĥ, r̂γ], ∂γP̂k → i[P̂, r̂γ], (6.22)

where v̂β and r̂β represent, respectively, the β Cartesian component of the velocity
and position operators. (When working with molecules, and in view of simplifying
notation, we will use |u(0)

mk⟩ → |ψm⟩, Ĥ(0)
k → Ĥ and ϵ

(0)
mk → ϵm, where the wave

vector label is dropped. We shall also omit the “(0)” superscript, since this should
not lead to any confusion.) We will omit some tedious but otherwise straightforward
intermediate steps and provide the final expressions for X̃ and W̃ appearing in Eq.
(6.20) [for a detailed derivation, see Appendix F]. The X̃ term reads as

X̃ EαkγEβ = i ∑
m∈V

∑
l∈C

fm

[ ⟨ψm| r̂αQ̂r̂γ |ψl⟩ ⟨ψl | r̂β |ψm⟩
ϵl − ϵm

− ⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂γQ̂r̂β |ψm⟩
ϵl − ϵm

]
,

(6.23)

where m runs over the valence (V) manifold only and l runs over the empty states
that belong to the conduction (C) manifold. Of course,

∑
m∈V

|ψm⟩ ⟨ψm|+ ∑
l∈C

|ψl⟩ ⟨ψl | = 1. (6.24)

Regarding W̃ , it can be expressed as follows,

W̃α,βγ =
i
2 ∑

m∈V
∑
l∈C

fm
⟨ψm| r̂α |ψl⟩

ϵl − ϵm
⟨ψl |

(
r̂βr̂γ − 2r̂γP̂r̂β

)
|ψm⟩

+
1
2 ∑

m∈V
∑
l∈C

fm
⟨ψm| r̂α |ψl⟩
(ϵl − ϵm)2 ⟨ψl |

(
r̂βv̂γ − r̂γv̂β

)
|ψm⟩ .

(6.25)
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In the end, summing all contributions, we arrive at the following expression for the
NOA tensor (excluding SCF terms) in finite samples,

η̃αβγ = −4π

Ω
Im ∑

m∈V
∑
l∈C

fm η̃ml
αβγ, (6.26)

where we have defined

η̃ml
αβγ =

1
(ϵl − ϵm)2

[
⟨ψm| r̂α |ψl⟩ ⟨ψl | (r̂βv̂γ − r̂γv̂β) |ψm⟩

− ⟨ψm| r̂β |ψl⟩ ⟨ψl | (r̂αv̂γ − r̂γv̂α) |ψm⟩
]

+
i

ϵl − ϵm

[
⟨ψm| r̂β |ψl⟩ ⟨ψl | r̂αr̂γ |ψm⟩ − ⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂βr̂γ |ψm⟩

]
.

(6.27)

This is the same expression that can be obtained, e.g., from Ref. [51], where the first
two lines in Eq. (6.27) contain contributions from the electric and magnetic dipoles
and the third line accounts for the electric dipoles and quadrupoles.

Regarding optical rotation, the quantity of relevance in molecular systems is
the optical rotatory parameter, β, which is related to the rotatory power, usually
denoted by the symbol α(ω), via [151–153]

α(ω) =
NAω2

Mc2 β, β =
Ω
4π

1
2 ∑

α

1
3

gαα. (6.28)

Here, NA is the Avogadro number, M is the molar mass of the molecule and Ω is
the volume of the simulation cell. Recalling the relationship between gαβ and ηαβγ

[see Eq. (6.2)], and using x, y, z to indicate Cartesian directions, we obtain

β = −1
3

Im ∑
m∈V

∑
l∈C

fm
1

(ϵl − ϵm)2

[
⟨ψm| r̂x |ψl⟩ ⟨ψl |

(
r̂yv̂z − r̂zv̂y

)
|ψm⟩

+ ⟨ψm| r̂y |ψl⟩ ⟨ψl |
(
r̂zv̂x − r̂xv̂z

)
|ψm⟩

+ ⟨ψm| r̂z |ψl⟩ ⟨ψl |
(
r̂xv̂y − r̂yv̂x

)
|ψm⟩

]
,

(6.29)

again, matching the analytical expressions that can be found in the literature.

6 .2 .2 electromagnetic gauge freedom

We have seen in the last section that for finite system like molecules our formalism
recovers the magnetic dipole and electric dipole and quadrupole contributions
to the NOA, which were identified long ago. At this point, a natural question
to ask is whether it is possible to decompose the total gyration coefficients into
separate contributions with well-defined physical significance in extended systems

like solids. Two inequivalent definitions of E
E∗

α Eβ

k,γ can, at most, differ by a vanishing
Brillouin Zone integral; so the question boils down to asking whether we can
combine the individual pieces in Eq. (6.10) in such a way that the result is the
total k-derivative of some function f (k). An obvious choice for f (k) consists in
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identifying it with the k-derivative of the macroscopic dielectric tensor. Indeed, by

applying the 2n + 1 theorem to the stationary expression [75–77] for E
E∗

α Eβ

k,q=0, we find

∂E
E∗

α Eβ

k,q

∂kγ

∣∣∣
q=0

=X EαEβkγ

k +X kγEαEβ

k +X EαkγEβ

k

+ YEαEβkγ

k + YEαkγEβ

k + Y kγEαEβ

k

+ 2Sα,βγ
k + 2

(
Sβ,αγ

k

)∗
.

(6.30)

Then, by subtracting the latter expression from Eq. (6.10), we obtain another equally
valid formula for the integrand in k space for the NOA,[

E
EαEβ

k,γ

]′
= −

(
X EαEβkγ

k +X kγEαEβ

k + YEαkγEβ

k

)
−Wα,γβ

k −
(
W β,γα

k

)∗
. (6.31)

Numerical tests confirm the consistency of Eq. (6.10) and (6.31) to a very high
degree of accuracy. This arbitrariness can be regarded a direct consequence of the
electromagnetic (EM) gauge freedom. Indeed, the W terms in both Eq. (6.10) and
Eq. (6.31) have the physical meaning of Berry curvatures in the parameter space
spanned by a uniform magnetic field (B) and an electric field. Such curvatures are
insensitive to the choice of the coordinate origin and the wave function gauge. This
result is achieved by expressing the B-field response function in a cell-periodic
form, consistent with the density-operator theory of Essin et al. [102]. Notwithstand-
ing these undeniable advantages, the aforementioned Berry curvatures retain an
inherent dependence on the EM-gauge [154]. More specifically, the symbol Wα,βγ

is expressed in a Landau gauge where the β component of the A-field increases
linearly along γ; so when going from Eq. (6.10) to Eq. (6.31) we have essentially
switched between two Landau gauges in the W terms, and collected the leftovers
in the form of X and Y . It is, of course, possible to define other variants of Eq.
(6.10), where either the contributions from the symmetric (S) or antisymmetric (A)
terms of W cancel out, at the expense of having a slightly longer list of X - and
Y-symbols. Ideally, one would like to exploit this freedom to obtain an intuitive
separation between well-defined (and possibly individually measurable) physical
observables; whether such a choice exists is an interesting open question.

6 .3 results

We will now validate our computational approach both with finite and extended
systems, i.e., molecules and solids. Our numerical results are obtained using the
DFT and DFPT implementations of the abinit package with the Perdew-Wang
[81] parametrization of the local density approximation (LDA). We use norm-
conserving pseudopotentials from the Pseudo Dojo [120] website and we regenerate
them without exchange-correlation nonlinear core corrections using the ONCVPSP
[88] software. Spin-orbit coupling (SOC) is neglected in all of our first-principles
calculations.
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Figure 6.1: Cartoon illustrating the crystal structure of a) trigonal
Se, b) α-HgS and c) α-SiO2. Grey arrows indicate the crystallo-
graphic directions that form the Cartesian axes.

g11 g33 ρ̄

Se −1.307 (−1.547) −1.913 (−0.458) −74.5 (−17.8)

α-HgS 0.775 (0.554) −1.861 (−1.274) −72.5 (−49.6)

α-SiO2 −0.071 (−0.001) 0.125 (0.019) 4.9 (0.7)

Table 6.1: Calculated independent components of the gyration
tensor (in bohr) and the optical rotatory power ρ̄ defined in Eq.
6.6 (in deg/[mm (eV)2] units). Values in brackets are computed
neglecting the SCF terms.

6 .3 .1 chiral solids : trigonal Se, α-HgS and α-SiO2

All the crystals studied in this work, trigonal Se and α-HgS and α-SiO2, belong to
the point group 32, but they may crystallize in two enantiomorphic structures with
space groups P3121 and P3221. These structures with opposite handedness have the
same rotatory power in magnitude, but with opposite sign. We shall consider the
P3121 space group structure for the three crystals under study. The crystal structure
is either set to the experimental one (Ref. [155] for Se), or relaxed to mechanical
equilibrium until the forces are smaller than 10−6 Ha/bohr (Table 6.3 shows the
structural parameters used in our calculations). A schematic representation of
these crystals is shown in Fig. 6.1, where the chiral axis is oriented along the c
crystallographic direction in all cases.

Converged values for the NOA tensor are obtained by sampling the BZ with 243,
163 and 83 k points and with a plane-wave energy cutoff of 50 Ha, 40 Ha and 50
Ha, for trigonal Se, α-HgS and α-SiO2, respectively. Table 6.1 shows the obtained
numerical values for the independent components of the gyration tensor and the
optical rotatory power in our test set of trigonal crystals, where values in brackets
are computed by neglecting SCF terms. Our results are in fairly good agreement
with literature values, even if some studies have applied an ad-hoc correction [55] to
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the LDA band gap via a scissor operator. The latter consists in applying a rigid shift,
∆, to the conduction band energies that are used as an input to the sum-over-states
formula for the optical conductivity, and is aimed at correcting the systematic
underestimation of the fundamental optical gap that one obtains with the local
density approximation (LDA).

Let us first analyze the case of α-HgS. Ref. [16] reports a value of ρ̄ ∼ −83
deg/[mm (eV)2] for the optical rotatory power, measured at a single wave length of
λ = 6328 Å (ω ∼ 1.96 eV). The agreement with our computed result is very good,
especially considering that the value detailed in Ref. [16] was not extrapolated to
the ω → 0 limit.

For trigonal Se and α-SiO2 we shall take as reference Ref. [55], where the optical
rotatory power is computed, either including or neglecting the contributions of
SCF local fields, in the ω → 0 limit, with (∆ ̸= 0) and without (∆ = 0) corrections
coming from a scissor operator. For trigonal Se, without correction (∆ = 0) Ref.
[55] reports a value of ρ̄ = −131 deg/[mm (eV)2]. With ∆ = 1.1 eV their result of
ρ̄ = −55 deg/[mm (eV)2] drastically improves, and almost perfectly matches the
experimental2 value [55] of ρ̄ = ±56 ± 30 deg/[mm (eV)2]. However, as the authors
of Ref. [55] state, due to the sensitivity of the optical rotatory power with respect to
∆, this level of accuracy might be accidental. Our result falls within the error bars
of the experiment, and significantly improves the ∆ = 0 result of Ref. [55].

For α-SiO2, the uncorrected ∆ = 0 value quoted by Ref. [55] is ρ̄ = 6.8 deg/[mm
(eV)2]; whereas when a correction of ∆ = 1.8 eV is added to the conduction energies,
they obtain ρ̄= 5.6 deg/[mm (eV)2]. The robustness of the results with respect
to ∆ makes α-SiO2 the ideal candidate to validate our theoretical results. Our
converged value for the optical rotatory power, ρ̄ = 4.9 deg/[mm (eV)2], is in
excellent agreement with Ref. [55], as well as with experimental data, ρ̄ = ±4.6± 0.1
deg/[mm (eV)2]. A very recent first-principles study [156] of the rotatory power in
α-SiO2 reports a value of ρ̄ = −5.9 deg/[mm (eV)2] for λ = 589.44 nm (h̄ω ∼ 4.42
eV); this is again in good agreement with our results in spite of the differences in
our respective computational approaches. (A structure with opposite handedness
compared to the one studied in this work is used in Ref. [156], which explains the
sign discrepancy.) As a further validation, we can compare the other independent
component of the gyration tensor with the literature. Ref. [55] obtains g11 = −4.8
pm, and the experimental value is known [55] to lie between −3 pm and −4
pm. In those units, our calculated value is g11 = −3.8 pm, which is again in
excellent agreement with the available literature reports. Regarding the effects of
self-consistency, without SCF terms we obtain ρ̄ = 0.7 deg/[mm (eV)2], indicating
a correction by a factor of +7 to the optical rotatory power, which matches the
conclusions of Ref. [55]. We summarize some of these results in Table 6.2.

Overall, our results confirm the crucial importance of local-field SCF contribu-
tions, consistent with the conclusions of Ref. [55]. Given the large impact of SCF
fields, we decided to repeat our calculations with the Perdew-Burke-Ernzerhof
(PBE) [82] parametrization of the generalized gradient approximation (GGA). This
topic is further addressed in the subsequent section.

2 The sign uncertainty of the optical rotatory power obtained from experiments appears to be a
common issue. Consequently, for a meaningful comparison with our theoretical results, we should
focus exclusively on the absolute values of the reported experimental measurements.
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ρ̄ This work Ref. [55] Experiment

Se −74.5 −131 (∆ = 0) −55 (∆ = 1.1 eV) ±56 ± 30 a

α-HgS −72.5 · · · · · · −83 b

α-SiO2 4.9 6.8 (∆ = 0) 5.6 (∆ = 1.8 eV) ±4.6 ± 0.1 a

Table 6.2: Optical rotatory power for trigonal Se, α-HgS and α-
SiO2, in deg/[mm (eV)2] units. Reference values from other works
are taken from:
a Taken from Ref. [55].
b Ref. [16], with h̄ω ∼ 1.959 eV.

Structure Functional a (bohr) c (bohr) Ω (bohr3) band gap (eV)

Se (exp) LDA 8.201 9.354 544.894 0.850

Se (exp) PBE 8.201 9.354 544.894 0.948

Se (exp) PBEsol 8.201 9.354 544.894 0.895

Se (LDA) LDA 7.431 9.695 463.605 0.225

Se (PBE) PBE 8.463 9.564 593.187 0.961

Se (PBEsol) PBEsol 7.600 9.698 485.172 0.399

α-HgS (LDA) LDA 7.629 17.530 883.498 0.995

α-HgS (PBE) PBE 8.434 18.430 1135.414 1.829

α-SiO2 (LDA) LDA 9.174 10.110 736.974 5.987

α-SiO2 (PBE) PBE 9.489 10.411 811.792 5.768

Table 6.3: Structural parameters and electronic band gap of Se,
α-HgS and α-SiO2, with LDA and PBE. In the “Structure” col-
umn, “exp” refers to the experimental structure, while “Se (LDA)”
means that the structure was relaxed with LDA, for example.
The “Functional” column specifies the exchange and correlation
functional employed in the calculation of the electronic band
structure.

6 .3 .2 effect of the exchange-correlation functional : lda vs
pbe

The aim of this section is to examine how the exchange and correlation functional
affects the structural characteristics and electronic band structure (in particular,
the band gap) of the solids being analyzed, and how this translates to the natural
optical activity tensor.

To start with, we show in Table 6.3 the obtained structural parameters and the
electronic band gap for different combinations of the geometrical structure of the
system (either relaxed or experimental setup) and the XC functional employed for
the calculation of the electronic band structure. For α-SiO2, we obtain structural data
that are reasonably consistent between LDA and PBE. On the contrary, trigonal
Se and α-SiO2 seem to be really challenging to reproduce within the standard
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approximations of DFT. We shall focus our discussion on the specific case of
trigonal Se in the following, since the disagreement seems to be especially dramatic
in this particular case, although most of the considerations apply to some extent to
α-HgS as well.

None of the exchange and correlation functionals3 that we tested appears to
provide an accurate description of the equilibrium volume of trigonal Se, with
somewhat larger deviations than the expected trends: both LDA and PBEsol yield a
strong underestimation (−15 % and −11 %, respectively), whereas PBE significantly
overestimates it (+9 %). The volume, however, is not always correlated to the quality
of the calculation: both LDA and PBE are characterized by systematic volume errors
that are more or less common to all crystals and, in spite of that, their physical
predictions are in many cases correct. Internal degrees of freedom tend to be
more reliable indicators of the overall accuracy; in our case, an obvious structural
parameter to look at is the relaxed aspect ratio of the cell. In this regard, the PBE
structure (c/a = 1.13) is by far the most accurate, closely matching the experimental
value of c/a = 1.14. This result correlates well with the excellent agreement between
the Kohn-Sham gap and the gyration coefficients that we obtain using either crystal
structure (see Table 6.4). At the other extreme, both LDA (c/a = 1.30) and PBEsol
(c/a = 1.27) strongly overestimate this structural parameter. Such failure appears
to be the primary culprit for the near-closure of the Kohn-Sham gap (and the
consequent difficulties at calculating meaningful optical properties) that we observe
in both cases. Since the PBEsol structure is very similar to the LDA one, we won’t
discuss it further, and focus on the comparison between LDA and PBE henceforth.

When the structure of trigonal Se is relaxed with LDA, the band gap drastically
decreases and, in fact, it becomes so small (around 0.2 eV) that even standard
DFPT calculations, e.g., the dielectric permittivity, fail to converge. In general,
we observe that the larger the band gap, the faster the convergence is, which
might explain the slightly faster convergence of the natural optical activity with
PBE, in contrast to LDA. As an illustrative example, we show in Fig. 6.2 the
convergence of the independent components of the NOA tensor of α-SiO2; we
observe similar convergence rates for α-HgS and trigonal Se. The corresponding
converged numerical values for the natural optical activity of the studied chiral
crystals, obtained either with LDA or PBE, are shown in Table 6.4. Interestingly,
for a given crystal structure the choice between the LDA and PBE seems to have a
relatively small influence on the calculated coefficients, except for the g33 component
of trigonal Se, where such deviation reaches ∼ 50%. Conversely, the structural
parameters do appear to have a significant impact on the final result.

6 .3 .3 the C4 H4 O2 molecule

In order to validate our methodology with finite systems, we now turn our attention
to the C4H4O2 molecule. Our calculations are performed with a plane-wave energy

3 Since neither LDA or PBE were able to accurately reproduce the structural characteristics of triginal
Se, we decided to try with the PBEsol parametrization [157] of the GGA as well, which is specifically
designed to improve the description of equilibrium bulk properties of densely packed solids; it differs
from the standard PBE parametrization of the GGA [82] only in a few parameters.
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Figure 6.2: Convergence of the independent components of the
gyration tensor, g11 and g33, of α-SiO2 with respect to the plane-
wave cutoff and the density of the k-point mesh. The top panel
shows the obtained results with LDA, whereas the bottom panel
shows the results obtained with the PBE parametrization of the
GGA. Solids lines are a guide to the eye.

cutoff of 50 Ha and a box with sides of a = 35 bohr (Ω = a3) is used in order to
simulate an isolated molecule. We show in Table 6.5 the Cartesian coordinates used
in our simulations.

Table 6.6 shows our computed gyration tensor (multiplied by the volume of the
simulation cell), with and without SCF terms; as in periodic crystals, the latter have
a huge impact on some components. We also report the optical rotatory parameter,
β, as previously defined in Eq. (6.28). Our computed value of β almost exactly
matches the value of β = −2.29 that is reported in Ref. [159]. Although such a
level of agreement gives us confidence in the correctness of our implementation,
we suspect that it may be to some extent coincidental, given the differences in our
respective approximations and computational schemes.
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g11 (bohr) g33 (bohr)

Structure LDA PBE LDA PBE

Se (exp) −1.307 −1.301 −1.913 −1.329

Se (PBE) −1.408 −1.431 −1.802 −1.216

α-HgS (LDA) 0.775 0.663 −1.861 −1.645

α-HgS (PBE) −0.716 −0.692 −0.065 −0.065

α-SiO2 (LDA) −0.071 −0.071 0.125 0.125

α-SiO2 (PBE) −0.085 −0.085 0.168 0.167

Table 6.4: Comparison between LDA and GGA for the indepen-
dent components of the gyration tensor for Se, α-HgS and α-SiO2,
for different structures. In the “Structure” column, “exp” refers
to the experimental structure, while Se (LDA) means that the
structure was relaxed with LDA, for example.

Atom x y z Atom x y z

O1 0.6434 1.2364 −2.0775 C4 −0.1201 −2.5557 0.1166

O2 −0.6434 −1.2364 −2.0775 H1 0.1171 4.5743 −0.2216

C1 −0.1201 1.3735 2.3318 H2 −0.4960 2.4271 4.0404

C2 0.1201 2.5557 0.1166 H3 −0.1171 −4.5743 −0.2216

C3 0.1201 −1.3735 2.3318 H4 0.4960 −2.4271 4.0404

Table 6.5: Geometry of C4H4O2 used in our calculations. The
non-relaxed Cartesian coordinates shown in this table (in bohr)
are taken from Ref. [158].

Ωg11 Ωg22 Ωg33
Ω
2 (g12 + g21) β

With SCF −69.69 −68.12 −33.98 −267.32 −2.28

Without SCF −72.52 −56.18 144.90 −629.35 0.21

Table 6.6: Calculated independent components of the gyration
tensor times the volume of the simulation cell (Ω) for C4H4O2.
Values are given in Hartree atomic units.

6 .4 summary and outlook

In this chapter we have presented an efficient and accurate first-principles method-
ology for the calculation of natural optical activity within the framework of density-
functional perturbation theory. Our methodology brings the first-principles calcula-
tion of the NOA tensor to the same level of accuracy and computational ease as
standard linear-response properties, e.g., the dielectric tensor. Our approach solves
the major issues that previous first-principles theories had completely neglected or
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had only partially addressed. An overview of the accomplishments of this chapter
is given below.

• Our long-wave DFPT approach for the computation of the NOA avoids sums
over excited states, takes the derivative in momentum q analytically and, last
but not least, accounts for SCF terms.

• We have shown, both with trigonal crsytals (Se, α-Hgs and α-SiO2) and with
the C4H4O2 molecule, that the aforementioned SCF contributions are essential
for a correct description of the NOA. Our numerical results are in general in
excellent agreement with experiments and with previous (computationally
more demanding) first-principles calculations.

• We have also discussed some formal aspects of the theory, e.g., the non-
uniqueness of the analytical expression of the gyration coefficients, which we
relate to the gauge freedom of electromagnetism. Whether it is possible to
decompose the gyration coefficients into physically meaningful quantities in
extended systems like solids remains an open question.

As an outlook, we consider that one of the most pressing priorities is to include
spin-orbit coupling (SOC) effects into our formalism, which would help us better
quantify the magnitude of the effect in crystals containing heavier elements, e.g.,
trigonal Se and α-HgS. In addition, a natural step forward consists in generalizing
our method to finite frequencies and to magnetic materials with broken time-
reversal symmetry. Finally, it would be especially interesting to combine the present
theory with the formalism developed in Chapter 3 in order to capture optical
dispersion effects in metals [160, 161]. While this would likely entail additional
methodological challenges (e.g., in order to describe the Fermi-surface contributions
in the dynamical regime), doing so appears well within reach. Given the growing
interest in this class of phenomena, we regard this as an exciting avenue for further
exploration.



7
C O N C L U S I O N S

In this thesis we have focused on advancing the theoretical understanding of
several material properties related to spatial dispersion. We have committed our
efforts towards diverse areas, including natural optical activity, molecular g factors,
Lorentz forces and flexoelectricity in polar metals. Our work required significant
amount of methodological and code development, where we used DFPT —and, in
particular, long-wave DFPT— as general framework.

A crucial characteristic of our work is that we have developed, tested and imple-
mented new methods that enable the study of selected spatial dispersion properties
with greater accuracy and efficiency than was previously possible. These new
methodologies have been developed in response to a lack of adequate computa-
tional tools at the time this thesis was initiated. We have already capitalized on this
opportunity by solving pressing and fundamental physical problems, e.g., the bulk
polarization switching of “ferroelectric” metals via external fields. We now proceed
to outline the main results achieved in this thesis.

• Spatial dispersion in metals

We have established a first-principles theory of spatial dispersion in metals by
generalizing the long-wavelength DFPT technique of Ref. [41] to conductors.
Our methodology enjoys all the benefits derived from the application of the
2n + 1 theorem to DFPT, just like in the insulating case. Most importantly,
SCF contributions are inherently accounted for and first-order spatial disper-
sion coefficients are accessed without the need of explicitly calculating the
response to nonuniform field perturbations. We have validated the accuracy
and computational efficiency of this methodology with phonons (Chapter 3)
and strain gradients (Chapter 4).

• Switching a polar metal via strain gradients

We have demonstrated that strain gradients can be used to switch the bulk
polar order parameter of the so-called “ferroelectric” or polar metals, thereby
solving a long-standing issue that this class of materials have been facing.
Our claims are supported by our results on LiOsO3, the first and arguably the
best known polar metal since its experimental observation in 2013. We have
calculated the critical bending radius to switch its polar order parameter, and
find it to be similar in magnitude to that of BaTiO3. Therefore, our theoretical
predictions should be experimentally feasible. From a historical perspective,
experimental efforts in flexoelectricity have long been oriented at showing
that whatever an electric field can do, a strain gradient can accomplish equally well.
In this context, our work can be regarded as a paradigm shift, by showing
that strain gradients can achieve even what electric fields cannot.

113
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• Rotational g factors and generalized Lorentz forces

We have established a formalism to compute the rotational g factors in
molecules and generalized Lorentz forces in crystals, which only requires the
knowledge of two linear-response quantities: the macroscopic polarization
induced by an atomic displacement (i.e., Born effective charge tensor) and
its first-order spatial dispersion, J(1). Physically, the presence of the latter
contribution means that the electronic orbital current accompanying the
adiabatic evolution of atoms along closed trajectories are spread out in space;
i.e., they do not behave like point charges. For rotational g factors of molecules,
we find that our method yields results that are in excellent agreement with
reference literature values, although at a much lower computational cost.
Regarding solids, we have taken cubic SrTiO3 as a test case and we have
computed the generalized Lorentz force on the ions produced by an applied
magnetic field and the phonon g factor of the low-frequency TO phonon
modes. One of our primary achievements has been to prove that the dispersive
contributions coming from J(1), which had been systematically neglected in
previous studies, can dominate the response.

• Natural optical activity

We have developed a first-principles method, based on the long-wavelength
DFPT technique, to compute the natural optical activity, which works equally
well both in molecules and solids. Our methodology avoids cumbersome
sums over empty states, takes care of the q derivative analytically and, last but
not least, includes SCF contributions into the formalism in a natural manner.
We have demonstrated that our method displays remarkably fast convergence
with respect to the energy cutoff and k mesh with selected chiral crystals
as test examples. We find that self-consistent fields, which had been seldom
accounted for by previous approaches, have huge impact on the final result;
this is true both in molecules and solids. We also reach the conclusion that
the analytical expression for the gyration coefficients is not unique, which
we ascribe to the electromagnetic gauge freedom. This point has also been
validated by numerical first-principles calculations.

We emphasize that we have incorporated our new implementations to the abinit

package [42, 43], which is distributed under the General Public License (GNU). This
means that all of our contributions are freely available to the public and that the
users are allowed to share and modify the software. One of our main contributions is
the long-wavelength DFPT implementation for the natural optical activity (Chapter
6). In addition, we have expanded the linear-response capabilities of the abinit

package in order to account for contributions of orbital magnetization to spatial
dispersion. In particular, we have implemented the wave function response to an
electromagnetic vector potential in the long-wavelength limit, corresponding to a
uniform orbital magnetic field (Appendix D). The latter is an essential ingredient
both for the calculation of the natural optical activity and the rotational g factors
and generalized Lorentz forces studied in Chapter 5. Although it has not been
directly relevant for the scopes of this thesis, it is worth noting that the wave
function response to an orbital magnetic field is ubiquitous in the calculation of
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spatial dispersion properties, including the flexoelectric tensor [41]. Beforehand, the
computation of the flexoelectric tensor was restricted to systems enjoying specific
crystal symmetries where this contribution vanishes by symmetry.

Our work opens many avenues for future research. These have already been
briefly discussed at the end of each chapter; for completeness, we summarize
some of these ideas here. In the context of applications, it would be interesting to
explore a wider range of polar metals in order to identify cases that exhibit the
most pronounced strain gradient-induced polar distortions. Our generalization
of the long-wave DFPT for conductors developed in Chapter 3 seems the ideal
framework for this purpose. In this context, it is worth mentioning the very recent
work [162] on the experimental observation of flexoelectric-induced polarization
in the otherwise centrosymmetric SrRuO3 metal. After our theoretical prediction
of a strong flexocoupling effect in LiOsO3, Ref. [162] represents, to the best of
our knowledge, the first experimental validation of our claims. Regarding natural
optical activity, note that our implementation as described in this thesis exclusively
accounts for electronic mediated effects. It is well known [1] that lattice effects might
be important in the infrared range of the spectrum; however, no first-principles
theory of these effects is currently available. Finally, the giant phonon Hall ef-
fect in SrTiO3 reported in experiments remains a mystery to the first-principles
community, since all the microscopic explanations fail to predict this effect by
orders of magnitude. While our results do not offer a conclusive answer on this
issue, it is our hope that the computational tools developed in this thesis for the
calculation of Lorentz forces in crystals stimulate research that allow for a more
efficient screening of candidate materials where this effect is specially strong, and
therefore, experimentally measurable.

On the methodological front, our newly implemented first-principles tools offer
exciting opportunities for future developments. First, the long-wave DFPT for
spatial dispersion in metals that we have presented in Chapter 3 can be expanded
to access other adiabatic spatial dispersion properties. As an illustrative example,
note that the “adiabatic Born effective charges” as introduced in Refs. [121, 122]
can be obtained after minor modifications to our implementation. (We have already
achieved preliminary promising results in this direction; however, we have decided
not to include this material in this thesis.) A key characteristic of our method is that
it works directly at the Γ point, meaning that cumbersome numerical fits are entirely
avoided. In addition, the formalism for orbital magnetic susceptibility developed
in Ref. [123] could be generalized to metals, by considering the adiabatic response
to a static, though spatially nonuniform, electromagnetic vector potential field.
Generalizing our ensemble DFPT formalism for metals presented in Chapter 3 to
the dynamical (ω ̸= 0) regime seems particularly compelling, especially given the
increasing interest in nonlinear optics and optical dispersion in conductors. Most of
the calculations that have been reported so far rely on semiclassical or tight-binding
models. In this context, our approach has the potential to address the current gap
in first-principles methods. Regarding our implementation for the natural optical
activity, and as previously discussed at the end of Chapter 6, some of the most
urgent priorities include generalizing our methodology to finite frequencies and to
magnetic materials with broken time-reversal symmetry; as well as the inclusion of
spin-orbit coupling effects. In addition, generalizing our long-wave DFPT method
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presented in Chapter 6 in order to account for lattice-mediated contributions to the
natural optical activity seems well within reach.

Even in their current form, we believe that the methods we have presented
in this thesis can become the preferred choice within their respective areas of
relevance. Paraphrasing Lev Landau, to a considerable degree we have adhered
to a philosophy in which a method is more important than a discovery, since the
right method will lead to new and even more important discoveries. Our hope is that
our methodological work will find widespread use within the condensed matter
community.
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A
T R E AT M E N T O F T H E M A C R O S C O P I C E L E C T R O S TAT I C T E R M
I N T H E q = 0 L I M I T

This appendix takes care of the macroscopic electrostatic term in the limit where q
approaches zero, and is divided into three sections. First, we will justify why this
contribution is problematic in insulators and we will explain the solution to address
it. Next, in Sec. A.2 we will examine the long-wave limit of external potentials
both in insulators and metals, with the intention of identifying the distinctions
between the two. In Sec. A.3 we will take the first q derivative of the macroscopic
electrostatic term within the framework of ensemble DFPT. This is relevant in the
context of spatial dispersion in metals, particularly in relation to our Chapter 3.

a .1 suppression of the macroscopic electric field

term in insulators

The analytical long-wavelength approach of Sec. 2.4.4 serves as the methodological
framework for the study of spatial dispersion properties. However, prior to taking
the analytical derivative (around Γ) with respect to the wave vector of the response
functions of interest, it is necessary to take care of the macroscopic electric fields
that are generated by phonons in insulators. In order to identify the source of the
issue, let us write [103] the induced electric field as

dEα(r)
dλ

q
κβ

= Eq
α,κβeiq·r, (A.1)

where Eq
α,κβ is the cell-periodic part of the response, whose macroscopic component

is related to G = 0 Fourier component in reciprocal space. Its expansion in powers
of q is problematic for q → 0,

Eq→0
α,κβ (G = 0) ≃ −4π

Ω
q̂α

(q · Z∗
κ)β

q̂ · ϵ · q̂
, (A.2)

where q̂ = q/q, Z∗
α,κβ is the Born effective charge tensor and ϵ is the macroscopic

dielectric tensor. The crucial point to be emphasized here is that Eq. (A.2) is a
direction dependent constant in the neighborhood of Γ. This nonanalytic behaviour
propagates to other response functions, thwarting their Taylor expansion in pow-
ers of q around q = 0. A natural and widely used solution to overcome this
problem is to suppress the problematic macroscopic electric fields, by adopting
short-circuit electrical boundary conditions. Nevertheless, there is no unique method
of suppressing the aforementioned macroscopic electric fields. In presence of strain
gradients, this implies that certain response functions are only well-defined up to a
constant. Consequences of the latter are more thoroughly examined Sec. B.2, with
the particular case of bulk flexocoupling coefficients.
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a .2 long-wave limit of external potentials

We shall now review the long-wavelength behavior of the external potentials,
highlighting the differences between insulators and metals.

a .2 .1 insulators

The external potential at first-order in response to an atomic displacement pertur-
bation is usually expressed as a sum of a local plus a separable part [41, 74]. For
our scopes, the latter can be omitted, as no divergences associated to the separable
part are present in the long-wave limit. The macroscopic component (G = 0) of the
local part is given by [74]

Vloc,τκα
q (G = 0) ∼ −i

qα

Ω

(
−4πZκ

q2 +
F′′

κ

2

)
, (A.3)

where F′′
κ is the second derivative in q of Fκ(q) = q2vloc

κ (q), with vloc
κ (q) ∼ −4πZκ/q2,

and Zκ is the bare nuclear pseudo-charge. The Hartree potential, on the other hand,
is given by

VH,τκα
q =

4π

q2 nq
τκα

, (A.4)

where the lower terms in the Taylor expansion of the first-order electron density (in
powers of q) are given by1

nq
τκα

∼ −i ∑
γ

qγn(1,γ)
τκα

− 1
2 ∑

γ,δ
qγqδn(2,γδ)

τκα
+ . . . (A.5)

The sum of the local and Hartree potentials then reads as (we omit terms that
vanish in the q → 0 limit)

Vloc+H,τκα
q ≃ 4π

Ω

(
∑
γ

iqγZ(γ)
κα

q2 + ∑
γ,δ

qγqδ

2q2 Q(γδ)
κα

)
, (A.6)

where the tensors Z(γ)
κα and Q(γδ)

κα are, respectively, the screened (short-circuit electri-
cal boundary conditions are assumed) “Born effective charges” and “dynamical
quadrupoles”,

Z(γ)
κα = Zκδαγ − Ωn(1,γ)

τκα
,

Q(γδ)
κα = −Ωn(2,γδ)

τκα
.

(A.7)

As a consequence, as long as the “Born effective charges” do not vanish, in an
insulator the potential given by Eq. (A.6) diverges as O(q−1), corresponding to the
well-known Frölich term in the scattering potential.

1 For notational convenience, we will use nq
λ instead of nλ

q in this appendix to indicate the first-order
electron density at finite q to an external perturbation, λ.
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a .2 .2 metals

In metals the potential should be an analytic function of the wave vector q, which
implies that the divergences that we have encountered in Eq. (A.6) should disappear.
This involves

Z(γ)
κα = 0, Ωn(1,γ)

τκα
= δαγZκ. (A.8)

In addition, the quadrupoles must be isotropic,

Q(γδ)
κα = δδγQκα. (A.9)

We reach the conclusion that in a metal, the first-order electron density in response
to an atomic displacement acquires the following form,

Ωnq
τκα

∼ −iqαZκ +
q2

2
Qκα. (A.10)

When summing the local and the Hartree potential terms, the divergencies can-
cel out and, at leading order in q, the scattering potential tends to a direction-
independent constant,

Vloc+H,τκα
q ∼ 2π

Ω
Qκα, (A.11)

which is uniquely determined by the charge neutrality of the unit cell and corre-
sponds to the Fermi level shifts defined in Sec. 3.3.4,

2π

Ω
Qκα = −µτκα . (A.12)

a .3 first q derivative of the macroscopic electro-
static energy

We want to take the first q derivative of the three terms that contribute to the
macroscopic electrostatic energy in metals, within the framework of variational
spatial dispersion theory, as described in Chapter 3. To this end, we shall write down
the finite q expressions and we shall take the q → 0 limit once the divergencies
coming from all the three terms have been properly treated.

The first contribution to the macroscopic electrostatics comes from the ion-ion
Ewald (Ew) term,

E
τκατκ′β
Ew,q (G = 0) = ZκZκ′

4π

Ω
qαqβ

q2 e−
q2

4Λ2

≃ ZκZκ′
4π

Ω

(
qαqβ

q2 − qαqβ

4Λ2 + . . .
)

,
(A.13)

where Λ is a range-separation parameter that can assume any value in order to
accelerate convergence [77], and the dots stand for an analytic sum of higher-order
terms containing even powers of q. Its partial derivative with respect to the wave
vector qγ is

E
τκατκ′β
Ew,γ ≃

[
4π

Ω
ZκZκ′

q2

(
δαγqβ + δβγqα

)
− 8π

Ω
ZκZκ′

qαqβqγ

q4

]
q=0

. (A.14)
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In Eq. (A.14) and in the following derivations, we omit terms that vanish in the
q = 0 limit, and we also exclude the G = 0 label in order to keep the notation as
simple as possible.

The second contribution comes from the second line of Eq. (3.27), which we shall
refer to as the “elst” term, and can be equivalently written in reciprocal space as

E
nκατκ′β
elst,q = Ω(nq

τκα
)∗Kqnq

τκ′β , (A.15)

where Kq = 4π/q2 is the Coulomb kernel. The partial derivative of Eq. (A.15) with
respect to qγ, within the context of our variational spatial dispersion theory, i.e.,
excluding the partial q derivatives of the first-order electron densities, is given by

E
τκατκ′β
elst,γ =

[
Ω(nq

τκα
)∗Kγnq

τκ′β

]
q=0

≃ 1
Ω

(
iqαZκ +

q2

2
Qκα

)(
−8πqγ

q4

)(
−iqβZκ′ +

q2

2
Qκ′β

) ∣∣∣∣
q=0

≃
[
−8π

Ω
ZκZκ′

qαqβqγ

q4 + 2
(
iδαγZκµτκ′β − iδβγµτκα Zκ′

)]
q=0

.

(A.16)

In order to compute the third and last contribution to the macroscopic electrostatic
energy, which comes from the local (loc) potentials in the first two lines of the
occupation term, Eq. (3.42), we need the first q derivative of the local part of the
psuedopotential given in Eq. (A.3),

Vloc,τκα
γ ≃ 4πi

Ω

[
Zκ

δαγ

q2 − 2Zκ
qαqγ

q4

]
q=0

. (A.17)

This leads to

E
τκατκβ

loc,γ =
[
Ω(nq

τκα
)∗V

loc,τκ′β
γ + Ω(Vloc,τκα

γ )∗nq
τκ′β

]
q=0

≃
[(

iqαZκ +
q2

2
Qκα

)
4πi
Ω

(
Zκ′

δβγ

q2 − 2Zκ′
qβqγ

q4

)

− 4πi
Ω

(
Zκ

δαγ

q2 − 2Zκ
qαqγ

q4

)(
−iqβZκ′ +

q2

2
Qκ′β

)]
q=0

≃
[
− 4π

Ω
ZκZκ′

q2

(
δαγqβ + δβγqα

)
+

16π

Ω
ZκZκ′

qαqβqγ

q4

+ iδβγµτκα Zκ′ − iδαγZκµτκ′β

]
q=0

.

(A.18)

When the three contributions are treated together, all the divergences cancel out,
and we are left with the following final result,

E
τκατκ′β
mac,γ = E

τκατκ′β
Ew,γ + E

τκατκ′β
elst,γ + E

τκατκ′β
loc,γ

≃ iδαγZκµτκ′β − iδβγµτκα Zκ′ ,
(A.19)

which is Eq. (3.46) of the main text.



B
P O L A R I Z AT I O N S W I T C H I N G O F B A R I U M T I TA N AT E V I A
S T R A I N G R A D I E N T S

This appendix offers supplementary information regarding the results presented in
Chapter 4 on BaTiO3. Our analysis on barium titanate will be more concise than that
of lithium osmate. This is because the computation of the flexocoupling coefficients
in insulators nowadays does not present any significant challenges, and because
the potential energy landscape of BaTiO3 is considerably simpler, since the AFD
oxygen tilts do not need to be considered.

b .1 computational parameters

Calculations for BaTiO3 are performed by using norm-conserving pseudopotentials
with the Perdew-Wang [81] parametrization of the local density approximation
(LDA), which we regenerate with the ONCVPSP [88] software in order to remove
exchange-correlation nonlinear core corrections. We use a plane-wave energy cutoff
of 60 Ha and the Brillouin Zone is sampled with 12× 12× 12 k points. The obtained
relax cell parameter is a = 7.428 bohr.

b .2 flexocoupling coefficients

The linearly independent components of the flexoelectric force-response tensor of
cubic BaTiO3 are shown in Table B.1. These are calculated using the standard long-
wave DFPT implementation for insulators available in abinit, which is described
in Sec. 2.4.4. One can easily check that the elastic sum rule given by Eq. (4.23) is
readily satisfied, as shown in Table 4.2. The direct application of the definition of
the flexocoupling coefficients, as indicated by Eq. (4.25), results in the values that
are shown in the last column of Table B.1, which definitely disagree with those
reported in Table 4.2.

What is the reason for this discrepancy? As explained in Sec. A.1, in order
to ensure that the long-wave expansion of the physical quantities of interest in
insulators do not contain undesired nonanalicities coming from macroscopic electric
fields, we have suppressed the macroscopic component (G = 0 term) of the self-
consistent electrostatic potential; i.e., short-circuit electrical boundary conditions
have been adopted. But there is not a unique way of doing so. This ambiguity
(or gauge freedom) in suppressing the macroscopic electric field is completely
innocuous when dealing with uniform strains, i.e., piezoelectricity. The case of
flexoelectricity is more subtle, since a strain gradient changes the electronic energy
of each of the states at a different rate; thus the bulk flexocoupling tensor of an
insulator depends on which energy level we choose as reference. (In metals, this
problematic energy reference is unambiguously defined by the Fermi level.) As
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124 polarization switching of barium titanate via strain gradients

a consequence, we reach the conclusion that the bulk flexocoupling coefficients
of an insulator are defined only modulo an arbitrary constant [103, 105]. This is
expected, since the bulk flexoelectric tensor suffers from the same reference potential
ambiguity, which is intimately related to the theory of deformation potentials [163,
164].

By default, the longwave module of abinit places the energy reference at the
average electrostatic potential. For a meaningful comparison with metallic LiOsO3,
we decided to use the conduction-band minimum (CBM) energy as reference,
giving rise to the so-called n-type [106] flexocoupling coefficients, which are the
values that are shown in Table 4.2 in the main text. The flexocoupling coefficients
defined with respect to the average electrostatic potential are related to their n-type
counterparts by the following constant,

∆ fαβ,γδ = Z∗
αβ

∂Vck

∂εγδ
. (B.1)

Here, Z∗
αβ is the dynamical charge associated with the β-th mode, which is defined

as [103, 165]

Z∗
αβ = ∑

κ,ρ

√
M
mκ

Z∗
κ,αρP(β)

κρ , (B.2)

where Z∗
κ,αρ are the Born effective charges and P(β) is a normalized polar eigenvector

of the dynamical matrix, as introduced in Eq. (4.25). On the other hand, Vck =

−ϵ
(0)
ck /e + V̄ is the relative potential of the conduction band minimum, ϵ

(0)
ck , with

respect to the average electrostatic potential, V̄. Note the minus sign in the −e
factor, indicating the electron charge. For cubic BaTiO3, we obtain

∂ϵ
(0)
ck

∂εδδ
= −11.38 eV,

∂V̄
∂εδδ

= 5.58 eV, Z∗
αα = 28.89 e, (B.3)

which gives, via Eq. (B.1), a correction of ∆ f = 490.20 eV to the linearly independent
entries fxx,xx and fxx,yy. The fxy,xy component, on the other hand, is independent of
the chosen potential reference. The addition of ∆ f to the flexocoupling coefficients
of Table B.1 immediately gives rise to the n-type flexocoupling coefficients of cubic
BaTiO3, as shown in Table 4.2.

Atom xx, xx xx, yy xy, xy

Ba −21.71 −27.78 11.14

Ti −77.55 −108.79 8.03

O1 147.69 101.65 13.40

O2 42.72 41.41 16.10

O3 42.72 39.54 3.55

fαγ,βδ −545.94 −486.32 −41.26

Table B.1: Linearly independent components of the flexoelectric
force-response tensor (in eV) and the flexocoupling tensor (in eV)
of cubic BaTiO3. The energy reference is placed at the average
electrostatic potential.
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Parameter Value Units Parameter Value Units

ζ1 −11.54 eV/Å
2

ρ3 −99.21 eV/Å
2

ζ2 7.29 × 103 eV/Å
4

ρ4 −2.92 × 104 eV/Å
4

ζ3 3.44 × 103 eV/Å
4

ρ5 3.11 × 104 eV/Å
4

ρ1 −9.11 × 102 eV/Å
2

ρ6 9.69 × 103 eV/Å
4

ρ2 −97.06 eV/Å
2 · · · · · · · · ·

Table B.2: Calculated model parameters for the first-principles
Hamiltonian of BaTiO3.

b .3 effective hamiltonian

We use the following expression for the effective Hamiltonian of BaTiO3,

Eeff[s, u] = Hs[s] + Hu[u] + Hsu[s, u], (B.4)

where

Hs[s] =
Ω
2
C11(s2

1 + s2
2 + s2

3) + ΩC12(s1s2 + s1s3 + s2s3) +
Ω
2
C44(s2

4 + s2
5 + s2

6), (B.5)

Hu[u] = ζ1(u2
1 + u2

2 + u2
3) + ζ2(u4

1 + u4
2 + u4

3) + ζ3(u2
2u2

3 + u2
1u2

3 + u2
1u2

2) (B.6)

and

Hsu[s, u] =ρ1(s1u2
1 + s2u2

2 + s3u2
3) + ρ2[s1(u2

2 + u2
3) + s2(u2

1 + u2
3) + s3(u2

1 + u2
2)]

+ ρ3(s4u2u3 + s5u1u3 + s6u1u2) + ρ4(s1u4
1 + s2u4

2 + s3u4
3)

+ ρ5(s4u2
2u2

3 + s5u2
1u2

3 + s6u2
1u2

2)

+ ρ6[s1(u4
2 + u4

3) + s2(u4
1 + u4

3) + s3(u4
1 + u4

2)].
(B.7)

(Remember that si and ui represent, respectively, the strain in Voigt notation and the
amplitude of the polar order parameter. In addition, Ω is the volume of the unit cell
and Cij are the elastic constants, which are given in Table 4.2.) The obtained model
parameters are shown in Table B.2. In Fig. B.1 we validate our model by computing
the phase diagram of the Pm3̄m and R3m phases of BaTiO3 as a function of the cell
volume, which shows excellent agreement with first principles calculations.
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Figure B.1: Energy per formula unit as a function of the volume
of the perovskite formula unit of Pm3̄m and R3m phases of
BaTiO3. Dots represent direct DFT calculations and solid lines are
obtained from our effective Hamiltonian.



C
D I P O L A R S U M R U L E F O R M O L E C U L E S

This appendix is devoted to proving the following sum rule, which is valid for an
isolated molecule in open electrostatic boundary conditions,

∑
κ

(
J(1,γ)
α,κβ + τκγZ∗

α,κβ

)
= δαβDγ, (C.1)

where J(1) is the first moment of the polarization response to an atomic displace-
ment, Z∗ corresponds to the Born effective charge tensor and D is the static dipole
moment of the molecule,

Dγ =
∫

rγn(0)(r) d3r. (C.2)

In absence of nonlocal pseudopotentials the proof is straightforward: it suffices to
use the definition of the J(n)α,κβ moments provided in the main text [see Eq. (5.18)]
together with the following relation (translational invariance) for the microscopic
polarization response [97],

∑
κ

Pα,κβ(r − τκ) = δαβn(0)(r). (C.3)

If nonlocal pseudopotentials are present, Eq. (C.3) breaks down; however, we will
show that Eq. (C.1) is exact even in that case. To prove Eq. (C.1) without passing
through Eq. (C.3), we will use another (exact) sum rule, relating the J(1,γ)

α,κβ moments
to the clamped-ion piezoelectric tensor [129],

− 1
Ω ∑

κ

J(1,γ)
α,κβ = ēα,βγ. (C.4)

To apply this rule, we need to place the isolated molecule in a large box of volume Ω,
and work in periodic boundary conditions. Then, Eq. (C.4) describes the clamped-
ion proper piezoelectric response of the resulting crystal lattice to an infinitesimal
strain. (In order to avoid complications due to long-range interactions between
repeated images, we assume that the Coulomb kernel is cut off at the boundary of
the box, and that all objects entering Eq. (C.1) are consistently calculated in such
conditions.) Since the images of the molecule are isolated in space, the macroscopic
polarization of the crystal is exactly given by the Clausius-Mossotti formula as the
static dipole moment divided by the volume,

P =
D
Ω

. (C.5)

However, ēα,βγ is not defined as a straightforward strain derivative of P, as this
would give rise to the so-called clamped-ion improper piezoelectric1 tensor, ē impr

α,βγ

1 The relationship between the proper and improper (impr) piezoelectric tensors [129] reads as follows:
ēα,βγ = ē impr

α,βγ − δβγPα + δαβPβ, where P is the polarization of the reference configuration, i.e., prior to
applying the strain.
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[129, 166]. To arrive at ēα,βγ, we first need to introduce the reduced (tilded) polariza-
tion [129],

P̃i =
1

2π
Ωbi · P =

1
2π

bi ·D, (C.6)

where ai and bi are, respectively, the primitive real and reciprocal space lattice
vectors, fulfilling ai · bj = 2πδij, as defined in Eq. (2.24). We are now ready to
introduce the clamped-ion proper piezoelectric tensor [129, 167],

ēα,βγ =
1
Ω ∑

i
aiα

∂P̃i

∂ηβγ
, (C.7)

where aiα represents the α Cartesian component of the primitive real space lattice
vector ai and η is the Cauchy infinitesimal strain tensor. This leads to the following
formula, without factors of volume,

∑
κ

J(1,γ)
α,κβ =− 1

2π ∑
i

aiα
∂(bi ·D)

∂ηβγ

= − 1
2π ∑

i
aiα

[
bi ·

∂D
∂ηβγ

+
∂bi

∂ηβγ
·D
]

.
(C.8)

In order to calculate the derivatives with respect to ηβγ, note that an infinitesimal
strain corresponds to the following linear transformation of the atomic coordinates
and primitive real space lattice vectors,

τ′
κ =(I + η)τκ, (C.9a)

a′i =(I + η)ai, (C.9b)

where the prime symbol indicates the new vectors after application of strain and I
is the identity matrix. The first relation yields

∂τκσ

∂ηβγ
= δβστκγ. (C.10)

By using the definition of the Born effective charge tensor, one immediately obtains,

∂Dα

∂ηβγ
= ∑

κ,σ

∂Dα

∂τκσ

∂τκσ

∂ηβγ
= ∑

κ

Z∗
α,κβτκγ. (C.11)

The second relation, Eq. (C.9b), is useful for determining the transformation law
for their dual vectors, bi. The orthonormality condition given in Eq. (2.24) needs to
be preserved up to linear order in the strain, which leads to the following result,

b′
i ≃ (I − ηT)bi, (C.12)

where the symbol T indicates the transpose of the matrix, i.e., (ηT)αβ = ηβα. From
this, we deduce

∂biρ

∂ηβγ
= −δγρbiβ. (C.13)

Collecting all the pieces, Eq. (C.4) can be rewritten as

∑
κ

J(1,γ)
α,κβ = − 1

2π ∑
i

aiα ∑
ρ

[
biρ ∑

κ

Z∗
ρ,κβτκγ − δγρbiβDρ

]
. (C.14)
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By using the orthonormality rule ∑
i

aiαbiβ = 2πδαβ, we eventually arrive at

∑
κ

J(1,γ)
α,κβ = δαβDγ − ∑

κ

Z∗
α,κβτκγ, (C.15)

thereby concluding the proof.
The above results allow us to further specify the validity of Eq. (C.3) in the case

of an isolated molecule. While the microscopic formula breaks down in presence of
nonlocal pseudopotentials, one can expand both sides into Cartesian multipoles
and ask at what order the equality no longer holds. At order zero the equality
clearly is satisfied,

∑
κ

∫
Pα,κβ(r) d3r = δαβ

∫
n(0)(r) d3r, (C.16)

since macroscopic currents are well described; in the case of a neutral molecule,
Eq. (C.16) reduces to the acoustic sum rule on the Born charge tensor components.
In this appendix, we have provided a formal proof that Eq. (C.3) works equally
well at first order,

∑
κ

∫
rγPα,κβ(r) d3r = δαβ

∫
rγn(0)(r) d3r. (C.17)

On the other hand, we already know from earlier works [98, 100] that the second
order doesn’t work if nonlocal potentials are used in the calculation,

∑
κ

∫
rγrλPα,κβ(r) d3r ̸= δαβ

∫
rγrλn(0)(r) d3r. (C.18)

This breakdown of translational invariance at the quadrupolar level explains why
Eq. (5.30) and Eq. (5.37) disagree in presence of nonlocal potentials.





D
R E S P O N S E T O A L O N G - WAV E L E N G T H E L E C T R O M A G N E T I C
V E C T O R P O T E N T I A L F I E L D

We consider a monochromatic electromagnetic vector potential field that is modu-
lated by a wave vector q, such that Aβ = Aq

βeiq·r. The corresponding wave function

response at finite q, which we denote as |uAβ

mk,q⟩, can be obtained from the following
Sternheimer equation [41],(

Ĥ(0)
k+q + aP̂k+q − ϵ

(0)
mk

)
|uAβ

mk,q⟩ = −Q̂k+qĤ
Aβ

k,q |u
(0)
mk⟩ , (D.1)

where Ĥ
Aβ

k,q is the first-order Hamiltonian, as defined by Eq. (2.100); notice the

absence of SCF terms in Eq. (D.1). At q = 0, it reduces to Ĥ
Aβ

k,q=0 = ∂βĤ(0)
k , and we

recover the well-known d/dkβ wave functions,

|uAβ

mk,q=0⟩ = ∂βP̂k |u(0)
mk⟩ = |ukβ

mk⟩ . (D.2)

The response at first order in the wave vector q can be obtained by deriving both
sides of Eq. (D.1) with respect to qγ,(

Ĥ(0)
k + aP̂k − ϵ

(0)
mk

)
|uAβ

mk,γ⟩ =
(

∂γĤ(0)
k ∂βQ̂k − a∂γP̂k∂βP̂k

− ∂γQ̂k∂βĤ(0)
k − 1

2
Q̂k∂2

βγĤ(0)
k

)
|u(0)

mk⟩ .
(D.3)

After some tedious but otherwise straightforward algebra, it can be shown [41] that
the wave function response to an electromagnetic vector potential at first order in
the modulation wave vector q, which we denote as |uAβ

mk,γ⟩, is given by

|uAβ

mk,γ⟩ = |ūAβ

mk,γ⟩ −
1
2
[∂γP̂k, ∂βP̂k] |u(0)

mk⟩ . (D.4)

The second term in the right-hand side of Eq. (D.4) is a purely geometric contribution,
in the sense that it only depends on the unperturbed ground-state wave functions,
and the first term is a linear-response quantity that can be obtained from the
following Sternheimer equation [41],(

Ĥ(0)
k + aP̂k − ϵ

(0)
mk

)
|ūAβ

mk,γ⟩ = −Q̂kÔβγ
k |u(0)

mk⟩ , (D.5)

where the perturbing operator Ôβγ
k is given by

Ôβγ
k = ∂γĤ(0)

k ∂βP̂k − ∂γP̂k∂βĤ(0)
k +

1
2

∂2
βγĤ(0)

k . (D.6)

The symbols ∂γ ≡ ∂/∂kγ
and ∂2

βγ ≡ ∂2/∂kγ
∂kβ

represent, respectively, the first and
second derivatives in k space. The physical interpretation of the perturbing operator
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given by Eq. (D.6) becomes clearer once it is expressed as a sum of a symmetric
(ÔS,βγ

k ) plus an antisymmetric (ÔA,βγ
k ) contribution with respect to β ↔ γ exchange,

Ôβγ
k =

1
2

(
ÔS,βγ

k + ÔA,βγ
k

)
, (D.7)

where

ÔS,βγ
k = ∂γĤ(0)

k ∂βP̂k + ∂βĤ(0)
k ∂γP̂k − ∂γP̂k∂βĤ(0)

k − ∂βP̂k∂γĤ(0)
k + ∂2

βγĤ(0)
k (D.8)

and
ÔA,βγ

k = ∂γĤ(0)
k ∂βP̂k − ∂βĤ(0)

k ∂γP̂k − ∂γP̂k∂βĤ(0)
k + ∂βP̂k∂γĤ(0)

k . (D.9)

Notably, ÔS,βγ
k is the perturbing operator that enters the Sternheimer equation for

the |∂2
βγu(0)

mk⟩ wave functions (commonly denoted as d2/dkγdkβ) and the antisym-

metric ÔA,βγ
k operator is intimately related to the perturbing operator that describes

the orbital wave function response to a uniform magnetic field, ÔBδ
k , as defined by

Essin et al. [102],

ÔBδ
k =

i
2 ∑

β,γ
ϵδβγÔA,βγ

k . (D.10)

While the theoretical basis for the wave function response to a long-wavelength
electromagnetic vector potential had already been well-established in earlier works
[41], its practical implementation in a publicly available DFT code is one of the
achievements of this thesis.



E
G E O M E T R I C O R B I TA L M A G N E T I Z AT I O N B Y R O TAT I O N

The main objective of this appendix is to establish a formal link between the
geometric orbital magnetization as we have presented in Chapter 5 and the theory
discussed in Ref. [17]. In the latter work, Trifunovic, Ono and Watanabe developed
a general theory for periodic adiabatic processes that include as special cases the
scenarios we have addressed in Chapter 5; i.e., rigid rotations of molecules and
pseudorotations in solids induced by circularly polarized phonons.

We will consider the magnetization induced by a rotation in a molecule as
introduced in Chapter 5 and we will prove that our DFPT treatment of the or-
bital magnetic field response exactly recovers the topological and nontopological
contributions to the geometric orbital magnetization as described in Ref. [17].

e .1 magnetization by rotation

Following the strategy of Ceresoli and Tosatti [58], we consider an adiabatic param-
eter θ(t), which describes the rotation angle of the molecule. The Hamiltonian and
the instantaneous Bloch wave functions of a given molecule depend on θ and fulfill
the following Schrödinger equation,

Ĥ(0)
k (θ) |u(0)

mk(θ)⟩ = ϵ
(0)
mk |u

(0)
mk(θ)⟩ . (E.1)

(Note that the eigenenergies ϵ
(0)
mk are independent of θ, since the energy of the

system is invariant under any unitary transformation, e.g., rotations.) Assuming
that the rotation axis is oriented along the δ Cartesian direction,

|u(0)
mk(θ)⟩ = R̂δ(θ) |u(0)

mk(0)⟩ , with R̂δ(θ) = e−iθ L̂δ , (E.2)

where R̂δ(θ) is the rotation operator, L̂δ is the angular momentum operator and we
impose periodicity in θ, i.e., |u(0)

mk(0)⟩ = |u(0)
mk(2π)⟩. It is then easy to see that the

Berry connection Aθ
nmk is a constant with respect to θ,

Aθ
nmk ≡ ⟨u(0)

nk |i∂θu(0)
mk⟩ = ⟨u(0)

nk | L̂δ |u(0)
mk⟩ , (E.3)

which means [17, 100] that we will be able to safely evaluate the induced magneti-
zation at θ = 0; i.e., there is no need to integrate over the whole cycle. The Berry
phase accumulated around a closed loop, at linear order in the applied external
magnetic field, which is assumed to be oriented along the δ Cartesian direction as
well, can be written as

φBδ
= 2πBδΩBδθ , (E.4)
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134 geometric orbital magnetization by rotation

where ΩBδθ is the Berry curvature [154] in the (Bδ, θ) parameter space,

ΩBδθ = ∑
m∈V

∫
BZ
[d3k]

(
∂Bδ

Aθ
mmk − ∂θABδ

mmk

)
=2 Im ∑

m∈V

∫
BZ
[d3k] ⟨uθ

mk|uBδ
mk⟩ .

(E.5)

(Notice that in absence of the applied external magnetic field, the Berry phase due
to a rigid rotation of the molecule, as specified in Eq. (E.4), identically vanishes;
this is the reason why we include explicitly the Bδ subscript in φ.) It can also be
demonstrated [58, 100] that the magnetization by rotation is directly related to the
Berry phase accumulated around a closed loop in presence of a uniform magnetic
field,

φBδ
= 2πBδ

∂mz

∂θ̇
, (E.6)

which implies that
∂mδ

∂θ̇
= ΩBδθ . (E.7)

In short, Eq. (E.7) is telling us that the magnetization by rotation in a molecule
reduces to a Berry curvature in the two-dimensional (Bδ, θ) parameter space. All the
expressions we have summarized in the previous lines are well established results
that can be found in the literature [58, 100]. The remainder of this appendix will be
devoted to expand the wave function response to Bδ appearing in Eq. (E.5) in order
to prove that we indeed recover the topological and nontopological contributions
to the orbital magnetization as defined in Ref. [17].

We shall obtain the wave function response to a magnetic field that enters the
Berry curvature from the response to an electromagnetic vector potential field in
the symmetric gauge, i.e., A = 1

2 B × r. From Eq. (D.4) and Eq. (D.10) of Appendix
D, we deduce that the wave function response to an orbital magnetic field can be
written as a sum of two contributions,

|uBδ
mk⟩ = |ūBδ

mk⟩+
i
2 ∑

β,γ
ϵδβγ[∂γP̂k, ∂βP̂k] |u(0)

mk⟩ . (E.8)

The first term on the right hand side of Eq. (E.8) is obtained as a solution of the
following Sternheimer equation,

(Ĥk + aP̂k − ϵ
(0)
mk) |ū

Bδ
mk⟩ = −Q̂kÔBδ

k |u(0)
mk⟩ , (E.9)

where the perturbing operator ÔBδ
k is given by Eq. (D.10). By inserting Eq. (E.8) into

Eq. (E.7), we obtain
∂mδ

∂θ̇
=

∂

∂θ̇
mtop

δ +
∂

∂θ̇
mnontop

δ , (E.10)

where the topological (top) and nontopological (nontop) contributions are examined
in more detail in the following sections.
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e .2 topological response

The topological contribution to the orbital magnetization induced by a rotation
in a molecule comes from the second term on the right hand side of Eq. (E.8).
Substituting this term into Eq. (E.7), one immediately obtains

∂

∂θ̇
mtop

δ =
∫

BZ
[d3k]∑

β,γ
ϵδβγ Tr

(
P̂k∂θ P̂k[∂γP̂k, ∂βP̂k]

)
, (E.11)

where ∂θ is the derivative with respect to the rotation angle and ∂γ ≡ ∂/∂kγ

represents a covariant derivative in k space. For simplicity, we will now assume
that both the applied magnetic field and the rotation axis are parallel to the z
Cartesian direction. It is then interesting to note that Eq. (E.11) can be written as a
third Chern-Simons form,

∂

∂θ̇
mtop

z =
∫

BZ
[d3k]Tr

(
AΥ

k · ∇Υ ×AΥ
k − 2i

3
AΥ

k ·AΥ
k ×AΥ

k

)
, (E.12)

where we have introduced the Berry connection AΥ
k in the Υ = (θ, kx, ky) space,

(AΥ
k)nm = ⟨u(0)

nk |i∇Υu(0)
mk⟩ , with ∇Υ = (∂θ , ∂kx , ∂ky). (E.13)

Eq. (E.12) is presented as it appears in Ref. [17].

e .3 nontopological response

The nontopological contribution to the orbital magnetization comes from the linear-
response term in Eq. (E.8), which is indicated with a “bar” symbol. We obtain

∂

∂θ̇
mnontop

δ = 2 Im ∑
m∈V

∫
BZ
[d3k] ⟨uθ

mk|ūBδ
mk⟩ , (E.14)

where |ūBδ
mk⟩ can be expressed as a sum over unoccupied states belonging to the

conduction-band manifold (C). From Eq. (E.9), we can write the following,

|ūBδ
mk⟩ = ∑

n∈C
|u(0)

nk ⟩
⟨u(0)

nk | ÔBδ
k |u(0)

mk⟩
ϵ
(0)
mk − ϵ

(0)
nk

= ∑
n∈C

∑
β,γ

i
2

ϵδβγ |u(0)
nk ⟩

⟨u(0)
nk |
(
{∂γĤk, ∂βP̂k} − {∂βĤk, ∂γP̂k}

)
|u(0)

mk⟩
ϵ
(0)
mk − ϵ

(0)
nk

,

(E.15)

where the curly brackets indicate the anticommutator relation, {Â, B̂} = ÂB̂ + B̂Â.
It is then straightforward to obtain the nontopological contribution as expressed in
Ref. [17],

∂

∂θ̇
mnontop

δ =
∫

BZ
[d3k] ∑

m∈V
∑
n∈C

mnontop
δ,nmk , (E.16)

where we have defined

mnontop
δ,nmk = ∑

β,γ
ϵδβγ ⟨u(0)

mk| ∂θ P̂k |u(0)
nk ⟩ ⟨u

(0)
nk | {∂γĤ(0)

k , ∂βĤ(0)
k } |u(0)

mk⟩
ϵ
(0)
mk − ϵ

(0)
nk

+ c.c., (E.17)

which brings this appendix to an end.





F
N AT U R A L O P T I C A L A C T I V I T Y I N M O L E C U L E S

In this appendix we derive explicitly the X̃ EαkγEβ and W̃α,βγ terms appearing in
Eq. (6.20) for the natural optical activity tensor in finite samples. Remember that
the “tilde” symbol indicates that SCF contributions are neglected. The relationships
given in Eq. (6.22) are used throughout, in conjunction with the following expression
for the first-order wave functions,

|ψ̃Eα
m ⟩ = ∑

l∈C
|ψl⟩

⟨ψl | r̂α |ψm⟩
ϵm − ϵl

. (F.1)

f .1 computation of the X̃ Eα kγEβ
term

We start from the definition for the X̃ term and express the velocity operator and
the first-order wave functions in terms of unperturbed quantities, by means of Eq.
(6.22) and Eq. (F.1), respectively. This leads to

X̃ EαkγEβ = ∑
m∈V

fm ⟨ψ̃Eα
m | Ĥkγ |ψ̃Eβ

m ⟩

=i ∑
m∈V

∑
l,s∈C

fm
⟨ψm| r̂α |ψl⟩ ⟨ψl | [Ĥ, r̂γ] |ψs⟩ ⟨ψs| r̂β |ψm⟩

(ϵl − ϵm)(ϵs − ϵm)
.

(F.2)

After expanding the commutator and rearranging some terms, we obtain

X̃ EαkγEβ =i ∑
m∈V

∑
l,s∈C

fm

[
⟨ψm| r̂α |ψl⟩ ⟨ψl | Ĥr̂γ |ψs⟩ ⟨ψs| r̂β |ψm⟩

(ϵl − ϵm)(ϵs − ϵm)

− ⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂γĤ |ψs⟩ ⟨ψs| r̂β |ψm⟩
(ϵl − ϵm)(ϵs − ϵm)

]

=i ∑
m∈V

∑
l,s∈C

fm(ϵl − ϵs)
⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂γ |ψs⟩ ⟨ψs| r̂β |ψm⟩

(ϵl − ϵm)(ϵs − ϵm)
.

(F.3)

We now use ϵl − ϵs = (ϵl − ϵm) + (ϵm − ϵs) in order to write

X̃ EαkγEβ =i ∑
m∈V

∑
l,s∈C

fm

[
⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂γ |ψs⟩ ⟨ψs| r̂β |ψm⟩

ϵs − ϵm

− ⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂γ |ψs⟩ ⟨ψs| r̂β |ψm⟩
ϵl − ϵm

]
.

(F.4)
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Bringing up the definition of the conduction-band projector, Q̂ = ∑l∈C |ψl⟩ ⟨ψl |,
one immediately obtains the following,

X̃ EαkγEβ =i ∑
m∈V

∑
l∈C

fm

[
⟨ψm| r̂αQ̂r̂γ |ψl⟩ ⟨ψl | r̂β |ψm⟩

ϵl − ϵm

− ⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂γQ̂r̂β |ψm⟩
ϵl − ϵm

]
.

(F.5)

f .2 computation of the W̃ α ,βγ
term

We now turn our attention to the W̃ term, which is given by

W̃α,βγ = ∑
m∈V

fm ⟨ψ̃Eα
m |iψAβ

m,γ⟩

=i ∑
m∈V

∑
l∈C

fm
⟨ψm| r̂α |ψl⟩ ⟨ψl | Ôβγ |ψm⟩

(ϵm − ϵl)2 ,
(F.6)

where Ôβγ represents the perturbing operator of Eq. (D.7) and where we have used,
along with the definition of the first-order wave functions given in Eq. (F.1), the
following relationship for the wave function response to a long-wavelength vector
potential field,

⟨ψl |ψ
Aβ
m,γ⟩ =

⟨ψl | Ôβγ |ψm⟩
ϵm − ϵl

, m ∈ V , l ∈ C. (F.7)

The latter can be directly derived from the Sternheimer equation given by Eq. (D.5).
We will compute independently the symmetric (S) and antisymmetric (A) parts of
the numerator in Eq. (F.7),

⟨ψl | Ôβγ |ψm⟩ =
1
2
⟨ψl |

(
ÔS,βγ + ÔA,βγ

)
|ψm⟩ , (F.8)

where the operators ÔS,βγ and ÔA,βγ are given in Eqs. (D.8) and (D.9), respectively.
(Even if not explicitly stated, for the remainder of this appendix one should implic-
itly assume that m ∈ V and l ∈ C.)

f .2 .1 symmetric part

We start with the symmetric contribution,

⟨ψl | ÔS,βγ |ψm⟩ = S1 + S2, (F.9)

where we have defined

S1 =− ⟨ψl | [Ĥ, r̂γ][P̂, r̂β] |ψm⟩ − ⟨ψl | [Ĥ, r̂β][P̂, r̂γ] |ψm⟩
− ⟨ψl | [[Ĥ, r̂γ], r̂β] |ψm⟩

(F.10)
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and
S2 = ⟨ψl | [P̂, r̂β][Ĥ, r̂γ] |ψm⟩+ ⟨ψl | [P̂, r̂γ][Ĥ, r̂β] |ψm⟩ . (F.11)

Let us first focus on the S1 term,

S1 =− ⟨ψl | [Ĥ, r̂γ]r̂β |ψm⟩+ ⟨ψl | [Ĥ, r̂β]r̂γ |ψm⟩ − ⟨ψl | [[Ĥ, r̂γ], r̂β] |ψm⟩︸ ︷︷ ︸
S(a)

1

− ⟨ψl | [Ĥ, r̂γ]P̂r̂β |ψm⟩ − ⟨ψl | [Ĥ, r̂β]P̂r̂γ |ψm⟩︸ ︷︷ ︸
S(b)

2

.
(F.12)

The S(a)
1 term can be simplified as follows,

S(a)
1 = ⟨ψl | Ĥr̂βr̂γ |ψm⟩ − ⟨l| r̂βĤr̂γ |ψm⟩+ ⟨ψl | Ĥr̂βr̂γ |ψm⟩

− ⟨ψl | r̂γĤr̂β |ψm⟩ − ⟨ψl | [Ĥ, r̂γ]r̂β |ψm⟩+ ⟨ψl | r̂β[Ĥ, r̂γ] |ψm⟩
= ⟨ψl | Ĥr̂γr̂β |ψm⟩ − ⟨ψl | r̂γr̂βĤ |ψm⟩
= ⟨ψl | [Ĥ, r̂γr̂β] |ψm⟩ .

(F.13)

We can simplify the S(b)
1 term in a similar fashion, where only two terms survive,

as we have a conduction-band state on the left,

S(b)
1 = ⟨ψl | [P̂, r̂β][Ĥ, r̂γ] |ψm⟩+ ⟨ψl | [P̂, r̂γ][Ĥ, r̂β] |ψm⟩

= − ⟨ψl | r̂βP̂[Ĥ, r̂γ] |ψm⟩ − ⟨ψl | r̂γP̂[Ĥ, r̂β] |ψm⟩ .
(F.14)

Collecting all terms, S1 + S2, we obtain

⟨ψl | ÔS,βγ |ψm⟩ = ⟨ψl | [Ĥ, r̂βr̂γ] |ψm⟩ − ⟨ψl | [Ĥ, r̂γ]P̂r̂β |ψm⟩ − ⟨ψl | [Ĥ, r̂β]P̂r̂γ |ψm⟩
− ⟨ψl | r̂βP̂[Ĥ, r̂γ] |ψm⟩ − ⟨ψl | r̂γP̂[Ĥ, r̂β] |ψm⟩

= ⟨ψl | [Ĥ, r̂βr̂γ] |ψm⟩ − ⟨ψl | Ĥr̂γP̂r̂β |ψm⟩+(((((((((⟨ψl | r̂γĤP̂r̂β |ψm⟩
− ⟨ψl | Ĥr̂βP̂r̂γ |ψm⟩+(((((((((⟨ψl | r̂βĤP̂r̂γ |ψm⟩ −(((((((((⟨ψl | r̂βP̂Ĥr̂γ |ψm⟩
+ ⟨ψl | r̂βP̂r̂γĤ |ψm⟩ −�������

r̂γP̂Ĥr̂β |ψm⟩+ ⟨ψl | r̂γP̂r̂βĤ |ψm⟩
= ⟨ψl | [Ĥ, r̂βr̂γ] |ψm⟩ − ⟨ψl | Ĥr̂γP̂r̂β |ψm⟩ − ⟨ψl | Ĥr̂βP̂r̂γ |ψm⟩
+ ⟨ψl | r̂βP̂r̂γĤ |ψm⟩+ ⟨ψl | r̂γP̂r̂βĤ |ψm⟩ .

(F.15)

Therefore, the symmetric part yields a purely geometric contribution to the wave
function response, in the sense that there are only contributions coming from
ground-state wave functions,

⟨ψl | ÔS,βγ |ψm⟩ = (ϵl − ϵm) ⟨ψl |
(
r̂βr̂γ − r̂βP̂r̂γ − r̂γP̂r̂β

)
|ψm⟩ . (F.16)

f .2 .2 antisymmetric part

Let’s now discuss the antisymmetric contribution of Eq. (F.8). We start with the
following,

⟨ψl | ÔA,βγ |ψm⟩ =− ⟨ψl | [Ĥ, r̂γ][P̂, r̂β] |ψm⟩+ ⟨ψl | [Ĥ, r̂β][P̂, r̂γ] |ψm⟩︸ ︷︷ ︸
A1

+ ⟨ψl | [P̂, r̂γ][Ĥ, r̂β] |ψm⟩ − ⟨ψl | [P̂, r̂β][Ĥ, r̂γ] |ψm⟩︸ ︷︷ ︸
A2

.
(F.17)
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Regarding the A1 term, we have

A1 =− ⟨ψl |
(

Ĥr̂γ − r̂γĤ
)(

P̂r̂β − r̂βP̂
)
|ψm⟩+ ⟨ψl |

(
Ĥr̂β − r̂βĤ

)(
P̂r̂γ − r̂γP̂

)
|ψm⟩

=− ⟨ψl | Ĥr̂γP̂r̂β |ψm⟩+((((((((⟨ψl | Ĥr̂γr̂β |ψm⟩+ ⟨ψl | r̂γĤP̂r̂β |ψm⟩ − ⟨ψl | r̂γĤr̂β |ψm⟩
+ ⟨ψl | Ĥr̂βP̂r̂γ |ψm⟩ −((((((((⟨ψl | Ĥr̂βr̂γ |ψm⟩ − ⟨ψl | r̂βĤP̂r̂γ |ψm⟩+ ⟨ψl | r̂βĤr̂γ |ψm⟩

=− ϵl ⟨ψl | r̂γP̂r̂β |ψm⟩+ ⟨ψl | r̂γĤP̂r̂β |ψm⟩ − ⟨ψl | r̂γĤr̂β |ψm⟩
+ ϵm ⟨ψl | r̂βP̂r̂γ |ψm⟩ − ⟨ψl | r̂βĤP̂r̂γ |ψm⟩+ ⟨ψl | r̂βĤr̂γ |ψm⟩ .

(F.18)

Let’s work through A2. Notice that some terms identically vanish, as we have a
conduction-band state on the left,

A2 = ⟨ψl | [P̂, r̂γ][Ĥ, r̂β] |ψm⟩ − ⟨ψl | [P̂, r̂β][Ĥ, r̂γ] |ψm⟩
= ⟨ψl |

(
P̂r̂γ − r̂γP̂

)(
Ĥr̂β − r̂βĤ

)
|ψm⟩ − ⟨ψl |

(
P̂r̂β − r̂βP̂

)(
Ĥr̂γ − r̂γĤ

)
|ψm⟩

=− ⟨ψl | r̂γP̂Ĥr̂β |ψm⟩+ ⟨ψl | r̂γP̂r̂βĤ |ψm⟩+ ⟨ψl | r̂βP̂Ĥr̂γ |ψm⟩
− ⟨ψl | r̂βP̂r̂γĤ |ψm⟩

=− ⟨ψl | r̂γP̂Ĥr̂β |ψm⟩+ ϵm ⟨ψl | r̂γP̂r̂β |ψm⟩+ ⟨ψl | r̂βP̂Ĥr̂γ |ψm⟩
− ϵm ⟨ψl | r̂βP̂r̂γ |ψm⟩ .

(F.19)

Everything together,

⟨ψl | ÔA,βγ |ψm⟩ =
(
ϵl − ϵm

)
⟨ψl |

(
r̂βP̂r̂γ − r̂γP̂r̂β

)
|ψm⟩

+ ⟨ψl |
(
r̂βĤr̂γ − r̂γĤr̂β

)
|ψm⟩ .

(F.20)

For convenience, we shall write the second term as

⟨ψl |
(
r̂βĤr̂γ − r̂γĤr̂β

)
|ψm⟩ = ⟨ψl |

(
r̂β[Ĥ, r̂γ]− r̂γ[Ĥ, r̂β]

)
|ψm⟩

=− i ⟨ψl |
(
r̂βv̂γ − r̂γv̂β

)
|ψm⟩ ,

(F.21)

where we have used v̂α = i[Ĥ, r̂α]. Therefore, the antisymmetric contribution reads
as

⟨ψl | ÔA,βγ |ψm⟩ = −i ⟨ψl |
(
r̂βv̂γ − r̂γv̂β

)
|ψm⟩+

(
ϵl − ϵm

)
⟨ψl |

(
r̂βP̂r̂γ − r̂γP̂r̂β

)
|ψm⟩ .
(F.22)

f .2 .3 symmetric + antisymmetric contributions

We can now compute the full W̃α,βγ tensor given by Eq. (F.6),

W̃α,βγ =
i
2 ∑

m∈V
∑
l∈C

fm
⟨ψm| r̂α |ψl⟩ ⟨ψl |

(
ÔS,βγ + ÔA,βγ

)
|ψm⟩

(ϵm − ϵl)2

=
i
2 ∑

m∈V
∑
l∈C

fm
⟨ψm| r̂α |ψl⟩
(ϵm − ϵl)2

[(
ϵl − ϵm

)
⟨ψl |

(
r̂βr̂γ −���r̂βP̂r̂γ − r̂γP̂r̂β

)
|ψm⟩

+
(
ϵl − ϵm

)
⟨ψl |

(
�
��r̂βP̂r̂γ − r̂γP̂r̂β

)
|ψm⟩ − i ⟨ψl |

(
r̂βv̂γ − r̂γv̂β

)
|ψm⟩

]
.

(F.23)
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In the end, we get

W̃α,βγ =
i
2 ∑

m∈V
∑
l∈C

fm
⟨ψm| r̂α |ψl⟩
(ϵl − ϵm)

⟨ψl |
(
r̂βr̂γ − 2r̂γP̂r̂β

)
|ψm⟩

+
1
2 ∑

m∈V
∑
l∈C

fm
⟨ψm| r̂α |ψl⟩
(ϵl − ϵm)2 ⟨ψl |

(
r̂βv̂γ − r̂γv̂β

)
|ψm⟩ .

(F.24)

f .3 computation of the η̃α βγ tensor

We now use the previous results, Eq. (F.4) and Eq. (F.24), in order to compute η̃αβγ,

η̃αβγ =− 4π

Ω
2 Im

[
X̃ EαkγEβ + W̃α,βγ +

(
W̃ β,αγ

)∗]
=− 4π

Ω
Im ∑

m∈V
∑
l∈C

fm η̃ml
αβγ,

(F.25)

where we have defined

η̃ml
αβγ =2i

⟨ψm| r̂αQ̂r̂γ |ψl⟩ ⟨ψl | r̂β |ψm⟩
ϵl − ϵm

− 2i
⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂γQ̂r̂β |ψm⟩

ϵl − ϵm

+ i
⟨ψm| r̂α |ψl⟩ ⟨ψl |

(
r̂βr̂γ − 2r̂γP̂r̂β

)
|ψm⟩

ϵl − ϵm

+
⟨ψm| r̂α |ψl⟩ ⟨ψl |

(
r̂βv̂γ − r̂γv̂β

)
|ψm⟩

(ϵl − ϵm)2

− i
⟨ψm|

(
r̂αr̂γ − 2r̂αP̂r̂γ

)
|ψl⟩ ⟨ψl | r̂β |ψm⟩

ϵl − ϵm

+
⟨ψm|

(
r̂αv̂γ − r̂γv̂α

)
|ψl⟩ ⟨ψl | r̂β |ψm⟩

(ϵl − ϵm)2 .

(F.26)

We now make use of the identity P̂ + Q̂ = 1 to simplify some terms,

η̃ml
αβγ =

1
(ϵl − ϵm)2

[
⟨ψm| r̂α |ψl⟩ ⟨ψl |

(
r̂βv̂γ − r̂γv̂β

)
|ψm⟩

+ ⟨ψm|
(
r̂αv̂γ − r̂γv̂α

)
|ψl⟩ ⟨ψl | r̂β |ψm⟩

]
+

i
(ϵl − ϵm)

[
⟨ψm| r̂αr̂γ |ψl⟩ ⟨ψl | r̂β |ψm⟩ − ⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂γr̂β |ψm⟩

]
.

(F.27)

As a final step, we use the fact that Im
[
a − ib

]
= −b and Im

[
i(a − ib)

]
= a, in order

to obtain the following expression for the natural optical activity in finite samples,

η̃ml
αβγ =

1
(ϵl − ϵm)2

[
⟨ψm| r̂α |ψl⟩ ⟨ψl | (r̂βv̂γ − r̂γv̂β) |ψm⟩

− ⟨ψm| r̂β |ψl⟩ ⟨ψl | (r̂αv̂γ − r̂γv̂α) |ψm⟩
]

+
i

ϵl − ϵm

[
⟨ψm| r̂β |ψl⟩ ⟨ψl | r̂αr̂γ |ψm⟩ − ⟨ψm| r̂α |ψl⟩ ⟨ψl | r̂βr̂γ |ψm⟩

]
,

(F.28)

which is Eq. (6.27) of the main text.





B I B L I O G R A P H Y

[1] L. D. Barron, Molecular light scattering and optical activity (Cambridge Univer-
sity Press, 2009).

[2] E. U. Condon, “Theories of optical rotatory power,” Rev. Mod. Phys. 9,
432–457 (1937).

[3] P. S. Halasyamani and K. R. Poeppelmeier, “Noncentrosymmetric oxides,”
Chem. Mater. 10, 2753–2769 (1998).

[4] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, landau
and lifshitz course of theoretical physics, vol. 8 (Pergamon Press, 1984).

[5] P. J. Stephens, F. J. Devlin, J. R. Cheeseman, and M. J. Frisch, “Calculation
of optical rotation using density functional theory,” J. Phys. Chem. A 105,
5356–5371 (2001).

[6] J. Autschbach, T. Ziegler, S. J. A. van Gisbergen, and E. J. Baerends, “Chirop-
tical properties from time-dependent density functional theory. I. circular
dichroism spectra of organic molecules,” J. Chem. Phys. 116, 6930–6940

(2002).

[7] J. Autschbach, S. Patchkovskii, T. Ziegler, S. J. A. van Gisbergen, and E. Jan
Baerends, “Chiroptical properties from time-dependent density functional
theory. II. optical rotations of small to medium sized organic molecules,” J.
Chem. Phys. 117, 581–592 (2002).

[8] P. L. Polavarapu, “Ab initio molecular optical rotations and absolute config-
urations,” Mol. Phys. 91, 551–554 (1997).

[9] B. C. Mort and J. Autschbach, “Magnitude of zero-point vibrational correc-
tions to optical rotation in rigid organic molecules: a time-dependent density
functional study,” J. Phys. Chem. A 109, 8617–8623 (2005).

[10] J. Jerphagnon and D. S. Chemla, “Optical activity of crystals,” J. Chem. Phys.
65, 1522–1529 (1976).

[11] S. Ades and C. H. Champness, “Optical activity of tellurium to 20 µm,” J.
Opt. Soc. Am. 65, 217–218 (1975).

[12] K Stadnicka, A. Glazer, and J. Moxon, “The structural chirality and optical
activity of α-LiIO3,” J. Appl. Cryst. 18, 237–240 (1985).

[13] S. Fukuda, T. Shiosaki, and A. Kawabata, “Infrared optical activity in tel-
lurium,” Phys. Status Solidi B 68, K107–K110.

[14] K. C. Nomura, “Optical activity in tellurium,” Phys. Rev. Lett. 5, 500–501

(1960).

[15] G. W. Day, “Linear and nonlinear optical properties of trigonal selenium,”
Appl. Phys. Lett. 18, 347–349 (1971).

[16] V. Devarajan and A. M. Glazer, “Theory and computation of optical rotatory
power in inorganic crystals,” Acta Crystallogr. A 42, 560–569 (1986).

143

https://doi.org/10.1103/RevModPhys.9.432
https://doi.org/10.1103/RevModPhys.9.432
https://doi.org/10.1021/cm980140w
https://doi.org/10.1021/jp0105138
https://doi.org/10.1021/jp0105138
https://doi.org/10.1063/1.1436466
https://doi.org/10.1063/1.1436466
https://doi.org/10.1063/1.1477925
https://doi.org/10.1063/1.1477925
https://doi.org/10.1080/002689797171436
https://doi.org/10.1021/jp051685y
https://doi.org/10.1063/1.433207
https://doi.org/10.1063/1.433207
https://doi.org/10.1364/JOSA.65.000217
https://doi.org/10.1364/JOSA.65.000217
https://doi.org/10.1107/S0021889885010202
https://doi.org/https://doi.org/10.1002/pssb.2220680247
https://doi.org/10.1103/PhysRevLett.5.500
https://doi.org/10.1103/PhysRevLett.5.500
https://doi.org/10.1063/1.1653691
https://doi.org/https://doi.org/10.1107/S0108767386098732


144 bibliography

[17] L. Trifunovic, S. Ono, and H. Watanabe, “Geometric orbital magnetization
in adiabatic processes,” Phys. Rev. B 100, 054408 (2019).

[18] D. Ceresoli, R. Marchetti, and E. Tosatti, “Electron-corrected lorentz forces
in solids and molecules in a magnetic field,” Phys. Rev. B 75, 161101 (2007).

[19] T. Qin, J. Zhou, and J. Shi, “Berry curvature and the phonon hall effect,”
Phys. Rev. B 86, 104305 (2012).

[20] D. M. Juraschek and N. A. Spaldin, “Orbital magnetic moments of phonons,”
Phys. Rev. Mater. 3, 064405 (2019).

[21] D. M. Juraschek, M. Fechner, A. V. Balatsky, and N. A. Spaldin, “Dynamical
multiferroicity,” Phys. Rev. Mater. 1, 014401 (2017).

[22] K. Sun, Z. Gao, and J.-S. Wang, “Phonon hall effect with first-principles
calculations,” Phys. Rev. B 103, 214301 (2021).

[23] S. M. Kogan, “Piezoelectric effect during inhomogeneous deformation and
acoustic scattering of carriers in crystals,” Soviet Physics-Solid State 5, 2069–
2070 (1964).

[24] X. Liang, S. Hu, and S. Shen, “Nanoscale mechanical energy harvesting
using piezoelectricity and flexoelectricity,” SMS 26, 035050 (2017).

[25] S. Zhang, K. Liu, M. Xu, and S. Shen, “A curved resonant flexoelectric
actuator,” Appl. Phys. Lett. 111, 082904 (2017).

[26] X Yan, W. Huang, S. Kwon, S. Yang, X. Jiang, and F. Yuan, “Design of a cur-
vature sensor using a flexoelectric material,” in Sensors and smart structures
technologies for civil, mechanical, and aerospace systems, Vol. 8692 (SPIE,
2013), pp. 193–202.

[27] P. W. Anderson and E. I. Blount, “Symmetry considerations on martensitic
transformations: “ferroelectric” metals?” Phys. Rev. Lett. 14, 217–219 (1965).

[28] Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michiue,
A. Sato, K. Tsuda, S. Yu, et al., “A ferroelectric-like structural transition in a
metal,” Nat. Mater. 12, 1024–1027 (2013).

[29] C. Ma and K. Jin, “Design strategy for ferroelectric-based polar metals with
dimensionality-tunable electronic states,” Science China Physics, Mechanics
& Astronomy 61, 97011 (2018).

[30] S. Yip, “Noncentrosymmetric superconductors,” Annu. Rev. Condens. Mat.
Phys. 5, 15–33 (2014).

[31] E. Bauer and M. Sigrist, Non-centrosymmetric superconductors: introduction and
overview, Vol. 847 (Springer Science & Business Media, 2012).

[32] C.-K. Lu and S. Yip, “Spin current in topologically trivial and nontrivial
noncentrosymmetric superconductors,” Phys. Rev. B 82, 104501 (2010).

[33] N. A. Benedek and T. Birol, “Ferroelectric metals reexamined: fundamental
mechanisms and design considerations for new materials,” J. Mat. Chem. C
4, 4000–4015 (2016).

[34] S. Bhowal and N. A. Spaldin, “Polar metals: principles and prospects,” Annu.
Rev. Mater. Res. 53, 53–79 (2023).

https://doi.org/10.1103/PhysRevB.100.054408
https://doi.org/10.1103/PhysRevB.75.161101
https://doi.org/10.1103/PhysRevB.86.104305
https://doi.org/10.1103/PhysRevMaterials.3.064405
https://doi.org/10.1103/PhysRevMaterials.1.014401
https://doi.org/10.1103/PhysRevB.103.214301
https://iopscience.iop.org/article/10.1088/1361-665X/26/3/035050
https://pubs.aip.org/aip/apl/article/111/8/082904/35113/A-curved-resonant-flexoelectric-actuator
https://doi.org/10.1103/PhysRevLett.14.217
https://doi.org/10.1038/nmat3754
https://engine.scichina.com/publisher/scp/journal/SCPMA/61/9/10.1007/s11433-018-9245-4?slug=fulltext
https://engine.scichina.com/publisher/scp/journal/SCPMA/61/9/10.1007/s11433-018-9245-4?slug=fulltext
https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-031113-133912
https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-031113-133912
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.104501
https://pubs.rsc.org/en/content/articlelanding/2016/tc/c5tc03856a#!divAbstract
https://pubs.rsc.org/en/content/articlelanding/2016/tc/c5tc03856a#!divAbstract
https://doi.org/https://doi.org/10.1146/annurev-matsci-080921-105501
https://doi.org/https://doi.org/10.1146/annurev-matsci-080921-105501


bibliography 145

[35] W. X. Zhou and A. Ariando, “Review on ferroelectric/polar metals,” JJAP
59, SI0802 (2020).

[36] Z. Fei, W. Zhao, T. A. Palomaki, B. Sun, M. K. Miller, Z. Zhao, J. Yan, X. Xu,
and D. H. Cobden, “Ferroelectric switching of a two-dimensional metal,”
Nature 560, 336–339 (2018).

[37] H. Lu, C.-W. Bark, D. E. de los Ojos, J. Alcala, C. B. Eom, G. Catalan, and
A. Gruverman, “Mechanical writing of ferroelectric polarization,” Science
336, 59–61 (2012).
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