
UNIVERSITAT POLITÈCNICA DE
CATALUNYA (UPC) – BARCELONATECH

THESIS FOR THE DOCTORAL DEGREE IN COMPUTER
ARCHITECTURE

Network Modeling using Graph
Neural Networks

by:

Miquel Ferriol Galmés

Advisor: Dr. Albert Cabellos-Aparicio

Co-Advisor: Dr. Pere Barlet-Ros

Thesis for the Doctoral Degree in Computer Architecture

Barcelona Neural Networking Center (BNN)

Departament d’Arquitectura de Computadors (DAC)

February 2024

iii

“The common facts of today are the products of yesterday’s research.”

Duncan MacDonald

v

Acknowledgements
I would like to extend my sincere gratitude to my advisors, Prof. Albert
Cabellos and Prof. Pere Barlet, for their unwavering guidance and support
throughout my PhD journey. Their expertise, encouragement, and dedicated
support have been indispensable in helping me navigate and successfully
complete my thesis. I appreciate the opportunities they provided for pre-
senting my work and their support in overcoming challenges. I am truly
thankful for the knowledge and experience I have gained under their super-
vision, and I will always be grateful for their mentorship.

I would like to extend my gratitude to Prof. Krzysztof Rusek, whose
invaluable work, expertise, and assistance have served as a crucial pillar for
this thesis. His contributions and guidance have greatly enriched the re-
search, and I am thankful for the support and insights he provided through-
out the process.

Thanks to all the members and former members of the Barcelona Neu-
ral Networking Center and the Computer Architecture Department: Sergi
Abadal, José Suarez, Jordi Paillisé, Paul Almasan, Albert López, Guillermo
Bernárdez, David Pujol, Hamid Latif, Berta Serracanta, Axel Wassington, and
Carlos Güemes that helped and guided me during the research done in this
work. Your kindness, generosity, and camaraderie have made my PhD jour-
ney a truly memorable experience.

I would also like to express my deepest appreciation to all the mem-
bers of Hospital Clínic-IDIBAPS where I spent 6 months developing my skills
and collaborating with great researchers. Thanks for giving me this unique
opportunity to learn about the health domain. I am especially grateful to Dr.
Laura Mezquita, for their valuable guidance and support during my stay.

This thesis has been partially funded by the Spanish I+D+i project
TRAINER-A (ref.PID2020-118011GB-C21), funded by MCIN/ AEI/10.13039/
501100011033. This work is also partially funded by the Catalan Institution
for Research and Advanced Studies (ICREA) and the Secretariat for Univer-
sities and Research of the Ministry of Business and Knowledge of the Gov-
ernment of Catalonia and the European Social Fund.

I would like to express my sincere gratitude to all my family and
friends for your unwavering love and encouragement throughout my PhD

vi

journey. Your support has been a source of comfort and strength during the
challenging times, and I am truly grateful to have you all in my life. I could
not have accomplished this milestone without your support, and I am deeply
thankful for all that you have done for me.

Finalment, m’agradaria agrair l’immens suport i motivació rebut per
la meva familiar més directe. Per una part, als meus pares Guillem i Catalina
Inés per haver-me ajudat a superar els moments difícils que han aparegut
durant el desenvolupament d’aquesta tesis. Als meus germans Toni i Maria
Margalida i al meu cunyat Pedro Carreres pels bons moments compartits
que han estat una part indispensable per superar aquest camí. Finalment,
als nouvinguts Josep i Maria Antònia Carreras, dessitjar-li el millor d’aquest
món, esper que la vida us somrigui tal i com m’ha fet a mi. Gràcies!

vii

Abstract

Network modeling is central to the field of computer networks. Mod-
els are useful in researching new protocols and mechanisms, allowing ad-
ministrators to estimate their performance before their actual deployment in
production networks. Network models also help to find optimal network
configurations, without the need to test them in production networks.

Arguably, the most prevalent way to build these network models is
through the use of discrete event simulation (DES) methodologies which pro-
vide excellent accuracy. State-of-the-art network simulators include a wide
range of network, transport, and routing protocols, and are able to simulate
realistic scenarios. However, this comes at a very high computational cost
that depends linearly on the number of packets being simulated. As a result,
they are impractical in scenarios with realistic traffic volumes or large topolo-
gies. In addition, and because they are computationally expensive, they do
not work well in real-time scenarios.

Another network modeling alternative is Queuing Theory (QT) where
networks are represented as inter-connected queues that are evaluated ana-
lytically. While QT solves the main limitation of DES, it imposes strong as-
sumptions on the packet arrival process, which typically do not hold in real
networks.

In this context, Machine Learning (ML) has recently emerged as a
practical solution to achieve data-driven models that can learn complex traf-
fic models while being extremely accurate and fast. More specifically, Graph
Neural Networks (GNNs) have emerged as an excellent tool for modeling
graph-structured data showing outstanding accuracy when applied to com-
puter networks. However, some challenges still persist:

1. Queues and Scheduling Policies: Modeling queues, scheduling
policies, and Quality-of-Service (QoS) mappings within GNN architectures
poses another challenge, as these elements are fundamental to network be-
havior.

viii

2. Traffic Models: Accurately modeling realistic traffic patterns, which
exhibit strong autocorrelation and heavy tails, remains a challenge for GNN-
based solutions.

3. Training and Generalization: ML models, including GNNs, require
representative training data that covers diverse network operational scenar-
ios. Creating such datasets from real production networks is unfeasible, ne-
cessitating controlled testbeds. The challenge lies in designing GNNs capable
of accurate estimation in unseen networks, encompassing different topolo-
gies, traffic, and configurations.

4. Generalization to Larger Networks: Real-world networks are often
significantly larger than testbeds. Scaling GNNs to handle networks with
hundreds or thousands of nodes is a pressing challenge, one that requires
leveraging domain-specific network knowledge and novel architectural ap-
proaches.

This dissertation represents a step forward in harnessing Graph Neu-
ral Networks (GNN models) for network modeling, by proposing a new
GNN-based architecture with a focus on addressing these critical challenges
while being fast and accurate. Additionally, this thesis explores how the pro-
posed GNN architecture can serve as a Network Digital Twin (NDT), which,
when paired with an optimizer, illustrates the potential of these types of
models for SLA-driven optimization.

ix

Resumen

El modelado de redes es fundamental para el campo de las redes infor-
máticas. Los modelos son útiles para investigar nuevos protocolos y mecan-
ismos, lo que permite a los administradores estimar su rendimiento antes de
su implementación real en las redes de producción. Los modelos de red tam-
bién ayudan a encontrar configuraciones de red óptimas, sin necesidad de
probarlas en redes de producción.

Podría decirse que la forma más frecuente de construir estos modelos
de red es mediante el uso de metodologías de simulación de eventos dis-
cretos (DES) que proporcionan una precisión excelente. Los simuladores de
redes de última generación incluyen una amplia gama de protocolos de red,
transporte y enrutamiento y son capaces de simular escenarios realistas. Sin
embargo, esto tiene un costo computacional muy alto que depende lineal-
mente de la cantidad de paquetes que se simulan. Como resultado, no re-
sultan prácticos en escenarios con volúmenes de tráfico realistas o topologías
grandes. Además, y debido a que son computacionalmente costosos, no fun-
cionan bien en escenarios de tiempo real.

Otra alternativa de modelado de redes es la teoría de colas (QT), donde
las redes se representan como colas interconectadas que se evalúan analítica-
mente. Si bien QT resuelve la principal limitación de DES, impone fuertes
suposiciones sobre el proceso de llegada de paquetes, que normalmente no
se cumplen en las redes reales.

En este contexto, el aprendizaje automático (ML) ha surgido reciente-
mente como una solución práctica para lograr modelos basados en datos que
pueden aprender modelos de tráfico complejos y al mismo tiempo ser ex-
tremadamente precisos y rápidos. Más específicamente, las redes neuronales
gráficas (GNN) se han convertido en una excelente herramienta para mode-
lar datos estructurados en gráficos que muestran una precisión excepcional
cuando se aplican a redes informáticas.

Esta disertación pretende ser un paso adelante en la aplicación de
Graph Neural Networks para el modelado de redes. Sin embargo, aún per-
sisten algunos desafíos:

x

1. Colas y políticas de programación: modelar colas, políticas de pro-
gramación y asignaciones de calidad de servicio (QoS) dentro de las arquitec-
turas GNN plantea otro desafío, ya que estos elementos son fundamentales
para el comportamiento de la red.

2. Modelos de tráfico: modelar con precisión patrones de tráfico real-
istas, que exhiben una fuerte autocorrelación y colas pesadas, sigue siendo
un desafío para las soluciones basadas en GNN.

3. Capacitación y generalización: los modelos de ML, incluidos los
GNN, requieren datos de capacitación representativos que cubran diversos
escenarios operativos de red. Crear tales conjuntos de datos a partir de redes
de producción reales es inviable y requiere bancos de pruebas controlados.
El desafío radica en diseñar GNN capaces de realizar estimaciones precisas
en redes invisibles, que abarquen diferentes topologías, tráfico y configura-
ciones.

4. Generalización a redes más grandes: las redes del mundo real sue-
len ser significativamente más grandes que los bancos de pruebas. Escalar las
GNN para manejar redes con cientos o miles de nodos es un desafío apremi-
ante, que requiere aprovechar el conocimiento de la red específico del do-
minio y enfoques arquitectónicos novedosos.

Esta disertación representa un paso adelante en el aprovechamiento
de Graph Neural Networks para el modelado de redes, con un enfoque en
abordar estos desafíos críticos.

xi

Resum

El modelatge de xarxes és fonamental en el camp de les xarxes infor-
màtiques. Els models són útils per investigar nous protocols i mecanismes,
permetent als administradors estimar el seu rendiment abans del seu de-
splegament real a les xarxes de producció. Els models de xarxa també ajuden
a trobar configuracions de xarxa òptimes, sense necessitat de provar-les a les
xarxes de producció.

Sens dubte, la manera més freqüent de construir aquests models de
xarxa és mitjançant l’ús de metodologies de simulació d’esdeveniments dis-
crets (DES) que proporcionen una precisió excel·lent. Els simuladors de xarxa
d’última generació inclouen una àmplia gamma de protocols de xarxa, trans-
port i encaminament, i són capaços de simular escenaris realistes. Tanmateix,
això comporta un cost computacional molt elevat que depèn linealment del
nombre de paquets que s’estimulen. Com a resultat, són poc pràctics en es-
cenaris amb volums de trànsit realistes o topologies grans. A més, i com que
són computacionalment costosos, no funcionen bé en escenaris en temps real.

Una altra alternativa de modelització de xarxes és la teoria de la cua
(QT) on les xarxes es representen com a cues interconnectades que s’avaluen
analíticament. Tot i que QT soluciona la principal limitació del DES, imposa
supòsits forts sobre el procés d’arribada de paquets, que normalment no es
compleixen a les xarxes reals.

En aquest context, l’aprenentatge automàtic (ML) ha sorgit recentment
com una solució pràctica per aconseguir models basats en dades que poden
aprendre models de trànsit complexos alhora que són extremadament pre-
cisos i ràpids. Més concretament, les xarxes neuronals de gràfics (GNN) han
sorgit com una excel·lent eina per modelar dades estructurades en gràfics que
mostren una precisió excepcional quan s’apliquen a xarxes d’ordinadors.

Aquesta tesi pretén ser un pas endavant en l’aplicació de les xarxes
neuronals de gràfics per al modelatge de xarxes. Tanmateix, encara persis-
teixen alguns reptes:

xii

1. Cues i polítiques de programació: modelar cues, polítiques de pro-
gramació i mapes de qualitat de servei (QoS) dins de les arquitectures GNN
suposa un altre repte, ja que aquests elements són fonamentals per al com-
portament de la xarxa.

2. Models de trànsit: modelar amb precisió patrons de trànsit realistes,
que presenten una forta autocorrelació i cues pesades, segueix sent un repte
per a les solucions basades en GNN.

3. Entrenament i generalització: els models ML, incloses les GNN,
requereixen dades d’entrenament representatives que cobreixen diversos es-
cenaris operatius de la xarxa. La creació d’aquests conjunts de dades a partir
de xarxes de producció reals és inviable, ja que requereix bancs de proves
controlats. El repte rau a dissenyar GNN capaços d’estimar amb precisió en
xarxes no vistes, que abastin diferents topologies, trànsit i configuracions.

4. Generalització a xarxes més grans: les xarxes del món real sovint
són significativament més grans que els bancs de proves. Escalar les GNN
per gestionar xarxes amb centenars o milers de nodes és un repte urgent, que
requereix aprofitar el coneixement de la xarxa específic del domini i enfoca-
ments arquitectònics nous.

Aquesta tesi representa un pas endavant en l’aprofitament de les xarxes
neuronals de grafs per al modelatge de xarxes, amb un enfocament a abordar
aquests reptes crítics.

xiii

Contents

Acknowledgements v

Abstract vii

Resumen ix

Resum xi

Contents xiii

List of Figures xxi

List of Tables xxv

1 Introduction 1

1.1 Motivation and Objectives . 4

1.2 Contributions . 6

1.3 Outline of the Thesis . 7

2 Background 11

2.1 Graph Neural Networks . 11

2.1.1 Message-passing Interface 13

Initialization Phase . 13

xiv

Message-passing Phase 14

Readout Phase . 15

2.2 Machine Learning applied to Computer Networks 17

2.2.1 An Overview . 17

2.2.2 GNNs applied to Computer Networks 19

3 Limitations and Challenges of Current Network Modeling Tech-
niques 21

3.1 Simulation as a Network Modeling Technique 21

3.1.1 Simulation Setup . 23

Traffic models . 23

Topologies . 24

3.2 Analytical Models: Queueing Theory 24

3.2.1 Design . 25

3.2.2 Evaluation . 27

3.3 Neural Networks as Network Modeling Techniques 28

3.3.1 Multilayer Perceptron 29

Design . 30

Evaluation . 30

3.3.2 Recurrent Neural Networks 31

Design . 32

Evaluation . 32

3.3.3 Graph Neural Networks 32

Design . 33

xv

Evaluation . 34

3.4 Challenges of data-driven Network Modeling 36

4 RouteNet-Darwin: Advancing Towards Quality of Service-Aware
Network Modeling 39

4.1 RouteNet-Darwin . 41

4.1.1 Overview . 42

4.1.2 Notation . 42

4.1.3 Network Model . 43

4.1.4 Proposed GNN Architecture 44

4.2 Prototype Implementation . 46

4.2.1 Simulation Setup . 47

Traffic . 47

Queueing Configuration 47

Topologies . 48

4.2.2 Machine Learning Framework 48

4.3 Evaluation . 49

4.3.1 Baseline . 49

4.3.2 Performance Metrics . 50

4.3.3 Accuracy . 50

4.3.4 Generalization Capabilities 51

4.3.5 Experiments with Real Traffic 53

4.4 Use Case: Optimization . 55

4.4.1 Network Scenario . 56

xvi

4.4.2 Limitations of State-of-the-Art Optimizers 57

4.4.3 SLA-driven Optimization Use Cases 59

Methodology . 59

Routing . 60

Scheduling . 61

Routing and Scheduling 62

Robustness Against Link Failures 63

What-if: Budget-constrained Network Upgrade 63

4.5 Discussion and Concluding remarks 64

5 RouteNet-Erlang: Enhancing Network Modeling through Schedul-
ing, Traffic Models, and Generalization 67

5.1 RouteNet-Erlang . 68

5.1.1 Model Description . 69

5.1.2 Simulation Setup . 75

5.1.3 Training . 75

5.2 Evaluation . 77

5.2.1 Evaluation Methodology 78

5.2.2 Traffic Models . 78

5.2.3 Scheduling Policies . 80

5.2.4 Generalization to larger topologies 81

5.2.5 Inference Speed . 82

5.3 Discussion and Concluding remarks 83

xvii

6 RouteNet-Fermi: Unifying Scheduling, Traffic Models, and Gener-
alization in Network Modeling 85

6.1 RouteNet-Fermi . 86

6.1.1 Model Description . 87

6.1.2 Representing network components and their relation-
ships . 87

6.1.3 Scaling to larger networks: scale-independent features 90

Scaling to larger link capacities 91

Different output ranges 92

6.1.4 Training and Implementation 94

6.2 Evaluation . 95

6.2.1 Performance Analysis 96

Methodology . 96

Dataset . 96

Traffic Models . 97

Scheduling . 99

6.2.2 Generalization and Scalability 100

Generalization to larger networks 100

Few-shot Learning . 101

Ablation test . 102

Scalability: Training and Inference time 103

6.2.3 Benchmarking of RouteNet-F 104

Testbed . 104

Real Traffic . 105

xviii

State-of-the-Art . 106

6.3 Discussion and Concluding Remarks 107

7 ST-RouteNet: Adding the Temporal Dimension 109

7.1 Network Scenario . 110

7.2 Flow-Aware Network Model 111

7.2.1 Model description . 112

7.3 Experimental evaluation . 114

7.3.1 Flow Configuration . 115

7.3.2 Topologies . 115

7.3.3 Baselines . 115

7.3.4 Training and evaluation 116

7.4 Discussion and Concluding Remarks 118

8 Network Performance Digital Twins 121

8.1 Network Performance Digital Twins 123

8.1.1 Architecture . 124

Administrator Interface 124

Network Digital Twin Interface 124

Network Interface . 125

8.1.2 Requirements . 126

8.2 Technologies for Network Performance Digital Twins 127

8.2.1 Analytical models . 127

8.2.2 Packet-level simulators 128

xix

8.2.3 Emulators . 128

8.2.4 Testbeds . 128

8.2.5 Traditional Neural Networks 129

8.2.6 Graph Neural Networks 129

8.3 Implementation . 130

8.3.1 User Interface . 130

8.3.2 RouteNet-F Interface . 132

8.3.3 Features . 132

8.4 Use Cases . 133

8.4.1 What-if scenarios . 133

8.4.2 Network Optimization 134

8.5 Discussion and Concluding Remarks 134

9 Conclusions and Future Work 137

Bibliography 141

xxi

List of Figures

2.1 Hidden state (h0
i) Initialization for a single node i. 14

2.2 Message-passing scheme for a single node i and its neighbors. 14

2.3 Message-passing Phase for a single graph node. 15

2.4 Readout Phase. 16

3.1 Simulation time depending on the number of processed events. 22

3.2 Sample Topology with 4 nodes, three links, and two flows. . . 31

3.3 Recurrent Neural Network model for the Sample Topology
(Figure 3.2) . 31

4.1 Schematic representation of the network model implemented
by RouteNet-D. 43

4.2 CDF of relative error for RouteNet-D. y represents the true de-
lay, while ŷ denotes the predicted one. 49

4.3 CDF of relative error over 106 unseen real-world topologies. . 51

4.4 Correlation matrix of the topology size, traffic intensity, path
length, and MAPE. 52

4.5 CDF of the relative error using real traffic. 54

4.6 CDF of relative error over 106 unseen real-world topologies
with realistic traffic. 54

4.7 Network scenario for SLA-based optimization. 56

xxii

4.8 CDF of the relative error of the fluid model under various traf-
fic loads. 58

4.9 Routing-based SLA Optimization. 60

4.10 Scheduling-based SLA Optimization. 62

4.11 Routing and Scheduling-based SLA Optimization. 62

4.12 SLA-driven optimization with link failures. 63

5.1 Black-box representation of RouteNet-E. 68

5.2 Schematic representation of the network model implemented
by RouteNet-E. 69

5.3 Training and evaluation losses over time. 77

5.4 CDF of the relative error for RouteNet-E and QT with different
traffic models. Figures a, b, and c show models with discrete
state space. Figures d and e include continuous state space.
Each figure also shows numbers of the mean absolute relative
error. 79

5.5 Absolute relative error vs. topology size. 82

5.6 Execution time vs. topology size. 82

6.1 Black-box representation of RouteNet-F. 86

6.2 End-to-end workflow of RouteNet-F. 1) Collection of small-
scale observations coming from a controlled environment, 2)
Model training, 3) Model testing with various configurations
(e.g., routing, scheduling) never seen during the training phase,
4) hyper-parameter tunning to balance highly accurate predic-
tions with performance, 5) Simulation of large-scale produc-
tion networks. One of the main advantages of RouteNet-F is
that usually time-consuming steps like 1), 2), 3), and 4) are all
done at small scales and, therefore, are fast as well. 86

6.3 Schematic representation of RouteNet-F. 88

xxiii

6.4 Scaling with mixed traffic models and scheduling policies -
Mean Absolute Relative Error of delay predictions vs. topol-
ogy size, including different traffic models and queue schedul-
ing configurations. The model was trained on a dataset with
10,000 samples from networks of 5 to 10 nodes. 100

6.5 Delay evaluation - Mean Absolute Percentage Error vs Num-
ber of Training Samples for the different versions of RouteNet-
F and RouteNet-E. 102

6.6 Schematic representation of the network testbed. 105

7.1 Representation of the temporal dimension. Whenever there is
a change in the network state (e.g., the creation of a flow), a
new time-bin is established. 111

7.2 ST-RouteNet diagram. ST-RouteNet takes as inputs the net-
work configuration (e.g., topology, link capacities, routing),
the target per-flow parameters, and the previous network state.
ST-RouteNet outputs the per-bin and per-flow performance
metrics (delay and jitter) and the current network state. 112

7.3 Delay prediction of one randomly selected flow of the GBN
topology. 117

7.4 PDF of the Relative Error reported for the delay prediction. . . 118

8.1 Architecture of an NPDT-assisted network, with the interfaces
between the NPDT and the Management and Control Plane. . 125

8.2 User controls and graphical representation of the input net-
work, showing the EARN network. 131

8.3 Role of the NPDT in a network optimization scenario. 135

xxv

List of Tables

3.1 Delay prediction using the QT model. The error is computed
w.r.t. simulation results. 28

3.2 Delay prediction using an MLP and an RNN for different traf-
fic models. The error is computed w.r.t. simulation results. . . 30

3.3 Delay prediction using an MLP and an RNN for the same and
different routing configurations w.r.t. those seen during train-
ing, and considering various link failures. The error is relative
to simulation results. 31

3.4 Delay prediction using an MPNN for the same and different
routing configurations w.r.t. those seen during training, and
considering various link failures. The error is relative to simu-
lation results. 35

4.1 Comparison of performance metrics. 50

4.2 Performance metrics comparison over 106 real-world topolo-
gies never seen during training. 52

4.3 Performance metrics comparison over 106 real-world topolo-
gies with realistic traffic never seen during training. 54

4.4 Optimal link placement with various Traffic Matrices (TMi). . 64

5.1 Simulation variables. 76

5.2 Mean Absolute Percentage Error for RouteNet-E and the QT-
Baseline for the Scheduling Policies experiment. 81

xxvi

6.1 Delay prediction using the QT baseline and RouteNet-F for
different traffic models. The error is computed w.r.t. simu-
lation results. 97

6.2 Jitter prediction using the QT baseline and RouteNet-F for dif-
ferent traffic models. The error is computed w.r.t. simulation
results. 97

6.3 Packet Loss evaluation - Mean Absolute Error and Coefficient
of Determination (R2) of QT and RouteNet-F for the different
traffic models. 97

6.4 Delay and jitter evaluation - Mean Absolute Percentage Error
of QT and RouteNet-F in the presence of Scheduling Policies
for low, medium, and high traffic intensity. 99

6.5 Packet loss evaluation - Mean Absolute Error and Coefficient
of Determination (R2) of QT and RouteNet-F in the presence of
Scheduling Policies for low, medium, and high traffic intensity. 100

6.6 Inference time vs. topology size for RouteNet-F and the QT
baseline. 104

6.7 Delay prediction using RouteNet-F for the testbed and the real
traffic traces experiments. 106

6.8 Average RTT prediction using MimicNet and RouteNet-F for
different FatTree topologies. The error is computed w.r.t. sim-
ulation results. 107

7.1 Performance comparison for NSFNET and GEANT networks
seen during training. 117

8.1 Requirements vs. candidate technologies to implement an NPDT.
∗ stands for partially . 127

1

Chapter 1

Introduction

Network modeling is arguably one of the key tools when designing, build-
ing, and evaluating computer networks, even since the early days of net-
working [1]. Network models are used in protocol design, performance eval-
uation, or network planning to cite a few examples. The two most widespread
network modeling techniques are analytical models based on Queuing The-
ory (QT), and packet-level simulators [2, 3].

However, the evolution of computer networks, especially concerning
complexity and traffic characteristics, highlights some of the limitations of
classical modeling techniques. Despite their tremendous success and gen-
eral usage, some scenarios require more advanced techniques capable of ac-
curately modeling complex traffic characteristics, while scaling to large real-
world networks.

Especially, two relevant applications can benefit from advanced net-
work modeling techniques: Network Digital Twins (NDT) [4], and network
optimization tools. Commonly, an NDT is referred to as a virtual replica
of a physical network that can accurately mimic its behavior and can make
performance predictions for any given input condition (e.g., traffic, topol-
ogy change, or new routing configuration). In other words, an NDT is an
accurate network model that can support a wide range of network configu-
rations and that can accurately model the complex non-linear behaviors be-
hind real-world networks. As a result, NDTs can be used to produce accurate
performance predictions, carry out what-if analysis, or perform network op-
timization by pairing it with an optimization algorithm [5, 4].

In the context of network optimization, we can only optimize what we can

2 Chapter 1. Introduction

model. Optimization algorithms operate by searching the network configura-
tion space (e.g., to find an alternative routing scheme). For each configura-
tion, a network model is used to estimate the resulting performance to see if
it fulfills the optimization goal (e.g., minimize delay [6]). To achieve efficient
online optimization, it is essential an accurate and fast network model.

Arguably, the most prevalent way to build these network models is
through the use of discrete event simulation (DES) methodologies. Notable
examples include ns-3 [7] and OMNeT++ [8]. While DES-based models can
offer a degree of accuracy in certain cases, they also come with significant
limitations. The main one is their computational performance which comes
at a high computational cost. The cost of a simulator depends linearly on
the number of packets forwarded, which can be in the range of millions per
second on a single 1Gbps link. In consequence, they are slow and imprac-
tical when considering large networks with realistic traffic volumes. This
also severely limits its applicability to online network optimization, given
the hard time constraints of such types of applications.

Among the various network modeling techniques available, Queueing
Theory (QT) [9] stands out as one of the most widely recognized and utilized
methods. QT is a widely recognized and extensively applied network mod-
eling technique, as computer networks inherently resemble interconnected
queues where data packets await service. However, it imposes strong as-
sumptions on the packet arrival process (Poisson traffic generation), which
often is not sufficient to model real-world networks [10]. Internet traffic has
been extensively analyzed in the past two decades [11, 12, 13, 14, 15] and,
despite the community has not agreed on a universal model, there is con-
sensus that in general aggregated traffic shows strong autocorrelation and a
heavy-tail [16].

Another commonly used technique is fluid models that have become
a popular alternative for network optimization [17, 18, 19, 20, 21], as they are
simple but practical in some cases. However, fluid models assume constant
per-link delays and do not consider the effects of queuing delays or network
losses.

Machine Learning (ML) [22] provides a new breed of mechanisms to
model complex systems. In particular, Deep Learning (DL) [23] has shown

Chapter 1. Introduction 3

the ability to extract deep knowledge from human-understandable descrip-
tions of a system. This approach has proven to achieve unprecedented accu-
racy in modeling properties of complex systems, like proteins [24].

The main advantage of DL models is that they are data-driven. DL
models can be trained with real-world data, without making assumptions
about the system. This enables the building of models with unprecedented
accuracy by effectively modeling the entire range of non-linear and multi-
dimensional system characteristics. Computationally, DL is based on linear
algebra and can take advantage of massive parallelism by leveraging dedi-
cated hardware and compilers.

Network models using DL techniques have been attempted in the past
[25, 26]. However, these proposals are based on traditional Neural Network
(NN) architectures, such as Feed-Forward or Convolutional. Computer net-
works are inherently a network of queues, and as such are represented by
graphs. Both Feed-forward and convolutional NN architectures are not de-
signed to learn relational information and thus, the resulting network models
are strongly limited. These models only function effectively within the net-
works they were trained on, rendering them impractical for accommodating
even minor changes in network topology or routing configurations.

Within the field of DL, Graph Neural Networks (GNN) [27] have re-
cently emerged as an effective technique to model graph-structured data.
GNNs are tailored to understand the complex relationships between the el-
ements of a graph. The main novelty of GNNs is that their internal archi-
tecture is dynamically assembled based on the elements and connections of
input graphs, and this enables them to learn universal modeling functions
that are invariant to graph isomorphism. GNNs are thus able to generalize
over unseen data, which means that they can produce accurate estimates in
different graphs not seen during training.

The novel GNN paradigm finally allows the application of ML in do-
mains where data is essentially represented as graphs. As a consequence, at
the time of this writing, substantial research efforts are being devoted to ap-
plying GNNs to different fields where data is fundamentally represented as
graphs, such as chemistry [28], physics [29] and others [30] [31].

This dissertation aims to explore GNNs as a new network modeling

4 Chapter 1. Introduction

language with attractive advantages and characteristics. GNNs are purpose-
built to comprehend graphs, and given that computer networks are essen-
tially graphs of interconnected queues, they provide a well-suited modeling
framework. Furthermore, this dissertation delves into the study of GNNs as
a modeling tool, emphasizing the need for in-depth research and design that
aligns with the fundamental behaviors of computer networks, as opposed to
treating GNNs as black-box models that merely map data inputs to outputs.
In contrast to traditional Deep Learning models, where the architecture is
defined by the number of layers and neurons, GNNs are constructed on an
ad-hoc basis, based on the elements and connections of the input graphs.

1.1 Motivation and Objectives

Even though in recent years notable breakthroughs have been made in the
network modeling scene, these advancements have brought to light a series
of challenges that GNN-based network modeling tools need to accomplish:

Queues and Scheduling policies: A fundamental aspect when mod-
eling networks is considering the behavior of queues (e.g., number, size),
scheduling policies (e.g., WFQ, DRR), and the mapping of traffic flows to
different Quality-of-Service classes if any. QT is a well-established technique,
and models have been developed to support a wide range of scheduling poli-
cies [32, 33]. The challenge is, how to represent queues and scheduling poli-
cies inside the GNN architecture.

Traffic models: A model is an abstraction of a system able to define
the essential aspects of the system. In the case of computer networks, which
handle a multitude of packets, an effective model necessitates a pertinent
abstraction for these packets. This underlines the significance of support-
ing arbitrary stochastic traffic models. Experimental observations show that
traffic on the Internet has strong autocorrelation and heavy-tails [16]. In this
context, it is well-known that a main limitation of QT is that it fails to pro-
vide accurate estimates on realistic Markovian models with continuous state
space, or non-Markovian traffic models. Analytical models for queues with
general arrival processes are limited to infinite buffers [34], or they make
some sort of approximation (e.g., asymptotic), which greatly differs from the

1.1. Motivation and Objectives 5

actual behavior of computer networks. The challenge for GNN-based model-
ing is, how can we design an architecture that can accurately model realistic
traffic models?

Training and Generalization: One of the main differences between
analytical modeling (e.g., QT) and ML-based modeling is that the latter re-
quires training. In ML, training involves obtaining a representative dataset
with network measurements. The dataset needs to include a broad spectrum
of network operational regimes. In practice, this means testing how different
congestion levels affect performance metrics (delay, jitter, and losses), eval-
uating how different queuing policies affect performance, or testing differ-
ent routing policies, among others. Without this, the ML model is unable to
learn and provide accurate estimates. Generating this training dataset from
networks in production is typically unfeasible, as it would require artificially
generated configurations (e.g., queue scheduling, routing) that lead to ser-
vice disruption. A reasonable alternative is to create these datasets in con-
trolled testbeds, where it is possible to use different traffic models and im-
plement a broad set of configurations. Thus, the GNN model can be trained
on samples from this testbed, and then be applied to real networks. Hence,
the research challenge is: how to design a GNN able to provide accurate esti-
mates in networks not seen during training? This includes topologies, traffic,
and configurations (e.g., queue scheduling, routing) different from those seen
in the training network testbed.

Generalization to larger networks: From a practical standpoint, the
GNN model must also generalize to larger networks. Real-world networks
include hundreds or thousands of nodes, and building a network testbed at
this scale is typically unfeasible. As a result, the GNN model should be able
to generalize from small network testbeds to considerably larger networks.
Generalizing to larger networks – or graphs, in general – is currently an open
research challenge in the field of GNNs.

The objective of this dissertation is to develop a new efficient network
model leveraging Graph Neural Networks. Specifically, it focuses on the de-
sign of a novel architecture capable of supporting different scheduling poli-
cies and traffic models, while being able to generalize not only to topologies
of similar sizes but to larger ones.

6 Chapter 1. Introduction

1.2 Contributions

This thesis aims to contribute meaningfully to the field of network modeling
by leveraging the capabilities of Graph Neural Networks (GNNs). Within
this pursuit, it presents a series of contributions that seek to enhance the state
of network modeling in various important points:

Advanced GNN-based Modeling: The thesis leverages the use of
Graph Neural Networks (GNNs) as a powerful tool for network modeling.
GNNs offer an innovative approach, designed to understand and model the
intricate relationships within network graphs, taking into account several el-
ements found in a real network (e.g., queues, links, traffic flows).

Enhanced Traffic Modeling: The thesis addresses the challenge of ac-
curately modeling network traffic. Unlike traditional approaches limited to
Markovian models, the GNN-based models developed in this thesis support
a wide range of traffic models, including those with strong autocorrelation
and high variance, which more faithfully capture real-world traffic behav-
iors.

Effective Generalization and Scalability: One of the main limita-
tions of existing models, particularly in Deep Learning (DL), is their inabil-
ity to generalize beyond the training data. This constraint often arises from
the fixed inputs commonly used in DL models, which typically entail static
topologies or predetermined vector/matrix structures, such as those found
in fixed-size images. This thesis overcomes this limitation by designing GNN
architectures that provide accurate estimates in network scenarios not seen
during training. Notably, these models are trained in controlled small-scale
testbeds and demonstrate the remarkable ability to generalize their findings
to network scenarios orders of magnitude larger. This includes various topolo-
gies, traffic patterns, and configurations, making them highly scalable and
applicable to real-world large-scale networks.

Optimization Techniques: The thesis expands the scope of network
modeling by introducing optimization techniques. These techniques are com-
bined with GNN-based models to navigate complex scenarios, ensuring the
fulfillment of Service Level Agreements (SLAs) even under highly congested
network conditions.

1.3. Outline of the Thesis 7

Flow-aware Modeling: The thesis introduces flow-aware modeling,
enabling the understanding and modeling of network flows in the time do-
main. This approach supports dynamic flow creation, modification, and ter-
mination, as well as changes in flow characteristics. It provides per-flow
metrics, such as delay and jitter, influenced by flow dynamics and network
configurations.

In short, this thesis proposes some advances in the state of network
modeling, leveraging the capabilities of GNNs to tackle complex challenges
in modeling traffic, achieving effective generalization and scalability to larger
networks, optimizing network performance, and accurately modeling net-
work flows.

1.3 Outline of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2 - Background

In this chapter, we explore the application of Graph Neural Networks
(GNNs) in various specific domains. We delve into how GNNs offer unique
advantages for modeling networked scenarios, with their ability to gener-
alize across diverse network configurations, topologies, and beyond their
training domain. Additionally, we examine the utilization of Machine Learn-
ing in computer networks, emphasizing the pivotal role of GNNs in this
context. The chapter provides an in-depth understanding of GNNs, their
message-passing interface, and their relevance to computer networks, set-
ting the stage for the research conducted in this thesis.

Chapter 3 - Limitations and Challenges of Current Network Model-
ing Techniques

In this chapter, we embark on a comprehensive exploration of cur-
rent network modeling techniques, ranging from packet-level simulators to
analytical models and DL ones. The primary objective of this chapter is to as-
sess the practicality of these established methods, showcasing their strengths
and limitations. By dissecting these techniques, we aim to clear up the un-
resolved challenges and constraints that are intrinsic to network modeling.

8 Chapter 1. Introduction

This in-depth analysis serves to provide a foundation for understanding the
landscape in which our research operates, focusing on the specific concerns
addressed in this thesis.

Chapter 4 - RouteNet-Darwin: Advancing Towards Quality of Service-
Aware Network Modeling

In the realm of network modeling, this chapter introduces RouteNet-
Darwin, a network model designed to provide precise predictions of network
performance. RouteNet-Darwin leverages Graph Neural Networks (GNNs)
to understand the intricate relationships between network topology, routing
configurations, queue scheduling, and traffic matrix. This chapter provides
a comprehensive insight into RouteNet-Darwin’s architecture, notation, and
inner workings, demonstrating its capacity to overcome the complexities of
real-world networks.

Chapter 5 - RouteNet-Erlang: Enhancing Network Modeling through
Scheduling, Traffic Models, and Generalization

This chapter presents RouteNet-Erlang (RouteNet-E), a groundbreak-
ing GNN-based architecture designed for highly accurate performance eval-
uation in computer networks. Unlike conventional Queueing Theory mod-
els, RouteNet-E can handle a wider array of traffic models, including com-
plex non-Markovian ones, closely mirroring real-world network traffic.

A notable strength of RouteNet-E is its ability to generalize effectively,
providing precise performance estimations even for larger, structurally dis-
tinct networks not encountered during training. The chapter extensively
benchmarks RouteNet-E against a state-of-the-art QT model across diverse
network scenarios. RouteNet-E consistently outperforms the QT model, de-
livering remarkable accuracy in predicting delay, jitter, and packet losses.

Chapter 6 - RouteNet-Fermi: Unifying Scheduling, Traffic Models,
and Generalization in Network Modeling

In this chapter, we introduce the core contribution of this thesis: Route-
Net-F. This novel model represents the culmination of insights gained from
earlier iterations of RouteNet. RouteNet-F is a powerful GNN that encom-
passes the ability to comprehend diverse traffic models and intricate queue
scheduling policies, all while demonstrating exceptional generalization ca-
pabilities. Notably, it showcases the capacity to extrapolate its knowledge to

1.3. Outline of the Thesis 9

scenarios vastly larger than those encountered during its training, setting it
apart as a versatile and adaptable tool for network modeling.

Chapter 7 - ST-RouteNet: Adding the Temporal Dimension

In this chapter, we discuss the limitations of existing models in repre-
senting network traffic as "Traffic Matrices." These models excel in modeling
network performance metrics but are constrained by their oversimplification.
We delve into the significance of representing network traffic as "flows" and
the role they play in networking, with an emphasis on their use in applica-
tions and network optimization. Notably, this chapter addresses the unique
challenges posed by flows’ dynamic nature and introduces the need for un-
derstanding the time dimension in modeling network traffic.

Here, we present a novel GNN-based model that operates at the flow
level. This model is designed to understand and model flows, working in the
time domain. It accommodates dynamic flows, considers their creation and
destruction, and handles flows with changing characteristics. The chapter
discusses how this model enables the computation of per-flow metrics, such
as delay and jitter, based on the input flow dynamics and network configu-
rations, including routing and network topology.

Chapter 8 - Network Performance Digital Twins

In this chapter, we delve into the concept of Network Performance
Digital Twins (NPDTs) within the context of the evolving digital landscape.
Digital Twins, a transformative concept spanning various industries, have
made significant inroads. In particular, we focus on the Network Digital
Twin (NDT) and its most common iteration, the Network Performance Digi-
tal Twin (NPDT), which predicts network performance metrics. The NPDT’s
pivotal role in understanding, optimizing, and proactively managing real-
world networks is emphasized. It enables decision-makers to explore sce-
narios, perform what-if analyses, and optimize network configurations with-
out impacting real networks. We discuss how Machine Learning (ML) mod-
els offer a promising solution for constructing reliable and efficient NPDTs,
striking a balance between accuracy and speed. Additionally, we explore the
potential of RouteNet family models as architectural candidates for NPDTs
and outline the requirements for implementing this form of Digital Twin.

Chapter 9 - Conclusions and Future Work

10 Chapter 1. Introduction

In this final chapter, we draw conclusions from the dissertation’s find-
ings and outline potential avenues for future research in the field of network
performance modeling.

11

Chapter 2

Background

In the context of network modeling, this thesis adopts an innovative ap-
proach by harnessing the power of a special Machine Learning (ML) mech-
anism. At its core, this thesis employs Graph Neural Networks (GNNs) as
a fundamental component for modeling networked scenarios. GNNs are a
class of neural network architectures explicitly crafted to work with graph-
structured data [35]. Their unique ability to generalize effectively across di-
verse network scenarios, encompassing topologies and configurations that
lie beyond their training domain, makes them a formidable tool suited for
network modeling. Notably, GNNs also shine in terms of operational effi-
ciency, offering near real-time processing capabilities, often operating at mil-
lisecond timescales. In this thesis, GNNs will be employed as the fundamen-
tal framework for the research, serving as a strong basis for addressing the
challenges aforementioned.

2.1 Graph Neural Networks

Graphs are a data structure that captures collections of objects, referred to as
vertices, and the relationships between them, denoted by edges. This funda-
mental representation offers a simple yet powerful representation for mod-
eling numerous phenomena and complex systems found in nature. Some
examples of these systems are molecules and compounds in chemistry, phys-
ical systems exhibiting interactions among objects (e.g., gravitational forces
in celestial bodies), social network structures capturing user relationships,
and the components within computer network topologies (e.g., forwarding
devices, links, routing paths). In general, a graph can provide a structured,

12 Chapter 2. Background

dense, and independent representation of a system composed of heteroge-
neous elements with arbitrary relationships between them.

In the context of Deep Learning (DL), a lot of effort has been devoted
to designing neural network architectures, which are very suitable for under-
standing and extracting in-depth knowledge from various widely used data
structures. For example, Recurrent Neural Networks (RNNs) [36] have been
proven to be an effective way to model sequential data, that can understand
and maintain the temporal relationship.

Convolutional Neural Network (CNN) [37] is another well-known neu-
ral network architecture with many applications in the field of image process-
ing. These neural networks are based on convolution operations, which are
applied to spatially ordered grids of elements. CNNs are invariant to spatial
translation, so they can apply their previous knowledge to images that have
modified the position and orientation of certain objects.

These two neural network architectures are designed with a special
focus on understanding and learning the inherent relationship information
present within the data structure itself. Specifically, RNNs excel at capturing
temporal relationships within sequences, while CNNs are tailored to discern
spatial relationships in images.

In this context, GNNs [27] [35] belong to a relatively recent family of
neural networks. GNNs are purposefully crafted to effectively process and
analyze data organized in graph structures. Notably, GNNs feature a mod-
ular neural network architecture that explicitly represents the individual el-
ements (nodes) within graphs and the connections (edges) that link them
together.

GNNs provide the unique capability to handle input graphs of vary-
ing sizes and accommodate arbitrary relationships between their elements.
Perhaps even more notably, GNNs exhibit invariance to both node and edge
permutations, a quality that enables them to abstract intricate knowledge re-
garding the connections among graph elements. This acquired knowledge
can then be leveraged to make inferences about entirely new graphs that
have not been encountered previously. GNNs have already demonstrated
their effectiveness in solving diverse problems across various domains. For
instance, they have been successfully applied in chemistry, specifically for

2.1. Graph Neural Networks 13

tasks like predicting molecular properties [28] or in physics, such as predict-
ing trajectories in n-body systems [29]).

2.1.1 Message-passing Interface

One feature that distinguishes GNNs from other well-known neural network
families is that their architecture is not fixed, but depends on the structure of
the input graph. At the core of a GNN lies the fundamental concept of an
iterative message-passing procedure.

In this procedure, each node within the input graph possesses a hid-
den state, denoted as hi, which is typically represented as an n-element vec-
tor. This hidden state is initially set using the node’s features during the
Initialization Phase. Subsequently, during each iteration of the message-
passing, nodes in the graph generate messages in the Message Phase, using
their respective hidden states. These messages are then employed to update
the current states of their neighboring nodes during the Update Phase. This
iterative process is repeated multiple times until the node states reach a sta-
ble, fixed value. This mechanism enables GNNs to capture and propagate
information across the graph structure, facilitating the extraction of mean-
ingful insights from complex relational data. Ultimately, the updated and
converged hidden states, obtained after the iterative message-passing pro-
cess, are harnessed to make predictions. These predictions capture the essen-
tial information and insights derived from the input graph, allowing GNNs
to perform various tasks, such as classification, regression, or graph genera-
tion, depending on the specific application and problem domain.

Initialization Phase

Initially, the GNN’s input representation is initialized based on the informa-
tion contained within the graph. This involves setting up the hidden states
(hi) of individual elements (nodes) in the graph. These hidden states are typ-
ically initialized using features (xi) specific to each node as seen in Figure 2.1.
Additionally, the edges (eij) in the graph can contain valuable information
pertaining to the type of relationship between nodes.

14 Chapter 2. Background

Given that the hidden state (hi) is typically represented as an n-element
vector, which is often larger than the initial feature vector (xi), it’s common
practice to initialize these vectors with zeros. The size of the hi vector corre-
sponds to the capacity to encode and store information about each element
within the graph, allowing for more intricate representations as needed.

x1 x2 … xn 0 0 0 0ℎi
0=

FIGURE 2.1: Hidden state (h0
i) Initialization for a single node i.

Message-passing Phase

ℎ2
𝑡

2

4

3

5

i

ℎ3
𝑡

ℎ5
𝑡ℎ4

𝑡

ℎi
𝑡

FIGURE 2.2: Message-passing scheme for a single node i and its
neighbors.

The message-passing phase is a critical component of the GNN frame-
work and involves an iterative process executed during T iterations. In Fig-
ure 2.3, a simplified illustration of a single iteration of this process for one
node is provided. During this phase, three key functions are executed across
the elements within the graph:

1. Message Function (M): This function is responsible for creating a mes-
sage (mt

ij) that encapsulates information regarding the various relation-
ships existing between graph elements. To generate this message, it
takes as input the hidden states of two neighboring nodes (ht

i and ht
j)

and the properties that characterize the relationship between them (eij).
This can be expressed as follows: mt

ij = Mij(ht−1
i , ht−1

j , eij).

2.1. Graph Neural Networks 15

2. Aggregation Function (Aggr): Once all messages have been created,
they are combined using an aggregation function (Aggr), resulting in a
fixed-size vector (Aggrt

i) as output. Commonly, element-wise summa-
tion is employed as the aggregation function.

3. Update Function (U): The update function is applied to each node’s
hidden state individually (ht

i) and takes into account the aggregation
computed for that node during the current message-passing iteration
(Aggrt

i). Subsequently, it produces an updated hidden state for the
node (ht

i), which will be utilized in the subsequent message-passing
iteration.

Importantly, it’s worth noting that during each message-passing iter-
ation, a node exclusively receives information from its neighboring nodes
within the graph. This localized information exchange process enables the
GNN to gradually refine its understanding of the relationships and patterns
within the graph.

3
ℎ3

𝑡−1

2
ℎ2

𝑡−1

4
ℎ4

𝑡−1

5
ℎ5

𝑡−1

i
ℎi

𝑡−1

M(·)

M(·)

M(·)

M(·)

𝑚2𝑖
𝑡

𝑚3𝑖
𝑡

𝑚4𝑖
𝑡

𝑚5𝑖
𝑡

Aggr.
𝐴𝑔𝑔𝑟𝑖

𝑡 U(·)

ℎ𝑖
𝑡−1i

ℎ𝑖
𝑡

i

Message Aggregation Update

T iterations

FIGURE 2.3: Message-passing Phase for a single graph node.

Readout Phase

Once the message-passing phase is completed, the resulting hidden states are
passed through the readout phase. This last phase is responsible for convert-
ing the encoded information in the hidden states into the output values or

16 Chapter 2. Background

labels that the GNN eventually produces. It is important to note that GNNs
may produce two different types of outputs: node-level outputs and global
outputs. In the first case, node-level outputs are typically obtained by apply-
ing a readout function (Ri) individually to the hidden state of every node in
the graph (Fig. 2.4, top), while global outputs (Fig. 2.4, bottom) are typically
computed by first aggregating the hidden states of all the nodes and then ap-
plying a global readout function (RG). In this latter case, the application of an
aggregation function allows the GNN to operate over an arbitrary number of
nodes in the readout phase.

RG(·)

ℎ1
𝑇

ℎ2
𝑇

ℎ𝑁−1
𝑇

ℎ𝑁
𝑇

…

Aggr.

Global Output

R𝑖 (·)
ℎ𝑖

𝑇

Node-level Output

y𝑖

y𝐺

FIGURE 2.4: Readout Phase.

A GNN architecture is essentially characterized by the combination
of the four functions outlined earlier (M, Aggr, U, and R). These functions
are unique and are replicated throughout the GNN architecture, based on
the input graph structure. Typically, M, U, and R are functions that can be
approximated using independent neural networks, such as fully-connected
layers. On the other hand, the Aggr function often involves mathematical
operations like element-wise summation.

It’s important to note that while GNNs encompass a variety of archi-
tectural variants, as seen in previous works (e.g., [27], [29], [38], [38], [39],
[40]), they all share the fundamental principle of message passing between
graph elements, as described earlier (i.e., message-aggregation-update).

2.2. Machine Learning applied to Computer Networks 17

2.2 Machine Learning applied to Computer Net-

works

In recent years, two paradigms have reshaped the traditional landscape of
network management. First, Software-Defined Networking (SDN) [41] ad-
dresses the inherent challenges of static and decentralized network architec-
tures. By decoupling the data plane from the control plane and centralizing
network intelligence, SDN introduces dynamic and programmatically effi-
cient network configurations. This approach significantly enhances network
performance and monitoring capabilities.

Simultaneously, Network Analytics (NA) has emerged as a pivotal
technology for gaining insights into networked environments. NA empow-
ers organizations to collect comprehensive data about network devices and
their communication patterns. This wealth of data is then subjected to in-
depth analysis, informing critical decisions related to network operations.

The convergence of these paradigms, coupled with the growing promi-
nence of Machine Learning, has encouraged the integration of machine learn-
ing techniques into network management practices. Furthermore, a novel
paradigm known as Knowledge-Defined Networking (KDN) [42] has emerged.
KDN harnesses the combined strengths of SDN, NA, and Machine Learning
to realize the vision of automated network control. This holistic approach
aims to revolutionize network management by leveraging data-driven in-
sights, dynamic configurations, and intelligent decision-making processes.

2.2.1 An Overview

Within the existing literature, one can readily discover a multitude of surveys
that offer comprehensive insights into the application of machine learning
techniques in the field of networking.

R. Boutaba et al. [43] differentiate 8 fields where the different ML tech-
niques can be used:

• Traffic Prediction: Machine Learning can be used to forecast future traf-
fic volumes based on historical traffic data. This prediction capability

18 Chapter 2. Background

aids in proactive network management and resource allocation.

• Traffic Classification: ML techniques shine at categorizing network traf-
fic into specific classes or applications, such as distinguishing between
social media traffic (e.g., Facebook) and communication protocols (e.g.,
WWW or FTP). Traffic classification is pivotal for security, quality of
service (QoS), and resource allocation.

• Traffic Routing: ML algorithms are deployed to select optimal data
transmission paths based on network performance metrics, including
cost minimization, link utilization, latency, jitter, and QoS. Efficient traf-
fic routing enhances overall network performance.

• Congestion Control: Machine learning can enhance traditional conges-
tion control mechanisms like TCP or queue management. By using ML-
based congestion control, network operators can mitigate congestion
and improve network functionality.

• Resource Management: Predicting demand and dynamically configur-
ing network resources, such as CPU, memory, switches, and routers,
facilitates network adaptation to changing service requirements, opti-
mizing resource utilization.

• Fault management: ML-driven fault management focuses on the detec-
tion, isolation, and rectification of network anomalies or irregularities,
such as disabled links or malfunctioning switches, ensuring network
reliability.

• QoS and QoE Management: Quality of Service (QoS) encompasses ob-
jective network performance metrics like bandwidth and latency, while
Quality of Experience (QoE) represents the user’s subjective perception
of network quality. Machine learning bridges the gap between QoS and
QoE, enabling the estimation of QoE based on QoS data.

• Network security: Machine learning serves as a powerful tool for iden-
tifying security threats within the network. It can detect known net-
work attacks like Denial of Service (DoS) and identify anomalies that
may be indicative of novel attack vectors, bolstering network security.

The primary objective of this dissertation is to develop a model ca-
pable of accurately estimating network performance metrics based on the

2.2. Machine Learning applied to Computer Networks 19

network’s topology and current state. This model holds the potential to find
relevance and application across various domains where such predictive ca-
pabilities are valuable.

For instance, one significant application area lies within network opti-
mization. By providing an efficient and precise estimation of network per-
formance under specific routing configurations, the model can serve as a
valuable tool for optimizers. They can utilize this model to make informed
decisions without the need for risky real-world network experiments, time-
consuming packet simulation, or reliance on simpler heuristics like link uti-
lization. This practicality positions the project within the realms of Quality
of Service (QoS) and Quality of Experience (QoE) management, as well as
traffic routing optimization.

2.2.2 GNNs applied to Computer Networks

In the computer networks field, recent attempts show the feasibility of con-
structing efficient GNN-based network models able to predict performance
metrics in networks[44] [45] and combine them with optimization algorithms
to address network-related problems.

The adoption of Graph Neural Networks (GNNs) in the domain of
computer networks has been relatively limited until recently, primarily due
to their relatively recent emergence. However, there have been noteworthy
initiatives in the field of computer network security, such as [46], which lever-
aged GNNs’ capacity to comprehend structured graph data to rank attack
graphs. These pioneering efforts highlight the potential of GNNs in address-
ing network security challenges.

Beyond these early work and to the best of our knowledge, the re-
search on GNNs applied to computer networking has been conducted by Fa-
bien Geyer, from the Technical University of Munich, who used these models
to predict the performance evaluation of network topologies [47], to learn
and generate distributed routing protocols [45], and to improve Network
Calculus models [48] [49].

In the realm of computer modeling, pioneering efforts have been made
in different works. They encompass diverse areas, including delay prediction
in queuing networks and the development of the RouteNet model [44][50][51].

20 Chapter 2. Background

Notably, this dissertation’s research can be considered a successor to Route-
Net, as it addresses various challenges in network modeling, thereby ex-
panding the utility and capabilities of Graph Neural Networks (GNNs) in
computer networks.

21

Chapter 3

Limitations and Challenges of
Current Network Modeling
Techniques

This chapter delves into the practicality of current network modeling tech-
niques, beginning with packet-level simulators, and evaluates the effective-
ness of various Deep Learning (DL) models. We’ll examine the primary con-
straints of these established network modeling methods and delve into the
unresolved challenges. The aim is to provide insight into the strengths and
weaknesses of existing network modeling techniques while highlighting the
ongoing issues that require attention, with a particular focus on the concerns
addressed in this thesis.

3.1 Simulation as a Network Modeling Technique

Network simulators reproduce the network behavior at the granularity of
packet events [3, 52]. This way, they can offer excellent accuracy and can be
easily extended to include virtually any feature, such as packet scheduling,
wireless networks, etc. Some simulators, such as OMNET++ [8] or ns3 [7],
are widely used and maintained.

However, their main limitation is the simulation time, especially for
networks with high-speed links (10Gbps and above). Hence, depending on
the amount of traffic found in the target network, it may become unfeasible
to simulate the network [53].

22
Chapter 3. Limitations and Challenges of Current Network Modeling

Techniques

0 1 2 3 4
Number of events ×109

0.0

2.5

5.0

7.5

10.0
E

xe
cu

ti
on

ti
m

e
(h

ou
rs

)

FIGURE 3.1: Simulation time depending on the number of pro-
cessed events.

To illustrate this limitation, we simulate different topologies using the
OMNET++ simulator to calculate the delay of a set of source-destination
flows [CPU Intel Xeon Silver 4210R @ 2.40 GHz]. Network topologies are
artificially generated using the Power-Law Out-Degree Algorithm from [54]
and a traffic distribution that follows a Poisson process.

Figure 3.1 shows the simulation time of such networks depending on
the number of events. Here, an event refers to a transition in the status of
the network (e.g., adding a new packet to a queue). We can see that the
simulation time increases linearly and that simulating 4 billion events takes
more than 11 hours. Although 4 billion events may appear a large figure,
consider that a 10 Gbps link transmitting regular Ethernet frames translates
to ≈820k events per second or 247 million events in 5 minutes of network
activity for a single link. For example, in our experiments, the simulator takes
around 8 hours to compute the performance metrics of a 300-node network.

So, the main limitation of packet-level simulators is the simulation
time. On the contrary, packet simulators offer unrivaled accuracy and can
simulate virtually any scenario, from different routing configurations to re-
playing packet traces to simulate unknown traffic models. Because of this,
hereafter, we consider the results from the simulator as the ground truth for
the evaluations in the following sections.

3.1. Simulation as a Network Modeling Technique 23

3.1.1 Simulation Setup

To train, validate, and test the existing network modeling techniques we
use as ground truth a packet-level network simulator (OMNeT++ v5.5.1 [8]),
where network samples are labeled with performance metrics, including the
flows’ mean delay, jitter and losses, and queue-level statistics (e.g., occupa-
tion, packet loss). To generate these datasets, for each sample, we randomly
select a combination of input features (traffic model and topology) according
to the descriptions below:

Traffic models

Traffic is generated using five different models with increasing levels of com-
plexity, which range from a basic Poisson generation process to more realistic
traffic models with strong autocorrelation and heavy-tails [16]. We define be-
low the implementation details of these models (except for the well-known
Poisson and Constant Bitrate, whose only configurable parameter is the traf-
fic intensity level):

On-Off This model defines two possible states (On or Off). The lengths of
On and Off periods are randomly selected between 5 and 15 seconds. Like-
wise, during the On period, packets are generated using an exponential dis-
tribution.

Autocorrelated exponentials This model generates autocorrelated expo-
nentially distributed traffic starting from the following auto-regressive (AR)
process: zt+1=azt+ε, ε∼N(0, σ2) where a∈(−1, 1) controls the level of au-
tocorrelation. The marginal distribution of z is N(0, s2 = σ2/(1 − a2)), so
z can be negative. In order to construct positive inter-arrival times, z is
mapped by a nonlinear transformation: δt = F−1

E
(
λ, FN

(
0, s2, zt

))
, where

FN(0, s2, ·) and FE(λ, ·) are respectively a CDF of the normal distribution
with µ = 0 and variance s2=[3, 12], and an exponential distribution with pa-
rameter λ=[40, 2000]. The first transformation changes the distribution from
normal to uniform on (0, 1), while the second maps it into an exponential
distribution. As a result, δt follows an exponential distribution with autocor-
relation. Such a model can be interpreted as a copula [55].

24
Chapter 3. Limitations and Challenges of Current Network Modeling

Techniques

Modulated exponentials This model represents an alternative autocorre-
lated model with higher complexity than the one above and is inspired by
observation from [12]. Particularly, the inter-arrival times are set by a hierar-
chical model. Inter-arrivals follow an exponential distribution (Exp) whose
rate is controlled by the value of a hidden AR model. Formally, we can de-
scribe the model as δt|zt∼Exp(λt=Aezt), where A is scaling constant and z is
an AR model as in the previous traffic model.

The traffic matrix represents a source-destination pair, defining the
flow of data between two network points. Performance metrics like delay,
jitter, and losses are computed once the network reaches a stationary state,
discarding the transitory phase. Also, in all the previous models, average
traffic rates on src-dst flows are carefully set to cover low to quite high con-
gestion levels across different samples, where the most congested samples
have ≈3% of packet losses.

Topologies

To train, test and validate the models we used three different real-world
topologies: NSFNET (14 nodes) [56], GEANT (24 nodes) [57], and GBN (17
nodes) [58]. These topologies have variable link capacities that are distributed
according to the link centrality in the topology.

3.2 Analytical Models: Queueing Theory

Among all existing network modeling techniques, Queueing Theory (QT) [9]
is probably one of the most known and used since computer networks can be
understood as a set of queues connected, where the packets wait until they
get served. For this, QT has been successfully applied in a wide variety of
use cases [59].

This section explains the design and implementation of one state-of-
the-art model that will be used as a future benchmark. The model is also
evaluated in a wide variety of scenarios showing how, QT models in general,
fail at predicting results when the Poisson arrival process is not met.

3.2. Analytical Models: Queueing Theory 25

3.2.1 Design

In the holistic approach, the network is modeled as a single system, like in
Jackson Networks [60] or more general BCMP queuing networks [61]. For
those systems, the product form of the stationary distribution greatly sim-
plifies the solution, however, the assumption of infinite buffers makes those
models unrealistic and unable to estimate the packet loss ratio.

In our approach, all the queues along the path are modeled indepen-
dently. Further, we assume that arrival to each queue is approximated by the
Poisson process. Service times are assumed to be independent and exponen-
tially distributed. Under those assumptions, we can derive analytical results
for queue throughput, delay distribution, and blocking probability.

The aforementioned model also suffers from circular dependencies.
Packet loss on a particular queue depends on its load, so it also depends on
the throughput of other queues feeding this particular one. The throughput,
however, depends on packet loss so we end up with circular dependence. We
fixed this problem by a map-reduce inspired algorithm.

The algorithm consists of there functions: map_queues, map_paths and
reduce. The map_queues function updates packet loss for each queue, given
the total traffic (external demands plus within network transfer). The func-
tion also computes the remaining QoS parameters (jitter and delay). The
map_paths function updates the traffic knowing the packet loss on every queue.
Finally, the reduce function aggregates per path delay, jitter, and packet loss.
In the first iteration, we assume no packet loss. Given the first approximation,
we can compute the loss probability (map_queues) and update the intensities
to account for the losses (map_paths). After a few iterations, the algorithm
converges to a fixed point and the final values are reduced (reduce).

For an M/M/1/b system, we used known formulas for blocking prob-
abilities and delay distribution to get average delay and jitter. For a network
with scheduling, we designed map_queues functions based on the Markov
chain model described below. Because scheduling couples the queues, the
corresponding map_queues operates on groups of queues assigned to the same
link.

Let us begin with a strict priority scheduler. Consider p priority class
customers arriving at rate λi and requiring service time with mean 1/µi. Each

26
Chapter 3. Limitations and Challenges of Current Network Modeling

Techniques

class waits in the independent virtual queue limited by bi and is served in
non-preemptive First In, First-Out (FIFO) order. Such a system can be mod-
eled as a continuous-time Markov chain on the state space SSP = {(s, q =

(q1, q2, . . . , qp)}, where s denotes the priority class currently being served or
0 if the system is empty. The remaining part of the state: p-tuple q encodes the
number of customers for each priority. For convenience let us define qi+ :=
(q1, . . . , qi + 1, . . . , qp), qi− := (q1, . . . , qi − 1, . . . , qp) and q0 = (0, . . . , 0). The
model is based on [33] and modified to allow for per-priority class buffer
size. The time evolution of the continuous-time Markov chain (CTMC) is
characterized by the generator matrix Q whose elements follow the rules:

Q[(0, q), (i, qi+)] = λi 0 < i ≤ p (3.1)

Q[(s, q), (s, qi+)] = λi Iqi<bi 0 < i ≤ p (3.2)

Q[(s, q0
s+), (0, q0)] = µs 0 < s ≤ p (3.3)

Q[(s, q), (min{i : qi > 0}, qs−)] = µs (3.4)

where IA is an indicator function and Q[., .] denotes entry in generator
matrix. If neither rule matches states pair a general rules Q[s, s′] = 0, s ̸= s′

and Q[s, s] = −∑s′ ̸=s Q[s, s′] apply. A similar model can be constructed for
Weighted Fair Queueing (WFQ) and Deficit Round Robin (DRR). Since both
scheduling policies approximate an ideal Generalized Processor Sharing the
same model is used for WFQ and DRR. The CTMC is similar to Equations
3.1-3.4 with the exception that the queue i is served at rate µi if other queues
are empty, otherwise the rate scales proportionally to the positive weight wi.
State space SGPS is also simplified and it is formed solely of p tuples q defined
as for Strict Priority (SP). The resulting CTMC is based on [32] and evolves
according to the following generator:

Q[q, qi+] = λi Iqi<bi 0 < i ≤ p (3.5)

Q[q, qi−] =
Iqi>0wi

∑qi>0 wi
µi 0 < i ≤ p (3.6)

Given the generator matrix Q, we can develop either an analytical so-
lution for queue characteristics as in [32, 33] or use a direct approach and
obtain them numerically. We chose the latter and computed packet loss,

3.2. Analytical Models: Queueing Theory 27

delay, and jitter assuming the CTMC has reached stationary distribution π

computed from global balance equations (GBE) [60] that form a sparse linear
system.

We obtained π from sparse eigenvalue decomposition via Arnoldi
method [62] with a general sparse linear solver as a fallback in case of nu-
merical instabilities. Given the π, the packet loss ratio for class i (pb[i]) is the
sum of all state probabilities where queue i is full. The delay is computed
from the average queue size (with respect to π) using Little’s law. The com-
putation of jitter requires a more sophisticated approach. We pose this as the
first passage time problem in CTMC [63]. The delay of a class i customer is
the first passage time to any state where the queue i is empty provided that
no new customers can arrive so λi = 0 for GPS or λj = 0, j ≤ i for SP. Its con-
ditional distribution can be calculated from Q using Laplace transform [63].
The final delay distribution and jitter are obtained from the total probability
theorem. It is assumed that a packet of class i observing state s at his arrival
experiences a delay equal to the first passage time from the state just after
his arrival si+. From the PASTA property, the probability of such an event is
π[s]/(1− pb[i]), here we condition the event that packet is not dropped.

3.2.2 Evaluation

Table 3.1 presents the error when predicting the network delay with respect
to the results produced by the network simulator, including several traffic
models. Particularly, we show four different metrics: (i) Mean Absolute Per-
centage Error (MAPE), (ii) Mean Squared Error (MSE), (iii) Mean Absolute
Error (MAE), and (iv) Coefficient of Determination (R2). We can see that the
QT model offers good accuracy for Poisson traffic as expected. However, as
the complexity of the traffic model increases the error also increases signifi-
cantly achieving a maximum error of 68.1% for the more complex one.

28
Chapter 3. Limitations and Challenges of Current Network Modeling

Techniques

3.3 Neural Networks as Network Modeling Tech-

niques

From the section provided, it can be concluded that analytical models like
Queueing Theory (QT) may not perform effectively when network traffic dis-
tributions deviate from a Poisson process. This limitation arises from QT’s
reliance on specific traffic distribution assumptions. The subsequent sections
review the performance of three neural network (NN) architectures, each in-
creasing in complexity. Unlike analytical models, NNs do not make strin-
gent assumptions about traffic distributions; instead, they learn from data to
model network performance more flexibly.

First, we evaluate the Multilayer Perceptron, one of the simplest NNs.
Next, Recurrent Neural Networks which are designed to work with sequen-
ces. Finally, we directly input the network into a Graph Neural Network
specifically designed to work with graphs. The objective is to create a net-
work model with the NN that can predict performance parameters for input
networks with a wide range of characteristics. We are especially interested in
the following parameters:

• Accuracy: How close is the prediction to simulation values?

• Different Routing: Does the accuracy degrade if we change the routing
configuration?

• Link failures: Quantify if link failures affect the quality of predictions.

QT

MAPE MSE MAE R2

Poisson 17.9% 0.015 0.080 0.988
Deterministic 22.42% 0.715 0.321 0.611

On-Off 23.09% 0.784 0.363 0.613
A. Exponentials 21.11% 0.686 0.316 0.618
M. Exponentials 68.1% 1.10 0.798 0.145

Mixed 35.15% 0.721 0.430 0.560

TABLE 3.1: Delay prediction using the QT model. The error is
computed w.r.t. simulation results.

3.3. Neural Networks as Network Modeling Techniques 29

We train and test the three neural networks with the same dataset, ob-
tained from simulations with OMNET++. The input values are the network
characteristics (topology, routing configuration, traffic model and intensity,
etc.), and the output values are the delay for each path. Hence, all the er-
rors are computed with respect to the values of the simulator. We use four
different datasets:

• Traffic Models: In it, we consider traffic models that are non-Poisson,
auto-correlated, and with heavy tails (See Subsection 3.1.1 Traffic Mod-
els).

• Same Routing: Where the testing and training datasets contain net-
works with the same routing configurations.

• Different Routing: Where the training and testing datasets contain net-
works with different routing configurations.

• Link failures: Here, we iteratively remove one link of the topology to
replicate a link failure, until we transform the network graph into a
connected acyclic graph. This scenario is the most complex since a link
failure triggers a change both in the routing and the topology.

To compare the different techniques, we compute the prediction error
with respect to the accurate performance values produced by the simulator.
Similar to before, we use the following error metrics: (i) Mean Absolute Per-
centage Error (MAPE), (ii) Mean Squared Error (MSE), (iii) Mean Absolute
Error (MAE), and (iv) Coefficient of Determination (R2).

3.3.1 Multilayer Perceptron

A Multilayer Perceptron (MLP) is a basic kind of NN from the family of feed-
forward NNs [64]. In short, input data is propagated unidirectionally from
the input neuron layer to the output layer. There may be an arbitrary number
of hidden layers between these two layers, and this determines how deep is
the NN.

30
Chapter 3. Limitations and Challenges of Current Network Modeling

Techniques

MLP RNN

MAPE MSE MAE R2 MAPE MSE MAE R2

Poisson 12.3% 0.103 0.122 0.801 10.0% 0.071 0.084 0.862
Deterministic 23.9% 0.309 0.160 0.044 13.1% 0.083 0.070 0.743

On-Off 30.4% 0.438 0.240 0.002 15.2% 0.065 0.082 0.851
A. Exponentials 84.5% 1.013 0.308 -1.935 14.0% 0.070 0.072 0.7961
M. Exponentials 57.1% 1.058 0.363 -1.679 57.8% 0.528 0.457 -0.338

Mixed 41.2% 0.351 0.269 0.052 17.5% 0.036 0.080 0.900

TABLE 3.2: Delay prediction using an MLP and an RNN for
different traffic models. The error is computed w.r.t. simulation

results.

Design

Several works have leveraged an MLP to predict network performance met-
rics [65, 25, 26]. Based on this work, we have built an MLP to predict the
mean delay for each source-destination pair of nodes of a given network.
The MLP has 8,280 inputs and two hidden layers with 4096 neurons and
uses Rectified Linear Units (ReLU) as activation functions.

Evaluation

Table 3.2 presents the error when predicting the network delay with respect
to the results produced by the network simulator, including several traffic
models. We can see that the MLP offers good accuracy for Poisson traffic, but
the error increases significantly for the rest of the traffic models showing a
MAPE between 23% and 84%.

Likewise, Table 3.3 shows the error of predicting the delay for the
datasets with the same/different routing and link failures. We can see that
the MLP cannot offer an accurate estimate when predicting the delay of a
previously unseen routing configuration (1150% of error). This is due to the
internal architecture of the MLP. During training, the MLP performs overfit-
ting, meaning that the model only learns about the initial network topology
used for training and not for any others. When we input a new topology, it
does not have sufficient information to make an accurate prediction.

3.3. Neural Networks as Network Modeling Techniques 31

MLP RNN

MAPE MSE MAE R2 MAPE MSE MAE R2

Same Routing 12.3% 0.103 0.122 0.801 10.0% 0.071 0.084 0.862
Diff. Routing 1150% 28.3 2.96 -40.0 30.5% 0.553 0.282 0.197
Link Failures 125% 3.69 1.03 -0.191 63.8% 2.971 0.870 0.0417

TABLE 3.3: Delay prediction using an MLP and an RNN for the
same and different routing configurations w.r.t. those seen dur-
ing training, and considering various link failures. The error is

relative to simulation results.

Device1

Device2

Device3 Device4Flow2

(0.5Gbs)

Flow1

(2Gbs)
L1=0.5Gbps

L2=0.5Gbps L3=2Gbps

FIGURE 3.2: Sample Topology with 4 nodes, three links, and
two flows.

ht-1

CapacityL1
LoadL1

OF1L1

L1

ht

CapacityL3
LoadL3

OF1L3

L3

R

D
elayF1

BandwidthF1
PacketsF1
TrafficF1
ModelF1

FIGURE 3.3: Recurrent Neural Network model for the Sample
Topology (Figure 3.2)

3.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a more advanced type of NN. They
have shown excellent performance when processing sequential data [66].
This is mainly because they connect some layers to the previous ones, which
gives them the ability to keep the state along sequences.

32
Chapter 3. Limitations and Challenges of Current Network Modeling

Techniques

Design

Several works [67, 68, 69] propose RNNs as a way to predict network per-
formance. In this experiment, we build a sequential model with an RNN
(Figure 3.3). Particularly, we choose a Gated Recurrent Unit (GRU).

We initialize the state of each path with the sequence of nodes in the
path and the features of the traffic model (e.g., packets, bandwidth, λ, ϵ, α,
or on-off time), and we update the state of each link across the path. As
an example, Figure 3.3 shows the structure of an RNN to model the sample
network from Figure 3.2. We can see that the path of f low1 is composed of
L1 and L3. Once the path state has been computed, an MLP with 2 hidden
layers computes the final output.

Evaluation

We train the RNN with the same datasets as the previous subsection. Al-
though the RNN supports better different traffic models than the MLP (Ta-
ble 3.2), it still struggles to produce accurate predictions when there are rout-
ing or topology changes (Table 3.3), especially for different routing configu-
rations (30% error), or when removing links (63%).

The reason behind the lack of capability of RNNs to understand rout-
ing changes and link failures is due to its internal architecture. RNNs can ac-
commodate different end-to-end paths in the network (i.e., series of routers
and links), thereby, making it easier to perform predictions for paths never
seen in the training phase. However, this structure cannot store and update
the status of individual links in the topology due to the inter-dependency be-
tween links and traffic flows (i.e., routing). In other words, if the status of a
link changes, it affects several flows, and vice-versa. This generates circular
dependencies that RNNs are not able to model.

3.3.3 Graph Neural Networks

Networks are fundamentally represented as graphs where networking de-
vices are the graph nodes and the links connecting devices are the graph
edges. This interconnection translates to the fact that the different elements

3.3. Neural Networks as Network Modeling Techniques 33

in the network are dependent on each other. Since most standard DL models
(e.g., MLP, RNN) assume independent flow-level data points, this renders
them inaccurate for our use case. Hence, a model that is capable of pro-
cessing directly the network graph is arguably more desirable for network
modeling, because it will be able, not only to obtain information from the
individual nodes and edges but also from the underlying data structure (i.e.,
the relationships between the different elements) [70].

GNNs [27] are a type of neural network designed to work with graph-
structured data. They have two key characteristics that make them a good
candidate for a network model. First, GNNs have the ability to store node-
level hidden states and update them in each iteration. Second, they process
the input data directly as a graph, both during training and inference. This
means that the internal structure of the neural network depends on the input
graph. Hence, they can dynamically adapt to the underlying dependencies
between the different elements of a network [35, 30]. The latter is of special
importance, since changes in the network graph (e.g., routing modifications,
link failures) are the main limitation of other DL-based models, such as MLPs
and RNNs, as we have seen in the previous subsections.

In this section, we build a standard GNN model to predict the mean
per-flow delay in networks.

Design

We implement a Message-Passing Neural Network (MPNN), a powerful state-
of-the-art GNN architecture that can efficiently capture dependencies be-
tween the elements of input graphs [28]. We define a graph G described as a
set of vertices (or nodes) V and a set of edges (or links) E. Each node has a
set of features xv, and edges also have some features evw. The execution of an
MPNN can be divided into three phases, an initialization phase, a message-
passing phase, and a readout phase. The first one defines a hidden state (h0

v)
using the node features (xv). The second one is an iterative process that runs
for T time steps and that is defined by two functions: the message function
Mt and the update function Ut. During this phase, node hidden states (ht

v),
represented as fixed-size vectors, attempt to encode some meaningful infor-
mation, and are iteratively updated by exchanging messages mt+1

v with their
neighbors:

34
Chapter 3. Limitations and Challenges of Current Network Modeling

Techniques

mt+1
v = ∑

w∈N(v)
Mt(ht

v, ht
w, evw) (3.7)

ht+1
v = Ut(ht

v, mt+1
v) (3.8)

where N(v) represents the neighbors of v in graph G. Finally, the read-
out phase computes the output vector using a readout function R that takes
as input the final hidden states hT

v :

ŷ = R({hT
v |v ∈ G}) (3.9)

In our case, the input of the MPNN is the network topology graph. It
performs T=4 message-passing iterations and the hidden state dimension is
32. The Message function is implemented as a two-layer fully connected NN
with ReLUs as activation functions. For the Update function, a GRU layer is
used. Finally, the Readout function is implemented using a two-layer fully
connected NN with ReLUs as activation functions for the hidden layers and
a linear activation for the output layer.

Evaluation

We evaluate the accuracy of the MPNN model when predicting the mean
flow-level delay, as in previous subsections. Table 3.4 presents the delay
prediction errors in the same scenarios of the previous experiments: rout-
ing configurations, both seen and not seen during training, and link failures.
Unfortunately, the results are similar to those of the RNN: the routing config-
urations from the training dataset are easy to predict, with an error as low as
3%, while new routing configurations and link failures increase the error sig-
nificantly (respectively, 50% and 125% of MAPE), thus showing even larger
errors than the RNN model.

The main reason behind the poor accuracy of the MPNN model is that
the architecture of this model is directly built based on the network topol-
ogy without taking into account the paths used by different traffic flows (i.e.,
the routing configuration), which is a fundamental property to understand
inter-dependencies between flows and links. More specifically, when we test

3.3. Neural Networks as Network Modeling Techniques 35

the model with the same routing configuration, it learns the relationships be-
tween flows and links. However, when we change this configuration, those
previously learned relationships are no longer valid, and the model is not
able to capture the relationships between elements in the new scenario.

This intuition is better understood with an extreme packet loss exam-
ple. Let’s suppose we have the sample network in Figure 3.2. The first flow
(Flow1) is transmitting at a rate of 2Gbps, and the second one (Flow2) is trans-
mitting at a rate of 0.5Gbps. As we can see, L1 has a maximum capacity of
0.5Gbps. Because of this, Flow1 will experience a large packet loss, which
causes the traffic of Flow1 at L3 to be at most 0.5Gbps. Hence, instead of hav-
ing 2Gbps+0.5Gbps of aggregated traffic at L3, it will only have 1Gbps. Now,
Flow2, which initially could have experienced a lot of network congestion
when going through the 2Gbps link will experience none as the state of the
link changed.

Knowing this, we can see how there is a circular dependency between
the flows and links found in the network. At the same time, the state of a
flow depends on the state of the links they traverse, and the state of the links
depends on the state of the flows passing through them.

If we apply a standard GNN over this example, the state of each flow
is not updated at each hop. Therefore, the GNN does not have a structure
that represents how the delay depends on both the links (topology) and the
flows that go through each specific router.

Hence, we conclude that feeding the MPNN directly with the network
topology graph is not sufficient to accurately perform network modeling.
However, more complex and customized GNN-based architectures can still

MAPE MSE MAE R2

Same Routing 3.0% 0.002 0.016 0.994
Diff. Routing 50.0% 0.609 0.307 0.115
Link Failures 82.2% 3.41 0.949 -0.099

TABLE 3.4: Delay prediction using an MPNN for the same and
different routing configurations w.r.t. those seen during train-
ing, and considering various link failures. The error is relative

to simulation results.

36
Chapter 3. Limitations and Challenges of Current Network Modeling

Techniques

be powerful for modeling the inter-dependencies between the different net-
work elements and generalizing over new network scenarios by exploiting
the underlying graph structure.

3.4 Challenges of data-driven Network Modeling

In previous sections, we have seen how several data-driven DL-based ar-
chitectures fail to address changes in the network topology. The last sec-
tion shows how, even if GNNs are a potential tool to solve these problems,
they need to be specifically built to the problem and how there is no spe-
cific architecture that solves all the problems. This section describes the main
challenges that data-driven solutions need to address for network modeling.
These challenges drove the core design of the models that constitute one of
the major contributions of this dissertation.

Quality of Service and Scheduling policies: A key requirement of
modern networks is supporting Quality of Service (QoS), a parameter typi-
cally implemented via scheduling policies and mappings of traffic flows to
QoS classes. Hence, a DL model should be able to predict the performance
of the input traffic flows with their associated QoS class, similarly to how QT
models support a wide range of scheduling policies [71, 33].

Traffic models: Networks carry different types of traffic, so, support-
ing arbitrary stochastic traffic models is crucial. Experimental observations
show that traffic on the Internet has strong autocorrelation and heavy-tails
[16]. In this context, it is well-known that the main limitation of Queuing
Theory is that it fails to provide accurate estimates on realistic Markovian
models with continuous state space, or non-Markovian traffic models. The
challenge for DL-based modeling is: How can we design a neural network
architecture that can accurately model realistic traffic models?

Training and Generalization: One of the main differences between
analytical modeling (e.g., QT) and data-driven modeling is that the latter
requires training. In DL, training involves obtaining a representative dataset
of network measurements. The dataset needs to include a broad spectrum
of network operational regimes, ranging from different congestion levels to
various routing configurations, among others. In other words, the DL model

3.4. Challenges of data-driven Network Modeling 37

can predict only scenarios it has previously seen. Note that this is a common
property of all neural network architectures.

Ideally, we would obtain this training dataset from a production net-
work, since they commonly have systems in place to measure performance.
However, it would be difficult to obtain a representative dataset. As we men-
tioned previously, we would need to measure the production network when
it is experiencing extreme performance degradation as the result of link fail-
ures, incorrect configurations, severe congestion, etc. However, these situa-
tions are not common in production networks, which limits the ability to gen-
erate the training dataset. A reasonable alternative is creating these datasets
in controlled testbeds where it is possible to use different traffic models, im-
plement a broad set of configurations, and replicate a wide range of network
failures. Thus, the DL model can be trained on samples from this testbed and
then, applied to production networks. Hence, the research challenge is: how
to design a DL model that can provide accurate estimates in networks not
seen during training? This includes topologies, traffic, and configurations
(e.g., queue scheduling, routing) different from those seen in the training
network testbed.

Leveraging a testbed that is smaller than a production network cre-
ates another challenge: the generalization to larger networks. Real-world
networks include hundreds or thousands of nodes, and building a network
testbed at this scale is typically unfeasible. As a result, the DL model should
be able to learn from datasets with samples of small network testbeds and
predict metrics for considerably larger networks, e.g., by a factor of 10-100x.
Generalizing to larger networks, or graphs in general, is currently an open
research challenge in the field of GNNs [72, 73].

39

Chapter 4

RouteNet-Darwin: Advancing
Towards Quality of Service-Aware
Network Modeling

As seen in Chapter 3, computational models (e.g., network simulators), pro-
vide excellent accuracy. State-of-the-art network simulators include a wide
range of network, transport, and routing protocols, and are able to simulate
realistic scenarios. However, this comes at a very high computational cost
that depends linearly on the number of packets being simulated. As a result,
they are impractical in scenarios with realistic traffic volumes or large topolo-
gies. In addition, and because they are computationally expensive, they do
not work well in real-time scenarios.

In addition, Queuing Theory (QT) [9] is one of the most popular mod-
eling techniques, where networks are represented as inter-connected queues
that are evaluated analytically. This represents a well-established framework
that can model complex and large networks. Its main limitation is that it im-
poses strong assumptions on the packet arrival process, which typically do
not hold in real networks [10]. Internet traffic has been extensively analyzed
in the past two decades [11, 12, 13, 14, 15] and, despite the community has not
agreed on a universal model, there is consensus that in general aggregated
traffic shows strong autocorrelation and a heavy-tail [16].

Machine Learning (ML) [22] has provided a new breed of mechanisms
to model complex systems. In particular, Deep Learning (DL) [23] has been
demonstrated to extract deep knowledge from human-understandable de-
scriptions of a system. This approach has proven to achieve unprecedented

40
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

accuracy in modeling properties of complex systems, like proteins [24].

The main advantage of DL models is that they are data-driven. DL
models can be trained with real-world data, without making assumptions
about the system. This enables the building of models with unprecedented
accuracy by effectively modeling the entire range of non-linear and multi-
dimensional system characteristics. Computationally, DL is based on linear
algebra and can take advantage of massive parallelism by leveraging dedi-
cated hardware and compilers.

Within the field of DL, Graph Neural Networks (GNN) [27] have re-
cently emerged as an effective technique to model graph-structured data.
GNNs are tailored to understand the complex relationships between the el-
ements of a graph. The main novelty of GNNs is that their internal archi-
tecture is dynamically assembled based on the elements and connections of
input graphs, and this enables them to learn universal modeling functions
that are invariant to graph isomorphism. GNNs are thus able to generalize
over graphs, which means that they can produce accurate estimates in differ-
ent graphs not seen during training. As we will show in this chapter, this is
a critical advantage of GNNs in the context of network modeling.

The novel GNN paradigm finally allows the application of ML in do-
mains where data is essentially represented as graphs. As seen in Chapter 3,
this dissertation argues that GNNs represent a new network modeling lan-
guage with attractive advantages and characteristics. GNNs are designed
to learn graphs, and computer networks are fundamentally graphs of con-
nected queues. However, GNNs are not a black box that maps data inputs
to outputs, it is actually a modeling tool that needs to be researched and de-
signed to account for the core behavior of computer networks. In contrast
to more classical DL models, where the architecture is basically defined by
the number of layers and neurons, GNNs are assembled ad-hoc, based on
the elements and connections of the input graphs. These components repre-
sent the GNN modeling language, and they need to be carefully designed to
reflect the relevant properties of the system being modeled.

In response, [50] presents a tailored solution explicitly designed to
predict end-to-end performance metrics based on network topology, traffic
matrix, and routing configuration. This method introduces a Message Pass-
ing Neural Network (MPNN) model comprising two fundamental elements:

4.1. RouteNet-Darwin 41

links and paths. Links represent the physical connections between two for-
warding devices in a computer network, primarily responsible for establish-
ing communication paths between source and destination nodes. Paths, on
the other hand, denote the routes followed by data flows as they traverse
from one network device to another. The network’s routing configuration
dictates these paths, often involving the traversal of specific links and nodes.
While this approach offers accuracy and generalization, it does not fully en-
capsulate the intricacies of real-world networks. The presence of various for-
warding devices (e.g., routers, switches, firewalls) and their configurations
(e.g., queue sizes, scheduling policies) remains unaccounted for, resulting in
a simplification that limits its practicality for application to real network en-
vironments.

Inspired by the work described at [50], this Chapter presents RouteNet-
Darwin (from now on referenced as RouteNet-D), a model specifically de-
signed to overcome this limitation. RouteNet-D models the complex rela-
tionship between topology, routing, queue scheduling, and input traffic, in
order to produce accurate estimates of per-flow QoS metrics (e.g., delay, jit-
ter, loss). RouteNet-D is able to accurately estimate the delay in paths travers-
ing arbitrary concatenations of queuing policies, with different routing con-
figurations, traffic matrices, and network topologies. A critical feature of
RouteNet-D is its ability to generalize to unseen networks. This means that
it can provide accurate estimates in networks with different characteristics to
those seen in training.

4.1 RouteNet-Darwin

In this section, we describe RouteNet-D, a GNN-based model that accurately
infers the impact of different routing and queueing configurations (schedul-
ing algorithm and queue parameters) on network performance. Likewise, it
is tailored to generalize to different network topologies and traffic intensities
not seen before.

42
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

4.1.1 Overview

RouteNet-D implements a novel and custom GNN architecture inspired by
the inherent behavior of computer networks, where there are different com-
ponents (e.g., forwarding devices, configuration, traffic) that interact with
each other and have a complex non-linear impact on network performance.

The main intuition behind this architecture is as follows. The model
considers an input graph with three main network components: (i) the links
that shape the network topology, i.e. connections between network devices,
(ii) the queues on each output port of network devices, and (iii) the src-
dst paths resulting from the input routing configuration. Each of these ele-
ments is explicitly represented in the GNN with n-element vectors that en-
code their hidden states (hl, hq, and hp respectively). They are combined
through a message-passing algorithm that aims to capture the relation be-
tween the topology, traffic, routing, and queueing policy of the input network
scenario.

Figure 4.1 represents how RouteNet-D models these three components.
First, the state of paths is affected by the concatenation of the queues and
the links they traverse. For instance, in Fig. 4.1, path1 follows the sequence:
[queue3, link1, queue5, link2...]. At the same time, the state of queues and links
depends on all the paths passing through them. Hence, there is a circular de-
pendency between the states of paths, links, and queues that the GNN model
must resolve to eventually produce accurate per-path QoS estimates. Note
that we assume that the forwarding engine of network devices is constant
and ideal, hence it does not introduce any other potential hardware-level ef-
fects on the delay of queues.

4.1.2 Notation

We define the network topology as a set of links L = {li : i ∈ (1, ..., nl)}
and the queues on output ports of network devices Q = {qi : i ∈ (1, ..., nq)}
and a set of source-destination paths P = {pi : i ∈ (1, ..., np)}. Let us also
consider a path as a sequence of tuples with the queues and links they tra-
verse defined by the routing scheme. Hence, we define the paths as: pi =

{(qPQ(pi,0), lPL(pi,0)), ..., (qPQ(pi,|pi|), lPL(pi,|pi|))}, where PQ(pi, j) and PL(pi, j)
respectively return the index of the j-th queue or link along the path pi. Let

4.1. RouteNet-Darwin 43

Forwarding
Device #1

(output port)

···

Forwarding
Device #2

(output port)

Queue1

Queue2

Queue3

Queue5

Queue4
Link1

Path1

Link2

FIGURE 4.1: Schematic representation of the network model
implemented by RouteNet-D.

us also define Qp(qi) as a function that returns all the paths passing through
queue qi, and Lq(li) as a function that returns the queues injecting traffic into
link li – i.e., the queues at the output port to which the link is connected.

Each queue, link, and path is initialized with some features xli , xqj and
xpk , respectively. In our particular case, we set the initial features of links (xl)
as (i) the link capacity, and (ii) the scheduling policy (FIFO, Strict Priority,
WFQ, or DRR) configured in the egress port that injects traffic into the link,
using one-hot encoding. The initial features of queues (xq) are: (i) buffer
size, (ii) priority order (one-hot encoding), and (iii) weight (only for WFQ
and DRR). Lastly, we set the initial path features (xp) as the traffic volume
(bits and packets) sent from the source to the destination node of the path.

4.1.3 Network Model

We initialize the state of links hl, queues hq, and paths hp respectively with
their initial feature vectors (xl, xq and xp), and apply zero-padding to fit the
size of the target vectors, which is a configurable parameter of the GNN.
After the message-passing phase, these hidden states are expected to encode
some meaningful information about links (e.g., utilization), queues (e.g., load,
packet loss rate), and paths (e.g., end-to-end delay, packet loss) based on the
information exchanged along the graph. Thus, RouteNet-D is based on these
basic principles:

44
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

1. The state of a path depends on the states of all the queues and links that
it traverses.

2. The state of a link depends on the states of all the queues that inject
traffic into the link.

3. The state of a queue depends on the states of all the paths that inject
traffic into the queue.

These principles can be mathematically formulated as follows:

hqi = fq(hp1 , ..., hpm), qi ∈ pk, k = 1, ..., j (4.1)

hlj = fl(hq1 , ..., hqm), qm ∈ Lq(lj) (4.2)

hpk = fp(hqk(0) , hlk(0) , ..., hqk(| fk |)
, hlk(| fk |)

) (4.3)

where fq, fl, and fp are some unknown functions.

A direct approximation of functions fq, fl and fp is complex given that:
(i) equations 4.1, 4.2 and 4.3 define a complex non-linear system of equa-
tions with the states being hidden variables, (ii) they encode complex mu-
tual dependencies between different network components (topology, rout-
ing, queueing policies, traffic), and (iii) the dimensionality of possible states
is extremely large.

GNNs have shown an outstanding capability to work as universal ap-
proximators over graph-structured data [35, 30]. As a result, thanks to its
internal GNN-based architecture, RouteNet-D is able to approximate flexi-
ble fq, fl, and, fp functions, which can later be applied to unseen topologies,
routing schemes, queueing configurations, and traffic distributions.

4.1.4 Proposed GNN Architecture

Algorithm 1 describes the internal architecture of RouteNet-D. This custom
GNN architecture is specially designed to solve the circular dependencies
described in Equations 4.1, 4.2 and 4.3 by executing an iterative message-
passing process. First, the hidden states hl, hq, and hp are initialized (lines 1-3)
using xl, xq, and xp respectively and padded with zeros to the specific hidden
state dimension. After the hidden state initialization, the message-passing

4.1. RouteNet-Darwin 45

Algorithm 1 Internal architecture of RouteNet-D
Input: L, Q, P, xq, xl, xp

Output: hT
q , hT

l , hT
p , ŷp

1: for each l ∈ L do h0
l ← [xl, 0...0]

2: for each q ∈ Q do h0
q ← [xq, 0...0]

3: for each p ∈ P do h0
p ← [xp, 0...0]

4: for t = 0 to T-1 do
5: for each p ∈ P do
6: for each q, l ∈ p do
7: ht

p ← RNNp(ht
p, [ht

q, ht
l])

8: m̃t+1
p ← ht

p

9: ht+1
p ← h̃t

p

10: for each q ∈ Q do
11: Mt+1

q ← ∑p∈Qp(q) m̃t+1
p,q

12: ht+1
q ← Uq(ht

q, M̃t+1
q)

13: m̃t+1
q ← ht+1

q

14: for each l ∈ L do
15: for each q ∈ Lq(l) do
16: ht

l ← RNNl(ht
l , m̃t+1

q)

17: ht+1
l ← ht

l

18: ŷp ← Fp(hp)

phase begins. During this step, each state is combined with its connected
elements according to the relations described in the input graph. This process
is repeated T iterations (loop from line 4). Thus, by the end of the message-
passing execution, hidden states hl, hq, and hp should eventually converge to
some fixed values after exchanging information with their neighbors in the
graph [27].

Unlike standard GNN models, RouteNet-D implements a more com-
plex message-passing that can be divided into three different stages involv-
ing message exchanges between heterogeneous graph elements. The loops
from line 5, line 10, and line 14 in Algorithm 1 represent these different
message-passing stages, where for each path (line 5), for each queue (line
10), and for each link (line 5), the hidden states are exchanged with their
connected elements and updated based on the information received. More
specifically, each path collects messages from all the queues and links that
it crosses (loop from line 6), then each queue receives messages from all the

46
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

paths that pass through it (summation from line 11) and lastly, each link col-
lects information from all the queues that inject traffic into it (loop from line
15). To aggregate the paths’ hidden states on queues (line 11) we use an
element-wise summation. In the case of links and queues, it is important to
consider that there is a sequential dependence on the elements connected.
For instance, the order of queues and links that a path traverses is important
in case there is packet loss, as the packets dropped by one queue will not
be injected into the subsequent links and queues. For this reason, we use
a Recurrent Neural Network (RNN) to aggregate the sequences of queues
and links on the paths’ hidden states (line 7). Similarly, the model aggre-
gates the queue states on their related links using another RNN (line 16), as
it is important to maintain the order of queues to model the behavior of the
queuing policy (e.g., the priority order). For simplicity of the GNN architec-
ture, we implement some message and update functions as direct variable
assignments, except for the case of the update function for queues Uq (line
12), which is implemented using a Gated Recurrent Unit to facilitate the con-
vergence of the algorithm [74].

Finally, the function Fp (line 18) represents a readout function that is
applied individually on each path hidden state hp and, in this case, is used
to finally produce the estimated mean per-path delays (ŷp). Particularly, we
modeled the readout function Fp with a fully connected NN using a SELU
activation function [75].

This architecture provides flexibility to represent any routing configu-
ration and queuing policy (including QoS-aware scheduling algorithms with
multiple queues). This is achieved by the direct mapping of the paths result-
ing from the routing configuration P to specific message-passing operations
with queues, links, and other paths.

4.2 Prototype Implementation

We implemented a prototype of the full RouteNet-D message-passing struc-
ture using TensorFlow. The source code of RouteNet-D and the training and
evaluation datasets used in this chapter are publicly available at [76].

4.2. Prototype Implementation 47

4.2.1 Simulation Setup

In order to train our GNN-based model, we built the ground truth leverag-
ing a packet-level network simulator (OMNeT++ v5.5.1 [8]). Each sample in
the training set corresponds to the simulation of a specific network scenario,
defined by a topology, a src-dst traffic matrix, and a routing and queuing pol-
icy. Then, the simulator labels this sample with the mean per-packet delay
measured on each source-destination path. Regarding the training dataset,
each sample represents a random selection of input features (topology, traffic,
routing, and queuing configuration) according to the following descriptions:

Traffic

We generate the input Traffic Matrices (TM) following the same approach de-
scribed in [77]. In our particular case, traffic matrices are generated to cover
a wide range of operational scenarios from low traffic loads to highly loaded
networks. Depending on the capacities of the links, as well as the routing
configuration of the network, this TM will result in a certain packet loss.
Particularly, we generated these TMs to obtain a maximum packet loss of 3%
according to [78]. Since some TMs lead to traffic aggregates that exceed the
capacity on some links, they will cause congestion and packet loss due to the
accumulation of packets in the queues. Note that we also use traffic extracted
from real packet traces, which is later described in Section 4.3.5. Finally, we
randomly assign a Type-of-Service (ToS) label to each source-destination traf-
fic flow (ToS∈[0-9]), which is then used to map traffic flows to specific queues
at egress ports of network devices – as shown below.

Queueing Configuration

Each node is configured randomly with (i) a queue scheduling policy, that
can be First In First Out (FIFO), Strict Priority (SP), Weighted Fair Queueing
(WFQ), or Deficit Round Robin (DRR), (ii) a random number of queues, and
(iii) a random queue size. For WFQ and DRR, we define a set of random
queue weights. Finally, we map ToS labels to queues in decreasing order
of priority, including a random component and depending on the number of
queues. Hence, lower ToS labels are assigned to higher-priority queues. Note
that the dataset contains samples of a wide range of queuing configurations

48
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

from the simulator, this helps the GNN model understand their effect on
network performance.

Topologies

In order to train and evaluate the model, we use three different real-world
topologies (NSFNET [56], GEANT [57] and GBN [58]). Later, in Section 4.3.4,
we also evaluate the generalization properties of our solution with 106 real-
world topologies from the Internet Topology Zoo [79].

4.2.2 Machine Learning Framework

We train the model using 100k samples from each training network (NSFNET
and GEANT). Note that for a given network topology, a data sample is de-
fined as a random combination of routing, queuing policy, and traffic matrix.
The randomly generated configurations are within the operational ranges
defined in Section 4.2.1.

Our model has two relevant hyper-parameters that can be fine-tuned:
(i) The size of the hidden states hl, hq and hp, and (ii) the number of message-
passing iterations (T). Based on preliminary experiments we use 32-element
vectors for all the hidden states, and T=8 iterations. In this context, T should
correlate to the network diameter, which in real networks approximately
scales with log(N), where N is the number of nodes of the input graph [80].

We choose the Mean Squared Error (MSE) as a loss function, which
is minimized using an Adam optimizer with an initial learning rate of 0.001
and a decay rate of 0.6 executed every 80,000 steps. In addition to this, we
added a L2 regularization loss of λ=0.1.

Note that, these parameters have been selected following an exhaus-
tive grid search, aiming to obtain a balance between computational efficiency
and achieving low error rates for the model.

Figure 4.2 shows the CDF of the relative error when predicting the
mean per-path delay for the three topologies. In the two topologies seen
in training (NSFNET and GEANT), RouteNet-D obtains a MAPE of 2.59%
and 3.01% respectively. Int the GBN topology, only used in the evaluation,

4.3. Evaluation 49

-50% -25% 0% 25% 50%
Relative Error [(y y)/y × 100%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

NSFNET
GEANT
GBN

FIGURE 4.2: CDF of relative error for RouteNet-D. y represents
the true delay, while ŷ denotes the predicted one.

obtains a MAPE=3.88%. Also, the error distribution is centered around 0,
which means that the model predictions are not biased towards under or
overshooting.

4.3 Evaluation

Our evaluation focuses on several relevant properties of RouteNet-D includ-
ing (i) the accuracy of the delay prediction of source-destination pairs, in
a wide variety of topologies, routing, queueing configurations, and traffic
matrices with various load levels, (ii) the generalization capabilities of the
model in networks never seen during training, (iii) the accuracy when work-
ing with real-world data, and (iv) the speed and the scalability of its estima-
tions.

4.3.1 Baseline

To benchmark the performance of RouteNet-D we compare it against [77]
which from now on will be referred to as GNN-Baseline. Similar to RouteNet-D,
GNN-Baseline models the network by performing a two-stage message pass-
ing between the links and paths in the network.

50
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

4.3.2 Performance Metrics

Performance metrics are a critical component of the evaluation frameworks
in Machine Learning. They are mainly used to monitor and measure the
performance of a model. Since we are in a regression problem and following
the approach described in [81], we provide 4 different metrics. Two absolute
metrics: Mean Squared Error (MSE) and Mean Absolute Error (MAE), as well
as two relative metrics: Mean Absolute Percentage Error (MAPE) and the
Coefficient of Determination (R2).

We believe that combining the four of them provides a good picture of
the performance of the different models evaluated in the following sections.
Mainly, we focus on MAPE as, in contrast to MAE and MSE, it is a relative
metric that does not depend on the units of the predicted variable (delay).

4.3.3 Accuracy

We evaluate the accuracy of RouteNet-D and GNN-Baseline using 100k sam-
ples of each of the aforementioned topologies (NSFNET, GEANT, and GBN).
Note that the GBN topology has never been seen during the training phase
for any one of the models.

NSFNET GEANT

MAPE MSE MAE R2 MAPE MSE MAE R2

GNN-Baseline 0.667 4.366 0.847 -0.193 0.581 1.172 0.336 -0.093
RouteNet-D 0.033 0.077 0.06 0.978 0.039 0.028 0.034 0.973

(A) Performance comparison for NSFNET and GEANT networks, seen during training.

GBN

MAPE MSE MAE R2

GNN-Baseline 0.533 3.124 0.523 -0.089
RouteNet-D 0.034 0.067 0.046 0.976

(B) Performance comparison for GBN network, never seen during training.

TABLE 4.1: Comparison of performance metrics.

Table 4.1 shows the results for the three topologies. In this particu-
lar case, we show the Mean Absolute Percentage Error (MAPE), the Mean
Squared Error (MSE), the Mean Absolute Error (MAE), and the Coefficient

4.3. Evaluation 51

of determination (R2). As we can see, RouteNet-D clearly outperforms the
baseline, achieving a MAPE of 3.8% and an R2 of 0.976 for the GBN topology.

4.3.4 Generalization Capabilities

GNN models have shown a great potential to generalize over data structured
as graphs [35, 30]. This section presents an analysis of the generalization ca-
pabilities of RouteNet-D. Particularly, we refer to generalization as the capa-
bility of the model to make accurate predictions in new network scenarios
unseen during the training phase. In our case, it involves different topolo-
gies, routing and queuing configurations, and traffic distributions never seen
during training.

To this end, we evaluate the accuracy of the proposed GNN-based
model as well as the GNN-Baseline, with 106 real-world topologies from the
Internet Topology Zoo [79] that were not present in the training set. For each
topology, we use the network simulator previously described (Sec. 4.2.1) to
generate the delay labels for the ground truth, considering a variety of traffic
matrices and configurations. Then, we analyze the accuracy of the model
trained only with the NSFNET and GEANT topologies (Sec. 4.2.2).

-100% -75% -50% -25% 0% 25% 50% 75% 100%
Relative Error [(y y)/y × 100%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RouteNet-D
GNN-Baseline

FIGURE 4.3: CDF of relative error over 106 unseen real-world
topologies.

Figure 4.3 shows the CDF of the relative error for this experiment.
As the figure shows, our model provides good generalization capabilities,

52
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

achieving a MAPE=3.8% over the 106 real-world topologies never seen dur-
ing training. As expected, the GNN-Baseline performs poorly in generaliza-
tion scenarios with a MAPE greater than 60%.

TOPOLOGY ZOO

MAPE MSE MAE R2

GNN-Baseline 0.643 14.44 0.322 -0.006
RouteNet-D 0.038 0.476 0.0258 0.966

TABLE 4.2: Performance metrics comparison over 106 real-
world topologies never seen during training.

Table 4.2 shows a summary of the different metrics evaluated on the
106 real-world topologies obtained from the Internet Topology Zoo. Again,
RouteNet-D outperforms the baseline, which performs poorly when the topolo-
gies evaluated are different from the ones seen during training.

To
p
o
lo
gy

Si
ze

Tr
af
fi
c

In
te
n
si
ty

Pa
th

Le
n
gt
h

M
A
P
E

Topology
Size

Traffic
Intensity

Path
Length

MAPE

FIGURE 4.4: Correlation matrix of the topology size, traffic in-
tensity, path length, and MAPE.

We have experimentally analyzed what features have more impact on
the model’s accuracy, and have found that there is little variability in the
error across the different topologies (≈0.8% MAPE between the topologies
with less and more error). Figure 4.4, shows the correlation matrix between
several properties of the experiment. It can be seen how the highest corre-
lation is found between traffic intensity and the MAPE. This is in line with
the accuracy results we obtained in previous experiments where the model
showed slightly less accuracy in samples from highly congested networks.

4.3. Evaluation 53

As an example, networks with very low traffic obtain an average error of
1.5%, while networks with a high level of congestion produce an error of
5.3% on average.

4.3.5 Experiments with Real Traffic

In the previous experiments, we evaluated RouteNet-D with synthetic traffic.
In this section, we validate the accuracy of this model when applied to real
traffic, without retraining the model.

For this purpose, we use real-world traffic matrices from the SNDlib
library [82]. Since the traffic matrices only contain traffic aggregates of each
source-destination pair, we use a recent snapshot from the MAWI repository
(SamplePoint-F, Oct. 2020) [83] to extract realistic packet inter-arrival times.
Then, we scale these inter-arrivals according to the values in the traffic ma-
trices. Regarding the mapping of source-destination flows to ToS classes, we
follow the same distribution from a real ISP [84].

We create a new dataset only for evaluation, not training. This dataset
contains three different topologies: GBN (NOBEL), GEANT, and ABILENE,
extracted from SNDlib [82], and the aforementioned traffic matrices. Note
that the dataset contains: (i) two new topologies (GBN and ABILENE), not
present in the training dataset, and (ii) traffic matrices completely different
from the ones used in training. We evaluate the accuracy of the previous
model from Sec. 4.3.3 directly in this dataset, without retraining it.

Figure 4.5 shows the CDF of the relative error in this new scenario.
As we can observe, RouteNet-D produces accurate delay estimates even in
scenarios emulating real traffic. Particularly, the model achieves a MAPE of
5.6% for the ABILENE topology, 7.1% for GEANT, and 8.9% for GBN. As
mentioned previously, the model has been trained with synthetic traffic, and
here we test it using real traffic. Despite the traffic seen by the model follow-
ing a slightly different traffic distribution than that seen during training, the
model still achieves good accuracy. Compared with the results from Figure
4.2, the MAPE increases from 3.9% (results with synthetic traffic) to 5.6% -
8.9% MAPE (best and worst case results with real traffic).

Finally, we evaluate RouteNet-D using a dataset that combines the 106

54
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

-60% -40% -20% 0% 20% 40% 60%
Relative Error [(y y)/y × 100%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ABILENE
GEANT
GBN

FIGURE 4.5: CDF of the relative error using real traffic.

-100% -75% -50% -25% 0% 25% 50% 75% 100%
Relative Error [(y y)/y × 100%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RouteNet-D
GNN-Baseline

FIGURE 4.6: CDF of relative error over 106 unseen real-world
topologies with realistic traffic.

TOPOLOGY ZOO
WITH REALISTIC TRAFFIC

MAPE MSE MAE R2

GNN-Baseline 0.686 14.48 0.351 -0.008
RouteNet-D 0.071 0.104 0.028 0.992

TABLE 4.3: Performance metrics comparison over 106 real-
world topologies with realistic traffic never seen during train-

ing.

real network topologies previously used (Sec. 4.3.4), and with traffic matri-
ces that follow the inter-arrivals times and ToS classes mentioned used in the

4.4. Use Case: Optimization 55

previous experiment [83, 84]. Figure 4.6 and Table 4.3 show the performance
of RouteNet-D compared to the baseline. Following the trend of the previ-
ous experiments, RouteNet-D outperforms the GNN-baseline, achieving a
MAPE of 7.1%.

4.4 Use Case: Optimization

Network optimization is typically achieved by combining two main elements:
(i) a network model and (ii) an optimization algorithm (e.g., [85]). The
model predicts the performance (e.g., per-path delay) for a specific config-
uration (e.g., routing), while the optimization algorithm generates config-
urations that can potentially meet the expected performance, for example,
according to a Service Level Agreement (SLA).

Emerging use cases have renewed interest in SLA optimization [86].
SD-WAN [87], 5G network slicing [88], networked control of industrial sys-
tems, such as Industry 4.0 [89] and Tactile Internet [90, 91], require new strin-
gent SLA requirements. In addition, novel forms of communication, such
as AR/VR or holographic telepresence, demand ultra-low deterministic la-
tency [92, 93]. In order to efficiently offer such SLAs, network optimizers
must consider both routing and queue scheduling mechanisms (e.g., Strict
Priority, Weighted Fair Queueing, Deficit Round Robin).

A fundamental aspect of network optimization is that we can only opti-
mize what we can model. For example, to optimize the delay of a path travers-
ing some nodes with different queuing policies, the model must be able to
understand how delay relates to queuing policies and traffic.

In this section, we demonstrate the practical applications of RouteNet-
D when coupled with an optimizer in various real-world use cases. This
showcases the potential of GNN-based models in efficiently identifying op-
timal configurations. It’s important to note that the effectiveness of network
optimization is inherently linked to the quality of the underlying network
model. RouteNet-D excels in this regard, as it comprehensively captures the
intricate relationships between network parameters (as shown in previous
Sections), making it a valuable tool for exploring and finding optimal net-
work configurations.

56
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

Clients’ SLAs

<<<<<

SDN Controler

Optimization
Algorithm

GNN-Based
Network Model

Resulting Performance

SLA/QoS optimizer Module

Candidate configuration
Config.

(Routing and
Queue Policy)

Network
State

Southbound
Protocol

Target
Network

FIGURE 4.7: Network scenario for SLA-based optimization.

4.4.1 Network Scenario

Novel network applications (e.g., Industry 4.0 [89], Tactile Internet [90]), are
pushing further the requirements of network-offered SLAs. At the time of
this writing, there are substantial research efforts to accommodate such chal-
lenging SLAs with new protocols and architectures [92, 93, 86]. Many of such
architectures take advantage of the Software-Defined Networking paradigm,
which enables a new breed of centralized optimization algorithms [21]. Cen-
tralization enables full visibility of the network configuration and state, as
well as fine-grained flow control.

In this section, we consider a Wide Area Network (WAN) that im-
plements a classical SDN architecture: a centralized controller, and a south-
bound protocol that allows configuring the devices and collecting network
performance metrics, such as OpenFlow or NETCONF (Fig. 4.7). The SDN
controller has an SLA/QoS optimizer application that guarantees fine-grained
SLAs by adjusting the routing and queuing policies according to the net-
work state. First, the network administrator defines the desired set of SLAs,
e.g. the maximum mean delay of flows. The granularity of the flows de-
pends on the requirements of the administrator, hence, we consider different
flow granularities, ranging from source-destination to 5-tuple flows. Then,
SLAs are mapped to the data plane by tagging the packets of each flow us-
ing common fields from the IP header: Type-of-Service (ToS) for IPv4, and
Differentiated Services for IPv6.

Second, a network model – RouteNet-D in this case – is paired with

4.4. Use Case: Optimization 57

an optimizer running on the SDN controller. The controller has visibility
of the local configuration of each data-plane element as well as up-to-date
measurements of the network state: bandwidth, mean delay of each source-
destination pair, and link utilization. This can be achieved using readily
available telemetry methods [94, 95].

Leveraging this information, the optimizer explores alternative con-
figurations that can meet the SLA for the current traffic load. In RouteNet-
D, configurations are combinations of source-destination routing and per-
interface queuing configurations, i.e., scheduling algorithm and queue pa-
rameters. Each configuration produced by the optimizer is tested by Route-
Net-D, which produces fast and accurate estimates of flow delays. Once the
optimizer finds a configuration that meets the SLAs, it is applied to the data-
plane elements.

For this reason, the abilities of RouteNet-D of (i) Generating accurate
predictions of SLA metrics, (ii) Achieving fast operation, to quickly adapt
the configuration to traffic changes, and (iii) Generalizing to other network
scenarios not seen during training, are of critical importance.

The latter feature is of critical importance. In the context of computer
networks, training a Network Model requires generating a large diversity of
network scenarios (e.g., random routing and queuing configurations, sim-
ulating link failures, etc), which could render the network unusable. This
would be infeasible in production networks. Thus, we argue that a practical
way to build a Network Model is to train them in controlled environments
(e.g., in a networking lab). Then, they can take advantage of their generaliza-
tion capabilities to operate in real network topologies unseen in advance.

4.4.2 Limitations of State-of-the-Art Optimizers

State-of-the-art network optimization solutions mainly rely on fluid mod-
els [17, 18, 19, 20, 21]. In order to discuss the limitations of such models when
dealing with complex SLA scenarios, we take DEFO [17] as a representative
of the state-of-the-art in this area [96].

DEFO is a constraint programming framework for network optimiza-
tion. This optimizer allows network administrators to set constraints to the
optimization problem, including maximum end-to-end delays. To estimate

58
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

-100% -50% 0% 50% 100%
Relative Error [(y y)/y × 100%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Scenario 1
1.3% avg. packet loss
Scenario 2
0.8% avg. packet loss
Scenario 3
0% avg. packet loss

FIGURE 4.8: CDF of the relative error of the fluid model under
various traffic loads.

the performance of candidate configurations, DEFO uses a fluid model of the
network. In DEFO, the per-link delay is a fixed input variable of the network
optimizer. Particularly, this value is either provided by the network opera-
tor in real topologies or computed manually according to the link distance in
synthetic topologies [17]. Then, the delay of a path is assumed to be equal to
the sum of transmission delays of the links that it traverses, without consid-
ering any queuing delay.

To test the accuracy of the fluid model used by DEFO, the actual delay
is measured with an accurate packet-level simulator based on OMNET++ [8].
In this particular case, the simulation of the network scenario is defined by a
topology, a src-dst traffic matrix, and a routing configuration. Similar to be-
fore, we use three different real-world topologies (NSFNET [56], GEANT [57]
and GBN [58]). The traffic matrix is defined following the same approach as
described in [77], generating three network scenarios containing 0%, 0.8%,
and 1.3% off packet losses to see the effect of the network congestion on the
accuracy of the fluid model. Finally, the routing configurations are the ones
returned by DEFO after running its optimization process.

Figure 4.8 plots the Cumulative Distribution Function (CDF) of the
relative error produced by the fluid model when estimating the per-path de-
lay in a network scenario from [17], optimized with DEFO. The figure plots
three different distributions according to the network load (average packet
loss from 0% to 1.3%). These results show that actual delays are different
from those estimated by the fluid model. Even for scenarios without packet
loss, the fluid model has a Mean Absolute Percentage Error (MAPE) of 21%,

4.4. Use Case: Optimization 59

while estimations degrade significantly with increasing network load (≈50%
MAPE). This is due to the fact that fluid models do not consider the queuing
delay, which becomes an important component of the end-to-end delay in
the presence of congestion.

Finally, it is worth noting that DEFO is just used in this section to il-
lustrate the limitations of fluid models for SLA-aware optimization, but the
contributions described in [17] go well beyond the network model used for
optimization. Indeed, the DEFO optimizer could easily support more com-
plex network models, like the one proposed in Section 4.1.

4.4.3 SLA-driven Optimization Use Cases

Here, we present several relevant use cases that illustrate the potential of
RouteNet-D for SLA-driven optimization. In all of them, RouteNet-D is paired
with an optimization algorithm in order to produce routing and queuing con-
figurations that meet a set of SLAs.

Methodology

We combine RouteNet-D with an optimization algorithm based on Direct
Search. This algorithm uses a custom search heuristic based on common
network metrics (link utilization, traffic, path length, etc), which guides the
exploration within the high-dimensional space of solutions. Note that more
sophisticated optimization algorithms can be paired with RouteNet-D. How-
ever, we leave this out of the scope of this dissertation, as the goal of this sec-
tion is to showcase how RouteNet-D can be effectively used for SLA-aware
optimization.

In all the experimental setups, we generate traffic flows with two dif-
ferent SLA levels (ToS0=Top priority, ToS1=high priority), and some back-
ground traffic labeled as Best effort. The goal for the optimizer is to find
a configuration that fulfills the predefined SLAs for ToS0 and ToS1 while
minimizing the mean delay for the best-effort traffic. In all the experiments,
we use the RouteNet-D model previously trained in NSFNET and GEANT
(Sec. 5.1.3) and perform optimization over scenarios not seen during training
(in the GBN topology).

60
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

As a benchmark, we also show the performance of a shortest-path pol-
icy using FIFO scheduling on all network devices, as well as the configu-
ration that results from running an optimizer that integrates a fluid model
instead of RouteNet-D.

Routing

In this use case, the goal is to optimize the mean delay of the best-effort traffic
while satisfying the set of SLAs for each ToS by only modifying the (src-dst)
routing scheme. We evaluate the performance across various traffic intensi-
ties ranging from 1000 (middle traffic load) to 1900 (high network conges-
tion).

We compare the results obtained using RouteNet-D with those achie-
ved using a traditional fluid model. This latter case represents a baseline of
state-of-the-art optimization tools that rely on fluid models, such as DEFO [17].
However, note that this reference benchmark is not exactly the same as DEFO,
as we do not consider middle-point routing or ECMP. Our focus is to make
a direct comparison of both network models, under the same conditions.
Hence, we use the same optimization algorithm. In both cases, the explo-
ration is guided by the delay estimates of the network model: RouteNet-D or
fluid models. Additionally, we compare the results with the performance of
a traditional Shortest Path (SP) policy.

Figures 4.9a and 4.9b show the results of the optimization. Figure 4.9a

1000 1200 1400 1600 1800
Traffic Intensity

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
la

y

Max - ToS0 (RouteNet-D)
Max - ToS1 (RouteNet-D)
Max - ToS0 (Fluid)
Max - ToS1 (Fluid)

SLA ToS1

SLA ToS0

(A) SLA flows - Routing
(max. flow mean delay)

1000 1200 1400 1600 1800
Traffic Intensity

0

1

2

3

4

5

6

De
la

y

SP+FIFO
Best Effort (RouteNet-D)
Best Effort (Fluid)

(B) Best Effort - Routing
(avg. flow mean delay)

FIGURE 4.9: Routing-based SLA Optimization.

4.4. Use Case: Optimization 61

shows how the RouteNet-D-based optimizer finds a solution that fulfills the
SLA requirements for both ToS (top and high priorities). Figure 4.9b shows
that the optimizer paired with RouteNet-D achieves remarkable performance
when minimizing the mean delay of the best-effort traffic, outperforming
both the fluid and the SP for low traffic intensities. For high traffic load,
RouteNet-D manages to fulfill the SLAs for both ToS (Fig. 4.9a), while this
has an impact on the mean delay of best-effort traffic (Fig. 4.9b).

Regarding the fluid model, we can observe that the optimizer could
not find solutions that satisfy the SLAs for medium to high traffic intensities.
The reason for this is that despite the fluid model estimates that the delay ex-
perienced by flows is within the SLA terms, the packet-level simulator shows
that such estimates are not accurate –as shown earlier in Sec. 4.4.2– and ex-
ceed the SLA thresholds. This is because the fluid model ignores queuing de-
lay. Thus, in highly congested scenarios, where the queuing delay becomes
more significant, the fluid model-based optimizer leads to SLA violations.

Scheduling

This use case also attempts to minimize the mean delay on best-effort traffic,
while satisfying the SLAs assigned to each ToS. However, in this case, we
aim to evaluate the potential of optimizing the queuing configuration using
RouteNet-D. The main difference with the previous experiments is that now
the optimizer only explores different queuing configurations, while routing
is fixed to a standard shortest path scheme. Then, we leverage the flexibility
of RouteNet-D to make delay estimates under different queue scheduling
policies and parameters. Note that in this case, we cannot compare the results
with a fluid model given that it does not have support for queuing policies
beyond FIFO. Because of this, optimizers based on fluid models are typically
limited to exploring different routing configurations.

Figures 4.10a and 4.10b show that the optimizer is able to fulfill all
SLAs, while also minimizing the delay of best-effort traffic. More impor-
tantly, if we compare these results with the previous ones, we can observe
that by modifying the queuing configuration we achieve better results than
modifying the routing. These results illustrate the remarkable impact of the
queue scheduling configuration on the overall network performance, partic-
ularly in the presence of different ToS.

62
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

Routing and Scheduling

Based on the previous results, in this scenario, we aim to evaluate the opti-
mization potential when optimizing both the routing and queuing configu-
ration. The objective is the same as before, minimizing the mean delay on
best-effort traffic while satisfying the SLAs.

Figures 4.11a and 4.11b show the evaluation results. As we can ob-
serve the improvement is remarkable compared to the previous results. The
RouteNet-D-based optimizer satisfies all SLAs while pushing the mean delay
of best-effort traffic even lower. For instance, in the scenario with the highest
traffic load, it achieves a reduction on the mean delay of ≈60% with respect
to the SP+FIFO policy.

1000 1200 1400 1600 1800
Traffic Intensity

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
la

y

Max - ToS0 (RouteNet-D)
Max - ToS1 (RouteNet-D)

SLA ToS1

SLA ToS0

(A) SLA flows - Scheduling
(max. flow mean delay)

1000 1200 1400 1600 1800
Traffic Intensity

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
la

y

SP+FIFO
Best Effort (RouteNet-D)

(B) Best Effort - Scheduling
(avg. flow mean delay)

FIGURE 4.10: Scheduling-based SLA Optimization.

1000 1200 1400 1600 1800
Traffic Intensity

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
la

y

Max - ToS0 (RouteNet-D)
Max - ToS1 (RouteNet-D)

SLA ToS1

SLA ToS0

(A) SLA flows - Routing & Scheduling (max.
flow delay)

1000 1200 1400 1600 1800
Traffic Intensity

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
la

y

SP+FIFO
Best Effort (RouteNet-D)

(B) Best Effort - Routing & Scheduling (avg.
flow delay)

FIGURE 4.11: Routing and Scheduling-based SLA Optimiza-
tion.

4.4. Use Case: Optimization 63

1 2 3 4 5
Number of failures

0

1

2

3

4

5

De
la

y

Delay ToS0
Delay ToS1
Best Effort
SLA - ToS0
SLA - ToS1

FIGURE 4.12: SLA-driven optimization with link failures.

Robustness Against Link Failures

In this use case, we evaluate if our model is able to generalize in the presence
of link failures. When a certain link fails, we need to find a new routing and
queuing configuration to avoid such a link. As the number of link failures in-
creases, fewer paths are available and the network becomes more saturated.

We run our RouteNet-D-based optimizer in scenarios with a number
of random link failures. The initial network scenario is the same as in the
previous experiments (i.e., routing & scheduling optimization), considering
the highest traffic intensity (TI = 1900).

Figure 4.12 shows the optimized mean delay with respect to the num-
ber of link failures (n). Each point in the plot corresponds to the optimal
delay obtained over 10 experiments with n random link failures. We observe
that the mean delay increases gradually on best-effort traffic as there are more
link failures and the network becomes increasingly congested. Nevertheless,
the optimizer is able to meet all the SLAs even with up to 4 link failures.

What-if: Budget-constrained Network Upgrade

In this last use case, we show how RouteNet-D can be used to reason about
the network and provide recommendations. Particularly, we use it to answer
the following question: What is the optimal link upgrade in the network? The
question is put in the context of a network administrator that has a static and
well-known traffic matrix and that is willing to upgrade the capacity of the
network by adding one link that minimizes the mean traffic delay.

64
Chapter 4. RouteNet-Darwin: Advancing Towards Quality of

Service-Aware Network Modeling

Traffic
matrix

Optimal new
link placement

Previous
delay

Delay with
new link

Delay
reduction

TM1 (6,16) 0.446 0.259 41.9%

TM2 (8,13) 0.508 0.303 40.3%

TM3 (7,15) 0.409 0.239 41.5%

TM4 (6,14) 0.499 0.253 49.3%

TM5 (7,15) 0.551 0.322 41.5%

TM6 (6,16) 0.458 0.209 54.3%

TM7 (5,12) 0.419 0.251 40.1%

TM8 (6,14) 0.590 0.312 47.1%

TABLE 4.4: Optimal link placement with various Traffic Matri-
ces (TMi).

To answer this question we use our RouteNet-D-based optimizer, con-
strained to adding only one link. Table 4.4 shows the results for scenarios
with 8 different random traffic matrices of traffic intensity TI=1500. We can
see that the optimizer achieves a considerable delay reduction (40.1% - 54.3%)
by properly selecting the best link placement.

4.5 Discussion and Concluding remarks

Network models are a central component for network control and optimiza-
tion, as they enable the evaluation of network performance under alternative
configurations and what-if scenarios. Reproducing the behavior of real net-
works involves a series of complex non-linear relationships among multiple
components that define the network state (e.g., topology, routing, queuing
configuration, traffic).

In this Chapter, we presented RouteNet-D, a GNN-based model that
implements a custom message-passing architecture particularly designed to
model these complex relationships. For this purpose, RouteNet-D explicitly
defines network elements and their relations in its internal neural network
architecture and learns how to reason on this graph-structured information.
We applied RouteNet-D to estimate per-path delays in networks, covering a
wide variety of topologies, configurations (routing and queuing), and traffic
load levels. Our evaluation shows that RouteNet-D is able to generalize ac-
curately to samples of 106 real-world networks (from Internet Topology Zoo)

4.5. Discussion and Concluding remarks 65

unseen in advance, after being only trained on samples of two different net-
works (NSFNET and GEANT). Also, our evaluation shows how RouteNet-D
is capable of understanding the complex relationships in a real traffic sce-
nario. This reflects the capability of this model to abstract deep insights from
network scenarios seen during training and then apply this knowledge effec-
tively to new network topologies, including different traffic matrices, rout-
ing, and queuing configurations.

Finally, we presented several relevant use cases that illustrate the po-
tential of the proposed model for SLA-driven optimization. To this end, we
paired RouteNet-D with an optimization algorithm to produce routing and
queuing configurations that meet a set of SLAs in a specific network scenario.
We also used it to test the robustness of the network against link failures and
to find the optimal link placement in a network planning use case.

67

Chapter 5

RouteNet-Erlang: Enhancing
Network Modeling through
Scheduling, Traffic Models, and
Generalization

In the previous Chapter, we delved into the challenge of Quality of Service
and Scheduling policies by leveraging a custom GNN-based architecture that
solves the complex relationships found in the different elements encountered
on the network. Nevertheless, with this solution, the challenges of the traffic
models and the generalization to larger topologies keep being there.

In this Chapter, we present RouteNet-Erlang (RouteNet-E), a novel
GNN-based architecture designed for the performance evaluation of com-
puter networks that solves the aforementioned challenges. RouteNet-E shares
the same goals as QT models: it is also able to model a network of queues,
with different sizes and scheduling policies while providing accurate esti-
mates of delay, jitter, and losses. Interestingly, RouteNet-E is not limited to
Markovian traffic models as QT, but rather it supports arbitrary traffic mod-
els including more complex ones with strong autocorrelation and high vari-
ance, which better represent the properties of real-world traffic [16]. It also
shows that RouteNet-E overcomes one of the main limitations of existing
ML-based models: generalization to larger topologies. RouteNet-E is able to
make accurate estimates in samples of unseen topologies one order of mag-
nitude larger than those seen during training.

68
Chapter 5. RouteNet-Erlang: Enhancing Network Modeling through

Scheduling, Traffic Models, and Generalization

Performance metrics

(e.g., delay, jitter, loss)

Topology

]
Configuration

Routing (flow-level)

Queue scheduling (interface-level)

]
Traffic model

(flow-level)

]

RouteNet-E

(GNN-based

model)

FIGURE 5.1: Black-box representation of RouteNet-E.

We benchmark RouteNet-E against a state-of-the-art QT model (Chap-
ter 3), over a wide variety of network samples covering several different traf-
fic models, from basic Poisson to more realistic and complex models with
strong autocorrelation and approximated heavy-tails. Our evaluation results
show that the proposed model outperforms the QT benchmark in all the net-
work scenarios evaluated, always producing accurate delay predictions with
a worst-case error of 6% (for QT is 68%). We also show RouteNet-E’s re-
markable performance in hundreds of random network topologies not seen
during training. Lastly, we measure its inference speed, which is in the order
of milliseconds, in line with the QT benchmark.

5.1 RouteNet-Erlang

This section describes RouteNet-E, a novel GNN-based solution tailored to
accurately model the behavior of real network infrastructures. RouteNet-E
implements a novel three-stage message-passing algorithm that explicitly de-
fines some key elements for network modeling (e.g., traffic models, queues,
paths), and offers support for a wide variety of features introduced in mod-
ern networking trends (e.g., complex QoS-aware queuing policies, overlay
routing).

Figure 5.1 shows a black-box representation of the proposed GNN-
based network model. The input of RouteNet-E is a network state sample,
defined by: a network topology, a set of traffic models (flow level), a routing
scheme (flow level), and a queuing configuration (interface level). As output,
this model produces estimates of relevant performance metrics at a flow-level
granularity (e.g., delay, jitter, losses).

5.1. RouteNet-Erlang 69

(output port)

Queue1

Queue2

Queue3

Link1

40Gbs
Link2

10Gbs

(output port)

Queuenq
…

Linknl-1

20Gbs

Linknl

10Gbs

Traffic model #1 → Flow1

Device1

Device3(output port)

Queue4

Queue5

Device2

Traffic model #2 → Flow2

Traffic model #3 → Flow3

FIGURE 5.2: Schematic representation of the network model
implemented by RouteNet-E.

5.1.1 Model Description

RouteNet-E has two main building blocks: (1) Finding a good representation
for the network components supported by the model – e.g., traffic models,
routing, queue scheduling –, and (2) Exploit scale-independent features of
networks, in order to achieve good generalization power to larger networks
than those seen during training, which is an important open challenge previ-
ously discussed in Section 3.4.

1) Representing network components and their relationships:

First, let us define a network as a set of links L = {li : i ∈ (1, ..., nl)},
a set of queues on Q = {qi : i ∈ (1, ..., nq)}, and a set of source-
destination flows F = { fi : i ∈ (1, ..., n f)}. According to the routing
configuration, flows follow a source-destination path. Hence, we define
flows as sequences with tuples of the queues and links they traverse fi =

{(qFq(fi,0), lFl(fi,0)), ..., (qFq(fi,| fi|), lFl(fi,| fi|))}, where Fq(fi, j) and Fl(fi, j) respec-
tively return the index of the j-th queue or link along the path of flow fi. Let
us also define Q f (qi) as a function that returns all the flows passing through
queue qi, and Lq(li) as a function that returns the queues injecting traffic into
link li – i.e., the queues at the output port to which the link is connected.

Following the previous notation, RouteNet-E considers an input
graph with three main components: (i) the physical links L that shape the
network topology, (ii) the queues Q at each output port of network devices,
and (iii) the active flows F in the network, which follow some specific src-
dst paths (i.e., sequences of queues and links), and whose traffic is generated
from a given traffic model. Figure 5.2 shows a schematic representation of

70
Chapter 5. RouteNet-Erlang: Enhancing Network Modeling through

Scheduling, Traffic Models, and Generalization

the network model internally considered by RouteNet-E, which is derived
from the several mechanisms that affect performance in real networks. From
this model, we can extract three basic principles:

(i) The state of flows (e.g., throughput, losses) is affected by the state of the
queues and links they traverse (e.g., queue/link utilization).

(ii) The state of queues (e.g., occupation) depends on the state of the flows
passing through them (e.g., traffic model).

(iii) The state of links (e.g., utilization) depends on the states of the queues
at the output port of the link, and the queue scheduling policy applied
over these queues.

Formally, these principles can be formulated as follows:

h fk
= g f (hqk(0) , hlk(0) , ..., hqk(| fk |)

, hlk(| fk |)
) (5.1)

hqi = gq(hp1 , ..., hpm), qi ∈ pk, k = 1, ..., j (5.2)

hlj = gl(hq1 , ..., hqm), qm ∈ Lq(lj) (5.3)

Where g f , gq, and gl are some unknown functions, and h f , hq and hl

are latent variables that encode information about the state of flows F, queues
Q, and links L respectively. Note that these principles define a circular de-
pendency between the three network components (F, Q, and L) that must be
solved to find latent representations satisfying the equations above.

Based on the previous network modeling principles, we define the
architecture of RouteNet-E (see Algorithm 2). Our GNN-based model im-
plements a custom three-stage message-passing algorithm that combines the
states of flows, queues, and links according to Equations (5.1)-(5.3), thus aim-
ing to resolve the circular dependencies defined in such functions. First, the
hidden states hl, hq, and h f – represented as n-element vectors – are initial-
ized with some features (lines 1-3), denoted respectively by xli , xqj and x fk

.
In our case, we set the initial features of links (xl) as (i) the link capacity (Ci),
and (ii) the scheduling policy at the output port of the link (FIFO, SP, WFQ,
or DRR), using one-hot encoding. For the initial features of queues (xq) we
include: (i) the buffer size, (ii) the priority level (one-hot encoding), and (iii)
the weight (only for WFQ and DRR). Lastly, the initial flow features (x f) are

5.1. RouteNet-Erlang 71

Algorithm 2 Internal architecture of RouteNet-E
Input: F, Q, L, x f , xq, xl

Output: hT
q , hT

l , hT
f , ŷ f , ŷq, ŷl

1: for each l ∈ L do h0
l ← [xl, 0...0]

2: for each q ∈ Q do h0
q ← [xq, 0...0]

3: for each f ∈ F do h0
f ← [x f , 0...0]

4: for t = 0 to T-1 do ▷ Message Passing Phase
5: for each f ∈ F do ▷ Message Passing on Flows
6: for each (q, l) ∈ f do
7: ht

f ← FRNN(ht
f , [ht

q, ht
l]) ▷ Flow: Aggr. and Update

8: m̃t+1
f ,q ← ht

f ▷ Flow: Message Generation

9: ht+1
f ← ht

f

10: for each q ∈ Q do ▷ Message Passing on Queues
11: Mt+1

q ← ∑ f∈Q f (q) m̃t+1
f ,q ▷ Queue: Aggregation

12: ht+1
q ← Uq(ht

q, Mt+1
q) ▷ Queue: Update

13: m̃t+1
q ← ht+1

q ▷ Queue: Message Generation

14: for each l ∈ L do ▷ Message Passing on Links
15: for each q ∈ Lq(l) do
16: ht

l ← LRNN(ht
l , m̃t+1

q) ▷ Link: Aggr. and Update

17: ht+1
l ← ht

l

18: ŷ f ← R f (hT
f) ▷ Readout phase

19: ŷq ← Rq(hT
q)

a descriptor of the traffic model used in the flow (Ti). Once the states are ini-
tialized, the message-passing phase is iteratively executed T times (loop from
line 4), where T is a configurable parameter. Each message-passing iteration
is in turn divided into three stages, that respectively represent the message
passing and update of the hidden states of flows h f (lines 5-9), queues hq

(lines 10-13), and links hl (lines 14-17).

Finally, functions R f (line 18) and Rq (line 19) represent independent
readout functions that can be respectively applied to the hidden states of
flows h f or queues hq. In our experiments in Section 5.2, we use R f and Rq

to predict the flow-level delay, jitter and losses – as described later in this
section.

The main motivation to use data-driven methods, such as RouteNet-
E, instead of traditional QT is to achieve accurate modeling of complex traf-
fic models that better reflect real-world traffic – as previously introduced in

72
Chapter 5. RouteNet-Erlang: Enhancing Network Modeling through

Scheduling, Traffic Models, and Generalization

Section 3.4. Hence, in RouteNet-E the representation of the traffic model de-
scriptors (Ti) is central to achieve accurate modeling of different traffic pat-
terns, and capturing their intrinsic properties. Particularly, we define Ti as an
n-element vector that includes the specific parameters that shape each traffic
model. Find more details about the parameters of each model in the previous
section 3.1.1.

2) Scaling to larger networks: scale-independent features

As previously discussed in Section 3.4, generating datasets directly
from networks in production would imply testing configurations that may
break the correct operation. As a result, GNN-based network models should
be typically trained with data from network testbeds, which are usually
much smaller than real networks. In this context, it is essential for our GNN
to effectively scale to larger networks than those of the training dataset – by
at least a 10x factor.

GNNs have shown an unprecedented capability to generalize over
graph-structured data [35, 30]. In the context of generalizing to larger graphs,
it is well known that these models keep good generalization capabilities as
long as the spectral properties of graphs are similar to those seen during
training [97]. In the case of RouteNet-E, its message-passing algorithm can
analogously generalize to graphs with similar structures to those seen dur-
ing the training phase – e.g., similar number of queues at output ports, or
similar number of flows aggregated in queues. In this vein, generating a rep-
resentative dataset for RouteNet-E in small networks, covering a wide range
of graph structures, does not imply any practical limitation to then achieve
good generalization properties to larger networks. It can be done by simply
adding a broad combination of realistic network samples with a wide vari-
ety of traffic models, routing schemes, and queuing policies as in the process
described later in section 5.1.2.

However, from a practical standpoint, scaling to larger networks often
entails a broader definition beyond the topology size and structure. In par-
ticular, there are two main properties we can observe as networks become
larger: (i) higher link capacities (as there is more aggregated traffic in the core
links of the network), and (ii) longer paths (as the network diameter becomes
larger). This requires devising mechanisms to effectively scale on these two
features.

5.1. RouteNet-Erlang 73

Scaling to larger link capacities: If we observe the internal architecture of
RouteNet-E (Algorithm 2), we can find that the link capacity C is only rep-
resented as an initial feature of links’ hidden states xli . The fact that C is
encoded as a numerical feature in the model introduces inherent limitations
to scale to larger capacity values. Indeed, scaling to out-of-distribution nu-
merical values is widely recognized as a generalized limiting factor among
all neural networks [98, 99]. Thus, our approach is to exploit particularities
from the network domain to find scale-independent representations that can
define link capacities and how they relate to other link-level features that im-
pact performance (e.g., the aggregated traffic in the link), as the final goal of
RouteNet-E is to accurately estimate performance metrics (e.g., delay, jitter,
losses). Inspired by traditional QT methods, we aim to encode in RouteNet-
E the relative ratio between the arrival rates on links (based on the traffic
aggregated in the link), and the service times (based on the link capacity),
thus enabling the possibility of inferring the output performance metrics of
our model from scale-independent values. As a result, we define link capaci-
ties (Caplink) as the product of a virtual reference link capacity (Cre f) and a scale
factor (S f) – i.e., Caplink = Cre f ∗ S f .

This representation enables to define arbitrary combinations of scale
factors and reference link capacities to define the actual capacity of links in
networks. Hence, in RouteNet-E we introduce the capacity feature (Ci) as
a 2-element vector defined as Ci=[Cre f , S f], which is included in the initial
feature vector of links (xl). Note that this feature will eventually be encoded
in the hidden states of links (hl). In the internal architecture of RouteNet-E
(Algorithm 2), this factor will mainly affect the update functions of flows and
links (lines 7 and 16), as they are the only ones that process directly the hid-
den states of links (hl). As a result, the RNNs approximating these update
functions can potentially learn to make accurate estimates on any combina-
tion of Cre f and S f as long as these two features are within the range of val-
ues observed independently for each of them during the training phase (i.e.,
S f ∈ [s fmin , s fmax] and Cre f ∈ [Cre f min

, Cre f max
]). Thus, we exploit this prop-

erty to devise a custom data augmentation method, where we take samples
from small networks with limited link capacities and generate different com-
binations of Cre f and S f actor that enable us to scale accurately to considerably
larger capacities. Note that in this process, the numerical values seen by
RouteNet-E (Cre f and S f actor) are kept in the same ranges both in the train-
ing on small networks and the posterior inference on larger networks, thus

74
Chapter 5. RouteNet-Erlang: Enhancing Network Modeling through

Scheduling, Traffic Models, and Generalization

overcoming the practical limitation of out-of-distribution predictions [98, 99].
More details about the proposed data augmentation process are given in
Sec. 5.1.3.

The previous mechanism enables us to keep scale-independent fea-
tures along with the message-passing phase of our model (loop lines 4-17 in
Algorithm 2), while it is still needed to extend the scale independence to the
output layer of the model. Particularly, we use RouteNet-E to predict the
flows’ delay, jitter, and losses. Note that the distribution of these parameters
can also vary for flows traversing links with higher capacities, thus leading
again to out-of-distribution values. Based on the fundamentals of QT, we
overcome this potential limitation by inferring delays/jitter indirectly from
the occupation of queues in the network Oqi∈[0, 1], using the ŷq=Rq(hq) func-
tion of RouteNet-E (Algorithm 2). Then, we infer the flow delay/jitter as a
linear combination of the waiting times in queues (inferred from Oqi) and
the transmission times of the links the flow traverses. Note that a potential
advantage with respect to traditional QT models is that the queue occupa-
tion estimates produced by RouteNet-E can be more accurate, especially for
complex traffic models resembling real-world traffic – as shown later in our
experimental results of Section 5.2. Likewise, for packet loss, RouteNet-E
predicts directly the percentage of packets dropped with respect to the pack-
ets that were sent by the source of the flow, thus producing a bounded value
D fi∈[0, 1], that is estimated with the ŷ f=R f (h f) function of Algorithm 2.

Scaling to longer paths: In the internal architecture of RouteNet-E, the path
length only affects the RNN function of line 7 (Algorithm 2), which collects
the state of queues (hq) and links (hl) to update flows’ states (h f). The main
limitation here is that this RNN can typically see during training shorter link-
queue sequences than those it can find then in larger networks, that can po-
tentially have longer paths. As a result, we define Lmax as a configurable pa-
rameter of our model that defines the maximum sequence length supported
by this RNN. Then, we split flows exceeding Lmax into different queue-link
sequences that are independently digested by the RNN. To keep the state
along with the whole flow, in case it is divided into more than one sequence,
we initialize the initial state of the RNN with the output resulting from the
previous sequence.

5.1. RouteNet-Erlang 75

5.1.2 Simulation Setup

To train, validate, and test RouteNet-E we use as ground truth a packet-level
network simulator (OMNeT++ v5.5.1 [8]), where network samples are la-
beled with performance metrics, including the flows’ mean delay, jitter and
losses, and queue-level statistics (e.g., occupation, packet loss).

To generate these datasets, for each sample, we randomly select a com-
bination of input features (traffic model, topology, and queuing configura-
tion). Table 5.1 summarizes the possible input features.

Similar to Chapter 4.4.2, traffic is generated using five different models
with increasing levels of complexity, which range from a basic Poisson gener-
ation process to more realistic traffic models with strong autocorrelation and
heavy-tails [16].

Each forwarding device is configured with a different scheduling pol-
icy that depends on the particular scenario of our evaluation (more details
in Sec. 5.2). Overall, we use four different queue scheduling policies: First
In First Out (FIFO), Strict Priority (SP), Weighted Fair Queueing (WFQ), and
Deficit Round Robin (DRR). We consider three queues per output port (ex-
cept for FIFO, with only one queue), and queues have a size of 8, 16, 32, or 64
packets. For WFQ and DRR, we define random queue weights.

Finally, to train the GNN model we used two different real-world
topologies: NSFNET (14 nodes) [56], and GEANT (24 nodes) [57]. Then,
we validate the accuracy of RouteNet-E in GBN (17 nodes) [58]. Later, in
Section 5.2.4, to test the generalization capabilities to larger networks of our
model, we use a wide set of topologies of variable size (from 25 to 300 nodes).
All these topologies have been artificially generated using the Power-Law
Out-Degree Algorithm described in [54], where the ranges of the α and β pa-
rameters have been extrapolated from real-world topologies of the Internet
Topology Zoo repository [79].

5.1.3 Training

We implement RouteNet-E in TensorFlow. All the datasets, the code, and
the trained models are publicly available [100]. To train the model, we use

76
Chapter 5. RouteNet-Erlang: Enhancing Network Modeling through

Scheduling, Traffic Models, and Generalization

a custom data augmentation approach that, given a link capacity (Caplink),
covers a broad combination of S f and Cre f values, in order to eventually
make the model generalize over samples with larger link capacities. Par-
ticularly, given a link capacity, in some samples, we use low values of S f

with higher values of Cre f , while in other samples we make it in the op-
posite way. As an illustrative example, if the model is trained over sam-
ples with 1Gbps links, we can represent these capacities in different sam-
ples as Caplink=10*100Mbps=1Gbps, or Caplink=1*1Gbps=1Gbps. Thus, after
training the model should be able to make accurate inferences on samples
that combine the maximum S f and Cre f values seen during training – i.e.,
Caplink=10*1Gbps=10Gbps. In practice, this means that the model can be
trained with samples with a maximum link capacity of 1 Gbps, and then
scale effectively to samples with link capacities up to 10 Gbps. Note that
these numbers are just illustrative, while this data augmentation method is
sufficiently general to produce in the training dataset wider ranges of S f and
Cre f given a maximum link capacity. Thus, it can be potentially exploited to
represent combinations leading to arbitrarily larger capacities.

After making some grid search experiments, we set a size of 32 ele-
ments for all the hidden state vectors (h f , hq, hl), and T=8 message-passing
iterations. We implement FRNN, LRNN, and Uq as Gated Recurrent Units

Topology

NSFNET [56], GEANT [57],
GBN [58], and scale-free synthetic
topologies following the Power-
Law Out-Degree algorithm [54].

Traffic Model

6 options: Poisson, On-Off, Constant
Bitrate, Autocorrelated Exponentials,
Modulated Exponentials (according
to 3.1.1), and all models mixed.

Traffic Intensity Random traffic intensities to generate
packet loss between 0% and 3%.

Queuing Configuration

1, 2, or 3 queues per port.
Queue size: 8, 16, 32, or 64 kbits.
Policy: First In First Out, Strict
Priority, Weighted Fair Queuing,
and Deficit Round Robin.

TABLE 5.1: Simulation variables.

5.2. Evaluation 77

0 50 100 150 200
Epoch

0.0

0.1

0.2

M
S

E

Training

Validation

FIGURE 5.3: Training and evaluation losses over time.

(GRU) [74], and functions R f and Rq as 2-layer fully-connected neural net-
works with ReLU activation functions. Here, it is important to note that
the whole neural network architecture of RouteNet-E (Algorithm 2) consti-
tutes a fully differentiable function, so it is possible to train the model end
to end. Hence, all the different functions that shape its internal architecture
are jointly optimized during training based on RouteNet-E’s inputs (network
samples) and outputs (performance metrics).

We use a training dataset with 200,000 samples from the NSFNET
and GEANT topologies (100,000 samples each), including a variety of traf-
fic model descriptors (Ti), routing schemes, and queue scheduling configura-
tions – following the descriptions in Section 5.1.2. For the validation and test
datasets, we generate 2,000 samples from the GBN topology (1,000 samples
for each dataset). We train RouteNet-E for 200 epochs – with 4,000 samples
per epoch – and set the Mean Squared Error (MSE) as the loss function, using
an Adam optimizer with an initial learning rate of 0.001. Figure 5.3 shows the
evolution of the loss during training on delay estimates (for the training and
validation samples), which shows stable learning along the whole training
process.

5.2 Evaluation

In this section, we evaluate the performance of RouteNet-E in a wide range
of relevant scenarios. We seek to understand:

1. Can RouteNet-E model complex traffic models? What is the accuracy
when predicting realistic models with strong autocorrelation and heavy
tails?

78
Chapter 5. RouteNet-Erlang: Enhancing Network Modeling through

Scheduling, Traffic Models, and Generalization

2. Is RouteNet-E able to understand more complex multi-queue schedul-
ing policies? What is the accuracy compared to QT?

3. Is RouteNet-E able to generalize to unseen network configurations and
traffic loads? Also, can it generalize to larger networks?

4. How fast is RouteNet-E compared to the QT benchmark? Does it allow
for real-time operation?

5.2.1 Evaluation Methodology

To analyze the accuracy of RouteNet-E (Sec. 5.1) and benchmark it against
the state-of-the-art queuing theory model (Sec. 3.2), we use the following
methodology. In all the experiments the ground truth is obtained with a
packet-level simulator (see Sec. 5.1.2 for details). Unless noted otherwise, in
each evaluation we perform 50k experiments with a random configuration
(src-dst routing, traffic intensity, per-interface scheduling policy, and queue
length) and compute the mean average delay, jitter, and losses. Then, we
compute the error of RouteNet-E’s and QT’s estimates. For a fair compar-
ison, we use samples of the GBN topology, which is not included during
training (see Sec. 5.1.3 for training details). Finally, depending on the experi-
ment we use different traffic models (Sec. 5.1.2) and a wide range of realistic
topologies.

5.2.2 Traffic Models

This section focuses on analyzing the accuracy of RouteNet-E in a wide range
of traffic models. The experiment is organized such that we add complexity
to the traffic model by changing its first and second-order statistics (i.e., vari-
ance and autocorrelation). With this, we use challenging models that are
good approximations to those seen in Internet links.

Figure 5.4 shows the CDF of the relative error (in %) for all the traffic
models under evaluation. We plot the error for the delay and jitter estimates
of both, RouteNet-E and QT. As we can observe, RouteNet-E achieves excel-
lent results, producing very accurate estimates of delay and jitter in all traffic
models, with a worst-case error below 6% for delay and 12% for jitter (mean
absolute relative error).

5.2. Evaluation 79

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1
C

D
F

Mean Absolute Relative Error
Delay - RouteNet-E: 2.28%
Delay - QT: 17.99%

Jitter - RouteNet-E: 6.58%
Jitter - QT: 71.98%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(A) Poisson

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F

Mean Absolute Relative Error
Delay - RouteNet-E: 4.62%
Delay - QT: 22.43%

Jitter - RouteNet-E: 6.05%
Jitter - QT: 99.01%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(B) Constant bitrate

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F

Mean Absolute Relative Error
Delay - RouteNet-E: 4.27%
Delay - QT: 23.10%

Jitter - RouteNet-E: 8.58%
Jitter - QT: 69.41%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(C) On-Off

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F

Mean Absolute Relative Error
Delay - RouteNet-E: 3.24%
Delay - QT: 21.11%

Jitter - RouteNet-E: 11.95%
Jitter - QT: 74.38%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(D) Autocorrelated exponentials

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F Mean Absolute Relative Error
Delay - RouteNet-E: 6.00%
Delay - QT: 68.10%

Jitter - RouteNet-E: 8.17%
Jitter - QT: 91.41%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(E) Modulated exponentials

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F Mean Absolute Relative Error
Delay - RouteNet-E: 3.52%
Delay - QT: 35.15%

Jitter - RouteNet-E: 11.21%
Jitter - QT: 69.17%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(F) All traffic models multiplexed

FIGURE 5.4: CDF of the relative error for RouteNet-E and QT
with different traffic models. Figures a, b, and c show models
with discrete state space. Figures d and e include continuous
state space. Each figure also shows numbers of the mean abso-

lute relative error.

As expected, QT results in unacceptable performance in continuous-
state traffic models (up to 68% for delay), while it achieves moderate accu-
racy for discrete-state models. Interestingly, QT shows poor accuracy across
all the experiments estimating jitter. The reason for this is that QT assumes
independence between queues in the network. Hence, the estimator used for
jitter is the sum of the individual delay variance of queues along flow paths,
which ignores possible covariance effects between queues.

It is remarkable that RouteNet-E is also accurate even with non-
Markovian traffic models (On-Off, Figure 5.4c) and with challenging mod-
els that approximate strong autocorrelation (Autocorrelated Exponentials,

80
Chapter 5. RouteNet-Erlang: Enhancing Network Modeling through

Scheduling, Traffic Models, and Generalization

Figure 5.4d). For the latter, it has been shown in the literature that the
TCP protocol generates traffic with autocorrelation for a finite range of time-
scales [101]. In this scenario, RouteNet-E estimates the delay with a mean
error of 3.24%.

Figure 5.4e plots the accuracy for the Modulated Exponentials model,
this emulates observations found at Internet links [16] by approximating a
heavy-tail. In this scenario, RouteNet-E still produces very accurate esti-
mates. It is worth noting that this traffic model could be made even more
difficult for QT by increasing both the variance and the autocorrelation fac-
tor.

The key to RouteNet-E’s performance is that it has been trained for
such traffic models. As discussed in Section 5.1, we have parameterized
the models and trained the GNN to learn the interaction between the traf-
fic, the queues, and the resulting performance metrics. The experiments de-
picted in Figure 5.4 show that RouteNet-E can generalize to traffic, providing
good accuracy even for traffic models with parameters not seen in training.
RouteNet-E is designed to be an extensive model, adding a new traffic model
is as simple as pasteurizing it and including it in training.

To showcase this, consider the experiment shown in Figure 5.4f, where
we run 100k experiments with samples where each src-dst pair uses a ran-
dom traffic model with random parameters. Effectively, we multiplex all traffic
models in a single network topology. As the figure shows, RouteNet-E is
able to model this scenario in the presence of complex interactions of various
multiplexed traffic models.

5.2.3 Scheduling Policies

With this experiment, we aim to validate that RouteNet-E is able to model the
behavior of queues. For this, we use 100k samples of the GBN topology, each
router port is configured with three different queues and with a randomly
selected scheduling policy (FIFO, WFQ, DRR, SP). For WFQ and DRR, the set
of weights is also randomly assigned. Moreover, each src-dst path is assigned
a Quality-of-Service class that maps traffic flows to specific queues. In order
to provide a fair benchmark with QT, we use only Poisson traffic.

Table 5.2 summarizes the results, which are grouped for various traffic

5.2. Evaluation 81

Delay Jitter Loss

Low Med High Low Med High Low Med High

RouteNet-E 2.0% 2.2% 3.3% 4.8% 6.2% 10.6% 12.61% 12.7% 12.66%
QT 13.0% 17.3% 25.1% 49.0% 53.2% 59.6% 61.83% 59.3% 57.9%

TABLE 5.2: Mean Absolute Percentage Error for RouteNet-E
and the QT-Baseline for the Scheduling Policies experiment.

intensities, from low-loaded to highly-congested scenarios, where the mean
packet loss rate is around 3%. As we can observe, RouteNet-E outperforms
QT, obtaining highly accurate estimates for all the evaluated metrics.

5.2.4 Generalization to larger topologies

The previous experiments have shown that RouteNet-E achieves remarkable
accuracy in performance evaluation under different traffic models (Sec. 5.2.2)
as well as complex scheduling policies (Sec. 5.2.3). As we have discussed in
Section 3.4, ML-based network models must generalize to unseen and larger
networks to become a practical solution. In this vein, RouteNet-E was care-
fully designed to address this challenge (see Sec. 5.1.1 for details).

In this set of experiments, we evaluate RouteNet-E in a wide range of
networks considerably larger than the ones seen during training. Specifically,
the model has been trained with topologies between 25 and 50 nodes and
tested with topologies from 50 to 300 nodes. All these networks have been
artificially generated using the Power-Law Out-Degree algorithm described
in [54], where the ranges of the α and β parameters have been extrapolated
from real-world topologies of the Internet Topology Zoo repository [79]. Link
capacities and the generated traffic volume are scaled accordingly.

Figure 5.5 shows how RouteNet-E generalizes to larger topologies not
seen in training. Specifically, the boxplots show the absolute relative error
with respect to the topology size. As expected, RouteNet-E obtains better
accuracy in topologies that are closer to the ones seen during the training
phase (50 to 99 nodes), achieving an average error of 4.5% (green line). As the
topology size increases, the average error stabilizes to ≈ 10%. Note that this
value is even lower than the one obtained by the QT model, which achieves
a mean error of 12.6% in samples with Poisson traffic (Fig. 5.4a). We could
not test larger topologies (>300) in our cluster (180 nodes), as packet-level
simulations – used for the ground truth – are sequential in nature, and, with

82
Chapter 5. RouteNet-Erlang: Enhancing Network Modeling through

Scheduling, Traffic Models, and Generalization

[50,99] [100,149] [150,199] [200,249] [250,300]
Topology Size

0%

5%

10%

15%

20%

A
bs

ol
ut

e
R

el
at

iv
e

E
rr

or

FIGURE 5.5: Absolute relative error vs. topology size.

our traffic configurations, have exponential complexity with respect to the
topology size.

Generalization is an open challenge in the field of GNN. As discussed
in Sec. 5.1, we have addressed this by using domain-specific knowledge and
data augmentation. Particularly, we infer delay/jitter from queues’ occupa-
tion and apply our scale-independent method to generalize to larger topolo-
gies.

5.2.5 Inference Speed

Finally, in this section, we evaluate the inference speed of RouteNet-E. Fast
models are especially appealing for network control and management, as
they can be deployed in real-time scenarios. For this, we have measured
the execution times [Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz] of the ex-
periments in the previous section, for both QT and RouteNet-E. The results
(Figure 5.6) show that both models operate in the order of milliseconds. In
particular, RouteNet-E goes from a few milliseconds for small topologies to
a few hundred for the larger ones.

[10,30] [31,50] [51,70]
Topology Size (number of nodes)

0

100

200

T
im

e
(m

ill
is

ec
on

ds
) RouteNet-E

QT

FIGURE 5.6: Execution time vs. topology size.

5.3. Discussion and Concluding remarks 83

5.3 Discussion and Concluding remarks

In this chapter, we have presented RouteNet-E, a new tool for network mod-
eling. RouteNet-E has shown remarkable accuracy in all the scenarios, out-
performing a state-of-the-art QT model. RouteNet-E also overcomes the
main limitation of QT, and it is able to model challenging traffic models.
More importantly, the proposed model addresses the main drawback of ex-
isting ML-based models, and it is able to provide accurate estimates in larger
networks (≈10x).

RouteNet-E provides unprecedented accuracy in network perfor-
mance evaluation. However, in contrast to QT, it does not help understand
the behavior of the network being modeled. The knowledge learned by
RouteNet-E during training is not human-understandable. This is a common
issue for all ML-based models, and substantial research efforts are being de-
voted to producing explainable ML models [102]. However, this is still an
open research problem.

RouteNet-E’s performance enables network optimization, planning,
and operation in real-time scenarios. It also represents an open-source ex-
tensible model. We hope that the community will use it as a baseline to in-
corporate additional network components, such as other scheduling policies,
traffic models, etc.

85

Chapter 6

RouteNet-Fermi: Unifying
Scheduling, Traffic Models, and
Generalization in Network
Modeling

In this chapter, we introduce RouteNet-Fermi, a significant advancement be-
yond its predecessor, RouteNet-Erlang. While RouteNet-Erlang showed in-
credible capacities in supporting scheduling policies, and traffic models, and
demonstrating strong generalization to larger networks, it operated in dis-
tinct scenarios for each of these aspects. It fell short of seamlessly integrating
traffic models, scheduling policies, and generalization within the same net-
work scenario. RouteNet-F emerges as a novel GNN architecture designed
to address and overcome these limitations within a unified model.

RouteNet-F also aligns with the objectives of Queuing Theory, offering
precise performance estimates, including delay, jitter, and packet loss, for
specified network scenarios (Figure 6.1).

In the subsequent sections, we also benchmark RouteNet-F against
MimicNet [53], a state-of-the-art DL-based model, and a cutting-edge queu-
ing theory model. Our evaluation demonstrates the superior performance
of RouteNet-F across various scenarios. It achieves an impressive 5.64% er-
ror when tested on a dataset with packet traces from a real-world network,
an 11% error in a physical testbed evaluation, and a 6.24% error when es-
timating delay across a large dataset with 1,000 network samples, featuring
topologies ranging from 50 to 300 nodes.

86
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

FIGURE 6.1: Black-box representation of RouteNet-F.

Hypergraph
Generation

and
Feature

Extraction

Delay

Jitter

Losses

GNN-based Model

1) Data Generation in a
Controlled Testbed 2) Model Training 3) Model Testing

5) Simulation of Large-Scale
Production Networks

4) Model Tuning

FIGURE 6.2: End-to-end workflow of RouteNet-F. 1) Collec-
tion of small-scale observations coming from a controlled en-
vironment, 2) Model training, 3) Model testing with various
configurations (e.g., routing, scheduling) never seen during the
training phase, 4) hyper-parameter tunning to balance highly
accurate predictions with performance, 5) Simulation of large-
scale production networks. One of the main advantages of
RouteNet-F is that usually time-consuming steps like 1), 2), 3),
and 4) are all done at small scales and, therefore, are fast as well.

6.1 RouteNet-Fermi

This section describes the internal GNN architecture of RouteNet-Fermi
(hereafter referred to as RouteNet-F). This GNN-based model implements a
custom three-stage message-passing algorithm that represents key elements
for network modeling (e.g., topology, queues, traffic flows). RouteNet-F
supports a wide variety of features present in real-world networks, such as
multi-queue QoS scheduling policies or complex traffic models.

Figure 6.1 shows a black-box representation of RouteNet-F. The input
of this model is a network sample, defined by: a network topology, a rout-
ing scheme (flow level), a queuing configuration (interface level), and a set
of traffic flows characterized by some parameters. As output, the model pro-
duces estimates of relevant performance metrics at a flow-level granularity
(e.g., delay, jitter, packet loss). Figure 6.2 shows the end-to-end workflow to
train, validate, and use RouteNet-Fermi.

6.1. RouteNet-Fermi 87

6.1.1 Model Description

RouteNet-F is based on two main design principles:
(i) finding a good representation of the network components supported
by the model (e.g., traffic models, routing, queue scheduling), and (ii) exploit
scale-independent features of networks to accurately scale to larger networks
unseen during training. These two aspects are further discussed in the next
two subsections.

6.1.2 Representing network components and their relation-

ships

First, let us define a network as a set of source-destination flows F = { fi :
i ∈ (1, ..., n f)}, a set of queues on Q= {qj : j ∈ (1, ..., nq)}, and a set of links
L = {lk : k∈ (1, ..., nl)}. According to the routing configuration, flows follow
a source-destination path. Hence, we define flows as sequences of tuples
with the queues and links they traverse fi ={(qi,1, li,1), ..., (qi,M, li,M)}, where
M is the path length of the flow (number of links). Let us also define Q f (qj)

and L f (lk) as functions that respectively return all the flows passing through
a queue qj or a link lk. Also, Lq(lk) is defined as a function that returns the
queues qlk ∈ Q injecting traffic into link lk (i.e., the queues at the output port
to which the link is connected).

Following the previous notation, RouteNet-F considers an input graph
with three main components: (i) the physical links L that shape the network
topology, (ii) the queues Q at each output port of network devices, and (iii)
the active flows F in the network, which follow some specific src-dst path
(i.e., sequences of queues and links). Traffic in flows is generated from a
given traffic model. From this, we can extract three basic principles:

1. The state of flows (e.g., delay, throughput, packet loss) is affected by the
state of the queues and links they traverse (e.g., queue/link utilization).

2. The state of queues (e.g., occupation) depends on the state of the flows
passing through them (e.g., traffic volume, burstiness).

88
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

FIGURE 6.3: Schematic representation of RouteNet-F.

3. The state of links (e.g., utilization) depends on the states of the queues
that can potentially inject traffic into the link, and the queue schedul-
ing policy applied over these queues (e.g., Strict Priority, Weighted Fair
Queuing).

Formally, these principles can be formulated as follows:

h fi =G f (hqi,1 , hli,1 , ..., hqi,M , hli,M) (6.1)

hqj = Gq(h f1 , ..., h f I), fi ∈ Q f (qj) (6.2)

hlk = Gl(hq1 , ..., hqJ), qj ∈ Lq(lj) (6.3)

Where G f , Gq, and Gl are some unknown functions, and h f , hq and
hl are latent variables that encode information about the state of flows F ,
queues Q, and links L respectively. Note that these principles define a circu-
lar dependency between the three network components (F , Q, and L) that
must be solved to find latent representations satisfying the equations above.

To solve the circular dependencies defined in Equations (6.1)-(6.3),
RouteNet-F implements a three-stage message passing algorithm that com-
bines the states of flows F , queues Q, and links L, and updates them itera-
tively. Finally, it combines these states to estimate flow-level delays, jitters,
and packet loss. Figure 6.3 shows a schematic representation of the internal
three-stage message-passing architecture of this model.

Algorithm 3 describes the architecture of RouteNet-F. First, hidden

6.1. RouteNet-Fermi 89

states h f , hq, and hl are initialized using the functions HS f , HSq, and HSl

respectively (lines 1-3). These functions encode the initial features x f , xq, and
xl into fixed-size vectors that represent feature embeddings. The initial fea-
tures of flows x f are defined as an n-element vector that characterizes the
flow’s traffic. For example, in our case, this vector includes the average traf-
fic volume transmitted in the flow λ, and some specific parameters of the
traffic model, such as ton and to f f for On-Off traffic distributions or α and
β for exponential models. We set the initial features of links xl as (i) the
link load xlload

, and (ii) the scheduling policy at the output port of the link
(FIFO, Strict Priority, Weighted Fair Queuing, or Deficit Round Robin). For
the scheduling policy, we use a one-hot encoding. The calculation of the link
load xlload

is defined in more detail later (Sec. 6.1.3). Lastly, the initial features
of queues xq include: (i) the buffer size, (ii) the queue order/priority level
(one-hot encoding), and (iii) the weight (only for Weighted Fair Queuing or
Deficit Round Robin configurations).

Once all the hidden states are initialized, the message-passing phase
starts. This phase is executed for T iterations (loop from line 4), where T
is a configurable parameter of the model. Each message passing iteration
is divided into three stages, which represent respectively the message ex-
changes and updates of the hidden states of flows h f (lines 5-10), queues hq

(lines 11-14), and links hl (lines 15-19).

Finally, the loop from line 20 computes the different flow-level per-
formance metrics. Here, function R fd

(line 24) and R f j (line 28) represent a
readout function that is individually applied to the hidden states of flows as
they pass through a specific link (h f ,l). The output of these functions is the
average queue occupancy and the delay variation (i.e., jitter) seen by the flow
at that link. Note that different flows may experience different queue occu-
pancies and jitter depending on their traffic properties (e.g., traffic volume,
burstiness). Lastly, these link-level delay and jitter estimates are combined to
compute the final flow-level delay ŷ fd

and jitter ŷ f j . This calculation is fur-
ther described in Section 6.1.3. Similarly, R fl

(line 29) is applied to the hidden
states of flows h f to compute the per-flow packet loss rate.

90
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

Algorithm 3 Internal architecture of RouteNet-F.

Input: F , Q, L, x f , xq, xl
Output: ŷ fd

1: for each f ∈ F do h0
f ← HS f (x f)

2: for each q ∈ Q do h0
q ← HSq(xq)

3: for each l ∈ L do h0
l ← HSl(xl)

4: for t = 0 to T-1 do ▷ Message Passing Phase
5: for each f ∈ F do ▷ Message Passing on Flows
6: Θ([·, ·])← FRNN(ht

f , [·, ·]) ▷ FRNN Initialization
7: for each (q, l) ∈ f do
8: ht

f ,l ← Θ([ht
q, ht

l]) ▷ Flow: Aggr. and Update

9: m̃t+1
f ,q ← ht

f ,l ▷ Flow: Message Generation

10: ht+1
f ← ht

f ,l

11: for each q ∈ Q do ▷ Message Passing on Queues
12: Mt+1

q ← ∑ f∈Q f (q) m̃t+1
f ,q ▷ Queue: Aggregation

13: ht+1
q ← Uq(ht

q, Mt+1
q) ▷ Queue: Update

14: m̃t+1
q ← ht+1

q ▷ Queue: Message Generation

15: for each l ∈ L do ▷ Message Passing on Links
16: Ψ(·)← LRNN(ht

l , ·) ▷ LRNN Initialization
17: for each q ∈ Lq(l) do
18: ht

l ← Ψ(m̃t+1
q) ▷ Link: Aggr. and Update

19: ht+1
l ← ht

l

20: for each f ∈ F do ▷ Flow: Readout
21: ŷ fd

= 0 ▷ Initializing the flow delay
22: ŷ f j

= 0 ▷ Initializing the flow jitter
23: for each (q, l) ∈ f do
24: d̂q = R fd

(hT
f ,l)/xlc ▷ Queuing delay

25: d̂t = x fps /xlc ▷ Transmission delay
26: d̂link = d̂q + d̂t

27: ŷ fd
= ŷ fd

+ d̂link ▷ Sum of link delays along the flow
28: ŷ f j

= ŷ f j
+ R f j

(hT
f ,l)/xlc ▷ Sum of link jitters along the flow

29: ŷ fl
= R fl

(hT
f) ▷ Packet loss prediction

6.1.3 Scaling to larger networks: scale-independent features

Data-driven models typically need to see edge cases that are uncommon in
real-world production networks (e.g., link failures). This means that collect-
ing data directly from production networks requires testing configurations
that might break the correct operation of the network. As a result, data-
driven network models should be typically trained with data from controlled
network testbeds. However, network testbeds are usually much smaller than
real networks. In this context, it is essential for our model to effectively scale

6.1. RouteNet-Fermi 91

to larger networks than those seen during the training phase.

It is well-known that GNN models have an unprecedented capability
to generalize over graph-structured data [35, 30]. In the context of scaling
to larger graphs, it is also known that GNNs keep good generalization capa-
bilities as long as the spectral properties of graphs are similar to those seen
during training [97]. In our particular case, the internal message passing ar-
chitecture of RouteNet-F generalizes accurately to graphs with similar struc-
tures (e.g., a similar number of queues at output ports, or a similar number of
flows aggregated in queues). In practice, this means that RouteNet-F should
be able to generalize to larger topologies when trained with smaller ones, as
long as the networks used for training had the same spectral properties as
the larger ones. More details about this can be found in Section 6.2, which
presents an empirical evaluation of RouteNet-F’s generalization capabilities).

However, scaling to larger networks often entails other aspects be-
yond the topology size. Two key elements require special attention: link
capacities and the range of output variables. First, larger networks naturally
have larger link capacities. This in turn results in larger traffic aggregates on
core links of the network. Such traffic intensities may fall in ranges not seen
in smaller topologies. Second, as the network scales, it inherently has longer
end-to-end paths, which result in increased end-to-end path delays. Again,
some of these delays may fall outside the range of delays used when train-
ing with smaller topologies. These out-of-range parameters require devising
mechanisms to effectively scale on them.

Scaling to larger link capacities

In RouteNet-F (Algorithm 3), the most straightforward way to represent the
link capacity xlc would be as an initial feature of the links’ hidden states
xl. However, the fact that xlc would be encoded as a numerical input value
would then introduce inherent limitations to scale to larger capacity values.
Indeed, scaling to out-of-distribution numerical values is recognized as a
generalized limiting factor among all neural network models [98, 99].

Our approach is to exploit particularities from the network domain to
find scale-independent representations for link capacities. These representa-
tions define link capacities and how they relate to other link-level features

92
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

that impact performance (e.g., the aggregated traffic in the link), so they can
be used to accurately estimate performance metrics (e.g., delay, jitter, packet
loss). Inspired by traditional QT methods, we aim to encode in RouteNet-F
the relative ratio between the arrival rates on links (based on the traffic ag-
gregated in the link) and the service times (based on the link capacity). This
enables the possibility to infer the output performance metrics of our model
from scale-independent values. As a result, instead of directly using the nu-
merical link capacity values, we introduce the link load xlload

in the initial fea-
ture vector of links xl. Particularly, we compute the link load as follows:

xlload
=

1
xlc

∑
f∈L f (lj)

λ f (6.4)

Where λ f is the average traffic volume of the flows that traverse the
link lj, and xlc is the link capacity. In other words, we compute the link load
as the summation of all the traffic that would traverse the link without con-
sidering possible losses and divide it by the link capacity. Then, through the
iterative message-passing process, the GNN model updates the load values
after estimating the packet loss.

Different output ranges

The previous mechanism enables us to keep scale-independent features
along with the message-passing phase of our model (loop lines 4-19 in
Alg. 3), while it is still needed to extend the scale independence to the out-
put layer of the model. Note that in larger networks, delay values can vary
with respect to those seen during the training in smaller networks. This is
because flows can go through links with higher capacities, or because flows
can potentially traverse longer paths. This again poses the challenge of gen-
eralizing to ranges of delays not seen in the training phase. Equivalently, this
also applies to the prediction of flow jitter and packet loss.

To overcome this potential limitation, RouteNet-F infers delays indi-
rectly from the mean queue occupancy on forwarding devices. Based on
traditional QT models, RouteNet-F infers the flow delay as a linear combi-
nation of the estimated queuing delays (line 24) and the transmission delays
after crossing a link (line 25). Note that a potential advantage with respect

6.1. RouteNet-Fermi 93

to traditional QT models is that the queue occupancy estimates produced by
RouteNet-F can be more accurate, especially for autocorrelated and heavy-
tail traffic models.

We call the values produced by the R fd
function the effective queue occu-

pancy, which is defined as the mean queue occupancy experienced by a given
flow fi as it passes through a specific forwarding device. More precisely, this
value is the average number of bits that have to be served on a specific out-
put port before the packets of flow fi are transmitted. As an example, let us
consider the case of packets from a flow with low priority, which are mapped
to low-priority queues. If forwarding devices implement a multi-queue Strict
Priority scheduling policy, the effective queue occupancy seen by those low-
priority packets should include all the bits to be served in the queues with
higher priority.

The prediction of this effective queue occupancy — instead of directly
predicting delays — helps overcome the practical limitation of producing
out-of-range delay values with the readout function R fd

. In this case, the
values produced by R fd

are bounded between 0 and the maximum buffer
size at the output ports of forwarding devices. Note that the buffer size is a
device-specific feature that is independent of the network size.

Lastly, RouteNet-F produces flow-level delay predictions ŷ fd
by com-

bining the estimated queuing and transmission delays. The queuing delay d̂q

is indirectly estimated by using the effective queue occupancies (in bits) on
queues for a particular flow. Particularly, queue occupancy values are esti-
mated by the readout function R fd

(hT
f ,l). Then, they are divided by the ca-

pacity of the link connected to the output port xlc to eventually produce a
queuing delay estimate d̂q. Likewise, the transmission delay d̂t is computed
by dividing the mean flow packet size x fps by the link capacity xlc . With this,
RouteNet-F estimates the delay of a flow after passing through a specific for-
warding device and a link (d̂link):

d̂q =
R fd

(hT
f ,l)

xlc
(6.5)

d̂t =
x fps

xlc
(6.6)

d̂link = d̂q + d̂t (6.7)

94
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

Hence, we can compute end-to-end flow delays as the sum of all the
link delays d̂link along the flow (loop lines 20-27 in Algorithm 3). Note that the
function responsible for computing the effective queue occupancy, R fd

(hT
f ,l)

takes as input the hidden state of the flow at a specific link hT
f ,l, instead of

directly considering queue states hT
q . This is because each flow can experi-

ence a different queuing behavior depending on its properties (e.g., traffic
burstiness).

Likewise, jitter estimates ŷ f j are produced by combining the jitter pre-
dictions of all links along the flow. These predictions are made by the R f j

function, which takes as input the hidden state of the flow at a specific link
hT

f ,l. Note that we define the jitter as the relative fluctuation with respect to
the mean delay, that is, the ratio between the delay variance divided by the
flow mean delay.

In the case of packet loss, RouteNet-F makes predictions directly on
flows’ hidden states hT

f . We define the packet loss as the relative ratio of
packets dropped with respect to the packets transmitted by the source; hence
it is a bounded value ŷ fl

∈ [0, 1]. We estimate it with the R fl
function (line 29

in Algorithm 3).

6.1.4 Training and Implementation

We implement RouteNet-Fermi in TensorFlow and it is publicly available
at [103].

As in any other ML model, fine-tuning the hyperparameters of
RouteNet-F is crucial for achieving optimal performance and accuracy. Two
key parameters to consider are the hidden state vectors (h f , hq, hl) and the
number of message passing iterations (T). The size of the hidden state vec-
tors determines how much information the model can encode, with larger
sizes allowing for more information but also harming performance. Sim-
ilarly, a larger number of message-passing iterations can help the model
reach a higher level of convergence, but at the cost of increased computa-
tion. Through grid search experiments, we selected a set of hyperparameters
that provide good accuracy while also being efficient. Specifically, we set the
size of all the hidden state vectors to 32 elements and T to 8 message-passing
iterations.

6.2. Evaluation 95

We implement the functions FRNN (Flow-Level RNN), LRNN (Link-
Level RNN), and Uq (Queue Update Function) as Gated Recurrent Units
(GRU). Functions HS f , HSq, and HSl are implemented as 2-layer fully-
connected neural networks with ReLU activation functions with 32 units
each. Similarly, functions R fd

, R f j , and R fl
are implemented as a 3-layer

fully-connected neural networks with ReLU activation function for the hid-
den layers, and a linear one for the output layer (except for R fl

that uses a
Sigmoid activation function). Note that, the whole architecture of RouteNet-
F (Algorithm 3) constitutes a fully-differentiable function. This means that it
can be trained end-to-end using as input the network samples and as output
the different flow-level performance metrics (e.g., delay, jitter, packet loss) as
illustrated in the black box diagram of Figure 6.1.

For each set of experiments, we train RouteNet-F during 150 epochs
of 2,000 samples each. We set as loss function the Mean Absolute Percentage
Error for the delay experiments, the Mean Squared Error for jitter, and the
Mean Absolute Error for the packet loss. In all the cases, we use an Adam
optimizer with an initial learning rate of 0.001.

6.2 Evaluation

In this section, we evaluate the performance of RouteNet-F in a wide range
of relevant scenarios. First, we evaluate RouteNet-F in a variety of scenar-
ios with complex traffic models and scheduling policies and compare it to
the state-of-the-art Queuing Theory (QT) benchmark from Section 3.2. In it,
the network is modeled as a M/M/1/b system where each queue along a
path is treated independently. Note that the baseline, like the majority of QT
models, assumes that arrivals to each queue are approximated by a Poisson
process and that service times are exponentially distributed. Under these as-
sumptions, the model derives analytical results for queue throughput, delay
distributions, and blocking probabilities. A public implementation of the QT
model can be found at [104].

Then, we evaluate RouteNet-F’s generalization capabilities when eval-
uated in topologies x30 times larger than the ones seen during training and
compare its inference times. Finally, we benchmark RouteNet-F in real-world
scenarios with data from a real testbed, with traffic coming from real-world

96
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

networks, and compare its performance with MimicNet [53] a state-of-the-art
DL-based model.

6.2.1 Performance Analysis

Methodology

In all the experiments (except for subsection 6.2.3 that comes from a real
testbed), the ground truth is obtained using a packet-level simulator (Sec-
tion 6.2.1). Unless specified, in each evaluation we perform 50k experiments
with a random configuration (src-dst routing, traffic intensity, per-interface
scheduling policy, queue size, and traffic model), and compute the mean av-
erage delay, jitter, and packet loss. Then we compute the error of RouteNet-
F’s and QT’s estimates with respect to the results of the packet simulator. For
a fair comparison, the evaluation samples have not been used in the training
phase of RouteNet-F.

Dataset

We generate our dataset by simulating a wide range of network scenarios
with the OMNet++ network simulator, v5.5.1 [8]. An image of the simulator
is publicly available and can be found at [105]. Each dataset sample cor-
responds to a single simulation, and we record the mean delay, jitter, and
packet loss for all the flows in the network, as well as queue-level statis-
tics(e.g., mean occupancy, average packet loss, or average packet size). We
select the different scenarios to simulate by randomly sampling from the pos-
sible values of all the input variables (Table 5.1). The traffic models autocorre-
lated exponentials and modulated exponentials reproduce realistic Internet traf-
fic [12, 106]. We define the traffic intensity (TI) as a tunable parameter that
defines the overall traffic load in the network scenario. TI represents how
congested is the network. In our dataset, it ranges from 400 to 2000 bits per
time unit, with 400 being the lowest congested network (0% avg. packet loss)
and 2000 a highly congested network (≈3% avg. packet loss).

6.2. Evaluation 97

Traffic Models

This section analyzes the accuracy of RouteNet-F in a wide range of traffic
models. The experiment is organized such that, for each traffic model, we
add a degree of complexity by changing its first and second-order statistics
(i.e., variance and autocorrelation). We start with simple traffic models such
as Poisson or Constant Bitrate and end by testing more complex models that
are better approximations of traffic seen in Internet links.

QT RouteNet-F

MAPE MSE MAE R2 MAPE MSE MAE R2

Poisson 12.6% 0.001 0.017 0.998 2.1% 0.001 0.017 0.999
Deterministic 22.4% 0.715 0.321 0.611 4.43% 0.029 0.048 0.984

On-Off 23.1% 0.784 0.363 0.613 2.90% 0.009 0.035 0.995
A. Exponentials 21.1% 0.686 0.316 0.618 2.62% 0.010 0.030 0.994
M. Exponentials 68.1% 1.10 0.798 0.145 5.21% 0.013 0.061 0.989

Mixed 35.1% 0.721 0.430 0.560 4.71% 0.018 0.054 0.988

TABLE 6.1: Delay prediction using the QT baseline and
RouteNet-F for different traffic models. The error is computed

w.r.t. simulation results.

QT RouteNet-F

MAPE MSE MAE R2 MAPE MSE MAE R2

Poisson 71.9% 0.013 0.072 0.849 6.26% 0.001 0.013 0.980
Deterministic 99.0% 0.057 0.067 -1.86 7.17% 0.001 0.008 0.924

On-Off 69.4% 0.057 0.098 0.425 8.50% 0.004 0.018 0.959
A. Exponentials 74.3% 0.025 0.067 0.246 6.29% 0.001 0.008 0.973
M. Exponentials 91.4% 1.34 0.834 -0.622 10.3% 0.036 0.091 0.956

Mixed 69.1% 0.299 0.296 0.025 9.82% 0.007 0.034 0.974

TABLE 6.2: Jitter prediction using the QT baseline and
RouteNet-F for different traffic models. The error is computed

w.r.t. simulation results.

Poisson Const. Bitrate On-Off A. Exponentials M. Exponentials Multiplexed

MAE R2 MAE R2 MAE R2 MAE R2 MAE R2 MAE R2

QT 1.0% 0.97 11% 0.64 9.5% 0.63 10% 0.65 9.5% 0.08 4.6% 0.50
RouteNet-F 0.3% 0.99 1.0% 0.99 1.0% 0.99 1.2% 0.99 1.1% 0.98 0.50% 0.99

TABLE 6.3: Packet Loss evaluation - Mean Absolute Error and
Coefficient of Determination (R2) of QT and RouteNet-F for the

different traffic models.

98
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

Tables 6.1 and 6.2 show the errors of the delay and jitter for both,
RouteNet-F and QT, with respect to the values obtained using the simula-
tor. We can see that RouteNet-F achieves excellent accuracy results, produc-
ing very accurate estimates of delay and jitter in all traffic models: the worst
cases are 5.21% and 10.40% for delay and jitter, respectively.

As expected, the estimates of the QT model are unacceptable in
continuous-state traffic models, e.g. almost 70% for modulated exponentials.
On the other hand, it achieves moderate accuracy for discrete-state models
(Poisson, Deterministic, and On-Off). It is also noticeable how the QT model
shows poor accuracy across all the jitter estimations. The main reason for this
is that QT assumes independence between queues in the network. Hence, the
estimator used to compute the jitter is the sum of the individual delay vari-
ance of queues along the flow’s paths.

For non-Markovian traffic models (e.g., On-Off), RouteNet-F produces
accurate estimates, as well as for more challenging models that implement
strong autocorrelation (Autocorrelated Exponentials) and heavy-tail distri-
butions (Modulated Exponentials). These models are important since they
approximate real traffic generated by TCP [101], similar to that found at In-
ternet links [16]. Also, notice that this traffic model could be made even more
difficult for QT by increasing both the variance and the autocorrelation factor.

We add a final scenario (Mixed) where each src-dst pair generates traf-
fic by randomly selecting one of the five available traffic models, and using
random parameters for these models. In other words, we multiplex all traffic
models in a single network topology. As the table shows, RouteNet-F shows
good accuracy not only when modeling individual traffic models, but also
when they are mixed across links in the network. It is worth noting that al-
though RouteNet-F shows excellent accuracy for arbitrary parameterizations
of these 6 traffic models, it cannot generalize to new traffic models not intro-
duced during the training phase.

Finally, Table 6.3 shows the different metrics for the packet loss ratio.
Since there are some paths where the packet loss ratio is zero, we provide the
Mean Absolute Error and the Coefficient of Determination (R2). The packet
loss ratio is measured as the percentage of packets dropped w.r.t. packets
sent, that is why the MAE is expressed in % units. In this particular case, it is
noticeable how the QT baseline works well in the scenario with the Poisson
traffic model. However, the accuracy decreases remarkably in more complex

6.2. Evaluation 99

scenarios. On the other hand, RouteNet-F obtains a high accuracy with a
worst-case MAE of 1.2% and R2≥0.98.

Scheduling

This section aims to validate if RouteNet-F is capable of modeling the be-
havior of queues in the presence of several scheduling policies. For this
purpose, we train the model using samples with mixed queue scheduling
policies across nodes in the GEANT and NSFNET topologies. Then, we eval-
uate the model on samples of the GBN topology (unseen during training).
In this experiment, each router port implements three different queues with
a randomly selected scheduling policy for the queues: (i) First In, First Out
(FIFO), (ii) Weighted Fair Queueing (WFQ), (iii) Deficit Round Robin (DRR),
and (iv) Strict Priority (SP). For WFQ and DRR, the set of weights is also
randomly selected. Furthermore, each flow has been assigned a Quality-of-
Service class that maps it to a specific queue depending on the flow priority.
To provide a fair benchmark with QT, in this experiment we use only Poisson
traffic.

Delay Jitter

Low Medium High Low Medium High

QT 13.0% 17.3% 25.1% 49.0% 53.2% 59.6%
RouteNet-F 0.80% 2.60% 7.31% 3.95% 5.77% 14.8%

TABLE 6.4: Delay and jitter evaluation - Mean Absolute Per-
centage Error of QT and RouteNet-F in the presence of Schedul-

ing Policies for low, medium, and high traffic intensity.

Table 6.4 shows the Mean Average Percentage Error (MAPE) of the de-
lay and jitter for three different traffic intensities: from low-loaded to highly-
congested scenarios. According to [78] the average packet loss on the Internet
is around 2%-3%. Based on this, in the highly-congested scenarios, the mean
packet loss rate is around 3% which we believe represents a wide range of
realistic network scenarios. We can see that RouteNet-F outperforms the QT
benchmark in both metrics (delay and jitter), obtaining a MAPE of 3.57% for
delay and 8.17% for jitter after averaging the results over the three traffic in-
tensities.

100
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

50 75 100 130 170 200 240 260 280 300
Topology Size (Number of nodes)

0%

5%

10%

|y
−
ŷ
|/y
×

10
0

FIGURE 6.4: Scaling with mixed traffic models and schedul-
ing policies - Mean Absolute Relative Error of delay predictions
vs. topology size, including different traffic models and queue
scheduling configurations. The model was trained on a dataset

with 10,000 samples from networks of 5 to 10 nodes.

Similarly, Table 6.5 presents the results for packet loss. Again,
RouteNet-F outperforms the QT benchmark showing an MAE of 0.7% and
an average R2 close to 0.99.

Low Medium High

MAE R2 MAE R2 MAE R2

QT 4.55% -0.05 9.22% 0.00 10.6% 0.29
RouteNet-F 0.2% 0.97 0.10% 0.99 0.40% 0.99

TABLE 6.5: Packet loss evaluation - Mean Absolute Error and
Coefficient of Determination (R2) of QT and RouteNet-F in the
presence of Scheduling Policies for low, medium, and high traf-

fic intensity.

6.2.2 Generalization and Scalability

Generalization to larger networks

The previous experiments show that RouteNet-F achieves remarkable ac-
curacy when tested in scenarios with different traffic models (Section 6.2.1)
and different scheduling policies (Section 6.2.1) with topologies never seen in
training. As previously discussed in Section 3.4, data-driven network models
must generalize to larger networks than those seen during training to become
a practical solution.

6.2. Evaluation 101

In this section, we evaluate RouteNet-F in a wide variety of networks
significantly larger than the ones seen during the training phase. We gener-
ate a training set with 10,000 samples from networks of only 5 to 10 nodes.
Following the process described in Sections 6.1.1 and 6.2.1, for each flow,
we randomly assign a traffic model, and for each router port, we assign
an arbitrary queue scheduling configuration. We evaluate the accuracy of
RouteNet-F in topologies from 50 to 300 nodes, configuring the traffic models
and the scheduling policies accordingly to the descriptions of Sections 6.1.1
and 6.2.1. In contrast to previous experiments, all these networks have
been synthetically generated using the Power-Law Out-Degree algorithm de-
scribed in [54], where the ranges of α and β parameters have been extrapo-
lated from real-world topologies of the Internet Topology Zoo repository [79].
Link capacities and generated traffic volumes are scaled accordingly.

Figure 6.4 shows the MAPE of the delay predictions made by
RouteNet-F. We can observe that the proposed model obtains a worst-case
error of ≈8% for samples of networks with 300 nodes. This shows how
RouteNet-F is capable of generalizing to networks 30x larger than those seen
during training, even when introducing various traffic models and queue
scheduling policies along the network. This is due to the capability of this
model to effectively learn the underlying relationships between flows, links,
and queues in the scenarios seen during training, and the posterior ability to
exploit this learned knowledge in new scenarios not seen before.

Note that in this and the previous section, we have not tested any other
baseline (e.g. RNN, QT) since they already fail in other relevant scenarios.

Despite generalization is an open challenge in the field of Deep Learn-
ing (as previously discussed in Section 3.4) by using a custom GNN-based
architecture and domain expert knowledge, RouteNet-F shows strong capa-
bilities to generalize to considerably larger networks than the ones seen dur-
ing training.

Few-shot Learning

The performance of DL models is often determined by the quantity and qual-
ity of the training data used. Here, it is important to consider that the pro-
cess of collecting and labeling large amounts of data can be very costly and,

102
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

25 50 100 1000 10000
Number of Training Samples

10%

100%

1000%

M
ea

n
A

bs
ol

ut
e

P
er

ce
nt

ag
e

E
rr

or
RouteNet-F

RouteNet-F-occupancy

RouteNet-F-load

RouteNet-E

FIGURE 6.5: Delay evaluation - Mean Absolute Percentage Er-
ror vs Number of Training Samples for the different versions of

RouteNet-F and RouteNet-E.

sometimes, infeasible. In the field of computer networks, such data collec-
tion implies generating and storing data from costly network infrastructures.
This can be generally a very expensive and time-consuming process. An al-
ternative is the use of packet-level simulators, which are also very expensive
in terms of computational cost. In this section, we evaluate the accuracy of
RouteNet-F when trained with a very limited number of samples (i.e., few-
shot learning). This may be very helpful to dramatically reduce the cost
of generating the datasets and reduce the carbon footprint of training the
model.

To do so, we train the model by randomly selecting 25, 50, 100, 1,000,
2,000, 5,000, and 10,000 samples from the previous training dataset (Sec-
tion 6.2.2). Note that the topologies used for training range from 5 to 10
nodes, while the evaluation is done over samples of networks from 50 to
300 nodes. Figure 6.5 shows the MAPE with respect to the number of train-
ing samples used (see only results of RouteNet-F). Interestingly, when trained
with only 25 samples, the model shows an average error of 11%. As the
number of samples increases, RouteNet-F obtains slightly better accuracy,
achieving an error of 6.24% when trained with 10,000 samples.

Ablation test

We aim to analyze which features of RouteNet-F have more impact on its
accuracy. For this purpose, we perform an ablation test, by considering

6.2. Evaluation 103

four models where we remove different features. The first one (labeled as
RouteNet-F) is the complete model used in the previous experiments, as it
is previously described in Section 6.1. Second, in RouteNet-F-occupancy we
remove the link load as an input feature (see Sec. 6.1.3), and replace it di-
rectly with the link capacity value as an initial feature of links xl. Third,
RouteNet-F-load predicts the flow-level delay using directly the hidden state
of flows (h f), instead of predicting the effective queue occupancy of flows at
a specific link (h f ,l) and then adding up all the estimated link-level delays
(see Sec. 6.1.3). Finally, we use RouteNet-E [106] as a reference, which is the
previous version of RouteNet-F, without any of the aforementioned features.
Figure 6.5 shows the results obtained in this experiment. We can see that
predicting the delay as the sum of link-level delays along flows (RouteNet-
F-occupancy) seems to have the largest impact on the accuracy of the model,
achieving an error of 17.63%. In addition, the results suggest that using the
link load as input instead of the capacity (RouteNet-F-load) does not have a
significant impact on the model’s accuracy. However, when we combine this
feature with the one of RouteNet-F-occupancy we see a slight improvement.
Particularly, in RouteNet-F, which implements the two features, we can see
that the prediction error decreases to 6.24%.

In this experiment, it is observed that the previous version of the
model (RouteNet-E) exhibits poor accuracy. This is likely because RouteNet-E
was not designed to support scalability levels of 30x larger networks. Ad-
ditionally, RouteNet-E assumes uniform delays for all flows traversing the
same queue and link. In contrast, RouteNet-F takes into consideration that
flows may experience different delays when traversing the same queue and
link, depending on their traffic model (e.g., traffic burstiness).

Scalability: Training and Inference time

Models that are capable of producing fast estimations are particularly inter-
esting for network control and management applications, as they can be de-
ployed in real-time scenarios. In this section, we evaluate the inference time
of both RouteNet-F and the QT baseline. To this end, we measure the infer-
ence times of the experiments of the general evaluation (Sec. 6.2.2). Table 6.6
shows that both models operate in the order of milliseconds for topologies
lower than 110 nodes. Particularly, QT performs better for smaller topologies

104
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

Topology Size

10 30 50 70 90 110

RouteNet-F 48.03 ms 76.25 ms 110.5 ms 285.6 ms 455.3 ms 613.3 ms
QT 28.01 ms 49.19 ms 131.68 ms 326.5 ms 662.15 ms 962.5ms

TABLE 6.6: Inference time vs. topology size for RouteNet-F and
the QT baseline.

(<50 nodes). However, as the size of the topology increases, RouteNet-F is
faster.

Finally, note that one difference between analytical models (e.g., QT)
and DL-based models (e.g., RouteNet-F) is that the last need a training pro-
cess that may be taken into consideration when comparing these times. These
training times depend greatly on various factors like the size of the training
dataset, the hyperparameters, the used hardware, etc. In our particular case,
the model that obtained the higher accuracy was trained during 20 epochs of
2,500 samples each, lasting for about 2h30min.

In this experiment, we used one CPU [AMD Ryzen 9 3950X @ 3.5
GHz]. However, an advantage of DL-based models is that they can be easily
parallelizable using hardware-specific solutions (e.g., GPU), thus reducing
considerably their execution times in production.

6.2.3 Benchmarking of RouteNet-F

Testbed

In previous sections, we examined how RouteNet-F can be applied in differ-
ent network scenarios. This section evaluates its performance in a real-world
scenario using real-world hardware and synthetic traffic. For this, we set up
a physical network testbed, as shown in Figure 6.6. This testbed includes (i) 8
Huawei NetEngine 8000 M1A routers, (ii) 2 Huawei S5732-H48UM 2CC 5G
Bundle switches, and (iii) 4 servers. Two of the servers are used to gener-
ate traffic using the TRex traffic generator, and the other two are used for
capturing and analyzing traffic with the PF_RING software.

To train and test the model, we generated 1,000 samples with realis-
tic network topologies (with a maximum of 8 nodes) and different routing,

6.2. Evaluation 105

1
0
G
b
p
s

40Gbps

6x
1G
bp
s

Sp
lit
te
r

6x
1G
bp
s

6x1Gbps

6x1Gbps

FIGURE 6.6: Schematic representation of the network testbed.

queueing, and traffic configurations. Out of these 1,000 samples, we ran-
domly selected 800 samples for training the model and used the remaining
200 samples for testing. Note that, the algorithm 2 described in Section 6.1.1
has been slightly modified to add the state of the queues of the switches
found in the topology. This only affects the initialization process, and not
the message-passing architecture itself.

Table 6.7 shows the results of RouteNet-F. As can be seen, RouteNet-
F obtains a remarkable performance (11% MAPE) which is in line with the
previous results when compared with simulated data.

Real Traffic

In our previous experiments, we tested RouteNet-F using synthetic-
simulated traffic. Now, we want to see how well this model performs when
applied to actual traffic data.

For this, we used real-world traffic data from the SNDlib library [82]
and combined it with packet inter-arrival times from a recent snapshot of the
MAWI repository (Sample point 2022/09) [83]. We then scale the inter-arrival
times to match the values in the traffic data. Additionally, we used a distribu-
tion of source-destination flows from a real internet service provider [84] to

106
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

map flows to different ToS classes. Our dataset includes 4 real-world net-
work topologies, including one previously used (GEANT) and three new
topologies that the model has never seen before (ABILENE, NOBEL-GBN,
and GERMANY50). For this experiment, we leveraged the knowledge ob-
tained from previous versions and used a previous checkpoint, fine-tuning it
using 200 samples of the GEANT topology.

Table 6.7 shows the results of RouteNet-F. We can see that RouteNet-F
achieves a remarkable performance (5.67% MAPE) when tested using real-
world traffic data. Again, these results are close to the simulator and testbed
ones.

MAPE MSE MAE R2

Testbed 11.0% 6.12x10-5 0.0007 0.869
Real Traffic 5.67% 1.66x10-5 0.0003 0.877

TABLE 6.7: Delay prediction using RouteNet-F for the testbed
and the real traffic traces experiments.

State-of-the-Art

This section aims to compare the accuracy of RouteNet-F against Mimic-
Net [53]. MimicNet is a DL-based model which combines discrete event sim-
ulators with Deep Neural Networks (DNN). MimicNet takes advantage of
the accuracy of discrete packet-event simulators to generate data of a small
network which then is used to train an RNN-based estimator known as a
"mimic". Finally, MimicNet composes several of those mimics to perform
predictions of much bigger larger networks. This makes MimicNet an alter-
native to a discrete packet-event simulator as it reduces the cost of simulation
for large networks, providing an accurate estimation of the per-packet level
distributions. However, as stated in the MimicNet paper, the main limitation
of this strategy is that it only works for FatTree topologies.

Following the parameters and the specifications described in [107] we
generate a dataset containing three different topologies (FatTree16, FatTree64,
and FatTree128) and compute the average RTT.

6.3. Discussion and Concluding Remarks 107

Table 6.8 shows the results for both RouteNet-F and MimicNet. For
RouteNet-F we show the same metrics as before and the Normalized Wasser-
stein Distance (W1). Contrary to RouteNet, MimicNet does not directly com-
pare the average RTT of the packets aggregated per path. Instead, it com-
putes the distance of both distributions (the predicted and the real one).

Note that in this scenario, RouteNet-F achieves an outstanding accu-
racy not only when compared with MimicNet, but also when compared with
a state-of-the-art QT model (Table 6.1). This is mainly because, in previous
experiments, we explored a wide variety of scenarios containing from low to
high (3%) packet loss ratios, while in this particular scenario, the packet loss
rate is about 0.3%.

Finally, as shown in section 6.2.2, RouteNet-F is capable of predicting
the performance metrics in the order of milliseconds. In contrast, MimicNet
ranges from minutes for the smaller topologies to hours for the larger ones.
This difference is mainly because, while RouteNet-F focuses on predicting
the different performance metrics aggregated by flows, MimicNet predicts
those metrics at a packet level.

MimicNet RouteNet-F

W1 MAPE MSE MAE R2 W1

FatTree16 0.0080 0.37% 1.31x10-10 5.33x10-6 0.999 0.0018
FatTree64 0.0122 0.44% 1.70x10-10 7.15x10-6 0.999 0.0026

FatTree128 0.0172 0.67% 3.40x10-10 1.20x10-5 0.998 0.0060

TABLE 6.8: Average RTT prediction using MimicNet and
RouteNet-F for different FatTree topologies. The error is com-

puted w.r.t. simulation results.

6.3 Discussion and Concluding Remarks

In this chapter, we have presented RouteNet-Fermi, a custom GNN model
designed for network performance analysis. This model supports a wide
range of configuration parameters related to routing, queue scheduling, and
traffic models while being able to accurately model networks 30 times larger
than the ones seen during training. In our evaluation, we have shown that
the proposed model outperforms a state-of-the-art queuing theory model, es-
pecially in scenarios with complex and realistic traffic models. At the same

108
Chapter 6. RouteNet-Fermi: Unifying Scheduling, Traffic Models, and

Generalization in Network Modeling

time, RouteNet-Fermi achieves comparable accuracy with respect to com-
putationally expensive packet-level simulators (MAPE ≈ 6.24%) while ex-
hibiting considerably lower inference times (on the order of milliseconds in
networks of 100 nodes). Finally, we validated RouteNet-F in a wide variety
of real-world scenarios including a testbed and real-world traffic traces.

109

Chapter 7

ST-RouteNet: Adding the Temporal
Dimension

The models presented in previous chapters have demonstrated remarkable
accuracy in modeling network performance metrics, even extending their
capabilities to generalize across diverse network topologies, configurations,
and traffic loads. However, a noteworthy limitation of these models is their
treatment of network traffic as "Traffic Matrices". This simplification implies
that they only consider aggregated bandwidth over a specific time interval
between a source and destination pair. While this assumption suffices for cer-
tain use cases, it imposes constraints because the most pertinent description
of network traffic is in the form of "flows."

In network operations, flows represent a vital concept. A flow is essen-
tially a set of packets that share common characteristics. A commonly used
aggregation approach in practical networks involves 5-tuple flows, compris-
ing packets with the same protocol (TCP or UDP), source and destination IP
addresses, as well as source and destination ports. Flows play an important
role in networking because applications inherently operate with them, and
network optimization usually revolves around providing varying levels of
quality of service to different flows. Past research efforts, such as [108], have
suggested working at the flow level for optimizing user quality of experience
(QoE) in video streaming, while other works like [17] and [109] focus on flow
routing optimization in carrier-grade networks. Additionally, solutions like
[110] aim to enhance flow completion in data centers. It’s worth noting that
several spatiotemporal Graph Neural Networks (GNNs) have been proposed
in the past, such as [111] and [112]. However, these models do not specifically
target the unique challenges presented by the networking domain.

110 Chapter 7. ST-RouteNet: Adding the Temporal Dimension

Operating at the flow level is challenging, flows are dynamic and have
a finite duration that ranges from a few packets (typically ms) to tens of thou-
sands of packets (e.g., backup session) and spans days. In networks, flows
are concurrent and at a given instant of time, millions of flows can be active
at the same time. As a consequence, modeling flows requires understand-
ing the time dimension and as a consequence, modeling how the state of the
network changes over time and as flows are created and destroyed.

In this Chapter, we present a new GNN-based model that is able to
understand and model flows. This network model works in the time do-
main and supports the creation and destruction of flows, as well as flows
that dynamically change their characteristics. With this, it is able to provide
per-flow metrics (delay and jitter) based on the input flow dynamics as well
as network configuration (routing, topology, etc.).

7.1 Network Scenario

We define a flow as an aggregation of packets that have some -loose- com-
mon characteristics. Our model supports arbitrary aggregation of packets
into flows, for instance, 5-tuple flows. In practice, the main limitation of
the aggregation level used with our model depends on the capabilities of
the monitoring infrastructure deployed at the network. Operating with fine-
grained flows can be computationally expensive [113].

Each flow is defined as a starting time and duration, a source and des-
tination node, and a traffic model. Optionally, it can also include additional
information such as ports, protocol, etc. The traffic model describes the inter-
arrival time distribution of the packets as well as their packet size. Our model
supports arbitrary traffic models, including non-Poisson arrivals with long
tails and auto-correlation (Sec. 3.1.1).

With respect to the temporal dimension consider figure 7.1. We define
a time-bin as a stationary period for the entire network, this includes all the
flows as well as network configuration and topology. Changes in the network
state are considered in a new time-bin. Examples of changes in the network
state are the creation or destruction of a flow, a flow changing its traffic model
or traffic model parameters (increase rate), link failures, or a change in the
routing policy.

7.2. Flow-Aware Network Model 111

VoIP

Streaming

AR/VR

Web

Time

Time bin

FIGURE 7.1: Representation of the temporal dimension. When-
ever there is a change in the network state (e.g., the creation of

a flow), a new time-bin is established.

Informally, the network model produces an inference per time-bin,
computing per-flow, and per-bin delay and jitter. To produce an estimate, it
uses the current state of the network for that time-bin (traffic models, topol-
ogy, routing, etc.) as well as the previous time-bin state of the network. Also,
the network model is suited to work with dynamically changing topologies.
This not only means that the model is capable of handling different topolo-
gies but also capable of handling topology changes like link failures or net-
work upgrades.

7.2 Flow-Aware Network Model

This section describes how ST-RouteNet works, a novel GNN-based solution
tailored to accurately model the behavior of real network infrastructures at
a flow-granularity level. Particularly, ST-RouteNet describes a new network
modeling architecture where the different key elements for network model-
ing (e.g., forwarding devices, links, flows) exchange messages of their state
to the ones they are related with (e.g., via routing).

Specifically, ST-RouteNet (Fig. 7.2) takes as input (i) a given network
configuration (topology, link capacities, and routing) (ii) the per-flow level
parameters (iii) the previous bin network state, and produces as output (i)
the current network state that will be later used as input for the next time-bin
(i) the performance per-flow metrics according to the network state (per-flow
mean delay and jitter).

112 Chapter 7. ST-RouteNet: Adding the Temporal Dimension

VoIP

Streaming

AR/VR

Web

Time

Target Time-BinPast

Per-Flow
parameters

ST-RouteNet

Network Model

- Topology

- Link capacity
- Routing

Network

Configuration

VoIP

Streaming

AR/VR

Web

Time

Target Time-Bin

Per-Flow performance metrics

Delay LossesJitter

Per-Flow performance metrics

Delay LossesJitter

Per-Flow performance metrics

Delay LossesJitter

Per-Flow performance metrics

Delay LossesJitterTim
e

Previous network state

Current network state

FIGURE 7.2: ST-RouteNet diagram. ST-RouteNet takes as in-
puts the network configuration (e.g., topology, link capacities,
routing), the target per-flow parameters, and the previous net-
work state. ST-RouteNet outputs the per-bin and per-flow per-
formance metrics (delay and jitter) and the current network

state.

One of the central ideas of ST-RouteNet is that it encodes the state of
the network resulting from the previous time bin, and this state is used to
accurately infer the per-flow performance statistics of the current bin. Since
a computer network can be understood as a queuing system, we expect this
state to be the state of the link/queues.

7.2.1 Model description

Following the notation used in previous Chapters, a computer network
can be represented by a set of links L = {li : i ∈ (1, ..., nl)}, a set
of source-destination flows F = { fi : i ∈ (1, ..., n f)}, and the routing
configuration defined as a set of source-destination path that flows fol-
low. Hence, we define flows as a sequence of the links they traverse fi =

{lFl(fi,0), lFl(fi,1), ..., lFl(fi,| fi|))}, where the function Fl(fi, j) return the index of
the j-th link along the path of flow fi.

Using this notation, ST-RouteNet considers three main inputs: (i) the
physical links L defined by the network topology, (ii) the active flows F in
the network in a specific time-bin, including the source-destination path and
the traffic model, and (iii) the network state of the previous time-bin.

The main assumption behind ST-RouteNet is that information at the
flow level (e.g., delay) and the link level (e.g., link delay, loss rate, link uti-
lization) can be encoded as vectors of numbers of a given size. Based on this,

7.2. Flow-Aware Network Model 113

the main intuition behind this architecture is:

1. The state of flows is affected by the state of the links they traverse.

2. The state of links depends on the states of the flows that go through
them.

3. The initial state of the network depends on the previous time-bin net-
work state.

Formally, we define the state of a flow as a hidden vector h f of a given
size. In a similar way, the state of a link is also defined by a hidden vector hl.
Knowing this, the principles described above can be formally formulated as
follows:

h fk
= g f (hl fk(0)

, hlk(1) , ..., hl fk(| fk |)
) (7.1)

hlj = gl(h f1 , ..., h fm), lj ∈ fk, k = 1, ..., i (7.2)

Where g f and gl are some unknown functions that the model needs to
learn. Note that a direct approximation of functions g f and gl is not possible
due to the circular dependencies found between the two components (L and
F).

We expect that h f and hl encode important information like the per-
flow throughput/losses or the per-link utilization. However, we do not make
any assumptions and let the model learn directly from the data that is fed into
the model.

The architecture of ST-RouteNet (see Algorithm 4) is specifically de-
signed to deal with those circular dependencies via an exchange of messages
between links and flows. ST-RouteNet receives as input the initial link and
flow features (xl and x f respectively), and the network state computed in the

previous time-bin (hT
l
(b−1)). In our particular case, xl is defined as (i) the link

capacity and (ii) the buffer size. On the other side, the initial flow features x f

are the features that describe the behavior of the flow.

First, in Algorithm 4, the hidden states hl and h f are initialized (line
1 - 2) using the initial features described before. In the hl case, note that the
feature vector (xl) is concatenated with the previous network state (hT

l
(b−1)).

If we are in the first time-bin, the hT
l
(b−1) vector is encoded as an array of 0.

114 Chapter 7. ST-RouteNet: Adding the Temporal Dimension

Algorithm 4 Internal architecture of ST-RouteNet

Input: F, L, x f , xl, hT
l
(b−1)

Output: hT
l , hT

f , ŷ f

1: for each l ∈ L do h0
l ← [xl, 0...0]

2: for each f ∈ F do h0
f ← [hT

l
(b−1), x f , 0...0]

3: for t = 0 to T-1 do ▷ Message Passing Phase
4: for each f ∈ F do ▷ Message Passing on Flows
5: for each l ∈ f do
6: ht

f ← FRNN(ht
f , ht

l) ▷ Flow: Aggr. and Update

7: m̃t+1
f ,l ← ht

f ▷ Flow: Message Generation

8: ht+1
f ← ht

f

9: for each l ∈ L do ▷ Message Passing on Links
10: Mt+1

l ← ∑ f∈L f (l) m̃t+1
f ,l ▷ Link: Aggregation

11: ht+1
l ← Ul(ht

l , Mt+1
l) ▷ Link: Update

12: m̃t+1
l ← ht+1

l ▷ Link: Message Generation

13: ŷ f ← R f (hT
f) ▷ Readout phase

Once the initial states are initialized a message-passing phase starts.
This message passing phase is executed iteratively during T times (line 3).
This process is done to ensure that the state of all the elements has converged.
Each message passing iteration can be divided into two stages where the dif-
ferent elements receive information about the elements they are related with,
then, this information is aggregated and used to update their state (FRNN
and Ul) and finally, create the new message that will be sent. Particularly, the
flow aggregation, update, and message creation are described in lines 4 - 8,
and the link ones in lines 9 - 12.

Finally, the readout phase is executed (line 13). In it, the function R f is
responsible for producing the per-flow level metrics.

7.3 Experimental evaluation

To train, validate, and test ST-RouteNet we use as ground truth a packet-
level network simulator (OMNeT++ v5.5.1 [8]), where network samples are
labeled with performance metrics, including the flows mean delay and jitter
over time. In order to generate the dataset, for each sample, we randomly
select a combination of input features (flow duration, traffic model, topology,
and routing) according to the descriptions below.

7.3. Experimental evaluation 115

7.3.1 Flow Configuration

In our experiments, traffic is generated using five different models that range
from a Poisson generation process to more realistic (non-Poisson) traffic gen-
eration [16]. The different implementation details of these models are defined
in the previous Section 3.1.1).

The creation of each flow is based on a Poisson process. The flow du-
ration is based on the distributions described in [114]. All flows have a max-
imum duration of 1000s which represents 99.5% of all the flows measured
in [114]. Note that the flow-creation time and the average traffic per flow
have been manually configured to produce low to high congestion levels (to
a maximum ≈ 3% of packet loss) similarly to what has been experimentally
measured [115].

7.3.2 Topologies

To train and test ST-RouteNet, we used three different real-world topologies
that have already been used in previous works [77, 70]. Specifically, to train
we used NSFNET [56], and GEANT [57] topologies. Then, we validate the
accuracy of the model in GBN [58].

7.3.3 Baselines

To assess the accuracy of ST-RouteNet, we subjected it to a benchmark
against two distinct models. The first benchmark is a stateless Queueing The-
ory model (s-QT), which is based on the methodology presented in [77]. This
s-QT model characterizes the system as a series of finite M/M/1/b queues
linked together. It’s important to note that the s-QT model doesn’t take into
account the state of the network from the previous time-bin.

The second benchmark employs a Gated Recurrent Unit (GRU), which
is constructed using a Recurrent Neural Network (RNN) [116]. In this sce-
nario, the different flows are modeled in a similar manner to ST-RouteNet,
where flows are represented as sequences of links determined by the rout-
ing configuration. The primary distinction between the GRU baseline and
ST-RouteNet lies in their approach to modeling. While GRU treats each path

116 Chapter 7. ST-RouteNet: Adding the Temporal Dimension

as a sequence of links without consistently employing the same states, ST-
RouteNet iterates over all the elements of the network’s states, updating their
states during each iteration.

7.3.4 Training and evaluation

We implemented ST-RouteNet as well as the baselines using Tensorflow.
In total, ST-RouteNet was trained using 120,000 samples (NSFNET and
GEANT) for training and evaluated using 60,000 (GBN) more samples. More
information about the topologies used can be found in section 7.3.2.

In our experiments, we use a hidden vector size of 32 for both hl and
h f . In our particular case, xl is defined as (i) the link capacity and (ii) the
buffer size. On the other side, the initial flow features x f are defined by the
parameters of each distribution described in section 3.1.1 (e.g., on and off
times, α, λ), the total number of packets, and the generated traffic. Note that,
since we are working with synthetic data, the flow features are initialized
with the parameters used to create those distributions. However, in a real-
world scenario, these features could be learned directly from the data using
a specialized module. The total number of iterations (T) is 8.

The functions found in Algorithm 4 are implemented as follows:
FRNN (line 6) and Ul (line 11) as Gated Recurrent Units (GRU) [74], and
the function R f (line 13) as a 2-layer fully-connected neural network with
ReLU activation functions. It is important to note that the architecture of ST-
RouteNet (Algorithm 4) has been specifically designed to be differentiable in
order to train the model end to end. Hence, all the different functions that
shape its internal architecture are jointly optimized during training based on
ST-RouteNet’s inputs (network samples) and outputs (per-flow performance
metrics).

During the training, we selected as the loss function the Mean Squared
Error (MSE). This loss function is minimized using an Adam optimizer with
an initial learning rate of 10−3.

Table 7.1 shows a summary of the delay and jitter experiments for
the GBN topology (never seen during training). We provide 4 metrics: the
Mean Absolute Percentage Error (MAPE), the Mean Squared Error (MSE),
the Mean Absolute Error (MAE), and the Coefficient of Determination (R2).

7.3. Experimental evaluation 117

Delay Jitter

MAPE MSE MAE R2 MAPE MSE MAE R2

s-QT 35% 0.72 0.43 0.56 69% 0.29 0.29 0.02
GRU 50% 1.15 0.54 0.29 137% 0.16 0.22 0.45

ST-RouteNet 3.5% 0.006 0.035 0.995 11.2% 0.004 0.032 0.983

TABLE 7.1: Performance comparison for NSFNET and GEANT
networks seen during training.

0 5 10 15 20 25 30 35 40
Bin

0.2

0.3

0.4

0.5

D
el

ay

Ground Truth

ST-RouteNet

s-QT

GRU

FIGURE 7.3: Delay prediction of one randomly selected flow of
the GBN topology.

As can be seen in Table 7.1, ST-RouteNet clearly outperforms all the
benchmarks. This high accuracy shows how the described model is able to
generalize to unseen topologies, routings, and per-flow characteristics.

Figure 7.3 shows an example of the time series for a randomly selected
flow. As can be seen, the network model is able to react to the dynamic be-
havior of the flows, providing accurate estimates of the delay experienced by
each flow. In contrast, both baselines seem to provide pretty good estimates
when the delay of a time-bin is close to 0.1. However, in peak delays where
the network is more saturated, they clearly fail with s-QT underestimating
and GRU overestimating the delay. Note that in this experiment only flow-
related features are changed over time (e.g., packet rate, distribution, flow
parameters). However, the model also accepts changes in the topology (e.g.,
link capacities, link failures, routing).

In order to analyze how the residuals are distributed we plot them
in Figure 7.4. The figure shows the Probability Density Function (PDF) of
the Relative Error of the three models. As the figure shows, ST-RouteNet
produces estimates with the error centered around 0. It looks like, while

118 Chapter 7. ST-RouteNet: Adding the Temporal Dimension

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.00

0.05

0.10

D
en

si
ty

ST-RouteNet

s-QT

GRU

FIGURE 7.4: PDF of the Relative Error reported for the delay
prediction.

GRU shows poor performance, the s-QT model undershoots the true values.
This is in line with previous experimental results [77], the key insight is that
queuing theory assumes Markovian arrivals while in practice, flows have
highly autocorrelated traffic models which result in bursts of packets that
increase the queue weighting time.

7.4 Discussion and Concluding Remarks

In this Chapter, we introduced ST-RouteNet, a modification of RouteNet’s
family architectures designed to model network behavior with a focus on
flows and the temporal dimension. We addressed a crucial limitation in ex-
isting models that primarily consider network traffic as "Traffic Matrices,"
which aggregate bandwidth over time between source-destination pairs.
While this approach has its merits, it can be constraining since the more
meaningful representation of network traffic often involves "flows."

We evaluated ST-RouteNet using a comprehensive set of experiments
with synthetic data generated using a packet-level network simulator. ST-
RouteNet significantly outperformed benchmark models, such as stateless
Queueing Theory (s-QT) and a Gated Recurrent Unit (GRU), in predicting
per-flow performance metrics. Its high accuracy was particularly evident
when applied to unseen network topologies and conditions.

This chapter showcases how ST-RouteNet’s unique architecture and

7.4. Discussion and Concluding Remarks 119

focus on flows in the temporal domain provide an effective solution for net-
work performance modeling and optimization. With its ability to understand
and adapt to the dynamic nature of real-world networks, ST-RouteNet opens
new possibilities for enhancing network performance in scenarios where
flows are dynamic and changing.

121

Chapter 8

Network Performance Digital
Twins

The concept of a Digital Twin has gained significant traction across various
industries, from aeronautics [117] to logistics [118]. In the fast-paced world of
modern industry, Digital Twins have emerged as powerful tools with the po-
tential to revolutionize many sectors. By creating virtual replicas of physical
systems, Digital Twins provide a unique opportunity to enhance understand-
ing, optimize performance, and streamline decision-making processes.

In the realm of networking, the Network Digital Twin (NDT) has
gained recognition as a valuable concept. An NDT is essentially a virtual
replica of a physical network, preserving one or more essential characteris-
tics of the original network. Different types of NDTs exist, with the Network
Performance Digital Twin (NPDT) being one of the most common [119, 120].
The NPDT, is specifically designed to predict performance metrics, such as
the average per-path delay, for a given input network, which includes both
the network’s topology and routing configuration.

The NPDT, like other forms of NDTs, plays a critical role in under-
standing, optimizing, and enhancing the performance of real-world net-
works. It serves as a digital counterpart that helps network operators make
informed decisions, monitor network behavior, and proactively address po-
tential issues [119, 120]. As technology and networks continue to evolve,
NPDTs are poised to play an increasingly significant role in network man-
agement and optimization.

Hence, an NPDT can be extremely useful in network management sce-
narios. By leveraging the NPDT, industry professionals can safely analyze

122 Chapter 8. Network Performance Digital Twins

the impact of potential scenarios and configurations without any disruption
to the real network. It enables them to address critical questions such as de-
termining the maximum number of link failures before Service Level Agree-
ments (SLAs) are compromised or identifying the optimal network hardware
upgrade within a specified budget. This capability is commonly referred to
as what-if analysis. Another interesting use case is network optimization. By
coupling the NPDT with an optimization algorithm [121], network admin-
istrators can evaluate the performance of various candidate network config-
urations. Hence, the NPDT is a powerful tool in the decision-making pro-
cess, making it easier to explore different network optimization strategies to
achieve the expected performance outcomes.

In other words, it is possible to view an NPDT as an advanced net-
work model that supports a wide range of network configurations and can
quickly produce performance estimations. Traditionally, network adminis-
trators have relied on network modeling tools that present some limitations
when it comes to constructing an NPDT. The most commonly used tools in-
clude analytical queuing-theoretic models and packet-level simulators. As
previously discussed in Chapter 3, Queuing theory (QT) models are fast and
scalable, making them suitable for large-scale simulations. However, their
accuracy diminishes when applied to non-Poisson traffic models. On the
other hand, packet-level simulators offer excellent accuracy and can support
any traffic model, by means of supplying a packet trace. Nonetheless, their
simulation time is often too extensive for near real-time operations, making
them impractical for certain scenarios.

These limitations require the development of novel approaches and
techniques that strike a balance between speed, accuracy, and flexibility in
order to construct a reliable and efficient NPDT. Recent advances in Machine
Learning (ML) offer promising solutions in this regard. ML models have
the capability to capture and implement arbitrary nonlinear relationships
when appropriately trained. In the context of a Network Performance Digital
Twin, this involves training a model with a wide range of network data, e.g.
pairs of (network configuration, performance values). Once the model
is trained, it can accurately predict the performance values of the input net-
works. The prediction process is usually fast, in the order of ms. Hence, ML
techniques offer a compelling balance between accuracy and speed, paving
the way for an NPDT that can support the use cases we mentioned previ-
ously.

8.1. Network Performance Digital Twins 123

In this Chapter, we discuss the viability of the RouteNet family mod-
els (Chapters 4, 5, and 6) as a possible architecture of a Network Performance
Digital Twin (NPDT), and provide a comprehensive exploration of the re-
quirements of this kind of Digital Twins.

8.1 Network Performance Digital Twins

The concept of a Network Digital Twin (NDT) is fundamentally rooted in
the creation of a virtual counterpart for a physical network. However, it’s
important to note that NDTs are not one-size-fits-all; they can take on var-
ious forms and implementations to suit the specific needs of different use
cases. This adaptability allows NDTs to serve a wide range of scenarios and
requirements.

NDTs can come in different types, each with its own scope and focus.
For instance, a Network Performance Digital Twin (NPDT) primarily deals
with predicting and optimizing network performance metrics. Other types of
NDTs may focus on different aspects of network modeling and management,
depending on the objectives of the use case.

Furthermore, the complexity of an NDT’s implementation can vary
significantly based on the requirements of the specific use case. Some NDTs
may be relatively simple, providing a basic virtual representation of the net-
work, while others can be highly sophisticated, incorporating intricate details
and modeling capabilities. The degree of complexity is tailored to match the
complexity of the physical network and the level of detail required for accu-
rate modeling and analysis.

Among these use cases, in this Chapter, we focus on a Network Perfor-
mance Digital Twin (NPDT). In a nutshell, an NPDT is an advanced network
model. Its inputs are a wide range of network configuration parameters, and
the outputs are key performance metrics of the input network. More specif-
ically, the inputs are the network topology, traffic matrix, the nature of the
input traffic (either a traffic model of each flow, or a packet trace), the rout-
ing configuration, and the scheduling configuration (queues per port and
scheduling algorithm). Regarding the outputs, the most interesting ones are
common performance metrics used by network engineers, namely average
delay, jitter, and packet loss, both for individual links and end-to-end paths.

124 Chapter 8. Network Performance Digital Twins

A key property of an NPDT is the wide range of input and output variables,
that allows it to replicate different network configurations, as well as calcu-
late different metrics.

8.1.1 Architecture

In a practical operational setting, the NPDT is intricately linked with the con-
trol and management plane of an actual physical network (as depicted in
Figure 8.1). This interconnection enables the NPDT to be effectively config-
ured to function as a virtual replica of the physical network. Such integration
and configuration empower the NPDT to be used in a multitude of critical
use cases, ranging from network optimization and efficient network provi-
sioning to expedited troubleshooting and diagnostics, among various others.
This close connection between the NPDT and the real network’s control and
management plane amplifies its utility as a powerful tool for enhancing net-
work performance, making informed decisions, and ensuring seamless net-
work operations.

The control plane maintains communication with various network el-
ements through a set of interfaces, which may conform to established stan-
dards or operate in a non-standardized manner:

Administrator Interface

Ideally, a standardized interface is employed to articulate network service
requisites and optimization objectives. This interface also serves as a con-
duit for connections to external network management applications, facilitat-
ing seamless integration with other management tools and systems.

Network Digital Twin Interface

This interface is specifically designed to enable the submission of prospective
network configurations to the Network Performance Digital Twin and re-
trieve the corresponding performance parameters associated with these con-
figurations.

8.1. Network Performance Digital Twins 125

Network
Peformance
Digital Twin

Physical
Network

Management and
Control Plane

Administrator Interface
Service Demand Interface

Measurement
interface

Configuration
interface

Network
configuration

Performance
metrics

FIGURE 8.1: Architecture of an NPDT-assisted network, with
the interfaces between the NPDT and the Management and

Control Plane.

Network Interface

This interface relies on common or standardized protocols for the config-
uration of the physical network infrastructure. It encompasses a range of
configuration protocols, including but not limited to NETCONF and PCE, as
well as measurement protocols such as Netflow and SNMP. These protocols
are leveraged for the configuration of network devices and the retrieval of
measurement data from the physical network components.

126 Chapter 8. Network Performance Digital Twins

8.1.2 Requirements

To fulfill its role effectively and support a wide variety of network manage-
ment scenarios, an NPDT must adhere to the following stringent require-
ments:

• Speed: The NPDT should deliver fast predictions, with response times
on the order of milliseconds. This rapid processing is critical for opti-
mization scenarios that necessitate the evaluation of numerous network
configurations within tight timeframes.

• Accuracy: The predictions generated by the NPDT must exhibit min-
imal error when compared to ground truth data. High accuracy,
with deviations well below a defined threshold, is essential to ensure
the NPDT’s practicality and reliability in real-world network environ-
ments.

• Generalization: The NPDT should possess the ability to support net-
works with arbitrarily large and intricate topologies seamlessly. Its ca-
pacity to generalize is critical to accommodate the ever-expanding scale
and complexity of modern networks.

• Diverse Input Support: The NPDT should be versatile, and capable of
accepting a diverse range of input variables and configurations. This
encompasses a variety of routing configurations, scheduling schemes
(e.g., FIFO, Weighted Fair Queueing, and Deficit Round Robin), arbi-
trary network topologies, traffic matrices, traffic models (e.g., Constant
Bitrate, Poisson, On/Off), and parameters specific to certain network
types (e.g., optical networks). This adaptability ensures that the NPDT
can adapt to the unique characteristics of different network scenarios.

• User Accessibility: The NPDT should feature a user-friendly interface
tailored to the needs of network engineers and administrators. This in-
terface should leverage well-established and widely adopted network-
ing standards and conventions, ensuring ease of use and familiarity
for industry professionals. Additionally, the NPDT’s output metrics
should be readily comprehensible to network engineers, and it may in-
clude confidence values to gauge the reliability of its estimations. These
features collectively enhance the NPDT’s accessibility and utility within
the networking community.

8.2. Technologies for Network Performance Digital Twins 127

8.2 Technologies for Network Performance Digi-

tal Twins

As we mentioned previously, we can think of an NPDT as an advanced net-
work model. Hence, we can find a wide range of technologies in the state
of the art that can potentially satisfy the requirements of an NPDT. In this
section, we discuss the advantages and drawbacks of the most relevant tech-
nologies and how they compare with the requirements. Table 8.1 presents a
summary of these technologies.

Requirement Fast Accurate Generalization Diff. inputs Low cost

Analytical models ✓ ∗ ✓ ✓ ✓
Packet simulators ✓ ✓ ✓

Emulators ✓ ∗ ✓ ✓
Testbeds ✓ ✓ ∗ ∗

Traditional Neural Networks ✓ ✓
Graph Neural Networks ✓ ✓ ✓ ✓ ✓

TABLE 8.1: Requirements vs. candidate technologies to imple-
ment an NPDT. ∗ stands for partially

8.2.1 Analytical models

Analytical models, particularly those founded on Queuing Theory, exhibit
strengths in addressing several of the NPDT requirements. They can fulfill
the need for speed and accuracy, allowing for efficient performance calcula-
tions across various network topologies, routing strategies, and scheduling
configurations.

However, a noteworthy drawback of analytical models is their reliance
on strong assumptions regarding the traffic’s arrival process, typically as-
suming Poisson arrivals. This assumption doesn’t align with the complex
and dynamic nature of real-world packet arrival processes, and as such, these
models may fall short of capturing the intricacies of actual network behavior.
This limitation can impact their applicability to practical network scenarios
where traffic patterns are diverse and often exhibit non-Poissonian charac-
teristics.

128 Chapter 8. Network Performance Digital Twins

8.2.2 Packet-level simulators

Packet-level simulators are extensively employed for performance evalua-
tion and algorithm development, and they excel in terms of accuracy and
versatility. They can faithfully replicate diverse network scenarios, includ-
ing complex topologies, routing configurations, and scheduling algorithms.
However, a critical limitation of utilizing packet-level simulators as an NPDT
is the time required for simulation. This time tends to increase linearly with
the number of packets to process, which can severely restrict their ability to
simulate high-speed links effectively. This limitation impacts their suitabil-
ity for scenarios involving networks with significant data throughput and
high-speed connections, where timely predictions are crucial.

8.2.3 Emulators

Emulators are a valuable option for NPDT applications due to their ability
to virtualize the target network, making them capable of supporting var-
ious input configurations and network types while delivering estimations
within a reasonable timeframe. However, it’s important to note that the per-
formance of emulators is ultimately constrained by the capabilities of the un-
derlying hardware. As a result, if emulators are employed to replicate large
and complex networks, their emulation time and cost may escalate signif-
icantly, potentially exceeding practical limits for near real-time operations.
Consequently, emulators can be a viable choice when applied judiciously to
scenarios where the computational and financial resources required for em-
ulation remain within acceptable bounds.

8.2.4 Testbeds

Testbeds offer the notable advantage of unparalleled accuracy, primarily be-
cause they operate within a real network environment. Depending on the
specific testbed configuration, they can provide support for a diverse array
of network configurations and topologies while also generating performance
estimations with considerable speed. However, it’s essential to recognize that
testbeds come with significant costs, both in financial terms and in the expen-
diture of energy and human resources. These costs can be substantial, and as

8.2. Technologies for Network Performance Digital Twins 129

such, testbeds are typically employed in scenarios where the benefits of their
exceptional accuracy outweigh the associated resource investments.

8.2.5 Traditional Neural Networks

Traditional Neural Networks like Multilayer Perceptrons and Recurrent
Neural Networks are known for their speed, ease of construction, and flexi-
bility in handling various types of input data. However, they do have some
limitations when applied to computer networks, particularly when dealing
with factors like link failures. While these networks can predict network per-
formance with a high degree of accuracy in many cases, they struggle when
confronted with network changes such as link failures. This limitation is
mainly attributed to their inability to fully grasp the complex relationships
between different elements within the network graph, which is essential for
adapting to network changes and disruptions.

8.2.6 Graph Neural Networks

As discussed in previous Chapters, Graph Neural Networks represent a class
of neural networks that are purpose-built to operate on graph-structured
data. They are characterized by their ability to accept graph structures as
input. This innate compatibility with graph data makes GNNs particularly
well-suited for computer networks. By utilizing GNNs, it becomes possi-
ble to effectively encode and process all the intricate relationships within a
network, enabling them to adapt to various network topologies and config-
urations.

In conclusion, Graph Neural Networks present a promising candidate
for the implementation of a Network Performance Digital Twin. The evi-
dence presented in Chapters 4, 5, and 6 indicates that the RouteNet GNN-
based family of models are capable of providing rapid performance esti-
mates, can accommodate network graphs of varying sizes, and possess the
ability to comprehend the intricate relationships between different elements
within a network. This combination of speed, adaptability, and network
understanding makes these models a compelling choice for implementing
a Network Performance Digital Twin.

130 Chapter 8. Network Performance Digital Twins

8.3 Implementation

Our NPDT has two main components: the User Interface (UI) and the GNN
model (RouteNet-F Chapter 6). The UI is a web-based application built with
Vue.js1 and G6 Graph Visualization Engine2. It is a user-friendly interface
for collecting input data of the target network to be simulated. The UI com-
municates with a flask-based web server that is responsible for converting
the collected input data into a suitable format and forwarding the target net-
work scenario to the GNN model. RouteNet-F, implemented using Tensor-
Flow, processes the received data and calculates the predicted performance
values for the given network configuration. Once the GNN model completes
the prediction process, it returns the result to the UI. The UI then presents
the performance estimates to the user, both graphically and numerically, as a
matrix of source-destination delays.

8.3.1 User Interface

The primary objective of the UI in the proposed NPDT system is to provide
an interactive and user-friendly platform for end users, including network
administrators and engineers. The UI aims to overcome the potential knowl-
edge gap by enabling users without extensive technical expertise to easily
utilize the NPDT. It also aims to simplify the process of entering parameters
into the GNN model, reducing the likelihood of errors and streamlining the
overall user experience.

The UI consists of three main components, as shown in Figure 8.2, and
is publicly available3:

• Network Diagram: This component displays a map featuring the net-
work’s nodes and edges. Users have the option to choose between two
well-known topologies (NSFNET and EARN) or create a custom topol-
ogy. Each edge is color-coded based on its load, while the node sizes
are proportional to the amount of traffic they process. This visual rep-
resentation provides users with an intuitive overview of the network
structure.

1https://vuejs.org/
2https://g6.antv.antgroup.com/en/
3http://gnn-frontend.cba.upc.edu/

https://vuejs.org/
https://g6.antv.antgroup.com/en/
http://gnn-frontend.cba.upc.edu/

8.3. Implementation 131

FIGURE 8.2: User controls and graphical representation of the
input network, showing the EARN network.

• Input Controls: The UI includes a set of controls that enable users to
adjust various input parameters. These controls allow increasing or de-
creasing the number of nodes, edges, and average network load, among
other parameters. By interacting with these controls, users can easily
customize the input scenario of the NPDT.

• Delay Estimation Matrix: The UI presents a matrix that displays the
estimated average link delay between all nodes in the network. This
matrix provides a concise and organized representation of the delay
estimations, enabling users to quickly analyze network performance.

Moreover, the UI provides users with additional controls that allow
assigning random capacities to links, random traffic intensities to nodes, and
selecting different routing policies. Furthermore, users can edit individual
values of the traffic matrix, link capacity, or weight of each link for more
fine-grained customization.

132 Chapter 8. Network Performance Digital Twins

8.3.2 RouteNet-F Interface

The interface between the front-end and the back-end is a standard REST
API, based on the Flask framework4. The back end is implemented follow-
ing the Model-View-Controller (MVC) pattern, and it translates the informa-
tion entered by the user in the front end to three matrices that represent key
network parameters. These matrices serve as the inputs to the GNN model
implemented in TensorFlow, as described in Chapter 6. The three matrices
generated by the back-end represent (i) the traffic flow between different
nodes in the network (Traffic Matrix) (ii) information about the routing paths
followed by the network flows (Routing Matrix), and (iii) the topology of the
network and the capacity of each of its links (Capacity Matrix).

8.3.3 Features

RouteNet-F, as a part of the RouteNet GNN-based family of models, pos-
sesses a compelling set of features that make it a strong candidate for the
implementation of an NPDT. These features include:

• Fast Performance Estimates: RouteNet-F is capable of providing per-
formance estimates in small timescales. This speed is crucial for real-
time network management scenarios and optimization tasks.

• Generalization and scalability to larger networks: It can accept net-
work graphs of different sizes, allowing it to understand and replicate
the relationships between different elements in the network. This scala-
bility is vital for accommodating networks of varying complexities and
sizes.

• Routing: The routing configuration is defined as a series of networking
devices that form a path, allowing the model to emulate diverse routing
scenarios. Hence, it can support different well-known routing protocols
such as OSPF, IS-IS, BGP, LISP, SRv6, OpenFlow, and others.

• Traffic Models: The model accepts various traffic models, including
Poisson, Constant Bitrate (CBR), On-Off, Autocorrelated Exponentials,
and Modulated Exponentials, or a combination of any of the previous.
These models capture different traffic patterns and behaviors.

4https://flask.palletsprojects.com/en/2.3.x/

https://flask.palletsprojects.com/en/2.3.x/

8.4. Use Cases 133

• Traffic Matrix: The amount of traffic that flows from one network de-
vice to another network device. It is represented as an NxN matrix
where N is the total number of network devices.

• Scheduling policy: Each router can be configured with an arbitrary
number of output ports, with one of the following queuing configura-
tions: First-in-First-Out (FIFO), Weighted Fair Queuing (WFQ), Deficit
Round Robin (DRR), and Strict Priority (SP).

These features collectively position RouteNet-F as an ideal choice for
building a Network Performance Digital Twin (NPDT), as demonstrated in
Chapters 4, 5, and 6. Its combination of speed, scalability, variety of inputs,
and generalization capabilities equips it to effectively replicate and assess
networks with diverse characteristics and configurations, making it a valu-
able tool for network management and optimization.

8.4 Use Cases

The Network Performance Digital Twin (NPDT) offers practical utility in var-
ious network management scenarios, addressing real-world challenges and
facilitating informed decision-making. Here, we delve into some key use
cases of the NPDT:

8.4.1 What-if scenarios

One of the primary applications of the NPDT is in conducting "what-if" sce-
narios. This involves analyzing the potential impact of hypothetical scenar-
ios and configurations on the network without affecting the real network.
The NPDT allows network administrators to assess various scenarios, such
as:

• Predicting the impact on network performance when incorporating a
new company or a large number of employees.

• Estimating when the network might reach its capacity due to organic
user growth.

134 Chapter 8. Network Performance Digital Twins

• Determining the optimal network hardware upgrade within a specified
budget.

• Assessing the effect of traffic spikes and evaluating strategies to reduce
packet loss.

The NPDT’s user-friendly interface simplifies the evaluation of these
scenarios. Network administrators define the network configuration within
the web application, request predictions, and receive immediate results.

8.4.2 Network Optimization

The NPDT is a valuable tool for network optimization. It can be paired with
optimization algorithms to achieve specific objectives. In this scenario, the
NPDT provides performance estimates for different network configurations,
and the optimizer aims to meet optimization objectives. These objectives may
include constraints like maintaining path delays below a certain threshold
or limiting link utilization. A wide range of optimization algorithms can
be applied, from Integer Linear Programming (ILP) to genetic algorithms or
even modern approaches based on Deep Reinforcement Learning.

Once the optimizer finds the best network configuration, it can be ap-
plied to the actual network through standard configuration interfaces.

Figure 8.3 illustrates the role of the NPDT in a network optimization
scenario. This combination of prediction and optimization empowers net-
work administrators to make data-driven decisions and fine-tune their net-
works for optimal performance.

8.5 Discussion and Concluding Remarks

In this Chapter, we have discussed the potential of the RouteNet family
of models as a possible implementation of a Network Performance Digital
Twin designed to predict the performance of diverse network scenarios. We
equipped the NPDT with a user-friendly graphical interface, making it ac-
cessible for end-users to input network configurations and analyze results
rapidly. We’ve also elaborated on the interfaces through which the NPDT

8.5. Discussion and Concluding Remarks 135

Management
applications

Network
Performance
Digital Twin

Physical
Network

Configuration
interface

Network
Optimization

Algorithm

Estimated
performance

Optimized Network
Configuration

Optimization
Objectives

M
an

ag
em

en
t a

nd
C

on
tro

l P
la

ne

Candidate
network

configuration

FIGURE 8.3: Role of the NPDT in a network optimization sce-
nario.

interacts with the management and control planes of physical networks, es-
tablishing its integration within real network environments.

Furthermore, we have highlighted two significant use cases of the
NPDT: "What-If" analysis, which serves as a tool for assessing the potential
impact of new configurations on network performance, and network opti-
mization. Network optimization involves leveraging the NPDT as a model

136 Chapter 8. Network Performance Digital Twins

for optimization algorithms, and aligning network configurations with de-
fined objectives. By presenting the NPDT’s capabilities, interfaces, and prac-
tical applications, we underscore its potential as a valuable asset for network
management and decision-making processes.

137

Chapter 9

Conclusions and Future Work

In this thesis, we have embarked on a journey through the dynamic land-
scape of network modeling, a basis for the design, evaluation, and opti-
mization of computer networks. The foundation of network modeling, es-
tablished in the early days of networking, has proven indispensable for a
numerous number of applications, including protocol design, performance
assessment, and network planning. The prevalent techniques of analytical
modeling grounded in Queuing Theory (QT) and packet-level simulators
have been the go-to of this field, facilitating substantial progress in under-
standing network behavior.

However, as computer networks continue to evolve, their growing
complexity and diverse traffic characteristics have unveiled inherent limita-
tions in classical modeling methodologies. These limitations have become
particularly pronounced in scenarios where advanced network modeling
techniques are essential.

This thesis has underscored a fundamental principle: the efficiency of
network optimization is intricately linked to the capacity to create accurate
and rapidly responsive network models. While conventional discrete event
simulation (DES) methodologies have offered a degree of accuracy, they often
fall short due to their computational demands, particularly when confronted
with large-scale networks and realistic traffic volumes. Furthermore, these
modeling techniques can prove inadequate for online network optimization
applications due to stringent time constraints. It has thus become increas-
ingly evident that state-of-the-art modeling techniques must adapt to meet
the exacting requirements of contemporary packet-switched networks. The
limitations imposed by Queuing Theory, which predicates network behavior

138 Chapter 9. Conclusions and Future Work

on Poisson traffic assumptions, are increasingly apparent as network behav-
iors exhibit strong autocorrelation and heavy-tailed distributions, rendering
these classical models insufficient to capture the complexities of real-world
networks.

In this dissertation, we have delved into the realm of network mod-
eling, exploring innovative solutions to address significant challenges in
the field of computer networks. We have presented three distinct models,
namely RouteNet-D, RouteNet-E, and RouteNet-F, each designed to tackle
specific problems within the current state of the art.

RouteNet-D laid the foundation by introducing the fundamental chal-
lenge of incorporating scheduling policies into network modeling. We recog-
nized the critical role of scheduling in network performance and developed
a model capable of addressing this element. It paved the way for a more
comprehensive approach to network modeling, emphasizing the importance
of capturing the intricacies of scheduling policies.

Building upon RouteNet-D’s foundational principles, RouteNet-E ex-
panded its scope to tackle scheduling, traffic models, scalability, and gener-
alization to larger networks. This journey revealed a crucial distinction be-
tween analytical models, which rely on theory and need no training, and DL
models, which demand a diverse training dataset for accurate predictions.
Generating such a dataset from production networks, experiencing rare per-
formance issues, is problematic. Controlled testbeds emerged as a practical
solution, enabling the replication of diverse network scenarios. RouteNet-E
was crafted to meet this challenge, showcasing its adaptability and the abil-
ity to provide accurate predictions on networks significantly larger in scale
than the ones encountered during training.

RouteNet-F marked a significant milestone by unifying the elements
of scheduling, traffic models, and generalization to larger networks, offering
a comprehensive solution to network modeling. Its capabilities in provid-
ing rapid performance estimates, accommodating diverse network config-
urations, and adapting to the complex relationships between network ele-
ments make it an ideal choice for implementing a network model.

Building on the foundation of RouteNet-F, we explored the integra-
tion of the temporal dimension into network modeling. Recognizing the dy-
namic nature of real-world networks, we considered how network models

Chapter 9. Conclusions and Future Work 139

can adapt to changes over time. By incorporating temporal aspects, we pre-
sented an innovative approach to enhance the accuracy and practicality of
network modeling.

In the final chapters, we showcased the practical application of these
models by implementing a Network Performance Digital Twin (NPDT). The
NPDT serves as a powerful tool in network management scenarios, facilitat-
ing "what-if" analysis and network optimization. It empowers network ad-
ministrators to assess the impact of potential scenarios and make informed
decisions, all while ensuring minimal disruption to the actual network.

Throughout this thesis, the exploration of network modeling has
paved the way for the emergence of several works that directly engage with
the challenges in this domain, drawing inspiration from the concepts and
methodologies developed herein. Noteworthy among these works is xNet
[122], which capitalizes on Graph Neural Networks (GNNs) to comprehen-
sively model complex attributes of computer networks. By learning the state
transition function between time steps, xNet achieves a holistic fine-grained
prediction trajectory. In a parallel vein, initiatives like MimicNet [53] and
DeepQueueNet [107] employ Deep Learning (DL) models to accelerate net-
work event simulators. The first one, focuses on accelerating specific aspects
of the simulation process by the use of LSTMs, concentrating on per-packet
delay prediction. Similarly, DeepQueueNet takes advantage of Transformers
to generate a scalable and generalizable network performance estimator with
packet-level visibility.

In conclusion, the journey through these chapters highlights the sig-
nificance of network modeling as an indispensable tool in understanding,
optimizing, and enhancing the performance of real-world networks. The
RouteNet-family models offer innovative solutions to address the challenges
within network modeling, ultimately paving the way for more informed and
efficient network management. As the landscape of computer networks con-
tinues to evolve, these models and the insights gained from this thesis are
poised to play an increasingly critical role in network modeling and opti-
mization.

Before concluding, our ambition with this dissertation is twofold. We
do not only expect that the contributions presented in this thesis will repre-
sent significant advancements towards the achievement of the long-desired
network models but also will open up new research paths to be explored.

140 Chapter 9. Conclusions and Future Work

We summarize below some avenues of research that may be interesting to
investigate in the future:

• Enhanced Traffic Representation: This thesis has demonstrated the ca-
pability of the RouteNet-family models in comprehending various traf-
fic models commonly observed in real-world networks. However, these
models have primarily been formulated based on mathematical param-
eters, and the real-world scenario often deviates from this idealized
mathematical representation. Currently, RouteNet processes input pri-
marily using mathematical traffic model parameters, which may not
always capture the nuanced complexities of actual packet traces. A
promising trajectory for future research involves extending the model’s
capabilities to interpret real packet traces. This transition from a purely
parameter-driven approach to one grounded in the analysis of authen-
tic packet-level data could significantly enhance the model’s fidelity
and applicability in practical network modeling.

• Packet-Level Visibility: The current RouteNet-family models offer
valuable insights into network behavior, particularly in terms of pre-
defined performance metrics such as delay, jitter, and packet losses.
However, they operate at a higher level of abstraction, mapping net-
work facts to these predetermined metrics. What they presently lack
is the capability to delve into the fine-grained details of individual de-
vices or specific data flows within the network. A promising avenue for
future exploration is the development of mechanisms within RouteNet
to provide packet-level visibility. This means enabling the models to of-
fer granular, packet-level statistics, empowering network analysts and
administrators with deeper insights into network dynamics and perfor-
mance on a per-packet basis.

141

Bibliography

[1] Leonard Kleinrock. “Analytic and simulation methods in computer
network design”. In: Proceedings of the May 5-7, 1970, spring joint com-
puter conference. 1970, pp. 569–579.

[2] Thomas G Robertazzi. Computer networks and systems: queueing theory
and performance evaluation. Springer Science & Business Media, 2000.

[3] Richard M Fujimoto et al. “Large-scale network simulation: how big?
how fast?” In: 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer Telecommunications Systems, 2003.
MASCOTS 2003. IEEE. 2003, pp. 116–123.

[4] Paul Almasan, Miquel Ferriol-Galmés, et al. “Digital twin network:
Opportunities and challenges”. In: arXiv preprint arXiv:2201.01144
(2022).

[5] Huan Nguyen et al. “Digital twin for 5G and beyond”. In: IEEE Com-
munications Magazine 59.2 (2021), pp. 10–15.

[6] Seyedali Mirjalili. “Genetic algorithm”. In: Evolutionary algorithms and
neural networks. Springer, 2019, pp. 43–55.

[7] George F Riley and Thomas R Henderson. “The ns-3 network sim-
ulator”. In: Modeling and tools for network simulation. Springer, 2010,
pp. 15–34.

[8] András Varga. “Discrete event simulation system”. In: European Sim-
ulation Multiconference (ESM). 2001, pp. 1–7.

[9] Robert B Cooper. “Queueing theory”. In: Proceedings of the ACM’81
conference. 1981, pp. 119–122.

[10] Zhiyuan Xu et al. “Experience-driven networking: A deep reinforce-
ment learning based approach”. In: IEEE INFOCOM. 2018, pp. 1871–
1879.

142 Bibliography

[11] Asad Arfeen, Krzysztof Pawlikowski, et al. “The role of the Weibull
distribution in modelling traffic in Internet access and backbone core
networks”. In: Journal of network and computer applications 141 (2019),
pp. 1–22.

[12] Thomas Karagiannis et al. “A nonstationary Poisson view of Internet
traffic”. In: IEEE INFOCOM 2004. Vol. 3. IEEE. 2004, pp. 1558–1569.

[13] Thomas Karagiannis, Mart Molle, and Michalis Faloutsos. “Long-
range dependence ten years of Internet traffic modeling”. In: IEEE
internet computing 8.5 (2004), pp. 57–64.

[14] Edward Kresch and Sarvesh Kulkarni. “A poisson based bursty
model of internet traffic”. In: IEEE International Conference on Computer
and Information Technology. 2011, pp. 255–260.

[15] Vern Paxson and Sally Floyd. “Wide area traffic: the failure of Pois-
son modeling”. In: IEEE/ACM Transactions on networking 3.3 (1995),
pp. 226–244.

[16] J Popoola and RA Ipinyomi. “Empirical performance of weibull self-
similar tele-traffic model”. In: International Journal of Engineering and
Applied Sciences 4.8 (2017), p. 257389.

[17] Renaud Hartert et al. “A declarative and expressive approach to con-
trol forwarding paths in carrier-grade networks”. In: ACM SIGCOMM
computer communication review 45.4 (2015), pp. 15–28.

[18] Liang Guo and Ibrahim Matta. “Search space reduction in QoS rout-
ing”. In: Computer Networks 41.1 (2003), pp. 73–88.

[19] Mathieu Jadin et al. “CG4SR: Near optimal traffic engineering for seg-
ment routing with column generation”. In: IEEE INFOCOM. 2019,
pp. 1333–1341.

[20] Randeep Bhatia et al. “Optimized network traffic engineering using
segment routing”. In: IEEE INFOCOM. 2015, pp. 657–665.

[21] Jochen W Guck, Van Bemten, et al. “Unicast QoS routing algorithms
for SDN: A comprehensive survey and performance evaluation”. In:
IEEE Communications Surveys & Tutorials 20.1 (2017), pp. 388–415.

[22] Volodymyr Mnih et al. “Human-level control through deep reinforce-
ment learning”. In: Nature 518.7540 (2015), pp. 529–533.

[23] Yann LeCun et al. “Deep learning”. In: Nature 521.7553 (2015),
pp. 436–444.

Bibliography 143

[24] John Jumper et al. “Highly accurate protein structure prediction with
AlphaFold”. In: Nature (2021). (Accelerated article preview). DOI: 10.
1038/s41586-021-03819-2.

[25] Albert Mestres et al. “Understanding the modeling of computer net-
work delays using neural networks”. In: ACM SIGCOMM BigDAMA
workshop. 2018, pp. 46–52.

[26] Mowei Wang et al. “Machine learning for networking: Workflow, ad-
vances and opportunities”. In: Ieee Network 32.2 (2017), pp. 92–99.

[27] Franco Scarselli, Marco Gori, et al. “The graph neural network
model”. In: IEEE Transactions on Neural Networks 20.1 (2008), pp. 61–
80.

[28] Justin Gilmer et al. “Neural message passing for quantum chemistry”.
In: arXiv preprint arXiv:1704.01212 (2017).

[29] Peter Battaglia et al. “Interaction networks for learning about objects,
relations and physics”. In: Advances in neural information processing sys-
tems. 2016, pp. 4502–4510.

[30] Jie Zhou et al. “Graph neural networks: A review of methods and
applications”. In: arXiv preprint arXiv:1812.08434 (2018).

[31] Oliver Lange and Luis Perez. Traffic prediction with advanced Graph
Neural Networks. 2020. URL: https://deepmind.com/blog/article/
traffic-prediction-with-advanced-graph-neural-networks (vis-
ited on 07/26/2021).

[32] Amina Al-Sawaai et al. “Performance Evaluation of Weighted Fair
Queuing System Using Matrix Geometric Method”. In: IFIP NET-
WORKING. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 66–78. ISBN: 978-3-642-01399-7.

[33] Asha Seth Kapadia, Mohammad Fasihullah Kazmi, and A Cameron
Mitchell. “Analysis of a finite capacity non preemptive priority
queue”. In: Computers & operations research 11.3 (1984), pp. 337–343.

[34] Ilkka Norros. “A storage model with self-similar input”. In: Queueing
systems 16.3 (1994), pp. 387–396.

[35] Peter W Battaglia et al. “Relational inductive biases, deep learning,
and graph networks”. In: arXiv preprint arXiv:1806.01261 (2018).

[36] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

144 Bibliography

[37] Yann LeCun et al. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[38] David Raposo et al. “Discovering objects and their relations from
entangled scene representations”. In: arXiv preprint arXiv:1702.05068
(2017).

[39] Xiaolong Wang et al. “Non-local neural networks”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 7794–7803.

[40] Manzil Zaheer et al. “Deep sets”. In: Advances in neural information
processing systems. 2017, pp. 3391–3401.

[41] Diego Kreutz et al. “Software-defined networking: A comprehensive
survey”. In: Proceedings of the IEEE 103.1 (2014), pp. 14–76.

[42] Albert Mestres et al. “Knowledge-defined networking”. In: ACM SIG-
COMM Computer Communication Review 47.3 (2017), pp. 2–10.

[43] Raouf Boutaba et al. “A comprehensive survey on machine learning
for networking: evolution, applications and research opportunities”.
In: Journal of Internet Services and Applications 9.1 (2018), p. 16.

[44] Krzysztof Rusek and Piotr Chołda. “Message-passing neural net-
works learn little’s law”. In: IEEE Communications Letters 23.2 (2018),
pp. 274–277.

[45] Fabien Geyer and Georg Carle. “Learning and generating distributed
routing protocols using graph-based deep learning”. In: Proceedings of
the 2018 Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks. 2018, pp. 40–45.

[46] Liang Lu et al. “Ranking attack graphs with graph neural networks”.
In: International Conference on Information Security Practice and Experi-
ence. Springer. 2009, pp. 345–359.

[47] Fabien Geyer. “Performance evaluation of network topologies us-
ing graph-based deep learning”. In: Proceedings of the 11th EAI Inter-
national Conference on Performance Evaluation Methodologies and Tools.
2017, pp. 20–27.

[48] Fabien Geyer and Steffen Bondorf. “DeepTMA: Predicting effective
contention models for network calculus using graph neural net-
works”. In: IEEE INFOCOM. 2019, pp. 1009–1017.

Bibliography 145

[49] Fabien Geyer and Georg Carle. “The case for a network calculus
heuristic: Using insights from data for tighter bounds”. In: 2018 30th
International Teletraffic Congress (ITC 30). Vol. 2. IEEE. 2018, pp. 43–48.

[50] Krzysztof Rusek, José Suárez-Varela, et al. “Unveiling the potential of
Graph Neural Networks for network modeling and optimization in
SDN”. In: ACM Symposium on SDN Research. 2019, pp. 140–151.

[51] José Suárez-Varela et al. “Challenging the generalization capabilities
of Graph Neural Networks for network modeling”. In: Proceedings of
the ACM SIGCOMM 2019 Conference Posters and Demos. 2019, pp. 114–
115.

[52] Elias Weingartner, Hendrik Vom Lehn, and Klaus Wehrle. “A perfor-
mance comparison of recent network simulators”. In: 2009 IEEE Inter-
national Conference on Communications. IEEE. 2009, pp. 1–5.

[53] Qizhen Zhang et al. “MimicNet: fast performance estimates for data
center networks with machine learning”. In: Proceedings of the 2021
ACM SIGCOMM 2021 Conference. 2021, pp. 287–304.

[54] Christopher R Palmer and J Greg Steffan. “Generating network
topologies that obey power laws”. In: IEEE Global Telecommunications
Conference (GLOBECOM). Vol. 1. 2000, pp. 434–438.

[55] R.B. Nelsen. An Introduction to Copulas. Lecture notes in statistics.
Springer, 1999. ISBN: 9780387986234.

[56] Xiaojun Hei, Jun Zhang, et al. “Wavelength converter placement in
least-load-routing-based optical networks using genetic algorithms”.
In: Journal of Optical Networking 3.5 (2004), pp. 363–378.

[57] Fernando Barreto et al. “Fast emergency paths schema to over-
come transient link failures in ospf routing”. In: arXiv preprint
arXiv:1204.2465 (2012).

[58] João Pedro, João Santos, and João Pires. “Performance evaluation of
integrated OTN/DWDM networks with single-stage multiplexing of
optical channel data units”. In: International Conference on Transparent
Optical Networks. 2011, pp. 1–4.

[59] Giovanni Giambene. Queuing theory and telecommunications. Vol. 585.
Springer, 2014.

[60] Frank P. Kelly. Reversibility and Stochastic Networks. Cambridge Uni-
versity Press, 2011, p. 230. ISBN: 1107401151.

146 Bibliography

[61] Forest Baskett et al. “Open, Closed, and Mixed Networks of Queues
with Different Classes of Customers”. In: J. ACM 22.2 (Apr. 1975),
248–260. ISSN: 0004-5411. DOI: 10.1145/321879.321887. URL: https:
//doi.org/10.1145/321879.321887.

[62] William J. Stewart. “Numerical Methods for Computing Stationary
Distributions of Finite Irreducible Markov Chains”. In: Computational
Probability. Ed. by Winfried K. Grassmann. Boston, MA: Springer US,
2000, pp. 81–111. ISBN: 978-1-4757-4828-4. DOI: 10.1007/978-1-4757-
4828-4_4. URL: https://doi.org/10.1007/978-1-4757-4828-4_4.

[63] Masaaki Kijima. Markov Processes for Stochastic Modeling. Stochastic
Modeling Series. New York, NY: Springer-Science+Business Media,
B.V., 1997.

[64] Sankar K Pal and Sushmita Mitra. “Multilayer perceptron, fuzzy sets,
and classification”. In: IEEE Transactions on neural networks 3.5 (1992),
pp. 683–697.

[65] Nargess Sadeghzadeh et al. “An MLP neural network for time delay
prediction in networked control systems”. In: 2008 Chinese Control and
Decision Conference. IEEE. 2008, pp. 5314–5318.

[66] Tomáš Mikolov, Stefan Kombrink, et al. “Extensions of recurrent neu-
ral network language model”. In: 2011 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE. 2011, pp. 5528–
5531.

[67] Salem Belhaj and Moncef Tagina. “Modeling and Prediction of the
Internet End-to-end Delay using Recurrent Neural Networks.” In: J.
Networks 4.6 (2009), pp. 528–535.

[68] AysŞe Rumeysa Mohammed et al. “Machine learning and deep learn-
ing based traffic classification and prediction in software defined net-
working”. In: 2019 IEEE International Symposium on Measurements &
Networking (M&N). IEEE. 2019, pp. 1–6.

[69] Sheraz Naseer et al. “Enhanced network anomaly detection based on
deep neural networks”. In: IEEE access 6 (2018), pp. 48231–48246.

[70] José Suárez-Varela, Paul Almasan, Miquel Ferriol-Galmés, et al.
“Graph Neural Networks for Communication Networks: Context,
Use Cases and Opportunities”. In: IEEE Network (2022).

https://doi.org/10.1145/321879.321887
https://doi.org/10.1145/321879.321887
https://doi.org/10.1145/321879.321887
https://doi.org/10.1007/978-1-4757-4828-4_4
https://doi.org/10.1007/978-1-4757-4828-4_4
https://doi.org/10.1007/978-1-4757-4828-4_4

Bibliography 147

[71] Amina Al-Sawaai, Irfan Awan, and Rod Fretwell. “Performance
evaluation of weighted fair queuing system using matrix geomet-
ric method”. In: International Conference on Research in Networking.
Springer. 2009, pp. 66–78.

[72] Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. “Subgroup generalization
and fairness of graph neural networks”. In: Advances in Neural Infor-
mation Processing Systems 34 (2021), pp. 1048–1061.

[73] Gilad Yehudai et al. “From local structures to size generalization in
graph neural networks”. In: International Conference on Machine Learn-
ing. PMLR. 2021, pp. 11975–11986.

[74] Junyoung Chung et al. “Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling”. In: (2014).

[75] Günter Klambauer et al. “Self-normalizing neural networks”. In: Ad-
vances in Neural Information Processing Systems (NIPS). 2017, pp. –.

[76] Miquel Ferriol-Galmés. Building a Digital Twin for Network Optimiza-
tion using Graph Neural Networks. https://github.com/BNN- UPC/
Papers/wiki/TwinNet. 2021.

[77] Krzysztof Rusek et al. “RouteNet: Leveraging Graph Neural Net-
works for network modeling and optimization in SDN”. In: IEEE Jour-
nal on Selected Areas in Communications 38.10 (2020), pp. 2260–2270.

[78] Sally Floyd and Vern Paxson. “Difficulties in simulating the Internet”.
In: IEEE/ACm Transactions on Networking 9.4 (2001), pp. 392–403.

[79] Simon Knight et al. “The internet topology zoo”. In: IEEE Journal on
Selected Areas in Communications 29.9 (2011), pp. 1765–1775.

[80] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. “Random
graphs with arbitrary degree distributions and their applications”. In:
Physical review E 64.2 (2001), p. 026118.

[81] Alexei Botchkarev. “Performance metrics (error measures) in machine
learning regression, forecasting and prognostics: Properties and ty-
pology”. In: arXiv preprint arXiv:1809.03006 (2018).

[82] Sebastian Orlowski, Roland Wessäly, et al. “SNDlib 1.0—Survivable
network design library”. In: Networks: An International Journal 55.3
(2010), pp. 276–286. URL: http://sndlib.zib.de.

https://github.com/BNN-UPC/Papers/wiki/TwinNet
https://github.com/BNN-UPC/Papers/wiki/TwinNet
http://sndlib.zib.de

148 Bibliography

[83] Romain Fontugne, Pierre Borgnat, et al. “MAWILab: Combining Di-
verse Anomaly Detectors for Automated Anomaly Labeling and Per-
formance Benchmarking”. In: ACM CoNEXT ’10. Philadelphia, PA,
Dec. 2010, pp. –.

[84] Stefan Schnitter et al. “Quality-of-service class specific traffic matri-
ces in IP/MPLS networks”. In: ACM Internet Measurement Conference.
2007, pp. 253–258.

[85] Akyildiz et al. “A roadmap for traffic engineering in SDN-OpenFlow
networks”. In: Computer Networks 71 (2014), pp. 1–30.

[86] Frode Sorensen Yiannis Yiakoumis Nick McKeown. Network Tokens.
Internet-Draft draft-yiakoumis-network-tokens-01. Work in Progress.
IETF, June 2020. 28 pp.

[87] Zhenjie Yang et al. “Software-defined wide area network (SD-WAN):
Architecture, advances and opportunities”. In: International Conference
on Computer Communication and Networks (ICCCN). 2019, pp. 1–9.

[88] Haijun Zhang et al. “Network slicing based 5G and future mobile net-
works: mobility, resource management, and challenges”. In: IEEE com-
munications magazine 55.8 (2017), pp. 138–145.

[89] Xiaomin Li, Di Li, et al. “A review of industrial wireless networks in
the context of industry 4.0”. In: Wireless networks 23.1 (2017), pp. 23–
41.

[90] Meryem Simsek et al. “5G-enabled tactile internet”. In: IEEE Journal
on Selected Areas in Communications 34.3 (2016), pp. 460–473.

[91] Rajesh Gupta et al. “Tactile internet and its applications in 5G era:
A comprehensive review”. In: International Journal of Communication
Systems 32.14 (2019), e3981.

[92] Zhe Chen et al. “NEW IP Framework and Protocol for Future Appli-
cations”. In: IEEE/IFIP Network Operations and Management Symposium.
2020, pp. 1–5.

[93] Richard Li. “Towards a new Internet for the year 2030 and beyond”.
In: Annual ITU IMT-2020/5G Workshop Demo Day. 2018, pp. 1–21.

[94] Changhoon Kim et al. “In-band network telemetry via programmable
dataplanes”. In: ACM SIGCOMM, Posters and Demos. 2015, pp. –.

Bibliography 149

[95] Minlan Yu, Lavanya Jose, and Rui Miao. “Software Defined Traffic
Measurement with OpenSketch”. In: Symposium on Networked Systems
Design and Implementation (NSDI). 2013, pp. 29–42.

[96] Steven Gay, Pierre Schaus, and Stefano Vissicchio. “Repetita: Repeat-
able experiments for performance evaluation of traffic-engineering al-
gorithms”. In: arXiv preprint arXiv:1710.08665 (2017).

[97] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. “Graph neural net-
works and the transferability of graph neural networks”. In: Advances
in Neural Information Processing Systems 33 (2020).

[98] Logan Engstrom et al. “Exploring the landscape of spatial robust-
ness”. In: International Conference on Machine Learning. 2019, pp. 1802–
1811.

[99] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. “One
pixel attack for fooling deep neural networks”. In: IEEE Transactions
on Evolutionary Computation 23.5 (2019), pp. 828–841.

[100] Miquel Ferriol-Galmés et al. RouteNet-Erlang.
https://github.com/BNN-UPC/Papers/wiki/RouteNet_Erlang.
2021.

[101] Daniel R Figueiredo et al. “On the autocorrelation structure of TCP
traffic”. In: Computer Networks 40.3 (2002), pp. 339–361.

[102] Zili Meng et al. “Interpreting Deep Learning-Based Networking Sys-
tems”. In: ACM SIGCOMM. 2020, pp. 154–171.

[103] Miquel Ferriol-Galmés et al. RouteNet-Fermi.
https://github.com/BNN-UPC/Papers/wiki/RouteNet_Fermi. 2022.

[104] Krzysztof Rusek. Queuinx. https://github.com/krzysztofrusek/queuinx.
2023.

[105] Miquel Ferriol-Galmés Albert López et al. BNNetSimulator. 2023. URL:
https://github.com/BNN-UPC/BNNetSimulator.

[106] Miquel Ferriol-Galmés et al. “Routenet-erlang: A graph neural net-
work for network performance evaluation”. In: IEEE INFOCOM 2022-
IEEE Conference on Computer Communications. IEEE. 2022, pp. 2018–
2027.

https://github.com/BNN-UPC/Papers/wiki/RouteNet_Erlang
https://github.com/BNN-UPC/Papers/wiki/RouteNet_Fermi
https://github.com/krzysztofrusek/queuinx
https://github.com/BNN-UPC/BNNetSimulator

150 Bibliography

[107] Qingqing Yang, Xi Peng, et al. “DeepQueueNet: Towards Scalable and
Generalized Network Performance Estimation with Packet-Level Vis-
ibility”. In: Proceedings of the ACM SIGCOMM 2022 Conference. SIG-
COMM ’22. New York, NY, USA: Association for Computing Ma-
chinery, 2022, 441–457. ISBN: 9781450394208. DOI: 10.1145/3544216.
3544248. URL: https://doi.org/10.1145/3544216.3544248.

[108] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. “Neural
adaptive video streaming with pensieve”. In: Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication. 2017,
pp. 197–210.

[109] Long Qu, Maurice Khabbaz, and Chadi Assi. “Reliability-aware ser-
vice chaining in carrier-grade softwarized networks”. In: IEEE Journal
on Selected Areas in Communications 36.3 (2018), pp. 558–573.

[110] David Zats et al. “DeTail: Reducing the flow completion time tail in
datacenter networks”. In: Proceedings of the ACM SIGCOMM 2012 con-
ference on Applications, technologies, architectures, and protocols for com-
puter communication. 2012, pp. 139–150.

[111] Elvin Isufi and Gabriele Mazzola. “Graph-time convolutional neural
networks”. In: 2021 IEEE Data Science and Learning Workshop (DSLW).
IEEE. 2021, pp. 1–6.

[112] Rongzhou Huang et al. “LSGCN: Long Short-Term Traffic Prediction
with Graph Convolutional Networks.” In: IJCAI. 2020, pp. 2355–2361.

[113] Alessandro D’Alconzo et al. “A survey on big data for network traffic
monitoring and analysis”. In: IEEE Transactions on Network and Service
Management 16.3 (2019), pp. 800–813.

[114] Myung-Sup Kim, Young J Won, and James W Hong. “Characteristic
analysis of internet traffic from the perspective of flows”. In: Computer
Communications 29.10 (2006), pp. 1639–1652.

[115] Simon Bauer et al. “On the evolution of internet flow characteris-
tics”. In: Proceedings of the Applied Networking Research Workshop. 2021,
pp. 29–35.

[116] Kyunghyun Cho et al. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: arXiv preprint
arXiv:1406.1078 (2014).

https://doi.org/10.1145/3544216.3544248
https://doi.org/10.1145/3544216.3544248
https://doi.org/10.1145/3544216.3544248

Bibliography 151

[117] Minglan Xiong and Huawei Wang. “Digital twin applications in avia-
tion industry: A review”. In: The International Journal of Advanced Man-
ufacturing Technology 121.9-10 (2022), pp. 5677–5692.

[118] Ahmed Zainul Abideen et al. “Digital twin integrated reinforced
learning in supply chain and logistics”. In: Logistics 5.4 (2021), p. 84.

[119] Yiwen Wu, Ke Zhang, and Yan Zhang. “Digital twin networks: A sur-
vey”. In: IEEE Internet of Things Journal 8.18 (2021), pp. 13789–13804.

[120] Paul Almasan et al. “Network digital twin: Context, enabling tech-
nologies, and opportunities”. In: IEEE Communications Magazine 60.11
(2022), pp. 22–27.

[121] Jennifer Rexford. “Route optimization in IP networks”. In: Handbook
of Optimization in Telecommunications (2006), pp. 679–700.

[122] Mowei Wang, Linbo Hui, Yong Cui, et al. “xNet: Improving Expres-
siveness and Granularity for Network Modeling with Graph Neu-
ral Networks”. In: IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE. 2022, pp. 2028–2037.

	Acknowledgements
	Abstract
	Resumen
	Resum
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Objectives
	Contributions
	Outline of the Thesis

	Background
	Graph Neural Networks
	Message-passing Interface
	Initialization Phase
	Message-passing Phase
	Readout Phase

	Machine Learning applied to Computer Networks
	An Overview
	GNNs applied to Computer Networks

	Limitations and Challenges of Current Network Modeling Techniques
	Simulation as a Network Modeling Technique
	Simulation Setup
	Traffic models
	Topologies

	Analytical Models: Queueing Theory
	Design
	Evaluation

	Neural Networks as Network Modeling Techniques
	Multilayer Perceptron
	Design
	Evaluation

	Recurrent Neural Networks
	Design
	Evaluation

	Graph Neural Networks
	Design
	Evaluation

	Challenges of data-driven Network Modeling

	RouteNet-Darwin: Advancing Towards Quality of Service-Aware Network Modeling
	RouteNet-Darwin
	Overview
	Notation
	Network Model
	Proposed GNN Architecture

	Prototype Implementation
	Simulation Setup
	Traffic
	Queueing Configuration
	Topologies

	Machine Learning Framework

	Evaluation
	Baseline
	Performance Metrics
	Accuracy
	Generalization Capabilities
	Experiments with Real Traffic

	Use Case: Optimization
	Network Scenario
	Limitations of State-of-the-Art Optimizers
	SLA-driven Optimization Use Cases
	Methodology
	Routing
	Scheduling
	Routing and Scheduling
	Robustness Against Link Failures
	What-if: Budget-constrained Network Upgrade

	Discussion and Concluding remarks

	RouteNet-Erlang: Enhancing Network Modeling through Scheduling, Traffic Models, and Generalization
	RouteNet-Erlang
	Model Description
	Simulation Setup
	Training

	Evaluation
	Evaluation Methodology
	Traffic Models
	Scheduling Policies
	Generalization to larger topologies
	Inference Speed

	Discussion and Concluding remarks

	RouteNet-Fermi: Unifying Scheduling, Traffic Models, and Generalization in Network Modeling
	RouteNet-Fermi
	Model Description
	Representing network components and their relationships
	Scaling to larger networks: scale-independent features
	Scaling to larger link capacities
	Different output ranges

	Training and Implementation

	Evaluation
	Performance Analysis
	Methodology
	Dataset
	Traffic Models
	Scheduling

	Generalization and Scalability
	Generalization to larger networks
	Few-shot Learning
	Ablation test
	Scalability: Training and Inference time

	Benchmarking of RouteNet-F
	Testbed
	Real Traffic
	State-of-the-Art

	Discussion and Concluding Remarks

	ST-RouteNet: Adding the Temporal Dimension
	Network Scenario
	Flow-Aware Network Model
	Model description

	Experimental evaluation
	Flow Configuration
	Topologies
	Baselines
	Training and evaluation

	Discussion and Concluding Remarks

	Network Performance Digital Twins
	Network Performance Digital Twins
	Architecture
	Administrator Interface
	Network Digital Twin Interface
	Network Interface

	Requirements

	Technologies for Network Performance Digital Twins
	Analytical models
	Packet-level simulators
	Emulators
	Testbeds
	Traditional Neural Networks
	Graph Neural Networks

	Implementation
	User Interface
	RouteNet-F Interface
	Features

	Use Cases
	What-if scenarios
	Network Optimization

	Discussion and Concluding Remarks

	Conclusions and Future Work
	Bibliography

