
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/?lang=ca

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de
uso establecidas por la siguiente licencia Creative Commons: https://creativecommons.org/licenses/?
lang=es

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Layer 2 Protocols in Bitcoin

Luis Esteban Oleas-Chávez

September, 2024
Version: Final

Departament d’Enginyeria de la Informació i de les Comunicacions
Universitat Autònoma de Barcelona

Línia de recerca: Codificació, Compressió i Seguretat

Layer 2 Protocols in Bitcoin

PhD in Computer Science

Luis Esteban Oleas-Chávez

A dissertation submitted to the Universitat Autònoma de
Barcelona in accordance with the requirements of the degree of

DOCTOR OF PHILOSOPHY in Computer Science.

Supervisors: Dr. Jordi Herrera-Joancomartí
Department of Information and Communications Engineering
Universitat Autònoma de Barcelona

Dr. Cristina Pérez-Solà
Department of Information and Communications Engineering
Universitat Autònoma de Barcelona

September, 2024

Departament d’Enginyeria de la Informació i de les Comunicacions

Layer 2 Protocols in Bitcoin

Luis Esteban Oleas-Chávez

Supervisors: Dr. Jordi Herrera-Joancomartí and Dr. Cristina Pérez-Solà

September, 2024

SUBMITTED TO UNIVERSITAT AUTÒNOMA DE BARCELONA IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Committee:
Dr. Jordi Castellà Roca
Dr. Guillermo Navarro Arribas
Dr. Magdalena Payeras Capellà
Dr. Carles Garrigues Olivella (Substitute)
Dr. Helena Rifà Pous (Substitute)

Supervisors:
Dr. Jordi Herrera-Joancomartí
Dr. Cristina Pérez-Solà

LATEXstyle:
http://cleanthesis.der-ric.de/.

Creative Commons by Luis Esteban Oleas-Chávez
This work is licensed under a Creative Commons

Atributtion-NonCommercial-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-nc-sa/4.0/

http://cleanthesis.der-ric.de/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Declaration

We certify that we have read this thesis entitled "Layer 2 Protocols in Bitcoin" and
that in our opinion it is fully adequate, in scope and in quality, as a dissertation for
the degree of Doctor of Philosophy.

Cerdanyola del Vallès, September, 2024

Dr. Jordi Herrera-Joancomartí
(Advisor)

Dr. Cristina Pérez-Solà
(Advisor)

Committee:
Dr. Jordi Castellà Roca
Dr. Guillermo Navarro Arribas
Dr. Magdalena Payeras Capellà
Dr. Carles Garrigues Olivella (Substitute)
Dr. Helena Rifà Pous (Substitute)

Program: PhD in Computer Science
Department: Departament d’Enginyeria de la Informació i de les

Comunicacions

Abstract

As a decentralized cryptocurrency, Bitcoin builds on the blockchain by distributing the
ledger among peers to share a global awareness of transactions made on the network
without relying on intermediaries. However, the recording of transactions on the
blockchain lacks dynamism and is far from the speed offered by well-established
commercial payment systems such as Visa and Paypal.

Due to the discouragement of adopting Bitcoin as a payment method, a novel
parallel payment network, referred to as the Lightning Network (LN) for Bitcoin,
burst onto the scene to boost on-chain transactionality by making off-chain payment
transactions fast and scalable. LN therefore overcomes the hurdles of scalability and
dynamic financial processing, as well as lessening the burden on the Bitcoin network
chain.

Transitioning this restricted Bitcoin network into a viable payment method
depends on how LN compares to traditional payment systems. We aim to analyze LN
and propose improvements on two fronts. First, we provide an analytical approach
to define the value of some contract parameters. Finally, we determine alternative
metrics to evaluate the centrality of this peer-to-peer network (P2P).

Thus, to provide an improvement to LN, we evaluated the impact of adjusting the
contract parameters used in multi-hop payments into the security and performance
of the network. Also, we proposed a graph-based model for the LN, and a set of
centrality metrics to measure node centrality within this model. Hence, the main
goal behind this research is to enhance the reliability of well-established protocols
deployed on the LN.

vii

Resumen

Como criptomoneda descentralizada, Bitcoin se basa en la cadena de bloques al
distribuir el libro de contabilidad entre pares para compartir un conocimiento
global de las transacciones realizadas en la red sin depender de intermediarios. Sin
embargo, el registro de las transacciones en blockchain carece de dinamismo y está
lejos de la velocidad que ofrecen los sistemas de pago comerciales consolidados
como Visa y Paypal.

Debido al desaliento de adoptar Bitcoin como método de pago, una novedosa red
de pagos paralelos, conocida como Lightning Network (LN) para Bitcoin, irrumpió
en escena para impulsar la transaccionalidad dentro de la cadena al hacer que las
transacciones de pago fuera de la cadena sean rápidas y escalables. Por lo tanto, LN
supera los obstáculos de la escalabilidad y el procesamiento financiero dinámico,
además de reducir la carga sobre la cadena de la red Bitcoin.

La transición de esta red Bitcoin restringida a un método de pago viable depende
de cómo se compara LN con los sistemas de pago tradicionales. Nuestro objetivo es
analizar LN y proponer mejoras en dos frentes. Primero, proporcionamos un enfoque
analítico para definir el valor de algunos parámetros del contrato. Finalmente,
determinamos métricas alternativas para evaluar la centralidad de esta red peer-to-
peer (P2P).

Por lo tanto, para brindar una mejora a LN, evaluamos el impacto de ajustar los
parámetros del contrato utilizados en pagos de múltiples saltos en la seguridad y
el rendimiento de la red. Además, propusimos un modelo basado en gráficos para
LN y un conjunto de métricas de centralidad para medir la centralidad de los nodos
dentro de este modelo. Por lo tanto, el objetivo principal de esta investigación es
mejorar la confiabilidad de protocolos bien establecidos implementados en la LN.

viii

Resum

Bitcoin és una criptomoneda descentralitzada que basa el seu funcionament en
la utilització d’una cadena de blocs que distribueix, entre tots els participants del
sistema, el llibre comptable on hi figuren totes les transaccions realitzades a la xarxa.
L’interès principal d’aquest sistema és que permet el manteniment d’aquest registre
de transaccions sense dependre d’intermediaris. No obstant això, l’enregistrament
de les transaccions en la cadena de blocs no ofereix el dinamisme esperat i està lluny
de la velocitat que ofereixen sistemes de pagament comercials consolidats, com ara
Visa o Paypal.

Aquetes mancances indicades fan que l’adopció de Bitcoin com a mètode de
pagament sigui poc viable i, per aquest motiu, s’ha desenvolupat una xarxa de paga-
ment de nivell superior, anomenada Lightning Network (LN) que permet augmentar
el volum de transaccions que el sistema pot gestionar fent transaccions de pagament
fora de la cadena, oferint una opció ràpida i dinàmica i, per tant, superant així els
obstacles d’escalabilitat de la xarxa Bitcoin.

En aquest treball pretenem analitzar la LN i proposar millores en dos fronts. En
primer lloc, oferim un enfocament analític per definir el valor d’alguns paràmetres
del sistema. Finalment, determinem mètriques alternatives per avaluar la centralitat
de la xarxa de pagaments que forma la LN.

Així, per oferir una millora a la LN, avaluem l’impacte d’ajustar els paràmetres
dels nodes de la LN utilitzats en els pagaments multi-salt en la seguretat i el rendi-
ment de la xarxa. A més, proposem un modelat de la LN basat en teoria de grafs que
permet definir un conjunt de mètriques de centralitat per determinar la centralitat
dels nodes de la xarxa dins d’aquest model. Aquestes mesures permeten establir el
grau de centralització dels diferents nodes i de la LN en el seu conjunt.

ix

Acknowledgement

Another professional and personal stage in my life has to come to an end that could
not have been possible without the help and support of many people. I want to take
a moment to thank each of them for their help and advice.

First, I would like to thank my advisor, Dr. Jordi Herrera-Joancomartí, for
allowing me to research with him and for his mentoring and support. Furthermore,
thanks for his guidance in overcoming the struggles during this student phase.
Also, I would like to thank my co-advisor, Dr. Cristina Pérez-Solà, for her wisdom
in addressing me in the right direction when I lost track of my research and her
patience in explaining concepts or ideas that got me off guard. Special thanks to the
Ph.D. follow-up committee for the advice given after each follow-up presentation.
Also, their opinions and points of view on the progress reports submitted gave me
the confidence to continue my work.

Finally, a warm thank you to my family, to my parents LuisO and SusanaO

for being the source of who I am today, their dedication and hard work are the
foundation of my determination to achieve my goals, as well as to my sisters María
Luisa y Diana for their words of support and encouragement. Above all, I want to
thank the love of my life, my wife Jacky, who has been my companion, my friend,
my inspiration, and my strength along this journey, which, together with my sweet
LizzyO, are my world.

xi

List of Figures

2.1 Channel Lifecycle diagram . 20
2.2 Channel opening diagram . 22
2.3 Channel closing diagram . 22
2.4 Direct channel payment . 24
2.5 Multi-hop payment . 30
2.6 Node Policies in a Payment Channel . 30

5.1 Performance of the payment for different pairs of pδ, Tmaxq [162]. . . . 73

6.1 The LN data model . 81
6.2 A basic star graph . 82
6.3 A weighted double star graph . 84
6.4 Example of two identically weighted and strength nodes. 86
6.5 A directed double star graph. 88
6.6 Connection between nodes pairs, channels, and the capacity of those

channels [163]. 97
6.7 Number of channels connecting each nodes pairs [163]. 98
6.8 CDF of CDpviq Node degree [163]. 101
6.9 CDF of: Cw

Dpviq strength, Cw
D´pviq incoming and Cw

D`pviq outgoing
strength for the 1st and 2nd simulations [163]. 102

6.10 CDF of: Cwα
D pviq Opsahl, Cwα

D´pviq incoming and Cwα
D`pviq outgoing

Opsahl for the 1st and 2nd simulations [163]. 102
6.11 CDF of: CBpvq betweenness, Cw

Bpvq fee- and Cw
Bpvqc capacity-weighted

betweenness, and CCF pvq current flow betweenness for the 1st and 2nd

simulations [163]. 103
6.12 CDF of: CCpviq closeness and Cw

C pvq weighted closeness for the 1st and
2nd simulations [163]. 104

6.13 1st and 2nd simulations’ metric correlations similarity [163]. 108
6.14 Metrics’ correlation over a two-year period from Oct. 2018 to Nov. 2020

[163]. 109

xiii

List of Tables

2.1 Node description . 15
2.2 Key-Value Pairs of Query Semantics in Node Discovery 17
2.3 Channel description . 20
2.4 Parameters in the channel’s policies . 24

4.1 Measurements on LN graphs . 48

5.1 δ and Tmax values found in the most popular LN clients [162]. 71
5.2 Attack metrics results for different tested parameters with a normal

distribution balance [162]. 74

6.1 An overview of the model’s definition [163]. 79
6.2 Centrality measures for a double-star network with weights [163] (Fig-

ure 6.3). 84
6.3 Centrality metrics for graph of two identically weighted and strength

nodes[163] (Figure 6.4). 87
6.4 Metrics of Centrality for a directed network with weights [163] (Fig-

ure 6.5). 88
6.5 Weighted double-star graph’s centrality based on Flow [163] (Figure 6.3). 90
6.6 Weighted double-star graph’s centrality based on Current Flow [163]

(Figure 6.3). 92
6.7 An overview of the proposed measurements for centrality [163]. 94
6.8 Monthly snapshots between Oct. 2018 and Nov. 2020 [163]. 96
6.9 Parameters for the simulations [163] 99
6.10 Betweenness Centrality for 1st and 2nd Simulations [163]. 104
6.11 Closeness Centrality for 1st and 2nd Simulations [163]. 105
6.12 Comparison of the 1st and 2nd simulations’ degrees, Opsahl, and strengths

metrics [163]. 106
6.13 Betweenness Metrics Comparison between the 1st and 2nd simulations

[163]. 107
6.14 Closeness Metrics Comparison between the 1st and 2nd simulations [163].107

xv

Contents

Abstract vii

Acknowledgement xi

List of Figures xiii

List of Tables xv

I Preliminaries 1

1 Introduction 3
1.1 Introduction . 3
1.2 Research Objectives . 4
1.3 List of Contributions . 4
1.4 List of Publications . 5
1.5 Thesis Structure . 5

2 Bitcoin and Lightning Network 7
2.1 Bitcoin . 7

2.1.1 Scripting language . 8
2.1.2 Scalability Problems . 11

2.2 Lightning Network . 12
2.2.1 LN Nodes . 13
2.2.2 LN P2P network . 16
2.2.3 LN Channels . 18
2.2.4 LN Channel Lifecycle . 19
2.2.5 LN Payments . 23
2.2.6 LN multi-hop payment . 28
2.2.7 LN Channel parameters and policies 30

3 Layer 2 Protocols Categories and Subcategories 33
3.1 Layer-2 Protocols Categories & Subcategories 34

3.1.1 Cross-chains . 34
3.1.2 Side/child chains . 35
3.1.3 Hybrid solutions . 36
3.1.4 Channel solutions . 37

xvii

4 State of the Art 39
4.1 Attacks over the LN . 39
4.2 Performance of the LN . 43
4.3 Node importance metrics for the LN 46
4.4 Routing protocols . 50

4.4.1 Flare . 51
4.4.2 SilentWhisphers . 53
4.4.3 SpeedyMurmurs . 55
4.4.4 Spider . 57
4.4.5 Flash . 57
4.4.6 Ant . 59

II Contributions 63

5 LN Contract Parameters Selection 65
5.1 Multi-hop Route Parameters . 65

5.1.1 Time-lock parameters . 65
5.1.2 Limit parameters . 66
5.1.3 Fees related parameters . 67

5.2 Metrics . 67
5.2.1 Performance . 67
5.2.2 Security . 68

5.3 Experiment Setup . 69
5.3.1 LN Payment Channel Graph and Balances 70
5.3.2 δ and Tmax Values . 71

5.4 Experiment results . 71
5.4.1 Performance . 72
5.4.2 Security . 73

5.5 Analysis of LN Contract Parameters Selection 75
5.6 Conclusions . 75

6 Node centrality 77
6.1 A model for the Bitcoin LN . 78
6.2 A discussion on classic centrality metrics applied to LN nodes 81

6.2.1 Symmetric graphs . 82
6.2.2 Symmetric weighted graphs (capacity) 83
6.2.3 Directed weighted graphs (balance) 87
6.2.4 Symmetric weighted graphs (fee) 88
6.2.5 Flow based centrality metrics 89

I Flow networks . 89
II Betweenness centrality based on flow 90
III Betweenness centrality based on current flow 91

6.3 Connectivity in the scope of a payment network 92

xviii

6.4 Proposed centrality measures in the scope of LN 93
6.5 Measuring the LN . 95

6.5.1 Snapshots, dataset and the Network 96
6.5.2 The effects of restrictions on centrality 98

I Degree-based . 100
II Path-based . 102

6.5.3 Relevance of nodes according to Centrality 105
I Degree-based . 105
II Path-based . 106

6.6 Analysis of LN Node Centrality . 107
6.7 Conclusions . 110

III Conclusions and Future Work 113

7 Conclusions and Future Work 115
7.1 Conclusions . 115
7.2 Future Work . 118

Bibliography 119

xix

Part I

Preliminaries

1Introduction

„Before software should be reusable, it should be
usable.

— Ralph Johnson
(Computer Scientist, UIUC)

1.1 Introduction

T he launch of Bitcoin in 2008 led to the rise of the Lightning Network (LN)
more than a decade later to ease the burden on its blockchain. A transition was

crucial since, shortly, the general acceptance of Bitcoin as a payment method could
be affected by its efficiency [1, 2, 3]. In Bitcoin, a group of transactions, a nonce,
and the hash of a preceding block define a block. The maximum size for each block
is 1 MB [4], which causes Bitcoin to suffer scalability problems since around seven
transactions per second (tps) can be allocated with this block size [5]. Furthermore,
Bitcoin’s transaction processing performance is quite poor, since block generation
takes roughly 10 minutes [6].

Transaction fees are part of the Bitcoin system to incentivize block confirmation.
Higher fee transactions are more likely to be included in a block for mining compared
to those with lower or no fees that may be delayed or not processed. This confirma-
tion process introduces competitiveness in the system, where miners try to include
those transactions with higher fees. However, before submitting a transaction, a user
must specify the transaction fee, which could result in overspending with high fees
or long confirmation times with low fees. To outbid other Bitcoin users who pay
lower fees when traffic is heavy, users frequently bid up the transaction fees.

A drawback for which Bitcoin is known is its slow transaction throughput [7].
Payments in Bitcoin take a random time until they are confirmed, that is, from when
a block is generated until it is added to the blockchain. This randomness comes from
the limited block size, the fluctuation in block solve timing, and the free selection of
unconfirmed transactions by the miners [8]. It results in not knowing how long it
takes to confirm a transaction. To address these drawbacks, LN emerged as a feasible

3

alternative in which its deployment as a secondary layer compromises neither the
decentralized network nor security nor privacy. Therefore, LN can be deployed as a
side-kick network without interfering with the normal operation of cryptocurrencies,
as in the case of Bitcoin.

Notwithstanding, LN has some drawbacks such as payment reliability, centrality,
and routing [9], privacy [10], skewness [11] and overload [12] issues, to name
a few. This thesis aims to improve the security and performance of the already
established LN and raise awareness about the centrality of the network. Our efforts
aim to determine how the structure of such a network is shaped to ensure it is
a reliable payment method. Similarly, in this thesis, we propose new metrics to
measure the centrality of LN. By analyzing node centrality, we can determine if a
network is decentralized or controlled by a handful of users and how resilient it is
to different attacks. Also, we provide a guide on how to select the values of the LN
client parameters.

1.2 Research Objectives

Since there is a desire to increase trust in LN as a payment method, this thesis aims
to improve its perception of security and performance. As well as give insights on
how to comprehend the centrality of this parallel payment network. We propose the
following objectives to achieve our main goal:

• To understand the structure of LN and the functionality of its payment method.

• To assess the impact of adjusting LN contract parameters in terms of security
and performance.

• To outline, model and analyze the metrics that best define the centrality of LN.

1.3 List of Contributions

This thesis provides the following contributions:

• The definition of a set of metrics for assessing the performance and security of
the Lightning Network.

4 Chapter 1 Introduction

• The application of the above mentioned metrics to analyze the performance and
security of the Lightning Network with respect to different client configuration
parameters.

• The proposal of optimal configuration parameters taking into account both
security and performance.

• The definition of a graph-based model for representing the Lightning Network.

• The proposal of metrics to measure node centrality in the Lightning Network
using the previously defined model.

• The evaluation of node centrality over real Lightning Network snapshots.

1.4 List of Publications

The publications produced by this thesis are listed below:

• Oleas-Chávez Luis Esteban, Pérez-Solà Cristina, and Herrera-Joancomartí Jordi.
"On the Selection of the LN Client Implementation Parameters." In Data Privacy
Management, Cryptocurrencies and Blockchain Technology: ESORICS 2020
International Workshops, DPM 2020 and CBT 2020, Guildford, UK, September
17–18, 2020, Revised Selected Papers 15, pp. 305-318. Springer International
Publishing, 2020.

• Oleas-Chávez Luis Esteban, Pérez-Solà Cristina, and Herrera-Joancomartí Jordi.
"Apples and Oranges: On How to Measure Node Centrality in Payment Channel
Networks." IEEE Access 10 (2022): 55469-55487.

1.5 Thesis Structure

The structure of the rest of this thesis is as follows:

The thesis is split into three main sections, a preliminary one (Chapters 2, 3 and
4) introduces the preliminary concepts and definitions on which this thesis is based
in terms of Bitcoin and LN, as well as a slight review of the state of the art on these
topics.

1.4 List of Publications 5

Subsequently, a contributions section (Chapters 5 and 6) provides some analysis
on LN related to multi-hop payment channels and network topology. Chapter 5
describes scenarios with different parameters of the contracts to evaluate the impact
of these parameters of the network in terms of performance and security. Afterwards,
Chapter 6 presents a different perspective to evaluate the centrality in LN using
classical and alternative centrality metrics and network properties. The last section,
Chapter 7 presents the conclusions of the thesis and discusses the future work.

6 Chapter 1 Introduction

2Bitcoin and Lightning Network

„Computer science empowers students to create
the world of tomorrow.

— Satya Nadella
(CEO of Microsoft)

T his chapter outlines the basic definitions of the main topics, specifically Bitcoin
and LN, in which this research fits into the remainder of this thesis. First, we

will present a brief overview of Bitcoin and its scalability problem, given its limited
capacity to handle a large number of transactions. Afterward, we will delve into the
most relevant aspects of LN, such as nodes, channels, and policies, to name a few.

2.1 Bitcoin

Bitcoin, introduced in 2009, was the first decentralized cryptocurrency [13] as an
open-source project made by an individual using the alias Satoshi Nakamoto. Bitcoin
records transfer history on a blockchain, an append-only data structure composed
of a chain of blocks. Users of the system share this data structure that resembles a
ledger, in which each entry is a transaction that tracks the transfer value between
users.

Bitcoin relies on its complete detachment from third parties, for instance, finan-
cial institutions, to make online payments. Also, it solves the dilemma of trusting a
central authority by publicly announcing transactions where the participants agree
on the order history of transactions received. Based on cryptographic proof, the
Bitcoin payment system allows users to make payments directly through a network
without a trusted party. This payment system is helpful when entirely irreversible
transactions are needed, a feature that standard payment do not offer.

Irreversible transactions would protect both sellers from fraud as well as buyers
through routinely implemented escrow mechanisms. This P2P network, in which
Bitcoin settles its implementation, solves the double-spending problem where the
same coin is paid simultaneously twice or more. The timestamp of transactions

7

solves such a problem by converting transactions into a continuous hash-based Proof-
Of-Work (POW) chain. The only way to change the record formed in this process
is by redoing the POW, which consists of miners solving a very computationally
intensive puzzle that costs them money in the form of high consumption of energy
and computational resources.

Bitcoin overcomes the consensus problem when reaching an agreement on a
decentralized network using POW. Such achieved consensus in the system, even
with potentially malicious participants, allows solving the double-spending problem.
A transaction happens when an owner transfers the digital signature of the previous
transaction hash with the subsequent owner’s public key and adds it to the coin’s tail.
Therefore, a chain of digital signatures forms a coin. Similarly, to validate the chain
of ownership, the payee may check the signatures; however, it cannot prove that the
payer did not double-spend the coin. The confirmation of a transaction occurs after
its inclusion in the blockchain inside a block created in a mining process performed
by miners.

As long as the number of trusted nodes outnumbers any group of nodes that
attack cooperatively, the system is secure overall. Thus, Bitcoin will become more
ubiquitous due to its ability to enforce immutability on a sequentially ordered
append-only ledger [14].

2.1.1 Scripting language

Within the Bitcoin system, the Bitcoin scripting language, known as SCRIPT, is a
loop-free, non-Turing-complete, stack-based language [15] that enables users to
build personalized Bitcoin transactions and smart contracts. Since the stack is the
foundation of the language, it has no conditional statements or variables. The
execution of operations is carried out exactly once, linearly following the Last In First
Out (LIFO) scheme [16] without taking backward leaps. It is a non-Turing complete
script because it is not feasible to compute arbitrarily powerful functions and lacks
loops and conditional statements. Based solely on the number of instructions in the
script, it can help to estimate the processing time. Also, the scripts that users submit
in the transactions must be executed directly by the miners. Users cannot submit
scripts that could run indefinitely or in an infinite loop. Depending on the number
of instructions it contains, the Bitcoin script will always execute in a finite number
of steps. The script length after the instruction pointer sets the upper constraint on
execution time. For nodes validating blocks, this constraint protects against denial
of service attacks [17].

8 Chapter 2 Bitcoin and Lightning Network

The Bitcoin script language also allows the definition of smart contracts modeled
as stateless cryptographic protocols [18]. The script serves various purposes, includ-
ing enabling the validation of transactions, implementing sophisticated protocols
and decentralized applications, and offering additional functionality to blockchain
scripts [19, 20]. Instead of simply transferring funds from one address to another,
the script allows users to set restrictions on how the funds may be used, enabling
more intricate and adaptable transactions. Users can set up more complex payment
channels, time-locked transactions, and multi-signature wallets with Bitcoin scripts.
Due to its stringent design principles, the script offers a high level of security, yet it is
relatively easy compared to other smart contract systems such as Ethereum. Formal
verification of critical scripts is necessary to validate financial transactions. In that
sense, the validation scheme consists of two scripts [21]. The former is an input
script that provides data and credentials that authorize the transaction. The latter
is an output script, the composition of which serves both to establish the validation
system and to verify that the data supplied enables the transaction. The following
are the primary properties of the Bitcoin programming language:

• All Bitcoin scripts are limited to two possible results. It may yield an error,
or it may run successfully. In the transaction validation process, the entire
transaction will be deemed invalid and should not be approved into the
blockchain if there is any error during the script’s execution.

• Since a single byte represents each instruction, the Bitcoin scripting language
is incredibly compact, with just 256 instructions possible. As of right now, 75
of them are reserved, and 15 are disabled; hence, they are meaningless and
may be assigned at a later time.

• The instructions that manage basic logic and arithmetic, error-throwing, and
cryptography management, such as signature verification and hash functions,
are all included in the Bitcoin scripting language.

As part of the script, it has two different instructions: the first is data instructions,
which contains some value, such as the sender’s signature or the public key that
generated that signature, surrounded by angular brackets. The other is operational
codes (OP_CODE) with specific operations such as signature validation, hash func-
tions, and transaction validation, to name a few. OP_CODEs modify the value on
the stack when pushing data or performing tasks within a pubkey script or signature
script, as well as add their outcome there. The set of OP_CODE controls the
behavior of the transactions in this stack-based language. Based on OP_CODE

functionality, they are classified into numerous groups:

2.1 Bitcoin 9

• Arithmetic: User can execute mathematical operations as is multiplication
with OP_MUL opcode.

• Cryptography: These opcodes can be used by users to apply cryptographic
instructions to the target data. One such is OP_HASH256, a set of instructions
that uses the cryptographic technique SHA-256 to hash the input twice to
increase security.

• Data manipulation: The manipulation parameters for the given data can be
specified using these opcodes. OP_NUM2BIN , which transforms a numeric
number into a predefined-length byte sequence, illustrates manipulation.

• Flow Control: These opcodes are useful to ascertain the script’s flow. For
instance, OP_V ERIFY flags a transaction as invalid when the top stack is
false.

• Bitwise logic: This collection of opcodes is useful when a command that
executes in response to predefined input data is required. OP_INV ERT is
one example, which flips every bit in an input.

• Constants: This class of opcodes allows one to put a given amount of data
into the stack. One such is OP_1NEGATE, which pushes the number -1 into
the stack by executing a command.

• Stack: Users use this opcode to rearrange objects on the stack as they see fit.
As one example OP_2DROP eliminates the top two stack elements.

The main advantage of the script is its simple and non-Turing complete design
that simplifies the validation process of closed scripts linked to transactions. However,
it also suffers from disadvantages, as with the simplicity of the script. Its drawback
is that some script flaws might lead to the loss of bitcoins. This flaw has been
systematically investigated and found to exist in various forms [22]. Despite their
initial lack of Turing completeness, it has also been proved that Bitcoin scripts can
achieve it with certain limitations. Taking this into account, it could make it possible
to add more intricate applications and protocols on top of Bitcoin transactions [23,
19]. Formal verification tools such as ScriFy have been created to improve the
security and accuracy of Bitcoin scripts. These tools offer a framework for validating
script programs and reducing language-related risks [23].

To prevent the creation of scripts that deviate from the ones deemed con-
ventional, several restrictions have been put in place in practice. Some of these
restrictions are: i) a 512 byte restriction per element and 10,000 byte limit per script

10 Chapter 2 Bitcoin and Lightning Network

on the length of the scripts [24] ii) a large number of disabled opcodes [25] iii) a
block size restriction, currently set at around 1MB [26] iv) restriction on the maxi-
mum number of opcodes, which is 201 for the majority of them [27]. Nevertheless,
it seems that the stack size is not restricted, which is technically irrelevant. The
reason is that it is implicitly constrained by the script length limitation [17].

2.1.2 Scalability Problems

Today, transactions carried out by consumers require agile payment methods that
must be effective in a fraction of the time. Although Bitcoin relies on the broadcast
of each transaction between peers, eventually, this mechanism could limit financial
processing. It may ultimately decrease its acceptance as a reliable payment method
in global commerce. This drawback becomes more evident when all nodes in the
network are aware of every global transaction.

When comparing Bitcoin to the Visa payment system, the difference in payment
processing is quite substantial. Visa [28] at its peak can handle 65,000 transactions
per second (tps) and, on average, 24,000 tps, which is about 150 million transactions
each day. Instead, the Bitcoin financial processing problem becomes more acute
because size and frequency restrain the extensive use of blocks (records that contain
the transaction) as a payment method. On average, it takes 10 minutes to confirm
each new transaction. Moreover, the confirmation processing limits transactionality
by increasing fees and slowing down its normal handling. This process is estimated
at 3.3 and 7 tps [7] with a one-megabyte block limit.

As a comparison of transactional capacity, it would take about 11 gigabytes
per bitcoin block approximately every ten minutes, with unlimited block sizes and
300 bytes per bitcoin transaction on average, to match the maximum transaction
volume for Visa of around 65,000 tps. This transactionality represents more than
600 terabytes of data per year. Based on this comparison, most Bitcoin network
participants would not be able to store the whole blockchain or even operate with
adequate bandwidth. If the acceptance of this payment system were global, it could
result in a centralized network with only the nodes and miners who can afford it, or
it would crash the network in the worst case.

Therefore, as of today, the Bitcoin network would not surpass the transaction-
ality of Visa and PayPal. Especially in the case of miner centralization, where few
validators could guarantee the accuracy of the ledger, and there would be few partic-
ipants validating the blockchain as a result of the mining process.

2.1 Bitcoin 11

2.2 Lightning Network

For Bitcoin to reach a higher number of transactions per second than Visa, transaction
processing must occur outside the blockchain. In that sense, LN is a second-layer
protocol for Bitcoin designed to route micropayments between parties via peer-
to-peer two-way payment channels. The LN protocol, which facilitates faster and
more cost-effective transactions outside the blockchain, aims to alleviate Bitcoin
congestion and enhance scalability [29, 30]. To achieve such properties, LN functions
by enabling users to establish direct payment channels with one another, allowing
for fast and secure transactions with reduced fees [31]. Therefore, the main goal of
LN, proposed by Joseph Poon and Thaddeus Dryja, is to solve throughput, costs, and
slow transaction time of Bitcoin[5].

Some of the main advantages that LN offers are scalability, low energy require-
ments, support for micropayment, and speed. The Bitcoin blockchain scalability
issues stem from block size limitations, which LN solves by processing off-chain
transactions securely and privately. Similarly, LN reduces nodes’ energy usage by tak-
ing transactions off-chain, supporting sustainability by reducing the energy needed
for transactions compared to Bitcoin network operations. Furthermore, LN enables
fast micropayments, with transaction outputs over 100 times lower than Bitcoin.
Efficient transaction processing is crucial to the viability of LN, as a lack thereof may
cause blockchain to lose market share. Lastly, transactions on LN are faster and more
efficient thanks to the payment channel, which is a two-party consensus mechanism.
This property makes LN a crucial component of the Bitcoin ecosystem.

The main LN properties are instant payment, low cost, and cross-blockchains.
Blockchain smart contracts enable secure, lightning-fast payments without requiring
on-blockchain transactions or being concerned about the confirmation times of
blocks. This property allows instantaneous payment, with its speed expressed in
seconds or milliseconds. Due to LN transacts and settles off-blockchain, it enables
low fees. LN could handle atomic swaps to allow instant off-chain transactions
between blockchains with various consensus rules. So, they should use the same
cryptographic hash function for trustless custody to avoid third-party custodians.
Due to these properties and advantages, LN is now among the most important
representatives of Payment Channel Networks (PCN) compared with networks such
as Liquidity, Stacks, RootStock (RSK), and ChainX, to name a few. Although its
growth halted unexpectedly on November 28, 2022, due to Bitcoin’s depreciation
by 57.794% and a decline in the number of nodes and channels, it is still growing
steadily.

12 Chapter 2 Bitcoin and Lightning Network

Although LN adds a crucial component in improving the capabilities of the
Bitcoin network, it has its drawbacks. LN provides efficient transactions once
payment channels are established, but the setup process is complex. Users must
transfer funds to LN and lock them in a channel, which incurs high costs. Funds
locked in a channel are still at risk during transactions, as they may get stuck due to
technical issues or be taken by a counterparty if the user goes offline. Watchtowers
and LN service providers mitigate these offline risks, but they introduce a vector
of centralization into the network. In that regard, LN could mirror the hub-and-
spoke model of traditional financial systems, where banks and institutions act as
intermediaries. This issue concerns fraud, fees, hacks, and price volatility among
businesses investing in LN nodes. A more functional limitation of LN is that payment
channels are not seamless, as they are only between two parties.

2.2.1 LN Nodes

Although LN is a relatively new solution, its growth is constant [32] due to users that
embrace this scaling technology seamlessly. LN offers its users cheaper and faster
transactionality, compared to bitcoin fees that increase as the price increases. As of
today, there are 16,370 nodes [33] connected to LN with an average node capacity
of B0.2839, worth some $7,374.18. Under the structure of layer-2 networks, LN
runs on top of Bitcoin and is composed of a set of nodes and payment channels that
ensure that LN remains decentralized and secure. LN nodes represent users that
connect through payment channels by running a node implementation to carry out
instant payments. For that, LN uses source routing and offers gossiping and route
discovery mechanisms to help nodes locate routes with minimal fees.

When new nodes join the P2P network, they connect to existing nodes after
the initial bootstrapping mechanism1. Once a node obtains the addresses of some
nodes in the LN, it can open a channel that establishes a direct network connection.
Through the open channel, the node can send, receive, or forward payments to other
directly or indirectly connected nodes, generate payment invoices, to name a few,
and then close them when necessary. Nodes that are not directly connected to the
sender can use several hops to send payments to a recipient node. Fees are collected
by nodes aiding in forwarding payments. The confidentiality given to Lightning
nodes is through the encryption of the communication between nodes. Likewise, to
increase security, nodes must authenticate to avoid malicious intrusion. A public
key serves as an identifier that allows the protocol to establish an encrypted and
authenticated connection between peers to route payments through the network
securely. The nodes use onion routing, a cryptographic technique that protects
the identity of the payer and payee, to guarantee the privacy and security of the

1Mechanism to let nodes without contacts discover them as an initial process

2.2 Lightning Network 13

transactions. Table 2.1 provides a brief description of the node with its features and
fields:

The nodes connect between them by any implementation: LND (Lightning
Network Daemon) [34], C-Lightning [35], and Eclair [36], each with different
programming languages and parameter values. The specification of each imple-
mentation dictates which values are public and which are accessible through gossip
messages. For network security reasons, others are kept private. Because of these
public values, it is possible to discover which implementation a user uses, since users
maintain the default configuration of nodes and channels [37]. LND is the most
popular client on the LN, with approximately 87% of the nodes classified as being
predominant in most countries. Instead, C-Lightning and Eclair have lower usage
than LND, with approximately 11% and 2% of the nodes, respectively. Above all,
regardless of the LN implementation, the nodes try to join large hubs.

Developed by Lightning Labs, LND is a feature-rich, robust back-end software
implementation of the LN protocol written in Go. It allows users to create, man-
age, and route payments through LN channels. LND enables users to set up their
nodes as transaction intermediaries, providing a secure, scalable infrastructure for
participating in this network ecosystem with privacy and transaction integrity. Eclair,
a Scala-based LN implementation, provides a feature-rich HTTP API for easy in-
tegration by application developers. Defaultly configured for mainnet, Eclair can
also run on testnet or regtest/signet. Core Lightning, previously C-lightning, is a
C++-based implementation of the LN protocol that is lightweight, customizable,
and standard-compliant. It requires a fully connected bitcoind to relay transactions
on the network. As recommended in [38], users seeking paths with low maximum
latencies should use C-Lightning. Those users seeking shorter paths with high success
rates should use LND. Finally, those users seeking low-cost paths regarding fees paid
to intermediary nodes that forward payments might use Eclair.

As pointed out in [39, 37], at least 81 countries have at least one LN node,
of which the United Kingdom, United States, Germany, Canada, and France are
the most relevant countries with the most nodes. However, France has the highest
channel capacity among its nodes, even though the United States has the most
open channels and has the highest total channel capacity. Moreover, most of the
node population is in North America at 44.8%, Europe at 43.1%, and Asia at 6.2%.
Instead, with a minimal node population, Oceania has 2.2%, South America has
0.8%, and Africa has 0.6%, with the rest being 2.3% of undetermined location.
The global use of LN nodes offers a glimpse into the acceptance of LN as a viable
payment method through its micropayment capabilities despite having restrictions
on payment amounts given by channel capacity.

14 Chapter 2 Bitcoin and Lightning Network

Parameter Definition
Range /

Allowed values Type

last_update last time the node was available on the network. prol. Gregorian
ordinal uint32

pub_key

public key of the current node which among other is used
for: create a shared secret, construct a route and a packet,
handshake exchange. This value is announced through
the node_announcement message as the node’s identifier.

valid hash value of
33-byte compressed

secp256k1
string

alias field that describes the current node with an descriptive
name, if applicableA.

either empty or a
valueB 32-byte:UTF-8 string

color the color of a nodeA. range of colors
3-byte:string
hex format

addresses
field that enables a node to indicate to other nodes that it
is open to receiving connections by providing a list of
address descriptors.

address descriptors
(address:port):

ipv4C , ipv6C and
Tor v2 and v3 onion

service

addrlen*byte:array
node of addresses

network standard used to establish and maintain a network
communication. tcp string

addr identifier of a node on a network. ip address:port string

FEATURES BOLT #9

Name Description Context Dependen-
cies Bits

option_data_
loss_protect

used when extra channel_reestablish fields is either
required or supported. This field allows to a node to
detect that it is fallen behind to avoid a total loss of funds.
As a result, it might at least recover non-HTLC funds by
forcing a node to remove the ongoing commitment
transaction from the chain.

IN – 0/1

initial_routing_
sync

a complete routing information dump needed by a
sending node, i.e. node needs a full copy of the routing
state of the peers. When negotiated via init, this field can
be overridden by the gossip_queries feature.

I – 3

option_upfront_
shutdown_script

when opening channel commits a shutdown scriptpubkey.
This field is useful when the node was compromised
somehow, thus, it wants to pre-commit to
shutdown_scriptpubkey.

IN – 4/5

gossip_queries

a sophisticated gossip control. When negotiated via init, it
allows an extended number of inquiries for gossip
synchronization, so node can indicate that it supports
these types of queries with the gosip_queries_ex feature
bit.

IN – 6/7

var_onion_optin used when variable-length routing onion payloads is
required or supported. IN – 0/1

gossip_queries_ex additional information included in gossip queries. IN gossip_
queries 10/11

option_static_
remotekey

static key for remote output. When peers negotiated it, it
can be applied to all commitment transactions, as well,
the node has to set to a right point the parameter
my_current_per_commitment_point.

IN – 12/13

payment_secret
payment_secret field supported by node, i.e. set to the
payment secret specified by the recipient, this prevents
probing attacks from nodes along the path.

IN9 var_onion_
option

14/15

basic_mpp

basic multi-part payments received by a node. This field
causes a delay to allow other partial payments to
combine, however, it must be reasonably bounded to
avoid a denial-of-service.

IN9
pay-

ment_
secret

16/17

option_support_
large_channel

to create large channels. This allows other nodes to know
which nodes will take funding_satoshis ě 224. INC+ – 18/19

* I : presented in the init message.
* N : presented in the node_announcement messages
* C : presented in the channel_announcement message.
* C- : presented in the channel_announcement message, but always odd (optional).
* C+ : presented in the channel_announcement message, but always even (required).
* 9 : presented in BOLT 11 invoices.
* A : field that allows to provide intelligence services and to customize node’s appearance in maps and graphs.
* B : possible entry point for injection attacks during persisting and rendering. It needs to be sanitized before being used in
HTML/Javascript context.
* C : node must assure that the address is a routable one.

Tab. 2.1: Node description

2.2 Lightning Network 15

2.2.2 LN P2P network

In the LN exists a P2P gossip network [40] used to send information. This network
differs from the Bitcoin P2P network and the network that creates the channels.
The gossip network is a superset of the channel network, where LN nodes share
their existence and channels, including details on how to contact them and their
forwarding fees. Furthermore, LN uses this gossip network to discover other nodes
and their channels, providing information about a peer’s alias, features they support,
and how to reach them. The gossip network provides information on channels,
blockchain verification, and peer fees. This information enables nodes to create a
network graph for calculating payment routes using this information. The gossip
network, where peers frequently update their fees, can appear noisy and resource-
intensive. Some statistics can be calculated by analyzing the graph’s data, such as
the total number of public nodes, their channels, and capacity. Lightning nodes
prevent spam attacks by only broadcasting gossip messages from nodes with at least
one public channel. It implies that a node must own Bitcoin and cover on-chain
transaction fees.

As noted in [41], LN nodes route payments using a local channel graph to
find a path to the destination. They synchronize their graph views by sending
update messages through this gossip network with a staggered broadcast mechanism,
potentially taking over 10 minutes for messages to reach all nodes. A mechanism in
this network is the Node Discovery, which nodes use to connect with others in the
P2P network by broadcasting their ID, host, and port. Initially, one message allows
node discovery, in which peers exchange node_announcement, a gossip message, to
offer further information about the nodes besides its public key. However, node data
updates may result in several node_announcement messages. A node should open
at least one channel when it first connects to the network to be known; otherwise, it
will be ignored to prevent trivial denial of service attacks.

LN brings together the nodes participating in the network using a DNS Seed
as a discovery mechanism. The nodes gathering depends on their implemented
specification and the processing of type2, AAAA3, or SRV4 broadcast by users. The
query types indicate conditions to receive a desired result. Thus, those conditions
are key-value pairs separated by dot-separated (.) subdomain components. The key

2RFC 1035 - Domain Names [42]: It is a naming resources mechanism to use the names across
hosts, networks, and administrative organizations to name a few.

3RFC 3596 - DNS Extensions to Support IP Version 6 [43]: It is a tracking protocol for a set of
Internet standards that intends to outline the adjustments required for the Domain Name System
(DNS) to enable hosts to run IPv6.

4RFC 2782 - A DNS RR for specifying the location of services (DNS SRV) [44]: It is a monitoring
protocol for a set of Internet standards that specify a DNS Resource Record (RR) that identifies the
location of the server(s) for a certain protocol and domain.

16 Chapter 2 Bitcoin and Lightning Network

is a single letter that belongs to a specific action, while the value is the required
condition expressed on the query. Table 2.2 explains the different key-value pairs:

Key Value Default Definition

r realm byte 0 To specify the domain to support by the returned nodes

a address types 6 (both IPv4 and IPv6) To be used essentially on SRV queries to specify what address type are returned

l node_id null To query for a specific node instead of a random nodes

n number of desired reply records 25

Tab. 2.2: Key-Value Pairs of Query Semantics in Node Discovery

LN provides a bootstrap mechanism that lets nodes without contacts discover
them as an initial process. LN also provides an assisted node location mechanism that
allows gathering the current network address of known peers through supporting
nodes. This implementation allows a node to obtain information from subdomains
since the DNS is a seed root domain. It is advised to review [45, 46] to get a more
insightful idea about this mechanism.

On the other hand, the P2P channel network in LN serves the establishment of a
payment channel between two Bitcoin users in conjunction with a transaction, facili-
tating off-chain cryptocurrency exchanges independently from the Bitcoin blockchain
[47]. The network addresses scalability concerns and enhances the feasibility of
frequent micropayments [48]. This network structure allows the creation of payment
channels where any two users are able to carry out an endless number of transactions
swiftly and without fees. Transactionality is possible, even if they are not directly
connected, using multi-hop transactions to route payments through intermediary
nodes[47]. In that context, the onion routing protocol in the LN is a technique used
to enhance privacy and scalability by routing transactions through multiple nodes.

The route that a packet travels from its origin node is through knowledge of
the public key of both the intermediate nodes and the destination node. Knowing
those public keys allows the origin node to create a shared secret using Elliptic-curve
Diffie-Hellman (ECDH). In this case, ECDH generates a pseudo-random stream of
bytes to obfuscate the packet. It also generates a series of keys to encrypt the payload
in addition to computing Hash-based message authentication codes (HMACs). The
use of HMAC is to ensure packet integrity at each hop by using the SHA256 hashing
algorithm.

A premise of this protocol is to protect the sender’s identity, for which the hops
only see an ephemeral key delivered by the origin node. Each hop must blind the
ephemeral key before forwarding it to the next node to achieve an unbindable route.
In this way, the origin node appears anonymous, although the destination node
becomes public. A more than notable policy of this protocol is that it keeps the

2.2 Lightning Network 17

version of the packet format and the routing mechanism. In case of receiving a
higher version packet, the node must report a route failure to the origin node and
discard the packet.

Even though the onion routing protocol provides privacy and partial anonymity,
LN could benefit from a network layer-level implementation of High-speed Onion
Routing called HORNET [49]. It could help to reduce latency and provide end-to-end
anonymity.

2.2.3 LN Channels

LN uses payment channels as its basic building block [50]. In order to facilitate initial
funding, an off-chain transaction mechanism known as a payment channel locks
funds in a 2-of-2 multisignature address. Through a network of payment channels,
these channels let users send Bitcoin transfers with low latency. The channels
significantly improve transaction speed and reduce blockchain congestion [51, 52].
While the channel capacity (total bidirectional balances) is public information, the
specific balance distribution within the channel is kept confidential for privacy
reasons. Some of the benefits that LN channels provide to the network:

• Scalability: LN improves scalability by drastically reducing the strain on the
Bitcoin network by executing several transactions off-chain.

• Low fees: Users can save transaction costs as they are not subject to standard
Bitcoin network fees.

• Speed: Transactions within a channel are practically instantaneous since they
do not need to wait for on-chain transaction confirmations.

Bitcoin growth peaked on April 12, 2021, with a market price of $61,193.55
[53]. Bitcoin’s reciprocal counterpart, the LN network, has experienced more activity
than ever. The total number of payment channels on LN is around 68,275 with
an average channel capacity of B0.0683, equivalent to $1,802.94 [33]. Channels
operate through three stages: opening, operating, and closing. In a channel, two
parties lock coins, exchange transactions, and broadcast the latest state to the
blockchain. After a node connects to the P2P network, it can open an LN channel,
which engages a bidirectional connection with other nodes to exchange funds.

Channels can be created and closed by node agreement if not indicated oth-
erwise. Before two nodes can fully interact in a channel, they must establish the
channel with one transaction and close it with another. For that, both transactions

18 Chapter 2 Bitcoin and Lightning Network

require locking funds on the Bitcoin blockchain. A set of rules governs the establish-
ment of a new payment channel. These rules state that only with the permission of
both nodes can spend locked funds. After payment, it is permissible for both nodes
to modify the balance within the channel multiple times, as long as the channel stays
open under pre-set rules. However, both nodes broadcast their most recent balance
to the Bitcoin blockchain when they mutually decide to close the channel.

Once an LN node establishes one or multiple payment channels, the node’s user
can perform payments through those channels. However, to be able to perform
payments to nodes that lack a direct channel with a given node, it needs to find
existing channels on the network. LN specification offers a channel-discovering
mechanism that allows a node to create a structure with the network’s topology. The
node stores this structure and updates it locally in a JSON file. When a node has one
or some open channels and is aware of the network topology, the node can perform
a payment or interact as an intermediate node in a route of multi-path payment.

On the other hand, a valuable feature of micropayment channels is the delayed
broadcast of the state of a transaction at a later time. Contracts are constructed to
accomplish such property, with one party accountable for broadcasting transactions
before or after a particular date. Similarly, to validate data and order events, the
network can use clocks for decentralized consensus [54] and states [55]. Contracts
can use Bitcoin transaction scripts that create timeframes in which certain broadcast
states can later be invalidated. The transaction malleability soft-fork in bidirectional
payment channels is essential in the case of LN to achieve almost infinite scalability
and mitigate intermediate node default risks. Table 2.3 provides a brief description
of the channel with its features and fields:

2.2.4 LN Channel Lifecycle

The lifecycle of a payment channel consists of four phases: discovering channels,
opening a channel, making a payment in the network, and closing the channel.
Discovering a channel enables nodes to maintain a local network view for finding
routes to desired destinations. Opening a payment channel involves a couple of
nodes agreeing to open a channel with some funding. The channels create a multi-
signature account to set that amount as channel capacity. The payment channel will
be open upon the addition of the channel funding transaction to the blockchain.
Payers can make payments to payees through direct channels or by routing on the
network. In Section 2.2.5, we detail the payment phase in the LN. When users want
to close a channel, the final phase is recorded on the blockchain. Figure 2.1 depicts
the lifecycle of a payment channel.

2.2 Lightning Network 19

Parameter Definition Range/Allowed values Type

channel_id

identification of the channel generated from the
funding transaction through the use of an
exclusive-OR to combine the parameters:
funding_output_index (2-byte) and funding_txtid.
The field can be used when operating in parallel
with multiple channels. The funding_signed
message introduces the channel_id field as the
channel identifier and can be used with different
messages such as: funding_locked, shutdown,
closing_signed, update_add_htlc,
commitment_signed, etc.

32-byte string

chan_point the funding transaction’s id and the channel
funding transaction’s output.

32 bytes (funding_txid)
+ 2 bytes

(output_index)
string

last_update last time the channel was active on the network. proleptic Gregorian
ordinal uint32

node1_pub

nodes appear on a lexicographical sequence so a
message passes signature verification of
channel_announcement and for channel_update
messages.

valid hash value string

node2_pub

nodes appear on a lexicographical sequence so a
message passes signature verification of
channel_announcement and for channel_update
messages.

valid hash value string

capacity

total capacity defined for the channel between
two nodes. When refers to htlc_maximum_msat is
a static value over the life of the channel, but it
does not indicate the real-time channel capacity
in each direction. This static value makes it
possible to prevent a significant data leak and
network spam.

denominated in satoshis int64

Tab. 2.3: Channel description

Fig. 2.1: Channel Lifecycle diagram

Channel Discovery - A node can confidently establish a comprehensive and localized
understanding of the network’s topology through a channel discovery mechanism.
It can also enable seamless and efficient identification of optimal routes to desired
destinations. Two gossip messages are necessary to support the channel discovery:

• channel_announcement message contains information regarding new chan-
nels between two nodes.

• channel_update message, which updates information about the channel.

20 Chapter 2 Bitcoin and Lightning Network

However, after channel establishment, only one valid channel_announcement

message is required for any channel, unlike a channel update that expects two
messages. The following parameters and messages, along with those mentioned
above, complement the components of this mechanism:

• short_channel_id: provides to the funding transaction a one-of-a-kind descrip-
tion.

• channel_update Message: is appropriate for relaying payments rather than
sending payments. When a node builds a route, it includes the estimated
amounts and expiration of the Hash Time-Locked Contracts (HTLCs)5 from
the destination to the origin; that is, it calculates these values backward. The
payment request consists of the exact values of amount_msat (initial value)
and cltv_expiry (minimum value) to be used for the last HTLC of the route.

• channel_announcement Message: reveals information about the channel
owner that links the Lightning node key associated with the Bitcoin key on
the blockchain. Even if the node sends a channel announcement message, it
will remain inoperative until at least one of the parties, via a channel_update

message, publishes its expiration and fee levels.

• announcement_signatures Message: acts as an opt-in method to notify the
rest of the network about the channel announcement between the two end-
points of a channel. The first step to creating such a message is to construct
the channel_announcement message that belongs to a newly created channel.
After this procedure, the message could be sent along with the announcement
signatures.

Channel Opening - The channel establishment process starts with an open_channel

message from the sender and an accept_channel message from the receiver, follow-
ing a successful handshake agreement. The sender then creates a funding transaction
and a commitment transaction with two versions, sending a funding_created mes-
sage with the outcome of the funding output and the receiver’s signature. The
receiver generates a signature for the commitment transaction version, sending it as
a funding_signed message to the sender.

Upon receiving the funding_signed message, the channel sender broadcasts
the funding transaction to the Bitcoin network. Both parties wait for confirmation in
the blockchain before sending the channel_ready message to establish the channel.
The exchange messages are shown in Figure 2.2.

5It refers to a payment routed over many channels.

2.2 Lightning Network 21

Fig. 2.2: Channel opening diagram

Channel Closing - Instead of a unilateral closure, it is advisable that, through
negotiation, the connection be mutually closed to have instant access to the funds as
well as negotiate lower fees. The process by which peers adopt it is as follows: i) A
node announces that it intends to empty the channel and will not admit additional
HTLCs. ii) Final channel closure negotiation starts once all HTLCs are resolved.
When two nodes try to close a payment channel, to close said channel, the nodes
exchange some messages, as shown in Figure 2.3, the same ones detailed below:

Fig. 2.3: Channel closing diagram

22 Chapter 2 Bitcoin and Lightning Network

• shutdown message: indicates the initiating closing process, given by either
node or both. At the time a sender did not send a funding_created message
and a receiver did not send a funding_signed message, both peers cannot send
a shutdown. However, they can send a shutdown before a channel_ready mes-
sage, which must occur before a funding transaction reaches a minimum_depth.
After a shutdown, the sending node must fail to route any HTLC added.

On the other hand, if a sender did not send a funding_signed message and
a receiver did not send a funding_create message, both peers cannot send a
shutdown. Instead, they should fail the connection. All these actions follow
the premise that in case of terminating a channel connection, there must not
be new HTLCs added or accepted.

• closing_signed message: occurs once the shutdown concludes and the chan-
nel is free of HTLC. The closing fee negotiations begin as the last commitment
transactions run out of HTLC. Then, a back-and-forth negotiation continues
until both nodes settle on the fees or some node rejects the channel. Further-
more, the fee negotiation is repeated on reconnecting to prevent a saving state
and to deal with fees that shift between disconnection and reconnection.

2.2.5 LN Payments

Alice establishes a payment channel with Bob. Alice completes the process by
locking 50 BTC to the channel. Three transactions are involved in the setup of the
payment channel: Alice and Bob, each with a commitment transaction and a funding
transaction sent to the blockchain network. Each transaction holds the owner’s
Bitcoins, its hash, a secret generated randomly, and the channel counterparty’s secret
hash. One can think of the commit transaction as the channel’s current balance.
Bob sends Alice an invoice for 20 BTC, which Alice pays, resulting in two new
commitment transactions. Each user creates a hash and a new secret and sends
the secret and the hash of the previous transaction to the counterparty. The new
balances of Bob and Alice are held by two new commitment transactions. Alice’s
new state is as follows: after 1,000 blocks, Bob has 20 BTC, and Alice has 30 BTC.
After 1,000 blocks, Bob’s new state is: Alice gets 30 BTC, and Bob gets 20 BTC.
Figure 2.4 shows a direct payment between Alice and Bob in LN. Furthermore, Table
2.4 provides a brief description of the parameters in the channel policies with their
features and fields used to make direct or multi-hop payments:

Through a sequence of off-chain transactions, LN enables fast and affordable
transactions. The following information explains the steps required to make pay-
ments (Payment Process), the transactions that take place (Transactions Created and

2.2 Lightning Network 23

Fig. 2.4: Direct channel payment

Parameter Definition Range

Default
values

(lnd/clight
/eclair)

Affects Type

time_lock_delta

Value required for the channel when HTLCs are
forwarded. It may be implicitly enforced by
htlc_signature if received HTLCs are spent or
offered HTLCs expire.

Integer 144 In uint32

min_htlc
A conditional payment that indicates a minimum
HTLC in milli satoshis accepted by an initiator in
a transaction. It refers htlc_minimum_msat.

– default 0 In int64

fee_base_msat The channel base fee is the amount it will charge
for any HTLC.

mil-
lisatoshis – Out int64

fee_rate_milli_msat

The effective fee rate. Regarding fee_rate_per_kw,
it refers to the initial fee rate in satoshi to be paid
for HTLC transactions and commitment to be
included immediately in a block.

mil-
lisatoshis – Out string

disabled It indicates whether a policy is disabled or not for
the peers.

True
False False In/Out boolean

max_htlc_msat

In addition to setting the
option_channel_htlc_max of message_flags to 1 to
signal the presence of the field, this specifies the
maximum HTLC it will send across the channel
for a single HTLC. It refers to
htlc_maximum_msat, a static value over the
channel’s life, but does not indicate the real-time
channel capacity in each direction.

limited
to

232 ´ 1
mil-

lisatoshis

– Out int64

last_update Last time a policy was updated. –
proleptic
Gregorian

ordinal
In/Out uint32

* In : When a node receives a message in which involves the referred field
* Out : When a node sends a message in which involves the referred field

Tab. 2.4: Parameters in the channel’s policies

Exchanged), how trustlessness is ensured (Trustless Mechanisms), and why network
monitoring is necessary for nodes (Monitoring the Network).

Payment Process - The payment process includes four stages that range from
opening a channel to completing the payment with its transactions and mechanisms.
If a payer wants to send a given number of Bitcoins to any network user, it must
first find a direct path to that user with at least that amount of Bitcoins on every

24 Chapter 2 Bitcoin and Lightning Network

direct channel. In a direct payment, even when balances are kept confidential, the
success percentage of any payment between neighbors is not compromised [56].
On the other hand, when a node cannot find a direct channel, the payment has to
be routed on the network in a multi-hop path that we will cover in more detail in
Section 2.2.6.

1. Channel opening - As indicated in Section 2.2.4, parties must first create a
funding transaction, the first on-chain transaction, to finance the multi-
signature address. The payment channel is deemed open following a few
blockchain confirmations of the funding transaction. Additionally, two commit-
ment (off-chain) transactions hold the amount of Bitcoins each party in the
channel owns.

2. Creating a payment - After a channel opening, a payer can send an invoice to
a payee by exchanging commitment transactions, where every transaction
modifies the channel’s balance and, thus, its current status. When a new
commitment transaction is created to send one Bitcoin from the payer to
the payee, the payment reduces the payer’s balance by one Bitcoin while
increasing the payee’s balance by the same number of Bitcoins, that is, this is a
balance update.

3. Hash Time-Locked Contracts (HTLCs) - An HTLC refers to a payment routed
over many channels [57]. The HTLC is a conditional payment that makes
trustless payments possible. The payee of an HTLC must provide cryptographic
proof (preimage) within a certain amount of time to claim the funds. Moreover,
HTLC guarantees the release of locked values after a predetermined amount of
time or by giving a secret that generates a predetermined hash. HTLC ensures
atomic cross-channel transfers by locking coins from sender to receiver with
contract conditions. Two key conditions used are:

i) Hash Locks (HL): limits output spending until certain data is disclosed,
enabling the combined spending of many outputs with the same HL.

ii) Time Locks (TL): limits Bitcoin spending to a specific future date or block
height to ensure that contracts are carried out within the network.

Payments may be routed across several channels and nodes thanks to
route finding. Each node adds an HTLC to its channel with the subsequent
node, guaranteeing that only payment claims are possible when the preimage
is released. Routing algorithms have a significant influence on LN efficiency
since they determine whether to favor short pathways or channel capacity
based on the approach chosen.

2.2 Lightning Network 25

4. Payment completion - In the preimagerevelation, the preimage is shown by the
payee to collect the funds from the prior node. This preimage is then broadcast
backward along the path, allowing each intermediate node to claim its funds.
Commitment transaction validation involves revealing and re-hashing the
original preimage to confirm data integrity. This mechanism is the foundation
of data integrity and safe transactions in blockchain systems like Bitcoin and
LN. If the payee fails to reveal the preimage within the allotted period, the
transaction is invalidated, and the funds are refunded to the sender. This
mechanism prevents funds from being locked indefinitely if a recipient is
unable or decides not to satisfy the transaction’s conditions.

Transactions Created and Exchanged - In LN, every transaction is off-chain and
updated locally via payment channels connecting nodes. The most current balance
is sent to the blockchain when a channel node chooses to close it. Thus, several
transactions follow the payment process, however, the most relevant are:

1. Funding Transaction - To exchange Bitcoins via LN, two parties create a pay-
ment channel by locking funds on the blockchain. Funds are deposited into
a 2-of-2 multi-signature address by both parties, requiring both signatures
to spend the funds. They can use the channel to exchange Bitcoins after the
double-signed funding transaction is received and confirmed by the blockchain.
On the other hand, either side can send a settlement transaction to the net-
work to close the channel, storing the sum of off-chain transactions on the
blockchain. The funding transaction amount denotes the maximum amount of
funds that a pair of nodes can transact through the channel. This transaction
serves as a representation of its maximum capacity.

2. Commitment Transactions - Upon opening the channel, both parties can begin
signing transactions between them as often as desired—these transactions,
referred to as commitment transactions, occur off-chain. Then, each party
exchanges commitment transactions to send a payment. Despite not being
instantly broadcast to the blockchain, these transactions represent the most
recent channel balance following each payment. Instead, they are both signed
and held. Transactions are cheap and instant because they do not need to
be mined or spread throughout the Bitcoin layer-1 blockchain network. Both
parties keep a local copy of the ledger for their balance, updating it after each
transaction. The channel’s state is updated with each transaction, preventing
fraud by not allowing parties to refer back to old states when settling on the
blockchain.

3. Conditional Transactions - These transactions guarantee that the payment may
only be routed and redeemed if the preimage is disclosed. For that, HTLC is

26 Chapter 2 Bitcoin and Lightning Network

used to stop cheating in the system. Transactions can be routed via several
nodes thanks to HTLCs. HTLCs allow two parties to deal through intermediate
channels rather than a direct route. HTLC is a normal Bitcoin transaction
that contains a smart contract, which is a unique script. It is a conditional
payment with a temporary lock on the transaction. HTLCs generate conditional
payments in Bitcoin, making them a potential mechanism.

4. Closing Transactions - Both parties may sign a closing transaction known as a
settlement transaction once they have agreed to settle the funds. The final
transaction will be recorded into the blockchain and mined. The closing
transaction will reflect the total amount of the two users’ final settlement
balance. For LN to leave the channel, none of them have to cooperate. The
relationship can be terminated by either the payer or the payee choosing to
close the channel. By keeping one of them from going offline and locking the
other’s funds within the channel stops fraud.

Trustless Mechanisms - Several mechanisms attempt to provide trustless payments
without diminishing LN security. In that sense, a mechanism is the commitment
transactions where parties own signed but unbroadcasted transactions. These
transactions, if necessary, can be broadcast to terminate the channel and settle
the blockchain balances. Another one is a penalty mechanism that serves to deter
cheating. By offering a secret key, the opposing party can obtain all the funds in the
channel if one tries to broadcast an out-of-date commitment transaction. Moreover,
a safe mechanism of routing payments via several nodes without needing to trust
intermediaries is provided by HTLCs, which ensures that payments may only be
claimed if the preimage is disclosed.

A key protocol in LN is the Onion Routing Protocol. The usefulness of this
protocol, as specified in [58], lies in routing payments from an origin node to a
destination node through private communication to provide privacy in this public
network. Hops route a packet through some of the intermediate nodes. Sphinx,
known for its proven safe mix [59], is the basis for constructing this routing scheme,
which is additionally extended with per-hop payloads. Intermediate nodes know
which node to forward the packet to by removing a layer of encryption and verifying
its integrity before forwarding the message.

As a privacy constraint, the intermediate node only knows its predecessor and
successor. That means such a node does not know anything about the other nodes
that conform to the route, as well as it does not know its length or its position on
it. To increase channel security, the obfuscation of the packet takes place on each
hop to deter any network-level attack by associating packets that belong to the same

2.2 Lightning Network 27

route. However, there is the possibility of carrying out an attack using traffic analysis
to associate packets.

Monitoring the Network - The nodes monitor the network to ensure each node
behaves appropriately without incurring attacks, denial of service, or misbehavior.
Nodes must furthermore keep an eye on the network to spot any attempts by a
counterparty to disseminate an out-of-date commitment transaction. Watchtowers
are outside services that can keep an eye on a user’s network and react to efforts
at fraud. A timely response is necessary for the penalty mechanism. The non-
cheating party must promptly supply the secret key to retrieve the funds and punish
the cheater if an outdated transaction is broadcast. Similarly, to guarantee that
nodes can react appropriately to any fraudulent behavior, nodes maintain track of
the most recent status of the channel, including all commitment transactions and
HTLCs.

2.2.6 LN multi-hop payment

As mentioned previously, LN allows transactionality between a pair of users even
when they do not share a direct connection. A mechanism that creates multi-hop
routes to transmit payments through each LN user is necessary for a scenario without
a direct payment channel. In a payment route, the transaction traverses all the users,
defined in a path, with sufficient funds, which charge a nominal fee to compensate for
their work to relay the transaction to subsequent users. The source node constructs
the payment route by using route discovery, which depends on an updated topology
of the LN network. Most LN implementations follow this procedure, providing a
computed route with the hops and fees the source node will use for the payment.
However, the source node can determine the payment route with the information
available in the LN network. It is worth mentioning that two stages shape the multi-
hop payments in LN. First stage, the process of creating a set of contracts called
HTLC takes place, which locks the funds that satisfy these contracts. Second stage,
in the payment process, an atomic exchange occurs, in which either the payment
succeeds in all the hops or cancellation of the contracts takes place, i.e., the funds
are redeemed and are again available to the channels.

The relevance of HTLC for payments lies in the bond it creates between a payer
known as Alice (A) and a payee called Bob (B). To make a payment, B has to
provide not only the preimage of a hash value but also the digital signature. Once
B provides these two elements, it can reclaim the funds locked by A. However, if
B cannot commit a preimage before the expiration date set by A in the contract,
A can retrieve the funds once it provides the digital signature. In a more detailed
description of the payment routing process, B sends A a hash value hpxq computed

28 Chapter 2 Bitcoin and Lightning Network

from a randomly generated value x, known as the preimage. Now, A can pay to B

through one or more nodes, in this case, say through hops (Charlie) C and (Dave) D

on a route as follows: A ÐÑ C ÐÑ D ÐÑ B. With the hash hpxq received from B,
A can generate an HTLC that routes the payment to C. Then, C routes the received
HTLC containing the same hash to D and this to B. Once B receives this message, it
reveals the preimage to D, which also reveals it to C and A so that both the payer
and the hop can redeem the funds.

Consequently, when a payment occurs between a payer and a payee, HTLC
guarantees the payment is complete. As the first state of a multi-hop payment, there
is an HTLC Establishment, where the payer creates the contract HTLC that must reach
the payee through intermediate hops. From there, there are a couple of states where
payment will be routed based on the actions taken by the payee or intermediate
hops. The HTLC Fulfillment state occurs when the payee reveals the preimage x

to the intermediate hops until it reaches the payer so that everyone can redeem
their corresponding funds. The other state is HTLC Failure, in which the preimage
does not arrive within the timelock set in the contract either to the payer or to the
intermediate hops, so there are no changes in the balance of the channels.

Furthermore, it is wise to assume that, as with most payment methods, LN also
suffers from various attacks. In the case of LN, an attack vector can arise when
there is a cancellation of payments in the second stage of a multi-hop payment.
Subsequently, the attacker can lock the funds of one or more users by proceeding
with the first stage of the payment and then canceling it. Another way to attack users
is to withhold payments for a lengthy time during the first stage. This attack aims to
increase the damage to the nodes economically. As a countermeasure, and as noted
in [60], when LN users hold the values of some main parameters at their default
settings, the cost of the attack is significantly low. However, setting values different
from their default values while mitigating the attack reduces the performance of
the multi-hop payment network. Similarly, if there is an adjustment of the HTLC
negotiation parameters, there will be an increase in the cost of the attack.

With each successful transaction, there is a shift in the channel balance after
the processing of the mutually signed commitment transaction, which is known as a
payment execution. In this step, each hop charges the payment amount and the fees
on the route, which are part of the commitment transaction. But a channel might
have either a zero balance or the flow of the payments follows a single direction.
Consequently, the channel can fall into a step of unbalancing. Then, once the
user deems that there is no need for the created channel, the user might choose to
close it, in a step called channel closing, by sending a settlement transaction to the
blockchain.

2.2 Lightning Network 29

For simplicity, Figure 2.5 shows an example of a multi-hop payment between
Alice and a coffee shop run by Bob, with Charlie, Dave, and Eve as hops. As seen,
these hops charge a routing fee to forward a payment to its destination. Additionally,
for ease of depiction, the cltv_expiry displayed in hours is expressed as block height
with a decreasing value between hops.

Fig. 2.5: Multi-hop payment

2.2.7 LN Channel parameters and policies

Once both nodes establish a channel ready to transact, they exchange data about
the channel open and the fee policies [50]. The data of the channel includes
several parameters that describe it. Among those parameters are channel_id,
last_update, node1_pub and node2_pub (channel nodes), capacity, and node1_policy

and node2_policy (node policies). In that regard, a node policy in the LN is a set of
parameters and rules that govern the operation and behavior of a payment channel
between two nodes, established and enforced by its participants. Figure 2.6 shows a
payment channel between two nodes that was captured and exported from an LND
client implementation. It presents the channel parameters as well as the node poli-
cies with their setting parameters. The following parameters describe the channel

Fig. 2.6: Node Policies in a Payment Channel

and node policies with their parameters:

30 Chapter 2 Bitcoin and Lightning Network

• channel_id: is unique identifier of a channel

• capacity: is the total balance of a channel, calculated by adding individual
balances of parties. The capacity is set at the channel’s opening and cannot be
altered without closing the channel.

• Channel nodes: are the public keys of the parties, with parameter names
node1_pub and node2_pub, participating in the channel. The node that began
opening the channel is node1_pub.

• Node Policies: Node policies refer to node1_policy and node2_policy and repre-
sent the fees that both parties set to forward a payment when they are part of
a route as intermediaries.

– time_lock_delta: assigns to a transaction an expiration date, which oth-
erwise may cause it to become permanently pending. The unit of mea-
surement is blocks, where its maximum time lock value is the number of
blocks that should be mined in a period of 14 days.

– min_htlc: is the lowest amount of HTLC that a node will tolerate. This
option is static, meaning that it is set at channel opening and stays that
way until channel closure.

– fee_base_msat: is the fixed amount a node charges to send payment
regardless of payment amount and is part of each HTLC.

– fee_rate_milli_msat: describes the amount that is charged as a fraction
of the payment’s total value. The proposed charge will increase with the
amount of the payment.

The node policies used on a payment channel depend on the parameters set
by the user that opens it. However, the user can set those parameters according to
its needs. According to the three LN implementations [61, 62, 63], the available
parameters that can be set are the amount of satoshis to commit to the channel,
initial amount of satoshis to push to the remote side, fee rate, private/public channel,
minimum amount of millisatoshis for incoming HTLCs on the channel, the base fee,
and proportional fee to transfer payments. The main topics that a channel policy
usually addresses are:

• Routing Liquidity: Nodes can configure a limit on the amount of funds they
will allocate for payment routing. This aspect covers the upper and lower

2.2 Lightning Network 31

bounds on the amounts they permit for payments coming in and leaving out
via their channel.

• Fees: The fees charged to a node to route payments through its channel are
configurable. The fees may be a percentage of the total payment or a fixed
rate.

• Expiration time: LN payments are time-sensitive. Thus, each node can
establish an expiry time for payments that flow over its channel. A payment
may expire and need to be retried if it takes too long to process.

• Channel Management: Nodes may choose to close channels due to a variety
of reasons, including modifications in the channel balance, structured fees, or
general network health.

• Policy Updates: Over time, nodes might modify their channel policies. The
motive could be network circumstances or their operating requirements. There-
fore, the nodes may alter their fee amounts or payment limits.

When a channel is up to send a payment, in the case of a unique hop, the fees set
on the channel do not intervene in the payment. Otherwise, the fees are considered
along the route except for the last hop, which is the receiver of a payment that does
not charge for it. However, a node can establish the parameters a payment route
must limit. For instance, on [64, 65, 66], the sender sets parameters such as the
timelock for the final hop (CLTV delta), an upper limited amount of time to attempt
to fulfill the payment, and the maximum amount of satoshis set as the payment fee.
On the other hand, to forward a payment, a node charges by receiving a payment
with the fee set on its channel, which sends the payment to the next hop. Policies
are essential for routing payments on LN, influencing efficiency, cost, and reliability.
Node operators can manage resources and participate effectively.

32 Chapter 2 Bitcoin and Lightning Network

3Layer 2 Protocols Categories and
Subcategories

„Computers are good at following instructions,
but not at reading your mind.

— Donald Knuth
(Computer scientist and mathematician -

"father of analysis of algorithms")

D espite most efforts to provide a wholesome solution after a decade of Bitcoin
staging, blockchain cannot fulfill the three critical aspects of a ledger: security,

scalability, and decentralization, known as the blockchain trilemma [67]. On the
one hand, scalability and security impede decentralization, and increased scalability
threatens security. On the other hand, security and decentralization are necessary
and fundamental due to the nature of blockchain. However, scalability remains a
challenge because of its consensus protocol as a main drawback.

Since one of the main functionalities of blockchain lies in the handling of trans-
actions, scalability refers to the number of transactions handled in a period of time,
which in the case of Bitcoin is between 3.3 and 7/tps. Furthermore, the lack of
balance between these critical aspects limits the widespread adoption of cryptocur-
rency technology in the industry, especially for its scalability. For instance, high
decentralization characterizes public blockchains, which can restrain security threats
but with minimal processing of transactions per second. In contrast, transactional
throughput on private blockchains is high, although they are centralized and cannot
repel some blockchain-related attacks [68].

Following the implementation of the Bitcoin blockchain and its subsequent
success, most scalability solutions focus on improving Layer-1 or deploying Layer-2.
Concerning Layer-1, the solutions attempt to change the structural attributes of
the blockchain. These solutions aim to counteract inadequate transaction rates
and substantial latencies in transaction processing. The scope of action of the
proposed solutions points to the operating principles underlying blockchains, such
as: modification of block data [69, 70], consensus mechanisms with alternative
proposals [71, 72, 73, 74], Directed Acyclic Graphs (DAG)-based solutions [75,

33

76], or splitting the network into fragments [77, 78, 79]. Other approaches, like
[80], offer a performance improvement to the chain rule in Bitcoin through a ghost
rule. Instead, [81] discusses consensus mechanisms and proof-of-work in scalable
blockchains. Nevertheless, Layer-1 solutions usually lack backward compatibility
and are fundamentally flawed because they require modifications to the core design
elements of blockchains. Therefore, these solutions make them complicated to
deploy in reality [82].

Almost simultaneously, other approaches for Layer-2 protocols address the
blockchain scalability issue without altering its consensus mechanism. These ap-
proaches enhance the rates of transaction processing and fees by reducing the
utilization of the sluggish and expensive blockchains that underpin them. In that
sense, the blockchain only fosters trust and resolves conflicts among participants in
Layer-2. Consequently, only a certain number of transactions are sent to the main
chain, and participants execute unlimited transactions off-chain on an authenticated
network. Additionally, to provide security, transactions at Layer-2 follow either of
two directions: delayed finality as in commit chains [83] or collateral finality as in
payment channels [5, 84, 85].

Although blockchain can have open (permissionless) or restricted (permissioned)
access, its expressiveness is derived from the scripting language that blockchain
supports, such as in Bitcoin with an incomplete Turing script [13] or in Ethereum with
a complete Turing script [86]. While permissioned and permissionless blockchains
can be used to create Layer-2 protocols, the relevance of blockchain expressiveness
is crucial when developing protocols of Layer-2 above Layer-1.

3.1 Layer-2 Protocols Categories & Subcategories

Layer-2 protocols take it for granted that only legitimate transactions will be recorded
in the ledger, no matter the underlying blockchain. To achieve it, several kinds of
protocols make up Layer-2, with their characteristics, procedures, requirements, and
so on, where each one falls into any of these types: cross-chains, side/child chains,
hybrids, and channel solutions.

3.1.1 Cross-chains

Besides the scalability issue, many blockchains suffer from interoperability issues due
to their lack of flexibility and application portability. It also has diminished scalability
due to the transition of transactions between blockchains [87]. To overcome this
issue, cross-chains [88, 89] act as a means to communicate assets between different

34 Chapter 3 Layer 2 Protocols Categories and Subcategories

blockchains through an established procedure of mutual trust and two approaches
comprehend this solution:

Notary scheme: For this approach, an entity called a notary [90, 91], actively
monitors a set of blockchains for transactions to create a simile on one chain when
a comparable event occurs on another chain. Representatives are Coinbase and
Binance, which are crypto exchanges.

Blockchain of blockchains: Also known as the Internet of Blockchains [92,
93, 94], it emphasizes both interoperability and customization through building an
ecosystem where blockchains share not only data but also tokens. The exchange is
made through a platform that communicates the chains but does not act as a central
entity. This platform is a core chain that also enables the reuse of network, data,
consensus, and a contract layer to create custom and specific applications, resulting
in interoperable blockchains.

3.1.2 Side/child chains

The protocols [95, 96] transfer not only computational processing to lessen on-chain
load to a parallel distributed ledger but also assets to diverse blockchains. However,
this independent ledger uses proof-of- either authority or stake as a consensus
mechanism to process the transactions. Similarly, side chains communicate with the
on-chain via a bridge that can be used to exchange funds. Its usefulness depends on
how quickly the transactions are processed and its capacity to exchange data rapidly
with on-chain. However, these protocols do not comply with agile processing due to
their centralized mining power and confirmation. It is also diminished by periods of
competition in accessing funds in the chains. Nevertheless, two approaches form
part of this solution:

Commit chains: Unlike payment channel solutions (Section 3.1.4), which lock
funds in open channels without the ability to reuse them beyond their scope, commit
chains [83, 97] address this scalability issue through non-custodial operators. The
operator starts and maintains a chain of commits, whereas the smart contract hinders
the operator from engaging in inappropriate behavior. Although there are no on-
chain transactions registered with a commit chain, participants must log in regularly
to view checkpoints that are the most recent status of their account balances. Also,
even when participants are disconnected, they continue to receive funds, similar to
on-chain transactions. However, the level of security in these commit chains depends
on their on-chain, given by their consensus mechanism.

3.1 Layer-2 Protocols Categories & Subcategories 35

Rollups: Similar to commit chains, rollups [98, 99] follow a non-custodial
approach. The aim is to reduce the on-chain processing burden through techniques
that compress data and smart contracts to scale the on-chains. In batches outside
of the on-chain, transactions are processed and then aggregated for verification
within the on-chain. The Merkle root also called the state root, remains in the smart
contract, which is up-to-date on-chain based on the status of the Rollup. When a
batch of transactions is performed, it updates the balances and computes a new state
root. Transactions are compressed when someone publishes a batch, so the batch
contains this compressed data with the previous and current state roots. Two types
of rollups exist, depending on how they prevent fraud and validate the new state
root:

• Optimist Rollups: Its approach is optimistic, assuming that the validity of a
transaction is voided when challenged. This approach provides scalability, as
there is no computation involved to verify transactions. However, the contract
keeps track of updates to the root state and its batch hashes.

• zk Rollups: This approach, instead of voiding only those challenged trans-
actions, suspects each one of them. As a result, each batch comprises a
cryptographic validation proof. Therefore, of the executed batch transactions,
their outputs must match the new state root.

3.1.3 Hybrid solutions

These solutions modify some essential properties of Layer-2 solutions to improve their
protocol scalability. These solutions aim to either minimize on-chain dependency or
eliminate peer-to-peer trust requirements by using a secure resolution mechanism.
A couple of approaches are part of this solution:

Bisection protocols: The goal of these protocols [100, 101] is to enhance the
mechanism for resolving disputes. The protocols achieve it by minimizing the load
on Layer-1 by engaging in off-chain computations.

TEE-based solutions: The Trusted Execution Environment (TEE) has the pri-
mary goal of safeguarding data integrity and confidentiality loaded into an area of
the CPU such as [102]. For blockchain scalability, these solutions [103, 104, 105]
leverage the safeguarding of integrity provided by TEEs to remove the need to use
on-chain guarantees when establishing peer-to-peer trust. However, TEEs have their
susceptibilities and uneasiness that could be inherited in TEE-based solutions.

36 Chapter 3 Layer 2 Protocols Categories and Subcategories

3.1.4 Channel solutions

Channels [106, 84, 5], as a key Layer-2 protocol, provide scalability and privacy by
setting up private means for transactions between two users. Transactions, though
handled off-chain, maintain an identical level of security to that of an on-chain
transaction. However, a predetermined and mutually agreed-upon set of rules is
established for the purpose of ensuring the security of transactions. Two types of
channels form this solution:

State Channels: The principal premise of this solution [106] is that two or
more users can exchange or transfer states for use in any arbitrary program, such
as auctions or voting, to name a few. For this kind of channel, its establishment is
through a smart contract where users join the branched channel of states exchange
states. These state exchanges are useful off-chain due to their speed compared to
on-chain exchanges. Moreover, via a contract, the on-chain receives the channel’s
final state upon the completion of every transaction.

Payment Channels: The scalability goal [107, 108] of blockchains is to handle
payments with almost instant confirmation, cheaper fees, and limited transactionality.
To achieve this, payment channels [5, 84] come into the picture as the adaptation
of state channels for payment applications. As an initial design, payment channels
were one-way channels [109], but they eventually evolved to two-way channels [84]
so that both users could send and receive payments. In that manner, these channels
process payments instantly. Also, channels prevent users from broadcasting each
transaction on-chain and, thus, waiting for its confirmation. Still, this solution has
drawbacks. Specifically because of the fund locking in the creation of the channel,
which is not instantaneous due to the confirmation required from the on-chain. In
consequence, to improve payment channels, there are proposals such as channel
factories, virtual channels, payment channel hubs, and payment channel networks
to enhance this channel solution:

• Channel Factories: [110, 111] Its premise centers on the locking of funds by
many participants to finance a factory, intending to create channels for every
pair of depositors. In cases where a direct channel is necessary, all depositors
reallocate funds to create such a new channel. Although this approach does
not require financing and establishing distinct payment channels for every pair
of depositors, on-chain confirmation is still necessary after the creation of a
factory.

• Virtual Channels: [112, 113] A virtual channel’s existence, which resembles
a direct channel, is determined by the locking of funds for a fixed time by all

3.1 Layer-2 Protocols Categories & Subcategories 37

intermediaries between a payer and its payee. The set-up of such a channel
implies a new virtual channel has to be established for every intermediary, and
then it must supervise its closure. Its principal usefulness is that interacting
with the on-chain is unnecessary while creating and closing a virtual channel.

• Payment Channel Network (PCN): [5] Payment channels initially required
a direct channel to make payments, but this hampered scalability to some
extent. To reverse this, PCN allows the creation of a network of channels in
which a payer, without a direct channel to a payee, forwards a payment using
intermediate nodes. In that way, intermediate nodes can earn an incentive
through small fees. A key component in PCN is HTLC, a structure with payment
conditions. The payer locks the funds until the transaction meets a locking
condition, in which case the payee may use the funds again. Another restriction
of the conditional lock is the expiry time, which encourages the intermediaries
and the payee to achieve a quicker lock resolution. Overall, these transactions
with conditionals must be atomic. Thus, the intermediaries participating in the
transaction provide the security of said funds [114, 10].

• Payment Channel Hubs: [115, 116] This alternative aims to optimize PCN by
employing a node hub. The node re-transmits the payment to nodes connected
in a star topology in which this particular node is in the center. Through this
setup, PCN could lessen the overhead involved in routing by interconnecting
hubs to reduce the length of routes. This, hand in hand, reduces the cost of
routing and additional expenses for the channels. It also reduces funds locked
by single nodes. However, a hub requires locking in a significant amount of
funds that increases with the number of channels and transactions.

38 Chapter 3 Layer 2 Protocols Categories and Subcategories

4State of the Art

„Users do not care about what is inside the box, as
long as the box does what they need done.

— Jef Raskin
about Human Computer Interfaces

LN is a channel payment network that aims to solve Bitcoin’s scalability problem
using off-chain transactions and has a market value of over $336 million1.

The 13,630 nodes and 51,863 payment channels make LN the largest deployed
PCN [5] that uses Bitcoin as its underlying blockchain [13]. Due to its increasing
popularity, there is a significant number of attacks on the LN in the literature that
exploit its design vulnerabilities. Some manually discovered vulnerabilities have
come to light, but today, there is no in-depth systematic analysis of the LN security.

4.1 Attacks over the LN

Of the different types of attacks on LN, one that receives the most attention is the
griefing attack, which aims to expose HTLC vulnerabilities. Such an attack intends
to block as many channels as possible to stall payments. For instance, [117] provides
a case of griefing attack where in a payoff between Alice and Bob with hops through
Charlie and Dave as in Alice Ñ Charlie Ñ Dave Ñ Bob, Bob shares with Alice

a hash H “ Hashpxq. Alice sends a payment with conditions to Charlie to lock c

coins during a time T1. Similarly, Charlie repeats the same process to lock c coins
for a time T2. In the end, Dave sends the conditional payment to Bob to lock c coins
for a time T , where T1 ą T2 ą T . Within the time T , Bob has to release x to collect
the c coins from Dave. If Bob does not follow through, Dave closes the channel
before the timeout period and retrieves the locked funds from the contract. Bob

does, however, succeed in locking c coins in every of the other payment channels for
the upcoming T time [114].

Another griefing attack is related to timing assumptions necessary for HTLCs
due to the atomic locking of funds and subsequent on-chain settlement. This process

1https://1ml.com/statistics

39

https://1ml.com/statistics

entails locking up funds from sending a transaction until the block ends. Based on
the example above, when Bob claims funds from Dave, the protocol must restrain
race conditions where the other nodes can withdraw funds if Bob is unresponsive. A
race condition would occur when Bob claims funds from Dave, but Charlie seeks to
close his channel with Dave before Dave can obtain funds from Charlie. A solution
is to use connectors [118] on payment channels to perform atomic swaps between
them that are safeguarded based on an assumption of synchrony when there is an
unresponsive counterpart.

In contrast, the attack performed on [119] overloads the payment channels
with unresolved requests (HTLCs) until their expiration time. The channel is locked
from receiving further payments if the number of unresolved requests reaches its
maximum. The authors consider three versions in which an attacker 1) blocks as
many channels with high liquidity as possible, 2) disconnects all the possible pairs of
nodes, and 3) tries to separate individual nodes from LN. As countermeasures, the
authors propose reducing route length, setting the maximum number of simultaneous
payments based on the degree of trust, enforcing fast HTLC resolution, and avoiding
loops.

Similarly, [60] reproduces a lockdown of the balance as a result of misbehavior
by nodes connected to a specific channel. In a multipath payment, an attacker blocks
intermediate nodes to give the adversary a dominant position in the network. The
attacker’s goal is to collect information from the nodes or increase the profits of a
specific gateway node. Countermeasures to the attack aim to increase the value of
the ratio of capacity blocked by the attack to the capacity required to carry it out. As
such, loops on a payment path should be forbidden or at least minimized; in that
case, the length of the cycles has to be greater than two to make the attack more
difficult. Other approaches are reducing the maximum length of a payment path
even at the cost of performance and adjusting LN parameters.

The authors of [120] present the idea of node isolation and channel exhaustion
and demonstrate how the LN is vulnerable to these attacks. So, to remove a given
number of nodes, an attacker could pursue a centrality-based strategy; instead, to
achieve high efficiency, an attacker could use a higher-ranked min-cut strategy. As
a result, these attacks can affect the network’s average payment flow and payment
success rate. However, using rate-limiting techniques in the client implementation
could reduce the number of incoming -channels and -channel volume to mitigate
node isolation attacks. In [121], the authors also determined that an attack following
the centrality-based approach has a near-optimal effectiveness. It occurs when the
attacker uses a node selection strategy based on betweenness centrality. Also, the
attack is effective for a denial-of-service (DoS) where compromised intermediary
nodes may drop or delay transactions. The attacker uses the node’s position in the

40 Chapter 4 State of the Art

routing tree based on routing algorithms. However, the effectiveness of the attacks
decreases in a less centralized network.

From the analysis performed on [122], the authors determined that LN has
strong scale-free network properties, which makes it prone to DoS attacks. In this
kind of attack, the target is specific nodes that are highly connected. An attacker
targets those nodes with high centrality; as a result, the network connectivity is
greatly affected. The research covers some strategic attacks to remove nodes based
on randomness, high degree, high centrality, and community. This last strategy
consists of extracting the network community structure and eliminating nodes
according to their degree. Some defense mechanisms are proposed, such as random
defense that arbitrarily chooses which nodes to link to the newly restocked nodes,
preferential defense similar to above but considers the degree of the nodes, and
balances defense akin to the former but considers the betweenness centrality of the
nodes. As a conclusion of this research, the high-degree attack provides the desired
effect even if the attacker does not know the entire network topology. In contrast,
balance defense provides a better counter-attack effect as new nodes connect to low
centrality nodes.

Another type of attack is the Flood & Loot attack [123] that triggers, in a
broad systemic manner, the simultaneous closure of many payment channels. This
attack overloads the blockchain with a high volume of transactions in which there
is an improper settlement of some debts; thus, the attacker could steal funds. The
authors also discovered by examining the fee estimation mechanism that an attacker
gradually keeps lowering the transaction fees the victim would subsequently use
to recover the funds. The victims can avoid this attack by correctly choosing LN
parameters such as the channel’s feerate or the most unresolved HTLCs that can
be accepted max_accepted_htlcs. Another countermeasure would be to increase
commitment_broadcast_delta, which indicates the time for a node to unilaterally
close a channel with unresolved incoming HTLCs. After a unilateral channel closure,
a node has to publish the last committed transaction and the set of successful HTLC
transactions to collect the incoming HTLCs on the Bitcoin network. Based on this
guideline, some LN implementations release the successful HTLC transaction only
after the commitment transaction has been confirmed. A straightforward solution
would be to publish instantly each of these transactions to the network.

An attacker that acts as an intermediary in a payment route attempts to steal
the fees of other nodes; such an approach is known as Wormhole attack. The
attack [124] occurs by excluding intermediate users from being part of the successful
completion of a payment. Two adversarial users on a payment path can steal the
payment fees for honest path nodes. The attack is as follows 1) commitment phase:
Each user behaves honestly by locking funds to get a reward and 2) releasing phase:

4.1 Attacks over the LN 41

As expected, honest users fulfill their HTLCs and settle their balances and profits in
their payment channels. However, one of the adversaries behaves honestly with the
next node on the path but cancels the payment with its predecessor, which continues
this behavior until reaching the other adversary. This last adversarial obtains the
releasing condition of the other adversary so it can deceive the other nodes on
the path before the last adversary to fulfill the HTLC. Anonymous multi-hop locks
(AMHLs) appear as a mitigation strategy, a cryptographic primitive for atomic swaps
that impact privacy, security, scalability, and interoperability.

Other sets of attacks are those related to anonymity; these privacy attacks
attempt to infer sensitive data about user identities. In that sense, [125] presents
several attacks to discover private data on the network, such as the funds available
in a node or the sender and receiver in a payment. All this, exploiting the publicly
available information on the network. The objective of that research is to consider
the main privacy properties of LN. One of them is the private channel in which
the nodes that create a channel and the channel information are hidden, but this
is compromised through a heuristic that determines the on-chain funding of this
channel. Another property is the third-party balance secrecy where the channel
balance remains a secret, but an attacker can use a generic method to discover the
channel balances. The on-path relationship anonymity property refers to intermediate
nodes in a payment path that should not know other nodes besides its predecessor
and successor. Revealing this data is achieved by evaluating how well an intermediary
node can deduce the sender and receiver of a payment it routes. The last property
is the off-path payment privacy that relates to nodes not participating in payment
routing and ought not to deduce any information. Based on the discovery of channel
balances, an attacker can use this ability to create snapshots of the network and then
determine where and how the balances shifted.

The analysis performed on [126] attempts to validate whether solutions to
deanonymization attacks offer reliable guarantees. To do this, the authors modeled
several anonymity solutions that, as a result, do not provide acceptable guarantees
to their users in this regard. The model obtains the probability distributions connect-
ing transactions to potential originators using Bayesian inference. This approach
revealed that an attacker could deanonymize around half of all network transactions
by colluding with a few influential nodes. A similar approach is that of [127]. But
instead of analyzing anonymity solutions, it proposes a method that thoroughly
reviews the code of the LN implementations to predict the sender and receiver in a
multi-hop payment. The attack has two phases: finding nodes accessible by a simple
loop-less path with matching timelock and creating lists of potential recipients and
senders based on these nodes. The analysis determined that payment anonymity
cannot be guaranteed substantially by the layered encryption used in onion routing
when there is a nearly predictable path selection.

42 Chapter 4 State of the Art

[128] is another approach that aims to deanonymize transaction information by
analyzing whether or not there are any vulnerabilities in gossip and probing mech-
anisms that might allow them to infer transactional information and compromise
privacy. For this, two threats are related to active and passive adversaries through
1) Probing attack: the adversary actively probes the target channel to determine the
greatest amount transferable in a certain direction by analyzing the response mes-
sages. 2) Timing attack: the adversary determines the vicinity of the routed payment
destination by passively analyzing the time deltas between delivered messages and
responses. Instead of being a practical attack vector, the probing attack is known
as a proof of concept. In contrast, in the timing attack, the distance to the original
payment source cannot be ascertained because of the nature of LN routing.

Another type of anonymity attack is related to discovering the amount of funds
a user has in its payment channel. As ascertained, probing attacks threaten users’
privacy by discovering channel balances. However, such attacks do not consider
parallel channels between nodes, yielding false results when using naive probing
algorithms. In multi-channel hops where previous probing approaches were unable
to obtain whole payment balance information, the jamming-enhanced probing model
described in [129] takes into account parallel channels. The authors claim that
different strategies can counter this attack, such as a new payment forwarding
method, unannounced channels, rebalancing, and split intra-hop payments.

In the attack carried out by [130], the goal is to reveal the channel balance by
sending multiple payments without any of them finishing and thus reduce the cost
of the attack. The success of the attack is feasible since it is difficult to detect the
attacker due to the nature of LN onion routing. First, the attacker Mike creates
a channel with a node Alice, which has a channel with another node Bob whose
balance the attacker wants to reveal. Then, Mike sends multiple payments to Bob by
increasing the amount of each one until an error in the payment arises. To avoid the
completion of the payments, Mike creates fake invoices with a random hash hpxq as
mimicking Bob’s invoice, which, in the end, denies the last hop payment. Various
countermeasures can prevent the success of this attack, such as restricting access to
debug messages or rejecting some payment requests selectively or randomly.

4.2 Performance of the LN

Throughout the existence of LN, the proposal of attacks with their countermeasures,
several protocols, and network analysis have tried to improve the network perfor-
mance. For instance, [131] aims to prove that the topology of LN is resilient to both
directed and random attacks by measuring and describing it objectively. However,

4.2 Performance of the LN 43

its approach is based on the use of discrete snapshots. As a counterpart, Flash [132]
tries to improve routing performance by using payment characteristics. However, it
ignores the measurement of the network as a whole and instead concentrates on the
local view of each node.

In [60], it addresses the potential for availability attacks to impact the bandwidth
of LN payment channels. The adversary exploits misbehaving nodes and disrupts the
victim’s role as an intermediate node in multi-hop payments. Through this attack and
with minimal economic cost, the adversary can establish a lockdown for a reasonable
time. The authors use Attack Effort Radio (AER) to measure the profitability of
the attack, which is the ratio of the capacity required to carry out the attack to
the capacity blocked by it. When the AER value increases, the attack becomes less
profitable. Thus, the likelihood of a single payment completing a route with multiple
hops lowers the AER value. To prevent the attack from being performed close to the
victim, which decreases the AER value, the best is to minimize or forbid loops on
payment routes. Also, when the length of a route increases, the AER value decreases.
A countermeasure would be to reduce the maximum route length value. However,
this value impacts network performance, as lowering it could eliminate routes for
legitimate payments.

On the other hand, most solutions attempt to provide more reliability to LN by
modifying the applicability of channel policy parameters. The proposal in [133]
focuses on a multi-path routing payment scheme and fee functions. The routing
payment scheme follows a multi-path atomic payment approach that drastically
reduces user fees while keeping the network balanced. For the fee functions, beyond
maintaining the balance on the network, they improve performance by specifying
fees as linear functions over the continuous piecewise transfer amount. Another
angle to take is [134], in which the authors determined which channel policy
parameters may affect LN functionality through privacy, anonymity, and wormhole
attacks.

As noted in that research, LN does not fully support extremely low-value trans-
actions set by htlc_minimum_msat, as it discourages micropayments. Further-
more, a channel in LN can only contain at most 483 unsettled HTLCs defined by
max_accepted_htlcs, which, with a small value, attackers can block channels. By
setting these parameters, an adversary could launch a DoS attack with a minimal
cost when the payment channels are configured with low settings for the number of
in-flight transactions and the minimum transaction amount. To avoid such attacks,
the authors propose path-selection policies as a countermeasure. However, they also
note that a downside could arise, as achieving high payment success rates requires
relying on large hubs that expose users to the risk of turning into honeypots or
working together to deanonymize other users.

44 Chapter 4 State of the Art

In LN, a payment on a route has as a conditional that it must have sufficient
funds. But when payments travel in the same direction through a single channel, it
gradually depletes and cannot support additional payments. The network’s ability
to route payments atomically is another feature that exacerbates the problem. This
scenario could be worse by using routing schemes, such as shortest-path, that
exhaust crucial payment channels and could eventually paralyze the system. A
primary mechanism to make payments is its routing protocol, where, without a
payer-payee direct channel, LN nodes process payment by receiving a routing fee.

In that regard, Spider [135] is a routing solution that achieves high-throughput
routing using a multi-path transport protocol and packetizing transactions. The
multi-path congestion control system handles all flows fairly and guarantees bal-
anced channel use. Packetization allows even large transactions to be completed
through low-capacity payment channels. To validate a protocol, transaction through-
put per unit collateral is a crucial performance indicator as it measures the number
of transactions and the value of transactions per second. In that sense, Spider’s per-
formance, compared to different algorithms and transaction arrival rates per sender,
achieves an almost flawless average success rate, surpassing all other schemes.

Above all, the authors in [133] point out that the current LN routing algorithm
is not ideal for providing optimum network performance. Authors claim that the
routing problem depends on how intermediate nodes apply fees to process payments.
This idea is consistent with the BOLT specification [136], in which the total fee
that an intermediate node charges to forward payments comes from a proportional
fee plus a fixed charge. Newly released payment routing algorithms, such as [14,
137, 132, 138, 139, 140], aim to improve LN by addressing routing failures, such
as reduced routing fees or illiquidity inbound. Additionally, these new routing
algorithms, which we cover in more detail in Section 4.4, aim to increase approval
of LN as a viable solution to the Bitcoin trilemma.

Regarding performance analysis, the research in [141] performs a systematic
measurement of LN performance using data collected over time. This measurement
evaluated payment success rates and network performance during attacks. Moreover,
payment channels were investigated in terms of their functionalities to validate
their performance. Their LN analysis begins with building an undirected graph G

by collecting data from nodes and channels. The authors ignore the direction of
the channels because they are generally unknown and change over time. Based
on the graph G, it allows studying both the network performance by analyzing the
routing efficiency and network resilience and the communication performance by
analyzing the characteristics of the pair channel. Routing analysis reveals that the
success rate of routing in LN depends on the amount of routing. Resilience analysis
reveals a strong yet weak structure. Channel research unveils more effective ways

4.2 Performance of the LN 45

to employ LN. Although these findings highlight the current issues of LN, this work
contributes to understanding the mechanics of the network and exploring the future
ramifications of LN.

4.3 Node importance metrics for the LN

The node importance metrics in the LN are crucial to understanding the network
dynamics and potential vulnerabilities. A research on the centrality of LN [142]
highlights the significance of betweenness centrality in the routing of transactions.
It also emphasizes the need for decentralization to mitigate on-path attacks and
liquidity bottlenecks [142, 143]. The empirical analyses in [144] show that although
the network has a notable degree of decentralization. However, a small number
of nodes receive a substantial share of transactions, which introduces skew and
increases centrality over time. Studies such as [143] also reveal that the network
exhibits a scale-free generative model with strategic node interactions, where a
centralized network is not optimal, and routing fees exceed marginal costs.

In another aspect, analysis of the network topology [145] shows the presence
of key patterns like bouquets, with specific nodes playing critical roles that impact
the connectivity and resilience of the network. However, removing these nodes
can cause major disconnections within the network. Furthermore, [146] addresses
the evolution of the network, demonstrating that LN has a centralized structure
with nodes that actively participate and serve as hubs. This configuration results in
the network’s vulnerability to attacks targeted from within the system, where the
removal of these core nodes may result in a significant decrease in efficiency [142].

Other studies have highlighted some metrics such as the Gini coefficient, Nakamoto
coefficient, and core-periphery structure to assess node importance [52, 147]. The
LN’s reliability in routing payments is inversely related to payment volume, with
just around one-third of destination nodes successfully reachable, indicating the
significance of well-connected nodes [30]. Additionally, the network’s structure and
distribution, including node types like Eclair, LND, and C-Lightning, play a role in
determining node importance and potential performance improvements or security
risks [31]. By analyzing these metrics, researchers can enhance the network’s effi-
ciency, security, and overall resilience, paving the way for a more robust off-chain
payment ecosystem.

On the other hand, analyzing the LN topology is essential to understanding its
intrinsic elements, particularly the process that handles the payment routes. LN
topology has been one of the most extensively analyzed topics since its launch,

46 Chapter 4 State of the Art

mainly because increasing user transactions on the Bitcoin payment network is its
principal objective. Most studies base their analysis on snapshots taken over an
extended period, such as [148] or [131], with the latter being more compact. Other
studies, as in [149, 150, 146, 131] make use of graph theory tools to model LN by
collecting basic information about the channels, such as the existence of a channel
and its capacity to make payments. Also, the approaches [148, 141, 149, 146, 120,
131] model LN as a network that is both undirected and weighted. These approaches
consider that the distribution of funds across channels is unpredictable and that its
direction constantly changes over time. Also, as pointed out in [149], as the network
size squares, the total amount of transactions increases proportionately. However,
the LN distribution is unequal because a small set of nodes holds most bitcoins.

The studies shown in Table 4.1 provide insights into the network topology with
its main features and metrics. However, they lack more depth on significant channel
properties, such as the balance on each side of a channel, the fees charged to make
payments or existing HTLCs. In fact, of all the studies mentioned so far, only [148]
models LN as a multigraph. This model considers that a pair of nodes can have
various channels. In contrast, there are approaches, such as [120], that model LN in
its most basic form through a graph that does not use the channel directions or their
weight but only its nodes and channels. Nevertheless, most studies present features
of LN centrality depending on the metrics used, such as [149, 150, 120] for degree,
[141, 149, 120, 131] for betweenness, or [141, 149, 131] for closeness.

Likewise, authors in [148, 149, 120] consider that a centralized network is the
most effective way to characterize the structure of LN, which is consistent with the
structure of a core-periphery network as defined in [149]. On the other hand, the
objective of some studies is to establish which centrality metric, beyond the usual
ones, best defines this network. For instance, through a core-periphery network as
in [149], the awaited payment success ratio and the average maximum flow as in
[120], estimated revenue based on number of unsuccessful transactions and traffic
volume as in [148], or the mean local effectiveness across all nodes as in [146].

Similarly, various metrics have been proposed to evaluate node importance, such
as the Generalized Economic Complexity Index (GENEPY) [151], the Maximum
Betweenness Improvement Problem algorithm using Advantage Actor-Critic models
[152], and the analysis of node centrality and network structure through the Undi-
rected Binary Configuration Model (UBCM) [153]. These metrics consider factors
such as node connections, routing opportunities, and network resilience. Addition-
ally, LN’s high concentration of bitcoins among a small percentage of nodes raises
concerns about network centralization and potential vulnerabilities to split attacks
[149]. Understanding and utilizing these node importance metrics are essential for
optimizing the LN’s performance, security, and scalability [134].

4.3 Node importance metrics for the LN 47

Proposal Period Nodes/Channels Metrics LN Modeled features

[131] Jan19 2344/16617

‚ Centrality: Betweenness and
Closeness

‚ Percolation threshold
‚ Local clustering coefficient

‚ Channel capacity, the sum of each
balance separately, as weight in an
undirected network.

[146]
Jan18/Jan19
12 snapshots 4189/67917

‚ The mean local efficiency
across all nodes

‚ Channel capacity as weight in an
undirected network

[150]
Jan18/Jan19
12 snapshots

mainnet
3613/23860

‚ Lower strength
‚ Median degree

‚ Channel capacity as weight in an
undirected network

[141] Apr18/Apr19 7796/41705

‚ Effective eccentricity
‚ Assortativity coefficient
‚ Centrality: Betweenness and

Closeness
‚ PageRank

‚ The sum of channels’ capacities
between a pair of nodes as weight
in an undirected graph

‚ In the event that two nodes are
not connected by an edge, the
channel capacity is used as weight.

[148]
Dec17/May19
40 snapshots 4787/N-A

‚ Revenue estimate based on
traffic volume

‚ Node’s unavailable payment
failure count

‚ Undirected weighted multigraph

[149]
Jan18/Jul19
18 snapshots 8216/122517

‚ Gini
‚ Centrality: Degree, Eigenvector,

Betweenness, and Closeness
‚ Core-periphery structure

‚ Channel capacity as weight in an
undirected network

‚ Number of user nodes
‚ Symmetric and Adjacency matrix
‚ Channel capacity
‚ Number of open channels

[120]
Oct-Nov18 and

Jan-Feb19 ˘2500/N-A

‚ Diameter and Distance
‚ Average path length
‚ Centrality: Degree and

Betweenness
‚ Scale-free networks
‚ Small-world networks
‚ Network’s node cardinality
‚ Number of reachable nodes
‚ Expected payment success ratio
‚ Average maximum flow.
‚ Average fee gain

‚ Number of user nodes and
channels

‚ Connected components

Tab. 4.1: Measurements on LN graphs

Additionally, one can follow LN mainnet evolution through independent projects
like 1ml2 that provide statistics about relevant data such as the number of nodes and
channels, capacity, average node, and channel capacity, to name a few. Based on the
available data, the majority of research analyses regard betweenness, closeness, and
degree as attributes that more effectively portray the properties of nodes. Besides
the purpose of finding out the evolutionary topology of this network, there is a
greater interest in proving whether it is resilient or not against attacks (split and
topology-based) and random failures [150, 120]. A main concern is the users’
privacy issue because of network centralization. It shows up due to the nature of
sending payments through nodes using a multi-hop algorithm. Specifically, a hub
node may be able to collect data or deny the forwarding of a transaction by either
censorship or fee increase since it can be a main hop in the payment route [154, 5].

On the other hand, the authors on [41] demonstrate that the LN network suffers
from a longer convergence delay than expected following the protocol specification.
As a result, significant failures in payment attempts occur due to delays. Node
delays arise due to obsolete routing data when calculating a route, which requires
reducing these delays to improve the throughput of routing protocols. To mitigate

2https://1ml.com/statistics?json=true

48 Chapter 4 State of the Art

https://1ml.com/statistics?json=true

such drawbacks, the authors focus on two paths: using different gossip protocols
or modifying the parameters of the current gossip protocol that uses a staggered
transmission mechanism. For the former, several approaches were used for gossip
algorithms based on flooding, global spanning trees for a broadcasting structure,
Minisketch-based set reconciliation, and inventory-based gossip.

The measurement of these approaches was not only in terms of convergence
delays but also in terms of the impact on payment attempts and bandwidth usage.
As a result, the algorithm with the highest bandwidth usage is flooding, although
its convergence delay is low. On the contrary, the spanning tree algorithm has the
lowest convergence delay and the lowest bandwidth usage. For the latter, although
each LN node implementation has its version of information dissemination protocols,
the parametrizations of those implementations significantly impact the convergence
delay. To avoid a too drastic change in the LN implementations, a modification to
the choice of parameter value for the staggered broadcast might keep the staggered
broadcast’s rate-limiting characteristics. It also addresses the significant convergence
delay.

The research in [155] takes a different view by focusing on mass exit attacks in
LN. Specifically, their interest lies in understanding how attacks affect the network
when adversaries attempt to lock funds for a period that exceeds the LN protocol’s
limit, such as in zombie attacks. Likewise, the loss of funds when sending transactions
that close channels using expired protocol states, such as in a mass double-spend
attack. LN is a scale-free network with a power-law degree distribution in the
channel distribution to nodes due to its topological characteristics [146]. In that
case, a small alliance of hostile nodes can carry out such attacks. This fact was more
relevant after the scenarios and setups used to test both attacks. As a countermeasure
to both attacks, the authors propose increasing the block size to decrease the effects
of the attacks at the cost of a decrease in decentralization.

In the mass double-spend attack, the countermeasures proposed are watchtow-
ers, mempool monitoring, and parameter modification. The watchtowers proposal
protects against fraudulent commitments when the user is offline, thus preventing
the loss of funds. The mempool monitoring proposal is a distinct watchtower strat-
egy that detects hostile transactions in the mempool whereby endeavors to send
a transaction ahead of the adversary to close the channel using a higher fee. The
last proposal, parameter modification, is to modify the value of the to_self_delay

by increasing its value to lessen the harm done by the attack. In the case of an
unfriendly channel closure, this parameter’s goal is to determine the delay or amount
of time, expressed in blocks, that the opposing side on the channel has to wait to
withdraw the funds. As a new perspective, in Chapter 5, we cover the tuning of

4.3 Node importance metrics for the LN 49

LN parameter values to evaluate the security and performance of the network and
provide recommendations for those values.

On the other hand, several contributions based their analysis on the network
disruption by choosing specific nodes to isolate. The data analysis of snapshots and
their corresponding results allowed us to ascertain that LN suffers from unequal
wealth distribution and node centrality. From each snapshot, only relevant data, such
as the number of nodes, channels, and channel capacity, are essential for analysis.
It is worth mentioning that the analysis focused on centrality measures, which, as
mentioned above, represent the properties of nodes. Therefore, in Chapter 6, we
provide a new proposal to evaluate centrality in LN using classic centrality and
alternative metrics, as well as network properties.

4.4 Routing protocols

Routing protocols on the LN serve the crucial purpose of determining the path
for off-chain transactions, ensuring they are fast, cost-efficient, and secure while
maintaining user anonymity [38, 127]. The protocols, such as those used by LN’s
predominant routing clients like LND, C-Lightning, and Eclair, play a significant role
in selecting the optimal route for multi-hop payments. For that, it has to consider
factors like path length, maximal delays, fees, and success rates of transactions [156].
However, the existing routing algorithms’ low randomness in path selection poses
challenges to user anonymity, allowing potential attackers to compromise the privacy
of senders and recipients [157]. Other challenges that face LN are finding paths with
sufficient funds, dealing with unidirectional channels, and ensuring atomic delivery
of payments, which can hinder successful transactions. To address these issues, new
routing algorithms are being proposed to enhance user anonymity by creating less
predictable transaction paths, highlighting the trade-off between anonymity and
transaction fees in the LN.

Although LN covers all aspects related to instant payments using a network of
channels, its structure is formed by distinct protocols. These protocols cover aspects
such as peer channel (establishment, usual operation, and closing of channels),
communication (P2P node and channel discovery), invoice (destination and purpose
of payment), and onion-routed packet (payment routing from an origin node to a
destiny node). We summarize in this section the main idea behind each of the most
relevant routing protocols. There are five different approaches: distributed hash
tables (Flare [14]), landmark routing (SilentWhisphers [138]), network embeddings
(SpeedyMurmurs [139]), flow-based (Spider [137] and Flash [132]), and ant behav-
ior (Ant [140]).

50 Chapter 4 State of the Art

4.4.1 Flare

The Flare [14] protocol uses distributed hash tables to find optimal routes where
nodes store routing data of neighbors within a certain hop distance. Beacon nodes
are crucial, as most nodes connect to them since they are closer to node addresses.
Connecting to a beacon allows a node to access the local view of its connected
neighbors, expanding its network outreach. In cases where a direct route is not
found, nodes collaborate to locate a path to the receiver using routing data from the
nodes closest to the receiver’s address. Flare addresses specific limitations of the LN,
such as allowing the payer to choose the payment route independently, overcoming
incomplete network views, operating efficiently in terms of time and memory, and
minimizing fees in routing decisions.

Flare solution is similar to a hybrid mobile ad-hoc network approach. It deals
with slow (payment channels) and fast-changing (node status, fund distribution)
information in LN. It is better to gather static information than dynamic, which
can be unpredictable and memory-consuming. Every node has a routing table that
contains information. The Flare algorithm interacts with nodes proactively to find
neighbors and reactively to rank and select a route, as follows:

• Route discovery (proactive part): It involves a node’s scheduled routing table
gathering available channels within the network to find paths to the payee
or beacons. This proactive part helps increase network awareness by adding
arbitrary nodes outside the payer’s immediate vicinity.

• Route selection (reactive part): This process involves a payee integrating its
routing tables with payees to determine the most likely routes. If no route is
found, the payer uses the payee’s beacons and selected nodes’ routing tables.
The algorithm ranks the routes using a cost function based on static and
dynamic information. Thus, ranking follows two steps:

– Static ranking: ranks by only using information (static) from routing
tables that yield a list of potential routes.

– Dynamic ranking: ranks based on most likely static and dynamic informa-
tion by sending an onion-wrapped polling message to each route among
the candidate ones to collect updated information.

Based on the collected data and the ranked channels, the payer selects the best route.
The algorithm uses multiple paths on the reactive step to ensure fault tolerance. If

4.4 Routing protocols 51

a node is unresponsive, an alternate path is chosen. If no viable routes exist, the
algorithm consults the beacons routing tables and repeats the process.

Routing Table: A node’s routing table comprises static data that includes its
overall capacity and information about routes to other nodes. Moreover, routing
tables store channels according to the following characteristics:

• Neighborhood map: Channels connect all nodes within the range of neighbor-
ing nodes.

• Beacon paths: Channels that construct routes to beacon nodes in the address
space near the node.

• Cached payment routes: Channels that establish connections through routes
to previously used nodes to make payment transfers.

A node could successfully find paths of shorter length when it possessed a larger
routing table and, therefore, a larger number of nodes collected in it. However, a
larger table presents constraints regarding network bandwidth and computational
power, which must be increased to maintain them.

Neighborhood Discovery: A node updates its neighborhood information by
accepting the following messages, but only from nodes that are nearby:

• NEIGHBOR_HELLO: As a signal of existence, an LN node sends out the whole
routing table.

• NEIGHBOR_UPD: The node’s routing table receives incremental changes with
each new update message.

• NEIGHBOR_RST: In case a node determines that update information is sup-
posedly lost or its routing table is corrupted, the node sends this message
that indicates its wishes to receive a fully updated version of the routing table
belonging to the recipient of the message.

• NEIGHBOR_ACK: This message is a response to the first two messages by
acknowledging that the node processed the message correctly.

A node must maintain a minimum interval between sending presence and update
messages to prevent DoS attacks. It updates its routing table in response to a
message, considering the channels within its neighborhood. Otherwise, it ignores

52 Chapter 4 State of the Art

the channels. An event-driven approach processes communication independently
with adjacent nodes; thus, a set of processing rules must be followed:

• To save bandwidth and computational resources, inactive nodes do not receive
messages.

• In connection with the synchronized view of the routing table, it transmits an
incremental update with each update message.

• There are no pending messages of presence or update since a pending message
must finish before the routing table of the node is updated.

• A presence message is sent during the creation of a channel or as a response to
a reset message.

• A timeout avoids spam messages of type reset.

• The owner of a node has the option of delivering filtered changes to the routing
table of the node.

Beacon Discovery: The purpose of beacon discovery is to expand the node’s aware-
ness of the network once it finds its neighborhood. The closest nodes in the address
space are the selected beacons for a node. Like neighborhood discovery, this mecha-
nism is based on the following messages:

• BEACON_REQ: A node receives this message, which indicates its selection as a
beacon candidate.

• BEACON_ACK: This message is a reply to the previous one and indicates that
the node agrees to be a candidate.

• BEACON_SET: A node receives this message, indicating it has been designated
as a beacon.

Beacon discovery is a technique that a node can use at any time to update the beacon
set after it has identified its neighborhood. As a result, a node searches the address.

4.4.2 SilentWhisphers

SilentWhispers [138] protocol is a novel solution for credit networks that ensures
transaction integrity and privacy by combining digital signature chains with secret-

4.4 Routing protocols 53

sharing-based multiparty computing. It is designed for cross-currency transactions
and has an inherent tolerance for inconsistencies, unlike networks like Bitcoin, Stel-
lar, and Ripple, which rely on consensus-based ledgers. However, credit networks
cannot guarantee privacy due to linkability and de-anonymization attacks. Silen-
tWhispers does not use max-flow for routing, as it does not scale for large networks
or distributed ones. Instead, it uses landmark routing, which calculates a fraction of
routes between nodes.

Landmark routing protocol differs from classical technique by being suited for
distributed environments, utilizing landmarks as intermediate nodes for route dis-
covery. Once nominated as a landmark, its information is available to the entire
network. The landmark node mechanism uses the breadth-first-search (BFS) algo-
rithm to find the shortest distance between all nodes and the landmark, referred to
as arborescence, and its inverse, anti-arborescence. The system also uses a secure
multi-party calculation protocol to compute available bandwidth for discovering
routes, protecting anonymity.

To modify the behavior of a centralized to a distributed credit network, opera-
tions such as the following must exist that execute in a distributed manner:

• chgLink and testLink: executed locally by a pair of users that share a corre-
sponding link.

• pay: has three main steps:

– Sender and receiver reconstruct, from the arborescence and counterpart
generated afterward the routing protocol is performed, the transaction
paths through the different landmarks.

– The credit available for each path depends on the least accessible credit
among the credits offered by each connection in the path.

– The sender reduces the available credit in the routes by the whole amount
that corresponds to the required transaction value.

• test: is comparable to the pay algorithm, without the stage when the sender
lowers the amount of credit accessible in the routes by the transaction value.

Trust in the network is achieved through landmarks, which act as network operators.
These landmarks calculate the lowest route value throughout transactions and
require recalculating routing information due to constantly changing credit networks.
Loose synchronization is a unique feature of users, leading to BFS arborescences

54 Chapter 4 State of the Art

and anti-arborescences as epochs. Users use their routing information during each
epoch, which is created at the start. BFS must be accurate to ensure that every user
receives routing information from every neighbor for every landmark.

The protocol ensures privacy on the credit network through the secure multi-
party computation (SMPC) protocol used by landmarks. When a link is made
between a sender and a receiver, a portion of the credit is given to the landmark,
allowing the sender to get their portion. Security is enhanced by combining long-
term and fresh keys and including timestamps in signatures to prevent rollback
attacks. The protocol for the credit network FCN maintains static information about
nodes and links using a matrix, tracking credit shifts between nodes over time.
Consequently, FCN contains a set of functionalities:

• FCHGLINK: Every pair of neighboring nodes can generate a new credit or
update the existing one on a link.

• FT EST LINK : Each node can test the credit available in its adjacent links.

• FROUT E: FNET is used as a synchronization mechanism to update the routing
information of the nodes. Thus, in order to provide transaction routes between
two nodes, it builds BFS trees (arborescence and anti-arborescence trees).

• FP AY : facilitates the pay process initiated by the sender and connects them to
the receiver through two paths created by each landmark. This functionality
communicates with intermediary nodes, which determine FP AY ’s future path.
The sender receives the computed total credit amount for each route. Nodes
can confirm or cancel transactions if the amount exceeds the link’s capacity.

• FT EST : Determines how much credit is accessible on the paths connecting
two nodes.

• FACC : Resolves disagreements on the link value between pairs of nodes.

4.4.3 SpeedyMurmurs

SpeedyMurmurs [139], built upon VOUTE [158], is a protocol that enhances the
privacy of greedy embeddings by using anonymous return addresses instead of
node coordinates. When managing weighted connections and updates, it employs
an embedding-based routing algorithm that is comparable to tree-only routing to
preserve privacy. This approach addresses SilentWhispers’ drawbacks by assigning

4.4 Routing protocols 55

unrepeatable coordinates to each node based on its position in a spanning tree,
creating a distributed, rooted spanning tree for the network.

The Path-based Transaction (PBT) network involves a greedy process for nodes
to give themselves vector coordinates, with the root node being the only one with
an empty vector. Parent nodes provide their child nodes their coordinates. When
a node that is deciding which way to route finds the path between its neighbors
and the destination node. The shortest path length between two points determines
the distance on the spanning tree between the sender and the recipient. The model
pG, wq describes the PBT network through a directed graph G “ pV, Eq, where w is
a weight function that determines the number of funds to send between adjacent
nodes over an edge. This is achieved by defining two sets for incoming and outgoing
neighbors of a node and a route through a link arrangement. The funds available on
a route are the minimum weights on the links, determining the node’s net balance.

To perform the routing operations, the protocol uses the following algorithms:

• setRoutes(L): given a set of landmarks, this algorithm sets up the routing
information that every node requires.

• setCre(c,u,v): c specifies the value of the weight function of the nodes sender
u and receiver v, which may change the routing information produced by
setRoutes.

• routePay(c,u,v): returns a group of tuples with paths and funds, where each
pair is the funds routed through a given path.

The protocol ensures value privacy when the entire transaction value cannot be
determined by the adversary. When utilizing transaction privacy in a path-based
transaction, sender privacy ensures that the adversary cannot identify the sender. The
key idea to outperform SilentWhispers is by modifying VOUTE, which contributes to:

1. Find out the existence of unidirectional links through a two-phase construction
algorithm,

2. Decide when to use maintenance that is available on demand and

3. Utilize a path discovery method to adaptively select linkages based on neighbor
coordinates and available credit. Therefore, in addition to embedding-based
routing, Speedy Murmurs implements path-splitting credit across routes before
path discovery.

56 Chapter 4 State of the Art

4.4.4 Spider

Spider [137] is a protocol that uses a flow-based algorithm to find its route. It
transmits data across the network by dividing it into blocks and transferring them
using network nodes, similar to packet-switched networks. The process aims to
balance the network by performing balanced payment flows between incoming
and outgoing transactions. The node divides payments into equal transactions
sent through routes, maintaining channel balance. Although the protocol does not
consider channel unbalancement, it eventually overcomes it through routing.

The protocol prioritizes routes that rebalance channels, replicating on-chain
transactions. Spider introduces imbalance-aware routing to maintain balanced chan-
nels, considering rate-imbalance constraints through rate control and optimization-
based routing. It also maximizes the use of payment channel funds through in-
network transaction block scheduling and congestion control. The protocol also
manages the speed at which nodes send transactions for payments. The mechanism
that Spider considers is through two types of nodes:

• Hosts: Hosts use message-oriented transport to send payments, requiring
parameters such as the amount, deadline, recipient address, and routing fee.
Transport offers two payment interfaces: atomic and non-atomic. Atomic
Multi-Path Payments (AMP) divide a payment into multiple paths or use a
single "base key" to generate keys. The latter can partially deliver the payment,
with the sender receiving notification about the amount sent by the deadline
without more transactions. The congestion control algorithm determines the
rate at which transaction blocks are sent for different payments.

• Routers: Onion routing allows routers to forward transaction blocks to re-
ceivers for user payment privacy, similar to LN. However, the router must wait
for the key and queue them when funds are insufficient. This approach can
cause longer payment delays for certain transactions. To overcome this draw-
back, services have the ability to rank payments according on size, deadlines,
and routing costs, scheduling transaction blocks accordingly.

4.4.5 Flash

Flash [132] addresses the limitations of traditional solutions like Flare, SilentWhis-
pers, and Speedy-Murmurs, which rely on dynamic and static routing. Spider, on
the other hand, uses a defined number of paths for payments to achieve higher
performance through dynamic routing. It uses a flow-based algorithm to find routes,
balancing optimal routes with probing overhead. The Flash algorithm categorizes

4.4 Routing protocols 57

transactions between small (mice) and large (elephants) values, ensuring a balance
between probing overhead and optimal routes.

Different routing strategies are used for payments to achieve a balance. Elephant
payments optimize to reduce routing fees by utilizing a modified max-flow method
to determine the maximum flow from a collection of k paths. Mice payments send
the entire payment through one of m-shortest paths, reducing probing overhead by
using precomputed paths from a routing table. Unsuccessful payments are retried
with partial payments through paths until the transaction is completed.

Careful consideration is necessary for dynamic routing implementation, espe-
cially with optimal paths that incur costly network probing. Off-chain network
channel balances change with payments, requiring probing overhead for each pay-
ment. Traditional computer networking distinguishes between elephant and mice
flows to balance optimal path and probing overhead. In mice flows, it permits static
paths for minimal probing and many paths for optimal performance in elephant
flows. This protocol finds potential routes with sufficient capacity for payment divi-
sion and lowers transaction fees for elephants by modifying the max-flow algorithm.

The protocol for mice payments uses computed paths to minimize probing. The
Ripple network has small payments, making it unlikely that mice payments over-
whelm a channel. However, elephant payments require multiple routes, improving
success and ratio. Transaction cost, including liquidity and set fees, is crucial for
minimizing fees, especially given the significant volume of elephant payments.

The protocol distinguishes between elephant and mice payments and employs
various routing algorithms. For elephants, it uses an Edmonds-Karp-modified max-
flow algorithm. To lower transaction fees, it splits payments across paths using
an optimization algorithm. A capacity matrix C records polled channel capacity,
while a residual capacity matrix C 1 records the remaining capacity after applying
the Edmonds-Karp solution. C 1 reflects the flow found by the shortest path p.

The algorithm identifies paths P with enough capacity and then seeks the
optimal solution to route across P , reducing transaction fees and data collection. A
rating function fu,v shows the fee collected by channel pu, vq, with rp representing a
partial payment and fu,vprpq the fee collected. ap

u,v determines channel usage. An
optimization algorithm minimizes fees while meeting channel capacity and payment
demand d, with a local ledger keeping track of channel changes.

To decrease probing overhead, the mice approach makes use of a small number
of precomputed paths. Every node has a routing table, and it uses Yen’s algorithm to
determine the top-m shortest paths when a new receiver is not included in the table.

58 Chapter 4 State of the Art

The routing table refreshes when the network topology G updates. When selecting
m shortest paths, a trial-and-error loop is used. The chosen path sends the entire
payment via p random path, and if successful, the protocol ends. If unsuccessful,
the sender tries a different random path to determine its capacity, sending a partial
volume payment through p. The random selection of paths helps maintain load
balance without knowing the instantaneous capacities. A payment failure occurs
when all M paths are used, resulting in unsatisfied demand.

4.4.6 Ant

The protocol [140] is inspired by ants’ coordination in obtaining food. It involves
initiating gossip messages between neighbors, which reach an intermediary node
for a discovery route. To maintain privacy, the origin and destination exchange a
secret. This secret is used to create pheromone seeds, with the first bit being the only
difference. This protocol ensures that no one is aware of the route and maintains
confidentiality.

The algorithm uses pheromone seeds to transmit seeds to neighbors until one
or more intermediate nodes receive them and verify if a matching seed exists. If
a match does exist, the intermediate node sends the data back to the predecessor
node, ensuring the seed reaches its origin and destiny. The algorithm considers
a network with bidirectional and unidirectional channels, open communication
channels, and no limitations on channel volume or fee collection. Therefore, when
sender A requires sending a payment to receiver B, the nodes perform the following
operations:

• Nodes exchange in a secure way random 128-bit numbers RpAq and RpBq.

• Nodes create pheromone seeds S by combining a bit (0-sender, 1-receiver) with
hash R “ hpRpAq"RpBqq to form SpAq “ 0"R and SpBq “ 1"R, sharing
them with neighboring nodes via open payment channels.

• The sender waits for an answer from its neighbors, indicating a path has been
found.

• The receiver waits for news from the sender that a path has been found.

Besides S, the algorithm uses a derived seed S1, which is the hash R, and the
conjugate seed S. For that, S is the inverse bit of S (0-receiver and 1-sender). On
the other hand, the nodes perform the following tasks to get a route:

4.4 Routing protocols 59

• For the routing tasks, each node reserves a fast-access memory space known
as LNmempool.

• LNmempool keeps a numbered list of neighbors together with the relevant
information about its payment channel.

• When a S arrives at a node, the node has to check if S1 is not the derived seed
of a seed already stored in LNmempool.

• If the node has not stored S1, it stores S in LNmempool with the information
of the neighbor that sent S and broadcasts S to other neighbors.

• If S1 is stored, then the node checks if S is stored as well:

– If S is stored, it adds the data about the new transmitter neighbor.

– If S is not saved, S is, hence a match results.

• When a match results, the node creates a matched seed Sm “ 0"S and
transmits it to the neighbors from whom it received S.

• The node that receives Sm broadcasts it back to the neighbors that sent him
the unmatched seeds.

• The sender receives back several matched seeds, chooses one to construct a
confirmed seed Sc “ 0"Sm and sends it back to the neighbor that sent it Sm.
The nodes broadcast back Sc to the subsequent neighbor from which it received
Sm until they reach the node that did the match. That node broadcasts back
Sc until it reaches the receiver.

• Once the sender receives confirmation from the receiver of the payment path,
it starts the conditional payment chain.

Upon completion of payment, nodes delete data in Sc and erase all data related
to matched and unmatched seeds older than threshold time τ . If no path is found
after τ , path-finding requests are erased to maintain LNmempool size. To ensure a
balance, the sender and receiver add an "amount field" to S so nodes only broadcast
to neighbors with sufficient balance in open payment channels.

Obfuscation can help maintain anonymity by using multiple transactions through
micropayments. In this process, S includes a "current fee field" set to 0 and a "maxi-
mum fee field" set to the sender’s maximum payment amount. When broadcasting

60 Chapter 4 State of the Art

S, a node checks that the current amount and fee are less than the maximum fee. If
so, it adds the fee to the current fee field. The total fee is the sum of both S’s current
fee and the matching node’s fee.

4.4 Routing protocols 61

Part II

Contributions

5LN Contract Parameters Selection

„Simplicity, carried to the extreme, becomes
elegance.

— Jon Franklin
(Computer scientist)

I n previous chapters, we provided some basic definitions of LN, the messaging
in the network, its functionality, and the basic setup of the parameters that

shape this network. From this chapter onwards, we provide our contributions to
this network. Specifically, in this chapter, we give a glimpse of how to enhance the
performance and security of the LN network.

In the context of multi-hop payments, the contract parameters not only deter-
mine the security level but also the network’s effectiveness as a payment mechanism.
Therefore, it is crucial to evaluate how tuning contract parameters impacts LN perfor-
mance and security. This assessment includes recommendations on optimal values
for these parameters, considering the trade-off between the utility of this network
and its security.

5.1 Multi-hop Route Parameters

Let us consider the next scenario, A1 Ñ A2 Ñ ¨ ¨ ¨ Ñ Ai Ñ ¨ ¨ ¨ Ñ An´1 Ñ An in
which node Ai may not proceed with the payment due to an unknown reason. In
that case, locks will arise among the hops performed between nodes A1 and Ai. The
reason comes from the policy taken by A1 that sets a time that bounds the total
locking time, known as the absolute expiration block height θ (total timelock). On
the event of an unsuccessful payment, θ sets the time to release the amount involved
on a locked payment route.

5.1.1 Time-lock parameters

As nodes route the payment to their subsequent nodes, the value of θ decreases
after each hop. The value by which the total timelock is decreased at each hop is

65

advertised by each node of LN, and is known as cltv_expiry_delta [45] (δ), i.e. δ

defines the tolerated difference in blocks specified by each node along the route. It
is worth to mention that the value of δ may differ depending on the direction that a
transfer traverses the same channel, because each node sets that value. With regard
to the target node, the min_final_cltv_expiry [159] value comes into play instead
of δ.

On the other hand, the public data released by each node allows to create a
route from a source node to a target node. The source node provides the initial
θ value, that is decreased at each hop on the route. For a payment path to be
valid, the last hop must still be able to set a timelock he agrees to, that is, at least
pθ0 ´

řn
i“2 δiq ą 0. Although, this mechanism allows to source node to limit the

duration of a locktime over a payment, a malicious node could try to lock indefinitely
the funds of intermediate nodes by setting an initial large θ. Moreover, among the
LN implementations, the δ value can be set by default to either 40 blocks or 144
blocks.

5.1.2 Limit parameters

To avoid long timeouts, nodes set their locktime_max (Tmax), the maximum time
they allow for HTLC expiration values in outgoing payments on the channel which by
default is 2016 bocks (2 weeks) [119]. In consequence, the relation θ ă Tmax must
always hold, to provide a node the option to accept a payment as an intermediate
node on that route. Otherwise, the intermediate node must refuse to route the
payment and the source node must compute a different path. Besides the maximum
hop limit (set to at most 20 hops [119]), form part of the parametric consideration
taken by a source node to create a payment route.

Despite the parameters explained above, an intermediate node goal is to make a
profit from routing payments. Whence, at the time a source node constructs a route,
it must gather specific information about fees or minimum payment amount that
each intermediate node will charge or agree to transfer during using its channel.
As part of that information, nodes propagate the minimum amount payment, in
millisatoshi, that will agree to transfer, known as htlc_minimum_msat [160]. When
a node sets the htlc_minimum_msat parameter, its value gets broadcast to the whole
network via the channel_update message. In the case of an update, it is part of the
miscellaneous updates category [41] within the channel update gossip message.

66 Chapter 5 LN Contract Parameters Selection

5.1.3 Fees related parameters

A node reveals a couple of values related to fees: fee_base_msat [159] , fee com-
prised on each HTLC as the constant amount charged by a node that performs a
transfer, and fee_proportional_millionths [159], fee that increases proportionally
per amount transferred. To calculate the fees, the amount transferred in the transac-
tion is in millisatoshi:

fee_base_msat ` ptransferred_amount ˚ fee_proportional_millionths{1000000q

(5.1)

We intend to provide recommendations on the optimum values of δ and Tmax

configuration parameters, to provide the best trade-off between the efficiency of the
network and its resilience to attacks.

Detailed explanations of the main concepts about the LN can be found in the
literature [133, 161, 5]. The BOLTs [136] also provide a more technical description
of LN specifications.

5.2 Metrics

In order to determine the most appropriate values for the parameters that we want
to assess, we define two different sets of metrics. Such metrics are somehow opposite
since the extreme values for one of the sets produce poor results in the other one, so
a trade-off between both values has to be achieved.

5.2.1 Performance

The Lightning Network (LN) is meant to perform payments between users. With
this general objective in mind, we could measure the performance of the LN based
on the possibility that two different users of the network would be able to perform
a payment between them. However, as we point out in Section 2.2.6, not all pairs
of nodes in the LN share a channel so the majority of payments between nodes are
performed through multihop routes. A may perform a payment to B if there is a
path between both users with enough funds, and the configuration parameters of
the implementations allow to do so.

We measure the performance by repeatedly picking two random nodes in the
lightning network and trying to perform a payment between them. For each chosen
pair, payments of different amounts are attempted, from 1 to 4,294,967 satoshis

5.2 Metrics 67

(the maximum payment commonly allowed in the LN implementations), tacking as
intermediate amounts all base 2 possible values between those limits. Performance
is measured, for each amount, as the percentage of successful payments from the
total number of attempts.

Notice that path availability is a feature that depends on different parameters.
First of all, it depends on the topology of the LN, defined by each of the channels
created in the network. A path must exist between A and B to allow a payment
between them. However, such basic requirement is not the only one needed. Capacity
of each channel that the payment traverses must be bigger that the payment amount
itself. In fact, even this condition is not enough since the channel capacity must
be properly distributed and the balance of each member of each channel has to be
greater than the payment (in the right direction of the payment).

Nevertheless, none of the above requirements to perform a payment between
two users depends on the parameters that we want to evaluate. An intermediate
node in a path may refuse to route a payment if the proposed HTLC expiration time
does to meet his requirements, either because it is to high (higher than his Tmax) or
because it is too low (and thus can not ensure a difference of δ with the next hop’s
HTLC expiration time). For this reason, lowering Tmax or increasing δ configuration
values in the LN clients may reduce the probability that a random payment can be
successfully performed in the network.

5.2.2 Security

Recently, security of the LN has been analyzed in different research papers and some
attacks have been presented. One of those attacks [60] may lock the funds of a
victim by performing payments through that node that take longer to finish than
needed. The attack takes advantage of the multihop ability and the possibility to
loop a single route multiple times through a single user. The severity of the attack
can be measured with two different parameters (as defined in [60]): the Attack
Effort Ratio pAERq and ∆pbq function.

Definition 5.2.1 (Attack Effort Ratio (AER)). This expression is the ratio between
the capacity needed to perform the attack and the capacity that the attack blocks,
i.e.,

AER “
Cattack

Cblocked
(5.2)

68 Chapter 5 LN Contract Parameters Selection

AER measures the profitability of the attack. The lower the AER, the more
efficient the attack is in economic terms, and thus the higher the incentive for the
adversary to perform such attack. To measure the time during which the balance is
locked, the ∆ function can be defined.

Definition 5.2.2 (∆pbq function). This function is a time based decreasing function
that measures the total capacity blocked w.r.t. the time during which the attack has
been conducted. The block generation count, b, is used as the time unit for this
function.

For instance, ∆p0q “ Cblocked since it provides the total capacity blocked at the
initial time of the attack, when no new block is yet generated. Eventually, ∆pbq “ 0
for a large b, since the blocking effectiveness of the attack decreases when more
blocks are generated.

Since the attack is performed through multiple payments, the ∆pbq function is
computed taking into account the expiration values of each payment that forms the
attack1. If we define ∆ipbq as the capacity blocked by payment i during b blocks,
then ∆pbq “

ř

i ∆ipbq, @i P attack. For comparison purposes, we define two single
value metrics that compress the ∆pbq function: Total Blocked Time and Normalized
Total Blocked Time.

Metric 1 (Total Blocked Time (TBT)). This metric represents the sum of the ∆pbq

values that defines the TBT metric of the attack:

TBT “

8
ÿ

b“0
∆pbq (5.3)

Metric 2 (Normalized TBT (ĆTBT)). This metric is defined as:

ĆTBT “
TBT

Cblocked ¨ maxtTmaxu
(5.4)

where maxtTmaxu is the maximum default value of Tmax used in all the experiments.
Therefore, 0 ă ĆTBT ď 1, and the ideal attack with ĆTBT “ 1 would be blocking
Cblocked capacity during 5,000 blocks, that is, more than 34 days.

5.3 Experiment Setup

The goal of the experiments is to evaluate the impact the values of δ and Tmax

have on both the security of the network and its performance, using the metrics
1For more details, see [60]

5.3 Experiment Setup 69

defined in Section 5.2. The experiments consist on a set of simulations where the
parameters δ and Tmax are adjusted for all the nodes in the network. Then, on the
one hand, performance is evaluated over the resulting graph (as described in Section
5.2.1) and, on the other hand, a lockdown attack [60] is simulated over the network
and the effectiveness and cost of the attack are also evaluated (using the metrics
described in Section 5.2.2).

Specifically, each of the experiments is performed in the following way:

1. A LN mainnet graph describing nodes and the existing channels is obtained
from a lightning client.

2. Balances are assigned randomly using different probability distributions, and
taking into account the capacity of each channel as described in the LN graph.

3. All nodes of the network are configured to simulate their behaviour assuming
a certain pair of (δ, Tmax) values.

4. Evaluation of the performance of the payment network (enforcing the restric-
tions given by δ and Tmax values, and taking into account existing channels
and their balances).

5. A lockdown attack is simulated over the network.

6. The cost and effectiveness of the attack is evaluated using the AER and
normalized TBT metrics.

The following sections describe the LN graph, the balances assignation procedure,
and the tested values of the (δ, Tmax) pair.

5.3.1 LN Payment Channel Graph and Balances

Our simulations will assess the effectiveness of the attack given the actual topology
of the network. We base our simulations on the attack algorithm described in [60].
The simulations are made on a snapshot of the LN running on top of the bitcoin
mainnet and taken on the 12nd of January, 2020. Both to execute an attack on the
network and to evaluate its performance, we need to complement the information
of the LN graph with additional data, specifically, the balance of each channel in the
network.

70 Chapter 5 LN Contract Parameters Selection

The LN does not publicly disclose channels’ balances: each user only knows
the balances of the channels he participates into them. One alternative to retrieve
such balances will be to execute an attack on the network (as described in [130]).
However, instead of performing such attack, we have assigned the balances of each
channel using different statistical distributions, trying to reproduce the different
scenarios that could be found in the network. In order to assign balances to channels,
we proceed in the following way: for each channel, first the balance of one of the
nodes is randomly selected using one of the selected distributions, and taking the
capacity of the channel as the maximum possible value to generate. Then, the
balance of the other node in the channel is set as the remaining balance (that is, the
capacity minus the balance). Five different distributions are used to assign balances
to channels: deterministic, uniform, normal, exponential, and beta. The deterministic
distribution always assigns half of the capacity of the channel to each of the nodes;
the normal distribution is used with µ “ 0.5 and σ “ 0.2; the exponential distribution
uses λ “ 1; the uniform distribution has any value within the interval r0, capacitys

with the same probability; and the beta distribution α “ β “ 0.25.

5.3.2 δ and Tmax Values

We have simulated the network with 16 combinations of δ and Tmax values. In
particular, we have tested all combinations of Tmax P t432, 1008, 2016, 500u and
δ P t14, 40, 144, 288u. The tested values include the ones found in the most popular
LN client implementations (see Table 5.1), as well as one additional value for each
parameter: a value of 432 (three times 144) for Tmax and a value of 288 for δ (the
double of the maximum default value in any implementation) are also tested. This
allows us to test scenarios for which the Tmax{δ ratio is less than 2, and thus restricts
multihop payments.

lnd (old) lnd (new) c-lightning eclair
Tmax 5000 5000 2016 1008

δ 144 40 14 144
Tab. 5.1: δ and Tmax values found in the most popular LN clients [162].

5.4 Experiment results

This section summarizes the results of the experiments. For each of the probability
distributions, the same experiment is repeated 10 times, and the averages of the
results are presented here.

5.4 Experiment results 71

5.4.1 Performance

Figure 5.1 shows the performance results when using a normal distribution to
generate channel balances. Each of the individual heatmaps shows the percentage
of random payments for which there are valid multihop paths for a specific amount
of satoshis.

To understand these results it is important to note that the diameter of the
graph is 7. Moreover, regardless of any restrictions imposed by the configuration
parameters of the nodes (δ and Tmax), only 21% of the payments between any two
random nodes on the graph can be executed (due to the structure of the graph itself).
For the payments that can indeed be done, the median number of hops is between 3
and 4 (depending on the specific configuration of balances), with an average around
3.75.

Configurations for (δ, Tmax) with values (288, 432), (288, 1008) and (144, 432)
have a Tmax{δ ratio lower than the graph’s diameter. Therefore, their results differ
significantly from all the other configurations.

• Regardless of the amount, payments with (δ, Tmaxq “ p288, 432) always fail.
This is because this configuration of parameters does not allow any multihop
route, and thus payments may succeed only if two randomly selected nodes
have a direct channel.

• Configurations (288, 1008) and (144, 432) have a Tmax{δ ratio of 3.5 and 3,
respectively. These values are close to the median of the paths found. This
is why there is a performance decay when using these two configurations
(with respect to those that have a ratio higher than the graph’s diameter). As
expected, the percentage of successful payments decreases with the increase
of the payment amount, since available balances limit payments.

• All other configurations have similar performance, regardless of the specific
pδ, Tmaxq values. Again, the percentage of successful payments decreases with
the increase of the payment amount, going from 21% for lower amounts, down
to 1.9% for payments of the maximum amount.

For space constraints, we have not included the results for the other four dis-
tributions. However, the results are very similar, and the same conclusions can be
extrapolated to them.

72 Chapter 5 LN Contract Parameters Selection

Fig. 5.1: Performance of the payment for different pairs of pδ, Tmaxq [162].

5.4.2 Security

Table 5.2 shows the values of the metrics used to evaluate security (AER and the
normalized TBT , ĆTBT) again for instances where balances were assigned using
a normal distribution. The general trend that can be observed is that increasing δ

and/or decreasing Tmax makes the attack more difficult for the attacker. Specifically,
increasing δ and/or decreasing Tmax results in:

5.4 Experiment results 73

• higher (or, on some specific configurations, equal) AER values. This implies
the attacker needs to be in possession of more bitcoins in order to perform
the attack, because more capacity in the channels the attacker creates for the
attack is needed. The bitcoins spent in capacity can be recovered once the
attack is finished, but the attacker must have them as long as the attack lasts.

• more (or, on some specific configurations, equal) channels needed. This implies
a higher economic cost for the attacker which needs to pay more bitcoins in
fees to open those channels. The attacker needs to spend these bitcoins (that
is, he does not get the bitcoins back once the attack has finished).

• lower (or, on some specific configurations, equal) ĆTBT values, which means
the attacker is able to block the victim during shorter amounts of time.

Tmax δ EAR Blocked capacity Channels needed ĆTBT

432 14 0.138 95.92% 34.2 0.04
432 40 0.274 95.84% 66.9 0.02
432 144 0.840 75.88% 179.0 0.02
432 288 0.000 0.00% 0.0 0.00

1008 14 0.138 95.92% 34.2 0.15
1008 40 0.138 95.92% 34.2 0.07
1008 144 0.528 95.88% 127.9 0.08
1008 288 0.890 85.34% 201.5 0.07
2016 14 0.138 95.92% 34.2 0.34
2016 40 0.138 95.92% 34.2 0.26
2016 144 0.187 95.98% 46.4 0.06
2016 288 0.528 95.88% 127.9 0.15
5000 14 0.138 95.92% 34.2 0.92
5000 40 0.138 95.92% 34.2 0.83
5000 144 0.138 95.92% 34.2 0.51
5000 288 0.154 95.92% 38.1 0.17

Tab. 5.2: Attack metrics results for different tested parameters with a normal distribution
balance [162].

There are a couple of exceptions to the previous tendencies. On the one hand, for
the configuration pδ, Tmaxq “ p288, 432q the attacker is not able to block the victim,
because no multihop payments can be done with these parameters. Therefore, the
attack has no cost for the attacker (since no capacity is blocked). On the other hand,
for pδ, Tmaxq “ p144, 2016q the tendency for ĆTBT deviates from the rest. The reason
is that the higher amount of resources spent by the attacker (more channels and
capacity) allow for longer blocking times.

74 Chapter 5 LN Contract Parameters Selection

5.5 Analysis of LN Contract Parameters Selection

From the perspective of the performance of the payment network, any pδ, Tmaxq

configuration except for the three most restrictive ones ((288, 432), (288, 1008)
and (144, 432)) offers similar results. Therefore, we should focus on the security
properties offered by these similar configurations in order to choose the best pair of
values without affecting the performance of the payment network.

Depending on the security metric chosen to evaluate the success of the attack,
different pairs of values could be chosen. If the focus is on minimizing the time the
attacker is able to lock funds, then (40, 432) and (144, 432) are the best choices,
since they both minimize ĆTBT . (144, 432) makes the attack more expensive for
the attacker (higher AER and number of channels needed) and less successful (less
capacity blocked), however, such configuration results in a poor performance as we
show in Figure 5.1. However, attacks with low ĆTBT are not much of a burdensome
for the attacker, since a new attack can be launched again once the funds are released
from a previous attack.

Therefore, one may want to hinder the attacker by increasing the economical
cost of the attack, both in terms of fees paid to open channels and capacity available
in his channels that has to be used to perform the attack. Then, if the focus is on
maximizing the cost of the attack, setting Tmax “ 1008 and δ “ 288 is the best
choice: it provides the highest AER and number of channels needed for the attack,
while blocking 85% of the victim’s capacity and keeping a low ĆTBT (0.07). Setting
Tmax “ 432 and δ “ 144 is also a good choice, since with a slight decrease in AER,
the capacity blocked decreases by 10 percent points and the ĆTBT decreases to the
minimum, 0.02.

5.6 Conclusions

This study aims to offer security while maintaining network usability among LN
users by focusing on LN implementations. Specifications guide client configuration
by recommending parameter values, which can be customized by the client user. Our
study provides an analytical approach to find optimal values for cltv_expiry_delta

and locktime_max, which enforce the time lock mechanism for commitment trans-
actions and limit the maximum locktime value used in commitment transactions.

The metrics AER and ĆTBT help us to study network performance and security.
The experiments reveal that the parameters currently used in main LN implementa-
tions are not optimal regarding performance and security.

5.5 Analysis of LN Contract Parameters Selection 75

Moreover, the results showed that the optimal combination for Tmax and δ

values is 432 and 40, respectively. These values represent a worst-case scenario for
attackers but preserve the same payment success rate. Modifying these parameter
values impacts network performance and security by reducing HTLC timeouts and
preventing lockdown attacks that lock victim funds on the network.

76 Chapter 5 LN Contract Parameters Selection

6Node centrality

„BitCoin is actually an exploit against network
complexity. Not financial networks, or computer
networks, or social networks. Networks
themselves.

— Dan Kaminsky
(Internet security researcher)

B y selecting the most suitable values for LN parameters δ and Tmax, we evaluate
how their tuning as contract parameters affects the performance and security

of LN. However, this analysis did not give us a broad view of its topology, which is
equally crucial to understanding network performance, privacy, and security. Besides
the effect that LN topology has on being able to route payments through nodes
successfully, it also affects the privacy of payments and their resilience towards
attacks and random failures.

Since LN is a PCN that routes payments made by nodes through Bitcoin, a
suitable question is to what extent the untrusted and decentralized blockchain
model extends to the LN network. A set of studies [146, 150, 148] attempt to
analyze the network through conventional graph theory centrality metrics. However,
these studies fail to capture the network’s semantics since they neglect to consider
LN properties or payment restrictions. In this chapter, we present an extended
model for the LN that goes beyond channel capacity to consider a variety of LN
properties. We provide a more comprehensive assessment of node centrality in
the LN by expanding the analysis to include alternative metrics. We overcome the
shortcomings of conventional metrics and improve our knowledge of the relevance
of nodes in the network. Our approach goes from the perspective of the theoretical
to the practical by considering several centrality metrics whose analysis can be
extrapolated to any PCN.

Accordingly, we extend the LN topology analysis of previous studies [131, 141,
149, 120] that consider centrality metrics such as degree, betweenness, and closeness
with channel capacity as weights in an undirected network. In our analysis, we
include LN properties such as channel parameters (fee, capacity, and balance),
contracts (pending HTLCs), and additional metrics (Opsahl, strength, and current

77

flow betweenness). As a result, we can offer an in-depth analysis of which metrics
are best suited to define LN network centrality. Therefore, it is the basic properties of
LN on which we apply our theoretical approach, which is novel because it delves into
the semantics of the specific properties of a PCN. In the case of LN, these properties
are the capacity and balance of a channel and the fee related to payment processing.

The following sections present a broad model for LN that includes not only the
channel parameters as fee, capacity, and balance but also other policy parameters, all
of which represent LN instances. Based on this model, we discuss the semantics of
evaluating the LN using traditional centrality metrics and describe how to evaluate
LN properties using them. Furthermore, we highlight the limitations of using classical
centrality metrics to assess LN and provide insights on how to use them effectively.
Thus, we provide alternative metrics that better suit the evaluation of LN centrality.
Additionally, we provide empirical analysis of the LN centrality over a two-year
period, which can help better understand the network’s behavior and performance.

6.1 A model for the Bitcoin LN

Several literature papers (see Section 4.3 for more details) model Bitcoin LN via
graph theory tools. However, all the proposals reviewed are based mainly on very
general information about the channels, such as their mere existence between two
users and their capacity. But, they rule out other more subtle information that greatly
affects the flow of money between users, such as: how both parts of the channel
divide the capacity of a channel (i.e., their balance in the channel), or how the
routing and HTLC apply the fees.

In this section, we propose a finer model to represent a snapshot1 of the LN.
We model the LN as two graphs G1 and G2, together with two functions, fV and
fE , that map elements of one graph with elements of the other graph. G1 is an
undirected graph and G2 is a directed graph. The rationale behind this decision is
that there are properties of the channels that are better modeled with an undirected
graph, but other properties are better represented with a directed one. Having thus
two graphs, allows us to create a rich representation of the network. Moreover,
this double representation allows us to apply graph-theoretic metrics to measure
the nodes of the network in a significant way. Next, we describe the details of the
two graphs that represent the LN using the proposed model, details summarized in
Table 6.1.

1We define a snapshot of the LN as the status of the payment channels that conform the network at a
given instant of time.

78 Chapter 6 Node centrality

Graph G1 G2

Notation G1 “ pV1, E1q

eij “ eji “ pvi, vjq “ pvj , viq P E1

G2 “ pV2, E2q

eij “ pvi, vjq P E2

Type Undirected multigraph Directed multigraph

Nodes denote Public keys Public keys

Edge identifier Funding transaction outpoint Source node public key
Funding transaction outpoint

Edge properties Capacity pCijq Available pbijq and Blocked phijq balance
Minimum HTLC amount pmijq

Fee per byte pfijq

Edges denote Open channels Current state of open channels

Data from Bitcoin blockchain Off-chain transactions
P2P messages

Tab. 6.1: An overview of the model’s definition [163].

Let G1 “ pV1, E1q be an undirected graph, that contains static channel infor-
mation that can be extracted from the blockchain.

Nodes vi P V1 represent users of the LN identified by their public keys. Edges
eij P E1 represent open channels between those users. The outpoint (transaction
identifier and output index) that funds the channel uniquely identifies each edge.

The graph G1 may be a multigraph because many different channels can be
opened between a pair of nodes. Moreover, the graph is indeed undirected, because
the outpoint that defines is a 2-out-of-2 multisig output, where none of the two
public keys has any advantage nor privileged position, and thus both participants
have the same role in the relationship.

Edges encode channel information that can be extracted from the funding trans-
action, e.g., the capacity of the channel. We use the double subindex notation in an
edge eij to indicate the index of each incident vertex of the edge, that is, eij “ pvi, vjq.
Furthermore, since G1 is an undirected graph, eij “ eji “ pvi, vjq “ pvj , viq. Note
that, since G1 is a multigraph, we add an index to identify the multiple edges of
the same two nodes, epijqk

“ eijk. For simplicity, we omit this third index from the
notation whenever it is not specifically needed. We denote by cij the capacity of
edge eij , with cpeijq “ cij .

Let G2 “ pV2, E2q be a directed graph, that contains dynamic channel infor-
mation that is reflected in off-chain commitment transactions and P2P LN messages
exchanged between nodes.

6.1 A model for the Bitcoin LN 79

The set of nodes vi P V2 represents public keys and is the same set of nodes of
G1, that is V2 “ V1. The set of edges eij P E2 represents the current state of the
channels between those public keys. Each edge is uniquely identified by the outpoint
(transaction identifier and output index) that funds the channel and the source node
they refer to. The graph G2 may be a multidigraph because many different channels
can be opened between a pair of nodes2.

Edges in E2 encode more detailed information about the channel than data
stored in the edges of E1. The extraction of such information does not come from
on-chain transactions but the commitment transactions exchanged from the LN
nodes and also from the LN P2P messages that the nodes broadcast. Regarding
commitment transactions, we can classify their outputs3 in two types, depending
on which of the two parties is the receiver. Therefore, we model each pair of
commitment transactions as two directed edges: the edge eij “ pvi, vjq from vi to
vj will encode vi’s balance in the channel and offered HTLCs and, reciprocally, the
edge eji “ pvj , viq from vj to vi will encode vj ’s balance in the channel and offered
HTLCs. We denote by bij the balance of edge eij , bpeijq “ bij; and by hij the balance
blocked in HTLC of edge eij , hpeijq “ hij .

Furthermore, edges in E2 also encode additional information extracted from
channel policies sent within the LN P2P network, such as the fee that is charged to
use the channel, fij , measured in satoshis per byte, and the minimum amount of
satoshis that can be routed through that channel, mij .

Finally, we also define two functions, fV and fE, for mapping nodes and edges
between G1 and G2. Let fV : V2 Ñ V1 be a bijective function that maps nodes
of the graph G2 with nodes of the graph G1. Let fE : E2 Ñ E1 be a noninjective
surjective function that maps the edges of graph G2 with the edges of graph G1.

Note that, regarding the defined model for the LN presented so far, the following
restrictions must be preserved:

1. The set of nodes of both graphs is the same, that is, V1 “ V2. So fV is the
identity function.

2. Each element e P E2 is mapped to exactly one element in E1 (derived from the
function definition).

2Again, since G2 is a multidigraph, we add an index to identify multiple edges of the same two nodes,
epijqk

“ eijk. For simplicity, again, we omit this third index from the notation whenever it is not
specifically needed.

3Commitment transactions have four types of outputs which are: local outputs, remote outputs,
received HTLC, and offered HTLC.

80 Chapter 6 Node centrality

That is, for each eij “ pvi, vjq P E2 with fV pviq “ vi and fV pvjq “ vj , there
exists one edge eij “ pvi, vjq P E1.

3. Each element e P E1 is the image of exactly two elements in E2.

That is, for each eij “ pvi, vjq P E1 with fV pviq “ vi and fV pvjq “ vj , there
exists exactly two edges in E2, eij and eji. Therefore, |E2| “ 2 ¨ |E1|.

4. Let eij “ pvi, vjq and eji “ pvj , viq be the edges of E2, the balances and pending
HTLC values must be consistent with the total capacity channel, so it must
hold that:

bij ` hij ` bji ` hji “ cij “ cji. (6.1)

To sum up, Figure 6.1 shows a toy example of an LN snapshot with 3 nodes and
2 channels using the proposed model.

Fig. 6.1: The LN data model

6.2 A discussion on classic centrality metrics
applied to LN nodes

In this section, we review different classical centrality measures proposed in the
field of graph theory. As well, we analyze to what extent they preserve the centrality
meaning when they are computed over a graph that models a payment network, like
the LN.

6.2 A discussion on classic centrality metrics applied to LN nodes 81

6.2.1 Symmetric graphs

In his seminal paper laying the foundations of centrality metrics in social net-
works [164], Freeman used the star graph as a starting point to guide his exposition.
In a star graph (Figure 6.2), intuition leaves no doubt as to which node is more
central. Furthermore, this node is not only the center point of the star graph, but
also the most central position imaginable on any graph of a similar size order. But
why is this node central? It has three structural properties: it has the highest degree
(i.e., the most number of neighbors), it is in the shortest paths between other nodes,
and its distance to other nodes is minimal. These three properties are the basis of
the three most basic centrality metrics for nodes in networks: degree, betweenness,
and closeness centralities.

Fig. 6.2: A basic star graph

Given a graph of n nodes with adjacency matrix Anˆn “ raijs, where aij is a
binary value denoting whether there exists an edge between nodes vi and vj , degree
centrality is defined as the number of neighbors of a node:

CDpviq “ degpviq “

n
ÿ

j“1
aij . (6.2)

The shortest path between two nodes is a path of the shortest length. Let σst be
the number of the shortest paths between s and t; and σstpvq the number of those
paths that pass through v. Then, betweenness centrality is defined as the fraction of
the shortest paths between all pairs of nodes of the graph that pass through v:

CBpvq “
ÿ

s‰v‰tPV

σstpvq

σst
. (6.3)

82 Chapter 6 Node centrality

The distance d between two nodes in a graph is the length of the shortest path
between them. Closeness centrality is defined as the inverse of the sum of distances
between one node and all the other nodes of the graph:

CCpviq “
1

ř

jPr1,ns,j‰i dpvi, vjq
. (6.4)

But to what extent are these centrality metrics relevant to evaluate nodes in
the LN? Indeed, a node with a high degree is a node with lots of channels, which
provides it with robustness (since it does not rely on a single or a few channels to be
able to operate in the network). Moreover, a high degree also implies direct channels
with more other nodes in the network and thus independence. On the other hand, a
node with high betweenness is a node that is in the middle of payments between
other nodes, in case the shortest path is used to choose payment routes. This allows
it to have some degree of control and information about those payments (e.g., it
knows the amount, HTLC values to estimate the overall number of hops, can decline
participation, can delay payments), and also to obtain revenue from them in the
form of fees. Finally, a node with high closeness may benefit from making payments
with fewer hops, which may have consequences on both the fees to pay and the
privacy of its payments.

6.2.2 Symmetric weighted graphs (capacity)

However, these three basic metrics assume all channels are equally important (have
the same contribution) to the importance of the node. Nonetheless, this is hardly the
case: lightning channels have a capacity, that limits the amount of bitcoins a payment
can move through them. For instance, take as an example the weighted double
star graph shown in Figure 6.3. To create it, one could just add v6 to the simple
star graph (Figure 6.2) and connect it to v2, v3, v4 and v5; and where channels’
capacity is represented as edge weights. Now, one could argue that node v6 is more
central than node v1, since, although they both have exactly four channels and are
in the same structural position on the graph, node v6 can make payments of a higher
amount in all of its channels.

Degree, betweenness, and closeness centralities have also been defined to take
into consideration edge weights. Newman [165] and Barrat et al. [166] extends

6.2 A discussion on classic centrality metrics applied to LN nodes 83

Fig. 6.3: A weighted double star graph

degree centrality to consider weights, where the strength of a node is defined as
the sum of the weights of its connections (its incident edges):

Cw
Dpviq “ spviq “

n
ÿ

j“1
aijwij . (6.5)

where wij is the weight of the edge between nodes vi and vj .

Brandes [167] and Newman [165] generalize the centralities of betweenness
and closeness for weighted graphs using the sum of the weights of the edges of a
path to define its length. Therefore, the shortest path between two nodes is not the
path using the least number of hops, but the one that has the least sum of weights,
and distance between nodes is defined in the same terms (i.e., the sum of weights of
the edges in the shortest paths between them):

Cw
Bpvq “

ÿ

s‰v‰tPV

σw
stpvq

σw
st

, (6.6)

Cw
C pvq “

1
ř

u‰vPV dwpv, uq
(6.7)

where dw and σw are distance and number of the shortest paths taking into
account the sum of weights as the length of paths.

Nodes CD CB CC Cw
D Cw

B Cw
C C

1{w
D C

1{w
B C

1{w
C

v1 4 3 0.83 4 6 0.33 4 0 0.98
v2..5 2 0.25 0.625 11 0.25 0.29 1.1 0.25 2.94
v6 4 3 0.83 40 0 0.09 0.4 6 3.3

Tab. 6.2: Centrality measures for a double-star network with weights [163] (Figure 6.3).

Getting back to our example (Figure 6.3), node v6 has now a higher weighted
degree centrality (Cw

D) than node v1 (40 and 4, respectively). Yet a problem arises

84 Chapter 6 Node centrality

when applying weighted betweenness (Cw
B) and closeness (Cw

C) centralities to evalu-
ate the centrality of LN nodes. In their standard formulation, weight is interpreted
as the cost of using that edge, whereas capacity is not the cost but the maximum
amount that can be transacted through the channel. As a consequence, both be-
tweenness and closeness centralities are higher for v1 than for v6, since all shortest
paths between other nodes always pass through v1, and v1 has a lower distance to
all other nodes in the graph. To circumvent this problem, some authors have used
the multiplicative inverse of capacity as edges’ weight [146] when computing be-
tweenness and closeness centralities. With this definition, v6 has now more weighted
betweenness centrality than v1 (6 and 0, respectively); and also higher weighted
closeness (3.3 and 0.98, respectively), as shown in Table 6.2.

Again, it is important to understand what these metrics evaluate concerning LN
nodes. Nodes with high weighted degree centrality are nodes that have a lot of ca-
pacity to operate within the network: they can potentially transact a higher amount.
However, in contrast with unweighted high degree nodes, they will not always have
strong robustness or independence, since Cw

D does not capture how this weight is
distributed (i.e., it can be concentrated in a single channel). Section 6.2.2 explains
how can we incorporate both the strength and the degree into the evaluation.

Note, also, that a node with high weighted betweenness centrality is a node
that is in the middle of payments between other nodes that choose the shortest paths
with higher capacities as payment routes. We argue that this is a very artificial use of
the metric, that does not capture how payment networks operate. On the one hand,
the restriction that only the path with the highest capacity (i.e., the lowest cost using
the inverse of the capacity as weight) is going to be used does not make much sense
in a payment network: any channel that has enough balance is valid, and the best
path will be chosen based on other considerations such as fees. Sections 6.2.4 and II
will explain how to deal with this. On the other hand, this does not take into account
other restrictions in the routes, covered in Section 6.3.

Analogously, weighted closeness is again not very useful since it does not make
sense to consider capacity as a cost or distance between nodes. Sections 6.2.4 will
explain another approach that can better capture nodes’ closeness.

Weight and strength - Node strength as defined in the previous section only
takes into account the total engagement of the node, yet obliterates how is this
involvement distributed across different connections. Therefore, although node
strength is presented as a generalization of node degree for weighted networks,
it fails to capture the original meaning of degree. Opsahl[168] et al. proposed a
different formulation to combine both degree and strength:

6.2 A discussion on classic centrality metrics applied to LN nodes 85

Cwβ
D pviq “ degpviq

p1´βq ¨ spviq
β “ CDpviq

p1´βq ¨ Cw
Dpviq

β. (6.8)

This formulation depends on the parameter β to tune the contribution of the
number of connections and the strength of the node into the centrality score: if β is
0, Cwβ

D is equal to the node degree; if β is 1, Cwβ
D is the node strength as defined

by Newman; values of β between 0 and 1 provide higher Cwβ
D for nodes with a high

degree, whereas values of β ą 1 provide higher Cwβ
D for nodes with a lower degree.

Fig. 6.4: Example of two identically weighted and strength nodes.

However, when evaluating the robustness of a node or ability to make payments
in the network, Cwβ

D still falls short. For instance, if we take a graph like the
one shown in Figure 6.4, nodes v1 and v6 have the same degree and strength.
Consequently, regardless of the β value chosen, Cwβ

D is always the same for both
nodes. However, intuitively node v1 is better connected to the network, because of
how its strength is distributed across its connections. An attack (or failure) of any of
his channels would just affect 1/4 of its capacity. On the contrary, a directed attack
over the v2v6 channel will strongly affect v6, making him lose most of its capacity to
operate with the network. A variant of the Opsahl metric can take this into account:

Cwα
D pviq “

n
ÿ

j“1
aijwα

ij . (6.9)

This measure is indeed able to capture the differences between v1 and v6

(Table 6.3).

Again, if α is 0, Cwα
D is equal to the node degree; if α is 1, Cwα

D is the node
strength as defined by Newman. For nodes with the same strength and degree,
values of α between 0 and 1 provide higher Cwα

D for nodes with strength equally
divided between channels, whereas values of α ą 1 provide higher Cwα

D for nodes

86 Chapter 6 Node centrality

Nodes CD s Cwβ
D Cwα

D

β “ 0 β “ 0.25 β “ 0.9 β “ 0.95 β “ 1 β “ 1.25 α “ 0 α “ 0.25 α “ 0.9 α “ 0.95 α “ 1 α “ 1.25

v1 4 40 4 7.11 31.77 35.65 40 71.13 4 7.11 31.77 35.65 40 71.13
v2 2 41 2 4.26 30.31 35.25 41 87.24 2 4.14 29.93 35.02 41 90.93

v3..5 2 13 2 3.19 10.78 11.84 13 20.76 2 3.09 10.63 11.75 13 21.73
v6 4 40 4 7.11 31.77 35.65 40 71.13 4 6.31 30.05 34.63 40 84.99

Tab. 6.3: Centrality metrics for graph of two identically weighted and strength nodes[163] (Fig-
ure 6.4).

with strength concentrated in the same (or a small number of) channels (cf. v1 and
v6).

6.2.3 Directed weighted graphs (balance)

All the metrics presented so far are computed over the capacity of the nodes’ channels,
and thus provide information about the possible payments the node may be involved
with. Taking into account the model presented in the previous section, all of them
can be computed over graph G1. However, they fail to capture another important
detail of payment networks, the current balances of nodes in the channel. That is,
at a certain instant of time, these measures do not take into account how is the
capacity of the channel distributed between the two ends of the channel to evaluate
its centrality. If we consider, for instance, the network from Figure 6.4, the channel
between v1 and v2 has a capacity of 10. However, the ability of both nodes to operate
within the network will not be limited by this capacity, but by the balance that each
of them has at that moment. If all the capacity is on v2’s side, v1 will not be able to
make payments (or route outgoing payments) through that channel, and thus its
strength will be reduced from 40 to 30 (assuming he has all the possible balance in
the other three channels).

Channel balances may be represented with a direct graph, where the weight of
the edges represents the balance the source node has in a channel, which corresponds
to graph G2 of our model presented in the previous section. The sum of the two
edges (one in each direction) that represent a channel is thus at most the capacity
of that channel. Using this representation, we can use the directed versions of the
metrics presented above to evaluate the centrality of a node.

Figure 6.5 represents a possible distribution of balances for the network shown
in Figure 6.3. The edges with a balance of zero have not been drawn for readability.
Most channels are completely unbalanced, with all the capacity available in just one
direction. The exception is the channel between nodes v2 and v6, whose capacity is
split equally between both nodes.

6.2 A discussion on classic centrality metrics applied to LN nodes 87

Fig. 6.5: A directed double star graph.

Degree-based centrality metrics over directed graphs distinguish between out-
going and incoming edges. For instance, indegree and outdegree (CD´ and CD` ,
respectively) take into account the number of incoming or outgoing edges, respec-
tively; and strength is also computed separately for incoming and outgoing edges.
Metrics based on paths consider only those paths that are valid considering the
direction of the edges.

Table 6.4 summarizes the centrality metrics for the directed graph example
shown in Figure 6.5.

Nodes CD` CD´ CB CC Cw
D` Cw

D´ Cw
B Cw

C

v1 2 2 2 0.75 2 2 6 0.37
v2 1 2 1 0.67 5 6 3 0.1
v3 0 2 0 0 0 11 0 0

v4..5 2 0 0 0.67 11 0 0 0.33
v6 2 3 3 1 15 25 1 0.13

Tab. 6.4: Metrics of Centrality for a directed network with weights [163] (Figure 6.5).

6.2.4 Symmetric weighted graphs (fee)

As we have seen in Section 6.2.2, weighted betweenness and closeness centralities
using capacity as weight are not able to capture the importance of a node, because
these metrics are based on shortest paths and distances taking into account channel
capacity as a cost.

Instead, using channel fees as weight is more representative of what rational
nodes may implement since fees are indeed a cost of using the channel. Therefore,
nodes with a high weighted betweenness centrality with fees as the weight will be in
the middle of payments between other nodes that try to optimize the cost of their
payments by choosing the cheapest routes. Moreover, nodes with a high weighted
closeness centrality with fees as weigh will be nodes that can make payments with
the lowest fees.

88 Chapter 6 Node centrality

However, note that this approach, using a simple symmetric graph constructed
by channels, has also a problem: channels can only be used if they have enough
capacity and balance in the desired direction. Furthermore, dealing with payments
in the LN, additional restrictions also apply, as we will explain in Section 6.3.

6.2.5 Flow based centrality metrics

One of the problems of using betweenness centrality as defined in the previous
section is that it is based on shortest paths. Even when considering weight, nodes
that may offer connectivity to the network, but that are not found in the middle of
these shortest paths are not considered to have any influence.

Let’s consider again nodes v1 and v6 from 6.3 and note that betweenness
centrality (C

1{w
B) is 0 for v1 and 6 for v6 (Table 6.2). These values may seem

to indicate that node v1 will never be in the middle of payments between other
nodes. However, in a payment channel network, this may not be the case: with
the information, we currently have in the graph, payments of less than or equal
to 1 would have no reason to prefer to be routed through node v6 over node v1.
Flow-based centrality metrics allow overcoming this limitation.

I Flow networks

Flow networks are used to model different problems, from pipes moving water to
electrical or information networks.

A flow network is a directed graph that has a nonnegative capacity in each edge
(c : V ˆ V Ñ Rě0). Nonexistent edges are assumed to have a capacity of 0. A flow
network has two special nodes: a source s and a sink t.

A flow is defined in a flow network as a function that assigns a real number f to
each pair of nodes (f : V ˆ V Ñ Rě0), such that:

1. for all u, v P V , 0 ď fpu, vq ď cpu, vq , and

2. for all u P V ´ ts, tu,
ř

vPV fpv, uq “
ř

vPV fpu, vq.

That is, at each edge the flow f must be lower or equal than the capacity c

(capacity constraint), and the flow must be preserved at each node except for the
source and the sink (flow conservation constraint).

6.2 A discussion on classic centrality metrics applied to LN nodes 89

The value |f | of a flow is:

|f | “
ÿ

vPV

fps, vq ´
ÿ

vPV

fpv, sq. (6.10)

Given a flow network, a source, and a sink, the maximum-flow problem consists
in finding flow f of maximum value |f |. Let f 1

st be a flow of maximum value between
nodes s and t. Let f 1

stpvq be a flow of maximum value between nodes s and t passing
through node v.

II Betweenness centrality based on flow

Freeman [169] extended the betweenness centrality metric based on flow, where a
node is more central to the extent where more flow between pairs of other nodes
in the graph depends on it. That is, to define the flow centrality of a node v is
through the amount of flow between any pair of nodes in the graph that needs to
pass through v divided by the sum of the maximum flow values of any pair of nodes
in the graph:

CF pvq “

ř

s‰v‰tPV |f 1|stpvq
ř

s‰v‰tPV |f 1|st
. (6.11)

Table 6.5 shows the flow centrality measure for the example graph from Fig-
ure 6.3. In contrast with traditional betweenness centrality measures based on
weight and its inverse (Cw

B and C
1{w
B , respectively), flow based betweenness central-

ity (CF) is able to capture the ability of nodes to be in the middle of payment paths.
Node v6 is more central than v1, to the extent that payments between other pairs of
nodes will be able to be of a higher amount than payments through v1. However,
node v1 may still be in the middle of payments between other nodes, given that it
has a tenth of the CF of v6. In contrast to C

1{w
B , where the node is not considered to

be on the shortest paths and is therefore assigned a centrality of 0).

Nodes Cw
B C

1{w
B CF

v1 6.00 0.00 0.090909
v2..5 0.25 0.25 0.048780
v6 0.00 6.00 0.878049

Tab. 6.5: Weighted double-star graph’s centrality based on Flow [163] (Figure 6.3).

Flow based betweenness centrality allows to measure the importance of a node
in a payment network to the extent it is in the middle of payments between other

90 Chapter 6 Node centrality

pairs of nodes (and therefore collect metadata about those payments and potentially
profit from them).

III Betweenness centrality based on current flow

Brandes [170] proposes a centrality metric based on variations of betweenness
and closeness, but with a different model in which information spreads efficiently
similar to electrical current. The proposed metric overcomes the limitations related
to execution times and space requirements that arise with computing large net-
works. Regardless of the approaches taken in flow betweenness, about including
nongeodetic paths in a node’s total score and measuring the amount of flow that
passes through a node, its paths must be optimized to achieve their maximum value,
and thus, solve real situations in which information moves randomly.

A similar approach taken by Newman [171] measures betweenness centrality
based on random walks, same as current-flow betweenness (CCF) which measures
the portion of current flow that passes through a node v between all possible node
pairs in the network. The CCF of a node v can be defined as the amount of current
that flows through a node averaged over all node pairs s and t. To be more specific,
CCF of a node v is the average of the current flow over all source-target pairs:

CCF pvq “

ř

s‰tPV IV
pstq

1
2npn ´ 1q

. (6.12)

where IV
pstq represents the current flow through a node v between source s and

target t and 1
2npn ´ 1q is a normalizing constant.

Table 6.6 shows the current flow centrality measure for the example graph of
Figure 6.3. We compare again the traditional betweenness measures based on weight
and its inverse, as well as, the flow betweenness. On the contrary, to the previous
metrics, current flow based betweenness centrality (CCF) captures the flow that
passes through a node in the middle of payment paths. Similar to flow betweenness,
node v6 is more central than v1, therefore the flow of payments between other pairs
of nodes will be greater than payments through v1. However, nodes v2 to v5 are even
more central than v1 because those nodes can process more flow than node v1.

Flow-based Metric Selection - Luo [172] states that CF and CCF share a similar
behavior for measuring the frequency of a node v among a couple of nodes s and

6.2 A discussion on classic centrality metrics applied to LN nodes 91

Nodes Cw
B C

1{w
B CF CCF

v1 6.00 0.00 0.090909 0.818181
v2..5 0.25 0.25 0.048780 1.000000
v6 0.00 6.00 0.878049 8.181818

Tab. 6.6: Weighted double-star graph’s centrality based on Current Flow [163] (Figure 6.3).

t. However, these metrics differ in that CF bases its calculation by comparing
the maximum possible paths containing node v. Furthermore, this metric can be
described as the proportion of the volume of flow that passes through v when the
flow reaches the maximum value [173]. However, this metric might ignore paths
that are central in the network when they are not crossed by any unit of flow for
pairs of nodes s and t [174]. On the other hand, CCF measures the frequency of
a node v in a random-walk, a name that is also given to this metric [175, 170],
between nodes s and t when calculating all paths existing between those nodes.
Unlike CCF , CF is not a realistic metric since it only considers a small subset of
possible paths between nodes.

At the moment when we consider the complexity of both metrics, CF can be
calculated in time Opm2nq, instead, the complexity of CCF is Oppm ` nqn2q using
matrix methods. This comparison indicates that the computation demand of CCF is
comparable to CF . Therefore, based on the aforementioned, we select current-flow
betweenness as a metric to obtain the frequency of a node that occurs on a path.

6.3 Connectivity in the scope of a payment network

The edges between nodes and the paths that form those edges define connectivity in
classical graph theory. A path in a graph is a sequence of incident edges such that
neither vertices nor edges are repeated. Although not introduced explicitly, the paths
are the basis of some of the centrality measures we have reviewed in the previous
section, such as betweenness and closeness centrality.

However, such a basic definition of a path may not be suitable in the scope of a
payment network like the LN, since not all paths defined in this simple manner are
valid payment routes in the modeled payment network. There exist some additional
restrictions for a path to be a valid payment route.

Therefore, to provide more accurate centrality measures for the modeled LN,
we redefine the concept of a path. We define a payment path for an amount σ as a
path with the following restrictions:

1. There is enough balance in all the channels to fulfill the payment.

92 Chapter 6 Node centrality

2. The length of the path is smaller or equal to 20.

3. The number of existing HTLCs in each channel is less than 14.

4. The policies of the nodes in the path are compatible.

a) There exists a set of timeouts for all HTLCs in the path that fulfill the
conditions on the nodes’ policies for all nodes in the path.

b) The amount of payment is higher than the minimum (σ ą min_htlc).

Note that the first restriction is a general restriction of any payment network
while the other ones are more specific to the current LN implementation and are
extracted from its specifications. For restriction 2, we refer to BOLT 4 Section Packet-
Structure. Instead, restrictions 3 and 4b refer to BOLT 2 Sections Adding an HTLC-
Rationale and The open_channel Message respectively. Finally, for restriction 4a, it
refers to BOLTs 2 and 7 Sections cltv_expiry_delta Selection and Recommendations
for Routing respectively.

6.4 Proposed centrality measures in the scope of
LN

Once reviewed all possible centrality measures that can be directly computed on
the graph that model the LN, either the symmetric one G1 or the directed one G2

4,
we now propose and justify which of them are suitable to measure the centrality of
the nodes of the network and which is the property that such centrality measure
provides, in terms of robustness/resilience or surveillance/control.

Table 6.7 summarizes all the metrics considered in the measures presented in
Section 6.5. The first column of the table identifies the measure and the second one
provides the exact formula used to compute such metric. The third column provides
information about the graph over which the metric is computed. Note that some
metrics may have a different meaning if computed on a symmetric (G1) or a directed
(G2) graph. The Weight column indicates which parameter of the LN is selected as
the weight for the calculation (in the case of a weighted metric).

The Restrictions column indicates which restrictions have been considered when
applying some specific measures. Note that two clear sets appear when dealing with
restrictions: measures based on direct connectivity (degree) and measures based

4See Section 6.1 for the defined model

6.4 Proposed centrality measures in the scope of LN 93

https://github.com/lightning/bolts/blob/master/04-onion-routing.md#packet-structure
https://github.com/lightning/bolts/blob/master/04-onion-routing.md#packet-structure
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#rationale-7
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#rationale-7
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#the-open_channel-message
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#cltv_expiry_delta-selection
https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#recommendations-for-routing
https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#recommendations-for-routing

on indirect connectivity (path). The restriction that we have taken into account for
direct connectivity is the existence of the channel (so the corresponding edge in the
graph) and whether or not such a channel is enabled in the policy information that
the node broadcasts. Regarding measures using path connectivity, we have applied
the concept of payment path defined in Section 6.3 with the restrictions indicated.
Finally, the last column of the table provides a brief description of the meaning of
each measure.

Centrality metric Formulation Graph Weight
Restriction

Type
LN property to evaluate

Degree CDpviq “ degpviq “
řn

j“1 aij G1 N/A Number of channels.

Strength Cw
Dpviq “ spviq “

řn
j“1 aijwij G1 c The probable channel capacity available to the node for

LN transactions.

Opsahl Cwα
D pviq “

řn
j“1 aijw

α
ij G1 c The node’s potential for resilience: The highest amount

that a node is permitted to transact, as well as how this
amount is divided among other nodes.

Incoming strength Cw
D´pviq “

řn
j“1 ajiwji G2 b The amount of channel balance available for LN pay-

ments. A node’s maximum amount that it may send.

Outgoing strength Cw
D`pviq “

řn
j“1 aijwij G2 b The channel balance in the LN that is used to receive

payments. A node’s maximum amount that it may re-
ceive.

Incoming Opsahl Cwα
D´pviq “

řn
j“1 aijw

α
ij G2 b The node’s resilience in terms of payment processing

(the maximum payment amount that a node can make
while considering its neighbor distribution).

Outgoing Opsahl Cwα
D`pviq “

řn
j“1 ajiw

α
ji G2 b

C
ha

nn
el

s
en

ab
le

d

The node’s resilience in receiving payments (the maxi-
mum payment amount that a node could receive while
accounting for how it is split among its neighbors).

Betweenness CBpvq “
ř

s‰v‰tPV
σstpvq

σst
G2 N/A The frequency with which the node is positioned during

payments between nodes that select the shortest paths
(fewer hops). A node may be able to make an income
through fees and information gathering about other
payments.

Weighted betweenness (cap)
Cw

Bpvq “
ř

s‰v‰tPV
σw

stpvq

σw
st G2

f The frequency with which the node is positioned during
payments between nodes that select the least expensive
paths (the smaller amount of fees). By charging fees
and collecting data from other payments, a node can
generate an income.

Cw
Bpvq ñ Cw

Bpvqc c The frequency with which a node might possibly trans-
act a larger amount. Higher channel capacities allow
a node to select the shortest paths when it is in the
middle of a payment connecting other nodes.

Flow-based betweenness CF pvq “

ř

s‰v‰tPV |f 1|stpvq
ř

s‰v‰tPV |f 1|st
G2 c The amount of bitcoins that a node can send and re-

ceive by connecting different nodes for payments on the
network. Resilience against disconnection (For more
details, refer to Flow-based Metric Selection in III).

Current-flow betweenness CCF pvq “

ř

s‰tPV IV
pstq

1
2 npn´1q

G2 c

Va
lid

pa
ym

en
t

pa
th

The node’s handling of bitcoins that flow through the
payment route to different nodes in the network.

Closeness CCpviq “ 1
ř

jPr1,ns,j‰i dpvi,vjq
G2 N/A When a node selects the shortest routes, how close it is

to the other nodes in the network (the smaller number
of hops). Fewer interactions with third-party nodes
(privacy and security).

Weighted closeness Cw
C pvq “ 1

ř

u‰vPV dwpv,uq
G2 f

Va
lid

pa
ym

en
t

pa
th

When a node selects the cheapest routes, how close
it is to the other nodes in the network (lower fees).
Fewer interactions with third-party nodes (privacy and
security).

Tab. 6.7: An overview of the proposed measurements for centrality [163].

94 Chapter 6 Node centrality

6.5 Measuring the LN

The moment a pair of nodes open and, at some point, close a payment channel,
these two transactions are the only ones added to the blockchain. In theory, the
payer and the payee can send an unlimited number of transactions to each other
without committing them to the blockchain. A payer may send such transactions
with the aid of the global view of the PCN topology, which is the main input for the
routing algorithm that requires one to be aware of the structure of the network. In
consequence, each node has to gather routing information through broadcasting
messages (channel_announcement and channel_update) through the peer-
to-peer network.

Although the transmitted messages contain information such as channel capacity,
fee, and signatures, they lack to disclose the channel’s balance due to privacy reasons.
This factor could incur in that a payment may fail due to the uncertainty that
sufficient funds are available to route a transaction. However, the payer may attempt
to send a payment a given number of times, in which one could be successful. To
avoid such a failure of insufficient funds, especially on multihop payments, LN uses
HTLC to ensure balance security. Similarly, in case of a stuck payment, HTLC allows
reverting it, by the expiration of the transaction time locks. However, to process
HTLC, the nodes involved in payment must be online. Otherwise, funds locked could
take place for some time, or even, in the worst case, the funds could be stolen by an
adversary.

Based on the depiction of the LN model described in Section 6.1 and the
description of restrictions in Section 6.3, we evaluate the results of the simulations
obtained from the implemented metrics explained in Section 6.2. Altogether, we
analyze 12 metrics divided into 5 scopes (degree, strength, Opsahl, betweenness,
and closeness) as described in Table 6.7. Likewise, based on their scope we apply
specific restrictions as are enabled channels (degree, strength, and Opsahl) and valid
payment path (betweenness and closeness).

Our goal is to draw conclusions regarding the evolution of the metrics over time,
i.e., since its conceptualization, we want to know if LN has been prone to be more or
less centralized. As well, since our approach makes use of restrictions on paths, it
makes us wonder whether or not their use affects the results of the computations
and if this is the case, how much error is injected. On the other hand, from the
analysis of metrics as betweenness, we are interested to know the degree of error
injected if normal betweenness is used, as well as if there are lots of differences
between the results of the different metrics based on the rank correlation coefficient.

6.5 Measuring the LN 95

6.5.1 Snapshots, dataset and the Network

In order to make multihop payments, LN clients need to know the current state of
the network, that is, which other nodes there exist, what channels do they maintain,
and what are policies applicable to those channels. A snapshot of the LN is a graph
representing the current state of the network from the point of view of a node.

Although a snapshot captures the composition of the network, its scope does
not cover the totality of channels that might exist. The view of the network depends
on the information that a node collects, and probably private channels between
other pairs of nodes will not be reflected. Therefore, our analysis is limited to public
channels since roughly 13.48% are private channels [176].

In this work, we use a dataset of LN snapshots captured by Elias Rohrer [120,
177]. The dataset contains snapshots of the network every 6 hours, over a two-year
period (from October 2018 to November 2020). For our analysis, we subsampled
the dataset and selected one weekly snapshot. We omitted periods where data were
corrupted. Moreover, whenever the snapshot represents a disconnected graph, we
restrict our analysis to the biggest connected component (that always contains more
than 99% of the nodes of the network). Table 6.8 summarizes the main properties of
the selected snapshots.

Snapshots Nodes Channels Average
degree

Disabled
Channels (%)

of node pairs with
multiple channels

2018_10_31__12_00 1,548 7,146 9.2326 2,296 (32.12%) 304
2018_11_07__12_00 1,599 7,425 9.2871 2,319 (31.23%) 311
2019_01_23__12_00 2,348 14,383 12.2513 4,258 (29.60%) 759
2019_02_27__12_00 3,590 30,546 17.0173 9,986 (32.69%) 1,848
2019_03_20__12_00 2,555 15,863 12.4172 5,441 (34.29%) 896
2019_04_27__12_00 2,125 6,435 6.0565 1,708 (26.54%) 459
2019_07_31__12_00 5,696 37,246 13.0779 15,530 (41.69%) 2,608
2019_08_07__12_00 5,824 36,030 12.3729 15,808 (43.87%) 2,615
2019_08_28__12_00 5,912 36,288 12.276 15,283 (42.11%) 2,583
2019_09_25__12_00 5,948 36,077 12.1308 14,346 (39.76%) 2,470
2019_10_30__12_00 5,630 31,252 11.102 12,578 (40.24%) 2,065
2020_02_26__12_00 6,386 36,170 11.3279 15,049 (41.60%) 2,468
2020_03_25__12_00 6,568 35,976 10.9549 14,928 (41.49%) 2,478
2020_04_29__12_00 6,822 36,296 10.6409 15,400 (42.42%) 2,544
2020_05_13__12_00 5,523 20,187 7.3102 9,674 (47.92%) 1,379
2020_10_28__12_00 3,714 7,426 3.9989 7,426 (100%) 140
2020_11_07__12_00 3,693 7,388 4.0011 7,388 (100%) 136

Tab. 6.8: Monthly snapshots between Oct. 2018 and Nov. 2020 [163].

The first consideration to take into account is related to the channels, which can
be either enabled or disabled. We consider a channel to be disabled when either
of the policies of both nodes in the channel is set to disabled “ True or the whole
policy is set to node_policy “ null.

Figure 6.6 shows the grouped distribution of the channels between pairs of
nodes based on their capacities for the snapshot corresponding to Jul. 31, 2019. For
instance, Figure 6.6a shows that there are 1.1 ¨ 104 node pairs that created channels

96 Chapter 6 Node centrality

with capacities between 105 and 5 ¨ 105 satoshis, of which 5.7 ¨ 103 channels are
disabled.

(a) Number of (disabled) channels connecting node pairs based on channel capacity.

(b) Total Capacity of (disabled) channels connecting node pairs based on channel capacity.

Fig. 6.6: Connection between nodes pairs, channels, and the capacity of those channels
[163].

6.5 Measuring the LN 97

Even so, this range of channel capacities is not the one with the highest accu-
mulated capacity among the channels. Figure 6.6b shows that between 107 and
5 ¨ 107 satoshis in channel capacities, there is a cumulative capacity of 4.8 ¨ 1010 of
satoshis of which 5.8 ¨ 109 satoshis are on disabled channels. Of this grouped distri-
bution, 16.7 ¨ 109 satoshis are the capacity setting that has the highest accumulated
capacity with an amount of 23.3 ¨ 109 between 1,248 pairs of nodes. Similarly, for
that accumulated capacity, 2.3 ¨ 109 remain among 143 disabled channels. These
properties shape the LN topology that makes it peculiar, even more so, if we consider
restrictions in the computation of the centrality metrics.

Another interesting property of the network is shown in the last column of
Table 6.8, where it shows the number of pairs of nodes with more than one channel
(multiple channels [178]). Figure 6.7 shows the results of the aforementioned
column, considering both the enabled and disabled channels for the snapshot with
the highest number of channels (Jul. 31, 2019). Note that a vast majority of node
pairs share at least one channel and a small percentage have two or more that
correspond to hub nodes on the LN.

Fig. 6.7: Number of channels connecting each nodes pairs [163].

6.5.2 The effects of restrictions on centrality

As we explained in Section 6.3, not all paths on the LN graph can be used as payment
paths. Therefore, additional restrictions must be considered to ensure that a given
path can be used to make a payment on the LN. In this section, we provide the

98 Chapter 6 Node centrality

results of our experiments by calculating the centrality measures directly on the LN
graph. Then, we compare these results with the same metrics calculated taking into
account the restrictions on valid payment paths and enabled channels. Due to space
constraints, results from one single snapshot (Sept. 4, 2019) are included. For the
remaining snapshots, similar results were obtained in the analyzed graphs.

As shown in Table 6.9, we run two different simulations to compute the centrality
measures.

Restriction Parameters 1st simulation 2nd simulation

0 channel flag enabled enabled
1 balance - 105

2 max path 20 20
3 max HTLC - 14
4a HTLC timeout - valid payment
4b min payment - 105

Tab. 6.9: Parameters for the simulations [163]

In the 1st simulation, two general restrictions are considered that remain
throughout the 2nd simulation. On the one hand, to be able to use a channel
in a payment path, the policies of both nodes in the channel must be configured as
enabled (restriction 0 in Table 6.9). On the other hand, restriction 2 of Section 6.3
indicates that payment paths cannot have more than 20 hops. Therefore, we use the
value given in the LN specification for the routing protocol5 [176]. Note that both
restrictions are deterministic and enforced by standard LN payment protocols.

In the 2nd simulation, we apply all restrictions defined in Section 6.3 in which
multiple parameters are defined. First of all, we set to 100k (105) satoshis the amount
of the payment in our simulation, so the minimum balance needed in restriction 1
should be that value. Furthermore, as indicated above, we consider the limit of 20
hops for restriction 2. Regarding restriction 3, the LN specification for opening a
channel6 states that 483 is the limit for the number of pending HTLCs. Even though,
we set the value of 14 as the limit for the number of HTLCs existing for each channel.
Moreover, through a seed, we generate pseudo-random HTLCs, holding the same
random generation for both simulations. This process is executed for each channel
with its corresponding payment amounts and timeouts. The former reduces the
balance in the channel until, at most, balance “ 0. The latter increases for each
channel the total timeout up to the upper limit given by time_lock_delta, which
corresponds to the validation of restriction 4a. Finally, the minimum HTLC needed
in restriction 4b is fixed to σ “ 105.

5See : HopLimit - https://github.com/lightningnetwork/lnd/blob/
40d63d5b4e317a4acca2818f4d5257271d4ac2c7/routing/pathfind.go

6See: max_accepted_htlcs - https://github.com/lightningnetwork/lightning-rfc/blob/
master/02-peer-protocol.md

6.5 Measuring the LN 99

https://github.com/lightningnetwork/lnd/blob/40d63d5b4e317a4acca2818f4d5257271d4ac2c7/routing/pathfind.go
https://github.com/lightningnetwork/lnd/blob/40d63d5b4e317a4acca2818f4d5257271d4ac2c7/routing/pathfind.go
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md

Note that, in addition to these parameters defined for given restrictions, other
values are needed in the payment network for the simulations. In particular, the
balance of each node in the payment channel is required to decide whether a
payment can be forwarded through that channel. Although for privacy reasons,
channel balances are not publicly available, it has been proven that it is possible
to learn channel balances executing any of the attacks already described in the
literature [179]. However, for ethical reasons, we do not perform these attacks on
the live network, so in both simulations, we generate the channel balances through
a constant distribution, i.e., half the capacity is assigned to each side of the channel.

Even though we use the parameters of the simulations as a starting point to
evaluate the network as a whole, we can indeed tweak such values to create different
scenarios and therefore evaluate such a network to improve its payment algorithm.
For instance, we can use average payment amounts expressed in satoshis for the
restrictions 1 and 4b. We can consider one satoshi as the minimum interval, which is
the default minimum HTLC given by the LN policy, and 105 satoshis as the maximum
interval, since values above this interval have the highest failure rate for the payment
path. This scenario can increase the number of nodes participating in payments, but
can also be reduced by the fees charged for each hop in a payment path.

Similarly, we can obtain a varied engagement of the nodes in the network using
distributions other than the constant for the balance, such as uniform, normal, expo-
nential, or beta distributions. Such diverse assignations of the balance may describe
a scenario closer to the network reality. Likewise, for restriction 4a, we can draw a
scenario in which the timeouts increase on each pending HTLC. This modification
affects the availability of channels for a payment path since it is constrained by
time_lock_delta. These scenarios are an option to have a deeper analysis focused
on improving the payments, but we limit the scope of our analysis.

In the next sections, we provide the results for each of the metrics, showing the
cumulative distribution function (CDF) of the centrality values of all the nodes in
the graph. We split the results into two different measures, degree-based measures
and path-based measures, indicating both results for the 1st and the 2nd simulation.

I Degree-based

Degree-based centrality measures are degree CDpviq, strength Cw
Dpviq, incoming

strength Cw
D´pviq, outgoing strength Cw

D`pviq, Opsahl Cwα
D pviq, incoming Opsahl

Cwα
D´pviq and outgoing Opsahl Cwα

D`pviq (see Table 6.7 for details). The first three
values can be measured over the modeled graph G1 since such measures do not
involve any edge direction of the graph. However, for incoming and outgoing

100 Chapter 6 Node centrality

measures of strength and Opsahl, G2 needs to be used. Note that even when the
pending HTLCs modify the channel balance, we get the same results for degree-based
measures in both simulations. Since, although HTLCs reduce the capacity of the
channel, this reduction only applies to metrics that consider incoming/outgoing
values (balances), but not those that do not consider it (capacity). Consequently,
even though the channel balance is essential at the time of payment, it is irrelevant
in case the channel is disabled.

Regarding Node Degree, Figure 6.8 contains the values of this metric that are
the same for the 1st and 2nd simulations. As well, taking into account restrictions
makes the network average degree goes down from 12.25 to 7.18, and the median
from 3.0 to 0.0. The average RMSE of node’s degree is 18.73. From the plot, we
can observe that, when not taking into account restrictions, almost 50% of nodes
are well-connected with 3 or more connections. However, such good connectivity
is reduced to 30% of nodes when restrictions are considered. These differences are
the result of a network with lots of channels disabled with 29,882 out of 72,274
channels which represent 41.34% disabled channels. As we review the remaining
metrics, we will further explain this behavior in the next paragraphs.

Fig. 6.8: CDF of CDpviq Node degree [163].

Differences between restricted and unrestricted measures are also prominent
when analyzing Strength and Opsahl metrics that derive from the capacity7 of the
channels. As shown in Figure 6.9, average node strength has a reduction of 16.64%
(from 28.54 ¨ 106 to 23.79 ¨ 106 satoshis), and the median of 100% (from 972 ¨ 103

to 0 satoshis). Also, in Figure 6.10, the reduction on average Opsahl centrality
(for α “ 0.5) is 26.26% (16.18 ¨ 103 to 11.93 ¨ 103 satoshis) and the median once

7Units are expressed in satoshis as such measurements are derived from channel capacity.

6.5 Measuring the LN 101

again 100% (1.67 ¨ 103 to 0 satoshis). These differences are the result of 83.34%
(TotalUnrestrictedCapacity “ 84, 173, 823, 510 and TotalRestrictedCapacity “

70, 158, 741, 106) of the overall capacity is on enabled channels.

Fig. 6.9: CDF of: Cw
Dpviq strength, Cw

D´ pviq incoming and Cw
D` pviq outgoing strength for

the 1st and 2nd simulations [163].

Fig. 6.10: CDF of: Cwα
D pviq Opsahl, Cwα

D´ pviq incoming and Cwα
D` pviq outgoing Opsahl for

the 1st and 2nd simulations [163].

II Path-based

Path-based centrality metrics are Betweenness CBpvq, Weighted betweenness Cw
Bpvq

and Cw
Bpvqc, Flow-based betweenness CF pvq, Current-flow betweenness CCF pvq,

Closeness CCpviq and Weighted closeness Cw
C pvq (see Table 6.7 for details). Note

that all those metrics are computed using edge direction, so in our model definition
and simulation they are computed over G2. That means in the directed graph that
represents the network with its balances, fees, and the blocked balance hij by the
existing HTLCs. The total value hij for each channel and its timeout is randomly set
through a seed that generates the same values for both simulations, which affects
the balance of each side in the payment channel.

102 Chapter 6 Node centrality

Fig. 6.11: CDF of: CBpvq betweenness, Cw
B pvq fee- and Cw

B pvqc capacity-weighted between-
ness, and CCF pvq current flow betweenness for the 1st and 2nd simulations [163].

Figure 6.11 and 6.12 show the results of each simulation for the betweenness
and closeness centrality respectively with its variations as described previously in
Table 6.7. At the moment, we compare the results of the metrics with weights for
each simulation. There is a fluctuation in the values according to how the restrictions
were used to compute the given metric. For instance, on the average betweennessbetweennessbetweenness

for 1st simulation, the reduction is 22.70%, however, this percentage compared with
the 2st simulation is 14.52%.

Instead, the average weighted_betweennessweighted_betweennessweighted_betweenness has values of 2.90% and 1.76% re-
spectively, which shows a certain relationship given by the decrease in the balance be-
cause of existing HTLCs. On the contrary, for the average weighted_betweenness_capweighted_betweenness_capweighted_betweenness_cap

6.5 Measuring the LN 103

Fig. 6.12: CDF of: CCpviq closeness and Cw
C pvq weighted closeness for the 1st and 2nd

simulations [163].

which are 13.74% and 6.20% respectively, the aforementioned relationship does not
last since the centrality measure has to consider paths with greater capacity to
make a payment. Finally, the current_flow_betweennesscurrent_flow_betweennesscurrent_flow_betweenness metric has an average
of 12.17% and 8.39% respectively, which when comparing its average ratio with
weigthted_betweennessweigthted_betweennessweigthted_betweenness metric, its results (1.45 and 1.57 respectively) are similar.
Based on these results and the fact that betweenness indicates how much control
has a node over the network, the centrality should be measured by a combination of
factors such as: fee, capacity, and balance instead of relying on a unique property of
the channel. Table 6.10 summarizes the values of both simulations for the between-
ness centrality.

1st Simulation 2nd Simulation

% RMSE
Average

% RMSE
Average

Unrestricted Restricted Unrestricted Restricted
betweenness 22.70% 16,486.5268 1,827.987 415.075 14.52% 18,080.8277 1,827.987 265.52
weighted_betweenness 2.90% 639,574.3088 53,515.367 1,553.671 1.76% 649,250.6631 53,515.367 944.274
weighted_betweenness_cap 13.74% 49,800.1476 6,797.366 934.270 6.20% 53,261.8859 6,797.366 421.803
current_flow_based_betweenness 12.17% 66,655.8598 15,290.226 1,861.887 8.39% 69,663.3386 15,290.226 1,283.072

Tab. 6.10: Betweenness Centrality for 1st and 2nd Simulations [163].

Subsequently, we took a similar approach with closeness metrics, as shown in
Figure 6.12, to determine how reachable is a specific node. Along with whether
it would be the most central node in case it is located at a node distance from
each other. For the closenessclosenesscloseness, its average is 47.75% and 34.93% respectively, which
follows a similar explanation about its marked difference due to the presence of
existing HTLCs in the channels. On the other hand, for the weighted_closenessweighted_closenessweighted_closeness, the
average is around 100% and 50% respectively, in which, the results show almost a
flat trend that could be due to the presence of nodes with a large degree, i.e., a given
number of nodes are reachable quite easy. In any case and regardless of the specific
metric used, restrictions heavily affect the results. This tendency determines that
centrality has to be defined by not only one metric but for a set of them considering

104 Chapter 6 Node centrality

more than one property of the network. Table 6.11 summarizes the values of both
simulations for closeness centrality.

1st Simulation 2nd Simulation

% RMSE
Average

% RMSE
Average

Unrestricted Restricted Unrestricted Restricted
closeness 47.75% 0.2430 0.312 0.149 34.93% 0.2617 0.312 0.109
weighted_closeness 100% 0.0021 0.002 0.002 50% 0.0020 0.002 0.001

Tab. 6.11: Closeness Centrality for 1st and 2nd Simulations [163].

6.5.3 Relevance of nodes according to Centrality

Once we review the results of the metrics as a whole, it is appropriate to take a
closer look at the most relevant nodes from the snapshot of Sept. 4, 2019. In
doing so, we intend to find out how important some nodes on the network are
to carry out payments either by the number of channels connecting them to the
network or by the total capacity among those channels. For our analysis, we select
five nodes. Four out of 5,897 nodes show high connectivity and Bitrefill Thor

and WalletOfSatoshi.com are the pair of nodes with the most channels with 153
between them, none of which is disabled. On the other hand, the node that opened
the most channels is 1ML.com node ALPHA with 830 of which 400 are disabled.
However, LightningPowerUsers.com is the node that has the most channels with
1,255 of which 473 are disabled. Finally, ACINQ is the node with the highest
capital distributed among its channels with 4.89 ¨ 109 satoshis.

I Degree-based

Table 6.12 shows, for the nodes mentioned above, the results and their positions
within the degree-based metrics among the most relevant nodes. It is worth men-
tioning that these results come from G1 where only the enabled channel restriction is
considered. LightningPowerUsers.com has the highest degree, so it can be consid-
ered as the main hub8 in the network. Instead, 1ML.com node ALPHA can be seen
as a beacon9 since it has the most open channels with other nodes. Even though, its
strength is the lowest compared to the other four nodes. Also, ACINQ has the high-
est strength among the nodes, which is one of the preferred metrics for analyzing a
weighted network. This result could mean that this specific node has a high level
of involvement in the network, although its degree is not the highest. Due to the
greater number of channels connecting WalletOfSatoshi.com and Bitrefill Thor,
we can assume this pair of nodes is a bridge10. Although WalletOfSatoshi.com

8Defined as a node that connects with many other nodes
9Defined as a node that handles information about the awareness of the network topology.

10Defined as a pair of nodes that create a tie between nodes that would otherwise be disabled to
perform payments without a direct connection.

6.5 Measuring the LN 105

has a higher degree, it has a low strength compared to Bitrefill Thor. By analyz-
ing Opsahl, which combines degree and strength with a tune parameter α “ 0.5,
once again LightningPowerUsers.com has a relative importance in the network.
Nevertheless, even without the highest degree, ACINQ is the node with both the
highest strength and Opsahl. As a consequence, the importance of a node is not only
due to the number of channels that connect it to its neighbors, but also due to its
participation in the network.

Nodes degree strength Opsahl

LightningPowerUsers.com 1255 (1st) 2,408,839,730 (6th) 1,738,704.6504 (2nd)
ACINQ 991 (3rd) 4,897,182,784 (1st) 2,202,977.1081 (1st)
1ML.com node ALPHA 884 (4th) 659,107,300 (55th) 763,315.6969 (24th)
WalletOfSatoshi.com 390 (17th) 1,302,003,973 (39th) 712,587.924 (34th)
Bitrefill Thor 248 (49th) 2,151,521,848 (12th) 730,463.8378 (30th)

Tab. 6.12: Comparison of the 1st and 2nd simulations’ degrees, Opsahl, and strengths
metrics [163].

II Path-based

On the other hand, Table 6.13 compiles the results and their positions within the
path-based metrics for the same five nodes. Thus, we analyze them through the
betweenness metrics, with restrictions on the valid payment path mentioned in
Section 6.3. Overall, these metrics give us an idea of the extent to which a node
participates in the transactions between other nodes. As well, it indicates that a node
could control the network since its income is proportional to how central it is with
respect to the payment route. Again, LightningPowerUsers.com is the one with the
highest betweenness scores, the same as the degree metric. The importance of this
node lies not only in its numerous connections but also in how it stands among its
neighbors, which makes it a broker11. Although ACINQ generates the highest fee
income and has the greatest strength and Opsahl, it handles less capital compared
to LightningPowerUsers.com. Besides, 1ML.com node ALPHA, which has a low
strength, its betweenness metrics results are quite higher compared to the bridge
nodes. The reason could be because this node creates most of the channels that allow
it to connect with the network without making mostly payments. On the contrary,
when we compare the bridge nodes, the relevance of Bitrefill Thor decreases
with respect to WalletOfSatoshi.com. This fact is more evident on the metric
weighted_betweenness_cap, which means that WalletOfSatoshi.com has a higher
capital distributed among its neighbors. As well, the revenue from fees charged by
this node is slightly higher, which could mean that this node could be continuously
chosen as a payment intermediary. Finally, the current_flow_betweenness metric
restates the behavior seen so far. Nodes with a higher degree and betweenness,
especially with weighted_betweenness_cap, have a higher probability to participate

11Defined as the node that connects dispersed nodes in order to obtain a competitive advantage based
on access to network information.

106 Chapter 6 Node centrality

in payment routes, i.e., these nodes withstand a higher traffic load than most of their
neighbors.

Nodes
betweenness weigthed_betweenness

1st simulation 2nd simulation 1st simulation 2nd simulation
LightningPowerUsers.com 151,899.0754 (1st) 92,033.136 (1st) 173,505.7543 (8th) 122,204.9509 (9th)
ACINQ 113,773.3293 (2nd) 61,115.5338 (2nd) 431,786.3497 (4th) 235,449.8886 (4th)
1ML.com node ALPHA 81,270.1248 (4th) 52,827.8882 (5th) 146,710.3616 (12th) 91,583.8489 (12th)
WalletOfSatoshi.com 14,280.1376 (44th) 8,043.7234 (49th) 15,986.7698 (93rd) 3,958.9318 (150th)
Bitrefill Thor 2,084.7293 (153rd) 2,164.2028 (114th) 13,509.6234 (103rd) 10,277.3408 (101st)

Nodes
weighted_bettweenness_cap current_flow_betweenness

1st simulation 2nd simulation 1st simulation 2nd simulation
LightningPowerUsers.com 120,297.0834 (6th) 83,946.1151 (3rd) 310,126.8883 (1st) 216,591.8611 (1st)
ACINQ 60,987.8653 (18th) 44,310.7451 (8th) 274,519.0144 (2nd) 189,553.5902 (2nd)
1ML.com node ALPHA 189,272.5644 (3rd) 196,024.2667 (2nd) 128,011.6723 (13th) 93,000.8053 (10th)
WalletOfSatoshi.com 34,613.1407 (34th) 8,349.4167 (64th) 67,345.7153 (48th) 42,294.1871 (51st)
Bitrefill Thor 586.0000 (488th) 446.0000 (454th) 55,804.9380 (54th) 41,117.8770 (52nd)

Tab. 6.13: Betweenness Metrics Comparison between the 1st and 2nd simulations [163].

Lastly, Table 6.14 contains very similar results between the five nodes
for the closeness metrics. Although, when we analyze closeness values, the
LightningPowerUsers.com node keeps a higher centrality. It indicates that the
node is well connected at a short distance from the other nodes and could efficiently
distribute payments. Regarding the weighted_closeness metric, the results of the
five nodes are the same, which means that each node applies the same fee. Therefore,
they can be used to route payments without diminishing their centrality.

Nodes
closeness weighted_closeness

1st simulation 2nd simulation 1st simulation 2nd simulation
LightningPowerUsers.com 0.5418 (20th) 0.5080 (25th) 0.0058 (10th) 0.0050 (10th)
ACINQ 0.5286 (23rd) 0.5031 (26th) 0.0058 (15th) 0.0050 (15th)
1ML.com node ALPHA 0.4950 (42nd) 0.4475 (66th) 0.0058 (72nd) 0.0050 (78th)
Bitrefill Thor 0.4497 (119th) 0.4386 (79th) 0.0058 (237th) 0.0050 (242nd)
WalletOfSatoshi.com 0.4879 (52nd) 0.4702 (42nd) 0.0058 (291st) 0.0050 (299th)

Tab. 6.14: Closeness Metrics Comparison between the 1st and 2nd simulations [163].

6.6 Analysis of LN Node Centrality

The metrics that we propose are conceptually more suitable for measuring centrality
in payment networks. However, these metrics have the drawback that they are
computationally more expensive to calculate. In consequence, we are interested in
observing the correlation between the metrics that we propose and other simpler
ones. Since, if the correlation is high, then we can use the simplest ones as a proxy
as long as there are computational restrictions. For that purpose, we use Spearman’s
rank correlation to determine the degree of association (strength and direction) of
a monotonic relationship between two metrics. The value of the coefficient ranges
from -1.00 to 1.00, depending on how the two variables are related, for the strongest
negative and positive correlation, respectively. The sign of the coefficient corresponds

6.6 Analysis of LN Node Centrality 107

to the direction of the relationship, i.e., if it is positive, one variable increases as the
other tend to increase, meanwhile, if it is negative, one variable decreases as the
other tends to increase.

For the first part of this analysis, we use the snapshot from Sept. 4, 2019, to
compare the results of the metrics from the 1st and 2nd simulations. In addition, we
decided to show the correlation coefficients of the metrics using a heat map, since it
helps to visualize the variance between multiple metrics, show similarities between
them as well as detect if there is any correlation between them. In Figure 6.13, whose
results are analogous to both simulations, there is a low-to-medium relationship be-
tween the betweenness metrics, which remains when compared to the degree metric.
On the other hand, there is a strong relationship between weighted_betweenness

and weighted_betweenness_cap metrics. In that case, the coefficient value is the
same (0.62) among the results of both simulations, even though, in the 2nd simula-
tion: (1) the balance of the channels decreases because of the existing HTLCs and
(2) the restrictions applied in the network.

Fig. 6.13: 1st and 2nd simulations’ metric correlations similarity [163].

For the last part of this analysis, and as mentioned above, the snapshot set
used in our study covers data for the span of a couple of years. These data allow
us to obtain a wide range of information to analyze. We compared the results
of the 1st simulation between three snapshots since Oct. 2018, with a lapse of
one year between the other two snapshots. Thus, we can infer, based on the
results shown in Figure 6.14, that the degree metric keeps a constant correlation
with the metrics of betweenness, weighted_betweenness (capacity and fee), and

108 Chapter 6 Node centrality

current_flow_betweenness. For instance, on 2018 the strength of association of
degree metric against these four betweenness metrics was 0.22, 0.21, 0.20, and 0.29
respectively, as well in 2020 the results kept slightly similar values 0.23, 0.23, 0.21,
and 0.30 respectively.

(a) Correlation October 2018. (b) Correlation October 2019.

(c) Correlation October 2020.

Fig. 6.14: Metrics’ correlation over a two-year period from Oct. 2018 to Nov. 2020 [163].

6.6 Analysis of LN Node Centrality 109

Similarly, among these same four metrics hold a strong correlation compared
with the remaining metrics. In fact, comparing the results between 2019 and
2020 shows that the relationship strengthens over time. For instance, in 2019, the
relationship between betweenness and the metrics of weighted betweenness (fee
and capacity) and current flow betweenness is 0.31, 0.35, and 0.17, respectively.
The results of the same metrics increased for 2020 with values of 0.41, 0.44, and
0.26, respectively. Although, when we compare both weighted betweenness metrics
(fee and capacity), these metrics keep an even stronger correlation, the highest
value being 0.67 for them in 2020. As the LN structure adjusts over time, the
correlation comparison between snapshots gradually decreases for the betweenness
and closeness metrics. For instance, in the case of weighted betweenness (fee and
capacity) in Oct. 2018 they maintained a degree of relationship between 0.51 and
0.46, respectively. By Oct. 2020 it was reduced to -0.04 and -0.11, respectively.

Based on these results, the main conclusion could emerge to explain the corre-
lation of the centrality metrics. For a given pair of metrics, the correlation values
between different snapshots vary more than five percentage points from each other.
However, these metrics can provide insight into the evolution and behavior of the
network. This conclusion lies in its lack of dependence between one and the other
metric, but they are also necessary because they do not have redundant information.

6.7 Conclusions

In this study, we focus on node centrality in LN, in which we integrate properties
and restrictions that had previously been overlooked in similar studies. For that,
two graphs model LN: G1 with static channel information under an undirected
weighted multigraph and G2 with dynamic channel information under a directed
weighted multigraph. These graphs collect all network information while preserving
restrictions required to analyze LN in various contexts. The graphs include channel
properties (channel capacity and balance, fees, and channel availability) and their
restrictions (minimum balance to forward payments and available HTLCs to make a
payment).

The proposed metrics are conceptually more appropriate for measuring node
centrality in LN. The results show marked differences regarding centrality, with the
path-based metrics showing a significant deviation from the weighted_closeness

metric due to a decreased number of channels. Although the proposed metrics give
us an understanding of LN centrality, the computational cost to compute some of
these metrics is expensive, reinforcing the importance of studying the correlations

110 Chapter 6 Node centrality

between them. The correlation between metrics can serve as a means to determine
if it is possible to substitute some metrics for others.

The main conclusion about LN centrality is that in complex networks, a sin-
gle metric cannot determine its centrality but a combination of several of them.
Therefore, the degree metric is recommended as a starting point along with channel
properties and restrictions to analyze the network.

6.7 Conclusions 111

Part V

Conclusions and
Future Work

7Conclusions and Future Work

7.1 Conclusions

N owaday, users demand fast, cheap, and private payment methods, but Bitcoin’s
design limits such properties, reducing its viability as global payment method.

Visa can handle more transactions per second than Bitcoin, highlighting Bitcoin’s
processing limitations and potential for network congestion. These Bitcoin scalability
problems have led to the creation of layer-2 solutions.

These solutions improve Bitcoin’s scalability, speed, efficiency, and privacy but
introduce new complexities and dependencies, like channel management and pro-
tocol interaction. Layer-2 solutions handle high transactionability but are still far
from being the definitive solution to Layer-1 scalability problems. Above all Layer-2
solutions, LN is currently the most widely adopted for Bitcoin due to its scalability,
low fees, and versatility, to name a few.

Overall, our objective with this research is to enhance LN to increase its per-
formance, security, and robustness as a second-layer payment network. In that
sense, as a first approach, we aim to improve the payment process through the LN
configuration parameters analysis that affects the HTLC timeouts and consequently
impacts network performance and security. Lastly, an approach to measuring LN
centrality more appropriately involves considering parameters beyond the usual,
such as channel capacity or the shortest payment paths.

The contributions presented in this research cover two aspects of the LN network,
detailed in this section. Our initial contribution is to improve the operation and
security of the network at a global level. Specifications guide the configuration of a
client by recommending parameter values so that the LN client can function correctly.
However, some of these parameters can be customized by the client user. Thus,
the selection of the exact parameter values is compelling to increase the correct
functionality of the network. As an initial step, we provide an analytical approach
to select parameter values for cltv_expiry_delta (δ) and locktime_max (Tmax) as
specified by each LN implementation. The δ parameter helps enforce the time lock
mechanism for commitment transactions; whereas, the Tmax parameter limits the
maximum locktime value used in commitment transactions.

115

The first step we took was to define metrics to study the performance and security
of the network. Once these metrics were defined, they allowed us to evaluate the
parameter values. Various experiments allowed us to conclude that these parameter
values used in LN implementations are not optimal regarding payment performance
and network security. As a result of the analysis of the experiments, the best
combination for the values of the parameters Tmax and δ is 432 and 40, respectively.
Once such values are in use, they represent a worst-case scenario for the attacker
when reviewing the attack metrics, even though, for the LN implementations, it
preserves the same success rate for payments. Regarding attacks, compared to
parameter values used in other LN implementations, there is a reduction of at least
a quarter of the overall time the attacker locks a victim’s funds (ĆTBT). Even so,
the funds that the attacker requires to carry out the attack are of an intermediate
level. Above all, modifying these parameter values impacts network performance
and security by reducing HTLC timeouts and preventing lockdown attacks that lock
victim funds on the network.

Various studies have analyzed LN using graph theory tools to examine channel
data such as existence and payment capacity. While some models depict LN as an
undirected weighted graph, others focus on different aspects like multiple channels
between nodes or a simplified representation without weights or directions. Central
to these studies is the exploration of centrality measures like degree, betweenness,
and closeness, suggesting a centralized network structure akin to a core-periphery
model. Researchers also attempt to identify the most suitable centrality metric for
LN, considering factors like income, traffic volume, failed payments, and payment
success ratios. However, these studies often overlook key LN properties such as
balance distribution, fees, blocked balances, minimum payment amounts, and
channel availability. Overall, existing proposals fall short in capturing the intricate
details of payment networks and the flow of satoshis between users.

For our last contribution, we proposed a model for the LN based on two graphs:
G1 with static channel information under an undirected weighted multigraph and G2

with dynamic channel information under a directed weighted multigraph. Through
these weighted graphs, we collect all the network information while preserving the
restrictions that arise from the fact that the represented network is a PCN and are
required to analyze LN in several contexts. The definition of the two graphs that
model the network is as follows: channel capacity and node pairs with multiple
channels without considering their availability to make payments are part of G1. On
the other hand, G2 groups the same properties as G1 but adds channel information,
such as channel balances and their policies and blocked balances in HTLC. The LN
modeled under these considerations allows us to capture the properties that best
describe this network rather than the basic properties like channel capacity that most
approaches consider to evaluate the network centrality.

116 Chapter 7 Conclusions and Future Work

Therefore, to study a network as LN, its model must include channel properties
(channel capacity and balance, fees, and channel availability) and their restrictions
(minimum balance to forward payments and available HTLCs to make a payment).
These channel properties used in the model are relevant because they shape LN
more accurately. Then, we suggest a set of metrics to assess the node centrality
in LN. Finally, we use these metrics in our proposed model to study the centrality
of the network. The results of the experiments using the modeled network show
marked differences regarding centrality. For instance, the injected error, given by
metrics based on payment path restrictions where their use affects the computation
results, goes from one to almost thirteen percentage points for path-based metrics.
Instead, the weighted_closeness metric has a substantial deviation of 50 percentage
points due to a decreased number of channels. On the contrary, in a comparison
between the normal betweenness and the rest of the betweenness alternatives, the
injected error of the first is greater than that of the remaining ones, as is the case of
weighted_betweenness_cap and weighted_betweenness with almost one and seven
percentage points of difference.

Although the metrics proposed for the experiments are computationally expen-
sive to calculate, the correlation between metrics can serve as a means to determine
whether or not it is possible to substitute some metrics for others. We evaluate
these metric correlations to replace them with less expensive metrics. The results
indicate that the relationship is low-to-medium when comparing the betweenness
measurements with the degree metric. However, the correlation between them
is constant throughout the years of study. On the contrary, the fee- and capacity-
weighted_betweenness metrics have the strongest relationship; however, when ana-
lyzing the correlation among the betweenness metrics, it is strong, and over time,
it becomes stronger. From the results of the experiments, it is feasible to argue
that measures that are easy to compute can act as bridges for others that require
more complex computations. The main conclusion about LN centrality is that in
complex networks, a single metric cannot determine its centrality but a combination
of several of them. However, as an initial point, the degree metric can be used in
conjunction with channel properties and restrictions to analyze the network.

From the mentioned comparison, one can follow two directions separately
to improve routing dependability. On the one hand, select the protocol with the
best payment performance to propose a possible improvement over the chosen
protocol. On the other hand, in light of the shortcomings and limitations of the
earlier protocols, it would be advisable to propose a new one from a different angle.

7.1 Conclusions 117

7.2 Future Work

A lthough our studies contribute insights into how different configuration param-
eters in the LN clients affect the security and performance of the network, as

well as metrics to evaluate centrality in the LN, several aspects work as follows:

• For our first contribution, our experiments intend to evaluate the network
regarding lockdown attacks. Hence, to expand the analysis, the next step is
to measure the impact of other attacks and how the LN responds to them. In
that sense, we could embrace two directions: one that contemplates the use of
distinct metrics to assess network performance, considering not only payments
but also the cost that a payer incurs to make such a payment using fees. The
other direction to take would be to close multiple channels simultaneously to
perform a flooding attack [123], which has more impact on the network due
to the severity of the attack.

• For our last contribution, we set specific values in our simulations for the
parameters (balance, maximum path, maximum HTLC, HTLC timeout, and
minimum payment) of the restrictions in the payment paths. So, we can tweak
the values of these parameters to create different scenarios and, thus, evaluate
the network to improve its payment method. On the other hand, due to our
lack of knowledge of the values of channel balances that are not publicly
available due to security reasons, we generate them synthetically through a
constant distribution to make simulations of the LN. Since our analysis used a
single model for this synthetic generation, it remains to test other models and
evaluate the impact this has on the results obtained. For instance, a channel
balance generation method may increase the participation of nodes involved
in payments. However, it does not imply an increase in successful payments,
whether due to high hop fees, longer routes, or other circumstances. Therefore,
to achieve an in-depth analysis, it is necessary to define different scenarios
under the proposed model for LN.

118 Chapter 7 Conclusions and Future Work

Bibliography

[1] Fatemeh Rezaeibagha and Yi Mu. „Efficient micropayment of cryptocurrency from
blockchains“. In: The Computer Journal 62.4 (2019), pp. 507–517 (cit. on p. 3).

[2] Ladislav Kristoufek. „On Bitcoin markets (in) efficiency and its evolution“. In:
Physica A: statistical mechanics and its applications 503 (2018), pp. 257–262 (cit.
on p. 3).

[3] Andrew Urquhart. „The inefficiency of Bitcoin“. In: Economics Letters 148 (2016),
pp. 80–82 (cit. on p. 3).

[4] Dejan Vujičić, Dijana Jagodić, and Siniša Rand̄ić. „Blockchain technology, bitcoin,
and Ethereum: A brief overview“. In: 2018 17th international symposium infoteh-
jahorina (infoteh). IEEE. 2018, pp. 1–6 (cit. on p. 3).

[5] Joseph Poon and Thaddeus Dryja. „The bitcoin lightning network: Scalable off-
chain instant payments“. In: (2016) (cit. on pp. 3, 12, 34, 37–39, 48, 67).

[6] A Next-Generation Smart Contract and Decentralized Application Platform. Ethereum.
https://ethereum.org/en/whitepaper/ [Accessed: 2024-05-30]. 2024 (cit. on
p. 3).

[7] Kyle Croman, Christian Decker, Ittay Eyal, et al. „On Scaling Decentralized
Blockchains“. In: Financial Cryptography and Data Security: FC 2016 International
Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers. Vol. 9604. Springer. 2016, pp. 106–125 (cit. on pp. 3,
11).

[8] Hanna Halaburda and Guillaume Haeringer. „Bitcoin and blockchain: What we
know and what questions are still open“. In: NYU Stern School Business, New York,
NY, USA, Tech. Rep (2019) (cit. on p. 3).

[9] Giulia Iadisernia. „An experimental study of the Bitcoin lightning network proper-
ties“. In: (2022) (cit. on p. 4).

[10] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-
vatsan Ravi. „Concurrency and privacy with payment-channel networks“. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2017, pp. 455–471 (cit. on pp. 4, 38).

[11] Rami Khalil and Arthur Gervais. „Revive: Rebalancing off-blockchain payment
networks“. In: Proceedings of the 2017 acm sigsac conference on computer and
communications security. 2017, pp. 439–453 (cit. on p. 4).

119

https://ethereum.org/en/whitepaper /

[12] Changting Lin, Ning Ma, Xun Wang, and Jianhai Chen. „Rapido: Scaling blockchain
with multi-path payment channels“. In: Neurocomputing 406 (2020), pp. 322–332
(cit. on p. 4).

[13] Satoshi Nakamoto. „Bitcoin: A peer-to-peer electronic cash system“. In: Decentral-
ized business review (2008) (cit. on pp. 7, 34, 39).

[14] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa
Osuntokun. „Flare: An approach to routing in lightning network“. In: White Paper
144 (2016) (cit. on pp. 8, 45, 50, 51).

[15] Andreas M Antonopoulos. Mastering Bitcoin: Programming the open blockchain. "
O’Reilly Media, Inc.", 2017, pp. 131–138 (cit. on p. 8).

[16] Paul Müller, Sonja Bergsträßer, Amr Rizk, and Ralf Steinmetz. „The bitcoin uni-
verse: An architectural overview of the bitcoin blockchain“. In: (2018) (cit. on
p. 8).

[17] Pablo Lamela Seijas, Simon Thompson, and Darryl McAdams. „Scripting smart
contracts for distributed ledger technology“. In: Cryptology ePrint Archive (2016)
(cit. on pp. 8, 11).

[18] Stefano Lande et al. „Formal Methods for Secure Bitcoin Smart Contracts“. In:
(2021) (cit. on p. 9).

[19] Stefano Bistarelli, Andrea Bracciali, Rick Klomp, and Ivan Mercanti. „Towards
automated verification of bitcoin-based decentralised applications“. In: Proceedings
of the 38th ACM/SIGAPP Symposium on Applied Computing. 2023, pp. 262–269
(cit. on pp. 9, 10).

[20] Craig Steven Wright and Stephane Savanah. Method for compiling from a high-level
scripting language to a blockchain native scripting language. US Patent 11,797,278.
Oct. 2023 (cit. on p. 9).

[21] Rick Klomp and Andrea Bracciali. „On symbolic verification of Bitcoin’s script
language“. In: Data Privacy Management, Cryptocurrencies and Blockchain Technol-
ogy: ESORICS 2018 International Workshops, DPM 2018 and CBT 2018, Barcelona,
Spain, September 6-7, 2018, Proceedings 13. Springer. 2018, pp. 38–56 (cit. on
p. 9).

[22] Peilin Zheng, Xiapu Luo, and Zibin Zheng. „BSHUNTER: Detecting and Tracing
Defects of Bitcoin Scripts“. In: 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE. 2023, pp. 307–318 (cit. on p. 10).

[23] Craig S Wright. „A proof of turing completeness in bitcoin script“. In: Proceedings
of SAI Intelligent Systems Conference. Springer. 2019, pp. 299–313 (cit. on p. 10).

[24] Is there a maximum size of a scriptSig-scriptPubKey? Bitcoin StackExchange. http:
//bitcoin.stackexchange.com/questions/35878/is- there- a- maximum-
size-of-a-scriptsig-scriptpubkey [Accessed: 2024-05-08]. 2015 (cit. on
p. 11).

[25] Bitcoin community. Bitcoin. WikiPage. https://en.bitcoin.it. 2010 (cit. on
p. 11).

[26] Bitcoin community. Block size limit controversy. WikiPage. https://en.bitcoin.
it/wiki/Block_size_limit_controversy. 2010 (cit. on p. 11).

120 Chapter 7 Bibliography

http://bitcoin.stackexchange.com/questions/35878/is- there-a-maximum-size-of-a-scriptsig-scriptpubkey
http://bitcoin.stackexchange.com/questions/35878/is- there-a-maximum-size-of-a-scriptsig-scriptpubkey
http://bitcoin.stackexchange.com/questions/35878/is- there-a-maximum-size-of-a-scriptsig-scriptpubkey
https://en.bitcoin.it
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy

[27] Bitcoin community. Maximum number of opcodes in script. Bitcoin StackExchange.
http://bitcoin.stackexchange.com/questions/38230/maximum-number-of-
op-codes-in-script. 2015 (cit. on p. 11).

[28] VISA Inc. Visa fact sheet and quarter numbers. https : / / www . visa . co .
uk / dam / VCOM / download / corporate / media / visanet - technology /
aboutvisafactsheet.pdf, https://s29.q4cdn.com/385744025/files/doc_
downloads/2022/Visa- Inc- Fiscal- 2022- Annual- Report.pdf and https:
//usa.visa.com/run-your-business/small-business-tools/retail.html,
2022. Accessed: 2023-08-05 (cit. on p. 11).

[29] Anantha Divakaruni and Peter Zimmerman. „The lightning network: Turning
bitcoin into money“. In: Finance Research Letters 52 (2023), p. 103480 (cit. on
p. 12).

[30] Ali Abdullah and AM Mutawa. „An Invitation Model Protocol (Imp) for the Bitcoin
Asymmetric Lightning Network“. In: Symmetry 15.6 (2023), p. 1273 (cit. on pp. 12,
46).

[31] Jian-Hong Lin, Emiliano Marchese, Claudio J Tessone, and Tiziano Squartini. „The
weighted bitcoin lightning network“. In: Chaos, Solitons & Fractals 164 (2022),
p. 112620 (cit. on pp. 12, 46).

[32] Bitcoin Visuals. Bitcoin and Lightning Network Charts. Bitcoin Visuals. https :
//bitcoinvisuals.com/lightning. 2021 (cit. on p. 13).

[33] 1ML. Lightning Network search and analysis engine. 1ML. https://1ml.com/
statistics?json=true. 2021 (cit. on pp. 13, 18).

[34] LND. Lightning Network Daemon. API LND Community. https://github.com/
lightningnetwork/lnd. 2023 (cit. on p. 14).

[35] Core Lightning. Core Lightning. API Core Lightning Community. https://github.
com/ElementsProject/lightning. 2023 (cit. on p. 14).

[36] Eclair. Eclair. API Eclair Lightning Community. https://github.com/ACINQ/
eclair. 2023 (cit. on p. 14).

[37] Philipp Zabka, Klaus-T Foerster, Stefan Schmid, and Christian Decker. „Empirical
evaluation of nodes and channels of the lightning network“. In: Pervasive and
Mobile Computing 83 (2022), p. 101584 (cit. on p. 14).

[38] Satwik Prabhu Kumble and Stefanie Roos. „Comparative Analysis of Lightning’s
Routing Clients“. In: 2021 IEEE International Conference on Decentralized Applica-
tions and Infrastructures (DAPPS). IEEE. 2021, pp. 79–84 (cit. on pp. 14, 50).

[39] Nida Khan and Radu State. „Lightning network: A comparative review of transac-
tion fees and data analysis“. In: International congress on blockchain and applica-
tions. Springer. 2019, pp. 11–18 (cit. on p. 14).

[40] Builder’s Guide. The Gossip Network. https://docs.lightning.engineering/
the-lightning-network/the-gossip-network. Accessed: 2024-05-18 (cit. on
p. 16).

[41] Niklas Gögge, Elias Rohrer, and Florian Tschorsch. „On the Routing Convergence
Delay in the Lightning Network“. In: International Workshop on Data Privacy
Management. Springer. 2022, pp. 203–218 (cit. on pp. 16, 48, 66).

121

http://bitcoin.stackexchange.com/questions/38230/maximum- number-of-op-codes-in-script
http://bitcoin.stackexchange.com/questions/38230/maximum- number-of-op-codes-in-script
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://s29.q4cdn.com/385744025/files/doc_downloads/2022/Visa-Inc-Fiscal-2022-Annual-Report.pdf
https://s29.q4cdn.com/385744025/files/doc_downloads/2022/Visa-Inc-Fiscal-2022-Annual-Report.pdf
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://bitcoinvisuals.com/lightning
https://bitcoinvisuals.com/lightning
https://1ml.com/statistics?json=true
https://1ml.com/statistics?json=true
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://docs.lightning.engineering/the-lightning-network/the-gossip-network
https://docs.lightning.engineering/the-lightning-network/the-gossip-network

[42] IETF. „RFC 1035 - Domain Names“. In: See https: // www. ietf. org/ rfc/
rfc1035. txt (1987) (cit. on p. 16).

[43] IETF. „RFC 3596 - DNS Extensions to Support IP Version 6“. In: See https :
// www. ietf. org/ rfc/ rfc2782. txt (2003) (cit. on p. 16).

[44] IETF. „RFC 2782 - A DNS RR for specifying the location of services (DNS SRV)“.
In: See https: // www. ietf. org/ rfc/ rfc2782. txt (2000) (cit. on p. 16).

[45] Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. „BOLT No. 7:
P2P Node and Channel Discovery“. In: See https: // github. com/ lightning/
bolts/ blob/ master/ 07-routing-gossip. md (2020) (cit. on pp. 17, 66).

[46] Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. „BOLT No. 10:
DNS Bootstrap and Assisted Node Location“. In: See https: // github. com/
lightningnetwork/ lightning- rfc/ blob/ master/ 10- dns- bootstrap. md
(2018) (cit. on p. 17).

[47] Zeta Avarikioti, Tomasz Lizurej, Tomasz Michalak, and Michelle Yeo. „Lightning
creation games“. In: 2023 IEEE 43rd International Conference on Distributed Com-
puting Systems (ICDCS). IEEE. 2023, pp. 1–11 (cit. on p. 17).

[48] Matthias Grundmann and Hannes Hartenstein. „Towards a Formal Verification of
the Lightning Network with TLA+“. In: arXiv preprint arXiv:2307.02342 (2023)
(cit. on p. 17).

[49] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and Adrain Perrig.
„HORNET: High-speed onion routing at the network layer“. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. 2015,
pp. 1441–1454 (cit. on p. 18).

[50] Sergei Tikhomirov, Rene Pickhardt, Alex Biryukov, and Mariusz Nowostawski.
„Probing channel balances in the lightning network“. In: arXiv preprint
arXiv:2004.00333 (2020) (cit. on pp. 18, 30).

[51] Paolo Guasoni, Gur Huberman, and Clara Shikhelman. „Lightning network eco-
nomics: Channels“. In: Management Science (2023) (cit. on p. 18).

[52] Yan Qiao, Kui Wu, and Majid Khabbazian. „Non-intrusive and high-efficient balance
tomography in the lightning network“. In: Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security. 2021, pp. 832–843 (cit. on
pp. 18, 46).

[53] Bitcoin Visuals. Bitcoin Market Price. Bitcoin Visuals. https://bitcoinvisuals.
com/market-price. 2021 (cit. on p. 18).

[54] Leslie Lamport. „The part-time parliament“. In: Concurrency: the Works of Leslie
Lamport. 2019, pp. 277–317 (cit. on p. 19).

[55] Leslie Lamport. „Time, clocks, and the ordering of events in a distributed system“.
In: Concurrency: the Works of Leslie Lamport. 2019, pp. 179–196 (cit. on p. 19).

[56] Weizhao Tang, Weina Wang, Giulia Fanti, and Sewoong Oh. „Privacy-utility trade-
offs in routing cryptocurrency over payment channel networks“. In: Proceedings of
the ACM on Measurement and Analysis of Computing Systems 4.2 (2020), pp. 1–39
(cit. on p. 25).

122 Chapter 7 Bibliography

https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc2782.txt
https://www.ietf.org/rfc/rfc2782.txt
https://www.ietf.org/rfc/rfc2782.txt
https://github.com/lightning/bolts/blob/master/07-routing-gossip.md
https://github.com/lightning/bolts/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/10-dns-bootstrap.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/10-dns-bootstrap.md
https://bitcoinvisuals.com/market-price
https://bitcoinvisuals.com/market-price

[57] Peter Holzer. „Payment Channel Network Analysis with Focus on Lightning Net-
work“. PhD thesis. Wien, 2020 (cit. on p. 25).

[58] Jan Camenisch and Anna Lysyanskaya. „A formal treatment of onion routing“. In:
Annual International Cryptology Conference. Springer. 2005, pp. 169–187 (cit. on
p. 27).

[59] George Danezis and Ian Goldberg. „Sphinx: A compact and provably secure mix
format“. In: 2009 30th IEEE Symposium on Security and Privacy. IEEE. 2009,
pp. 269–282 (cit. on p. 27).

[60] Cristina Pérez-Sola, Alejandro Ranchal-Pedrosa, Jordi Herrera-Joancomartí,
Guillermo Navarro-Arribas, and Joaquin Garcia-Alfaro. „Lockdown: Balance avail-
ability attack against lightning network channels“. In: Financial Cryptography and
Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10–14, 2020 Revised Selected Papers 24. Springer. 2020, pp. 245–263
(cit. on pp. 29, 40, 44, 68–70).

[61] C-Lightning. Open Channel C-Lightning. API Lightning Community. https : / /
lightning . readthedocs . io / lightning - fundchannel _ start . 7 . html ?
highlight=open%20channel. 2019 (cit. on p. 31).

[62] Eclair. Open Channel Eclair. API Lightning Community. https://acinq.github.
io/eclair/#open. 2019 (cit. on p. 31).

[63] Lightning Network Daemon LND. Open Channel LND. API Lightning Community.
https : / / api . lightning . community / ?python # openchannel. 2019 (cit. on
p. 31).

[64] C-Lightning. Send Payment C-Lightning. API Lightning Community. https://
lightning.readthedocs.io/lightning-keysend.7.html?highlight=send%
20payment. 2019 (cit. on p. 32).

[65] Eclair. Send Payment Eclair. API Lightning Community. https://acinq.github.
io/eclair/#sendtonode. 2019 (cit. on p. 32).

[66] Lightning Network Daemon LND. Send Payment LND. API Lightning Community.
https://api.lightning.community/?python#sendpaymentv2. 2019 (cit. on
p. 32).

[67] Mauro Conti, Ankit Gangwal, and Michele Todero. „Blockchain trilemma solver
algorand has dilemma over undecidable messages“. In: Proceedings of the 14th
International Conference on Availability, Reliability and Security. 2019, pp. 1–8
(cit. on p. 33).

[68] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. „Solutions to scalability
of blockchain: A survey“. In: Ieee Access 8 (2020), pp. 16440–16455 (cit. on p. 33).

[69] Donghui Ding, Xin Jiang, Jiaping Wang, et al. „Txilm: Lossy block compression
with salted short hashing“. In: arXiv preprint arXiv:1906.06500 (2019) (cit. on
p. 33).

[70] Jeremy Levine. „Scalability controversy: understanding past cryptocurrency returns
through Segregated Witness“. In: (2019) (cit. on p. 33).

123

https://lightning.readthedocs.io/lightning-fundchannel_start.7.html?highlight=open%20channel
https://lightning.readthedocs.io/lightning-fundchannel_start.7.html?highlight=open%20channel
https://lightning.readthedocs.io/lightning-fundchannel_start.7.html?highlight=open%20channel
https://acinq.github.io/eclair/#open
https://acinq.github.io/eclair/#open
https://api.lightning.community/?python#openchannel
https://lightning.readthedocs.io/lightning-keysend.7.html?highlight=send%20payment
https://lightning.readthedocs.io/lightning-keysend.7.html?highlight=send%20payment
https://lightning.readthedocs.io/lightning-keysend.7.html?highlight=send%20payment
https://acinq.github.io/eclair/#sendtonode
https://acinq.github.io/eclair/#sendtonode
https://api.lightning.community/?python#sendpaymentv2

[71] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. „tBitcoin-
NGu: A scalable blockchain protocol“. In: 13th USENIX symposium on networked
systems design and implementation (NSDI 16). 2016, pp. 45–59 (cit. on p. 33).

[72] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
„Ouroboros: A provably secure proof-of-stake blockchain protocol“. In: Annual
international cryptology conference. Springer. 2017, pp. 357–388 (cit. on p. 33).

[73] Sunoo Park, Albert Kwon, Georg Fuchsbauer, et al. „Spacemint: A cryptocurrency
based on proofs of space“. In: Financial Cryptography and Data Security: 22nd
International Conference, FC 2018, Nieuwpoort, Curaçao, February 26–March 2,
2018, Revised Selected Papers 22. Springer. 2018, pp. 480–499 (cit. on p. 33).

[74] Loi Luu, Viswesh Narayanan, Kunal Baweja, et al. „Scp: A computationally-scalable
byzantine consensus protocol for blockchains“. In: Cryptology ePrint Archive (2015)
(cit. on p. 33).

[75] Laizhong Cui, Shu Yang, Ziteng Chen, et al. „An efficient and compacted DAG-
based blockchain protocol for industrial Internet of Things“. In: IEEE Transactions
on Industrial Informatics 16.6 (2019), pp. 4134–4145 (cit. on p. 33).

[76] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. „Spectre: A fast and
scalable cryptocurrency protocol“. In: Cryptology ePrint Archive (2016) (cit. on
p. 34).

[77] Loi Luu, Viswesh Narayanan, Chaodong Zheng, et al. „A secure sharding protocol
for open blockchains“. In: Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. 2016, pp. 17–30 (cit. on p. 34).

[78] Adem Efe Gencer, Robbert van Renesse, and Emin Gün Sirer. „Service-oriented
sharding with aspen“. In: arXiv preprint arXiv:1611.06816 (2016) (cit. on p. 34).

[79] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, et al. „Omniledger: A
secure, scale-out, decentralized ledger via sharding“. In: 2018 IEEE symposium on
security and privacy (SP). IEEE. 2018, pp. 583–598 (cit. on p. 34).

[80] Yonatan Sompolinsky and Aviv Zohar. „Secure high-rate transaction processing in
bitcoin“. In: Financial Cryptography and Data Security: 19th International Confer-
ence, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers
19. Springer. 2015, pp. 507–527 (cit. on p. 34).

[81] Marko Vukolić. „The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication“. In: Open Problems in Network Security: IFIP WG 11.4 International
Workshop, iNetSec 2015, Zurich, Switzerland, October 29, 2015, Revised Selected
Papers. Springer. 2016, pp. 112–125 (cit. on p. 34).

[82] Bitcoin Cash. „Bitcoin Cash“. In: See https: // www. bitcoincash. org (2008)
(cit. on p. 34).

[83] Rami Khalil, Arthur Gervais, and Guillaume Felley. „Nocust-a securely scalable
commit-chain“. In: Cryptology ePrint Archive, Report 2018/642 (2018) (cit. on
pp. 34, 35).

124 Chapter 7 Bibliography

https://www.bitcoincash.org

[84] Christian Decker and Roger Wattenhofer. „A fast and scalable payment network
with bitcoin duplex micropayment channels“. In: Stabilization, Safety, and Security
of Distributed Systems: 17th International Symposium, SSS 2015, Edmonton, AB,
Canada, August 18-21, 2015, Proceedings 17. Springer. 2015, pp. 3–18 (cit. on
pp. 34, 37).

[85] bitcoinj. Working with micropayment channels. https://bitcoinj.github.io/
working-with-micropayments, 2015. Accessed: 2023-08-09 (cit. on p. 34).

[86] Gavin Wood et al. „Ethereum: A secure decentralised generalised transaction
ledger“. In: Ethereum project yellow paper 151.2014 (2014), pp. 1–32 (cit. on
p. 34).

[87] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. „A
survey on blockchain interoperability: Past, present, and future trends“. In: ACM
Computing Surveys (CSUR) 54.8 (2021), pp. 1–41 (cit. on p. 34).

[88] Alexei Zamyatin, Dominik Harz, Joshua Lind, et al. „Xclaim: Trustless, interop-
erable, cryptocurrency-backed assets“. In: 2019 IEEE Symposium on Security and
Privacy (SP). IEEE. 2019, pp. 193–210 (cit. on p. 34).

[89] Hangyu Tian, Kaiping Xue, Xinyi Luo, et al. „Enabling cross-chain transactions: A
decentralized cryptocurrency exchange protocol“. In: IEEE Transactions on Infor-
mation Forensics and Security 16 (2021), pp. 3928–3941 (cit. on p. 34).

[90] Tom M Mayer, Christoph Mai, and N Jesse. Tokrex: Meta-system for real-time intra-
and cross-chain swaps. Tech. rep. Tech. Rep, 2017 (cit. on p. 35).

[91] Will Warren and Amir Bandeali. „0x: An open protocol for decentralized exchange
on the Ethereum blockchain“. In: URl: https://github. com/0xProject/whitepaper
(2017), pp. 04–18 (cit. on p. 35).

[92] Gavin Wood. „Polkadot: Vision for a heterogeneous multi-chain framework“. In:
White paper 21.2327 (2016), p. 4662 (cit. on p. 35).

[93] Jae Kwon and Ethan Buchman. „A network of distributed ledgers“. In: Cosmos,
dated (2018), pp. 1–41 (cit. on p. 35).

[94] Matthew Spoke, NE Team, et al. „Aion: Enabling the decentralized internet“. In:
AION, White Paper (2017) (cit. on p. 35).

[95] Adam Back, Matt Corallo, Luke Dashjr, et al. „Enabling blockchain innovations
with pegged sidechains“. In: http: // www. opensciencereview. com/ papers/
123/ enablingblockchain-innovations-with-pegged-sidechains 72 (2014),
pp. 201–224 (cit. on p. 35).

[96] Amritraj Singh, Kelly Click, Reza M Parizi, et al. „Sidechain technologies in
blockchain networks: An examination and state-of-the-art review“. In: Journal of
Network and Computer Applications 149 (2020), p. 102471 (cit. on p. 35).

[97] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and Arthur
Gervais. „Commit-chains: Secure, scalable off-chain payments“. In: Cryptology
ePrint Archive (2018) (cit. on p. 35).

[98] Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. „Blockchain
scaling using rollups: A comprehensive survey“. In: IEEE Access (2022) (cit. on
p. 36).

125

https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains

[99] Thomas Lavaur, Jérôme Lacan, and Caroline PC Chanel. „Enabling blockchain
services for IoE with Zk-Rollups“. In: Sensors 22.17 (2022), p. 6493 (cit. on p. 36).

[100] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Edward
W Felten. „Arbitrum: Scalable, private smart contracts“. In: 27th USENIX Security
Symposium (USENIX Security 18). 2018, pp. 1353–1370 (cit. on p. 36).

[101] Jason Teutsch and Christian Reitwießner. „A scalable verification solution for
blockchains“. In: arXiv preprint arXiv:1908.04756 (2019) (cit. on p. 36).

[102] Victor Costan and Srinivas Devadas. „Intel SGX explained“. In: Cryptology ePrint
Archive (2016) (cit. on p. 36).

[103] Sinisa Matetic, Karl Wüst, Moritz Schneider, et al. „tBITEu: Bitcoin lightweight
client privacy using trusted execution“. In: 28th USENIX Security Symposium
(USENIX Security 19). 2019, pp. 783–800 (cit. on p. 36).

[104] Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Gün Sirer. „Teechan: Pay-
ment channels using trusted execution environments“. In: arXiv preprint
arXiv:1612.07766 (2016) (cit. on p. 36).

[105] Karl Wüst, Sinisa Matetic, Moritz Schneider, et al. „Zlite: Lightweight clients for
shielded zcash transactions using trusted execution“. In: Financial Cryptography
and Data Security: 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and
Nevis, February 18–22, 2019, Revised Selected Papers 23. Springer. 2019, pp. 179–
198 (cit. on p. 36).

[106] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry.
„Sprites and state channels: Payment networks that go faster than lightning“. In:
International conference on financial cryptography and data security. Springer. 2019,
pp. 508–526 (cit. on p. 37).

[107] Taisei Takahashi and Akira Otsuka. „Short paper: secure offline payments in
bitcoin“. In: Financial Cryptography and Data Security: FC 2019 International
Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February 18–22, 2019,
Revised Selected Papers 23. Springer. 2020, pp. 12–20 (cit. on p. 37).

[108] Rafael Pass and Abhi Shelat. „Micropayments for decentralized currencies“. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 2015, pp. 207–218 (cit. on p. 37).

[109] Mike Hearn. „Micro-payment channels implementation now in bitcoinj“. In: Bit-
cointalk. org (2013) (cit. on p. 37).

[110] Alejandro Ranchal Pedrosa, Maria Potop-Butucaru, and Sara Tucci-Piergiovanni.
„Scalable lightning factories for bitcoin“. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. 2019, pp. 302–309 (cit. on p. 37).

[111] Conrad Burchert, Christian Decker, and Roger Wattenhofer. „Scalable funding of
bitcoin micropayment channel networks“. In: Royal Society open science 5.8 (2018),
p. 180089 (cit. on p. 37).

[112] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina
Hostáková. „Multi-party virtual state channels“. In: Advances in Cryptology–
EUROCRYPT 2019: 38th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part I 38. Springer. 2019, pp. 625–656 (cit. on p. 37).

126 Chapter 7 Bibliography

[113] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. „General state chan-
nel networks“. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 2018, pp. 949–966 (cit. on p. 37).

[114] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. „Atomic multi-channel
updates with constant collateral in bitcoin-compatible payment-channel networks“.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2019, pp. 801–815 (cit. on pp. 38, 39).

[115] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. „PERUN:
Virtual payment channels over cryptographic currencies.“ In: IACR Cryptol. ePrint
Arch. 2017 (2017), p. 635 (cit. on p. 38).

[116] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon
Goldberg. „Tumblebit: An untrusted bitcoin-compatible anonymous payment hub“.
In: Network and Distributed System Security Symposium. 2017 (cit. on p. 38).

[117] D Robinson. HTLCs considered harmful. Stanford Blockchain Conference. 2019
(cit. on p. 39).

[118] Interledger. Connector risk mitigations. https://github.com/interledger/
rfcs/blob/main/0018-connector-risk-mitigations/0018-connector-risk-
mitigations.md. 2019 (cit. on p. 40).

[119] Ayelet Mizrahi and Aviv Zohar. „Congestion attacks in payment channel networks“.
In: International conference on financial cryptography and data security. Springer.
2021, pp. 170–188 (cit. on pp. 40, 66).

[120] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. „Discharged payment chan-
nels: quantifying the lightning network’s resilience to topology-based attacks“. In:
2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE. 2019, pp. 347–356 (cit. on pp. 40, 47, 48, 77, 96).

[121] Ben Weintraub, Cristina Nita-Rotaru, and Stefanie Roos. „Structural attacks on
local routing in payment channel networks“. In: 2021 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE. 2021, pp. 367–379 (cit. on
p. 40).

[122] Seungjin Lee and Hyoungshick Kim. „On the robustness of lightning network in
bitcoin“. In: Pervasive and Mobile Computing 61 (2020), p. 101108 (cit. on p. 41).

[123] Jona Harris and Aviv Zohar. „Flood & loot: A systemic attack on the lightning
network“. In: Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies. 2020, pp. 202–213 (cit. on pp. 41, 118).

[124] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. „Anonymous multi-hop locks for blockchain scalability and interop-
erability“. In: Cryptology ePrint Archive (2018) (cit. on p. 41).

[125] George Kappos, Haaroon Yousaf, Ania Piotrowska, et al. „An empirical analysis of
privacy in the lightning network“. In: Financial Cryptography and Data Security:
25th International Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised
Selected Papers, Part I 25. Springer. 2021, pp. 167–186 (cit. on p. 42).

[126] Piyush Kumar Sharma, Devashish Gosain, and Claudia Diaz. „On the anonymity
of peer-to-peer network anonymity schemes used by cryptocurrencies“. In: arXiv
preprint arXiv:2201.11860 (2022) (cit. on p. 42).

127

https://github.com/interledger/rfcs/blob/main/0018-connector-risk-mitigations/0018-connector-risk-mitigations.md
https://github.com/interledger/rfcs/blob/main/0018-connector-risk-mitigations/0018-connector-risk-mitigations.md
https://github.com/interledger/rfcs/blob/main/0018-connector-risk-mitigations/0018-connector-risk-mitigations.md

[127] Satwik Prabhu Kumble, Dick Epema, and Stefanie Roos. „How lightning’s routing
diminishes its anonymity“. In: Proceedings of the 16th International Conference on
Availability, Reliability and Security. 2021, pp. 1–10 (cit. on pp. 42, 50).

[128] Utz Nisslmueller, Klaus-Tycho Foerster, Stefan Schmid, and Christian Decker.
„Toward active and passive confidentiality attacks on cryptocurrency off-chain
networks“. In: arXiv preprint arXiv:2003.00003 (2020) (cit. on p. 43).

[129] Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov. „Analysis and probing
of parallel channels in the lightning network“. In: International Conference on
Financial Cryptography and Data Security. Springer. 2022, pp. 337–357 (cit. on
p. 43).

[130] Jordi Herrera-Joancomartí, Guillermo Navarro-Arribas, Alejandro Ranchal-Pedrosa,
Cristina Pérez-Solà, and Joaquin Garcia-Alfaro. „On the difficulty of hiding the
balance of lightning network channels“. In: Proceedings of the 2019 ACM asia
conference on computer and communications security. 2019, pp. 602–612 (cit. on
pp. 43, 71).

[131] István András Seres, László Gulyás, Dániel A Nagy, and Péter Burcsi. „Topological
analysis of bitcoin’s lightning network“. In: Mathematical Research for Blockchain
Economy: 1st International Conference MARBLE 2019, Santorini, Greece. Springer.
2020, pp. 1–12 (cit. on pp. 43, 47, 48, 77).

[132] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. „Flash: efficient dynamic routing
for offchain networks“. In: Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies. 2019, pp. 370–381 (cit. on
pp. 44, 45, 50, 57).

[133] Giovanni Di Stasi, Stefano Avallone, Roberto Canonico, and Giorgio Ventre. „Rout-
ing payments on the lightning network“. In: 2018 IEEE international conference on
internet of things (IThings) and IEEE green computing and communications (Green-
Com) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data
(SmartData). IEEE. 2018, pp. 1161–1170 (cit. on pp. 44, 45, 67).

[134] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maffei. „A quantitative
analysis of security, anonymity and scalability for the lightning network“. In: 2020
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE.
2020, pp. 387–396 (cit. on pp. 44, 47).

[135] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, et al.
„High throughput cryptocurrency routing in payment channel networks“. In: 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 20).
2020, pp. 777–796 (cit. on p. 45).

[136] Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. „BOLT No. 0: Basis
of Lightning Technology (BOLT)“. In: See https: // github. com/ lightning/
bolts/ blob/ master/ 00-introduction. md (2018) (cit. on pp. 45, 67).

[137] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh,
Giulia Fanti, and Pramod Viswanath. „Routing cryptocurrency with the spider
network“. In: Proceedings of the 17th ACM Workshop on Hot Topics in Networks.
2018, pp. 29–35 (cit. on pp. 45, 50, 57).

128 Chapter 7 Bibliography

https://github.com/lightning/bolts/blob/master/00-introduction.md
https://github.com/lightning/bolts/blob/master/00-introduction.md

[138] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. „Silen-
tWhispers: Enforcing Security and Privacy in Decentralized Credit Networks.“ In:
NDSS. 2017 (cit. on pp. 45, 50, 53).

[139] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. „Settling
payments fast and private: Efficient decentralized routing for path-based transac-
tions“. In: arXiv preprint arXiv:1709.05748 (2017) (cit. on pp. 45, 50, 55).

[140] Cyril Grunspan and Ricardo Pérez-Marco. „Ant routing algorithm for the lightning
network“. In: arXiv preprint arXiv:1807.00151 (2018) (cit. on pp. 45, 50, 59).

[141] Yuwei Guo, Jinfeng Tong, and Chen Feng. „A measurement study of bitcoin light-
ning network“. In: 2019 IEEE International Conference on Blockchain (Blockchain).
IEEE. 2019, pp. 202–211 (cit. on pp. 45, 47, 48, 77).

[142] Philipp Zabka, Klaus-T Foerster, Christian Decker, and Stefan Schmid. „Short
paper: A centrality analysis of the lightning network“. In: International Conference
on Financial Cryptography and Data Security. Springer. 2022, pp. 374–385 (cit. on
p. 46).

[143] Louis Bertucci. „Incentives on the lightning network: A blockchain-based payment
network“. In: Proceedings of Paris December 2020 Finance Meeting EUROFIDAI-
ESSEC. 2020 (cit. on p. 46).

[144] Philipp Zabka, Klaus-T Förster, Christian Decker, and Stefan Schmid. „A centrality
analysis of the Lightning Network“. In: Telecommunications Policy 48.2 (2024),
p. 102696 (cit. on p. 46).

[145] Andrea Lisi, Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. „Light-
nings over rose bouquets: An analysis of the topology of the Bitcoin Lightning
Network“. In: 2021 IEEE 45th Annual Computers, Software, and Applications Con-
ference (COMPSAC). IEEE. 2021, pp. 324–331 (cit. on p. 46).

[146] Stefano Martinazzi and Andrea Flori. „The evolving topology of the Lightning
Network: Centralization, efficiency, robustness, synchronization, and anonymity“.
In: Plos one 15.1 (2020), e0225966 (cit. on pp. 46–49, 77, 85).

[147] Finnegan Waugh and Ralph Holz. „An empirical study of availability and reliability
properties of the bitcoin lightning network“. In: arXiv preprint arXiv:2006.14358
(2020) (cit. on p. 46).

[148] Ferenc Béres, Istvan Andras Seres, and András A Benczúr. „A Cryptoeconomic Traf-
fic Analysis of Bitcoin’s Lightning Network“. In: arXiv preprint arXiv:1911.09432
(2019) (cit. on pp. 47, 48, 77).

[149] Jian-Hong Lin, Kevin Primicerio, Tiziano Squartini, Christian Decker, and Claudio J
Tessone. „Lightning Network: a second path towards centralisation of the Bitcoin
economy“. In: New Journal of Physics 22.8 (2020), p. 083022 (cit. on pp. 47, 48,
77).

[150] Stefano Martinazzi. „The evolution of Lightning Network’s Topology during its first
year and the influence over its core values“. In: arXiv preprint arXiv:1902.07307
(2019) (cit. on pp. 47, 48, 77).

[151] Xiao ZHANG et al. „Evaluation Formula for Communication Network Node Impor-
tance“. In: Journal of Northeastern University (Natural Science) 35.5 (2014), p. 663
(cit. on p. 47).

129

[152] Lorenzo Costantini, Carla Sciarra, Luca Ridolfi, and Francesco Laio. „Measuring
node centrality when local and global measures overlap“. In: Physical Review E
105.4 (2022), p. 044317 (cit. on p. 47).

[153] Vincent Davis and Brent Harrison. „Learning a Scalable Algorithm for Improving
Betweenness in the Lightning Network“. In: 2022 Fourth International Conference
on Blockchain Computing and Applications (BCCA). IEEE. 2022, pp. 119–126 (cit.
on p. 47).

[154] Marco Conoscenti, Antonio Vetrò, Juan Carlos De Martin, and Federico Spini. „The
cloth simulator for htlc payment networks with introductory lightning network
performance results“. In: Information 9.9 (2018), p. 223 (cit. on p. 48).

[155] Cosimo Sguanci and Anastasios Sidiropoulos. „Mass exit attacks on the lightning
network“. In: 2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). IEEE. 2023, pp. 1–3 (cit. on p. 49).

[156] Mihai Plotean. „Improving the Anonymity of the Lightning Network using Sub-
Optimal Routes“. In: (2021) (cit. on p. 50).

[157] Cyril Grunspan, Gabriel Lehéricy, and Ricardo Pérez-Marco. „Ant routing scalability
for the lightning network“. In: arXiv preprint arXiv:2002.01374 (2020) (cit. on
p. 50).

[158] Stefanie Roos, Martin Beck, and Thorsten Strufe. „Voute-virtual overlays using tree
embeddings“. In: arXiv preprint arXiv:1601.06119 (2016) (cit. on p. 55).

[159] Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. „BOLT No. 11:
Invoice Protocol for Lightning Payments“. In: See https : / / github . com /
lightning/ bolts/ blob/ master/ 11-payment-encoding. md (2020) (cit. on
pp. 66, 67).

[160] Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. „BOLT No. 4:
Onion Routing Protocol“. In: See https: // github. com/ lightningnetwork/
lightning-rfc/ blob/ master/ 04-onion-routing. md (2020) (cit. on p. 66).

[161] Patrick McCorry, Malte Möser, Siamak F Shahandasti, and Feng Hao. „Towards
bitcoin payment networks“. In: Information Security and Privacy: 21st Australasian
Conference, ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016, Proceedings,
Part I 21. Springer. 2016, pp. 57–76 (cit. on p. 67).

[162] Luis E Oleas-Chávez, Cristina Pérez-Solà, and Jordi Herrera-Joacomartí. „On the
Selection of the LN Client Implementation Parameters“. In: Data Privacy Manage-
ment, Cryptocurrencies and Blockchain Technology: ESORICS 2020 International
Workshops, DPM 2020 and CBT 2020, Guildford, UK, September 17–18, 2020, Re-
vised Selected Papers 15. Springer. 2020, pp. 305–318 (cit. on pp. 71, 73, 74).

[163] Luis E Oleas-Chávez, Cristina Pérez-Solà, and Jordi Herrera-Joancomartí. „Apples
and Oranges: On How to Measure Node Centrality in Payment Channel Networks“.
In: IEEE Access 10 (2022), pp. 55469–55487 (cit. on pp. 79, 84, 87, 88, 90, 92, 94,
96–99, 101–109).

[164] Linton C Freeman. „Centrality in social networks conceptual clarification“. In:
Social networks 1.3 (1978), pp. 215–239 (cit. on p. 82).

130 Chapter 7 Bibliography

https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md

[165] Mark EJ Newman. „Scientific collaboration networks. II. Shortest paths, weighted
networks, and centrality“. In: Physical review E 64.1 (2001), p. 016132 (cit. on
pp. 83, 84).

[166] Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessandro Vespig-
nani. „The architecture of complex weighted networks“. In: Proceedings of the
national academy of sciences 101.11 (2004), pp. 3747–3752 (cit. on p. 83).

[167] Ulrik Brandes. „A faster algorithm for betweenness centrality“. In: Journal of
mathematical sociology 25.2 (2001), pp. 163–177 (cit. on p. 84).

[168] Tore Opsahl, Filip Agneessens, and John Skvoretz. „Node centrality in weighted
networks: Generalizing degree and shortest paths“. In: Social networks 32.3 (2010),
pp. 245–251 (cit. on p. 85).

[169] Linton C Freeman, Stephen P Borgatti, and Douglas R White. „Centrality in valued
graphs: A measure of betweenness based on network flow“. In: Social networks
13.2 (1991), pp. 141–154 (cit. on p. 90).

[170] Ulrik Brandes and Daniel Fleischer. „Centrality measures based on current flow“.
In: Annual symposium on theoretical aspects of computer science. Springer. 2005,
pp. 533–544 (cit. on pp. 91, 92).

[171] Mark EJ Newman. „A measure of betweenness centrality based on random walks“.
In: Social networks 27.1 (2005), pp. 39–54 (cit. on p. 91).

[172] Zhipeng Luo. „Network research: exploration of centrality measures and network
flows using simulation studies“. MA thesis. University of Twente, 2018 (cit. on
p. 91).

[173] Taras Agryzkov, Leandro Tortosa, and Jose F Vicent. „A variant of the current
flow betweenness centrality and its application in urban networks“. In: Applied
Mathematics and Computation 347 (2019), pp. 600–615 (cit. on p. 92).

[174] Alessandro Lulli, Laura Ricci, Emanuele Carlini, and Patrizio Dazzi. „Distributed
current flow betweenness centrality“. In: 2015 IEEE 9th International Conference
on Self-Adaptive and Self-Organizing Systems. IEEE. 2015, pp. 71–80 (cit. on p. 92).

[175] NetworkX. Current Flow Betweenness Centrality. NetworkX Network Analysis
in Python. https : / / networkx . org / documentation / stable / reference /
algorithms/generated/networkx.algorithms.centrality.current_flow_
betweenness_centrality.html#networkx.algorithms.centrality.current_
flow_betweenness_centrality. 2020 (cit. on p. 92).

[176] George Kappos, Haaroon Yousaf, Ania Piotrowska, et al. „An empirical analysis
of privacy in the lightning network“. In: arXiv preprint arXiv:2003.12470 (2020)
(cit. on pp. 96, 99).

[177] Elias Rohrer. Discharged-pc-data/Snapshots. GitLab. https://git.tu-berlin.de/
rohrer/discharged-pc-data/-/tree/master/snapshots. 2018 (cit. on p. 96).

[178] Alexei Biryukov, Gleb Naumenko, and Sergei Tikhomirov. „Analysis and Probing
of Parallel Channels in the Lightning Network“. In: (2021) (cit. on p. 98).

131

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.current_flow_betweenness_centrality.html#networkx.algorithms.centrality.current_flow_betweenness_centrality
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.current_flow_betweenness_centrality.html#networkx.algorithms.centrality.current_flow_betweenness_centrality
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.current_flow_betweenness_centrality.html#networkx.algorithms.centrality.current_flow_betweenness_centrality
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.current_flow_betweenness_centrality.html#networkx.algorithms.centrality.current_flow_betweenness_centrality
https://git.tu-berlin.de/rohrer/discharged-pc-data/-/tree/master/snapshots
https://git.tu-berlin.de/rohrer/discharged-pc-data/-/tree/master/snapshots

[179] Jordi Herrera-Joancomartí, Guillermo Navarro-Arribas, Alejandro Ranchal-Pedrosa,
Cristina Pérez-Solà, and Joaquin Garcia-Alfaro. „On the Difficulty of Hiding the
Balance of Lightning Network Channels“. In: Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security. Asia CCS’19. New York, NY,
USA: ACM, 2019, pp. 602–612 (cit. on p. 100).

132 Chapter 7 Bibliography

133

	Cover
	Titlepage
	Fulfillment
	Colophon
	Declaration
	Abstract
	 Abstract
	Acknowledgement
	 Acknowledgement
	 List of Figures
	 List of Tables
	Preliminaries
	I Preliminaries
	1 Introduction
	1.1 Introduction
	1.2 Research Objectives
	1.3 List of Contributions
	1.4 List of Publications
	1.5 Thesis Structure

	2 Bitcoin and Lightning Network
	2.1 Bitcoin
	2.1.1 Scripting language
	2.1.2 Scalability Problems

	2.2 Lightning Network
	2.2.1 LN Nodes
	2.2.2 LN P2P network
	2.2.3 LN Channels
	2.2.4 LN Channel Lifecycle
	2.2.5 LN Payments
	2.2.6 LN multi-hop payment
	2.2.7 LN Channel parameters and policies

	3 Layer 2 Protocols Categories and Subcategories
	3.1 Layer-2 Protocols Categories & Subcategories
	3.1.1 Cross-chains
	3.1.2 Side/child chains
	3.1.3 Hybrid solutions
	3.1.4 Channel solutions

	4 State of the Art
	4.1 Attacks over the LN
	4.2 Performance of the LN
	4.3 Node importance metrics for the LN
	4.4 Routing protocols
	4.4.1 Flare
	4.4.2 SilentWhisphers
	4.4.3 SpeedyMurmurs
	4.4.4 Spider
	4.4.5 Flash
	4.4.6 Ant

	Contributions
	II Contributions
	5 LN Contract Parameters Selection
	5.1 Multi-hop Route Parameters
	5.1.1 Time-lock parameters
	5.1.2 Limit parameters
	5.1.3 Fees related parameters

	5.2 Metrics
	5.2.1 Performance
	5.2.2 Security

	5.3 Experiment Setup
	5.3.1 LN Payment Channel Graph and Balances
	5.3.2 and Tmax Values

	5.4 Experiment results
	5.4.1 Performance
	5.4.2 Security

	5.5 Analysis of LN Contract Parameters Selection
	5.6 Conclusions

	6 Node centrality
	6.1 A model for the Bitcoin LN
	6.2 A discussion on classic centrality metrics applied to LN nodes
	6.2.1 Symmetric graphs
	6.2.2 Symmetric weighted graphs (capacity)
	Weight and strength -

	6.2.3 Directed weighted graphs (balance)
	6.2.4 Symmetric weighted graphs (fee)
	6.2.5 Flow based centrality metrics
	I Flow networks
	II Betweenness centrality based on flow
	III Betweenness centrality based on current flow
	Flow-based Metric Selection -

	6.3 Connectivity in the scope of a payment network
	6.4 Proposed centrality measures in the scope of LN
	6.5 Measuring the LN
	6.5.1 Snapshots, dataset and the Network
	6.5.2 The effects of restrictions on centrality
	I Degree-based
	II Path-based

	6.5.3 Relevance of nodes according to Centrality
	I Degree-based
	II Path-based

	6.6 Analysis of LN Node Centrality
	6.7 Conclusions

	Conclusions
	III Conclusions and Future Work
	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

	Títol de la tesi: Layer 2 Protocols in Bitcoin
	Nom autor/a: Luis Esteban Oleas-Chávez

