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Abstract

The emergence of smartphones not only changed the way people uses its phone for, but
it also changed the traffic amount that networks need to carry, increasing the demand
of higher data rates. The overall result was the appearance of fourth-Generation (4G)
networks, and nowadays, the current development of fifth-Generation (5G), implying
the need for more frequency bands, and the application of new techniques such as
Carrier Aggregation (CA), Multiple-Input Multiple-Output (MIMO) antennas, and
so on. All these market driven necessities suppose a great challenge for the Radio-
Frequency (RF) industry, which have been facing the necessity of miniaturization and
band coexistence on its devices since the beginning of mobile communications.

Microwave filters based on Bulk Acoustic Wave (BAW) resonators, have been able
to this day to overcome these limitations. These devices consist in a thin piezoelectric
layer comprised by two metal electrodes, and an acoustic confinement method, which
can be simply made of air or a Bragg reflector. The use of electroacoustic technology
enables to reduce the filter size up to five orders of magnitude, allowing the integration
of multiple filters in handsets. This thesis focuses on modeling some of different
physical phenomena at the resonator level that affect the performance of the filters.

The first part of this thesis is the one regarding the spurious response of BAW
resonators. This response is originated by acoustic waves traveling in the lateral di-
mension of the resonator. These waves couple electromechanically, degrading the filter
response. BAW filters have been capable of overcoming this limitation suppressing
them by the use of different electrode geometries (Apodization), or by surrounding
the electrode by a decreased, or increased frame (Border Ring (BR)). The nature
of these waves is studied through the thesis and several equivalent models are pro-
posed in order to accurately predict them, helping to the design of the correspondent
suppression structures.

One of this thesis contributions regarding the lateral spurious resonances, consists
in making use of a modified Mason model to determine the origin of the additional
spurious resonances generated by the BR. These resonances can be attributed to
an acoustic mode, different from the fundamental, propagating across the resona-
tor stack. By adding nonlinear sources to that model, the Second Harmonic (H2)
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emissions and the impact of the spurious resonances in them, is also studied.

Finally, a new equivalent model based in the Transmission Line Matrix (TLM)
method is proposed for the acoustic cavity of a BAW resonator. This new approach
is able to model resonators with different electrode geometries, in a much faster
way than traditionally used methods like the Finite Element Method (FEM). In
addition, by determining different propagation regions, it can be used to model both
the apodization and the Border Ring at the same time.

The second family of contributions are the ones regarding to the thermoelastic
behavior of the BAW resonators. A solid heats up when compressed and vice versa.
In a harmonic oscillation, when heat is able to flow through the solid regions, this
flow from hotter to colder regions generates a relaxation of the acoustic wave. This
is the Thermoelastic Damping (TED). A thermo-electro-mechanical Mason model is
used for quantifying this source of losses on BAW resonators. The model is compared
with experimental data taken at cryogenic temperatures and an analysis of losses of
the broadband spurious resonances of the Bragg reflector has been performed.
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Resumen

La emergencia de los teléfonos inteligentes no solo cambió la forma en que las per-
sonas usan sus teléfonos, sino que también modificó la cantidad de tráfico que las redes
deben manejar, aumentando la demanda de tasas de datos más altas. El resultado
general fue la aparición de las redes 4G y, en la actualidad, el desarrollo actual de
las redes 5G, lo que implica la necesidad de más bandas de frecuencia y la aplicación
de nuevas técnicas como la Carrier Agregation (CA), antenas MIMO, etc... Todas
estas necesidades impulsadas por el mercado suponen un gran desaf́ıo para la in-
dustria de Radiofrecuencia (RF), que ha enfrentado la necesidad de miniaturización
y coexistencia de bandas en sus dispositivos desde el inicio de las comunicaciones
móviles.

Los filtros de microondas basados en resonadores de Onda Acústica de Volumen
(BAW, por sus siglas en inglés) han logrado hasta el d́ıa de hoy superar estas lim-
itaciones. Estos dispositivos consisten en una delgada capa piezoeléctrica compuesta
por dos electrodos metálicos y un método de confinamiento acústico, que puede ser
simplemente aire o un reflector de Bragg. El uso de tecnoloǵıa electroacústica permite
reducir el tamaño del filtro hasta en cinco órdenes de magnitud, lo que permite la in-
tegración de múltiples filtros en dispositivos móviles. Esta tesis se centra en modelar
los diferentes comportamientos f́ısicos a nivel de resonador que afectan el rendimiento
de los filtros.

La primera parte de esta tesis se refiere a la respuesta espuria de los resonadores
BAW. Esta respuesta es originada por ondas acústicas que viajan en la dimensión
lateral del resonador. Estas ondas se acoplan electromecánicamente, degradando
la respuesta del filtro. Los filtros BAW han sido capaces de superar esta limitación
suprimiéndolos mediante el uso de diferentes geometŕıas en los electrodos (apodización),
o rodeando el electrodo con un marco de grosor reducido o aumentado (Border Ring).
La naturaleza de estas ondas se estudia a lo largo de la tesis y se proponen varios
modelos equivalentes para predecirlas con precisión y diseñar las correspondientes
estructuras de supresión.

Una de las contribuciones de esta tesis con respecto a las resonancias espurias
laterales consiste en utilizar un modelo de Mason modificado para determinar el
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origen de las resonancias espurias adicionales generadas por el Border Ring. Estas
resonancias pueden atribuirse a un modo acústico, diferente del fundamental, que se
propaga a través del conjunto del resonador. Al agregar fuentes no lineales a ese
modelo, también se estudian las emisiones del segundo armónico (H2, por sus siglas
en inglés) y el impacto de las resonancias espurias en ellas.

Finalmente, se propone un nuevo modelo equivalente basado en el método de
la Matriz de Ĺınea de Transmisión (TLM, por sus siglas en inglés) para la cavidad
acústica de un resonador BAW. Este nuevo enfoque puede modelar resonadores con
diferentes geometŕıas de electrodos de manera mucho más rápida que los métodos
tradicionalmente utilizados como el Método de Elementos Finitos (FEM, por sus
siglas en inglés). Además, al determinar diferentes regiones de propagación, puede
utilizarse para modelar tanto la apodización como el Border Ring al mismo tiempo.

La segunda familia de contribuciones se refiere al comportamiento termoelástico
del resonador BAW. Un sólido se calienta cuando se comprime y viceversa. En una
oscilación armónica, cuando el calor puede fluir a través de las regiones del sólido, este
flujo de regiones más calientes a más fŕıas genera una relajación de la onda acústica
que se conoce como amortiguamiento termoelástico. En esta tesis de describe la
utilización de un modelo Mason termo-electro-mecánico para cuantificar esta fuente
de pérdidas en resonadores BAW. El modelo se compara con datos experimentales
tomados a temperaturas criogénicas y con un análisis de pérdidas de las resonancias
espurias fuera de banda originadas en el reflector de Bragg.
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Chapter 1

Introduction

1.1 Context

The emergence of smartphones not only changed the way people uses its phone for, but
it also changed the traffic amount that networks need to carry, increasing the demand
of higher data rates. The overall result was the appearance of 4th Generation (4G)
networks, and nowadays, the current development of 5th Generation (5G), implying
the need for more frequency bands, and the application of new techniques such as
Carrier Aggregation (CA), Multiple-Input Multiple-Output (MIMO) antennas, and
so on. All these market driven necessities suppose a great challenge for the Radio-
Frequency (RF) industry, which have been facing the necessity of miniaturization and
band coexistence on its devices since the beginning of mobile communications.

Microwave filters for mobile applications have been one of the most affected
components by the stringent specifications imposed by the 4G and 5G standards.
But it is not only the necessity of a better performance, due to the increase of bands,
the number of resonators needed is increasing up to a hundred per handset, being the
size of the filters a critical factor on their design [1].

Two decades ago, the size of an overall ceramic based duplexer was about 20
mm long per 5 mm wide [2], it is clear to see that ceramic filters became too big to
fit into an actual RF front end. The solution was in the electroacoustic technology,
based in the conversion of the electromagnetic wave into an acoustic one by the
piezoelectric effect, the use of this filters allow us to reduce their size by about 5
orders of magnitude.
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1.2 Electroacoustic resonators

The first candidates from the electroacoustic family to substitute the ceramic filters,
were the Surface Acoustic Wave (SAW) filters developed in the 60s. They are based
on a surface propagated acoustic wave excited by interdigital transducers. SAW filters
offer acceptable Quality Factor (Q) values at a reduced size, but when going up the
3 GHz operational frequency, their performance decreases drastically. Another alter-
native for the SAW filters is the Bulk Acoustic Wave (BAW) technology, developed
in the late 90s and based on a thickness propagated wave in a piezolayer between two
parallel electrodes. BAW filters offered better Q values, and higher power handling
on higher operational frequency, albeit they have a higher manufacturing cost [3]. On
Fig.1.1 a BAW resonator and a SAW resonator can be seen.

Figure 1.1: BAW and SAW resonators. In the middle an equivalent circuital model
for electroacoustic resonators. [4].

For these reasons, coexistence of these two electroacoustic technologies is com-
mon on the mobile phone scenario. Although, the needs to go up in frequency and
to achieve high performing filters due 5G networks, puts BAW technology in an in-
teresting place, with the need to overcome the performance degradation that arises
from the more pronounced edge effects (such as spurious modes, lateral leakage...),
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and an at least linear increase in acoustic losses [5].

BAW filters are composed of several BAW resonators disposed in different topolo-
gies. The resonators can be electrically coupled (ladder, lattice...), or acoustically
coupled (Stacked Crystal Filter, Coupled Resonator Filter...). Selecting one or other
topology allow us to overcome some flaws on the resonator design, but to ensure the
best functioning of the overall filter, the BAW resonator itself is of major concern.

The first work on thin film BAW resonators made of AlN was done by Lakin in
the 80s [6], and set the basis for the resonators used today. It was followed by the de-
velopment of Film Bulk Acoustic Resonator (FBAR) and Solidly Mounted Resonator
(SMR). The main difference between the FBAR and the SMR is the wave confine-
ment method. FBAR resonators use an air cavity between the bottom electrode and
the substrate(Figure 1.2a), while SMR use a Bragg reflector that acts as an acoustic
mirror (Figure 1.2b).

Figure 1.2: (a) FBAR resonator. (b) SMR resonator.

The electrical response of a resonator is quite similar for a FBAR and a SMR. Due
to the different wave confinement method, FBAR presents better electromechanical
coupling and Q factor, although SMRs present a better heat dissipation having more
contact surface to the substrate [7].

1.3 BAW devices’ state of the art

By the 2010s, BAW filters dominated the market for nearly all high end mobile
devices [8]. BAW resonators of that time were exhibiting Q factors up to 4000.
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Nowadays BAW resonators exist up to 8 GHz [9]. These BAW resonators performing
at high frequencies for 5G and WiFi6E networks are facing new challenges related to
their performance.

Since the thickness of the piezoelectric layer scales with 1/f , in order to achieve
the 50 Ω port impedances in the filters, the resonator´s area will scale in size with
1/f 2 [5]. Reducing the resonator’s area makes the resonator more prone to the spu-
rious modes generated by the modes propagating along the lateral dimensions of the
resonators. Another effect related to the area shrinking of the resonator is the increase
of the electrode’s edge to area ratio. BAW resonators with larger perimeters exhibit
higher lateral leakage, these contributes to a decrease on the resonator’s acoustic
Qs [5].

To suppress these lateral spurious modes, a decreased or increased frame is de-
posited along the resonator’s perimeter. This frame, the Border Ring (BR) is de-
termined by the dispersive behavior of the laterally propagating modes. Due to the
perimeter to area ratio increase, the spurious modes of this frame structure are be-
coming stronger [9].

The nonlinear behavior of BAW resonators has also been a matter of interest in
recent years. The modeling of these effects is crucial to achieve linear filter responses.
The generated harmonics and intermodulation products can generate interference
signals that can desensitize the handset’s receiver [10]. This effect becomes more
important for devices using CA.

The shrinkage of the resonator’s area also increases these undesired nonlinear
effects. Smaller areas lead to worse power dissipation, and the nonlinear emissions of
these more prominent lateral resonances become a problem if they are not correctly
suppressed at the filter level. To suppress the Second Harmonic emissions (H2),
two identical resonator’s can be connected in antiparallel [11]. Although an slight
mismatch in the two employed resonators can result in the H2 cancellation level
degradation. The lateral spurious resonances can play a role on mismatches due to
process variations.

Another performance characteristic of BAW resonators that is being degraded at
higher operational frequencies is the Q factor due to acoustic damping. These losses
are increasing at least linearly with frequency [5]. One of the loss mechanisms that
is attracting the interests of BAW resonator designers is the thermoelastic damping
(TED). This source of material damping is caused by the heat generated due to the
propagating acoustic wave, and its propagation along the solid extracts energy from
the vibration [12]. When the thickness of the resonator’s layers is decreased, the
thermal path is being also reduced. This reduction increases the losses due to the
thermoelastic damping mechanism.

Modeling all these effects is becoming crucial to accurately design BAW res-
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onators for the newly developed frequency bands.

1.4 Statement of contributions

This thesis is focused in modeling the physical behaviors that degenerate the perfor-
mance of BAW resonators. It is centered on the acoustic physics of the resonator, the
lateral modes propagating along the stack, and the loss mechanisms that occur and
degrade the Q Factor.

The first group of contributions are the ones related to these lateral modes.
Several models are proposed to explain the behavior of the so called Lamb waves.
Based on a Mason circuital model with an added dispersive transmission line to
model the lateral dimensions, several performance degradation effects are studied.
The first one is related to the Border Ring (BR) resonances that appear on the electric
impedance of an SMR. Here the modified Mason model is used to explain that effect.
The other one studied with that model are the second harmonic emissions (H2) of an
SMR. In order to do so, the modified Mason model is expanded with the nonlinear
constitutive relations to model the effect of the laterally propagating modes on the
H2 response of the resonator.

To improve the modeling capabilities, a model based on the Transmission Line
Matrix (TLM) method was derived for modeling a BAW resonator in two dimensions.
That model is later expanded for modeling a 3D resonator. These new models give an
improvement on the BR modeling capabilities, and enable simulations of any in-plane
geometry of the electrodes.

The second group of contributions are related to the thermoelastic damping.
Thermoelastic damping is one of the loss mechanisms that take place on a BAW
resonator. This damping mechanism is expected to grow with frequency, so it is one
of the main concerns for resonators operating at the new above 5 GHz bands. In this
work, the Mason model is modified with the electro-thermo-mechanical constitutive
relations, that add the thermal domain to the resonator physics. This model is able
to predict the heat propagation along the resonator layers and consequently modeling
the thermoelastic effect.

The model is validated with electric measurements of resonators at cryogenic
temperatures, showing a good explanation of the loss effects measured at that tem-
peratures. Also a study of the different Bragg reflector layers resonances that appear
on SMR resonators was done. The Q Factor for these resonances is not correctly
predicted by traditional loss models such as viscoelasticity, and the thermoelastic
damping model is able to give an explanation at a broad range of frequencies.
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Chapter 2

BAW Devices

This chapter explains the basics of electroacoustic resonators, specifically the Bulk
Acoustic Wave resonators. On the first section the basic physics undergoing into a
BAW resonator are introduced to the reader. Here some concepts such as piezoelec-
tricity and the resonator’s input electrical impedance Zin are presented.

The following sections introduce some of the electroacoustic resonator figures of
merit, the electromechanical coupling and the Q factor. The first characterizing the
electromechanical transduction of the device, and the later characterizing the losses
on the resonator. A brief introduction to common loss mechanisms in BAW resonators
is also given.

Finally, the two main circuital models for BAW resonators, the Butterworth-van
Dyke and the Mason model, are derived and presented to the reader.

2.1 Fundamentals of electro-acoustic BAW devices

BAW resonators transform the electromagnetic wave into an acoustic wave confined
in it. That conversion is possible by the piezoelectric effect, which transforms elec-
trical energy into mechanical, and vice versa. In an acoustic wave propagating in a
crystalline material like the ones used on BAW resonators, the propagation velocity
is about five orders of magnitude lower than in electromagnetic waves, allowing to
make that devices smaller.

As described in [3], let us consider a piezoelectric material plate of thickness 2d,
and infinitely thin electrodes located on the top and the bottom of the plate (Figure
2.1). Due to the piezoelectric effect, the electric field created between the electrodes
generates an acoustic wave that propagates in the thickness of the plate. Supposing
that the plate is situated in a vacuum medium, intuition tells us that the wave will
be reflected at the interfaces since mechanical waves do not propagate on vacuum.
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Figure 2.1: Mechanical resonances on a plate of thickness 2d. The stress fields asso-
ciated with the resonances are plotted. [3].

This structure will mechanically resonate when the incident and the reflected
waves add up in phase somewhere within the structure. To achieve that, the plate
thickness has to be a multiple of half-wavelengths at the resonance frequency. Con-
sidering the wave traveling with an acoustic velocity v, the mechanical resonance
condition of the plate is

ωn = (n+ 1) · π
2
· v
d
, n = 1, 2, 3... (2.1)

where n represents each of the resonance modes corresponding to each multiple of
half-wavelengths. From (2.1) we can notice that using a piezoelectric material like
AlN to obtain a 2 GHz resonator a plate thickness of roughly 3 µm will be needed.
That size is interesting for mobile phone manufacturers that are always struggling
with a very limited space for the RF module.

The truth is that a piezoelectric driven resonator it is not going to behave like
that. The previous case was a purely mechanical system that does not take into ac-
count the electric excitation of that waves. To understand the piezoelectric resonator
nature, basic theories that govern piezoelectric resonators need to be described.

Piezoelectric materials due to its internal lattice symmetries, generate electric
fields when deformed and vice versa. When a stress (T ) is applied to the crystal an
strain (S) is generated, this deformation will cause a change in polarization (P ) due
to ion displacements

P = (χion + χe)E + eS, (2.2)

where e is the piezoelectric constant, χion and χe are the ion and the electronic
susceptibility, E is the electric field, and S the strain. This polarization will generate
changes on the electric displacement field (D) [13].

To derive the constitutive relations of the mechanical and electric domains, we
will use of the variation of internal energy (U) in a piezoelectric solid taking only into
account the z -direction [13]:

dU = Θdσ + T3dS3 + E3dD3 (2.3)
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here, Θ is the absolute temperature and σ the entropy. The subscripts indicate that
all the fields are in the z -direction. Since we need σ, S3 and E3 as independent
variables, the electric Gibbs potential (G = U − E3D3 − σΘ). Assuming entropy to
remain constant (dσ = 0), the stress and the electric displacement of the piezoelectric
solid can be calculated as

T3 =

(
∂G

∂S3

)
E

and D3 = −
(
∂G

∂E3

)
S

.

After some manipulation we arrive to the final constitutive relations:

T3 = cE33S3 − e33E3

D3 = e33S3 + εS33E3.
(2.4)

Here the stiffness constant cE33 = (∂T3/∂S3)E, is introduced. Relating the rate of
change of the stress due to strains. The electric permittivity εS33 = (∂D3/∂E3)S, is
the rate of change of the electric displacement fields due to variations of the electric
fields. The superscripts indicate that the constants need to be evaluated under specific
conditions (e. g. cE indicates stiffness under a constant electric field), while the
subscripts indicate the field direction.

The two domains are related by the piezoelectric effect. The first equation on
(2.4) reflects the emergence of stress on a piezoelectric material caused by an external
electric field, and they are related by the piezoelectric constant e33. That is called
the direct piezoelectric effect. The second one, reflects the inverse piezoelectric effect,
relating how internal deformations contribute to the electric displacement, and is
also related by e33. Making use of the symmetry of second derivatives, it can be
demonstrated that the piezoelectric constant is the same for the direct and the inverse
piezoelectric effect:(

∂2G

∂E3∂S3

)
=

(
∂T3
∂E3

)
S

= −
(
∂D3

∂S3

)
E

= −e33. (2.5)

For simplicity, subscripts will be dropped off this chapter, so it is assumed that
every component will act in the z -direction.

Another important equation is the Newton’s second law relating a force with
mass and acceleration

∂T

∂z
= ρm

∂2u

∂t2
, (2.6)

here ρm is the material mass density. For a non-piezoelectric medium if we insert
(2.4) on (2.6), we end up with the wave equation:

∂2u

∂t2
,=

c

ρm

∂2u

∂z2
. (2.7)
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The phase velocity of the wave is defined as

vp =

√
cE

ρm
, (2.8)

it should be emphasized that the phase velocity has nothing to do with the particle
velocity.

If the wave described in (2.7) propagates in the same direction than the applied
electric field, the constitutive relations (2.4) are no longer valid since are implying
constant electric field in the propagation direction. Applying a variable substitution
on (2.4), we end up with

T = cE
(
1 +

e2

cEεS

)
S − e

εS
D = cDS − e

εS
D, (2.9)

where the superscript D indicates that the parameters are defined under a constant
electric displacement. Using (2.9) to derive the wave equation (2.7), some changes
can be seen on the phase velocity

vDp =

√
cD

ρm
= vp ·

√
1 +K2. (2.10)

In (2.10), one of the piezoelectricity effects on the system can be seen: the acoustic
velocity is higher than on the one of the simply mechanical case, deduced from the
parameter cE, that is because the piezoelectric effect stiffens the material being cD >
cE. In (2.10) a new parameter was defined, it is the material electromechanical
coupling factor K2, given by

K2 =
e2

cEεS
, (2.11)

that depends of the material and it is a measure of conversion efficiency between
electrical and acoustical domains in a piezoelectric.

2.2 Electric Impedance

In order to derive the electric impedance (Zin) for the piezoelectric plate showed in
Figure 2.1, we will make use of the following Ansatz for a time-harmonic acoustic
wave propagating in the thickness z direction:

u(z) = [a · sin(kz) + b · cos(kz)] · ejωt (2.12)

where ω is the angular frequency, k = ω/vDp is the wave number, and constants a and
b are determined by the boundary conditions.
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Inserting (2.12) in (2.9) the stress becomes

T (z) = cDk · [a · sin(kz) + b · cos(kz)]− e

εS
D, (2.13)

the term ejωt will be omitted from this point to keep the text more readable. All
equations imply time harmonic fields albeit the contrary is indicated.

If the boundary condition of vanishing stress at the upper and lower surfaces of
the plate is applied, T (±d) = 0 [3], we obtain

T (z) =
eD

εS

[
cos(kz)

cos(kd)
− 1

]
. (2.14)

The electrical response of the device is determined by its impedance Zin

Zin =
V

I
(2.15)

being V the electric potential and I the current intensity. The former is defined
between the two electrodes as

V =

∫ d

−d
E(z) dz (2.16)

The same variable substitution performed on (2.9) is applied on (2.4) to obtain

E = − e

cDεS
T +

(
1

εT
− e2

cDεS

)
D, (2.17)

the electric potential at the electrodes is obtained integrating (2.17):

V =
2dD

εS

[
1− e2

cDεS
· tan(kd)

kd

]
(2.18)

On a dielectric material such as the piezolayer, a pure displacement current is
generated between the electrodes, J = ∂D/∂t. So, the current at the terminals is

I = jωA ·D (2.19)

being A the electrode area of the device. By the use of (2.18) and (2.19), the input
impedance of the resonator is obtained:

Zin(ω) =
1

jωC0

[
1−K2

t ·
tan(kd)

kd

]
. (2.20)
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Here, another electromechanical coupling factor is introduced, defined as

K2
t =

e2

cDεS
=

K2

K2 + 1
, (2.21)

this is the electromechanical coupling factor for thickness-longitudinal modes and for
weak piezoelectrics, like AlN and ZnO, can be approximated K2

t ≈ K2. The term C0

is the static capacitance, given by

C0 =
εSA

2d
. (2.22)

The device will resonate when the reactance or susceptance of the resonator
equals zero, assuming Zin is purely reactive, the series resonances will arise when
Zin = 0, and the parallel resonances (or antiresonances) when Zin → ∞ (or when the
admittance Y = 1/Z equals zero). So, from (2.20) the antiresonance frequencies can
be obtained as

ωa,n = (2n+ 1) · π
2
·
vDp
d
, n = 1, 2, 3... (2.23)

The resonant frequency for the main resonating mode is therefore obtained from
the following relation

tan
(
π
2
· ωr

ωa,0

)
π
2
· ωr

ωa,0

=
1

K2
t

. (2.24)

If (2.23) is compared to the initially proposed in (2.1), it can be seen that in the
one developed by the piezoelectric constitutive relations, asymmetric modes are not
excited.

In Figure 2.2 one can see how at the resonance frequency the magnitude of the
impedance tends to zero and the phase passes through zero, and how at the antires-
onance frequency the phase passes through zero another time while the magnitude
tends to infinity. Also, as described in (1.22) the separation between the resonance
and antiresonance frequencies is determined by K2

t .

2.3 Effective electromechanical coupling

On the previous section the material electromechanical coupling factor (K2), and
the electromechanical coupling factor for the thickness extensional mode (K2

t ) were
introduced. This latter coefficient corresponds to the coupling on a piezolayer with
infinitesimal electrodes. Since, we are discussing BAW resonators, it is more inter-
esting to measure the conversion efficiency of the whole resonator structure. In [14],
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Figure 2.2: Magnitude (continuous line) and phase (dotted line) of the impedance of
a resonator. The electromechanical coupling

a formula for calculating the effective coupling coefficient (k2eff ) of the stack was
provided:

k2eff =
U2
m

UeUd
(2.25)

Ue =
1

2

∫
Ω

TsET dV

Um =
1

4

∫
Ω

(TdE + EdT ) dV

Ud =
1

2

∫
Ω

EεTE dV.

(2.26)

These energies are identified as elastic (Um), electric (Ud), and mutual energy
(Um). In a resonator with real electrodes, we can expect the k2eff to differ from the
one obtained in an ideal BAW piezolayer, since the field patterns across the piezolayer
and the electrodes will differ from (2.13) [3]. In this case the metal electrodes play
also a role in the acoustic domain, since the acoustic wave is able to propagate into the
metal layers Figure 2.3. For this simple case the expression of the effective coupling
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coefficient for the fundamental mode will end as [3]:

k2eff =
e2

εScD
· 8

π2

cos2
(
π

2
· t

d+ t

)
(
1− t

d+ t

) . (2.27)

For this simple case, we can find the maximum coupling about at the electrode
thickness ratio of t/(d+ t) ≈ 0.26. A more realistic case will be the one corresponding
to electrodes with different acoustic impedance than the piezolayer (Figure 2.4). For
the latter case, it is no possible to derive a closed form expression by means of (2.25),
so numerical methods are needed.

Figure 2.3: Geometry of a resonator with electrodes of thickness t of the same material
of the piezolayer. The stress field is shown with a solid line and the displacement with
a dashed line [3].

Figure 2.4: Geometry of a resonator with electrodes of thickness t with the acoustic
impedance of the electrodes higher than the one of the piezolayer. The stress field is
shown with a solid line and the displacement with a dashed line [3].
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2.4 Losses on BAW resonators

On this section a brief overview of the sources of losses on BAW resonators will be
given and a basic model of losses on BAW resonators will be derived.

2.4.1 Sources of losses

The basic loss mechanisms on BAW resonators can be grouped in three categories [3]:

� Electrical losses.

� Acoustic attenuation.

� Leaking waves.

� Thermoelastic damping.

Electrical losses are the ones concerning the electric resistivity of the metal elec-
trodes, following Ohm’s law the intrinsic resistivity of the electrode materials will play
a role near the resonant frequency of the resonator (fr), where the electric currents
are largest. Other effect that plays a role on the resistive losses of the electrodes
are the ones due to nonuniform stress distributions generated by the lateral acous-
tic propagation. These nonuniform stress distributions lead to eddy currents on the
electrodes generating additional losses due to the Joule effect [15].

Acoustic attenuation takes place in the wave propagating in the piezolayer. This
effect can be understood as a relaxation constant for the time derivative of the strain
S [13]. We will assume that the entropy will remain constant since there are no
thermal effects involved like for (2.4), so the constitutive equations will end as:

T3 = cE33S3 + η33Ṡ3 − e33E3

D3 = e33S3 + εS33E3.
(2.28)

Here, η33 is the viscosity. Neglecting the thermal effects with the introduction
of losses seems quite naive at first glance. It is well-known that the introduction of
irreversible thermodynamic processes, i. e. losses, lead to an increase of the system’s
entropy [16]. Nevertheless since we are dealing with small harmonic motions we will
assume all thermal effects to be negligible. This is not the case for BAW resonators
working at high power levels [17]. In [18], thermal effect on a BAW resonator are
modeled with the use of the full constitutive relations.

The viscoelastic process is analogous to the Kelvin-Voigt viscous damping model
(Figure 2.5) [12]:

T = ES + ηṠ (2.29)

in this model, E stands for the Young modulus of the material. Since we are dealing
with harmonic motions, viscosity can be inserted into a complex stiffness constant
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Figure 2.5: Kelvin-Voigt model for viscous damping.

making use of the time harmonic derivative:

T = (c+ jωη) · S. (2.30)

For the acoustic wave propagating in the material, one can extract a complex
propagation constant

k = jα + β, (2.31)

here β is the phase constant and α can be approximated as [3]:

α =
ηω2

2v3pρm
. (2.32)

The third group of loss mechanisms are leaking waves. These waves are the ones
regarding the leakage of acoustic energy outside the resonator structure. On SMRs
some acoustic energy is leaked through the Bragg mirror contributing to the overall
acoustic losses. Another source of leaking is across the lateral boundaries of the
resonator.

The thermoelastic damping is a source of losses in longitudinal acoustic waves
due to internal heat propagation on the crystal. This source of loss will be explained
in more detail in Chapter 4.

2.4.2 Q factor of a resonator

In order to measure the energy dissipation of a resonator, the Q factor is introduced.
The Q factor is the relation of the energy stored on the resonator and the energy
dissipated per cycle. From this definition is noticeable the relation between the Q
factor and the attenuation. The Q factor is defined as:

Q = 2π
energy stored

energy dissipated per cycle
= 2πf

energy stored

power loss
. (2.33)
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For any one-port resonator, the following expression can be derived [19], [20], [21]:

Q = 2πf

∣∣∣∣dS11

dω

∣∣∣∣
1− |S11|2

, (2.34)

here, the scattering parameter S11 correspond to the reflection coefficient of the re-
sonator. This method can be easily used to extract the Q factor of the resonator’s
electrical measurements.

2.5 BAW models

In order to model the one-dimensional behavior of BAW resonators, the Butterworth-
Van Dyke model (BvD) and the Mason model are the most commonly used.

2.5.1 Butterworth van Dyke (BvD) model

In [22], an equivalent circuit for the input impedance of a resonator is derived. From
(2.20) it is clear that the resonator can be described by a capacitance C0 in parallel
with an acoustic arm, comprised by an inductance (L1) and a capacitance (C1) in
series (Figure 2.6) [23]. The analytical expression of the impedance takes the form:

Z(ω) =
j(ωL1 − 1/ωC1)

1− ω2C0L1 + C0/C1

, (2.35)

where we can define the series and parallel resonances as:

ωr =
1√
L1C1

(2.36)

ωa =

√
C1 + C0

L1C1C0

= ωr ·
√

1 +
C1

C0

. (2.37)

This circuit does not include losses. In [24], the modified Butterworth-van Dyke
(mBvD) is presented. This circuit adds three resistors to take into account for losses.
The values of the resistors can be approximated to the Q factors at series and parallel
resonances.

Qs ≈
ωrL1

Rs +R1

(2.38)

Qp ≈
ωaL1

R0 +R1

(2.39)

Because of the simplicity of this model, it is commonly used for designing any
type of acoustic filter [3].
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Figure 2.6: BvD model with a motional arm for the fundamental mode. [3]

Figure 2.7: mBvD model with a motional arm for the fundamental mode. [3]

2.5.2 Mason model

The model previously derived works well when the effect of the electrodes is negligible
(e. g. traditional crystal resonators). In thin film resonators, the metalized layers
are no longer negligible since they add an additional mass to the system, also, SMRs
are comprised of several layers. Being able to model these structures is crucial to
accurately predict the BAW resonator behavior.

In order to model multi-layered structures on the thickness direction z, the Mason
model is introduced [25], [22]. For a non-piezoelectric layer of thickness 2d, manipulat-
ing (2.12), and introducing the particle velocity v = jωu, the acoustic characteristic
impedance Z = ρmvpA, and the force as F = −TA, the force at the upper and lower
surfaces of the solid will become:

F1 =
Z

j sin(2kd)
· [v(z1)− v(z2)] + jZ · tan(kd) · v(z1) (2.40)

F1 =
Z

j sin(2kd)
· [v(z1)− v(z2)] + jZ · tan(kd) · v(z2) (2.41)
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Figure 2.8: T-network modeling an acoustic transmission line [3].

From this, equivalences between the acoustic and electrical variables can be es-
tablished: the particle velocity v at the boundaries with the current intensity I, and
the forces F at the boundaries with the electric potential V . Looking at (2.40) and
(2.41) an equivalent circuit can be identified composed by a T-network modeling an
acoustic transmission line with two ports (Figure 2.8).

For a piezolayer, using the constitutive relation (2.13), (2.19), and setting h =
e/εS the mechanical forces at the surfaces become:

F1 =
Z

j sin(2kd)
· [v(z1)− v(z2)] + jZ · tan(kd) · v(z1) +

h

jω
· I (2.42)

F1 =
Z

j sin(2kd)
· [v(z1)− v(z2)] + jZ · tan(kd) · v(z2) +

h

jω
· I (2.43)

The electric potential at the electrodes is obtained integrating (2.17):

V =

∫ z2

z1

E dz =
dD

εS
− h [u(z2)− u(z1)] , (2.44)

by the use of (2.19), (2.22), the current intensity between the electrodes become:

I = C0jωV − C0h [v(z2)− v(z1)] . (2.45)

After some manipulation the Mason model is obtained (Figure 2.9). Using the
Mason model, different layers can be interconnected, this way it is possible to model
structures such as the SMRs and any transmission effect in the longitudinal dimension.
As discussed on Section 2.4, attenuation can be introduced by means of a complex
propagation constant k = jα + β.
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Figure 2.9: Mason model. Below it can be seen its implementation for a multi-layer
resonator. On the left it represents a stress free boundary (acoustic short) and on the
right a thin substrate layer modeled by a load [3].

2.6 Summary

Following the basic physical principles of piezoelectric solids, the electric input impedance
of the resonator is presented in the first two sections. From this starting point the
reader is presented to the effective electromechanical coupling of the resonator, and
the role it has for the frequency spacing of the resonance and the antiresonance. Also,
a brief explanation of how it becomes affected by the resonator’s stack is given.

Loss mechanisms in BAW resonators are the other concern regarding their per-
formance discussed on this chapter. Some of the main loss sources are discussed and
a basic phenomenological model is derived. From this, the resonator’s Q factor is
presented, being the main performance indicator of the losses in a BAW resonator.

A basic circuital model for electroacoustic resonators, the BvD model is derived in
the following section, being the common choice by filter designers due to its simplicity.
Finally the Mason model is explained, giving a more physics based model, where the
contribution of each resonator’s layer can be taken into account.
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Chapter 3

Modeling Lamb Waves on BAW
Resonators

In a real resonator, and due to the nature of elastic vibrations in plates, a Lamb
wave is excited [13]. This wave will propagate along the resonator’s lateral dimension
and is the responsible of the main resonance. For a laterally infinite BAW resonator,
the physics described in Chapter 2 are perfectly valid. But due to this laterally
propagating wave some spurious resonances arise in the electrical input impedance of
the resonator.

In the following section, the physics of this Lamb wave will be presented to the
reader, followed by a brief explanation of how these spurious resonance are excited.
The basic suppression mechanisms of these resonances will also be explained through
this section.

The next sections will deal with the physical modeling of the BAW resonator tak-
ing these resonances into account. In order to model the lateral effects of a BAW reso-
nator, Finite Element Method (FEM) simulations are mostly used. Two-dimensional
simulations are performed to obtain the stack’s Lamb modes and their dispersion
curves [26]. However, when aiming to simulate the behavior of an in-plane arbitrary
shaped resonator, three-dimensional FEM simulations are mandatory [27]. Despite
the reliability of FEM, their memory and computational power requirement are ex-
tremely heavy, especially for solidly mounted resonators (SMR) with many layers in
their stack [28].

In Chapter 2, some models for the one-dimensional BAW resonator where ex-
posed. The BvD model is capable of representing all that spurious resonances caused
by Lamb modes with the use of additional motional branches. It is important al-
though the development of models capable of simulating the lateral dimension of a
resonator.

36



On the last decade, Mason based models [29], [30], and analytical solutions for
the 2D simulations [31], [32], have been proposed. These models have the advantage
of being much faster than FEM, but they are only able to model simple in-plane
geometries.

Through this thesis several circuital models making use of dispersive transmission
lines were developed. The first family of models are implemented by modifications
of the Mason model. A dispersive acoustic transmission line is coupled to the Mason
model adding the additional lateral dimensions. By these means, the suppression of
the Border Ring as well as nonlinear effects can also be modeled.

The second family implements the Transmission Line Matrix (TLM) method to
give more flexibility when modeling any in-plane electrode geometry. It enables the
modeling of both 2D and 3D resonators, and suppression methods such as apodization
and Border Ring as well.

3.1 Lamb waves on BAW resonators

The nature of plate waves was studied between the end of the XIX century and the
beginning of the XX century, by Lord Rayleigh [33] and Lamb [34]. They ended
up with the so called Lamb waves, that are the ones that arise on a BAW resona-
tor. Sadly, the Rayleigh-Lamb equation does not have an analytical solution, being
impossible to obtain an exact solution of the wave propagating modes. During the
XX century, methods were developed in order to give approximate solutions to the
Rayleigh-Lamb equation. A more modern approach to the work of Lamb can be seen
on [35] and [13].

On an isotropic plate, Longitudinal acoustic waves (L) and Transverse Vertical
acoustic waves (TV) are coupled at the interfaces. When an incident longitudinal
wave arrives to a free surface, it generates reflected longitudinal and transverse vertical
waves. The same applies for incident transverse vertical waves (Figure 3.1) [13].

Figure 3.1: L and TV waves on a plate. When each of these incident waves arrives
to a free surface, generates two reflected L and TV waves [13].

To analyze the wave propagation on an isotropic plate the Helmholtz decompo-
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Figure 3.2: Isotropic plate.

sition is used for the displacement vector, giving an scalar potential ϕ, and a vector
potential Ψ

u = ∇ϕ+∇×Ψ, (3.1)

the former potentials will satisfy the wave equations.

∇2ϕ− 1

V 2
L

ϕ̈ (3.2)

∇2Ψ− 1

V 2
L

Ψ̈. (3.3)

Here, V 2
L = c33/ρm and V 2

T = c55/ρm, are the phase velocities for the longitudinal
and transverse waves respectively. The strains that are related to volume changes are
associated with the scalar potential ϕ; shear strains, that cause no volume changes
are associated to the vector potential Ψ.

For a Lamb wave polarized in the x1x3 saggital plane and propagating in the x1
direction (Figure 3.2), the displacement fields end as:

u =

−jkϕ− ∂ψ2

∂x3

0
∂ϕ
∂x3

− jkψ2

 . (3.4)

There the diffraction in the x2 direction was ignored, since it leads to a transverse
horizontal mode (TH) that we are not interested in. Supposing harmonic motions,
the functions ϕ and ψ2 will satisfy the following equations:

∂2ϕ

∂x23
+ p2ϕ = 0 (3.5)

∂2ψ2

∂x23
+ q2ψ2 = 0 (3.6)
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where, p2 = ω2

V 2
L
− k2 and q2 = ω2

V 2
T
− k2, respectively.

Since the boundary conditions of the plate impose that T3 = T5 = 0 at x3 = ±d,
the stresses at the plate will become:

T3 = c55

[
(k2 − q2)ϕ+ 2jk

∂ψ2

∂x3

]
(3.7)

T5 = c55

[
(k2 − q2)ψ2 − 2jk

∂ϕ

∂x3

]
. (3.8)

This set of equations requires the solutions to have different parity, so they be-
come:

ϕ = B · cos(px3 + α) · ej(ωt−kx1) (3.9)

ψ2 = A · sin(qx3 + α) · ej(ωt−kx1) (3.10)

where α = 0 (T2 even, T5 odd) or α = π/2 (T2 odd, T5 even). Substituting this
functions into the displacement (3.4) they end up as:

u =

−jkB · cos(px3 + α) + qA · cos(qx3 + α)
0

−pB · sin(px3 + α) + jkA · sin(qx3 + α)

 · ej(ωt−kx1). (3.11)

We can clearly see that two types of Lamb wave exist: The symmetric modes
(α = 0), with the longitudinal component even, and the transverse odd; and the
asymmetric modes (α = π/2), with an odd longitudinal component and an even
transverse one (Figure 3.3).

Figure 3.3: Symmetric and asymmetric modes of a Lamb wave [36].

Applying the boundary conditions to the stresses, we obtain the following linear
system of equations:[

(k2 − q2) · cos(pd+ α) 2jkq · cos(qd+ α)
2jkp · sin(pd+ α) (k2 − q2) · cos(qd+ α)

]
·
[
B
A

]
=

[
0
0

]
. (3.12)
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Non trivial solutions are found by setting the determinants of the coefficients to
0. This gives us the Rayleigh-Lamb equation:

ω4

V 4
T

= 4k2q2
[
1− p

q

tan(pd+ α)

tanh(qd+ α)

]
, (3.13)

this dispersion relation between ω and k, results to the propagation characteristic of
each Lamb mode. Equation (3.13) has no analytical solution so numerical methods
are needed to obtain the plate dispersion curves. The dispersion curves for a plate
are shown in Figure 3.4.

Figure 3.4: Dispersion curves on a plate. Symmetric modes are shown in grey, while
asymmetric ones in black [37]

3.1.1 The main operating mode

On Chapter 2, the BAW resonator was treated in a one-dimensional approach, albeit
being a plate. This approach, although it gives good approximation, is quite naive. In
reality one can expect all the Lamb modes propagating along the resonator’s lateral
dimensions.

A common nomenclature for Lamb modes is one that involves its thickness stand-
ing wave patterns. It refers as Thickness Extensional (TE) mode to the one exhibiting
displacements in the thickness direction, and Thickness Shear (TS) for the one ex-
hibiting in the orthogonal direction (Figure 3.5). Usually a number accompanies its
name defining the number of half-wavelengths.
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Stacks exhibiting ν > 0.33 have the cutoff frequency of the longitudinal mode higher
than the shear, this is called type I dispersion. In the other hand, ν < 0.33 have
the shear cutoff frequency higher than the longitudinal one, this is called type II
dispersion.

In Figure 3.6, the TE1 and the TS2 modes propagating in a type I BAW reso-
nator are shown. Notice how between these two modes the propagation constant k
becomes pure imaginary. This is an evanescent mode, whose field magnitudes will
decay exponentially.

In [39] and [40], it is described a simple one-dimensional model of a BAW reso-
nator based on its dispersion relation. They stated that: “If the portion of the wafer
surrounding the resonator has a cutoff frequency higher than the exciting frequency,
the resulting vibratory energy is essentially confined to the resonator with an energy
distribution decreasing exponentially with distance away from the resonator. This
exponential decay is not associated with energy loss but acts to trap the oscillating
energy within a confined region.” In Figure 3.7a, such structure is drawn with the
different dispersion regions. The active region with βa real, and the inactive zone
with βo imaginary. These lateral wave numbers can be obtained from the dispersion
curves of each zone (Figure 3.7b).

To simplify the analysis, we can assume that the displacement amplitude and the
stress can be separated in spatial coordinates:

uz(x, z) = uz(z) · uz(x) (3.14)

Tz(x, z) = Tz(z) · uz(x) (3.15)

In this case, uz(x) acts as modulating term, arising for the non-uniformity of uz

(a)

(b)

Figure 3.7: (a) 2D BAW resonator. (b) Dispersion curves of the active and inactive
regions.
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in the x -direction. The same decomposition can be applied to the effective coupling
coefficient:

k2eff = k2z · k2x (3.16)

where the contribution of the thickness direction is grouped under k2z . Applying the
Berlincourt formula (2.25):

k2x =

∫
Ez(x)uz(x) dx

2∫
E2
z (x) dx ·

∫
u2z(x) dx

(3.17)

here, Ez(x) is the x -dependence of the z -directional electric field. Being the resonator
a parallel plate capacitor the integral will become 1.

From (3.17), it can be seen that asymmetric lateral displacements would not
electrically couple. So, the Ansatz for the displacement on the lateral dimension is
the following:

uz(x) =

{
A · cos(βax) Active
B · e−βox Inactive

, (3.18)

here A and B are coefficients for normalizing the amplitudes. Imposing the bound-
ary conditions of continuity in displacement uz and its first derivative duz/dx, the
following boundary condition is obtained:

βa tan(βaa/2) = βo, (3.19)

from where it can be seen that the lateral dimension a also affects the resonant
frequency of the BAW resonator.

If we suppose a hard wall at the boundaries of the active region i. e. βo = ∞,
we obtain the resonance condition of βaa = (2n + 1)π, for n = 0, 1, 2, ... These are
the spurious modes of the resonator that get coupled at the electrical response of the
resonator (Figure 3.8). The spurious modes are undesired, since they usually degrade
the response of the filter [3].

3.1.2 Suppression methods

Spurious modes have been a major drawback for designing BAW filters. Fortunately,
on the last 20 years several works have been done to suppress the lateral spurious
modes [41], [42], [43]. On this section the two main methods of suppression are
discussed.

3.1.2.1 Apodization

Looking at a BAW resonator from the top view, one can observe the electrode (i. e.
the active region where the acoustic energy is confined) as some sort of geometrical
shape. Let us suppose the electrode as a shape such as a square, it can be imagined as
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Figure 3.8: 2D BAW resonator exhibiting high spurious modes. The plot corresponds
to a 2D FEM simulation of a ZnO membrane with a thickness of 1.74 µm, and a
lateral dimension of 80 µm. Magnitude (continuous line) and phase (dotted line) of
the impedance of a resonator.

a continuous array of (3.19), for each of the directions. Since the faces of the electrode
are parallel for each direction, one can expect that each generated resonance is the
sum of each of the array contributions.

Apodization relies in using polygonal shapes for the electrodes, which will not
have parallel faces. Then, number of resonances will resemble more a continuum,
generating much less coupled resonances. The main drawback of apodization is that
we are really spreading the number of spurious resonances all over the frequencies.
This fact, increases the loss all over the frequencies of the resonator, diminishing its
Q factor [41].

3.1.2.2 Border Ring

The Border Ring (BR) is a suppression technique that applied on type I BAW res-
onators, and relies on an increased electrode frame at the boundaries of the active
region (Figure 3.9a). This region will have a lower cutoff frequency than the active
one (Figure 3.9b). The idea of the Border Ring is achieving a boundary condition of
duz/dx = 0, that way the lateral ways would not be reflected an the energy confine-
ment would not be violated [42], [43]. The Ansatz for the displacement this time will
become:

uz(x) =


A · cos(βax) Active
B · cos(βBRx) Border Ring
C · e−βox Inactive

, (3.20)

here A, B, and C act also as coefficients for normalizing the amplitude. Forcing
constant amplitude in the active region (βa = 0) the new resonance condition is
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(a)

(b)

Figure 3.9: (a) 2D BAW resonator with Border Ring. (b) Dispersion curves of the
active, the inactive, and the Border Ring regions.

Figure 3.10: 2D BAW resonator with Border Ring. The plot corresponds to a 2D
FEM simulation of a ZnO membrane with a thickness of 1.74 µm, a lateral dimension
of 80 µm, and a BR width of 7.5 µm. Magnitude (continuous line) and phase (dotted
line) of the impedance of a resonator.

achieved for the Border Ring:

βBR tan(βBRw) = βo. (3.21)

If the Border Ring of the device is designed to match the resonant frequency
of the device, the spurious modes of the resonator will be suppressed (Figure 3.10).
Taking a closer look to Figure 3.10, one clearly sees a new mode that has appeared
below fs. this is the fundamental mode of the Border Ring that also gets coupled to
the electrical domain.
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3.2 BvD multi-branch

From the expression for the input impedance (2.20), the following expression can be
derived [3]:

Zin(ω) =
1

jωC0

·

[
1−K2

t −
∑
n

ω2k2n
ω2
a,n − ω2

]
, (3.22)

here, k2n is the coupling of the nth mode

k2n =
8K2

t

[(2n+ 1)π]2
. (3.23)

This expression can be transformed to the same BvD model than the one in
Figure 2.6. The summatory on (3.22) can be modeled as parallel motional branches
on the BvD circuit (Figure 3.11).

Figure 3.11: BvD equivalent circuit with a motional branch for each spurious reso-
nance [3].

In order to use this model, the number of spurious resonances, their resonant
frequency, and their coupling needs to be known in advance. For this reason, the
use of the following models give an advantage, based on physical parameters of the
resonator, they are able to accurately predict these spurious resonances. without any
knowledge in advance of the number of resonances that can appear.

3.3 Mason based models

The first Mason based model for the lateral spurious resonances was presented in [29].
It introduces a transmission line to model the lateral propagation, where the values of
this transmission line are fitted to a resonator. On [30], the idea behind this previous
model is expanded, and the physical characteristics of the BAW resonator are taken
into account.
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The model presented in [30], uses an analogy between acoustic plate waves and
electromagnetic waveguides. The electromagnetic waveguides are analyzed through
the transverse resonance method, which allows to treat independently both in-plane
directions. The propagating acoustic modes are defined in the transverse direction.
This sets its cut-off frequency according to the lateral and thickness dimensions.

3.3.1 Lateral transmission line

For low wavenumbers (k ∼ 0), and being the TE1 the first odd symmetric mode
(A ∼ 0), the displacements defined on (3.11) end as:

ux ≈ 0; uz = −pB sin(pz)e±jkx. (3.24)

The tangential stress Txz will have the same distribution on the thickness direction
than the displacement uz:

Txz = c55(±jkpB) sin(pz)e±jkx, (3.25)

where c55 is one of the constants of the material stiffness tensor.

Those field magnitudes uz and Txz are the ones that determines the propagating
modes that laterally resonate generating the spurious resonances.

An electrical analogy of the acoustic wave is done to develop a transmission line
model [30]. The equivalences between acoustic and electric transmission lines relate
the mechanical force (Fz) with the electric voltage (V ), and the particle velocity (vz)
with the electric current intensity (I). The phase constant (β), and the acoustic
characteristic impedance (Z0), need to be defined for the TE1 mode.

In order to model the dispersive behavior of the TE1 mode the phase constant (β)
needs to satisfy the Rayleigh-Lamb relation (3.13), so β = k. An analytic expression
can be approximated to the precomputed dispersion curve for Type I resonators [30]:

β =
2π

clamb
(f r − f r001)

1/r, (3.26)

where the exponent r is near to 2, the constant clamb is the estimated wave velocity
of the mode, and f001 the cut-off frequency of the TE1 mode, the so-called piston
mode. The subscripts 001 indicate the number of half-wavelengths in the directions
x, y, and z, respectively. Here, the 0 subscript indicates that the fields are uniform
on the x and y directions, while the subscript 1 indicates half-wavelength on the
thickness direction. The constants, clamb, r and f001, are fitted to the measured or
pre-calculated dispersion curve given a resonator’s stack.

For a rectangular resonator, one can find the resonating frequency of each mode
as:

f rmn1 =
(
clamb

m

2a

)r
+
(
clamb

n

2b

)r
+ f r001, (3.27)
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Figure 3.12: Circuit model of a lateral transmission line for each physical direction
connected to a conventional Mason model.

where a and b correspond to the lateral dimension of the resonator. Here, the sub-
scripts m and n (m,n = 1, 2, 3. . . ) indicate the number of half-wavelengths of the
mode in each lateral dimension.

For a wave propagating in an acoustic transmission line, the characteristic impedance
will relate the force (Fz) and the particle velocity (vz):

Fz = Z0 · vz, (3.28)

being:

Fz =

∫
V

∂Txz
∂x

dV = TxzAtb, (3.29)

where Atb is the resonator’s cross-sectional area. Applying (3.24) and (3.25) to (3.28)
and (3.29), the acoustic characteristic impedance for the TE1 results in:

Z0 =
1

ω
βc55Atb. (3.30)

Losses are introduced in the model by means of a complex propagation constant
(γ = α + jβ), where α and β are the attenuation constant (Np/m), and the phase
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constant (rad/m) respectively. Assuming that α ≪ β, the Z0 and the phase constant
remains the same that in the lossless case.

The separation of variables is used to solve the coupling of the lateral mode,
as described in [3] the coupling on each direction is considered independently. The
piston mode is modeled by means of the traditional Mason model, and then one
lateral transmission line for each direction is added. The coupling is done in a similar
way as done in [29]. The strength of the coupling depends of on the vz of the piston
mode, equivalent to the coupling on the thickness direction.

The coupling of the transmission line to the Mason model can be seen in Figure
3.12. The lateral lines are coupled at the center of the resonator’s lateral distance.
This is the point where vz is maximum. The turn ratio of the transformer is scaled for
each of the modes propagating in the same direction, the scaling is given by (3.23).

The proposed model is able to simulate and predict the spurious modes for three-
dimensional SMR-BAW resonators. Although, its main drawback its that is limited to
simple electrode geometries, it is only able to model square and rectangular electrodes
[30]. In Figure 3.13 the fitting of the model to a rectangular ZnO resonator is given.

Figure 3.13: Input impedance of a ZnO rectangular resonator. Results of 3D FEM
simulation are plotted in dotted blue line. The results of the circuit model are plotted
in continuous black line [30].

3.3.2 BR modes on SMR

As explained thoroughly in Chapter 2, the main objective of the BR is to suppress
the spurious resonances due to the lateral modes in a BAW resonator. Due to the
increased thickness of the BR area, it resonates at a lower frequency than the resona-
tor’s active area. The electrical response of the resonator can be expected as having
two shunted resonators of different thickness, adding another resonance below the
main one. However, FEM simulations and measurements show something else. On
Figure 3.14, multiple resonances for the BR mode appear [44].
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Figure 3.14: Different BR modes depending of the BR width (from 5.5 µm to 6.5
µm).

Depending of the width of the BR, more or less resonances appear in a quite
unpredictable way. That phenomenon suggests that the multiple resonances are due
to a lateral mode propagating, not only under the BR area, but also under the active
area. This mode is manifested in the resonator’s electrical response when the coupling
in the thickness direction is high and that happens under the BR area, since the cut-
off frequency of the TE1 mode is lower for the BR section than the one for the active
section. These low cut-off modes, which are responsible of the BR spurious modes,
are below the TS2 mode.

As an example, FEM simulations of an SMR-BAW resonator show that acoustic
resonances below the cut-off frequency of the fundamental mode of the active area
exist through the whole structure. This mode can be seen in Figure 3.15, where the
displacement pattern at one of the BR resonant frequencies is shown.

3.3.2.1 Modeling the BR modes

In order of being able to model the BR modes, a modification of the Mason lateral
model is proposed. The fundamental concept behind it remains in the naive initial
idea that the response of the BR on a BAW resonator will resemble to two shunted
resonators of different thicknesses. One can think of placing two Mason models in
parallel, but there will be only a single and narrow resonance for the BR instead
of the multiple resonances that appear on FEM simulations and measurements [44].
This is because the conventional Mason circuit only models for the propagation in
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Figure 3.15: FEM simulation of a SMR. The displacement field on the thickness
direction is shown.

the thickness direction.

The proposed model consists on using additional dispersive lateral transmission
lines coupled to each conventional Mason circuit to consider the lateral propagation
(Figure 3.16). When doing so, special care has to be taken when modeling the lat-
eral propagation. Reference [43] proposes to use different transfer matrices for each
resonator section to model the lateral displacement. Each transfer matrix has the
phase constant of the dispersion curve of each section. This idea can also be applied
to dispersive transmission lines being able to connect the different sections to obtain
the displacement profiles. The advantage of using transmission lines over transfer
matrices is that they can be used as it was done in [30] without more modifications.
The last consideration to be done is that the Mason circuit that accounts for the
BR section has to consider the dispersive behavior of the TE1 mode. Note that the
width of the BR section wBR is typically a few microns, so its main TE1 resonance if
the BR was isolated would be slightly higher than its conventional cut-off frequency
(piston-mode). This effect is usually neglected when modeling the active area using
a conventional Mason model since the length of the resonator is around a hundred
of microns, but it cannot be neglected for the very narrow BR section. Fortunately,
this effect can be automatically corrected if the dispersive curve of the BR section is
known.

The model of Figure 3.16 results as two Mason models, one for the resonator
active area, which accounts also for the cancellation effects of the in-band lateral
modes, and other for the BR area, which accounts for the modeling of the spurious
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Figure 3.16: Circuital model for the BR modes. The dispersion curves correspondents
to each lateral transmission line section are shown on top.

resonances below the series resonance. Both Mason models have dispersive lateral
transmission lines modeling the different lateral sections of the resonator.

3.3.2.2 Mode dispersion relations

For the lateral transmission line belonging to the Mason of the active area, the dis-
persion curves of the TE1 mode are used both for the active area (curve D in Figure
3.16) and for the BR area (curve C in Figure 3.16). Regarding to the lateral trans-
mission lines belonging to the BR Mason, the low cut-off modes dispersion curves
(A and B in Figure 3.16) are selected instead. The outside area is modeled with a
lumped resistance (Zload in Figure 3.16) to model the small leakage of the acoustic
waves.

The dispersion relations associated to each lateral line shown in Figure 3.16 are
obtained from FEM simulations of the independent resonators having the stack con-
figuration of the active area or the stack of the BR section. The lateral displacement
profile is obtained for each frequency and later a Fast Fourier Transform (FFT) is
performed to obtain them. Finally, these curves are fitted using the formulation
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(3.26). This time the lateral transmission lines are not coupled at their maximum.
For achieving only the coupling of the even modes, a short circuit is imposed on the
center of the resonator lateral dimension. Now, the lateral transmission line is cou-
pled at the interface of the Border Ring and the non-active zone. This coupling at a
single point can lead to some errors in the model.

3.3.2.3 FEM simulations of SMRs with BR

SMRs with different BR widths were simulated to validate the proposed model. From
the same stack, we obtained the dispersion curves shown in Figure 3.16. The circuital
model was set like in Figure 3.16 and adjusted to match two different BR widths of
two FEM simulated resonators. Figure 3.17 shows the phase of the input impedance
of two simulated SMR with different BR widths, and the adjustment of the circuital
model proposed.

Figure 3.17: Phase of the input impedance of FEM simulated SMR (dotted traces),
and adjustment of our model (solid traces). Blue traces correspond to a BR width of
5.5 µm, while red to 10.5 µm.

As it can be seen, the current model is not able to perfectly predict the in-band
cancellation effect. We believe that is due to the very simplified model that couples
the lateral transmission lines in a single point, losing therefore the distributed nature
of the coupling. This inaccuracy can be corrected in part if the wBR considered for
the in-band cancellation differs a little from the real one. For this example, we have
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considered wBR of 10.9 µm and 5.21 µm for the in-band cancellation, being the real
values wBR 10.5 µm and 5.5 µm respectively.

Despite the simplified coupling mechanism of the lateral transmission lines, the
current model can be useful to model, for a given optimum border ring, the BR
modes and the in-band lateral modes for different dimensions of the active area and,
therefore, different aspect ratios as it is shown in the next subsection.

3.3.2.4 Measurements of SMR resonators with BR

The measured devices were four SMR resonating at 2.48 GHz, with a BR width of 3.5
µm, two different areas (13·10-9 m2 and 6.46·10-9 m2), and for each area two different
aspect ratios (one square resonator and one rectangular with an aspect ratio of two).

The dispersion curves for the active area were obtained in an experimental way
adjusting the dispersion curves to a measured SMR without BR. The model was then
adjusted to a certain BR width, which can be different for the BR and active section,
to match one resonator. The width selected to match the in-band cancellation was
3.5 µm, while the one for the BR resonances was 5.9 µm.

Figure 3.18: Phase of the input impedance of the two measured square resonators.
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Figure 3.19: Phase of the input impedance of the two measured rectangular res-
onators.

Using the same parameters but the area and aspect ratio, the other three res-
onators were simulated showing a fairly good agreement between the circuital model
and the measurement (Figure 3.18 and Figure 3.19). It can be seen that once the BR
width that provides good agreement with the measurements is found, any change on
the area or the aspect ratio of the resonator matches the spurious modes suppression
and the BR resonances.

The main drawback of this circuital model is that it fails when simulating the
cancellation and the BR mode as a function of the BR width. This is due to the
coupling of the lateral line at a single point. For resonators without BR there are
always a maximum of the stress at the coupling point, but for resonators with BR
that maximum does not rest at the coupling point in the circuit model.

Despite its limitation, this model gives strong evidence of the BR resonances
origin, laying it in the low cut-off modes propagating through the whole resonator,
which are electrically coupled mainly at the BR region. It is also remarkable that
the model allows to predict for a given BR width, the cancellation effect and BR
resonances as a function of the resonator shape. That is a valuable asset for optimizing
the shape dimensions trying to minimize the BR resonances, while keeping good
cancellation of the in-band modes.
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3.4 2nd Harmonic Emissions on BAW Resonators

Exhibiting Lateral Spurious Resonances

Nonlinear behavior of Bulk Acoustic Wave (BAW) resonators, is currently one of the
most relevant aspects to improve in mobile phone’s RF acoustic duplexers. This is
crucial to avoid desensitization on the receiver. On the last years, several Mason based
models were proposed to model the nonlinear behavior of BAW resonators [45], [18],
also none of these models considered the lateral dispersive behavior of the resonator.
Reference [46] included the effects of the lateral modes on the second harmonic (H2)
response using a Butterworth-van Dyke (BvD) based model. The inconvenient of
this approach is that it needs many BvD additional branches, as many as lateral
resonances, which must be included into the equivalent circuit.

The equivalent circuit proposed here models all the lateral resonances including
just two dispersive transmission lines, one for each in-plane dimension, and just one
nonlinear parameter can explain the H2 measurements.

Departing from the Mason lateral model shown in Chapter 3, the stress per-
turbation generated by the lateral resonances is added to the nonlinear constitutive
relations. The model is solved using the Harmonic Balance (HB) method. The results
of the simulated H2 response are compared to one-tone measurements showing good
agreement between simulations and measurements.

3.4.1 Nonlinear constitutive relations

At high power levels, the intrinsic nonlinear behavior of BAW resonators generates
second harmonic (H2) responses [17]. These intrinsic nonlinear behavior is due to
nonlinear constitutive relations.

3.4.1.1 Piezoelectric layers

The nonlinear constitutive relations of the piezoelectric layer have been obtained
traditionally from a McLaurin expansion of the Gibbs free-energy function (G =
U−ED−σΘ). For the second harmonic response the nonlinear constitutive relations
become

T = cES − eE +∆T

D = eS + εSE +∆D,
(3.31)

here, the tensor indices are dropped (assuming we are dealing with fields only in
the thickness direction z), and as done in Section 2.1, entropy is assumed to remain
constant (dσ = 0). ∆T and ∆D are the nonlinear contributions to the constitutive
relations of the material.

Taking only into account the most relevant nonlinear terms for the H2 generation
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[47], and adding a lateral perturbation on the φ5 term, the constitutive relations end
up as

∆T = φ5SE + φ5lat · SlatE

∆D = εS2
E2

2
− φ5

S2

2
− φ5lat

S2
lat

2
,

(3.32)

in which εS2 , φ5 are the second order nonlinear constants, and φ5lat the nonlinear
constant for the lateral modes. This is a phenomenological approach which aims to
consider the lateral displacement. The second order terms are the main responsible
of the second order response, although there is evidence that even third order terms
have impact on the H2 response. The lateral perturbation for the strain is obtained
from

Slat =
Fa

Atb · cE55
+

Fb
Ata · cE55

, (3.33)

Slat is a lateral perturbation of the solution. Fa and Fb are the mechanical forces of the
lateral perturbation at each orthogonal direction. Ata and Atb are the cross-sectional
areas for each side of the resonator.

3.4.1.2 Non-piezoelectric layers

The constitutive relations for the non-piezoelectric layers are truncated up to the
second order and end up as

T = cS + TC

TC =
1

2
c2S

2,
(3.34)

where c, and c2, are the derivatives of the stiffness constant. Notice how the value of
these constants will differ from one material to another.

3.4.2 Nonlinear Mason model

The electrical model used for the piezolayer is based on the lateral line lossless non-
distributed Mason model presented in [30]. Nonlinearities due to the Lamb modes
will only be considered in the piezolayer. The nonlinear contributions are added to
the modified Mason model in the same way that in [48] and [18]. The nonlinear
sources are then defined as

TC = ∆T + h ·∆D
VC = βs ·∆D · 2d,

(3.35)

being 2d the thickness of the piezolayer.

Nonpiezoelectric layers are modeled in two different ways. Layers that have no
nonlinear contributions to the H2 response, are modeled with a linear T-network
model of an acoustic transmission line. Layers such as SiO2 are modeled using a
discretized nonlinear model composed of the equivalent lumped circuit for acoustic
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transmission lines [47]. The reason for that choice is that in those layers, the standing
wave pattern of the stress plays a significant role on the H2 generation.

From the nonlinear Mason model with its nonlinear sources (3.35), and adding
the lateral transmission lines, an equivalent Mason model for the piezoelectric lay-
ers is obtained (Figure 3.20). The nonpiezoelectric layers are added to model the
electrodes and the acoustic reflector. These layers are added connecting the acous-
tic transmission lines to the Mason’s acoustic terminals F1 and F2 as explained on
Chapter 2.

Figure 3.20: Equivalent nonlinear lateral Mason model for the piezoelectric layer [55]

3.4.3 Devices and linear measurements

Two different resonators, named R1 and R2, were measured and adjusted using the
model described on the previous section to prove the suitability of our approach to
characterize and predict the H2 response of SMR-BAW devices.

The stack distribution of the two resonators can be seen on Figure 3.21. Although
the stack materials are the same in both resonators, they differ on their layer’s thick-
nesses. Due to that, they exhibit different dispersive behaviors and different lateral
modes. The fundamental resonance in both resonators, with an AlN thickness of
∼900 nm, is around 2.31 GHz. The main difference between these two resonators
appear on their H2 response. The different layer thicknesses of the acoustic reflector
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Figure 3.21: Stack configuration of the measured SMR-BAW devices [49]

generate spurious resonances over the fundamental one that interfere with its H2.
Both resonators have rectangular shape and the same area, but exact dimensions
cannot be disclosed here for confidential reasons.

The first step when modeling nonlinearities of a BAW resonator is adjusting its
linear response. The measured input impedance is compared with the one adjusted
from the model Figure 3.22.

The dispersive curve of the lateral transmission could be extracted from inter-
ferometric measurements of the resonator. However, it is much faster to find the
parameters clamb and r by adjusting the phase of its input impedance.

3.5 Nonlinear measurements

Nonlinear measurements of the H2 response were obtained using the measurement
setup described in [49]. Here, a one tone frequency sweep is performed. The power
emissions at the second harmonic of this tone are measured in order to obtain the H2
response of the resonator. The simulations were performed using Harmonic Balance
simulator on Advanced Design System.

Figure 3.23 shows the H2 response for R1 and R2. Note that the peak appearing
at the right of the maximum is placed at different frequencies. This is due to the
thickness of the SiO2 layers on the acoustic reflector. The main responsible of the H2
response is the φ5 parameter of (3.32), the value obtained for this model is−20.5·eAlN .
That value is about 10% higher than the published on [47] and [49] mainly because
of the effect of the lateral lines nonlinear response lowering the power level. φ5lat was
set to the same value than φ5. The lower φ5lat, the higher the averaged H2 power but
the lateral modes would not couple enough to the H2 response.

On the other side, εS2 is found to be 20·εSe/cEAlN , the same value was found on [47]
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Figure 3.22: Phase of the input impedance of R1 and R2. Measurements correspond
to the red line, while simulation to the dashed blue line.

and [49]. The term c2SiO2 , that has strong relevance on the SiO2 peak, is near a 10%
lower than on previous references, having a value of −5.8 · cSiO2 . These values work
well for the two measured resonators, although having different dispersion curves and
different lateral resonances.

The proposed circuital model succeeds in predicting the lateral modes appearance
on the H2 response. Using the same nonlinear parameters gives consistent results for
different resonators. Its main strength is to rely in material nonlinear properties,
making it independent from the stack configuration. Nevertheless, the dispersive
behavior of the propagating Lamb wave must be known.

The 10% increase of the φ5 AlN can be due to the increase of acoustic losses
on the piezolayer due to the coupling of the lateral transmission lines. That would
cause the need to increase the φ5 AlN value to match the H2 measurements. Also,
since practically all loss mechanisms on this model are considered in the piezolayer,
nonlinear constants of other layers need to be slightly lower to fit the measurements,
as in the case of the c2 parameter of the SiO2.
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Figure 3.23: H2 measurement and simulation of R1 and R2. Measurements corre-
spond to the red line, while simulation to the dashed blue line.
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3.6 The Transmission Line Matrix (TLM) method

On the previous section the main issue of the Mason model with lateral lines its
described: the coupling at a single point of the lateral standing wave pattern does
not give accurate results when introducing the BR. Also, its important to notice its
limitation to rectangular shaped electrodes.

In [50], a new approach based on the Transmission Line Matrix (TLM) method
was presented. It allows for fast simulation of BAW devices with an arbitrary electrode
shape.

3.6.1 Quasi-2D model

The first approach is to reduce a simple two-dimensional BAW resonator to a one-
dimensional problem. It is achieved via the Quasi-2D model, where only the lateral
wave propagation is taken into account. Being the main responsible of in-band spu-
rious modes, only the TE1 mode is taken into account [32].

For a two-dimensional resonator comprised in the xz -plane, as outlined in Fig-
ure 3.24, the Lamb wave propagates in the x -direction. The lateral dimension a is
discretized in Nx elements of length dx.

Figure 3.24: Two-dimensional resonator in the xz -plane. The x -dimension is dis-
cretized in Nx elements.

3.6.1.1 Unit cell

Each of the unit cells is modeled with a dispersive transmission line as the ones
used in the Mason lateral model. Since we are using nodal Y-matrices, in order to
implement the free stress lateral boundary conditions (see section 3.6.1.2, below) [50],
it is more convenient to invert the typical equivalences between electric and acoustic
magnitudes. That means defining V as velocities and I as forces. Then the Z0 of the
transmission line is defined as the inverse of (3.30):

Z ′
0 = akz

ω

βc55Atb
, (3.36)
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here akz acts as a scaling factor to adjust the resonator coupling. This is required
because the displacement field (3.24) is a simplification obtained from the Lamb-wave
equations for non-piezoelectric isotropic plates [13].

Figure 3.25: Equivalent Π-network of a dispersive transmission line in the x-direction

Then, the equivalent circuit of a unit cell of the TL is depicted in Figure 3.25,
where the values of the Π-network are now:

Zs = Z ′
0 · sinh(γ · dx) (3.37)

Zp = Z ′
0

1

tanh(γ · dx/2)
(3.38)

dx = a/Nx. (3.39)

The propagation along the lateral dimension of the resonator is modeled cascading
several unit cells.

3.6.1.2 Lateral boundary conditions

In an ideal resonator, the acoustic wave is reflected at its lateral edges, thus generating
each of the lateral spurious resonances.

� Free stress: The velocity vz at the boundaries will be zero, implying the
full reflection of the acoustic waves at the lateral interfaces. To impose this
boundary condition, the lateral transmission lines are ended with a short-circuit.
This way, the voltage at the end of the lines become zero.
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� Lateral leakage: Acoustic energy may leak out of the resonator active area.
This effect is called lateral leakage and degenerates the Q factor around the
antiresonance frequency [3]. If required, this effect can be modeled adding a
conductance to the ends of the transmission line instead of an ideal short-circuit.

3.6.1.3 Model implementation

Applying an electric potential (U) on the resonator electrodes, a constant Fz is gener-
ated along the resonator lateral dimension [35], [51]. Due to the impedance inversion,
it is modeled as distributed current sources (Isource) at each cell node:

Isource = e · dx · b/t · U, (3.40)

where e is the piezoelectric constant for the piston mode, b the lateral dimension on
the y axis, and t the thickness of the piezolayer between the electrodes.

The distributed transmission line will be assembled in a nodal Y-matrix made of
(3.37) and (3.38). This matrix will have the dimension N × N , and will be excited
with the current sources (3.40):

Ys + Yp −Ys 0 0
. . .

−Ys Ys + 2 · Yp −Ys
. . . 0

0 −Ys
. . . −Ys 0

0
. . . −Ys Ys + 2 · Yp −Ys

. . . 0 0 −Ys Ys + Yp


·



V1

...

Vn


=



Isource

...

Isource


(3.41)

Once the system is solved, the velocities vz are obtained for each node along the
lateral dimension a. As a result, an electrical current intensity I is generated between
the electrodes due to each electromechanical contribution, as:

I = (e · dx · b/t) ·
Nx∑
1

vz(n), (3.42)

and the acoustic contribution of the resonator’s admittance is found using

Ylat = I/U. (3.43)

To obtain the total resonator impedance, the static capacitance (C0), and the
series resistance (Rs) to model the Ohmic losses on the electrode [15] are included,
resulting in:

Zin = Rs +
1

Ylat + jωC0

. (3.44)
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3.6.1.4 Comparison with FEM simulations

A simple ZnO membrane of 1.74 µm thickness and lateral dimension a equal to 80 µm
is simulated in 2D using COMSOL. Losses are kept artificially low to achieve more
pronounced spurious modes. The dispersive curves of the membrane are obtained with
COMSOL following the procedure described in [26], and the curve corresponding to
the TE1 mode is fitted using the function described in (3.26).

Using the obtained dispersive phase constant, with f001 = 1.787 GHz, clamb =
6745, and r = 1.955, the lateral dimension of the resonator is modeled with Nx = 80.
This number of discretizations is enough to ensure convergence of the model for
these resonators. The boundary conditions are set on the two extremes of the lateral
line, shorting the nodes of the Y-matrix that correspond to the boundaries. We
refer to this kind of simulations as Quasi-2D simulations, since we are modeling only
propagation in one direction and the characteristics of the propagation mode along
the thickness direction are considered using the dispersive phase constant and the
associated characteristic impedance of the TE1 mode.

Figure 3.26 shows the fitting of the Quasi-2D model to the FEM simulation. The
scaling of the characteristic impedance was fine-tuned with akz = 0.9. This can be
justifiable because the characteristic impedance was derived for an isotropic layer.
The electric permittivity (εr) and the piezoelectric constant are the same than those
provided by COMSOL for ZnO. The attenuation constant of the dispersive line was
set to α = 2000 Np/m.

Figure 3.26: Magnitude and phase of the Impedance of the 2D FEM ZnO resonator
(blue), and the Quasi-2D model (red).

The model was also tested simulating an AlN SMR resonator. FEM 2D simu-
lations were performed with realistic losses in all layers in this case. The resonator
has a top electrode comprised of Al, W layers and a SiN passivation layer, a bottom
electrode of W and Al layers, and a Bragg reflector comprised of alternating SiO2 and
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W layers on a Si substrate. Its series resonance is around 2.48 GHz, and the k2eff is
about 6.8%.

The dispersion curve was fitted with f001 = 2.48 GHz, clamb = 5740, and r =
2.05 and the attenuation constant was tuned to α = 7800 Np/m. FEM simulations
unveiled displacements outside the active area at frequencies near the antiresonance
frequency. These losses (lateral leakage) were modeled with a conductance of 0.3 mS
connected at the boundary nodes. The fitting of the Quasi-2D model can be seen in
Figure 3.27. In this case, the characteristic impedance was scaled using akz = 0.5.

Figure 3.27: Magnitude and phase of the Impedance of the 2D FEM AlN SMR
resonator (blue), and the Quasi-2D model (red).

3.6.2 Quasi-3D model

Once the quasi-2D approach has been verified, we will extend the basic idea for
modeling resonators with arbitrary in-plane geometry. The Quasi-2D model can
be extended to the other in-plane dimension using the Transmission Line Matrix
(TLM) method [52]- [54]. We refer to this model as Quasi-3D model. The TLM
method appears as a discrete implementation of Huygens’ Principle, where the waves
propagate along a mesh of transmission lines connected by nodes (Figure 3.29) [52].
When a node of the TLM mesh is excited, the energy spreads isotropically from the
excited node. All the scattered fields along the mesh combine to form the overall
waveform.

3.6.2.1 Unit cell

To add the other dimension, an additional transmission line is added. The new
transmission line will have the same dispersive behavior, and the length of the lateral
dimension b will be discretized in Ny elements of length dy = b/Ny. The cross-
sectional area will be different for each propagating direction. It ends up being Atb =
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dy · t for the x-direction, and Ata = dx · t for the y-direction. Note that this would
allow emulating resonators with non-uniform shapes. In Figure 3.28, four nodes of the
TLM mesh are shown. The impedances for each dimension are calculated considering
dx, dy, and the different cross-sectional areas.

Figure 3.28: Equivalent Π-network of a dispersive transmission line on the x and
y direction. Four nodes interconnected by different direction transmission lines are
shown.

3.6.2.2 Losses and boundary conditions

Losses and boundary conditions are set as in the Quasi-2D model. A complex propa-
gation constant is used in each propagation direction, and all the boundary nodes are
shorted if not lateral leakage is considered or otherwise set with the correspondent
conductance.

3.6.2.3 Implementation of the model

The resulting nodal Y-matrix has a size of (Nx × Ny)
2, where Nx and Ny are re-

spectively the discretizations along the x and y direction respectively. The node
numbering is illustrated in Figure 3.29 for the sake of clarity.

The linear system of equations, extended version of (3.41), will be solved. How-
ever, note that excitation will be slightly different than the one described in (3.40),
since now we must consider the discretization of the y-direction (dy), which results
in:

Isource = e · dx · dy/t · U. (3.45)
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Once the linear system is solved, the electric current generated between the elec-
trodes is calculated as:

I = (e · dx · dy/t) ·
Ntot∑
1

vz(n). (3.46)

Finally, the electric input impedance of the resonator is calculated using (3.44),
as it was done for the Quasi-2D model.

3.6.2.4 Quasi-3D Model vs. 3D FEM simulations

A 3D ZnO membrane with the same thickness than in the 2D case was simulated
using COMSOL. Three different resonators with different in-plane geometries were
simulated: a square resonator with area 80x80 µm2, a rectangular resonator with area
80x100 µm2 and a trapezoidal resonator with a height of 80 µm, and two bases of 40
µm and 80 µm, respectively. Losses are artificially kept much lower than in a real
resonator to show highly coupled modes.

The phase constant and characteristic impedance of the TE1 mode remains the
same than the previously used in the Quasi-2D model (f001 = 1.787 GHz, clamb =
6745, r = 1.955, akz = 0.9, and α = 2000 Np/m) as they are assumed characteristics

Figure 3.29: Schematic of a TLM mesh for a square resonator. The lateral dimensions
a and b, and the number of discretizations in each direction (Nx and Ny) are indicated.
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of the stack. The free stress lateral boundary conditions are applied at each edge
node.

Figure 3.30 and Figure 3.31 show the electrical input impedances for the square
and rectangular resonators respectively.

Figure 3.30: Magnitude and phase of the Impedance of the 3D FEM ZnO square
resonator (blue), and the Quasi-3D model (red).
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Figure 3.31: Magnitude and phase of the Impedance of the 3D FEM ZnO rectangular
resonator (blue), and the Quasi-3D model (red).

Comparing Figure 3.26 with Figure 3.30, one can notice that although both are
for the same square resonator, the latter has additional spurious modes. On the
2D model, constant displacement in the y-direction of the resonator was assumed,
and only modes m01 were simulated, in both the FEM simulation and the Quasi-
2D model. Adding the extra dimension y, allows simulating modes n different to
zero. Those are the additional spurious modes appearing on Figure 3.30. In a square
resonator, since a = b, the mn1 and the nm1 are degenerated modes, thus meaning
that they occur at the same frequency. As an example, Figure 3.32 shows the resulting
standing wave pattern of vz of the mode 311 and 131 sharing the same frequency on
a square resonator.
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Figure 3.32: Standing wave pattern of |vz| at the frequency of mode 311 and 131 in
the square resonator.

Notice that the rectangular resonator (Figure 3.31) shows more spurious modes,
since a ̸= b and therefore the mn1 and the nm1 modes do not fall at the same
frequency. In this case, and just for illustrative purposes, Fig. 3.33 shows vz of the
mode 311 showing three half wavelengths on the x-direction and one in the y-direction.

The electrical impedance of the trapezoidal resonator is shown in Figure 3.34.
The Quasi-3D model shows good agreement with the FEM modeling. The number of
discretizations has to be increased from the 80x80 used on the square and rectangular
resonator, to 180x180 to achieve convergence of the simulation.
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Figure 3.33: Standing wave pattern of |vz| at the frequency of mode 311 in the
rectangular resonator.

Figure 3.34: Magnitude and phase of the Impedance of the 3D FEM ZnO trapezoidal
resonator (blue), and the Quasi-3D model (red).
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The first four resonant modes of the trapezoidal resonator can be observed on
Figure 3.35. The fundamental mode and the ones exhibiting three half-wavelengths
on the larger dimensions can be clearly identified. The other mode cannot be defined
as usually done in rectangular resonators since it is a combination of the scattering
produced at the non-parallel interfaces.

Figure 3.35: Standing wave pattern of normalized |vz| for the first four resonant modes
of the trapezoidal resonator.

3.6.2.5 Computational time

Since the thickness dimension of the resonator does not have to be considered into
the simulation, the number of Degrees of Freedom (DoF) is significantly reduced.

The computational time for both the FEM simulations and for our proposed
model are presented in Table 3.1. They were calculated using the same number of
frequency points, and achieving a mesh convergence in both cases.

For the Quasi-2(3)D model an additional FEM simulation needs to be performed
to obtain the stack characteristics. But with a 2D simulation of around 100 frequency
points is enough to obtain the dispersive curve and the electromechanical coupling.

The computational time is reduced several orders of magnitude between FEM and
the TLM method. The 2D SMR case, shows a higher reduction due to the increase of
DoF in the FEM simulations due to the discretization along the thickness dimension
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with many layers involved. Although the number of unknowns for modeling any
arbitrary electrode shape, like the trapezoidal one, is increased, the time needed to
perform the Quasi-3D simulation, continues being much lower than the one required
for FEM simulations.

Note that, as can be seen in Table 3.1, the number of unknowns is independent
of the resonator layers, making this method very suitable when working with SMR,
since the same number of nodes are needed than for the FBARs.

We want to outline that the performance of the Quasi-3D method has room to
be upgraded, since the 90% of the computational time in Matlab was taken by the
assembling of the Y-matrices. In addition, any kind of symmetry was considered when
using the TLM model, meanwhile in FEM simulations, symmetries where used when
possible to reduce the amount of computational resources needed. The symmetry
strategy is also noted in the Table 3.1.

Simulation FEM (time [DoF])
Quasi-2(3)D Model

(time [DoF])

ZnO membrane 2D ½ symmetry 3 min 22 s [9300] 0.134 s [80]

SMR 2D ½ symmetry 11 min 4 s [163391] 0.134 s [80]

ZnO membrane 3D ¼ symmetry 1 hour 52 min [215628] 42 s [6400]

ZnO trapezoidal 3D ½ symmetry 2 hour 55 min [630752] 4 min 52s [32400]

Table 3.1: Comparison of computational times between FEM and the proposed model.

3.6.2.6 Evaluation of Quasi-3D simulations and measurements results

Four different SMR measurements were provided by the manufacturer of the devices
for validating the model. The resonators have the same stack composition than the
FEM simulated SMR. The resonators are made of two different areas (6400 µm2 and
12900 µm2), and two different aspect ratios (1 and 2).

The dispersion curve was fitted with f001 = 2.48 GHz, clamb = 5180, and r = 2.2.
Although, the cut-off frequency of each resonator were slightly tuned (in the order
of 100 ppm) to consider the tolerances of each resonator’s layers. The other material
constants were adjusted to e = 1.51, and εr = 9.8.

The propagation constant was set to α = 7800 Np/m, the lateral leakage was
modeled by means of a conductance in the lateral boundaries. Since in a 3D geometry,
the lateral boundaries are discretized by Nx and Ny, the conductance connected at
each node will be also divided by Nx or Ny. The conductance value used to fit the
four resonators was 0.3/Ni mS.
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The fitting of the Quasi-3D model to the four different measurements is shown
in Figure 3.36-3.39. The model presents good agreement with the measurement near
the fundamental frequency, but deviates slightly near the antiresonance. This can
be due to slight tolerances on each resonator stack making the same curve unable to
match the four different resonators.

The computational time necessary for the Quasi-3D SMR simulation stays the
same than the required for FBARs (See Table 3.1).

Figure 3.36: Magnitude and phase of the Impedance of the measured square SMR
(A=6400 µm2) (blue), and the Quasi-3D model (red).

Figure 3.37: Magnitude and phase of the Impedance of the measured square SMR
(A=12900 µm2) (blue), and the Quasi-3D model (red).
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Figure 3.38: Magnitude and phase of the Impedance of the measured rectangular
SMR (A=6400 µm2) (blue), and the Quasi-3D model (red).

Figure 3.39: Magnitude and phase of the Impedance of the measured rectangular
SMR (A=12900 µm2) (blue), and the Quasi-3D model (red).

3.6.3 BAW resonators with Border Ring

On Section 3.1.2.2, the principle of the BR was explained for BAW resonators. In
this section, the Quasi-3D model is extended to be able to model the BR effect on
FBARs [55].

3.6.3.1 Quasi-2D Model Implementation

The implementation of the model is discussed thoroughly on the previous section.
The model is divided into two different regions, the active region and the BR region.
The non-active region will be modeled as a boundary condition. The phase constant
and the Z0 are different for each of the regions. At Figure 3.40, the disposition of
each node for a 2D resonator with Nx nodes for the active region, and NBR nodes for
the BR region. Notice how the BR region is situated at the start and the end of the
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Figure 3.40: Two-dimensional resonator in the xz-plane. The x-dimension is dis-
cretized in Nx elements.

active region. A Y-matrix connecting all the nodes of the resonator is generated with
the impedances (3.37)-(3.39) of each unit cell.

The admittance matrix generated is excited with the following distributed current
sources at each node 3.40. Notice that dx may be different for each region, so the
excitations for the active and BR regions may differ. This current source represents
the force generated by the electric potential (U) applied on the electrodes.

Solving the system and obtaining the particle velocities vz along the resonator’s
lateral dimension, the electric current between the electrodes is calculated with (3.42).
As it happens with the excitation the contributions of each of the regions to (3.42),
may be calculated separately depending of the discretizations per region.

The input impedance (Zin) of the resonator is finally obtained with the use of
(3.43) and (3.44).

3.6.3.2 Lateral boundary conditions

In the homogeneous electrode case, a short-circuit was enough to model the boundary
condition of vz = 0, equivalent of having βo = ∞. In the case of BAW resonator’s
with BR it is needed that the βo is correctly modeled. Therefore, at the boundary
nodes the characteristic impedance (Z0) of the non-active region needs to be defined,
this impedance will model the behavior of the non-active region.

3.6.3.3 Obtainment of the dispersion curves

The dispersion curves of the stack are obtained from FEM simulations of the different
stacks. The dispersive curves for the active region are obtained from eigenmode
simulations following [26]. Once the TE1 mode is identified, equation (3.26) is fitted
to the curve to obtain βa. The same process is applied for the BR region and βBR.

For the non-active region, a different procedure is used. From FEM simulations of
a 2D BAW resonator with its non-active region, the displacement profiles are obtained
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on top of both regions. To suppress reflections at the end of the non-active region
that will lead to an incorrect displacement profile a Perfectly Matched Layer (PML)
is applied at both ends of the resonator [56].

Following the procedure described in [57], the displacements of the non-active
region are fitted to the exponential function:

A(x) = A0 + A1e
−|kx|x, (3.47)

here A0, A1 and kx are the fitting coefficients. Each wavenumber kx is extracted at
different frequency points, generating the dispersion curve of the evanescent mode
(Fig. 8). Then, an ellipsoid is fitted to the obtained data points:

βo(f) = −j · ℜ
[
kmax
∆f

√
∆f 2 − (f − f0)2

]
, (3.48)

the constants f0, ∆f , and kmax can be seen on Fig. 8 and are determined by the
fitting.

In Figure 3.41, the dispersive curve of the non-active region of a BAW resona-
tor is shown. the values of |kx| obtained by the fitting of (3.47) are shown with
asterisks. The approximation using (3.48) is shown by the solid black line in the
evanescent region, the TE1 mode is fitted with (3.26). The main parameters of (3.48)
are represented on the figure.

Figure 3.41: Dispersive curves of the non-active region.
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3.6.3.4 Quasi-2D model vs. 2D FEM simulations

The model is validated using 2D FEM simulations of a ZnO Film Bulk Acoustic
Resonator (FBAR) with Aluminum electrodes. The piezolayer has a thickness of 1.52
µm. The electrodes have a thickness of 100 nm, and the top electrode has a length
of 80 µm, limiting the active region to that size.

A BR was also added, it consists of a region of Aluminum with an increased
thickness of 165 nm. Resonators with three different BR widths of 7.5 µm, 10 µm,
and 12.5 µm are simulated.

The simulations of the FBARs were done with COMSOL, keeping the loss fac-
tor low to achieve more pronounced spurious modes. The dispersion curves of the
resonator are obtained as in the previous section.

For the FBAR without BR, the dispersion curve of the active region was adjusted
with f001 = 1.898 GHz, clamb = 6200, and r = 1.85. The lateral dimension of
the resonator was discretized with Nx = 80. This number is enough to ensure the
convergence of the applied mesh.

Two impedances are set at the lateral boundaries these impedances have the
value of the non-active region Z0. The dispersive curve of the non-active region is
fitted with f0 = 1.886 GHz, ∆f = 145 MHz, and kmax = 0.53 1/µm.

Figure 3.42 shows the fitting of the Quasi-2D model to the 2D FEM simulation.
The characteristic impedance of the active section is scaled to akz = 0.93, meanwhile
the one of the non-active region to akzna = 1.7. The electric permittivity (εr) and
the piezoelectric constant are the same than the provided by COMSOL for ZnO. The
attenuation constant was set to α = 3000 Np/m.

Figure 3.42: Magnitude and phase of the Impedance of the 2D FEM ZnO resonator
(blue), and the Quasi-2D model (red).
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For the resonators with BR, in addition to the previous simulations, the BR
region was added with NBR = 20 for the three different lengths. The dispersion curve
of the BR was fitted to f001 = 1.857 GHz, clamb = 6100, and r = 1.835. The scaling
factor applied to the characteristic impedance was akzBR = 0.95.

In Figure 3.43 to Figure 3.45, the results of the Quasi-2D model applied to
different BR widths can be seen. The model shows good agreement of the spurious
mode suppression, and the generation of the spurious BR fundamental mode.

Figure 3.43: Magnitude and phase of the Impedance of the 2D FEM ZnO with a BR
of 7.5 µm (red).

Figure 3.44: Magnitude and phase of the Impedance of the 2D FEM ZnO with a BR
of 10 µm (red).
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Figure 3.45: Magnitude and phase of the Impedance of the 2D FEM ZnO with a BR
of 12.5 µm (red).
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3.6.3.5 Implementation of the Quasi-3D model for BR

The previous Quasi-2D model can be extended to an additional dimension by means of
the Transmission Line Matrix (TLM) method [50]. The details of the implementation
can be seen in Section 3.6.2.

Notice that this time the dependence of dx and dy with the discretization of each
electrode region, making it convenient to define it for each region. The electric input
impedance of the resonator is obtained using (3.45), (3.46), (3.43), and (3.44).

3.6.3.6 Quasi-3D Model vs. 3D FEM simulations

A square 3D FBAR comprising the same stack than in section III was simulated using
COMSOL. The dimensions of the top electrode were 80x80 µm2. In Figure 3.46, the
3D FEM is compared with the Quasi-3D model, showing good agreements. The
parameters used to fit the model are the same than the ones used for the Quasi-2D
model.

Figure 3.46: Magnitude and phase of the Impedance of the 3D FEM ZnO square
resonator (red).

Four more resonators were used to validate the BR. Two square resonators of
80x80 µm2, and two rectangular resonators of 80x100 µm2. Both with BR widths of
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7.5 µm and 10 µm. The comparison between the FEM simulations and the Quasi-3D
model show good agreement using the same exact parameters than the determined
in the 2D case Figure 3.47-3.50. The active region was discretized with Nx = 80, and
Ny = 80, while the BR region was discretized with NBR = 20.

The Quasi-3D model outperforms the 3D FEM simulations in computational
time. Quasi-3D simulations take about 3 minutes to compute 201 frequency points,
in the other hand 3D FEM simulations of 1/4 of the resonator take about 6 hours for
the same frequency points.

In [50] it was demonstrated that the TLM method could be applied to arbitrary
electrode shapes of BAW resonators. This method enables for very fast simulations
of different electrode shapes with BR.

Figure 3.47: Magnitude and phase of the Impedance of the 3D FEM ZnO square
resonator with 7.5 µm BR (red).
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Figure 3.48: Magnitude and phase of the Impedance of the 3D FEM ZnO rectangular
resonator with 7.5 µm BR (red).

Figure 3.49: Magnitude and phase of the Impedance of the 3D FEM ZnO square
resonator with 10 µm BR (red).

84



Figure 3.50: Magnitude and phase of the Impedance of the 3D FEM ZnO rectangular
resonator with 10 µm BR (red).

3.7 Conclusions

The first part of this chapter deals with the physics of Lamb wave. The theory
developed in that section gives the reader a good starting point for the mechanisms
that generate the spurious resonances and their suppression.

The first model introduced was a modification of the Mason model with a trans-
mission line for modeling the lateral dimension of the resonator. This model serves
as a basis for the work developed across this chapter.

First the model was used to give an explanation of the spurious resonances below
the fundamental frequency. They are generated by the Border Ring on an SMR
resonator exhibiting Type I dispersion. From this study it is concluded that they are
caused by the lateral propagation of an acoustic mode with a lower cutoff frequency
than the TE1.

The Mason with the lateral transmission line can also be modified to model the
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nonlinear behavior of the resonator. In Section 3.4, the piezoelectric constitutive
relations are expanded to higher order terms to model the H2 emissions due to the
lateral spurious resonances.

Finally a new approach based on the TLM method for acoustic resonances is
presented. It is able to model any electrode in-plane geometry. This way three-
dimensional modeling of BAW resonators can be performed even for apodized geome-
tries and Borer Ring.
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Chapter 4

Thermoelastic Damping Model

In this chapter thermal effects on BAW resonators are introduced. The thermo-
electro-mechanical constitutive relations are derived for a piezoelectric solid and the
mechanism for thermoelastic damping is given to the reader. In the following section
a Mason based model for thermoelastic damping (TED) is presented. This model is
meant to work for different types of BAW resonators independently of their resonance
frequency and composition.

In order to validate the model different experiments were performed. The first
one tries to explain the behavior of the Q factor at cryogenic temperatures. Two
different BAW resonators are measured down to 100 K. The measurements are fitted
to a Mason model with viscoelastic losses and to a Mason model incorporating the
thermoelastic damping.

The next set of experiments are performed at ambient temperature. In this case,
the Q factor of the different outband spurious resonances generated in the Bragg
reflector layers is analyzed. Here, the Mason with thermoelastic damping is compared
to the classical Mason with viscoelastic damping. The aim of this experiment is to
give more accurate predictions at higher frequency resonances than the ones provided
by the Mason model with viscoelastic losses.

4.1 Thermo-electro-mechanical behavior of BAW

resonators

In Chapter 2, the interaction of the elastic and the mechanical domain was explained
by the piezoelectric effect via its constitutive relations. There, they were simplified
assuming that there were no changes on the entropy, decoupling the thermal domain
from the equation.
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Figure 4.1: Heckmann diagram showing the interaction between the intensive vari-
ables (T , E, and Θ), and the extensive ones (S, D, and σ) [18].

On a real BAW resonator, those interactions (Figure 4.1) cannot be omitted. So
as done before, a new set of constitutive relations can be derived from equilibrium
thermodynamics [18]. Since we are dealing with in-line excited bulk waves the electric
magnitude that remains constant is the electric displacement (D). Also, for further
convenience temperature will be used as the third independent variable. For these
reasons, and assuming no residual stresses and strains, the Free energy (A = U−σΘ)
[25] will be used to obtain the constitutive relations following:

dA = TdS + EdD − σdΘ (4.1)

T =
∂A

∂S
; E =

∂A

∂D
; dσ =

∂A

∂Θ
(4.2)

T =
∂T

∂S
dS +

∂T

∂D
dD +

∂T

∂Θ
dΘ (4.3)

E =
∂E

∂S
dS +

∂E

∂D
dD +

∂E

∂Θ
dΘ (4.4)

dσ =
∂σ

∂S
dS +

∂σ

∂D
dD +

∂σ

∂Θ
dΘ (4.5)

Tensor indices were dropped from the previous expressions, anyway they imply
summation over all indices. Assuming that the Free energy is a perfect differential,
the following Maxwell relations can be established:

∂E

∂S
=
∂T

∂D
;

∂T

∂Θ
= −∂σ

∂S
;

∂E

∂Θ
= − ∂σ

∂D
(4.6)
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from them, the partial derivatives can be defined as:
∂T

∂S
= cDΘ, − ∂T

∂D
= hΘ,

∂E

∂D
=

βSΘ,
∂T

∂Θ
= −λSD, ∂E

∂Θ
= τSD, and

∂σ

∂Θ
=
ρmC

Θ
v

Θ
. Here hΘ = e/εS, βSΘ is the inverse

of the permittivity of the medium, λSD is the temperature coefficient of the stress,
τSD is the pyroelectric tensor, and CΘ

v is the heat capacity at constant volume ( do
not confuse the subscript v with a tensor index).

Extending the equations above to tensor notation, the constitutive relations can
be set as:

Ti = cDΘ
ij Sj − hΘikDk − λSDi dΘ (4.7)

El = −hΘljSj + βSΘlk Dk − τSDi dΘ (4.8)

dσ = λSDj Sj − τSDk Dk +
ρmC

Θ
v

Θ
dΘ (4.9)

Notice how the negative sign must be imposed in the definition of λ to keep
it positive. From physical observations it can be seen than, when the temperature
increases, a negative stress (compression) must be applied to keep the strain constant
if the thermal expansion is assumed to be positive.

4.1.1 Relation between temperature coefficient of stress an
linear thermal expansion

From the constitutive relations derived from the Gibbs function (with T , E, and
Θ as independent variables), we can establish a relation between the temperature
coefficient of stress derived from the previous constitutive relations, and the coefficient
of linear thermal expansion (See Appendix A):

λSDi = cEΘ
ij α

E
j − pSEm hΘmi (4.10)

If pyroelectricity pSE is neglected, it turns out to an equal expression that the
one for a non-piezoelectric solid derived also in [25]:

λSDi ≈ αEj c
EΘ
ji . (4.11)

4.1.2 Thermoelastic damping in BAW resonators

If a solid is under compression, some of its mechanical energy will get converted into
thermal energy, this way compressed parts of the solid will become warmer than the
expanded parts (Figure 4.2). In adiabatic conditions, the heat that increases due to
the compression of the solid under harmonic excitation is reabsorbed later by the solid
expansion. Since the heat stays locally in the solid no energy losses are accounted. If
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Figure 4.2: Longitudinal wave, the changes of temperature (Θ) at the compressed
and expanded regions are illustrated [3].

the local adiabatic conditions are broken, heat can flow between the hot and the cold
parts, extracting energy from the vibration [12].

Neglecting pyroelectricity from the constitutive relations (4.7)-(4.9) and suppos-
ing displacement only in the z -direction, they end up as:

T3 = cDΘ
33 S3 − hΘ33D3 − λSD3 dΘ (4.12)

E3 = βSΘ33 D3 − hΘ33Sj (4.13)

dσ = λSD3 S3 +
ρmC

Θ
v

Θ
dΘ. (4.14)

From (4.14), the quasi-static heat density in the body can be derived:

δQ = Θdσ = ΘλSD3 S3 + ρmC
Θ
v dΘ, (4.15)

where δ is an imperfect differential [16]. This heat will propagate following the Fourier
law:

q = −k∇Θ (4.16)

here, q is the heat flux, and k is the heat conductivity of the solid. The heat conser-
vation law imposes that

δQ̇ = −∇ · q. (4.17)

Identifying the strain contribution of (4.15) as δQS = Θλ3S3 and using (4.15)-
(4.17), the heat equation is derived:

ρmC
Θ
v

∂Θ

∂t
= k

∂2Θ

∂z2
− ∂QS

∂t
. (4.18)

The rate of heat production on (4.18) will be simply calculated as

∂QS

∂t
= λ3

∂(ΘS3)

∂t
. (4.19)

90



The strain and the temperature are functions of time, while the thermal coefficient
of stress remains time independent. Since we are interested in the small variations of
temperature in function of time, the total temperature Θ can be represented as the
following:

Θ = Θ0 + dΘ = Θ0(1 + θ) (4.20)

here θ represents the small harmonic variations of temperature due to the thermoe-
lastic effect. Applying (4.20) to (4.19), the rate of hate production ends as

∂QS

∂t
= λ3

∂(ΘS3)

∂t
= λ3

∂(S3Θ0 + S3Θ0θ)

∂t
= λ3Θ0

(
∂S3

∂t
+
∂(S3θ)

∂t

)
. (4.21)

Since we are dealing with small harmonic motions, we can neglect the higher

order contribution

(
∂(S3θ)

∂t

)
. Finally after a few manipulations we arrive to the

heat equation for a thermoelastic body:

ρmC
θ
v

∂θ

∂t
= k

∂2Θ

∂z2
− λ3

∂S3

∂t
. (4.22)

The injected heat will flow to cooler areas, generating an energy loss of the
mechanical wave and its consequent attenuation. This attenuation takes part mainly
in longitudinal modes due to its changes in volume, for higher frequencies, the path
between the solid’s compressed and extended parts gets shorter, and become easier
to the heat to get propagated. Because of that the attenuation per unit of length
becomes proportional to the square of the frequency, being the main attenuation
source at high frequencies [12].

4.2 Mason based model for TED

On [18], Rocas et. al. presented a circuital model of a BAW resonator based on the
Mason model. Their model was able to model thermal effects and the nonlinearities
arising in BAW resonators, but TED was not included into the model. In Rocas’
model the piezoelectric effect is modeled by a discrete Mason model made by lumped
components, and it is coupled to a thermal network that models the heat propagation
along the thickness direction of the resonator (Figure 4.3). In order to simulate a
multilayered resonator, each cell of each material is connected between them in a
similar way as it is done for Mason model in Chapter 2.

In that paper, no heat was injected nor subtracted from the thermal network
when the solid was expanded or contracted. The model only took into account the
temperature of the medium, and the heat dissipated by the viscoelastic effect.
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4.3 Calculation of the temperature coefficient of

the stress

In Chapter 2, a way of obtaining the temperature coefficient of stress with the stiffness
tensor and the linear coefficient of thermal expansion (4.11) was described. It can be
demonstrated (see Appendix B), that for a Hexagonal crystal and an Isotropic one,
the previous expression can be simplified for each material to:

λ3 = αE3 (c
EΘ
33 + 2cEΘ

13 ). (4.37)

4.4 TED model on an AlN piezolayer

In order to see some effects that the thermal constants have on the TED model, a thin
film AlN layer was simulated with our model on ADS. Both the resonant frequency
and the maximum Q factor were plotted in order to evaluate its frequency shift and
its Q factor degradation.

4.4.1 Effect of the room temperature and the coefficient of
thermal expansion

The first test was the room temperature dependence of the model (Fig. 4.9), where
it can be seen that increasing the room temperature produces a frequency shift in-
creasing both the resonance and antiresonance frequency. Also Q factor decreases as
the room temperature increases.

Figure 4.9: The left plot shows the resonant frequency at different ambient tempera-
tures. The right plot shows the maximum Q factor at different ambient temperatures.

In TED the increasing of the coefficient of thermal expansion α3, produces an
increase of the resonance frequency and an accentuated degradation of the Q factor
(Fig. 4.10).
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Figure 4.10: The left plot shows the resonant frequency at different coefficient of
thermal expansion α3. The right plot shows the maximum Q factor at different
coefficient of thermal expansion α3.

4.4.2 Effect of the heat capacity

A decrease of heat capacity implies that less heat is required to increase the tempe-
rature of the solid, so the thermoelastic effect that produces the damping is greater
and consequently the Q factor decreases. It also reduces the stiffness constant c33
increasing both the resonance and antiresonance frequency. On Fig. 4.11 some plots
about the behavior of an AlN single layer resonator can be seen.

Figure 4.11: The left plot shows the resonant frequency at different heat capacities
Cv. The right plot shows the maximum Q factor at different heat capacities Cv.

4.4.3 Effect of the thermal conductivity

Thermal conductivity regulates the flow of heat that propagates along the body. An
increase of the thermal conductivity implies that more energy is propagating to other
parts of the vibration increasing the TED. In Fig. 4.12 the impedance and the Q
factor of an AlN single layer resonator are plotted at different thermal conductivity
values. Note that thermal conductivity has no effect on the resonant frequency.
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Figure 4.12: The left plot shows the resonant frequency at different thermal conduc-
tivities k. The right plot shows the maximum Q factor at different thermal conduc-
tivities k.

4.5 Temperature dependence of the BAW resona-

tor

Static temperature variations, i.e. changes in the ambient temperature, result in
changes on the materials characteristics beyond the changes described in the consti-
tutive relations (4.12) to (4.14). These changes need to be taken into account in our
model in order to correctly represent the device behavior.

The aim of that section is explaining the changes that will occur on that ma-
terial properties with their phenomenological approach and present qualitatively the
changes that they impose to the resonator behavior.

4.5.1 Thermal expansion and material density

The thermal expansion on the z-direction, can be expressed with the following formula
concerning the change of dimension in each material layer

th = th0(1 + α3 ·∆Θ), (4.38)

where th is the thickness of the layer.

When having thin films of material deposited in a thick substrate, the in-plane
expansion is dominated by the substrate [18]. This lateral expansion of the substrate
will generate a vertical dimension change according to the material Poisson ratio ν.
This can be modeled by the following expression for the effective thermal expansion
coefficient:

α3,N,eff =
1

1− νN
(α3,N − νN(2α3,sub − α3,N)), (4.39)

here the subscript N stands for each material layer on the resonator, and αsub stands
for the coefficient of thermal expansion of the silicon substrate.
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In Figure 4.13, it can be seen the isolated effect of thermal expansion and also
the effect considering the clamping. At first sight it cannot be seen any difference
when treating the thermal expansion separately.

Figure 4.13: Plots of the impedance of a BAW resonator. The magenta trace corre-
sponds to the Mason model of a resonator at room temperature. Both red and blue
traces are superposed, blue is the impedance at 100 K taking into account thermal
expansion, and red taking into account the substrate clamping.

From the thermal expansion phenomena, it can be clearly seen that maintaining
the same mass for each layer, its mass density is going to change. If the same tempe-
rature is supposed both for the layer and the substrate, the next expression can be
obtained [18]

ρm,N ≈ ρm,N,Θ0(1− (2αsub + αN,eff )∆Θ). (4.40)

In Figure 4.14 the effect of the material density on the resonant frequency can
be seen.

Figure 4.14: Impedance of a BAW resonator, blue trace is the impedance at room
temperature, while the red one is the impedance at 100 K taking only into account
the change of mass density.
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4.5.2 Temperature dependence of the piezoelectric constant

The temperature dependence of the piezoelectric constant e33, follows the next ex-
pression

e33 = e33,Θ0(1 + Te ·∆Θ). (4.41)

Te corresponds to the temperature derivative of the piezoelectric constant, and
it is obtained by experimental results. In Figure 4.15 the effect of the temperature
decrease on the piezoelectric constant can be seen:

Figure 4.15: Impedance of a BAW resonator, blue trace is the impedance at room
temperature, while the red one is the impedance at 100 K taking only into account
the temperature derivative of the piezoelectric constant.

4.5.3 Temperature dependence of the electric permittivity

The expression for the temperature dependence of the electric permittivity ε33, is the
same that the one used for the piezoelectric constant

ε33 = ε33,Θ0(1 + Tε ·∆Θ). (4.42)

In this case Tε corresponds to the temperature derivative of the electric permit-
tivity, and it is also obtained in an experimental way. In Figure 4.16, the effect of the
temperature on the electric permittivity is plotted.

4.5.4 Temperature dependence of the heat capacity

Unlike the other parameters, theoretical models exist to predict the heat capacity as
a function of the temperature. These models are derived from the phonon’s theory
and the density of states, being rather cumbersome and difficult to deal with. For the
temperature range of our measurements, the Debye’s model [58] is the best suited.

CΘ
v = 9NAkB

(
Θ

θD

)3 ∫ xD

0

x4ex

(ex − 1)2
dx, (4.43)
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Figure 4.16: Impedance of a BAW resonator, blue trace is the impedance at room
temperature, while the red one is the impedance at 100 K taking only into account
the temperature derivative of the electric permittivity.

xD ≡ θD/Θ. (4.44)

where NA is the Avogadro number, kB the Boltzmann constant, and θD the Debye
temperature characteristic of every material, e. g. 400 K for tungsten, 645 K for
silicon. In Figure 4.17 the heat capacity is plotted as a function of the temperature
normalized by the Debye temperature. It can be seen how heat capacity increases
with temperature.

Figure 4.17: Heat capacity in function of the normalized temperature.
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4.5.5 Temperature dependence of the thermal conductivity

There also exists a theoretical model for thermal conductivity that is related with the
material heat capacity [58]:

k =
1

3
CΘ
v · v · ℓ. (4.45)

Where v is the average particle velocity, and ℓ the mean free path of a particle
between collisions. This expression, although being pretty simple does not provide
enough information about the thermal conductivity behavior with temperature. The
heat capacity can be obtained from the Debye model, but the dependence of the
mean free path becomes more unpredictable when supposing anharmonic interactions
between phonons, and Umklapp scattering arise.

However, it can be established a relation of inverse proportionality between the
mean free path and temperature, l ∝ 1

Θ
; the higher the temperature, the higher

number of excited phonons will be in the material, increasing the probability of an-
harmonic interactions between phonons and decreasing the material thermal conduc-
tivity.

Looking at the measurements of different materials at [59], it can be confirmed
that the mean free path imposes, and thermal conductivity decreases while tempera-
ture increases (Figure 4.18).
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Figure 4.18: Thermal conductivity of different metals in function of temperature [59].
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4.6 Temperature measurements of BAW resonators

To analyze the Q factor of the resonators, measures performed on the National Insti-
tute of Standards and Technology (NIST) were provided [60]. These measurements
were performed on a set of BAW resonators provided by Qorvo, with the intention of
characterizing its reflection coefficient at a wide range of temperatures.

The measurement setup consists in a cryogenic probe station, where the wafer
containing the resonators was set in (Figure 4.19). A Cascade Microtech cryogenic
probe was used, and the calibration substrate was designed at NIST in order to
achieve the desired performance up to 20 GHz, and from the temperature range of
25K to 320K. The reflection coefficient was measured using a Vector Network Analyser
(VNA).

Figure 4.19: Measurement setup at NIST. It can be seen a fragment of the wafer and
the Cascade Microtech probe in blue.

For this work, the measurements of two resonators where used, PBO400 and
SBO400. PBO400 corresponds to the shunt resonator used in filters, with resonance
frequency at 1.827 GHz, while SBO400 corresponds to the series resonator, with
resonance frequency at 1.885 GHz. Both SBO400 and PBO400 are SMR resonators,
they are designed for the same filter, and fabricated on the same stack.

The piezoelectric layer is made of aluminum nitride (AlN), and being the thicker
layer of the resonator, it is around 1 µm of thickness. The electrodes are composed of
aluminum copper (AlCu) and tungsten (W). The Bragg reflector is done interposing
silicon dioxide (SiO2) with tungsten. Other materials as silicon (Si) and silicon nitride
(Si3N4) are used for the substrate and the passivation layer.

In order to achieve lower frequencies at the shunt resonator PBO400, the meta-
lization of its upper electrode is increased (Figure 4.20)
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Figure 4.20: Cross section of the series resonator SBO400, and the shunt resonator
PBO400. The proportions of the figures are not on scale, and only intended for
illustrative purposes.

The input impedance of a resonator can be easily obtained from the reflection
coefficient by the formula:

Zin =
1 + S11

1− S11

Z0, (4.46)

where Z0 is the characteristic impedance set to 50Ω. We will work with impedance
instead of reflection coefficient.

Two measurements at each temperature were performed to each of the resonators,
one broadband measurement to obtain all the spurious resonances, and one narrow-
band to obtain a more detailed picture around resonance and antiresonance.

The measurements performed to the PBO400 were the following (Figure 4.24-
4.26):
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Figure 4.21: Plot of the narrowband measured magnitude of the PBO400 impedance.
The different traces correspond to measurements done from 100K to 298K

Figure 4.22: Plot of the narrowband measured phase of the PBO400 impedance. The
different traces correspond to measurements done from 100K to 298K.
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Figure 4.23: Plotted broadband measurements of the PBO400 impedance. The dif-
ferent traces correspond to measurements done from 100K to 298K.

Measurements of the SBO400 resonator can be seen from Figure 4.24-4.26.

Figure 4.24: Plot of the narrowband measured magnitude of the SBO400 impedance.
The different traces correspond to measurements done from 100K to 298K
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Figure 4.25: Plot of the narrowband measured phase of the SBO400 impedance. The
different traces correspond to measurements done from 100K to 298K.

Figure 4.26: Plotted broadband measurements of the SBO400 impedance. The dif-
ferent traces correspond to measurements done from 100K to 298K.

In this measurements, it can be seen how as temperature decreases thermal ex-
pansion produces a thickness decrease on each layer of the resonator, thus resulting
in a frequency increase of both resonance and antiresonance frequencies.

It the broadband measurements, it can be seen a huge phase shift of the impedance
around 15 GHz. This is mainly due to the electric length of the resonator’s pads and
need to be also considered in our model. It can be easily modeled by adding an ideal
transmission line at the electric terminals of the Mason model, the electric length of
that line will be adjusted to match the measurements.
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The Q factor of the measurements can be obtained from the (2.34), but using the
reflection coefficient of the measurements directly, results in a very noisy Q factor. To
solve this, a Mason model was fitted to the measurements and its simulated reflection
coefficient was used to obtain the Q values at resonance at antiresonance (Figure
4.27).

Figure 4.27

The increase of Q factor at resonance when the temperature diminishes could be
explained with the electric conductivity increase of both the electrodes and the pads.
But there was no clue about what phenomena could be degrading the Q factor at the
antiresonance, before considering the TED effects.

4.6.1 Q factor degradation due to Bragg reflector

The first hypothesis managed was that the Q factor degradation was induced by the
ineffectiveness of the Bragg reflector caused by the thermal expansion coefficient of
the materials.

To evaluate this hypothesis, the measurements of the PBO400 were selected. The
Q factor was evaluated using the Mason model implemented on Advanced Design Sys-
tem (ADS), taking into account the material thermal properties explained in Section
4.5 (Figure 4.28). Since the TED model is not being used for this hypothesis, the
temperature dependence for the stiffness constant is also added:

cE33 = cE33,Θ0
(1 + Tc∆Θ), (4.47)

in this case, Tc is the temperature derivative of the stiffness constant.

At ambient temperature (298 K), all the physical parameters were tuned to fit the
measurement and the initial Q factor was adjusted with the electrode resistance Rs,
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Figure 4.28: Mason model for the PBO400 resonator implemented on ADS.

and the viscosity of each layers. These adjustments where realized at the broadband
measurements taking into account the spurious resonances.

To obtain the Q factor at the other temperatures, viscosity was maintained con-
stant while the other material parameters were adjusted in function of its dependence
with temperature (view Table 4.1). The Rs is expected to increase with temperature
and was selected to fit the Q at the resonance.

Material Tc(10
−6/K) Tε(10

−6/K) Te(10
−6/K)

AlCu -300 - -

AlN -60 150 10

Si3N4 -24.4 - -

Si -75 - -

SiO2 239 - -

W -91 - -

Table 4.1: Temperature derivatives for each material [18].

Comparing both measured Q values and simulated ones (Figure 4.29), it can be
clearly seen that the temperature behavior of the resonator itself cannot be the cause
for the Q factor degradation on antiresonance.
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Figure 4.29: Q factor at different temperatures of the PBO400 resonator. Red traces
correspond to the measurements, while blue traces to the simulations. Crosses stand
for resonances and diamonds for antiresonances.

More simulations were realized regarding the effect of all of these phenomena
separately. Each of the parameters was tuned to match the frequency variation at
100 K (Table 4.2).

Effect Value Q resonance Q antiresonance

Thermal expansion
(α)

x2 1096 1998

Thermal expan-
sion w. substrate
clamping (αν)

x4 1086 1977

Temperature
derivative c

x0.85 1119 2054

Material density
(ρm)

x0.993 1098 1996

Table 4.2: Results of the simulations.

In the previous table, it can be seen that although some parameters were slightly
tuned to match the frequency drift, e.g. material density. None separately, or alto-
gether can explain the Q factor degradation.
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Figure 4.31: Q factor at different temperatures of the PBO400 resonator. Red traces
correspond to the measurements, while blue traces to the TED simulations. Crosses
stand for resonances and diamonds for antiresonances.

Figure 4.32: Measurements (red) versus simulated TED model (blue) plots of the
magnitude (right) and the phase (blue) of the impedance at 100 K.

The model is adjusted at each temperature, slopes of the temperature behavior
were obtained for both the heat capacity and thermal conductivity. In order to acquire
the temperature derivatives, a linear regression was performed with Matlab (Figure
4.33).
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Figure 4.33: Adjustments of the heat capacity (right) and the thermal conductivity
(left) of AlN layer in PBO400 on blue, in red it is plotted its linear regression.

Once done for the PBO400 resonator, the same values of heat capacity and
thermal conductivity were tried on the SBO400. Since they are fabricated on the
same wafer, little variation of the materials characteristics was expected.

However in order to fit the measurements and obtain the measurement Q factors
(Figure 4.34), the heat capacity and the thermal conductivity were slightly adjusted.

Figure 4.34: Q factor at different temperatures of the SBO400 resonator. Red traces
correspond to the measurements, while blue traces to the TED simulations. Crosses
stand for resonances and diamonds for antiresonances.
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On Table 4.3 a comparison of the heat capacity and thermal conductivity slopes
at both PBO400 and SBO400 is shown.

Material
αCv(K

−1) αk(K
−1)

PBO400 SBO400 PBO400 SBO400

AlCu 1.43 1.37 -1.9 -1.25

AlN 1.1 0.99 -3.3 -2.17

Si3N4 0.92 0.84 -0.22 -0.14

Si 0.933 0.87 -1.44 -0.95

SiO2 0.99 0.91 -0.012 -0.008

W 0.2 0.197 -1.57 -1

Table 4.3: Slopes of the linear regressions of heat capacity and thermal conductivity.

Comparing both results, it can be observed that the heat capacity variation from
each resonator is slightly different, but the thermal conductivity has a more notable
difference.

The variation of the heat capacity Cv and the thermal conductivity k with tem-
perature, are obtained through the fitting of the model. The intrinsic variation of
this parameters is not found in literature for thin films, so further experiments are
necessary to validate this behavior.

Also, having only analyzed the thermoelastic damping, and having not taken into
account viscoelasticity and other damping phenomena that exists in acoustic waves,
it is difficult at this point to confirm the thermoelastic damping is the unique cause
of the Q factor degradation at antiresonance at low temperatures. Although, it seems
clear than thermoelastic damping can be identified as a possible contributor to this
phenomenon.

4.7 TED on the outband spurious resonances

In order to validate the Mason based TED model, more experiments were performed.
The SMR-BAW devices usually show highly coupled, out of band spurious resonances
(See Figure 4.35). These spurious are generated in the Bragg reflector and are located
at frequencies above resonance.

Looking at the standing wave patterns of some of these resonances, one can
see that the acoustic energy is confined in the different layers of the reflector. The
loss mechanism of this resonances is usually attributed to the viscoelastic losses (See
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Figure 4.35: Phase of the impedance of a BAW resonator. The spurious resonances
can be seen as spikes above the fundamental resonance at about 1.8 GHz

Section 2.4) of the different materials comprising the Bragg reflector. Nevertheless,
the viscoelasticity of the materials, although offering a good estimation of losses near
the resonant frequency, fails to explain the loss behavior at those higher frequency
spurious.

The Q factor of a BAW resonator can be obtained from (2.34). Although, the
formula presents some inconsistencies at some of these spurious [62]. For the sake of
this analysis a fitting of the Q circle to a series RLC model was used (Figure 4.36) [63].

(4.48)

here, ∆ω is the resonator -3 dB bandwidth, and the subscript 0 refers to the resonant
frequency. A shunt resistor can be added the same way as done in [24], to take into
account the departure from a circular impedance locus.

. (4.49)

Finally, a phase change (e−jβ) was also added before obtaining the fitted Q circle:

(4.50)
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on material parameters, the phase velocity (vp), and the viscosity (η).

� For each spurious resonance, the predominant α will correspond to the ones of
the resonator’s layers where the displacement is maximum.

On the other hand, thermoelastic damping also increases with frequency. In
Section 4.1.2 was seen that when the adiabatic assumption of the solid is broken,
heat flow to other material regions. Assuming a plane longitudinal wave, compressed
areas become warmer while extended cooler (Figure 4.2).

The heat generated at compressed regions will flow to the cooler expanded region,
this will extract energy from the acoustic wave generating losses. At high frequencies,
the thermal path for a longitudinal wave its reduced. This causes more heat propaga-
tion to cooler areas and increases the thermoelastic damping. For the thermoelastic
damping, the resonator layer where the spurious is generated also plays an important
role. Since the phase velocity is different for each material, the thermal path can be
reduced for some resonances in particular.

4.7.1 Fitting of the spurious resonances

The spurious resonances of three different resonators were fitted to the RLC model in
order to obtain its Q factor. The results were compared with the TED Mason model
and the mason model with viscoelastic losses dependent of the material.

4.7.1.1 PBO400 Analysis

Several spurious resonances are selected from the PBO400 (Figure 4.38), ranging from
the 3 GHz to 15 GHz.

The thermal conductivity k of each material, and the viscoelasticity η of SiO2

and AlN, are adjusted for the spurious resonance of the highest frequency indepen-
dently. These two materials are the ones fitted since they are the main responsible of
viscoelastic losses at the selected resonances. The Q factors are also obtained from
the Mason model with the viscoelasticities of each material provided by Qorvo.
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Figure 4.38: Phase of the impedance of the PBO400 resonator at high frequencies.

Resonance Q Meas Q TED Q η AlN = 0.023 Q η SiO2 = 0.011 Q η Qorvo

Fund. 2101 6719 2809 4271 2106

1 112.5 185.9 221.6 168.8 174.2

2 360.3 481 767.36 287.3 285

3 330 309.6 1226.6 1958 360.6

4 610.1 1103 2717.3 375.8 408.3

5 738.7 638.9 484.9 1222.27 643.17

6 842.3 664.4 371.4 1281.5 554.9

7 551.9 715 1980.3 280 279.8

8 463.5 470.2 483.7 462.8 281.7

Table 4.4: Fitting of the spurious resonances of the PBO400 for different loss mech-
anisms.

The previous results show that the TED gives better explanation of the loss
mechanisms at higher frequencies, meanwhile viscoelastic losses adjusted are not able
to explain the different Q factors of these resonances.
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Looking at resonances number 7 and for in Table 4.4, we can observe that TED by
its own it is not able to explain all this losses. For that reason, additional viscoelastic
losses are added to the SiO2 layer (Table 4.5)

Resonance Q Meas Q TED + η SiO2 = 0.0035

Fund. 2101 2809

1 112.5 162.5

2 360.3 345.5

3 330 297.4

4 610.1 505.8

5 738.7 595.8

6 842.3 587.7

7 551.9 393.4

8 463.5 378.3

Table 4.5: Fitting of the spurious resonances of the PBO400 with TED and η SiO2.

4.7.1.2 SBO400 Analysis

The same procedure was repeated for the SBO400 resonator with the values obtained
for the PBO400. This time, nine spurious resonances are analyzed (Figure 4.39).

The Q factors of each resonance can be seen on Table 4.6. At the measurement
of the first spurious resonance the Q factor appears in red, at resonances 6 and 7 no
fitting of the Q circle has been obtained. For the first case, the obtained Q factor
is putted in doubt since the measured Q circle seems to have other resonances and
the fitting procedure is not able to obtain the correct Q factor (Figure 4.40). For the
other cases, the Q circle was to small for obtaining a proper fitting, meaning that the
Q factor at that resonances is too low.
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Figure 4.39: Phase of the impedance of the SBO400 resonator at high frequencies.

Resonance Q Meas Q TED Q η AlN = 0.023 Q η SiO2 = 0.011 Q η Qorvo

Fund. 1683 6326 4548 4045 2079

1 97.8 171 200.7 156.6 161.3

2 266 257.3 284.3 229.5 222.3

3 374.4 572.9 793.2 308.3 290.5

4 116.1 323 1563.4 5333.8 368.4

5 305.2 312.2 360.3 300.5 270

6 386 489.2 714.6 No meas. No meas.

7 357.4 623.8 963.2 No meas. 319.6

8 812.7 678.1 356.4 1133.3 554.4

9 386.3 546.3 460.2 476.1 303.4

Table 4.6: Fitting of the spurious resonances of the SBO400 for different loss mecha-
nisms.
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Figure 4.40: Fitting of the Q circle. The measurement can be seen in blue, the RLC
fitting is shown in yellow.

As done with the PBO400, the viscoelastic losses of the SiO2 are added to the
TED (Table 4.7)

Resonance Q Meas Q TED + η SiO2 = 0.0035

Fund. 1683 2360

1 97.8 155.9

2 266 248.8

3 374.4 364.6

4 116.1 310.5

5 305.2 259.9

6 386 314.4

7 357.4 319.6

8 812.7 551.1

9 386.3 410.8

Table 4.7: Fitting of the spurious resonances of the SBO400 with TED and η SiO2.
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4.7.1.3 B30 Resonator Analysis

Another resonator with a totally different stack was also analyzed, in this case a
resonator for the B30 band, operating at 2.3 GHz. For this resonator eight spurious
resonances were analyzed (Figure 4.41).

Figure 4.41: Phase of the impedance of the B30 resonator at high frequencies.

This resonator shows higher Q factor spurious than the PBO400 and SBO400.
Using the same material parameters than the ones used on previous analysis, will give
validation of the independence of the model to the device’s stack. The Q factors of
the spurious resonances in the B30 resonator appear on Table 4.8.

124



Resonance Q Meas Q TED Q η AlN = 0.023 Q η SiO2 = 0.011 Q η Qorvo

Fund. 1440 7534 2834 1212 1210

1 222 352 344 202 237

2 439 1154 2051 435 545

3 490 720 1071 481 445

4 218 281 281 169 180

5 373 507 597 230 277

6 502 671 1620 788 397

7 327 515 778 236 273

8 534 1005 2041 201 234

Table 4.8: Fitting of the spurious resonances of the B30 resonator for different loss
mechanisms.

For this case the viscoelastic losses of SiO2 were added as well to the TED model
(Table 4.9).

Resonance Q Meas Q TED + η SiO2 = 0.0035

Fund. 1440 2731

1 222 282

2 439 670

3 490 563

4 218 220

5 373 358

6 502 544

7 327 346

8 534 365

Table 4.9: Fitting of the spurious resonances of the B30 resonator with TED and η
SiO2.
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4.8 Conclusions

Through this chapter a comprehensive explanation of thermoelastic damping in BAW
resonators is given to the reader. The thermo-electro-mechanical constitutive rela-
tions are derived from the electric Gibbs potential. These constitutive relations are
the fundamental blocks for deriving an equivalent model of this phenomenon.

Applying the thermo-electro-mechanical constitutive relations to the Mason model,
we are able to reproduce the thermoelastic damping in a BAW resonator. On this
Mason model, an RC transmission line is used to model the heat propagation across
the resonator’s stack. This RC transmission line is used to model the thermal do-
main of the resonator, and it becomes coupled to the Mason model by the constitutive
relations. To validate this circuital model different analysis were performed.

The first analysis, performed only on the fundamental resonance at cryogenic
temperatures, showed a good agreement with the trend of the experimental data.
Although, it was not sufficient to validate the model.

The experiments performed on the spurious resonances give additional validation
to the thermoelastic model. Since for these resonances the acoustic energy is confined
in different layers of the resonator, we expect that the losses will occur at the corre-
spondent layer. The TED model shows good agreement with the experimental data
for the majority of these spurious resonances.

The main drawback for the application of this model is the determination of
the correct thermal material characteristics for thin film materials. In the literature
thermal conductivities and heat capacities can be found for bulk materials, although
they are not easily found for thin films. The determination of these parameters
supposes a challenge to overcome in future work.
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Chapter 5

Conclusions and Future Work

BAW technology has become the key for achieving RF filters at high frequencies,
necessary for the next generations of mobile networks.This thesis is centered in mod-
eling the effects that degenerate the Q factor, the ones involving spurious lateral
resonances, and the loss mechanisms due to thermal effects.

In Chapter 2, the basic physics of a BAW resonator are explained. There, the
piezoelectric effect is explained and how the electromechanical transduction plays
a role in an electroacoustic resonator. The impedance of a simple BAW resonator
constituted of a single piezolayer is defined. The Q factor of a resonator is introduced,
relating it to the losses of the device. The two main circuital models used for BAW
resonators are presented. Those are the Butterworth van Dyke model, commonly
used for filter design, and the Mason model which gives a more accurate physics of
the BAW resonator.

Chapter 3 deals with the Lamb wave originated at the piezolayer. The physical
derivation of the Lamb wave modes is given to the reader. Departing from that, an
explanation of the unwanted effects on a real device presented (spurious modes) as well
as the used methods for its suppression, the Border Ring (BR) and the apodization.
The BvD model is expanded for the modeling of these spurious resonances. Once the
theoretical basis is established, new models for the spurious modes generated by the
Lamb waves. It first introduces a Mason based model with a dispersive transmission
line to take into account the lateral dimension of the resonator.

The Mason model with the lateral transmission line is then used to predict the
spurious modes that appear on SMR resonators with a BR. Showing that they are
generated by a dispersive mode other than the TE1. This explains the different
spurious appearing due to the BR. The ability to accurately predict these resonances
opens new doors for optimizing the resonator design in order to minimize their impact
on the filter response.
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The effect of the spurious resonances on the H2 emissions of a BAW resonator are
treated in the following section. The Mason based model with the dispersive line is
expanded with the nonlinear constitutive relations for piezoelectricity. The results for
two different SMR resonators are shown. The ripple in the H2 response can become
a problem on filters. The common practice to reduce the level of H2 emissions is
doubling the resonators in counterphase. A mismatch on the spurious resonances
will become a bad cancellation of H2 in the filter response. For this reason a good
modeling of this effect is needed.

On the next section the Transmission Line Matrix (TLM) method is presented
for modeling 2D and 3D acoustic cavities. The novelty of this method is his capability
to model any electrode in-plane geometry and the BR as well. It shows a significant
speed up than other methods usually used such as FEM. This speed up becomes
really important when designing a filter. The selection of the electrode shape plays
an important role in suppressing the spurious resonances. The correct suppression of
these resonances also plays a role in the Q factor ob the resonator.

The lower computational time of TLM compared to FEM enables the use of
optimization algorithms for the electrode shape at the filter level design. Giving the
filter designer more tools to achieve the targeted performance.

The last chapter, Chapter 4, is focused in the thermal effects of the resonator and
the role they play in the Q factor degradation. The physics underlying the interaction
between the thermal, the electrical, and the mechanical domain are presented to the
reader. From these physics the thermoelastic damping effect is derived for an acoustic
plane wave.

Departing from the thermo-electro-mechanical constitutive relations, a Mason
based model for thermoelastic damping (TED) is proposed. The model is firstly
tested by cryogenic measurements of BAW resonators. Here the model is putted into
comparison with a Mason with viscoelastic losses. This comparison, is performed
to see if the abnormal behavior of the Q factor at the antiresonant frequency with
temperature can be explained by TED. The model is able to explain the degrada-
tion of the Q factor of the antiresonant frequency at cryogenic temperature, but the
determination of the material parameters needs further investigation.

In order to provide more experimental evidence for the proposed model, the high
frequency outband spurious resonances are analyzed. These resonances operating at
a higher frequency are more prone to experience TED. This is mainly due to the
shorten of the wavelength’s thermal path, since it is shorter that the fundamental
frequency one.

These spurious modes are fitted to a RLC circuit to obtain its Q factor. Compar-
isons between measurements, viscoelastic damping, and TED are provided, showing
a good agreement between the experimental data and TED.
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The models derived in this thesis open the possibility for a faster resonator design,
and also open the possibility of further resonator optimization. Nevertheless more
work is needed in order to expand the capabilities of these models.

5.1 Future work

The main limitation of the Quasi-3D TLM model is the characterization of the stack
acoustic characteristic impedance Z0. The analytical expression derived in [30] is
only valid for isotropic electrode-less resonators, that is the reason why it is scaled
for SMRs.

The characteristic impedance depends of the standing wave of the particle velocity
in the thickness direction v3 and the force F3. These standing wave patterns will
change depending of the stack layers configuration for the TE1 mode. Deriving an
analytical expression for these field magnitudes in an SMR will help having a better
initial approach of the characteristic impedance.

Also, the Quasi-3D TLM model may be modified to reflect the nonlinear behavior
of all the lateral spurious modes, as done in Section 3.4 for the Mason model with
lateral transmission lines. To achieve it, some sources adding the nonlinear terms will
need to be introduced in the model.

On the other hand, more validation of the TED Mason model needs to be per-
formed. The model has a great correlation with the losses happening at the different
experiments, but the material parameters need to be adjusted in order to fit the
measurement responses.

A determination of the thermal material parameters of thin films need to be
performed. In order to do so, material characterization needs to be performed outside
the resonator level. Also, the Fourier heat propagation equation needs to be paid
more attention on the TED Mason model. Since we are working with thin films,
the approximation of thermal waves having infinite propagation velocity may not be
valid.
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Chapter 6
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6.1 Journals & Symposia Publications

� C. Udaondo, C. Collado, J. Mateu and R. Aigner, ”Analysis of Border Ring
Modes on SMR-BAW Resonators,” 2019 IEEE International Ultrasonics Sym-
posium (IUS), Glasgow, UK, 2019, pp. 1703-1706, doi: 10.1109/ULTSYM.2019.8925601.

� C. Udaondo, C. Collado, J. Mateu and D. Garcia-Pastor, ”An Equivalent Model
for Lateral Modes on the H2 Response of Bulk Acoustic Wave Resonators,” 2020
IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 2020,
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sonics Symposium (IUS), 2022, pp. 1-4, doi: 10.1109/IUS54386.2022.9957924.
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nances on Homogeneous BAW Resonators,” Micromachines, vol. 14, no. 11, p.
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� C. Udaondo, ”Analysis and modeling of lateral modes in electroacoustic res-
onators,” Bachelor’s Degree Thesis, Universitat Politècnica de Catalunya, 2017.

� C. Udaondo, ”Thermoelastic damping losses in BAW resonators,” Master’s De-
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[30] C. Collado, E. Rocas, J. Verdú, J. Mateu, A. Hueltes and R. Aigner, ”A lateral
modes model for BAW resonators” 2014 IEEE International Ultrasonics Sympo-
sium, Chicago, IL, 2014, pp. 1497-1500.

[31] T. Jamneala, P. Bradley, A. Shirakawa, R. K. Thalhammer and R. Ruby, ”An
Investigation of Lateral Modes in FBAR Resonators,” in IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 5, pp. 778-789, May
2016, doi: 10.1109/TUFFC.2016.2531744.

[32] T. Jamneala, C. Kirkendall, B. Ivira, R. K. Thalhammer, P. Bradley and R.
Ruby, ”The Main Lateral Mode Approximation of a Film Bulk Acoustic Resona-
tor With Perfect Metal Electrodes,” in IEEE Transactions on Ultrasonics, Fer-
roelectrics, and Frequency Control, vol. 65, no. 9, pp. 1703-1716, Sept. 2018, doi:
10.1109/TUFFC.2018.2846559.

[33] J. W. Strutt, (3rd Baron Rayleigh), ”On the Free Vibrations of an Infinite Plate
of Homogeneous Isotropic Elastic Matter,” Proc. London Math. Soc., Vol. 20, p.
225, 1889.

[34] H. Lamb, ”On Waves in an Elastic Plate,” Proc. Roy. Soc. London, Ser. A 93,
pp. 114-128, 1917.

134



[35] B. A. Auld, ”Acoustic Fields and Waves in Solids,” Wiley-Interscience, Vol. II,
1973.

[36] R. Marks, A. Clarke, C. Featherston, C. Paget, and R. Pullin, ”Lamb Wave In-
teraction with Adhesively Bonded Stiffeners and Disbonds Using 3D Vibrometry,”
Applied Sciences, Vol. 6, no. 6, p. 12, Jan. 2019.

[37] Clorennec, Dominique, Prada, Claire, Royer, Daniel. (2007). Local and noncon-
tact measurements of bulk acoustic wave velocities in thin isotropic plates and shells
using zero group velocity Lamb modes. Journal of Applied Physics. 101. 034908 -
034908. 10.1063/1.2434824.

[38] G. G. Fattinger, S. Marksteiner, J. Kaitila, and R. Aigner, ”Optimization of
Acoustic Dispersion for High Performance Thin Film BAWResonators,” Procedings
of IEEE Ultrasonics Symposium 2005, Rotterdam.

[39] W. Shockley, D. R. Curran, and D. A. Koneval, “Energy Trapping and Related
Studies of Multiple Electrode Filter Crystals,” IEEE Frequency Control Symp. Pro-
ceedings, pp. 88-126, 1963.

[40] W. Shockley, D. R. Curran, and D. A. Koneval, “Trapped-Energy Modes in
Quartz Filter Crystals,” Journal of the Acoustical Society of America, No. 41, pp.
981-993, 1967.

[41] R. Ruby, J. Larson, C. Feng, and S. Fazzio, ”The Effect of the Perimeter Ge-
ometry on FBAR Resonator Electrical Performance,” Proc. IEEE Internationsl
Microwave Symposium, 2005.

[42] J. Kaitila, M. Ylilammi and R. Aigner, “Spurious Resonance Free Bulk Accoustic
Wave Resonators,” Proc. IEEE Ultrasonics Symposium, 2005.

[43] T. Pensala, and M. Ylilammi, ”Spurious Resonance Suppression in Gigahertz-
Range ZnO Thin-Film Bulk Acoustic Wave Resonators by the Boundary Frame
Method: Modeling and Experiment,” IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, Vol. 56, No. 8, pp. 1731-1744, 2009.

[44] C. Udaondo, C. Collado, J. Mateu and R. Aigner, ”Analysis of Border Ring
Modes on SMR-BAW Resonators,” in 2019 IEEE International Ultrasonics Sym-
posium (IUS), 2019, pp. 1703-1706, doi: 10.1109/ULTSYM.2019.8925601

[45] D. A. Feld, D. S. Shim, S. Fouladi and F. Bayatpur, ”Advances in nonlinear
measurement & modeling of bulk acoustic wave resonators (invited),” 2014 IEEE
International Ultrasonics Symposium, Chicago, IL, 2014, pp. 264-272.

[46] T. Yang, Z. Cao and D. A. Feld, ”An H2 emissions model for piezoelectric devices
exhibiting strong lateral mode resonances,” 2017 IEEE International Ultrasonics
Symposium (IUS), Washington, DC, 2017, pp. 1-7.

135



[47] C. Collado et al., ”Nonlinear Effects of SiO2 Layers in Bulk Acoustic Wave
Resonators,” in IEEE Transactions on Microwave Theory and Techniques, vol. 66,
no. 4, pp. 1773-1779, April 2018, doi: 10.1109/TMTT.2017.2783377.

[48] D. S. Shim and D. A. Feld, ”A general nonlinear Mason model of arbitrary non-
linearities in a piezoelectric film,” 2010 IEEE International Ultrasonics Symposium,
San Diego, CA, 2010, pp. 295-300.

[49] D. Garcia-Pastor, C. Collado, J. Mateu and R. Aigner, ”Third-Harmonic and
Intermodulation Distortion in Bulk Acoustic-Wave Resonators,” in IEEE Trans-
actions on Microwave Theory and Techniques, vol. 68, no. 4, pp. 1304-1311, April
2020, doi: 10.1109/TMTT.2019.2955135.

[50] C. Udaondo, C. Collado and J. Mateu, ”Fast modeling of lateral modes in BAW
resonators with arbitrary in-plane geometry,” in 2022 IEEE International Ultra-
sonics Symposium (IUS), 2022, pp. 1-4, doi: 10.1109/IUS54386.2022.9957924.

[51] D. Royer, E. Dieulesaint, “Elastic Waves in Solids II, Generation, Acousto-optic
Interaction, Applications”, Springer, 2000.

[52] C. Christopoulos, The Transmission Line Modeling Method: TLM, Piscataway,
NY, IEEE Press, 1995.

[53] W. J. R. Hoefer, ”The Transmission-Line Matrix Method - Theory and Appli-
cations,” in IEEE Transactions on Microwave Theory and Techniques, vol. 33, no.
10, pp. 882-893, Oct. 1985, doi: 10.1109/TMTT.1985.1133146.

[54] J. R. Whinnery, C. Concordia, W. Ridgway and G. Kron, ”Network Analyzer
Studies of Electromagnetic Cavity Resonators,” in Proceedings of the IRE, vol. 32,
no. 6, pp. 360-367, June 1944, doi: 10.1109/JRPROC.1944.231734

[55] C. Udaondo, C. Collado and J. Mateu, ”Fast Analysis of Border Ring Suppres-
sion on BAW Resonators,” 2023 IEEE International Ultrasonics Symposium (IUS),
Montreal, QC, Canada, 2023, pp. 1-4, doi: 10.1109/IUS51837.2023.10306477.

[56] A. Tajic, A. Volatier, R. Aigner and M. Solal, ”Simulation of solidly mounted
BAW resonators using FEM combined with BEM and/or PML,” 2010 IEEE In-
ternational Ultrasonics Symposium, San Diego, CA, USA, 2010, pp. 181-184, doi:
10.1109/ULTSYM.2010.5935769.

[57] K. Kokkonen, J. Meltaus, T. Pensala and M. Kaivola, ”Measurement of evanes-
cent wave properties of a bulk acoustic wave resonator [Letters],” in IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 3, pp.
557-559, March 2012, doi: 10.1109/TUFFC.2012.2228.

[58] C. Kittel, “Introduction to Solid State Physics,” 7th ed., NY: Wiley, 1996.

[59] R. W. Powell, C. Y. Ho, and P. E. Liley, “Thermal Conductivity of Selected Ma-

136



terials,” National Standard Reference Data Series – National Bureau of Standards
– 8, 1966.

[60] E. Rocas, et al., ”Performance of BAW resonators at cryogenic temperatures,”
2013 IEEE International Ultrasonics Symposium (IUS), pp. 1672-1675, 2013.

[61] N. D. Orloff et al., ”A Compact Variable-Temperature Broadband Series-Resistor
Calibration,” in IEEE Transactions on Microwave Theory and Techniques, vol. 59,
no. 1, pp. 188-195, Jan. 2011, doi: 10.1109/TMTT.2010.2091200.

[62] R. Jin, Z. Cao, Y. He, B. Jiang and D. Feld, ”A Procedure to Correct for
Anomalies in Estimating the Time Averaged Stored Energy of a BAW Resonator
from its S11 Parameters,” 2022 IEEE International Ultrasonics Symposium (IUS),
Venice, Italy, 2022, pp. 1-5, doi: 10.1109/IUS54386.2022.9957551.

[63] D. M. Pozar, ”Microwave Engineering,” 4th ed., Wiley, 2001.

137



Appendix A

Calculation of the temperature
coefficient of stress by the thermal
expansion

In Chapter 2, the temperature coefficient of stress at constant electric displacement
λSDi appeared on the constitutive relations. Since the λSDi values for different mate-
rials are not found on literature, and is not possible to measure it with our resources,
a theoretical approximation from known parameters needs to be done.

In order to get the λSDi values from the thermal expansion, the constitutive
relations need to be derived from the Gibbs function (with T , E, and Θ as independent
variables). The following constitutive relations are obtained (the entropy equation
will be omitted since it is not necessary for this procedure):

Si = sEΘ
ij Tj − dΘikEk − αEi dΘ (A.1)

Dl = dΘljTj + εTΘlk Ek + pTl dΘ. (A.2)

From these expressions we will get T as an independent variable:

Ti =
1

sEΘ
ij

Sj −
dΘik
sEΘ
ij

Ek − λEi dΘ (A.3)

Dl =
dΘlj
sEΘ
ij

Sj +

(
εTΘlk − dΘ

2

lk

sEΘ
ij

)
Ek +

(
pTi −

dΘljα
E
3

sEΘ
ij

)
dΘ. (A.4)

knowing that cEΘ
ij ≡ 1

sEΘ
ij

, and dΘnj ≡ eΘni
cEΘ
ij

, expressions A.3 and A.4 can be

138



simplified to

Ti = cEΘ
ij Sj − eΘikEk − λEi dΘ (A.5)

Dl = eΘljSj + εSΘlk Ek + pSl dΘ, (A.6)

where εSΘnm = εTΘnm −
eΘnie

Θ
mj

cEΘ
ji

, λEi = cEΘ
ij α

E
j , and p

S
i = pTi − eΘijα

E
j .

As done in Chapter 2, D is needed as an independent variable too, leading to the
following constitutive relations

Ti = cDΘ
ij Sj − hΘikDk − λDi dΘ (A.7)

El = βSΘlk Dk − hΘljSj − pSDl dΘ, (A.8)

with the following constants: hΘnj =
eΘmj
εSΘmn

, cDij = cEij + eΘmjh
Θ
mi, λ

SD
i = λEi − pSEm hΘmi,

pSDi =
pSi
εSΘij

, and βSΘij =
1

εSΘij
. This λSDi expression is the one used in Section 4.1.1 to

derive the relation between λ and α.
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Appendix B

Temperature coefficient of stress
on different class crystals

The temperature coefficient of stress can be calculated as

λSD3 = α1c
EΘ
13 + α2c

EΘ
23 + α3c

EΘ
33 + α4c

EΘ
43 + α5c

EΘ
53 + α6c

EΘ
63 . (B.1)

Assuming that thermal expansion αi is equal in each direction and applying the
stiffness tensors for hexagonal (B.2) and isotropic crystals (B.3) [13]:

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0
c11 − c12

2


(B.2)
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c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0
c11 − c12

2
0 0

0 0 0 0
c11 − c12

2
0

0 0 0 0 0
c11 − c12

2


, (B.3)

we end up with the following expression for calculating the thermal stress in the
thickness direction:

λSD3 = α1c
EΘ
13 + α2c

EΘ
13 + α3c

EΘ
33 = α1

(
cEΘ
33 + 2cEΘ

13

)
. (B.4)
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