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Abstract

This thesis explores the application of Padé and D-Log Padé approximants in Quantum

Chromodynamics (QCD), focusing on their potential to model divergent functions while

maintaining essential analytical properties. We propose a new convergence conjecture for

D-Log Padé approximants in the case of Stieltjes functions and perform a comparative

analysis of both techniques across several QCD-related scenarios. These include determining

the anomalous magnetic moment of the muon, parameterising form factors in B-meson

decays. Our findings demonstrate the effectiveness of these approximants in reducing

uncertainties and improving parameterisations of expressions with poles or branch cuts.
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Introduction

One of the major successes in the history of science is the high predictive power of the

Standard Model (SM) of particle physics. This model provides a framework for under-

standing the subatomic world through a set of fundamental particles and the interactions

between them. Based on quantum field theory, the Standard Model effectively describes

the behaviors associated with basically two types of interactions: the electroweak sector

(EW), which encompasses the weak nuclear and electromagnetic interactions, and Quantum

Chromodynamics (QCD), which deals with the strong nuclear interaction. While both

sectors are the focus of active research, this work will specifically address some of the

challenges associated with the physics of the strong force.

From a mathematical standpoint, into the formulations of QCD, various analytical

expressions may exhibit points of divergence, manifesting as poles or branch cuts. These

singularities hold significance within both perturbative and non-perturbative regimes of

QCD calculations1. In many physical systems, obtaining exact theoretical formulations

for several of these expressions proves challenging, lacking a generic modelling approach.

Among these expressions are hadronic structure functions and Form Factors involved in

diverse hadronic processes. Additionally, QCD theory entails Green’s functions, including

propagators or Kernel Functions with the same type of structures. Despite their theoretical

importance, a precise parameterisation of these expressions remains an ongoing challenge

due to the complex nature of QCD interactions.

The lack of precision and certainty when modeling divergence points can result in a

possible source of error or uncertainty in the calculation of observables. Therefore, it

is crucial to develop highly efficient and precise methods for modeling these divergent

functions. These methods must also adhere to the analytical properties established by

QCD.

1A detailed explanation about these two types of regimes will be presented in Section 1.1
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XIV Introduction

We aim to present and evaluate two powerful and promising tools for this task: Padé

approximants and D-Log Padé approximants. The former has been successfully studied

in various scenarios, demonstrating excellent precision in many hadronic computations.

The latter, an innovative technique, has been recently considered for modeling divergent

functions in QCD, specially to reproduce branch cuts. In this thesis, we will conduct an

in-depth exploration of D-Log Padé approximants and provide a comparative analysis with

Padé approximants. Overall, these two techniques could offer improved parameterisations

of expressions involving poles or branch cuts, potentially outperforming existing models.

What makes our approach unique is the application of both Padé and D-Log Padé

approximants, which are model-independent methods, and testing them in some QCD

scenarios. These techniques offer distinct advantages over traditional approaches. First,

Padé approximants possess a robust theoretical framework that aligns well with the pa-

rameterisation needs of QCD expressions, even when these expressions are not precisely

known but must adhere to certain analytical properties. Moreover, these approximants

reduce uncertainties due to their fast convergence, improving the precision of calculations.

While Padé functions have shown great success, certain limitations they present in complex

scenarios can be addressed by D-Log Padé approximants, which introduce a richer analytical

structure. This dual approach provides a more versatile and accurate modeling framework

for QCD.

While Padé approximants have been extensively studied and successfully applied in

various QCD contexts, the exploration of D-Log Padé approximants remains incomplete

in the current literature. Although a few articles have begun incorporating D-Log ideas,

there is no comprehensive analysis available. In this thesis, for instance we present a novel

convergence conjecture for D-Log Padé approximants specifically in the case of Stieltjes

functions, which has not been addressed before. Additionally, we test both Padé and

D-Log Padé approximants across three different scenarios, providing a detailed comparative

analysis of their convergence behavior. This work not only expands the understanding

of D-Log Padé approximants but also offers a direct comparison with traditional Padé

methods, highlighting the potential of D-Logs to overcome certain limitations of the latter.

The thesis is organized to progressively introduce the reader to both the theoretical

foundations and the novel applications of Padé and D-Log Padé approximants in some

QCD scenarios. In Chapter 1, we provide a brief introduction to QCD theory, presenting

the most essential concepts that frame our work. This chapter includes a section discussing

non-perturbative and effective approaches, such as lattice QCD, chiral perturbation theory,

and the Large Nc expansion, which are key tools in addressing the complexities of QCD. We
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also dedicate a section to some of the major challenges in QCD, highlighting the hadronic

scenarios where our approximants will be tested. In Chapter 2, we delve into the theoretical

fundamentals of both Padé and D-Log Padé approximants. We explain their canonical

construction, explore other related rational approximants and their extensions, and present

key convergence theorems, particularly those related to meromorphic and Stieltjes functions.

Following this, Chapter 3 is devoted entirely to presenting a new convergence conjecture

for using D-Log Padé approximants to approximate Stieltjes functions, which is a central

contribution of this thesis. Moving into the applied part of the work, Chapter 4 introduces

the first scenario where both techniques —Padé and D-Log Padé approximants— are

employed to fit experimental data and determine the anomalous magnetic moment of the

muon. Chapter 5 presents a second application, where we use these approximants to

parameterise vector and scalar form factors in semileptonic decays of the B meson, with

the goal of determining the CKM matrix element Vub. Finally, we summarize our findings

and present the conclusions of the thesis, reflecting on the implications of the results and

potential directions for future research.
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Chapter 1

Quantum Chromodynamics Theory

The Standard Model (SM) of particle physics is a Yang-Mills1 gauge theory that describes

the fundamental interactions at a microscopic level with unprecedented success. It is based

on the symmetry group SU(3)c × SU(2)I × U(1)Y , where SU(3)c represents the strong

interaction, also known as Quantum Chromodynamics (QCD). This chapter will present

the essentials of QCD, which describes the behavior of quarks and gluons, the fundamental

constituents of hadronic particles such as protons, neutrons, and all kind of mesons. QCD

serves as the physical theoretical framework for later chapters, especially in the context of

precision tests involving the anomalous magnetic moment of the muon (see. Chapter 4)

or hadronic form factors (see. Chapter 5). Additionally, we will discuss the role of Chiral

Perturbation Theory in describing low-energy meson dynamics and its connections to

large-Nc approximations.

1.1 QCD Fundamentals

QCD is a Yang-Mills gauge theory based on the SU(3)c symmetry group, where the

subscript c refers to color charge which is the one associated with the strong interaction.

The theory describes six types (flavors) of quarks –up (u), down (d), strange (s), charm (c),

bottom (b) and top (t)– interacting via gluons, the force carriers of QCD. Quarks transform

under the fundamental representation of SU(3)c, meaning they color charge is: red, green or

1Yang-Mills theory is a gauge theory based on non-Abelian Lie groups, where the gauge fields mediate
interactions between particles.

1



2 1. Quantum Chromodynamics Theory

blue2. The gluons, in contrast, transform under the adjoint representation of SU(3)c, and

there are eight distinct gluons that also are charged and could interact between them [1–3].

The QCD Lagrangian is given by [4]:

LQCD =

Nf∑
i=1

q̄i
(
i /D −mi

)
qi −

1

4
Ga

µνG
a,µν , (1.1)

where qi represents the quark fields (with Nf flavors), mi is the quark mass3, and /D = γµDµ

with γµ the Dirac matrices (see Appendix A), refers to the covariant derivative defined as:

Dµ = ∂µ − igsT
aAa

µ (1.2)

Here, gs is the strong coupling constant, Aa
µ represents the 8 gluon fields, and T a are the

generators of the SU(3)C group. The term Ga
µν represents the gluon field strength tensor,

defined as:

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν (1.3)

where fabc are the structure constants of SU(3)c, which are defined from [ta, tb] = ifabctc.

The QCD Lagrangian encodes several key properties of the strong interaction, including

confinement and asymptotic freedom [4]. In this context, the coupling constant gs plays a

crucial role in determining the strength of interactions at different energy scales, providing

deeper insight into the phenomena of confinement and asymptotic freedom.

Two regimes in QCD

In any QFT, renormalization effects cause the coupling constant to vary with energy, a

phenomena known as running. This energy dependence is governed by the renormalization

group (RG) equations for the coupling constant, defined as αs =
g2s
4π [5, ch. 9].

µ2dαs

dµ2
= β(αs) = −αs

(
β0

αs

4π
+ β1

(αs

4π

)2
+ β2

(αs

4π

)3
+ ...

)
, (1.4)

with β0 = 11 − 2
3nf , where nf is the number of active quark flavors at energy scale µ.

For nf ≤ 6, the β0 coefficient is positive, leading to a decrease in αs at high energies (or

equivalently, short distances) where strong interaction becomes weaker, allowing the use of

perturbation theory (PT) in this regime. This behavior is known as asymptotic freedom,

2Antiquarks transform with the conjugate representation, so they could carry the opposite charge
(antired, antigreen or antiblue)

3The spectrum of masses mi span over five orders of magnitude (mu ≈ 2.2 MeV , mt ≈ 1.73× 105 MeV).
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which essentially explains why quarks behave almost like free particles at high energies,

enabling precise perturbative calculations in QCD. The discovery of asymptotic freedom

is one of the most significant achievements in QCD, recognized by the 2004 Nobel Prize

awarded to D. J. Gross, F. Wilczek, and H. D. Politzer [1, 2].

On the other hand, at low energies (toward ΛQCD ∼ 200 MeV), the coupling constant

grows, leading to a non-perturbative behavior and a strong-coupling regime [1, 6]. This

low-energy regime is characterized by confinement, where quarks and gluons are never

observed as free particles but always exist in color-neutral bound states called hadrons [7].

Confinement is believed to be a consequence of the self-interaction of gluons, which leads

to the formation of a strong, non-perturbative potential between quarks at large distances.

Understanding the detailed mechanism of confinement, and providing a rigorous proof,

remains an open question in theoretical physics [8, 9].

1.2 Non-Perturbative QCD and Effective Approaches

To study the non-perturbative regime of QCD, alternative approaches have been developed

since PT becomes ineffective. Two of the most important methods are lattice QCD and

effective field theories such as Chiral Perturbation Theory, and the large-Nc expansion.

Lattice QCD

An exact calculation from first principles based on the QCD Lagrangian (Eq. (1.1)) has

been achieved only through Lattice QCD, a powerful numerical method developed by K.

Wilson in the 70s [6]. This approach discretizes the QCD action on a four-dimensional

Euclidean space-time lattice and perform Monte Carlo simulations to compute observables

such as hadron masses, decay constants, and form factors [5, ch. 17]. Additionally, the

Dyson-Schwinger equations offer a continuum, non-perturbative framework for quantum

field theories, although they are typically solved with further approximations [10].

Despite the remarkable progress in Lattice QCD over recent years, certain observables

remain inaccessible, and the method remains computationally expensive, often requiring

careful guidance for extrapolations, especially in the presence of small quark masses or

long-range interactions [5, ch. 17].

A complementary and analytically successful approach is Chiral Perturbation Theory,

which serves as the low-energy effective field theory of QCD.
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Chiral Perturbation Theory and Low-Energy QCD

Chiral Perturbation Theory (ChPT) is an effective field theory that describes the low-

energy dynamics of QCD. It is based on the approximate chiral symmetry of QCD and

its spontaneous breaking, resulting in pseudo-Goldstone bosons, which could be identified

with the light mesons like pions, kaons, and eta [11–13]. In this framework, the low-energy

regime can be described using a perturbative expansion in powers of momenta and quark

masses.

The most general Lagrangian at leading order, reads [13–15]

LChPT =
f2
π

4
Tr
[
DµUDµU †

]
+

f2
π

4
Tr
[
χU † + Uχ†

]
, (1.5)

where fπ is known as the pion decay constant in the chiral limit, U represents the matrix

of pseudo-Goldstone bosons, and the covariant derivative is defined as:

DµU = ∂µU − irµU + iUlµ = ∂µU − i [vµ, U ]− i {aµ, U} (1.6)

This derivative definition facilitates coupling pseudo-Goldstone bosons to external left-

handed (lµ) and right-handed (rµ) currents, or alternatively to vector (vµ) and axial

(aµ) currents. Finally, we have in the lagrangian, χ = 2B(s + ip), where B is tied to

the quark condensate ⟨q̄q⟩0 in the chiral limit, with s(p) representing external scalar

(pseudoscalar) currents. This structure allow us introduce finite quark mass effects by

setting s → M = diag(mu,md,ms) [16,17]. A more deeper and formal description of the

ChPT can be found in references [12,18].

ChPT provides systematic predictions for low-energy phenomena, such as pion-pion

scattering and the modeling of pion form factors. Seminal works by Gasser and Leutwyler [13,

14] laid the foundation for these applications. The pion form factor, Fπ(q
2), is essential for

understanding hadron structure and serves as a precision test of QCD, offering valuable

insights into the strong interaction at low energies [19–22].

The Large Nc Limit and the Minimal Hadronic Approximation

The large Nc limit of QCD, introduced by ’t Hooft, offers another perspective on the

strong interaction [23]. In this limit, the number of colors Nc is treated as a large parameter,

and QCD simplifies in certain respects. For instance, in the gluon self-energy computation,

quark loops are suppressed4 by powers of 1/Nc, and through this approximation the theory
4Strictly speaking, we refer to non-planar diagrams and quark loops.
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becomes more tractable. This limit provides insight into the structure of mesons and

baryons and helps explain some aspects of confinement and hadronization [24,25].

The Minimal Hadronic Approximation (MHA) is a technique used within the large

Nc framework to model hadronic physics [26]. It involves truncating the spectrum of

hadronic states to the lightest few resonances, providing a simple yet effective way to

compute certain QCD observables. The MHA has been applied successfully in areas like

the calculation of form factors, decay constants, and contributions to the hadronic vacuum

polarization [27–29].

The large-Nc approach, combined with techniques like Padé approximants (that we will

explain in the next chapter), provides insight into the connection between low-energy chiral

expansions and high-energy perturbative QCD results [26].

A deeper and detailed description for the large-Nc approximation can be found in

references [25,30,31].

1.3 Challenges in QCD

During this thesis, we will explore various scenarios in particle physics where hadronic

calculations play a crucial role, focusing on areas that are both highly active in current

research and closely related to unresolved problems in QCD. Specifically, we will address

topics such as the hadronic contributions to the anomalous magnetic moment of the muon

and the importance of accurately modeling the form factors of B mesons for determining

the transition probability of a bottom quark into an up quark.

QCD also plays a role in understanding CP violation5, which is explained within the

SM by the complex phases in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This

matrix encodes the mixing of quark flavors through weak interactions [32, 33]. Precise

determinations of CKM elements are essential for constraining CP-violating processes in

the strong sector [34]. Therefore, QCD plays an essential role in the analysis of these

processes because the strong interactions contribute to the hadronic structure of meson

decays and impact in the extraction of CKM matrix element associated (see Chapter 5).

The interplay between QCD and weak interactions, especially in B-meson decays, provides

key insights into CP-violating processes. In consequence, the precised determination of the

CKM element Vub provided by B-meson decays, has lead to stringent tests of the Standard

Model and has opened the door to searches for new physics [35,36].

5Charge Parity (CP) symmetry violation is essential for explaining the observed matter-antimatter
asymmetry in the universe.
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In the context of loop computations, QCD corrections are vital for many processes,

including the determination of the anomalous magnetic moment of the muon, (g−2)µ,. The

precise calculation of the hadronic contributions of (g − 2)µ involves both perturbative and

non-perturbative QCD [37–39]. These corrections are particularly challenging because they

require a detailed understanding of hadronic vacuum polarization and hadronic light-by-light

scattering, which are influenced by strong interactions at low energies [40,41].

Recent discrepancies between the experimental and theoretical values for the (g − 2)µ

suggest effects of new physics beyond the Standard Model [42–44]. Several efforts have

been made both theoretically and experimentally to obtain a better understanding of the

QCD contributions to clarify this point (for a clear example of these efforts, see Chapter 4).

All these scenarios with hadronic processes are typically studied through a combination

of lattice QCD, ChPT, the Large Nc limit expansion among other approaches.

1.4 Summary & highlights

Quantum Chromodynamics remains one of the most successful yet challenging components

of the Standard Model. While the theory has explained a wide range of phenomena, from

high-energy asymptotic freedom to low-energy hadron interactions, significant challenges

remain. The precise determination of CKM matrix elements, the role of QCD in CP

violation, and the understanding of confinement are central areas of ongoing research.

Additionally, loop computations and contributions to the anomalous magnetic moment of

the muon are pressing topics that rely on detailed QCD calculations. Effective theories like

Chiral Perturbation Theory and large Nc techniques continue to play an essential role in

bridging the gap between the non-perturbative nature of QCD and experimental observables.

Therefore, it is necessary to propose other complementary techniques to address these

challenges, such as those presented in this thesis.



Chapter 2

Convergence Techniques and Padé Theory

Convergence Techniques essentially refers to a mathematical tool used to ensure that a

series approaches a specific value or specific function as more terms of that series are added.

These techniques are crucial in numerical analysis and in some applied fields like particle

physics, where approximations are used to solve problems that cannot be addressed with

exact solutions. In specific, we are interested in applying these type of techniques in order

to obtain a good approximation for correlation functions that appear in QCD as well for

Form Factors that could be characterised in terms of different poles within their domain.

To approximate a function, we would usually use its Taylor series, but only when the

Taylor series expansion converges absolutely, then defines uniquely the value of a function

which is differentiable an arbitrary number of times. However, this expansion presents some

practical difficulties that include computing the Taylor coefficients and determining the

range of applicability of the Taylor expansion.

On the other hand, when perturbation methods are used to solve a problem in QCD,

the answer usually emerges as an infinite series. This perturbation series either has fast

convergence, slow convergence or it is a divergent series, in the latter case we need a method

that accelerates the convergence or assigns a relevant meaning to the sum even if only

a few terms of the series are available. A divergent series is an indication of presence of

singularities in the limit function, and a polynomial is not enabled to approximate the

function in the whole convergence range, another motivation to find a suitable summation

method.

Some example of acceleration methods include Euler, Borel Summation, Chebyshev

7
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acceleration, continued fractions, among others [45, 46]. Each of these techniques are

designed to enhance the range of convergence or make it possible to sum a divergent series

or accelerate its convergence. However in the case of Euler and Borel summation all terms

of the series must be known before apply the summation method, which is unrealistic, the

common case is to have knowledge of the first few terms [47]. In this case, an excellent

candidate to converge to the sum of the series or the function is the Padé Summation

technique or Padé approximants, proposed by Henri Padé in his thesis in 1892 [48–50]. In

the next section, we present the most relevant elements of Padé Theory.

This chapter is organized as follows: Section 2.1 will introduce the most relevant elements

of Padé Theory and provide the formal definition of Padé approximants. It will cover

an example of their canonical construction of Padé approximants in Subsection 2.1.1,

convergence theorems for meromorphic functions in Subsection 2.1.2, and convergence

for Stieltjes-type functions in Subsection 2.1.3. Finalizing Padé theory, we will explore

extensions of Padé approximants in Subsection 2.1.4. A separate section will be dedicated

to a variation that introduces a type of approximant which is not a rational function

but employs the logarithmic derivative to construct approximants with a more complex

analytical structure: the D-Log Padé approximants. This will be addressed in Section 2.2,

where we will discuss their canonical construction with an example in Subsection 2.2.1, and

potential extensions of this type of approximants in Subsection 2.2.2.

2.1 Padé approximants

Since the notion of Padé approximants has already been introduced, a more detailed and

rigorous description will be presented in this section. Given a function f(z) of complex

variable z with a well defined power expansion around the origin1 with a certain radius of

convergence |z|= R

f(z) =

∞∑
n=0

fnz
n, (2.1)

a Padé approximant (PA) for the function f(z) can be defined as a ratio of two polynomials

in the variable z. The polynomial AN (z) with N as the highest degree in the numerator

and the polynomial BM (z) with M as the highest degree in the denominator. This rational

function can be denoted as PN
M (z)2,

1The definition is not special for the origin (z = 0) and generally applies to any point z0 in the complex
plane as long as the series expansion is well-defined around z = z0.

2In the mathematical literature PN
M (z) is often referred to as [N/M ] or [N |M ]
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PN
M (z) =

AN (z)

BM (z)
=

∑N
n=0 anz

n∑M
m=0 bmzm

, (2.2)

where coefficients an, bm can be determined using the following relation:

|f(z)− PN
M (z)|= O(zN+M+1), (2.3)

therefore, when expanding PN
M (z) around z = 0, the first M + N + 1 coefficients of the

expansion for f(z) (Eq. 2.1) are exactly reproduced. Since the fractional values of each

power remain invariant if both polynomials (AN , BM ) are multiplied by a non-zero constant,

we can define a standard normalization using b0 = 1 without loss of generality.

A Padé approximant could generate different sequences of approximants that can ensure

the convergence to the original function, therefore those of spacial interest are the near-

diagonal sequences when N = M + J , for a fixed J . In particular, it will be very useful to

us the diagonal (J = 0), subdiagonal (J = −1) and superdiagonal sequence (J = 1).

A more extended theoretical description can be found in references [16,47,51–53], and

more recent developments in numerical analysis and classical analysis that involve Padé

approximants as a very useful and versatile tool can be found in references [54–57].

2.1.1 Canonical construction of a Padé approximant

In order to observe how is the behaviour of PAs when the method is applied to divergent

series, let us to consider the following function

f(z) =
ln (z + 1)

z

(
z − 2√
z + 5

)
. (2.4)

This function has one branch point located in z = −1, and one branch cut in z = −5, thus,

the real domain for this function is (−1,∞). The function also has a zero in z = 2 and

lastly a pole in zero which cancels with logarithm function. PAs have the ability to converge

to the function beyond the radius of convergence of the corresponding power series for the

function f(z) as shown in Figure 2.1. In the same figure, can be noted that increasing

the order of the PA, the approximant converges to the original function even when the

series diverges. In this case, the convergence is so fast that we need to zoom into the range

(−1, 1) of f(z) to distinguish between the first Padé sequences, as shown in Figure 2.1(b).

Additionally, it’s worth noting that there is no significant improvement between P 2
2 and

P 3
3 , which could be attributed to a type of noise that occasionally affects some PAs, known
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Figure 2.1: Convergence behaviour of different PAs, where solid blue line corresponds to
the example function, dot-dashed red line is the truncated Taylor Series and all dashed
lines are Padé approximants considered.

as defects3, essentially they are regions of the complex plane that have a pole and a near

by zero, but their effect is limited to an area around the pole and not the entire complex

plane. Their proximity can be so high that they practically cancel each other out reducing

the order of the approximant by one unit in its sequence.

Another notable behavior of PAs is their ability to "reproduce" a branch point or a

branch cut of the original function by accumulating zeros and poles along the real negative

axis4. As the order of the PA increases, the density of these zeros and poles around the

singularity also increases and in some sense the PA resemble the branch cut, as it is formally

proven in [47, 60, 61]. This behavior around the first branch point (z = −1) of the example

function is shown in Figure 2.2. However, identifying the precise location of the cut using

this trend requires a large number of coefficients. Moreover, the potential appearance of

aforementioned "defect-pairs" very close to the cut location complicates this process, as

it becomes difficult to determine whether they are part of the trend or not. This could

lead to an incorrect identification of the cut’s position, as seen with the PA P 6
6 , which has

a defect at z = −0.937. Other defects are presented in the third column of Figure 2.2.

Additionally, the same figure shows that the zero at z = 2 is obtained with high precision

from lower-order PAs (∼ P 2
2 ).

3Defects are also known as Froissart doublets, since this effect was observed by Marcel Froissart in the
60’s [58, 59].

4In a rigorous way, diagonal and subdiagonal PAs converge for all z in the cut-plane (|arg z| < π) [47,51]
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Figure 2.2: Accumulation of poles (blue circles) and zeros (yellow triangles) towards the cut
z = −1 of example function (Eq. (2.4)) in the domain −5 < Re(z) < 2, using 9 different
PAs. Defect pairs are indicated with a red arrow.

2.1.2 Convergence for meromorphic functions

As shown above PAs become a powerful tool when we are dealing with divergent series,

they cannot only dramatically improve the convergence rate within |z|< R with respect to

Eq. (2.1), but may provide convergence in a larger domain. However, since many functions

can be asymptotic to the same divergent series, the issue arises of identifying the limit

function to which a PA sequence converges. While there is no general theory for Padé

summation applicable to arbitrary series, the convergence theory of Padé approximants is

relatively well-known for specific classes, including Stieltjes series, meromorphic functions,

continued fractions, hypergeometric functions, and Bessel functions [47, 51].

In this section, we will describe the convergence properties for meromorphic functions,

while Stieltjes functions convergence will be presented in the next section (see 2.1.3), these

type of functions are of our interest because are representative cases of QCD Green’s

functions.

A meromorphic function could be defined as a function which is analytic in the whole

complex plane except for a set of isolated poles. The convergence properties of PAs to this

kind of functions are very well-known and can be summarized in terms of Montessus’ and

Pommerenke’s theorems [47,52].
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Montessus’s theorem

Let f(z) be a meromorphic function inside the disk |z| ≤ R with m multiple poles

(z1, z2, ..., zm) located in different positions according to the following hierarchy:

0 ≤ |z1|≤ |z2|≤ · · · ≤ |zm|≤ R (2.5)

Considering that, a multiple pole zk could has multiplicity νk (where νk ∈ N), then we

can set the total multiplicity as
∑m

k=1 νk = M . Then we have,

f(z) = lim
L→∞

PL
M (z), (2.6)

uniformly on any compact subset of

Dm = {z | |z|≤ R, z ̸= zk, k = 1, 2, · · · ,m}. (2.7)

Montessus’s theorem guarantees the Padé sequence convergence within the circle |z|< R,

ensuring that the poles and residues of the PAs converge to their true values as L → ∞
[62] [52, ch. 6.2]. This uniform convergence implies no spurious poles will appear within

this disk, and the positions of the m poles will be accurately determined (as an example of

its application see Refs. [20,63–65]). However, the theorem says nothing about the region

outside the circle |z|< R, and the number of poles must be known in advance, Pommerenke’s

theorem can be considered as an alternative.

Pommerenke’s theorem

Pommerenke’s theorem states the following; let f(z) be an analytic function at the origin

as well as in the entire complex plane except for a countable number of isolated poles

and/or essential singularities, then the sequence of PAs PL
M where L = λM (with λ ̸= 0

and λ ̸= ∞) satisfies:

f(z) = lim
M→∞

P λM
M , (2.8)

on any compact set of the z-plane except for a set of points of zero measure5 [66].

This theorem guarantees that, in any compact region of the complex plane, the spurious

poles of this type of sequences will either move away from this area as the order of the PA

5It means that convergence is not guaranteed when |f(z)− PλM
M |≤ ε is no longer valid on an arbitrarily

small circle around this point.



2.1. Padé approximants 13

increases or will appear in pairs near the zeros of the function, producing the aforementioned

defects. An interesting corollary of this theorem, as mentioned in Ref. [52], extends this

guarantee to PAs sequences PN+k
N for a fixed k, ensuring convergence as N → ∞.

The theorem has three very relevant benefits: first, the poles don’t have to be specified

in advance; second, it ensures convergence practically in the entire complex plane; third, it

accounts for not just poles but also essential singularities. However, a challenging situation

arises when one has to deal with these unwanted poles –poles which are not part of the

original function–. Additionally, increasing the order of the Padé sequence PN+k
N by one

requires two new coefficients as input parameters, while Montessus’ theorem only needs one

new coefficient to increase the order of its sequence. For a nice illustration of this property

and the use of Pommerenke’s theorem, we refer to [64,67].

2.1.3 Convergence for Stieltjes functions

In this chapter, we will present the Stieltjes functions, exploring their fundamental prop-

erties and its proper definition. We will discuss how the convergence of Padé approximants

can be reliably ensured for these types of functions, an essential aspect in later chapters

since their analytical properties can be guaranteed for some Green’s functions (correlators)

in QCD. Through this exploration, we aim to provide a powerful tool to parameterize dif-

ferent functions that satisfy the Stieltjes structure, thereby ensuring important convergence

behavior. Additionally, this approach can offer an uncertainty value between the original

function and the approximant.

Stieltjes functions

A Stieltjes function is a function that can be represented by a Stieltjes integral

f(z) =

∫ ∞

0

dϕ(u)

1 + zu
, |arg (z)| < π. (2.9)

where ϕ(u) is a bounded non-decreasing function on the interval 0 ≤ u < ∞ with finite

positive moments given by

fn =

∫ ∞

0
un dϕ(u) , ∀n ≥ 0. (2.10)
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Since moments fn correspond to a measure ϕ(u) inside the interval [0,∞), then f(z) can

be expressed with its expansion in power series, called Stieltjes series6,

f(z) =

∞∑
n=0

fn (−z)n. (2.11)

A necessary and sufficient condition [52] for a function to be Stieltjes is that all the

Hankell determinants Df
m,n with m ≥ 0 and n ≥ 0 must be strictly positive7.

Df
m,n =

∣∣∣∣∣∣∣∣∣∣∣

fm fm+1 · · · fm+n

fm+1 fm+2 · · · fm+n+1

...
...

. . .
...

fm+n fm+n+1 · · · fm+2n

∣∣∣∣∣∣∣∣∣∣∣
> 0. (2.12)

These determinants produce constraints between the power series coefficients fn of the

Stieltjes functions. This will be essential in our analysis in later chapters since a PA

constructed from a Stieltjes function has the same Stieltjes properties as the original

function has [51,52].

The function in Eq. (2.4) is a not Stieltjes type function. However, it will be easy to

prove that the factor ln (z+1)
z can be represented as a Stieltjes function with the interest of

giving an example. The series expansion for ln (z + 1) reads:

ln (1 + z) =

∞∑
n=1

(−1)n−1zn

n
→

∞∑
n=0

(−1)nzn+1

n+ 1
→ z

∞∑
n=0

(−z)n

n+ 1
, |z| < 1. (2.13)

That series diverge for |z| > 1, however, it can be summed as long as |arg (z)| < π using

PAs for Stieltjes series. Dividing by z in both sides, we can note it is already in Stieltjes

series representation (Eq. (2.11)), where moments satisfy

fn =
1

n+ 1
. (2.14)

It can be easily shown that

fn =

∫ ∞

0
undϕ(u) =

∫ 1

0
undu =

1

n+ 1
, (2.15)

6it would be easier to use the positive-definite coefficients (fn) in Eq. (2.11) rather than the standard
notation for a power series due the resultant conditions in the Hankel determinants (Eq. (2.12))

7In some references, the condition is described as non-negative; however, in the case of all Hankel
determinants being zero, this results in a trivial case, specifically corresponding to the PA P 0

1
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Figure 2.3: Representation of poles (white points) and zeros (black points) using 5 different
PAs of sequence PN−1

N to approximate the Stieltjes function f(z) = z−1 ln (z + 1).

where we only have to define ϕ(u) = u for 0 ≤ u ≤ 1 and ϕ(u) = 1 for 1 < u, therefore we

get the following Stieltjes function

ln (z + 1) = z

∫ 1

0

du

1 + zu
.

Recall the ability of the PAs to resemble a branch cut by increasing their order, which

results in the accumulation of poles and zeros. In this case, these poles and zeros cluster

near z = −1, all located on the negative real axis, as illustrated in Fig. 2.3. This behavior

is a direct consequence of the guaranteed convergence within the cut plane (|arg (z)| < π),

a topic we will discuss in more detail in the next subsection.

Convergence properties

For functions that belong to the Stieltjes type functions, a well-established theorem based

in the Carleman condition within the theory of Padé approximants ensures the convergence of

the PN+J
N (z) sequence in the cut complex plane for J ≥ −1 when N → ∞ [47,51,52,68,69].

The Padé sequence of a Stieltjes series representation exhibits notable convergence

properties when its weight function is nonnegative. It can be proved that, for z > 0:

• The diagonal Padé sequence PN
N (z) decreases monotonically as N increases.
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• The subdiagonal Padé sequence PN
N+1(z) increases monotonically as N increases. This

also applies for superdiagonal sequence PN+1
N (z).

• The sequence PN
N (z) has a lower bound, while the sequence PN

N+1(z) or PN+1
N (z) has

an upper bound.

These properties imply; first, limN→∞ PN
N (z) and limN→∞ PN

N+1(z) both exist for real posi-

tive z; secondly, limN→∞ PN
N+1(z) ≤ limN→∞ PN

N (z). In the case we have the equality then

there is just one Stieltjes function corresponding to the limit function of the approximants.

Even more, all Stieltjes functions f(z) with the same finite series representation used in the

Padé summation satisfy

lim
N→∞

PN
N+1(z) ≤ f(z) ≤ lim

N→∞
PN
N (z), (2.16)

these previous inequalities can be generalized in the following way: for any J ≥ −1 the

Padé sequence PN+J
N (z) generated from a Stieltjes function is monotonically increasing

when J is odd and monotonically decreasing when J is even8. This generalization directly

implies the equivalent convergence relation for the superdiagonal sequence as follows

lim
N→∞

PN+1
N (z) ≤ f(z) ≤ lim

N→∞
PN
N (z). (2.17)

Moreover, since diagonal and near-diagonal Padé sequences PN
N (z) and PN

N±1(z) converge

to the original function, and this Stieltjes functions is analytic in the cut−z plane, we can

ensure that above mentioned PAs satisfy Stieljes properties and are also analytic in the cut

complex plane |arg z| < π, hence all their poles must be located on the negative real axis,

excluding the possibility of defects in the range of convergence. This is very useful because

allow us to reconstruct some hadronic functions, like the vacuum polarization, in the whole

cut complex plane as we will see in Chapter 4.

When dealing with functions that are both Stieltjes and meromorphic, choosing the

appropriate convergence theorem depends on the specific needs of the analysis. Montessus’

theorem guarantees uniform convergence within a disk, while the Stieltjes-convergence

theorem provides boundary constraints for the approximation. For meromorphic functions

that are not Stieltjes, Montessus’ theorem does not offer boundary constraints, so the

accuracy of the Padé sequence is typically assessed by examining the differences between

consecutive approximants, like following references [61,64,67,70].
8The behaviour of convergence is not guarantee for the PN

1 sequence as one can prove they do not need
to be Stieltjes even though they are built from a Stieltjes function [52].
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2.1.4 Extensions of Padé approximants

So far, we have discussed Padé approximants without prior knowledge of the poles, but it

can be beneficial to include information about certain resonances and positions further from

the origin. Montessus’s and Pommerenke’s theorems suggest that the poles and residues

of the underlying function are eventually reproduced by the approximants. Incorporating

this information before their construction, when this is known, can enhance accuracy.

This can be achieved through Padé type and partial Padé approximants, which allow the

incorporation of known pole positions, such as the lowest states in QCD Green’s functions.

Partial Padé approximants

Knowing the positions of the poles z = z1, z2, ..., zK of the original function, at least

those nearest to the origin, lets us use this information in a straightforward way with the

Partial Padé approximants (PPAs), defined as

PN
M,K(z) =

QN (z)

RM (z)TK(z)
, (2.18)

where QN (z), RM (z) and TK(z) are polynomials of order N,M and K (respectively) in the

variable z. What is interesting here is that the polynomial TK(z) is defined by having K

zeros precisely at the location of the first K-poles of the original function9

TK(z) = (z − z1)(z − z2) · · · (z − zK). (2.19)

The approximant is generated in the same way as for the usual PAs, matching exactly the

first M +N + 1 terms in the expansion around z = 0, and taking RM (0) = 1

|f(z)− PN
M,K(z)|= O(zN+M+1). (2.20)

As occurs with PAs, it is also possible to obtain defects in the PPAs for general meromorphic

functions.

Padé Type approximants

Padé Type approximants (PTAs) is another kind of rational approximant, defined by:

TN
M (z) =

QN (z)

TM (z)
(2.21)

9We can consider for simplicity that the zeros of TK are of multiplicity 1.
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where TM (z) is also given by the polynomial in Eq. (2.19). But in this case, all the M poles

of the approximant are fixed in advance to the lowest-lying poles of the original function,

and just the polynomial QN (z) of order N can increase the order so that the approximant

matches the first M + 1 terms of the expansion of function f(z),

|f(z)−TN
M (z)|= O(zM+1). (2.22)

As can be noted, TN
M (z) is an special case of PPAs where TN

M (z) = PN
0,M (z)10. Since all

the poles of the approximant are already fixed no defects will appear in the PTAs. It is

important to remark that Padé Type sequence converge to the limit function only when

both M,N → ∞.

2.2 D-log Padé approximants

In the field of Classical and Numerical Analysis, particularly within approximation

methods, effectively approximating functions with branch points and branch cuts remains a

significant challenge [76]. The D-Log Padé approximants, which has been rigorously studied

in this thesis, provide a promising approach to overcoming this difficulty.

Before going into a more formal description, the basic concept of D-Log Padé approximants

(D-Logs from now) involve manipulating a function with one or more branch cuts in

the complex plane into a format that is more amenable to Padé approximation11. By

addressing the logarithmic derivative (hence its notation as D-Log), the method simplifies

the approximation process, allowing for a more accurate representation of the original

function’s behavior near its singularities. This occurs because, after taking the logarithmic

derivative, a branch cut is transformed into a simple pole. The residue of this pole provides

information about the multiplicity of the cut. Similarly, this method can be used to

reproduce the analytical structure of any branch point [52, Sec. 2.2].

Since a D-Log requires only two coefficients to get the branch cut information, it can

often achieve faster convergence compared to Padé approximants, which rely on an infinite

succession of poles and zeros to determine the location of the cut and definitely cannot

provide information about its multiplicity.

10This kind of approximants coincide with what has been called the Hadronic Approximation to large-Nc

QCD in the literature [71–75]
11The concept of using Padé approximants to the logarithmic derivative of a function to extract information

about its singularities was first introduced by G.A. Baker in 1961 while investigating certain magnetic
properties of the Ising model [77]. Other relevant works that introduced this concept are presented in the
references [78–80].
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It is important to note that D-Log approximants are not rational functions like PAs;

rather, they represent a distinct type of approximant. This distinction is crucial because it

highlights the unique ability of D-Logs to handle singularities with non-integer multiplicities.

This capability allows the approximation to extend into the complex plane and provides

access to the imaginary part of the original function –something that is not possible with

PAs constructed from real Taylor coefficients–.

Recent and relevant studies where D-logs have already been used can be found in refer-

ences [81–84].

Now, for a formal definition, let us consider we are interested in the following function

f(z) = f1(z)
1

(µ− z)γ
+ f2(z), (2.23)

where f1(z) and f2(z) are functions with little structure and analytic at z = µ. We are

primarily interested in the case in which f(z) has a branch point at z = µ and, accordingly,

γ is a non-integer number, but in reality, this condition is not essential for what follows.

Instead of working directly with f(z), we will use a new function F (z) near z = µ as [52]

F (z) =
d

dz
ln f(z) =

γf1(µ− z)−(γ+1) + f ′
1(µ− z)−γ + f ′

2

f1(µ− z)−γ + f2
(2.24)

=

(
γ

(µ− z)
+

f ′
1

f1
+

f ′
2

f1
(µ− z)γ

)[
1

1 + f2
f1
(µ− z)γ

]
(2.25)

F (z) ≈ γ

(µ− z)
+

f ′
1

f1
. (2.26)

Since we are looking the function near z = µ, the right factor in Eq. (2.25) goes to 1 and

the third term of left factor goes to zero. As you can see in Eq. (2.26), the exponent of the

branch cut γ is now the residue of the simple pole µ of F (z) –even if γ is not an integer–,

which can be determined using a Padé sequence to F (z)12, denoted here as P̄N
M (z). By

reversing this process, the original function f(z) can be approximated by a non-rational

function known as the D-Log Padé approximant; DlogNM (z) or simply DN
M (z) approximant,

given by the expression below [52,83,84]

12It is safe to say that the function F (z) is meromorphic in a vicinity of z = µ, so the convergence
theorems of Section 2.1.2 can be applied under this condition.
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DlogNM (z) = f(0) exp

{[∫
dz P̄N

M (z)

]}
. (2.27)

Because of the derivative in Eq. (2.26), the f(0) term is lost and must be reintroduced to

correctly normalize the D-Log. The DlogNM then reproduces exactly the first M +N + 2

coefficients of f(z) (one order more than the usual PN
M ) and can be used to predict the

(M +N + 3)-th coefficient and higher.

In principle, this type of approximant offers a way to determine the branch point and the

exponent of the cut of the original function f(z) from the study of the PA to F (z) around

its pole. Since no assumption about µ or γ is made, their estimates are exclusively obtained

from the series coefficients, so we can consider it as an unbiased estimate.

In practice, the D-Log approximant DN
M (z) can yield a rich analytical structure, in

particular the presence of several branch cuts is to be expected. If the function f(z) has a

branch cut, the D-Log will extract its location and multiplicity ever more accurately as

both M,N → ∞, even more, all the singularities of f(z) would be located. However, not all

singularities generated by a D-Log approximant necessarily correspond to branch points or

cuts in the original function f(z). These "extra" singularities aim to replicate the analytical

structure across the entire complex plane, they often have a very small multiplicity which

represents a very small contribution in their first two terms of its Taylor expansion. Finally,

they don’t exhibit any consistent pattern as N and M increase.

2.2.1 Canonical construction of D-Logs

As an example of how to construct the D-log approximant and see how it behaves, we

will consider again the example used in the case of the PAs, Eq. (2.4).

1. As a first step, we get the logarithm derivative:

F (z) =
d

dz
ln

[
ln (z + 1)

z

(
z − 2√
z + 5

)]
(2.28)

F (z) =
1

ln (z + 1)(z + 1)
− 1

z
+

1

(z − 2)
− 1

2(z + 5)
(2.29)
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2. secondly, we will take the diagonal sequence PN
N apply to the resultant function:

P 1
1 [F (z)] =

−1.1− 2.78x

1 + 2.7x

P 2
2 [F (z)] =

−1.1− 0.237x+ 0.115x2

1 + 0.385x− 0.498x2

P 3
3 [F (z)] =

−1.1− 0.830x− 0.031x2 + 0.015x3

1 + 0.924x− 0.273x2 − 0.223x3

P 4
4 [F (z)] =

−1.1− 1.426x− 0.415x2 + 0.013x3 + 0.001x4

1 + 1.466x+ 0.168x2 − 0.394x3 − 0.091x4

...

3. unfolding the process to get the D-Log approximant, we apply Eq. (2.27)

D2
2 =

− 0.57 e−0.232x (1.85608 − x)0.78105

(x+ 1.0826)0.4845

D3
3 =

− 0.62 e−0.068x (1.99065 − x)0.98000

(x+ 1.0321)0.3775 (x+ 2.1851)0.3801

D4
4 =

− 1.06 e−0.014x (1.99965 − x)0.99906

(x+ 1.0152)0.3173 (x+ 1.3731)0.1714 (x+ 3.9485)0.5880

D5
5 =

− 1.37 e−0.004x (1.99999 − x)0.99996

(x+ 1.0087)0.2823 (x+ 1.2046)0.1347 (x+ 1.8343)0.1304 (x+ 4.8322)0.6440

D6
6 =

− 1.47 e−0.002x (2 − x)1.0

(x+ 1.0058)0.261 (x+ 1.14)0.117 (x+ 1.51)0.108 (x+ 2.52)0.118 (x+ 5.2513)0.616

...

As shown in previous equations and Table 2.1, the branch point closest to the origin, z = −1,

which corresponds to the logarithmic term in Eq. (2.4), can be effectively reproduced by the

second D-Log in the sequence, DN
N . This approximation achieves a precision comparable to

the Padé approximant P 3
4 , indicating that this D-Log requires two fewer degrees of freedom

to attain the same accuracy for locating this branch point. Furthermore, the multiplicity

of this singularity becomes smoother as we rise through the Padé sequence, which aligns

with the behavior expected for a logarithmic function, which doesn’t have a well-defined

multiplicity.

In the case of the branch cut at z = −5, its location is not directly identified by the initial

approximants. In deed, a reliable estimate with sufficient precision is only obtained starting

from D5
5. This can be explained by the fact that the D-Logs are constructed around the

origin, and their convergence extends further into the domain as the order of the D-Logs
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increases. However, a clear convergence pattern can be observed in Table 2.1, suggesting a

possible branch cut at z = −5 with a multiplicity of approximately 0.61 (compared with

the true value: 0.5). This result represents a significant improvement over PAs, as they fail

to provide any information about a potential cut at z = −5; not even a pole is detected at

this location, at least not within the first 10 approximants of the PN
N sequence.

On the other hand, the zero at z = 2 is quickly identified by the PAs starting from P 2
2

(see Fig. 2.2). For D-Logs, the same precision for this singularity is achieved with D3
3.

Higher orders of D-Logs provide even greater accuracy for both the zero’s location and

its multiplicity. In summary, all singularities of the example function can be identified

with a good approximation for their locations and corresponding multiplicities from D4
5.

Any branch cuts that appear in higher-order D-Logs but are not present in the original

function have very small exponents (< 0.15) and decrease as N increases. This behavior

is expected, as the Taylor expansion around zero for these terms contributes minimally:

(µ+ x)ϵ ≈ 1 + ϵ
µx+O(ϵ2x2).

Table 2.1: Singularities reproduction of Eq. (2.4) using D-Logs sequences DN−1
N and DN

N ,
where µk is the location and γk is the multiplicity

µ1 γ1 µ2 γ2 µ3 γ3

f(z) −1 – 2 1 −5 0.5

D1
2 −1.1496 0.5901 2.2546 1.3222 – –

D2
2 −1.0826 0.4845 1.8561 0.7811 – –

D2
3 −1.0424 0.4030 2.0131 1.0228 −3.0284 0.6201

D3
3 −1.0321 0.3775 1.9907 0.9800 −2.1851 0.3801

D3
4 −1.0184 0.3300 2.0005 1.0011 −4.6735 0.6991

D4
4 −1.0152 0.3173 1.9997 0.9991 −3.9485 0.5880

D4
5 −1.0108 0.2900 2.0000 1.0001 −5.4301 0.6549

D5
5 −1.0087 0.2823 2.0000 1.0000 −4.8322 0.6440

D6
6 −1.0058 0.2611 2.0000 1.0000 −5.2513 0.6155

In Fig. 2.4 we can compare the analytical behaviour of the original function and the

approximant D6
6. As we can see the D-Logs try to reproduce not only the real part of

the function, also the imaginary part with successive cuts as increase the order. This is

precisely where the success of the D-log approximation for a function in the complex plane

comes from. This feature represents a significant advantage since PAs built from a Taylor

series around the origin cannot access to the imaginary part of the function, above the



2.2. D-log Padé approximants 23

Figure 2.4: approximant D6
6 behaviour in comparative with example function Eq. (2.4),

where dotted line is the imaginary part and solid line is the real part of the complex function
f(z).

branch cut, but D-Logs can.

A comparative and detailed analysis of convergence between PAs and D-Logs will be

shown later in Chapters 4 and 5 where PAs and D-Logs will be used in a very active field

of research in a context of QCD.

2.2.2 Extensions of D-Log approximants

In cases where the branch point or the location of the singularity is known in advance,

one can construct a variant of a D-Log approximant. Taking (ν − z)β, where ν is the

notation now for branch cuts location that we already know, the corresponding multiplicity

β can be found using the following expression:

G(z) = (ν − z)
d

dz
ln [(f(z)] ∼ β, (2.30)

where approximation to function G(z) could provide us a biased estimate of β. We can then

use a PPA PN
M,1 to approximate G̃(z) = G(z)/(ν − z) and thereby get an approximation

for f(z):

f(z) ≈ f(0) exp

{[∫
dzPN

M,1[G̃(z)]

]}
(2.31)



24 2. Convergence Techniques and Padé Theory

The above method can be generalized if more singularities are known, i.e. νi | {i =

1, 2, . . . ,K}. In that case we can use what we define as a Partial D-Log PDN
M,K :

PDN
M,K [f(z)] = f(0) exp

{[∫
dzPN

M,K [G̃(z)]

]}
(2.32)

If both the location and the multiplicity of the singularities are known, we can use an

alternative form of Partial D-Logs defining H(z) = d
dz ln [(f(z)]

∏
i(νi − z)−βi and using

the following expression:

P̃D
N

M,K [f(z)] = f(0) exp

{[∫
dz

(
K∑
i

βi
(νi − z)

+ PN
M [H(z)]

)]}
(2.33)

where a pattern of convergence can be observed for N ≥ M +K − 1. An example of this

type of approximant will be shown in Chapters 4 and 5.

2.3 Recap of convergence techniques

Padé approximants (PAs) provide excellent convergence, even across an extended range

in the domain compared to Taylor expansions. They can be considered a completely

model-independent method since all poles are left free. However, they may require a large

number of coefficients to achieve sufficient precision in convergence. This can be improved

by incorporating external information about the singularities of the original function and

applying Partial Padé approximants (PPAs) or Padé-Type approximants (PTAs) instead of

PAs.

Other interesting and promising technique are the D-Log Padé approximants, as they

can reproduce multipoles, branch points, and branch cuts using less coefficients than PAs.

D-Logs have a richer analytical structure that allows them to extend the approximation to

the imaginary part of the original function. However, a disadvantage of D-Logs is the loss

of the original function’s scale in the derivative, and there are no convergence theorems

that apply directly to D-Logs. If we have knowledge of a singularity and its multiplicity,

Partial D-Logs can be employed, but this approach is no longer unbiased.

Ultimately, for each case of interest, the researcher must determine the best strategy.

As we will demonstrate in the following chapters (Ch. 4, 5), a sequential study using the

various aforementioned approximations is the optimal way to extract information about

unknown Taylor coefficients or the singular structure of the target function.

These techniques will be particularly useful when the approximants are employed to
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fit data to a function that may be meromorphic or of Stieltjes type. This is because

we can impose additional constraints during the fitting process based on the analytical

properties of the fitting functions, while still maintaining a model-independent approach.

PAs have been widely used as fitting functions in various studies within the context of

QCD, where the convergence theorems appear to be satisfied [20,40,85–88]. Recent studies

have also employed D-Logs as fitting functions, demonstrating convergence in these cases

as well [81–84].
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Chapter 3

About convergence in D-Log Padé

approximants

As we mention before, there are no known convergence theorems in the literature that

can be directly applied to D-Log type functions. This is precisely, the main drawback of

this type of approximants. In order to identify a convergence pattern, we must ensure that

the ratio f ′/f exhibits a meromorphic or Stieltjes-type analytic structure. Furthermore,

this structure must also be preserved in the original function f , which is not always

straightforward to demonstrate or generalize. In the following sections, we will examine

the convergence properties in cases where the logarithmic derivative results in a function

F (z) displaying meromorphic behavior (see Section 3.1). Additionally, we will propose a

conjecture on convergence for Stieltjes-type functions in Section 3.2.

3.1 Convergence for the Taylor expansion

While it is not possible to directly discuss convergence for the original function, we can

instead consider its Taylor series expansion around the origin and apply the logarithmic

derivative. In this context, we assume the function F (z) to be meromorphic within the

radius of convergence of the expansion, allowing us to analyze convergence using the

theorems presented in Section 2.1.2. Although the resulting D-Log indicates convergence

beyond the radius of convergence of the Taylor series, we can only guarantee the convergence

pattern within the region confined by the Taylor expansion.

27
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Using the fundamental theorem of algebra we can express the Taylor expansion of order

K as a product of their K-complex roots

f(z) ≈
K∑

n=0

fnz
n = a0

K∏
k=1

(z − µk) (3.1)

applying the logarithm derivative we get the ratio of two polynomials

F (z) =

∑K−1
m=0 cmzm∑K
n=0 fnz

n
(3.2)

The above expression suggests that the optimal approximant for constructing the D-log

of this Taylor series is the subdiagonal Padé sequence P̄N−1
N . In the specific case where

N = K, we can exactly reproduce the function F (z) –which comes from the first K-terms of

the expansion–. While this case is straightforward, our focus is on more complex functions

that exhibit branch cuts. Specifically, we are interested in functions where the roots in

Eq. (3.1) do not necessarily have simple or integer multiplicities—functions that can be

expressed as

f(z) = egℓ(z)
K∏
k=1

(z − µk)
γk (3.3)

where gℓ(z) is a polynomial of order ℓ, and γk is the corresponding multiplicity (γk ∈ R) for

each singularity point µk. This expansion is clearly not anymore the fundamental theorem

of algebra1, but a possible extension that tries to include poles and branch cuts.

Now then, if we apply the logarithm derivative to Eq. (3.3) we obtain:

F (z) = g′(z) +
K∑
k=1

γk
(z − µk)

(3.4)

F (z) = g′(z) +

∑K−1
m=0 dmzm∑K
n=0 enz

n
(3.5)

Here, g′(z) denotes the derivative of g(z), which is a polynomial of degree ℓ− 1. In this

case, we also obtain a term that involves the ratio of two polynomials: one in the numerator

of degree K − 1, and the other in the denominator of degree K, even if γ is not an integer,

1The expression in Eq. (3.3) is not a particular case of the Weierstrass Factorization Theorem either.
Although we include an exponential factor to ensure convergence of the product, the elementary factors
account only for simple multiplicities at each zero of the function. As a result, Weierstrass Factorization
extends the Fundamental Theorem of Algebra for the representation of entire functions [89,90]. Since we
introduce real exponents, the proposed expansion is more similar to a Puiseux series expansion [89,91]
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this information is now embedded in the coefficients of the numerator polynomial.

As a result, we obtain a meromorphic function, specifically a rational function that can

be determined using PAs and convergence theorems for meromorphic functions (recall

Section 2.1.2). By constructing a PA with upper index N for the numerator and lower

index M for the denominator, we can apply Eq. (2.27) to the PA P̄N
M , yielding the following

expression:

DN
M [f(z)] = egN−M+1(z)

M∏
m=1

(z − µm)γm . (3.6)

This result is consistent with functions that satisfy Eq. (3.3), where M = K and

N = ℓ+K − 1. The degree of the polynomial g(z) can only increase with the upper index

of the PA (N). Therefore, the lower index of the PA, and consequently of the D-Log, always

reflects the number of branch points or cuts that the approximation is addressing.

It is important to note that not all functions with branch points and cuts can be expressed

in the form given by equation 3.3. For example, in Section 5.2.2, we discuss D-logs with a

different structure that includes transcendental functions within the exponential factor.

In the following section, we will present a convergence conjecture that states: If the

function f(z) is a Stieltjes function, then its logarithmic derivative F (z) will also be of

Stieltjes kind, allowing us to apply the theorem discussed in Section 2.1.3.

3.2 Conjecture of convergence for Stieltjes functions

We will show in this section that D-Log convergence to Stieljtes functions can be obtained

using the same convergence theorems for PAs to Stieltjes functions. The rationale is the

following. Since D-Logs are built from the exponentiation and integration over a Padé

sequence P̄N
M (z) to F (z), if F (z) is a Stieltjes function, then the diagonal sequence P̄N

N (z)

and near-diagonal P̄N±1
N (z) will bound F (z). Integrating and exponentiating do not disturb

the hierarchy of the sequences yielding the bounds for the D-Logs exploited in this work.

The question to answer now is whether the logarithmic derivative of a Stieltjes function

is a Stieltjes function as well. A necessary and sufficient condition for a function f(z)

to be Stieltjes is that all determinants D(f)
m,n, made out of the moments fn, are positive

(Eq. (2.12)). Then, to prove that F (z) is of a Stieltjes kind, we need to verify that its

determinants D(F )
m,n are all positive. Since they are not known, this may seem an impossible

task. We know, however, that the determinants D(f)
m,n of f(z) are all positive. By relating

the determinants of F (z) to those of f(z), and using the positivity condition of the latter,

we can deduce the positivity condition of the former.
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Taking account that the definition of a Stieltjes function gives us the moments fn (see

Eq. (2.10)), the distance between consecutive coefficients fn and fn+1 can only be a function

of n (regardless of whether the distance is increasing or decreasing):

fn − fn+1 =

∫ ∞

0
un(1− u)dϕ(u) . (3.7)

This implies that either fn > fn+1 or fn < fn+1. The determinants of f(z) are informative.

In particular, the D(f)
n,0 > 0 imply all fn > 0 and Eq. 3.7 implies D(f)

n,1 = fnfn+2 − f2
n+1 > 0.

Similarly, combinations such as fnfn+3 − fn+1fn+2 or f0fn−1 − f1fn−2 are positive for all

n. The reason is the following. We focus on the case where fn > fn+1 and, as stated, the

distance between two consecutive fn is ∼ 1/n. The product fnfn+3 − fn+1fn+2 represents

the difference between the surface of two rectangles. Comparing sizes, fn is larger than

fn+1 by 1/n while fn+2 − fn+3 ∼ 1/(n+2). The surface of the first rectangle is then larger

and the difference of surfaces is positive. If fn coefficients grow with n, the argument is

essentially the same.

We show now how the determinants of F (z) can be built from the determinants of f(z).

Notice that F (z) is the logarithm derivative of f(z) and so we can express it as the ratio of

two power series in z, according to Eq. (2.11).

F (z) =
f ′(z)

f(z)
=

∞∑
n=0

Fnz
n =

∑∞
n=1 n fn z

n−1∑∞
n=0 fn zn

. (3.8)

The coefficients Fn are built from the Taylor coefficients of the product of two functions:

f ′(z) and 1/f(z). The Taylor expansion around z = 0 of the product of two generic analytic

functions g(z) and h(z) can be written in the compact form:

g(z)h(z) =
∞∑
n=0

zn

n!

n∑
i=0

(
n

i

)
gi hn−i . (3.9)

This expansion shows that the n-th coefficient of the product of two functions contains

n+ 1 terms. A closer look at them reveals a hierarchy:

Fn =

n∑
i=0

(n+ 1− i)fn+1−i

(
1

f(z)

)
i

, (3.10)

where
(

1
f(z)

)
i
refers to the i-th Taylor coefficient of 1/f(z). The i = 0 term of 1/f(z) is

simply 1/f0.
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The terms in Fn from Eq. 3.10 have alternate sign as the
(

1
f(z)

)
i
contributes with (−1)i+1

(since all fn > 0). In order to left Fn > 0 we absorb the sign in the variable in the power

series, i.e. F (z) =
∑

Fn(−z)n. One can group them in terms of determinants of f(z) for

which the sign is known. The value of the coefficient Fn is dominated by the combination

Fn ≈ (n+ 1)(f0fn+1 − fnf1)f
n−1
0 + fn+1

1

f
(n+1)
0

, (3.11)

which does not belong to any determinant and is positive. This particular combination

arises from the i = 0, 1 and i = n terms defining dominant term of Fn. The rest of

i = 2, ..., n− 1 coefficients can be factorized in terms of D(f)
m,1. Since the determinants are

very small, numerically, compared to coefficients fn, terms proportional to a determinant

are sub-leading. Since the dominant contribution is positive, Fn > 0, ∀n.

For the calculation of the determinants D(F )
n,m of F (z), we keep the dominant terms. The

i = 0 coefficient of Fn is proportional to (n+ 1)fn+1. This coefficient dominates as it is

the biggest one, and positive, which ensures the determinants D(F )
n,1 are positive (using

arguments similar to D(f)
n+1). In detail, the dominant term in D(F )

n,1 reads

D(F )
n,1 =

(n+ 1)(fn+1f0 − fnf1)

f2
0

(n+ 3)(fn+3f0 − fn+2f1)

f2
0

− (n+ 2)2(fn+2f0 − fn+1f1)
2

f4
0

+ · · · . (3.12)

Since (n+ 1)(n+ 3) = (n+ 2)2 − 1, we can argue (n+ 1)(n+ 3) ∼ (n+ 2)2, group the first

two terms of the Dn,1(F ), and factorize the terms proportional to f2
0 , f

2
1 and f0f1:

Dn,1(F )

(
f4
0

(n+ 2)2

)
≈ f2

0 (fn+1fn+3 − f2
n+2)

+ f2
1 (fnfn+2 − f2

n+1)

− f0f1(fn+3fn − fn+1fn+2). (3.13)

The coefficient of the term proportional to f2
0 is the D(f)

n+1,1 of f(z) and that of the term

proportional to f2
1 is the D(f)

n,1. The coefficient of the term proportional to f0f1 is not a

determinant. However, using the hierarchy of coefficients deduced from Eq. 3.7 we observe

it is positive but smaller than the other two terms. We conclude D(F )
n,1 > 0, ∀n.

The next step is related to the positivity condition that the higher-order determinants

D(F )
n,m must be satisfy. By Cramer’s rule, D(F )

n,m can be calculated by a sign-alternating sum of
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different contributions as happens with the construction of the Dn,1(F ) in Eq. 3.13. Among

them, few are D(F )
n,m−1 determinants multiplied by the corresponding Fn coefficient, while the

others are combinations of coefficients which are numerically smaller than D(F )
n,m−1. When

applying Cramer’s rule, one can always start with the term that contains the coefficient Fn

with the smallest n. The subsequent terms compete and are sign alternating. The term

with smallest n dominates and defines the sign of D(F )
n,m. As an example, D(F )

0,2 reads

D(F )
0,2 = F0(F2F4 − F 2

3 )− F1(F1F4 − F2F3) + F2(F1F3 − F 2
2 )

= F0D(F )
2,1 − F1(F1F4 − F2F3) + F2D(F )

1,1 > 0. (3.14)

Since D(F )
n,1 > 0, D(F )

n,1 > FnFn+3 −Fn+1Fn+2 > 0 by virtue of Eq. 3.7 as argued before, and

Fn > Fn+1, D(F )
n,m > 0, for all n, as we wanted to prove and we can then ensure that F (z)

is Stieltjes.

3.2.1 Example 1. "Stieltjes logarithm"

.

We illustrate the proof sketched above with the same example used in Section 2.1.3. It is

f(z) = ln[1+z]
z , cf. Eq. (2.13), whose corresponding moments are fn = 1

n+1 , as was shown

in Eq. (2.15). In this case:

• D(f)
n,0 > 0 as fn = 1

n+1 > 0 ∀n .

• D(f)
n,1 = fnfn+2 − f2

n+1 =
1

(n+1)(n+2)2(n+3)
∼ 1

(n+2)4
> 0 ∀n. Notice D(f)

n,0 ≫ D(f)
n,1.

• fn − fn+1 =
∫ 1
0 un(1− u)du = 1

n2+3n+2
> 0 ∀n.

• f ′
n = n

n+1 > 0, n ≥ 1.

• (1/f)n < 0 ∀n.

With this at hand, the Taylor coefficients Fn of the function F (z) = f ′(z)
f(z) read

• F0 =
f1
f0

= 1
2 ,

• F1 =
2f0f2−f2

1

f2
0

=
f0f2+(f0f2−f2

1 )

f2
0

= 1
3 +

(
1
3 − 1

22

)
= 1

3 + 1
12 = 5

12 ,

• F2 =
3(f3f0−f2f1)f0+f3

1

f3
0

= 3
(
1
4 − 1

3
1
2

)
+ 1

23
= 2

8 + 1
8 = 3

8 ,



3.2. Conjecture of convergence for Stieltjes functions 33

• F3 =
4(f4f0−f3f1)f2

0+2f0f2(f2
1−f0f2)−f1(f3

1−2f0f1f2)

f4
0

=
4(f4f0−f3f1)f2

0−2(f2
1−f0f2)2+f4

1

f4
0

= 3
10−

2
144 + 1

16 = 251
720 ,

• F4 =
5(f5f0−f4f1)f3

0+5f3f2
0 (f

2
1−f0f2)−5f2f1f0(f2

1−f0f2)+f5
1

f5
0

=

5(f5f0−f4f1)f3
0+5f0(f3f0−f2f1)(f2

1−f0f2)+f5
1

f5
0

= 1
3 − 5

144 + 1
32 = 95

288 ,

• F5 =
6(f6f0−f5f1)f4

0+[6f2
0 (f4f0−f3f1)−6f0f1(f3f0−f2f1)](f2

1−f0f2)

f6
0

+

−2(f2
1−f0f2)3+3f0(f3f0−f2f1)(f3

1+f1(f2
1−f0f2)−f2

0 f3)+f6
1

f6
0

= 19087
60480 .

The recurrence pattern is clear: each Fn (n > 2) has a term (n+1)(f0fn+1−f1fn)f
n−1
0 =

n
2(n+2) > 0 that dominates over the negative terms which, in their turn, are proportional to

D(f)
n,1. Since D(f)

n,1 ∼ 1
(n+2)4

≪ 1, all the terms proportional to the determinants appearing

in the construction of the Fn coefficients are negligible.

For the D(F )
n,1 determinants built for F (z), we exploit the same hierarchy. Take the Fn

coefficients, neglect the terms within them proportional to the determinants from f(z) and

also the one proportional to fn+1
1 . Then immediately one recognizes that D(F )

n,1 > 0 ∀n. For

example for n = 1, 2 we have:

D(F )
n=1,1 = F1F3 − F 2

2 ∼ 1

3

n+ 2

2(n+ 4)
−
(

n+ 1

2(n+ 3)

)2

|n=1 =
3

80
,

D(F )
n=2,1 = F2F4 − F 2

3 ∼ 3

8

95

288
−
(
251

720

)2

=
281

129600
∼ 3

8

1

3
−
(

3

10

)2

=
7

200

. We can explicitly calculate Eq. (3.13) for arbitrary n. Take now n = 3:

D(F )
3,1 =

(3 + 2)2

1

[
12
(
1

5

1

7
− 1

62

)
+

1

22

(
1

4

1

6
− 1

52

)
+ 1

1

2

(
1

5

1

6
− 1

7

1

4

)]
=

1

2016
(3.15)

For n > 4, the dominant terms for each Fn allow a compact expression for the determinant:

D(F )
n,1 = FnFn+2 − F 2

n+1 =
n−4

4(n+3)(n+4) > 0.

Higher-order determinants D(F )
m,n can be constructed following the results from the lowest

ones using the aforementioned Cramer’s rule method, thus returning them all positive. As

an example, D(F )
0,2 reads

D(F )
0,2 = F0D(F )

2,1 − F1(F1F4 − F2F3) + F2D(F )
1,1 =

7

400
− 29

10368
+

9

640
> 0 . (3.16)

We can conclude that F (z) is a Stieltjes function since all its determinants are positive,

as we wanted to demonstrate.
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3.2.2 Example 2: "Stieltjes Exponential Integral"

For a second example we want to consider the following function:

f(z) = z−1 ez
−1

Ei(−z−1) (3.17)

where Ei(z) is the exponential integral function defined by

Ei(z) = −
∫ ∞

−z

e−t

t
dt. (3.18)

This function (Eq. (3.17)) can be expressed as a Stieltjes integral (see, Eq. (2.9)), considering

the weight function ϕ(u) = −e−u for u ∈ [0,∞), therefore we have the Stieltjes function:

f(z) =

∫ ∞

0

e−u

1 + zu
du Re(z) > 0. (3.19)

Since, the measure corresponds to dϕ(u) = e−u du, the fn moments correspond to:

fn =

∫ ∞

0
une−u du. (3.20)

This integral is precisely the definition of the Gamma function Γ(n + 1), which is an

analytical extension of factorial function in the complex plane. Thus, in case n ∈ Z, we

have:

fn = n! for all n ≥ 0. (3.21)

Indeed, computing the Taylor series for the example function Eq. (3.17) we get:

−1 + z − 2z2 + 6z3 − 24z4 + 120z5 − 720z6 + 5040z7 +O
(
z8
)

(3.22)

which is in total agreement with Stieltjes series, Eq. (2.11), and clearly the Taylor coefficients

corresponds to the factorial sequence. Now, to determine if the logarithm derivative is a

Stieltjes functions we apply the conjecture and we need to verify at least the first moments

of function F (z), for that we need:

• D(f)
n,0 > 0 as fn = n!> 0 ∀n .

• D(f)
n,1 = fnfn+2 − f2

n+1 = n! (n+ 2)!−(n+ 1)!2= n!2 (n+ 1) > 0 ∀n.

• fn+1 − fn =
∫∞
0 un(u− 1)e−udu = nn! ≥ ∀n (In this case we have the increasing

hierarchy for the distance between consecutive moments, noting that distance is null
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only for n = 0 i.e. f1 − f0 = 0).

• f ′
n = nn!> 0 ∀n ≥ 1.

• (1/f)n < 0 ∀n ≥ 1.

Now, knowing the moments of the example function fn, the corresponding moments for the

its logarithm derivative Fn can be calculated using Eq. (3.10) as follows:

• F0 =
f1
f0

= 1!
0! = 1,

• F1 =
2f0f2−f2

1

f2
0

= 2(2)!−(1! )2 = 3,

• F2 =
3f0(f0f3−f2f1)+f3

1

f3
0

= 3((3! )− (2! )) + 1 = 13,

• F3 =
4f2

0 (f0f4−f3f1)−f4
1

f4
0

+
2f0f2(2f2

1−f0f2)

f4
0

= 4((4! )− (3! ))− 1 + 2(2! )(2− 2! ) = 71,

• F4 =
5f3

0 (f0f5−f1f4)+f5
1

f5
0

+
5(f0f2

1−f2
0 f2)(f0f3−f1f2)

f5
0

= 5(5!−4! ) + 1 + 5(1− 2! )(3!−2! ) =

481− 20 = 471.

For each moment there is a dominant term; it is (n+ 1)((n+ 1)!−n! ) = n(n+ 1)!, which

corresponds precisely to the first two terms of the approximation in Eq. (3.11). Until here

we can ensure with this pattern that Fn > 0 for all n and the hierarchy Fn+1 > Fn. To

obtain determinants we can use the same procedure as the previous example, for instance

D(F )
n=0,1 = F0F2 − F 2

1 = 4, for this computation we used the exactly values for Fn, this

determinant in particular (D(F )
0,1 ) is the smallest one and the approximation of Eq. 3.13

doesn’t work, thus we must to consider the exact calculation for F0, F1, F2. Then, for

n ≥ 1 we can use Eq. 3.13, which in this case reads: D(F )
n,1 ≈ (n2 + n− 1)(n+ 1)(n+ 2)2n!2.

Some additional terms of order m = 1 are:

• D(F )
n=1,1 = F1F3 − F 2

2 = 44

• D(F )
n=2,1 = F2F4 − F 2

3 = 952

• D(F )
n=3,1 = F3F5 − F 2

4 = 32216

All of them are positive and exhibit a factorial growing. Using the Cramer’s rule the

higher-order determinants can be constructed, as an example we can compute the first

determinant of second order D(F )
0,2

D(F )
0,2 = F0D(F )

2,1 − F1(F1F4 − F2F3) + F2D(F )
1,1

= 1(952)− 3(1383− 923) + 13(44)

= 144
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Determinants of high-order are larger as n and m increase, therefore we can ensure that

logarithm derivative of f(z) (Eq. (3.17)) is also an Stieltjes function and we can apply

convergence theorem exposed in Section 2.1.3.



Chapter 4

Extrapolation MUonE data to find aµ

The MUonE experiment aims to determine the leading-order of the Hadronic Vacuum

Polarization (HVP) contribution to the anomalous magnetic moment of the muon, aHVP,LO
µ ,

by measuring the electron-muon scattering cross-section in the space-like region. However,

to accurately extract aHVP,LO
µ , it is essential to determine the hadronic contribution to the

electromagnetic coupling (∆αhad) across the entire kinematic range. Since experimental

data alone cannot fully provide this information, extrapolation methods are required.

In this chapter, which is based on a joint work in collaboration with researchers at

the Instituto de Física de São Carlos (IFSC), see Ref. [81], we propose to use PAs and

D-Logs as a systematic and model-independent method to fit and reliably extrapolate the

future MUonE experimental data, extracting aHVP,LO
µ with a conservative but competitive

uncertainty, without using external information or very limited information. The method

relies on fundamental analytic properties of the two-point correlator underlying aHVP,LO
µ

and provides lower and upper bounds for the result for aHVP,LO
µ . We demonstrate the

reliability of the method using toy data sets generated from a model for ∆αhad(t) whose

integral over the entire kinematic range is directly proportional to aHVP,LO
µ . These toy data

sets can reflect the expected statistics of the MUonE experiment.

The recent measurements of the anomalous magnetic moment of the muon, aµ = (g −
2)/2, by the FNAL E989 experiment at Fermilab, in 2021 and 2023 [42, 43], are in good

agreement with the previous experimental result from the Brookhaven National Lab BNL

E821 experiment of 2006 [44]. The combination of the results leads to an experimental

determination of aµ with an impressive uncertainty of only 0.19 ppm. As is well known, the

37
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2020 g − 2 Theory Initiative White Paper [41] recommended result for aµ in the Standard

Model (based on the results of Refs. [38–40,92–112]) is 5.1σ lower than the new, combined,

experimental number — a tension that has attracted enormous attention in the past few

years (since the experimental result was published, it has received 114 citations in less than

a year). This result relies on the dispersive description of HVP contribution to aHVP
µ based

on e+e− data. If one employs instead the recent lattice QCD results for aHVP
µ obtained by

the BMW Collaboration [113], the discrepancy between theory and experiment would be

reduced to 2.0σ, which is more in agreement with recent computations based on tau decay

data for HVP contribtuion to muon g-2 leading in less than 2.5σ discrepancy [114].

Understanding the origin of the tension between the dispersive-based result and the

lattice-based determination of aHVP
µ is of crucial importance. The detailed comparison is

not completely straightforward [82, 115, 116] since in lattice QCD one has access to the

Euclidean HVP, while the dispersive approach relies on data for e+e− → (hadrons) in

the whole Minkowski domain. Independent information from other related processes may

be crucial to fully resolve the persistent discrepancies. A prominent example is the use

of τ decay data, which requires a non-trivial treatment of isospin corrections [114, 117].

In this context, the recently proposed MUonE experiment [118–120] would also be very

welcomed. The proposal is to extract the HVP in the Euclidean domain, directly from data,

from the measurement of the elastic eµ cross-section using the 150-GeV muon beam from

CERN’s M2 beamline scattered off atomic electrons of a low-Z target. The experiment

could yield competitive results after three years of data taking and would be able to cover

approximately 86% [121,122] of the integration interval required for the computation of

aHVP
µ at leading order, aHVP,LO

µ .

An important question is how to treat the remaining 14% of the aHVP,LO
µ integral not

directly accessible to the MUonE experiment. In principle, one could simply resort to

external information and use the dispersive approach, perturbative QCD, and/or lattice

QCD results. Another option, arguably more interesting, is to extract aHVP,LO
µ exclusively

from the MUonE data, which requires some form of extrapolation of the experimental

results beyond the kinematically accessible region. This problem is, however, non-trivial

since the experiment would have access to a narrow window in the Euclidean t variable,

between −0.153 GeV2 ≤ t ≤ −0.001 GeV2. In Ref. [122], a model inspired by one-loop

QED is put forward as a fitting function to fit and extrapolate the MUonE data. A

disadvantage of this approach is a potential model dependency that could bias the final

results. An alternate strategy suggested in Ref. [121] relies on the extraction of derivatives

of the hadronic contribution to the running of the electromagnetic coupling, supplemented
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with information from perturbative QCD and R(s) data. Another recent proposal, closer in

spirit to the analysis presented in this chapter, consists of using transfer theorems to build

so-called reconstruction approximants which allow for a partial reconstruction of the HVP

function to compute aHVP
µ [123]. With all this motivation, we propose the use of PAs and

D-Logs, as a systematic, simple, and model-independent way of fitting and extrapolating

the MUonE results to compute aHVP,LO
µ from MUonE data.

The extrapolation of the HVP results in the Euclidean domain using PAs has been

explored previously in the context of heavy-quark physics [61] and lattice-QCD results [124].

The use of PAs in this problem is predicated on the fact that the HVP is a Stieltjes

function [61]. In this case, we can use the convergence theorem exposed in section 2.1.3,

where the diagonal and near-diagonal sequences of PAs guarantee the approximation from

below while others do so from above, cf. Eqs. (2.16) and (2.17), providing a systematic way

to bound the value of the function of interest.

By construction, the usual PAs are not able to explore the Minkowski region coming from

the Euclidean domain as they contain only poles and zeros, and the branch cuts can be, at

best, emulated by the accumulation of singularities –recall that in section 2.1.3 we stated

that convergence for Stieltjes functions can be guaranteed only in the complex cut plane

[52,61,125]–. Therefore, an excellent idea is to accompany the PAs study with the use of

D-Logs, which contain, by construction, not only poles and zeros but also branch cuts. A

systematic method for bounding the value of the function using D-Logs can be achieved by

applying the convergence conjecture presented in Section 3.2. This can pave the way for

future explorations where one could have a glimpse of the Minkowski region from fits in

the Euclidean region in a model-independent and systematic way.

To assess the reliability and viability of our proposal we adopt a simple but sufficiently

realistic model for the HVP function introduced in Ref. [123]. We then build the approxi-

mants first to the exact Taylor expansion of the model function and later to pseudo-data

generated from the model. In this first step, we do not include uncertainties, as a proof of

concept. We then generate realistic pseudo-data following the expected uncertainties and

kinematic range accessible to the MUonE experiment [118–120,122,126–128]. With these

data sets, we perform a systematic study of the use of PAs and D-Logs, as a way to fit and

extrapolate MUonE data.

As we already mentioned, obtaining aHVP
µ solely from MUonE data is a non-trivial

problem. Therefore, we perform a systematic study where we enlarge in each step the

window in which we rely on extrapolated results. In our systematic investigation, we

show that there is a trade-off in precision. It is possible to perform a reliable, robust, and
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model-independent extraction of aHVP,LO
µ using approximants solely from MUonE data,

but with a somewhat larger error. An advantage of the method is that both PAs and

D-Logs allow for a reliable estimate of the systematic error. If the window in which one

uses the extrapolated results is reduced, the error diminishes, as could be expected.

This chapter is organized as follows. In Sec. 4.1, we introduce the basic elements to

describe the HVP contribution to the (g− 2)µ related to the running of the electromagnetic

coupling constant. Also we discuss the analytical properties of the latter that can be

considered as an Stieltjes function. In Sec. 4.2, we present the model of Ref. [123] that

we use to generate our toy data sets for the Euclidean HVP, while an example of the

power of the convergence theorems is presented in Sec. 4.3, where PAs and D-Logs are

built from the exactly known Taylor series given by the model of Sec. 4.2. In Sec. 4.4, we

employ our method in the idealized scenario where the data points have zero error. Sec. 4.5

illustrates the application of our method to realistic data sets, following the expectations of

the MUonE experiment. Our conclusions are given in Sec. 4.6.

4.1 Hadronic Vacuum Polarization of aµ

The Standard Model computation of aµ can be divided into four different contributions,

namely, from Quantum Electrodynamics (QED), electroweak effects, HVP, and hadronic

light-by-light scattering. The dominant uncertainty arises from the HVP contribution [41],

more specifically from its leading order aHVP,LO
µ . In the computation of aHVP

µ the main

object is the polarization function associated with the electromagnetic current two-point

correlator, Π(q2), defined as

(qµqν − q2gµν)Π(q
2) = i

∫
d4x ⟨0|T (jEMµ (x)jEMν (0)|0⟩, (4.1)

where the electromagnetic current is

jEMµ =
2

3
ūγµu− 1

3
d̄γµd−

1

3
s̄γµs+

2

3
c̄γµc+ · · · . (4.2)

We define Π̄(q2) = Π(q2)−Π(0), and the function Π̄(q2) obeys the usual once-subtracted

dispersion relation

Π̄(q2) = q2
∫ ∞

m2
π

ds
ImΠ(s)

s(s− q2 + iϵ)
. (4.3)

In the dispersive approach, aHVP,LO
µ is obtained from the inclusive hadronic electropro-
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duction cross-section defined, with s = q2, as

R(s) =

(
3s

4πα2

)
σe+e−→hadrons(s) = 12π ImΠ(s), (4.4)

through the following weighted integral

aHVP,LO
µ =

α2

3π2

∫ ∞

m2
π

ds

s
K(s)R(s), (4.5)

where α is the electromagnetic fine-structure constant and K(s) is the QED kernel func-

tion [129–131]

K(s) =

∫ 1

0

x2(1− x)

x2 + (1− x) s
m2

µ

dx . (4.6)

The analytical result for K(s) is given explicitly in Ref. [41].

An alternate representation for aHVP,LO
µ in terms of the correlator in the Euclidean,

Π(Q2) with Q2 = −q2 > 0, can be obtained interchanging the order of the integrals in s

and x in Eq. (4.5) [132]. Using the analytical properties of Π(q2) one can then write

aHVP,LO
µ =

α2

π

∫ 1

0
dx (1− x)∆αhad[t(x)], (4.7)

where, following the notation employed by Bernecker and Meyer in Ref. [133], we defined

∆αhad(t) = −4πRe[Π̄had(t)] (4.8)

as the hadronic contribution to the running of the electromagnetic coupling α and t is the

space-like variable given by

t = −
x2m2

µ

1− x
. (4.9)

The MUonE experiment is designed to extract ∆αhad(t) from eµ scattering data using

150 GeV muons scattered off atomic electrons. This allows, in principle, for a completely

independent determination of aHVP,LO
µ . However, the experiment would be restricted

approximately to the window x ∈ [0.2, 0.93] [118–120,122,126–128], which corresponds to

−0.15 GeV2 ≲ t ≲ −0.001 GeV2. To obtain aHVP,LO
µ from MUonE data without requiring

external information, it is imperative to have a reliable method to extrapolate the MUonE

data way outside the experimentally accessible window. With this purpose in mind, we will

use a set of approximants as fitting functions to toy data sets for ∆αhad(t) simulating the

expected results of the MUonE experiment.
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Finally, uncertainty assessment is crucial and we want to keep track of the goodness of

our extrapolation beyond the fit region. The extrapolation for 0 ≤ x < 0.2 is safe, since it

involves a small interval in t, not too far from the origin, namely 0 ≤ t ≲ 0.001 GeV2. The

extrapolation for 0.93 < x < 1, on the other hand, corresponding to 0.15 GeV2 ≲ t < ∞,

is non-trivial and, in order to assess it carefully, we define aHVP,LO
µ (xmax) as the partial

contribution from x = 0 up to x = xmax to aHVP,LO
µ , expressed as

aHVP,LO
µ (xmax) =

α2

π

∫ xmax

0
dx (1− x)∆αhad[t(x)]. (4.10)

The method we present not only in this chapter, but also in the rest of the thesis has

several advantages. Fundamentally, the fitting functions based on the PAs and D-Logs do

not rely on any particular model, instead, they rely only on the analytical properties of the

function to approximate. In this case, this function is ∆αhad(t), which will be explained in

the next section. Besides that, the PAs are easily derived and simple to employ as fitting

and extrapolating functions.

4.1.1 ∆αhad(t) Analytic Properties

It is possible to prove that the hadronic contribution to the running of α, ∆αhad (Eq. (4.8)),

which is related to the inclusive hadronic electroproduction cross-section, is a Stieltjes

function defined in the region −∞ < t ≤ 0 [61, 134]. Thus, Padé theory concerning to

Stieltjes functions (see Sections 2.1.3 and 3.2) can be applied. In particular, we know that

the poles of approximants of the type PN+k
N with k ≥ −1, as well as the branch points and

cuts of D-Logs of the type DN+k
N with k ≥ −1 that approximate to ∆αhad, are always real

and located on the positive real axis of t with positive residues. Furthermore, since ∆αhad

scales as O(t1) for small t, the PA sequences PN
N and both PN+1

N and PN
N+1 bound the

original function. In our case, the fastest convergence is obtained with the super-diagonal

sequence PN+1
N , then the theorem reads

P 1
1 (t) ≤ P 2

2 (t) ≤ · · · ≤ ∆αhad ≤ · · · ≤ P 3
2 (t) ≤ P 2

1 (t) . (4.11)

For the D-Logs case, a similar pattern is found. The sequence DN
N together with DN

N+1 and

DN+1
N bound the original function. In our case of study, we found the fastest convergence

with the sub-diagonal sequence DN
N+1, which renders the theorem as

D1
1(t) ≤ D2

2(t) ≤ · · · ≤ ∆αhad ≤ · · · ≤ D2
3(t) ≤ D1

2(t). (4.12)
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Besides being model-independent, this method takes advantage of the convergence

theorems of Padé Theory. To construct the functions that will be used to fit the MUonE toy

data in a form that makes contact with the convergence theorems, we will first compute the

PAs and D-Logs to the (unknown) Taylor series of ∆αhad(t), i.e., we will build canonical

approximants to

∆αhad(t) = a1 t+ a2 t
2 + a3 t

3 + · · · , (4.13)

where the coefficients an are unknown. However, it is important to note that we already

have information on the origin; ∆αhad(0) = 0, implying that a0 = 0 and suggesting a zero in

t = 0. Then, after a change of variable from t to x using Eq. (4.9), we finally get our fitting

functions as a function of x. With this technique, we can use our knowledge of Stieltjes

functions in full to analyze the fit quality and provide constraints to the fit parameters.

In particular, from Carleman’s condition [52,135], the Taylor coefficients of a Stieltjes

series cannot change sign and, in this case, they have to be negative. Moreover, the

determinant condition imposes the following hierarchy for the coefficients

0 > ai > ai+1, i ∈ N. (4.14)

All these constraints will be used in the fit procedure and it is important to mention that

they are model-independent, relying only on ∆αhad(t) being a Stieltjes function. Finally,

since ∆αhad(t) has a0 = 0, the PN
M (t) will match N +M coefficients instead of N +M + 1,

and D-Log DN
M (t) also match N +M instead of N +M +2. In a more rigorous way in this

case we are talking of a Partial D-logs PDN
M,1(t), since we know about singularity position

at t = 0 with multiplicity 1. Since we can divide the original function by t we will going to

apply D-Logs and not Partial D-Logs for simplicity.

4.2 A model for the Euclidean correlator

To test our method, we need to generate toy data sets based on a sufficiently realistic

model. We will use the phenomenological model for the function ImΠhad(s) inspired by

chiral perturbation theory and perturbative QCD introduced by Greynat and de Rafael in

Ref. [123] to obtain ∆αhad through the dispersion relation in Eq. (4.3) and Eq. (4.8). The

model is given by

ImΠhad(s) =
1

4π

(
1− 4m2

π

s

)3/2
 |F (s)|2

12
+
∑
f

Q2
f Θ(s, sc,∆)

 θ(s− 4m2
π), (4.15)
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Figure 4.1: The integrand to obtain aHVP,LO
µ , given in Eq. (4.7), calculated from the model

of Greynart and de Rafael of Eq. (4.15). The gray area is the expected region that the
MUonE experiment will cover.

with Qf being the electric charge of the quark of flavor f and θ(x) the Heaviside theta

function. The function |F (s)|2 is the pion vector form factor, which is modeled simply by

the ρ(770) contribution as

|F (s)|2=
m4

ρ

(m2
ρ − s)2 +m2

ρ Γ(s)
2
, (4.16)

where the running width is

Γ(s) =
mρ s

96πf2
π

[(
1− 4m2

π

s

)3/2

θ(s− 4m2
π) +

1

2

(
1−

4m2
K

s

)3/2

θ(s− 4m2
K)

]
, (4.17)

with fπ = 93.3MeV being the pion decay constant and m{π,K,ρ} the meson masses. The

function Θ(s, sc,∆) is defined as

Θ(s, sc,∆) =

arctan ( s−sc
∆

)
− arctan

(
4m2

π−sc
∆

)
π
2 − arctan

(
4m2

π−sc
∆

)
 . (4.18)

The parameters sc and ∆ will assume the same values employed in Ref. [123]: sc = 1GeV2

and ∆ = 0.5GeV2. We show in Fig. 4.1 the line shape of the integrand of Eq. (4.7) obtained

from the use of this model where the gray band represents the experimentally accessible

region with the designed MUonE experiment [118–120,122,126–128].
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We consider this simple model to be sufficiently realistic because it leads to a representation

of ∆αhad which is a Stieltjes function, as expected in QCD. Hence, the theorems given in

Sec. 2.1.3 and the coefficient constraints of Eq. (4.14) are all valid.

Computing the integral of Eq. (4.7) using the model in Eq. (4.15) we determine the value

of aHVP,LO
µ from this model as

aHVP,LO
µ,model = 6992.4× 10−11. (4.19)

This result will serve as a guide for us to compare the values of aHVP,LO
µ obtained from our

PA and D-Log approximants.

4.3 approximants to the Taylor series

In this section, we will canonically build PAs and D-Logs with the assumption of knowing

the original function; in the case of PAs this is achieved by matching the Taylor series of

each approximant to the Taylor series of ∆αhad(t) –this procedure corresponds precisely

to the one described in Eq. (2.3)–, in the case of D-Logs the procedure was established in

Section 2.2.1 where f(z) corresponds to the Taylor series of ∆αhad(t), defined in Eq. (4.13),

which will be computed from the model of Eq. (4.15). Recall that convergence theorems

to Stieltjes functions apply in this case. Thus, convergence to the aHVP, ,LO
µ value of the

model, Eq. (4.19), is guaranteed and must respect the pattern determined in Eq. (4.11) and

(4.12). The Taylor series of ∆αhad as a function of t according to the model in Eq. (4.2) is.

α∆αhad(t)× 105 = −918 t− 1752 t2 − 6066 t3 − 31589 t4 − 214058 t5 +O(t6). (4.20)

4.3.1 Convergence of PAs results

Results from the sequences PN
N (t) and PN+1

N (t) are shown in Fig. 4.2a, in the range

0 ≤ x ≤ 0.997, which corresponds to −4 GeV2 ≤ t ≤ 0 GeV2. The value from the model

for ∆αhad is represented by the black line in Fig. 4.2a. One can notice that both sequences

approach consistently the true value of the model when the order of the PAs is increased

and they also bound the model value as expected by the convergence theorem of Eq. (4.11):

the PAs of the sequence PN
N approach the function from below while the ones belonging

to the sequence PN+1
N do so from above. Additionally, it is possible to observe that for

large values of |t|, the discrepancy between the approximants and the model is much more

noticeable. Since the PAs are constructed from the Taylor series coefficients of ∆αhad(t),
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Figure 4.2: PAs of the sequences PN
N (t) (dashed line) and PN+1

N (t) (dot-dashed line) built
from the Taylor series of ∆αhad(t) given in Eq. (4.20), together with the model results
(black line) for (a) α∆αhad(t) and (b) α(1− x)∆αhad(x) used to compute aHVP,LO

µ with
Eq. (4.7).

i.e. in the region of t close to zero, it is to be expected that far from this region the PAs

start to deviate from the true model value. Notice, however, that the PA convergence is

dramatically faster compared with that of the Taylor expansion, which breaks off outside a

radius of convergence around |t|= 4m2
π ∼ 0.1GeV2. The deviation of our approximants at

large t is mitigated in the case of the integrand that appears in the calculation of aHVP,LO
µ ,

which can be seen in Fig. 4.2b as a function of x. Since the integrand goes to zero as x

goes to 1, differences in the deep Euclidean region are suppressed, although still noticeable

for lower-order PAs. One should also note that the change of variables from t to x maps

the entire infinite interval t ∈ (−∞,−4 GeV2] into the small interval x ∈ [0.997, 1].

We know from Padé Theory that the approximants can mimic branch cuts by accumulating

interleaved poles and zeros along the cut (see Section 2.1). For higher-order PAs the

mimicking of the cut originated by the term
(
1− 4m2

π/t
)3/2 in the model of Eq. (4.15),

and whose branch point is located at t = 0.078GeV2, have a good estimation. Consider

the PA P 4
3 (t) as an example. This approximant must exhibit three poles, located at

t = 0.103GeV2, t = 0.204GeV2, and t = 0.637GeV2. Additionally, there are three

zeros, apart from the one at t = 0, positioned at t = 0.105GeV2, t = 0.228GeV2,

and t = 3.329GeV2. This suggests the presence of a possible branch point or cut at

approximately t ≈ 1.01GeV2, with a relative error of 32%. When considering PAs of even

higher orders, this feature becomes more pronounced. For example, with P 6
5 (t), there
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Figure 4.3: Comparison between PA and D-Log estimates of aHVP,LO
µ and the value

predicted by the model given in Eq. (4.19) (black solid line). ‘No. parameters’ refers to the
value of N +M used for each approximant.

are five poles at t = {0.089, 0.116, 0.187, 0.426, 1.192}GeV2, interleaved with zeros at

t = {0.089, 0.118, 0.198, 0.620, 7.951}GeV2. Thus, the cut location for this approximant

appears to be around t ≈ 0.089GeV2, with relative error of 14.1%. It is crucial to note that

the latter estimate should not be mistaken for a "defect", as the PAs are constructed for a

Stieltjes function. The positivity condition for the Hankel determinants of their moments,

as shown in Eq. (2.12), ensures that no defect effects occur for Stieltjes functions under

canonical construction. However, due to limited precision concerning this "pole-zero" pair

at t = 0.089GeV2, the confidence in the exact cut location remains low.

After building the PAs we can turn to the estimate of the value for aHVP,LO
µ . The results

can be seen in Fig. 4.3, with the black solid line representing the model’s value given in

Eq. (4.19). Again, the pattern stated by the theorem in Eq. (4.11) is obeyed, with the PAs

sequence PN
N (t) (illustrated by the dashed red line) reaching the model result from below

and sequence PN+1
N (t) (dashed green line) approaching from above. The convergence to

the true value, which is guaranteed by theorems, can also be observed.

4.3.2 Convergence of D-Logs and comparison with PAs results

As discussed in Section 2.2.1, the D-Logs are built from the logarithm derivative of the

original function (In this case, we use the Taylor series of ∆αhad), hence we first need to

calculate d
dt ln (∆αhad(t)) and then we canonically construct a PA to it, i.e. by matching

coefficients. After that, employing Eq. (2.27), we can obtain our D-Log approximant to
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Figure 4.4: D-Logs of the sequences DN
N (t) (dashed line) and DN

N+1(t) (dot-dashed line)
built from the Taylor series of ∆αhad(t) given by Eq. (4.20) together with the model results
(black line) for (a) α∆αhad(t) and (b) α(1− x)∆αhad(x). Both plots are in the same scale
as the PA ones, Figs. 4.2a and 4.2b respectively, to facilitate the comparison.

∆αhad(t). As stated by the convergence theorems, specific sequences of D-Logs to ∆αhad(t)

bound the function from above (DN
N+1) and from below (DN

N ), as can be seen in Fig. 4.4,

in complete analogy to the convergence pattern of PAs shown in Figs. 4.2a and 4.2b.

Compared to PAs, D-Logs contain built-in branch cuts. For example, D5
5(t) has four

branch cuts and one exponential factor. The onset of the first branch cut for each D-Log

approaches the two-pion production threshold of the model, and this is done hierarchically:

the D-Log D5
6(t) predicts the production threshold to be at t = 0.083GeV2 and the D-Log

D9
9(t) at t = 0.0798GeV2. With this value, we can predict the charged pion mass to be

0.141 GeV, to compare with 0.140 GeV used in the model of Eq. (4.15, it means 1.9% of

relative error, which is much better that was obtained in the PAs case. In the other hand,

the model suppress this cut with the effect of others branch points and cuts present in

the function and therefore the multiplicity of this cut decreases as the order of D-Logs

increase establishing in 0.005 for D9
9 as an effective multiplicity for this cut. We also noticed

all D-Logs have a branch cut that tends to be a square root with the singularity around

∼ 0.49GeV2. This branch cut can be interpreted as a signal of the ρ meson mass and an

attempt to replicate the Breit-Wigner distribution used by the model in Eq. (4.16).

Finally, in Fig. 4.3 we compare the performance of both PAs and D-Logs provided the

same amount of coefficients of the Taylor expansion are used. Subdiagonal DN
N+1 performs

better than PN+1
N when approaching from above for all orders, while diagonal PAs do
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better than diagonal D-Logs when approaching from below. Notice however that the latter

comparison holds up only to the number of parameters up to 6, above which the diagonal

D-Logs surpass PAs as they converge faster. Not only Cauchy convergence is observed in

both sequences but absolute convergence as well. Both methods are useful when bounding

the function. For a large number of parameters, D-Logs would converge faster but for lower

orders, none of the methods is systematically superior. We shall keep both methods for our

fitting function study.

4.4 approximants to data with no error

In the previous section we built PA and D-logs in a canonical way, however, both

approaches could be used as a fitting tool. To introduce us in to this technique, let us

consider now an idealized case, where the data points represent exactly what is expected

from the model of Eq. (4.15), with zero error. It is convenient to work with data for

α∆αhad(x)× 105 such that the Taylor coefficients an are of a natural size, which makes

the fit simpler. The values of x were calculated as follows: the interval 0.2 ≤ x ≤ 0.93 was

divided into 30 equally spaced bins and we take the center of each bin, without any error,

as the representative values of x where we will generate the data points to be fitted with

our approximants.

To obtain our fitting functions, we construct both PAs and D-Logs using arbitrary

Taylor series coefficients of ∆αhad(t). These approximants are then transformed to the

x variable using Eq. (4.9). By simplifying, we express the approximants in terms of the

new coefficients but keeping the same degrees of freedom. These functions will then be

used to perform the fits to the toy data sets where the fit parameters can be written in

terms of the Taylor coefficients of ∆αhad(t). PAs used as fitting functions were already

applied in similar contexts and the convergence theorems are apparently satisfied in these

cases [20,40,85–88]. It is important to emphasize, however, that the theorems presented

in Sections 2.1.2 and 2.1.3 are demonstrated in the case of canonical PAs, i.e. those built

to the Taylor series coefficients. Strictly speaking, in the case of a fit to data points in a

given interval, we conscientiously slightly depart from the conditions of the theorem as a fit

to data can be interpreted as imposing one matching condition for each datum instead of

N +M conditions at the same point. Therefore, we expect convergence theorems to be, as

we will see, satisfied in this case as well but the convergence velocity may be smaller.

To show in detail a concrete case of our procedure, we start by examining the PA P 1
1 (t).

To construct the fitting function, we first compute P 1
1 (t) as a function of the arbitrary
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(unknown) Taylor series coefficients an of ∆αhad(t) given by Eq. (4.13). We Taylor-expand

the PA and ∆αhad(t) and match the coefficients of both order by order. We then perform

the change of variables using Eq. (4.9) which leads to the fitting function in terms of x.

It is important to mention here that we will use the same notation PN
M (x) to refer to the

fitting functions derived from the PA PN
M (t) even though they are not a PA of order N +M

in the variable x.

P 1
1 (t(x)) ≡ P 1

1 (x) = −
a21m

2
µ x

2

a1 − a1 x+ a2m2
µ x

2
= −

b1m
2
µ x

2

1− x+ b2m2
µ x

2
, (4.21)

where the fit parameters are b1 = a1 and b2 = a2/a1. Due to the hierarchy of the Taylor

coefficients of ∆αhad(t), given by Eq. (4.14), we can conclude that b1 and b2 have to obey

the following relations: b1 < 0 and b2 > 1, which will be imposed in the fit.

To obtain the parameters of the PAs and D-Logs from these fits to this zero-error data,

we will perform the minimization of the fit quality Q2 given simply by

Q2 =
30∑
i=1

[
α∆αhad(xi)× 105 − PN

M (xi)
]2

, (4.22)

where PN
M (x) refers, generically, to a PA PN

M (x) or to a D-Log DN
M (x). In reasonable fits, we

expect very small values for Q2. For P 1
1 (x), after the minimization we get Q2 = 1.18× 10−3

and the values of the fit parameters b1 and b2 lead to the following Taylor series coefficients

a1 = −912GeV−2 and a2 = −1489GeV−4, (4.23)

which differ from the true values by only 0.7% and 15%, respectively. Furthermore, the

pole of this PA in t is at tpole = 0.61GeV2. As stated by the convergence theorems, the

pole is located on the positive real axis of t.

The PA can then be used to estimate the value of aHVP,LO
µ . By employing the resulting

P 1
1 (x) in Eq. (4.7) we get

aHVP,LO
µ, P 1

1
= 6933× 10−11, (4.24)

with a relative error of 0.9% compared to Eq. (4.19), the expected value within our model.

The same analysis can be made for the other PAs of the sequences PN
N (t) and PN+1

N (t),

that will be resumed in Table 4.1.1 We will employ only these two sequences since they

are expected to bound the real function in the theorem presented in Section 2.1.3. We will

1The fitting functions obtained from these approximants are constructed explicitly in Appendix B.
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Table 4.1: Fitting functions constructed as PAs in variable x with free parameters bi.

PN
M (x) Fitting function in x

P 1
1 − b1 m2

µ x2

1−x+b2 m2
µ x2

P 2
1 − b1 m2

µ x2 (1−x)+(b1b3−b2)m4
µ x4

(1−x)2+b3 m2
µ x2 (1−x)

P 2
2

b1 m2
µ x2 (x−1)+(b2−b1b3)m4

µ x4

(1−x)2+b3 m2
µ x2 (1−x)+b4 m4

µ x4

P 3
2 − b1 m2

µ x2 (1−x)2−(b2+b1b4)m4
µ x4 (1−x)+(b3+b1b5+b2b4)m6

µ x6

(1−x)3−b4 m2
µ x2 (1−x)2+b5 m4

µ x4 (1−x)

build several approximants from each sequence, in order to study the convergence pattern,

but the final estimate of aHVP,LO
µ will not include all results, as we detail below. Fig. 4.5a

shows the values predicted by the PAs of the sequences PN
N and PN

N+1 for aHVP,LO
µ . It is

possible to notice that the pattern of convergence of Eq. (4.11), where the PN
N bound the

true value from below and the ones of PN
N+1 from above, is satisfied in this case. One can

note in Fig. 4.5a that in some cases when the order of the PA is increased there is no real

improvement in the estimate of aHVP,LO
µ . This can be explained by the appearance of a

defect, which consists of a pole partially canceled by a nearby zero, effectively reducing

the order of the PA, very similar to what happened with the PA P 3
3 in the example of

Section 2.1.1. It is known from PA theory that approximants applied canonically to Stieltjes

functions, i.e. to their Taylor series, cannot have Froissart doublets, see Section 2.1.3.

Nonetheless, the theorem does not prevent the PA to have numerical defects, which are

almost exact cancellations between poles and zeros, arising from the fitted parameters.

Adding more coefficients into a fitting function also introduces larger correlations among

them. As such, fitted coefficients will have errors and within their allowed fitted regions,

cancellations may emerge. We note, however, that the important fact that the two sequences

of PAs bound the true value remains true.

A final estimate for aHVP,LO
µ from the PAs can then be obtained. For that, we will limit

the analysis to the first two approximants in each sequence, i.e. P 1
1 , P 2

2 , P 2
1 and P 3

2 . This

choice is motivated by the fact that we do not expect to be able to fit much more than 5

parameters in more realistic scenarios, with a limited number of data points and with the

errors expected by the MUonE experiment. Computing the central value of the prediction

as the mean between the four approximants we get aHVP,LO
µ,PAs = 6990× 10−11, which differs

from the expected value given in Eq. (4.19) by 0.04%. This can be improved if we take
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Figure 4.5: Estimated values for aHVP,LO
µ from (a) PAs and (b) D-Logs fitted to a data

set with zero error. The pink star is the value obtained from the model of Eq. (4.27) and
the purple dashed line is the final result coming from the (a) PAs and (b) D-Logs with the
light purple band representing the systematic error of the result. The black line indicates
the true value of the model given in Eq. (4.19).

advantage of the expected convergence of the PA sequences dictated by Eq. (4.11). It is

expected that the higher-order PAs will be closer to the true value. We can then take the

average of the highest-order approximants of each sequence only, i.e. P 2
2 and P 3

2 , since from

the convergence behavior of Eq. (4.11), we expect the true value to lie between these two

PAs estimates. Thus, computing this mean we get aHVP,LO
µ,PAs = 6993× 10−11, that presents

an error of less than 0.01% with respect to the model value. This result can be seen in

Fig. 4.5a as the purple dashed line.

One can also estimate a theoretical uncertainty due to the truncation of the PAs sequences.

Taking the convergence pattern of Eq. (4.11) into consideration, the error will be defined as

half of the distance between the two highest-order PAs (P 2
2 and P 3

2 in this case), which

gives us a relative error of 0.19% represented in Fig. 4.5a by the light-purple band. This

systematic error has to be added to our final numbers in the spirit of a conservative estimate.

A similar analysis can be performed with D-Logs. As argued in the previous section,

they introduce branch cuts thus speeding the convergence, a key factor when dealing with

a small number of parameters. In this case, we will use the approximants of the sequences

DN
N and DN

N+1, since these are the sequences expected to bound the original function, as

indicated in Eq. (4.12). To construct fitting functions for D-Logs, we start with an arbitrary



4.4. approximants to data with no error 53

Table 4.2: D-Log fitting functions in terms of t or x variable.

DN
M (t) DN

M (x)

D1
2

−f0 t
(r1−t)γ1

f0 m2
µ x2(1−x)−1+γ1

(r1−r1x+m2
µx

2)γ1

D2
2

−f0 t eβt

(r1−t)γ1
f0 m2

µ x2(1−x)−1+γ1

(r1−r1x+m2
µx

2)γ1
e
β

m2
µx2

(x−1)

D2
3

−f0 t
(r1−t)γ1 (r2−t)γ2

f0 m2
µ x2(1−x)−1+γ1+γ2

(r1−r1x+m2
µx

2)γ1 (r2−r2x+m2
µx

2)γ2

D3
3

−f0 t eβt

(r1−t)γ1 (r2−t)γ2
f0 m2

µ x2(1−x)−1+γ1+γ2

(r1−r1x+m2
µx

2)γ1 (r2−r2x+m2
µx

2)γ2
e
β

m2
µx2

(x−1)

Taylor series in the t variable up to order N +M , compute its logarithm derivative, as

indicated in Eq. (2.26) –recall that it is equivalent to taking the ratio f ′/f–. After that, we

construct a PA, P̄N
M , and then we unfold this process using Eq. (2.27), thus obtaining the

D-Log expression in terms of t. Finally, we perform the change of variables of Eq. (4.9) and

write the generic fitting function in terms of x. For instance, the simplest D-Log is D1
2(t)

that before and after the change of variables reads

D1
2(t) =

−f0 t

(r1 − t)γ1
→ D1

2(x) =
f0m

2
µ x

2(1− x)−1+γ1

(r1 − r1x+m2
µx

2)γ1
, (4.25)

with fit parameters f0, r1, and γ1. We recall DM
N requires N +M fitted parameters. The

next approximant is the D2
2(t)

D2
2(t) =

−f0 t e
βt

(r1 − t)γ1
→ D2

2(x) =
f0m

2
µ x

2(1− x)−1+γ1

(r1 − r1x+m2
µx

2)γ1
e
β

m2
µx2

(x−1) , (4.26)

whit fit parameters f0, r1, γ1, and β. The fitting functions used in this analysis adhere to

the structure proposed in Eq. (3.6), making it advantageous to reparameterize them using

new coefficients rather than the original Taylor series coefficients. All sequences of D-Logs

employed to fit the data are presented in Table 4.2. The table provides a comprehensive

overview of the functions used for fitting, including their respective parameters: rn, which

denotes the branch point in the t-variable; γn, which specifies the multiplicity of the

corresponding cut; β, an exponential factor exclusive to the diagonal sequence; and f0, a

normalization factor.

A comparison of the results for aHVP,LO
µ obtained from the D-Log approximants is found

in Fig. 4.5b where we show both sequences, DN
N and DN

N+1 as a function of the number,
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N +M , of fitted coefficients. Convergence for D-Logs is faster than PAs, especially for

the subdiagonal sequence. In line with the criteria used for PAs, we employ D2
3 and D3

3 to

obtain a final prediction for aHVP,LO
µ from the D-Logs. Computing the mean of these values,

we obtain aHVP,LO
µ,DLogs = 6991.4× 10−11, which exhibits an error of less than 0.02% compared

to the model value and a theoretical uncertainty band of less than 0.05% (light-purple band

in Fig. 4.5b).
An important outcome of analyzing data with no errors is to provide an estimate of the

theoretical uncertainty for other models proposed in the literature to fit and extrapolate the
MUonE data. Let us take a closer look at the model proposed by Abbiendi in the Letter of
intent of the MUonE experiment, Ref. [120], motivated by the one-loop QED calculation of
the vacuum polarization. This fitting function is

∆αQED−model(t) = KM

−5

9
− 4M

3t
+

(
4M2

3t2
+

M

3t
− 1

6

)
2√

1− 4M
t

log

∣∣∣∣∣∣
1−

√
1− 4M

t

1 +
√

1− 4M
t

∣∣∣∣∣∣
 , (4.27)

where the parameters K and M are determined by the fit.

After the Q2 minimization we obtain Q2 = 1.84×10−4 and the parameters determined by

the fit are: K = 6865.36 GeV−2 and M = 0.06 GeV2. The aHVP,LO
µ value can be predicted

by this model employing the expression above in Eq. (4.7), which in this scenario gives us

aHVP,LO
µ,QED−model = 6976× 10−11. Even though this function has only two parameters, as is

the case of P 1
1 (x), this model implements the logarithmic dependency expected at large

|t|, which facilitates a better approximation to the exact result. Thus, it is expected that

∆αQED−model(t) has a more accurate result than P 1
1 (x), which can be verified in Fig. 4.5a

where the pink star represents the prediction of ∆αQED−model. Regarding the D-Logs,

D1
1(t), which contains only two parameters, is unable to reproduce any type of singularity,

whether poles or cuts. Therefore one would not expect that its estimate of aHVP,LO
µ be

more precise than the one provided by the QED-inspired model, which is corroborated

by Fig. 4.5b. The next D-Log, D1
2(t), with three parameters, contains a branch cut and

achieves a relative error of 0.24% when compared to the true value of our model, Eq. (4.19),

an error very similar to one obtained from ∆αQED−model, but using our model-independent

method. When comparing it, however, to our final estimate from the PAs or D-Logs given in

Figs. 4.5a and 4.5b, respectively, the result from the use of ∆αQED−model differs significantly

more from the true model value of Eq. (4.19). A priori knowledge of the function has been

used when defining the QED-model in Eq. (4.27). Even though the logarithmic dependence

is captured, the value of the fitted parameter M departs from the true one, m2
π ∼ 0.02GeV2.

The accuracy of the result is thus model-dependent and the systematic error is difficult to

quantify. Whether the QED-model in Eq. (4.27) would perform similarly with real data
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cannot be answered with guarantees.

As mentioned above, we can estimate the theoretical uncertainty in using ∆αQED−model as

the relative difference between the fitted value and the true model value given in Eq. (4.19).

This gives us 0.24%, which is slightly larger than, but of the same order of, the one obtained

with our PA method. The systematic error from the use of ∆αQED−model is, however,

significantly larger than that of the D-Log approach. As already stated, these systematic

uncertainties have to be considered in the final estimates of aHVP,LO
µ regardless of the fitting

function used.

4.5 approximants to data with realistic errors

We can now move to more realistic data sets, with fluctuations and uncertainties of the

same order as those expected to be obtained in the MUonE experiment [118–120,122,126–

128]. We built 1000 toy data sets for the function α∆αhad(x)× 105 employing the model of

Eq. (4.15) with 30 data points each, corresponding to the expected MUonE bin sizes. The

30 values of x are computed in the same way as in the previous section. The data sets were

generated assuming a Gaussian distribution around the value of α∆αhad(x)× 105 given by

the model of Eq. (4.15) with an error ranging from 0.7%, for larger values of x, up to 6.7%

for x ≈ 0.2.2 Additionally, the aHVP,LO
µ of each data set was calculated: the data was used

in the region x ∈ [0.2, 0.93], and the model of Section 4.2, used in the data generation, was

employed outside this interval. Calculating the median and the 68% confidence level (CL)

of this distribution we get

aHVP,LO
µ = (6991+22

−20)× 10−11 (model value). (4.28)

Since in this case the extrapolation outside the data region is exact, this value gives an

idea of the best possible result that we can expect from our PA or D-Log predictions given

the available information in the data sets.

For each data set, the parameters bn of the PAs and f0, β, rn, γn of the D-Logs are

determined by a χ2 minimization. We apply penalizations if the result for the Taylor series

coefficients an of ∆αhad do not follow the expected hierarchy given in Eq. (4.14) or the

determinant condition discussed in Section 2.1.3. This is done by employing a modified χ2

2Members of MUonE team; Giovanni Abbiendi, Carlo Carloni Calame, and Graziano Venanzoni provide
us with the values of the expected uncertainties of the MUonE experiment.
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function given by

χ2 =
30∑

i,j=1

[
α∆αhad(xi)× 105 − PM

N (xi)
]
(C−1)ij

[
α∆αhad(xj)× 105 − PM

N (xj)
]

+ ndof

[
N+M∑
i=2

θ(ai − ai−1) +

N+M∑
i=3

θ(Di−1,1) +

N+M∑
i=5

θ(−Di−2,2)

]
, (4.29)

where C is the data covariance matrix, ndof is the number of degrees of freedom, θ(x) is

the Heaviside theta function and Dm,n is the determinant given in Eq. (2.12). The χ2

penalties are scaled by ndof to be of a natural size. Hence, if the hierarchy of ai coefficients

or the determinant conditions are not satisfied, the χ2 has a steep increase which forces the

minimization algorithm to search for minima respecting the conditions expected for Stieltjes

functions. The arguments inside θ(x) are always written in terms of the fit parameters of

each approximant. Alternatively, one could neglect the second line from Eq. (4.29) and

turn the aforementioned penalization into limits for the fit parameters. Both strategies lead

to equivalent results.

For each fit, the approximant written as a function of the variable t is examined for the

appearance of defects. As already explained in Sec. 4.4, there is no guarantee that numerical

defects will not occur when approximants are used as fitting functions to real data. In

PAs, defects are manifest in a nearly exact cancellation between a pole and a zero of the

approximant. Their presence effectively decreases the order of the PA, which spoils the

systematic study of the convergence of a given sequence. For the D-Logs, a similar effective

reduction in the order of the approximants can happen in several circumstances. If the

exponent of a cut, γn, is compatible with zero, this reduces the number of fitted coefficients

by two (This case corresponds precisely to the defects that occur in the intermediate PA

P̄N
M ). Other defects, more of a numerical nature could occur in D-Logs as fitting functions;

for example, if two branch points are equal, i.e. ri = rj (i ̸= j), the two cuts are merged,

again lowering the number of coefficients by two. In the case of the diagonal D-Logs, the

exponential coefficient, β, may be compatible with zero within errors, reducing in practice

the approximant by one order (see Table 4.2 for the explicit D-Log expressions). Finally, if∑
n γn = 1, the pole at x = 1, resulting from the change of variable described in Eq. (4.9),

is lost.

In summary, those approximants with numerical defects are discarded because they are

redundant with lower order ones. For instance, for the PA P 2
2 approximately 30% of the

fits have to be disregarded due to the presence of defects, and for P 3
2 this number is 56%.
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In the case of D-Logs, 0.7% of fits for D2
3 and 4% for D3

3 are not considered3.

A related issue appears in fits where one of the parameters turns out to be almost zero

without numerical cancellation. In our fits, this happens when using the PA P 2
2 as a fitting

function for several of the data sets.4 This may be problematic since, with one of the

parameters in the denominator equal to zero, this approximant is effectively reduced to P 2
1 .

To circumvent this issue, in our results for P 2
2 , we impose that none of the parameters are

zero, even if this leads to a larger χ2, which guarantees that we do not mix results from

different approximants in the final statistical distributions.

After fitting, we use the resulting approximant to calculate aHVP,LO
µ for each of the

accepted fits using Eq. (4.7) (or with Eq. (4.10), for the partial contributions). It is also

possible to use the approximants only to extrapolate the data, i.e. use the data points to

obtain aHVP,LO
µ in the region x ∈ [0.2, 0.93] and then apply the approximants only outside

this interval. The results from both procedures are in very good agreement, since the fit

quality is almost always excellent, which is confirmed by Fig. 4.6 and the χ2 values of

Tab. 4.3. The results from each PN
M are then obtained as follows: the central value for

aHVP,LO
µ is the median of the distribution of the results and the uncertainty is obtained

within a 68% confidence level (CL).

Given the size of the errors present in the data sets, now we are only able to obtain

meaningful results from approximants with at most 6 fit parameters, which corresponds to

the PAs P 1
1 (x), P 2

1 (x), P 2
2 (x), and P 3

2 (x), and the D-Logs D1
2(x), D2

2(x), D2
3(x), and D3

3(x).

Higher-order approximants have an excessive number of parameters to fit which leads to

gigantic uncertainties and unstable results. As an example of typical fit outcomes, for one of

the 1000 data sets, we compare in Fig. 4.6 the data and the four PAs obtained after fitting

to these data. We can notice that all approximants fit the data very well and no significant

deviation between the approximants is present in the region where data is available. Similar

results are found for D-Logs. Discrepancies in the region where extrapolation is necessary

are, however, non-negligible. As discussed in Secs. 4.1 and 4.3, the change of variable

from t to x masks the fact that there is a significant extrapolation being performed and

the integration from x ≈ 0.93, where the data ends, to x = 1 still gives an important

contribution to aHVP,LO
µ .

Before turning to our final numbers, it is instructive to examine the results from each

3When we inspect the approximants for the appearance of these defects, we employ a numerical tolerance
of 10−4. This number is somewhat arbitrary, and we have checked that varying it by one order of magnitude
does not alter the results significantly.

4This only happens for P 2
2 and this is not observed when fitting the data without fluctuations, which

indicates that this is an artifact related to the statistical errors.
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Figure 4.6: Fitted PAs to the integrand α(1− x)∆αhad(x) from Eq. (4.7). Black points
show one toy data set used in the current exercise.

approximant separately. We give in Tab. 4.3 the values for aHVP,LO
µ obtained after fitting

each PA and D-Log to the 1000 toy data sets, together with the median of the reduced χ2

(and its 68% CL). One can notice that the pattern of convergence of Eqs. (4.11) and (4.12)

is obeyed for the central values obtained from the PAs and D-Logs, as already happened in

the idealized case of Sec. 4.4. It is also possible to note from Tab. 4.3 that the uncertainty of

aHVP,LO
µ from P 2

1 is much larger than the other PA’s predictions. This can be understood by

the fact that this approximant is not a Stieltjes function, as discussed in Sec. 2.1.3. Results

from P 2
1 can, therefore, be safely discarded when confronted with the others. Finally, we

observe that the uncertainty of aHVP,LO
µ increases from P 2

2 to P 3
2 as well as from D2

3 to D3
3

and we could not obtain meaningful fits for P 3
3 and D3

4. These are indications that we are

at the limit of what can be done with the toy data sets given the size of the errors expected

by the MUonE experiment.

The results from Tab. 4.3 show a somewhat large uncertainty. This uncertainty stems

mostly from the extrapolation, i.e. deviations of different approximants outside the data

region, corresponding to t ∈ (−∞,−0.138]GeV2. To quantify the error from this extrap-

olation, we calculated the partial contributions aHVP,LO
µ (xmax) up to xmax, defined in

Eq. (4.10), with xmax ∈ [0.990, 1]. It is expected that by restricting the extrapolation to

a smaller interval, the final errors will be smaller. For example, with xmax = 0.990 one

can cover 99.1% of the value of aHVP,LO
µ , which may be an acceptable trade-off if the

uncertainties are significantly reduced. The remaining 0.9% would have to be obtained
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Table 4.3: Results for aHVP,LO
µ from the PAs and D-Logs used as fitting functions to toy

data sets together with the final values for χ2/ndof of the respective approximants. Final
results for both methods are also presented.

aHVP,LO
µ × 1011 χ2/ndof aHVP,LO

µ × 1011 χ2/ndof

P 1
1 6938± 21 1.01+0.27

−0.25 D1
2 7052+66

−71 1.01+0.26
−0.26

P 2
1 7042+114

−104 1.01+0.28
−0.26 D2

2 6956+96
−65 1.05+0.28

−0.27

P 2
2 6980+46

−34 1.05+0.29
−0.27 D2

3 6999+48
−39 1.10+0.29

−0.28

P 3
2 6994+85

−49 1.11+0.29
−0.31 D3

3 6977+72
−53 1.14+0.30

−0.29

Final result 6987+46
−34 — Final result 6988+48

−39 —

externally by matching to perturbative QCD or lattice data if available at similar precision,

for example.

The aHVP,LO
µ (xmax) values estimated for xmax = {0.990, 0.995, 0.997, 1} are illustrated

for the PAs in Fig. 4.7 and for the D-Logs in Fig. 4.8. The pattern of convergence is

evident for all xmax in Figs. 4.7 and 4.8, where the gray band is the expected model

value of aHVP,LO
µ (xmax) given by Eq. (4.15). The red points in Fig. 4.7 represent the PN

N

sequence and the green ones PN+1
N . In Fig. 4.8, the blue points show the DN

N sequence while

results for DN
N+1 appear in yellow. One can observe in the results of these figures that the

uncertainty steadily increases with xmax, which reflects the dispersion due to extrapolation

outside the data region.

We can then obtain a final value for aHVP,LO
µ (xmax). Since with both PA and D-Logs the

approximants from the two sequences are expected to bound the true value, it is natural to

use the average of the highest-order approximants, in this case P 2
2 and P 3

2 , on the one hand,

and D2
3 and D3

3 on the other, as the central value for the final estimate. We will consider

the final statistical uncertainty to be the smallest between each pair of approximants. This

can be considered conservative since we do not reduce the final error, as would be done

in a weighted average, due to the expected strong correlations between the two results. It

is important to mention that we book the error stemming from the extrapolation –which

is the dominant source of error– as part of the statistical uncertainty since, ultimately,

this error is rooted in the statistical fluctuations of the data. Finally, for the systematic

uncertainty we use half the interval spanned by the central values from the two highest-order

approximants. Our final estimates for PAs and D-Logs for the different values of xmax are

collected in Tab. 4.4 –second and third columns, respectively– where “stat” and “sys” refer
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Table 4.4: Final results for aHVP,LO
µ (±stat)(±sys) in units of 1011 for PAs, D-Logs and

the QED-model. “stat” and “sys” refer to the statistical and systematic uncertainties,
respectively.

xmax aHVP,LO
µ,PAs aHVP,LO

µ,Dlogs aHVP,LO
µ,QED−model aHVP,LO

µ, data−sets

0.990 6927
(
+33
−27

)
(±4) 6928

(
+36
−31

)
(±4) 6918

(
+21
−20

)
(±4) 6926

(
+22
−20

)
0.995 6967

(
+40
−31

)
(±5) 6970

(
+42
−34

)
(±7) 6959(±21)(±17) 6969

(
+22
−20

)
0.997 6978

(
+43
−33

)
(±5) 6981

(
+43
−38

)
(±9) 6971(±21)(±17) 6982

(
+22
−20

)
1.000 6987

(
+46
−34

)
(±7) 6988

(
+48
−39

)
(±11) 6980(±21)(±17) 6991

(
+22
−20

)

to the statistical (in the sense explained above) and systematic uncertainties. These final

estimates are also illustrated in Figs. 4.7 and 4.8 by the black dots.

As one can notice, our final results are in excellent agreement with the expectation from

the model we used (fifth column of Tab. 4.4), with the central values for aHVP,LO
µ off by at

most 0.06% in the case of PAs and 0.05% in the case of D-Logs. Uncertainties are dominated

by statistics and the extrapolation (which we book as “stat”). A reduction in the uncertainty

of about 25% in both methods is achieved by computing the integral up to x = 0.990, which

covers 99.1% of aHVP,LO
µ . This is very likely an acceptable compromise since estimating the

remaining 0.9% from e+e− data or perturbative QCD would not increase the uncertainties

in any significant way. Finally, we observe that the systematic uncertainties, which are

small, do not change significantly with xmax.

For comparison, we also employ the QED-inspired model of Eq. (4.27) to perform the

fits to the toy data sets. For every data set a value for the parameters K and M is

determined as well as a prediction for aHVP,LO
µ (xmax), obtained by using the fitting function

to compute the integral of Eq. (4.10). We again quote the median as the central value

with an uncertainty obtained within its 68% CL. The predictions for the different xmax

are indicated in Tab. 4.4, where the systematic error is determined as 0.24% of the central

value, as explained in Sec. 4.4. These values can be seen in Figs. 4.7 and 4.8 represented by

the pink star with the inner error band representing solely the statistical uncertainty and

the larger error band representing the total uncertainty, from the sum in quadrature of the

two error sources in Tab. 4.4. The QED-inspired model, which has only two free parameters,

clearly outperforms P 1
1 , which also has only two free parameters. This is certainly a result

of the additional structure of the model, that contains, for example, a logarithmic cut. On

the other hand, the result from the model underestimates the true value, which reflects a
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systematic uncertainty associated with the model dependency, something already observed

in Sec. 4.4. The model dependency can be inferred from the fitted values of K and M which

read 6871+43
−38GeV−2 and 0.060+0.004

−0.003GeV2, respectively. In particular, the value of M is

incompatible with m2
π, as would be expected from the model in Eq. (4.15). In comparison

with the final result from the PAs and D-Logs, the model displays a smaller uncertainty,

which stems from the fact that it has only two free parameters, but is further away from the

true value. In this respect, the use of PAs and D-Logs helps reducing the final systematic

uncertainty, being, in addition, completely model independent.
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Figure 4.7: aHVP,LO
µ (xmax) from PAs fitted to the toy data sets for four different values

of xmax: (a) xmax = 0.990 (tmax = −1.1GeV2), (b) xmax = 0.995 (tmax = −2.2GeV2), (c)
xmax = 0.997 (tmax = −3.7GeV2) and (d) xmax = 1. The PAs PN

N are shown in red while
PN+1
N appear in green. Final results obtained from the approximants appear as a black

dot and results from the QED-inspired model of Eq. (4.27) as a pink star. The inner error
bar in the QED model result represents the statistical uncertainty. The gray band gives
aHVP,LO
µ (xmax) with exact extrapolation using the model of Eq. (4.15).
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Figure 4.8: aHVP,LO
µ (xmax) from D-Logs fitted to the toy data sets for four different values

of xmax: (a) xmax = 0.990 (tmax = −1.1GeV2), (b) xmax = 0.995 (tmax = −2.2GeV2), (c)
xmax = 0.997 (tmax = −3.7GeV2) and (d) xmax = 1. The D-Logs DN

N are shown in blue
while DN

N+1 appear in yellow. Final results obtained from the approximants appear as a
black dot and results from the QED-inspired model of Eq. (4.27) as a pink star. The inner
error bar in the QED model result represents the statistical uncertainty. The gray band
gives aHVP,LO

µ (xmax) with exact extrapolation using the model of Eq. (4.15).
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4.6 Summary & highlights

In all this chapter, we described the use of PAs and D-Logs to fit and extrapolate

toy data reflecting the expected results of the future MUonE experiment. This is a

model-independent strategy to extract aHVP,LO
µ that relies on general knowledge about the

fundamental properties of the hadronic contribution to the running of the fine-structure

constant, which is a Stieltjes function in the variable t [134]. These type of functions are

ruled by a determinant condition, given in Eq. (2.12), which generates constraints for their

Taylor series coefficients. This is a key factor, since the convergence of rational approximants

built from the Taylor series of Stieltjes functions is guaranteed by theorems in a very specific

pattern (see Section 2.1.3), where the PAs and D-Logs belonging to the diagonal sequence

approach ∆αhad(t) from below while the PAs of the sequence PN+1
N (t) and the D-Logs of

the sequence DN
N+1(t) do so from above, as indicated in Eqs. (4.11) and (4.12).

In our case, the approximants are used as fitting functions that would be employed to

fit the future MUonE data. Our fitting functions were constructed as follows. First, the

approximants were formally built with the canonical procedure, i.e. by matching to the

Taylor series of ∆αhad(t) around t = 0, with generic Taylor coefficients that would be

fixed by the data. Then, the function in the variable x, which is more suited for fits in

the MUonE framework, was obtained by the change of variables of Eq. (4.9). These new

functions in x are then used to fit the toy data sets in order to determine aHVP,LO
µ , by

employing the results from the approximant in the integral of Eq. (4.7) and, as a by product,

to estimate the Taylor coefficients of ∆αhad(t). The toy data sets used in this work were

generated from the model for the Euclidean correlator proposed by Greynat and de Rafael

in Ref. [123], briefly motivated in Sec. 4.2. We believe this simple model to be sufficient for

our purposes since it captures the main features of ∆αhad(t) and is a Stieltjes function.

First we showed, as proof of concept, how sequences of approximants bound the true

value of aHVP,LO
µ in idealized scenarios with no fluctuations in the data sets. We then

turned to tests of our method in the realistic case, where the toy data sets are generated

from the model with fluctuations that reflect the expected uncertainties to be obtained

from the MUonE experiment. We produced 1000 data sets and fitted them with the PAs

P 1
1 , P 2

1 , P 2
2 , and P 3

2 , and the D-Logs D1
2, D2

2, D2
3, and D3

3. The constraints imposed on the

Taylor series coefficients, derived from the determinant condition of Eq. (2.12) and given

in Eq. (4.14), were imposed on the fits. We analyzed then the estimate of aHVP,LO
µ (xmax)

for each approximant up to xmax = 0.990, 0.995, 0.997 and 1. Taking advantage of the

expected convergence pattern, i.e. the fact that different sequences bound the true value
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as in Eqs. (4.11) and (4.12), we obtained the final estimate of aHVP,LO
µ (xmax). Our final

results are obtained from the average between the two highest-order approximants of each

sequence, in concrete, the PAs P 2
2 and P 3

2 and the D-Logs D2
3 and D3

3. The systematic

uncertainty of our final prediction can be estimated and it was calculated as half of the

difference between these two approximants while the statistical error was taken as the

smallest error among the highest-order approximants of each sequence.

For all the values of xmax employed, our final estimates are fully compatible with what

was expected from the underlying model, as one can see in Figs. 4.7 and 4.8 for the PAs

and D-Logs respectively. Our final central values differ from the expected ones by less

than 0.06% in the PAs case and 0.05% for D-Logs. The final uncertainty is, in all cases,

dominated by the uncertainty stemming from the extrapolation. We observe, however, that

when the region in which we extrapolate the results is expanded, the dispersion between

different fits grows, leading to larger final uncertainties. This can certainly be expected

since the extrapolation that is performed is far from trivial and relies on data in a very

limited region of the variable t. In this respect, an extrapolation in a somewhat limited

interval, with xmax = 0.990 for example, which covers 99.1% of the aHVP,LO
µ integrand,

significantly reduces the final uncertainty. Of course, in this case one needs to resort to

external information to complete the determination of aHVP,LO
µ .

We also compared our final prediction with the ones obtained from the QED-inspired

model of Eq. (4.27) used in preliminary studies of the MUonE proposal [120]. This model

leads to smaller uncertainties than those obtained from our procedure, in part because it

has only two parameters, but its central value is further away from the true value, as seen

in Figs. 4.7 and 4.8. This larger systematic uncertainty reflects a model dependency that

can hardly be avoided with functions of this type.
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Chapter 5

Vub determination

Within the frame of the Standard Model (SM), the electroweak gauge symmetry SU(2)L×
U(1)Y is in charge of flavour physics phenomena for quarks and leptons. This research

field is crucial for understanding the dynamics of all particles under the weak force. A

significant focus of flavour physics is the study of hadrons, their properties, and their decays

into other particles. These decays are not only sensitive to the parameters of the SM but

also to potential new physics beyond the SM (BSM). By examining these processes with

high precision, it is possible to reveal subtle discrepancies between SM predictions and

experimental results, which may indicate the presence of new particles or interactions.

A cornerstone for understanding flavour-changing processes is the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [32, 33], which encodes the probabilities of transitions between

different types of quarks. Indeed, this mixing-matrix correspond to a 3× 3 complex matrix

whose elements are denoted by Vij for a transition of a j-down-type quark (d, s, b) to a

i-up-type quark (u, c, t). The precise determination of CKM matrix elements, is essential

not only for testing the internal consistency of the SM but also for exploring the potential

existence of physics beyond it [136–138]. For instance, CKM matrix must satisfy unitarity,

i.e.
∑

i VijV
∗
ik = δjk and

∑
j VijV

∗
kj = δik, therefore violations of unitarity condition are

evidence of physics BSM.

There are many processes where to test the CKM matrix and extract its elements.

Among them, purely leptonic weak decays, e.g. P− → ℓ−ν̄ℓ with P = {π,K,D,B}, offer

(in general) a theoretically clean environment for the determination of the CKM elements

67
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more advantageous than the semileptonic ones,1 where the decay rates depend on hadronic

information that is encoded in form factors. In addition, both leptonic and semileptonic

decays offer an opportunity to test lepton flavor universality as ℓ can be e, µ or τ . The

current status of the magnitude of the CKM matrix elements and future prospects for

improving their determination can be found in the Particle Data Group [140] as well in the

Flavour Lattice Averaging Group (FLAG) report [139] (see also Ref. [141]).

|Vud|= 0.97367± 0.00032 , |Vus|= 0.22431± 0.00085 , |Vub|= (3.82± 0.20)× 10−3.

The recent reduction in the value of |Vud| has introduced a 2.3σ tension with the unitarity

condition of the first row (|Vud|2+|Vus|2+|Vub|2), resulting in a weaker consistency with the

Standard Model fit [5, ch. 12].

The element Vub, which governs the transition from a bottom quark (b) to an up

quark (u), is particularly challenging to measure due to its small magnitude (compared to

the other CKM matrix elements) and the complexity of distinguishing its contributions

from background processes. High precision in determining |Vub| is critical for a reliable

determination of the unitary condition. This precision is achieved through advanced

parameterisation techniques, such as those that we are proposing in this thesis. In particular,

we are going to explore in this chapter the accuracy that can be achieved using PAs and

D-Logs [142].

Each particular matrix element can be determined from multiple processes. Since we

are focus in |Vub| we will consider the B-meson channels and we are going to consider only

exclusive processes. Among the three possible B-meson leptonic channels to obtain exclusive

determinations of |Vub|, the only available experimental input comes from B → τντ , since

the partial decay rates to e and µ have not been measured yet [143]. However, the averaged

experimental measurements [139] from BaBar, BR(B → τντ ) = 1.79(48)× 10−4, and Belle,

BR(B → τντ ) = 0.91(22)× 10−4, both coming from averaging different τ -reconstruction

channels, do not agree well and have large errors (about 25%). These measurements yield

|Vub|fB = 0.72(9) MeV and |Vub|fB = 1.01(14) MeV [139], respectively, which can be used to

extract |Vub| when combined with Lattice-QCD predictions of the B-meson decay constant

fB. As an example, using fB = 192.0(4.3) MeV from a Nf = 2 + 1 flavor gauge-field

ensemble [139], one gets |Vub|= 5.26(12)(73) × 10−3, from the BaBar measurement, and

|Vub|= 3.75(8)(47)× 10−3, from the Belle one, where the first uncertainty comes from the

1The only hadronic input required in leptonic decays are the decay constants of the decaying mesons,
which are well calculated in Lattice QCD [139].
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error in fB and the second one from experimental considerations. The discrepancy between

these two results stands at approximately 2σ, indicating that higher precision from leptonic

decays is necessary for a more reliable determination of |Vub|. Therefore, new and more

accurate data are anticipated from the Belle-II experiment [144].

Currently, the most precise determination of |Vub| comes from charmless semileptonic

B-meson decays, using exclusive or inclusive methods2. Inclusive determinations rely on the

operator product expansion and perturbative QCD applied to B → Xuℓν̄ℓ observables, while

the exclusive one require knowledge of the participating form factors. The most competitive

exclusive determination of |Vub| is obtained from the decay channel B → πℓνℓ, which has

generally exhibited a tension with inclusive determinations (see [141] for a history of the

comparison). More specifically, the experimental B → πℓνℓ observable depends upon know

quantities, |Vub| -that we would like to determine- and the B → π form factors, that we

need to describe and extrapolate to q2 = 0 to obtain that |Vub|. While QCD light-cone sum

rules have been used to calculate the value of the vector form factor at q2 = 0 with certain

error [145], precise Lattice-QCD simulations are available in the energy region close to the

maximum momentum transfer to the leptons, 17 GeV2< q2 < 26 GeV2, from the HPQC

Collaboration [146], the RBC and UKQCD (RBC/UKQCD) Collaborations [147], and the

Fermilab Lattice and MILC (FNAL/MILC) Collaborations [148]. Several representations

have been proposed for the form factor interpolation between these two regimes, including

dipole-like functions [149,150], the so called z-expansion parameterisations [151,152], and

more recently PAs [70, 142]. These parameterisations can be used to obtain |Vub| via a

simultaneous fit of the Lattice-QCD form factor calculations and the partial branching

ratios experimental data [153–157]. The q2 dependence of the form factor is thus fixed at

small q2 by data, which due to phase-space suppression have poor access to the large-q2

region, and at large q2 by the Lattice simulations, The theoretical uncertainties on the form

factors were the dominant source error in |Vub| until the 2015 FNAL/MILC results [148],

which brought the QCD error to the same level as the experimental one. In the intermediate

energy region around q2 ∼ 20 GeV2, both the experimental and Lattice-QCD errors are

similar in size. This region is decisive for determining |Vub| with precision, and can be

2In the study of meson decays, inclusive and exclusive decay channels offer different perspectives. Inclusive
decays consider all possible hadronic final states resulting from a transition, providing a comprehensive
view with generally lower statistical uncertainty but complex theoretical interpretation. Exclusive decays
focus on specific final states, offering precise information on particular processes and parameters, though
they come with higher statistical uncertainty due to fewer observable events. Both approaches complement
each other, balancing broad coverage and detailed precision.
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employed to estimate the individual contributions from experimental and Lattice data.

The semileptonic Bs → Kℓνℓ also depends on the CKM element |Vub|. The only difference

with respect to the decay B → πℓνℓ is that in Bs → Kℓνℓ the light spectator quark is a

strange quark (s) instead of an up or down quark as in the former process. The Bs → K

form factors have been simulated on the Lattice by the HPQCD Collaboration [158], the

RBC/UKQCD Collaborations [147], the ALPHA Collaboration [159], and more recently by

the FNAL/MILC Collaborations [160]. As in the B → πℓνℓ case, these calculations can

be used to extract |Vub| when combined with experimental measurements for Bs → Kµνµ,

which can play an important role in reassessing the result and addressing the current

exclusive versus inclusive |Vub| puzzle. Recently, the first experimental data on Bs → Kµνµ

became available by the LHCb Collaboration, which measured the partial branching ratio

distribution in two regions of q2 [161]. In this chapter, which is based on a recent work

referenced in [142], we will use these data to determine |Vub| and illustrate the potential

of a combined analysis of the decays B → πℓνℓ and Bs → Kµνµ. The decay Bs → Kℓνℓ

is also expected to be studied at the Belle-II experiment [144], where the e+e− collisions

would yield a cleaner environment than the LHC. Other processes offering interesting

information on |Vub|, but not considered in this analysis, include the Bℓ4 [162] and the

baryonic Λb → pℓν̄ℓ decays [163,164].

The present chapter is structured as follows. The hadronic matrix element and the

participating vector and scalar form factors are defined in Sec. 5.1, where the differential

decay distribution in terms of the latter is also given. In Sec. 5.2 we will use the Z-

parameterisation as a model for the vector and scalar form factor so that we can observe the

structure and convergence of PAs and D-Logs. In Sections 5.3 and 5.4, we determine |Vub|
and the corresponding form factor parameters from fits to the B → πℓνℓ and Bs → Kµνµ

experimental measurements on the differential branching ratio distribution combined with

the Lattice-QCD theoretical information on the form factors, using both PAs and D-logs.

After that, in Sec. 5.5 we perform a simultaneous analysis including all available experimental

and theoretical information on both exclusive decays. The outputs of our fits are then used

in Sec. 5.6 to calculate some interesting phenomenological observables such as total decay

rates, τ -to-µ ratio of differential decay rates and the forward-backward asymmetry. We

close the chapter with an outlook in Sec. 5.7.
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5.1 Lagrangian - Decay Amplitude and Form Factors

In the SM, the amplitude for the exclusive semileptonic decays B → πℓνℓ is given by:

iM =
GFVub√

2
LµH

µ , (5.1)

where GF is the Fermi constant and Vub is the participating element of the CKM matrix.

In Eq. (5.1), the leptonic current have the structure

Lµ = ū(pν)γµ(1− γ5)v(pℓ) , (5.2)

while the hadronic matrix element can be decomposed in terms of allowed Lorentz structures

and two form factors encoding the hadronic information:

Hµ = ⟨π(pπ)|ūγµb|B(pB)⟩

=

(
pB + pπ − q

m2
B −m2

π

q2

)
µ

f+(q
2) +

m2
B −m2

π

q2
qµf0(q

2) , (5.3)

where qµ = (pB − pπ)µ = (pℓ + pνℓ)µ is the transferred momentum to the dilepton pair.

The q2 functions f+(q
2) and f0(q

2) are, respectively, the vector and scalar form factors

corresponding to the exchange of JP = 1− and 0+ particles in case there is non-resonant

background. These two form factors satisfy a kinematical constraint,

f+(0) = f0(0) , (5.4)

which eliminates the (spurious) pole at q2 = 0 in Eq. (5.3).

In terms of these form factors, the dilepton mass squared distribution reads:

dΓ(B → πℓνℓ)

dq2
=

G2
F |Vub|2λ1/2(m2

B ,m
2
π, q

2)

128m3
Bπ

3q2

(
1− m2

ℓ

q2

)2

×
{
m2

ℓ(m
2
B −m2

π)
2|f0(q2)|2+

2q2

3
λ(m2

B ,m
2
π, q

2)

(
1 +

m2
ℓ

2q2

)
|f+(q2)|2

}
(5.5)

where λ(x, y, z) = (x+ y − z)2 − 4xy is the Källen function. For the decay Bs → Kℓνℓ,

the distribution is that of Eq. (5.5) but replacing mB → mBs ,mπ → mK and the respective

B → π form factors by the Bs → K ones.

The present best knowledge of the vector and scalar B → π and Bs → K form factors are
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obtained from Lattice-QCD calculations in the large-q2 region, which are then extrapolated

to the full kinematic range, i.e. 0 < q2 < (mB − mπ)
2, using parameterisations based

on resonance-exchange ideas [165–168] or the z-expansion [169] that we will explain and

discuss in Sec. 5.2. As shown in [70], these parameterisations are in one form or another

some kind of PA, which we will use in this chapter.

In our case, the key point is to realize that the form factors f+,0(q
2) are Stieltjes functions,

those that satisfy Eq. (2.9), in our case we establish

f(q2) =

∫ 1/R

0

dϕ(u)

1− uq2
, (5.6)

where f(q2) satisfy Stieltjes properties in the range of q2 < 0. In order to show how

this "Stieltjes" notation corresponds to the dispersion relation for the form factor we

set R = sth = (mB + mπ)
2, or (mBs + mK)2 for Bs → Kµνmu, then we can identify

dϕ(u) = 1
π
Imf(1/u)

u du, and making the change of variables u → 1/s, Eq. (5.6) returns a

dispersive form factor representation.

f(q2) =
1

π

∫ ∞

sth

ds′
Imf(s′)

s′ − q2 − iε
, (5.7)

where q2 is the invariant mass of the lepton pair. Since f(q2), and its imaginary part, is

created by the vector current, Imf(s) is a positive function (Imf(s) = πρ(s), and ρ(s)

the spectral function), the requirement of ϕ(u) to be non-decreasing is fulfilled and the

convergence of PA and D-Logs to f(q2) is guaranteed.

Whenever information on resonance contributions to those form factors is available, for

example the position of the resonance in the complex q2 plane, it can be easily included in

our analysis using the Partial/Type-PAs or Partial D-Logs defined in Sections 2.1.4 and

2.2.2 correspondingly. It could be done by forcing the poles or cuts of the approximant to

lie exactly at the position of the resonance. In the present case where B∗(1−) resonance is

known and can be nicely parameterised with the narrow-width approximation, we will also

consider such extensions of PAs and D-Logs.

We will extensively apply Padé and D-Log theory to parameterize the vector and scalar

form factors for both B → π and Bs → K decays. This approach will allow us to extrapolate

lattice-QCD data from the large-q2 region to the full kinematic range, specifically at q2 = 0.

An advantage of the Padé method in front of other parameterisations is the monitoring of
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unitary violations. While the unitary constraint in z-parameterisations is rather vague, with

PA it is crystal clear [60, 61, 70]: PA to Stieltjes functions are also Stieltjes functions. Since

convergence is guaranteed in the cut plane all singularities from approximants must be

real. The presence of complex-conjugated poles and/or zeros or cuts when approximating

Stieltjes functions is a notorious violation of convergence, possible only if unitary violation

is present in data (which is a non-Stieltjes property). We will explore this property in this

chapter which extends a previous analysis in the same channel (B → πℓνℓ) where PAs

where studied [70].

5.2 PAs and D-Logs apply to z-parameterisation

In this section, we consider a model that parameterizes the semileptonic form factors

as functions of q2, taking into account their analytic properties. Specifically, the model

must satisfy causality and unitarity [170]. This requirement implies that the semileptonic

form factors of B-mesons must be real analytic functions on the real q2-axis. In other

words, these functions must be infinitely differentiable and can be locally represented by a

convergent power series, except at points of discontinuity. If there is a branch cut in the

function, for example in the interval [q20,∞), the function must remain real for q2 < q20,

assuming analyticity in this domain.

Since the z-parameterisation satisfies these analytic properties and has been adopted by

various collaborations as the standard parameterisation for form factors in semileptonic

decays such as B → πℓνℓ and Bs → Kµνmu [139,171,172], it serves as a promising candidate

to test the analytic structure and convergence behaviour of PAs and D-Logs. By using

the latest results for the z-parameterisation coefficients provided by FLAG [139], we will

construct PAs and D-Logs directly from the resulting function of the z-parameterisation in

a canonical manner, similar to the approach used in Section 4.3.

To construct the z-parameterisation, first we need to map the variable q2 to a new

variable z such that |z|≤ 1. We can then use the z expansion to obtain a model-independent

parameterisation of our form factors valid over the entire kinematic range. Thus, we define

the new variable z via the conformal mapping [151]:

z(q2, t0) =

√
tcut − q2 −

√
tcut − t0√

tcut − q2 +
√
tcut − t0

(5.8)

where the parameter tcut is the particle-pair production threshold, which in our case
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corresponds to

√
tcut =

MB0 +Mπ+ = 5.419GeV for B → π

MB0
s
+MK+ = 5.86GeV for B → K

(5.9)

and t0 is a free parameter that can be chosen to minimize |z| for the semileptonic-decay

region. In this section we will use3

t0 = tcut −
√
tcut(tcut − t−), (5.10)

where t− is defined as the the maximum momentum transfer allowed in the semileptonic

decays: t− = (MBs −MK)2 for the case of Bs → Kℓν and t− = (MB0 −Mπ)
2 for B → πℓν

decay. By choosing t0 as Eq. (5.10) we can map the physical semileptonic decay region

onto the symmetric interval |z|≲ 0.28 (by tanking z(t−, t0)), minimizing the maximum

truncation error in the BCL expansion4 [152]. This mapping in z variable introduces a zero

in z(q2, t0) when q2 = t0, creating a strong dependence of the form factor on t0, with a

zero in z that was not present in q2. One advantage of this method is that it simplifies the

analytic continuation of form factors, especially for large momentum transfers. However, it

only accounts for a single cut, and the use of a square root introduces threshold behavior

that may not align with the true physical behavior near the threshold.

Using the new variable z, Eq. (5.8), we can present now a z expansion for the form

factors. Two commonly used expansions were proposed by Boyd, Grinstein and Lebed (BGL-

parameterisation) [151] and by Bourrely, Caprini and Lellouch (BCL-parameterisation)

[152,169]. The latter is the one we will use during this section and is given by

f+(q
2) =

1

1− q2/M2
B∗(1−)

K−1∑
k=0

b+k (t0)

[
zk − (−1)k−K k

K
zK
]

(5.11)

f0(q
2) =

1

B(q2)

K−1∑
k=0

b0k(t0)z
k (5.12)

where the B(q2) function in the scalar form factor accounts for poles below and near the

Bs → K production threshold via

B(q2) ≡

 1 for B → π

1− q2/M2
B∗(0+) for Bs → K

(5.13)

3Other options for t0 are t0 = 0 or t0 = t−, depending on the "q2" range we want to study.
4It can be proven using unitarity constraints to the BCL expansion, considering terms when K → ∞



5.2. PAs and D-Logs apply to z-parameterisation 75

Table 5.1: Input meson masses used in the z-parameterisation.

MB MBs Mπ+ MK+ MB∗(1−) MB∗
s (0

+)

Value (GeV) 5.2797 5.3669 0.1396 0.4937 5.3246 5.68

Table 5.2: Coefficient results for Z-parameterisation presented by FLAG coll. [139] in B → π
decay, and by FNAL/MILC coll. [160] in the case of Bs → K decay.

channel Vub × 103 b
(+)
0 b

(+)
1 b

(+)
2 b

(+)
3 b

(0)
0 b

(0)
1 b

(0)
3

B → πℓν 3.73 0.414 -0.494 -0.31 — 0.499 -1.426 —
Bs → Kℓν — 0.362 -0.956 -0.853 0.279 0.198 -0.166 -0.375

In agreement with the values used by FNAL/MILC collaboartion in their 2019-review [160],

we fix the location of the vector pole B∗ to the value MB∗(1−) = 5.32456(25)GeV. The

above threshold scalar pole B∗
s is taken to be MB∗

s (0
+) = 5.68GeV [160]5. The Table 5.1

lists the relevant meson masses used in our z-parametrisation [5, 139,160].

In channel B → π we will take the results provided by FLAG Review 2019 [139]. Thus, we

will use a z-parameterisation where the polynomial degree is given by K = 3. Same degree

(K) for the vector and scalar form factor provided the best fit found by FLAG. Parameter

coefficients were presented in Table 5.2. The last coefficient of the scalar form factor (b(0)2 )

can be obtained from all other coefficients imposing the f+(q
2 = 0) = f0(q

2 = 0) constraint,

recall Eq. (5.4). In the case of Bs → K decay, neither FLAG nor FNAL/MILC provided

an estimate for Vub, however since we only need a model for the form factor function we

can use the best fit obtained by FNAL/MILC [160] in this channel. For this case, the

polynomial degree is K = 4 and we use the constraint in q2 = 0 to determine parameter

b
(0)
2 . Values for coefficients in Bs → K are also presented in Table 5.2.

Finally we will consider the results from FLAG and FNAL/MILC to build our test model
for the vector and scalar form factor so that they satisfy their analyticity properties and
allow us to consistently construct PAs and D-Logs. By replacing the values from Table 5.2
into Eqs. (5.11) and (5.12), we will obtain what we will call the z-model, the function we

5Different values have been used by different collaborations, for instance HPQCD fixed the vaue in
5.6794 GeV, while RBC/UKQCD use 5.63 GeV, and FLAG take an average of them.
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intend to approximate using PAs and D-Logs. In the case of the B → π channel, we have:

f+(q
2)
∣∣∣Bπ

z-model
=

1

1− q2/M2
B∗(1−)

(
b
(+)
0 + b

(+)
1 z + b

(+)
2 z2 +

2b
(+)
2 − b

(+)
1

3
z3
)
, (5.14)

f0(q
2)
∣∣∣Bπ

z-model
=
(
b
(0)
0 + b

(0)
1 z + b

(0)
2 z2

)
. (5.15)

In the case of Bs → K channel, we have:

f+(q
2)
∣∣∣BsK

z-model
=

1

1− q2/M2
B∗(1−)

(
b
(+)
0 + b

(+)
1 z + b

(+)
2 z2 + b

(+)
3 z3 +

3b
(+)
1 + b

(+)
1 − 2b

(+)
2

4
z4
)
, (5.16)

f0(q
2)
∣∣∣BsK

z-model
=

1

1− q2/M2
B∗(0+)

(
b
(0)
0 + b

(0)
1 z + b

(0)
2 z2 + b

(0)
3 z3

)
. (5.17)

It is important to note that z-models become rational functions when we apply the

variable change x2 = tcut − q2 and a2 = tcut − t0, revealing their most basic structure. For

example, in the case of f+|Bπ, this results in a rational function of order 3 in x for the

numerator and order 4 in x for the denominator, considering the pole in M2
B∗ . Similarly,

for f0|Bπ, the function becomes a rational function of order 2 in both the numerator and

denominator, which can be easily parameterized using distinct sequences of PAs.

It is also important to clarify that while the model based on the z-expansion satisfies the

unitarity of the form factors, it does not meet the condition of being a Stieltjes-type function.

This can be easily verified by calculating the first Hankel determinants for f+/0, where

several are found to be negative (recall the positivity condition in Eq. (2.12)). Although

the model lacks this property, both approximations —using PAs and D-Logs— still allow

us to identify the expected zeros, poles and branch cuts location when they will used for

the fitting.

5.2.1 Padé Approximation

Having established the z-model for both the vector and scalar form factors, we will first

construct the PAs following the procedure presented in Section 2.1.1, using Eqs. (5.14)

and (5.15) as the target function with the coefficients from the B → π channel in Table 5.2.

In order to observe any pattern in the poles and zeros of the function, we will construct the

first approximants in the diagonal sequence (PN
N ) and the sub-diagonal sequence (PN−1

N ).

As an example, we present the PAs obtained up to N = 5 for the vector form factor.



5.2. PAs and D-Logs apply to z-parameterisation 77

sequence PN
N [f+]:

P 1
1 = −0.094 (q2 + 64.86)

q2 − 24.36
(5.18)

P 2
2 = −0.02 (q2 − 189.04) (q2 + 106.99)

(q2 − 60.69) (q2 − 27.82)
(5.19)

P 3
3 = −0.008 (q2 − 622.73) (q2 − 52.96) (q2 + 115.17)

(q2 − 101.99) (q2 − 43.39) (q2 − 28.227)
(5.20)

P 4
4 = −0.004 (q2 − 1503.97) (q2 − 86.22) (q2 − 40.57) (q2 + 116.242)

(q2 − 154.98) (q2 − 60.65) (q2 − 37.70) (q2 − 28.314)
(5.21)

P 5
5 = −0.002 (q2 − 2982.73) (q2 − 130.60) (q2 − 55.61) (q2 − 36.15) (q2 + 116.378)

(q2 − 219.65) (q2 − 82.12) (q2 − 47.85) (q2 − 34.97) (q2 − 28.34)
(5.22)

sequence PN−1
N [f+]:

P 0
1 = − 4.44

q2 − 17.70
(5.23)

P 1
2 =

3.95 (q2 + 137.67)

(q2 − 79.57) (q2 − 27.29)
(5.24)

P 2
3 =

6.50 (q2 − 67.01) (q2 + 118.45)

(q2 − 152.83) (q2 − 47.94) (q2 − 28.13)
(5.25)

P 3
4 =

7.83 (q2 − 124.32) (q2 − 44.20) (q2 + 116.67)

(q2 − 249.78) (q2 − 71.51) (q2 − 39.63) (q2 − 28.29)
(5.26)

P 4
5 =

8.65 (q2 − 204.62) (q2 − 64.44) (q2 − 37.72) (q2 + 116.44)

(q2 − 370.485) (q2 − 101.28) (q2 − 52.21) (q2 − 36.00) (q2 − 28.33)
(5.27)

In the above two sequences it can be seen that there is an accumulation of poles and

zeros on the real positive q2-axis, densifying around q2 ≈ 28.34GeV2, which corresponds

precisely to an approximation to a possible branch cut at the resonance of the B meson

with total spin J = 1 (m2
B∗(1−) = 28.3513GeV2), c.f. Table 5.1, indeed this singularity was

to be expected as it is explicitly found in the z-parameterization, see Eqs. (5.11) and (5.14).

On the other hand, as the order of the approximant increases, the position of a zero around

q2 ≈ −116GeV2 becomes evident, suggesting that in the negative q2 region the function is

decreasing and must cross the axis at some point.

In the case of the scalar form factor we obtain the following approximants:
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sequence PN
N [f0]:

P 1
1 =

0.21 (q2 − 19.37)

q2 − 15.98
(5.28)

P 2
2 =

0.60
(
q4 − 54.72 q2 + 2087.55

)
(q2 − 152.32) (q2 − 32.68)

(5.29)

P 3
3 =

0.59 (q2 + 32.70)
(
q4 − 54.60 q2 + 2075.88

)
(q2 − 148.86) (q2 − 32.74) (q2 + 32.69)

(5.30)

P 4
4 =

0.74 (q2 − 177.38) (q2 − 32.26)
(
q4 − 54.50 q2 + 2029.7

)
(q2 − 334.69) (q2 − 93.30) (q2 − 35.64) (q2 − 30.61)

(5.31)

P 5
5 =

0.59 (q2 − 138.17) (q2 − 32.90) (q2 + 1016.73)
(
q4 − 54.53 q2 + 2029.57

)
(q2 − 250.45) (q2 − 86.58) (q2 − 36.23) (q2 − 30.84) (q2 + 904.79)

(5.32)

sequence PN−1
N [f0]:

P 0
1 = − 22.89

q2 − 91.34
(5.33)

P 1
2 =

11.18 (q2 − 59.06)

(q2 − 26.38) (q2 + 99.80)
(5.34)

P 2
3 =

1217.42
(
q4 − 54.76 q2 + 2068.38

)
(q2 − 135.55) (q2 − 32.80) (q2 + 2259.71)

(5.35)

P 3
4 =

713.45 (q2 − 23.43)
(
q4 − 54.54 q2 + 2046.38

)
(q2 − 124.48) (q2 − 33.11) (q2 − 23.39) (q2 + 1415.66)

(5.36)

P 4
5 =

3041.52 (q2 − 133.00) (q2 − 32.93)
(
q4 − 54.53 q2 + 2029.66

)
(q2 − 234.72) (q2 − 85.78) (q2 − 36.26) (q2 − 30.85) (q2 + 4789.29)

(5.37)

For the scalar form factor PAs, we also observe an accumulation of poles and zeros along

the positive real q2-axis. In this case, the distribution suggests the presence of a possible

branch cut at q2 ≈ 30.8GeV2 potentially linked to a resonance of the B meson with J = 0

(mB∗(0+)) around ∼ 5.55GeV. Unlike the vector form factor, some of the sub-diagonal

PAs, as well as diagonal approximants for odd N , display a pole in the negative q2 region,

indicating that z-parameterisation for the scalar form factor (Eq. (5.15)) ceases to be a

Stieltjes-kind function, however these poles quickly move away from q2 = 0 placing them

far away from the convergence region. On the other hand, it is also observed that the

function has a complex-conjugate zero that stabilizes around q20 ≈ 27.26± i 35.86, though

the function remains analytic despite this feature.

To study the convergence pattern of the approximants in the different regions of q2 we

take the ratio between the approximant and the original function (f(+/0)|z-model), which

can be expressed as:

R
(+/0)
i =

PAN=i[f(+/0)]

f(+/0)
(5.38)

The convergence pattern of the PAs for the vector form factor is illustrated in Fig. 5.1. As
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Figure 5.1: Convergence ratio R
(+)
i , for vector form factor using PAs to z-model for B → π

decay. (a) negative q2 region, (b) positive q2 region.

shown, the typical convergence behavior for Stieltjes functions (see Eq. (2.16)) is satisfied

in the region q2 < 0, where the diagonal sequence approximates the function from below,

and the sub-diagonal sequence from above. However, in the region where data for the

differential decay rate of B → π are available, i.e., for 0 < q2 < (mB −mπ)
2, we only have

uniform convergence as the order of the approximant increases, it means we can not use

the theorem exposed in Eqs. (2.16) and (2.17) but we can use the same sequence to look

convergence in this region.

Figure 5.2: Convergence ratio R
(0)
i , for scalar form factor using PAs to z-model for B → π

decay. (a) negative q2 region, (b) positive q2 region

In the case of the scalar form factor, shown in Fig. 5.2, the convergence is not uniform.

While the PAs do exhibit convergence as the order increases, it is not systematic. Some
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approximants with fewer coefficients provide better approximations than those with more

parameters, as seen with P 5
4 performing better than P 5

5 for q2 < 0. Moreover, the

convergence is inconsistent in direction: within the same sequence, some approximants

converge from above the function, while others converge from below, with no discernible

pattern. For example, the PA P 2
2 in the positive q2 region initially approximates the

function from above and loses convergence at q2 ∼ 7GeV2, before approximating again

and move away below the function at 16GeV2. Figure 5.2(b) also indicates the radius of

convergence of the function’s Taylor expansion (dot-dashed gray line) at around 17GeV2,

showing that only PAs with N > 4 exhibit better convergence than the Taylor expansion.

The decay channel Bs → K exhibits the same convergence behavior as the B → π decay

for both the scalar and vector form factors. Therefore, an additional analysis for this

channel is unnecessary. It is important to note that, in both cases, the approximants aim

to reproduce the resonance points of the B meson.

5.2.2 D-Log Padé Approximation

Before analyzing the structure of the D-Logs, we can first examine the expected behavior

of the z-transformation (Eq. (5.8)) when taking the logarithmic derivative with respect to

q2-variable. As can be seen below a single power of z yields a constant in the numerator

and have a multiplicity of 1.5 for q2 in the denominator, which is not accessible by a PA.

d

dq2
ln [z(q2, t0)] =

√
tcut − t0√
tcut − q2

(
1

q2 − t0

)
(5.39)

Instead of using q2, we apply the previously mentioned variable change, where x2 =

tcut − q2 and a2 = tcut − t0. The logarithmic derivative can now be easily approximated by

P 0
2 (x) (dx/dq

2). Thus, for the B → π channel, the scalar form factor f0 can be approximated

by P 2
3 (x), while the vector form factor f+ requires P 5

6 (x). However, we aim to study the

convergence behavior in q2, which may lead to approximants of the same order, given that

x2 ∼ q2.

For the canonical construction of the D-Logs, we will follow the procedure described

in Section 2.2.1. Recall that this essentially involves applying the logarithmic derivative

to the form factors given by Eqs. (5.14) and (5.15). Afterward, we obtain the desired

Padé approximant, and finally, we integrate and exponentiate as indicated in Eq. (2.27).

Accordingly, we will analyze the first D-Logs in both the diagonal and sub-diagonal sequences

for both form factors (up to N = 5). The D-Logs for the vector form factor are:
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sequence DN
N [f+]:

D1
1 =

11.28 e0.016 q2

(28.08 − q2)1.14
(5.40)

D2
2 =

11.04 e0.011 q2 (q2 + 56.41)0.12

(29.17 − q2)1.26
(5.41)

D3
3 =

0.76 e0.002 q2 (q2 + 111.03)0.85

(28.54 − q2)1.11 (48.33 − q2)0.36
(5.42)

D4
4 =

0.69 e0.0008 q2 (q2 + 115.86)0.98

(28.42 − q2)1.06 (38.30 − q2)0.24 (76.94 − q2)0.29
(5.43)

D5
5 =

0.97 e0.0003 q2 (q2 + 116.34)1.00

(28.38 − q2)1.03 (34.77 − q2)0.18 (51.43 − q2)0.21 (116.59 − q2)0.26
(5.44)

sequence DN−1
N [f+]:

D0
1 =

801.63

(39.01 − q2)2.20
(5.45)

D1
2 =

0.0002 (q2 + 185.81)2.20

(29.51 − q2)1.32
(5.46)

D2
3 =

0.29 (q2 + 121.57)1.12

(28.65 − q2)1.14 (56.76 − q2)0.42
(5.47)

D3
4 =

0.97 (q2 + 117.07)1.02

(28.45 − q2)1.07 (40.82 − q2)0.27 (103.49 − q2)0.34
(5.48)

D4
5 =

1.69 (q2 + 116.492)1.00

(28.39 − q2)1.04 (35.93 − q2)0.20 (58.13 − q2)0.23 (172.72 − q2)0.30
(5.49)

In both sequences we can observe two branch points that stabilize as we increase the

order of the D-Log; one of them is a cut located in the denominator with value very close

to 28.38GeV2 and multiplicity very close to 1, which suggests that it corresponds to the

pole of the z-parameterisation in the vector form factor (mB∗(1−)). The other stable point

also exhibits multiplicity close to 1 but is located in the numerator and in the negative

region of q2 around ∼ 116.4GeV2, i.e., exactly the same zero fixed by the PAs. The rest of

the cuts in the approximants are located in the denominator and usually have very small

exponents (< 0.3) which implies that their contribution is dominated by the first term in

their Taylor expansion since it is smaller and smaller from the second term on. Finally we

have the exponential function in the diagonal sequence whose coefficient is positive but

smaller and smaller, decreasing considerably its contribution. Looking at the structure

of these sequences, a general expression can be proposed to parameterize the vector form



82 5. Vub determination

factor as:

DN−1
N =

f0 (q
2 + b2)

c2

(b1 − q2)c1 (b3 − q2)c3 · · · (bN−1 − q2)cN−1
(5.50)

DN
N =

f0 (q
2 + b2)

c2 ea1 q
2

(b1 − q2)c1 (b3 − q2)c3 · · · (bN−1 − q2)cN−1
(5.51)

where bi is the position for the different cuts in the approximant, ci is the associated

multiplicity, ai are the coefficients associated to the exponential function and f0 is a

normalization factor. On the other hand, the first D-Logs approximating the scalar form

factor are shown below:
sequence DN

N [f0]:

D1
1 =

3.67 e−0.021 q2

(25.73 − q2)0.83
(5.52)

D2
2 = 0.0005

(
q4 − 100.41 q2 + 2870.93

)2.50
e0.0249 q2+11.24ArcTan(0.0267(2q2−100.41)) (5.53)

D3
3 =

0.012
(
q4 − 52.35 q2 + 1891.77

)0.86
e0.0020 q2+0.16ArcTan(0.0144(2q2−52.35))

(32.25 − q2)0.96
(5.54)

D4
4 =

0.041
(
q4 − 54.69 q2 + 2051.35

)1.02
e0.0006 q2−0.07ArcTan(0.0138(2q2−54.69))

(30.75 − q2)0.65 (53.97 − q2)0.94
(5.55)

D5
5 =

0.093
(
q4 − 54.55 q2 + 2027.29

)1.00
e0.0003 q2+0.01ArcTan(0.0140(2q2−54.55))

(30.20 − q2)0.51 (39.50 − q2)0.56 (97.31 − q2)0.62
(5.56)

sequence DN−1
N [f0]:

D0
1 =

0.31

(8.76 − q2)0.096
(5.57)

D1
2 = 0.06

(
q4 − 60.09 q2 + 1320.91

)0.50
e2.167ArcTan(0.0245(2q2−60.09)) (5.58)

D2
3 =

0.03
(
q4 − 49.61 q2 + 1975.53

)0.80
e−0.225ArcTan(0.0136(2q2−49.61))

(33.60 − q2)1.19
(5.59)

D3
4 =

0.13
(
q4 − 55.54 q2 + 2048.79

)1.07
e0.058ArcTan(0.0140(2q2−55.54))

(31.16 − q2)0.74 (75.45 − q2)1.13
(5.60)

D4
5 =

0.19
(
q4 − 54.40 q2 + 2025.28

)0.97
e−0.002ArcTan(0.0139(2q2−54.40))

(30.38 − q2)0.56 (43.07 − q2)0.66 (154.90 − q2)0.56
(5.61)

In the case of the D-Logs for the scalar form factor, we obtain a more complicated

analytical structure due to the presence of singularities outside the real q2-axis. Specifically,

these singularities are interpreted as two vertical cuts in the complex plane located around

{q2 | |Im(q2)|⪆ 35.8, ∀ Re(q2) ∼= 27.2}, as shown in Fig. 5.3. These vertical cuts are

generated by the ArcTan function in the exponential factor appearing in the approximants

with N ≥ 2. In general, the D-Logs for the scalar form factor in the sequences DN
N and
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DN−1
N can be expressed as follows:

DN−1
N =

f0 (q
4 − 2Re{b2} q2 + b2b

∗
2)

c2 ed1ArcTan(2 d2(q2−Re{b2}))

(b1 − q2)c1 (b3 − q2)c3 · · · (bN−2 − q2)cN−2
(5.62)

=
f0 (q

4 − 2Re{b2} q2 + b2b
∗
2)

c2 ea1 q
2+d1ArcTan(2 d2(q2−Re{b2}))

(b1 − q2)c1 (b3 − q2)c3 · · · (bN−2 − q2)cN−2
DN

N (5.63)

where b2 is a complex parameter and di are parameters associated to the ArcTan function.

It is important to note that the introduction of a singularity outside the real axis implies

that the construction of a D-Log DM
N requires an additional coefficient, i.e. N +M + 3

coefficients.

In addition to these off-axis branch cuts, the D-Logs for the scalar form factor also

exhibit a cut on the positive real q2-axis, as shown in Fig. 5.3. This cut is located at

approximately 30.2GeV2, and can be associated with the resonance of the B meson with

J = 0, corresponding to a mass of around 5.5GeV. However, in this case, the exponent

tends to be 0.5 –a new information respect the PAs–. Another distinction from the vector

form factor is that the additional cuts appearing in the denominator no longer have small

exponents and are not as far from the origin. As a result, their contribution can affect the

shape of the function near the convergence region.

We again analyse the convergence of the approximants splitting the q2 domain in two

regions. For the vector form factor, a convergence pattern typical of Stieltjes functions is

observed in the negative q2 region, except for the D-Log D1
1, as shown in Fig. 5.4. However,

it is important to remark that the PAs in the PN
1 sequence cannot always be guaranteed to

follow Stieltjes behavior, even if they are constructed using Taylor coefficients of a Stieltjes

function (c.f. Section 2.1.3). In addition, the D-Logs with N = 1 fail to account for the cut

in the numerator on the negative real q2-axis. In the positive q2 region, approximant D1
1

also do not follow the expected convergence pattern, while the other D-Logs systematically

approximate the function from below.

On the other hand, the convergence for the scalar form factor, as shown in Fig. 5.5,

follows a Stieltjes-like pattern in the region q2 < 0. As well as, in the region q2 > 0, the

approximants generally approach the function from below, except (in both regions) for

the D-Logs with N = 1, which preserve the expected range of convergence but change the

direction of approximation compared to the other approximants in the same sequence.

The D-Logs obtained using the values from the z-parameterisation corresponding to the

decay Bs → K exhibit a similar analytical structure, determining the resonance values for
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Figure 5.3: Representation of D-Log D4
5 apply to scalar form factor in the q2-complex plane,

where cyclic color function represents the argument and darkness (gray scale) represents
the modulus. White lines are branch cuts.

Figure 5.4: Convergence ratio R
(+)
i , for vector form factor using D-Logs to z-model for

B → π decay. (a) negative q2 region, (b) positive q2 region.

the B meson in both its vector and scalar forms. For the scalar form factor, the D-Logs

predict a branch cut located around 32.4GeV2, which differs by only 0.2% from the value

used by the z-model for mB∗(0+) (see Table 5.1), but with an associated multiplicity of 1.2.

Again, these approximants exhibit two cuts outside the real q2-axis. For the vector form

factor, the D-Logs predict a mass of mB∗(1−) ∼ 5.324GeV also very accurate to the input

used by the z-parameterisation, and a branch cut appears in the numerator that behaves



5.2. PAs and D-Logs apply to z-parameterisation 85

Figure 5.5: Convergence ratio R
(0)
i , for scalar form factor using D-Logs to z-model for

B → π decay. (a) negative q2 region, (b) positive q2 region.

almost like a zero of the function, as its exponent is very close to 1. This cut is located in

the negative q2 region, around −33.53GeV2.

To conclude this section, we aim to compare the convergence behavior of the PAs and

the D-Logs. For this purpose, we examine the first term of the Taylor series that each

approximant can predict. For instance, the PA P 2
3 is constructed using six Taylor coefficients

of the original function and can predict the 7th term by expanding its respective Taylor

series. Similarly, the D-Log D2
2 is constructed from the first six Taylor coefficients of the

function and also provides a prediction for the 7th term. This allows us to compare which of

the two predictions is closer to the corresponding term of the original function’s expansion.

Table (5.3) presents the differences between the terms predicted by the approximants and

the actual terms of the original function as the order of the PAs and D-Logs increases.

In Table 5.3, green highlights indicate cases where the D-Logs provide a better prediction,

while orange highlights correspond to better approximations from the PAs. In the lower-order

approximants, the PAs generally offer a more accurate prediction. It is also observed that

D-Logs tend to give better predictions when they have an odd number of free parameters,

such as those in the subdiagonal sequence, whereas they only surpass the convergence

of the diagonal PAs starting from D5
5 (with 12 free parameters). In conclusion, the PAs

demonstrate faster convergence for the first few approximants (up to N = 3), while the

D-Logs require a larger number of parameters to achieve faster convergence in any sequence.

Therefore, it cannot be definitively concluded that one method is superior to the other, as

both exhibit rapid convergence.

The analysis in this section has allowed us to determine the analytical structures that
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Table 5.3: Comparison of convergence between PAs and D-Logs approaching to the vector
form factor. Values in the table represent the difference between the predicted Taylor
coefficient by the PA (second column) or D-Log (third column) and the Taylor expansion of
the Z-model. Background color identified if PA (orange) or D-Log (green) makes a better
approximation with same number of free parameters.

No Parameters PAs D-Logs

3 (10−6) 1.78 -1.21
4 (10−9) 5.71 6.44
5 (10−11) 6.01 -6.15
6 (10−13) 3.20 -14.2
7 (10−15) 3.29 -2.95
8 (10−17) 2.05 -3.62
9 (10−19) 2.05 -1.58
10 (10−21) 1.38 -1.68
11 (10−23) 1.35 -0.91
12 (10−25) 0.95 -0.91

the PAs and D-Logs can exhibit when parameterizing the form factors for the B → π and

Bs → K decays, as well as the potential convergence patterns shown by each sequence of

approximants. In the next section, we will use experimental and lattice data to directly fit

the PAs and D-Logs.

5.3 Fits to the decay B → πℓνℓ

We start performing fits to the B → πℓνℓ differential branching ratio distribution

experimental measurements combined with the B → π form factor Lattice-QCD simulated

data. To that end, we minimize the following χ2-like function,

χ2
Bπ = N

(
χ2
data

Ndata
+

χ2
Lattice

NLattice

)
, (5.64)

where Ndata is the number of experimental points, NLattice the number of the Lattice form

factor q2-points, and N = Ndata +NLattice. The above definition ensures the χ2 function

with a smaller number of points is well represented in χ2
Bπ, and is not overridden by that
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with a larger number of points. The individual χ2 functions in Eq. (5.64) are given by:

χ2
data =

13∑
i,j=1

∆data
i (Covdataij )−1∆data

j , (5.65)

where

∆data
k =

(
∆B

∆q2

)data

k

− τB0

∆q2k

∫ qhighk

qlowk

dq2
dΓ

dq2
, (5.66)

and

χ2
Lattice =

5∑
i,j=1

(
fLattice
+,0 (q2)− PM

N (q2)
)
i
(CovLatticeij )−1

(
fLattice
+,0 (q2)− PM

N (q2)
)
j
. (5.67)

For the fit, we use the spectrum (and correlation) in 13 bins of q2 (Ndata = 13) from the

HFLAV group [171], which results from the average of the four most precise measurements

of the differential B → πℓνℓ decay rate from BaBar [154, 155] and Belle [156, 157], the

theoretical prediction of the partial decay rate Eq. (5.5) and the B0-meson lifetime τB0 .

For the Lattice QCD information on the shape of the vector and scalar form factors,

contained in fLattice
+,0 (q2) in Eq. (5.67), we use the results from the FLAG group reported in

2019 [139], which are given in their Table (41). However, these are presented as a formula,

resulting from fits to a z-parametrization with 5 fit parameters (those that we already use

in Section 5.2), rather than as synthetic data for several values of q2. For our analysis, we

have generated synthetic data at three representative values of q2 from their z-fits using

Eqs. (5.11) and (5.12). In particular, we have generated, respectively, 3 and 2 data points

for the vector and scalar form factors (NLattice = 5), which we gather in Table 5.4 and use

in our fits. Although synthetic data can be easily generated from the z-parameterisation

results, choosing the number of points and the q2 leading to an optimal description of

the form factors is not as straightforward. In our case, we can generate 5 data points at

most, as it would be inconsistent to generate more synthetic data than the independent

coefficients of the z-fit; if more are generated, the resulting correlation matrix has zero

eigenvalues, which implies a non-invertible covariance matrix6. We have checked that a

z-fit with 5 parameters to the data given in Table 5.4 yields the results of Table (41) from

6It would be beneficial if the Lattice form factor calculations computed by any Collaboration were
provided at representative q2 values, along with the corresponding bin-to-bin correlations, as an standard,
in addition to the parameterisation coefficients chosen by the group to make the fit. This would enable
independent parameterisation of the results without assumptions regarding the functional form of the form
factors.
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FLAG review 2019 [139].

Table 5.4: Central values, uncertainties and correlation matrix for the B → π vector and
scalar form factors, fB→π

+,0 (q2), generated at three representative values of q2 from the FLAG
results [139] and used in our fits in Eqs. (5.64) and (5.74).

Correlation matrix

Form factor fBπ
+ fBπ

0

q2 [GeV2] Central values 18 22 26 18 22

fBπ
+

18 1.007(48) 1 0.615 0.129 0.586 0.151
22 1.967(52) 1 0.382 0.170 0.245
26 6.332(256) 1 0.306 0.221

fBπ
0

18 0.413(25) 1 0.734
22 0.588(21) 1

Fitting with PAs

For the dominant vector form factor, we start fitting with Padé sequences of the type

PM
1 (q2) and PM

2 (q2), where the poles are left free to be fitted, and we reach, respectively,

M = 3 and M = 2 as the best approximants with the current data. The results of the fits

for |Vub| and the fitted coefficients are presented in Table 5.5 for the two Padé sequences.7

In the table, the poles denoted by the symbol † are Froissart doublet poles8. The element

PA P 2
2 (q

2) (also the P 3
2 (q

2)) has complex-conjugate poles with an small imaginary which

are pair up by a close-by zero in the numerator, thus becoming effectively a defect. However,

these poles lie within the radius of convergence, indicating certain degree of unitarity

violation in the data [70], since their presence is forbidden when dealing with Stieltjes

functions.

We also show the coefficients of the PA P 1
1 (q

2) used for the description of the scalar form

factor, which provides an optimal description of the data.9 The latter contains only 2 free

parameters, a01 and the effective mB∗(0+) pole, as in our fits the constraint at q2 = 0, i.e.

fB→π
+ (0) = fB→π

0 (0) (cf. Eq. (5.4)), has been implemented explicitly through a+0 = a00.

Since we know the resonance mass in advance, we can fit with sequences of the type

TM
1 (q2) and PM

1,1(q
2), where the B∗(1−) pole is fixed to the value provided in Table 5.1,

mB∗(1−) = 5.325 GeV [140], we would have reached, respectively, M = 3 and M = 2 as the

7In the table, the element P 3
2 (q

2) is only shown for illustration.
8A defect pair where the pole is cancel by a near-zero in the numerator (c.f. Pade Theory Section 2.1).
9We have also tried a P 2

1 (q
2) approximant for the scalar form factor and found no impact on |Vub|.
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best approximants and obtained the results collected in Table 5.6.

In Fig. 5.6 we provide a graphical account of the convergence pattern for |Vub| and

fB→π
+,0 (0) resulting from the four types of sequences we have considered. The stability

observed for these quantities is quite reassuring. The values obtained for the individual χ2

functions, χ2
data and χ2

Lattice, imply a good quality of the fits. Furthermore, we note that the

approximants with two poles yield excellent values for the quantity (χ2
data + χ2

Lattice)/dof.

In terms of the latter, our best fit10 is obtained with a P2
1,1 approximant, which yields:

|Vub|PAs= 3.86(11)× 10−3 , (5.68)

although the values of |Vub| obtained with the other approximants are almost identical as it

can be seen on the tables. For our best fit, P2
1,1, the quoted uncertainty on |Vub| is 2.9%

(cf. Eq. (5.68)) and we gather the resulting fit parameters along with the correlation matrix

in Table C.1 of Appendix C. Our |Vub| value in Eq. (5.68) is larger, and slightly more precise

than, the FNAL/MILC result, |Vub|= 3.72(16)× 10−3 [148], and the FLAG reported value,

|Vub|= 3.73(14)× 10−3 [139]. The reason for that is due to the adopted χ2 fit function in

Eq. (5.64), which we consider as more democratic. In addition, this procedure has an impact

on the comparison with respect to |Vub| determinations from inclusive decays B → Xuℓνℓ,

|Vub|= 4.25(12)+15
−14(23)× 10−3 [140], with which our values differ by only 1.35σ. In Fig. 5.7,

we show the differential branching ratio distribution (left plot) and the outputs for the

vector and scalar form factors (right plot) resulting from our preferred fit P2
1,1.

We performed an analysis including only the vector form factor Lattice data into the

fit, for which we have taken the limit mℓ → 0 in Eq. (5.5) and used the synthetic data

from Table C.2 of Appendix C, which have been generated from the FLAG standalone z-fit

to the vector form factor given in Eq. (224) in [139]. In this fit, we would have reached

M = 2 and obtained the results shown in Table 5.7. As a matter of example, in this table

we only report PM
1 sequence. Similar results and conclusions are obtained using the other

approximants considered in Tables 5.5 and 5.6.

Note that |Vub| in this fit, |Vub|= 3.65(11) × 10−3, shifts by about ∼ 1.3σ downwards

with respect to the value given in Eq. (5.68), |Vub|= 3.86(11) × 10−3, obtained with the

scalar form factor Lattice data taken into account. The origin of this shift stems from

the fact that the FLAG value for fB→π
+ (0) resulting from a standalone z-fit to the vector

form factor, fB→π
+ (0) = 0.288(87) [139], which is the most relevant input for the extraction

10Our best fit is defined as the last approximant of a given sequence with all parameters different from
zero at one-sigma distance and with χ2/dof closer to 1
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Table 5.5: Best fit values and uncertainties for the output quantities of our χ2
Bπ fits Eq. (5.64)

for Padé sequences of the type PM
1 and PM

2 .

Element of the PM
1 sequence Element of the PM

2 sequence

Parameter P 0
1 P 1

1 P 2
1 P 3

1 P 0
2 P 1

2 P 2
2 P 3

2

|Vub|×103 2.47(6) 3.66(10) 3.85(11) 3.86(11) 3.85(11) 3.88(11) 3.86(12) 3.86(12)
a+0 0.398(7) 0.245(8) 0.253(8) 0.240(11) 0.246(7) 0.248(7) 0.244(7) 0.242(10)
a+1 × 103 — 7.9(4) 2.8(1.4) 8.1(3.3) — −1.9(1.4) −3.5(9) −2.5(4.5)
a+2 × 104 — — 2.4(6) −3.3(3.3) — — −1.7(8) −2.5(2.4)
a+3 × 105 — — — 1.7(1.0) — — — 0.2(9)
mB∗(1−) pole(s) [GeV] 5.26 5.29 5.31 5.33 5.32&7.11 5.34&6.40 † †

a01 × 102 −1.3(1) −0.2(1) −0.5(1) −0.4(1) −0.4(1) −0.5(1) −0.5(1) −0.5(1)
mB∗(0+) pole [GeV] 5.17 5.72 5.45 5.43 5.47 5.39 5.38 5.38

χ2
data [Ndata = 13] 157.07 12.64 11.51 11.92 10.76 11.87 10.80 10.90

χ2
Lattice [NLattice = 5] 18.19 5.15 1.72 0.67 1.53 0.75 0.42 0.34

(χ2
data + χ2

Lattice)/dof 13.48 1.48 1.20 1.26 0.95 1.05 1.02 1.12

Table 5.6: Best fit values and uncertainties for the output quantities of our χ2
Bπ fits Eq. (5.64)

for Padé sequences of the type TM
1 and PM

1,1.

Element of the TM
1 sequence Element of the PM

1,1 sequence

Parameter T0
1 T1

1 T2
1 T3

1 P0
1,1 P1

1,1 P2
1,1 P3

1,1

|Vub|×103 2.19(5) 3.55(9) 3.87(11) 3.85(11) 3.85(11) 3.87(11) 3.86(11) 3.85(11)
a+0 0.445(6) 0.246(8) 0.256(7) 0.241(9) 0.245(7) 0.248(7) 0.247(8) 0.243(11)
a+1 × 103 — 9.1(3) 1.5(1.2) 7.7(2.7) — −1.3(9) −1.3(8) 3.5(11.4)
a+2 × 104 — — 3.2(5) −2.7(2.3) — — −0.3(1.0) −1.9(3.3)
a+3 × 105 — — — 1.5(6) — — — 0.9(2.0)
mB∗(1−) pole(s) [GeV] = 5.325 = 5.325 = 5.325 = 5.325 = 5.325&7.03 = 5.325&6.64 = 5.325&6.46 = 5.325&8.97

a01 × 102 −1.9(1) −0.4(1) −0.5(1) −0.4(1) −0.4(1) −0.5(1) −0.4(1) −0.4(1)
mB∗(0+) pole [GeV] 4.78 5.57 5.36 5.44 5.45 5.43 5.44 5.44

χ2
data [Ndata = 13] 182.19 17.21 13.64 11.65 11.27 11.26 10.95 11.17

χ2
Lattice [NLattice = 5] 41.05 11.53 1.93 0.78 1.57 1.04 1.15 0.92

(χ2
data + χ2

Lattice)/dof 15.95 2.21 1.30 1.13 0.92 0.95 1.01 1.10
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Figure 5.6: Convergence pattern of the PM
1 and PM

2 (upper panels), and TM
1 and PM

1,1

(lower panels) sequences for |Vub| and fB→π
+,0 (0) resulting from our fits in Tables 5.5 and 5.6.

Figure 5.7: Left: Averaged BaBar and Belle B → πℓν differential branching ratio distribution
(gray) [171] as compared to our P2

1,1 result (green) obtained in combined fits as presented
in Table 5.6. Right: Output for the B → π vector (red) and scalar (blue) form factors.



92 5. Vub determination

Table 5.7: Best fit values and uncertainties for the output quantities of our χ2
Bπ fits

Eq. (5.64) obtained from the averaged B → πℓνℓ BaBar and Belle experimental data [171]
in combination with the Lattice-QCD vector form factor simulations [173].

Element of the Padé sequence

Parameter P 0
1 P 1

1 P 2
1 P 3

1

|Vub|×103 2.40(6) 3.56(9) 3.65(11) 3.66(11)
a+0 0.409(6) 0.251(8) 0.256(8) 0.260(11)
a+1 × 103 — 8.3(4) 5.8(1.4) 3.5(3.5)
a+2 × 104 — — 1.2(7) 3.5(3.3)
a+3 × 106 — — — −6.6(9.4)
mB∗(1−) pole [GeV] 5.28 5.31 5.33 5.32

χ2
data [Ndata = 13] 163.01 14.82 11.80 11.84

χ2
Lattice [NLattice = 3] 5.80 0.004 0.16 0.05

(χ2
data + χ2

Lattice)/dof 11.25 1.06 0.92 0.99

of |Vub|, shifts by about 1.2σ upwards with respect to their z-fits including the scalar

form factor, fB→π
+ (0) = 0.139(90) [139], which is obtained with the restriction fB→π

+ (0) =

fB→π
0 (0). In this case, our |Vub| value is found to be in line with the HFLAV result,

|Vub|= 3.70(10)(12)× 10−3 [171], obtained from z-fits with the vector form factor only; our

central value is slightly smaller due to the form adopted in Eq. (5.64).

Fitting with D-Logs

When fitting the vector form factor to experimental and lattice data using the D-Logs,

we use the fit functions given by Eqs. (5.50) and (5.51), corresponding to the diagonal

and subdiagonal sequences, respectively. Similarly, Eqs. (5.62) and (5.63) provide the fit

functions for the scalar form factor. To minimize the number of parameters, and since the

dominant contribution to the differential decay rate comes from the vector form factor, the

D-Log D0
1(q

2) was used to fit the scalar form factor11.

Initially, a fit was performed with all parameters left free to evaluate the behavior of the

approximants as a model-independent method. The results for the coefficients obtained

from this fit are presented in Table 5.8. In this case, the best fit was achieved with D1
1,

yielding a χ2/dof = 1.11, which falls in the middle of the two best fits obtained by the PAs.

In the table, the symbol † indicates a defect in the D-Logs. For instance, in the case of D2
2,

11Other approximants were considered but none of them generated a better fit, even considering the use
of partial D-Logs and PAs.
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the coefficient of the exponential is effectively zero, reducing the approximant to the values

of D1
2. Similarly, the exponents of the second cut in DN

2 are also close to zero, which leads

to the loss of two fit coefficients.

Table 5.8: Best fit values and uncertainties for the output quantities of our χ2
Bπ fits Eq. (5.64)

for D-Log sequences of the type DN
1 and DN

2 .

Element of the DN
1 sequence Element of the DN

2 sequence

Parameter D0
1 D1

1 D1
2 D2

2

|Vub|×103 3.89(7) 3.87(8) 3.86(8) 3.86(8)
f+
0 39.9(2.6) 24(9) 27(13) 27(16)
a+1 — 0.007(5) — 0.00(0.02)†

1st Br-point ∼ mB∗(1−) [GeV] 5.424(10) 5.389(27) 5.401(20) 5.40(5)

c+1 1.501(22) 1.36(10) 1.42(7) 1.42(22)
2nd Br-point [GeV] — — 2(3) 2(4)
c+2 — — 0.05(9)† 0.05(19)†

f0
0 0.979 1.096 1.15 1.15

1st Br-point ∼ mB∗(0+) [GeV] 5.03(4) 5.09(6) 5.11(7) 5.11(7)

c01 0.423(28) 0.46(4) 0.47(5) 0.47(5)

χ2
data [Ndata = 13] 13.07 11.44 11.22 11.22

χ2
Lattice [NLattice = 5] 0.37 0.76 0.73 0.73

(χ2
data + χ2

Lattice)/dof 1.12 1.11 1.20 1.33

Table 5.9: Best fit values and uncertainties for the output quantities of our χ2
Bπ fits Eq. (5.64)

for Partial D-Log sequences of the type PDN
0,1 and PDN

1,1.

Element of the PDN
0,1 sequence Element of the PDN

1,1 sequence

Parameter PD0
0,1 PD1

0,1 PD1
1,1 PD2

1,1

|Vub|×103 3.59(8) 3.80(7) 3.79(7) 3.80(7)
f+
0 20.7(4) 10.2(7) 3(4)× 10−5 04(25)
a+1 — 0.0187(16) — 0.0186(17)
1st Br-point ∼ mB∗(1−) [GeV] = 5.325 = 5.325 = 5.325 = 5.325

c+1 1.287(10) 1.112(19) 1.124(17) 1.112(19)
2nd Br-point [GeV] — — 11.6(7) 083(732)
c+2 — — 2.60(24) 0.1(7)†

f0
0 1.110 1.464 1.524 1.464

1st Br-point ∼ mB∗(0+) [GeV] 5.14(5) 5.24(5) 5.26(5) 5.24(5)

c01 0.422(34) 0.54(4) 0.55(4) 0.54(4)

χ2
data [Ndata = 13] 34.40 10.14 10.09 10.14

χ2
Lattice [NLattice = 5] 10.96 2.25 2.47 2.25

(χ2
data + χ2

Lattice)/dof 3.49 1.03 1.14 1.24

Our best fit,D1
1, predicts a branch cut associated with the mass of B∗(1−) around 5.39

GeV, representing a deviation of 1.3% from the value reported by the PDG [5], with an
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associated exponent of 1.36. In contrast, the resonance associated with the scalar form

factor (mB∗(0+)) is located below the B meson mass, with a multiplicity of 0.46. Although

these results deviate slightly from the values expected based on PDG and FLAG data, they

remain consistent with the approximants of the same order studied in section 5.2.

A notable outcome is the highly precise determination of Vub, which surpasses the precision

of the fit obtained with the PAs. This result remains nearly unchanged across all the D-Logs

considered.

|Vub|Dlogs= 3.87(8)× 10−3 , (5.69)

To refine the fit, we considered using Partial D-Logs, allowing us to introduce the mass

of B∗(1−) at the location of the first cut. We examined the first two approximants of the

sequences PDN
0,1 and PDN

1,1, with their respective coefficients listed in Table 5.9. In this

case, the best fit was obtained for PD1
0,1, yielding a χ2/dof = 1.03.

Once again, we observe "D-Log-defects" in the DN
1,1 sequence of D-Logs. For example,

the partial D-Log PD2
1,1 clearly replicates the branch cuts and their multiplicities from

PD1
0,1 due to c+2 ≃ 0. Additionally, the multiplicity for the cut at m2

B∗(1−) decreases to

1.11, suggesting it may correspond to a pole rather than a cut. The cut associated with the

scalar form factor shifts to a higher position, with its exponent adjusting to 0.5.

However, a significant deviation is observed in the central value of |Vub|, which departs

from our previous results by approximately 1σ, yet aligns more closely with values reported

by FLAG (|Vub|= 3.73(14)× 10−3) [139] and FNAL/MILC (|Vub|= 3.72(7)× 10−3) [148],

with an uncertainty of 1.8%.

|Vub|Partial−Dlogs= 3.80(7)× 10−3 , (5.70)

It is important to note that, in the case of the D-Logs, the kinematic constraint at q2 = 0

does not follow a simple relationship as it does with the PAs. Instead, this condition

introduces a complex interdependence among nearly all the coefficients of the approximant,

resulting in high correlations between them. Consequently, this constraint evolves as the

order of the approximant increases.

Figure 5.8a shows the differential branching ratio distribution, including the fit obtained

with our best approximant (f+(q2) ≈ PD1
0,1(q

2), f0(q2) ≈ D0
1(q

2)) and the corresponding

1σ error bands, alongside the data from the BaBar and Belle collaborations [171]. In

Fig. 5.8b, we present the shapes of the scalar and vector form factors using our preferred fit,

along with synthesized data generated from lattice QCD results presented by FLAG [173] .
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(a) (b)

Figure 5.8: (a) Averaged BaBar and Belle B → πℓν differential branching ratio distribution
(gray) [171] as compared to our PD1

0,1 result (green). (b) Corresponding outputs for the
B → π vector (red) and scalar (blue) form factors.

5.4 Fits to the decay Bs → Kℓνℓ

For the determination of |Vub| from the decay Bs → Kℓνℓ, we follow a strategy similar to

that of the previous section for B → πℓν, using recent experimental information on the

decay spectrum together with the form factors shape information from theory given by the

Lattice-QCD Collaborations.

The RBC/UKQCD Lattice Collaboration provides its results for both the vector and scalar

form factors as synthetic, correlated data at three representative q2 values in Tables VI and

IX of Ref. [147], while the FNAL/MILC Lattice Collaboration presents their as a formula

resulting from fits to a z-expansion parametrization with 8 fit coefficients, which are given in

Table X of Ref. [160] and in our Table 5.2. For our study, we have generated synthetic data of

the latter at four representative values of q2 from their z-fits. In particular, we have generated

4 and 3 data points for the vector and scalar form factors, respectively, which we collect in

Table 5.10. At most, we can generate 7 data points, as it would be inconsistent to generate

more data than the independent coefficients of the z-fit; if more are generated, the resulting

covariance matrix is not invertible. We will next use these results, which can combined with

the binned branching ratio LHCb measurements, BR(Bs → K−µ+νµ) = 0.36(2)(3)× 10−4

for q2 < 7 GeV2 and BR(Bs → K−µ+νµ) = 0.70(5)(6) × 10−4 for q2 > 7 GeV2 [161], to

determine |Vub|.

The form of the χ2 function to be minimized, analogous to that of Eq. (5.64) for B → π,
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Table 5.10: Central values, uncertainties and correlation matrix for the Bs → K vector
and scalar form factors, fBs→K

+,0 (q2), generated at four representative values of q2 from the
FNAL/MILC results [160] and used in our fits in Eqs. (5.71) and (5.74).

Correlation matrix

Form factor fBsK
+ fBsK

0

q2 [GeV2] Central values 17 19 21 23 17 19 21

fBsK
+

17 0.9268(428) 1 0.9572 0.7571 0.3615 0.6943 0.6749 0.5862
19 1.2460(441) 1 0.9096 0.5890 0.5778 0.6214 0.6071
21 1.7530(516) 1 0.8653 0.3985 0.5057 0.5726
23 2.6593(820) 1 0.1885 0.3161 0.4235

fBsK
0

17 0.4219(196) 1 0.9499 0.7716
19 0.4991(153) 1 0.9267
21 0.5974(136) 1

is given by:

χ2
BsK = N

(
χ2
LHCb

NLHCb
+

χ2
RBC/UKQCD

NRBC/UKQCD
+

χ2
FNAL/MILC

NFNAL/MILC

)
, (5.71)

where NLHCb = 2 is the number of experimental points, while NRBC/UKQCD = 6 and

NFNAL/MILC = 7 are the number of the RBC/UKQCD and FNAL/MILC Lattice points,

respectively, and N = NLHCb +NRBC/UKQCD +NFNAL/MILC. The first term in Eq. (5.71),

χ2
LHCb =

2∑
i=1

(BRexp
i −BRth

i )2/σ2
BRexp

i
, (5.72)

contains the information of the LHCb experimental measurements of the branching ratio in

the (uncorrelated) low and high q2 regions, BRexp
i is the measured branching ratio and σexp

BRi

the corresponding uncertainty in the i-th bin, while the second and third terms include the

theoretical information on the form factors from Lattice through a χ2 function of the form:

χ2
Lattice =

NLattice∑
i,j=1

(
fLattice
+,0 (q2)− f+,0(q

2)
)
i

(
CovLatticeij

)−1 (
fLattice
+,0 (q2)− f+,0(q

2)
)
j
. (5.73)

Fitting with PAs

Table 5.11 summarizes the best fit values for |Vub| and the form factor parameters for

the various Padé sequences. These fits have been performed using a P 0
1 approximant

for the scalar form factor and taking the fBs→K
+ (0) = fBs→K

0 (0) restriction into account
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Table 5.11: Best fit values and uncertainties for the output quantities of our χ2
BsK

fits
Eq. (5.71) for various Padé sequences.

Padé element

Parameter P 3
1 P 2

2 T3
1 P3

1,1

|Vub|×103 3.58(8) 3.60(9) 3.58(8) 3.58(9)
a+0 0.214(5) 0.214(5) 0.214(5) 0.214(5)
a+1 × 103 7.02(40) 1.12(65) 7.02(40) 6.70(5.40)
a+2 × 104 −0.55(23) 0.16(20) −0.50(14) −0.48(46)
a+3 × 105 1.12(14) — 1.10(13) 1.04(96)
mB∗(1−) pole(s) [GeV] 5.32 5.33&6.83 = 5.325 = 5.325&29.5

mB∗(0+) pole [GeV] 5.70 5.69 5.70 5.70

χ2
LHCb [NLHCb = 2] 0.14 0.20 0.14 0.15

χ2
RBC/UKQCD [NRBC/UKQCD = 6] 3.25 3.17 3.21 3.21

χ2
FNAL/MILC [NFNAL/MILC = 7] 4.89 5.00 4.95 4.94

(χ2
LHCb + χ2

RBC/UKQCD + χ2
FNAL/MILC)/dof 1.03 1.05 0.92 1.03

(cf. Eq. (5.4)), thus having the mB∗(0+) pole as the only free parameter in the scalar sector.

We have also tried P 1
1 and P 2

1 approximants for the scalar form factors and found that the

fit parameters remain stable. The values of the χ2 functions reported in the tables imply

a very good quality of the fits. For the single pole Padé sequences PM
1 and TM

1 , we find

the fits stabilize for M = 3 and the obtained |Vub| value, |Vub|= 3.58(8) × 10−3, has an

uncertainty of 2.2%. For the sequences with two poles, we reach P 2
2 and P3

1,1 and obtain

|Vub|= 3.60(9)× 10−3 and |Vub|= 3.58(9)× 10−3, respectively, which is a 2.5% error. As

seen, the values for |Vub| obtained with the various approximants are almost identical. In

terms of the quantity (χ2
LHCb+χ2

RBC/UKQCD+χ2
FNAL/MILC)/dof, the approximants P 3

1 and

P3
1,1 yield the best fits. Note that the second pole of the approximant P3

1,1 is placed far away

from the origin and it thus behaves as a P 3
1 . These values for |Vub| represent a shift of about

(1.8− 2)σ downwards with respect to the value |Vub|= 3.86(11)× 10−3 determined from the

decay B → πℓνℓ (cf. Eq. (5.68)). Despite the differing results, we note that an important

aspect to improve the compatibility results for |Vub| is the binned measurement of the

Bs → Kℓνℓ differential branching ratio distribution, and most importantly its low-energy

region, which fixes the q2-dependence of the form factors at low-energies. In this sense, the

experimental information is presently limited to the two LHCb experimental points, which

are rather thick for an accurate extraction of the functional behavior of the form factors,

specially at low-energies. Therefore, new and more precise measurements of the decay rate

with a thinner resolution of the q2 bins will definitely allow obtain more conclusive results

from the Bs → Kℓνℓ decay.
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Figure 5.9: Left: LHCb Bs → K−µ+νµ differential branching ratio distribution (gray) [161]
as compared to our best fit result (purple) obtained in combined fits as presented in
Table 5.11; the two LHCb data points are placed in the middle of each bin and have been
divided by the bin width. Right: Output for the Bs → K vector (brown) and scalar
(magenta) form factors compared to the Lattice-QCD data of Ref. [147] and Table 5.10.

A graphical account of our fit with the P3
1,1 approximant is presented in Fig. 5.9 for the

differential branching ratio distribution (left plot) and the output for the vector and scalar

form factors (right plot), while the resulting parameters and correlation matrix of this fit is

given Table C.3 of Appendix C.

Fitting with D-Logs

We present the best fits using D-Logs, including Partial D-Logs, in Table 5.12. As it

happened with the PAs, the limited availability of only two experimental points within the

kinematic range of Bs → Kµν decay restricts the determination of a reliable value for |Vub|.
As shown in the table, the values do not stabilize across the lower-order D-Logs in any

sequence, and for the partial D-Logs, the uncertainty is notably large (reaching 33% in the

case of PD0
0,1). Other coefficients do not exhibit a consistent pattern either, although the

branch cut positions oscillate around values that align more accurately with the B-meson

resonances.

In particular, the best fit was obtained with the D1
1 approximant for the vector form factor,

while the scalar form factor was best fitted using the D1
0 approximant (χ2/dof = 1.15).

This fit provided a prediction for mB∗(0+) of approximately 5.74GeV, differing by only

0.5% from the theoretical prediction [174], with a multiplicity close to 1, indicating pole-like

behavior. The predicted mass for B∗(1−) departs 0.9% from the value provided by the

PDG [5]. The value of Vub represents a 3σ deviation downward from the value determined

by the B → π decay (cf. Eq. (5.70)).



5.5. Combined fits to the decays B → πℓνℓ and Bs → Kℓνℓ 99

Table 5.12: Best fit values and uncertainties for the output quantities of our χ2
BsK

fits
Eq. (5.71) for various D-Log sequences.

D-Log approximant

Parameter D0
1 D1

1 PD0
0,1 PD1

0,1

|Vub|×103 3.19(7) 3.56(8) 2.49(83) 4.24(45)
f+
0 40.51(34) 10.96(29) 16.38(9) 4.37(8)
a+1 — 0.027(5) — 0.049(12)
1st Br-point (mB∗(1−)) [GeV] 5.42(7) 5.37(12) = 5.325 = 5.325

c+1 1.49(12) 1.18(10) 1.14(2) 1.00(2)

1st Br-point ∼ mB∗(0+) [GeV] 5.33(5) 5.74(6) 5.37(5) 6.79(84)

c01 0.62(6) 1.04(14) 0.40(23) 2.29(45)

χ2
LHCb [NLHCb = 2] 1.03 0.37 7.77 6.46

χ2
RBC/UKQCD [NRBC/UKQCD = 6] 6.91 4.31 58.14 2.31

χ2
FNAL/MILC [NFNAL/MILC = 7] 11.22 4.57 149.9 20.58

(χ2
LHCb + χ2

RBC/UKQCD + χ2
FNAL/MILC)/dof 2.12 1.15 21.58 3.26

5.5 Combined fits to the decays B → πℓνℓ and Bs → Kℓνℓ

In the previous Sections 5.3 and 5.4 we have extracted |Vub| and the corresponding

form factor parameters from individual fits to the decays B → πℓνℓ and Bs → K−µ+νµ

experimental data combined with the Lattice-QCD information on the corresponding vector

and scalar form factors, using both PAs and D-Logs. In this section, we explore the potential

of performing simultaneous fits to all experimental and theoretical information on both

exclusive decays to determine |Vub|. For that, we proceed in a similar fashion as in the

previous cases, Eqs. (5.64) and (5.71), and minimize the following χ2-function:

χ2 = N

(
χ2
BaBar+Belle

NBaBar+Belle
+

χ2
FLAG

NFLAG
+

χ2
LHCb

NLHCb
+

χ2
RBC/UKQCD

NRBC/UKQCD
+

χ2
FNAL/MILC

NFNAL/MILC

)
, (5.74)

where the first two terms contain the information on the decay B → πℓνℓ channel, while the

three other include that of the Bs → K−µ+νµ channel, with NBaBar+Belle = 13, NFLAG =

5, NLHCb = 2, NRBC/UKQCD = 6, NFNAL/MILC = 7 and N = NBaBar+Belle + NFLAG +

NLHCb +NRBC/UKQCD +NFNAL/MILC. This definition equally weight each data set and

prevents sets with a smaller data points, such as the Bs → Kℓνℓ spectra, from being

dominated by sets with a larger data points, such as the B → πℓνℓ spectra.
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Fitting with PAs

As in the preceding sections, we have tried various Padé sequences. Here, however, we

only show our results for |Vub| and the form factor parameters resulting from the partial

Padé sequence PM
1,1, which yielded the best fit results in our previous individual analyses.

We reach M = 2 and M = 3 for the B → π and Bs → K vector form factors, respectively.

The resulting fit parameters and the correlation matrix are presented in Table 5.1312,

which have been obtained taking into account the restrictions fB→π
+ (0) = fB→π

0 (0) and

fBs→K
+ (0) = fBs→K

0 (0) simultaneously. The value for the quantity (χ2
BaBar+Belle + χ2

FLAG +

χ2
LHCb + χ2

RBC/UKQCD + χ2
FNAL/MILC)/dof= 1.08 indicates a good quality of the fit. The

resulting value for |Vub| from the combined analysis is found to be:

|Vub|PAs-comb= 3.68(5)× 10−3 , (5.75)

which is only a 1.4% error.

We would like to note, on the one hand, that our |Vub| result in Eq. (5.75) corresponds

to the most precise determination of |Vub| to date, and that this value is shifted about

1.4σ downwards with respect to |Vub|= 3.86(11) × 10−3 extracted from B → πℓνℓ alone

(cf. Table 5.5), and about 1σ upwards with respect to |Vub|= 3.58(9)× 10−3 obtained from

the individual analysis of the Bs → Kℓνℓ channel (cf. Table 5.11). On the other hand, our

determination is far more precise than both the leptonic B → τντ , |Vub|= 4.01(9)(63)×10−3

[139], and the inclusive, |Vub|= 4.25(12)+15
−14(23)× 10−3 [140], determinations, and that the

tension between our |Vub| result in Eq. (5.75) and the latter is of about 1.8σ.13

The results of the combined fit are plotted in Fig. 5.10 for the differential B → πℓνℓ (left

plot) and Bs → K−µ+νµ (right plot) branching ratio distributions, and in Fig. 5.11 for the

corresponding vector and scalar form factors.

Fitting with D-Logs

For the final stage of the analysis, we explored various D-Log sequences, including partial

D-Logs and D-Logs with N = 3, applied independently to each channel. However, we present

only the results for |Vub| and the form factor parameters obtained from the approximant

f+/0(q
2) ≈ D1

1(q
2)+/0, as this yielded the best fit across all combined analyses. This choice

results in 13 fitting parameters, which matches the number of parameters used in the PAs.

12In the table, we use ci to denote the Padé approximant fit parameters of the Bs → K form factors.
133.4σ if the inclusive determination |Vub|= 4.32(12)+12

−13 × 10−3 [175] is considered instead, and 1.5σ with
respect to the preliminary value |Vub|= 4.06(9)(16)(15)× 10−3 in [176].
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Table 5.13: Best fit values using PAs as fitting functions, uncertainties and correlation
matrix for the output quantities of our χ2 fits Eq. (5.74) obtained from a combined fit to the
averaged B → πℓνℓ BaBar and Belle [171] and the Bs → K−µ+νµ LHCb [161] experimental
data in combination with the Lattice-QCD B → π [139] and Bs → K [147, 160] vector and
scalar form factors simulations.

Parameter Central value Correlation matrix

|Vub|×103 3.68(5) 1 −0.404 0.086 0.221 −0.185 0.082 −0.082 −0.610 −0.239 0.138 −0.150 0.203 −0.386
a+0 0.255(5) 1 −0.432 0.500 −0.405 −0.745 −0.564 0.246 0.096 −0.056 0.061 −0.082 0.156
a+1 × 103 −1.36(60) 1 0.055 −0.331 0.186 0.048 −0.053 −0.021 0.012 −0.013 0.018 −0.033
a+2 × 104 −0.66(68) 1 −0.957 −0.750 −0.821 −0.135 −0.053 0.031 −0.033 0.045 −0.085
mB∗(1−) pole(s) [GeV] = 5.325&6.24 1 0.685 0.775 0.113 0.044 −0.026 0.028 −0.038 0.071

a01 × 102 −0.46(6) 1 0.962 −0.050 −0.020 0.011 −0.012 0.017 −0.032
mB∗(0+) pole(s) [GeV] 5.45 1 0.050 0.020 −0.011 0.012 −0.017 0.032

c+0 0.211(3) 1 −0.052 0.095 −0.046 0.030 0.765
c+1 × 103 4.96(2.32) 1 −0.975 0.968 −0.992 −0.121
c+2 × 104 −0.37(26) 1 −0.994 0.989 0.185
c+3 × 105 0.81(43) 1 −0.990 −0.115
mB∗(1−) pole(s) [GeV] = 5.325&12.13 1 0.088

mB∗(0+) pole(s) [GeV] 5.69 1

Figure 5.10: Averaged BaBar and Belle B → πℓν (left) [171] and LHCb Bs → K−µ+νµ
(right) [161] differential branching ratio distributions (gray) as compared to our best fit
result using PAs (orange) obtained in combined fits to both decays as presented in Table 5.13.
The two LHCb data points are placed in the middle of each bin and have been divided by
the bin width.
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Figure 5.11: Lattice-QCD data for the B → π (left plot) and Bs → K (right plot) vector
and scalar form factors compared to our best fit results using PAs obtained in combined
fits as presented in Table 5.13.

Table 5.14: Best fit values using D-Log fitting functions, uncertainties and correlation
matrix for the output quantities of our χ2 fits Eq. (5.74) obtained from a combined fit to the
averaged B → πℓνℓ BaBar and Belle [171] and the Bs → K−ℓ+νℓ LHCb [161] experimental
data in combination with the Lattice-QCD B → π [139] and Bs → K [147, 160] vector and
scalar form factors simulations.

Parameter Central value Correlation matrix

|Vub|×103 3.72(6) 1.00 0.982 -0.981 0.983 0.983 -0.701 0.764 -0.658 -0.503 0.831 0.928 0.986 0.991
f+
0 19.5(5.0) 1.00 -1.00 1.00 1.00 -0.560 0.634 -0.506 -0.337 0.712 0.842 1.00 0.999
a+1 0.0092(36) 1.000 -1.00 -1.00 0.555 -0.630 0.501 0.332 -0.708 -0.839 -1.00 -0.998
(b+1 )

0.5 ∼ mB∗(1−) 5.37(2) 1.000 1.00 -0.565 0.639 -0.511 -0.343 0.716 0.845 1.00 0.999
c+1 1.29(7) 1.000 -0.563 0.637 -0.509 -0.341 0.714 0.844 1.00 0.999
(b01)

0.5 ∼ mB∗(0+) 5.09(5) 1.000 0.999 -0.577 0.650 -0.524 -0.356 0.726 0.853
c01 0.44(3) 1.000 -0.601 0.673 -0.550 -0.385 0.747 0.869
f̃+
0 7.77(63) 1.000 -0.996 0.985 0.969 -0.963 -0.907
ã+1 0.035(2) 1.00 -0.973 -0.942 0.976 0.939
(b̃+1 )

0.5 ∼ mB∗(1−) 5.355(3) 1.000 0.968 -0.965 -0.891
c̃+1 1.11(2) 1.000 -0.882 -0.779
(b̃01)

0.5 ∼ mB∗(0+) 6.00(7) 1.000 0.978
c̃01 1.35(8) 1.000

The resulting fit parameters and the correlation matrix are presented in Table 5.1414. It is

important to note that significant correlations arise between the coefficients for each channel,

as the constraints f+
B→π(0) = f0

B→π(0) and f+
Bs→K(0) = f0

Bs→K(0) create interdependencies

among their parameters. For instance, in the case of D1
1, the constraint takes the form:

f0
0 = f+

0 (b01)
c01(b+1 )

−c+1 .

However, the value of (χ2
BaBar+Belle+χ2

FLAG+χ2
LHCb+χ2

RBC/UKQCD+χ2
FNAL/MILC)/dof =

1.36 indicates that quality of the fit is not the best comparing with individuals fitting and

14In the table, f̃ , ã, b̃, and c̃ denote the coefficients of the D-Logs used to fit the Bs → K form factors.
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Figure 5.12: Averaged BaBar and Belle B → πℓν (left) [171] and LHCb Bs → K−µ+νµ
(right) [161] differential branching ratio distributions (gray) as compared to our best fit
result using D-logs (orange) obtained in combined fits to both decays as presented in
Table 5.14. The two LHCb data points are placed in the middle of each bin and have been
divided by the bin width.

the combined fit with PAs. The resulting value for |Vub| from this combined analysis is:

|Vub|Dlogs-comb= 3.72(6)× 10−3 , (5.76)

this value has an uncertainty of 1.6%, slightly higher than the one obtained by PAs, but

still very precise. This value consistent with |Vub| extracted from B → πℓνℓ fitting with

D-Logs (shifted 1σ downwards, cf. Table 5.9), and is shifted about 2σ upwards with respect

to |Vub|= 3.56(8)× 10−3 obtained from the individual analysis of the Bs → Kℓνℓ channel

(cf.Table 5.12).

Corresponding results of the combined fit using D-Logs are plotted in Fig. 5.12 where

the differential branching ratio distributions for B → πℓνℓ is shown in the left plot and

Bs → K−µ+νµ in the right plot. Additionally, corresponding outputs for the vector and

scalar form factors in both channels are shown in Fig. 5.13.

Concerning the form factor values at q2 = 0, we obtain:

fBπ
+,0(0) = 0.255(5) , fBsK

+,0 (0) = 0.211(3) , for PAs ,

fBπ
+,0(0) = 0.255(92) , fBsK

+,0 (0) = 0.185(18) , for D-Logs ,

which can be compared with the output values: fBπ
+,0(0) = 0.253(11) [148] and fBsK

+,0 (0) =

0.135(50) [160] from the FNAL/MILC Lattice Collaborations; fBπ
+,0(0) = 0.26+0.04

−0.03 [177]

and fBsK
+,0 (0) = 0.30+0.04

−0.03 [178], fBπ
+,0(0) = 0.301(23) and fBsK

+,0 (0) = 0.336(23) [179], and

fBπ
+ (0) = 0.252+0.019

−0.028 [145] from light-cone sum rules; fBπ
+,0(0) = fBsK

+,0 (0) = 0.26+0.04
−0.03 ± 0.02
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Figure 5.13: Lattice-QCD data for the B → π (left plot) and Bs → K (right plot) vector
and scalar form factors compared to our best fit results obtained using D-Logs in combined
fits as presented in Table 5.14.

from perturbative QCD [180]; and fBsK
+,0 (0) = 0.284(14) from relativistic quark model [181].

The results given in Tables 5.13 and 5.14 correspond, to the best of our knowledge, to

the first correlated results between the B → π and Bs → K form factors, which can serve

as guidance for those Lattice Collaborations that are planning making available the full

theoretical correlation between form factors for different process in their final results [160].

5.6 Phenomenological Applications

For the subsequent analysis, we use the form factor results obtained from the combined fit

with PAs, as they provide the most precise determination of |Vub|. In Fig. 5.14 we present

results for the quantity:

Ri(q
2) =

fBsK
i (q2)

fBπ
i (q2)

− 1 , (5.77)

with i = +, 0, which provides a measure of SU(3)-breaking considering that in the SU(3)

limit, i.e. md = ms, the B → π and Bs → K form factors should be identical. As seen,

while the results for R+(q
2) (cyan) and R0(q

2) (purple) are similar at low energies (q2 ≲ 5

GeV2), R0(q
2) is larger than R+(q

2) at higher energies, and the deviations from unity are

consistent with the simple counting (ms −md)/ΛQCD ∼ 20%.

As a benefit of our results of Table 5.13, we provide calculations for different phenomeno-

logical observables such as total decay rates, ratio of τ -to-µ differential decay rates or the

forward-backward asymmetry, and its normalized version.

Integrating the differential decay rates (cf. Eq. (5.5)) over the kinematically-allowed q2
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Figure 5.14: SU(3)-breaking ratios R+(q
2) (cyan) and R0(q

2) (purple) (cf. Eq. (5.77)) using
our determinations of the B → π and Bs → K vector and scalar form factors from Table
5.13.

ranges, and dividing by |Vub|2, we obtain:

Γ(B → πµνµ)/|Vub|2 = 6.90(16) ps−1 , (5.78)

Γ(B → πτντ )/|Vub|2 = 4.55(9) ps−1 , (5.79)

Γ(Bs → Kµνµ)/|Vub|2 = 5.31(13) ps−1 , (5.80)

Γ(Bs → Kτντ )/|Vub|2 = 3.70(8) ps−1 , (5.81)

with errors of only about 2%.

The τ -to-µ q2-dependent ratio of differential decay rates

Rτ/µ
π(K)(q

2) =
dΓ(B(s) → π(K)τντ )/dq

2

dΓ(B(s) → π(K)µνµ)/dq2
, (5.82)

and its integrated form

R
τ/µ
π(K) =

∫ (mB(s)
−mπ(K))

2

m2
τ

dq2dΓ(B(s) → π(K)τντ )/dq
2∫ (mB(s)

−mπ(K))
2

m2
µ

dq2dΓ(B(s) → π(K)µνµ)/dq2
, (5.83)

can be used for precise Standard Model test that is independent of |Vub|. Fig. 5.15 shows

our predictions for Eq. (5.82) using our B → πℓνℓ and Bs → Kµνµ form factor outputs
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Figure 5.15: Standard Model ratio of differential τ -to-µ decay rates Eq. (5.82) using our
determinations of the B → π and Bs → K vector and scalar form factors from Table 5.13.

from Table 5.13, while our numerical predictions for Eq. (5.83) are found to be:

Rτ/µ
π = 0.660(5) , (5.84)

R
τ/µ
K = 0.697(3) , (5.85)

which are only 1% error.

These values are found to be in agreement with, but more precise than, Rτ/µ
π = 0.69(19)

and R
τ/µ
K = 0.77(12) from Ref. [147], and R

τ/µ
K = 0.77(6) from Ref. [160]15.

Concerning the forward-backward asymmetry, AFB , it is a quantity sensitive to the mass

of the final-state charged lepton and its theoretical expression is given by:

A
B(s)→π(K)ℓνℓ
FB (q2) ≡

(∫ 1

0
−
∫ 0

−1

)
d cos θℓ

d2Γ(B(s) → π(K)ℓνℓ)

dq2d cos θℓ

=
G2

F |Vub|2

32π3mB(s)

(
1−

m2
ℓ

q2

)2

|p⃗π(K)|2

×
m2

ℓ

q2
(m2

B(s)
−m2

π(K))Re[f+(q
2)f0)(q

2)] , (5.86)

where θℓ is the angle between the charged-lepton and the B(s)-meson momenta in the q2

15In [160], the value R
τ/µ
K = 0.836(34) is reported, which corresponds to taking m2

τ as the lower limit of
integration in the denominator of Eq. (5.83).
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Figure 5.16: Predictions for the forward-backward asymmetry Eq. (5.86) for B → πµν and
Bs → Kµν (left), and B → πτν and Bs → Kτν (right), using our fit results from Table
5.13.

rest frame. In Fig.5.16, we show our predictions for AFB using our best fit results taken

from Table 5.13.

Integrating over the corresponding kinematic q2 ranges, and diving by |Vub|2, we obtain:

∫ (mB−mπ)2

m2
µ

dq2AB→πµν
FB (q2)/|Vub|2= 0.034(1) ps−1 , (5.87)

∫ (mB−mπ)2

m2
τ

dq2AB→πτν
FB (q2)/|Vub|2= 1.16(3) ps−1 , (5.88)∫ (mBs−mK)2

m2
µ

dq2ABs→Kµν
FB (q2)/|Vub|2= 0.0255(6) ps−1 ,

(5.89)∫ (mBs−mK)2

m2
τ

dq2ABs→Kτν
FB (q2)/|Vub|2= 0.99(2) ps−1 , (5.90)

with errors of about 3%. While these values are in general agreement with, but more precise

than, those in Ref. [147], our results show a difference of about 1.5σ with [160]. Finally,

the normalized forward-backward asymmetry,

Ā
B(s)→π(K)ℓνℓ
FB (q2) ≡

∫ (m2
B(s)

−m2
π(K)

)2

m2
ℓ

dq2A
B(s)→π(K)ℓνℓ
FB (q2)∫ (m2

B(s)
−m2

π(K)
)2

m2
ℓ

dq2dΓ(B(s) → π(K)ℓνℓ)/dq2
,

(5.91)

is an interesting observable as it is independent of |Vub|. Our predictions are show in
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Figure 5.17: Predictions for the normalized forward-backward asymmetry Eq. (5.91) for
B → πµν and Bs → Kµν (left), and B → πτν and Bs → Kτν (right), using our fit results
from Table 5.13.

Fig. 5.17, whereas integrating Eq. (5.91) over the allowed q2 ranges we find:

ĀB→πµν
FB = 0.0049(1) , (5.92)

ĀB→πτν
FB = 0.255(1) , (5.93)

ĀBs→Kµν
FB = 0.0048(1) , (5.94)

ĀBs→Kτν
FB = 0.2684(9) , (5.95)

with errors of about 2% and 1% for µ and τ , respectively. While these values are found to

be in agreement with Ref. [147], our results are more precise. With respect to [160], our

results differ by about ∼ 1.6− 2.1σ for ĀBs→Kµν
FB and ĀBs→Kτν

FB , respectively.

5.7 Summary & highlights

In this chapter we have explored the role of the decay Bs → Kℓνℓ in complementing

the traditional channel B → πℓνℓ in the determination of the CKM element |Vub|. The

motivation of this study was the first reported measurement of the branching ratio of the

decay Bs → K−µ+νµ by the LHCb Collaboration [161], making this analysis of timely

interest. Our analysis has been based on two principal techniques; the approximation

method of Padé approximants and D-Log Padé approximants to the corresponding form

factors, and proceeded in three steps. First, we used the most precise measurements of

the differential B → πℓνℓ branching ratio distribution given by BaBar and Belle, along

with the Lattice-QCD calculations of the B → π vector and scalar form factors, to extract

|Vub| from a combined fit which makes use of both information sets in a democratic way.
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As a result of this exercise we have obtained |Vub|= 3.86(11) × 10−3 (cf. Eq. (5.68)) for

PAs and |Vub|= 3.80(7) × 10−3 for D-Logs (cf. Eq. (5.70)). We note that our result for

|Vub| differs about 1.35σ − 2.1σ with the determination from inclusive decays B → Xuℓνℓ,

|Vub|= 4.25(12)+15
−14(23)× 10−3 [140],16 confirming the trend of obtaining higher values of

|Vub| from recent exclusive B → πℓνℓ determinations [182,183]. Second, we have determined

|Vub| from the decay Bs → Kℓνℓ performing combined fits to the experimental LHCb

data and Lattice input on the Bs → K form factors. Our fits yield |Vub|= 3.58(9)× 10−3

using PAs and |Vub|= 3.56(8)× 10−3 using D-Logs. Also was determined their form factor

parameters and their correlation matrix given in Appendix C. This is a relevant result, as

the central |Vub| value from Bs → Kℓνℓ suffers a downwards shift of about 1.9σ in the case

of PAs and 3σ in the case of D-Logs with respect to the one obtained from B → πℓνℓ, thus

increasing the difference with respect to the determination from inclusive decays to 2.1σ.

We traced back these differences to the impact of existing experimental data used in each

channel: Lattice input in form factors in both channels tend to yield values for |Vub| around

3.6×10−3 while experimental data seem to prefer higher values of around |Vub|= 3.9×10−3.

Since experimental data for the Bs → K is scarce, that channel is dominated by Lattice

input thus confronting the B → π one. Third, and last, we have performed a simultaneous

analysis to all available experimental and Lattice-QCD information on both B → πℓνℓ and

Bs → K−µ+νµ decays. The resulting fit yields |Vub|PAs= 3.68(5)× 10−3, which is a 1.4%

error and differs by only 1.8σ from the inclusive value, and |Vub|DLogs= 3.72(6)× 10−3 with

an uncertainty of 1.6% and a deviation of 2σ from the inclusive value.

The process of performing a combined fit to both decays also tests for their compatibility,

and the result is a |Vub| that stays ∼ 1σ (PAs) or even ∼ 2σ (D-Logs) away from the |Vub|
results extracted from the individual decay modes. In this sense, more precise measurements

of the differential Bs → Kℓνℓ decay distribution with a finer resolution of the q2 bins will

help achieve more conclusive results. Our value is presented and compared with other

determinations using different methods and fitted data sets in Fig. 5.18. For this comparison

we take the most precise determination for |Vub| between PAs and D-Logs for each stage.

As seen, our value (|Vub|PAs-comb) is the most precise to date. The corresponding coefficients

for this PAs for the B → π and Bs → K form factor are given in Table 5.13 together

with their correlation matrix. The latter represents, to the best of our knowledge, the first

correlated results for these form factors. As a benefit of our analysis, in Section 5.6 we have

calculated different phenomenological observables such as total decay rates, ratio of τ -to-µ

differential decay rates or the forward-backward asymmetry, and its normalized version,
161.2σ with respect to the preliminary value |Vub|= 4.06(9)(16)(15)× 10−3 [176].
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Figure 5.18: Status of |Vub| determinations from exclusive B → πℓνℓ decays (red squares)
including Biswas et. al. [182], Leljak et. al. [183], FLAG 2019 [139], HFLAV 2019 [175],
Dingfelder et. al. [184], FNAL/MILC 2015 [148], RBC/UKQCD [147], Imsong et. al. [185],
Padé approximants [70] and this work (black circle) Eq. (5.70), from Bs → Kµνµ (this
work using D-Logs, purple circle), from a combination of B → πℓνℓ and Bs → Kµνµ
decays (this work using PAs, green circle) Eq. (5.75), from B → ωℓνℓ (upward blue triangle)
and B → ρℓνℓ (downward orange triangle) [186], and from Λb → pµνµ (gray diamond)
LHCb [163].
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with an accuracy of few percentage.

Looking ahead, improvements in both experimental and theoretical fronts are anticipated.

Experiments like Belle-II are expected to gather more precise data on Bs → K decays,

while future lattice QCD calculations aim to reduce uncertainties in the form factors. These

advancements will significantly enhance the precision of exclusive |Vub| determinations,

providing a clearer picture of this fundamental parameter in the Standard Model.
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Chapter 6

Findings and Conclusions

We have observed that both Padé approximants and D-Log Padé approximants exhibit

rapid convergence in their canonical constructions, clearly adhering to the convergence

patterns outlined in Chapter 2. Additionally, the convergence range for both methods

extends beyond the radius of convergence of the Taylor expansion, at least in the cases

analyzed. Identifying whether the function being approximated is meromorphic or of

Stieltjes type provides valuable guidance in selecting the appropriate sequences for optimal

approximation. While both methods display similar convergence behavior in the initial

approximants, PAs usually offer a better approximation at the beginning of the sequences.

However, at higher orders, the D-Log Padé approximants generally yield superior accuracy,

as illustrated in Fig. 4.3 and Table 5.3.

Furthermore, when used as a fitting tool, both PAs and D-Logs demonstrate their

effectiveness, offering valuable advantages. For instance, they can easily incorporate the

unitarity of the function and help identify potential outliers in the data. In the case of

Stieltjes functions, these approximants exhibit a convergence pattern with two sequences

—one converging from above and the other from below— allowing for the estimation of

a systematic error, a feature absent in many other parameterisations. Both methods are

model-independent, providing reliable approximations, yet they retain the flexibility to

incorporate prior knowledge, thereby reducing the number of parameters required in the

fitting process. In applications such as the determination of Vub and the anomalous magnetic

moment of the muon (aHVP,LO
µ ), both approaches achieved uncertainties that have not been

matched by other methods to date.
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In Chapter 4 we showed that the systematic use of PAs and D-Logs as model-independent

fitting functions to the future MUonE data can provide a powerful framework for the

extraction of the anomalous magnetic moment of the muon (aHVP,LO
µ ). Our explorations

show that this method is superior to the use of a single, fixed, fitting function, which may

carry a model dependence and an associated systematic uncertainty that would be difficult

to estimate on the basis of real experimental data. The nicest feature of the method is the

fact that we expect different sequences to bound the true value, which renders the average of

results from these two sequences superior to the estimate arising from a single approximant.

This bounding property is guaranteed by theorems for approximants canonically built to

Stieljtes functions, i.e. to the their Taylor series. In the case where they are employed as

fitting functions, we found strong evidence that this convergence pattern is still respected

for the central values obtained for each approximant. Therefore, the PAs and D-Logs

provide the basis for a model-independent and systematic method, relying only on the

analytical structure of the two-point correlator underlying aHVP,LO
µ , that is able to yield a

result with a competitive, although conservative, uncertainty.

In Chapter 5, we investigated the role of the decay Bs → Kµνµ as a complementary

process to the more traditional B → πℓνℓ decay in determining the CKM matrix element

|Vub|. Motivated by recent experimental measurements from the LHCb Collaboration, our

analysis employed two main techniques —Padé and D-Log Padé approximants— applied

to the form factors of both decay channels. Our results from B → π yielded values of

|Vub| around 3.86(11)× 10−3(3.80(7)× 10−3) for PAs(D-Logs), in slight tension with the

inclusive decay determination. In contrast, the Bs → K decay produced lower values,

around 3.58(9)× 10−3(3.56(8)× 10−3) using PAs(D-Logs), with significant shifts of up to

3σ compared to the B → π results.

The combined fit of both decays, utilizing all available experimental and lattice QCD

input, provided a more precise determination of |Vub| using PAs with |Vub|= 3.68(5)× 10−3,

with an impressive uncertainty of 1.4%. The final results differed only modestly (1.2σ -

1.8σ) from the inclusive decay value, reducing the tension observed in individual decay

mode analyses. However, the discrepancy between Bs → K and B → π results suggests

that more precise data, particularly in Bs → K decays, is needed to resolve this issue fully.

Looking ahead, improvements in both experimental and theoretical fronts are anticipated.

Experiments like Belle-II are expected to gather more precise data on Bs → K decays,

while future lattice QCD calculations aim to reduce uncertainties in the form factors. These

advancements will significantly enhance the precision of exclusive |Vub| determinations,

providing a clearer picture of this fundamental parameter in the Standard Model.



Appendix A

Notation

Here we are going to introduce some notation. We will adopt the unit system that is

most convenient for high energy physics, where the speed of light provides the natural scale

and quantum effects are not necessarily small, it is:

c = 1 = h̄.

We write four-vectors with upper and lower indices, where the metric tensor gµν is defined

by:

gµν = diag[1,−1,−1,−1],

which it can be used to raise or lower indices, as:

xµ = (t, x⃗) , xµ = gµνx
ν = (t,−x⃗)

with the usual convention of summing over repeated indices. The antisymmetric tensor

ϵµνρσ is taken as:

ϵ0123 = −ϵ0123 = 1.

Therefore, we have for time-like quantities q2 > 0, whereas for space-like quantities,

q2 < 0, which is often noted in capital letters as Q2 ≡ −q2 > 0.

The slashed notation, γµkνgµν ≡ /k where γµ is the Dirac matrix with the following
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representation:

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)

where σi are the Pauli matrices. In addition we can define;

γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
Finally we have to defined the GellMann matrices as;

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0



λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0



λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2





Appendix B

Fitting functions for PAs and D-Logs

In this appendix we give the explicit expressions of the approximants used in this work

as a function of x and in terms of the unknown Taylor coefficients an of ∆αhad.

We start with the sequence PN
N , where the first PA is P 1

1 . As seen in Sec. 2.1, the fitting

function is

P 1
1 (x) = −

b1m
2
µ x

2

1− x+ b2m2
µ x

2
, (B.1)

with b1 = a1 and b2 = a2/a1. The constraints employed are b1 < 0 and b2 > 1. The next

approximant in this sequence is P 2
2 , whose final expression is

P 2
2 (x) =

b1m
2
µ x

2 (x− 1) + (b2 − b1b3)m
4
µ x

4

(1− x)2 + b3m2
µ x

2 (1− x) + b4m4
µ x

4
, (B.2)

where the fit parameters are now

b1 = a1, b2 = a2, b3 =
a2a3 − a1a4
a22 − a1a3

, b4 =
a23 − a2a4
a22 − a1a3

. (B.3)

From the structure of ∆αhad and its series representation in Eq. (4.13), we know that b1 < 0

and b2 < b1. Analyzing the Stieltjes determinants of Eq. (2.12), we get the additional

relations: b3 > 0 and b4 > 0. Since the other approximants of the sequence PN
N were not

applied to the realistic data sets, we will refrain from showing their expressions here.
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The PN+1
N sequence starts with P 2

1 , which reads, as a function of x

P 2
1 (x) = −

b1m
2
µ x

2 (1− x) + (b1b3 − b2)m
4
µ x

4

(1− x)2 + b3m2
µ x

2 (1− x)
. (B.4)

The bn parameters in this case, together with their limits, are

b1 = a1 < 0, b2 = a2 < b1, b3 =
a3
a2

> 1. (B.5)

The last approximant used is P 3
2 , which is given by

P 3
2 (x) = −

b1m
2
µ x

2 (1− x)2 − (b2 + b1b4)m
4
µ x

4 (1− x) + (b3 + b1b5 + b2b4)m
6
µ x

6

(1− x)3 − b4m2
µ x

2 (1− x)2 + b5m4
µ x

4 (1− x)
, (B.6)

where the parameters are

b1 = a1, b2 = a2, b3 = a3, b4 =
a2a5 − a3a4
a23 − a2a4

, b5 =
a24 − a3a5
a23 − a2a4

. (B.7)

In addition, the constraints employed in the fits are: b3 < b2 < b1 < 0, b4 < 0 and

b5 > 0. It is important to stress that all the constraints showed in this Appendix are model

independent, since they follow from the fact that ∆αhad(t) is a Stieltjes function.

The D-Logs are constructed from the Taylor series as was described in Sec. 2.2.1 and

reparametrized in terms of the x variable. All the functions employed for fitting purposes

are detailed in Tab. 4.2.



Appendix C

B-meson Form Factors simulation &

correlation tables

Table C.1: Best fit values, uncertainties and correlation matrix for the output quantities of
our best χ2

Bπ fit Eq. (5.64) obtained with the Padé element P2
1,1 (cf. Table 5.6).

Parameter Central value Correlation matrix

|Vub|×103 3.86(11) 1 −0.571 0.035 0.324 −0.251 0.139 −0.121
a+0 0.247(8) 1 −0.374 0.341 −0.298 −0.719 −0.473
a+1 × 103 −1.3(8) 1 0.028 −0.297 0.220 0.105
a+2 × 104 −0.3(1.0) 1 −0.958 −0.681 −0.795
mB∗(1−) pole(s) [GeV] = 5.325&6.46 1 0.633 0.747

a01 × 102 −0.4(1) 1 0.943
mB∗(0+) pole(s) [GeV] 5.44 1
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Table C.2: Central values, errors and correlation matrix for the B → π vector form factor,
f+(q

2), generated at three representative values of q2 from the FLAG [139] results and used
in our fits in Table 5.7.

Correlation matrix
Form factor fBπ

+

q2 [GeV2] Central values 18 22 26

fBπ
+

18 1.102(44) 1 0.757 0.563
22 1.964(54) 1 0.400
26 5.848(226) 1

Table C.3: Best fit values, uncertainties and correlation matrix for the output quantities of
our best χ2

BsK
fit Eq. (5.71) obtained with the Padé element P3

1,1 (cf. Table 5.11).

Parameter Central value Correlation matrix

|Vub|×103 3.58(9) 1 −0.674 −0.332 0.168 −0.254 0.306 −0.445
a+0 0.214(5) 1 0.035 0.056 0.004 −0.028 0.784
a+1 × 103 6.70(5.40) 1 −0.945 0.982 −0.997 −0.061
a+2 × 104 −0.48(46) 1 −0.988 0.963 0.149
a+3 × 105 1.04(96) 1 −0.992 −0.077
mB∗(1−) pole(s) [GeV] = 5.325&29.5 1 0.037
mB∗(0+) pole(s) [GeV] 5.70 1
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