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ABSTRACT 

 

In the current digital era, interconnectivity between devices and processing power has reached 

a level never seen before. 6G networks have emerged as a revolutionary breakthrough, promising 

ultra-fast and reliable connectivity that redefines the way we interact with the digital world. This 

new generation of networks not only drives communication between devices but is also the 

backbone of the Internet of Things (IoT). In addition, the learning and adaptive capabilities of 

Artificial Intelligence systems are driving process automation and efficiency. This enables the 

potential for applications in diverse fields, from healthcare to logistics and manufacturing. 

Similarly, Edge Computing complements this landscape by decentralizing data processing, 

bringing computing capacity closer to the sources of information. This allows for reducing latency 

and improving efficiency by processing data in real-time, driving critical applications that require 

instantaneous responses. 

This Ph.D. thesis focuses on two important points: 1) Improving the efficiency of applications in 

smart cities, and 2) Enhancing the efficiency of underwater communications in smart coastal 

cities by applying artificial intelligence, edge computing, and 5G and beyond. To achieve these 

objectives, an exhaustive study of the existing literature on 5G and beyond networks (architecture 

and services), smart cities (enabling technologies), and artificial intelligence (applications and use 

cases) has been carried out. In addition, technical documentation to obtain an updated view of the 

different technologies that enable the development of applications based on 5G and beyond has 

been analyzed. Aiming to generate new and innovative alternatives in the field of tourism, 

security, improved underwater communications, and marine discovery that promote development 

to meet the needs of citizens in smart cities and ocean/sea. As a result of this study, the first 

contribution has emerged. It involves the analysis, design, and implementation of a tourist 

attraction recommendation system employing a deep learning algorithm tailored for smart cities. 

The primary objective is to reduce the time it may take a user to search for potential places to 

visit and to improve how recommendations of tourist attractions are made in a given city. 

The second contribution arises in surveillance and security, which consists of a distraction 

detection system for the prevention of drowning in aquatic places, developed in a 5G and beyond 

network environment. For this goal, an approach of surveillance cameras capturing images of 

people in charge of minors in swimming pools or beaches was proposed; and employing an ML 

algorithm (convolutional neural networks) to classify the type of distraction that a person in 

charge of a minor may have. 

Finally, the third contribution is presented, called reinforcement learning and mobile edge 

computing for underwater wireless networks based on 6G. In this approach, a submerged edge 
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mobile computing architecture is presented in which an AUV is used as a mobile platform (MEC), 

in addition, several local AUVs equipped with computational resources that collect tasks from 

sensor nodes and can make the decision to process them locally or partially or fully offload them 

to the mobile edge computing AUV device (AUV-MEC). To this end, an algorithm based on deep 

reinforcement learning (DDPG) is proposed for trajectory control, task offloading strategy, and 

computational resource allocation, combined with mobile edge computing and AUVs to improve 

underwater communication; aiming to minimize the sum of maximum processing delays and 

energy consumption during the whole process of executing a task. 

The exhaustive simulations performed enable all these contributions to be compared with other 

previously existing proposals, demonstrating their effectiveness and performance. 

The contributions presented in this doctoral thesis are of singular importance, since to date 

they continue to be innovative. The contributions presented not only represent significant 

advances in their respective areas but also lay the groundwork for future research and 

developments in smart city construction and underwater communications optimization, thereby 

reinforcing the transformative potential of artificial intelligence, edge computing, and advanced 

wireless networks in these domains. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

Urbanization is a growing concern. Globally, more people live in urban areas than in rural 

areas. In 1950, 30% of the world's population was urban. In 2018, 55% of the world's population 

resided in urban areas and it is projected to reach 68% by 2050 (see Figure 1.1). This continued 

growth, in line with the overall demographic increase, indicates that the world's urban population 

will increase by approximately 2.5 billion people in urban areas over the next thirty years. In this 

context, the imperative to address environmental, social, and economic sustainability through a 

holistic and comprehensive approach becomes crucial. It’s an essential requirement to stay ahead 

of the fast urban growth rate, which is currently straining the resources of modern cities. While 

the world continues to urbanize, successful urban growth management is the primary driver of 

sustainable development, especially in low-income and lower-middle-income countries, where 

urbanization is expected to experience its most rapid expansion between now and 2050 [1][2]. 

Population growth has an undeniable correlation with the tendency toward chaos and 

disorganization in urban areas. Government agencies recognize the critical role that technology is 

destined to play as a nexus, particularly in the implementation of technological solutions that 

foster balanced, safe, efficient, and healthy urban environments. 

 

Figure 1.1. Estimated and projected urban populations of the world [2]. 
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Sustainable urbanization requires cities to generate adequate revenues and provide the 

necessary water and sanitation, energy, transportation, and communications infrastructure. To 

address these demands, cities are increasingly integrating Information and Communication 

Technologies (ICT ) into their development strategies. Likewise, the integration of the Internet of 

Things (IoT) infrastructure [3], which is a unique dynamic "network" of interconnected smart 

objects [4], with self-configuration capabilities, allows interaction and communication between 

humans and objects anytime, anywhere, and with anybody or anything. Furthermore, IoT can 

generate an unprecedented volume of events and data, commonly known as Big Data, which can 

be sent to the cloud for further analysis. Combined with Artificial Intelligence (AI), this data can 

be harnessed to develop software applications that gather information from both citizens and 

urban infrastructures [5]. The aim is to efficiently manage information to enhance the basic needs 

of citizens, businesses, and institutions, transforming cities into Smart Cities (SC). The successful 

deployment of a smart city application is based on several essential components, the first of them 

being wireless connectivity, which must be reliable and ubiquitous to ensure optimal 

performance. Although there is no one-size-fits-all solution, Low-Power Wide Area Network 

(LPWAN) technologies emerge as the ideal choice for most applications, due to their cost-

effectiveness and ubiquity. Among the most high-profile LPWAN technologies are Long Term 

Evolution enhanced Machine Type Communication (LTE Cat M), NarrowBand-Internet of Things 

(NB-IoT), Long Range (LoRa), and Bluetooth which provide robust and efficient connectivity [6]. 

Significant milestones to promote the evolution of mobile communications are the continuous 

development of 5G technology and the future arrival of 6G. These new technologies promise not 

only extremely fast data transmission speeds, but also reduced latency, massive device 

connectivity, and ultra-high reliability [7]. Also, 6G is expected to use a more advanced frequency 

spectrum that would increase data throughput 100 to 1000 times faster than 5G [8]. With even 

faster transmission speeds, near-zero latency, and the ability to support a variety of advanced 

applications, connectivity is elevated to an unprecedented level [9]. These technological advances 

become a key driver in the economic and social sectors. They enable new innovative applications 

and accelerate the deployment of more advanced and efficient solutions. Cities worldwide are 

adopting AI as a fundamental tool for real-time analysis of urban data, aiming to obtain highly 

useful information [5]. An emerging trend in this area is the generation of three-dimensional 

simulations, known as "digital twins", capable of representing a highly detailed virtual replica of 

a city in its current state [10][11]. The main goal is to explore and evaluate hypothetical scenarios 

of how they could look in the future in several aspects such as infrastructure development, traffic 

improvement and sustainable mobility, more efficient public services, safe and protected 

territories, environmental care, education, culture, and tourism, among others [12]. Furthermore, 

in smart coastal cities, the combination of the Internet of Underwater Things (IoUT) and AI 

enables the monitoring of coastal ecosystems by collecting accurate data such as water 
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temperature, salinity [13], and various environmental variables. In particular, data obtained from 

IoUT sensors can be used to detect noticeable alterations in environmental conditions, such as 

variations in water temperature or pH levels. These variations can be clear indicators of the 

presence of pollutants or harmful substances in the marine ecosystem. The implementation of AI 

is an essential resource in the detection of changes in the abundance of marine life. This is 

particularly valuable in conservation terms, as it enables, to identify early the decrease of 

populations of endangered species. The deployment of AI-enabled cameras and sensor systems is 

advocated as an effective strategy for identifying illegal fishing, monitoring human activities that 

may harm coastal ecosystems, and assessing the impact of tourism in fragile environments [14]. 

Overall, AI is a remarkably effective tool for monitoring and protecting urban areas and coastal 

ecosystems. Its ability to collect and analyze data related to environmental conditions and human 

activities enables the early identification of areas at risk, providing an informed basis for the 

implementation of preventive measures. This proactive approach contributes to the mitigation of 

negative impacts, thereby promoting the long-term sustainability and preservation of these 

environments. 

New challenges arise with each technological advance. Currently, there are new applications 

that require low latency such as Virtual Reality (VR), which is an advanced human-computer 

interface that simulates a realistic environment [15], and Augmented Reality (AR), which 

integrates virtual information with the real world [16]. Furthermore, mission-critical 

applications, need very low latency communications, very high reliability, and high availability, 

since they require immediate responses, in high-risk situations. Similarly, real-time applications, 

are capable of monitoring and responding immediately to user requirements or controlling an 

external environment [17] such as public safety, environmental care, traffic monitoring, and 

autonomous vehicles, among others. Edge Computing (EC) has emerged as a fundamental 

element in the context of smart cities to address these needs, providing effective and quick 

responses to the demands of real-time solutions [18]. 

Edge Computing currently represents a vitally important technological paradigm. This 

approach is based on the fundamental premise of storing data as close as possible to its origin, 

which leads to significant benefits in terms of bandwidth efficiency and minimization of response 

time [19]. This model of processing information as close as possible to the user's physical location, 

for an agile response, has become a key element for the development of this sort of infrastructure 

in public and private organizations. One of the most outstanding characteristics of Edge 

Computing lies in its integration with Machine Learning (ML) based systems, allowing it to 

constantly learn and evolve towards the future at the same speed as human beings. The 

functionality of a peripheral network brings several substantial benefits in the context of 

information and communication technologies. This approach enables interconnected devices to 

provide real-time responses and make autonomous decisions, as opposed to the previous 

paradigm that required sending information from one point to another, pending authorization. 
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The seamless interconnection between Edge Computing and 5G networks is essential for their 

optimal operation and to reach the full potential of both technologies. In the Big Data context, 

where the quantity of information can be overwhelming, Edge Computing performs a crucial 

function by identifying, filtering, and forwarding to the cloud only relevant data for processing. 

The capability of continuous learning through ML and AI algorithms enables devices to refine 

their decisions intelligently over time, dynamically adapting to patterns and changes in the 

environment. This continuous enhancement in decision-making contributes to the operational 

efficiency and resource optimization of urban areas [20]. For this reason, the development of new 

applications based on IoT, IoUT, and AI will always be a great contribution to the development of 

society, therefore this research contributes to the development of Smart Cities generating 

proposals for current scenarios, as well as for future work. 

1.1 Motivation 

The motivations for the particular development of this thesis are as follows: 

 Improving the efficiency of applications in smart cities using artificial intelligence, edge 

computing, and 5G and beyond. 

 Improving the underwater communication efficiency in smart coastal cities using artificial 

intelligence, edge computing, and 5G and beyond. 

These motivations are described in more depth below. 

1.1.1 Motivation 1: Improving the efficiency of applications in smart cities using artificial 

intelligence, edge computing, and 5G and beyond. 

Application development is a continuous activity for technological evolution. Each time new and 

better applications appear aiming to deliver new experiences to the user. Therefore, information 

and communication technology has emerged as a fundamental component in the development and 

evolution of cities, an urban paradigm that intends to improve the quality of life for citizens 

through the application of advanced technological solutions. The deployment of these solutions is 

always a challenge. With the emergence of new technologies (IoT, AI, 5G and beyond) more 

efficient, reliable, and sustainable solutions can be developed. 

Therefore, the present research has focused on designing and improving the efficiency of new and 

innovative deep learning-based applications for the development of smart cities. These 

applications integrate new technologies such as AI, edge computing, and 5G networks and 

beyond. AI is considered to play an essential role in application optimization. AI algorithms can 

analyze large data sets in real-time to manage fields such as traffic and mobility, energy 

management, security, healthcare, culture, and tourism. Meanwhile, Edge Computing, enables 

data processing and application execution close to the source, reducing latency and improving 

processing speed. This capability provides rapid responses to emergency situations, such as traffic 
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accidents or natural disasters. Furthermore, 5G technology provides ultra-fast and reliable 

connectivity, facilitating seamless communication between devices and systems. This capability is 

essential for critical applications, such as autonomous vehicles, health monitoring systems, 

environmental sensors, etc. Overall, these technologies contribute to boosting the efficiency of 

applications as they contribute to decision-making and better adaptation to the changing needs of 

an ever-evolving city. 

1.1.2 Motivation 2: Improving the efficiency of underwater communications in smart coastal 

cities, through artificial intelligence, edge computing, and 5G and beyond. 

Underwater communications are a complex task and have increasingly led to new researchers 

becoming interested in this field, introducing new challenges. The seabed can be a hostile and 

dangerous place. Therefore, human beings have developed many tools and mechanisms to gain 

access to it. In contrast to terrestrial communications, underwater communications are faced with 

different issues such as bandwidth, latency, and jitter, which are factors that affect their 

performance [21]. Also, energy consumption savings emerge as a critical factor [22], since 

recharging underwater sensors and devices can be problematic and expensive. In multiple 

underwater scenarios integration of new technologies such as (IoUT, AI, 5G and beyond) allows 

the information collected on the seabed to be stored in cloud servers for further processing. This 

integration may lead to new challenges and discoveries. 

Based on the aforementioned, the development of alternatives to improve the efficiency of 

underwater communications is a challenge that has also been the focus of the development of this 

research and that remains largely unexplored. In this framework, the implementation of artificial 

intelligence algorithms is presented as a strategy for the analysis of collected data and the 

optimal management of the resources of underwater devices. Likewise, the integration of edge 

computing enables the execution of computational operations close to the requesting devices. This 

approach reduces latency compared to cloud processing. It also aims to improve the efficiency of 

subsea communications and provide agile solutions to applications that require immediate 

responses. 

1.2 Objectives 

The central objective of this PhD thesis is to boost the implementation of IoT-based applications 

and the optimization (improvement) of underwater communications, by artificial intelligence, 

edge computing, and 5G networks and beyond, contributing to the technological development in 

smart cities and ocean/seas. 

To meet the stated core objective, we will divide it into two specific objectives. 

 Improving the efficiency of applications in smart cities using artificial intelligence, edge 

computing, and 5G and beyond. 
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 Improving the efficiency of underwater communications in smart coastal cities using artificial 

intelligence, edge computing, and 5G and beyond. 

The following specific objectives have been identified to achieve the above two objectives. 

 To analyze existing literature on 5G networks and beyond (architecture and services), smart 

cities (enabling technologies), and artificial intelligence (applications and use cases). Collect 

technical documentation to get an updated overview of the different technologies that enable 

the development of 5G-based applications in smart cities. 

 To perform a comprehensive analysis of existing IoT-based applications that integrate 

artificial intelligence and 5G networks and beyond. Review relevant publications, to generate 

new and innovative alternatives in the field of tourism, aquatic childcare, and marine 

discovery that boost development to meet the needs of citizens in smart cities and 

Oceans/seas. 

 To generate innovative strategies and solutions fundamental to the operation of smart cities 

and oceans. Conduct research, design, and development of applications that manage data and 

provide essential information for decision-making and efficient resource management. 

 To design modern, adaptive, and intelligent ecosystems by developing applications that 

integrate artificial intelligence algorithms. Improve data analysis capabilities, automate 

processes, and enable more informed decision-making in critical situations. 

 To evaluate the performance of such solutions using the capabilities of 5G networks and 

exploring emerging technologies beyond 5G, such as 6G and edge computing. To ensure ultra-

fast and reliable connectivity and computing in all contexts, from urban environments to 

remote maritime areas. 

1.3 Summary of Contributions 

The main contributions of this thesis are described below, based on the proposed objectives. 

 A tourist attraction recommendation system for smart cities based on deep learning. This 

system recommends tourist attractions in two scenarios, 1) when the tourist is outside the 

city and 2) when the tourist is already in the target city. To this end, user-generated 

information is collected, which takes into account the particular circumstances of a trip 

(traveling alone or with a companion, type of companion such as couple, family with children, 

etc.), as well as user information (age of the traveler/s), hobbies, etc.) to improve the accuracy 

of the recommendations. According to this perspective, in our research, we rely on a hybrid 

Tourism Recommendation System (TRS), since each technique, when used separately, has its 

strengths and weaknesses, but by combining and complementing them with deep learning 

techniques, we can generate a recommendation system that meets a broader range of user 

needs. Furthermore, unlike existing applications, this research is not limited to 
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recommendations within a single establishment, environment/event but to a city as a whole. 

Additionally,  it provides on-site tourist attraction recommendations in real-time by recording 

already visited tourist attractions and using IoT context-related information such as location, 

availability, and weather forecast. To our knowledge, this is the first recommendation system 

that makes real-time tourist attraction recommendations based on IoT context-related data 

and deep learning. 

 

 Distraction detection system for child drowning prevention, developed in a 5G and beyond 

network environment. This system is based on deep learning, which detects and classifies 

distractions of inattentive parents or caregivers. This approach can be deployed in indoor 

pools or outdoor locations such as beaches or aquatic recreation sites with the help of 

unmanned aerial vehicles (UAVs) (drones). The system detects distracted parents/caregivers 

in charge of a child and alerts them to focus on the monitoring task. For this purpose, we have 

first focused on generating our own dataset of images of distracted parents/caregivers in a 

swimming pool. The current applications are based on drowning detection, by searching for 

and detecting moving objects in the water. When an object does not move, it is detected as 

drowned, hence, these applications are limited to detecting victims that have sunk to the 

bottom of the pool and are static in the same location. Although this task remains challenging 

due to disturbances on the water surface (e.g., water exhibits random and homogeneous 

bubble movements, which could be easily identified as foreground objects), some applications 

deal with swimmer detection and tracking that attempt to analyze swimmer observation 

sequences for possible signs of drowning behavior. The present research differs from 

previously developed applications by proposing an early warning system that employs 

surveillance cameras supported by machine learning algorithms that enable accurate and fast 

detection of possible distractions. When a distracting situation is detected, the system 

automatically generates alarms or alerts that are immediately transmitted to caregivers or 

persons in charge of supervising children present in the aquatic environment. To our 

knowledge, this is the first work that aims to prevent child drowning by detecting and 

classifying distractions of parents in charge of a child in aquatic recreational areas; it is also 

the first work that uses digital technologies such as artificial intelligence and modern 

communication technologies (such as 5G and beyond) to detect and alert distracted parents or 

caregivers. 

 

 Development of a Reinforcement Learning algorithm and mobile edge computing for 6G-based 

underwater wireless networks. In this approach, we propose a deep reinforcement learning-

based algorithm for trajectory control, task offloading strategy, and computational resource 

allocation. This algorithm is combined with mobile edge computing and autonomous 

underwater vehicles to improve underwater communication. The RL algorithm is responsible 

for deciding the direction and dive speed of the AUVs, the task offloading strategy, and the 
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resource allocation of the MEC server. We choose the overall energy consumption and delay 

as a reward for the proposed algorithm. There are several studies on the data acquisition step 

in the marine environment. In some cases, the information is sent directly from the sensor 

nodes to the sink nodes through acoustic signals and then, in the airborne environment, the 

data are collected by UAVs through electromagnetic wave propagation. In these approaches, 

neither delay nor power consumption is considered, simply the objective is to collect 

information. To reduce the energy consumption of resource-limited devices, the use of aquatic 

mobile devices (AUVs) is introduced to reduce the transmission distance between the sensor 

nodes and the AUV, as well as between the AUV and the sink nodes (sea surface). However, 

since the main objective is only to collect data, it will take time for the information to reach 

the cloud-based servers and be processed. There is also research that is based on data 

acquisition, but instead of sending the data to the cloud directly, it is sent to an edge server; 

in some cases, to AUVs and in other cases to intelligent ocean convergence platforms (ships 

and buoys) for edge computing purposes. However, these investigations are only concerned 

with data collection, they do not analyze the offloading of computation, i.e., the desirability of 

running the computational tasks locally or offloading them (partially or fully) to a MEC 

server. In the field of edge computing, there is research presenting a network architecture 

that integrates space-air-land-sea, considering the requirements of edge computing and cloud 

computing, by implementing RL techniques for the intelligent allocation of joint resources. 

For this purpose, the information collected by ships and buoys is sent to the MEC server 

assisted by UAV or low earth orbit (LEO) satellite. Similarly, investigations are proposed in 

which AUVs are used as information-passing devices from the sensor nodes or the 

information is sent directly to the surface station (MEC server), which would imply a higher 

energy consumption. Although these approaches employ data offloading to edge servers 

located on UAVs - satellites, or at the surface station, in our case we try to bring the edge 

server (MEC AUV) even closer to the data collecting devices (intermediate AUVs). In this 

proposed work, based on mobile edge computing, we propose a joint optimization scheme for 

automatic (full or partial) task offloading, path optimization, and resource allocation, using 

RL techniques (DDPG algorithm). To the best of our knowledge, this is the first work that 

proposes a MEC system with AUVs that include IoUT devices, cluster heads, local AUVs, and 

MEC AUVs. The joint optimization of AUV trajectories, offloading strategy, and resource 

allocation in an AUV-assisted MEC considering energy efficiency and delay minimization has 

not been investigated. 

1.4 Related Publications 

This section lists the publications produced as a result of this research. 
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Journal Publications: 

 

J1 Cepeda-Pacheco, Juan Carlos; Domingo, Mari Carmen. Deep learning and Internet of Things 

for tourist attraction recommendations in smart cities. Neural Computing and Applications, 

2022, vol. 34, no 10, p. 7691-7709. 

J2 Cepeda-Pacheco, Juan Carlos; Domingo, Mari Carmen. Deep learning and 5G and beyond for 

child drowning prevention in swimming pools. Sensors, 2022, vol. 22, no 19, p. 7684. 

J3 Cepeda-Pacheco, Juan Carlos; Domingo, Mari Carmen. Reinforcement Learning and Mobile 

Edge Computing for 6G-Based Underwater Wireless Networks (submitted for publication to 

a journal)  

 

1.5 Thesis outline 

This thesis is composed of five chapters, which are summarized in Figure 1.2 and described 

below. 

Chapter 1: Introduction. 

This chapter presents the introduction, motivation, and objectives for the development of this 

research work. It provides an overview of the publications developed and a brief description of 

each of the chapters. 

Chapter 2: Background Technologies:  

This chapter introduces a description of the key concepts related to the most relevant topics. 

This overview serves as a source of discussion, enabling the development of new insights and 

future work. The basis for this analysis is an exhaustive review of existing publications, as well as 

the study of standards and the compilation of consolidated information. 

Chapter 3: Deep learning, Edge computing, and 5G and beyond for smart cities. 

This chapter presents the contributions of IoT-based applications that integrate deep neural 

networks in Edge computing and 5G scenarios and beyond, aiming to meet the requirements of 

smart cities. We have divided this chapter into two sections: 

Deep Neural Network: In this first section the current applications regarding smart tourism 

are discussed and the first contribution of the present PhD thesis "Internet of Things for tourist 

attraction recommendations" is presented. A theoretical explanation is developed and detailed 

simulations of this contribution are also presented. Furthermore, a comparison with other 

algorithms is conducted to check its effectiveness. 

Convolutional Neural Networks: In this second section the current applications regarding 

drowning prevention and detection are discussed. The second contribution "5G and Beyond for 

Child Drowning Prevention in Swimming Pools" is presented in detail. A theoretical explanation 
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is developed, and the implementation results are presented. Furthermore, a comparison with 

other convolutional algorithms is conducted to verify the accuracy of the results. 

Chapter 4: Reinforcement learning, Edge computing, and 5G and beyond for smart cities. 

This chapter presents a third contribution that integrates Reinforcement learning algorithms, 

in Edge computing and 5G scenarios and beyond. This section begins by defining the current 

state of research, followed by a detailed description of the development of the present 

contribution. This chapter also presents the results of the experiments, highlighting the 

improvement of underwater communications for smart coastal cities. 

Chapter 5: Conclusions and future work. 

This chapter presents the conclusions derived from this research. These conclusions are based 

on the results obtained throughout each of the chapters previously addressed. Furthermore, 

reflections and suggestions are included, oriented towards future works that will lead to the 

advancement of technologies and applications for smart cities and coastal cities, with the main 

purpose of improving the quality of life of their residents. 

 

 

Figure 1.2. Thesis organization. 
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CHAPTER 2 

 

2 BACKGROUND AND STATE OF THE ART 

 

2.1 5G and Beyond  

The fifth generation of mobile technology, commonly referred to as 5G, has emerged as a 

technological breakthrough of singular relevance in the contemporary digital era and is a huge 

collective effort to specify, standardize, design, manufacture, and deploy the next generation of 

cellular networks [23]. In an environment characterized by an increasing reliance on wireless 

connectivity and a wide proliferation of smart devices, the deployment of 5G represents a 

significant evolution of mobile communications. This new technology promises not only 

exceptionally fast data transmission speed but also remarkably reduced latency, massive device 

connectivity capability, and the enablement of new emerging applications that integrate 

communication between sensors, machines, or different devices; most importantly, it can support 

machine-critical communications with instantaneous action and ultra-high reliability [7], these 

features become fundamental to the economic and social sector as depicted in Figure 2.1. 

 

 

Figure 2.1. 5G key characteristics. 
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In the next section, the technological foundations of 5G, its architecture, and applications in 

different fields will be discussed. Ethical, regulatory, and security considerations related to its 

implementation will also be addressed. This analysis aims to summarize the transformational 

impact of 5G technology on society and build a foundation for understanding the sixth generation 

of mobile technology, known as 6G. This new generation promises even faster, more reliable, and 

more intelligent connectivity, which will not only change the way we communicate but also the 

way we interact with our environment. In this framework, 5G encourages us to explore the future 

of communications, where the possibilities are endless, and technology continues to challenge the 

limits of what is possible. 

2.1.1 5G Technology 

5G technology is based on many technological foundations and architectural principles that 

differentiate it from its predecessors (2G, 3G, and 4G) (see Table 2.1). These foundations are 

essential to understanding the evolution of 5G and its outstanding capabilities. The following are 

the underlying fundamentals that are the basis of 5G technology. 

Table 2.1. Different generations of mobile communications [24]. 

Cellular 

Generations 
Standards Applications 

Multiple 

Access 

Techniques 

Physical 

Resources 

Duplex 

Methods 

Switching 

Techniques 

1G 
AMPS, 

NMT, TACS 
Voice calls with analog 

signals 
FDMA Frequency FDD CS 

2G 
GSM, IS-54, 

IS-95 

Voice services with 
digital signals, SMS. 
From 2.5G, email and 

web-browsing. 

TDMA Time slots FDD 
CS, 

2.5G – CS & 
PS 

3G 
WCDMA, 

CDMA2000 

Mobile TV, video 
telephony, and video 

conference 
CDMA 

Time slots/ 
PN codes 

FDD/ 
TDD 

CS & PS 

4G LTE 

High data rate 
applications, e.g. HD 
TV, cloud computing, 

video gaming, etc. 

OFDMA 
Time/ 

Frequency 
FDD/ 
TDD 

PS 

5G NR 
IoT, massive 

broadband, smart city, 
VR, AR 

OFDMA 
Time/ 

Frequency 
FDD/ 
TDD 

PS 

 

Broader frequency spectrum. The frequency spectrum in 5G technology is greatly diverse, 

comprised of three key categories: low-frequency bands (Sub-6 GHz) that provide wide coverage 

and efficient signal propagation, Mid-frequency Bands (Mid-Band) that balance speed and signal 

coverage, and millimeter Waves (mmWave) that are highlighted by their capability to provide 

extremely high data rates that can reach about 10 Gbit/s and even increase with full-duplex 

capability [25]. Collectively, these categories enable advanced wireless connectivity that meets a 

wide range of needs and applications. In particular, mmWave offers significant advantages by 

providing exceptionally wide bandwidth and ultra-fast data rates. Although limited in range and 
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subject to physical obstacles, they are ideal for high data-density applications and dense urban 

environments [26]. By reducing the network congestion in urban areas, mmWave not only 

improves Quality of Service (QoS) but also fosters new business opportunities, such as private 5G 

networks for enterprises and the Industrial Internet of Things (IIoT), driving innovation and 

digital transformation in diverse industries. 

Advanced Massive MIMO technology. massive Multiple Input, Multiple Output (MIMO) or 

mMIMO in 5G technology is a continuation of MIMO technology and represents a fundamental 

innovation in wireless communications. It is characterized by the deployment of a large array of 

antennas on both base stations and user devices, enabling the simultaneous transmission and 

reception of multiple data streams. This technology improves network capacity and spectral 

efficiency by enabling targeted beamforming to specific devices, reducing interference, and 

improving the quality of service [27]. 

Reduced latency. In 5G technology reduced latency is a crucial advancement that enables 

virtually instantaneous communication between devices, this has been achieved through the 

deployment of more efficient network architectures, advanced signal processing technologies, and 

the use of massive MIMO antennas, resulting in faster and more efficient data transmission 

between devices and base stations [28]. The advantages are significant, as reduced latency 

enables real-time applications, such as telemedicine and mission-critical applications (see Table 

2.2), improving quality of life and safety. In addition, it enables the interconnection of devices on 

the Internet of Things driving automation and efficiency in various sectors, from industry to 

entertainment. 

Table 2.2. Mission-critical services that demand different latency and data rate requirements [29]. 

Use Case Latency Data rate Remarks 

Factory 
Automation 

0.25 – 10 ms 1 Mbps 

- Generally, factor automation applications require 
small data rates for motion and remote control. 

- Applications such as machine tools operation may 
allow latency as low as 0.25 ms. 

Intelligent 
Transport 
Systems (ITS) 

10 – 100 ms 0 – 700 Mbps 

- Road safety of ITS requires latency on the order of 10 
ms. 

- Applications such as virtual mirrors require data 
rates on the order of 700 Mbps. 

Robotics and 
Telepresence 

1 ms 100 Mbps 

- Touching an object by palm may require latency down 
to 1 ms. 

- VR haptic feedback requires data rates on the order of 
100 Mbps. 

Virtual Reality 
(VR) 

1 ms 1 Gbps 
- Hi-resolution 360° VR requires high rates on the order 

of 1 Gbps while allowing a latency of 1 ms. 

Health Care 1 – 10 ms 100 Mbps 
- Tele-diagnostic, telesurgery, and tele-rehabilitation 

may require latency on the order of 1 ms with a data 
rate of 100 Mbps. 

Serious 
Gaming 

1 ms 1 Gbps 
- Immersive entertainment and human interaction 

with high-quality visualization may require a latency 
of 1 ms and data rates of 1 Gbps for high performance. 
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Smart Grid 1 – 20 ms 10 – 1500 Kbps 

- Dynamic activation and deactivation in a smart grid 
require latency on the order of 1 ms. 

- Cases such as wide area situational awareness 
require data rates on the order of 1500 Kbps. 

Education and 
Culture 

5 – 10 ms 1 Gbps 

- Tactile Internet-enabled multi-modal human-machine 
interface may require latency as low as 5 ms. 

- Hi-resolution 360° and haptic VR may require data 
rates as high as 1 Gbps. 

 

Dynamic radio topology. It plays a critical role in 5G-enabled mass connectivity by providing 

efficient management of network resources (power and signaling), real-time adaptation to the 

changing device population, and latency optimization. This ensures reliable and efficient 

connectivity in environments with a large number of connecting devices [30]. 

Network virtualization. 5G technology provides a flexible and manageable network 

infrastructure. This is made possible through Network Functions Virtualization (NFV) and 

Software-Defined Networks (SDNs). On the one hand, NFV facilitates the building of logical 

networks on a shared physical infrastructure, thereby enabling the dynamic allocation of 

resources according to the changing needs of diverse applications in 5G [31]. On the other hand, 

SDN focuses specifically on the management and control of the radio layer in wireless networks 

and enables centralized and programmable network management, which is crucial for rapidly 

adapting to evolving service and application demands [32]. Both technologies enable more 

efficient and agile network orchestration, ensuring optimal performance and exceptional 

scalability, which are key to the success of 5G in an increasingly connected and service-diverse 

world. 

Boosting innovation. Considering that not all use cases in 5G technology require identical levels 

of performance and functionality, this technology must move away from a monolithic framework 

based on the most demanding requirements, since this approach would result in prohibitive costs. 

Therefore, 5G must inherently incorporate flexibility and scalability into its capabilities, which 

will enable it to encompass a wide variety of use cases and promote innovation through multiple 

business models and strategic alliances.  

Leveraging the benefits of virtualized and programmable networks, 5G functions need to be 

designed in a modular approach to enable on-demand deployment according to specific needs. 

Therefore, 5G is envisioned as a network characterized by polymorphism, driven by advanced and 

enhanced radio access technologies, network functions that can be flexibly deployed, and 

comprehensive end-to-end orchestration [30]. 

Security and privacy. 5G security and privacy become critically important, especially in a 

virtualized context. With NFV, network functions are executed in virtualized environments, 

which increases flexibility and operational efficiency; however, this virtualization also introduces 

new security challenges. Ensuring security in 5G virtualization is essential to protect against 

potential vulnerabilities and cyber threats that could affect both service integrity and user 
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privacy [33]. Therefore, security in 5G is not only important for network integrity and data 

protection but is also essential to support confidence in virtualization and ensure the continuity of 

critical services and ongoing innovation. [34]. 

Energy efficiency. Addressing energy efficiency is essential in 5G technology due to the 

potential significant energy consumption that its implementation involves. This requires 

strategies that include the adoption of energy-efficient equipment and components, intelligent 

resource management, implementation of energy-saving techniques, network functions 

virtualization, optimization of the radio layer, and renewable energy sources [35]. 

2.1.1.1 Overall 5G System Architecture 

The 5G system architecture stands as a highly sophisticated and complex technological 

framework that provides the infrastructure for fifth-generation mobile communications. This 

meticulously designed architecture is essential to enable the distinctive capabilities of 5G, 

including high data rates, low latency, and massive device connectivity as we mentioned above. In 

this framework, the description of the overall 5G system architecture is presented as a detailed 

analysis of its key components and intrinsic functionality. The 5G network architecture according 

to the Third Generation Partnership Project (3GPP) Release 16 is detailed below. 

2.1.1.1.1 5G Access Network 

The 5G access network, known as the Next Generation Radio Access Network (NG-RAN), is 

essential in fifth-generation communications. Its main purpose is to facilitate high-speed wireless 

connections between millions of wireless devices and the core network, enabling data 

transmission at a significantly higher speed than in 4G networks. Diversified use cases, as well as 

QoS requirements such as reliability, latency, data rate, security, and privacy, make NG-RAN 

key to the successful deployment and operation of 5G networks [36]. 

5G networks operate in a variety of frequencies, including millimeter wave and sub-6 GHz 

bands, which balance speed and range. To ensure optimal performance, they employ densely 

distributed base stations called Next-Generation Base Nodes (gNB, or gNodeB), with more 

antennas than 4G networks. In addition, massive MIMO technologies, which involve multiple 

antennas, enable simultaneous communication with multiple devices, improving network 

coverage and capacity [37]. 

5G network evolution implies the transition from 4G networks; therefore, the 5G architecture 

integrates two Radio Access technologies that are important in its development. On the one hand, 

there is the Evolved UMTS Terrestrial Radio Access Network (E-UTRAN), which is directly 

inherited from LTE technology, and on the other hand, the so-called 5G New Radio, these two 

access networks enable it to operate in both "non-standalone" mode (NSA) and "standalone" mode 

(SA), respectively (see Figure 2.2). In SA operation, the gNB is connected to the 5G core network 

(5GC); in NSA operation, NR and LTE are tightly integrated and connected to the existing 4G 
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core network, leveraging dual connectivity to the terminal. Both NSA and SA architecture options 

are specified as part of the 3GPP Phase 1 5G standards. This upgrade will enable more efficient 

use of 5G capabilities and provide greater flexibility and efficiency in data transmission. 5G 

access networks are critical to enabling high-demand applications and real-time connections in 

the fifth-generation communications ecosystem [38]. 

 

 

a)  b) 

Figure 2.2. a) The NSA architecture, b) The SA architecture. 

 

2.1.1.1.2 5G Network Core 

The main components of the 5G network core (according to 3GPP) are essential elements that 

collaborate to manage and provide connectivity in the 5G network. These include the Access and 

Mobility Management Function (AMF) that controls device authentication and mobility, the 

Session Management Function (SMF) that establishes and manages communication sessions, and 

the User Plane Function (UPF) that handles user data transfer [39]. In addition, the Unified Data 

Management (UDM) stores user information and service profiles, and the Authentication Server 

Function (AUSF) authenticates users. Other components include the Network Slice Selection 

Function (NSSF) for managing custom network segments, the Policy Control Function (PCF) that 

controls QoS, the Network Exposure Function (NEF) that enables exposure of network 

capabilities to third-party applications, the Charging Function (CHF) for cache management, and 

the Unified Data Repository (UDR) for storing and managing user data. These components work 

together to support connectivity, security, service customization, and efficiency in the 5G network 

[40]. 

The modular and flexible architecture of the 5G network (see Figure 2.3) allows adaptation to a 

wide range of use cases and applications, making it a versatile platform for providing advanced 

and personalized communication services to users. 
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Figure 2.3. 5G network core architecture. 

 

2.1.1.2 5G Technology Use Cases 

As previously mentioned, 5G technology represents an important step in the evolution of mobile 

communications by providing a diverse ecosystem of applications and services. To address 

connectivity demands and understand its full potential, it is essential to explore the three 

fundamental categories of use cases presented by the 3GPP. Each of these categories addresses 

specific connectivity needs and leads to innovations in a wide range of areas such as healthcare, 

manufacturing, transportation, and entertainment [41](see Figure 2.4). Through this exploration, 

we will understand how 5G is revolutionizing communications and providing advanced solutions 

to meet the current and future demands of an increasingly interconnected society. Next, three use 

cases with their features and enabling services are described, namely Ultra-Reliable Low Latency 

Communications (URLLC), enhanced Mobile Broadband (eMBB), and massive Machine Type 

Communications (mMTC).  

Ultra-Reliable Low Latency Communications is an essential component of the 5G network due 

to its capability to provide extremely fast connectivity and minimal latency. This enables a wide 

range of critical real-time applications, from remote surgery and industrial automation to 

connected transportation or Vehicle-to-Everything (V2X) mission-critical applications in areas 

such as healthcare and public safety [42]. URLLC is essential for improving safety, efficiency, and 

quality of life in diverse sectors, enabling near-instantaneous actions and decisions in a multitude 

of contexts, and is a major driver of the evolution of mobile communications in the age of 5G [43]. 

Enhanced Mobile Broadband in the 5G network is a key technical feature that provides high-

speed, high-capacity connectivity. It is accomplished by using a wider frequency spectrum, 

advanced modulation technologies, and massive MIMO antennas, enabling data rates of several 

gigabits per second and extremely low latency. Moreover, eMBB incorporates techniques such as 

carrier aggregation and beamforming to optimize spectrum usage and improve signal quality [44]. 

This not only benefits end users with fast downloads and high-quality virtual reality experiences 



Background and State of the Art 

18 

 

but also enables business and industry applications that require reliable, high-performance 

connectivity, driving innovation and digital transformation in diverse sectors. 

Massive Machine Type Communications in the 5G network is characterized by the capability to 

efficiently connect a wide range of Internet of Things devices on a large scale. This is 

accomplished through advanced multiplexing and modulation techniques, enabling thousands of 

devices to transmit small data simultaneously in a shared frequency spectrum [45]. In addition, 

mMTC benefits from efficient medium access protocols, such as enhanced random access, which 

minimize data collisions in multi-device environments. Such efficiency is critical for applications 

that require real-time monitoring and control of IoT devices dispersed over large areas, such as 

industrial automation and resource management [46]. 

 

Figure 2.4. Three main 5G use cases with associated applications. 

 

2.1.1.3 Network Slicing 

The context of Network Slicing in the 5G technology represents a technical innovation of great 

relevance. As discussed previously in the 5G framework, Network Slicing involves the ability to 

create multiple independent and customized virtual networks within a shared physical network 

infrastructure. This network segmentation is based on the allocation of specific network 

resources, such as bandwidth, latency, and capacity, to each virtual "network slice," enabling the 

individual needs of various applications and services to be met [47](see Figure 2.5). 

Resource Virtualization: Network Slicing relies on the virtualization of network resources. 

Physical network resources are abstracted and divided into virtual segments that are 

dynamically assigned to each network slice. 
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Traffic Isolation: Each network slice is completely independent and isolated from the others, 

ensuring that traffic and data from one slice do not interfere with or affect the others. This 

isolation is achieved through advanced configuration and security techniques [48]. 

Service Customization: Each slice is individually configured to meet the specific requirements 

of a particular application or service. For example, a slice may be optimized for IoT applications 

that require low latency, while another may be focused on high-quality video streaming [49]. 

Dynamic Orchestration: Network orchestration plays an essential role in Network Slicing. An 

orchestration system monitors and manages network resources dynamically, allocating and 

reallocating resources according to the changing needs of each slice in real-time. 

As far as the application component is concerned, Network Slicing has a significant impact on 

several applications and scenarios. For example, in the field of massive IoT, the ability to create 

dedicated network slices enables efficient connectivity for a wide range of IoT devices, adapting to 

the particularities of traffic and energy efficiency of these devices. For applications that require 

high speed and quality, such as 4K and 8K resolution video streaming (eMBB), Network Slicing 

configures network slices with significant bandwidth and low latency, improving the user 

experience [50]. For ultra-reliable and low-latency communications, this approach provides 

network slices with minimal latency and high reliability, essential for critical real-time 

applications such as autonomous vehicle control and industrial automation [51]. Furthermore, 

the ability to establish customized 5G private networks provides organizations with an adaptable 

solution to meet their connectivity and security needs in enterprise environments. 

 

Figure 2.5. Network slicing. 

 

2.1.1.4 Network Function Virtualization (NFV) 

This technology is a fundamental element in the context of 5G technology. This innovation 

revolutionizes the way network functions are implemented and managed in telecommunications 

infrastructures. NFV stands as an essential enabling foundation that allows telecom operators 

and service providers to migrate network functions traditionally hosted on dedicated hardware to 
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a virtualized environment. This means that tasks such as routing, firewalling, traffic 

management, and other network functions can run as software on virtualized servers instead of 

requiring dedicated physical devices. 

This transformation has some key advantages in 5G deployment. Primarily, it facilitates rapid 

deployment and scalability of services, as network functions can be provisioned and scaled on 

demand without the need to purchase expensive new hardware [52]. It also promotes flexibility 

and customization, allowing networks to be tailored to various applications, from IoT to critical 

communications. Furthermore, it reduces operational costs by eliminating the requirement to 

maintain multiple physical devices and enabling centralized and efficient management of 

network resources. 

2.1.1.5 Software Defined Networking (SDN) 

This is a fundamental concept that has become even more relevant in the context of 5G 

technology. SDN is a network architecture that enables centralized and programmable 

management of network resources, rather than relying on static configurations and dedicated 

network devices. This technology is essential to achieve the flexibility, efficiency, and adaptability 

needed in 5G networks, which should be able to satisfy a wide variety of applications and services 

[52].  

SDN enables more dynamic allocation of network resources to meet the changing bandwidth 

and latency demands of various applications, such as High-Definition (HD) video streaming, IoT, 

and real-time critical applications [53] (see Figure 2.6). In addition, SDN combined with NFV 

facilitates the implementation of Network Slicing, a key feature of 5G networks. 

 

Figure 2.6. SDN vs NFV. 
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2.1.2 The Upcoming 6G Network 

The next generation of mobile networks, 6G, is on the horizon for mobile communications 

technology. Although 5G technology is still being deployed and expanded, the technology 

community is already looking toward the future and possible features of 6G due to the challenges 

and shortcomings encountered during the actual deployment of 5G. As the main feature, it is 

estimated that in terms of speed, 6G will use a more advanced frequency spectrum that would 

increase data throughput 100 to 1000 times faster than 5G [8]. Offering even faster transmission 

speeds, near-zero latency, and an ability to support a variety of advanced applications, from 

hyper-realistic virtual reality to full automation, 6G promises to take connectivity to a new level 

[9]. 

This research effort is not just about speed and capacity; it is an exploration of how technology 

can merge with artificial intelligence, sustainability, security, and privacy to redefine the way we 

live, work, and communicate. From global collaboration to the incorporation of nanotechnology 

and advanced optics, 6G research is shaping the future of connectivity in ways we could only 

imagine. The next decade is expected to be dedicated to 6G networks (2030-3025) aiming to make 

"everything connected," in fact, several countries have already started programs for the 

development of a 6G ecosystem, including Finland with its flagship 6Genesis project [41]. As we 

immerse into this exciting world of possibilities, we prepare to discover the unimaginable and 

take mobile connectivity to a new dimension. 

The future of 6G connectivity 

6G connectivity is shaping up to be a revolution driven by artificial intelligence. Thorough 

integration of AI into 6G networks will result in smarter and more efficient connectivity, capable 

of adapting in real-time to traffic demands. It will enable mind-to-mind communication, as well as 

high-fidelity augmented and virtual reality experiences anywhere, anytime [54]. Moreover, 

holographic communication and visualization will become a reality through AI. This convergence 

of technology and global intelligence will make it possible to address challenges such as disaster 

management and remote medical care more effectively [55]. However, it is important to keep in 

mind that the advent of 6G is still in its early stages of development. Research and development 

in this area are ongoing, and the implementation of 6G on a global scale will take time. We expect 

6G to play a pivotal role in enabling even more advanced applications and technologies as we 

move into this new era of connectivity. 

2.2 Internet of Things 

The IoT is a dynamic and highly versatile network that interconnects a huge variety of physical 

devices and everyday objects. These devices range from household appliances, security systems, 

and medical equipment, to autonomous vehicles. They are equipped with sensors, actuators, and 

communication technology that allow them to collect and share data without requiring direct 
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human interaction. When these objects can perceive the environment and communicate, they can 

understand complexity and respond quickly [56]. In this context, fifth-generation communication 

technologies play a key role in the research for solutions to support millions of devices. 5G, along 

with techniques such as MIMO, and Non-Orthogonal Multiple Access (NOMA), become key 

enablers for various IoT applications [57]. Moreover, the IoT architecture enables anytime, 

anywhere interaction and communication, generating an unprecedented number of events and 

data (Big Data). This data can be sent to the cloud for further analysis to identify connections and 

patterns using artificial intelligence methods [58]. AI, which will be discussed later, is an 

experience-based system, where machine learning algorithms can learn what are the best actions 

to facilitate daily tasks or improve productivity without being explicitly programmed. Therefore, 

AI will be a fundamental enabler in enhancing the capabilities of IoT systems. 

An essential component of the IoT is its technology platform. This platform consists of a 

comprehensive set of components, encompassing both software and hardware, carefully designed 

to enable and monitor the execution of IoT-related applications [59]. This infrastructure is 

essential to provide a wide range of tools and services to facilitate the creation, operation, and 

efficient management of IoT solutions. Some of the key components of this platform include 

devices and sensors, which are responsible for collecting data from physical environments, 

ranging from temperature and humidity sensors to Global Positioning System (GPS) tracking 

devices and cameras [60]. The IoT platform must provide robust and reliable connectivity for data 

transmission between devices and servers, which may include wireless technologies such as Wi-

Fi, Bluetooth, 4G, 5G, and more. 

The data collected requires processing to extract valuable information, which involves the use 

of processing servers capable of analyzing the data in real-time. To guarantee data integrity, 

secure storage must be provided, which may involve local servers or cloud storage systems. 

Security is critical since IoT involves the transmission of data, so it is important to implement 

measures that protect the privacy of information and prevent unauthorized access [61]. 

The platform must also enable efficient management of IoT devices, user interfaces, and 

applications to interact with other devices and access data. Additionally, the platform must 

integrate with existing systems and technologies and must be scalable to handle the potential 

growth of the number of devices and workload without compromising performance. Likewise, it 

can automate actions based on specific events and provide advanced data analytics, generating 

reports for valuable information. Compatibility with various platforms is crucial to ensure 

interoperability [62]. 

IoT is an adaptable technology with a wide range of applications in diverse fields. Some of the 

most prominent areas where IoT is used include the transformation of cities into Smart Cities, 

process automation in Industry 4.0, smart agriculture, healthcare with connected devices, smart 

homes, advanced transportation, and logistics systems, energy efficiency and smart grids, 
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environmental monitoring, security and surveillance, personal wellness tracking, innovation in 

education, IoT in aquatic environments (IoUT) and more [63][64] (see Figure 2.7). IoT continues 

to expand as technology evolves, improving efficiency and decision-making in a wide variety of 

sectors and improving people's quality of life. 

 

Figure 2.7. Internet of Things different application fields. 

 

2.2.1.1 Smart Cities 

Nowadays, there is no universal agreement on the definition of Smart Cities, which has led to a 

diversity of approaches in the literature. In this context, a definition describes a smart city as one 

that prioritizes the improvement of the Quality of Life (QoL) of its citizens [65] and the efficient 

management of its resources; especially through the use of information and communication 

technologies is proposed. ICT infrastructure is materialized as a smart network, which integrates 

several systems and services in different areas such as energy [59], transportation, public 

administration, security, health, and environment (see Figure 2.8). The overall purpose of this 

network is to provide a more efficient, sustainable, and convenient urban experience [66]. 

Smart cities incorporate sensors, IoT devices, advanced communication networks, and real-time 

data analysis systems to collect information and enable instant decisions that improve quality of 

life. Citizens interact with these systems through multiple devices, such as smartphones, 

vehicles, and connected homes. The integration of devices and data with physical infrastructure 

and urban services has the potential to not only reduce costs but also improve sustainability. IoT 

plays a key role in improving energy distribution, optimizing waste management, reducing traffic 

congestion, and even improving air quality [64]. 
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Figure 2.8. Smart cities and digital transformation through the Internet of Things. 

 

The enabling technologies for the proper functioning of smart cities include the following: 

Technology infrastructure: The smart city requires a solid ICT infrastructure; these 

technologies must be reliable and ubiquitous. IoT is quickly gaining popularity and is being used 

for different applications. However, wireless technologies are diverse, and their use must be 

considered depending on the application. Traffic type, distance, power consumption, and number 

of nodes are some of the considerations that must be taken into account when deciding how to 

transmit the collected data [65]. 

Citizen Participation: This process improves the quality of life by aligning technological projects 

with the real needs of the community, promoting sustainability through the integration of eco-

friendly ideas. Additionally, it also strengthens the legitimacy and support of the population 

while fostering innovation and creativity. Moreover, citizen participation ensures transparency 

and accountability in decision-making and offers the flexibility to adapt to changing urban needs. 

Finally, it not only leads to more effective smart cities but also empowers the community and 

contributes to the creation of more livable and sustainable urban environments [67]. 

Systems integration and open data: A smart city involves the integration of multiple systems 

and services into a centralized platform. These systems need to be interconnected and share data 

efficiently to enable smart and coordinated management of city resources. Although the 

generated data is shared cautiously due to privacy concerns and security leaks, it is a crucial 

aspect of Smart Cities. The ability for all citizens to share information and combine it with 

contextual data for real-time analysis is a key skill [68]. Hence, informed decisions are made in 

real-time, and multiple sectors collaborate to achieve better sustainable outcomes. Some 

examples of cities that have successfully embraced open data initiatives include Amsterdam and 
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Copenhagen, which have implemented several real-time monitoring and management 

applications [69]. 

Security and privacy: In a smart city, data is collected and analyzed in real-time to optimize 

urban services. This data often includes sensitive personal information, such as citizen locations 

and preferences; highlighting the need to ensure the protection and ethical use of this data to 

prevent potential abuse. Advanced technological infrastructure, ranging from communication 

networks to sensors and surveillance cameras, can be vulnerable to cyber-attacks, making it 

crucial to implement robust security measures to protect both the data and the integrity of the 

city and its inhabitants. 

In this context, the question arises of how to protect against hackers and cyberattacks, as well 

as prevent data theft [68]. The answer lies in the deployment of physical data vaults, strong 

authentication solutions, and effective identity management to ensure data is only shared with 

trusted and authorized users. In addition, it is essential to introduce appropriate regulations to 

address threats and potential gaps in the system, including the establishment of minimum-

security requirements for connected devices. For smart cities to operate successfully, confidence 

in their security is critical. Moreover, all actors in the ecosystem, ranging from governments and 

businesses to technology and service providers, must assume responsibility for complying with 

basic security standards [70]. 

Flexible monetization schemes:  In the context of the IoT and smart cities, the implementation 

of effective monetization schemes becomes a critical aspect to ensure the economic viability of the 

initiatives and services developed [71]. Software integration plays a central role in the structure 

of IoT solutions, enabling several actors of the ecosystem, including developers, integrators, and 

government authorities, to share the benefits of their contribution. In this regard, a high value 

and reward should be given to the intellectual property of each participant. [72]. 

Software subscription-based business models stand out as an option that allows each 

contributor to extract value from their contributions to the smart city ecosystem. However, 

fairness and transparency are essential elements in these schemes, and special attention must be 

paid to privacy and data security issues. Furthermore, to ensure citizen support and engagement, 

it is crucial to encourage active participation and provide clear communication around 

monetization models, involving the community in decision-making related to smart city services 

and infrastructure [73]. 

As urban areas continue to expand, smart city technology becomes a tool for improving 

sustainability and quality of life. Employing ubiquitous connectivity, focusing on open data, and 

implementing comprehensive security and software monetization solutions are key enablers to 

meet the evolving needs of smart cities and enhance the experience of all ecosystem stakeholders. 
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2.2.1.2  Internet of Underwater Things 

The IoUT [74] refers to the application of IoT technology in aquatic environments, such as 

oceans, seas, lakes, and rivers. Similarly, to conventional IoT, IoUT uses sensors and connected 

devices to collect data and transmit information over communication networks, but the focus is 

underwater [75].  

IoUT is important in underwater applications such as marine environmental monitoring, 

marine life observation, underwater exploration, aquatic resource management, disaster defense, 

and prediction, safety in aquatic activities, mission-critical applications, and scientific research in 

oceans and underwater environments [76]. Different components, including underwater sensors 

(e.g., Acoustic Doppler Current Profiler (ADCP)), autonomous underwater vehicles (AUVs), 

unmanned surface vehicles (USVs), surface buoys, and UAVs, acoustic communications, cellular, 

satellite or radio frequency links are integrated to achieve a complete communication ecosystem 

between devices located on the seafloor and servers in the cloud [77]. Figure 2.9 shows the 

general architecture of IoUT. 

 

Figure 2.9. The network architecture of IoUT. 

 

The pattern analysis of large volumes of data collected by the IoUT is an emerging field that 

faces specific challenges due to its aquatic environment. The combination of 5G networks and 

artificial intelligence plays a critical role in this context.  

Approaches to analyze this data include: 

Specific Sensors and Devices: The IoUT employs sensors and devices designed for underwater 

environments to collect data. This may include sensors for temperature, salinity, pressure, 
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currents, sonar, cameras, and other specialized devices. The analysis starts from the collection of 

accurate data through these sensors [78]. 

Underwater Communications: 5G networks provide ultra-fast, low-latency underwater 

connectivity. This high speed and transmission capacity are essential for efficient data 

transmission from sensors and IoUT devices, enabling real-time communication in underwater 

environments but at short distances. 

Data Processing Algorithms: Specific algorithms are developed for underwater data processing. 

These algorithms may include filtering techniques, error correction, interpolation, and 

transformations to guarantee data quality. The combination of 5G and AI enables real-time 

processing of data, this instantaneous processing is critical in underwater autonomous navigation 

applications, where AI must analyze sensor data and make autonomous decisions to control 

underwater systems safely and efficiently. 

Modeling and Prediction: In IoUT data analysis, machine learning and AI approaches help in 

processing massive information and establishing the relationship between factors contributing to 

device failures. AI algorithms can discover complex patterns, detect anomalies, predict future 

events, and improve decision-making [75]. For instance, in technical applications such as marine 

life monitoring and underwater infrastructure inspection, AI plays a key role in identifying 

behaviors, classifying species, and assessing structural integrity. 

Data Visualization and Presentation: Visual representation of underwater data is essential for 

researchers to understand patterns. 3D visualization tools and specialized software are used to 

display underwater data effectively (digital twins). 

Resource Optimization: AI is also used to optimize resource management in IoUT applications, 

such as power management, data distribution, and resource allocation. This leads to more 

efficient use of resources and sustainable operation in underwater environments. 

Data Security: In Underwater Sensor Networks (UWSNs), it is important due to the specific 

challenges of the environment. Issues of data integrity, confidentiality, protection against cyber-

attacks, and location privacy must be addressed. Encryption techniques, digital signatures, 

advanced measures against cyber-attacks, secure key management, and network resilience are 

used to ensure security. These security features are essential to protect sensitive information and 

ensure the reliability of applications in challenging underwater environments [79]. IA also plays a 

key role in detecting and responding to underwater threats, including identifying suspicious 

activity in maritime environments and protecting critical underwater infrastructure. 

These approaches enable researchers and professionals to analyze and understand the data 

collected by the IoUT, which in turn drives advances in marine exploration, environmental 

conservation, and other underwater applications. 
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2.2.1.2.1 Underwater Wireless Communications 

Underwater Wireless Communications (UWCs) is a field of technology that focuses on data 

transmission in aquatic environments. They are highly relevant due to their wide range of 

applications and the resolution of critical challenges in aquatic and underwater environments. 

UWCs play a fundamental role in marine exploration and monitoring by enabling real-time data 

transmission from underwater sensors and devices for scientific research and environmental data 

collection [80]. They are also essential in the offshore energy industry, where they ensure 

connectivity for operations and monitoring, contributing to the safety and efficiency of these 

activities. On the other hand, it also plays an important role in communication for AUVs and 

Remotely Operated Vehicles (ROVs), facilitating cooperation, data collection, sending 

instructions, etc., in complex underwater environments [22]. In addition, UWCs are essential for 

emergency connectivity, such as in rescue and maritime security situations. Finally, with 5G 

networks expanding, UWCs become even more relevant in coastal areas as well as in the 

deployment of 5G applications in marine environments, ranging from ship and coastal platform 

connectivity to entertainment and tourism applications on the water. [81]. 

Underwater communications involve a variety of technologies and methods for transmitting 

data in an aquatic environment. Some of the more prominent approaches are included below. 

Underwater Wireless Acoustic Communications 

Underwater Wireless Acoustic Communications (UWACs) are efficient in transmitting signals 

underwater because sound is an effective communication medium in aquatic environments since 

it can transmit over certain distances with relatively little signal degradation. Underwater 

acoustic communications are crucial in applications including underwater exploration, real-time 

monitoring, and communication between AUVs [82]. Although UWAC is widely used, the 

underwater acoustic communication media is limited in several aspects, e.g., extremely slow 

propagation, acoustic interference from noise or marine life, limited range due to sound 

attenuation and scattering, significant latencies, vulnerability to changing environmental 

conditions, and limited bandwidth [83]. On the other hand, the efficiency of underwater acoustic 

communications is due to its ability to overcome certain obstacles and transmit signals through 

water in situations where other communication technologies may not be feasible. 

Underwater wireless radio frequency communications 

Underwater wireless radio frequency communications (UWRFC), this type of communication 

uses Radio Frequency (RF) waves for underwater communication and employs specific 

frequencies (between a few KHz and 1 GHz). Underwater electromagnetic communications are 

outstanding due to their noise immunity, efficient adaptation to changes in the environment 

(water/air), extremely tolerant to turbulence and water turbidity, and overcoming some of the 

limitations of acoustic communications regarding distance and transmission speed [84]. Although 

RF is efficient in terms of speed and latency, it should be noted that RF propagation is better in 
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shallow water above tens of meters, known as buoyant RF underwater communication, so the 

propagation will be limited at greater depths due to signal attenuation [85].  

Underwater communications research is crucial because it enables a broader understanding of 

the oceans, the exploration of underwater resources, and the interconnectivity of devices for 

different applications. Furthermore, its importance lies in the capacity to overcome 

communication challenges in an underwater environment and enable the transmission of critical 

data in real-time in this particular environment.  

Underwater optical wireless communication 

Underwater optical wireless communication (UOWC) refers to data transmission systems that 

use optical waves instead of traditional electromagnetic waves for information transmission. 

These systems use pulses of light, leveraging the optical properties of water, which can be 

generated by LED lights or underwater lasers. UWOCs offer many technical advantages such as 

high data rates, high bandwidth, high reliability, low installation/operating costs, and low latency 

[86].  

Despite its multiple advantages compared to other underwater communication techniques, 

UOWC is limited to short range (typically up to several tens of meters). This is due to the high 

absorption of water in the optical frequency band and the high scattering of suspended particles. 

However, there is a blue-green wavelength optical window underwater with relatively low 

attenuation [87]. 

Therefore, extensive research is being carried out to increase the transfer of broadband optical 

signals over longer distances, with the benefit of different wavelengths [88]. Table 2.3 

summarizes the underwater wireless communication technologies [88]. 

Table 2.3. Comparison between existing underwater wireless communication technologies. 

Parameters Acoustic RF Optical 

Attenuation 
Distance and frequency-

dependent (0.1–4  dB/km) 
Frequency and conductivity 

dependent (3.5–5  dB/m) 
0.39 dB/m (ocean) 
11 dB/m (turbid) 

Speed 1500 ms-1 2.3 × 108 ms-1 2.3 × 108 ms-1 

Data Rate kbps Mbps Gbps 

Latency High Moderate Low 

Distance more than 100 km ≤ 10 m 
10–150 m 

(500 m potential) 

Bandwidth 1 kHz–100 kHz MHz 150 MHz 

Frequency Band 10–15 kHz 30–300 MHz 5 × 1014 Hz 

Transmission Power 10 W mW–W mW–W 

2.3 Artificial Intelligence 

It refers to the ability of machines to perform tasks that normally require human intelligence. 

These tasks concern learning, reasoning, problem-solving, perception, and understanding of 
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natural language, and are based on algorithms and mathematical models. This enables machines 

to perform actions autonomously and improve their performance as they are exposed to more data 

and experiences. The applications of AI are diverse and can be found in fields such as virtual 

assistants, autonomous vehicles, medical diagnostics [89], and enterprise data analytics. 

At the beginning of the new millennium, AI has experimented with a renaissance boosted by 

advances in machine learning algorithms and the growth in the processing capacity of computers. 

Nowadays, AI is constantly improving and has made significant advances in fields such as speech 

recognition, computer vision, natural language processing, and robotics [90]. These are only a few 

examples of applications that are transforming entire industries. In addition, deep learning (as 

part of machine learning) has revolutionized AI learning by enabling machines to analyze and 

understand even more complex data. 

AI is a technology that has come a long way since its inception and has become an essential 

part of our daily lives. However, this steady growth also raises significant ethical concerns. While 

AI becomes more deeply integrated into society, it is critical to address issues such as privacy 

[91], fairness, transparency, and ethical decision-making in the design and use of systems based 

on AI [92]. The global community must work together to establish standards and guidelines to 

guide the responsible development of AI, ensuring that this technology benefits humanity. Figure 

2.10 shows the subdivision of artificial intelligence into its different fields. 

 

Figure 2.10. Overview of the relationship between artificial intelligence, machine learning, deep learning, 

and reinforcement learning. 

 

2.3.1 Machine Learning 

Machine learning is a part of artificial intelligence that focuses on developing algorithms and 

models that allow computers to automatically "learn" from data. The aim is to generate or 

improve predictions by automating statistical models, through the classification of data 
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(instances) that are provided without the need to explicitly program rules, allowing the detection 

of different patterns or anomalies in large volumes of data. Thus, it is possible to predict future 

behaviors with the ability to improve autonomously over time without human intervention. This 

technique has revolutionized the approach of companies and organizations to decision-making 

and complex problem-solving [93]. The machine learning process can be divided into three main 

steps. 

Data preparation: In this step, data is collected and prepared for model training. This involves 

cleaning data to remove useless or duplicate information, normalizing data to ensure that the 

data is presented uniformly, and splitting data for training, and test sets. 

Model training: In this step, the training set is used to adjust the model parameters and 

improve its accuracy. To do so, the model iterates several times on the training data, adjusting 

the parameters after each iteration by backpropagation, to minimize the model prediction error. 

Model evaluation and testing: Finally, the test set is used to evaluate the accuracy of the model. 

The model predictions are compared with the real responses of the test set and performance 

measures such as accuracy, error, and sensitivity are calculated. 

Overall, the learning process is iterative and focuses on continuously improving the accuracy 

and efficiency of the model as new data is presented to it. With the advancement of technology 

and the growth in the amount of data available, machine learning is becoming an increasingly 

important and necessary tool for decision-making and complex problem-solving in a wide variety 

of fields [94]. 

In the machine learning field, there are several types of approaches, each designed to address 

distinct types of problems and tasks. ML classifies learning based on the level of supervision as 

supervised learning, unsupervised learning, semi-supervised learning, and reinforcement 

learning (detailed in section 2.3.3) [95]. Next, we will summarize each of these learning 

approaches.  

2.3.1.1 Supervised Learning 

Supervised learning is a fundamental technique in the field of machine learning. It is used to 

train models that can make accurate predictions based on a set of input data. This type of 

learning is based on a set of training instances that have their respective "identifications" or 

labels. These labels enable the algorithm to match their input value (features) with the desired or 

target output. During the training process, the weights of the model are adjusted until the output 

becomes the desired one [96]. This prior knowledge of the labels will help the algorithm to 

understand the data when it is processed for further prediction or decision-making, as shown in 

Figure 2.11. 



Background and State of the Art 

32 

 

 

Figure 2.11. A labeled training set for supervised learning. 

 

There are many supervised learning algorithms, including linear regression, logistic regression, 

decision trees, neural networks, and so on. Each algorithm has its strengths and weaknesses and 

is suitable for distinct types of problems. The expected outcome of classification algorithms is that 

the system can identify, through its input features, certain patterns that allow the algorithm to 

classify the information into distinct groups [97]. On the other hand, regression algorithms 

respond with a specific number or value associated with the input data (e.g., predicting the cost of 

a vehicle, given a set of input characteristics), as shown in Figure 2.12. 

 

Figure 2.12. Logistic Regression. 

 

2.3.1.2 Unsupervised Learning 

Unsupervised learning is the paradigm that can obtain knowledge only from the input data 

without specifying the desired output. Unlike supervised learning, in unsupervised learning the 

algorithm is fed only with the input values (features), without the labels; the goal is for the 

algorithm to classify data and group them considering their similar characteristics. Furthermore, 

in unsupervised training, the goal is to discover unknown structures or patterns in the data. For 

instance, a clustering algorithm (Figure 2.13) can group data into different categories based on 

their similarity, while a dimensionality reduction algorithm can find important features in the 

data to represent them in a lower dimensional space [98]. 
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Figure 2.13. Clustering. 

 

Unsupervised training is used in a wide variety of applications, such as customer segmentation 

in marketing, anomaly detection in security systems, genomic data exploration, and 

understanding weather and geophysical patterns [99]. 

2.3.1.3 Semi-supervised Learning 

This learning method aims to leverage both labeled and unlabeled data to improve the 

performance of learning algorithms. Semi-supervised learning is based on the fact that in many 

cases, having large amounts of unlabeled data along with a limited set of labeled data may be 

more feasible than having a fully labeled data set [100]. 

Semi-supervised learning has proven useful in scenarios where labeled data collection is costly 

or difficult. This allows taking advantage of the information present in unlabeled data to improve 

the predictive performance and generalization capability of machine learning models [101]. 

Overall, semi-supervision focuses on the differential treatment of data points based on the 

presence or absence of associated labels; for labeled points, the algorithm employs a conventional 

supervision approach to fine-tuning the model weights; while for unlabeled points, the algorithm 

aims to minimize the difference in predictions among other similar training examples. 

For a better understanding, consider the following dataset in Figure 2.14: A binary 

classification problem with one class for each group of data. Suppose we have only seven labeled 

data points and the remainder unlabeled. 
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Figure 2.14. Dataset example for a binary classification problem. 

 

On the one hand, supervised learning involves updating the model parameters to reduce the 

average difference between the predictions generated and the labels provided. However, in 

situations where labeled data are scarce, this process could result in the creation of a specific 

decision boundary that only fits the labeled points, without generalizing across the entire data 

distribution (see Figure 2.15a). 

 

a) b) 

Figure 2.15. a) Supervised Learning Decision Boundary, b) Unsupervised Clustering. 

 

On the other hand, unsupervised learning is dedicated to cluster points based on the similarity 

of their features. However, the absence of labels to guide the training process can lead an 

unsupervised algorithm to identify clusters that do not correctly correspond to the true class 

distribution (see Figure 2.15b). 

In scenarios where the availability of labeled data is limited, or when working in complex 

clustering environments, supervised and unsupervised techniques may face difficulties in 

achieving optimal results. However, in a semi-supervised context, labeled data points have a 

significant role by acting as reference markers. These points not only support the model 

predictions but also provide structure to the learning problem by determining the number of 
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classes and the assignment of groups to each class. Unlabeled data, on the other hand, provide 

invaluable context. When exposing the model to this unlabeled information, a better 

understanding of the overall distribution of the data is achieved. This extended exposure to 

unlabeled data allows us to more accurately estimate the full shape of the distribution, which 

significantly improves the predictive ability of the model. 

The strategic combination of labeled and unlabeled data in model training offers the possibility 

of developing more accurate and robust models. In this sense, the semi-supervised approach 

within our specific dataset has the potential to approximate the actual distribution, as illustrated 

in Figure 2.16. 

 

Figure 2.16. True class distribution for dataset example for a binary classification problem. 

2.3.2 Deep Learning 

Deep Learning, although it may seem a new theory, began to be investigated more or less at the 

beginning of the 1990s. Due to video games and the development of graphics cards that contain a 

series of matrix calculations, it has been possible to establish the basis for practically all 

technologies based on machine learning. 

2.3.2.1 Deep Neural Networks (DNN) 

DNNs are based on Artificial Neural Networks (ANN), which in turn are based on the 

functioning of the human brain, in particular on the connections and operations performed by 

neurons [102]. These networks are designed to simulate information processing in biological 

systems and are part of machine learning or artificial intelligence. DNNs are a type of artificial 

neural network composed of several layers of interconnected neurons. Each layer processes the 

data received from the previous layer and transforms it into a more abstract and complex 

representation. These networks are used to learn patterns in large data sets, and they are 

particularly effective for classification and prediction tasks. An explanation of the basic 

architecture of deep neural networks is presented below (see Figure 2.17). 
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Figure 2.17. Deep neural network structure. 

 

Input Layers: The initial layer receives the input data, which are generally numeric vectors 

representing features, such as pixels in the case of images. 

Hidden Layers: These intermediate layers, also called hidden layers, perform nonlinear 

transformations of the input data. Each hidden layer is composed of multiple neurons, and the 

operations performed on these layers are based on activation functions, such as the Rectified 

Linear Unit (ReLU) function, which introduces nonlinearities into the model [103]. 

Output Layer: This last layer generates the predictions or results. The structure of this layer 

depends on the task being addressed. It may consist of a single neuron for binary classification 

problems or several neurons for multiclass classification or regression. 

For the deep neural networks training process, we must consider two important steps: 

Forward Pass: During this step, input data is propagated through the network from the input 

layer to the output layer. Each neuron computes a linear combination of the inputs, followed by 

the operation of an activation function. This is repeated layer by layer. 

Backpropagation: In this step, the predicted output is compared with the real value (label or 

desired value), and the error is calculated. Then, the error is propagated backward through the 

network, and the weights of the neurons in each layer are adjusted to minimize the error. This 

process uses optimization algorithms, such as gradient descent, to update the network 

parameters [104]. 

Due to the aforementioned characteristics, DNNs are a powerful method for solving large-scale 

real-world problems [105]. DNNs are used in computer vision for image recognition, Natural 
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Language Processing (NLP) in text translation and analysis tasks, personalized recommendations 

in streaming and e-commerce platforms, creation of intelligent agents in games, robotics for 

perception and control of autonomous robots, bioinformatics in DNA and protein analysis, finance 

for financial data analysis, industrial automation, healthcare for medical diagnosis and patient 

monitoring [106], and for creative fields such as music and generative art. Their flexibility and 

ability to learn complex patterns make them a valuable tool in many fields, and they continue to 

transform many aspects of technology and everyday life. 

2.3.2.2 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of deep neural network architecture 

designed specifically for computer vision and image processing tasks. These networks have 

become a cornerstone in fields such as image classification, object detection, semantic 

segmentation, and many other applications related to image analysis. [107]. 

The distinguishing feature of CNNs is their ability to capture local patterns in images through 

the use of convolutional layers. Instead of connecting each neuron in the network to all neurons in 

the previous layer, as is done in fully connected neural networks, CNNs apply convolutional 

filters to local regions of the image. These filters are shifted across the entire image to extract 

local features. As the convolutional layers stack in the network, they become deeper and more 

complex, allowing them to detect higher-level features and abstract representations of the image. 

In addition to the convolutional layers, the architecture of CNNs typically includes pooling 

layers, which reduce the spatial resolution of the extracted features, followed by activation layers 

to introduce nonlinearity, such as the ReLU function. Finally, fully connected layers are included 

for classification or regression, and an output layer produces the final prediction [108] (see Figure 

2.18). The architecture of a CNN can vary in complexity. Popular architectures, such as AlexNet 

[109], VGG [110], ResNet [111], Inception [112], etc. have driven advances in the field of computer 

vision. These architectures can consist of multiple convolutional layers and are often pre-trained 

on massive datasets before fine-tuning the details of specific tasks [113]. 

CNNs have demonstrated high performance in a wide range of computer vision applications, 

such as object recognition, face detection, image segmentation, and others. In addition, they have 

been fundamental to the success of several artificial intelligence applications, such as 

autonomous vehicles, medical diagnostics, video analysis, and more. Their specific architecture 

and their ability to learn visual representations make them essential today for tackling complex 

computer vision problems [102]. 
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Figure 2.18. Convolutional neural network structure. 

 

2.3.3 Reinforcement Learning  

Reinforcement Learning (RL) is probably the most natural learning method that exists since it 

is based on the cause and effect generated by different situations. Human beings, for example, in 

the childhood stage, are confronted with situations that make them learn that something hurts 

them, and they do not do it again. When we talk about algorithms, the model is implemented in 

the form of an agent that must explore an unknown space and determine the actions to be carried 

out through trial and error. It will learn by itself through the rewards and penalties that it gets 

from its actions. The agent must develop the best possible strategy (policies) to obtain the 

greatest reward in time and effort. This learning can be combined with other types of learning, 

and it is very popular at the moment since, as mentioned above, the real world presents many of 

these scenarios [114]. 

Reinforcement learning is employed in a wide range of applications, such as robot control, 

gaming, resource management, online advertising, decision-making in finance, and so on. Some of 

the most common reinforcement learning algorithms include the Markov Decision Process (MDP), 

Q-learning, gradient policy, and value function approximation [115]. This type of learning is an 

exciting and evolving field of machine learning, with many practical real-life applications. As 

reinforcement learning becomes more sophisticated and is applied to a wide variety of problems, 

it has the potential to transform the way we interact with the world and make decisions in 

complex situations. 

2.3.3.1 Markov Decision Process 

It is a mathematical framework used in the field of reinforcement learning and sequential 

decision-making. This approach is fundamental for situations where an agent (i.e., a machine, 

robot, or any entity that can make decisions), must interact with an environment sequentially 

and dynamically. In MDP, the agent makes decisions in a stochastic environment, where the 

transition from one state to another and the rewards associated with each transition are 
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uncertain. Each state has a reward associated with it, which is used to guide the agent toward 

optimal decision-making. 

The agent's goal is to learn an optimal policy, i.e., a strategy that maximizes the expected 

reward in the long run. The agent's decisions are based on the information available in the 

current state and not on its history. This is known as the Markov property [116]. In the end, the 

agent will always try to maximize the reward through trial and error, and it will try different 

actions in the environment that will allow it to behave as we want it to. A discount factor can be 

applied to future rewards so that the agent values the immediate rewards more highly. The 

graphical representation of the MDP model is shown in Figure 2.19, where the key elements 

mentioned above (states, actions, rewards) are represented. 

 

Figure 2.19. Graphical representation of the MDP model.  

 

2.3.3.2 Q-Learning 

Q-learning (Watkins, 1989) is a reinforcement learning algorithm used to learn an optimal 

policy in a Markov decision process. As mentioned earlier, in an MDP, an agent makes decisions 

in a stochastic environment and learns to maximize a long-term reward. Q-learning aims to 

achieve the agent make decisions based on its current knowledge and a function called "Q-Value". 

Which is defined as the sum of the immediate reward and the expected reward in the next state; 

weighted by a discount factor that reflects the relative importance of future rewards [117]. It 

means that it allows experiencing the consequences of actions without the need for them to 

construct maps of the domains. 

The Q-learning process involves iterating through different states of the environment, selecting 

actions, and updating Q-values as the agent learns more about which actions lead to the highest 

rewards. This process is based on the Bellman equation, which relates the current Q-value to the 

Q-value of future states. 

The Q-learning algorithm consists of the following steps: 

Initialization: Initial Q values for all state-action pairs are set to zero. 
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Exploration and exploitation: The agent chooses the action in a specific state either by 

exploring (making random decisions) or exploiting (selecting the action with the highest Q value). 

Exploration is important for discovering new strategies. 

Iteration: The process repeats as the agent explores more states and accumulates knowledge 

about the optimal policy. 

Convergence: The Q-Learning algorithm ends when the Q-values converge to an optimal policy, 

which indicates the best action to take in each state to maximize future rewards [118]. 

Q-learning has been applied in a wide variety of fields, such as robotics, complex board games 

like GO, automatic control, robotic navigation, and recommender systems. It is especially useful 

in situations where the details of the environment are unknown, and the agent needs to learn an 

effective strategy through experience and interaction. 

2.3.3.3 Deep Q neural networks 

Deep Q Neural Networks (DQNs) are an advanced approach in the field of artificial 

intelligence, specifically in the field of reinforcement learning [119]. Reinforcement learning, as 

we discussed earlier, aims to achieve ideal behaviors as one interacts with a particular 

environment. DQNs are a significant evolution in this field and have demonstrated excellent 

results in complex tasks [120]. 

The fundamental basis of the DQN lies in the approximation of a function called "Q-function". 

This Q-function assigns a value to the quality of a given action in a particular state. In other 

words, it determines how beneficial an action is in a particular context. In reinforcement learning 

problems, the main challenge is to calculate this Q function accurately, since the space of states 

and actions can be vast and complicated [121]. DQNs use deep neural networks to approximate 

this Q function. These networks receive as input information about the current state of the 

environment and generate as output the Q value associated with each possible action. During the 

training process, DQNs adjust their weights and internal connections using techniques such as 

backpropagation to minimize the error in the Q-value predictions. The training aims to make the 

network learn to predict Q-values accurately, which will allow the agent to make optimal 

decisions in a particular environment. 

DQNs have had a significant impact on a wide range of applications, from learning artificial 

intelligence agents to play video games to decision-making in robotics [122][123]. Their ability to 

handle complex problems and learn high-level representations of an environment makes them a 

valuable tool in the research and application of deep reinforcement learning. 
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2.3.3.4 Deep Deterministic Policy Gradient 

Deep Deterministic Policy Gradient (DDPG) is an advanced reinforcement learning algorithm 

that addresses continuous control problems in complex and dynamic environments. The DDPG 

combines two fundamental concepts: DNN and deterministic policy. 

DDPG is used in situations where an agent must make sequential decisions to maximize a 

reward over time in a particular environment. Put more simply, one can imagine an autonomous 

drone that needs to learn to fly safely or a robot that must learn to perform delicate and precise 

tasks in the real world. The DDPG is a solution to these types of challenges. 

The role of Deep Neural Networks in DDPG is crucial. These networks are used to approximate 

two key components: the value function and the policy. The value function is an estimate of how 

good a certain action is in a particular state. It helps the agent evaluate actions and select those 

that maximize long-run rewards. In DDPG the policy is deterministic. The deterministic policy is 

a function that maps states directly to actions, rather than producing a probability distribution of 

actions, as in other reinforcement learning methods. A distinguishing feature of DDPG is its 

ability to handle continuous action spaces, where actions can be any value within a range, rather 

than discrete choices. This is critical in real-world applications, such as autonomous robotics or 

vehicle control, where precision in decision-making is required. 

The DDPG training process is iterative. The agent interacts with the environment, collects 

data, and uses it to gradually update and improve both the policy and the value function. As 

training progresses, the agent becomes more competent in selecting actions that maximize its 

performance and obtain rewards. This approach has proven successful in a range of applications, 

such as robot control, drone navigation, and gaming, where precise and continuous control is 

required to achieve specific tasks. 

2.4 Cloud Computing 

Cloud Computing (CC) is a technology that has transformed the entire process of how 

organizations store, manage, and access computing resources. It involves providing computing 

services, such as storage, processing, and applications, over the Internet. This approach has 

revolutionized the information technology industry and has provided countless benefits to 

businesses and end users. 

Fundamentally, cloud computing is based on the concept that computing resources can be 

virtualized and hosted on remote servers rather than depending on local hardware and software. 

It enables organizations to scale resources as needed, providing flexibility and efficiency in 

resource management [124]. The technical features of cloud computing involve the 

implementation of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software 

as a Service (SaaS) (see Figure 2.20). IaaS provides access to virtual computational resources, 

such as Microsoft Azure, Apple iCloud, and Google Drive. PaaS provides an environment for 
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developing and running applications, i.e., Google App Engine. SaaS provides web-based 

applications accessible through browsers, with no need to install and run applications on 

computers, e.g. Google Apps, Cisco WebEx, and Salesforce [125]. 

 

Figure 2.20. Cloud computing services: Iaas, PaaS, and Saas. 

 

Cloud computing presents many important features, such as auto-scalability that allows the 

expansion and contraction of resources efficiently, avoiding unnecessary investments in 

hardware. Global accessibility facilitates remote work and collaboration, thus, cloud service 

providers take care of maintenance and upgrades, as well as automatic backups. Virtualization 

and resource pooling provide efficiency and flexibility to the cloud infrastructure. Rapid elasticity 

enables tools and features to be changed quickly, and so on [126]. These advantages have driven 

the widespread adoption of cloud computing in several organizations. 

Although there are many advantages, there are significant challenges and considerations in 

cloud computing, such as data security and privacy, dependency on Internet connectivity, and cost 

management. Data security is a constant concern since data is stored outside the local 

environment. In addition, network latency and Internet connection availability can impact 

performance and accessibility. Cost management is crucial since excessive use of cloud resources 

can result in unexpected expenses [127][128]. 

The future of cloud computing is promising. It is expected to continue to evolve with advances 

in technologies such as quantum computing and artificial intelligence. The adoption of hybrid 

cloud and multi-cloud solutions is becoming more common, which will enable organizations to 

combine cloud resources from multiple vendors [129]. Moreover, automation and orchestration of 

cloud resources will be growth areas, which will further improve efficiency and scalability. 

Cloud computing has consolidated its position as the predominant method for data 

management in the Internet of Things (IoT). In addition to cloud computing, fog, and edge 

computing strategies have seen extensive use. The latter is used to boost the speed and efficiency 

of data processing, bringing processing power and intelligence directly to IoT devices responsible 
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for generating data (sensors) and executing actions on them (actuators). These computer 

technologies are characterized by their respective designs and objectives, although they often 

complement each other. A summary of each of these approaches is provided below. 

2.4.1 Edge Computing 

Edge Computing (EC) has experienced significant growth in recent years, driven by the 

demand for applications that require faster processing and low latency. Instead of relying on 

remote data centers or servers in the cloud, edge computing focuses on performing computation 

and data analysis tasks close to the data source [130]. This is essential for enabling more agile 

processing in applications ranging from the IoT to industrial automation systems, autonomous 

transportation, augmented reality, and mission-critical and real-time response applications [131]. 

By minimizing the need to transmit large volumes of data over the network, bandwidth 

utilization is optimized, and communication costs are reduced. It also strengthens data privacy 

and security by avoiding long transmissions and remote connections. In the context of 5G 

technology, edge computing becomes even more relevant. 5G networks offer exceptionally high 

speeds and low latency, which aligns perfectly with the needs of edge computing. When data 

processing is brought closer to the edge of the 5G network, faster connectivity and optimal 

performance are guaranteed in applications with immediate response requirements, such as 

autonomous vehicles and industrial monitoring [132]. In addition, edge computing has been 

applied in several areas, such as video surveillance systems, by processing the information 

received by the cameras before sending it to servers located in the cloud. It is also applied in the 

manufacturing industry to control machinery and in the healthcare sector to carry out real-time 

monitoring of patients [133]. 

The future of edge computing is certainly promising, with its continued expansion into fields 

such as the Internet of Things, artificial intelligence, and automation. However, there are 

challenges concerning management and maintenance, along with interoperability and security 

issues that need to be addressed for large-scale deployments [134]. 

2.4.2 Fog Computing 

The term "Fog Computing" was introduced by Cisco Systems and is an extension of cloud 

computing that was developed to address processing and latency limitations in IoT applications 

and other distributed systems. Instead of relying on remote servers in the cloud, Fog Computing 

brings data processing closer to the source, using local servers and edge devices [135]. This 

technology has evolved to accommodate the growing demand for real-time and low-latency 

applications, such as autonomous vehicles, augmented reality, and mission-critical applications. 

Fog Computing is a kind of bridge between edge computing and cloud computing (see Figure 

2.21) since it allows processing closer to the edge but not as far away as the cloud. This feature 
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allows for reduced latency and improved response speed. It also reduces the workload on the 

network and decreases the need to transmit large volumes of data to the cloud, which can result 

in bandwidth savings [136]. In addition, Fog Computing enables greater autonomy of devices 

since they can make decisions locally without relying on a constant connection to the cloud. In 

terms of applications, fog computing is being used in a variety of sectors, such as industrial 

automation, healthcare [137], autonomous transportation, and energy management.  

Besides managing computation and networking, fog computing also deals with storage, control, 

and acceleration of data processing [138]. Even with the technological advancement and the 

advantages of fog computing, it also faces challenges, such as the management of dispersed edge 

servers, providing security and privacy of local data [139], and the selection of appropriate 

virtualization technology, since it is the main method for providing isolated environments [140]. 

 

Figure 2.21. Hierarchical organization between cloud, fog, and edge computing. 

 

2.4.3 Multi-Access Edge Computing  

Multi-Access Edge Computing (MEC) is a specific implementation of edge computing designed 

for mobile networks and represents a new architecture concept that has become increasingly 

relevant in the wireless network environment, especially with the advent of 5G and the demand 

for URLLC applications [141]. MEC is integrated into the RAN infrastructure and allows 

processing and storage capacity to be driven closer to the data sources and applications, i.e., to 

the "edge". 

MEC stands out for its ability to optimize applications that require low latency, such as cloud 

gaming, augmented realities, telemedicine, autonomous vehicles, etc. Applications adapt and 

operate efficiently in this edge environment, enhancing the user experience. Moreover, MEC 

integrates seamlessly with existing network infrastructure, and it communicates with network 

management systems to ensure efficient allocation of compute resources and bandwidth [142]. 
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Although MEC presents many advantages in terms of latency and network efficiency, it also 

faces many technical challenges. On the one hand, the physical proximity of servers to the 

network edge can make them more vulnerable to security threats, requiring robust measures to 

protect data and ensure user privacy. Moreover, MEC must operate in a diversified network 

environment that includes technologies such as 4G, 5G, and Wi-Fi, which increases complexity 

due to the heterogeneity of technologies and the need to ensure interoperability [143]. On the 

other hand, the diversity of devices that MEC must support, ranging from smartphones to IoT 

sensors, adds complexity due to the different capabilities and requirements of these devices. 

Efficient coordination and management of computing resources at the network edge is a key 

challenge since decisions must be made about what applications must run in which location to 

optimize performance and minimize latency. Overcoming these and other challenges is essential 

to successfully deploying MEC and leveraging its potential in enabling low-latency, and high-

throughput applications in mobile networks [144]. 

The successful implementation and deployment of MEC requires careful planning and 

collaboration between network operators, service providers, and equipment manufacturers. 

Communication standards and protocols must be considered to ensure interoperability and 

seamless integration with existing networks. NFV performs a key role in enabling flexibility and 

scalability of computing resources at the edge [145]. 

The future of MEC is promising, especially in the context of emerging technologies such as 5G 

and IoT. 5G is expected to provide higher network speed and capacity, which will enable more 

advanced MEC applications, such as autonomous vehicles, smart cities, and real-time streaming 

services [146]. Moreover, MEC will be combined with artificial intelligence and machine learning 

to enable autonomous decision-making and real-time analytics at the edge. The interconnection of 

IoT devices and the cloud with MEC will enable an entirely new ecosystem of applications and 

services. 
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CHAPTER 3 

 

3 DEEP LEARNING, EDGE COMPUTING, AND 5G AND BEYOND FOR SMART 

CITIES.  

 

 

 

 

The massive growth of the Internet of Things supported by ML techniques has significantly 

transformed the paradigm of smart cities. The massive collection of data in cities by sensors and 

connected devices generates continuous streams of information; here is where ML techniques 

enter the scene to process and analyze these data efficiently. Furthermore, with the advantages 

provided by edge computing and 5G communications and beyond, valuable information can be 

quickly and timely provided for decision-making. 

Regarding urban mobility, the successful integration of these technologies has led to more 

efficient transportation systems. Sensors located on streets and vehicles transmit data in real-

time, enabling intelligent traffic management, route optimization, congestion reduction, etc. 

[147]. For resource management, systems are being used to monitor and control energy 

consumption in buildings, water distribution, and waste management [148]. Concerning culture 

and tourism, it has generated a significant impact in the field of smart tourism, redefining the 

way tourism services are managed, offered, and experienced [149]. The collection of data 

generated by IoT devices provides a solid basis for decision-making and efficiency improvement in 

the management of tourism resources, such as optimization of transportation routes, congestion 

control at tourism sites, and energy management [150]. Through ML, patterns can be identified, 

trends can be predicted and experiences can be customized more effectively. 

This chapter is based on: 
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In the field of public safety, surveillance cameras and sound detection sensors are integrated 

into IoT-based security systems. ML techniques can analyze images and sound in real-time to 

identify potential threats and alert authorities or citizens automatically [151]. In this context, it 

is necessary to analyze how the use of these technologies can influence the future and growth of 

smart cities. 

For the development of this chapter, we have divided it into two sections: Deep Neural 

Networks and Convolutional Neural Networks. The following is a detailed description of each of 

them. 

3.1 Deep Neural Networks 

In this chapter, we will explore the role of deep neural networks in the context of smart cities, 

since they represent an innovative approach to address contemporary urban challenges through 

the use of advanced technologies. Neural networks, as a machine learning approach, offer a wide 

range of applications for improving the management and operation of smart cities, as their ability 

to analyze complex data, learn from patterns, and make real-time decisions contributes to the 

efficiency, quality, and sustainability of the cities in the future. As we advance in the era of 

urbanization, the use of neural networks or ML in smart city applications will continue to be a 

growing field with a significant impact on the quality of life of its inhabitants. 

As mentioned above there are many areas for the application of neural networks in society, but 

in this section, we will focus on the approach of deep neural networks applied to art and smart 

tourism. 

3.1.1 Current Status of Smart Tourism Research 

In this section, the advances of both IoT in tourism and culture are reviewed, as well as the 

advances of existing tourism recommender systems and the differences with the proposed 

research proposal. 

3.1.1.1 IoT in Tourism and Culture 

Tourism has become a sector that contributes significantly to the economy of many cities. Cities 

have been increasingly competitive, aiming to expand their offerings and provide better 

experiences to attract more tourists. 

Through the implementation of IoT and ICT, smart cities can develop new and interesting 

products for tourists [152] to provide a more immersive, richer, and personalized user experience 

[153]. Currently, there is research on IoT in the tourism field, such as geolocation, health care, or 

medical assistance [154] that allow the monitoring of tourists by following up on their state of 

health and promoting medical assistance if it is necessary, nature-based tourism activities, 

tourism services, and hospitality [155], and so on, aimed at boosting tourism development in 
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cities, also assisted by the development of key technologies to build smart tourism destinations 

[156]. 

In the field of culture (museums/monuments) the deployment of IoT enables the development of 

monitoring and control systems for the protection and preservation of cultural heritage 

[157][158][159]. There are systems for early warning of disasters in any heritage monument 

[160]. Furthermore, as a solution option for indoor spaces, a platform has been developed that 

aims to create intelligent solutions and services to improve the interaction of visitors with 

cultural objects inside a museum [161]. To do so, the mobile application detects cultural objects 

equipped with Bluetooth Low Energy (BLE) sensor nodes. The cultural objects are ranked 

depending on user preferences and multimedia content related to the objects is recommended. 

Similarly, an indoor location-aware architecture uses image recognition and a localization 

technique based on BLE to provide the users with cultural content related to the observed 

artworks [162]. Both proposals [161][162] aim to improve the user’s experience indoors (museum, 

art gallery, etc.). There are also implemented applications that propose a Deep learning (DL) 

methodology that enables the prediction of visitors’ paths within a museum with two purposes: (1) 

to acquire more information about visitors’ behaviors and (2) to predict the occupancy of the 

available rooms within a cultural space [163]. On the other hand, outdoor solutions include 

tourist recommendation systems. 

3.1.1.2 Recommender Systems and Smart Tourism. 

Recommender systems (RS) are models that let users find content or alternatives that may be 

of interest to him/her [164][165]. RS must be relevant, novel, or diverse to ensure that users 

receive precise information according to their requirements. RS have been deployed in 

entertainment, e-commerce, services, social media, etc. Recommender systems [166] suggest the 

most appropriate products or services for a particular user. A user’s preference for an item is 

predicted based on information collected from different sources such as the user’s inclination for 

particular products (songs, movies, etc.), the user’s social information (ratings, followed, followers, 

etc.), his/her demographic features (age, gender, etc.), or the behavioral data from the Internet of 

Things (e.g., GPS, RFID tags, sensors, etc.). Collaborative filtering [167] is the most commonly 

implemented technique in recommender systems. It generates recommendations by identifying 

peer users with a preference/profile similar to the current user’s. Collaborative filtering (CF) 

methods are classified as memory-based and model-based. Memory-based methods [166] usually 

use similarity metrics to obtain the distance between two users, or two items, based on each of 

their ratios. Model-based techniques incorporate machine learning to learn a model about a user. 

On the other hand, content-based recommendation systems suggest similar items based on a 

domain-specific notion of item content and a user profile. These algorithms try to recommend 

items similar to those that a user liked in the past or is examining in the present. In addition, 

context-based recommendation systems apply sensing and analysis of user context (location, user 
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activity, etc.) to provide personalized recommendations [168]. When there is not enough 

information to make a recommendation that results in the “cold start problem”. The “cold start 

problem” refers to the entry of a new user into the recommender system. No recommendations 

can be made to this new user due to the lack of previous data [169]. 

Regarding tourism, some researchers have performed a systematic review covering all the 

major aspects of e-tourism management systems applied to smart tourism during the last few 

years. The techniques used by recommender systems are also classified. The most common are 

collaborative filtering, content, context, and hybrid models [170]. CF-based models employ user-

user or item-item similarity to generate recommendations [171][172]. This is the most common 

method used by classic recommender systems, but it suffers from the cold start problem. 

A content-based recommender system works with data that the user provides, either explicitly 

(rating) or implicitly (clicking on a link). The implicit preferences of the user for certain points of 

interest (PoI) such as restaurants, museums, and parks can be obtained from three main sources: 

 Geotagged photos from social media [173][174][175][176][177][178][179]. 

 Location-based social networks [180][181]. 

Context-based models add information related to the user’s context (location, user activity, etc.) 

for its application to provide personalized recommendations [182]. For some research, user 

information is obtained from social networks, photo-sharing websites, and the location of the 

users without any personally identifiable information (PII) [173]-[181]. Employing machine 

learning in recommender methods can achieve higher predictive accuracy for online reviews 

(TripAdvisor) [183]. In addition, due to the significant achievements of deep learning in many 

fields such as natural language processing (NLP) and image processing, deep learning methods 

have been used for recommender systems [184], [185]. Cultural heritage recommendation systems 

[186][187][188][189] evaluate and classify the visitors’ behavior during a cultural event, provide 

information that matches the preferences of visitors, recommend artwork that could be of interest 

to the user, or even suggest routes. Furthermore, an architecture and conceptual framework for a 

hybrid tourism recommendation system based on big data and artificial intelligence has been 

presented [190]. As well as a hybrid recommendation system to combine the predictions of the 

content-based filtering (CB), collaborative filtering (CF) and demographic filtering (DF) 

approaches using a neural network model; the results compare with each of the traditional 

approaches individually, providing a better focus for recommending tourism sites in Taiwan 

[191]. 

3.1.1.3 Deep Learning. 

Nowadays, different deep learning techniques have been created to facilitate the learning 

process in specific tasks. These techniques include: 

 The Multilayer Perceptron (MLP) consists of a neural network with multiple hidden layers 
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(deep neural network). The network is trained allowing the perceptron to adjust its 

parameters so the algorithm learns to achieve high accuracy for the task to be accomplished. 

This network is known for its wide range of applications in different areas of knowledge and 

is also considered one of the most versatile architectures thanks to its applicability. 

 An autoencoder (AE) is an unsupervised neural network model trained to attempt to copy its 

input to its output. Traditionally, autoencoders were used for dimensionality reduction or 

feature learning [192]. 

 The Convolutional Neural Network (CNN) is a specialized kind of neural network for 

processing data that has a known, grid-like topology. Because its application is performed on 

two-dimensional arrays, this variation of a multilayer perceptron is very effective for 

computer vision tasks, such as image classification, segmentation, and other applications 

[193]. 

 The Recurrent Neural Network (RNN) is a neuronal network specialized in the processing of 

data sequences. It incorporates Long-Short-Term-Memory (LSTM) or Gated Recurrent Units 

(GRU) type layers that allow backpropagation through time; by connecting events that appear 

far apart in the input data since if the sequence is too long, the vanishing gradient problem 

may appear [194]. 

 The Restricted Boltzmann Machine (RBM) are two-layer surface neural network, that is the 

building block of deep-belief networks. The first layer of the RBM is called the visible or input 

layer, and the second is the hidden layer. The restriction in a constrained Boltzmann machine 

is that there is no communication between layers. Each node is a computational place that 

processes the input and starts making stochastic decisions about whether to transmit that 

input or not [195]. 

 The Adversarial Network (AN) is a type of convolutional neural network that generates images 

or songs, that are as realistic as possible, from a generator and a discriminator [196]. 

 Deep reinforcement learning (DRL) combines reinforcement learning and deep learning. RL 

addresses the problem of automatically learning optimal decisions over time, i.e. the problem 

of a computational agent learning to make decisions by trial and error. It consists of the 

following components: agents, environments, states, actions, and rewards. Deep 

reinforcement learning has been deployed in a diverse set of applications, including (but not 

limited to) robotics, video games, natural language processing, computer vision, education, 

transportation, finance, and healthcare [197]. 

From all the techniques mentioned above, for the present research, we will focus on deep neural 

networks. 
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3.1.2 Contribution: Internet of Things for Tourist Attraction Recommendations in Smart Cities. 

Nowadays, when a person wants to take a trip to a specific city, the tourism companies offer 

package tours that include transport and accommodation. They can also provide additional 

services such as activities or outings during the holiday. These offers are adjusted to a 

heterogeneous group of people, although each tourist has different needs and characteristics. On 

the other hand, tourists who travel independently look for activities and attractions that best 

align with their interests. Therefore, before the trip, they need to search the Internet for possible 

options and their alternatives (opening hours of museums, ticket prices, weather forecasts, 

itineraries and transportation, etc.). In so doing, they find very extensive, dispersed, and 

disorganized information. This process represents long hours in front of a computer and causes an 

unnecessary loss of time. Due to the large number of attractions and activities that can be carried 

out while visiting a city, making a suitable itinerary can be a burdensome task for the tourist. 

This problem can be solved by recommender systems. Recently, deep learning-based 

recommender systems have also obtained very promising results [198],[199]. Furthermore, 

although IoT is considered a key concept in smart tourism, it is very rarely applied in smart 

tourism recommendation systems [170]. To fill this gap, an IoT-enabled deep learning-based 

recommendation system for tourist attractions is proposed in this section to enhance tourists' 

experience in a smart city. Travelers will enter the particular circumstances of a trip, such as 

traveling alone or with a companion, type of companion (partner, family with kids), traveling for 

professional or vacation purposes, and user side information (age of the traveler/s, hobbies, etc.) 

into the smart city app/website. This information is useful to improve the accuracy of the tourist 

attraction recommendations. For example, tourists who travel with children will avoid visiting 

many museums and will consider practicing outdoor activities, such as going to beaches or parks. 

Our proposed deep learning-based recommender system will process this personal set of input 

features to recommend the activities or attractions that best fit the tourist’s profile. Furthermore, 

when the tourists are in the smart city, content-based information (already visited attractions) 

and context-related information (tourists’ location, weather, time of day, etc.) are obtained in real-

time using IoT devices. This information will allow our proposed deep learning-based tourist 

attraction recommender system to suggest additional tourism activities and/or attractions in real-

time based on the tourist’s own choices, the current time, and how far the new places are. 

Therefore, we distinguish between two different cases (a) searching and planning activities 

before traveling and (b) looking for activities within the smart city.  

In the first case (a), recommendations will be generated using model-based collaborative 

filtering and multi-label classification. In the second case (b), recommendations will be generated 

using a hybrid-based (model-based collaborative filtering, content, and context) approach and IoT 

context-related data (e.g., location, weather). 
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3.1.2.1 IoT smart tourism architecture and methodology  

When the tourists are in the target smart city, content-based information (already visited 

attractions) and context-related information (tourists’ location, weather, time of day, etc.) are 

obtained in real-time using the IoT. This information allows our proposed deep learning-based 

tourist attraction recommender system to suggest additional tourism activities and/or attractions 

in real-time based on the tourist’s own choices, the current time, and the distance from the new 

places. 

3.1.2.1.1 IoT smart tourism architecture  

Our flexible IoT smart tourism architecture is shown in Figure 3.1. A three-layer proposal is 

presented as detailed below: 

 Device layer: this layer is responsible for identifying objects and receiving information through 

sensors and monitoring the environment. 

 Fog layer: this layer allows the transmission and processing of sensor data in a distributed 

manner for those services that are sensitive to latency. 

 Cloud layer: this layer provides intelligent services that generate a global repository of relevant 

information, and provides recognition and learning patterns, which are fed from the other 

layers. 

Next, we will go through the details of each layer. 

3.1.2.1.1.1 Device layer 

As shown in Figure 3.1, this layer is composed of physical devices such as sensors and actuators 

whose main function is to collect and process information. This broad set of intelligent IoT devices 

allows the system to monitor the user's movement within a smart city at any time, from any 

computer or mobile device. The collected information is securely stored in the cloud; analyzed and 

processed by our machine-learning algorithm on the edge servers, to provide user-specific 

recommendations. 

The suggested IoT smart tourist devices are the Global Positioning System, temperature 

sensors, RFID, sensors, and video cameras. When tourists go sightseeing in the smart city, the 

attractions that they visit are registered using GPS. This way, we determine which 

recommendations the users acted upon, and recommend new similar attractions still based on 

their own preferences, their current location, and the current time of day. 

One of the main elements to consider before a trip or sightseeing tour is the weather; through 

temperature sensors, the weather conditions are predicted to define possible routes and activities 

that can be carried out outdoors (e.g., parks) or indoors (e.g., museum visits) depending on the 

weather.  
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Tourists’ behaviors can be captured more precisely by RFID, video cameras, and other sensors 

located in strategic places, such as stores, museums, churches, or entertainment places; this 

constant monitoring allows for updating the tourists’ profile and improving future 

recommendations [200]. 

Furthermore, photographs uploaded on the web by tourists are a very powerful tool to obtain 

additional information about the user (granted that access is allowed by the user). They are 

processed through image recognition to obtain behavioral patterns and make even more 

appropriate recommendations. 

 

  

 

Figure 3.1. Schematic representation of the IoT-based smart tourism architecture. 

 

3.1.2.1.1.2 Fog layer 

The fog layer is shown in Figure 3.1 as the middle level in the current architecture; it offers 

real-time analysis and preprocessing services; afterward, the main information is transferred 

upwards to the servers in the cloud for storage and further treatment. 

The sensors capture information from the device layer to send to the network, which can be 

congested with a huge amount of data. The fog layer should be understood as a part of the 
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distributed architecture that expands between the cloud and the edge networks. This improves 

efficiency and reduces the volume of data transferred because critical tasks (such as computing, 

communication, storage, and decision-making) are distributed and closer to where the data is 

generated [201]. Therefore, the workload of the cloud and user devices is reduced. This is 

particularly important for time-sensitive IoT applications that require very low latency. 

3.1.2.1.1.3 Cloud layer 

This layer is responsible for the delivery of user-specific application services. It allows processes 

to be transferred to central servers distributed throughout the world, connected to the Internet 

through a high data throughput connection. It also supervises the applications of the Internet of 

Things, implementing decision-making processes based on Big Data analysis [202]. 

This layer receives all the data (which does not require immediate processing) generated by the 

different layers. It then carries out the functions of processing, analysis, and storage, becoming a 

global repository of relevant information to be used for automation or decision-making at a later 

time. 

3.1.2.1.2 Proposed methodology 

At this level, our machine-learning algorithm operates to recommend tourists in smart cities 

the best attractions/sights to visit according to their information profile and their IoT data. These 

suggestions are adjusted for each user to obtain a better experience when visiting a certain smart 

city. Since the raw data generated from sensors, GPS, etc. can be voluminous, rather than 

forwarding it to the cloud for processing, the idea is to do as much processing as possible in the 

fog layer using computing units. That way processed rather than raw data is forwarded to the 

cloud (or the devices in the device layer if necessary). A tourist database located in the cloud 

stores the dataset related to the tourist profile. A monitoring database located in the cloud stores 

the real-time location of tourists in the smart city and the places that they have already visited. 

The mobile device of the tourist monitors in real-time the tourist’s location with the GPS and 

forwards this data to the monitoring database. Another database located in the cloud stores 

weather data. The weather sensors located in the device layer sense and forward the temperature 

to this database. The weather forecasts are also stored. 

An app related to our proposed tourist attraction recommender system is installed on the 

mobile devices of the tourists. The proposed DNN with a multi-class classification algorithm, 

running on the edge servers will access the data of the different databases located in the cloud 

and use it as input data to return the most appropriate tourist attractions according to the user’s 

profile. Figure 3.1 illustrates the different data flows. It can be observed that the raw data is 

transferred to the fog or the cloud. The machine learning algorithm returns an appropriate 

attraction recommendation to the device (mobile app) of the tourist based on predictions. In the 
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following section, we will explain in detail our deep neural network algorithm tailored to our 

proposed approach.,  

3.1.2.2 The proposed deep learning algorithm for smart city tourism  

We have developed a tourist attraction recommendation system based on deep learning. We 

distinguish between two cases; the first one is when the tourist plans his/her trip and the second 

one is when the tourist is already in the smart city and is looking for new alternatives during 

his/her visit.  

Figure 3.2 shows the block diagram of our proposal. A traveler will enter the particular 

circumstances of his/her trip (traveling alone or with a companion, type of companion such as a 

partner, family with kids, etc.) as well as user side information (age of the traveler/s, hobbies, 

etc.) into the smart city app/website. Our proposed deep learning algorithm will process this 

personal set of input features to predict and recommend the tourist activities or attractions that 

best fit his/her profile. For this purpose, the system must be trained with previously collected 

data, which consists of information about the most relevant tourist attractions in the city and the 

information provided by tourists who have previously visited the city. The information provided 

by tourists will be collected through surveys, which will contain information about the attributes 

of the tourists (tourists’ profile) (dataset). Furthermore, for the second case, the system will pick 

up information (location, weather forecast, and already visited places) from the database collected 

by the IoT devices in real-time. These attributes will be the input data that will be normalized 

and processed by our deep-learning algorithm.  

As previously described in section 3.1.1.3, there is a diversity of deep learning techniques. The 

use of different techniques for the same application provides better results in some cases than 

others. Therefore, the MLP technique is used in this research to achieve the proposed objective, 

which is to develop a tourist attraction recommender system. After having reviewed the different 

deep learning techniques and considering that we are doing supervised learning, we have decided 

to use the multilayer perceptron technique which consists of a neural network with multiple 

hidden layers (deep neural network). The network is trained by the perceptron adjusting its 

parameters. This way, the algorithm learns intending to achieve a high accuracy for the task to 

be accomplished. The output provides recommendations for tourist attractions according to the 

user's profile. 
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Figure 3.2. Block diagram and workflow of the proposed method. 

 

3.1.2.2.1 Proposed DNN 

The proposed deep neural network consists of several hidden layers with a required number of 

neurons. A vectorized representation of neurons in a hidden layer is given by 

�[�] = �(�[�]��[���] + �[�]) (3.1) 

where �[�] is a vector and each element represents a neuron in layer �, �[�] is the weight matrix in 

layer � such that �[�] ∈ ��×� , where � is the number of nodes in the hidden layer � and � is the 

number of nodes in the previous layer (including the bias term �[�]). Each neuron in the network 

is a nonlinear combination of inputs �[���] weighted by the parameters ��. f is the activation 

function. The proposed model implements two activation functions for the hidden layers and the 

output layer.  

The rectified linear unit (ReLU) has been used as activation function for the hidden layers: 

 �(�)= ���(0,�) (3.2) 

The sigmoid function has been used as activation function for the output layer:  

�(�)= �
1

1 + �����
� (3.3) 

For predicting the different tourist sites, we consider four possible events, according to the 

number of days of the stay. Thus, when the tourist spends more days in the city, we can 

recommend a greater number of tourist attractions (see Table 3.2 in Section 3.1.2.3.3). For 

example, for tourists that stay one to three nights in the smart city, the system will recommend 8 

out of 40 possible tourist attractions. 

The output layer is composed of 40 neurons, one for each of the tourist sites that the system can 

recommend; the neurons are activated according to the number of recommendations made to each 

user depending on his/her profile (see Figure 3.3). The output of the last feed-forward layer is 
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passed through a sigmoid activation function to scale each of its element values in the range [0,1]. 

The model is trained using binary cross-entropy as the loss function, which is defined as 

� =
1

�
��(���.��� �������� + (1 ���)

�

���

��� (1 ������)

�

���

 (3.4) 

where � denotes the sigmoid function, ��� is the ��� element in ��, and ��� is the ground truth value 

for ��� tourist (label) and ��� tourist attraction. � is the number of tourists and � is the number of 

tourist attractions. 

Gradient descent finds the minimum of an objective function by taking steps proportional to the 

negative of the gradient at the current point. A learning model estimates the weights by 

computing partial derivatives of the weight vector at each point and stopping when the minimum 

of the error function is reached. 

���� = �� �
��(�,�)

��
 (3.5) 

���� = �� �
��(�,�)

��
 (3.6) 

where � is the learning rate, �(�,�) is the cost function. 

To compute the derivatives for a neural network, we apply the backpropagation technique to 

minimize the cost function using gradient descent. From (1), let �[�] represent the linear 

combination of weights and inputs in layer �, such that �[�] ∈ R� where i is the number of nodes in 

layer �. 

�[�] = �[�]��[���] + �[�] (3.7) 

In addition, to fine-tune our system, each layer will be followed by Batch Normalization and 

Dropout. The selection of each parameter that composes this deep neural network will be 

explained later after the implementation of the grid search method, which is detailed in the next 

section. 
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Figure 3.3. DNN structure created for the proposed recommender system with multi-label output. 

 

3.1.2.3 Experiments and results 

Next, we report the results of the experimental evaluation of the proposed tourist attraction 

recommendation system. 

3.1.2.3.1 Smart city selection 

We have selected Barcelona (Spain) as a reference for the implementation of our research since 

it is considered within the world ranking among the 20 most visited cities by foreign tourists (see 

Figure 3.4) [203] and among the 10 most visited cities in Europe (see Figure 3.5) [204]. 

Moreover, Barcelona is considered worldwide as a reference for smart cities in mobility, 

transport, urban planning, governance, technology, etc. [205][206]. Due to the great number of 

tourists that visit this city every year, we can count on a great variety of tourist profiles [207]. 

According to the data published [207], the profiles of tourists arriving at this tourist destination 

from 2014 to 2018 have the following characteristics: 40.44% of tourists are women, 59.56% are 

men, 65.98% travel for vacations, and 49.54% visit this city for the first time. The average age of 

visitors is 37 years, and 95% use various mobile applications to search for information on the 

Internet. In addition, the average stay is one week. 
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Figure 3.4. International overnight visitors in the most popular city destinations worldwide in 2018 (in 

millions). 

 

 

Figure 3.5. Number of international overnight visitors in the most popular European city destinations in 

2016 (in millions). 
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The city of Barcelona has many and varied tourist attractions to meet the requirements and 

preferences of the visitors. Many of these visitors come to the city to change their daily routines, 

alone, in groups of friends, or with the family. 

Furthermore, the city of Barcelona keeps accurate records of the most visited places by tourists 

in recent years (see Table 3.1) [208]. 

Table 3.1. Number of visitors to the tourist attractions in Barcelona for the period 2014-2018. 

 2014 2015 2016 2017 2018 

Expiratory temple of the Sagrada Familia 3.260.880 3.722.540 4.561.848 4.527.427 4.661.770 

Park Güell 2.598.732 2.761.436 2.958.901 3.120.733 3.136.973 

FC Barcelona Museum President Núñez 1.530.484 1.785.903 1.947.014 1.848.198 1.730.335 

The Barcelona Aquarium 1.590.420 1.549.480 1.587.828 1.626.193 1.631.108 

Poble Espanyol de Montjuïc 1.236.664 1.221.647 1.299.376 1.299.386 - 

The Born Cultural Center 1.894.400 1.486.228 1.306.230 1.190.762 1.080.079 

Casa Batlló 930.000 992.126 - 1.136.000 1.062.863 

CosmoCaixa Barcelona 739.649 733.778 757.245 884.636 1.045.961 

Picasso Museum 919.814 1.008.125 954.895 1.046.190 978.483 

Palau Robert 810.000 715.000 827.957 865.776 976.276 

Catalonia Foundation. Stone mine 932.356 990.112 1.207.087 972.508 934.524 

National Art Museum of Catalonia (MNAC) 718.230 717.211 820.516 866.271 891.346 

CaixaFòrum Barcelona 775.068 775.020 753.944 748.140 863.605 

Montjuïc Castle 577.639 670.526 734.460 761.729 831.210 

Barcelona History Museum 973.034 916.517 926.571 926.184 816.989 

Barcelona Zoo 1.057.188 1.004.069 965.292 834.885 785.992 

 

3.1.2.3.2 Input data 

Next, we explain in detail our dataset as well as the IoT devices database. 

3.1.2.3.2.1 User profile 

Our dataset is a collection of data acquired through surveys designed to profile each tourist, to 

generate predictions and recommendations. These recommendations are based on the preferences 

of other tourists with similar profiles. 

The survey was carried out in the municipality of Barcelona during the summer of 2019. 1000 

surveys were conducted, which represent 1000 different profiles of tourists or groups of tourists. 

The interviews were done on paper or through digital media. The surveys were conducted close to 

tourist attractions or in their vicinity (museums, monuments, etc.), city access points (airport, 

train station, bus station, and cruise terminal), and hotels. For each of these places, the 

interviewees were chosen randomly throughout the day during working days, weekends, and 

holidays. 
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For the preparation of the survey, certain characteristics of the tourist’s profile were 

considered; these attributes (X�) were associated with the data samples and are grouped into the 

following categories: 

a) Members Attribute: One attribute with five categorical data that contain the characteristics of 

the traveler, whether he/she travels alone, as a couple, in a family with or without children, or 

with a group of friends. 

b) Reason for the Trip Attribute: One attribute with four categorical data denotes the 

characteristics that motivate the trip, which range from vacation to professional. 

c) Age Attributes: Six attributes which group the ages of the members of the travel group. 

d) Activities Attributes: Nine attributes with the different activities that can be carried out by the 

travel group during the stay. This makes it possible to identify the different activities 

associated with the respective ages of the travel group members. 

e) Sports Activities Attribute: One attribute with three categorical data that identify the types of 

sports activities, ranging from the most traditional to those of an extreme nature. 

f) Number of Days of Stay Attribute: One attribute with five categorical data that indicate the 

number of days available for visiting the city.  

g) Time of the Year / Dates of Stay Attribute: The dataset also has one attribute with four 

categorical data that indicate the season of the year or month during the trip. 

3.1.2.3.2.2 Database from IoT Devices 

Once the tourist is already in the city of Barcelona, the system uses GPS to detect his/her 

location and distances from other landmarks (thirteen attributes), as well as sensors to detect the 

temperature (an attribute with six categorical data), weather forecast (one attribute with three 

categorical data) and hour (one attribute with twelve categorical data) to recommend places 

according to his/her location. Furthermore, the already visited tourist attractions will be detected 

by GPS. A database of these places will be maintained. After finishing the visit to a tourist 

attraction, the tourists will rate the attraction based on his/her preferences. This data is fed back 

into the system for future recommendations based on the tourist’s preferences. 

 

3.1.2.3.3 Output Data 

We have grouped stays into four categories depending on the number of days of the stay. Thus, 

when the tourist spends more days in the city, we can recommend a greater number of tourist 

attractions to visit as shown in Table 3.2. 

 

 



Deep Learning, Edge Computing, and 5G and beyond for Smart Cities. 

62 

 

Table 3.2. Recommended tourist attractions based on the total visit duration. 

Number of days to stay Number of tourist attractions 

One to three days Eight sites 

One week Twelve sites 

Two weeks Sixteen sites 

More than three weeks Twenty-four sites 

 

Our proposed DNN is trained for the tourist attraction classification task. Classification is the 

goal to learn a mapping from inputs x to outputs y, where � ∈ {1,… ,�}, with C being the number of 

classes. If � > 2 and the class labels are not mutually exclusive (e.g. somebody is classified as tall 

and strong), it is called multi-label classification [209]. The output of the proposed DNN generates 

a multi-label classification with the number of sites predicted according to the number of days of 

the stay. 40 tourist sites can be recommended according to the profile of each tourist. 

3.1.2.3.4 Experimental Settings 

For training, from the surveys, we get the user's profile information with his/her likes and 

preferences. We also use the information from the database of IoT devices, thus generating an 

attribute matrix of 1000 x 20 (1000 samples, 20 attributes) (��) for the first case and 1000 x 36 

(1000 samples, 36 attributes) for the second case, also from the survey we get the information of 

the places he/she has visited and that have been most liked; considering the days of his/her visit 

getting a 1000 x 40 label matrix (Y�) with eight, twelve, sixteen, or twenty-four sites. The 

experiments were performed with 1000 samples, which were divided into two parts keeping ratio 

7:2:1, for training, validation, and testing, respectively. The experiments were carried out on a 

Dell computer 2.5 GHz Intel (R) Core(TM) processor with 16 GB RAM. The algorithms were 

implemented in several Jupyter Notebooks in version 6.0.3 installed with the Anaconda programs 

suite, developed by Python. We have implemented the algorithms using the Python Keras library, 

and accuracy, loss, F1-score, recall, and precision have been selected during the training process 

as metrics to evaluate the performance of the algorithms. 

3.1.2.3.5 Neural Network Modeling and Optimization 

Machine Learning models have several parameters to adjust their behavior to reduce 

overfitting. The most common alternative is to use dropout, which has a parameter that must be 

tuned for optimal performance [210]. An alternative to reduce overfitting is to optimize the set of 

parameters through a process known as grid search and try to find the most appropriate 

combination that provides greater precision. The approach used by grid search is an exhaustive 

search by the brute force paradigm in which a list of values for different parameters is specified, 

and the computer evaluates the model's performance for each combination of these parameters to 

obtain the optimal set that gives us the highest performance [211]. The result is the values of the 

adjusted parameters such as the number of hidden layers, the number of neurons in each layer, 
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the number of epochs, the size of the batch of the neural network, as well as the hyperparameters 

such as the dropout value. In this work, the grid search technique was used; after long training, it 

allowed us to obtain the optimal values for the correct performance of the algorithm. Which are 

represented graphically employing box and whisker plots. 

3.1.2.3.5.1 Box and Whisker Plot 

Box and whisker plots are graphical representations used to visualize the distribution of a data 

set and highlight its key characteristics. This type of graph provides information on the mean, 

median, quartiles, minimum, and maximum values, as well as outliers within a data set. It is 

plotted on a horizontally or vertically aligned rectangle. 

This plot is composed of a rectangular box, where the longer sides show the interquartile range 

(IQR). This rectangle is divided by a vertical segment that indicates where the median is located. 

The ends of the box represent the first and third quartiles (Q1 and Q3, respectively), while the 

second quartile Q2 coincides with the median. The extended lines projecting from the box, called 

"whiskers", show the dispersion of the data beyond the quartiles. Outliers are represented as 

individual points outside the whiskers (see Figure 3.6). 

 

Figure 3.6. Box or whisker diagram representation. 

  

In the figure, inside the box, the orange line corresponds to the mean representing 50% of the 

data, while the green triangle corresponds to the median, which is the midpoint that divides the 

data set into two equal parts. 

This graphical representation is useful for comparing distributions of different data sets, 

identifying symmetry and concentration of the data, as well as detecting possible outliers that 

could influence the statistical analysis. Box plots offer a quick and visually effective way to 

summarize the dispersion and shape of data without detailing their full distribution. 
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3.1.2.3.5.2 Network Dimensions and Tuning 

Two very important parameters for deploying a DNN are the depth and width of the network, 

i.e., the number of hidden layers and the number of neurons per hidden layer. On the one hand, 

the design of a shallow neural network can lead to the fact that in training it does not collect the 

correct information for an appropriate prediction. On the other hand, a very deep neural network 

may fall into overfitting in training, so the system learns the training data memorized, making it 

improper to make future predictions. Accordingly, different topologies of neural networks are 

tested with network depth varying from 1 to 10 hidden layers and from 200 to 800 neurons for 

each layer. 

a) Network depth: Improvement in network performance is based on the depth of the network. In 

Figure 3.7a, box and whisker plots are shown; the performance of the DNN improves with a 

higher number of hidden layers. In Figure 3.7a, the average accuracy shows that the system 

obtains better performance when it reaches four hidden layers with an accuracy of 99.65%. 

Although in each case the system achieves a considerable value in most of the samples, we 

can notice the system with four hidden layers achieves better stability on training and it 

deteriorates when the number of hidden layers continues increasing meaning that the 

training may become inadequate. 

b) Network width: This parameter measures the impact of the number of neurons per hidden 

layer on the performance of the overall system. Figure 3.7b shows the results with 4 hidden 

layers when the number of neurons varies between 200 and 800 neurons. We conclude that 

the performance of the neural network improves with a higher number of neurons per layer. 

The average accuracy shows that the system obtains a better performance when it reaches 

750 neurons, achieving 1% higher performance than the case with 400 neurons. 

c) Network tuning: To avoid overfitting we have considered the dropout technique. Figure 3.7c 

shows the most suitable value for an optimal performance of the neural network. The average 

accuracy shows that the system performs best when it reaches a value of 0.4 in a range of 0.1 

and 0.9, reaching an optimal value of 99.8%. Note that the system achieves a remarkably high 

accuracy. 

We have evaluated the Stochastic Gradient Descent (SGD), RMSprop, Adam, Adamax, and 

Nadam optimizers using the grid search technique. Grid search is a tuning technique that 

computes the optimal values for the hyperparameters. Figure 3.7d shows the box and whisker 

plot of the accuracies of each optimizer. The SGD optimizer achieves an accuracy of 99.55%, 

Adam 99.62%, RMSprop 99.61%, Adamax 53.70%, and Nadam 52.23%. In all cases, the learning 

rate is 0.001. The Adaptative Moment Estimation (Adam) optimizer has been selected to train the 

deep neural network because it obtains the best results. It minimizes the loss function and speeds 

up the training process. 
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b)  

 

 

c)  
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d)  

Figure 3.7. DNN’s performance. a) The box-and-whisker plot of accuracy versus the number of hidden 

layers. b) The box-and-whisker plot of accuracy versus the number of neurons per hidden layer. c) The box-

and-whisker plot of accuracy versus dropout values. d) The box-and-whisker plot of accuracy versus most 

popular optimizers. 

3.1.2.3.6 Training model 

The deep neural network consists of 4 hidden layers, each with 750 neurons according to the 

above paragraph findings. The deep learning algorithm implementation was performed using the 

Keras library with the results provided by the grid search technique implementation. Table 3.3 

summarizes the parameter values that should be adjusted for the optimal performance of the 

proposed algorithm. The Adaptive Moment Estimation (Adam) optimizer has been selected to 

minimize the loss function and speed up the training process. 

 

Table 3.3. Best hyperparameter values found after the grid search process. 

 
Number of 

Hidden Layers 

Number of 
Neurons / 

Hidden layer 
Dropout 

Learning 
rate 

Optimizer 

DNN 4 750 0.4 0.001 Adam 

 

Adam optimizer (Algorithm 1) is one of the most popular gradient descent optimization 

algorithms because it is computationally efficient and has very little memory requirements. This 

method calculates the individual adaptive learning rate for each parameter from estimates of the 

first and second moments of the gradients. 

 

Algorithm 1: Adam, our proposed algorithm for the training process. 

1: Declare the parameters Objective function �(�), hyperparameter learning rate �, 

exponential decay rates ��, �� for moment estimates, tolerance parameter � > 0 for numerical 

stability 
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2:  Initialize first moment vector �� = 0, second moment vector �� = 0 and timestep � = 0 

3:  while �� has not converged do 

3.1 update timestep � = � + 1 

3.2 compute gradient of objective using �� = Ñ���(�� 1) 

3.3 update first moment estimate and second moment estimate using eq. (3.8) and eq. (3.9), 

respectively. 

3.4 compute unbiased first and second moment estimate using eq. (3.10) and eq. (3.11), 

respectively. 

3.5 update objective parameters using eq. (3.12). 

end while 

4: return final parameter �� 

 

Adam algorithm first updates the exponential moving averages of the gradient (��) and the 

squared gradient (��) which is the estimates of the first and second moment. The 

hyperparameters ��, �� ∈ [0, 1) control the exponential decay rates of these moving averages as 

shown in the following equations: 

�� = ������ + (1 ��)�� (3.8) 

�� = ������ + (1 ��)��
� (3.9) 

where g is the current gradient value of the error function for the neural network training. 

Moving averages are initialized as 0. The moment estimates are biased around 0, especially 

during the initial timesteps. This initialization bias can easily be counteracted resulting in a bias-

corrected estimate. 

��� =
��

1 ��
� (3.10) 

��� =
��

1 ��
� (3.11) 

Finally, we update the parameter as shown below 

�� = ����
����

� ��� + �
 (3.12) 

We have used in our experiments for the Adam optimizer a learning rate � = 10�� and two 

decay parameters �� = 0.9 and �� = 0.999 [212]. 

3.1.2.3.7 Experimental results 

The recommendation of different tourist attractions is a very complex task because it must link 

the input attributes with the possible recommendations generated by the DNN algorithm. The 

two already mentioned stages or cases related to the smart city trip were tested, that is, (a) 

searching and planning activities before traveling and (b) looking for activities within the smart 

city of Barcelona. 

To evaluate the effectiveness of this approach, the main indicators in the field of multi-label 

classification [213] were applied. Let � be a multi-label evaluation data set, consisting of |�| 
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multi-label examples (��,��),� = 1..|�|. Let H  be a multi-label classifier and �� = �(��) be the set 

of labels predicted by � for example x�. 

��������(�,�)= 
1

|�|
�

|���  ��� |

|���  ��� |

|�|

���

 (3.13) 

���������(�,�)=
1

|�|
�

|��� ��� |

|��� |

|�|

���

 (3.14) 

������(�,�)=
1

|�|
�

|���  ��� |

|��� |

|�|

���

 (3.15) 

�1 �����(�,�)= 2
∑ |���  ���|�

2 ∑ |���  ���|� + ∑ |���  ��� |� + ∑ |��� ��� |�

 (3.16) 

3.1.2.3.7.1 First case 

The first case refers to searching and planning before traveling. The tourist attraction 

recommender system suggests activities in a generic mode according to the data previously 

entered by the user based on his/her profile and particular circumstances of the trip, without 

taking into account distances, weather, or rain predictions. 

For this first case, several tests have been performed to measure the accuracy of our model. 

Figure 3.8, and Figure 3.9 show the results for accuracy and loss, respectively, for training and 

testing data; our deep neural network on the training data reaches an accuracy, precision, recall, 

and F1-score of 99.6%, 99.9%, 99.9%, and 99.8%, respectively with the loss of 0.4%. For testing 

data, it reaches an accuracy, precision, recall, and F1-score of 99.7%, 99.9%, 99.9%, and 99.8%, 

respectively with the loss of 0.5%. Table 3.4 shows the accuracy, recall, and precision values 

during training and testing. We conclude that these results confirm the effectiveness of our 

proposed tourism recommendation system for this first case. 

 

Table 3.4. Testing versus training accuracies, losses, F1 scores, recalls, and precisions for our DNN first 

case. 

Data Accuracy Loss F1 score Recall Precision 

Training 0.996 0.004 0.998 0.999 0.999 

Testing 0.997 0.005 0.998 0.999 0.999 
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Figure 3.8. DNN model training and validation accuracies versus training epochs (first case). 

 

 

Figure 3.9. DNN model training and validation losses versus training epochs (first case). 

 

3.1.2.3.7.2 Second case 

In addition to the information previously entered by the user (user profile and particular 

circumstances of the trip), in this case, the tourism recommender system also uses information 

collected from various IoT devices: corresponding location, temperature, and weather forecasts. 

With all this information, the system recommends the tourist attractions that best suit the 

requirements of the user based on the weather forecast and the nearest locations. 

For this second case, several tests were performed to measure the accuracy of our model. Figure 

3.10, and Figure 3.11 show the results for accuracy and loss, respectively for training and testing 

data; after the tests were performed, our deep neural network on the training data reached an 

accuracy, precision, recall, and F1-score of 99.7%, 99.7%, 99.8%, and 99.8%, respectively with the 

loss of 0.1%. The testing data reaches an accuracy, precision, recall, and F1-score of 99.5%, 99.8%, 

99.7%, and 99.8%, respectively with the loss of 3.7%. From Table 3.5, we conclude that these 

results confirm the effectiveness of our proposed tourism recommender system for our second 

case. 
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Table 3.5. Testing versus training accuracies, losses, F1 scores, recalls, and precisions for our DNN second 

case. 

Data Accuracy Loss F1-score Recall Precision 

Training 0.997 0.001 0.998 0.998 0.997 

Testing 0.995 0.037 0.998 0.997 0.998 

 

 

Figure 3.10. DNN model training and validation accuracies versus training epochs (second case). 

 

 

Figure 3.11. DNN model training and validation losses versus training epochs (second case). 

 

3.1.2.3.8 Comparison to other models 

Python libraries such as scikit-learn enable the deployment of many traditional models such as 

Support Vector Machines (SVM), k-nearest neighbors algorithm, random forest classifier, and so 

on. Figure 3.12 and Figure 3.13 show the classification algorithms and models available for 

implementation in different use cases [214]. For this research, we will focus on supporting 

multilabel classification. 



Deep Learning, Edge Computing, and 5G and beyond for Smart Cities. 

71 

 

 

 

 

Figure 3.12. Classification scheme of multiclass and multioutput modules supported by scikit-learn. 

 

 

Figure 3.13. Overview of scikit-learn estimators that integrate multi-learning, organized by strategy. 

 

For our analysis, we compared our proposal with the models provided by the scikit-learn library 

that support multi-label classification. These classifiers are decision tree, extra tree, k-Nearest 

Neighbor (kNN), and random forest. We have compared our proposal with all of these classifiers. 

Tests were also performed for the two proposed cases. 
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We also employ cross-validation as a statistical method for the evaluation and comparison of 

learning algorithms. Table 3.6 shows the results achieved by our deep neural network model and 

the traditional models implemented for the first case. 

 

Table 3.6. Comparison of accuracy, F1-score, recall, and precision for our proposed DNN and other 

traditional machine learning algorithms (first case). 

 Accuracy F1-score Recall Precision 

Our Neural Network 0.997 0.998 0.999 0.999 

Decision tree 0.892 0.92 0.90 0.98 

Extra tree 0.891 0.91 0.91 0.90 

K-nearest neighbor 0.905 0.92 0.89 0.89 

Random forest 0.384 0.52 0.40 0.62 

 

The analysis shows that our proposed DNN model achieves the highest accuracy, precision, 

recall, and F1-score of 99.7%, 99.9%, 99.9%, and 99.8%, respectively, compared to traditional 

machine learning models. We can also observe that from the traditional models, the k-nearest 

neighbor achieves the highest accuracy, precision, recall, and F1-score of 90.5%, 89%, 89%, and 

92%, respectively, followed by decision tree with accuracy, precision, recall and F1-score of 89.2%, 

98%, 90%, and 92%, respectively. 

Table 3.7 shows a summary of the scores achieved by our deep neural network model and each 

of the traditional models implemented for the second case. 

 

Table 3.7. Comparison of accuracy, F1-score, recall, and precision for our proposed DNN and other 

traditional machine learning algorithms (second case). 

 Accuracy F1-score Recall Precision 

Our Neural Network 0.995 0.998 0.997 0.998 

Decision tree 0.909 0.91 0.88 0.87 

Extra tree 0.886 0.89 0.87 0.85 

K-nearest neighbor 0.584 0.60 0.61 0.56 

Random forest 0.370 0.69 0.65 0.68 

 

The analysis shows that our proposed DNN model in this second case, achieves the highest 

accuracy, precision, recall, and F1-score of 99.5%, 99.8%, 99.7%, and 99,8%, respectively, 

compared to traditional machine learning models. We can also observe that from the traditional 

models, decision tree achieves the highest accuracy, precision, recall, and F1-score of 90.9%, 87%, 

88%, and 91%, respectively, followed by the extra tree with accuracy, precision, recall and F1-

score of 88.6%, 85%, 87% and 89%, respectively. 
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In both cases our algorithm has a better performance, so with these values, we can appreciate 

that our algorithm can perform future predictions adequately. 

3.1.2.3.8.1 Discussion 

The proposal has been carried out in the Barcelona city, considering the most emblematic 

places of the city. All the information collected for the realization of this proposal is based on real 

data (location, temperature, weather forecasts, and profile of each user). The implementation of 

our model using the Keras library allows incorporating and adjusting more parameters (batch 

normalization, dropout, etc.). We have obtained better results in comparison with other 

traditional models provided by the scikit-learn library. In addition, due to the implementation of 

the grid search technique, we can get the most suitable configuration of these parameters for the 

optimal performance of the system. The results show that our algorithm can make future 

predictions to obtain optimal recommendations according to the information provided by the 

tourist profile as well as the information provided by the IoT devices. 

3.1.2.4 Conclusions 

This research proposal aims to analyze the impact of using a deep neural network (DNN) 

topology in the context of tourist attraction recommendations involving multi-label classification. 

Two specific use cases are addressed: a) searching and planning activities before traveling and b) 

looking for activities within the smart city. 

The results achieved in this research indicate that the performance of the algorithm is 

significantly improved as the depth of the neural network is increased. To select the DNN 

topology used, a grid search technique was employed which led to the choice of a configuration 

with four hidden layers, each composed of seven hundred and fifty neurons. Also, a dropout value 

of 0.4 was used to mitigate overfitting during the neural network training process. 

In addition, a comparison was made between our DNN classifier and traditional models. This 

comparison yielded significant results in both use cases. In the first case, the highest performance 

metrics were obtained, with 99.7% accuracy, 99.9% precision, 99.9% recall, and 99.8% F1 score. In 

the second case, our DNN classifier also achieved the highest accuracy, precision, recall, and F1 

score, with values of 99.5%, 99.8%, 99.7%, and 99.8%, respectively. 

These results conclusively indicate that the application of a deep neural network topology, such 

as the one described in this research, represents an effective strategy for performance 

improvement in the field of tourist attraction recommendations with multi-label classification. 
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3.2 Convolutional Neural Networks 

The CNN development represents a class of deep learning models that have demonstrated high 

efficiency in a wide range of computer vision tasks. These networks, inspired by the organization 

of neurons in the biological visual cortex, have found significant applications in the context of 

smart cities. In this context, they have been widely used to address complex challenges related to 

traffic management, safety, air quality, and infrastructure. Within the field of object detection 

and traffic surveillance, CNNs are used to detect vehicles, pedestrians, and traffic signs in real-

time, aiming to improve traffic management, incident monitoring, and more efficient route 

planning. In the video analytics and public safety sector, CNNs are used in surveillance systems 

to identify suspicious activities or anomalous events, improving public safety in urban areas. In 

addition, CNNs are employed in the inspection of urban infrastructure, such as bridges and 

roads, to identify early signs of wear and tear or damage, enabling preventive maintenance and 

the possibility of reducing long-term costs. Since there are many applications of CNNs in the 

cities, they play a key role in the transformation of cities into smarter and more sustainable 

environments. The ability to efficiently process visual data and extract information makes them 

powerful tools to address urbanization challenges. 

In this section, we will rely on the approach of convolutional neural networks applied to the 

detection of distractions for caregivers in an aquatic distraction environment. 

3.2.1 Current status of Drowning Prevention Research 

In this section, the advances of convolutional neural networks and their uses for image 

processing are reviewed. In addition, some applications existing in both surveillance and security 

in recreational aquatic environments are presented. 

3.2.1.1 IoT and CNN in Drowning Prevention. 

Currently, monitoring and supervision at swimming pools or aquatic recreation locations have 

drawn the attention of the research community [215]. Therefore, several types of research have 

been developed particularly for drowning prevention and early detection of possible drowning 

[216][217]. The integration of IoT (surveillance cameras), and different image processing 

techniques enable the provision of appropriate and automated solutions for swimming pool safety. 

Some proposed drowning detection systems [218][219][220] employ underwater cameras to 

detect motionless drowned victims sunk at the bottom of the pool using techniques such as 

background extraction [220], which consists of detecting the moving objects by identifying the 

difference between the current frame and a reference frame, often called a ‘background-image’ or 

‘background model’; however, these systems are limited to victims that have sunk to the bottom of 

the pool, thus wasting valuable time as they are unable to detect victims before them drowning. 
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Other proposed methods consist of overhead cameras mounted around the pool (such as our 

proposed system) [221][222][223]; these systems consist of two main parts: a vision component 

that can detect and track swimmers and an event-inference (water crisis) module that analyzes 

swimmer observation sequences for possible drowning behavior signals. Several studies have 

been carried out regarding the detection of swimmers based on overhead cameras [224][225]. This 

task is still challenging owing to disturbances at the water’s surface (e.g., water exhibits random 

homogeneous blob movements, which could be easily misidentified as foreground objects) 

[226][227]. In addition, lightning and color variations over time due to ambient brightness even 

further complicate automated monitoring based on video surveillance. Several works apply 

background subtraction to solve the swimmer detection problem [220][226][227]. Likewise, a real-

time detection method for constant monitoring of swimmers at an outdoor swimming pool is 

proposed [227]. A background subtraction scheme is introduced, where the background has been 

modeled as a composition of homogeneous region processes. Furthermore, to solve the foreground 

(swimmer) detection problem, a devised thresholding scheme has been proposed to attain a good 

trade-off between maximizing target detection while minimizing background noises. In addition, 

to enhance the visibility of the foreground (swimmer), a pre-processing filtering scheme able to 

classify each pixel of a current frame into different pixel types has been proposed; this way, 

appropriate filtering actions such as color compensation can be applied when necessary. On the 

other hand, a background subtraction scheme based on motion and intensity information has 

been developed to identify swimmers in each video frame [226]. Image pixels are classified 

according to motion as random/stationary, ripple, and swimming. A motion map is developed 

through the computation of dense optical flow that characterizes the motion contents of image 

pixels over a short sequence of video frames rather than a single image. Intensity information has 

been modeled using a block-based mixture of Gaussians (MoG). However, these systems 

([226][227]) only specify how to detect a swimmer; they do not specify how to detect if he/she is 

drowning. 

Current improvements in computing power have enabled the use of deep learning algorithms 

for human detection and other computer-vision-related problems. Most state-of-the-art object 

detectors use deep learning algorithms (CNNs) to extract features from input images (or videos) 

and perform classification and localization, respectively [228]. Another solution has been 

proposed for monitoring, detection, and classification of fallen objects in a swimming pool [215]; 

the system uses a single image to detect objects and classify them into three types: humans, 

animals, and objects. In addition, a system for detecting the drowning of swimmers [229] is 

presented, by recognizing in real-time the posture of the swimmers in the pool and being able to 

determine if the person is drowning. Moreover, there is a method to detect swimmers in low-

quality videos using two convolutional neural networks (YOLOv2 and Tiny-YOLO) [230]. 

Furthermore, a real-time vision system to detect drowning incidents using overhead cameras at 

an outdoor swimming pool is presented [231]. The system uses a model comprising data fusion 
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and hidden Markov modeling to learn of drowning events early. They focus on (1) foreground 

swimmer silhouette extraction and (2) behavior recognition during a drowning event. Currently, 

the development of wearable devices has become a very common practice. It has allowed 

researchers to develop sensor systems to monitor the physiological signals of high-performance 

swimming athletes [232][233], to detect pre-drowning symptoms and alert rescue staff [234], and 

supervise children. Wearable sensor systems for infants can perceive external threats such as 

falls or drowning; and may be useful as an aid in the detection of possible drowning. 

3.2.1.2 Convolutional Network Models 

Convolutional neural networks were created out of the need to be able to process images 

effectively and efficiently; nowadays, they are also used for speech recognition. However, their 

strength is in image processing. Next, we describe the CNNs used in our research. 

VGG model: This architecture was proposed by Karen Simonyan and Andrew Zisserman [235]; 

it was the winner of the ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC12). It 

was designed with 16 hidden layers in VGG-16 and 19 hidden layers in VGG-19 versions. The 

architecture processes input images of size 224  224 pixels with three channels for color images 

(RGB). The image is passed through five convolutional blocks (Figure 3.14). In VGG-19, the first 

two blocks incorporate two convolutional layers, and the remainder incorporate four convolutional 

layers. Each convolutional layer uses 3 × 3 filters and rectified linear unit (ReLU) as an activation 

function; the convolutional blocks also incorporate maxpooling layers to reduce image size and 

prevent overfitting problems; the upper layers are composed of two full-connected layers with 

4096 neurons each, at the top, one output layer for image classification into 1000 different 

categories. 
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Figure 3.14. VGG-16 and VGG-19 architecture. 

 

ResNet model: It is a type of advanced convolutional neural network; this model was proposed 

by Kaiming He in his 2016 document [236]. The ResNet-50 version consists of 50 layers. This 

model is based on the idea of residual and identity blocks that use skip connections (shortcut) 

(Figure 3.15), where the input is passed to a deeper layer. In other words, the simple deep 
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convolutional neural network is inspired by VGG with 3 × 3 filters and a ReLU activation 

function, which is modified to become a residual network by adding skip connections to define 

residual blocks. On the top, the architecture contains a fully connected output layer with a 

softmax activation function for classification. Figure 3.16 shows the general configuration of the 

residual network architecture, including ResNet-50, ResNet-101, and ResNet-152. 
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Figure 3.15. (a) ResNet identity block and (b) ResNet convolutional block. 
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Figure 3.16. Configuration of residual network architecture, including ResNet-50, ResNet-101, and 

ResNet-152. 

 

Inception-v3 model: This convolutional neural network was developed by Google. The first 

version of inception, called “GoogLeNet”, was presented in the ImageNet Large-Scale Visual 

Recognition Challenge 2014 (ILSVRC14) [237]. This first version of the architecture is made up of 

22 layers including convolutional, pooling, and a characteristic layer called inception; the latter is 

a type of convolutional layer, but it is characterized by using only 1 × 1, 3 × 3, and 5 × 5 filters 

simultaneously (Inception blocks) (Figure 3.17); this way, the number of parameters to calculate 
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is greatly reduced. This was achieved with what Google called bottlenecks, which were 

convolutional layers with 1 × 1 filters to reduce the complexity of the network. Google also 

includes auxiliary classifiers with the intention of facilitating the propagation of the gradients 

backward and reducing the associated cost. Therefore, reducing the number of parameters and 

complexity resulted in a more powerful network. 
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Figure 3.17. (a) Inception-A block, (b) inception-B block, (c) inception-C block, (d) reduction-A block, and 

(e) reduction-B. 

 

Figure 3.18 shows the inception and reduction blocks that were set for the third version of this 

architecture. 
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Figure 3.18. Inception-v3 architecture. 
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3.2.2 Contribution: The Proposed 5G and Beyond Child Drowning Prevention System 

Drowning is a major health issue worldwide. The World Health Organization’s global report on 

drowning states that the highest rates of drowning deaths occur among children aged 1–4 years, 

followed by children aged 5–9 years. Young children can drown silently in as little as 25 s, even in 

the shallow end or in a baby pool. The report also identifies that the main risk factor for children 

drowning is the lack of or inadequate supervision. The same report identifies the absence of or 

inadequate supervision as a key risk factor for the drowning of children [238]. Another report 

[239] from the Royal Life Saving Society Australia (RSLA, Sydney, Australia) linked distracted 

parents to 77.8% of drownings in children aged 5–9 years in public and commercial pools between 

1 July 2005 and 30 June 2015. In the cases of drowning without supervision, the parent or 

caregiver of the child was missing, or physically near the child but distracted (talking to another 

adult or attending to another child in his/her care). Furthermore, the German Lifeguard 

Association (DLRG, Bad Nenndorf, Germany) (the biggest organization of its kind in the world) 

reported that more than 300 people died in Germany during 2018 (from the beginning of the year 

through the summer) and associated the growing number of children drowning to their parents’ 

obsession with mobile phones [240]. In addition, Royal Life Saving Australia reported that, 

between 2002 and 2017, 447 children under the age of four drowned. Roughly 5% of those deaths 

were a direct result of a failure to supervise owing to the use of electronic devices (smartphones, 

tablets, laptops, and so on) [241]. 

To solve the problem of inadequate child supervision, in this work, we propose a novel 5G and 

beyond child drowning prevention system based on deep learning that detects and classifies 

distractions of inattentive parents or caregivers. It can be deployed in indoor swimming pools or 

outdoor locations such as beaches or aquatic recreation locations aided by unmanned aerial 

vehicles (drones). The system detects distracted parents/caregivers in charge of a minor (not 

swimmer detection as in [230]) and alerts them to concentrate on the supervision task. A 5G 

network slicing architecture for child drowning prevention has also been introduced. 

3.2.2.1 Proposed Methodology 

In the proposed scenario, families need to register when they arrive at the swimming pool. A 

facial image of each family member is acquired to recognize them. The swimming pool database 

registers the age of each child and links the photos of the children with their parents and/or other 

family member/s. The family decides who is going to be the primary caregiver that is going to 

watch the children and be responsible for their safety inside the swimming pool and a pager is 

given to him/her. This task can be shared between the parents (or other family members 18 years 

or older) simultaneously, which means that none of them should be distracted. It is also possible 

that there is only one primary caregiver during a certain time slot and another during the next 

time slot (e.g., the father is the primary caregiver from 15:00 to 17:00 and the mother from 17:00 

to 19:00). 
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After all of these decisions are made using the swimming pool app, the family can access the 

swimming pool area. The proposed 5G and beyond child drowning prevention system is shown in 

Figure 3.19. 

If the primary caregiver decides to supervise the children outside of the pool, a specific seat will 

be assigned to him/her close to the swimming pool. This guarantees that he/she will have a good 

sight of the swimming pool to supervise the children. In addition, a video camera will be directly 

facing him/her to detect distractions. The cameras are strategically located at an optimal distance 

in a way that does not obstruct people. In the case of multiple primary caregivers, the same or 

multiple video cameras can be facing them. Real-time video will be transmitted to the command 

center. Distractions of primary caregivers will be detected using a deep learning algorithm. 

If the primary caregiver decides to supervise the child inside the pool, different video cameras 

mounted surrounding the pool will detect him/her using computer vision. For this purpose, a 

high-quality monitoring system is required that consists of video cameras with multiple high-end 

lenses that can zoom and steer around to detect critical details. The video cameras need to 

coordinate with each other to be able to track the primary caregivers at any time to detect 

possible distractions. The video cameras will identify the primary caregiver from different 

perspectives inside the pool. Automated analysis of the video footage will be carried out. A 

caregiver can be considered ‘distracted’ if the convolutional neural network analyzes the images 

from all of the video cameras that are simultaneously capturing his/her behavior and he/she is 

characterized as being ‘distracted’ by most of them. That is, the images of the parents/caregivers 

are not combined; instead, the images from each camera are classified into a category. It is 

decided if the parent/caregiver is distracted or not by analyzing which category is repeated the 

most. 

When a distraction event is detected, an alert will warn the primary caregiver so that he/she 

can focus on active child supervision. We assume that alerts will be sent immediately if the kids 

to supervise are 5 years old or under. For kids that can swim (usually older than 5 years), parents 

will be alerted if the convolutional neural network detects continuous distracted behavior for 

more than 10 seconds because drowning accidents happen very quickly. Alert messages can be 

sent to a pager. The pager lights up or vibrates in case the caregiver is distracted. Alert messages 

can also be heard through the swimming pool speakers located in the closest vicinity of the 

caregiver. Furthermore, lifeguards will also get these notification messages and act accordingly. 

This information will be, for example, useful if certain caregivers are notified several times; in 

this case, lifeguards can supervise the associated children much closer and talk to the 

parents/caregivers or take other necessary steps if no change in their attitude is observed. 
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Figure 3.19. Proposed 5G-enabled child drowning prevention system. 

3.2.2.2 Related Key Performance Indicators 

The proposed 5G-enabled child drowning prevention system can be identified as a Mission-

Critical Communications (MCC) service because it requires real-time and reliable 

communications for a large number of users, as well as strong security and pre-emption handling 

[242]. Table 3.8 summarizes the major Key Performance Indicators (KPIs) for child drowning 

prevention. The end-to-end latency can be measured as the time interval required to send the 

packages from a source to a destination, measured at the application level. 

Mission critical: A quality or characteristic of a communication activity, application, service, or 

device that requires low setup and transfer latency, high availability, and reliability, the ability to 

handle large numbers of users and devices, strong security, and priority and pre-emption 

handling. 

It would be possible for our use case to connect to the nearest edge server via Wi-Fi 7 (802.11be) 

because this standard will support a maximum throughput of at least 30 Gbps. Features 
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operating at both the MAC (medium access control) layer and the physical layer (PHY) such as 

multi-access point coordinated beamforming, time-sensitive networking, and multi-link operation 

will bring Wi-Fi 7 latency performance into the sub-10 ms realm. These characteristics would be 

enough to support our high-throughput low-latency child drowning prevention use case. However, 

the Institute of Electrical and Electronics Engineers (IEEE) task group announced draft 2.0 of 

802.11be, and the final version will be released in 2024. 

IEEE 802.11ax (Wi-Fi 6) received final approval from the IEEE Standards Board on 1 February 

2021. This standard offers a theoretical speed of up to 9.6 Gbps and 10 ms latency. Wi-Fi 6 does 

not perform well in large-scale outdoor coverage scenarios and cannot meet the ultra-low latency 

requirements (<10 ms). 

It has been shown in [243] that Wi-Fi 6 can achieve ultra-reliable low latency performance (i.e., 

<1 ms packet latency at 99.999% reliability) only when optimized and operating in a low load up 

to 0.16 bps/Hz that is not appropriate for our use case. 

On the other hand, 5G can reach up to 10 Gbps (only slightly higher than Wi-Fi 6), but this 

technology has been designed to address the requirements of ultra-reliable and low-latency 

communications. URLLC has stringent requirements for capabilities such as latency, reliability, 

and availability. Some use cases include wireless control of industrial manufacturing or 

production processes, remote medical surgery, and transportation safety. It has been 

demonstrated in [243] that 5G NR-FDD (Frequency Division Duplex) has superior URLLC 

performance and meets the sub-ms delay requirement at >5× higher load than Wi-Fi 6. 

Therefore, 5G is the appropriate technology for our use case thanks to its better latencies. The 

proposed system requires that real-time video is backhauled from the video cameras to the 

command center for remote control and analysis. The number of video cameras will vary 

depending on the size of the swimming pool. Moreover, 5G can be deployed in indoor swimming 

pools or even in outdoor locations such as beaches or aquatic recreation locations that extend 

several kilometers. In these cases where so many video images need to be processed as quickly 

and efficiently as possible, a 5G network is required to provide sufficiently high uplink data 

throughput and transmission reliability as well as sufficiently low latency. The short end-to-end 

latency will enable alert messages to be sent as fast as possible if necessary as drowning happens 

quickly. Reliability is critical to detecting incidents, which means that performance should not be 

compromised irrespective of the channel conditions. 

Table 3.8. Main KPIs for child drowning prevention. 

 
End-to-End 

Latency 

Data Rate 

(Uplink/Downlink) 
Reliability 

5G-enabled child drowning 

prevention system 
20 ms 

40 Mbit/s for one video 

camera/1 Mbps for remote 

control 

99.999% 
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3.2.2.3 5G Service-Based Architecture 

Next, the 5G system architecture of the non-roaming case is illustrated in Figure 3.20 [244]. 

The user plane (UP) and control plane (CP) are decoupled to obtain scalable and flexible 

deployments. Whereas the CP is used for network signaling, the UP carries only user traffic. 

 

 

Figure 3.20. Service-based representation of the 5G non-roaming system architecture [244]. 

 

The user equipment (UE) in the user plane is connected to either the radio access network 

(RAN) or a non-3GPP access network (e.g., wireless local area network, WLAN) as well as to the 

access and mobility management function (AMF). 

Next, we explain the network functions (NFs) of the 5G core network (see the upper part of the 

figure): 

 Access and mobility management function (AMF): it is responsible for UE registration, 

reachability, and mobility. 

 Session management function (SMF): it offers UE IP address allocation and management, 

policy enforcement and quality of service, user plane function (UPF) selection, and control. 

 User plane function (UPF): it is the anchor point for intra and inter-radio access technology 

(RAT) mobility, packet routing, and forwarding. 

 Policy control function (PCF): it integrates a policy framework for network slicing. 

 Application function (AF): it is responsible for different services provided after the interaction 

with the core network. 

 User data management (UDM): it is responsible for subscriptions and many services related to 

users. 

 Authentication server function (AUSF): it performs the UE authentication service. 

 Network slice selection function (NSSF): it offers an optimal selection of network instances 

serving the users. 
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 Network exposure function (NEF): it collects, stores, and exposes the services and capabilities 

provided by 3GPP NFs in a secure manner. 

 NF repository function (NFR): it maintains and provides the deployed NF instances; it also 

supports the service discovery function. 

3.2.2.4 A 5G Network Slicing Architecture for Child Drowning Prevention 

Network slicing refers to the division of a physical network into multiple logical networks 

(network slices), so that each logical network can provide specific network characteristics for a 

particular use case. Network slicing provides services across multiple network segments and 

different administrative domains. A 5G slice can combine resources that belong to different 

infrastructure providers [245]. Network slicing is the best way for network operators to build and 

manage a network that meets the requirements from a wide range of users. Network slicing 

provides service flexibility and the ability to deliver services faster with high security, isolation, 

and according to the QoS requirements of the different applications. This way, network operators 

can manage their network resources efficiently and provide differentiated and scalable services. 

Slices are isolated from each other, which means that faults or errors in one slice do not affect 

the proper functioning of another slice. 

Next, we introduce the main design elements of our proposed 5G network slicing architecture 

for child drowning prevention (see Figure 3.21). 

It is divided into three layers plus an additional management and orchestration layer, whose 

basic functionalities are summarized as follows: 

Infrastructure layer: It refers to all of the parts of the physical network because slices should be 

end-to-end. This layer includes the IoT networks, telecommunication networks, satellites, edge 

computing technologies, and the cloud. It provides the allocation of virtual or physical resources 

such as computing, storage, network, or radio. 

We assume that all network devices are SDN-enabled switches managed by SDN controllers 

that can program their routing tables. 

The 5G core is generally divided into the ‘core-user plane’ in charge of bearer delivery and the 

‘core-control plane (CP)’ in charge of control functions. The core-control plane will stay in the 

central cloud (NFV), but the ‘core-user plane (UP)’ will be distributed to its tens of edge nodes 

nationwide and be installed in edge clouds (NFV). Security, reliability, and latency will be critical 

for a 5G slice supporting the child drowning prevention case. For such a slice, all of the necessary 

(and potentially dedicated) network functions should be instantiated at the edge node. We 

consider that all the 5G core functions/units (UP) should be in the edge cloud close to the users. 

MEC drastically reduces the latency between network nodes and remote servers in the cloud 

[246] because video processing servers are placed right where the core functions/units are located. 

This way, we can minimize the transmission delay to match the requirements of our delay-critical 
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slice for such an MCC application. Furthermore, machine learning is crucial in supporting MCC 

by enabling a local decision-making process at the edge servers [247]. 

 

Figure 3.21. Network slicing architecture for child drowning prevention. 

 

Network function layer: It encapsulates all of the operations related to the configuration and 

life cycle management of the network functions that offer an end-to-end service. Network function 

virtualization [248] and software-defined networking [249] are two fundamental technologies to 

configure virtual network resources. NFV decouples specific network functions from dedicated 

and expensive hardware platforms. This technology can provide software building blocks named 

VNFs (virtualized network functions) for the data plane that can be connected and chained 

according to the service type. SDN technology enables the separation of the control plane from the 

data plane to offer flexible resource management. 

Service layer: This layer provides a unified vision of the service requirements. Each service is 

represented by a service instance, which embeds all of the network characteristics that satisfy the 

SLA (service level agreement) requirements such as throughput or latency. A network slice 

instance (NSI) is a managed entity created by an operator’s network with a lifecycle independent 

of the lifecycle of the service instance(s) [250]. An NSI provides the network characteristics 

required by a service instance. It is also possible that an NSI is shared across multiple service 

instances of a network operator. 

Based on the main KPIs (see Section 3.2.2.2) and functional requirements of our use case, child 

drowning prevention, we propose that the drowning prevention slice has ultra-reliable and low-
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latency communications (URLLC) requirements. URLLC use cases (such as mission-critical 

applications) have stringent latency, reliability, and availability requirements. 

Management and Orchestration (MANO): It is the framework for the management and 

orchestration of all network resources (computing, networking, storage, and virtual machines) in 

the cloud. It comprises three functional blocks: NFV orchestrator (NFVO), VNF manager 

(VNFM), and virtualized infrastructure manager (VIM). NFVO performs on-boarding of new 

network service and VNF packages, network service lifecycle management, and resource 

management. VNFM manages the lifecycle of VNF instances. VIM controls and manages the 

lifecycle of virtual resources as requested by the NFVO in an NFV infrastructure (NFVI) domain. 

 

3.2.2.5 Experiments and Results 

3.2.2.5.1 Dataset 

The dataset is a collection of 38,000 images generated by us in the summer of 2019. The 

location of the video recording was the facilities of the Fontsanta swimming pool, located at 

Carrer del Marquès de Monistrol, 30, 08970 in Sant Joan Despí, Barcelona—Spain. Five primary 

caregivers (people in charge of the children) were involved in the development of these 

experiments. They were recorded on video, doing different activities (one video for each action 

related to each of the different categories) both inside and outside the water. The images captured 

from each video correspond to a specific category, so the images have been identified and labeled 

manually for each category. The capture was made taking into account that only the participants 

appear in the video to protect the privacy and confidentiality of other people who are at the 

swimming pool. The videos were recorded with high-resolution smart mobile devices (1920 × 

1880), although the images are preprocessed according to the input data requirements of each 

model (224 × 224). The images were finally collected and classified into seven (7) categories: 

 I_distracted: In the water distracted. 

 I_watching: In the water watching the children. 

 O_distracted: Out of the water distracted. 

 O_talk_cell: Out of the water talking on a cell phone. 

 O_reading:  Out of the water reading a book. 

 O_chatting: Out of the water chatting on a cell phone. 

 O_watching: Out of the water watching the children. 

 

To achieve a great performance during the training process with our own dataset, the videos 

were not shot from a single angle. Instead, they were shot from different angles, covering all 

potential perspectives of a caregiver. Furthermore, because the swimming pool is located 

outdoors, the varying lighting conditions throughout the day provide a richer dataset. 
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3.2.2.5.2 Experimental Settings 

The dataset consists of approximately 38,000 images; it was split into two parts, keeping a ratio 

of 8:2, i.e., around 30,000 images for training and 8000 for testing. In addition, data 

augmentation was used to expand the training set and obtain better generalization. Data 

augmentation is a technique that expands our original training dataset virtually, through a 

random series of transformations from the original image, resulting in new plausible-looking 

images, to obtain a larger number of images for training. In computer vision, this technique 

became a standard for regularization, as well as to improve accuracy, generalization, and control 

of overfitting in CNNs. For this research, the techniques chosen are as follows: rescale = 1./255, 

rotation_range = 2, shear_range = 0.2, zoom_range = 0.2, and horizontal_flip = True. 

We have selected the images from a different subject for testing purposes in order not to 

contaminate the testing set. Figure 3.22 and Figure 3.23 show a set of images of each category 

with their training and testing labels. 

 

 

Figure 3.22. Image set of each category with their respective training labels. 

 

 

Figure 3.23. Image set of each category with their respective testing labels. 

 

The algorithms were implemented in several Jupyter Notebooks in version 6.0.3 installed with 

the Anaconda programs suite, developed in Python. The experiments were carried out on a 

Lenovo computer 2.9 GHz Intel (R) Xeon (R) processor with 72 GB RAM, without GPU. 

We implemented three different algorithms using the preset models from the Python Keras 

library; each one was specifically adapted to obtain optimal results after each training. The 
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transfer learning technique was used (further details will be provided in Section 3.2.2.5.4) to take 

advantage of the pre-trained weights. Early stopping and dropout were implemented as 

techniques to avoid overfitting to achieve an improvement of the generalization capacity. 

Accuracy was selected during the training process as a metric to evaluate the performance of each 

algorithm. 

The setup of each model to be used is detailed below. 

3.2.2.5.3 Convolutional Neural Network Architectures 

In this work, experiments were performed to evaluate the proposed approach with three 

different CNN architectures: VGG-19, ResNet-50, and Inception-v3. Table 3.9 presents a 

summary of the configuration for each model. For all experiments, we used an image size of 224 × 

224 × 3 and a batch size of 64. 

3.2.2.5.3.1 VGG-19 

We implemented the VGG-19 version because it has a greater number of layers (deeper 

network) compared with the VGG-16 version mentioned above. It is made up of a 224 × 224 × 3 

input layer, five convolutional blocks with kernel 3 × 3, ReLU activation function, without 

padding, and a maxpooling layer after each block followed by a flattened layer and two additional 

blocks; each additional block consists of a fully connected dense layer with 4092 neurons, a 

BatchNormalization layer, and a dropout layer. The last layer is a dense layer with a softmax 

activation function that contains seven neurons to classify our categories. 

Table 3.9. Architectures of the three CNN models. 

Input 
VGG-19 

Image 

ResNet-50 

Image 

Inception-v3 

Image 

Convolutional 

part 

conv3-64 

conv3-64 

max pooling layer 

conv3-128 

conv3-128 

max pooling layer 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

max-pooling layer 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

max-pooling layer 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

max-pooling layer 

conv7-64, s = 2 

 

max pooling layer 

 

[conv1-64; conv3-64; conv1-256]–[ conv1-64] 

2 blocks of [conv1-64; conv3-64; conv1-256] 

 

[conv3-128, s = 2; conv1-128; conv1-512]–[conv3-

128, s = 2] 

3 blocks of [conv1-128; conv3-128; conv1-512] 

 

[conv1-256, s = 2; conv3-256 conv1-1024]–[conv1-

256, s = 2] 

5 blocks of [conv1-256 conv3-256 conv1-1024] 

 

[conv1-512, s = 2; conv3-512; conv1-2048]–

[conv1-512, s = 2] 

2 blocks of [conv1-512 conv3-512 conv1-2048] 

 

global_average-pooling layer 

Conv3-32, s = 2 

Conv3-32 

Conv3-64 

max pooling layer 

Conv3-80 

Conv3-192, s = 2 

max pooling layer 

 

Inception A-256 

Inception A-288 

Inception A-288 

Reduction A-768 

Inception B-768 

Inception B-768 

Inception B-768 

Inception B-768 

Reduction B-1280 

Inception C-2048 

Inception C-2048 

 

global_average-pooling layer 
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MLP classifier 

FC layer-4096 

FC layer-4096 

FC layer-07 

FC layer-2048 

FC layer-2048 

FC layer-07 

FC layer-2048 

FC layer-2048 

FC layer-07 

 

3.2.2.5.3.2 ResNet-50 

This model contains an input layer of 224 × 224 × 3, fifty convolutional blocks with their 

respective skip connections, followed by a global average pooling layer. At the top of the model, we 

have added two additional blocks; each block consists of a fully connected dense layer with 2048 

neurons, a BatchNormalization layer, and a dropout layer. The last layer is a dense layer with a 

softmax activation function that contains seven neurons for our classification. 

3.2.2.5.3.3 Inception-v3 

This model is composed of a 224 × 224 × 3 input layer, two convolutional blocks of three and 

two layers, followed by a maxpooling layer after each block. The central part consists of several 

types of inception and reduction blocks, along with a global_average-pooling layer. At the top of 

the model, we added two additional blocks; each block consists of a dense layer fully connected 

with 2048 neurons, a BatchNormalization layer, and a dropout layer. The last layer is a dense 

layer with a softmax activation function that contains seven neurons for our classification. 

3.2.2.5.4 Training 

The dataset consists of approximately 38,000 images (N records); it was split into two parts, 

keeping a ratio of 8:2, i.e., around 30,000 images for the training set (n records) and 8000 for the 

testing set (N-n records). For the training, we applied cross-validation. Cross-validation is a 

technique commonly used to validate machine learning models and estimate the performance of 

the model trained on unseen data. The most robust and widely used method of cross-validation is 

K iterations or K-fold cross-validation. This method consists of splitting the training dataset into 

K subsets (see Figure 3.24). During iterations, each of the subsets is used as validation data or 

testing folds, and the rest (K-1) as training data or training folds. The cross-validation process is 

performed repeatedly for K iterations, with each of the subsets of validation data. The arithmetic 

average of the results of each iteration is finally performed to obtain a single result. This method 

is highly efficient as we evaluate it from K combinations of training and validation data, but it 

still has a disadvantage, that is, computationally, it is slow. However, the choice of the number of 

iterations depends on how large the dataset is. Cross-validation is most commonly used with K 

values ranging from 5 to 10. If the model (estimator) is a classifier and the target variable (y) is 

binary or multiclass (as in this research), the StratifiedKfold technique is used by default. This 

approach introduces stratified folds, i.e., by keeping the proportion of samples from each class in 

all folds. Therefore, the data from the training and testing folds are distributed equally. It is 

useful when unbalanced datasets are used. To evaluate the results, we used several metrics that 

are very common in machine learning applications for classification problems. 
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Figure 3.24. Use of each fold in the cross-validation process (fivefold representation). 

 

3.2.2.5.4.1 Loss or Cost Function 

A loss function is employed to optimize a machine learning algorithm. Several different cost 

functions can be used. Each of them penalizes errors differently. The loss function most commonly 

used in deep neural networks for classification problems is cross-entropy. In this research, we 

employed categorical cross-entropy. Categorical cross-entropy is a loss function that is used in 

multi-class classification tasks, where a sample can be considered to belong only to a specific 

category with a probability of 1 and to other categories with a probability of 0, and the model 

must decide which category each one belongs to. 

3.2.2.5.4.2 Transfer Learning and Early Stopping 

A model can be trained from scratch when it is not very large or when the necessary 

computational capacity for its execution is available. On the other hand, it is possible to take 

advantage of the benefits of pre-established models and use them in new models. This technique 

is known as transfer learning; this means that it allows us to transfer learning from a pre-trained 

model such as VGG-19, ResNet-50, Inception-v3, and so on (pre-trained models for 1000 objects’ 

classification) and apply it to new classification algorithms. Furthermore, it is possible to 

unfreeze some pre-trained layers by adapting the model (fine-tuning) to re-train them along with 

the new fully connected layers; this method implies increasing the training time to avoid 

overfitting problems and to obtain optimal performance from the algorithm. 

A popular technique to overcome overfitting is early stopping. For this purpose, at each 

iteration, the training set is divided into training and validation folds. The training folds are used 

to train the model and the validation folds are used as validation data at each iteration. In each 
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training of the model, the validation folds help us to verify the accuracy of the model at the end of 

each epoch. Therefore, as soon as the test error starts to increase, the training is stopped. 

3.2.2.5.5 Evaluation Metrics 

To evaluate the results, we used several metrics that are very common in machine learning 

applications for classification problems. 

3.2.2.5.5.1 Accuracy 

It is defined as the number of predictions made correctly by the model of the total number of 

records. 

�������� =
�� + ��

�� + �� + �� + ��
 (3.17)

where TP represents true positives, TN represents true negatives, FP represents false positives, 

and FN represents false negatives. 

3.2.2.5.5.2 Precision 

We evaluate our data for its performance of “positive” predictions. 

��������� =
��

�� + ��
 (3.18)

3.2.2.5.5.3 Recall (Sensitivity) (True Positive Rate) 

It is calculated as the number of correct positive predictions divided by the total number of 

positives. 

������ =
��

�� + ��
 (3.18)

3.2.2.5.5.4 Specificity (True Negative Rate) 

It is calculated as the number of correct negative predictions divided by the total number of 

negatives. 

����������� =
��

�� + ��
 (3.19)

3.2.2.5.5.5 F1 Score 

It is the weighted average of precision and sensitivity. Therefore, this score takes into account 

both false positives and false negatives. 

�1 ����� = 2 ×
(��������� × ������)

(��������� + ������)
 (3.20)

3.2.2.5.5.6 Loss 
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Loss is the value that reflects the sum of errors in our model. It indicates whether the model is 

performing well (high value) or not (low value); on the other hand, the accuracy can be defined as 

the number of correct predictions divided by the number of total predictions. 

Therefore, if we analyze these two metrics together (loss and accuracy) (see Table 3.10), we can 

deduce more information about the model performance. If loss and accuracy are low, it implies 

that the model makes small errors in most of the data. However, if both are high, it makes large 

errors in some of the data. Low accuracy but high loss would mean that the model makes large 

errors in most of the data. However, if the accuracy is high and the loss is low, then the model 

makes small errors in only some of the data, which would be the ideal case. 

Table 3.10. Analysis of both loss and accuracy metrics together. 

 Low Loss High Loss 

Low Accuracy A lot of small errors A lot of big errors 

High Accuracy A few small errors A few big errors 

 

3.2.2.5.6 Experimental Results 

After training with different configurations in the upper layers of each model, the following 

results were obtained. 

3.2.2.5.6.1 Loss and Accuracy 

For training, cross-validation was performed; therefore, the early stopping technique was used 

to avoid overfitting (as mentioned above); thus, training is stopped once it has reached the 

maximum accuracy value. Furthermore, the checkpoint was used to save the weights of the 

trained model when a new maximum value arises and we can load it in the future. Table 3.11 

shows a summary of the accuracy and loss for the training and testing of each model. We can see 

that, for training, all models achieve an accuracy above 99% and ResNet-50 achieves a higher loss 

value compared with the other two models. Furthermore, for testing, ResNet-50 achieves the 

highest accuracy, but also the largest loss of 98% and 0.3203, respectively. VGG-19 achieves an 

accuracy of 94% and the lowest loss of 0.0039 and, finally, Inception-v3 achieves an accuracy of 

90% and a loss of 0.0364. Based on the accuracy, ResNet-50 has developed much better 

performance compared with the other trained models. 

Table 3.11. Accuracy and loss for VGG-19, ResNet-50, and Inception-v3 model. 

Models 
Training Testing 

Accuracy Loss Accuracy Loss 

VGG-19 0.9987 0.0056 0.9445 0.0039 

ResNet-50 0.9973 0.0110 0.9803 0.3203 

Inception-v3 0.9993 0.0019 0.9044 0.0364 
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Table 3.12 shows the accuracy achieved by each model with each of the classification categories 

(seven), evidencing the performance in more detail. VGG-19 achieves an accuracy of 100% for the 

I_watching and O_reading categories, an average accuracy of 97.42% for the remaining 

categories, and a lower value of 72.73% for the O_chatting category. Similarly, ResNet-50 

achieves an accuracy of 100% for the I_watching and O_talk_cell categories and the worst result 

for the O_distracted category, with an accuracy of 95.4%. On the other hand, Inception-v3 

achieves a high accuracy of 98.68% for the I_distracted category and a lower accuracy of 66.6% for 

the O_talk_cell category. 

As this research work focuses on parental distraction detection for child drowning prevention, 

the “In the water watching the children” (I_watching) and “Out of the water watching the 

children” (O_watching) categories are the most relevant ones to detect if parents/caregivers are 

really supervising their children. All of the other categories just represent that the caregivers are 

distracted and should be warned. For I_watching, the VGG-19 and ResNet-50 models achieve an 

accuracy of 100% and Inception-v3 achieves an accuracy of 96.83%. Likewise, for O_watching, the 

VGG-19 and ResNet-50 models achieve an accuracy of 99.61% and Inception-v3 achieves an 

accuracy of 84.42% (Table 3.11). 

Table 3.12. Accuracy of each model with each category. 

Parent Status 
VGG-19 

Accuracy (%) 

ResNet-50 

Accuracy (%) 

Inception-v3 

Accuracy (%) 
Total Samples 

I_distracted 98.99 97.75 98.68 1291 

I_watching 100 100 96.83 883 

O_distracted 92.32 95.4 95.2 1458 

O_talk_cell 98.75 100 66.6 1036 

O_reading 100 97.85 94.29 1069 

O_chatting 72.73 97.97 90.91 935 

O_watching 99.61 99.61 84.42 507 

 

3.2.2.5.6.2 Precision, Recall, and F1-Score 

Accuracy should not be considered as a single metric for measuring model performance when 

using an unbalanced data set, as it counts the number of correct predictions regardless of the type 

of category, leaning towards the majority of categories. In other words, from a dataset of 100 

cases where 95 belong to the category “a” and five to category “b”; if only all the cases in the first 

category are correctly predicted, an accuracy of 95% would be obtained. This value is misleading 

because 95% refers only to the correctly predicted values of one category (50% of the total 

predictions). 

Because our data are unbalanced, we also consider other metrics such as recall, precision, 

specificity, and F1-score to evaluate our results. Table 3.13 shows the values obtained in every 
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category based on the above-mentioned metrics for VGG-19. F1-score is the harmonic mean of 

precision and recall and it takes into account both false positives and false negatives. The VGG-19 

model performs well because it achieves an accuracy between 96% and 99% for most categories 

and a smaller accuracy of 84% for the O_reading category. We can also observe that, for the most 

relevant categories (I_watching and O_watching), this model reaches an F1-score of 98%, 

demonstrating good performance in training. 

Table 3.13. Evaluation metrics of the VGG-19 model. 

Category Precision Recall F1-Score Total Samples  

I_distracted 0.99 0.99 0.99 1291 

I_watching 0.98 1.00 0.98 883 

O_distracted 0.96 0.92 0.96 1458 

O_talk_cell 0.99 0.99 0.99 1036 

O_reading 0.87 1.00 0.87 1069 

O_chatting 0.84 0.73 0.84 935 

O_watching 0.98 1.00 0.98 507 

 

Table 3.14 shows a summary of the already mentioned metrics in every category for the 

ResNet-50 model. It achieves an F1-score between 97% and 99% for all categories. It should be 

pointed out that this model reaches an F1-score of 98% and 99% for the most relevant categories 

(I_watching and O_watching), which is the best performance of the three models. 

Table 3.14. Evaluation metrics of the ResNet-50 model. 

Category Precision Recall F1-Score Total Samples 

I_distracted 1.00 0.98 0.99 1291 

I_watching 0.97 1.00 0.98 883 

O_distracted 0.99 0.95 0.97 1458 

O_talk_cell 0.95 1.00 0.98 1036 

O_reading 1.00 0.98 0.99 1069 

O_chatting 0.96 0.98 0.97 935 

O_watching 0.98 1.00 0.99 507 

 

Finally, Table 3.15 shows a summary of the already mentioned metrics in every category for 

the Inception-v3 model. This model achieves an F1-score between 91% and 98% for most 

categories and a minimum F1-score of 79% for the O_talk_cell category. In this case, the 

Inception-v3 model achieves an F1-score of 98% for the I_watching category, but the lowest F1-

score of 84% for the O_watching category (most relevant categories). 
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Table 3.15. Evaluation metrics of the Inception-v3 model. 

Category Precision Recall F1-Score Total Samples 

I_distracted 0.98 0.99 0.98 1291 

I_watching 0.98 0.97 0.98 883 

O_distracted 0.75 0.95 0.84 1458 

O_talk_cell 0.98 0.67 0.79 1036 

O_reading 0.98 0.94 0.96 1069 

O_chatting 0.92 0.91 0.91 935 

O_watching 0.84 0.84 0.84 507 

 

According to this, we conclude that the ResNet-50 model shows excellent performance for this 

classification problem, reaching F1-scores of 98% and 99% in the I_watching and O_watching 

categories, respectively (see Table 3.14). However, the VGG-19 model with a value of 98% in the 

mentioned categories shows a solid performance as well (see Table 3.13). 

3.2.2.5.6.3 Confusion Matrix, False Positive Rate, and False Negative Rate 

Figure 3.25, Figure 3.26, and Figure 3.27 show the confusion matrices for each model. The 

main diagonal shows the number of matches found for each category between the true labels 

(columns) and the predicted labels (rows). 

 

 

Figure 3.25. Confusion matrix VGG-19. 
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Figure 3.26. Confusion matrix ResNet-50. 

 

 

Figure 3.27. Confusion matrix Inception-v3. 

 

All categories are well predicted. Considering the most relevant categories “In the water 

watching the children” (I_watching) and “Out of the water watching the children” (O_watching) 

mentioned above, it is possible to have some wrong predictions, which means that, in some cases, 

certain distractions have not been detected. The three models sometimes classify distracted 

behaviors of caregivers as ‘watching the children’ (false positives). These cases represent a risk for 

children’s safety, but fortunately, do not occur often compared with the true positive values for 

these categories. Inception-v3 obtains fewer false positives for I_watching, with 14 versus 27 and 

29 cases for VGG-19 and ResNet-50, respectively. ResNet-50 obtains fewer false positives for 

O_watching, with 8 versus 21 and 79 cases for VGG-19 and Inception-v3, respectively. We define 

the false positive rate as subtracting 1 from the specificity or as dividing false positives by the 

sum of false positives and true negatives. The false-positive rate for I_watching and the three 

models VGG-19, ResNet-50, and Inception-v3 is 0.43%, 0.46%, and 0.22%, respectively. The false-

positive rate for O_watching and the three models (VGG-19, ResNet-50, and Inception-v3) is 
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0.31%, 0.12%, and 1.18%, respectively. In terms of the false-positive rate, we observe that the 

obtained values are always very small; VGG-19 and ResNet-50 perform a little worse than 

Inception-v3 for I_watching. ResNet-50 shows clearly the best results for O_watching. 

Furthermore, the three models sometimes classify “watching the children” as distracted 

behaviors (false negatives). These cases do not pose any risk but could be annoying for caregivers 

who are warned to supervise the children when they actually were doing so. ResNet-50 and VGG-

19 do not obtain any false negatives for I_watching versus 28 cases for Inception-v3. ResNet-50 

and VGG-19 obtain fewer false negatives for O_watching, with 2 cases each, versus 79 cases for 

Inception-v3. If we also consider the false-negative rate for the most relevant categories (we 

define the false-negative rate as subtracting one from recall), we can see that, for I_watching and 

the two models VGG-19 and ResNet-50, it is 0% and, for Inception-v3, it is 3.17%. The false-

negative rate for O_watching and the two models VGG-19 and ResNet-50 is 0.39% and, for 

Inception-v3, it is 15.58%. The false-negative rates obtained are very small (except for the 

O_watching category for Inception-v3). These results show that, for VGG-19 and ResNet-50, the 

child drowning prevention system works correctly with a minimal error rate versus Inception-v3. 

3.2.2.6 Conclusions 

In this work, a novel 5G and beyond child drowning prevention system that detects distracted 

parents or caregivers and alerts them to focus on active child supervision in swimming pools was 

developed. For this purpose, we evaluated and implemented three well-known CNN models: 

ResNet-50, VGG-19, and Inception-v3, to process and classify images. The proposed deep CNN 

models have revealed that they can be used to automatically detect (based on images) possible 

distractions of a caregiver who is supervising a child and generate alerts to warn them. 

The proposed child drowning prevention system can successfully perform a seven-class 

classification with very high accuracies of 98% for ResNet-50, 94% for VGG-19, and 90% for 

Inception-v3. VGG-19 and ResNet-50 achieve the same high performance in the most relevant 

categories I_watching and O_watching, with accuracies of 100% and 99.61%, respectively. For 

I_watching, the three models achieve an F1-score of 98%. For O_watching, they reach a F1-score 

of 98%, 99%, and 84% for VGG-19, ResNet-50, and Inception-V3, respectively. In terms of false-

positive rate, the obtained values are always very small; VGG-19 and ResNet-50 perform a little 

worse than Inception-v3 for I_watching. ResNet-50 shows the best results for O_watching. The 

false-negative rates obtained are also very small (except for the O_watching category for 

Inception-v3). VGG-19 and ResNet-50 models perform quite well with a minimal false-negative 

rate versus Inception-v3 for I_watching and O_watching of 0% and 0.39%, respectively. ResNet-

50, compared with the other models performs a better classification for most categories. According 

to the results reached in this research, the proposed system was tested in a swimming pool, but 

we think it could also be implemented even in swimming lakes or beaches to avoid possible child 

drowning. 
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On the other hand, special attention must be paid to security/privacy. Although no doubt 

distracted parent detection can save lives, associated privacy and security issues need to be 

analyzed to make our child drowning system socially acceptable. These issues include access 

rights to data (video images), storage of data, security of data transfer, data analysis rights, and 

governing policies. The proposed child drowning prevention system may be vulnerable to a 

variety of active and passive security attacks (such as eavesdropping) with disastrous 

consequences (especially if unauthorized parties access underage images). For this reason, 

security and privacy risks should be minimized by applying existing technical solutions such as 

encryption, authentication mechanisms, cryptographic access control during data collection and 

transmission, encryption message digests, and hashing to assure the integrity of data during data 

storage and processing. In addition, further work is also required to maintain the security and 

confidentiality of data by introducing advanced encryption-based techniques. All of these security 

and privacy challenges must be addressed so that the proposed child drowning prevention system 

comes out as a promising way to increase swimming pool safety. 

We can define the total reaction time as the time elapsing from an observation (image), its 

transmission to the edge server, the image processing for activity recognition, and the 

transmission of an alert (if necessary) based on the observation (� = ��� + ������� + ����������� +

 ���������  ). In future work, we would like to run the entire system (processing of the images with 

the neural network and transmission using 5G) in real-time. The expected response time for our 

child drowning prevention system would be around twenty milliseconds (see Table 3.8). Neural 

networks have an infinitesimal response time once the weights and the topology have been 

defined [251]. Further, 5G has been designed to address the requirements of ultra-reliable and 

low-latency communications. URLLC has stringent requirements for capabilities such as latency, 

reliability, and availability. Some use cases include wireless control of industrial manufacturing 

or production processes, remote medical surgery, and transportation safety. Therefore, 5G is the 

appropriate technology for our use case. 
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CHAPTER 4 

 

4 REINFORCEMENT LEARNING, EDGE COMPUTING, AND 5G AND BEYOND 

FOR SMART CITIES.  

 

 

 

 

Reinforcement learning is a machine learning approach where an agent learns to make 

sequential decisions by interacting with an environment. It relies on the concept of maximizing a 

reward signal over time through the performance of actions. This approach resembles the mode 

by which humans learn since it involves a trial-and-error process. This technique has proven its 

effectiveness in training systems to make optimal autonomous decisions in dynamic and complex 

situations. 

Smart cities, with their focus on efficiency, sustainability, and improving the quality of life of 

their inhabitants, benefit greatly from the integration of IoT, reinforcement learning, 5G and 

beyond, and edge computing. The aim is to facilitate the connectivity of devices and sensors in 

urban environments, collecting real-time data on traffic, waste management, and energy 

consumption, among other aspects. Reinforcement learning can use IoT data collected in smart 

cities to improve decision-making and actions of autonomous systems, such as optimizing public 

transport routes, efficient energy management in buildings, or coordinating traffic lights to 

reduce congestion.  

In the context of underwater communications, reinforcement learning can play a significant 

role. Underwater data transmission presents unique challenges due to signal attenuation, 

interference, and limited bandwidth capacity. Here, reinforcement learning could be applied to 

optimize the efficiency of underwater communications [252]. For instance, a reinforcement 

learning agent could dynamically adapt transmission parameters, such as modulation, signal 

This chapter is based on: 

 Cepeda-Pacheco, Juan Carlos; Domingo, Mari Carmen. Reinforcement Learning 

and Mobile Edge Computing for 6G-Based Underwater Wireless Networks. 

(submitted for publication). 
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power, or transmission paths, based on changing conditions in the underwater environment. This 

could improve the reliability and speed of communications by adapting to variations in 

temperature, salinity, and other factors in the aquatic environment.  

4.1 Current Status of Data Collection and Reinforcement Learning in Underwater Applications  

In this section, we review the advances in reinforcement learning for collecting data and their 

use cases for applications in the underwater environment. 

4.1.1 Data Collection in Underwater Environments. 

Data collection is highly indispensable since it allows the collection of information from the 

seabed to develop applications for the discovery and control of the underwater environment To 

collect data underwater, various technologies and methods tailored to underwater conditions are 

used. The sensors and devices used must be robust and able to resist water pressure, as well as be 

reliable and precise in hostile environments. AUVs are a crucial tool in this context. These 

devices can carry out data collection missions autonomously, using sensors such as sonar, 

cameras, and other specialized instruments to gather information about the seafloor topography. 

Different strategies or methods have been implemented for data collection from underwater 

sensor nodes. On the one hand, in the basic ones (traditional multi-hop data collection) data is 

relayed from one sensor node to another until it reaches the sink node at the sea surface. This 

strategy presents several drawbacks such as the time needed for the information to reach the 

control center and the high energy consumption. On the other hand,  more complex strategies 

require that other aerial/underwater devices (UAVs, AUVs) are involved in data collection; in 

many cases, they are based on mobile edge computing or use reinforcement learning techniques to 

efficiently ensure the optimal collection of information from the underwater environment 

[253][254]. Next, we summarize them. 

A. AUV-assisted Data Collection 

Different research works have focused on AUV-assisted data collection schemes for the IoUT. 

In [255] Hybrid Data Collection Scheme (HDCS), which takes into account both real-time data 

collection and Energy Efficiency (EE), is presented. In [256], based on the energy limitation of 

underwater devices and the high demand for data collection, an AUV-assisted underwater 

acoustic sensor network is presented to optimize the energy consumption problem and network 

performance. In [257], a heterogeneous underwater data collection scheme is presented to 

optimize the peak Age of Information (AoI) and improve the energy efficiency of the aquatic 

device nodes. To reduce the energy consumption of resource-constrained devices, the use of 

aquatic mobile devices (AUVs) is introduced; thereby, the transmission distance between the 

sensor nodes and the AUV, as well as between the AUV and the sink nodes is reduced. However, 
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since the main goal is only to collect data, it will take time until the information reaches the 

cloud-based servers and is processed. 

Furthermore, some research explores frameworks for enabling edge computing in underwater 

environments using AUVs. 

B. Mobile Edge Computing (MEC) data collection 

In [258], a data collection scheme based on an underwater mobile edge element (an AUV) is 

proposed, and a target selection algorithm is designed to compute the mobility path of the AUV 

for data collection in a stable 3D environment. In this approach, an AUV is deployed to visit all 

target nodes and collect data using Magnetic Induction (MI) communication. Here, the AUV acts 

as a mobile edge platform that processes and stores a large amount of data to be sent to the sink 

node, and then the sink node sends the data to the cloud. In [259], a service-driven intelligent 

ocean convergence platform using software-defined networking and edge computing is presented. 

Similarly, as discussed above, these studies are based on data acquisition, but instead of sending 

the data to the cloud directly, it is sent to an edge server. 

4.1.2 Reinforcement Learning for Underwater Environments 

The deployment of reinforcement learning algorithms has become a very useful tool in the 

development of applications that enable the control, localization, and resource allocation of 

underwater devices, as well as the discovery of the marine environment. Next, we will mention 

some of these applications. 

In [260] the researchers develop an approach for adaptive control applications of AUVs based 

on an actor-critical target-oriented DRL architecture. Similarly, in [261] a Q_learning-based 

system for the autonomous control of a bionic underwater robot propelled by undulating fins is 

presented. Also, in [262] a modified Q-learning-based control approach for AUVS for obstacle 

avoidance is presented. RL is also used in underwater environments for image collection and its 

application for image enhancement [263]. In addition, in [264][15] researchers propose a path-

planning approach for intelligent underwater vehicles that aims to create digital twins and sensor 

data. This method consists of mapping the real ocean environment into a virtual digital space. To 

achieve this, a path planning algorithm based on reinforcement learning (based on Double DQN 

(DDQN) and Double Dueling DQN (DDDQN)) has been developed, and a detailed exploration of 

the optimal parameters of the network structure used in the process is carried out. 

In the field of underwater localization, in [265], the researchers developed an RL-based 

localization algorithm to estimate the locations of AUVs and active and passive sensor nodes 

where a value iteration procedure is performed to solve the Internet of Underwater Things device 

localization problem. Regarding resource allocation, in addition, in [266] the authors present a 

network architecture that integrates space-air-ground-sea, considering the requirements of edge 
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computing and cloud computing, by implementing RL (Deep Q-learning) techniques for the 

intelligent allocation of joint resources. To do so, the information collected using ships and buoys 

is sent to the MEC server assisted by UAV or Low Earth Orbit (LEO) satellite. In [267] a Multi-

Level Underwater Computing (MTUC) framework composed of IoUT devices, AUVs, and surface 

stations is proposed to intrinsically combine computing, communications, and storage resources.   

The successful application of reinforcement learning in underwater communications could 

contribute significantly to the development of more robust and efficient systems for data 

transmission in underwater environments. However, continued research and development are 

required to adapt and optimize reinforcement learning algorithms to the complex conditions and 

constraints of underwater communications. 

4.1.3 Reinforcement Learning-based Methods 

In this section, we will briefly review the most common methods based on reinforcement 

learning. 

A. Q-learning 

Q-learning is a method proposed by Watkins [268][269] to solve the Markov Decision Process 

with incomplete information. In other words, Q-learning is a reinforcement learning technique 

where an agent is in a state � and to change to state �′, it makes use of the action � that is 

executed in an environment from which it receives certain information and a reward �. The 

information that the agent gathers from the environment �(�,�) or also called Q-values, is used 

to learn the optimal policy � in a Markov decision process [120] to achieve the highest possible 

reward. 

�  in Q-learning represents the quality whereby the model finds its next action by improving the 

quality in each state. For this purpose, the Q-Learning algorithm uses the Bellman equation. This 

equation is used to learn the Q-values. 

�(�,�)= � + [���� ��� (�′,�′)] (4.1) 

where � ∈ {0,1} is the discount rate that helps to balance the effect of the next rewards on the 

new values. 

The model stores all values for each pair of state actions in a table, namely, the Q table. This 

table is initialized to zero since it does not include any prior knowledge. 

From the Algorithm 2 code, we highlight:  

�(�,�)← �(�,�)+ �[� + ������(�′,�) �(�,�)] (4.2) 

Where � is the learning rate, which is a constant that determines the weight to be added in the 

Q table.  

As a limitation, it’s worth noting that Q-learning is suitable when small state spaces exist. 
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Algorithm 2 Q-learn algorithm 

Initialize �(�,�),��� ��� � ∈ ��,� ∈ �(�)e,  arbitrarily, and except that �(��������,)= 0 

Repeat (for each episode): 

    Initialize � 

    Repeat (for each step of the episode): 

        Choose  �  from �    using policy derived from  �  (e.g.,  ε-greedy) 

        Take action �, observe �,�′ 

        �(�,�)← �(�,�)+ �[� + ������(�′,�) �(�,�)]  

        � ← �′ 

    until s is terminal 

end for 

 

B. DQN 

When there are large state spaces, deep Q-learning can help the model directly update the Q-

table with the appropriate values and perform the tasks more efficiently. Deep Q-learning 

enables the use of the Q-Learning strategy by integrating artificial neural networks: Neural 

Networks (NNs), Deep Neural Networks, and Convolutional Neural Networks. A neural network 

will help the agent choose the state by receiving inputs [270]. These inputs are the states of the 

environment. After receiving the input, the neural network will estimate the Q value. The agent 

will make decisions based on these Q values, for this purpose we should similarly use the 

Bellman equation for DQN: 

�(�,�;�)= � + [���� ��� (�′,�′; �′ )] (4.3) 

We can then, train the neural network and compute the loss or cost function by comparing the 

target value and the output model. This is possible once we choose the target value ��. Where ��=

� + ���� ��� � � (�′,�′;�′) (see Algorithm 3) 

�(�)= �[(� + ���� �� � (�′,�′;�′) �(�,�;�))�] (4.4) 

 

Algorithm 3 Deep Q-learning with Experience Delay 

Initialize replay memory � to capacity � 

Initialize action-value function �  with random weights  

for episode = 1, � do 

    Initialize sequence �� = {��}  and preprocessed sequenced ϕ� = ϕ(s�) 

    for  t = 1,  �  do 

        With probability  �  select random action  a� 

        otherwise, select  �� = ���� � (�� (��),�;�) 

        Execute action  ��  in emulator and observe reward  ��  and image ���� 

        Set  ���� = ��,��,����  and preprocess ���� = ��(����) 

        Store transition  (��,����,����) in � 

        Sample random minibatch of transitions  (��,��,��,����)  from � 

Set �� = �
��

�� + ���� �� ������,�
�;��

 
for terminal  ���� 

otherwise 

        Perform a gradient descent step on (�� �(��,��;�))
�  
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        with respect to the network parameters θ 

    end for 

end for 

 

C. DDPG 

Q learning and DQN perform well with discrete action spaces, if we discretize continuous action 

spaces, we could end up with too many action spaces and convergence would be difficult to 

achieve. The deep deterministic policy gradient algorithm is an extension of the Deep Q-learning 

algorithm when the domain of the action set is continuous [271]. DDPG is a model-free off-policy 

actor-critic algorithm that combines Deterministic Policy Gradient (DPG) [272] with DQN. 

DDPG uses two networks: the Actor-network and the Critic network (see Figure 4.1). The Actor 

network is represented by �(�|��), which takes a state as input and the action as output, where 

��  are the weights of the Actor-network. Similarly, the Critical network is represented by 

�(�,�|��), which takes as input a state and the action; afterward, it returns the value Q, where 

��  are the weights of the Critic network. 

Similarly, a target network is defined for the actor-network and the Critic network with the 

same structure: for the actor-network �(�|��
�
) and for the Critic network ���,�|��

�
�, where ��

�
 

and ��
�
 are the weights of the Actor and Critic target networks respectively. 

The algorithm (Algorithm 4) first selects an action produced by the actor-network, to which the 

exploration noise N  is added such that, �� = �(��|�
�)+ ��. This action is evaluated in a state ��, 

receiving a reward �� and is placed in the next state ����. This transition information 

(��,��,��,����) is stored in a repetition buffer. 

After several iterations, a mini-batch of N transitions (��,��,��,����) are sampled from the 

repetition buffer and the network is trained. We then calculate the target Q value �� = �� +

��������,�
�(����|�

���|��
�
). We update the weights of our Critic networks with the gradients 

calculated from the loss L. 

� =
1

�
�(�� �(��,��|�

�))�

�

 
(4.5) 

Similarly, the actor-network policy is updated using the gradient of the sampled policy: 

���  �≈
1

�
����(�,�|�

�)|����,���(��)��� �(�|�
�)

�

|�� 
(4.6) 

Next, the weights of the Actor and Critic networks in the target network are also updated 

slowly, which promotes greater stability; this is referred to as a soft replacement: 

��
�
← ��� + (1 �)��

�
 (4.7) 
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��
�
← ��� + (1 �)��

�
 (4.8) 

 

 

Figure 4.1. Deep Deterministic Policy Gradient (DDPG) algorithm structure. 

 

Algorithm 4 DDPG algorithm 

Randomly initialize critic network �(�,�|��) and actor �(�|��) with weights ��  and �� . 

Initialize target network �� and �� with weights ��
�
← ��,��

�
← ��  

Initialize replay buffer R  

for episode = 1, M do 

    Initialize a random process � for action exploration. 

    Receive initial observation state �� 

    for � = 1,� do 

        Select action �� = �(��|�
�)+ �� according to the current policy and exploration noise. 

        Execute action �� and observe reward �� and observe the new state ���� 

        Store transition (��,��,��,����) in R 

        Sample a random minibatch of N transitions (��,��,��,����) from R 

        Set �� = �� + ��������,�
�(����|�

���|��
�
) 

        Update critic by minimizing the loss: � =
�

�
∑ (��� �(��,��|�

�))� 

        Update the actor policy using the sampled policy gradient: 
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���  �≈
1

�
����(�,�|�

�)|����,���(��)��� �(�|�
�)

�

|�� 

       Update the target networks: 

��
�
← ��� + (1 �)��

�
 

��
�
← ��� + (1 �)��

�
 

        end for 

end for 

 

4.2 Contribution: Reinforcement Learning and Mobile Edge Computing for 6G-based 

Underwater Wireless Networks 

6G-based ground-air-underwater networks represent a groundbreaking paradigm shift in 

wireless communication. These networks aim to provide seamless connectivity across terrestrial, 

aerial, and aquatic domains, enabling unprecedented data exchange and interaction between 

sensors, devices, and vehicles operating in these diverse environments This fosters the creation of 

innovative applications. Concerning the aquatic domain, the Internet of Underwater Things 

(IoUT) [74] can be defined as a worldwide network of smart interconnected underwater objects 

with a digital entity. These devices sense, interpret, and react to the environment due to the 

combination of the Internet, powerful tracking technologies, and embedded sensors.  

Data is sent from the sensors to the surface for computation and processing. Underwater 

devices use different communication techniques to transmit information [273], with acoustic 

communication being the most commonly used. Data transmission directly from underwater 

sensor nodes to the surface sink is very energy-intensive. Autonomous Underwater Vehicles 

(AUVs) can help reduce communication distances between sensors and sink nodes by collecting 

sensor data. The sink nodes, likewise, send the collected information to ships or unmanned aerial 

vehicles (in the aerial domain) via radio frequency waves [274] or via satellite communications. 

Finally, the data is sent to the ground stations in the terrestrial domain, where it is stored in the 

servers (cloud computing). At this point, the data is processed, and depending on the type of 

application the result must be sent back, as soon as possible, to the underwater devices. In this 

process, latency is the most detrimental factor for applications that have real-time or mission-

critical constraints such as large-scale sensing data fusion, navigation systems, real-time sensing 

data fusion, and more [275]. To cope with this requirement, Mobile Edge Computing (MEC) has 

been developed. It is implemented in devices close to the local devices [276]. These nearby devices 

should be equipped with cloud-like computing resources, providing computational services, 

therefore enabling high reliability, scalability, and low latency in underwater networks. 

Most prior works ignore the computing capability provided by AUVs in the underwater 

medium, and only a few studies consider AUVs as edge computing nodes able to execute tasks 

[253]. In this research, we distinguish between “local AUVs” and a “MEC AUV”. “Local AUVs” 

may have limited processing capabilities. The ‘MEC AUV’, on the other hand, is specialized to 
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perform computational tasks efficiently. AUV-enabled MEC systems involving IoUT devices, 

cluster-heads, local AUVs, and MEC AUVs have not been studied.  

In this work, we envision an innovative AUV-enabled MEC system where cluster-heads that 

collect data from IoUT devices offload their associated computing tasks to local AUVs. These 

AUVs are strategically placed (1) execute these tasks fully locally, (2) execute them partially 

locally and offload the rest or (3) offload them fully to a more resourceful AUV (MEC AUV).  

Despite the advantages of AUV-assisted MEC, several challenges in network deployment and 

operation should be considered. Firstly, it is challenging how much computation an MEC-enabled 

AUV should allocate to each offloaded task from a local AUV considering the limited number of 

onboard resources. Furthermore, it is also challenging how to control each of the AUVs' 

trajectories (diving direction and speed) considering that each local AUV must serve cluster-heads 

on its way and an MEC-enabled AUV has to serve different local AUVs in the different collection 

points. In addition, it is challenging how to determine the optimal route for the AUVs taking into 

account the effect of ocean currents on their trajectory.  

Inspired by the challenges mentioned above, we propose an algorithm based on deep 

reinforcement learning, Deep Deterministic Policy Gradient (DDPG), that enables, first to 

minimize the energy consumption and delay of all tasks, by jointly optimizing the task offloading 

strategy, resource allocation, and AUV trajectory. An efficient trajectory optimization, task 

offloading, and resource allocation model is formulated as a non-convex optimization problem that 

aims to minimize the weighted sum of the service delay of all local AUVs (task offloading delay 

and computation delay) and the AUV energy consumption (transmission energy and computation 

energy). 

4.2.1 System Model 

In this section, we define the scenario for data processing (real-time response for mission-

critical applications) and data collection (cloud storage) tasks. Afterward, we analyze the 

reinforcement learning algorithm used for the intelligent offloading of tasks to the edge device. 

For clarity, we summarize all the following notations and their definitions in Table 4.1. 

A. Network Architecture  

Figure 4.2 shows the proposed network architecture. Along the seabed, several sensor nodes 

(IoUT nodes fixed at the seafloor) are randomly deployed in a 3D (� � � � �) cartesian coordinate 

system. They are grouped based on their location, and then a cluster head (CH) node � ∈

{1,2,… ,�} is chosen among them to avoid excessive energy consumption when each node sends its 

collected data individually. Two types of ����, namely a set of ��������� denoted as � =

{1,2,… ,�} and a ������ are employed for this scenario. Each �������� is configured to collect data 
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from the cluster heads; an ������ can receive data from several ��������� and send it to the sink 

node located on the sea surface.  

Moreover, for complete and uninterrupted coverage, each �������� moves in a two-dimensional 

(2D) horizontal plane, to collect data from the cluster heads in a specific area and at a certain 

depth, without surfacing. All ��������� are deployed at the same depth and close to the CHs. On 

the other hand, the ������ moves also in a two-dimensional (2D) horizontal plane but at a 

different depth, between the ��������� and the sink node, to serve all the AUVs�����. The ������ 

uses collection points also called strategic points denoted as � ∈ �= {1,2,… ,�}; i.e. the ������ 

moves within the horizontal plane traversing each of these strategic points to receive the 

information from the ��������� and communicate with the sink node. Therefore, this process 

results in energy savings reflected in a subsea operation for a much longer time. For all 

���������, we assume that the communication is based on Orthogonal Frequency Division 

Multiplexing Access (OFDMA) [277], so mutual interference between them is not taken into 

account.  

We propose to bring computing resources closer to IoUT devices. Therefore, we consider that 

the ������ provides mobile edge computing in addition to the data collection service. IoUT 

devices are organized into clusters and one node is selected as cluster head in each cluster. The 

IoUT devices sense data and send it to a cluster head. Each cluster head performs data 

aggregation and generates a task related to this data. We assume that each �th cluster head 

generates one computation-intensive task in the �th time slot. This means that � tasks are 

generated for each cluster head, and we have  � ∈  � = {1,2,… ,�}.. If a task is related to data 

processing, the cluster head node sends the input data from the task to the nearest ��������.  The  

AUV����� uses a reinforcement learning algorithm to decide whether the task should be processed 

fully locally,  fully offloaded, or partially offloaded to the ������. This approach aims to achieve 

energy savings in data processing and reduce the overall delay in task execution. We assume that 

the AUV��� has enough powerful resources to process the data and return the results to the 

��������, which means there is no need to send the data to a central server for cloud computing. 

Therefore, the system performance is improved, and the latency is reduced by processing the 

information at the edge. This is essential for mission-critical applications with strict reliability 

and latency requirements [278]. On the other hand, if the task is related to data collection, the 

AUVs����� send the data to a AUV���. The ������ sends the data to the sink nodes located on the 

sea surface, which forwards the data through the unmanned aerial vehicle (UAV) to the Ground 

Base Station (GBS) for storage in the cloud servers. The cloud-computing-based data processing is 

useful in non-mission-critical IoUT applications [278]. 
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Figure 4.2. Proposed network architecture. 

 

Table 4.1. Main notation list of this section. 

Symbol Definition 

� � � � � 3D cartesian coordinate system. 

�,�,� Index, number, set of cluster head nodes. 

�,�,� Index, number, set of local AUVs (AUV�����). 

�,��,�� Index, number, set of cluster head nodes only associated with AUV����� k. 

�,�,�  Index, number, set of collection/strategic points. 

�,�,� Index, number, set of time slots 

������  A local AUV 

������ A Mobile Edge Computing AUV 

�� The total number of cluster heads associated by AUV����� k. 

��,� 
The task that may be executed fully locally by the AUV�����, fully offloaded to the 

AUV���, or partially offloading between AUV����� and AUV��� 

��,� The size of computation input data. 

��,� The total number of CPU cycles required to accomplish the computation task ��,�. 

�� The offloading decision {0, 1}  

(�,�) Distance or transmission range, Signal frequency. 

��(�),�(�,�) ,�(�),�� Source level, Transmission loss, Noise level, Directivity index. 

��(�),��(�),�� (�),���(�) Ambient noise: turbulence, shipping, waves, and thermal noise, respectively 

�,�(�) The spreading factor and absorption coefficient. 

� The shipping activity factor (0,1). 

�  Wind speed 
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��
�� , ��

��  
The transmission intensity for shallow (depth lower than 100 m)  and deep water, 

respectively. 

��,� The transmission power, and depth. 

����,  ������,  ����
���,  ������

���  AUV���,  AUV����� speed, and maximum speed, respectively 

��,  �� The shortest path planned by the AUVs, and the angle to the x-axis, respectively 

�,  �� AUV speed and angle between V and  the x-axis, respectively 

��,  ��1 Ocean current speed, and angle between �� and x-axis, respectively 

��,  �� Rectangular components of the vector V to the vector V� 

���,  ��� Rectangular components of the vector Uc to the vector V� 

��  The magnitude of the resulting AUV  desired trajectory 

����
� ,  ��

� AUV���,  AUV����� velocity vector angle, respectively 

����,�
� , ��,�

�     
AUV���-to-strategic point, and AUV�����-to-Cluster head horizontal distances, 

respectively. 

[�,�,�],  ����,���� AUV��� position and maximum limit, respectively 

[��,��,��],  ��
���,��

���, ��
���,��

��� AUV����� position, minimum, and maximum limits, respectively 

[��,��,��]  Coordinates of the collection points  

[��,��,��]  Coordinates of the cluster heads 

���
��,������,  ���

������,������ Cluster head-to-AUV�����, and AUV�����-to-AUV��� transmission delays, respectively. 

���,������,  �������,������  Cluster head-to-AUV�����, and AUV�����-to-AUV��� data rates, respectively. 

�����
��,������,  �����

������,������ Cluster head-to-AUV�����, and AUV�����-to-AUV��� propagation delays, respectively. 

��,�
� ,  ����,�

�  
Cluster head-to-AUV�����, and AUV�����-to-AUV��� transmission distances, 

respectively. 

����� The nominal speed of sound underwater. 

�����,  ����� AUV�����, and AUV��� execution delays, respectively. 

�����,  �   AUV�����, and AUV��� computing capacities, respectively. 

���
�    The specific portion of F allocated to AUV����� k,  ���

� ∈ [0,1] 

��,�
� , ��,�

� ,  ��,�
�  AUV�����, Offloading and AUV��� energy consumption, respectively 

���
������,������  The data transmission power of the AUV����� k 

���   AUV���-to-AUV����� transmission delay 

��  Size of the calculated result 

���  The download data rate of AUV����� 

��,�
�   Total time to complete a task ��,�  locally 

��,�
�   Total time to complete a task ��,� using computational offloading 

��,�  Total time to complete the task ��,� 

��,�  Overall energy consumption 

  

 

B. Task Model 

We consider that in our proposed scenario the ��������� and cluster heads are denoted as � =

{1,2,… ,�} and � = {1,2,… ,�}, respectively. The total number of cluster heads served by �������� �, 

� ∈ {1,2,… ,�}, can be represented by �� only associated by AUV����� k denoted as � ∈ �� =

{1,… ,��}, i.e., each cluster head j sends task requests to their respective �������� �. The 

computation-intensive task is denoted by ��,� {��,�,��,�}, where ��,� refers to the size of 

computation input data, ��,� denotes the total number of CPU cycles required to accomplish the 

computation task ��,�. We assume that the �������� has the capability to decide whether the task 

��,� 1) can be executed locally in the edge-computing-enabled ��������, 2) be offloaded completely 

to the AUV-enabled MEC server ������, or 3) be partially executed on both �������� and ������. 

We denote the offloading decision by a continuous variable ��,�(�)∈ {0,1},∀ � ∈ �, ∀ � ∈ ��, ∀ � ∈

�, where ��,�(�)= 0 represents that in the slot �, �������� � executes the task fully locally, 
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��,�(�)= 1 represents that �������� k fully offloads the task to the ������, and 0 < ��,�(�)< 1 

represents the rate of partially offloading of the task. 

C. Communication Model 

We consider two communications interfaces, i.e., cluster head-to-��������  and ��������-to-

������. Next, the data rate for each interface is analyzed. For this purpose, the underwater 

acoustic channel is introduced. 

1) Underwater acoustic channel  

The narrow-band SNR of an emitted underwater signal at the receiver can be expressed by the 

passive sonar equation [279]: 

��� (�,�)= ��(�) �(�,�) �(�)+ ��≥ �� (4.9) 

where DT has been defined as the detection threshold, ��(�) is the source level, �(�,�) is the 

transmission loss, �(�) is the noise level and �� is the directivity index. Since we assume an 

omnidirectional source, �� is equal to zero. 

The attenuation, transmission loss, or path loss over a transmission range � for a frequency � 

(in kHz for underwater communications) can be given by [280].  

10��� �(�,�)= � 10 ��� � + � 10 ��� �(�) (4.10) 

where � is the spreading factor that defines the geometry of the propagation (� = 1 for shallow 

water (cylindrical spreading) and � = 2 for deep water (spherical spreading) and � = 1.5 for 

practical spreading) and �(�) is the absorption coefficient. 

The absorption coefficient can be calculated using Thorp's expression where �(�) is expressed 

in dB/km and � in kHz [281]. For frequencies above a few hundred Hz it is given as: 

10��� �(�)=
0.11 ��

1 +  ��
+

44 ��

4100+  ��
+ 2.75 × 10�� �� + 0.003 (4.11) 

and for lower frequencies it is given by: 

10��� �(�)= 0.002+
0.11 ��

1 +  ��
+ 0.011 �� (4.12) 

The ambient noise can be modeled by four basic sources [282] 

�(�)= ��(�)+ ��(�)+ �� (�)+ ���(�) (4.13) 

where the ambient noise due to turbulence is ��(�), the noise due to shipping is ��(�), the noise 

due to wind is  �� (�) and thermal noise is ���(�). Those are described by the following equations. 

10�����(�)= 17 30���(�) (4.14) 

10�����(�)= 40 + 20(� 0.5)+ 26���(�) 60 ���(� + 0.03) (4.15) 
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where � is the shipping activity factor whose value ranges between 0 and 1 for low and high 

activity, respectively. 

10����� (�)= 50 + 7.5��/� + 20���(�) 40���(� + 0.4) (4.16) 

where � is the wind speed in m/s. 

10������(�)= 15 + 20���(�) (4.17) 

The dominant noises according to the operation frequencies are turbulence noise for f < 10 Hz, 

distant shipping for f = 10–100 Hz, surface motion caused by wind-driven waves for f = 100 Hz–

100 kHz (operating region used by the majority of the acoustic systems) and thermal noise for f > 

100 kHz. The noise level generally decreases with increasing frequency. 

The source level SL is related to the intensity �� as �� = 10��� �
��

�.��×�����
�. The relation between 

the intensity ��, and the transmission power of the transceiver, ��, is expressed as 

��
�� =

��
2�.�

, ��
�� =

��
4�

 (4.18) 

for shallow and deep water, respectively, where �� is given in watts and � is the depth in meters.  

If we consider the frequency-dependent part of the narrow-band SNR �(�,�)=1/( �(�,�)�(�)), it 

has been shown in [282] that for each transmission distance, there exists an optimal frequency 

��(�) for which the SNR is maximized. It is assumed that the noise is Gaussian and the channel is 

time-invariant for some interval of time [282]. The total bandwidth can be divided into many 

narrow sub-bands, adding their individual capacities. The ith sub-band is centered around the 

frequency ��,� = 1,2,…   and it has a width �. The maximum data rate supported by an 

underwater acoustic channel for a given source power and source/receiver (that is, the channel 

capacity) can be obtained as [282] 

��� = � � ���� �1 +
��(�,�)

�(�,�)�(�)
�

�
= � ���� �1 +

���(�,�)

1���
� (4.19) 

where 1��� = 0.67 × 10���.  

Therefore, the data rate of the cluster head-to-�������� acoustic link denoted by ���,������ and 

the data rate of the ��������-to-������ acoustic link denoted by �������,������  are lower than or 

equal to the channel capacity of the corresponding Additive White Gaussian Noise (AWGN) 

channel. 

D. Computing Model 

1) The Velocity Synthesis Approach 

Accounting for the effect of ocean currents in the underwater environment, ���� (��������� or 

������) may deviate from their trajectories, especially where the current is opposite to the ���'s 

direction of movement. In our approach, we consider that the ���� move to reach their target 
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points, using a planned trajectory. We consider the straight line joining the ���'s initial position 

and the target point coordinate as the shortest path; the objective will be to control the ���'s 

movements along the shortest trajectories towards the desired targets. To solve this problem, we 

present a simple synthesis velocity algorithm (see Figure 4.3) that decomposes the ocean current 

velocity and the ��� velocity to make the summed velocity point directly to the desired target. 

The lower left point in the figure represents the ��� and the higher point represents the target 

point). The vector �� indicates the shortest path planned by the ���. The angle between �� and 

the x-axis is ��. The vector � indicates the speed of the AUV  (����, v�����), which can be adjusted 

according to the system requirements. The angle between � and the x-axis is �� (����
� , ��

�). The 

vector �� represents the ocean current velocity, and the angle between �� and the x-axis is ��1. 

 

Figure 4.3. Velocity synthesis algorithm. 

 

The main challenge is to find out ��to ensure that the ��� moves along ��. The component of 

the vehicle velocity that assists the motion along the desired path vector �� has a magnitude �� =

� ���(�� ��). The component of the vehicle velocity that is perpendicular to the desired 

trajectory is denoted by �� = � ���(�� ��). Similarly, the component of the ocean current that 

assists motion along the desired trajectory is ��� = �� ���(�� ��1), its component that is 

perpendicular to the desired trajectory is ��� = �� ���(�� ��1). To keep the ���  in the 

planned direction requires �� to cancel ���, which can be described as the following equation 

[283]: 

� ���(�� ��)= �� ���(�� ��1) (4.20) 

From the above equation, it can be calculated 

�� = ������ ���
���(�� ��1)

�
� + �� 

(4.21) 

The speed synthesis algorithm implementation is based on the precondition, 

|��|< |�| (4.22) 
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�� = �� + ��� (4.23) 

Summarizing, by combining equations (10) to (13), �� y �� can be calculated, where �� is the 

magnitude of the resulting ��� velocity along the desired trajectory.  

2) AUVs trajectory.  

As mentioned above, we assume that all ��������� are at the same depth, while ������ is at a 

different depth; both move within a range of coverage that spans the horizontal plane. Their 

motions are based on the direction of motion (��), the initial ��� velocity (�), and the ocean 

current velocity (��) using the velocity synthesis approach. We also assume that in the t-th time 

slot the �������� � moves to serve the cluster head j in the direction of its target. The ������ 

moves from the starting point to the strategic location points to serve the ���������.  

The horizontal distance between the ������ to a strategic point is given by 

����,�
� (�)= ���(�) ��(�)�

�
+ ��(�) ��(�)�

�
 

(4.24) 

where [�(�),�(�),�] and [��(�),��(�),��] denote the coordinates of the ������ and a strategic point, 

respectively; here � = �� = 0. Similarly, the horizontal distance from �������� � to the cluster 

heads j is given by 

where [��(�),��(�),��] and ���(�),��(�),��� represent the coordinates of the �������� � and cluster 

head � (to visit), respectively; here �� = �� = 0. 

For security reasons, each AUV can only move in a rectangular area to avoid possible collisions; 

whose maximum lengths are denoted for the ������ as 

0 ≤ �(�)≤ ����,∀ � ∈ � (4.26) 

0 ≤ �(�)≤ ����,∀ � ∈ � (4.27) 

and the minimum and maximum lengths for the �������� � are 

��
��� ≤ ��(�)≤ ��

���,∀ � ∈ �,� ∈ � (4.28) 

��
��� ≤ ��(�)≤ ��

���,∀ � ∈ �,� ∈ � (4.29) 

Therefore, the ��������� move along a path from the nearest cluster head to the last one, 

guaranteeing that each cluster head is covered and served only once.  

To get the trajectory of the ������, we consider the displacement at each time interval t, where 

�(�)= �(0)+ ∑ ����,�
� (�)�

��� ��������
� (�)�, �(�)= �(0)+ ∑ ����,�

��
��� (�)���(����

� (�)) here [�(0),�(0),�] 

is the initial coordinate of the ������; as well as for the �������� � trajectory, where ��(�)=

��,�
� (�)= ����(�) ��(�)�

�

+ ���(�) ��(�)�
�

 
(4.25) 
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��(0)+ ∑ ���
��

��� (�)��� ���
�(�)� , ��(�)= ��(0)+ ∑ ��,�

��
��� (�)������

�(�)� here [��(0),��(0),��] is the 

initial coordinate of the �������� �. 

3) Cluster Head Data Collection  

We assume that the ������ and the �������� have reached the desired positions to maintain 

coverage between the �������� and its cluster heads as well as between the ������ and the 

��������. 

Next, each cluster head j ∈ �� = {1,… ,��}, first offloads the input data of a task ��,� to the k-th 

��������. The required times are the transmission delay ���
��,������(�) and the propagation delay 

�����
��,������(�) at time slot �. They are given by 

���
��,������(�)=

��,�(�)

���,������
 

(4.30) 

where ���,��� stands for the uplink rate of �� � in the underwater medium. 

To get the propagation delay �����
��,������(�) we first calculate the Euclidian distance between the 

�������� �, and the cluster head j. 

��,�
� (�)= ����(�) ��(�)�

�

+ ���(�) ��(�)�
�

+ ���(�) ��(�)�
�

 
(4.31) 

�����
��,������(�)=

��,�
� (�)

�����
 

(4.32) 

where �����=1500 m/s is the nominal speed of sound underwater. 

Afterward, if the task ��,� is a computation task, the �-th �������� has to 1) execute the 

task ��,�, locally in the edge-computing-enabled AUV�����, 2) offload it completely to the AUV-

enabled MEC server ������, or 3) partially execute it on both ��������  and ������. 

4) Local or Partially Local Computing Model 

When the ��������  chooses to execute the whole task ��,� locally, ��,�(�)= 0. Otherwise, if 

partially offloading is selected,  ��,� ��,�(�)  represents the input data volume offloaded to the 

AUV��� and �1 ��,�� ��,�(�) represents the input data volume left for local computation and the 

total local or partially local execution delay of the �������� � at time slot t would be represented 

by: 

�����(�)=
�1 ��,�� ��,�(�) ��,�(�)

�����
 

(4.33) 

where ��,�(�) indicates the size of the computing task, ��,�(�) indicates the CPU cycles required to 

process each unit byte, and �����  indicates the computing capacity of the ��������. Also, the 

power required by each of the ��������� to execute the task locally can be evaluated as follows: 
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��,�
� (�)= �(�����)

������(�) (4.34) 

where μ is a constant that depends on the average switched capacitance and the average activity 

factor, while � is a constant typically set to 3 [284].  

5) Offloading or Partially Offloading Computing Model 

It is considered that the �������� � chooses to execute the task ��,� by offloading computing 

completely (��,�(�)= 1) or partially (0 < ��,�(�)< 1). The complete offloading approach is divided 

into three steps. Firstly, �������� � needs to upload sufficient input data (i.e., program codes and 

parameters) to ������ in the underwater medium. Then the ������ allocates part of the 

computational resource and executes the computing task. Finally, the ������ returns the 

execution results to ���������. Based on the steps above, the time required for the first step of 

offloading computing is the transmission delay and the propagation delay. The transmission 

delay ���
������,������(�) can be represented by: 

���
������,������(�)=

��,� ��,�(�)

�������,������ 
 

(4.35) 

where �������,������  stands for the uplink rate of �������� k in the underwater medium. 

The Euclidian distance between the �������� � and the ������ is represented as 

����,�
� (�)= ���(�) ��(�)�

�
+ ��(�) ��(�)�

�
+ ��(�) ��(�)�

�
 

(4.36) 

The propagation delay can be given by 

�����
������,������(�)=

����,�
� (�)

�����
 

(4.37) 

where �����=1500 m/s is the nominal speed of sound underwater.  

The overall energy required by the �������� � to transmit to the ������ in the time slot (�) is 

given by: 

��,�
� (�)= ���

������,���������
������,������(�) (4.38) 

where ���
������,������ is the data transmission power of the �������� �. For the second step of 

offloading computing, the time delay that it takes the ������ to process the downloaded task is 

represented by: 

�����(�)=
��,� ��,�(�) ��,�(�)

���
� �

 
(4.39) 

where � represents the allocated computational resources (computational capacity of the AUV���), 

and ���
� ∈ {0,1} is the specific portion of � allocated to �������� �. Similarly, the power 

consumption required by the ������ to execute the remaining task offloaded can be evaluated as: 
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��,�
� (�)= �(���

��)������(�) (4.40) 

where � and � are constants explained above.  

For the last step of offloading computing, the time delay of receiving the processed result can be 

expressed as follows: 

���(�)=
��(�)

���
 

(4.41) 

where ��(�) indicates the size of the computed result and ��� indicates the download data rate of 

��������. But based on [267], the download duration of the results from the ������ is usually 

ignored, because the result size is considerably smaller than the input data size of ��,�. 

Consequently, the delay and propagation delay of this step are neglected in the rest of this work. 

6) Task Completion Time and Energy Consumption 

The total time to complete a task ��,�  locally is expressed as 

��,�
� (�)= ���

��,������(�)+ �����
��,������(�)+ �����(�) (4.42) 

The total time to complete a task ��,� using computational offloading is expressed as 

��,�
� (�)= ���

��,������(�)+ �����
��,������(�)+ ���

������,������(�)+ �����
������,������(�)+ �����(�)  (4.43) 

To sum up, the time to complete the task ��,� is given by 

��,�(�)=

��,�
� (�),                   ��,� = 0;                                 ����� ���������

��,�
� (�),                   ��,� = 1;                                        ����������

��� ���,�
� (�),��,�

� (�)�, 0 < ��,� < 1;     ������� ����������

 

(4.44) 

And the overall energy consumption ��,�(�) is  

��,�(�)= �

��,�
� (�),                   ��,� = 0;                                 ����� ���������

��,�
� (�),                   ��,� = 1;                                        ����������

��,�
� (�)+ ��,�

� (�)+ ��,�
� (�), 0 < ��,� < 1;     ������� ����������

 

(4.45) 

 

E. Problem formulation 

In this work, we consider jointly optimizing the trajectory of  ��������� and the ������ , the 

task offloading strategy of the ��������� and computing resource allocation on the ������ to 

minimize the total delay to complete the tasks and energy consumption. The trajectory of the 

��������� and the ������ is defined as � = �����
� ,��

�,����,�
� (�),��,�

� (�),∀ � ∈ �,∀ � ∈ ��,∀ � ∈ ��, the 

offloading strategy is defined as � = ���,�(�),∀ � ∈ �,∀ � ∈ ��,∀ � ∈ ��, and the computing resource 

allocation vector is defined as � = {���
�(�),∀ � ∈ �,∀ � ∈ ��,∀ � ∈ �}. Therefore, the problem for joint 

optimization of the trajectory U, the offloading strategy of tasks A, and the resource allocation � 

can be formulated as 
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���
�,�,�

��(1 �)����,�(�)  + � ����,�(�)  

�∈��∈��∈��∈�

�

�∈�

 
(4.46) 

s.t. 

 0 ≤ ����
� (�)≤ 2�,∀ � ∈ �,� ∈ � (4.46a) 

 0 ≤ ��
�(�)≤ 2�,∀ � ∈ �,� ∈ � (4.46b) 

 0 ≤ ����(�)≤ ����
���,∀ � ∈ � (4.46c) 

 0 ≤ ����(�)≤ ����
���,∀ � ∈ � (4.46d) 

 ��
��� ≤ ��(�)≤ ��

���,∀ � ∈ �,� ∈ � (4.46e) 

 ��
��� ≤ ��(�)≤ ��

���,∀ � ∈ �,� ∈ � (4.46f) 

 ���
� = 0 ; �� ��,�(�)= 0 (4.46g) 

∑ ���
��

� ≤ 1 ;   ��,�(�)≠ 0  (4.46h) 

where � represents the weights of the delay and the energy consumption of the task ��,�(�). The 

weights satisfy 0 ≤ � ≤ 1. 

The constraints (4.46a, 4.46b) guarantee the horizontal direction of motion for the ������ and 

the ��������, respectively. The restrictions (4.46c-4.46f) indicate the maximum area of coverage 

for the ����. The constraint (4.46g) denotes that if the task is executed locally, no computational 

resources will be allocated on the MEC server. The constraint (4.46h) guarantees that the 

resource allocation assigned by the ������ does not exceed the maximum available. 

An efficient trajectory optimization, task offloading, and resource allocation model is 

formulated as a nonlinear problem. Its objective is to reduce the time and energy cost of 

���������. This model presents a challenging nonlinear problem due to its non-convex nature and 

integer programming constraints, rendering it NP-hard and impractical for exact solution 

derivation, chiefly due to its high-dimensional complexity. Consequently, instead of using 

traditional optimization approaches, reinforcement learning-based methods are used to obtain the 

near-optimal solutions for the variable parameters efficiently. For this purpose, we employ a deep 

deterministic policy gradient algorithm to solve it. 

4.2.2 DDPG Algorithm Methodology Problem Solution 

In this section, we propose a DDPG algorithm for MEC-based underwater networks that allows 

the joint optimization of the AUV trajectory, the task offloading strategy, and the allocation of 

computational resources in a continuous action space; to minimize both the total delay for the 

computation of tasks as well as the energy consumption in the system. 
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There are three key elements in the reinforcement learning method, namely, state, action, and 

reward. These are detailed below: 

1) State �(�): �(�)= �[�(�),�(�),�],[��(�),��(�),��],��,� ∀� ∈ ��; �(�) is the set of coordinates of 

all ����. 

2) Action �(�): �(�) is the set of the actions of all ����, it includes the velocity ����(�) for 

������, velocity ������(�) for ���������, the offloading strategy ��,�(�),  and the computing 

resource allocation vector ���
�. Hence, the action set can be defined as �(�)=

�����(�),������(�)(�),… ,������(�)(�),���(�),… ,���(�),���
�(�),… ,���

�(�)�. 

3) Reward �(�): �(�) is defined as the overall minimum delay for the entire process in each 

time slot is defined as: 

���
�,�,�

��(1 �)����,�(�)  +  �����,�(�)  

�∈��∈��∈��∈�

�

�∈�

 
(4.47) 

4.2.3 Experiments and Results 

In this section, simulations are conducted to verify the effectiveness and evaluate the design of 

the proposed algorithm. First, we describe the environment and simulation parameters employed 

during the experiments. Afterward, we present a discussion of the obtained results, comparing 

the proposed algorithm with other baseline schemes. 

All algorithms are evaluated with simulations implemented on several Jupyter Notebooks in 

version 6.0.3 installed with the Anaconda software suite, developed in Python 3.7. The 

experiments were performed on a Lenovo computer with Intel (R) Xeon (R) 2.9 GHz processor and 

72 GB RAM; furthermore, NumPy, Matplotlib, and TensorFlow libraries are used to develop RL 

algorithms. 

4.2.3.1 Simulation Setting 

In the proposed scheme, we consider a total coverage area of 100�100 �� (���) on the seabed. 

It is divided into four equal quadrants of 50�50 �� each. Several IoUT devices or sensor nodes are 

randomly distributed over the total area, strategically clustered into groups and each group is led 

by a CH. Each CH in each quadrant will be responsible for collecting information from the other 

sensor nodes.  There are 4 ��������� (one for each quarter) that collect the information/tasks from 

the CHs for processing. Tasks collected by ��������� can be processed fully locally, fully offloaded 

to the ������ server or partially in both ��������� and ������. In addition, an ������ that is 

responsible for serving all ���������. We have considered a fixed depth of 20 m, 60 m, and 95 m 

for the ������, ���������, and CHs, respectively. Furthermore, each training epoch is divided 

into 60 time slots. In each time slot, a task with computation requirements is generated at each 
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CH. We also assume that the ��������� and ������ have a maximum speed of 2 m/s and 5 m/s 

respectively. The transmission bandwidth is set to � = 2 ���. The maximum CPU frequency of 

the MEC server ������ and ��������� is � = 1.5�10� ��, and ����� = 6�10���, respectively. The 

transmission power is denoted by �� = 1�10�� �. Moreover, it should be noted that the 

computational download data size �� is set in Kbytes and the number of cycles is set in 

Megacycles/second. Other detailed simulation parameters are summarized in Table 4.2. 

To evaluate the performance of the proposed algorithm and for comparison purposes, we 

describe the following benchmark approaches below: 

- Offloading of all tasks to the AUV��� (Offloading): The ������ provides computing resources 

to the ��������� at a designated location. Each of the ��������� offloads all its computing 

tasks to be processed remotely. 

- Execution of all tasks locally (Locally): All computer tasks of the ��������� are executed 

locally without offloading to the ������. 

- Deep Deterministic Policy Gradient (DDPG): We set the parameters for the proposed DDPG 

algorithm to obtain optimal system performance values. 

- Actor-Critic (AC): We implemented the continuous action space-based RL algorithm for the 

computational offloading problem to compare and evaluate the performance of the proposed 

DDPG algorithm. 

Table 4.2. Simulation Parameters. 

Parameter Default value Parameter Default value 

(� � �)��� 100�100 �� � ���� ����������(�,�,�) (0.5,0,1) 

(� � �)����� 50�50 �� ������ ������  1 

����  �� ������  20 � ������ �������� 4 

����  �� ���������  60 � ������ ���  4 

����  �� ���  ≥ 90 � ������ �� ���� ����� (�) 60 

����� 6�10��� � 20 ��� 

�  1.5�10� �� � 2 ��� 

����
��� 5 �/� � 0.2 

������
���  2 �/� �� 1�10�� � 

��,�  [10�,3�10�] ��� �  0.7 

��,�  1200 ������/���   

 

4.2.3.2 Simulation Results 

We trained the deep neural networks of the proposed models over a total of 2000 

iterations/episode. The configuration parameters of the DDPG algorithm are as follows: two 

hidden layers with 400 and 300 fully connected neurons for both the actor and the critic network, 
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soft update coefficient � = 0.001, reward discount factor � = 0.9, optimizer = Adam Optimizer and 

learning rate �� = 0.001 and 0.002 for actor and critical network, respectively, variance � = 0.05. 

The parameters of the Actor-Critic algorithm are fundamentally the same as DDPG, except that 

each hidden layer is configured with 500 and 400 neurons, respectively. 

Figure 4.4 shows the performance comparison between AC and DDPG reinforcement learning 

algorithms. The abscissa denotes the number of iterations of the main loop. The ordinate is the 

episodic reward, which is the total reward obtained by the system in an episode. The final 

convergence of the DDPG algorithm shows that it performs better based on the cumulative 

reward compared to the AC joint optimization algorithm. Although both algorithms perform 

favorably, the DDPG algorithm reaches convergence after around 250 iterations and remains 

more stable. This means that the total system delay and energy consumption decrease as the 

number of iterations increases. Compared with its counterpart, this shows the efficiency that our 

proposed RL algorithm. 

 

Figure 4.4. The total accumulated reward for the episode. 

 

In Figure 4.5 and Figure 4.6, we compare the influence of hyperparameters for DDPG. Figure 

4.5 shows the convergence performance of the proposed algorithm (DDPG) with different batch 

sizes. The figure shows an enlarged picture of the convergence performance for each batch size. 

We observe that the DDPG algorithm has similar convergence performance for different batch 

sizes and only becomes more stable during the training process, for batch size 64. 

When the batch size is 512 it converges at the same time; however, it does not remain stable 

and gets worse as the number of epochs increases. When the batch size is 256, although it may 

appear to converge optimally, we can see that throughout training it does not remain stable. 

When the batch size is 128, the algorithm converges nicely but does not remain stable as the 

training progresses. When the batch size is 64, an optimal convergence is obtained around 250 

epochs, and it remains even more stable than the previous ones as training progresses. 
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Figure 4.5. Convergence performance of the DDPG algorithm with different batch sizes. 

 

Figure 4.6 shows the convergence performance of the proposed algorithm with different 

learning rate values for both the actor-network (��-�����) and the critic network (��-critic). We 

assume that the learning rate of the actor-network and the critic network are different. It is clear 

from the figure that when the value of the learning rate is higher (��-����� = 0.01 

and ��-critic=0.02), the algorithm does not converge. Similarly, when the learning rate value is 

very small (��-����� = 0.0001 and ��-������ = 0.0002), the algorithm seems to reach convergence, 

but during training, it is getting worse. Therefore, with the learning rate values ��-����� = 0.001 

and ��-������ = 0.002 the convergence performance of the algorithm is optimal; it converges faster 

and is more stable during the whole training process. 

 

Figure 4.6. Convergence performance of the DDPG algorithm with different values of learning rates. 

 

After the training and convergence of the algorithms, in our proposal, we study the impact of 

the data size on the total delay and energy consumption by comparing the performance of these 
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algorithms with different data sizes. Figure 4.7 shows the total cumulative reward for DDPG, AC, 

Locally, and Offloading strategies. From the figure, we can notice that the total cumulative 

reward of the proposed algorithms can reach a near-optimal result, which means the reasonable 

application of the computational offloading policy can substantially reduce the total overhead of 

the ���� when tasks are partially executed. Furthermore, the AC algorithm's performance is 

considerably good compared to the DDPG algorithm, because the two algorithms explore a 

continuous action space and take a precise action that ultimately leads to the acquisition of the 

optimal offloading strategy and significantly reduces the latency and energy consumption. If 

AUVs����� execute the tasks locally without offloading (Locally strategy), they cannot use the 

computing resources of the entire system and they consume more energy and accelerate their 

battery exhaustion. Hence, as the data size increases, the delay and power consumption of each 

AUV����� also increases, leading to a degradation in system performance. Both the delay and 

energy consumption obtained by the DDPG algorithm are significantly lower than AC and Locally 

as the data size increases, which indicates the better performance of our proposed algorithm. In 

general, the total delay and energy of all schemes grow as the data size increases. Therefore, the 

optimal offloading strategy used by each AUVs����� is very important to make the best use of 

��������� and ������ computing resources. 

 

Figure 4.7. Comparison of total cumulative reward benefit and task data size (AUV's workload). 

 

Figure 4.8 and Figure 4.9 show the optimal trajectory of the ���� for data collection from the 

CHs as well as for offloading from the ��������� to the ������. For each figure, we randomly 

selected the location of the cluster heads and chose a different value for the velocity vector and 

the ocean current direction (Uc). In the figures, the gray dots represent the cluster heads located 

on the seafloor in each of the quadrants. The lines with several colors represent the trajectory of 

each of the ��������� and the black line represents the ������ trajectory. The trajectories of the 

��������� and the ������ that minimize the delay time and energy consumption have been 

selected. It is worth noting that, regardless of the location points of the cluster heads, the 
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algorithm will be in charge of guiding the ��������� to the target point (CH), starting from the 

closest one and covering each of the cluster heads only one at a time. Once the cycle is finished, 

the last point becomes the new starting point by searching again for the closest one to follow its 

new trajectory (thus getting randomness in serving each of the cluster heads). Similarly, the 

algorithm is in charge of guiding the ������ from its starting point to the strategic coverage 

points to serve the ��������� located in each quadrant.  

In Figure 4.8, the speed of the ocean current Uc = 0.5 m/s and an angle of ��1 = 45° has been 

considered. Figure 4.8 shows in red the angle �� and the velocity vector � that each AUV must 

have to reach the desired objective. On the other hand, in Figure 4.9, a speed of the ocean current 

Uc = 0.8 m/s and an angle of ��1 = 45° have been considered instead. We can observe that the 

AUVs are able to choose their trajectories optimally and reach their destinations irrespective of 

the starting cluster head locations, the ocean current speeds, and the ��1 angles. 

 

Figure 4.8. AUVs trajectory planning with UC=0.5 m/s; -45°. 

 

 

Figure 4.9. AUVs trajectory planning with UC=0.8 m/s; 45°. 
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4.2.4 Conclusions 

In this work, a novel AUV-enabled MEC system has been introduced. A joint optimization 

algorithm to solve the offloading strategy, resource allocation, and trajectory selection of both 

��������� and ������ has been proposed. The deep reinforcement learning-based approach 

DDPG has been presented to optimize AUV trajectories, task offloading, and resource allocation 

for improved underwater communication in terms of energy efficiency and delay minimization. 

We have described the training process of DDPG and AC algorithms. We have compared DDPG 

with other strategies (Locally, Offloading, and AC) Simulation results show that DDPG and AC 

converge well, but the DDPG algorithm performs considerably better- in terms of cumulative 

reward and stability. The convergence performance of the DDPG algorithm is studied with 

different batch sizes and learning rates. Batch size 64 is found to be optimal for convergence and 

stability. As data size increases, the DDPG algorithm demonstrates significantly lower delay and 

energy consumption compared to AC and the other strategies. In AUV-enabled MEC systems, 

some challenges remain. As future work, we plan to investigate the MEC systems assisted by 

multiple AUVs functioning as a swarm of server mobile edge computing devices. This approach 

will enable us to achieve extended coverage and explore interference and offload selection among 

them. 
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CHAPTER 5 

 

5 CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

In this research work, we have tried to boost the implementation of IoT-based applications and 

the optimization (improvement) of underwater communications, through artificial intelligence, 

edge computing, and 5G networks and beyond, contributing to the technological development in 

smart cities and ocean/sea. To achieve this purpose two different specific objectives have been 

addressed: 1) Improving the efficiency of applications in smart cities and 2) Improving the 

efficiency of underwater communications in smart coastal cities both through the use of artificial 

intelligence, edge computing, and 5G and beyond. 

To achieve these objectives, the existing literature on 5G networks and beyond (architecture 

and services), smart cities (enabling technologies), and artificial intelligence (applications and use 

cases) has been analyzed. A compilation of technical documentation was carried out to obtain an 

updated view of the various technologies that facilitate the development of applications based on 

5G technology. This initiative is aimed at generating new and innovative alternatives in critical 

areas such as tourism, security, improved underwater communications, and marine exploration, 

to drive development that effectively responds to the needs of citizens in smart urban 

environments and the vast oceanic territory. 

As a result of this study, the first contribution has emerged. It consists of the analysis, design, 

and implementation of a tourist attraction recommendation system based on a deep learning 

algorithm for smart cities, aiming to reduce the time that it may take a user to search for possible 

places to visit and to improve how recommendations of tourist attractions are performed in a 

given city. Simulations show that our proposed multi-label deep learning classifier outperforms 

other models (decision tree, extra tree, k-next neighbor, and random forest) and can successfully 

recommend tourist attractions for both cases (a) searching and planning activities before 

traveling and (b) searching activities within the smart city providing real-time recommendations 

using IoT contextual information (location and weather forecast) once the tourist is searching for 

activities within the smart city. 

From this foundation and with the desire to continue generating innovative strategies and 

solutions, the second contribution arises driven by surveillance and security, which consists of a 
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distraction detection system for the prevention of drowning in aquatic places, developed in a 5G 

and beyond network environment. To do so, we proposed an approach of surveillance cameras 

that capture images of people in charge of minors in swimming pools or beaches; and through an 

ML algorithm (convolutional neural networks) classify the type of distraction that a person in 

charge of a minor may incur. The simulations show that our proposal successfully performs the 

classification of distractions with very high accuracy and through that the decision-making to 

alert the person who is distracted and focus on the care of the child.  

The resulting results not only have demonstrated effectiveness in the specific areas addressed 

but have also demonstrated the ability to integrate emerging technologies. The combination of 

technologies such as 6G, artificial intelligence, and edge computing offers ample scope for 

addressing challenges in both urban and maritime environments. The contributions presented 

not only represent significant advances in their respective areas but also lay the groundwork for 

future research and development in smart city construction and optimization of underwater 

communications, thus reinforcing the transformative potential of artificial intelligence, edge 

computing, and advanced wireless networks in these domains. 

From the research work carried out, the following particular conclusions can be drawn: 

 Our study highlights that the choice of a deep neural network topology is key to the 

performance of an IoT and deep learning-based tourist attraction recommendation system. 

Our thesis experiments have demonstrated that deeper networks improve the efficiency of a 

deep neural network algorithm, and the grid search methodology can identify an optimal 

DNN topology. 

 Our study also demonstrates the effectiveness of deep learning as a key tool for advanced 

visual data processing. The ability of deep learning algorithms to discern complex patterns 

in real-time images proves to be an essential component for the accurate identification of 

risky situations, such as a distracted caregiver not noticing a child in danger in a swimming 

pool. This approach, supported by a comprehensive and diverse data set, proves to be a 

promising strategy for minimizing false positives and ensuring reliable detection. 

Furthermore, the integration of 5G and beyond technology emerges as a key enabler for the 

operational efficiency of the proposed prevention systems. The data transmission capability, 

coupled with lower latency, provides a robust foundation for the effective implementation of 

preventive strategies. Instantaneous communication between devices and the ability to 

make dynamic adjustments based on real-time information are crucial attributes that 

strengthen the responsiveness and adaptability of the designed infrastructure. 

 The application of reinforcement learning algorithms is essential to improve QoS 

parameters in underwater networks. Resource management in multi-tier subsea 

environments (“local AUVs” and an “MEC AUV”) is addressed comprehensively. The 

implementation of advanced resource management techniques contributes to a more 

efficient utilization of computational capacity, maximizing the performance of distributed 
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underwater systems. The proposed approach succeeds in mitigating the computational 

complexity associated with decision-making in dynamic and changing underwater 

environments. Proactive consideration of environmental information enables effective 

simplification of decision-making processes, improving system robustness. 

 

5.2 Future Work 

The results obtained in this study not only validate the effectiveness in the specific areas 

addressed but also highlight the ability to merge continuously evolving technologies. The future 

of applications based on reinforcement learning, 6G and the development of smart cities is 

shaping up towards a horizon of unprecedented technological innovation and significant progress 

in the interconnection of intelligent systems.  

However, certain aspects remain to be studied, which either maintain or open up new lines of 

research in the field of emerging technologies. Next, we present certain important areas for future 

work that are derived from the research conducted: 

Personalization of Tourism Recommendations in Smart Cities. 

 Due to advances in ultra-fast connectivity (5G and 6G), there is a need to research and 

develop more immersive and personalized tourism experiences. By implementing Mixed 

Reality (AR and VR) technologies. This approach involves the creation of applications that 

merge previous advances in tourism recommendations with AR to provide real-time 

contextual information about destinations and the use of VR experiences that could take 

tourism recommendations to a whole new level, allowing users realistic and exciting visits. 

 Explore the use of techniques and analyze patterns associated with emotions present in 

stored data (emotion recognition) through analysis of images, data, text, or natural 

language processing to tailor recommendations according to the mood of tourists, providing 

more personalized experiences. 

 Collaborate with travel platforms and social networks to enrich the information available 

and provide more accurate recommendations based on experiences shared by other 

travelers. 

Development of Intelligent Systems for Drowning Prevention: 

 First, research on transfer learning techniques is suggested to adapt the Deep Learning 

model to different pool environments, considering the analysis of new variables such as 

size, shape, and lighting conditions. 

 Another interesting approach is the incorporation of multi-modal sensing, introducing 

additional sensors, underwater sound detection systems, or more advanced vision 

technologies to improve the detection of risky situations, such as the ability to identify 
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multiple people in the water simultaneously or assess water quality to predict dangerous 

conditions through advanced sensors that monitor parameters such as turbidity, chemical 

concentration or temperature in a pool or aquatic area.  

 Exploring approaches to address privacy concerns when using surveillance technologies, 

such as anonymizing data and incorporating ethical measures into system design. 

 Finally, it is proposed to consider expanding research into broader applications, such as 

aquatic safety in natural environments, beaches, or other aquatic locations, by deploying 

drones to enable image collection in outdoor areas, leveraging the combination of Deep 

Learning and advanced connectivity technologies to address broader concerns in the 

prevention of child drowning. 

Optimization of Underwater Communication Systems: 

 Extend the research to a wider variety of underwater operational scenarios, considering 

different depths, water temperatures, and geographical conditions. This will allow 

evaluation of the robustness and adaptability of reinforcement learning models and the 

effectiveness of moving edge computing in diverse underwater contexts. 

 Encourage interdisciplinary collaboration with experts in oceanography, marine biology, 

and environmental sciences to fully exploit the capabilities of the developed technology in 

practical applications, such as underwater environmental monitoring and scientific 

research. 

 Consider the implementation of recurrent neural networks (RNN) to address the sequential 

nature of underwater data, enabling more accurate modeling of temporal patterns. The 

application of RNNs could improve the predictive and adaptive capabilities of reinforcement 

learning models in changing underwater contexts. 

 Investigate the integration of blockchain technologies to improve the security and integrity 

of subsea transmissions. The application of smart contracts and distributed logs could 

provide an additional layer of security and traceability in subsea communications. 

 Develop adaptive algorithms for dynamic spectrum management in underwater 

environments. Real-time optimization of frequency allocation using adaptive algorithms 

will help improve bandwidth efficiency and reduce interference by adapting to changing 

subsea channel conditions. 
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