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Abstract

When matter is cooled to temperatures near absolute zero, its quantum nature be-
gins to emerge. The interactions between its microscopic constituents can then lead
to the emergence of fascinating physical properties. While the framework of sponta-
neous symmetry breaking has been incredibly successful in describing how a macro-
scopic number of particles cooperate to give a system its properties, there are many
situations where this is not sufficient to describe quantum systems. This is especially
true for strongly interacting many-body systems.

In recent years, multiple techniques have been developed to address this prob-
lem. On the one hand, the incredible advances in classical computing hardware and
algorithms, have made it possible to study systems with a number of elementary
components that were unimaginable just a few decades ago. In particular, the devel-
opment of techniques such as tensor networks has unified the framework of quantum
information with condensed matter physics, making it possible to optimize the com-
putational complexity of simulating a system, based on its entanglement content.

On the other hand, the development of platforms to directly perform simula-
tions on quantum systems is a highly sought objective. While a hypothetical univer-
sal quantum computer could dramatically increase our understanding of the quan-
tum nature of matter, its difficult development makes it essential to study analog
platforms where specific many-body models can be studied directly in a controlled
environment. In these quantum simulators, novel quantum phenomena can be stud-
ied in an environment free of disorder, with excellent control over parameters and
measurement capabilities.

In this thesis, we aim to explore these two paths to study some of the most rele-
vant active topics in physics beyond the symmetry breaking paradigm. In the first
part, devoted to topology, we propose and analyze new techniques for the detection
of topological excitations. We start by proposing a protocol to detect anyons, quasi-
particles that do not behave either as bosons or fermions, in Fractional Quantum
Hall Effect systems through measuring the angular momentum of impurities bind-
ing to the anyons. We then show how similar excitations can be identified in topo-
logical superconductors through an interaction between the electromagnetic field of
a strong laser pulse and the system in a process called High Harmonic Generation

In the second part, we move to the study of quantum frustration. This phe-
nomenon, which describes a situation in which various constraints of the system
cannot be satisfied simultaneously, can lead to the emergence of unexpected phases
of matter. In particular, we study how frustrated phases and a particular class of
quantum critical points, called deconfined can emerge in one-dimensional frustrated
systems, potentially realizable in quantum simulators. We then study how frustra-
tion could explain the onset of superconductivity mixed with charge density modu-
lations in two-dimensional strongly-correlated systems.





Resum

Quan la matèria es refreda a temperatures prop del zero absolut, la seva naturalesa
quàntica emergeix. En aquest règim, les interaccions entre els seus constituents mi-
croscòpics poden conduir a l’aparició de propietats físiques fascinants. Encara que
el marc de la ruptura espontània de simetria ha estat remarcablement reeixit en de-
scriure com un nombre macroscòpic de partícules cooperen per dotar a un sistema
de les seves propietats, això no és sempre suficient per descriure els sistemes quàn-
tics. Això és especialment cert per sistemes de molts cossos que interactuen forta-
ment.

En els darrers anys, s’han desenvolupat múltiples tècniques per abordar aquest
problema. D’una banda, els increïbles avenços en computació clàssica i el desen-
volupament de nous algorismes han fet possible estudiar sistemes amb un nombre
de constituents fonamentals que eren inimaginables fa tan sols unes dècades. En
particular, el desenvolupament de tècniques com les xarxes de tensors ha unificat
els marcs de la informació quàntica amb la matèria condensada, el que permet opti-
mitzar els recursos computacionals per simular un sistema en funció del seu entrel-
laçament.

D’altra banda, el desenvolupament de plataformes per realitzar simulacions di-
rectament sobre sistemes quàntics és un objectiu molt buscat. Encara que un hipotètic
ordinador quàntic universal podria augmentar dramàticament la nostra comprensió
de la naturalesa quàntica de la matèria, el seu difícil desenvolupament fa essencial
la realització de plataformes analògiques on es poden estudiar directament models
específics de molts cossos en entorns altament controlats. En aquests simuladors
quàntics, es poden observar fenòmens quàntics nous en un entorn lliure de desordre
i amb un excel·lent control sobre els paràmetres i capacitats de mesura.

En aquesta tesi, explorem aquestes dues vies per estudiar alguns dels temes més
rellevants i actius de la física més enllà del paradigma de la ruptura espontània de
simetria. En la primera part, dedicada a la topologia, proposem i analitzem noves
tècniques per a la detecció d’excitacions topològiques. Comencem proposant un
protocol per detectar anyons, quasi-partícules que no es comporten ni com bosons
ni com fermions, en sistemes d’efecte Hall quàntic fraccional per mitjà de la mesura
del moment angular d’impureses que s’enllacen als anyons. Després mostrem com
excitacions similars poden ser identificades en superconductors topològics a través
de la interacció entre el camp electromagnètic d’un fort pols làser amb el sistema en
un procés anomenat generació d’alts harmònics.

En la segona part, passem a l’estudi de la frustració quàntica. Aquest fenomen,
que descriu una situació en la qual diverses restriccions del sistema no poden ser sat-
isfetes simultàniament, pot conduir a l’aparició de fases inesperades de la matèria.
Concretament, estudiem l’emergència de fases frustrades i una classe particular de
punts crítics quàntics, anomenats desconfiats, en sistemes frustrats unidimensionals
potencialment realitzables en simuladors quàntics. Finalment, estudiem com la frus-
tració podria explicar l’aparició de la superconductivitat barrejada amb modulacions
de densitat de càrrega en sistemes bidimensionals fortament correlacionats.
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1

Introduction

The discovery of quantum mechanics at the beginning of the last century completely
changed our understanding of the nature. Microscopic phenomena such as the spec-
tra of atomic gases, the photoelectric effect, and the electric resistance in metals could
finally be described by a unified framework. While these discoveries revolutionized
both science and technology, one issue was evident from the beginning: the quantum
properties of matter are extremely delicate and difficult to control. Indeed, the sus-
ceptibility of quantum states to decoherence induced by external perturbations, and
the consequent difficulty to isolate them from the environment, made it extremely
challenging to go beyond single-particle physics and exploit the full potential of
quantum mechanics.

However, already at the beginning of last century, the discovery of supercon-
ductivity and superfluidity [1, 2] hinted at the presence of an unexplored world of
collective quantum phenomena with potentially revolutionary applications. This
goal however, required that the matter was cooled enough to suppress external dis-
turbances to let the quantum properties free to emerge. A first step towards the un-
derstanding of these phenomena was the development of the theory of phase tran-
sitions by Ginzburg and Landau [3, 4], that made it possible to classify an enormous
quantity of systems, both classical and quantum, in terms of their symmetries. Nev-
ertheless, the increasing experimental achievements in creating quantum systems
shielded from external noise, with the discovery of phenomena like the Quantum
Hall Effect [5, 6] or high-Tc superconductivity [7, 8], made it clear that this paradigm
was not sufficient. The theoretical effort to understand these new phases led to the
opening of completely new fields, like the theory of topological order [9–11] and
quantum spin liquids [12–15], that in turn inspired a great deal of experimental
work. In the following years indeed, the development of new platforms like 2D
materials [16], Moiré materials [17], quantum dots and wells [18, 19], and the possi-
bility to induce quantum phases through light-matter interaction [16, 20], provided
an experimental realization to these exotic phases.

At the same time, the last fifty years there have seen an impressive development
of the capabilities of manipulating quantum matter at the atomic level. Famously,
Schrödinger once said: "In the first place it is fair to state that we are not experimenting
with single particles, any more than we can raise Ichthyosauria in the zoo" [21]. Contrary
to this prediction, single-atom manipulation was achieved: the discovery of the laser
[22] made it possible in the 70s to develop techniques to cool ions [23, 24] and neu-
tral atoms [25] near to the absolute zero, and even trap and move them singularly
using optical tweezers[26, 27]. This was rapidly stepped up to many-body control
schemes thanks to magneto-optic trapping [28] and evaporative cooling [29], leading
to the milestone of realizing of the first Bose-Einstein condensate in the 90s [30, 31].
As technology progressed, it was then possible to develop platforms to implement
complex quantum Hamiltonians in an environment whose properties are readily
tunable and accessible, while keeping the same quantum properties of real materi-
als [32]. The opportunity to shield the system from the environment and almost cool
it near-zero temperatures makes it then possible to observe quantum phenomena



2 Contents

that would be otherwise hidden by disorder and thermal fluctuation. In particular,
the development of optical lattices for ultracold atoms [33] meant that band struc-
tures typical of solid state systems could be realized in the regime of strong particle-
particle interaction, leading to the realization of a plethora of many-body phases
only theoretically conjectured up to that point, starting from the emblematic Mott
insulator - superfluid transition in the Bose-Hubbard model [34]. These techniques
have evolved since to include effects like synthetic classical [35–37] and dynami-
cal gauge fields [38], topological bands [39] and quantum chemistry models [40].
Moreover, the introduction of new detection techniques made it possible to image
atoms in lattice up to single-site resolution [41, 42]. These kinds of developments,
and similar advances in other platforms like trapped ions, Rydberg atoms in optical
tweezer and photonic waveguides made it possible to explore landmark phenomena
peculiar of many-body quantum physics. Examples include many-body localization
[43], lattice gauge theory [38, 44], Fermi-Hubbard physics [45, 46], topology [47–49],
non-integrable dynamics [50], and quantum spin liquids [51].

During all this time, a guiding approach for the development of feasible experi-
mental platforms has been the use of numerical simulations to investigate how vari-
ous phase can be realized. While impressive work has been done in the development
of algorithms like Variational and Quantum Monte Carlo and Exact Diagonalization
[52], these techniques were always limited respectively by the representation power
of the variational ansatz, the sign problem, and the exponential scaling of the Hilbert
space dimension. For these reasons, the understanding of strongly-correlated phases
has seen a dramatic acceleration since the introduction of Tensor Network tech-
niques, that efficiently represent the relevant physics while being unaffected by the
sign problem [53–55]. Starting from the discovery of the Density Matrix Renormal-
ization group [56, 57] and its interpretation in terms of Matrix Product States (MPS)
[58], the physics of one-dimensional quantum systems has become a reachable task.
MPS based techniques have rapidly evolved to encompass the study of 2D hamilto-
nians [59], dynamics [60–62], infinite systems [63, 64] and thermal states [65, 66]. The
subsequent interpretation of these states in terms of entanglement using the tools of
quantum information theory made it possible to generalize their construction [60,
65, 67], creating new networks suited for application in higher-dimensional systems
[68], critical systems [69], and graphs with more general entanglement structure [70],
among others. Lately, Tensor Network techniques have been used to benchmark the
capabilities of early quantum computers [71, 72], pushing forward the limits of clas-
sical simulation of quantum systems. It is then of fundamental importance to under-
stand what advantages and limitations new platforms like quantum simulators can
bring to the study of condensed matter physics compared to state-of-the-art classical
methods.

Motivation

In this thesis, motivated by the recent achievements in computational techniques
and quantum simulators as resumed above, we aim to explore the possibility of
realizing and controlling new quantum phases of matter. From one side, we develop
new protocols to implement in quantum simulators and related platforms, models
whose realization in real materials has been so far elusive. On the other, we leverage
the power of modern classical numerical simulations to investigate the properties
of these new phases. In this way, our goal is to exploit the strengths of these two
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complementary approaches, to provide a comprehensive understanding of two very
relevant topics in modern condensed matter physics: topology and frustration.

Topology. The birth of topology in condensed matter physics is conventionally
dated back to the discovery of the Quantum Hall Effect in the 80s [5, 6]. In these
systems, the electrical conductivity of samples assume discrete values proportional
to an integer or a rational number, depending on the magnitude of a background
magnetic field. While initial attempts focused on trying to explain this phenomenon
in terms of symmetry breaking [73], it was soon realized that this was an impossible
task, as states with drastically different physics share the same symmetries.

For the Integer Quantum Hall effect, a breakthrough arrived when the conduc-
tivity plateaus were linked to an integer quantity deeply connected to the geometry
of the band structure of the system, a topological invariant [74]. Subsequently, it was
discovered that this number is the same as the number of conducting modes at the
boundary of the systems, or edge states [75]. The field rapidly developed: first it was
discovered that Quantum Hall physics was possible without a background magnetic
field [76], creating the field of Chern insulators [77]. Later, the description of Quan-
tum Spin Hall Effect [78, 79], where topological edge states carry spin, but zero net
charge, launched the field of topological insulators [80]. These systems are unified
by the fact that they are described by a bulk band structure with a topological in-
variant, connected to the presence of edge states by a property called bulk-boundary
correspondence [81]. This theoretical work culminated with the complete classifica-
tion of topological systems described by single particle physics [82, 83]. However,
already starting from the works of Haldane in the 80s [84, 85] it was evident that
topological phases can survive in presence of interactions, and even be induced by
them [86]. In this case, the lack of a clear band structure makes a full classification
in terms of topological invariants highly challenging, leading to the development
of new metrics based on entanglement [87]. The unification between interacting
and non-interacting models led to the concept of symmetry protected topological phases
[88], meaning short-entangled phases whose topological properties depend on the
presence of a particular symmetry. A great amount of these phases found an exper-
imental realization both in real materials and quantum simulators, like Chern insu-
lators [89], lattice quantum hall states [47, 48, 90] and one-dimensional topological
insulators [91]. For the interacting case, recent breakthroughs led to the realization
of Haldane phases [92, 93]. However, for more complex models, there is still need
to look for experimental and theoretical signatures [86]. Recent numerical works
suggest the presence of interacting topological phases in lattice models [94, 95], but
the fragile nature of the interacting physics and the difficulty to perform numerical
simulations makes a challenging task engineering systems to observe these phases.

The other precursor of topological matter, the Fractional Quantum Hall Effect,
has drastically different properties. In this case the system is topologically ordered [10,
11], showing long-range entanglement, degenerate ground states on closed mani-
folds, and topological properties independent of any symmetry. The most striking
characteristic however, is the presence of bulk excitations that carry a fraction of the
charge of electrons and a statistics that interpolates between fermions and bosons,
called anyons[96]. The localized nature of these particles, the degeneracy of the states
associated to them, and their topological protection have been put forward for the
realization of intrinsically fault-tolerant topological quantum computation [97]. The-
oretical proposals for the realization of anyons have been ubiquitous in the last 20
years from lattice models [98], ν = 5/2 Fractional Quantum Hall Effect [99], and
Majorana modes in topological superconductors [100–102]. However, their phys-
ical realization is still elusive due to difficulties in detecting their statistics [103].
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While prototypes of this kind of topologically ordered states are starting to appear
in quantum simulators [51, 104–107], there is still need for new protocols to detect
their presence.

Frustration. The breaking of the time reversal symmetry required for the on-
set of Quantum Hall physics can be induced by different mechanisms. While the
most straightforward is the insertion of a background magnetic field, another driv-
ing mechanism can be the presence of frustration. In physics, the concept of frustra-
tion refers to a situation in which competing forces cannot be satisfied at the same
time, leading to a suboptimal equilibrium configuration of a state [14]. The causes
of this competition can be multiple, like geometrical, kinetic [108, 109] or interaction
[110] based constraints. The most striking consequence is that equilibrium states of
frustrated systems are usually hugely degenerate, and as the system explores this
degenerate manifold, the onset of order is suppressed. While this concept is well
known in classical physics, where systems like spin ices do not develop magnetic
order well below their Curie temperature [111], in quantum systems the concept of
frustration is more elusive. This is because the interplay between frustration and
quantum fluctuations needed to identify quantum frustration is usually hidden by
thermal noise. Here, the impossibility to obtain conventional ordering can lead to
unexpected phases like quantum spin liquids [14, 15]. One of the first proposed ex-
amples was the resonating valence bond solid [12], a quantum spin liquid state initially
proposed to describe high-Temperature superconductor [13]. While it was later dis-
covered that this picture does not match with the experiments [112], frustration is
still thought to play a fundamental role in this phenomenon. This has been the
subject of extensive numerical investigation, that concluded that a minimal model
of interacting fermions with frustrated hopping could stabilize superconductivity
[113–115]. Moreover, the study of quantum spin liquids had a remarkable develop-
ment by itself [15]. However, the implementation of the interaction required for the
realization of quantum frustration is extremely complex. In optical lattices for exam-
ple, the required procedures can lead to heating of the systems destroying quantum
fluctuations [116, 117]. Only in recent years the first quantum spin liquid was imple-
mented in Rydberg quantum simulators [51]. Still, the question of where to realize
these phases and the study of their properties is still open.

Content

The thesis is divided in three parts. The first part is devoted to briefly reviewing
the theoretical and experimental background necessary for the comprehension of
the original results. In particular, I discuss the physics of relevant systems not de-
scribed by the symmetry breaking paradigm, and discuss the tools of classical and
quantum simulations. In the second part we propose new tools and platforms for
the realization of topological phases of matter, with an outlook on both quantum
simulators and real materials. In part three we discuss frustrated quantum systems,
and how they show properties compatible with deconfined quantum criticality and
high-temperature superconductivity. Lastly, I added some relevant details on the
numerical and analytical procedures used to obtain the results of the thesis in three
separate Appendices.



Contents 5

Part I

In Chapter 1 we give a brief introduction of physical systems whose classification
goes beyond the Ginzburg-Landau symmetry breaking description. We start by de-
scribing Symmetry protected topological phases as the simplest example of topology in
quantum physics, listing some paradigmatic models that serve as a starting point for
the original point of this thesis. We then introduce topological order, and particularly
the Fractional Quantum Hall Effect, as a more complex example of highly-entangled
topological phase. Finally, we review some results on Deconfined Quantum Criticality.

In Chapter 2 we introduce the main numerical techniques used to obtain the re-
sults of the thesis: Exact Diagonalization and Tensor Networks. We also describe how
strongly interacting lattice models can be engineered in quantum simulators, partic-
ularly ultracold atoms in optical lattices. For this system we also briefly introduce the
most relevant measurement and detection techniques.

Part II

In Chapter 3 we propose a protocol to detect anyons in FQHE systems through mea-
suring the angular momentum binding to the anyons. We characterize the angular
momentum of a single and multiple impurities, and show that this scheme is appli-
cable to the detection of both Abelian and non-Abelian anyons.

In Chapter 4 we show another protocol for the detection of quasi-particles ex-
pected to show non-Abelian anyonic statistics. In this case the anyons in exam are
Majorana modes localized at the end of a topological superconducting chain. By
starting from a realistic model, we show that the interaction between the electromag-
netic field of a strong laser pulse and the chain can lead to High Harmonic Generation.
In this process, harmonics of the order of up to hundreds of time the driving fre-
quency are re-emitted. In this way we can map the full band structure of the system
and recognize the presence of sub-bandgap topological modes.

Part III

In Chapter 5 we study the effect of frustration in two paradigmatic one-dimensional
lattice models. In the bosonic case we recover a phase diagram with the presence
of states of matter typical of frustrated quantum magnets like Bond Order Waves.
Moreover, in presence of nearest-neighbor interactions we find a third phase with
spontaneous symmetry breaking, connected to the Bond Order Wave by a Decon-
fined Quantum Critical Point. For this model we also design a realistic experimental
setup with ultracold atoms in optical lattices. In the fermionic case, we revisit the
phase diagram of the Extended Hubbard model, and find that the competition be-
hind the contact and nearest-neighbor interactions can lead to two symmetry broken
phases, also connected by a deconfined quantum critical point. We also find that by
adding an antiferromagnetic spin-spin interaction another transition of this type ap-
pear. Most importantly, we find that these two latter transitions are characterized by
the long-range order of non-local order parameters. This in turn, means that these
DQCP are qualitatively different from the ones found in the bosonic case.

In Chapter 6 we study the onset of superconductivity in the two-dimensional
Hubbard model in presence of a frustrated hopping. By means of 2D DMRG calcu-
lations, we confirm previous results on the presence of superconducting pairing at
small hole-doping and strong contact interaction, and give another interpretation of
such phase in terms of the formation of a fragmented Condensate of cooper pairs. This
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allows us to describe the behavior of this condensate through an effective Ginzburg-
Landau theory, and expand the predictions in presence of the magnetic field. The
validity of the theory is then confirmed by the comparison with the results of the
DMRG simulations.
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Part I

Preliminaries
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Chapter 1

Quantum matter beyond symmetry
breaking

The behavior of quantum matter is usually captured by how electron and nuclei be-
have. However, materials composed by a macroscopic number of these elements
show a richness of properties and behaviors that cannot be traced back to the prop-
erties of the underlying elementary particles. Condensed matter physics is a field
devoted to the study of these emergent properties, that do not come from the simple
mechanical properties of the particles, but from the complex way they interact and
organize between themselves [118]. The macroscopic properties of a material, either
classical or quantum, are then determined by how the microscopic constituents are
organized, or by different orders: to every different order corresponds a different
phase of matter. A change of phase, or phase transition, is a sudden change in this
order.

In the last century, the most successful description of phase transitions has been
the one introduced by Landau and Ginzburg [3, 4]. In this celebrated framework
different phases are labeled by their symmetry. A phase transition amounts then
to a change of behavior of the system under one of these symmetries. To be more
specific, consider a system described by a Hamiltonian invariant under a certain
symmetry group G. There might be a choice of parameters (either the temperature
for classical systems, or a Hamiltonian parameter for quantum systems), for which
the equilibrium state is no longer invariant under the action of G, but only under a
subgroup H ⊂ G. In this case, we say that the symmetry G is spontaneously broken.
This can be quantified by a local quantity called order parameter, invariant under the
action of H but not under the action of G. For a particular symmetry we then say that
the system is disordered if the symmetry is not broken, and ordered if the symmetry is
broken.

The Ginzburg-Landau description has been incredibly successful in describing
phase transitions in all fields of physics, both classical and quantum, ranging from
the superfluid transition in matter close to the absolute zero temperature, to the
Higgs mechanism in high-energy physics. For a long time, it was believed that any
kind of phase behavior could be traced back to the breaking of some symmetry, and
that the Ginzburg-Landau paradigm was the ultimate description of phase transi-
tions.

However, starting from the 70s, it became increasingly clear that many phenom-
ena avoid this classification [119]. In particular, after the discovery of the Integer
Quantum Hall Effect [5] and its fractional counterparts [6] it was evident how sys-
tems that do not break any symmetry can have dramatically different phenomenol-
ogy depending on the choice of the Hamiltonian’s parameters. These states define
new phases of matter in the sense that their fundamental properties are insensitive
to local perturbation of the system unless they cross a quantum phase transition and



10 Chapter 1. Quantum matter beyond symmetry breaking

a gap closing. Because of this robustness, and owing to the mathematical framework
behind their classification, this kind of order is called topological [74, 120].

From a mathematical perspective, topology is the study of the properties of ob-
jects that do not change under continuous deformations. For example, it is impossi-
ble to change the number of holes or handles of an object without breaking it. These
quantities that globally characterize something and are immune to local changes are
called topological invariants. In the same way, if two objects have a different value
of their topological invariants, they cannot be transformed one in the other by only
stretching and deforming them. How can this concept be applied to quantum me-
chanics?

To make this point clear, in the following Chapter we will introduce some
paradigmatic examples of systems eluding the Ginzburg-Landau paradigm, starting
from the simplest case of Symmetry Protected Topological phases [88] in Section 1.1.
These are the simplest states of matter that can be considered topological and com-
prehend the IQHE. Most importantly, they are the only allowed topological phases
in one-dimension, and for this reason particularly relevant for the results of Chap-
ters 4 and 5 of this thesis. We will then move to the concept of Topological Order
[10, 120] in section 1.2. A prime example of this type of order is the Fractional
Quantum Hall Effect (FQHE). This will be the starting theoretical background for
Chapter 3. Compared to SPT topologically ordered phases can only arise in pres-
ence of strong interactions and can exist for dimensionality greater or equal than
two. Finally, we will describe a more modern approach to phase transitions that go
beyond the Ginzburg-Landau theory, the so called deconfined quantum critical points
[senthil2023a, 121]. While these points show topological features in two dimen-
sions, their most striking property is that they connect two-symmetry broken phases
by restoring both symmetries in correspondence of a single point, a possibility ex-
cluded in standard Ginzburg-Landau theory. We will study some systems showing
deconfined quantum criticality in Chapter 5.

1.1 Symmetry Protected Topological phases

Symmetry Protected Topological (SPT) phases comprehend a plethora of different
effects, that only years after their discovery were unified under the same framework
[88]. The most notorious representative of this class is the Integer Quantum Hall
Effect (IQHE) [5], that was also the first one for which the role of topology was high-
lighted [74].

After the discovery of the IQHE, it was thought that the presence of a background
magnetic field was necessary for the appearance of topological phases. However,
Haldane showed that similar physics can appear in 2D models without the presence
of a magnetic field, only by breaking time-reversal invariance [76], a phenomenon
called Quantum Anomalous Hall Effect. This in turn led to discovery of a new family
of materials called Chern insulators [80]. In the last 20 years, a new state of matter
not breaking the time-reversal symmetry has also been discovered, called Quantum
Spin Hall Effect or Topological Insulator [78, 79]. The ideas developed to understand
topological insulators were then extended to study Topological Superconductors [80].

While all these states are described by single-particle physics, it was discovered
that interacting systems can also show a non-trivial topology, but in this case the
topological properties are better understood by looking at the entanglement prop-
erties of their ground states [84, 122, 123]. The search for interacting phases with
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topological characteristics is currently a very active field of research [86], and is go-
ing to be the main topic of Chapter 5.

All these seemingly unrelated systems share several properties that justify their
common classification: (i) they are all short-range entangled (ii) they have non-
degenerate ground states when put on a closed manifold (iii) when on an open
manifold gapless modes appear on the boundary of the system, called edge modes.
Most importantly, the presence and the number of edge states can be inferred from
a bulk topological invariant computed with periodic boundary conditions, a prop-
erty called bulk-boundary correspondence [80, 81]. Finally, the name "Symmetry Pro-
tected", comes from the fact that their edge states and bulk topological invariants
are protected from external perturbations, but only if this perturbation respects the
protecting symmetries.

In the rest of the section we will describe some paradigmatic examples of SPT
phases, starting from the Integer Quantum Hall Effect, and then moving to examples
of a topological insulator, a topological superconductor and an interaction-induced
topological phase. All of these examples are fundamental starting points for the
results of the rest of the thesis.

1.1.1 Berry phase and Chern Number

To explain how topology can appear in the band structure of a single-particle spec-
trum, we will work our way from the concept of Berry phase [124] and see how it
is related to the geometry of the bands. That, in turn, will quantify the presence of
non-trivial topology.

As we said topology is the study of properties of objects insensitive to continuous
deformations: in our case the objects will be the eigenstates of gapped Hamiltonians,
and the stretches and deformations the adiabatic transformations of these Hamilto-
nians that do not close the gap. The topological invariants are then defined in a space
of the possible quantum states, spanned by the possible choices of the Hamiltonian
parameters. If two states have two different values of these invariants, they can
only be transformed one in the other by "breaking" them, meaning by performing a
gap-closing transformation.

The reasoning starts from a simple consequence of the adiabatic theorem [125]:
this theorem states that if we prepare a quantum system in an eigenstate |ψ(t = 0)⟩
of a Hamiltonian H(t = 0), and we change the parameters of the Hamiltonian slow
enough with respect to the energy gap, the system will stay in the evolved eigenstate
|ψ(t = T)⟩, without any transition to higher or lower energy states. What if we
consider a closed path in parameter space such that H(t = 0) = H(t = T)? In this
case the state can only acquire a phase factor

|ψ(t = T)⟩ = eiγ|ψ(t = 0)⟩. (1.1)

One part of this phase is the usual dynamical factor that we can always remove
shifting the zero of the energy. The remaining part is deeply linked to the geometry
of the parameter space, and is called Berry Phase. Notably, this is a phase difference,
meaning that it can be measured, for example in interferometry experiments [126].

To obtain an expression for this phase, we compute a generic adiabatic evolution
of the state under the Schrödinger equation. For simplicity, we restrict to the evo-
lution of a non-degenerate ground state |g(λ)⟩ of a system with a single parameter
λ(t), such that at any moment in the adiabatic evolution we can set H(t)|g(t)⟩ = 0.
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In this case, the state after the evolution can be written as

|ψ(T)⟩ = U(T)|g(T)⟩, (1.2)

with U a phase. The unitary operator U(T) can then be computed by inserting this
ansatz in the Schrödinger equation

i
d
dt

U(t)|g(t)⟩ = H(t)|ψ(t)⟩ = 0. (1.3)

By taking the scalar product with ⟨ψ(t)| and expanding the total derivative we fi-
nally obtain an equation for U

dU
dt

= −⟨g(t)|∂λ|g(t)⟩
dλ

dt
U. (1.4)

Here we can identify the quantity A = −i⟨g(t)|∂λ|g(t)⟩ called the Berry connection,
such that by integrating (1.4) we obtain the expression for the Berry phase U

U(T) = e−i
∫ T

0 dtA(t) dλ
dt . (1.5)

If we finally consider a closed path λ(T) = λ(0), we obtain an expression for γ in
(1.1) in terms of the Berry connection

γ = −
∮

dλA(λ). (1.6)

This quantity does not depend on the time taken to complete the loop, but only on
the geometry of the path in parameter space. The reason why the quantity A is called
connection is because of its properties under gauge transformations. If we consider
a transformation A → A + ∂λω, the quantity γ is invariant as expected, being a
measurable quantity. Notably, this only happens if the path in parameter space is
closed, otherwise the phase can be reabsorbed by the gauge transformation.

This property already hints at similarities between the Berry connection A and
the gauge potential of electromagnetism. Starting from this analogy we can con-
struct the gauge-invariant Berry Curvature Fµν, defined as the curl of the Berry con-
nection

Fµν = ∂µ Aν − ∂ν Aµ, (1.7)

equivalent to the field strength in electromagnetism. In this case we assumed a mul-
tivariate connection over a manifold of multiple parameters: Aµ(λµ). We can then
recast the expression of γ in terms of the curvature by using the Stokes theorem

γ = −
∮

dλµ Aµ(λ) = −
∫

dSµνFµν, (1.8)

where S is the surface in parameter space enclosed by the path. If this surface is
closed, however, the Gauss-Bonnet theorem implies that this quantity is quantized
in units of 2π

γ = −
∫

dSµνFµν = 2πC, (1.9)

where C ∈ Z . The quantity C is a topological invariant linked to the genus, or the
"number of holes" of the surface S. As we will see in the following, this quantity and
others obtained in an analogous way, can be used to characterize topological band
structures. It will then be the starting point to classify SPT phases.
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FIGURE 1.1: The Integer Quantum Hall effect. (a) The longitudinal (ρxx) and the
longitudinal (ρxy) resistivity as a function of the magnetic field B. A change in
the Hall plateau corresponds to a finite ρxx. For low magnetic fields the relation
is the one expected classically. Data taken from [127]. (b) Schematics of the IQHE
system. Intuitively, the electrons in the bulk are insulating because they go along
cyclotron orbits, while the edges are metallic because the electrons can hop along
the boundary of the system.

1.1.2 Integer Quantum Hall Effect

The Integer Quantum Hall Effect (IQHE) can be considered the precursor of all the
topological states of matter. Firstly discovered in 1980 by von Klitzing [5], it de-
scribes the behavior of electrons confined in two dimensions, under the effect of a
magnetic field orthogonal to the plane.

Classically, when applying a potential difference in the direction x, the magnetic
field would cause a drift of the electrons in the direction y. This creates an effec-
tive transversal current Jy = σxyEx, with σxy called the Hall conductivity. One would
expect for the transverse resistivity ρxy = σ−1

xy to increase linearly with the back-
ground magnetic field B. However, experimental measurements [5] showed that,
for B strong enough, the Hall resistivity remains perfectly constant for a wide range
of magnetic fields, with sudden jumps to another of these plateaus, when B crosses
some value. In correspondence of these points, the longitudinal resistivity ρxx also
becomes finite, and the system is metallic. This behavior is shown in Figure 1.1(a).
The plateaus were measured to be characterized by a perfectly quantized resistivity

ρxy =
h
e2

1
ν

, (1.10)

where ν is an integer.
This remarkable result can be intuitively explained by considering the band struc-

ture of the system: when subject to a magnetic field B, free electrons in two dimen-
sions of charge e and mass m form highly degenerate flat bands called Landau Levels
[128]. Each band can host Nϕ = Φ/Φ0 electrons, where Φ = BLxLy is the flux
threading a system of size Lx × Ly, and Φ0 = h/e is called flux quantum. Each pair of
levels is separated by an energy gap h̄eB/m. If the Fermi energy lies between two of
this levels, and kbT ≪ h̄eB/m, the levels above stay empty, and the electrons have
nowhere to scatter when applying an electric field, resulting in a vanishing longitu-
dinal conductivity. As the magnetic field is increased the degeneracy of the levels Nϕ

increases, and the Fermi energy lowers. When the Fermi energy crosses one of the
levels, the system becomes metallic and ρxx ̸= 0, while ρxy jumps to a new plateau,
with a value given by (1.10).

The IQHE is then a bulk band insulator, but it shows a finite transverse resistivity.
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How is this possible? This is due to the presence of gapless edge states that appear
as chiral currents on the boundaries of the system. As we have seen this hints at a
topological structure. This was confirmed by Thouless, Kohmoto, Nightingale and
deNijs (TKNN) [74]. Using the Kubo formula [129] to compute the Hall response
to a weak electric field, they showed that it is indeed quantized in terms of a bulk
topological invariant C called Chern number:

σxy =
e2

h
C, (1.11)

We can then conclude that the IQHE can be described by single particle physics and
its properties are topological. It can then be classified as an SPT phase. However, it
has a particular property: no symmetry has to be preserved for the system to show
a non-trivial topology1.

Particles on a lattice

The TKNN invariant is better understood if we put the system on a lattice: in this
case the IQHE can be extracted from the Harper-Hofstadter Hamiltonian [130, 131]

H = −t ∑
⟨i,j⟩

(
eiϕc†

i cj + h.c.
)

, (1.12)

This Hamiltonian describes spinless fermions hopping on a square lattice with a
magnetic flux ϕ per plaquette, expressed in the Landau gauge. In this case the spec-
trum forms electronic bands in the Brillouin zone and the Chern number can be
computed directly from the band structure of the system as in Eq. (1.11), by using
the momentum k as the adiabatic parameter. This gives a total conductivity

σxy =
e2

h ∑
n

∫
BZ

d2k
2π

Fµν,n(k), (1.13)

with Fµν,n(k) the Berry curvature of the n-th band and the sum performed on the
n occupied bands. This model was experimentally realized in ultracold atoms in an
optical lattice [47, 90], and its Chern number measured in the same setup [48]. It will
be relevant for the investigation of Chapter 6.

1.1.3 Topological Insulators: the Su-Schrieffer-Heeger model

We will now introduce one of the simplest topological insulators in one-dimension:
the Su-Schrieffer-Heeger (SSH) model [132, 133]. This model is a convenient starting
point to introduce some phenomena that will appear with a different origin in Chap-
ter 5. Initially introduced to model polyacetylene chains [132, 134], it became one of
the stable platform to study topology and fractionalization in 1D systems [135], for
example in cold atoms platforms [91].

The SSH model describes spinless fermions hopping on a one dimensional lat-
tice, with a modulated hopping, described by the Hamiltonian

H = −∑
i

(
vc†

i,Aci,B + wc†
i,Bci+1,A + h.c.

)
. (1.14)

1To be more precise, the presence of the U(1) symmetry corresponding to charge conservation is
needed for the quantization of conductivity, but not for the presence of edge states
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FIGURE 1.2: The SSH model. (a) Depending on the phase the dimerization leaves
two sites unpaired, leading to a 4-fold degenerate ground state and the forma-
tion of edge states. (b) These two situations correspond to topologically different
band structure as seen by computing the winding of h(k) in (1.16) around the
origin.

This Hamiltonian models for example the dimerization in a monoatomic chain, due
to a Peierls Instability [136] of the lattice. In this case the system can be thought
of being composed by a repeating unit cell with two sites A and B, and v denotes
the hopping inside the unit cell, while w denotes the hopping between neighboring
cells. For v = w the system is translationally invariant, representing free fermions on
a lattice, and the spectrum is gapless. However, for v ̸= w, the physics is drastically
different depending on if |v| > |w| or |v| < |w|, as can be realized by considering the
chain with open boundary conditions. For |v| > |w|, every electron can form a dimer
with a neighboring one, while for |v| < |w| the two electrons at the boundaries are
left unpaired. This situation is schematically shown in Fig. 1.2(a). This leads to a
degeneracy in the ground state and the formation of edge states that, as we saw, is a
standard signature of topological properties.

To unveil these properties, we can investigate the bulk of the chain in momentum
space: as the translational invariance is explicitly broken for v ̸= w, the Hamiltonian
decomposes in 2 × 2 blocks that can be written in terms of the Pauli matrices σ as

H(k) =
(

0 v + we−ik

v + weik 0

)
= h(k) · σ, (1.15)

with
h(k) = (v + w cos k, w sin k, 0). (1.16)

The spectrum of decomposes then in two bands with energy

E±(k) = ±
√

v2 + w2 + 2vw cos k. (1.17)

As shown in Fig. 1.2, the spectrum is gapless for v = w at momentum k = ±π, while
the gap opens for v ̸= w. In the other extreme limits (v = 0, w ̸= 0) and (w = 0, v ̸=
0) the spectrum forms two flat bands and the system is totally dimerized.

The phase diagram of the model is composed then by two insulating phases
connected by one metallic transition point. However, the two gapped phases are not
topologically equivalent: if we compute the Berry phase of the lower, fully occupied
band |E−(k)⟩, we obtain

A−(k) = −i⟨E−(k)|∂k|E−(k)⟩ = −1
2

dϕ

dk
, ϕ(k) = arctan

(
w sin k

v + w cos k

)
.
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This expression of the connection as a derivative of an angle is particularly repre-
sentative of the topological nature of the model: if we compute the Berry phase
integrating over the Brillouin zone, we can obtain two different integers depending
on the values of v and w

− 1
π

∫ π

−π
dkA−(k) = − 1

2π
(ϕ(π)− ϕ(−π)) =

{
0 v > w
1 v < w . (1.18)

For one dimensional systems this is also sometimes called Zak phase [137]. Due to the
gauge invariance of A−, the Zak phase is only defined modulo 2. The same result
can be obtained by computing the winding number, that is the number of times the
vector h(k) winds around the origin as k goes from −π to π:

ν =
1

2π

∫ π

−π
dk

∂kh(k)
|h(k)| =

{
0 v > w
1 v < w .

In this picture the topological nature of the model is even more evident, by repre-
senting the vector h(k) as a vector in the plane, as shown in Fig. 1.2(b).

It is worth noting that the winding number is not in general constrained to be an
integer. What it represents is indeed the solid angle spanned by the vector h(k) as
changing k. It is however constrained to the plane hx, hy due to the condition hz = 0
in Eq. 1.16. This results in the quantization condition ν ∈ Z.

The condition hz = 0 is indeed the core of the topological properties of the SSH
chain: if we add a perturbation ∝ σz the transition point v = w becomes gapped
and the system is a trivial insulator. This condition is in turn enforced by the chiral
symmetry of the SSH Hamiltonian:

σzH(k)σ−1
z = −H(k). (1.19)

The chiral phase is then the symmetry protecting the topological phase.
The two phases are more evident with open boundary conditions thanks to the

bulk-boundary correspondence: in the topological phase the two edge states that
appear at the boundary in the fully dimerized survive the change of parameters
until the gap closing, while in the trivial phase they are absent.

1.1.4 Topological superconductors: the Kitaev chain

The classification of SPT phases can be extended to systems with a non-trivial super-
conducting pairing as prescribed by BCS theory [138]. Although their Hamiltonians
are not describing free particles, their quadratic structure makes it possible to diago-
nalize them and extract topological invariants analytically from the band structure.
In this case though, the bands are not labeling free electrons, but free Bogoliubov
quasiparticles.

The most relevant example of a topological superconductor for the scope of this
thesis is the Kitaev chain [102]. This model describes spinless fermions hopping on a
one-dimensional lattice, with an extra term describing p-wave superconductivity, as
described by the Hamiltonian.

H = −1
2 ∑

i

(
tc†

i ci+1 + ∆c†
i c†

i+1 + h.c.
)
− µ ∑

i
c†

i ci, (1.20)

where t is the hopping amplitude, ∆ is a mean-field p-wave superconducting pairing
and µ is the chemical potential.
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The main interest of this system is the possibility of using its edge states as build-
ing blocks to realize intrinsically fault-tolerant topological qubits [139, 140]. For this
reason its experimental realization has been the object of intense investigation in the
last decade [103]. We will discuss this aspect in more detail in Chapter 4.

As for the SSH model, we can extract the bulk topological properties by going to
momentum space. To do so we have to introduce the Nambu spinor Ψk =

(
c†

k , c−k
)T,

such that the Hamiltonian can be written as a quadratic form

H =
1
2 ∑

k
Ψ†

k HBdG(k)Ψk, HBdG(k) =
( H0 H∆

H∗
∆ −H0

)
, (1.21)

with
H0 = −µ − t cos(k), H∆ = −i∆ sin k. (1.22)

The matrix HBdG is called Bogoliubov-de Gennes (BdG) Hamiltonian. To obtain it we
promoted the fermionic destruction operators ck to new degrees of freedom: cre-
ation operators for holes. To counterbalance this artificial doubling of the degrees of
freedom we had to introduce a new particle-hole symmetry in the system C = σxK,
where K is the complex conjugation operator and τx is the Pauli matrix acting on the
particle-hole space. It is easy to see that CHBdGC−1 = −HBdG: as a consequence the
spectrum of HBdG is composed by two bands symmetric around zero energy.

We can now proceed as we did for the SSH model. We express the Hamiltonian
in momentum space and in terms of 2 × 2 blocks by using the Pauli matrices in
particle-hole space τ as

HBdG(k) = h(k) · τ, h(k) = (0,−∆ sin k,−µ − t cos k, ). (1.23)

The final diagonalization of the 2× 2 blocks is called a Bogoliubov transformation, and
results in a spectrum

HBdG(k) = ∑
BZ

E±(k)a†
k ak, E±(k) = ±

√
(−µ − t cos k)2 + ∆2 sin2 k. (1.24)

The elementary degrees of freedom ak = ∑i
(
uikci + vikc†

i
)
, with ui and vi the eigen-

vectors of the BdG Hamiltonian, are a superposition of a particle and a hole, called
Bogoliubov quasiparticles. As for the case of the SSH chain, for a finite ∆ the spectrum
is gapped for any value of k, expect in a particular point in parameter space. In this
case, when |µ| = t, the gap closes for k = 0, π.

To compute the topological invariant we can proceed as before by computing
the winding number of h(k). In this case however, the symmetry protecting the
topological phase is the particle-hole symmetry C. It turns out that an easier way to
express the resulting invariant is

Q = sign (P f (H(k = 0))P f (H(k = π))) , (1.25)

where P f denotes the Pfaffian of the matrix H. This quantity is defined only for an-
tisymmetric matrices, and is related to the determinant by P f (H)2 = det(H) [100].
It will be relevant in the next section for the study of the Fractional Quantum Hall
Effect.
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Majorana Fermions

The edge states of the Kitaev chain appearing in the topological phase when |µ| < t,
are particularly interesting. This can be shown by diagonalizing the Hamiltonian in
real space in the extreme limits µ = 0, t ̸= 0 and µ ̸= 0, t = 0, that as we know are
adiabatically connected to all the states in the trivial and topological phases respec-
tively.

In both case we are going to express the fermionic operators in terms of "half-
fermions"

γ2i−1 =
1
2

(
ci + c†

i

)
, γ2i =

1
2i

(
ci − c†

i

)
, (1.26)

The operators γi create Majorana fermions [141]. They are special in the sense that
they are their own antiparticles:

γi = γ†
i , {γi, γj} = 2δij. (1.27)

There are currently no experimental realization of Majorana fermions as elementary
particles, but as in this case they can be realized as emergent excitations in condensed
matter systems [100, 102, 142]. By expressing the Hamiltonian in terms Majoranas
we obtain (putting ∆ = µ for simplicity)

H = i
µ

2 ∑
i

γ2i−1γ2i +
t
2 ∑

i
γ2iγ2i+1. (1.28)

In the extreme (trivial) limit t = 0 the γ on the same site (2i − 1, i) can be paired
again in the original fermions ck, and the ground state corresponds to localized
fermions without hopping. In the other extreme (topological) limit µ = 0 the γ
can be seen as paired on adjacent sites, and the Hamiltonian is diagonal on a basis
of non-local fermions di = (γ2i + iγ2i+1).

There are, however two Majoranas γ1 and γ2N that do not appear in the diagonal
Hamiltonian and are left unpaired at the boundaries of the chain. These are the edge
states of the system. As Majoranas are not physical excitations, they can be combined
to create an extremely non-local excitation

f =
1
2
(γ1 + iγ2N) . (1.29)

The zero-energy mode f lies in the middle of the spectrum of the system, symmet-
ric due to the particle-hole symmetry. Being a zero-energy fermion, its presence or
absence in the system makes the ground state doubly degenerate.

1.1.5 The periodic table of topological insulators of superconductors

The similarity between the various models we encountered so far hints at a unify-
ing framework that can describe all the topological phases of matter described by a
single-particle bands. The complete characterization of all the topological insulators
and superconductors was indeed performed starting from three possible symmetries
that can be preserved [82, 143]:

• Time-reversal symmetry T (anti-unitary): TH(k)T−1 = H(−k),

• Particle-hole symmetry C (anti-unitary): CH(k)C−1 = −H(−k),

• Chiral symmetry S (unitary): SH(k)S−1 = −H(k).
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Class T C S d = 1 d = 2 d = 3
A 0 0 0 0 Z 0

AIII 0 0 1 Z 0 Z

AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0

DIII -1 1 1 Z2 Z2 Z2
AII -1 0 0 0 Z2 Z2
CII -1 -1 1 2Z 0 Z2
C 0 -1 0 0 2Z 0
CI 1 -1 1 0 0 2Z

TABLE 1.1: The periodic table of topological insulators and superconductors for
different dimensionalities. The IQHE belongs to class A, the Kitaev chain to class
D, and the SSH model to class BDI.

FIGURE 1.3: The AKLT state with 4 sites. The black dots represent "artificial"
spin-1/2 at the boundaries, forming singlets with the neighbors (black lines).
The blue ovals are projectors on the physical, spin-1 degrees of freedom. It is
possible to see the unpaired spin-1/2 at the boundaries.

This led to a full classification called the 10-fold way [144, 145] or the periodic table of
topological insulators and superconductors [83], shown in Table 1.1. In this classification
the IQHE belongs to class A, the Kitaev chain to class D, and the SSH model to class
BDI (there are indeed several ways to protect the topological phase).

1.1.6 Topology induced by interactions: the Haldane phase

The classification of the periodic table completed the theoretical understanding of
topological band structures. However, the presence of interactions opens a com-
pletely new avenue to stabilize SPT phases [86, 88]. In this case the computation of
quantities like the Berry phase and the Chern number is impractical due to the lack
of a clear band structure. For this reason, the identification of topological phases is
mainly based on the impossibility to adiabatically connect them to a trivial product
state without closing the gap.

To introduce some quantities used for the purpose, we will explore the famous
example of the spin-1 antiferromagnetic Heisenberg spin chain [84]:

H = J ∑
i

Si · Si+1. (1.30)

For classical spins S = 1/2, the ground state of this model is the Néel state (↑↓↑↓ . . . ).
For quantum spins, however, this order gets destroyed by quantum fluctuations and
the ground state is gapless with only polynomial quasi-long range order.

This was expected to hold for higher values of S. However, Haldane suggested
that, while for half-integer S this actually is the case, for an integer S the system is
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gapped. This remained a conjecture until a generalized model was solved numeri-
cally in presence of a quadratic interaction term [123]

HHB = J ∑
i

(
Si · Si+1 + D (Si)

2
)

. (1.31)

It was found that this model is gapped for every value of D except for D = 1. For
D → ∞ one can easily see that the ground state is the state |000 . . . ⟩, so any state
with D > 1 can be connected adiabatically to a trivial product state. The situation
for D < 1, comprising the model in (1.30), is drastically different: for a related model

HAKLT = J ∑
i

(
Si · Si+1 +

1
3
(Si · Si+1)

2
)

, (1.32)

the ground state was computed exactly by Affleck, Kennedy, Lieb and Tasaki (AKLT)
[85, 122] and shown to be gapped. This AKLT state can be constructed by "breaking"
each spin-1 to two spin−1/2 and coupling them in a singlet state with a spin-1/2
on a neighboring site. The state is then brought back to the spin 1 representation
by applying a projector from the space of two spin-1/2 to one spin-1. A picture of
this construction is shown in Fig. 1.3. The resulting state with periodic boundary
conditions, expressed in a spin configuration basis |s1, . . . , sN⟩ can be written as

|ΨAKLT⟩ = ∑
{s}

Tr [As1 . . . AsN ] |s1, s2, . . . , sN⟩, (1.33)

with si ∈ {+, 0,−} and the matrices Asi acting on site i defined as

A+ =

√
2
3

σ+, A− = −
√

2
3

σ−, A0 = −
√

1
3

σz, (1.34)

This is an example of a Matrix Product State, a concept we will explore more deeply
in the next chapter.

The AKLT state has several intriguing properties. It is gapped but does not break
the symmetries of the Hamiltonian, eluding then the Ginzburg-Landau classifica-
tion. It is short-range entangled due to his nature as a Matrix Product State. Most
importantly, it is the unique ground state for D = 1/3 on the circle, but four-fold
degenerate when on open boundary conditions. This degeneracy is linked to the
presence of two decoupled "artificial" spins-1/2 at the boundary of the systems that
can take any combination of values without changing the energy of the systems.

These properties, that extend to all the ground states of the model for D < 1
[146], already suggest the possible identification of an SPT phase, called in this case
Haldane phase. To certify the topological nature of this phase, however, we need a
global quantity reminiscent of the topological invariants that can be found for topo-
logical bands.

Pollmann et al. [147] discovered that the Haldane phase can be protected by
three different symmetries: (i) the dihedral group D2 = Z2 × Z2 representing all
the rotation of π along the three axis [148], (ii) time-reversal symmetry (iii) reflection
symmetry along one bond [123]. Depending on the symmetries respected by the
Hamiltonian different "order parameters" can be defined. For example in presence
of the D2 symmetry we can define the string order parameter [148, 149]

Oij = lim
|i−j|→∞

⟨Sα
i exp

(
iπ

j−1

∑
k=i+1

Sα
k

)
Sα

j ⟩, (1.35)
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that can be extracted by mapping the Haldane model to a model with spontaneous
symmetry breaking. The string order parameter is then a non-local quantity that de-
tects the spontaneous breaking of a "hidden" symmetry. However, the only quantity
that can identify the topological phase in presence either of the three symmetries is
the entanglement spectrum [87, 150]. This is defined as the values − log(λi), where
λi are the Schmidt values of a bipartition of the state. For a definition of the Schmidt
values we refer to the next chapter. In presence of a topological phase, all the values
in the entanglement spectrum are even-fold degenerate.

1.2 Topological Order

The examples we discussed up to this point owe the name of topological phases
either due to their single particle band structure or, in the case of interacting sys-
tems, to the presence of a degeneracy in the entanglement spectrum. In all of these
cases, it was possible to define an integer quantity or a topological invariant that
characterizes the phase, and link it to the presence of edge states for the system with
open boundary condition. However, both the edge states and the topological nature
of the bulk can be destroyed if a perturbation breaking the protecting symmetry is
introduced.

Nevertheless, there is a class of quantum systems that have more robust topo-
logical characteristics, not relying on any particular protecting symmetry. These are
called topologically ordered phases [11]. Compared to SPT they have long-range en-
tanglement and their ground states are degenerate even if put on closed manifolds
with non-trivial topology. However, their most striking peculiarity is the presence
of bulk excitations that have fractional charge with fractional statistics2.

Some notable theoretical examples of topologically ordered phases are the Kitaev
toric code [51, 98], the chiral spin liquids [151] and the 2D p+ ip-wave superconduc-
tor [100]. However, the most famous example is the Fractional Quantum Hall Effect
(FQHE) [6, 152]. This was the phase for which the concept of topological order was
created [10].

In this section we will focus on this latter example, as it will be the system under
study in Chapter 3. We will see in what sense it is drastically different from the more
trivial IQHE, and describe in more detail the properties of the fractional excitations.

1.2.1 Fractional Quantum Hall Effect

The main approximation we introduced when talking about the IQHE in Section
1.1.2 was neglecting the electron-electron interaction. This let us describe the sys-
tem in terms of single-particle physics, and use the techniques and terminology of
topological bands to extract the Chern number and the quantized Hall conductivity.
While the assumption is well justified in the case of completely filled bands, it is
not the case when the Fermi energy lies in the middle of a band. In this case, the
quenched kinetic energy of the electrons makes the coulomb interaction

Vc(ri − rj) =
e2

4πϵ0|ri − rj|
, (1.36)

relevant.
2SPT phases can have fractional excitations, but only as edge states
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FIGURE 1.4: Experimental evidence of FQHE resistivity plateaus in an electronic
system. Data taken from [153]. Fractional resistivity plateaus are visible for high
magnetic fields on the right of filling ν = 1.

Intuitively, the potential Vc lifts the degeneracy of the Landau levels splitting it
into a band of width ∼ Vc. Gaps can then form inside these bands in correspondence
of a fractionally filled Landau Level. As in the case of the IQHE these gaps would
then correspond to plateaus in the Hall conductance, but with a quantized value that
is a fraction of the one in the IQHE. An exact solution of the full Hamiltonian

HFQHE = ∑
i

1
2m

(
pi −

e
c

A(ri)
)2

+ ∑
i<j

Vc(ri − rj), (1.37)

in presence of the Coulomb interaction is not possible. Moreover, the flat-bands
structure of the non-interacting problem makes it impossible to treat Vc perturba-
tively. Numerical solutions are possible, as we will see in Chapter 3, but are limited
to at most a dozen particles. Nevertheless, this model was studied with great suc-
cess. The reason is that the phenomenology of FQHE can be captured with great
accuracy by some special ansatz wavefunctions [152, 154–156]. Here we will in-
troduce the two most famous examples, the Laughlin wavefunction [152] and the
Moore-Read wavefunction [155], and explain how they describe states at different
filling fractions, and how their excitations behave in a subtly different way.

1.2.2 Laughlin state

The Laughlin wavefunction [152] was proposed to describe FQHE state at filling
fraction ν = 1/m3, and has the form

Ψν(z1, . . . , zN) = ∏
i<j

(
zi − zj

)m e−∑i |zi |2/4l2
B , (1.38)

3The filling is defined as ν = N/Nϕ, where N is the number of particles and the previously defined
Nϕ is the degeneracy of the lowest Landau level.
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where zi = xi + iyi is the complex coordinate of the i-th particle and lB =
√

h̄c/eB is
the magnetic length. It describes fermions for m odd, and bosons trial ansatz wave-
functions were discovered for the ground state that describe with great accuracy for
m even. It was constructed on the grounds that it has to reproduce the correct filling
fraction, and it has to be expressed in terms of wavefunctions of the lowest Landau
level. Macroscopically, it represents an incompressible liquid, as the wavefunction
vanishes if the particles are brought together, or if they are too far from the origin.

The correctness of this assumption can be shown by computing the overlap of
the ground state of the Hamiltonian HFQHE with the Laughlin wavefunction, which
is found to be extremely high for a variety of interaction potentials and a couple of
dozen of particles, as we will show in Chapter 3. We can then assume that even if
the Laughlin wavefunction and the ground state of (1.37) are not exactly the same,
they belong to the same class of universality. Nevertheless, a toy Hamiltonian can be
constructed whose ground state is exactly (1.38) by using the Haldane pseudopotentials
[157]: these so-called parent Hamiltonians are the starting point to add the effects of
impurities or perturbation over the FQHE state, as we will see in Chapter 3.

Quasi-holes and quasi-particles

One of the most intriguing properties of the Laughlin state is the presence of bulk
excitations called quasi-holes and quasi-particles. These are zero-energy localized bulk
excitations that take their name from the fact that they only carry a fraction of the
charge of an electron. In particular, for the Laughlin wavefunction at filling ν = 1/m,
the quasi-particles have charge e/m and the quasi-holes have charge −e/m.

The wavefunction for quasi-holes can be obtained by multiplying (1.38) by a fac-
tor ∏m

i=1 (zi − ζ), where ζ is the position of the quasi-hole:

Ψqh(z1, . . . , zN) =
N

∏
i=1

(zi − ζ)∏
i<j

(
zi − zj

)m e−∑i |zi |2/4l2
B . (1.39)

The charge of the quasi-hole is readily obtained from this expression: if we were to
insert m quasi-holes at position ζ, the wavefunction would get multiplied by a factor
∏m

i=1 (zi − ζ)m, corresponding to a Laughlin state with one more electron at position
ζ. But since ζ is not a dynamical variable, that would represent a deficit of charge
−e at that position. Hence, the negative charge −e/m.

Quasi-particle states, on the other hand, cannot be constructed in the same way
as to insert a charge in the same fashion would amount to dividing for a factor
∏m

i=1 (zi − ζ)m, instead of multiplying, introducing a singularity in the wavefunc-
tion. However, as the prefactor of the Laughlin state is a polynomial, another way
to decrease its degree would be to act with a derivative, leading to the formulation
for quasi-particles

Ψqp(z1, . . . , zN) =

[
N

∏
i=1

(∂zi − η)∏
i<j

(
zi − zj

)m

]
e−∑i |zi |2/4l2

B . (1.40)

Note that the derivative does not act on the exponential.
The fractional charge is only one of the striking characteristics of quasi-holes and

particles. A thing that will have much more repercussion is the fact that they have
fractional statistics, meaning that they do not believe neither as fermion nor bosons,
but as a sort of in-between called anyons. We will discuss this in more detail in the
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following. Before that, however, we will introduce the Moore-Read wavefunction,
and see how anyons arise differently in this case.

1.2.3 Moore-Read states

As the Laughlin wavefunction was describing fermions for m odd, the Moore-Read
(MR) wavefunction [155] aims to describe fermionic FQHE states with m even, and
bosonic with m odd. In particular, it was proposed to describe the ν = 5/24 state
[153, 158]. This is one of the most promising candidates for the implementation of
topological quantum computing [97]. It has the form

ΨMR(z1, . . . , zN) = P f
(

1
zi − zj

)
∏
i<j

(
zi − zj

)m e−∑i |zi |2/4l2
B , (1.41)

where P f is the Pfaffian of the antisymmetric matrix 1
zi−zj

, as defined in (1.25).
As in the case of the Laughlin wavefunction, the Moore-Read wavefunction is not

the exact ground state of HFQHE at filling ν = 1/m. However, effective Hamiltonians
can be constructed whose ground state is exactly (1.41). The most evident case is the
ν = 1 state: in this case the Moore-Read wavefunction vanishes only when three
particles are brought in the same position, meaning that is the exact ground state of
the three-boy contact Hamiltonian

H3 = ∑
i<j<k

δ2(zi − zj)δ
2(zi − zk), (1.42)

when projected on the lowest Landau Level.

Quasi-holes in the Moore-Read wavefunction

The quasi-holes of the MR state have a very different nature from the ones of the
Laughlin state. In particular, each quasi-hole added as in Eq. (1.39) by multiplying
the MR state by a factor ∏m

i=1 (zi − ζ), can be split in two half quasi-holes by relying
on the properties of the Pfaffian.

For example, by adding two quasi-holes at positions ζ1 and ζ2 we can write

ΨMR(z1, . . . , zN) =
N

∏
i=1

P f
(
(zi − η1)(zj − η2) + (zj − η1)(zi − η2)

zi − zj

)
ΨMR(z1, . . . , zN).

(1.43)
We can then repeat the previous argument to confirm that we obtain a full miss-
ing electron when adding 2m quasi-holes, meaning that the quasi-holes charge is
−e/2m. However, the situation is more interesting if we consider the case of an
even number of quasi-holes 2n > 4. in this case there are multiple, degenerate states
with the same number of quasi-holes. It was shown that this degeneracy is 2n−1 for
2n quasi-holes [159]. This degeneracy in turn impacts the statistics of quasi-holes,
that behave as non-abelian anyons [155].

1.2.4 Anyons

We now introduce the concept of anyons and fractional statistics [160]. Our discussion
starts from some subtle consequences of the concept of indistinguishable particles

4Intended as a state with filling ν = 1/2 on top of two fully filled Landau Levels



1.2. Topological Order 25

FIGURE 1.5: The braiding of two anyons. (a) Two non-equivalent (clock- and
counter-clockwise) cannot be deformed one in the other without a crossing in
their paths. (b) The Yang-Baxter relations: the two different ways to braid three
anyons are equivalent.

in quantum mechanics. Consider for example a system of two identical particles
placed in q1, q2 and exchanging them. This process can be described by a permuta-
tion P. If we perform two exchanges we must end up with the initial state, so that
P2 = 1. This means that the state of the system can be classified in terms of the
eigenvalues of P, that is by either antisymmetric or symmetric wavefunctions under
particle exchange:

PψA(q1, q2) = −ψA(q2, q1), PψS(q1, q2) = ψS(q1, q2). (1.44)

However, all the operators of this system are symmetric under this exchange, mean-
ing that it is not possible to have a superposition of an antisymmetric and a symmet-
ric wavefunction: for any generic operator O, ⟨ψA|O|ψS⟩ = 0, a superselection rule.
That means that the system must be described by either a symmetric or antisym-
metric wavefunction. This notion generalizes to any number of particles as long as
they are identical. This approach, based on the (anti-)symmetrization of the wave-
function, leads to the standard distinction between Fermi-Dirac and Bose-Einstein
statistics, and explains effects like the Pauli exclusion principle and Bose-Einstein
condensation. On top of that, the spin-statistics theorem gives us a tool to assign the
correct statistic to different kind of particles [161].

This picture can be enriched and generalized if we base our definition of statistics
on a more physically motivated adiabatic exchange of the particles instead of an
instantaneous permutation. The quantum statistics in this case will be related to the
phase that appears during this exchange process.

While in three and more dimensions this approach gives the same results of the
(anti-)symmetrization procedure [162], this is drastically different in two dimensions
[163, 164]. This can already be realized by the consequences of the spin-statistics
theorem in 2D. The quantization of spin relies on the non-commutative algebra of
the generators [Sj, Sk] = ih̄ε jklSl . In two dimensions this algebra is trivial since there
is only one allowed rotation, hence just one generator. That means that there is no
quantization of angular momentum, suggesting that in two dimensions particles
may interpolate between bosons and fermions [96], showing fractional statistics.

1.2.5 Braiding

To quantify the concept of fractional statistics, we have to explicitly perform the adi-
abatic exchange of two particles, also called braiding. In three or more dimensions,
this is quite straightforward. After an exchange of particles their joint probability
density must remain the same, meaning that the wavefunction just acquires a phase:

|ψ(r1, r2)|2 = |ψ(r2, r1)|2 ⇒ ψ(r2, r1) = eiπαψ(r1, r2), (1.45)
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and after two exchanges, enforcing the fact that the wavefunction must be the same
at the beginning and the end:

ψ(r1, r2) = ei2παψ(r1, r2) ⇒ eiπα = ±1. (1.46)

The exchange is thus implemented by a permutation P, and the states lie in an irre-
ducible representation of this group. If α = 0 the particles are bosons, if α = 1 they
are fermions. In this case, the statement that the wavefunction must not change after
an exchange between two particles is based on the fact that there is always a way to
contract the exchange path to a point.

For d = 2 instead, not all the particle exchanges can be contracted to a point.
That means that in principle there is no prescription for the wavefunction at the
end of the exchange to be the same as the beginning. Let us picture the exchange
process as pictured in Fig. 1.5(a): we start with two particles on a plane and follow
their evolution under an adiabatic exchange. In this case the third dimension will
represent time. As we can see the worldlines of a clockwise or a counter-clockwise
exchange cannot be continuously deformed one in the other without a crossing. It
is possible to classify all these different and not continuously connectable paths in
topological classes forming elements of the so-called braid group. What then happens
in d = 2 is that particle exchanges are represented by a representation of this group
instead that by one of the permutation group.

The braid group can be constructed starting from a set of generators of exchanges
which obey particular relations. Imagine putting n particles on a line and that σ1
exchanges counter-clockwise particles 1 and 2, σ2 exchanges particles 2 and 3 and so
on. Any kind of exchange of the n particles can be built by repeatedly applying the
σ operators, generating the group.

As a first condition these generators must satisfy

[σj, σk] = 0 if |j − k| ≥ 2, (1.47)

meaning that exchange of disjoint pairs of particles do not affect each other. The
other, more subtle, relation is the so called Yang-Baxter relations [165]:

σjσj+1σj = σj+1σjσj+1, j = 1, 2, . . . , n − 2, (1.48)

that can be more easily understood via a graphic representation like the one in Fig.
1.5(b).

In the simplest one dimensional representation of this group every generator is
simply a phase: σj = eiπαj . While this generator trivially satisfy (1.47) we must
impose:

eiπαj eiπαj+1 eiπαj = eiπαj+1 eiπαj eiπαj+1 → σj = eiπα ∀j. (1.49)

Particles that exhibit this kind of behaviour under exchange, i.e. for whose 2-
particles wavefunction ψ(r1, r2) holds

ψ(r2, r1) = eiπαψ(r1, r2), (1.50)

are called Abelian anyons. The particular value of θ is explicitly dependent on the
Hamiltonian of the exchange process, and it can be retrieved by computing the Berry
phase of the adiabatic time dependent process. We can then understand the concept
of fractional statistics as a value of α that interpolates between the fermionic (α = 1)
and bosonic (α = 0) statistics.
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FIGURE 1.6: Sketch of DQCP. The transition between two symmetry broken
phases is second order with a closing of the gap ∆. Here exemplified the Néel
and VBS phases of the Heisenberg model on a square.

As the quasi-hole state in the Laughlin state is not degenerate, quasi-holes are
an example of Abelian anyons with α = 1/m [166]. It is possible to build higher
dimensional representations of the braiding group: that happens when the states of
the particles to be exchanged are described by vectors in a degenerate ground state.
The exchange process can then rotate the vectors in this space. In this case the gen-
erators σ are represented by matrices and the simple 2-particles exchanges do not in
general commute with each other. Particles that transform under this representation
are then called non-abelian anyons. The quasi-holes in the Moore Read state are an
example of this [159, 167].

1.3 Deconfined Quantum Criticality

The last example of phenomenon eluding the Ginzburg-Landau paradigm is the so
called deconfined quantum criticality [senthil2023a]. While in the rest of the chapter
we considered phases going beyond symmetry breaking, in this section we will focus
on only phase transitions not captured by the Landau framework.

As we stated in the introduction, in the Landau theory a second-order transition
happens when we cross the boundary between two phases characterized by sym-
metries G and H such that H ∈ G. In this case we can describe the low-energy
physics around the transition through a functional (such as the free energy in statis-
tical physics) of the order parameter, that is invariant under the action of H: from
that we can extract the transition point and characterize it through properties like
Goldstone modes, correlation functions, critical exponents and so on.

Notably, this framework only works at a boundary connecting a trivial phase
with a spontaneously broken one. It breaks down when considering boundaries
between two non-trivial states, as for example the topological ones considered in
the previous sections. In particular, in the case of transition between two symmetry
broken phases with different symmetries H and H′, the Landau theory predicts a
first-order transition.

However, there are situations where two symmetry-broken phases can be con-
nected by a second-order transition point, with a restoring of both symmetries and
the appearance of a gapless phase. This is called a deconfined quantum critical point
(DQCP) [121, 168]. The name comes from the fact that the low-energy physics at the
transition is described by a deconfined gauge theory, and its excitations are not the
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usual Goldstone modes, but fractionalized excitations. Notably, similar transitions
can also be connected with the physics of SPT phases [169].

Firstly introduced by Senthil et al. in 2004 [168] in the context of two-dimensional
antiferromagnets, they consider the Heisenberg model on a square lattice

Ĥ = J ∑
⟨ij⟩

Si · Sj + . . . , (1.51)

where the dots represent further-neighbor interactions and J is the antiferromagnetic
coupling. The model is invariant under the action of the SU(2) group of spin rota-
tions, and the ground state is a Néel state with long-range antiferromagnetic order,
breaking this symmetry. However, depending on the nature of further-range inter-
actions the ground state can be a valence bond solid (VBS) state, where the spins are
paired in singlets. This is reminiscent of the dimerization of the SSH model, but in
this case the dimers are formed by two spins-1/2. This phase breaks translational
invariance and lattice rotations, but preserves the SU(2) symmetry. In [168] the au-
thors show how these two phases can be connected by a second-order transition,
gapless transition, as showed in Fig. 1.6.

This opened a search for this new class of critical points, that were discovered
notably in systems like the previously mentioned spin Hall insulators [170], and var-
ious SPT-trivial insulator transitions [169, 171, 172]. Lately, several works hinted at
the presence of DQCP in one-dimensional systems [roberts2019a, 173–175], mainly
in spin systems. The search for this exotic critical points in one-dimensional fermionic
and bosonic systems will be one of the main goal of Chapter 5.
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Chapter 2

From classical to quantum
simulation of quantum many-body
systems

The simulation of quantum many-body systems is a central problem in modern
physics: reliably simulating quantum systems in a controlled environment is a cru-
cial step in understanding the physics of exotic phases of matter like the ones dis-
cussed in the previous chapter, and to guide the development of new materials with
desired properties. However, this task is extremely challenging due to the exponen-
tial growth of the complexity of the problem with the number of particles present
in the system. While this problem can sometimes be circumvented for weakly inter-
acting systems, for example by using mean-field theory or perturbative approaches,
like Fermi liquid theory for highly dimensional systems [176] and bosonization for
one-dimensional systems [177], these pictures often fail to capture the physics of
strongly correlated systems.

In those cases the most viable approach is to use numerical simulations to com-
plement experimental results. In the years several methods have been developed to
tackle this task, like variational and quantum Monte Carlo, Exact Diagonalization
and Tensor Networks [54, 55]. Each one of these techniques has its own advantages
and drawbacks: while quantum Monte Carlo techniques can deal with large sys-
tems, they are limited in the study of fermionic and frustrated systems due to the
sign problem [178, 179]. Exact diagonalization, on the other hand, can deal with any
kind of quantum system but are limited to small sizes due to the exponential growth
of the Hilbert space. Tensor networks, finally, can be used to simulate impressively
large system sizes but are currently limited to one and small two-dimensional sys-
tems due to the growing complexity of the involved calculations [180].

In the last twenty years more direct approaches to the simulation of quantum sys-
tems have been explored, based on the experimental realization of artificial quantum
systems that directly reproduce the properties of the system under study in a con-
trolled setting. These platforms are called quantum simulators and have been realized
in a broad range of physical systems like photonic waveguides [181], trapped ions
[182, 183], Rydberg atoms [184], and ultracold atoms in optical lattices [185, 186].
The main advantage of this platform is the possibility to reproduce the behavior of
complex quantum systems, like solid state materials, in a controlled environment
that allows for better tunability of the relevant parameters and a more direct access
to the observables of interest. On the other side, compared to classical numerical
simulations, quantum simulators can potentially reach a larger number of interact-
ing particles and can be used to probe the dynamics of the system [187].
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In this Chapter we will explore both the classical and quantum approaches rele-
vant to the simulation of the phenomena discussed in the rest of the thesis. In the first
section we will introduce the basic concepts of Exact Diagonalization and discuss its
advantages and limitations. We will continue in the second section by introduc-
ing the concept of Tensor Networks and the related algorithms for the extraction of
ground states of quasi-one dimensional systems, both in finite and infinite systems.
We will also give an outline of more complex Tensor Network architectures. Finally,
in the last section we will introduce the concept of quantum simulation using ultra-
cold atoms in optical lattices, showing how various many-body Hamiltonians can be
engineered by leveraging the interaction between confined neutral atoms and laser
light, and how various measurements can be performed on the resulting systems.

2.1 Exact diagonalization

The Exact Diagonalization (ED) technique implies directly solving numerically the
Schrödinger equation

H|Ψ⟩ = E|Ψ⟩, (2.1)

by expressing the Hamiltonian H as a matrix in an appropriate basis.
This technique has been successfully used to study the properties of systems

such as fermionic and bosonic lattice models, quantum magnets and FQHE states
[188, 189]. The main advantage of ED is that it does not involve approximations
further than a truncation of the basis on which the Hamiltonian is expressed. More-
over, it can be used to study any kind of quantum system with arbitrary interaction
ranges and dimensionality. However, the exponential scaling of the size of H with
the number of degrees of freedom of the system, greatly limits the number of inter-
acting particles we can consider: in the case of lattice systems the dimension of the
full Hilbert space grows with the number of sites L as dL, where d is the dimension
of the local Hilbert space of the species in consideration, for example d = 2 for spin-
1/2 particles or d = 4 for spinful fermions. Depending on the complexity of the
local degrees of freedom the number of simulable particle can range from ∼ 18 for
fermionic systems to ∼ 50 for quantum magnets [190].

While at first glance this approach may seem straightforward to implement, the
choice of the basis and the efficient implementation of the symmetry constraints of
the Hamiltonian can dramatically affect the performance of this method. In partic-
ular, choosing a basis that reflects the symmetries of H makes it possible to write
the Hamiltonian matrix in a block-diagonal form, with each block corresponding to
a different symmetry sector. The blocks can in turn be diagonalized independently,
vastly reducing the computational cost and potentially opening the possibility to
run the simulations in parallel [190].

Moreover, due to the extremely large size that the Hamiltonian can reach, par-
ticular care has to be taken to avoid resource bottlenecks in both memory and CPU.
While physically relevant Hamiltonians usually have a sparse structure, with only
a few non-zero elements in each row, modern algorithms directly compute matrix-
vector multiplications without ever storing the matrix in memory. Finally, usually
we are interested only in the lowest energy states of the system, so that we can use
iterative methods to find the ground state without ever computing the full eigen-
value decomposition of the Hamiltonian. These precautions are at the basis of the
Lanczos method [191], whose details we are discussing in Appendix A.
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FIGURE 2.1: (a) Tensor Notation where each leg coming out of the circle repre-
sents an index of a tensor. An example of a tensor of rank 1 vi (vector), a tensor of
rank 2 (matrix) Mij, and a tensor of rank 3 Tijk. (b) Tensor contraction. Sum over
repeated indices is represented as two legs of two tensors being connected. The
result of the contraction is a tensor with the remaining indices. In this example
we draw the contraction AikmBmlj = Cikl j. (c) When fully contracting a network,
the result is a scalar represented by a circle with no legs.

2.2 Tensor Networks

As we saw in the previous section, the power of ED techniques is strongly limited
by the size of the system under study. Many numerical techniques have then been
developed with the goal of overcoming this limitation. One typical way to circum-
vent this problem is to encode the state of the system in a parametrized function,
called ansatz, with a number of parameters that is much smaller than dL. The nu-
merical value of the parameters is then variationally optimized in order to minimize
a chosen goal function, usually the expectation value of the Hamiltonian. The cru-
cial point is how to choose an appropriate ansatz that can appropriately capture the
physics of the system under study while keeping a small enough number of param-
eters [52].

This is the idea behind several classes of numerical and analytical techniques
called Variational Methods, that differ on the choice of physical ansätze and the pro-
cesses of optimization of the variational parameters. Techniques belonging to varia-
tional methods are, for example, mean-field theory, Hartree-Fock theory, Variational
Monte Carlo, Neural Network quantum states and the subject of this section, Tensor
Networks.

The name Tensor Networks (TN) comes from the way to compactly represent
various quantities. As shown in Fig. 2.1(a), relying on the linear structure of quan-
tum mechanics, all the relevant quantities are expressed in terms of multidimen-
sional arrays, or tensors, which are represented by nodes with a number of legs
equal to their rank. Scalar product over shared indices, more commonly called con-
traction is represented as a connection between two legs, as shown in Fig. 2.1(b),
whose result is another tensor with the remaining legs.

The field of Tensor Networks in quantum physics can be traced back to the
ground state of the AKLT model as described in Chapter 1 [85], whose structure was
lately extended to more complex models, leading to the concept of Matrix Product
State [192, 193]. At the same time, a fundamental milestone was set by White with
the development of the Density Matrix Renormalization Group (DMRG) algorithm
[56, 57] to study one-dimensional quantum lattice systems. While the connection be-
tween the fixed point of the DMRG procedure and MPS was soon made [58, 194], the
potential of Tensor Network was fully realized when it was shown the connection
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FIGURE 2.2: (a) In states following the area law all the entanglement between
two subregions A and B is localized on their boundary. (b) The state following
the area law are a small corner of the available Hilbert space but are the most
physically relevant ones.

between the entanglement structure of one such state and its computational com-
plexity. This led to a unified framework to study condensed matter physics with the
tools of quantum information theory [60, 67, 195]. Starting from this point, the field
of Tensor Networks has developed rapidly to other kind of systems like systems in
two dimensions [68] or at criticality [69], and extensions to the study of dynamical
[61] and thermal properties [65].

The Area Law

To develop the idea behind the power of Tensor Networks it is useful to start from a
concept that links the entanglement structure of a quantum state to its computational
complexity, as this connection will give us a powerful tool to efficiently compress
these states [196].

Consider the (exponentially large) Hilbert space H of a generic many-body sys-
tem. To each state |Ψ⟩ ∈ H we can associate a density matrix ρ = |Ψ⟩⟨Ψ|, that can
be used to define the bipartite entanglement entropy of the state as

S = −Tr [ρA log ρA] , (2.2)

where ρA = TrB [ρ] is the reduced density matrix of a subsystem A obtained by
tracing out the degrees of freedom of the subsystem B. For a generic state in H the
value of S is roughly proportional to the size of the subregion A, a property called
volume law:

S ∝ A ∼ Ld. (2.3)

This is in contrast to the ground states of gapped, local Hamiltonians, that are char-
acterized by an entropy proportional to the boundary of subregion A, thus following
the so-called area law:

S ∝ ∂A ∼ Ld−1. (2.4)

This can be restated as saying that for the ground state of this type of Hamiltonians,
all the correlations between the subregions A and B are localized at the boundary
between the two. The area law states are only a small corner of the Hilbert space,
but are the ones that are most relevant to the study of gapped systems.

The fundamental idea behind Tensor Networks is then to construct ansatzë to
represent states in this corner of the Hilbert space, and in this way reducing the
number of parameters needed to describe them. In the following we will focus on
the type of Tensor Networks that are most relevant to the study of quasi-one di-
mensional systems and the ones used to obtain the results of this thesis: the Matrix
Product States (MPS).
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FIGURE 2.3: (a) Singular Value Decomposition written in Tensor Networks no-
tation. In this representation isometries are drawn as triangles while diagonal
matrices as rhombuses. (b) Properties of isometries: contraction of an isometry
with its complex conjugate yields the identity (straight line). If the converse is
true as well the isometry becomes a unitary transformation.

2.2.1 Matrix product states

For one-dimensional systems, the area law assumes a particularly simple form as
the size of the boundary of a subregion A of length L with another subregion B does
not depend on L, and is bounded by a constant:

S ∝ Ld−1 = c. (2.5)

The aim is then to construct a variational ansatz respecting this property. As we will
see this will result in a dramatic reduction of the number of parameters necessary
for an accurate description of the ground states of local Hamiltonians. In particular,
this number scales linearly with the size of the system, instead of exponentially. To
this end we first have to introduce the concept of Singular Value Decomposition.

Singular Value Decomposition and Schmidt decomposition

The Singular Value Decomposition (SVD) is a particular way to express a generic
rectangular matrix A of dimension m × n:

A = USV†, (2.6)

where U and V are respectively left and right isometries of dimensions m × d and
d × n, that is matrices that respect the properties U†U = 1 and V†V = 1. If A is
square m = n = d and the isometries become unitary transformations also obeying
U†U = 1 and V†V = 1. The matrix S is instead a rectangular diagonal matrix of
dimension d × d where d = min(m, n), with non-negative entries called singular or
Schmidt values. The number of non-zero singular values is called the Schmidt rank of
the matrix A. The SVD and the isometry matrices are represented using the Tensor
Networks notation in Fig. 2.3.

Let us now see how the SVD is linked to another decomposition called Schmidt
decomposition which, in turn, makes explicit the connection between the singular val-
ues and the entanglement entropy of a bipartite quantum state. For any bipartite
state |Ψ⟩ ∈ HA ⊗HB we can in general write

|Ψ⟩ =
d

∑
i,j=1

cij|ai⟩|bj⟩, (2.7)

where {|ai⟩} and {|bj⟩} are orthonormal bases of HA and HB respectively, and d was
defined above. The Schmidt decomposition of the state is obtained by performing
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an SVD on the matrix cij:

|Ψ⟩ =
d

∑
i,j=1

UisSss′V†
s′ j|ai⟩|bj⟩ =

d

∑
s=1

λs|ãs⟩|b̃s⟩, (2.8)

where |ãs⟩ and |b̃s⟩ are the rotated basis of the two subsystems and λs are the singular
values of the matrix cij. From this expression, recalling that the full density matrix of
the system is ρ = |Ψ⟩⟨Ψ|, it is straightforward to extract the entanglement entropy
of the bipartition A|B as

S = −Tr [ρA log ρA] = −
d

∑
s=1

λ2
s log λ2

s . (2.9)

It is important to note that as the λ2
s are the eigenvalues of a density matrix, they

are all positive and sum up to one. We get minimum entanglement for a product
state |ã1⟩|b̃1⟩ with λ2

s = 1 for s = 1 and λ2
s = 0 for all the others, and maximum

entanglement for a fully entangled state with uniform λ2
s = 1/d for all s. We can

then see that the Schmidt spectrum of a bipartition is a measure of its entanglement:
the faster the Schmidt values decrease with s, the smaller the entanglement entropy
and the closer the state is to a product state. Moreover, the Eckart-Young-Mirsky
theorem [197, 198] states that the truncation of the SVD to a finite rank s′ is the best
approximation of the state in the sense of the Frobenius norm ∥|Ψ⟩∥ = Tr

[
ρ2]:

∥|Ψ⟩ − |Ψs′⟩∥ = min
|Ψ′⟩∈Hs′

∥|Ψ⟩ − |Ψ′⟩∥, (2.10)

where Hs′ is the space of states with Schmidt rank s′. We can then conclude that for
a bipartite state the most efficient approximation is the one that keeps only the most
relevant degrees of entanglement at the boundary between the two subsystems: if
the state is close to a product state this compression will be very efficient, getting
worse as the entanglement grows.

We will now repeatedly apply this idea to a one dimensional quantum state to
construct an MPS, making explicit the amount of entanglement encoded in each bi-
partition. To do such we will introduce the tensor notation for states: a state describ-
ing a lattice of L sites {s1, . . . , sL} with local Hilbert space d written as

|Ψ⟩ = ∑
s1,...,sL

Ts1,...,sL |s1, . . . , sL⟩, (2.11)

is identified by a set of dL coefficients Ts1,...,sL that can be seen as a tensor of rank L
as represented in Fig. 2.4. We can now create a matrix out of T by grouping all the
indexes together except the first one and then decompose it using an SVD:

Ts1,(s2,...,sL) = As1
j T

′
j,(s2,...,sL)

, (2.12)

obtaining a contraction between to tensors of rank 1 and L − 1 respectively. We
can then repeat the process by grouping the first two indices of T and decomposing
again, and continue iteratively until we reach the last two indices. The final result is
a state

|Ψ⟩ = ∑
s1,...,sL

As1
1 As2

2 . . . AsL
L |s1, . . . , sL⟩, (2.13)
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FIGURE 2.4: From a full quantum state to an MPS. Starting from the full tensor of
coefficients Ts1,...,sL we can repeatedly perform an SVD on each bond by grouping
the indices on the two sides of the partition to obtain an MPS.

where the tensor T was decomposed in a product of L matrices A, from which the
MPS take their name. The graphical representation of this process is shown in Fig.
2.4.

At this point no approximation has been made, and the state is still described by
dL coefficients. Indeed, by construction the matrix An has dimension dn−1 × dn for
n = 1, . . . , L/2 and dL−n × dL−n+1 for n = L/2 + 1, . . . , L. However, by recalling the
approximation properties of the SVD we can truncate the dimension of the matrices
A to a maximum value χ without losing too much accuracy. The quantity χ is called
in this framework the bond dimension of the MPS and is a measure of the entangle-
ment of the state. We can readily check the maximum amount of entanglement that
can be encoded in an MPS at fixed bond dimension: for a fixed bond dimension χ,
the maximally entangled state has uniform entries on the diagonal of the reduced
density matrix λ2

s = 1/χ for s = 1, . . . , χ. The corresponding entanglement entropy
is then

S = −
χ

∑
s=1

1
χ

log
1
χ
= log χ < c. (2.14)

We can then conclude that an MPS at fixed bond dimension correctly encodes the
entanglement structure of an area law state in one dimension, and in particular the
ground states of local, gapped Hamiltonians. By directly checking Eq. (2.13) we can
see that the number of parameters describing such MPS is Ldχ2, thus scaling linearly
instead than exponentially with the size of the system.

2.2.2 Properties of Matrix Product States

On top of the dramatic reduction of the number of parameters necessary to describe
the state, MPS have several properties that make them ideal candidates to perform
efficient numerical simulations. In the following section we will discuss some of
them particularly important for the results of this thesis.

Efficient contractions

For a variational ansatz to be useful, there must be an efficient way to compute
quantities like expectation values of operators or overlaps with other states. This
corresponds in the TN language in fully contracting a network. While for generic
TN the problem of finding the optimal contraction is non-trivial, for MPS this can
be done optimally with a number of operations of order O(Ldχ3) by following an
algorithm as shown in Fig. 2.5. Another order of contractions can produce a worse
scaling that can drastically affect the employability of the ansatz. For example, a
naive contraction of the state with its complex conjugate produces a scaling of O(χ4),
that makes computations intractable for large bond dimensions.
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FIGURE 2.5: Example of computation of the expectation value ⟨Ψ|Ψ⟩. (a) The
optimal contraction with scaling O(Ldχ3) by following a “zip up” algorithm. (b)
An example of an inefficient contraction with scaling O(χ4).

FIGURE 2.6: Canonical forms of an MPS. (a) Left canonical form. (b) Right canon-
ical form. (c) Mixed bond canonical form. (d) Mixed site canonical form. (e) A
generic gauge transformation acting on a bond.

Gauge transformations and canonical forms

In many circumstances it is not necessary at all to contract MPS to obtain some quan-
tities of interest. This is due to the highly non-unique way to represent a state as an
MPS. In particular, it is always possible to perform a local gauge transformation on
each one of the bonds without changing the final state. Indeed, for any generic uni-
tary matrix Un acting on a bond n we can write

. . . Asn Asn+1 · · · = . . . AsnUnU†
n Asn+1 · · · = . . . Ãsn Ãsn+1 . . . , (2.15)

changing two matrices in the MPS without changing the physical state. It can be
proven that this is the most general gauge transformation acting on the space of
MPS [53]. Gauge freedom is central to the flexibility of MPS as a computational tool
as it drastically simplifies the operations required to contract the full network.

In particular gauge transformations can be used to rewrite an MPS in one of
four different canonical forms by using an SVD: left, right, mixed bond or mixed site
canonical. This amounts to writing the state in terms of left or right isometries,
possibly changing the direction of the isometries in correspondence of a particular
site called center. In this way we can exploit the properties of isometries to reduce
the majority of contractions in the state to identities, only having to compute the
contraction in correspondence to the center site.

2.2.3 Matrix product operators

It is useful to extend the concept of MPS to operators acting on them. This allows us
to write the Hamiltonian of the system and the observables in a form that is suited for
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FIGURE 2.7: An operator in Tensor Networks notation and its decomposition in
an MPO. The bond dimension is called m and is usually of order ∼ 10.

the optimization process, and for which we can use the same efficient contractions
as for the state.

For a generic operator acting on the space of MPS we can expand it in terms of
the same basis of the state:

O = ∑
{s},{s′}

Os′1,...,s′L
s1,...,sL |s1, . . . , sL⟩⟨s′1, . . . , s′L|. (2.16)

At this point we can proceed as we did for MPS and perform an SVD on each bond
to obtain a local decomposition of the coefficient of the operators in terms of rank-4
tensors:

O = ∑
{s},{s′}

Ms1,s′1
1 Ms2,s′2

2 . . . MsL,s′L
L |s1, . . . , sL⟩⟨s′1, . . . , s′L|. (2.17)

Coherently with the denomination for states, this for decomposition is called Ma-
trix Product Operator (MPO). The graphical representation of this decomposition is
shown in Fig. 2.7. Each tensor M has two sites indices corresponding to the physical
degrees of freedom and two bond indices with associated bond dimension m. For lo-
cal Hamiltonians this decomposition is usually exact with bond dimension m ∼ 10.
For example in the case of the Heisenberg model the bond dimension is m = 4 as the
Hamiltonian is a sum of four terms, each one acting on two sites.

The decomposition of an operator in an MPO is crucial to the performance of sev-
eral algorithms like DMRG that rely on projecting global operations (like the compu-
tation of eigenvalues of the Hamiltonian) over local degrees of freedom. However,
performing the SVD for such large matrices can prove to be a bottleneck in the calcu-
lations. For this reason, it is often useful to obtain the MPO decomposition by using
finite-state machines [199, 200].

2.2.4 Density Matrix Renormalization Group

We now have all the necessary ingredients to introduce the Density Matrix Renor-
malization Group (DMRG) [56, 57]. As with all the variational methods we need
three basic building blocks: (i) an ansatz to be optimized, represented in our case
as an MPS; (ii) an objective function to be minimized, the expectation value of the
Hamiltonian, written as an MPO; (iii) and an optimization algorithm, the DMRG.

Compared to other methods that could be used to optimize the parameters of an
MPS, like gradient descent or its generalizations, the DMRG has the crucial advan-
tage of always choosing the optimal update of the parameters at each step, as it is
based on the exact diagonalization of the Hamiltonian in a projected subspace. The
basic idea of DMRG is to map the global optimization problem of minimizing the
energy over the full Hilbert space, to a local one, by projecting the Hamiltonian in a
subspace of the Hilbert space spanned by a base defined on a few physical sites. In
its modern formulation the DMRG sequentially optimizes the parameters of a small
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FIGURE 2.8: The DMRG algorithm. (a) Starting from a trial MPS |Ψ0⟩ and the
Hamiltonian HMPO, we optimize the tensor Mi,i+1 by solving the generalized
eigenvalue problem (2.19). (b) We then substitute the optimized tensor in the
MPS and split it using an SVD to obtain the new tensors Ai and Ai+1. (c) We then
move the center to the next bond and repeat the process until convergence.

subset of Tensors of an MPS while keeping the rest of the state fixed. The optimiza-
tion process then sweeps along the tensors of the chain until a convergence to a fixed
point in the value of the energy is reached. The most common schemes involve the
optimization of one (1DMRG) or 2 (2DMRG) tensors at the same time. While the
1DMRG is computationally lighter, the two-site version allows for a dynamical in-
creasing of the bond dimension χ during the optimization process, by performing
an SVD after every optimization. We will focus on the latter version to describe in
depth the algorithm.

To initialize the optimization process we start with a trial MPS |Ψ0⟩ of the form
(2.13) and the Hamiltonian of the system HMPO expressed as in (2.17). The entries
of the tensors A in |Ψ0⟩ can be chosen randomly or following some criteria: the
choice of the starting MPS is fundamental to the performance and the convergence
properties of the algorithm. In general, we should choose a state as close as possible
to the target one, for example by considering the symmetries of the ground state we
expect to find.

In the 2DMRG we aim to optimize two tensors at the same time, we then focus on
a four-legs tensor Mi,i+1 = Asi

i Asi+1
i+1 obtained by contracting two single-site matrices.

To minimize the expectation value of HMPO over the entries of Mi,i+1 we can take
the gradient over their complex conjugate M†

i,i+1 and set it to zero:

∂

∂M†
i,i+1

[⟨Ψ|HMPO|Ψ⟩ − λ (⟨Ψ|Ψ⟩ − 1)] = 0, (2.18)

where we added λ as a Lagrange multiplier that enforces the normalization of the
state. By expanding the gradient we obtain the generalized eigenvalue equation:

Hi,i+1
MPO Mi,i+1 = λGi,i+1Mi,i+1. (2.19)

Here Hi,i+1
MPO is the projection of HMPO in the basis of sites i and i + 1, obtained by

contracting the MPO with |Ψ0⟩ and ⟨Ψo| excluding the sites si, si+1. This results in an
eight-rank tensor with dimensions d4 × χ4. Operationally however, Hi,i+1

MPO never has
to be explicitly calculated, as we can directly compute the smaller tensor Hi,i+1

MPO Mi,i+1
of dimension d2 × χ2 instead. The tensor Gi,i+1, similarly, is the contraction of the
whole MPS with its complex conjugate except the tensors on sites i, i + 1. The sta-
bility of the solutions of Eq. (2.19) generally depends on the matrix G, however the
possibility of casting |Ψ⟩ in a canonical form means that we can choose the center to
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FIGURE 2.9: Sketch of the main difference between the iDMRG and the VUMPS
algorithms. (a) Starting from a trial unit cell |Ψ0⟩ and the Hamiltonian HMPO, we
optimize the tensor Mi,i+1 by solving the generalized eigenvalue problem (2.19).
(b) We then substitute the optimized tensor in the unit cell and optimize it again.
(c) We continue in this way until convergence.

be on site si, and as a consequence we can always choose Gi,i+1 to be the identity. In
this way, on top of avoiding the need for computing G, we reduce the optimization
of the tensor Mi,i+1 to the solution of a standard eigenvalue problem of dimension
d2 × χ2, that can be solved efficiently using the Lanczos method we explained in the
previous section.

The optimization of the full state proceeds then as follows: we start by optimiz-
ing the tensors M1,2, putting the gauge center on site s1 and solving (2.19). We then
substitute the solution M̃1,2 in the MPS by creating the new tensors Ã1, Ã2 splitting
M̃1,2 using an SVD. The power of the 2DMRG relies on this step, as we can dy-
namically choose the new bond dimension between the two tensors after the SVD,
for example by a targeting a fixed truncation error. We then repeat this process by
moving the center to s2 and creating the new tensor M2,3 = Ã2A3 to be optimized.
We continue in this way sweeping back and forth along the chain until a desired
precision in the energy of the state is reached. At any step of the process, the (con-
tracted) tensors of the MPS and MPO on the two sides of the tensor to be optimized
are respectfully called the left and right environments of the tensor Mi,i+1 and intu-
itively represent a “bath” over which the remaining tensors are optimized. These
environments do not have to be fully recomputed at each step, as they can be up-
dated by contracting them with the resulting tensors of the previous optimization.
The fundamental steps of the DMRG algorithm are summarized in Fig. 2.8.

2.2.5 Infinite systems

The DMRG, as we described it, is designed to study finite systems with open bound-
ary conditions. Enforcing periodic boundary condition creates some problems as we
introduce long range entanglement that increases the required bond dimension to
reach a given accuracy to χ2, with χ being the bond dimension of the open boundary
system. On the other hand, the generalization to the case of an infinite chain com-
posed by repeating a small set of tensors, called a unit cell is quite straightforward
and is called Infinite DMRG (iDMRG) [63]. In this section we will briefly describe it
then introduce a more modern algorithm called Variational Uniform Matrix Product
States (VUMPS) [64, 201] that solves some pitfalls in the application of iDMRG that
need to be avoided to obtain the results of this thesis.
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Infinite Density Matrix Renormalization group

The iDMRG procedure starts by choosing a unit cell of an appropriate size. Usually
this should reflect the periodicity of the infinite Hamiltonian (expressed appropri-
ately as an Infinite MPO) or, if we expect the appearance of some order breaking the
symmetry under lattice translations, the periodicity of the order parameter. The first
step of the optimization is then to perform the usual DMRG on the unit cell using
identities as the left and right environments. We then use the optimized tensors to
construct the left and right environment of a new enlarged system and optimize the
unit cell again. We continue in this way until the energy density of the unit cell con-
verges to a fixed point. As we only optimize a few tensors per sweep (usually 1-2)
and the environment is formed by already optimized tensors, the system sizes that
can be reached are extremely large (usually of the order of 104). The infinite system
can then be approximated by the last unit cell optimized, infinitely repeated.

While this technique has been extremely successful in the study of bulk proper-
ties of countless one-dimensional systems, it suffers from some problems that can
be particularly severe in the study of systems around criticality. The first is that
the state keeps memory of the previously optimized unit cells as they are used to
construct the environments, meaning that the optimization is skewed towards the
ground state of short chains, slowing the convergence to the thermodynamic limit
and being prone to get stuck in local minima. The second is that while the resulting
state is very large compared to usual finite DMRG, it is not really translationally in-
variant, and a scaling with the effective dimension of the chain is needed in order to
extract a reliable bulk state. In situations where the presence of boundaries cannot
be neglected, like the cases we are going to study in Chapter 5, this can result in
serious stability and convergence problem to the true ground state.

Variational Uniform Matrix Product States (VUMPS)

For the reasons outlined in the last paragraph, VUMPS was introduced as an algo-
rithm that directly works with states in the thermodynamic limit, replacing the entire
infinite state at each step of the optimization process. In this way the environment
never breaks the translational invariance of the state and the memory of the pres-
ence of previous unit cells in the environment is lost. For a unit cell of one tensor
A, the building blocks of the algorithm are the tensor in the three possible gauges:
left, right, and center, that we will call AL, AR, AC respectively, and the bond center
matrix C. These quantities are related by the gauge transformations rule

AC = ALC = CAR. (2.20)

The VUMPS update procedure consists then in solving the eigenvalue problem both
for the matrix C and the tensor AC:

HAC AC = EAC AC, HCC = ECC. (2.21)

The two updated matrices ÃC and C̃ can then be plugged in (2.20) to obtain the
updated tensors ÃL and ÃR to update the full environment without breaking the
translational invariance of the state. Crucially, the two effective Hamiltonians pro-
jected in the basis of the site HAC and the bond HC, can be computed efficiently at
any step for an infinite environment [64]. The convergence of the algorithm is then
checked by ensuring that both the tensors in the left and right change do not change
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FIGURE 2.10: The network structure of a PEPS. The tensors are placed on the
sites of a square lattice and are connected by bonds.

after the optimization step by setting a threshold for the two quantities

ϵL = ∥ÃC − ALC̃∥, ϵR = ∥ÃC − C̃AR∥. (2.22)

While VUMPS requires the solution of two eigenvalue problems at each step, com-
pared to one in the case of iDMRG, the full substitution of the state massively speeds
up the algorithm, requiring noticeably fewer sweeps to reach convergence.

In the case of a multi-tensor unit cell we can proceed in two different ways: in
both cases we sweep through the unit cell optimizing one tensor at time, but we
can either replace the environment after each optimization (sequential approach), or
after the optimization of the whole unit cell (parallel approach). Both approaches
have their advantages and drawbacks. Finally, it is worth mentioning that at no
point in the application of VUMPS we perform an SVD: this means that we cannot
dynamically increase the bond dimension of the state. This can be done instead by
performing a subspace expansion [202] when needed, to “artificially" increase χ.

2.2.6 Beyond Matrix product states

MPS, paired with optimization algorithms such as DMRG are powerful tools to
study one-dimensional systems. However, as we will see in more detail in Chap-
ters 5 and 6, they are severely limited when applied to systems around criticality,
higher dimensionality systems or, equivalently, long range interactions. MPS are
indeed constructed to satisfy the area law for ground states of gapped local Hamil-
tonians in one-dimension and are unable to fully encode the entanglement structure
in other circumstances.

For this reason several other architectures have been developed to adapt to dif-
ferent geometries and symmetries. The most direct generalization of MPS to two-
dimension are Projected Entangled Pair States (PEPS) [68], whose network structure
for a square lattice is shown in Fig. 2.10. While by construction they capture the area
law in two-dimension they suffer from severe computational problems that have
been limiting their range of applications and are still object of active research. In
particular, the presence of loops, closed between tensors connected by bonds, in a
tensor network architecture makes it impossible to perform most the operations that
make computations with MPS efficient. First, cutting the state along a bond does
no longer produce a bipartition of the system, meaning that it is impossible to use
SVD to efficiently compress the state and to create canonical forms that simplify cal-
culations. In turn, this makes it extremely complex to implement an algorithm like
DMRG for PEPS. Second, the contraction of the network to compute expectation val-
ues or overlaps is no longer efficient, as it is not possible to find an optimal order of
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FIGURE 2.11: Schematic of the transitions involved in the laser-atom interaction
in a quantum simulator. For a small detuning ∆ the transitions to the excited state
can be neglected and the net effect is a position-dependent shift of the ground
state energy.

contractions that does not depend on the size of the system. This effectively makes
it impossible to exactly contract PEPS for systems larger than a few sites.

A possible workaround that has been employed successfully is the use of small
unit cells to construct infinite PEPS (iPEPS) [203] that can capture bulk properties of
various systems. However, the size unit cell is severely restricted (usually not more
than 2 × 2 or 3 × 3). To solve the problem of contraction instead, several algorithms
have been proposed that perform the contraction using controlled approximations
[204, 205]

An alternative architecture that does not suffer the problems of loops while cap-
turing longer range entanglement are Tree Tensor Networks (TTN) [70]. These are
constructed by layering tensors on top of each other like in Fig. 2.10(b) avoiding
contractions that would create loops. Each layer then represents a different scale in
the entanglement structure of the state, making it possible to capture longer range
correlations than MPS. Moreover, the absence of loops makes it possible to perform
SVD on bipartitions, creating canonical forms, efficiently contracting the network
and eventually writing DMRG-like algorithms adapted to the particular geometry
of the system in exam. This is particularly useful when studying one-dimensional
systems with long range interactions or periodic boundary conditions. The main
drawback of TTN is that they are not able to capture the area law, meaning that the
encoding of entanglement is not optimal, limiting their applicability. Nevertheless,
there have been several successful applications for example in the study of FQHE
[206], and even small systems in three dimensions [207].

Finally, we briefly mention the class of Multi-scale Entanglement Renormalization
Ansatz (MERA) [69]. These are generalizations of TTN that add some intermediate
tensors called disentanglers that are used to capture the entanglement structure nec-
essary for the area law. While these states correctly reproduce the area law for critical
systems, the insertion of disentanglers introduces loops in the network making the
optimization process severely more complex than for TTN.

2.3 Quantum simulation with ultracold atoms

While classical simulation techniques like the ones we described above have reached
impressive results in reproducing ground state physics, they are severely limited in



2.3. Quantum simulation with ultracold atoms 43

the reachable size of quantum systems, and in the study of their dynamical proper-
ties. For instance, as we saw in the previous section, the efficacy of Tensor Networks
is severely limited in two dimensions, even for ground state problems, and almost
completely impractical to use in three dimensions.

For these reasons in the last decades, experimental apparatuses called quantum
simulators were developed in order to reproduce directly in a quantum platform
the properties of system hardly approachable classically. While simulators are not
universal as they only reproduce a particular model, they can be used to mimic the
properties of complex quantum system in a controlled environment that allows a
better tunability of the parameters and ease of measurements [187].

In this section we will describe the basis of quantum simulation using ultracold
atoms. As a feasible platform where to realize strongly-correlated phenomena like
FQHE and frustrated magnetism, it will be relevant for the result of this thesis.

2.3.1 Ultracold atoms in optical lattices

The starting point is the cooling and trapping of atoms in order to be able to control
them. This is usually done through laser [25] and evaporative cooling [29], and the
use of a magneto-optic trap that confines the atoms in a harmonic potential[28]. The
next step is the creation of an optical lattice [185, 186] for the trapped atoms that can
mimic the periodic potential typical of solids. In this way, it is possible to engineer
for neutral atoms potentials reproducing the ones that nuclei exert on electrons in
materials. In experiments, we usually consider alkali atoms, for which only one
electron occupies a partially filled band. The Hamiltonian for the atom can then be
written (setting h̄ = 1) as

H0 = ωi ∑
i
|ei⟩⟨ei|, (2.23)

where |ei⟩ are the internal states of the valence electron and ωi are the corresponding
energies, setting the energy of the ground state |e0⟩ = |g⟩ to zero for simplicity. We
are neglecting the kinetic energy of the atoms as we are interested in how the effect
of the interaction of the atom with an external electric field shifts its internal levels.

The coupling of the atom with an electric field can be modeled as a dipole inter-
action, assuming that the wavelength of the field is much larger than the size of the
wavefunction of the atom. In this case the interaction can be written as

HI = −d · E(r, t). (2.24)

Here d = er denotes the vector dipole moment operator associated to the valence
electron, while E(r, t) = E(r)eiωt is a classical electric field generated by a monochro-
matic laser. As it is widely known, the expectation value of the dipole operator on
the ground state is zero ⟨g|d|g⟩ = 0, so that we will consider the coupling to the
excited states to study the effects of the atom-radiation interaction. By only consid-
ering the first excited state |e1⟩ = |e⟩ we can write the complete Hamiltonian in the
interaction picture as

HI =
(
|e⟩⟨g|eiω0t + |g⟩⟨e|e−iω0t

)(Ω
2
(r)eiωt +

Ω∗

2
(r)e−iωt

)
, (2.25)

where we defined the Rabi frequency Ω(r) = −2⟨e|d · E(r)|g⟩ as the frequency of os-
cillations between the two internal states. Assuming a small detuning between the
atomic and laser frequency |∆| = ω − ω0 ≪ ω0, we can neglect the fast oscillat-
ing terms containing ±i(ω0 + ω)t (the Rotating Wave Approximation) and obtain the
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effective Hamiltonian

HI ∼
Ω(r)

2
|g⟩⟨e|ei∆t +

Ω∗(r)
2

|e⟩⟨g|e−i∆t. (2.26)

Now we can perturbatively calculate the effects of this light-matter coupling on the
energy of the ground state of the atom. For Ω << ∆ the transitions to the excited
state can be neglected, and we can employ a second order perturbation theory to
obtain the energy shift of the ground state, the so called ac-Stark shift:

δEg =
|⟨g|HI |E⟩|2

4∆
=

|Ω(r)|2
4∆

. (2.27)

As the Rabi frequency is proportional to the spatial profile of the electric field, this
creates an effective position-dependent potential for the atoms to move in. If the
laser is red-shifted (∆ > 0) the atoms are attracted to the minima of the laser, while
for a blue-shifted laser (∆ < 0) to the maxima.

We will now focus on the simple case of one-dimensional systems. If we consider
a standing wave field obtained by two monochromatic counter-propagating laser
beams with the same frequency and polarization

E(x) = E0 sin(
2π

λ
x), (2.28)

the atoms are subject to a periodic potential of the form

V(x) = V0 sin2(
2π

λ
x), (2.29)

where V0 = |E0⟨e|d|g⟩|2/∆ is usually expressed in terms of the recoil energy Er =
k2/2m. The atoms are then confined in a periodic potential with period d = λ/2. The
eigenfunctions of the atomic Hamiltonians in this potential are delocalized Bloch
waves of the form

ψnk(x) = eikxunk(x), (2.30)

where unk(x) is a periodic function with the same periodicity of the potential V(x):
unk(x + d) = unk(x). The momentum k is defined in the first Brillouin zone, while
n represent instead the band index, as it is standard in the study of the spectra of
periodic potential.

2.3.2 Tight-Binding approximation

In the case of deep lattices, when V0 ∼ 5Er ≫ Er, the lowest band in the spectrum
becomes almost flat, and we can assume the atoms to be localized around the min-
ima of the potential, in analogy to atomic potentials in the case of electrons. If the
system is cooled at a temperature lower than the gap between the first and the sec-
ond band, we can assume that all the atoms occupy the lowest band. In this case an
orthogonal basis more suited to describe the system is given by Wannier functions

wn=0(x − Xi) =
1√
L

∑
k

e−ikXi ψn=0,k(x), (2.31)

where L is the size of the system, Xi are the positions of the potential minima, and we
set n = 0 to restrict to the lowest band. This basis is the starting point to describe the
physics of the system in the tight-binding approximation, that is the situation where
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the atoms are assumed to be localized in the minima of the potential and to move
only by hopping between neighboring sites.

If the generic Hamiltonian of free atoms (supposed to be bosons for simplicity)
of mass m in a periodic potential V(x) and a generic trapping potential Vext(x) is
written as

H =
∫

dxΨ†(x)
(

p2

2m
+ V(x) + Vext(x)

)
Ψ(x), (2.32)

we can express the bosonic destruction operator in terms of operators defined on the
sites of the lattice via de Wannier basis as

Ψ(x) = ∑
i

w0(x − Xi)bi. (2.33)

The kinetic energy can then be rewritten as

HK = −∑
i,j

tijb†
i bj, tij =

∫
dxw∗

0(x − Xi)

(
− ∂2

x
2m

)
w0(x − Xj). (2.34)

If the lattice is deep enough the overlap between Wannier functions centered in sites
further than nearest neighbor is negligible, and we can approximate tij = 0 for j ̸=
i ± 1. The potential Vext(x) represents instead other external potentials to be applied
to the system on top of the lattice, like a harmonic trap or a magnetic field to prevent
the atoms to escape the system. This can be rewritten as a local chemical potential

Hext = ∑
i

µib†
i bi, µi =

∫
dx|w∗

0(x − Xi)|2Vext(x). (2.35)

2.3.3 Adding interactions

Having described the single particle physics of atoms in an optical lattice, we now
turn to the study of how to tune and engineer interactions between them. The
generic atom-atom interaction can be written as

Hint =
1
2

∫
dxdx′Ψ†(x)Ψ†(x′)Vint(x − x′)Ψ(x′)Ψ(x), (2.36)

where Vint(x − x′) can in general be a complicated function. For neutral atoms usu-
ally the typical two-body interaction is given by the van der Waals potential. How-
ever, for atoms in the so-called ultracold limit as the ones we are considering the only
relevant interaction happens in the s-wave channel and, neglecting the corrections
in [208], the interaction potential can be approximated by a contact potential

Vint(x − x′) =
2πas

m
δ(x − x′). (2.37)

Here the quantity as is called scattering length and, in the case of alkali atoms, can be
tuned by means of a Feshbach resonance. In this case, and by using the expression
of Eq. (2.33), the interaction Hamiltonian can be written as

Hint =
U
2 ∑

i
b†

i b†
i bibi =

U
2 ∑

i
ni(ni − 1), U =

4πa
m

∫
dx|w0(x)|4, (2.38)

with ni = b†
i bi the number operator on site i.
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FIGURE 2.12: Measurement techniques. (a) Time-of-flight expansion snapshots
of a suddenly released BEC cloud. By measuring the ballistic expansion after the
release from the trap it is possible to reconstruct the momentum distribution of
the initial state. Image adapted from [209]. (b) Quantum gas microscopy allows
for imaging of optical lattices at the single atom level, allowing to explicitly mea-
sure local quantities like density and spin patterns. Image adapted from [41].

By adding all the terms we obtain for the effective physics of the lowest band of
atoms in the optical lattice the Bose-Hubbard Hamiltonian

HBH = −∑
i,j

tijb†
i bj +

U
2 ∑

i
ni(ni − 1) + ∑

i
µini. (2.39)

The parameters of the Hamiltonian only depend on two readily tunable parameters:
the lattice depth V0 and the scattering length a. Moreover, by using different stand-
ing wave pattern different geometries of the lattice with different periodicities can
be engineered. This allows to study a wide range of models, with results on the
phase diagram of this model starting from the Mott insulator-superfluid transition
[34]. More details on the phases of this model will be given in Chapter 5. While we
performed the derivation of the model in the case of bosons, also fermionic atoms
can be studied in the same way: in this case the s-wave scattering between two equal
fermions is suppressed by the Pauli principle, and the relevant interaction is the one
between two fermions of opposite spin. This can be modeled by adding a spin de-
gree of freedom, obtaining the Hamiltonian

HFH = − ∑
i,j,σ

tijc†
iσcjσ +

U
2 ∑

i
ni↑ni↓ + ∑

i
µi ∑

σ

niσ, (2.40)

called the Fermi-Hubbard model. This Hamiltonian represents a key minimal model
for the study of interacting electrons in solids, and it will be described in more de-
tails in Chapters 5 and 6. Notably, its classical simulation is severely limited by the
sign problem when using Monte Carlo approaches and the large local Hilbert space
dimension (4 states per site) when using Tensor Networks, making it a prime candi-
date for quantum simulation.

2.3.4 Measurement techniques

The power of cold atoms simulators resides not only in the possibility of tuning
the parameters of the many-body Hamiltonian with precision, but also on a wide
array of detection techniques that makes it possible to measure the properties of the
system with high precision. One of the most important is the time-of-flight method
[210]: in this technique the atoms get suddenly released from the optical lattice (and
any eventual confining potential), and are let to expand in a ballistic way for some
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time t. At this point the atomic cloud can be photographed using standard imaging
techniques: as the distance traveled by the particles depends on their momentum,
this is an efficient way to measure the momentum distribution of the atoms. This
can be used for example to detect superfluidity in the system [34], but also to map
the topological properties of a system, like the Berry phase of a band structure [211,
212]. An example of the time-of-flight evolution of a Bose-Einstein condensate is
shown in Fig. 2.12(a).

Another, more recent technique is the quantum gas microscopy [32, 41] that allows
to directly image the configurations of atoms in the lattice, with a resolution up to the
single atom. This led for example, to the direct, real space identification of the Mott
insulator-superfluid transition in the Bose-Hubbard model [42], and the detection
of antiferromagnetic correlations in the Fermi-Hubbard one [45]. This technique is
also particularly suited to probe properties encoded in non-local correlators, like the
ones we are going to study in Chapter 5. For example, quantum gas microscopy
was employed to study chiral currents[49], and string order correlators [213]. A
snapshot of a bosonic configuration in an optical lattice captured with quantum gas
microscopy is shown in Fig. 2.12(b).
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Part II

Novel techniques for detection of
topology
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Chapter 3

Tracing of anyons in FQHE via
impurity particles

As we introduced in Chapter 1, one of the most striking characteristics of topo-
logical order is the presence of excitations that exhibit fractional charge and frac-
tional statistics, with a behavior dramatically different from the one of the elemen-
tary constituents of the system. A paradigmatic example of this phenomenon are
the quasi-holes and quasi-particles in Fractional Quantum Hall (FQHE) liquids: the
liquid is made of interacting electrons, but its excitations appear as fractional elec-
trons. By having fractional charge and fractional statistics they are neither bosons
nor fermions, but anyons. [152, 163, 164, 166]. Even if the concept of anyons has
been known for several decades [163, 164], the search for this quasi-particles has
seen an unprecedented rise in the last year due to the possibility of using the in-
trinsic topological protection of anyons to perform topological quantum computation
[97, 98]. In FQHE, this behavior is perfectly captured theoretically by various ansatz
wavefunctions like the ones discussed in Section 1.2.1. However, it may be hard to
determine whether such phenomenology is indeed realized in a real-world FQHE
system.

In the case of Abelian quasi-holes, for examples the ones present in the ν = 1/3
Laughlin state presented in 1.2.1, the nature of the FQHE phase is well established
through theoretical considerations but also experimentally, by directly measuring
the fractional charge, most notably via shot noise measurements [214]. The mea-
surement of the fractional statistics, however, is much more challenging as it would
have to be performed through the braiding of the quasi-holes. This is extremely non-
trivial as the quasi-holes have to be exchanged adiabatically without introducing ex-
citations in the system. The most successful attempts up to this moment have been
focusing on beamsplitter experiments [215] and Fabry-Perot interferometry [216–
219].

The task of detecting and engineering non-abelian states, is even more complex.
As we saw in Section 1.2.1, the most promising candidate to describe the half-filled
ν = 5/2 FQHE phase, the most relevant for quantum computation [99], is the Moore-
Read or Pfaffian wavefunction [155, 220, 221]. This was indeed heavily suggested by
several experimental signatures, including spin polarization [222], e/4 quasi-particle
charge [158, 223], or half-integer thermal conductance [224]. Nevertheless, other ex-
periments suggest an Abelian phase [225]. Interferometric measurements to deter-
mine the non-Abelian nature of the quasi-particles have not been conclusive, as they
are also compatible with the presence of Abelian quasi-holes [217].

From this perspective, great work has been put in the implementation of FQHE
physics in highly controllable quantum systems, boosting the search for this kind
of states in quantum simulators, for example in cold atoms [226, 227] or photonic
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systems [105]. Advances towards the simulation of FQHE physics include the gen-
eration of artificial magnetic fields and detection of topological properties, such as
chiral edge states [228, 229], topological quantum numbers [48, 230–233], topolog-
ical transport [234, 235]. In the last five years, even the creation of a Laughlin-like
state of two photons [105] and two atoms [104, 236] have been achieved. In the
context of non-Abelian states, one feature of quantum simulators seems particularly
promising: They can operate also with bosonic species, for which often a simple
two-body contact potential appears to be sufficient to produce non-Abelian ground
states [237–239]. Recently, a non-Abelian state has been observed in a trapped ions
quantum simulator [107].

In addition to the engineering, synthetic quantum Hall systems in quantum sim-
ulators also provide new detection opportunities: light-matter interactions can be
used to create, trap, and braid quasi-particles [240–244]. The total angular momen-
tum of a FQHE system, which for atoms can be measured by time-of-flight imaging,
carries signatures of fractional statistics [245]. Spectroscopic signatures have been
described for atomic systems [246], graphene [247], or magnetic materials [248]. Sev-
eral works have suggested to bind impurities to fractional quasi-particles [249–254],
which can then be used to trace or manipulate the anyons.

In this chapter, following the results in [I] and [II], we take up the idea of binding
impurities to quasi-holes in a FQHE liquid to obtain their statistics. First, we con-
sider a single impurity and show that its angular momentum is fractional (in units
h̄ ≡ 1). Then, by adding more impurities, taken as non-interacting fermions, we
observe how their behavior changes. Specifically, we show that the total angular
momentum of the impurities matches neither the value from a fermionic construc-
tion, nor the value of bosonic condensate. Instead, the total angular momentum is
reproduced by a linear interpolation between fermionic and bosonic distribution,
proportional to α = 1 − ϕ. Here, ϕ depends on the filling factor of the FQHE liquid
and the fractional charge of the quasi-hole, and α equals the anyons’ statistical pa-
rameter. These results are valid for both Abelian and non-Abelian anyons states. In
this latter case, the non-Abelian nature of the anyons is reflected on a dependence
of the impurity angular momentum on the even or odd number of particles in the
system.

The results are obtained numerically either by performing exact diagonalization
of the underlying quantum Hall Hamiltonian, or by Monte Carlo sampling of the
ansatz wavefunction. They can also be understood from a mean field theoretical
construction, by relying on the parallel between fractional statistics and flux-matter
attachment [152, 164]. While this reasoning has already been employed to explain
the fractional relative angular momentum between two anyons [249], we demon-
strate that the properties of the anyon vacuum and fractional angular momentum
can even be probed with a single excitation. Moreover, the fractionalization of an-
gular momentum can directly be inferred from the density of impurities bound to
quasi-holes, making it easily accessible in experiment. This gives a new avenue to
measure fractional statistics without having to rely on the difficult task of braiding
quasi-holes.

The chapter is structured in this way: after having reviewed the concept of Hal-
dane pseudopotentials and parent Hamiltonians in Section 3.1, we will describe the
system with impurities in Section 3.2. In Section 3.3 we will then discuss the statistics
of one or multiple impurities in a Laughlin liquid, and the results of the numerical
simulations. Finally, in Section 1.2.3 we will do the same for Moore-Read liquids.
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3.1 FQHE from parent Hamiltonians

In this section we will introduce some technical details required for the understand-
ing the rest of the Chapter. As we mentioned in Section 1.2.1, a way to effectively
retrieve the Laughlin state is to construct parent Hamiltonians using the Haldane
pseudopotentials [157]. Here, following [127], we will be more specific about this con-
struction. We will use units in which h̄ = 1.

We consider a system of N particles (either bosons or fermions) on a plane, in-
teracting with each other through a generic central potential V, and subject to a
perpendicular magnetic field B. In this case the states in the Lowest Landau Level
can be labeled by their angular momentum m and written as

φm(z) =
1√

2πm!
zme−|z|2/4l2

B , (3.1)

sometimes called Fock-Darwin [255] states. Here lB is the magnetic length lB =√
1/eB. If we now consider only two of these particles, we can write their joint

state as
ψMm(z1, z2) = (z1 + z2)

M(z1 − z2)e−(|z1|2+|z2|2)/4l2
B , (3.2)

where M is the center of mass angular momentum and m is the relative angular
momentum. These wavefunctions are peaked at a distance r

√
2mlB from the origin.

Notably, if we avoid mixing with higher Landau Levels, these are the eigenstates of
the interaction V for any choice of the potential, with eigenvalues

vm =
⟨ψMm|V|ψMm⟩
⟨ψMm|ψMm⟩

(3.3)

independent on M. The vm are the celebrated Haldane pseudopotentials (for two
particles).

For any central potential we can then write the interaction Hamiltonian on the
Lowest Landau Level as

Hint =
1
2 ∑

m,m′
vm′Pm′ , (3.4)

with Pm′ the projector onto the subspace of states with relative angular momentum
m′. As the vms usually decrease for larger angular momenta, the repulsive interac-
tion then translates in the requirement that the two particles have to maximize their
relative angular momentum. The reasoning can be extended for the full system of N
particles, resulting in a Hamiltonian

Hint = ∑
m′

∑
i,j

vm′Pm′,ij (3.5)

where now there is a different projector P for any possible pair of particles i, j. If we
cut the sum over the angular momenta at a value q, such that m′ = 0, ∀m′ ≥ q, the
degenerate wavefunctions minimizing the energy are of the form

Ψq(z1, . . . , zN) = s(zi)∏
i<j

(zi − zj)
qe−∑i |zi |2/4l2

B , (3.6)

where s(zi) is a generic symmetric polynomial. However, the case s(zi) = 1, cor-
responding to the Laughlin wavefunction [152], is the most compact one, with an
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average radius of r ∼
√

2qNlB
1. As the polynomial s(zi) increases the total angular

momentum, all the other states are more extended in space.
This is particularly relevant if we add a harmonic trapping potential as custom-

ary in experiments. In terms of the angular momentum operator L this potential
is

Vtrap = ωL, (3.7)

with ω the trapping frequency. In this case the degeneracy is broken and the compact
Laughlin state is the non-degenerate ground state of the system with energy E0 =
1
2 ωqN(N − 1). We can then conclude that Eq. (3.4), with a sum running for m′ < q,
is the parent Hamiltonian for the Laughlin state at filling ν = 1/q in presence of a
harmonic trap.

3.1.1 Edge states and quasi-holes

What is the role of the s(zi) term? If we expand the polynomial in terms of a basis of
symmetric polynomials, we can write

s(zi) = ∑
n

= sn(zi)
dn , sn(zi) = ∑

i
zn

i . (3.8)

Here dn is an exponent to obtain a polynomial of rank n + dn starting from a basis el-
ement sn. As each polynomial sn adds an angular momentum n, the energy increases
as

Es = E0 + ∑
n

dnEn, En = ωn. (3.9)

This can be seen as the linear dispersion of the edge states of the system. In absence
of the confining potential they are degenerate with the Laughlin state, but they be-
come gapped because of the harmonic trap.

To each level in the spectrum (3.9) we can associate a degeneracy. We already
know that for n = 0, s(zi) = 1 and there is no degeneracy. The first excited state has
E = E0 +ω. To obtain it we need to set d1 = 1 and dn = 0 for n > 1. This corresponds
to s(zi) = ∑i zi, and the level has degeneracy 1. The state with E = E0 + 2ω can be
obtained by putting either d2 = 1 or d1 = 2, corresponding respectively to s(zi) =

∑i z2
i and s(zi) = (∑i zi)

2. It has then degeneracy 2. Turns out that the degeneracy of
a state with energy E = E0 + dω is equal to Nd, the number of ways to partition the
integer d in a sum of integers. This is shown for some values of d in Table 3.1.

However, if we add an angular momentum N equal to the number of particles,
there is another way to construct a corresponding state. If we put dN = 1 and the
rest to zero, corresponding to an energy E = E0 + Nω, we can write

s(zi) = ∏
i
(zi − ζ). (3.10)

This corresponds to adding a quasi-hole at position ζ. In absence of the harmonic po-
tential, all these states are degenerate ground state of the Haldane pseudopotential
Hamiltonian (3.4), together with the Laughlin state, only differing in their angular
momentum. For this reason we will call the zero interaction energy states.

1This can be confirmed by noting that each term in the polynomial adds an angular momentum m
and N − 1 such terms are present for each particle.
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d 0 1 2 3 4 5 6
Nd 1 1 2 3 5 7 11
Nd,imp 1 2 4 7 12 19 30

TABLE 3.1: Number Nd of edge modes in the Laughlin liquid of degree d, and
number Nd,imp of zero-energy modes of degree d in the presence of an impurity.

3.2 Impurities in a FQHE bath

To set the physical framework of this chapter, we now extend this construction to the
case of two different species of particles a and b: Majority particles a form a FQHE
liquid with filling fraction ν = 1/q, in which impurity particles b are immersed. For
simplicity, we assume similar single-particle physics for both species: They have
equal mass M, are trapped in the xy-plane by harmonic potentials of frequencies
ωa and ωb, and are brought into the lowest Landau level by a sufficiently strong
potential A = B

2 (−y, x, 0) written in Landau gauge. In this gauge, as we saw in
the previous section, the single-particle wavefunctions can be written in terms of
their angular momentum m using Fock-Darwin wavefunctions. The corresponding
single-particle energies are

Em,s = mΩs, s ∈ {a, b}, Ωs ≡
√

ω2
B + ω2

s − ωB. (3.11)

Here, ωB = eB/M is the cyclotron frequency, with e the electric charge of the particles
(or synthetic charge in the case of a quantum simulator). The coordinates z = (x +
iy)/lB are given in units of the oscillator length lB =

√
1/MΩs, which depends on

the trapping frequency. We assume ωa ≈ ωb ≪ ωB, such that Ωa ≈ Ωb, and the
length scale lB takes the same value for both a and b.

The a particles are either bosons or fermions. To make them form a FQHE liq-
uid, we consider repulsive interactions expressed by Haldane pseudopotentials. We
truncate the pseudopotential expansion at m′ = q, obtaining a parent Hamiltonian
for the Laughlin state Ψq, s(zi) = 1 in Eq. (3.6). The total angular momentum of the
Laughlin ground state is then

Lq =
q
2

Na(Na − 1), (3.12)

with Na the number of a particles, and if La = Lq it is non-degenerate. By checking
the parent Hamiltonian, no zero-interaction energy states are allowed for La < Lq.
Following the previous section, if we increase the angular momentum of the system
La = Lq + d with d > 0, the liquid can accommodate Nd edge modes, or a bulk
quasi-hole if La = Lq + Na.

The b species are taken as non-interacting fermions. To bind to quasi-holes of the
Laughlin liquid, we consider a sufficiently strong repulsive contact interaction be-
tween a and b particles. This interaction allows for exchange of angular momentum
between the species, but the joint angular momentum L remains a conserved quan-
tity. For the case of a single impurity, we can write its lowest-energy wavefunction
as

Ψq,imp ∼ ∏
i
(w − zi)Ψq (3.13)

where the quasi-hole position w was "upgraded" to represent a dynamical variable
representing the position of the impurity. This state is non-degenerate at L = Lq +
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FIGURE 3.1: We plot the angular momentum ⟨Lb⟩ of an impurity in a Laughlin
liquid at (a) ν = 1/3 (Na = 8 particles at L = L3 + Na + 4 = 96), and at (b)
ν = 1/5 (Na = 6 particles at L = L5 + Na + 4 = 85). The twelve lowest states (on
the left to the red-dotted line) are states of zero interaction energy. On average,
the impurity takes fractionally quantized values ⟨Lb⟩ = m+ν

1−ν (indicated through
the blue-dashed lines).

Na, and no zero-interaction states exist at L < Lq + Na. However, it is still possible
to create edge states on top of ψq,imp with angular momentum L = Lq + Na + d with
d > 0, of the form

Ψq,m1,m2 ∼ wm1 sm2(zi)∏
i
(w − zi)Ψq, (3.14)

where m1 and m2 are positive integers with m1 + m2 = d. Here sm2(zi) are all the
allowed polynomials of degree m2. Thus, the number of zero-energy modes at L =
Lq + Na + d is given by Nd,imp = ∑d

m2=0 Nm2 . This increases the degeneracy of the
zero-interaction modes, as shown in the second row of Table 3.1.

3.3 Statistics of impurities in a Laughlin state

The Laughlin state Ψq can be seen as an effective impurity vacuum, and the states
Ψq,imp and Ψq,m1,m2 define the ground state and excited states of a single impurity.
These states have total angular momentum L = Lq + Na and L = Lq + Na +m1 +m2,
but it is not immediately clear how the angular momentum is distributed between
the two species. Let L0

b denote the average angular momentum of the impurity in its
ground state, i.e.

L0
b ≡ ⟨Ψq,imp|Lb|Ψq,imp⟩, (3.15)

with Lb the angular momentum operator for the b particle. Naively, one may expect
that the angular momentum Lm

b of an impurity in its mth excited state, i.e. in Lm
b ≡

⟨Ψq,m,d−m|Lb|Ψq,m,d−m⟩, is given by Lm
b = L0

b + m. However, as we show below, this
is not the case. Instead, the angular momenta of impurity levels differ by multiples
of a fractional value, suggesting the interpretation of fractional quantization.

Analytical arguments for this behavior are based on the notion that the impurity
at w “sees” the majority particles at zi as fluxes, reducing the effective magnetic field
for the impurity to

B∗ = B − 2πl2
BρaB = B(1 − ν), (3.16)

where ρa is the density of the majority particles [249]. This leads to an increased
magnetic length scale l∗B = lB/

√
1 − ν. Thus, the renormalized wavefunctions for a
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single impurity are given by

φ̃m(w) =

√
(1 − ν)m+1

2π2mm!
wme−(1−ν)|w|2/4. (3.17)

In the limit of ν = 0, this wave function is identical to the un-renormalized Fock-
Darwin state φm(w) in Eq. (3.1). The density corresponding to φ̃m is given by

ρ̃m(w) = |φ̃m(w)|2 =
(1 − ν)m+1

2π2mm!
|w|2me−(1−ν)|w|2/2

=
∞

∑
n=0

ρm+n(w)νn(1 − ν)m+1 (m + n)!
m!n!

. (3.18)

In the second line, we have expanded the renormalized density ρ̃m in terms of un-
renormalized densities ρn+m = |φn+m|2, corresponding to angular momentum n +
m. Thus, the average angular momentum Lm

b of an impurity in level m is given by

Lm
b =

∞

∑
n=0

(n + m)νn(1 − ν)m+1 (m + n)!
m!n!

=
m + ν

1 − ν
. (3.19)

In its ground state (m = 0), the impurity has average angular momentum value
L0

b = ν/(1 − ν), and exciting the impurity by one unit (from m to m + 1) changes
the average angular momentum by ∆Lb = 1/(1 − ν) > 1. The standard deviation is
δLm

b =
√

ν(m + 1)/(1 − ν), so the relative error δLm
b /Lm

b → 0 for large m.
To confirm this analytical prediciton we used various numerical approaches:

First, we applied exact diagonalization (see Section 2.1) to the pseudopotential Hamil-
tonian (3.4) at fixed total angular momentum L to verify the analytical construc-
tion of the zero-energy modes, and in particular the counting of Table 3.1. We lift
the ground state degeneracy Nd,imp at L = Lq + Na + d by choosing the trap fre-
quency ωa slightly larger than ωb. The states within the quasi-degenerate manifold
are then energetically ordered decreasingly with the excitation level m of the impu-
rity. The corresponding impurity angular momentum ⟨Lb⟩ can be directly obtained
from the numerical solution, and for each m ≤ d, we find Nd−m degenerate states, in
which the impurity’s angular momentum matches very well with the theoretically
expected value Lm

b = L0
b + m∆Lb. This behavior is shown in Fig. 3.1 for two cases

corresponding to Laughlin filling factors ν = 1/3 and ν = 1/5. In this example,
we have chosen d = 4 yielding twelve quasi-degenerate states (left of the red-dotted
vertical line).

Eq. (3.19) can also be verified by directly evaluating the impurity angular mo-
mentum from the wavefunction in (3.14), either by symbolical operations [256], or
numerically via Monte Carlo integration method. This allowed to obtain much
larger system sizes compared to ED. We used the latter method to determine the
impurity angular momentum of Ψq,1,0 for 2 ≤ q ≤ 6 for Na ∼ 40, which is accurately
given by L0

b.
The fractional “quantization” of angular momentum is reflected by the impu-

rity density, plotted in Fig. 3.2(a). Higher orbitals correspond to larger angular
momenta and are characterized by broader density profiles. More quantitatively,
there is a linear relation between the mean square of the radial position, ⟨r2⟩, and
the angular momentum m. In the absence of a liquid (i.e. for ν = 0), we have
⟨r2⟩m ≡

∫ ∞
0 drr3|φm(r)|2 = 2m + 2. As we find numerically, the slope of this curve
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FIGURE 3.2: (a) We plot the radial density ρ
m,q
b (|w|) of an impurity, which is

excited to the mth level (m = 0, 1, 4), and which is immersed in a FQHE liquid at
ν = 1/q (for q = 3 and q = 5). For concreteness, we have assumed a liquid of
Na = 8 particles at L = L3 + Na + 4 = 96 for ν = 1/3, and a liquid of Na = 6
particles at L = L5 + Na + 4 = 85 at ν = 1/5, and different m levels correspond
to different edge modes. We also plot the density ρm(|w|) = |φm(w)|2 of a single
impurity in the absence of a liquid (ν = 0). (b) For different levels m, we plot
the mean square ⟨r2⟩m of the radial position of the impurity in the presence of
a liquid at ν = 1/3, ν = 1/5, and in the absence of the liquid. The slope of
the linear relation between m and ⟨r2⟩m characterizes the quantization of angular
momentum.

changes at finite ν, see Fig. 3.2(b). In this case,

⟨r2⟩m,q ≡
∫ ∞

0
drr3ρ

m,q
b (r), (3.20)

where the impurity density ρ
m,q
b (r), corresponds to a many-body state Ψq,m,d−m, and

is essentially independent of the choice of d. Specifically, at ν = 0, the slope of value
2 corresponds to integer quantization of angular momentum, whereas at ν = 1/3
and ν = 1/5, the slopes are increased by factors 3/2 and 5/4, in full accordance
with the expected “quantization” of angular momentum.

3.3.1 Breakdown of the mean-field theory

There are different scenarios in which the mean-field result (3.19) ceases to describe
the behavior of an impurity bound to a quasi-hole: for example, the effect of the
majority particles on the impurities cannot be completely described by a renormal-
ization of the effective magnetic field when the filling is too high. Alternatively, in
the limit of large excitation index m, the impurity reaches the edge of the system,
and we can expect deviations from the behavior of an impurity deeply embedded in
the bulk. In the following, we discuss these two breakdown scenarios in more detail.

Breakdown at ν = 1

The mean-field picture assumes a screening of the magnetic field due to the liquid
particles. In this picture, a liquid at ν = 1 would entirely screen the magnetic field,
and the assumption of our model that both liquid and impurity are subject to the
Lowest Landau Level breaks down. This restricts (3.19) to FQHE liquids at ν < 1.

Thus, it is interesting to ask how an impurity in an integer quantum Hall liquid
at ν = 1 behaves. Therefore, let us write down the wave function which describes
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Fourth ex.

FIGURE 3.3: Breakdown of the mean field construction. (a) Breakdown at filling
ν = 1, illustrated by impurity angular momentum vs. Na for different impurity
levels m. The impurity angular momentum has become an extensive quantity,
and scales according to Eq. (3.22) represented by the solid lines. (b) Breakdown
at large m, illustrated by impurity angular momentum vs. m for three different
fillings. The solid vertical lines represent the value (q − 1)N for the three fillings,
at which the impurity should be at the edge of the liquid.

such scenario:

Ψm = wm ∏
1≤i≤Na

(w − zi) ∏
1≤i<j≤Na

(zi − zj). (3.21)

In the impurity ground state, m = 0, both the impurity coordinates and the liquid
coordinates are on equal footing, thus we can immediately conclude that the im-
purity angular momentum must be equal to the angular momentum per particle,
L0

b = Na/2. This establishes a stark contrast to the fractional case: While in the
fractional scenario the average angular momentum of the impurity is independent
of the number of liquid particles, in the integer case the average impurity angular
momentum becomes an extensive quantity.

We may further ask what happens for excited impurity states, i.e. for m > 0.
To address this scenario, we have computed the average angular momentum of the
impurity by Monte Carlo integration applied to the wavefunction in Eq. (3.21). In
Fig. 3.3(a), the average impurity angular momentum is plotted vs. the number of
liquid particles Na, for different m. Formally, these results can very well be captured
by the following expression:

Lm
b = Na

m + 1
m + 2

(3.22)

Thus, the extensive character of Lm
b holds for all m. This establishes a clear difference

between the fractional and the integer scenario. In particular, in the integer case, m
cannot be interpreted as a quantity only linked to the impurities.

Breakdown for large m

The previous subsection demonstrates that, in the FQHE liquid at ν < 1, the non-
extensive nature of the impurity angular momentum is a striking and non-trivial
feature. This feature keeps an impurity with small m away from the edge. Nev-
ertheless, it is still possible to make the impurity particle explore the full size of the
system, if it is excited to large values of m. To determine the value of m at which such
breakdown is expected, let us first estimate the size of the liquid: the highest orbital
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FIGURE 3.4: The impurity angular momentum ⟨Lb⟩ is plotted as a function
of impurity number Nb, for different filling factors ν of the majority liquid in
the Laughlin state. The numerical results are obtained from Monte Carlo sam-
pling in the wave function Eq. (3.27) for Na = 20 majority particles. We also
plot LBose(Nb, ν) and LFermi(Nb, ν), the values expected if free bosons or fermions
would fill the effective single-particle levels for impurities bound to quasi-holes,
as well as the anyonic interpolation between both curves, LAny(Nb, ν), defined in
Eq. (3.30). The numerical data is found to match very well the anyonic predic-
tion.

which is occupied in the Laughlin wave function at filling ν = 1/q is M = q(Na − 1),
thus the system size is on order of

R ∼
√

2M lB =
√

2q(Na − 1) lB. (3.23)

On the other hand, an impurity in level m has a density peak at

W =
√

2(qm + 1)/(q − 1) lB. (3.24)

Accordingly, we expect a breakdown of our predictions for

m ∼ (q − 1)Na. (3.25)

By performing an explicit Monte Carlo integration, we confirm that the breakdown
indeed happens near this expected value of m. The results are shown in the right
panel of Fig. 3.3: For a fixed liquid size (Na = 12), we plot the average value of the
impurity angular momentum as a function of m at different filling fractions 1/q. The
solid lines indicate the behavior expected from the mean-field formula. The vertical
black lines indicate where, according to the above estimate, the deviations from this
formula are expected (for the different values of q). Indeed, we find that around
these values of m the impurity angular momentum deviates from the analytical ex-
pectations.
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3.3.2 Multiple impurities

Having established the angular momentum levels of a single impurity, we now ask
how is the behavior in the presence of Nb impurities. To obtain states of zero interac-
tion energy, the total angular momentum needs to accommodate the anticorrelations
of the majority liquid, the presence of Nb quasi-holes, and, for fermionic impurities,
a Vandermonde determinant [257] ∏i<j(wi − wj) to introduce the right statistics. Thus,
the zero-energy ground state occurs at

L = Lq + NbNa +
1
2

Nb(Nb − 1), (3.26)

and its wave function reads:

Ψ f ,qhs ∼
[

Nb

∏
i<j

(wi − wj)

]
·
[

Na

∏
i=1

Nb

∏
j=1

(zi − wj)

]
Ψq. (3.27)

Naively, one might expect that the total angular momentum of the impurities is
equal to the value obtained from filling the single-particle levels,

Lb,Fermi(Nb, ν) =
Nb−1

∑
m=0

m + ν

1 − ν
=

1
q − 1

[
q
2

Nb(Nb − 1) + Nb]. (3.28)

However, this expectation is not correct: Fig. 3.4 shows our numerical results for ⟨Lb⟩
as a function of the number Nb of fermionic impurities, interacting with a bosonic or
fermionic liquid (Na = 20) at different filling factors ν. For comparison, we also plot
Lb,Fermi(Nb, ν) as well as the angular momentum expected for Bose condensation in
the lowest impurity level,

Lb,Bose(Nb, ν) = NbL0
b = Nb

ν

1 − ν
. (3.29)

The numerical value is intermediate, Lb,Bose < ⟨Lb⟩ < Lb,Fermi. More precisely, it
matches extremely well with the following interpolation formula:

Lb,Any(Nb, ν) = (1 − ν)LFermi(Nb, ν) + νLBose(Nb, ν). (3.30)

This formula suggests that the statistical parameter α, which interpolates from Bose
statistics (α = 0) to Fermi statistics (α = 1), is given by α = 1 − ν. This is in agree-
ment with the effective Hamiltonian derived in Ref. [251] for impurities coupled to
fractional quasi-holes (see also Refs. [258, 259]), and with the general expectation for
a Laughlin quasi-hole (α = −ν) bound to a fermion (α = 1). Importantly, we note
that similar results as shown in Fig. 3.4 (with Na = 20) can already be obtained for
quite small Laughlin liquids (Na < 10), enabling the detection of anyonic statistics
in microscopic quantum simulators.

3.3.3 Increasing the range of interactions

The Laughlin wave function at filling ν = 1/q is an exact solution of a system of
particles in the lowest Landau level which interact via Haldane pseudopotentials vm
with m < q. Strikingly, Laughlin liquids can also be formed in systems with long-
range interactions. Specifically, the ν = 1/3 state turns out to be a strongly gapped
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FIGURE 3.5: Angular momentum of one impurity interacting via contact in-
teraction with a screened Coulomb liquid of Na = 6 electrons, for the twelve
quasi-degenerate ground states which exist at total angular momentum L =
LLaughlin + Na + 4. The degenerate states typical of a pseudopotential construc-
tion disappear but the zero-energy manifold is not affected.

FQHE phase described by the Laughlin wave function for a variety of systems inter-
acting with screened or unscreened Coulomb potentials, or dipolar potentials.

Here we address whether such long-ranged systems exhibit the same angular
momentum behavior for impurities bound to quasi-holes that we derived for the
pseudopotential model. Specifically, we will look at systems interacting with a
screened or unscreened coulomb potential described by [260]:

V(r) =
e2

ϵr
+ α

e2

ϵ
√

r2 + r2
0

, (3.31)

where the first term accounts for the unscreened Coulomb interactions in a medium
of dielectric constant ϵ, while the second term provides a potential screening via a
dielectric plate at distance r0/2 with dielectric constant ϵ′, and α = ϵ−ϵ′

ϵ+ϵ′ .
First, we consider the case of unscreened Coulomb interactions within the liquid,

and a contact impurity-liquid interaction of strength V0, as it may for instance apply
to an impurity given by a charge-neutral exciton without dipole moment [261]. In
contrast to the pseudopotential model, the liquid now possesses a finite amount of
interaction energy even in its Laughlin-like ground state. This means that, when the
angular momentum of the liquid is increased, the system may either form a quasi-
hole and reduce the interactions between liquid and impurity, or it may decrease
the interaction energy of the liquid via high-order edge deformations. From this
perspective, it is not in principle clear how the angular momentum of the impurity
will behave when changing the value of the contact interaction V0.

Interestingly, considering the average angular momentum ⟨Lb⟩ of an impurity in
its ground state (m = 0) as a function of V0, we find significant deviations from the
expectation L0

b = 1
2 (for ν = 1

3 ), but these deviations decrease, when V0 is increased.
For instance, in a system of five electrons

⟨Lb⟩ = 0.28, when V0 = v1, (3.32)

but converges to the value

⟨Lb⟩ = 0.39, when V0 > 10v1, (3.33)
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with v1 being the m = 1 pseudopotential of the Coulomb interactions. These num-
bers further converge to the value expected from (3.19) when the system size is in-
creased: For seven and eight electrons, we have obtained values ⟨Lb⟩ = 0.49 and
⟨Lb⟩ = 0.52. This suggests that our findings accurately describe also systems with
unscreened Coulomb interaction in the liquid and contact interaction between liquid
and impurity.

However, the condition V0 ≫ v1 can be rather restrictive. Let us therefore also
look at systems with screened Coulomb potentials. For concreteness, we choose
α = −1 and d = 2

√
2lB in Eq. (3.31). This choice dramatically relaxes the re-

quirements on the strength of V0. More importantly, we may now allow for liquid-
impurity interactions and liquid-liquid interactions to be given by the same long-
ranged potential V(r). Such scenario could apply to impurities given by charged
excitons (trions) or electronic impurities (e.g. with spin polarization opposite to the
fractional quantum Hall liquid). In this case, ⟨Lb⟩ takes the value 0.5 in a system for
seven electrons.

Finally, we further investigate the case of short-range impurity-liquid interac-
tions with screened liquid-liquid Coulomb interactions, corresponding to charge-
neutral impurities. If Fig. 3.5 we plot the angular momentum of one impurity in the
twelve quasi-degenerate ground states which occur when, L = LLaughlin + Na + 4.
This twelve-fold manifold is expected to contain five states with ⟨Lb⟩ = 0.5, three
states with ⟨Lb⟩ = 2, two states with ⟨Lb⟩ = 3.5, one state at ⟨Lb⟩ = 5, and one
state at ⟨Lb⟩ = 6.5. Most significant deviations from this “quantization” are seen for
the latter states at largest ⟨Lb⟩, where ⟨Lb⟩ remains significantly below the expected
values. For the other states at smaller ⟨Lb⟩, in contrast, we observe the tendency to
exhibit values slightly above the expected values. This is due to the fact that the
long-ranged potential lifts the degeneracy of the edge excitations, and thus splits the
degeneracy of this low-energy manifold.

The low-energy manifold as a whole, however, is unchanged. Accordingly, if
we average ⟨Lb⟩ over the full low-energy manifold, we obtain exactly the value 2.25
as obtained by averaging over the twelve ground states in the degenerated model.
Therefore, although the degeneracy lifting makes it more difficult or even impos-
sible to determine the “quantized” angular momentum values from excited eigen-
states, it does not impede our task of measuring the angular momentum of multi-
ple impurities in a non-degenerate ground state. To this end, we assume that the
impurity levels in the long-ranged liquid are still characterized by the same “quan-
tization” scheme, i.e. Lm

b = L0
b +

3
2 m. This then also defines the value Lb,Any for

anyonic filling of these levels, as given by Eq. (3.30). Accordingly, anyonic filling
of the impurity levels should be reflected by ⟨Lb⟩ = Lb,Any = 2 for two impuri-
ties, or ⟨Lb⟩ = Lb,Any = 4.5 for three impurities. Strikingly, our numerical results
for the (unique) ground state of two or three impurities at total angular momen-
tum L = LLaughlin + NbNa + Nb(Nb − 1)/2 exhibit values which are very close to the
expected value Lb,Any. The precise numbers are given in Table 3.2.

Hence, our scheme applies also to systems with long-range interactions, pro-
vided a sufficiently strong screening of the liquid, and/or sufficiently strong liquid-
impurity interactions.

3.3.4 Other types of impurities

In all the cases discussed so far the impurity particles were always taken as non-
interacting fermions. In all cases, we minimally included the fermionic statistics by
multiplying the quasighole wavefunction by a Vandermonde determinatnt ∏i<j(wi −
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Nb Na L Lb,Any ⟨Lb⟩
2 4 27 2 2.04
2 5 41 2 1.87
2 6 58 2 1.91
3 6 48 4.5 4.41
3 6 66 4.5 4.41

TABLE 3.2: Filling the anyon sea: Nb impurities interact (via contact interaction,
V0 = 1 with Na electrons in a screened Coulomb liquid (α = −1 and d = 2

√
2lB

in Eq. 3.31), at Landau filling ν = 1/3. The total angular momentum L is chosen
such that there is a unique ground state in which the impurities can bind to Nb
quasi-holes. The angular momentum ⟨Lb⟩ of the impurities matches well with
LAny, the expected value for non-interacting anyons defined by Eq. (5) in the
main text.

wj). However, one may ask what would happen in the case of non-interacting
bosonic impurities or interacting impurities, either bosonic or fermionic. In the
present section, we will study these cases, and we will show how anticorrelations
between the impurities reflect in the total impurity angular momentum.

Non-interacting bosonic impurities

To obtain an appropriate wave function for non-interacting bosonic impurities bound
to quasi-holes it is simply sufficient to omit the Vandermonde determinant from
Eq. (3.27), obtaining

Ψ({wi}) = ∏
i,j
(wi − zj)Ψq. (3.34)

The values for the angular momentum of the impurity ⟨Lb⟩, found by Monte Carlo
sampling of this wave function, are given in Table 3.3 for some values of q, N (num-
ber of particles in the liquid), and Nb (number of impurities), and contrasted to the
analog values obtained in the case of fermionic impurities. Interestingly, for a given
q, the value obtained for the bosonic impurities is approximately constant, i.e. it de-
pends neither on the number of particles in the liquid (which is true also in the case
of fermionic impurities), nor on the number of impurities (in stark contrast to the
case of fermionic impurities). The value of total angular momentum for the bosonic
impurities appears to be proportional to the average angular momentum of a single
impurity in its ground state, L0 = 1

q−1 , as given by Eq. (3.19). In fact, for all cases
shown in Table 3.3, we approximately have ⟨Lb⟩ ≈ 1.4L0.

An explanation for this behavior could be the following: The bosonic impurities
form a condensate (in which the individual impurities fluctuate around the conden-
sate center of mass), and all quasi-holes bind to this condensate, just as if there was
only a single quasi-hole and a single impurity. In this picture, the (small) difference
between ⟨Lb⟩ and L0 would then be due to the fluctuations of impurities within the
impurity condensate, although the picture does not necessarily imply that ⟨Lb⟩ is
independent of Nb.

What appears to be clear, though, is the fact that non-interacting bosons as im-
purity particles are not suited for probing the anyonic properties of quasi-holes. In
the following subsection, we are going to investigate whether and how the situation
changes if the bosonic impurities are interacting.
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q Nb N ⟨Lb⟩B ⟨Lb⟩F ⟨Lb⟩F(th.)
3 2 10 0.70 2.03 2
3 3 10 0.73 4.55 4.5
3 4 10 0.72 8.11 8
5 2 7 0.33 1.47 1.5
5 3 7 0.32 3.65 3.75
2 2 7 1.39 3.11 3
2 3 7 1.43 6.31 6

TABLE 3.3: For different filling ν = 1/q of a Laughlin liquid with N particles, we
numerically obtain the average angular momentum ⟨Lb⟩B (⟨Lb⟩F) of Nb bosonic
(fermionic) non-interacting impurities. We also show the values for fermionic
impurities computed by means of Eq. (3.43) for reference.

Interacting impurities

We restrict to the simplest and most relevant case of bosonic impurities with repul-
sive contact interaction. With the impurities being subject to Landau quantization,
this implies that the zero-energy ground state of the impurities itself is a bosonic
Laughlin state, ∼ ∏i<j(wi − wj)

2. Therefore, in this case, the Vandermonde deter-
minant in the wave function of fermionic impurities, has to be replaced by these
bosonic Laughlin-like correlations. Evaluating again the average impurity angular
momentum value numerically, we find that it matches very well with the following
pattern:

⟨Lb⟩(Nb, q) =
Nb +

2q−1
2 Nb(Nb − 1)
q − 1

. (3.35)

This observation leads to the question of how this expression connects to the effec-
tive single-impurity levels Lm in Eq. (3.19). A simple guess would be that each impu-
rity pair enters a state in which their relative angular momentum is given by L2

b, as
the impurities are forming a q = 2 Laughlin state, leading to a total angular momen-
tum ⟨Lb⟩ = 2q+1

2(q−1) Nb(Nb − 1). This guess, though, does not match with the observed
pattern. However, two more things should be considered: First, the Laughlin liquid
also has a center-of-mass angular momentum Lcom which comes from Nb particles
condensing into L0. Thus,

Lcom = Nb/(q − 1). (3.36)

Moreover, one has to consider screening effects for the relative angular momentum,
because in the vicinity of one impurity/quasi-hole the majority density is lowered.
Following [249], we first note that a wave function of a pair at relative angular mo-
mentum M has an amplitude peak at radial distance RM = (2M)1/2lB in the absence
of any screening. The screening due to the majority liquid effectively leads to a
redefinition of the magnetic length, lB → l∗B = lB/

√
1 − ν. The screening which

one impurity experiences due to the presence of the other impurity is captured by
M → M∗ = M − ν. Thus, for a pair at M = 2, the effective size of the wave function
is given by

R∗ = [2(M − ν)]1/2l∗B =

[
2(M − ν)

1 − ν

]1/2

lB (3.37)
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corresponding to an effective relative angular momentum

L∗ =
1
2
(R∗/lB)

2 =
M − ν

1 − ν
=

Mq − 1
q − 1

. (3.38)

Thus, for Nb(Nb − 1)/2 pairs at M = 2, the relative angular momentum becomes in
total:

Lrel =
1
2

Nb(Nb − 1)
2q − 1
q − 1

(3.39)

With this, the sum, Lrel + Lcom exactly matches the pattern in Eq. (3.35) found nu-
merically.

Another way of understanding Eq. (3.35) is in the light of hierarchy states [154,
157]. This construction builds upon the Laughlin states at filling 1/q (or their hole-
conjugate at filling 1− 1/q). It then argues that FQHE states at other (odd-denominator)
filling factors can appear when quasi-holes or quasi-particles in the parent liquid
themselves form a Laughlin-like state. Noting the relation between filling factor
ν, angular momentum L, and particle number N, ν = limN→∞

N2

2L [262], we find
that the angular momentum of Eq. (3.35) corresponds to a fractional quantum Hall
state at ν = q−1

2q−1 , which matches the filling factor of the first state in the hierarchi-
cal construction. This observation suggests a feasible way of exploring hierarchical
fractional quantum Hall states using bosonic impurities with repulsive contact in-
teractions.

3.4 Moore-Read state

The fractionalization of impurity angular momentum, as described by Eq. (3.19),
does not only apply to impurities in a Laughlin liquid, but also in the non-Abelian
Moore-Read liquid incorporating the pairing of particles. The wave function de-
scribing the Moore-Read (MR) state for filling ν = 1/m, as introduced in Section 1.2.1,
is

ψMR(z) = P f
(

1
zi − zj

)
∏
i<j

(zi − zj)
me−∑i |z|2/4, (3.40)

where P f denotes the Pfaffian. The total angular momentum of the state can be
read from the polynomial part of the wave function, being equal to the degree of the
polynomial in zi. It is given by

L =
m
2

Na(Na − 1)− Na

2
(3.41)

for Na particles. The contribution Na/2 is due to the Pfaffian which removes Na/2
zeros from the wave function.

As outlined in Section 1.2.1, such liquid allows for two types of quasi-holes [263]:
a “Laughlin”-like quasi-holes, of charge νe, and a “Pfaffian”-like quasi-hole, of charge
νe/2. To obtain the renormalized angular momentum of the impurities bound to
these quasi-holes, we can repeat the same reasoning as in the case of the Laughlin
liquid. In this case, however, the effective flux felt by the impurity depends on the
type of quasi-hole, such that

Lm
b =

m + φ

1 − φ
, (3.42)



3.4. Moore-Read state 67

FIGURE 3.6: Average angular momentum of one impurity bound to a full quasi-
hole in a Moore-Read liquid (ν = 1/2), as a function of the excitation index m,
computed by Monte-Carlo sampling of the Moore-Read wavefunction with 26
particles. The solid line represents the expectation from the mean-field formula.

with φ = ν for the Laughlin-like quasi-hole, and φ = ν/2 for the Pfaffian-like
quasi-hole. For multiple impurities one might again expect to obtain the total an-
gular momentum by filling the available states, such as Lb,Fermi = ∑Nb−1

m=0
m+φ
1−φ =

1
1−φ [Nb(Nb − 1)/2 + Nb φ] for fermionic impurities, or Lb,Bose = Nb φ/(1 − φ) for
bosonic impurities. Instead, as for the Laughlin liquid, we numerically find that the
total angular momentum of the impurities is given by

Lb,Any = (1 − α)Lb,Fermi + αLb,Bose. (3.43)

Here the anyonic statistical parameter α is different for the two types of holes.
Therefore, by computing Lb,Fermi and Lb,Bose from the effective single-impurity

levels, and computing LAny from the many-body wave function, we can determine
the statistical parameter of the quasi-holes:

α =
Lb,Fermi − Lb,Any

Lb,Fermi − Lb,Bose
, (3.44)

to determine their nature. We will now discuss the results for the two different cases.

3.4.1 Impurities bound to Laughlin-like quasi-holes

In the simplest case, a quasi-hole can be described as in the Laughlin state by multi-
plying ψMR by a polynomial term. Explicitly, the wave function reads

ψLQH(z, w) = ∏
k
(zk − w)Pf

(
1

zi − zj

)
∏
i<j

(zi − zj)
m, (3.45)

where w is the position of the quasi-hole, and we have omitted the exponential factor.
The addition of the prefactor implies that the total angular momentum is

L =
m
2

Na(Na − 1) +
Na

2
. (3.46)

This quasi-hole, as in the Laughlin case, has fractional charge e/m and Abelian sta-
tistical parameter α = 1/m [263].
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We verify that Eq. (3.42) holds for a Moore-Read liquid at filling ν = 1/2 by
Monte-Carlo integration of its wave functions. The results are shown in Fig. 3.6(a).
Not surprisingly, the impurity bound to a full quasi-hole behaves in exactly the same
way as in the ν = 1/2 Laughlin liquid, e.g. Lm

b = m+ν
1−ν . However, as in the case of the

Laughlin liquid, for the bosonic Moore-Read liquid at ν = 1 the mean-field formula
is not applicable, and the impurity angular momentum becomes a quantity which
scales extensively with the number of liquid particles.

3.4.2 Impurities bound to half quasi-holes

More interesting is the fact that in this system each quasi-hole can “split in two",
resulting in a state with the same angular momentum L, but with two “half" quasi-
holes (HQH), described by a wave function

ψHQH(z, w1, w2) = Pf(W)∏
i<j

(zi − zj)
m. (3.47)

Here W is a matrix that depends on the parity P of the number of particles Na. If Na
is even, we have

W =
(zi − w1)(zi − w2) + (i ↔ j)

zi − zj
. (3.48)

If Na is odd, this definition would lead to an odd-dimensional matrix, for which the
Pfaffian is not defined. Therefore, to obtain W for Na odd, we have to construct a
Na + 1× Na + 1 matrix by adding to the previously defined matrix W a row (column)
of 1 (-1), and 0 in the lower right corner [264].

Similar to the Laughlin case, half quasi-holes are characterized by fractional
charge e/2m and fractional statistics. Crucially, the statistical parameter of the two
quasi-holes depends on the parity of Na. In particular, we have that [167, 264]

α =
1

4m
− 1

8
+

P
2

, (3.49)

where P = 0(1) for an even (odd) number of particles.
Notably, the statistical parameter α for Pfaffian quasi-holes exhibits

filling-independent terms, and the P-dependence serves as a proof of the non-Abelian
statistics of the quasi-holes [101]. Specifically, the P-dependence reflects the exis-
tence of two different fusion channels for the anyons, which, by invoking a confor-
mal field theory description, can be related to the parity of the particle number [167].
Alternatively, the P-dependence can also be explained by the theory of p-wave su-
perconductors [100]. From this viewpoint, the two parity sectors correspond to two
degenerate ground states of a p-wave superconductor with two half vortices. The
analogy between Pfaffian FQHE states and p-wave superconductors becomes evi-
dent in the composite fermions framework for the state at ν = 1/2: in this picture
the composite fermions are subjected to a zero effective magnetic field, the state then
represents a Fermi liquid that undergoes a BCS instability to a p-wave superconduct-
ing state [100].

An even richer picture appears in the presence of 2n HQHs, with n > 1. The
state can still be described by Eq. (3.47), if we replace W by the matrix

(zi − w1) . . . (zi − wn)(zj − wn+1) . . . (zj − w2n) + (i ↔ j)
zi − zj

. (3.50)
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FIGURE 3.7: Statistical parameter α of HQHs as a function of filling ν, obtained
for different numbers of impurities. For lower fillings (below 1/5) the HQHs
becomes bosonic, and the prediction (3.43) does not hold, i.e. see the two points
at filling 1/20. Solid line is a fit α = ν/4 − 1/8 + 0.09.

It can be seen from Eq. (3.50) that there is an arbitrary choice involved when the 2n
quasi-holes are split in two groups, each of n elements. This means that it is possible
to write more than one such states with 2n HQHs. There are 1

2
(2n)!
n!n! possible ways

to group 2n elements in two groups, but these states are not orthogonal. Instead, it
can be shown that the dimension of the Hilbert space spanned by these degenerate
ground states is 2n−1. Strikingly, an exchange of two quasi-holes can mix one state
with one of the others, one of the most direct manifestations of the non-Abelian
statistics of the HQHs [159].

Finally, it is also possible to construct a state that contains a single half quasi-hole
by setting

W =
(zi − w1) + (zj − w1)

zi − zj
. (3.51)

The angular momentum of this wave function is L = m
2 Na(Na − 1). In presence of

an impurity this state can be retrieved by exact diagonalization of the three-body
contact Hamiltonian and a repulsive majority-impurity contact potential [263].

Numerical results

If impurities in the lowest Landau level bind to the HQHs of the FQHE liquid, the
many-body system can still be described by the HQH wave function, Eq. (3.47), but
the quasi-hole parameters wi now become dynamical quantities. In the case of mul-
tiple fermionic impurities the state also has to be multiplied by the Vandermonde
factor ∏i<j(wi − wj) that enforces the Pauli principle. The resulting wave function
is then

ψ(z, w) = Pf(W) ∏
k<l,i<j

(wk − wl)(zi − zj)e−
1
4 ∑i,j |wi |2+|zj|2 , (3.52)

with W chosen appropriately depending on the number of impurities. We have used
this wave function as a probability distribution for the Monte Carlo calculations,
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FIGURE 3.8: Impurities angular momentum as a function of number of impuri-
ties, compared to Eq. (3.43) (solid line), value for pure bosonic (dotted line) or
fermionic (dashed line) impurities. For low fillings, the impurities behave as free
fermions and prediction (3.43) breaks down.

computing the expected value of both the impurity angular momentum and, as a
crosscheck, the total system angular momenta.

First, we have studied the single impurity angular momentum by setting W as
in (3.51). For Na = 30 with a total angular momentum L = 435/ν, the results match
well with Eq. (3.42) for m = 0 for a wide range of fillings, as shown in Fig. 3.9(a).
The agreement holds also for m > 0, as shown in Fig. 3.9(b) or three different fillings
and Na = 26.

Second, we considered the case of two impurity particles, to show that the im-
purities angular momentum can be used to track the two different parity sectors.
Specifically, we computed Lb,Any for Na from 30 to 49. The expected values of ⟨Lb⟩
are 3.75 for Na even and 2.75 for Na odd. We show in Fig. 3.10 that for filling ν = 1 the
jump in angular momentum for even and odd parity is compatible with Eq. (3.43),

FIGURE 3.9: Angular momentum of a single impurity bound to a HQH for states
at different fillings compared to the mean-field formula Eq. (3.42). (a) Single
impurity at m = 0 for different fillings ν = 1, 1/2, 1/3, 1/4, 1/5. The solid line
represents the expectation from the mean-field formula. (b) Single impurity at
different fillings for various values of m.
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FIGURE 3.10: Angular momentum of two impurities bound to HQH for an
even/odd number of majority particles at filling ν = 1. The jump can be ex-
plained considering the different statistical parameter α for the two parity sec-
tors, as described in Eq. (3.49). The solid lines represent the value of ⟨Lb⟩ = Lb,Any
predicted in Eq. (3.43) for P = 0, 1.

except for a correction that can be explained by finite size effects, as we will show
below.

In order to quantify the statistical parameter α of the anyons, we also studied
a larger (even) number of impurities for different filling factors. From each of the
numerically computed impurity angular momentum values ⟨Lb⟩ we extracted the
corresponding α, via Eq. 3.44. The results for Na = 30 for fillings from 1 to 1/6 are
shown in Fig. 3.7, plotting α as a function of filling ν. From the slope of this curve, we
see that the filling-dependent part of α perfectly agrees with the expectation, i.e. α ∝
ν/4. However, the constant contribution is not exactly −1/8, as one would expect,
but it has a correction of order 10−2. We account this deviation to the overlapping
size of the impurity wave functions. For lower fillings, the prediction (3.43) breaks
down, and the impurities bound to quasi-holes behave effectively as free fermions,
and the statistical parameter α of the quasi-holes goes to the bosonic limit (zero).

We also note that the computation of ⟨Lb⟩ does not lead to any different behavior
for the different 2n−1 degenerate ground states. Thus, the behavior of the HQHs
under braiding cannot be extracted from this impurity angular momentum.

Our data of ⟨Lb⟩ for multiple impurities at different ν is also illustrated in Fig. 3.8,
plotting ⟨Lb⟩ vs. the number of impurities in the system at a given ν. We compare
this curve with Lb,Fermi and Lb,Bose, i.e. with the expectation for fermionic or bosonic
particles. At all ν ≤ 1/2, the impurity behave very similar to fermions.

3.4.3 Analysis of fluctuations of the Berry phase

Eq. (3.49) holds in a regime where the quasi-holes are sufficiently far apart to be con-
sidered effectively non-interacting. This in turn influences the validity of Eq. (3.43).
For finite distances, the quasi-holes will hybridize and lead to a fluctuation of the ex-
change statistical phase. This dependence of the statistical parameter on the quasi-
hole distance has been evaluated for MR states in a spherical geometry in [265, 266].

In order to estimate this effect in our system, we first need to determine the impu-
rity distance. In our case, this becomes a dynamical variable which we can estimate
from the combined wave function. For two fermionic impurities with coordinates
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FIGURE 3.11: Statistical parameter α computed by explicitly evaluating the Berry
phase of a braiding of two quasi-holes at a distance r in an MR state with ν = 1/2.
For distances of order r ∼ 3 the finite size deviation from the expected value
α = 0 is of order 0.05, compatible with what obtained in Fig. 3.7. The fluctuations
for large distances can be explained by finite size effects: for Na = 20 the radius
of the MR state is ∼ 8.9.

w1, w2 the combined wave function in terms of renormalized Fock-Darwin wave
functions is

ϕ(w1, w2) =
ϕ̃0(w1)ϕ̃1(w2)− ϕ̃0(w2)ϕ̃1(w2)√

2
, (3.53)

that can be re-expressed in terms of center of mass and relative coordinates R =
(w1 + w2)/2, r = w1 − w2 as

ϕ̃(r, R) = −
√

1 − ν
2 (ν − 2)

8π
re

(ν−2)
16 (|r|2+4R2), (3.54)

with ν the previously defined filling. This function is peaked at r ∼ 3. Monte Carlo
computations for the average distance between two impurities in the state (3.52)
recover roughly the same values for different fillings.

It is then interesting to evaluate directly the statistical phase for two fixed quasi-
holes and its dependence on the relative distance. To do so, we considered a con-
figuration with two HQH, one at the center of the system and the other at a fixed
radius R from the center. The system is then described by Eq. (3.47) with w1 = 0,
w2 = Reiθ . We then compute the Berry phase associated with the state Eq. (3.52)
under a rotation of the second hole around the first, for an adiabatic change of the
parameter θ at fixed R:

γ = i
∮

dθ⟨ψ∗

N
d
dθ

ψ

N ⟩, (3.55)

where N =
√
⟨ψ∗ψ⟩ is the normalization of the wave function. As this normaliza-

tion is explicitly dependent on the value of θ we have to explicitly consider it in the
computation of the derivative obtaining

γ = i
∮

dθ Im
(

1
N 2 ⟨ψ

∗ d
dθ

ψ⟩
)
= i2πIm

(
1
N 2 ⟨ψ

∗ d
dθ

ψ⟩
)

, (3.56)

where the last step is justified by the rotational invariance of the system. There is left
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to evaluate the derivative in the round brackets. The only dependence on θ in the
state (3.47) is in the Pfaffian term. We then can use the identities

d
dθ

detW =
d
dθ

[Pf(W)]2, (3.57)

d
dθ

det(W) = det(W)Tr
(

W−1 dW
dθ

)
, (3.58)

to show that
dψ

dθ
=

1
2

Tr
(

W−1 dW
dθ

)
ψ. (3.59)

We then obtain

γ = iπIm
(

1
N 2

〈
ψ∗Tr

(
W−1 dW

dθ

)
ψ

〉)
. (3.60)

The quantity inside the round bracket can then be computed by Monte Carlo. To
retrieve the statistical phase we have to subtract the Aharonov-Bohm phase that
the state accumulates because of the background magnetic field. We can do that
by recomputing the Berry phase, removing the w1 quasi-hole: this corresponds to
substituting W, ψ in Eq. (3.60) with the appropriate ones for a single HQH. Finally
the statistical parameter is α = γ/(2π).

As an example, we show the results for the most relevant filling fraction ν = 1/2
in Fig. 3.11. At this filling, one would expect fermionic quasi-holes, i.e. impurities
with α = 0. However, at (small) distances, the statistical phase oscillates around
zero, with an amplitude on the order of 0.05. This order of magnitude for fluctua-
tions is compatible with the results of section 3.4.2.

3.5 Impurities bound to quasi-particles

So far we have only considered impurities which, through repulsive interactions,
bind to quasi-holes. It is interesting to ask what happens if we have impurities
which attract the liquid particles. Can they bind to quasi-particle and exhibit a be-
havior similar to the one of impurities bond to quasi-holes? The task is numerically
non-trivial due to the more complicated trial wave functions for quasi-particles as
explained in Section 1.2.1, but we can provide a brief perspective on this subject.

To accommodate a Laughlin-like quasi-hole the angular momentum of the liq-
uid has to be increased by Na, whereas the formation of a quasi-particle requires
to reduce the angular momentum by the same amount. This suggests that an im-
purity particle bound to a quasi-particle shall carry negative angular momentum.
Mathematically, this is possible if the Landau level basis of the impurity is the com-
plex conjugate of the Landau levels for the liquid. Physically, this is possible if the
coupling to the gauge field (charge × magnetic field) is reversed. Indeed, it seems
natural that such reversal occurs for an impurity which binds to a quasi-particle: In
this case, the impurity shall carry a charge which is opposite to the charge of the liq-
uid particles, and with this, the impurity will be subject to opposite magnetic fluxes.
This leads to the following ansatz for a single impurity in a Laughlin state, bound to
a quasi-particle at position w, in the mth effective impurity state:

Ψm,qp(w) = w∗m
Na

∏
i=1

(∂i − w∗)ΨLaughlin, (3.61)
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where the asterisk denotes the conjugate of the complex position. In this wave func-
tion, the impurity “sees” the liquid particles as conjugated fluxes, in close analogy to
the quasi-hole case. Thus, we expect that the same re-definition of magnetic length
applies also to the effective impurity Landau level. This implies that the effective
impurity Landau levels for quasi-particles are the conjugate of those for quasi-holes,
and accordingly, the impurity angular momentum is given by Eq. (3.19) of the main
text, with opposite sign.

The same reasoning can be extended to Moore-Read state, for both Laughlin-
like quasi-particles and Pfaffian-like ones. In this latter case, the effective impurity
wavefunction would be given by Eq. (3.47) by replacing W with

W =
(∂i − w∗

1) + (∂j − w∗
1)

zi − zj
. (3.62)

3.6 Summary

In this Chapter, we studied the angular momentum of non-interacting fermionic
impurities, bound to quasi-holes in FQHE states constrained to the lowest Landau
levels. We represented them either by Laughlin or Moore-Read wave functions, and
determined the fractional statistics of their quasi-hole excitations. We showed that
in this situation the quantum statistics of quasi-holes can be directly read from the
impurity angular momentum. The impurity particles see a renormalized magnetic
field in the presence of majority particles, which in turn depends on the charge of
the quasi-hole. It should be possible to determine the angular momentum of many
impurities by taking into account the renormalization of the magnetic field for a sin-
gle impurity, and by filling the single impurity angular momentum levels, assuming
them to be either fermions or bosons. Instead, we showed through Exact Diago-
nalization of the parent Hamiltonians and Monte Carlo sampling of the many-body
wave function, that the angular momentum of many impurities actually interpo-
lates between the two limits, capturing the anyonic statistics. We show for Laughlin
liquids that this picture also holds for longer-range interactions and interacting im-
purities. The interpolation parameter depends on the charge of the quasi-holes, and,
for half quasi-holes in the Moore-Read state on the parity of the number of particles.
This is a signature of the non-Abelian nature of these excitations. There are, how-
ever, some fluctuations in the estimation of this parameter due to finite size effects,
that can be well understood by studying the Berry phase in a finite system, upon
exchange of impurities.

If instead of considering non-interacting fermionic impurities we look at non-
interacting bosonic impurities as tracer particles, we demonstrated that total angu-
lar momenta for such bosonic impurities appear to be proportional to the average
angular momentum of a single impurity in its ground state. This happens because,
confined to the lowest Landau level, such bosons form a condensate. Therefore,
bosonic impurities are not suitable to trace the quasi-hole statistical behavior. How-
ever, if the bosons can repulsively interact with each other, they are appropriately ex-
plained by considering the total center of mass angular momentum and the screened
(due to other impurities) relative angular momentum. Intriguingly, the total angular
momentum corresponds to a FQHE state which matches the filling factor of the first
state in the hierarchical construction of odd denominator FQHE states. Such odd
denominator states arise from quasi-particles in the parent Laughlin liquid, forming
their own FQHE states.
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The implementation of our ideas could be possible either in quantum simulators
using atoms or photons [105, 226], or in macroscopic electronic samples with opti-
cally created impurities such as excitons or trions. Signatures of excitons bound to
fractional quasi-particles have been reported in [267], and the exciton density can
be detected via scanning-transmission-electron microscopy [268]. It also opens the
possibility of studies beyond the system studied here, and to address other types of
fractional quantum Hall systems. This might include other members of the Read-
Rezayi series, which in contrast to the Moore-Read state may support a type of
anyons where universal quantum computation could be implemented. Another in-
teresting subject could be the use of tracer particles in lattice fractional quantum
Hall systems, for which a lattice version of the Moore-Read state and relative parent
Hamiltonians have been derived [269].
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Chapter 4

Detection of Majorana fermions
through High Harmonic
Generation

As we introduced in Chapter 1, the search for Majorana Fermions [141] is one of
the most active topics in condensed matter research, both from a fundamental in-
terest and for their potential applications in quantum technologies. Indeed, two-
dimensional Majorana Fermions are expected to exhibit non-Abelian anyonic statis-
tics [270] making them very interesting candidates for topological qubits, thanks
to their capability of robustly storing and processing quantum information [98, 139,
271]. Although it is well established theoretically that Majorana Fermions can emerge
as quasiparticles in condensed matter [142], clear experimental evidence is still lack-
ing. A paradigmatic system expected to host these excitations at the edges is the Ki-
taev chain [102] introduced in Chapter 1. In the topological superconducting state,
they appear as zero-energy modes in the middle of the superconducting gap, and
are therefore also called Majorana zero modes (MZMs). In this way we also avoid
the misleading name of "Fermions" being rather, as we said, non-Abelian anyons.

Despite the design of several experimental setups that effectively realize the Ki-
taev chain model [272–281], the detection of MZMs remains challenging. In nanowire
setups, MZMs are expected to appear as zero-energy states in the tunneling density-
of-states (DOS), manifested through a quantized zero-bias peak of height 2e2/h in
the differential conductance [282–284]. Even if several works show compatible re-
sults [103, 285, 286], there is still no conclusive evidence of the predicted robust
quantization of the conductance [287]. Specifically, the zero-bias peaks are found
at heights significantly smaller than 2e2/h, challenging their interpretation. More-
over, the observed nearly perfect conductance quantization may also stem from non-
topological states, for example the so-called Andreev Bound States [288–291].

In this Chapter, that revisits the results reported in [III], we explain an alterna-
tive approach to uncovering MZMs, showing that the topological nature of the edge
states can be revealed by analyzing the non-linear response of the chain to strong
electromagnetic fields [292], via the process of High Harmonic Generation (HHG). We
thus propose an optical method to independently check for the presence of MZMs,
with a spatial resolution limited only by the wavelength of the light, and a temporal
resolution which enables to probe the higher part of the excitation spectrum, with
the goal of complementing transport-based detection techniques [282].

The structure of the chapter is the following. We start by introducing the con-
cept of HHG in condensed matter, its successful applications in condensed matter
physics, and the intuition behind its use for the detection of topological phases in
Section 4.1. We then describe the model object of study in Section 4.2: we consider
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FIGURE 4.1: HHG in condensed matter (a) Schematics of the three-steps model (i)
An electron is excited from the valence to the conduction band. (2) The electron
moves driven by the field of the pulse, emitting a radiation dependent on the
curvature of the conduction band. A similar dynamics happens for the hole left
behind in the valence band. (3) The electron gets reabsorbed, emitting a high-
energy photon, whose energy is bounded by the bandwidth. (b) The presence of
zero energy edge states in the topological phase means that intraband transitions
are allowed starting from a frequency of half of the bandgap of the system.

a realistic system with p-wave superconductivity obtained via proximity effect, in-
stead of studying the idealized Kitaev chain. This choice allows us to address the
coupling between the EM field and the electrons at a microscopic level, overcoming
the ambiguity coming from the lack of gauge invariance of the Kitaev chain under
minimal coupling with an EM field.

We then show the main results of this Chapter in Section 4.3: the use the HHG
response of the system to map its density of states, and thus, the width of its energy
bands and energy gaps. This gives rise to a scheme that distinguishes the topologi-
cal from the trivial phase. Specifically, we introduce a measurable quantity, obtained
from the HHG spectrum, that allows us to chart out the whole phase diagram. Fi-
nally, we explain how this difference in the spectrum can be traced back to topo-
logically protected edge states. By focusing the radiation source to the edge, we are
able to discern bulk from edge excitations, clearly isolating the contribution from the
topological MZMs. Moreover, we show how the spectrum is robust to perturbation
that do not break the symmetries of the system and do not close the gap.

4.1 High Harmonic Generation in Condensed Matter

High Harmonic Generation (HHG) is a non-linear light-matter interaction process in
which a material, when illuminated by a laser pulse of high intensity, re-emits light
with a frequency several times higher than the incoming one (even of a magnitude
hundreds of times larger). In the past, HHG has been used to track the dynamics of
excitations at femtosecond timescales, yielding ultrafast imaging methods in atomic
and molecular gases [293–296] and, more recently, in solid-state systems [297–299].
Lately, there has been a rising interest in using HHG to detect topological proper-
ties of matter [300–305], including MZMs in Kitaev chains [306], and edge states in
generalized SSH chains [307].

To explain the mechanism behind HHG, we will employ the strong field approxi-
mation [293, 294, 308]. This approximation, widely employed in the study of atomic
and molecular physics, is based on a semi-classical picture of the non-linear process
of emission and reabsorption of electrons in atoms subjected by a strong electro-
magnetic field. This process can be split in three fundamental steps [308]: (i) The
incoming pulse lowers the Coulomb potential barrier enough that the electron can
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FIGURE 4.2: Sketch of the system under study. A semiconducting nanowire with
strong spin-orbit coupling α (red) is in proximity to a superconducting substrate
with s-wave superconducting pairing ∆ (blue). The system is subjected to an
external magnetic field B.

tunnel out of the atom; (ii) The free electron is accelerated by the pulse and moves
away from the atom, emitting radiation during this process due to its acceleration;
(iii) The electron re-collides with the atom and is reabsorbed, emitting a photon with
energy equal to the difference between the energy of the electron in the continuum
and the energy of the electron in the atom. The frequency of this re-emitted photon
can be several times higher (order of 102 − 103) than the frequency of the incoming
pulse.

In the case of solids the intuition is similar [309], as sketched in Fig. 4.1(a): in
this case an electron from the valence band is excited to the conduction band and its
dynamic under the pulse is constrained by the dispersion of the conduction band.
Moreover, the dynamics of the leftover hole in the valence band has also to be taken
into account. Due to the band structure, the energy of the re-emitted photons after
the absorption process is bounded by the bandgap of the two bands from one side,
and their bandwidth from the other. This, in turn, means that the emitted spectrum
is a direct probe of the band structure of the system.

We will exploit the last property to detect topology: as we know from Chapter
1, in the topological phase of the Kitaev chain there are zero-energy states in the
middle of the gap. This means that the lowest possible interband transition is at half
the bandgap, thus is the lowest frequency at which we can expect to see emission. In
the trivial phase, instead, the lowest transition corresponds to the bandgap, meaning
that we can recover the phase by looking at the lowest frequency for which we see a
re-emission. This is schematically shown in Fig. 4.1(b).

4.2 From a Semiconducting Nanowire to the Kitaev Chain

As we have seen in Chapter 1, the 1D p-wave superconducting Kitaev chain [102]
described by Eq. 1.20 exhibits two phases, a trivial one and a topological one, with a
topological phase transition at |µ| = t. In the topological phase, for open boundary
conditions, the spectrum is characterized by two degenerate ground states, corre-
sponding to MZMs localized at the two edges of the chain.

To study the response of this model to a strong field, it is crucial to correctly rep-
resent the coupling of the fermions to the electromagnetic field. The most straight-
forward way to couple a classical vector potential A(t) to particles on a lattice is via
the so called Peierls substitution

c†
j → eiA(t)j c†

jσ. (4.1)
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However, this creates an ambiguity in the definition of the superconducting cou-
pling. As the Hamiltonian must remain gauge invariant, this transformation would
require a corresponding time-depending change in the superconducting gap ∆. While
this is possible, we make the approximation that the value of ∆ remains fixed through-
out.

Therefore, and to be more consistent with experimental efforts, we focus on a
particular system [274, 275], which has been the main focus of several experimen-
tal investigations and whose low energy behavior is governed by the Kitaev chain
Hamiltonian: a heterostructure between a semiconducting chain with strong spin-
orbit coupling and a regular s-wave superconductor, additionally subjected to an
external Zeeman field. A sketch of the system is shown in Figure 4.2.

To obtain the effective model we start from the continuum Hamiltonian of the
semiconducting chain, whose electrons are described by a fermionic field ψs(x),
where s is the spin index and x is the position along the chain:

H0 = ∑
s

∫
dxψ†

s (x)
(

p2

2m
− µ + V(x)− αE⊥pσy +

1
2

gµBBσz

)
ψs(x) (4.2)

Here σ are Pauli matrices acting on the spin degree of freedom, B is a Zeeman field
in the z direction, gµB is the gyromagnetic factor of the electron in units of the Bohr
magneton, and αE⊥ is the spin-orbit coupling. V(x) is the lattice potential that the
electrons are subjected to. On the other hand, the underlying s-wave superconductor
introduces a proximity-induced pairing term modeled as [310]

Hsc =
∫

dxψ↓(x)∆ψ↑(x) + h.c., (4.3)

where the electrons are locally paired in space. At this point we can write the cou-
pling to the electromagnetic field of the external pulse A(x, t) (that we assumed to
point in the x direction) by using minimal coupling p⃗ → p⃗ − eA⃗(x, t). We can then
write the full Hamiltonian as

H0 = ∑
s

∫
dxψ†

s (x)
(
(p − eA)2

2m
− µ + V(x)− αE⊥(p − eA)σy +

1
2

Bσz

)
ψs(x).

(4.4)
Note how the spin-orbit coupling, being proportional to the momentum, is also af-
fected by the coupling to the electromagnetic field. As we have seen in Section 2.3.2,
if the local potential V(x) is periodic and deep enough, the Hamiltonian in the low-
est band is better expressed in a Wannier function basis

ψ†
s (x) = ∑

n
e−iλn(x,t)ϕ∗

n(x)c†
ns(t), λn = e

∫ x

Xn

dxA(x, t), (4.5)

where ϕn(x) are generalized Wannier function centered on the lattice sites at Xn and
c†

ns are the related creation operators. The multiplication by a factor proportional to
the factor λn is a gauge transformation implemented to simplify the computation
of the terms involving the field A(x, t). Finally, under the assumption that the EM
field wavelength is much larger than the lattice spacing we can employ the dipole
approximation and set

A(x, t) ∼ A(t), λn ∼ eA(t)(x − Xn). (4.6)
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Regarding the proximity-induced superconducting term instead, it only contains op-
erators acting on the same site (two of which are "hidden" in the order parameter ∆),
and does not couple with the electromagnetic field. The resulting total Hamiltonian
can then be written in the tight-binding formulation as

H = ∑
m,n,s

Jmn(t)c†
mscns + ∑

m,n,s,s′
Umn,s′s(t)c†

ms′cns + ∑
i
(c↓i∆c↑i + h.c.), (4.7)

where

Jmn(t) = Je−iA(t)(Xm−Xn)[δm+1,n + δm−1,n]− µ(t)δm,n, (4.8)

Umn,s′s(t) = −iα̃σy,s′se−iA(t)(Xm−Xn)[δm+1,n − δm−1,n] +
1
2

Bσz,s′sδm,n. (4.9)

For quadratic superconducting Hamiltonians, we can express 4.7 for a chain of length
N in a Bogoliubov-de Gennes basis:

H = Ψ†HBdGΨ, HBdG(t) =


J + I B

2 U†(t) I∆∗ 0
U(t) J − I B

2 0 I∆∗

I∆ 0 −J + I B
2 −U†(t)

0 I∆ −U(t) −J − I B
2

 . (4.10)

Here, I is the N × N identity matrix, and J and U are N × N matrices defined as

Jl,m = −µδl,m + (δl,m−1 JeiA(t) + H.c.), Ul,m(t) = δl,m−1αeiA(t) + H.c.. (4.11)

The operator Ψ = (c↑, c↓, c†
↓,−c†

↑) is a “compressed" Nambu spinor, where cσ ≡
c1σ, . . . , cNσ, with σ ∈ {↑, ↓}. The Hamiltonian’s parameters are the hopping J, the
chemical potential µ, the effective spin-orbit coupling α, the Zeeman field B and the
proximity-induced superconducting s-wave coupling ∆. In contrast to the Kitaev
chain, this Hamiltonian lacks an explicit p-wave pairing term, and therefore, the
gauge-invariant coupling to the external field can straightforwardly be described
via a Peierls substitution.

4.2.1 Analysis of the Bogoliubov-de Gennes Hamiltonian

We will now show how to recover Majorana physics from (4.10). Using the same
notation as the previous H = Ψ†HBdGΨ where Ψ = (ci↑, ci↓, c†

i↓,−c†
i↑)

T is a Nambu
spinor, we can write the Hamiltonian as

HBdG(t) =
(

H0 ∆∗ I2N
∆I2N −σyH∗

0 σy

)
, H0 =

(
J + I B

2 U†(t)
U(t) J − I B

2

)
, (4.12)

where −σyH∗
0 σy is the time-reversed of H0 and I2N is the 2N × 2N identity. In mo-

mentum space, the Hamiltonian can be exactly diagonalized leading to a 4-band
spectrum. For momentum k = 0, the energy levels are located at

E = ±B ±
√

µ2 + ∆2. (4.13)

The artificial doubling of the Hilbert space occurring by casting the Hamiltonian in
a Bogoliubov-de Gennes form introduces a particle-hole symmetry in the system to
account for the new non-physical degree of freedom. This symmetry is implemented
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by the operator P = τy ⊗ σyK where τy is a Pauli matrix in electron-hole space and K
is the complex conjugation, acting on the Hamiltonian as

PHBdGP† = −HBdG. (4.14)

This implies that for every state with energy Ei with associated creation operator
ψ†

i there is a corresponding one with energy −Ej whose operator is ψ†
j = ψi. This

means that if a Majorana quasi-particle obeying the relation γ0 = ψi = ψ†
i exists,

it has to be a zero-energy excitation, and it can only appear in pair with another
zero-energy Majorana mode. However, if the system’s Hamiltonian is also invariant
under time-reversal symmetry, these two Majoranas are one the Kramer partner of
the other. This in turn means that they have the same probability density, leading
to a splitting of the zero-energy level [311]. The addition of the magnetic field B
is then fundamental to break this symmetry if we want to create spatially isolated
Majoranas.

We can now intuitively understand how the different terms in the Hamiltonian
contribute to the physics of the Kitaev chain, starting from the parabolic dispersion
of free electrons: (1) adding the Zeeman term B breaks the spin degeneracy neces-
sary to have a spinless model; (2) the chemical potential µ can be used to set the
Fermi energy in the middle of the two resulting bands; (3) the spin-orbit coupling
α makes the spin in the lower band momentum-dependent, and (4) the proximity-
induced s-wave superconducting term ∆ pairs the two electrons at spin k and −k.
We can then project the system on the two inner bands to obtain an effective Kitaev
chain [139]. When the gap closes at k = 0, by changing one of these parameters, we
can expect a quantum phase transition, whose topological nature can be confirmed
by computing the Pfaffian invariant of the bands in the two phases, leading to the
topological criterion

B2 > µ2 + ∆2. (4.15)

In the topological phase, for open boundary conditions, the system supports two
localized Majorana Zero Modes on the boundaries.

To obtain the expectation value of the observables on the ground state of the
system we can remember that HBdG can be diagonalized in a basis of Bogoliubov
quasiparticles (γ†

1i, γ†
2i, γ2i, γ1i)

H = ∑
i

E1iγ
†
1iγ1i + E2iγ

†
2iγ2i − E1iγ1iγ

†
1i − E2iγ2iγ

†
2i (4.16)

where i = 1, . . . , N. Here the two different species of Bogoliubov quasiparticles
γ1, γ2 appear because of the 4-band structure of HBdG. The Hamiltonian is diagonal-
ized by a matrix U, such that

U†HU = diag{−E1,−E2, E2, E1}, (ci↑, ci↓, c†
i↓,−c†

i↑)
T = U(γ†

1j, γ†
2j, γ2,N−j−1, γ1,N−j−1)

T.
(4.17)

As the ground state of the system is defined as the state annihilated by all γ opera-
tors, we can write the expectation value of any fermionic operator by expressing it
in terms of the γs and using the appropriate commutation relations. For example,
the position operator (that will be useful in the following) can be computed as

⟨GS|x|GS⟩ = ⟨GS|∑
i

i(c†
i↑ci↑ + c†

i↓ci↓)|GS⟩ =
2N

∑
ij

iU2
ij. (4.18)
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The observables of a time evolved state can then be retrieved by evolving the eigen-
vectors U of the HBdG and computing the quantity as in (4.18).

4.2.2 Coupling of the nanowire with an EM pulse

We now explain how we chose the incoming electromagnetic pulse A(t) for the pur-
pose of simulating the HHG process. For convenience, we choose units of A(t) such
that the coupling constant ea/h̄, with a the unit cell size, is 1. The time-dependence
of the vector potential is of the form

A(t) = A0 sin(ωt) sin2
(

ωt
2nc

)
− εct, 0 ≤ t ≤ 2πnc/ω (4.19)

describing a pulse of nc cycles with frequency ω, and a constant electric field with εc,
explicitly breaking time inversion symmetry in the system, such that both even and
odd harmonics of the driving frequency can be generated [312]. Measuring energies
in units of J, we choose ω = 0.0025, such that it corresponds roughly to 1/50 of the
bandgap of the system. Specifically, to be able to discern the superconducting phase
from a metallic one, the driving frequency needs to be sufficiently smaller than the
bandgap. The symmetry-breaking DC field is very weak, εc = 10−5, whereas the
amplitude of the vector potential has to be strong enough to produce high harmonics
and is taken to be A0 = 1.2, which for a = 0.5 nm corresponds to 1.6 × 10−6 Vs/m.

We note that our treatment makes the assumption that the light field only cou-
ples to the electrons of the semiconducting wire, whereas the pairing ∆ from the
surrounding superconductor is taken as a static parameter. This assumption is only
justified if the superconductor is shielded from the incoming light.

For the static Hamiltonian at t = 0, the topological phase appears for B >√
∆2 + µ2 [311]. For lower values of B, the system is in a trivial gapped super-

conducting state with no topological edge modes. Although in realistic semicon-
ductor/superconductor heterostructures, the energy scales J, α, ∆ widely differ, in
the following we choose them to be of the same order of magnitude (specifically,
α = ∆ = 3/4). The reason for this choice is to achieve clear Majorana modes for
system sizes that are sufficiently small to numerically perform simulations of the
full dynamics. In particular, the parameters were tuned according to the prescrip-
tion from Alicea [140] in order to assure the presence of a topological phase. For the
purpose of detecting MZM from the high harmonic spectrum, it is important that
the ratio between the bandgap (usually of the order of ∆) and the frequency ω of
the incoming pulse is much larger than 1. For InAs nanowires, the bandgap is on
the order of 1 meV (with J ∼ 3000 meV, α ∼ 25 meV, ∆ ∼ B ∼ µ ∼ 1 meV, see
for example [284]), but also much larger gaps have been reported, of 4 meV for β-
Bi2Pd films [313], or even 15 meV for iron-based superconductors [314]. Depending
on the size of the gap, our scheme requires strong microwave to THz sources [292],
with pulse duration on the order of 1-100 ps, which is potentially much shorter than
typical relaxation time scales.

4.3 Analysis of the High Harmonic Spectrum

The key quantity that captures the non-linear optical response of the system is the
transmitted HHG spectrum, that is, the normalized spectrum of emission obtained
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FIGURE 4.3: Comparison of the emitted power spectra deep in the topological
(B = 1.4) and trivial phases (B = 0.3) for a spatially uniform field and µ = 0. The
emission spectra shown in (b) follow the density of state of the Hamiltonian at
time t = 0 both in (a) the trivial and (c) topological phases. For the topological
phase, an emission below the bandgap of the system (zoomed inset in (b)) can
be related to the presence of zero energy edge states. The density of states can
be compared with the band structure in the trivial (d) and topological (e) phases.
Simulations performed by using parameters N = 100, ω = 0.0025, j = −0.3, α =
∆ = 0.4, A0 = 1.2.

from the time-dependent dipole moment of the chain x(t) :

P(Ω) ∝ |
∫

dte−iΩt ˙⟨x⟩|2/P0, (4.20)

where Ω is the frequency of the re-emitted light in terms of the driving frequency
ω, and P0 = max |

∫
dte−iΩt[∂t A(t)]|2 is the maximum of the spectrum of the free in-

coming field, set to P0 ∼ 1.3 · 1010 V2/m2 with our choice of parameters [315]. Here,
the time derivative of the average dipole moment e⟨x(t)⟩ yields the electric cur-
rent, which is Fourier transformed into the frequency domain. The dipole moment
was computed by numerically integrating the time-dependent Schrödinger equation
(TDSE) from the initial ground state of the Hamiltonian up to a time T = 2πnc/ω,
using Exact Diagonalization techniques.

By analyzing this quantity, we recovered several signatures of the presence of
topological edge states: a density of states compatible with the presence of zero
modes, a half-bandgap emission only with light focused on the edges, and a robust-
ness to perturbations that do not close the gap. We will now show these results in
detail.
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FIGURE 4.4: Contrast C as a function of magnetic field and chemical potential.
In the topological phase C ∼ 1, while in the trivial one C ∼ 0. The black line
represents the phase separation boundary for a system in the thermodynamic
limit. Simulations performed by using parameters N = 100, ω = 0.0025, j =
−0.3, α = ∆ = 0.4, A0 = 1.2. (b) Contrast order parameter as a function of
magnetic field (at µ = 0) for two values of the driving frequency. For the smaller
frequency, the order parameter is peaked at the phase boundary (indicated by
the vertical black line), and quickly drops below 1 (indicated by the horizontal
black line) in the trivial phase. For the larger frequency, the distinction between
the phases is less sharp, and the order parameter over-estimates the topological
regime.

4.3.1 Band structure and density of states

In Figure 4.3(b) we plot the emission spectrum, obtained from Eq. (4.20), as a func-
tion of the frequency of the emission in units of the driving frequency ω. We consider
two points in parameter space, one deep in the trivial phase at B = 0.3, and the other
one in the topological one at B = 1.4. Interestingly, we observe that, in both cases,
the spectrum echoes the band structure of the Bogoliubov Hamiltonian, plotted in
Figure 4.3(d) and (e), with two or four bands symmetric around the Fermi energy
due to particle-hole symmetry [140]. In particular, the density of states in the two
phases, shown in Figure 4.3(a) and (c), clearly determines the emission. In partic-
ular, there is no emission above the bandwidth and below the bandgap (defined as
the difference between the highest valence band and the lowest conduction band ex-
cluding edge modes) in the trivial phase. In stark contrast, in the topological phase,
the radiation plateau starts from half-bandgap, which is related to the presence of
radiating edge modes at zero energy.

This confirms the applicability of the three-step interpretation. In particular, the
harmonics with a frequency above the bandgap are due to the interband transitions,
the ones between half of the bandgap and the bandgap are due to the presence of
zero-energy edge states, and the ones below are caused by intraband motion (Bloch
oscillations). This is already a clear signature of a topological phase for the right
choice of parameters.
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4.3.2 Phase Diagram

We now propose a measurable diagnostic, called contrast, defined as the ratio be-
tween the emission at half the bandgap Phalf over the emission at the bandgap Pgap,

C =
log(Phalf)

log(Pgap)
, (4.21)

which is of order one in the topological phase and zero in the trivial phase. The
choice of this quantity is dictated by the different behavior of the emission at these
special points in the two phases. The bandgap is defined as the minimum energy dif-
ference between the valence and the conduction band, thus the minimum frequency
at which emission can be produced by interband transitions in the trivial phase. The
half-bandgap emission Phal f instead is due to the presence of the zero-energy state,
and is supposed to be present only in the topological phase, when it is of the order
of Pgap. The contrast is then a measure of the presence of these zero-energy states.

The topological phase diagram of the system is computed in Figure 4.4 in the
µ − B plane using the proposed signature. Exactly at the boundary where the gap
closes the system behaves as a metal, resulting in a contrast greater than one. The
choice of the frequency of the incident light pulse is crucial to localizing the phase
boundary, as a lower frequency provides a sharper criterion for distinguishing topo-
logical and trivial phases. From this point of view, choosing a small driving fre-
quency is favorable, as long as the pulse remains short compared to relaxation times.
As the system approaches the transition the gap closes and when the driving fre-
quency ω is of the order of the bandgap ∼ ∆ the response of the system becomes
metallic. In this regime, the contrast order parameter is higher than 1 and generally
not stable as shown in Figure 4.4(b), where the bandgap deep in the trivial phase
is ∼ ∆ = 0.4. Therefore, a better resolution for detecting the phase transition is
obtained when a lower driving frequency is chosen.

4.3.3 Identification of edge states

So far, the devised scheme distinguishes between topological and trivial phases by
measuring the full bandstructure of the system, but yet it does not capture one of the
most relevant properties of the MZMs: their localization at the edge and topological
protection. However, with the spatial resolution of the radiation being limited only
by the wavelength, it becomes possible to demonstrate that the sub-bandgap emis-
sion is due to edge modes by focusing the electromagnetic field either on the edge or
the bulk of the sample. In Figure 4.5, we show how in the trivial phase the emitted
spectrum is qualitatively the same for a pulse focused on the edge or on the bulk.
On the other hand, in the topological phase there is a strong sub-bandgap emission,
but only if the light is focused on the edge. This shows that this contribution to the
emission spectrum is solely due to edge states. We have used a Gaussian envelope,
cut in half for the edge radiation, and the amplitude of the envelopes is normalized
in order to have the same total energy of the electromagnetic field for all cases (edge,
bulk, and uniform field).

Finally, to illustrate the topological nature of the edge modes, we add a local
perturbation to the system that does not break the particle-hole symmetry of the
Hamiltonian. Such local potentials (acting on three sites on the left and right edges)
can be added by applying gate voltages at the edges and are modeled by adding a
local potential term to the Hamiltonian ∝ ∑i,σ c†

iσciσ for i = 1, 2, 3, N − 2, N − 1, N.
We observe that increasing the value of this potential does not affect the shape of the
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FIGURE 4.5: Emission for a pulse focused on the edge or on the bulk of the sam-
ple in the topological (a) and trivial (b) phases. The spacial envelope is nor-
malized to have constant energy of the EM field. In the topological phase, the
spectra differ depending on where the pulse is focused, showing emission from
sub-band-gap states only when it is focused on the edge. This is not the case,
however, in the trivial phase, where both spectra are qualitatively similar. Simu-
lations performed by using parameters N = 100, ω = 0.0025, j = −0.3, α = ∆ =
0.4, A0 = 1.2.

FIGURE 4.6: Emission spectra with the addition of a local potential on the edges
of the chain (in units of J). The local potential acts on the first and last 3 sites
and does not break the symmetry responsible for the topological protection. The
qualitative behavior of the emission of the edge states does not change with an
increasing value of this potential. The black lines indicate half bandgap and the
bandgap in order of the driving frequency. Simulations performed by using pa-
rameters N = 100, ω = 0.0025, j = −0.3, α = ∆ = 0.4, A0 = 1.2.
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emission spectrum. Specifically, the sub-bandgap edge state emission only appears
in the topological phase and remains present precisely between half bandgap and
the bandgap, as can be seen in Figure 4.6. The different curves in this figure, corre-
sponding to different edge potentials, lie on top of each other for lower harmonics
(until the bandgap of the system), indicating that the edge modes do not shift in en-
ergy upon the application of edge potentials, clearly demonstrating the topological
robustness of the radiating edge modes.

4.4 Summary

In this Chapter, we presented a protocol to detect topological edge modes in an ex-
perimentally realizable platform reproducing the Kitaev chain model. This detection
was performed via the electromagnetic emission spectrum in the non-linear regime.
In this way, we were able to map the band structure and the density of states of the
system. We also proposed an experimentally observable quantity, the contrast, in
order to map the phase diagram of the system. To confirm the topological nature of
the radiating modes, we showed that the system can be probed locally to see what
portions of it are responsible for the sub-bandgap emission. The emission spectrum
is also shown to be robust under local perturbations that do not break the symmetry
protecting the topological phase. Thus, our protocol complements other established
methods in the search of MZMs. Moreover, the reconstruction of the bandstructure
from HHG has been successfully used in recent years to study topology in SSH sys-
tems [307], and properties of quasi-crystals [316].

A major experimental challenge for the detection of MZMs is to distinguish them
from trivial sub-bandgap states that can appear in the material, that is, Andreev
bound states [317–320]. These states can appear because of regions in the semicon-
ducting chain where the proximity-induced superconductivity fails (i.e. near the
edges), creating zones of normal metal where scattering effects can lead to the cre-
ation of localized states [288]. A straightforward extension of these results is the use
of a spatially dependent superconducting order parameter to study the formation of
these states and their influence on the emission spectrum. Another interesting appli-
cation of our technique is the study of Majorana physics in two dimensions, where
MZMs can arise as vortices in p-wave superconductors [100]. Compared to 1D mod-
els, the dependence of the emission spectrum on the field polarization states will
make the two-dimensional scenario very rich. Recent studies have shown that left-
right polarized drives can shed light on the presence of topological chiral states [232,
321], both in the perturbative and ultra-strong regime [303, 304], but a study of the
effect on Majoranas is still missing. Finally, a possible application of this technique
would be in the framework of quantum simulation with ultracold atoms, where the
possibility to engineer dynamics similar to the one described in this Chapter has
been recently proposed [322].
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Chapter 5

Frustration and Deconfined
Quantum Criticality

In physics, the concept of frustration describes situations where competing constraints
prevent a system to minimize the energy for all its microscopic constituents. Imag-
ine for example three classical, antiferromagnetic spins on a triangular plaquette:
whatever the choice of the three spins, they can never minimize their mutual inter-
action energy. This is an example of geometrical frustration, where the competition
is between the interactions and the geometry of the system. Frustration can also be
driven by competing interaction terms or different ways in which the particles can
minimize their kinetic energy. This leads to a large ground state degeneracy and an
impossibility to develop order up to very low temperatures [14].

In many-body quantum systems, geometrical frustration leads to the onset of a
plethora of exotic quantum phases, including the ones studied in the previous chap-
ters [323, 324]. Paradigmatic examples are different topological insulators [78, 325–
327] and superconductors [328, 329], spin liquids [14, 94, 330], and valence bond
solids [12, 331, 332]. Nevertheless, because of the complexity generated by com-
peting interactions, frustration, and quantum fluctuations, several scenarios are still
poorly understood. In particular, numerical efforts are highly demanding and often
affected by finite size effects [333]. At the same time, possible sample imperfections
and limited detection probes narrow the efficiency of solid-state experimental plat-
forms [334, 335].

The tunability and control offered by quantum simulation experiments based
on ultracold atoms in optical lattices [336] provide a promising alternative for un-
derstanding the behavior of a large variety of physical systems [185]. However,
theoretical proposals to engineer ultracold frustrated synthetic materials are mainly
based on direct implementations of specific geometries [116, 337–340] and alterna-
tive approaches are scarce [341–343]. Moreover, experimental realizations of frus-
trated quantum systems relying on optical lattice engineering successfully achieved
weakly interacting [326, 344–346], classical [117, 347, 348] or kinetically frustrated [108,
109, 349–351] regimes. Noticeably, these experiments investigated configurations
with purely local couplings, while realizations of geometrically frustrated systems
with beyond-contact interactions have not yet been achieved.

Interactions with an extended range are a key ingredient to create spontaneous-
symmetry-broken (SSB) states of matter with broken translational symmetry. The
occurrence of these phases in various physical systems [352–354] has sparked sig-
nificant experimental interest leading to their observation in atomic frustration-free
atom-cavity [355, 356] setups, continuum- [357–359] and lattice-dipolar [360] sys-
tems, as well as in out-of-equilibrium configurations [361, 362]. While Rydberg
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atoms in optical tweezer arrays allow engineering long-range couplings also in frus-
trated geometries [51, 363] and polar molecules in optical lattices represent a promis-
ing platform in this direction [364], their effectiveness remains limited to the study
of spin-1/2 systems. In this respect, proposals to investigate Hamiltonians with an
enlarged Hilbert space, where beyond-contact repulsion and geometric frustration
strongly compete are absent.

The interplay between quantum frustration and longer-range interactions can
also give rise to deconfined quantum critical point (DQCP) [senthil2023a, 121, 168].
Because of their deep quantum nature combined with possible exotic properties like
fractional excitations and emergent gauge fields, an exceptional theoretical effort
has unveiled the presence of DQCPs in a large variety of 2D spin [365–376] and
fermionic [377–380] models as well as in 3D [381, 382], 1D [roberts2019a, 173, 174,
383–385], and 0D [386] two-level systems. Moreover, unique evidence of their possi-
ble existence has been provided in recent solid-state experiments [387–390].

In this chapter, based on the results obtained in [IV] and [V], we study the physics
of frustration-induced phases and phase transitions in paradigmatic one-dimensional
models of interacting bosons and fermions, that we will briefly review in Section 5.1.
To do so we study the ground state of systems using VUMPS techniques [64, 201,
391]. In this way we work directly in the thermodynamic limit, to better identify
lowest-energy states in phase diagrams with several symmetry broken phases.

For bosons [IV], we show in Section 5.2 that it is possible to stabilize a dimerized
Bond Order Wave (BOW) and a time-reversal symmetry broken Chiral Superfluid
(CSF) phase when introducing frustrated nearest-neighbor hoppings in a triangular
ladder geometry. Remarkably, in the presence of only local repulsion we recover
the phases predicted to occur in frustrated triangular quantum magnets [392–397].
Furthermore, we show that in the presence of beyond-contact interaction a phase
transition between the BOW and a Density Wave (DW) appears, showing the prop-
erties of a Deconfined Quantum Critical point. Finally, we propose an experimental
implementation with ultracold Cesium atoms in an optical lattice that allows to en-
gineer the desired Hamiltonian. For this latter point, we describe how the relevant
requirements (namely frustration, extended interactions, and efficient readout tech-
niques) can be efficiently implemented, overcoming pitfalls that make it non-trivial
to insert frustration in such platforms [116, 117].

For the fermionic case instead [V], we focus in Section 5.3 on the one dimen-
sional Fermi Hubbard model with extended interactions. While this model with
only contact interactions can be solved analytically [398], longer-range interactions
introduce new phases that have been the object of intense theoretical [399–401] and
experimental investigation in cold-atoms systems [402–404]. In this case, the compe-
tition between contact and nearest-neighbor interactions, gives rise to a dimerized
Bond Order Wave (BOW) and a Charge Density Wave. Here, we revisit its phase dia-
gram and show that the second order transitions connecting the BOW and the CDW
can either be first order or deconfined depending on the strength of the contact po-
tential. Moreover, when adding a magnetic spin-spin coupling, a new symmetry
broken phase Antiferromagnetic (AF) phase opens up. We show that the transition
between the BOW and the AF spontaneously broken phases also shows the prop-
erties of a DQCP. A bosonization analysis confirming these results is presented in
Appendix C.
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FIGURE 5.1: Phase diagram of the 1D Bose-Hubbard model. (a) V = 0; It is
possible to observe a transition between a Mott Insulator (MI) and a superfluid
(SF). Image taken from [405] (b) V ̸= 0, at half-filling. In this case a Density wave
(DW) and a topological Haldane Insulator (HI) phase appear. Image taken from
[406]

5.1 The 1D Hubbard model

In this section we will describe the physics of the one-dimensional Hubbard model,
either bosonic or fermionic. After giving a general overview of their phases in the
simplest case of contact interaction, we will show how the introduction of extended
interactions can lead to the appearance of a much richer phase diagram.

5.1.1 Bosons

As we introduced in Chapter 1, the Bose-Hubbard model [407] describes bosons
hopping on a lattice, interacting between each other through a contact potential. Al-
though it is not naturally realized in nature1, it is particularly relevant for the physics
of neutral atoms trapped in an optical lattice [33], in the limit of strong localization
of the atoms on lattice sites (tight binding). It is then a fundamental building block
in the design of quantum simulators. The minimal Hamiltonian for the model in a
general dimensionality, in the grand-canonical ensemble is

HBH = − ∑
i,j∈Λ

tijb†
i bj + U ∑

i
ni(ni − 1)− µ ∑

i
ni, (5.1)

where Λ is a lattice composed of M sites, tij is the hopping amplitude between sites
i and j, U is the on-site interaction, and µ is the chemical potential. The operators
b†

i are the creation operators on site i, and ni = b†
i bi is the number operator. In the

case of a homogeneous lattice, as the one produced by counter-propagating lasers,
the hopping amplitude can be set to be uniform tij = t.

To have an intuitive view of the physics of this model, it is instructive to consider
the two extreme limits of strong and weak interactions. This in turn will give us an
idea of the phases of the system.

Weak coupling: Superfluid

In the weak coupling limit U/t ≪ 1, the system is well described by the non-
interacting Hamiltonian. In this case, the Hamiltonian can be diagonalized in mo-
mentum basis, and the bosons are allowed to condense in the lowest-momentum

1It however models systems like arrays of Josephson junctions, were the Cooper pairs can be con-
sidered bosons
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eigenstate
|g⟩SF = ∏

N
b†

k=0|0⟩, (5.2)

where |0⟩ is the vacuum state and N is the number of bosons in the system. As we
are working in the grand-canonical ensemble, the number of bosons is fixed only on
average ⟨ni⟩ = N/M and the state is better expressed as a superposition of all the
possible states at fixed N, or as a coherent state

|g⟩SF = ∏
i

e
√

νb†
i |0⟩, (5.3)

where we exploited the relation b†
k=0 = ∑i b†

i . Here ν = N/M is the filling of the
system. This state is completely delocalized in real space; however, it is interesting
to note that it can be expressed as a product state in position space.

This picture holds for a finite value of the interactions U as can be seen from
mean field theory. In this case, we say that the system is in the superfluid phase. The
mean field construction is only exact for infinite dimensions [408] and reasonable
for dimensions down to 2, but this behavior can be numerically retrieved also in one
dimension.

This phase is associated to a spontaneous breaking of the U(1) charge conserva-
tion symmetry, and it is associated to an order parameter

ψ = ⟨bi⟩ ∼
√

νeıθ , (5.4)

where we explicitly wrote the superfluid order parameter in terms of the density ν
and a phase θ. The superfluid phase is gapless, with phase fluctuations as the as-
sociated Goldstone modes of the spontaneously broken symmetry. It also possesses
gapped amplitude excitations, corresponding to the Higgs modes of the model.

Strong coupling: Mott insulator

In the other extreme limit U/t ≫ 1, the sites of the lattice are decoupled and the
Hamiltonian can be diagonalized in a basis of the local number operator ni

H = ∑
i

[
−µni +

U
2

ni(ni − 1)
]

. (5.5)

This in turn means that the ground state is also a product state in position space,
with a fixed number of particles per site

ni|g⟩MI = n|g⟩MI . (5.6)

The value of n, however, depends on the ratio µ/U: as the chemical potential is
increased it is energetically favorable to insert more particles in the system; on the
other hand, the on-site interaction U penalizes the presence of more than one particle
per site. Turns out that |g⟩MI contains n particles if

(n − 1) <
µ

U
< n. (5.7)

This phase is called Mott insulator. It is a gapped and incompressible phase, as
∂⟨n⟩/∂µ =, and it does not break any symmetry. In correspondence of the points
where a new particle gets added to the system µ/N ∈ N, the gap closes, and the



5.1. The 1D Hubbard model 95

system is superfluid even for t = 0. The Mott phase extends for intermediate values
of U/t in the so-called Mott lobes.

Phase diagram

The phase diagram of the Bose-Hubbard model for various spatial dimension is
shown in Fig. 5.1(a). In one dimension, our case of interest, the spontaneous break-
ing of the U(1) symmetry leading to the superfluid phase is forbidden by the Mermin-
Wagner theorem [409]. However, a superfluid phase is still present separated from
the Mott side by a Kosterlitz-Thouless transition (BKT) [405]. In this case, while
the order parameter ⟨bi⟩ ≡ 0, the ordered phase can be detected by the presence of
quasi-long range order in the superfluid correlator

g1(|i − j|) = ⟨b†
i bj⟩. (5.8)

This correlator is expected to decay exponentially in the disordered phase and alge-
braically in the ordered one.

Extended Interactions

If we add nearest-neighbor interactions to the 1D system, the phase diagram shows
several new interesting phases. This can be achieved by introducing in the Hamilto-
nian 5.1 the term

HV = V ∑
i

nini+1. (5.9)

Intuitively, for strong values of V the system will tend to avoid inserting particles
in neighboring sites, forming instead a density wave (DW). However, for intermedi-
ate couplings, a more interesting phase can appear, characterized by a gap and a
topological invariant. This is called Haldane phase in parallel to the Haldane phase of
the spin models, and is an SPT phase. As in the case of spins it can be detected by
the long-range behavior of an approximate string order parameter [406]

Os = lim
|i−j|→∞

⟨δnieı ∑
j
k=i+1 δnk δnj⟩, (5.10)

where δni = ni − ν is the fluctuations from the average density. The topological
nature of the Haldane insulating phase has also been confirmed by the presence of
edge states in the open boundary system [410]. In Fig. 5.1(b) we show the phase
diagram of the model for filling ν = 1 as a function of V/U and t/U.

5.1.2 Fermions

The phenomenology of the fermionic Hubbard model is drastically different from
the bosonic case. Here we will focus on the physics of the 1D model, leaving the
discussion of the 2D model to Chapter 6. The Hamiltonian is

HFH = − ∑
i,j∈Λ,σ

tijc†
i,σcj,σ + U ∑

i
n̂i,↑n̂i,↓, (5.11)

where c†
i,σ is the creation operator of a fermion with spin σ on site i and U is the

on-site interaction. In this case, the Pauli exclusion principle forbids the presence of
more than two fermions per site. It is then more suitable to work in the canonical
ensemble at fixed filling ν = N/M.
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FIGURE 5.2: Phase diagram of the extended 1D Hubbard model as a function of
U/t and ν. A small Bond Order Wave (BOW) region appear between the Charge
Density Wave (CDW) and the Haldane insulator (or Spin Density Wave, SDW).
Image taken from [400]

Remarkably, this model can be solved exactly at half-filling ν = 12[398] via the
Bethe ansatz. In particular, the case of U/t > 0 is a Mott insulator characterized by
gapped charge excitations and gapless spin excitations. For this reason this phase
is also sometimes called Spin Density Wave (SDW). On the other hand, for U/t < 0
the system is a Luther-Emery liquid (LL), with gapped spin excitations and gapless
charge ones. For the case U = 0 the system stays in a Luttinger Liquid phase, charac-
terized by spin-charge separation [177, 411]. In all of these cases, in accordance with
the Mermin-Wagner theorem, the symmetries of the Hamiltonian are unbroken, and
the different phases can be classified by their gaps in different sectors and non-local
order parameters.

Extended interactions

As for the bosonic case, adding extended interactions can lead to the appearance of
new phases. In particular, the addition of nearest-neighbor repulsion V of the form

HV = V ∑
iσ

niσni+1,σ, (5.12)

makes it possibly to have phases with spontaneous symmetry breaking. In this case,
for strong V the particles will tend to avoid sitting on neighboring sites, forming
a charge density wave (CDW). For intermediate values of V however, a bond order
wave (BOW) phase can appear, characterized by a dimerization of the lattice [400].
This phase, in turn, can be shown to possess topological properties [412]. The phase
diagram of the extended Hubbard model is shown in Fig. 5.2.

5.2 Frustrated Extended Bose-Hubbard model

We will move on to the discussion of the results of [IV]. In this first section, we will
explain how adding geometrical frustration to the Extended Bose-Hubbard model
leads to the appearance of new phases. In particular, by engineering an effective

2For fermions, the fact that each momentum or position state can accommodate two spins means
that a fully filled band has ν = 2
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FIGURE 5.3: (a) Phase diagram of HFEBH Eq. (5.13) as a function of J2/J1 and
U/J1, showing the superfluid (SF), bond-order-wave (BOW) and chiral super-
fluid (CSF) phases; (b) superfluid correlator g1(|i − j|) for |i − j| = 100; (c) bond-
order-wave order parameter ∆B; (d) chiral superfluid correlator κ2(|i − j|) for
|i − j| = 100; The vertical continuous lines in (b)-(d) are the estimated transition
points for U/J1 = 6 [dashed line in (a)]. All the figures refer to the configuration
where the total density n̄ = 0.5 and the nearest-neighbor repulsion V = 0. The
VUMPS simulation have been performed by using a bond dimension χ=400

triangular geometry, we will be able to find a phase reminiscent of a Valence Bond
Solid (the Bond Order Wave), a chiral superfluid, a Density Wave and, strikingly,
evidence of Deconfined Quantum Criticality. The Hamiltonian under study is

HFEBH =− ∑
j

[
J2(a†

j aj+2 + h.c.) + J1(−1)j(a†
j aj+1 + h.c.)

]
+

U
2 ∑

j
nj(nj − 1) + V ∑

j
njnj+1,

(5.13)

with J1, J2 > 0. We will study this model at half-filling ν = 1/2. As shown in Fig. 5.6
(b), Eq. (5.13) describes a frustrated extended Bose-Hubbard model in a triangular
ladder, where the staggered nature of J1 gives rise to the effective geometrical frus-
tration, U accounts for the contact interactions and V for the nearest-neighbor ones.
Although various versions and regimes of similar models have been theoretically
studied [410, 413–420], we focus on the previously not approached cases of staggered
nearest-neighbor tunneling both with and without nearest-neighbor interactions.

5.2.1 Phase diagram for V = 0

We start by studying the phase diagram of the Hamiltonian described in Eq. (5.13)
for finite values of U and V = 0, in order to see onset of the physics induced by
geometrical frustration. We do so by means of VUMPS simulations [391, 421], vary-
ing the parameters U/J1 and J2/J1. As already mentioned in Sec. 2.2.5, this method
allows to study the ground state properties of the 1D system directly in the ther-
modynamic to avoid boundary effects that can interfere in the localization of the
phases.

As shown in Fig. 5.3(a), in the regime V = 0, HFEBH hosts three different phases.
For weak frustration, meaning for small J2/J1, we detect a gapless superfluid (SF),
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captured by the quasi long-range-order (LRO) of the correlator defined as

g1(|i − j|) = ⟨b†
i bj⟩, (5.14)

see Fig. 5.3(b).
On the other hand, g1(|i − j|) vanishes exponentially for strong enough U and

larger J2/J1. This behavior signals the appearance of a gapped phase [177] which, as
shown in Fig. 5.3(c), is characterized by a finite value of the local order parameter3

∆B =
1
L ∑

j
⟨Bj + Bj+1⟩, (5.15)

where
Bj = (b†

j bj+1 + b†
j+1bj). (5.16)

Specifically, ∆B ̸= 0 demonstrates the presence of a BOW phase with broken site-
inversion symmetry similar to the one we introduced for the Fermi-Hubbard model.
This lattice dimerization bears a striking resemblance to the Peierls instability [136],
like the one responsible for the onset of dimerization in the SSH model. In particular,
while in real materials the effective dimerization is generated by the electron-phonon
coupling, here it is induced by the combination of finite interaction, quantum fluc-
tuation and geometrical frustration. These BOW phases are potentially SPTs, as re-
cently discovered in 1D [412] and 2D [422] systems.

In the strongly frustrated regime of large J2/J1, the BOW gives way to a new
gapless state where g1(|i − j|) exhibits quasi LRO. The findings in Fig. 5.3(d) illus-
trate that this regime can be classified as a CSF captured by the LRO of the correlator
defined as

κ2(|i − j|) = ⟨κiκj⟩, (5.17)

where
κj = − ı

2
(b†

j bj+1 − b†
j+1bj) (5.18)

is the vector chiral order parameter [415, 416]. This point shows this CSF to be char-
acterized by alternated finite currents between nearest-neighbor sites, thus resem-
bling an effective vortex-antivortex antiferromagnetic crystal with staggered loop
currents around each effective triangular plaquette.

Strong coupling limit

To give an intuition of the physics of the model in terms of quantum magnets, we
discuss the hardcore-boson limit U → ∞, with V = 0. In this case, the system can be
mapped into a spin-1/2 XY model using the Holstein-Primakoff [423] transforma-
tion for S = 1/2

S+
i ≡ Sx

i + ıSy
i = b† S−

i ≡ Sx
i − ıSy

i = b, Sz
i = b†

i bi − 1/2, (5.19)

3Notice that the + between the two operators is required because of the specific gauge constraint in
which we are working, namely by the staggered J1.
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FIGURE 5.4: Phase diagram of (Eq. 5.20) corresponding to HFEHB with U = ∞
and n̄ = 0.5 where we show in (a) superfluid correlator g1(|i − j|) for |i − j| =
100; (b) bond-order-wave order parameter ∆B; (c) chiral superfluid correlator
κ2(|i − j|) for |i − j| = 100; The VUMPS simulation have been performed by
using a bond dimension χ=400

Under this transformation the Hamiltonian becomes

H =− 2J2 ∑
j
(Sx

i Sx
j+2 + Sy

j Sy
j+2)−

− 2J1 ∑
j
(−1)j(Sx

j Sx
j+1 + Sy

j Sy
j+1).

(5.20)

Within a different gauge sector [393, 394], this Heisenberg model accurately de-
scribes triangular frustrated quantum magnets [392, 395–397]. For this model we re-
constructed the phase diagram as a function of the frustration strength J2/J1. Analo-
gously to the bosonic case, for this quantum magnet we can recover the three phases
SF, BOW and CSF, as shown in Fig. 5.4. This proves that the system with hardcore-
bosons to be highly suitable to investigate the properties of frustrated quantum mag-
nets.

Notably, in this limit the vector chiral Order Parameter κi gets a form that is
particularly intuitive to understand [393]:

κz
i = (Si × Si+1) · ẑ. (5.21)

The spatial average of this quantity is a measure of the times a spin winds around
the origin when going around a plaquette.

5.2.2 V ̸= 0 and Deconfined quantum critical points.

We now turn to the study of the phase diagram for V ̸= 0. To match the experimen-
tally realizable regimes (as we will explain in the next Section), we keep V/U < 0.3.
In order to be able to reach relatively large values of V, we fix U/J1 = 6 [see the
dashed line in Fig. 5.3(a)] and we concentrate on the regime of weak and intermedi-
ate frustration4.

Our VUMPS analysis in Fig. 5.5(a) finds the SF stable with respect to the addi-
tion of moderate V. On the contrary, for a gradual increase of the nearest-neighbor
repulsion the system undergoes a phase transition from the BOW to a different SSB
insulator identified by the local order parameter

δN =
1
L ∑

j
(−1)j(nj − n̄). (5.22)

4We checked that the CSF is not affected by the presence of V.
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FIGURE 5.5: Effect of the nearest-neighbor repulsion V in the Hamiltonian (5.13).
For all the panels, we fix U/J1 = 6 and n̄ = 0.5. (a) Phase diagram of HEFBH in
the V/J1 − J2/J1 plane, using χ = 400. (b) ∆B and δN as a function of V/J1 for
J2/J1 = 0.45 and χ = 600. (c) The correlation length ξ as a function of V/J1 for
different bond-dimension χ and fixed J2/J1 = 0.45. Inset: scaling of the entan-
glement entropy S(ξ) as a function of ξ at the critical point for bond dimensions
χ = 400, 500, 600 showing the extrapolated central charge c = 1. (d) Decay of
ODW and OBOW at the critical point for fixed J2/J1 = 0.45.

A finite δN, which can be accurately probed through quantum gas microscopy [424],
reflects the spatial alternation between empty and singly occupied sites, thus reveal-
ing the appearance of a DW characterized by broken translational symmetry. Phase
transitions between two gapped SSB phases are usually described by the Ginzburg-
Landau theory [3, 425]. The latter predicts the existence of a first-order transition
where the gap never vanishes, and it exhibits a discontinuity between two finite
values. Quantum fluctuations can instead give rise to continuous phase transitions
between different SSB states, where the gap vanishes only at a single point: a Decon-
fined Quantum Critical Point (DQCP) [121, 168].

The numerical detection of DQCPs is highly challenging. On the one hand,
their complete characterization requires algorithms directly mimicking the thermo-
dynamic limit and, on the other hand, the diverging correlation length ξ occurring at
criticality requires a specific entanglement scaling [pollmann2009a]. In this respect,
VUMPS are particularly suitable. This advantage stems from the fact that the varia-
tional optimization is performed on a unit cell directly in the thermodynamic limit.
In this way it is possible to avoid the slower and non-monotonous convergence to
the variational optimum [391] peculiar to algorithms involving a gradual growth of
the system size.

Thanks to this technique, our results in Figs. 5.5(b)-(d) clearly demonstrate the
BOW-DW transition to be continuous and therefore the presence of 1D DQCPs.
Specifically, we find that ∆B and δN vanish continuously exactly at the same V/J1,
see Fig. 5.5(b). In order to rule out the presence of a weakly first-order phase transi-
tion, we extract the correlation length ξ through the relation

ξ = −N/ log(λ2), (5.23)

where N is the number of sites of a unit cell and λ2 is second-highest eigenvalue
of the transfer matrix. Within an MPS formalism, ξ must not depend on the bond
dimension χ in the presence of a finite gap. On the other hand, a χ-dependence
in the form of a cusp should be observed only at the critical point [roberts2019a,
174, 385]. Fig. 5.5(c) accurately confirms this behavior. In the inset of Fig. 5.5(c) we
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FIGURE 5.6: Experimental scheme to realize Eq. (5.28). (a) State-dependent op-
tical lattice at the anti-magic-wavelength λ. Due to the opposite polarizabil-
ity, both states experience a trapping potential with opposite strength. Raman-
assisted tunneling between neighboring sites is induced using a two-photon Ra-
man transition between states |b⟩ and |g⟩ for ωbg = ω1 −ω2 the energy difference
between the two states on neighboring lattice sites. (b) The state-dependent lat-
tice can be seen as two shifted sub-lattices with an effective lattice spacing of λ/4
(for a retro-reflected configuration), intra/interspecies tunneling Jb, Jg/Jeffeıθ j

and interaction Ubb, Ugg/Ubg (upper panel). (c) Choosing Jb = Jg = J2, Jeff = J1,
θ = π, Ubb = Ugg = U and Ubg = V this scheme is modeled by the frustrated
extended Bose-Hubbard model defined in Eq. (5.13).

further extract the central charge c through the relation

S(ξ) =
c
6

log(ξ) + const., (5.24)

where for MPS around a critical point it is proven that [pollmann2009a]

ξ(χ) ∼ χκ, κ/6 = (c(
√

12/c + 1))−1. (5.25)

Conformal field theories rigorously demonstrate that the extracted c = 1 implies
indeed the presence of a critical regime which, in this case, is further characterized
by an emergent U(1) symmetry. In order to enforce our results, we calculate the
decay of the correlations functions

OBOW(|i − j|) = ⟨(Bi + Bi+1)(Bj + Bj+1)⟩, (5.26)

ODW(|i − j|) = ⟨(ni − n̄)(nj − n̄)⟩. (5.27)

Here, we expect LRO of OBOW/ODW uniquely in the BOW/DW phase while both
should vanish algebraically at criticality. Fig. 5.5(d) precisely shows the expected
power-law decay. This point, that we have been able to demonstrate thanks to
the fact that VUMPS mimic the thermodynamic limit, unambiguously proves the
critical nature of this transition point. Finally, we point out that, as imposed in
DQCPs [roberts2019a], the two correlation functions clearly vanish in the thermo-
dynamic limit with the same exponent.
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5.2.3 Experimental implementation

To give a physical realization to our predictions, we design a realistic experimental
setup as illustrated schematically in Fig. 5.6. Here, the Hamiltonian (5.13) is realized
using a two-components atomic mixture in a one-dimensional (1D) lattice at the anti-
magic wavelength [341, 426, 427]. In this setting, the two different components have
the same polarizability with opposite sign, meaning that when one species is expe-
riencing a minimum in the potential the other is experiencing a maximum, and vice
versa. While this technique can be employed with several atomic species [428–434]
with minimal heating, we focus on an implementation with Cesium atoms. Here,
convenient inter- and intraspecies Feshbach resonances [435] enable the engineering
of frustrated quantum systems with tunable contact and nearest-neighbor interac-
tions without requiring large electric or magnetic dipole moments.

As shown in Fig. 5.6 (a), in this regime the two atomic species, hereafter de-
fined as |b⟩ and |g⟩, remain localized in two sub-lattices formed respectively by the
intensity maxima and minima of the optical periodic potential with L sites. This con-
figuration thus mimics an effective discrete geometry with L̃ = 2L sites and lattice
spacing λ/4 (for retro-reflected lattices), see Fig. 5.6 (b). Since the two sub-lattices
have by definition the same depth, the |b⟩- and |g⟩-bosons experience the same direct
hopping amplitude Jb = Jg = J. On the other hand, intra- Ubb, Ugg and interspecies
Ubg interactions are potentially different and tunable. Furthermore, tunable Raman-
assisted tunneling processes Jeffeıθ j (j is the L̃-lattice site index) connect consecutive
sites of different sub-lattices; as a consequence, one tunneling event is accompanied
by converting one internal state into the other, as shown in Fig. 5.6(a). Here Jeff and
θ are given by the intensity and wavevector of the Raman coupling [436, 437]. This
setup is accurately modeled by the Hamiltonian

H =− ∑
j

[
J(a†

j aj+2 + h.c.) + Jeffeıθ j(a†
j aj+1 + h.c.)

]
+ ∑

j

[Ubb

2
n2j−1(n2j−1 − 1) +

Ugg

2
n2j(n2j − 1)

]
+ Ubg ∑

i
nini+1,

(5.28)

where a†
j /aj is a bosonic creation/annihilation operator. To provide a more concrete

implementation, we focus on two internal states of Cesium |b⟩ ≡ |F = 3, mF = 3⟩
and |g⟩ ≡ |F = 3, mF = 2⟩ where the interactions are tunable. For this system, the
“anti-magic" wavelength occurs in the vicinity of λ = 871 nm for σ+ polarized light.

A further essential aspect of the proposed configuration is its reliance on adia-
batic state preparation. For instance, it is possible to prepare an initial state with N
bosons in the |b⟩ state forming a Mott insulator with N = Nb = L. By subsequently
introducing Jeffeıθ j, it becomes possible to populate the |g⟩ state and therefore reach
the regime of half-filling n̄ = N/L̃ = 0.5, with N = Nb + Ng, which is particu-
larly suitable to explore SSB phases [360]. Finally, an adiabatic lowering of the lattice
depth gives rise to a finite direct tunneling J. Finally, we fix Ugg = Ubb = U and
θ = π so that, after renaming J = J2, Jeff = J1 and Ubg = V, Eq. (5.28) becomes
Eq. (5.13).

The realizable values of U and V can be computed by following the lattice con-
figuration in the Cs quantum gas microscope presented in [438], in the presence of
a state-dependent potential. The on-site U and nearest-neighbor interaction V are
computed by the overlap of the Wannier functions w0(x) on each lattice site [341]:
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FIGURE 5.7: Ratio of nearest-neighbor V and on-site U interactions for two dif-
ferent interspecies scattering length abg. This is shown as a function of the lattice
depth in units of the recoil energy ER. The intraspecies scattering lengths abb, agg
were set to 1000a0.

U =
4πh̄2a

m

∫
|w0(x)|4 dx, (5.29)

V =
4πh̄2abg

m

∫
|w0(x + λ/4)|2 |w0(x)|2 dx. (5.30)

Here a and abg are the intra- and interspecies scattering lengths: to achieve a large
and nearly symmetric interaction, we operate at a magnetic field strength of approx-
imately 56 G. At this field strength, the background scattering length of the three
Feshbach resonances (inter- and intraspecies) is a ∼ 1000a0 [435, 439]. Additionally,
a narrow resonance located at approximately 56.9 G provides additional flexibility in
tuning the interspecies interaction strength abg, allowing the control of the nearest-
neighbor interaction.

The ratio of nearest-neighbor and on-site interactions can then be tuned and is
shown in Fig. 5.7. This allows us to choose V/U < 0.3 and U/J1 = 6, and to explore
the space of parameters necessary for the appearance of a DQCP.

Detection scheme and probes

The experimental detection of the DW phase can be performed in a very accurate
way. Indeed, the measurement of the DW local order parameter δN requires resolv-
ing the local density nj. Quantum gas microscopy allows for an impressive precision
in measuring the bosonic occupation and therefore to accurately unveil the presence
of the DW regime. On the other hand, the detection of the SF, BOW and CSF phases
would require measurements of nearest-neighbor correlations and local currents.
While this is indeed possible [49, 440], we provide an alternative way to characterize
the mentioned regimes. Following the results in [412], we reveal the BOW via the
string correlator

O(|i − j|) = ⟨δn2ieıπ ∑
2j−2
k=2i+1 δnk δn2j−1⟩, (5.31)

where δnj = (nj − n̄). Note that this string correlator is not the same as in Eq. (5.10).
The results reported in Fig. 5.8 prove this quantity to be highly suitable to detect the
BOW. In particular, this strategy offers the fundamental advantage that Eq. (5.31)
depends uniquely on the local occupation nj which, as mentioned, can be accurately
measured with a quantum gas microscope. Moreover, we find that the asymptotic
value of O(|i− j|) perfectly reflects the behavior of ∆B and thus making this strategy
realistic also to detect the DQCPs.
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FIGURE 5.8: Momentum distribution N(k) (a) and O(|i − j|) (b) for U/J1 = 6,
n̄ = 0.5, and J2/J1 = 0.1, 0.4, 0.8 corresponding to the SF, BOW and CSF respec-
tively.

In order to distinguish between the two gapless phases, we can make use of
the structure of the dispersion relation. In particular, while in the SF regime the
dispersion relation has one minimum at the momentum k = 0, in the CSF regime
two minima at incommensurate k occur. The structure of the dispersion relation can
be accurately probed by the momentum distribution

N(k) =
1
L2 ∑

i,j
eı|i−j|kg1(|i − j|). (5.32)

Our numerical analysis in Fig. 5.8 reveals specifically this behavior as we find one
k = 0 peak in the SF and two peaks at different ks, when in the CSF. To access
the momentum distribution N(k), we propose using a matter wave focusing tech-
nique. Here, the momentum-space is mapped into real space after a quarter period
(T) evolution in a harmonic trap [441, 442]. In the presence of an optical lattice,
the experimental protocol would consist of mapping the band population and the
quasi-momentum states into real-space momentum components, followed by the
expansion in the harmonic potential for a time T/4. Finally, the atomic distribution
is frozen in a deep optical lattice for single-site imaging. Similar protocols have been
proposed and implemented in [443, 444]. Although not yet proved in optical lat-
tice at the anti-magic wavelength, a possible alternative protocol would consist in
extracting the local current κi following the scheme derived in [49]. In this way the
CSF phase could be easily distinguished from the normal SF phase
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5.3 Deconfined quantum critical points in the Fermi-Hubbard
model

The phases of the paradigmatic Extended Fermi-Hubbard model (EFHM) have been
extensively studied in the last decades. The most established results for its zero-
temperature phase diagram with repulsive interactions [400] recover three differ-
ent phases: a Mott insulator (MI), a charge density wave (CDW) and a bond order
wave (BOW), depending on the relative strength of the on-site repulsion U/t and
the nearest-neighbor repulsion V/t. Remarkably, this study finds a second-order
transition between the two symmetry-broken CDW and BOW for moderate values
of U/t.

Motivated by the results of previous section, we then aim to revisit the phase di-
agram of the EFHM, focusing on the BOW-CDW transition, to show that this phase
transition is indeed of second-order and compatible with the presence of a DQCP.
Indeed, by using VUMPS we can reach an accuracy in the identification of the crit-
ical point and the nature of the transition not achievable with less refined meth-
ods. Moreover, we will show that by adding a magnetic coupling Jz to the EFHM,
an antiferromagnetic phase (AF) can be stabilized, leading to another DQCP at the
boundary AF-BOW.

The complete model in study is then

HEFHM =− t ∑
j,σ
(c†

jσcj+1σ + h.c.) + U ∑
j

nj↑nj↓

+ V ∑
j

njnj+1 + Jz ∑
j

Sz
j Sz

j+1,
(5.33)

where c†
jσ creates a fermion with spin σ on site j, njσ = c†

jσcjσ, and Sz
j = c†

j↑cj↑ − c†
j↓cj↓

is the z-component of the spin operator. Finally, as the transition happen for low
enough values of U/t, V/t, and Jz/t, we will give an interpretation in terms of
bosonization in Appendix C.

5.3.1 Analysis of BOW-CDW transition

We start by performing a numerical analysis of the BOW-CDW phase transitions of
the model in Eq. (5.33), restricting to the case Jz = 0. Previous finite size DMRG
studies [400] and Montecarlo [399] showed that this transition is of second order for
moderate values of U, while it becomes of first order for U > 5.19t. For U ≃ 9.25t,
the BOW phase is absent, and there is a direct first-order phase transition between
the Mott Insulator and CDW phases. In the following we will show that for mod-
erate values of U = 4t the phase transition is indeed second-order and compatible
with the presence of a DQCP.

We emphasize that, for spinful fermionic systems, both charge and spin degrees
of freedom must be considered. More precisely, we refer to a gapped charge or spin
sector when the system has to pay a finite energy for adding/removing an up-down
pair, or flipping a single fermion, respectively.

To capture the phase transitions we consider the three order parameters

∆Sz =
Sz

1 − Sz
2

2
, ∆B =

B1 − B2

3
, δn =

n1 − n2

2
, (5.34)

where Bj = ∑σ c†
jσcj+1σ + h.c.. The three parameters identify respectively the AF,

the BOW, and the CDW phase. As we are working with uniform MPS the average
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FIGURE 5.9: Results for U = 4t obtained with the VUMPS optimization method.
We show relevant quantities across the BOW-CDW transition as a function of
the nearest-neighbor interaction V. (a)-(b) Show, respectively, the BOW and
CDW order parameters around the critical point Vc = 2.1601. We observe
how they both tend to zero with increasing bond dimension when approach-
ing the critical point. (c) Correlation length showing a χ-dependent cusp at
the critical point, characteristic of continuous phase transitions. (d) The relation
S(χ) = c log(ξ(χ))/6 suggests a transition with central charge c = 1.

is performed over a unit cell of length L = 2. The denominator in ∆B is 3 as the
dimerization order parameter involves three sites instead than two.

In Fig. 5.9(a),(b) we characterize the BOW-CDW transition as a function of the
bond dimension χ. By increasing χ, we see that ∆B and δn scale to zero at the tran-
sition point as expected for a DQCP [roberts2019a]. As in the case of the frustrated
Bose-Hubbard model, we can then perform a scaling of the correlation length ξ as
a function of the bond dimension χ at the critical point, as shown in Fig. 5.9(c). In
such a way, the central charge c can be inferred by Eq. (5.24). The results in Fig. 5.9(d)
allow extracting the value c = 1, a clear sign of a critical regime and therefore of a
DQCP.

Finally, it is important to consider the decay of long-range correlators of the order
parameters defined above at or close to the transition point. Consistently with the
order parameters we define the correlators as

OAF(i, j) = (−1)i+jŜz
i Ŝz

j

OBOW(i, j) = (−1)i+j(B̂i − B̂i+1)(B̂j − B̂j+1)

OCDW(i, j) = (−1)i+j(ni − 1)(nj − 1)

(5.35)

which have to display long-range order in AF, BOW or CDW respectively. The re-
sults in Fig. 5.10 confirm the expected algebraic decay with the same critical expo-
nent of two correlators corresponding to the two different orders at the two sides of
the transition. Furthermore, this decay shows the appearance of an emergent SU(2)
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FIGURE 5.10: Decays of correlators at the critical point. (a) BOW-CDW transition.
Results for U = 4t obtained with the VUMPS optimization method with χ = 750.
We show the decay of the BOW, CDW and spin parity long-range correlators at
critical point for Vc = 2.1601. (b) AF-BOW transition. Results for U = 4t and
Jz = 1 obtained with with χ = 700. We show the decay of the BOW and AF long-
range correlators at critical point for Vc = 2.2632. In both cases the correlators
decay with a power law with the same exponent, a characteristic of DQCPs.
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FIGURE 5.11: Results for U = 8t obtained with the VUMPS optimization
method. We show relevant quantities across the BOW-CDW transition as a func-
tion of the nearest-neighbor interaction V, for bond dimensions χ = 400, 500, 600.
(a)-(b) Show, respectively, the BOW and CDW order parameters around the crit-
ical point. We observe how these observables barely depend on the bond dimen-
sion when approaching the transition, and thus they do not tend to zero at the
critical point with increasing bond dimension. (c) Correlation length exhibiting
a jump characteristic of a first order phase transition.

symmetry occurring exactly at the transition point. Based on this fact, at this DQCPs
we expect long-range behavior of non-local order parameters of the form of parity
operators [411, 445]. Specifically, at the BOW-CDW transition where the charge gap
vanishes and the spin sector remains gapped, we expect the emergence of a Luther-
Emery phase captured by the long-range order of

C(s)
P (r) = ⟨∏

j≤r
eiπ(nj↑−nj↓)⟩, (5.36)

called the spin-parity correlator. In Fig. 5.10(a) we show that this correlator has in-
deed long range order.

Finally, we checked the case of strong interaction U = 8t. Here our results show
the BOW-CDW transition becomes first order with a sharp jump of the order pa-
rameters at criticality and a non-diverging correlation length around the transition
point, coherent with the results in [400]. This is shown in Fig. 5.11. In particular,
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FIGURE 5.12: Results for U = 4t and Jz = 1 obtained with the VUMPS opti-
mization method. We show relevant quantities across the AF-BOW transition
as a function of the intersite interaction V. (a)-(b) Show, respectively, the BOW
and AF order parameters around the critical point Vc = 2.2632. We observe
how they both tend to zero with increasing bond dimension when approach-
ing the critical point. (c) Correlation length showing a χ-dependent cusp at
the critical point, characteristic of continuous phase transitions. (d) The relation
S(χ) = c log(ξ(χ))/6 suggests a transition with central charge c = 1.

in Fig. 5.11(a),(b) we show that the value of the order parameters around the phase
transition are independent on the bond dimension, and in Fig. 5.11(c) we show that
the correlation length jumps always stays finite at the transition, independently of
the bond dimension. This is coherent with the fact that the quantum fluctuations
driving the continuous phase transition are weaker in the presence of strong inter-
actions.

5.3.2 Analysis of AF-BOW transition

For a strong enough antiferromagnetic coupling Jz in Eq. (5.33) the Mott insulating
ground state can become unstable to the formation of antiferromagnetic ordering
AF breaking the spin SU(2) symmetry. In this situation, there is a new transition
line between AF and BOW order that can show the properties of a DQCP. We iden-
tify deconfined quantum criticality for the AF-BOW transition setting U/t = 4 and
Jz/t = 1 when V/t ∼ 2.2632, see Fig. 5.12. As in the case of the BOW-CDW transi-
tion we identify the properties of the deconfined transitions: a diverging correlation
length associated with a finite central charge c = 0.998 ∼ 1, and decaying correlators
with the same power law. As for the CDW-BOW transition, this DQCP is character-
ized by an emergent SU(2) symmetry, this time associated with a charge gapped
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Mott insulator captured by the long-range behavior of the parity charge operator

C(c)
P (r) = ⟨∏

j≤r
eiπ(nj−1)⟩. (5.37)

This behaviour is shown in Fig. 5.10(b). The different type of non-local order at the
DQCP confirms that the two transitions are indeed associated to a different phase at
criticality.

5.4 Summary

In this Chapter, we studied two paradigmatic models, the Extended Bose-Hubbard
model and the Extended Fermi-Hubbard model, showing how frustration can lead
to the appearance of exotic phases and, in particular, deconfined quantum critical-
ity at the transition between them. For bosons, by only considering contact inter-
action we demonstrated that states of matter peculiar to frustrated quantum mag-
nets, namely chiral superfluids and spontaneously-symmetry-broken Bond Order
Wave insulators, can be created and accurately probed. By adding strong nearest-
neighbour repulsion, a new spontaneously-symmetry-broken Density Wave insu-
lator occurs. We proved that the phase transition between the two spontaneously-
symmetry-broken phases is continuous, thus representing a one-dimensional decon-
fined quantum critical points not captured by the Landau–Ginzburg-Wilson symmetry-
breaking paradigm. For this system, we designed an experimental scheme based on
two-component bosonic atoms in an optical lattice at the anti-magic wavelength.
In this setup all the fundamental properties of the model, namely frustrated hop-
pings and contact and nearest-neighbour interactions, can be efficiently controlled
and probed. This allows us to perform experiments in a regime where geometrical
frustration and quantum fluctuation strongly compete. For fermions, we showed
how by using of cutting-edge VUMPS simulations we can better characterize the
transition between a Bond Order Wave and a Charge Density Wave already iden-
tified in previous works [400]. In this case, frustration induced by the competition
between the contact and nearest-neighbor interaction can result in two symmetry
broken phases connected by a DQCP. Moreover, we show how adding an antifer-
romagnetic nearest-neighbor spin-spin interaction can lead to the stabilization of a
spontaneously broken Antiferromagnetic phase, also connected to the Bond Order
Wave by a DQCP. Strikingly, these two phase transitions, Bond Order Wave-Charge
Density Wave and Bond Order Wave-Antiferromagnet, are associated to the emer-
gence of two different SU(2) symmetries at the critical point. We confirmed that by
computing two non-local order parameters, the spin and charge parity correlators.
We used the long range of these correlators to show that in one case the transition
is associated to the emergence of a Luther-Emery phase with zero charge gap and
finite spin gap, while in the other case is associated to the emergence of a Mott insu-
lator with zero spin gap and finite charge gap [411, 445]. Importantly, the presence
of this long-range order makes this DQCP qualitatively different from the one found
in the Bose-Hubbard model, where all the correlators exhibit a power-law decay.
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Chapter 6

Fragmented superconductivity in
the Hubbard model

The two-dimensional Hubbard model is a cornerstone of modern condensed matter
physics. Initially introduced as a minimal model of interacting electrons in a lattice
to describe itinerant ferromagnetism and metal-insulator transition [446, 447], it has
found particular relevance in the description of the physics of Cuprates [13, 448], to
try to describe their high-temperature superconducting properties. Despite its ap-
parent simplicity, this system shows an extremely rich physics and a thorough study
of its phase diagram is still an open problem. Different phases have been targeted by
numerical and experimental investigations, such as antiferromagnetic, striped and
pseudo-metal regions, but often with incompatible results. Strikingly, studies at fi-
nite and zero-temperature of the model have proven inconsistent with each other.
Lately, it has been studied in the context of quantum simulators, and some regimes
have been realized experimentally in cold atoms systems like the antiferromagnetic
phase [45] and even pairing in narrow ladders [449]. It is however pivotal to in-
vestigate ways to confirm the structure of different phases. Indeed, the complex
structure of the model means that often the system forms intertwined orders [450], in
which several mechanisms cooperate to form a complex phase.

Intertwined orders come in many flavors in strongly correlated electron sys-
tems [450–452]. Continuous and discrete symmetries are broken in a manner in
which order parameters transform non-trivially in the entire symmetry group. In
stripe order for example, both the translational and spin rotation symmetry are bro-
ken to a state which intertwines a charge density wave (CDW) and a spin density
wave. Initially proposed in Hartree-Fock studies [453–456], modern numerical tech-
niques have in the last years succeeded in firmly establishing it as the ground state
in certain parameter regimes of the strongly correlated repulsive Hubbard model in
2D [457–461]. As such, these orders are relevant to the physics of high-temperature
superconductivity where electron-electron interactions in the form of the Hubbard
model are understood to play a crucial and likely decisive role [13, 462, 463].

Historically, the competition between superconductivity and stripe order has
been discussed thoroughly [464, 465]. Both stripe order and superconductivity have
by now been found to be realized in different parameter regimes of the paradig-
matic Hubbard and t-J models [380, 457–461, 466–472], and have also been found
when further neighbor hopping processes are included [113, 114, 473]. Moreover,
numerical studies in the last years have discovered that superconductivity can also
be intertwined with CDW order [113, 115, 473–478]. A particular form of intertwined
CDW order and superconductivity is the so-called pair-density wave state [474, 479–
484], for which recently evidence has been reported in several unconventional su-
perconductors [485, 486]. The coexistence of CDW order, which breaks translational
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symmetry, and superconductivity is sometimes also referred to as supersolid or-
der. Fragmentation refers to the phenomenon when fermion pairs condense into not
just one, but multiple macroscopic wave functions. The ground state in a certain
regime of the t-t′-J model exhibits exactly one fragment per charge stripe of the su-
perconducting condensate, interpreted as an emergent array of coupled Josephson
junctions.

The goal of this Chapter, based on [VI], is to strengthen our understanding of
this intriguing form of order. Employing density matrix renormalization group
(DMRG) [53, 56, 57, 487] simulations, we show the fragmented superconducting
stripe order is also realized in the Hubbard model on the square lattice, both with
open and cylindrical boundary conditions. Additionally, we investigate the effect of
an orbital magnetic field on the fragments of the Cooper condensate. Moreover, we
propose a minimalistic macroscopic model to describe the superconducting conden-
sates which is given by an intertwined Ginzburg-Landau theory [4]. Importantly, the
mass term is chosen to be position dependent and exactly proportional to the hole-
density modulation of the CDW. A one-to-one comparison between the solution of
the Ginzburg-Landau equation and the numerical data from DMRG is performed
and yields detailed agreement. The fragmentation of the superconducting conden-
sate is then understood as a quantum tunneling between several soliton solutions of
the Ginzburg-Landau equation.

We will start by briefly reviewing the physics of the 2D Hubbard model in Sec-
tion 6.1. We will then introduce the particular model in study and the region we
are targeting in Section 6.2. After having described the concept of fragmentation we
will then study the properties of the fragmented superconducting phase using two-
dimensional DMRG in Section 6.3. We will then propose a Ginzburg-Landau theory
to describe the numerical results in Section 6.4.

6.1 Two-dimensional Hubbard model

Compared to the previously discussed 1D Hubbard model, the 2D fermionic Hub-
bard model [446] shows a much richer physics. For this reason we will introduce
it more thoroughly, stating some main theoretical results and experimental realiza-
tions. In its more general formulation, the Hamiltonian for spin-1/2 fermions hop-
ping on a lattice interacting with contact interactions can be written as

Ĥ = − ∑
i,j∈Λ,σ

tijc†
i,σcj,σ + U ∑

i
n̂i,↑n̂i,↓, (6.1)

where c†
i,σ is the creation operator of a fermion with spin σ on site i and n̂i,σ = c†

i,σci,σ
is the number operator. The hopping amplitude tij is often set to non-zero values
only for nearest-neighbors sites ⟨ij⟩ or next-nearest-neigbor sites ⟨⟨ij⟩⟩ and U is the
on-site interaction.

In this formulation the Hamiltonian is symmetric under global unitary transfor-
mations ciσ = Uσσ

′ ciσ′ , where U ∈ U(2). The role of these symmetries become more
evident by separating U(2) = SU(2) × U(1): here the U(1) symmetry generated
by the number operator N = ∑i,σ ni,σ implies the conservation of the total particle
number (or charge), while the SU(2) symmetry generated by the spin operator

Ŝ = ∑
i,σ,σ′

c†
i,σσσσ

′ ci,σ′ (6.2)
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FIGURE 6.1: Sketch of the phase diagram of the 2D Hubbard model (a) at finite
temperature and (b) zero temperature. The two proposed diagram are incompat-
ible. Here, we are focusing on the zero-temperature, low-doping region where
we expect to see an overlap of the striped and superconducting phases. Figure
adapted from [488]

implies the conservation of both the total spin S2 and the projection on the z-axis Sz.
These properties prove particularly useful when studying the model numerically as
it allows to reduce the size of the Hilbert space by restricting to sectors with a given
quantum number, as explained in Chapter 2.

If the lattice Λ is bipartite, meaning that it can be split in two sublattices A and B
such that every site in A has only nearest-neighbors in B, the model exhibit several
more interesting properties. In particular, at half filling ν = 1/2 Eq. (6.1) shows a
further particle-hole symmetry

c†
i,σ → (−1)ici,σ, (6.3)

where i is even if it belongs to sublattice A and odd if it belongs to sublattice B.
This symmetry implies that the ground state for any choice of tij and U has uniform
density at half filling [489], while it does not exclude the presence of other kind of
magnetic ordering. Moreover, if the hopping structure does not break the lattice
bipartition, the Lieb Theorem states that the ground state of the model at half filling is
non-degenerate and is a singlet state with total spin S = 0 [490].

This behavior can be understood in the limit of U ≫ tij, where the model can be
well approximated by the t − J model

Ĥ = − ∑
⟨ij⟩,σ

tc†
i,σcj,σ + J ∑

⟨ij⟩
Si · Sj, (6.4)

with J = 4t2/U. In this limit, the model is projected onto the subspace where dou-
ble occupancy of sites is forbidden, and the repulsive interaction is replaced by an
effective antiferromagnetic interaction. If t/U → 0, the system reduces to an antifer-
romagnetic Heisenberg model, whose ground state on a bipartite lattice is the Néel
state.
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If, however, we remove one electron from the system (still considering the limit
U → ∞) the ground state becomes suddenly ferromagnetic with spin S = 1/2N,
with N the number of electrons, a result usually called Nagaoka theorem [491]. This
theorem does not generalize to generic fillings. Instead, for fillings ν /∈ 2Z, the
LSMOH theorem states that no unique, gapless, insulating and featureless ground
state can exist [492]. While these results are not directly applicable to the specific
problem we are interested in, they give a useful insight on the choice of the ansatz
states for the numerical simulations, and readily implementable benchmarks to check
for their correctness.

Our main interest lies on the presence of superconductivity in the zero-temperature
phase diagram of the model, for intermediate to strong interactions (U/t ∼ 5 − 10),
and small doping. This is the regime expected to be relevant for the physics of the
Cuprates. Experimental results suggest that the Cooper pairing in Cuprates leading
to superconductivity forms in the d-wave channnel [493], corresponding to a finite
expectation value of the order parameter

∆ij =
⟨c†

i,↑c†
j,↓ − c†

i,↓c†
j,↑⟩√

2
, (6.5)

where we assumed a singlet pairing of the spins of the pair. While this quantity is
necessarily zero in finite-size numerical simulations conserving the U(1) charge con-
servation symmetry, the presence of supercondutivity can be inferred by the pres-
ence of long-range order in the pairing-pairing correlation function

lim
|l−m|→∞

⟨∆†
l ∆m⟩ ∼ |l − m|−η , (6.6)

for some exponent η, where we grouped together the indices of the lattice sites in
a single index l. Using this metric, recent numerical works [461] suggest that the
simple Hubbard model on a square lattice does not exhibit any superconducting
phase at any doping. This result was obtained by two complementary numerical
techniques, Auxiliary Field Quantum Monte Carlo and DMRG.

However, the addition of a next-nearest-neigbor hopping t′ introduces frustra-
tion in the system that can help stabilize the superconducting phase. This was stud-
ied for both the strong-interaction limit t− t′− J model, and the full t− t′−U model.
For this latter model there have been encouraging results on the presence of super-
conductivity in the phase diagram [115], both as a uniform condensate of Cooper
pairs or superimposed to a charge density wave background, depending on the dop-
ing. Lately the presence of a uniform condensate has been also detected in the full
t − t′ − U model in both the electron and hole-doped regions.

In the following we will introduce a different method to retrieve the supercon-
ducting properties of the doped t − t′ − U Hubbard model, that complement and
confirms previous results on the matter.

6.2 Model and observables

We study the t-t′-U Hubbard model on a square lattice defined by the Hamiltonian

H = −∑
ij,σ

(
tijc†

iσcjσ + h.c.
)
+ U ∑

i
ni↑ni↓, (6.7)
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where tij = t for nearest neighbor lattice sites i and j and tij = t′ for next-nearest
neighbor sites. Here, c†

iσ, ciσ denote the fermionic creation and annihilation operators
of spin σ =↑, ↓ and niσ = c†

iσciσ denotes the number operator. We additionally study
the effect of a uniform orbital magnetic field B = ∇× A, orthogonal to the plane of
the lattice. We employ the Landau gauge

A(r) = (Ax, Ay) = (0, 2πϕx), (6.8)

where r = (x, y) denotes a real space coordinate. The total magnetic flux through the
simulated system is denoted by ϕ =

∫
S dS B. The Landau gauge is well suited for

open and cylindrical boundary conditions, since in the latter case it remains trans-
lationally invariant in the y-direction. The coupling of the model to the background
magnetic field is implemented via a Peierls substitution

tij → tij exp
[
−i

e
h̄

∫ rj

ri

dr · A(r)
]

, (6.9)

where e denotes the elementary charge. In the following, we set e = 1, h̄ = 1 and
focus on the model parameters U/t = 10 and t′/t = 0.2. For our geometry, the
Peierls substitution reduces to

t → tei2πϕx, t′ → t′ei2πϕ(x+1/2). (6.10)

In large orbital magnetic fields, this model has been studied in the context of cold-
atoms experiments [494–496]. As worked out extensively in Ref. [474] for U/t = 12,
on six-leg cylinders this set of parameters stabilizes a superconducting state coex-
isting with a CDW at small hole-doping. Analogously, the coexistence of CDW and
superconducting order has been reported at larger hole-doping by a combination of
auxiliary-field quantum Monte Carlo and DMRG [115]. Moreover, the phase dia-
gram at small hole-doping has been found to be in close agreement with the t-t′-J
model, where similarly a coexisting CDW and superconducting state have been re-
ported [113, 114, 471, 497]. The findings of this chapter are in full agreement with
these previous studies.

Our aim is to elucidate the relation between charge and pairing degrees of free-
dom. We consider the hole density

nh(r) = 1 − n(r), (6.11)

where r denotes the lattice position and n(r) the electron density. As the pairing
mechanism in the lightly-doped Hubbard model has been diagnosed in previous
studies to be of singlet-pairing type, we consider

ρS(ri, rj|rk, rl) = ⟨∆†
rirj

∆rkrl ⟩, (6.12)

where the singlet-pairing operators ∆rirj are defined as

∆†
rirj

=
1√
2

(
c†

i↑c†
j↓ − c†

i↓c†
j↑
)

. (6.13)

Moreover, as the pairing in this superconducting phase was established as local in
real space [113–115, 473, 475, 497, 498], we restrict ourselves to investigating the
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FIGURE 6.2: Fragmentation of the Cooper condensate apparent in the spectrum
of the singlet two-particle density matrix of the ground state of the Hubbard
model at small doping for t′/t = 0.2 and U/t = 10. (a) 24× 6 square lattice (open
boundary conditions) doped with nh = 4 holes away from half-filling and total
magnetic flux ϕ = 4π through the full sample. Two dominant eigenvalues are
observed. (b) 32 × 6 cylinder doped with nh = 12 holes without magnetic flux.
We observe six dominant eigenvalues. In both cases, the number of dominant
eigenvalues exactly matches the number of CDW maxima.

nearest-neighbor singlet-pairing density matrix

ρS(ri, µ|rj, ν) = ρS(ri, (ri + µ)|rj, (rj + ν)), (6.14)

where µ = x̂, ŷ (resp. ν) denote the vectors connecting nearest-neighbors on the
square lattice. We exclude site-local contributions from density and spin correlations
by setting ρS(ri, µ|rj, ν) = 0 whenever the two links (ri, ri + µ) and (rj, rj + ν) are
overlapping. Because of this, ρS(ri, µ|rj, ν) ceases to be positive definite and therefore
can have negative eigenvalues. Off-diagonal long-range order occurs whenever

ρS(ri, µ|rj, ν) → C ̸= 0 for |ri − rj| → ∞. (6.15)

However, the information contained in ρS(ri, µ|rj, ν) in (6.14) is richer and allows
for additional insights beyond diagnosing long-range order. To unveil this hidden
properties we have to introduce the concept of fragmentation of the Cooper conden-
sate.

6.2.1 Fragmentation and Penrose-Onsager criterion

The starting point of this section is the consideration that the onset of superconduc-
tivity can be seen as a pairing of electrons into Cooper pairs. The pairs themselves
behave as bosons, and can form a condensate. For non-interacting bosons, the con-
densation can be described as a situation where a macroscopic portion of the bosons
occupies the same single-particle state, with the remaining bosons distributed over
the higher-energy state states.

This concept can be extended to interacting bosons using the so-called Penrose-
Onsager criterion [499]. Consider a system of interacting bosons in a pure state, de-
scribed by a many-body wavefunction Ψ(r1, r2, . . . , rN). We can construct the single-
particle density matrix

ρ(ri, rj) = ⟨b†
ri

brj⟩ = ∑ ϵnϕ∗
n(ri)ϕn(rj) (6.16)
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Here we have used the Hermitian nature of the ρ(ri, rj) to expand it in terms of its
eigenvalues ϵn and eigenvectors ϕn(r). The ϵn are non-negative and sum to the total
number of particles N. The Penrose-Onsager criterion can then be stated in this way:

• if all eigenvalues ϵn are of same order ∼ 1, the system is in a normal, non-
condensed phase;

• if one eigenvalue ϵ0 is of order ∼ N, the system is in a simple condensate;

• if multiple eigenvalues ϵ1, . . . , ϵk are of order ∼ N, while the others are of order
∼ 1, the system is in a fragmented condensate, with k fragments.

In the majority of situations realistic physical systems can only form simple conden-
sates [500]. However, there have been reports of fragmented condensates in exper-
iments, for example in the context of cold atoms [501]. Because of these properties
the eigenvalues ϵn are often called condensate fractions, and the corresponding eigen-
vectors ϕn(r) macroscopic wave functions. This is more evident when considering the
non-interacting limit, where the ϕn(r) are the single-particle states of the system,
and the ϵn are their occupation number. In this case, at zero-temperature, the Bose-
Einstein condensation can be stated as ϵ0 = N.

In our work, following [498], we extend the concept of fragmented condensates
to Cooper paired, described by the two-body density matrix ρS(ri, µ|rj, ν), where µ, ν
are the vectors connecting nearest-neighbor sites. As for bosons, this matrix can be
expanded in terms of its eigenvalues εn and eigenvectors χn(r, µ) as

ρS(ri, µ|rj, ν) = ∑
n

εnχ∗
n(ri, µ)χn(rj, ν). (6.17)

The onset of Cooper pair condensation can then be inferred by the presence of either
one or multiple dominant eigenvalues [499, 500]. Notice that in this case the eigen-
vectors χ depend on the position of the lattice r as well as the orientation of the bond
µ and are, hence, defined on the bonds of the lattice.

6.3 Ground state properties from DMRG

To investigate the onset of intertwined order in the Hubbard model we perform
DMRG calculations to obtain the ground state properties of the system. In this
scheme, the 2D system is mapped to a 1D chain suitable for DMRG, with the draw-
back of the x-direction hopping term in the Hamiltonian becoming long-range. This
leads to an exponential increase in the computational cost when increasing the width
W of the system, limiting the simulations to narrow cylinders. For this reason, in this
work, we choose W = 6.

We obtain results for systems of length L = 24 with open boundary conditions
and L = 32 with periodic boundary conditions in the y-direction. On a cylindrical
geometry the Hamiltonian in Eq. (6.7) is not gauge invariant as a gauge transfor-
mation introduces a magnetic flux piercing the cylinder, corresponding to a ground
state with a finite momentum ky along the y-direction. As this is non-physical when
looking for ground state properties, we fix the gauge in order to stay in a sector with
zero net ky momentum. Analogously to previous works [113, 115] we restrict to the
Sz

tot ≡ ⟨∑i ni↑ − ni↓⟩ = 0 sector of total spin projection in the z direction. Exploiting
this symmetry, together with the conservation of the total charge N ≡ ⟨∑i ni↑ + ni↓⟩
drastically reduces the computational load, allowing us to access larger bond dimen-
sions. For the initial state of DMRG, we choose a physically motivated Néel product
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FIGURE 6.3: Comparison between macroscopic wave functions χk(r, µ) from
DMRG simulations and ψk(r, µ) from intertwined Ginzburg-Landau theory. (a,b)
Macroscopic wave functions of ground state of the t-t′-U Hubbard model from
DMRG with total magnetic flux ϕ = 4π on a 24 × 6 lattice with open bound-
ary conditions when doped with nh = 4 holes away from half-filling. Here we
take t′/t = 0.2, U/t = 10. (a) (resp. (b)) shows the values of χk(r, µ) for the
k = 0 (resp. k = 1) fragment of the condensate. The length of the arrows is
proportional to |χk(r, µ)| and the color indicates the complex angle of χk(r, µ),
where for µ = ŷ we shift the phase by π, to reflect the d-wave nature of the
order parameter. The gray scale of the background squares shows the value of
the local hole density nh(r). (c,d) Both soliton solutions ψk(r, µ) (k = 0, 1) of the
intertwined Ginzburg-Landau theory for α(r) = αnh(r), where nh(r) is taken
from the values of the DMRG ground state and the free parameters α = −2.331,
β = 14.465 are found by matching the DMRG data to Ginzburg-Landau theory.
We observe close agreement between both χk(r, µ) and ψk(r, µ).

FIGURE 6.4: Selected macroscopic wave functions of the Cooper condensate frag-
ments on a 32 × 6 cylinder at t′/t = 0.2, U/t = 10, and doping p = 1/16 corre-
sponding to six stripes. (a, c, e) Macroscopic wave functions χk(r, µ) as in (6.17)
with index k = 0, 2, 5. The color and width of the bars denote the value of χk(r)
on the links of the lattice. (b, d, f) y-averaged hole-density n̄h = (∑y nh(x, y))/W
of the ground state (gray, dotted) and comparison between the y-average of the
macroscopic wave functions χ̄k(r) from DMRG and model wave functions ψ̄k(r)
from the intertwined Ginzburg-Landau theory with α = −1.3 and β = 13. We re-
port close agreement between the DMRG data and the solutions from Ginzburg-
Landau theory.
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state with the holes evenly distributed in pairs along the x direction. Special care
had to be taken to make sure that this choice of the initial state does not lead to lo-
cal minima of the DMRG optimization. As the convergence properties are highly
dependent on the initial ansatz, we also ran the calculations with different starting
states to check that we are converging to a global minimum.

For the L = 24 system with open boundary conditions we insert nh = ∑r nh(r) =
4 holes in the system, corresponding to a hole-doping p = 1/36. We start by stabi-
lizing the ground state without any magnetic flux, ϕ = 0, at a bond dimension
D = 3500, and then scale up the magnetic flux to ϕ = 4π at D = 4000, using the pre-
viously obtained ground state as the initial state for DMRG. For the L = 32 system
with cylindrical boundary conditions, we insert nh = 12 holes, corresponding to a
hole-doping of p = 1/16, and we focus on the ϕ = 0 case only, to better showcase
how the different superconducting condensates arrange themselves over the differ-
ent stripes. For this larger system we show results at a bond dimension D = 8000.

We plot the spectrum εk of ρs as defined in (6.17) in Fig. 6.2 for both parame-
ter sets. In analogy with the previous results on the t-t′-J model [498], we observe
multiple dominant eigenvalues above a continuum. Again, the number of dominant
eigenvalues matches exactly the number of CDW maxima of the ground state. Thus,
the system exhibits the presence of nh/2 fragmented condensates, irrespective of the
boundary conditions and the presence or absence of a background magnetic field at
these parameter values.

To show the interplay between the CDW and the superconducting order we plot
the hole density nh(r) superimposed on the macroscopic wave functions. For the
L = 24 system with open boundary conditions, we show the macroscopic eigenvec-
tors χ0(r, µ), χ1(r, µ) in Fig. 6.3(a),(b), where the angle and the color of the arrows
represent the phase of χk(r, µ) and the length of its amplitude respectively. We ob-
serve the macroscopic wave functions to be supported on the hole-rich regions of the
ground state. Compared to an expected d-wave pattern for ϕ = 0, a finite magnetic
field induces rotation in the complex phase that increases by increasing magnetic
flux ϕ.

For the L = 32 system with cylindrical boundary conditions the three macro-
scopic eigenvectors χ0(r, µ), χ2(r, µ), χ5(r, µ) are shown in Fig. 6.4, both in the x − y
plane and averaged over the y-direction via

χ̄k(x) =
1

W

W

∑
y=1

χk((x, y), µ). (6.18)

Because χk(r, µ) is real we omit the arrows and only employ the color to define
the sign. In all cases, the d-wave pattern of the pairing and the disposition of the
superconducting pairing along the density stripes are clearly visible in alternating
red and blue colors for µ = x̂, ŷ. In particular, for every different condensate, the
macroscopic wave function has a different spatial modulation and correspondingly
a different number of nodes.

6.3.1 Details on DMRG simulations

To ensure consistent convergence of DMRG for the systems we have studied, some
care must be taken in choosing the initial states of the variational optimization. Here
we describe our strategy for obtaining initial states. For systems of width W =
4, we found that DMRG is not sensitive to the initial starting states, and we use
random initial states. Independent of the starting state, we find that the ground
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FIGURE 6.5: (a) Scaling of the energy with the truncation error for two different
ansätze in a 24 × 6 system with four holes. (b) Energy behavior for different
ansätze at fixed bond dimension χ = 4000 for a 32 × 6 system with 12 holes

FIGURE 6.6: (a, b) Initial ansatz wave functions ψ0
k(r) used as a starting point in

the minimization of the Ginzburg-Landau functional (6.19). (c, d) Obtained local
minima ψk(r) from these initial states after optimization. (e, f) Resulting d-wave
order parameters ψk(r, µ) as in (6.26) defined on the links of the lattice.
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state is antiferromagnetic with a checkerboard spin pattern, and the holes bind in
pairs and distribute evenly along the width of the system.

For width W = 6, we use starting states that are inspired by the ground states
we find with DMRG at W = 4, which we find provide better convergence than
random initial states. We have tried different starting states to test that our choice
of starting state doesn’t lead to a biased result. As an example of this, in Fig. 6.5(a),
we show results from DMRG calculations of an L = 24 system with open boundary
conditions and an equal number of total holes which were biased by the starting
states to have different hole configurations (two holes per stripe with more stripes
or four holes per stripe fewer stripes). By extrapolating the energy as a function of
DMRG truncation error [502], we can conclude that the state with 2 holes per stripe
is lower in energy.

In Fig. 6.5(b), for an L = 32 system with cylindrical boundary conditions and
nh = 12 holes, we compare the variational minimum energy for three different hole
configurations (two, four, and six holes per stripe) at fixed bond dimension and
as before we see that the energy is lowest for the state with two holes per stripe.
Throughout this work, we therefore show results using states that have two holes
per stripe.

A finite magnetic field ϕ in the Hamiltonian Eq. (6.7) introduces complex coef-
ficients. In DMRG, this leads to tensors that have complex elements, and therefore
the computation time increases by a factor of approximately four compared to the
case of zero magnetic field (ϕ = 0) where tensors with real elements can be used.
To improve the convergence time of calculations with finite magnetic field, we first
compute the ground state at some fixed bond dimension without a magnetic field
and use the state found by DMRG as a starting state for calculations at finite mag-
netic field.

Care must be taken to efficiently compute the two-body singlet-pairing density
matrix ρS. Naively, without the use of caching and sparsity, computing every ele-
ment of a general two-body density matrix on a system of size N = O(L) (where for
simplicity we assume a fixed width W) would scale as O(N5) since there are O(N4)
elements and computing a single element requires O(N) tensor contractions, which
would quickly become impractical. Luckily, there are multiple ways we can reduce
this scaling. First, we only need to compute the pairing on neighboring sites, which
reduces the scaling to O(N3) if no caching is used. If caching of intermediate tensor
contractions is used across the computation of different elements, this scaling can
be further reduced to O(N2). The code we use, which can compute general n-body
correlators and automatically cache intermediate tensors involved in computing dif-
ferent elements, can be found at [503].

6.4 Intertwined Ginzburg-Landau theory

In the following, we demonstrate that the macroscopic wave functions χk(r, µ) of the
fragmented Cooper condensates are well described by solutions of an intertwined
Ginzburg-Landau functional of the form

F [ψ] = α(r)|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣∣∣(−ih̄∇⃗+ 2eA
)

ψ
∣∣∣2 . (6.19)

The key aspect in (6.19) is the position dependence of the mass term α(r), which is
chosen to be

α(r) = αnh(r), (6.20)
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FIGURE 6.7: Both solutions ψk(r, µ) of the intertwined Ginzburg-Landau equa-
tion ((6.19)) with k = 0 (a) and k = 1 (b). We choose α = −2.331 and β = 14.465
on an L× L lattice with L = 16 with a total magnetic flux of ϕ = 1.64 · 2π through
the sample and open boundary conditions. The CDW is assumed to be of the
form nh(r) = sin2(2πx/L). The gray scale of the background squares is set by
the hole density nh(r). The color and length denote the phase and amplitude of
ψk(r, µ), where for µ = ŷ we shift the phase by π to reflect the d-wave nature of
the order parameter. We observe pinned vortices between the stripes in the k = 0
condensate.

so the charge and phase degrees of freedom are intertwined through directly cou-
pling to the hole density nh(r). This action is invariant under a gauge transformation

ψ(r) → e2iϕ(r)ψ(r), A(r) → A(r)−∇ϕ(r), (6.21)

reflecting the transformation rule of Cooper pairs. Minimizing the functional F [ψ]
by solving

δF [ψ]

δψ
= 0, (6.22)

yields the time-independent Ginzburg-Landau equations

1
2m∗

(
−ih̄∇⃗+ 2eA

)2
ψ = α(r)ψ + β|ψ|2ψ. (6.23)

Importantly, the criterion (6.22) from which (6.23) is derived is valid for every local
minimum of the functional (6.19). Hence, whenever there are multiple solutions
to (6.23) there are also multiple local minima of (6.19). In the absence of both the
nonlinear term (β = 0) and the vector potential (A = 0), the Ginzburg-Landau
equation ((6.23)) reduces to the linear time-independent Schrödinger equation. For
periodic boundary conditions, in the presence of a periodic modulation of the mass
term

α(r + λ) = α(r), (6.24)

Bloch’s theorem [504] states that this equation has multiple solutions labeled by the
wave number k,

ψk(r) = eik·ru(r), (6.25)

where u(r + λ) = u(r). Naturally, the question arises whether an analog of Bloch’s
theorem still holds in the presence of a nonlinearity (β ̸= 0). This has already been
addressed in the literature, where generalizations of Bloch’s theorem with additional
non-linearities have been proven [505–507]. Note that nonlinear Schrödinger equa-
tions in periodic potentials naturally occur when describing Bose-Einstein conden-
sates in optical lattices, see e.g. [507–510].
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In the presence of both a nonlinearity and the magnetic vector potential in two
dimensions, we solve (6.23) numerically. Our approach is to solve the equivalent
problem of minimizing F [ψ] via a local minimization algorithm and verifying that
the functional derivative in (6.22) vanishes. Different solutions corresponding to
distinct Bloch waves can be obtained by starting the optimization procedure with
distinct initial configurations within the basin of attraction of the particular solution,
cf. (6.4.1). We employ the BFGS algorithm [511–514] for local optimization and verify
the minimization condition (6.22) by monitoring the norm of the Jacobian matrix,
which we require to attain a numerical value < 10−7 in all studied geometries.

To compare the solutions of the intertwined Ginzburg-Landau equation ((6.23))
to the macroscopic wave functions from DMRG, we solve for ψk(r) on the vertices
of the square lattice. We then define the d-wave order parameter ansatz on the links
of the lattice as

ψk(r, µ) =

{
+ [ψk(r) + ψk(r + µ)] /2 if µ = x̂,
− [ψk(r) + ψk(r + µ)] /2 if µ = ŷ.

(6.26)

We compare the intertwined Ginzburg-Landau wave functions with the numeri-
cal results in Fig. 6.3(b) for a finite magnetic flux ϕ. At this set of parameters, DMRG
yields two fragments of the condensate while the Ginzburg-Landau equation ex-
hibits two distinct solutions, which we find using different initial states when min-
imizing the Ginzburg-Landau functional, cf. 6.6. Thus, there is a one-to-one corre-
spondence between the superconducting fragments and the distinct solutions of the
Ginzburg-Landau theory. Moreover, we observe that both the periodicity in χ0(r, µ)
and χ1(r, µ) and the rotation due to the magnetic field are correctly captured by the
Ginzburg-Landau solutions ψ0(r, µ) and ψ1(r, µ) and observe accurate agreement
in 6.3. To obtain such an agreement, the two model parameters α and β have to
be optimized. We performed a full parameter scan to determine optimal values of
α = −2.331, β = 14.465, cf. 6.8.

Next, we consider the case of multiple stripes without a magnetic field (ϕ = 0)
on a 32 × 6 cylinder. As we only obtain DMRG results for open boundary con-
ditions in the x-direction, the corresponding Ginzburg-Landau equation coupling
to the hole density from DMRG is not translationally invariant. Thus, we do not
immediately expect Bloch waves as solutions. Instead, we find solutions that are
localized on the individual stripes and compute their Fourier transform at a mo-
mentum k of the superlattice set by the charge density wave which serves as ansatz
wave functions ψk(r, µ) to compare to DMRG. A detailed discussion of this construc-
tion is given in (6.4.1). 6.4 again shows a close agreement between the ansatz wave
functions ψk(r, µ) from the intertwined Ginzburg-Landau theory and the condensate
fragments χk(r, µ). Moreover, this comparison reveals that the different fragments of
the condensate can be labeled by the quasi-momentum of the wave function on the
superlattice given by the charge density wave. This is the reason we used the label
‘k’ for both enumerating the fragments χk(r, µ) and model wave functions ψk(r, µ).
In fact, we observe a ‘dispersion’, in the sense that the smaller values of k have a
larger condensate fraction, i.e. k′ < k implies εk′ > εk, reflecting the fact that the
uniform condensate is the most dominant condensate.

The intertwined Ginzburg-Landau theory allows us to make predictions for larger
systems not accessible by DMRG simulations. As an example, we report in Fig. 6.7
the solutions of (6.19) on a 16× 16 grid with a CDW of the form nh(r) = sin2(2πx/L).
For this larger size we can see how, on the k = 0 condensate, vortices are effec-
tively pinned between the stripes for the chosen set of parameters α = −2.331 and
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β = 14.465. This set of parameters is the optimal choice when fitting to the DMRG
results in 6.3. However, we expect the behavior of the intertwined Ginzburg-Landau
equation to be more complex in general.

6.4.1 Details on solving the Ginzburg-Landau equations

We describe how to numerically attain the distinct solutions corresponding to the
distinct Bloch wave instanton solutions of (6.23). These are computed by numeri-
cally minimizing the parent Ginzburg-Landau functional (6.19) with different initial
starting vectors. To obtain a uniform solution we start with a constant initial state
ψ0

0, e.g.
ψ0

0(r) = 1.0, (6.27)

as shown in 6.6(a). ψ(r) is a function with complex values on the vertices of the lat-
tice. The values of hole-density nh(r) on the lattice are taken from measurements of
the ground state from DMRG. We obtain a local minimum of the Ginzburg-Landau
functional (6.19) by employing the BFGS algorithm [511–514]. Convergence is tested
by postulating the norm of the Jacobian matrix to be of size < 10−7. This allows
us to obtain the wave function ψ0(r), as shown in 6.6(b). To compare this to the
macroscopic wave function from DMRG, we compute the corresponding d-wave or-
der parameter on the links of the lattice by (6.26). The final model wave function
ψ0(r, µ) is then shown in 6.6(c).

To compute different solutions we initialize the minimization procedure with a
starting state of the form

ψ0
k(x, y) = sin(2πkx/L). (6.28)

The solution shown in 6.3(d) is obtained when setting k = 1. The corresponding
initial configuration is shown in 6.6(d). After finding the local minimum associated
with this initial solution, we obtain ψ1(r) as shown in 6.6(e), and finally the d-wave
order parameter ψd

1(r) shown in 6.6(f).

Choice of model parameters α and β

The proposed intertwined Ginzburg-Landau functional in (6.19) only has two pa-
rameters α and β up to an overall constant factor set by m∗. To obtain good agree-
ment we have investigated the dependence of the solutions on these parameters.
These have then been compared to the macroscopic wave functions χk(ri, µ) ob-
tained from DMRG. To find the optimal parameters for α and β we consider the
following metric comparing both these wave functions:

Dk = min
θ

∥ χk(ri, µ)− eiθψk(ri, µ) ∥2 . (6.29)

The phase θ is introduced due to the freedom of phase in the solution of both the
eigenvalue problem to compute χk(ri, µ) and the U(1) symmetry of the Ginzburg-
Landau functional (6.19). Since only two parameters are involved we can perform
a full parameter scan to obtain an optimal fit. The metrics (6.29) when fitting the
DMRG ground state with ϕ = 4π on the 24 × 6 open boundary sample as in Fig. 6.3
are shown in Fig. 6.8. The combined metric D0 +D1 is minimized for the parameters
α = −2.331 and β = 14.465.
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FIGURE 6.8: Full parameter scan for the metric (6.29) for model parameters α and
β of the intertwined Ginzburg-Landau equation when comparing to the DMRG
ground state shown in 6.3. The red star indicates the minimizing model param-
eters. Scan performed for a 24 × 6 sample with beckground flux per plaquette
ϕ = 4π.

Bloch waves from solutions of the Ginzburg-Landau equation in the multiple
stripe case

In the case of two stripes in the system, we demonstrated in 6.3 that the macroscopic
wave functions χk(r, µ) of the superconducting condensates in (6.17) are well de-
scribed by solutions ψk(r, µ) of the intertwined Ginzburg-Landau equations (6.23)
with two different initial ansatz wave functions, cf. 6.6.

For more than two stripes the situation is slightly complicated by the fact that our
DMRG simulations are performed on open boundary conditions in the x-direction.
Hence, the solutions to the Ginzburg-Landau equations do not a priori satisfy Bloch’s
theorem and, hence, momentum is not a good quantum number. We solve the inter-
twined Ginzburg-Landau equation (6.23) with the hole density given by the ground
state from DMRG on the cylindrical boundary conditions. Thereby, we obtain so-
lutions that are either uniform ψsol,0(r) or have a “kink” between stripe i and i + 1,
which we denote by ψsol,p(r), where p = 1, . . . , Nstr − 1 and Nstr denotes the number
of stripes in the system. Here, p labels the position of the stripe in the x direction.
These direct solutions ψsol,p(r) in the case of the 32 × 6 cylinder, with t′/t = 0.2 and
U/t = 10, are shown in 6.9(a). In this case, we consider the case of zero magnetic
flux, i.e. ϕ = 0. On an infinitely long cylinder with a perfectly periodic modulation
of the charge density, the position of the kink does not impact the value of the free
energy functional (6.19) due to translational invariance. Hence, all solutions with
only one kink are degenerate and the system can choose to form superpositions of
these states. We consider the wave functions

ψloc,p(r) = ψsol,p+1(r)− ψsol,p(r), (6.30)
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FIGURE 6.9: (a) Solutions of the intertwined Ginzburg-Landau equation in the
presence of six stripes on a 32× 6 cylinder with open boundary conditions in the
x-direction. We show the y-averaged values of ψk(r, µ). For every neighboring
pair of stripes a solution exhibiting a “kink” at their interface is found. (b) Cor-
responding localized wave functions ψloc,p as defined in (6.30).

FIGURE 6.10: Complete set of macroscopic wave functions of the ground state of
32 × 6 cylinder at t′/t = 0.2, U/t = 10, and doping p = 1/16, corresponding to
six stripes. Blue lines (triangles) denote wave functions from DMRG of the six
fragments of the condensate. Red lines are the corresponding solutions ψk(r) of
the intertwined Ginzburg-Landau theory as specified in (6.31) for α = −1.3 and
β = 13. Different panels show the results for different values of the momentum
k. We report close agreement between the DMRG data and the Ginzburg-Landau
ansatz for every single fragment.



6.5. Summary 127

which are localized on stripe p, as shown in 6.9(b). In order to construct Bloch wave
functions with a given quasi-momentum k we construct the wave functions

ψk(r) =
Nstr−1

∑
p=0

cos(π p · k/(Nstr − 1))ψloc,p(r). (6.31)

This procedure yields a wave function for k = 0, . . . , Nstr − 1, where k = 0 corre-
sponds to the uniform solution. The y-averaged solutions ψ̄k(x) in case of six stripes
for the 32× 6 cylinder is shown for select values of k in 6.4 and all values of k in 6.10.
We report close agreement between the Ginzburg-Landau ansatz wave functions
ψk(r) and the macroscopic wave functions of the dominant condensate fragments
from ground state DMRG. Remarkably, the labeling of Bloch states in (6.31) exactly
corresponds to the ordering of the fragments by their condensate fraction, i.e. the
k = 0 is the most dominant eigenvalue, k = 1 the second most dominant, etc., until
k = 5 corresponds to the least dominant eigenvalue.

6.5 Summary

The coexistence of CDWs and superconductivity has by now been reported by nu-
merous numerical studies of doped Hubbard- and t-J-like models [113–115, 473–
478]. In this chapter we showed by employing the Penrose-Onsager criterion for su-
perconductivity, that this coexistence yields a fragmentation of the superconducting
condensate in the case of the t-t′-U model on the square lattice, generalizing results
obtained for the t-t′-J model [498]. This is seen from investigating the eigenvalues
and eigenvectors of a suitably chosen two-body density matrix, which correspond
to the condensate fractions and the macroscopic wave functions of the Cooper pairs,
where more than one dominant eigenvalue is observed. The density matrix itself
and the particle density modulations corresponding to a CDW are obtained through
two-dimensional DMRG simulations on narrow cylinders or with open boundary
conditions. We found that the condensate fragments are localized on the individual
stripes of the CDW.

Moreover, we proposed a macroscopic field theory that describes the wave func-
tions of the fragmented condensate with remarkable precision. The key proposition
is the intertwined Ginzburg-Landau theory (6.19), where the mass term of the su-
perconducting order parameter is coupled to a static field proportional to the hole
density of the system. The CDW is seen as a periodic background potential that
leads to the existence of multiple solutions of the Ginzburg-Landau theory, which
correspond to Bloch waves at different momenta. These distinct solutions of the
intertwined Ginzburg-Landau theory have been shown to precisely describe the in-
dividual fragments of the superconducting condensates, see Fig. 6.3 and 6.4. Impor-
tantly, the model we proposes only features two parameters α and β (up to an overall
constant factor m∗) and can therefore be considered a minimal model coupling the
charge density to the superconducting order.

Our findings give rise to an intuitive picture of the behavior of pairs in the stripe-
fragmented superconductor. Here, a Cooper pair is in an unequal-weight super-
position of the condensate wave functions at different momenta. The individual
macroscopic wave functions constitute local minima of the Ginzburg-Landau free
energy functional (6.19) and do not necessarily yield the same value of the Ginzburg-
Landau free energy. Nevertheless, the Cooper pair can “tunnel” between these dif-
ferent minima. An energy difference between these minima is then reflected by a
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different occupation number in these modes, just as we observe in our DMRG data.
We numerically verified that the uniform condensate solution is a global minimum of
the Ginzburg-Landau functional, which explains why this mode is populated with
the highest condensate fraction, whereas finite momentum solutions have higher
values of the Ginzburg-Landau free energy and thus a smaller condensate fraction.

The final question we would like to address is whether a fragmented Cooper
condensate could be observed in materials. While our particular choice of param-
eters in the t-t′-U might not be the set of couplings expected in e.g. the Cuprate
superconductors, it is very likely that such supersolid phases with fragmented con-
densates can occur in more complex scenarios, which then capture the physics of
actual materials more accurately. Several studies employing scanning Josephson
tunneling spectroscopy have recently reported the emergence of a pair-density wave
state [481] in Bi2Sr2CaCu2O8+x [485, 515], in transition metal dichalcogenides [516],
or the heavy-fermion superconductor UTe2 [486]. A peak in the superconducting or-
der parameter at finite momentum has been detected, indicating the emergence of a
pair density wave. Besides this finite momentum peak, however, a zero momentum
contribution was also measured. We would like to point out that this scenario bears
a strong resemblance to our findings, as we propose that the Cooper pairs are in a
superposition of condensates with different momentum quantum numbers. Hence,
if a fragmented superconductor were to be realized, further peaks at different mo-
menta could indicate this state.
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Conclusions and outlook

In this thesis, we explored two of the most active topics in quantum many-body
physics, topology and frustration, using two complementary approaches: classical
numerical techniques, and the development of schemes to implement such models
in quantum simulators.

In Part II of the Thesis we studied topological phases exhibiting excitations with
fractional charge and statistics, called anyons, designing and analyzing platforms
to experimentally detect them. In Chapter 3, we focused on the anyons present in
Fractional Quantum Hall Effect (FQHE) liquids, called quasi-holes. We proposed
a scheme considering the insertion of impurities in a FQHE liquid. The impurities
interact with the liquid via a repulsive contact potential, leading them to bind to the
quasi-holes. Using a mean-field argument, we found that the angular momentum of
the impurities is renormalized by a filling-dependent factor due to this interaction
with the liquid. We confirmed this by numerical simulations, using exact diagonal-
ization and Monte Carlo sampling of trial wavefunctions. Importantly, for multiple
impurities we found that the angular momentum is proportional to the anyonic sta-
tistical parameter of the underlying quasi-holes. The anyonic nature of quasi-holes
can then be reconstructed by measuring the angular momentum of impurities in
FQHE liquids. We studied this scheme for Abelian quasi-holes in a Laughlin Liquid,
discussing its robustness when changing the filling, the type of interactions and the
nature of the impurities. Finally, we extended the results to non-Abelian anyons in
the Moore-Read state, finding that the relations derived for the angular momentum
still hold for them. Notably, as this type of anyons the observable statistical parame-
ter is a function of the number of particles in the system, this gives a direct signature
of their non-Abelian nature. This protocol opens up a new way to detect Abelian
and non-Abelian anyons in FQHE systems realized in quantum simulators, and can
possibly be extended to other types of FQHE states.

In Chapter 4 we proposed another technique to detect non-Abelian anyons in
another platform, one-dimensional topological superconductors. We focus on a re-
alistic model composed by a semiconducting nanowire on top of an ordinary s-wave
superconductor. The interplay of spin-orbit coupling in the wire and proximity-
induced superconductivity drives the system in an effective p-wave superconduct-
ing phase that can be tuned to be trivial or topological. In the latter, anyons are
expected to arise as edge states called Majorana Zero Modes. We developed a pro-
tocol to detect their presence through the analysis of the spectrum of the radiation
re-emitted by the wire, following an interaction with a pulse of intense light. In this
highly non-linear process, called High Harmonic Generation, the system can re-emit
light at frequencies up to hundreds of times the one of the incoming pulse. By com-
puting the time dependent electric dipole of the wire during this process numerically
solving the time dependent Schrödinger equation, we retrieved this spectrum. We
showed that from it, we could infer the full band structure of the system. In particu-
lar, we found that in the topological phase there is a sub-bandgap emission plateau
related to the presence of zero energy modes, absent in the trivial phase. We used
this signature to define a contrast order parameter, that we used to classify the full
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topological phase diagram of the system. Moreover, we showed that this plateau is
robust against the presence of disorder, confirming the topological protection, and
confirmed that it is due to edge states by focusing the pulses on the edge and the
bulk of the system and detecting two different behaviors. These results give an al-
ternative to transport techniques to detect Majorana Zero Modes, and it is a general
protocol that can be extended to other topological systems to detect their edge states,
in one dimension or higher.

In Part III, we studied how frustration can lead to the formation of exotic phases
in strongly-correlated lattice systems. In Chapter 5, we started by studying the
Bose-Hubbard model on a geometrically frustrated triangular ladder, showing that
three different phases can be stabilized with only contact interactions: a Bond Or-
der Wave, a Superfluid and a Chiral Superfluid. We then found that by adding a
nearest-neighbor density-density interaction a Density Wave can be stabilized, and
the transition between the Bond Order Wave and the Density Wave is compatible
with a Deconfined Quantum Critical Point (DQCP). We did so via VUMPS simu-
lations, computing the scaling of the correlation length and the central charge at
criticality as a function of the bond dimension. Finally, we proposed an experimen-
tal platform for the realization of these phases in optical lattices. By employing a
state-dependent potential at the antimagic wavelength we could engineer the hop-
pings and interactions necessary for the onset of frustration and DQCP, avoiding
heating processes that could suppress quantum fluctuations. We then moved to
revisiting the phase diagram of the extended Fermi-Hubbard model, where frustra-
tion is due to the competing contact and nearest-neighbor interactions. In this case
we found using VUMPS that a phase transition between a Bond Order Wave and
a Charge Density Wave is also compatible with a DQCP. Furthermore, in presence
of a spin-spin interaction another deconfined transition can arise between an Anti-
ferromagnetic phase and the Bond Order Wave. We show that these critical points
are associated with the presence of finite non-local order parameters, meaning that
these phase transitions are different in nature from the bosonic one. These results
give a comprehensive view on deconfined quantum criticality in one dimension and
provide a new platform to study these phenomena.

Finally, in Chapter 6 we explored how frustration leads to the onset of Supercon-
ductivity intertwined with Charge Density Waves in the two-dimensional Hubbard
model on the square lattice. In particular, we studied the system with frustrated
next-nearest-neighbor hoppings. By means of large scale DMRG simulations we
showed how it is possible to find coexistence between a Superconducting phase and
a Charge Density Wave for strong contact interactions and low hole doping. While
this confirms previous results, we most importantly showed how this intertwined
phase is associated with a fragmentation of the superconducting condensate. To
do so we employed the Penrose-Onsager criterion to study the two-body density
matrix, finding a number of condensate fragments equal to the number of density
stripes in the system. To show the close connection between the density modula-
tions and superconductivity, we developed an effective Ginzburg-Landau theory,
finding that a Landau free energy with only two free parameters proportional to the
charge density pattern, can reproduce all the macroscopic wavefunctions associated
to the fragments. Moreover, we showed that this picture is valid also in presence of
a magnetic field, with the phase pattern obtained from the Ginzburg-Landau theory
matching the one obtained from the DMRG simulations. These results give a new
perspective on the nature of the superconducting condensate in these systems, and a
new tool to approach the study of these intertwined phases, with possible extensions
to other models and other geometries.
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Appendix A

Exact Diagonalization algorithms

In this appendix we will describe the main techniques used to perform exact diago-
nalization of quantum systems. We will start by introducing the Lanczos method to
efficiently compute the lower eigenvalues and eigenvectors of a Hermitian matrix.
We will then pass to the description of the dynamics in the ED framework.

Lanczos method for ground state search

In this section we will describe in details the Lanzos method [191], one of the most
widespread algorithms in exact diagonalization to find the ground state of a quan-
tum system. This algorithm only computes the k lowest eigenvalues and eigenvec-
tors of a matrix without ever storing the full Hamiltonian in memory. This makes it
the most suited for the study of large systems, as it efficiently performs in both CPU
and memory.

Following the variational principle, we can write the energy functional as

E[Ψ] =
⟨Ψ|Ĥ||Ψ⟩
⟨Ψ|Ψ⟩ , (A.1)

that is minimized for |Ψ⟩ = |Ψ0⟩, with ground state energy E0 = E[Ψ0]. Starting
from an initial state |Ψ⟩ we can to minimize E by computing the gradient

δE[Ψ]

δ⟨Ψ| =
Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ −

⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩2 |Ψ⟩ ≡ |Ψa⟩, (A.2)

and lowering the energy by moving in the opposite direction E[Ψ − α|Ψa⟩] < E[Ψ].
To find the optimal value of the real parameter α we can minimize the function E[Ψ−
α|Ψa⟩], noting that this corresponds to diagonalizing H in the subspace

K1 := span{|Ψ⟩, |Ψa⟩} = span{|Ψ⟩, Ĥ|Ψ⟩}. (A.3)

We start by writing an orthonormal basis of K1 by taking |v0⟩ = |Ψ⟩/
√
⟨Ψ|Ψ⟩ and

orthogonalizing H|Ψ⟩ with respect to |v0⟩:

b1|v1⟩ := |ṽ1⟩ = H|v0⟩ − a0|v0⟩, (A.4)

where a0 = ⟨v0|H|v0⟩ is the orthogonal projection and b1 =
√
⟨ṽ1|ṽ1⟩ is a normal-

izing constant. By defining a1 = ⟨v1|H|v1⟩, we can write the Hamiltonian in the
subspace K1 as

HK1 =

(
a0 b1
b1 a1

)
. (A.5)
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The ground state of HK1 yields the optimal linear combination, that is the optimal
value of α that minimizes the energy.

This process can be iterated until convergence to the ground state of H is achieved
with the desired precision. We can however perform all the steps at once by con-
structing the Krylov subspace KL of dimension L as

KL := span{|v0⟩, Ĥ|v0⟩, Ĥ2|v0⟩, . . . , ĤL−1|v0⟩}. (A.6)

Diagonalizing H in KL amounts to performing L − 1 steps of gradient descent. To
do this we can construct an orthonormal basis of KL by repeatedly orthogonalizing
the vectors |ṽi⟩ = Ĥi|v0⟩ with respect to the previous ones:

bn+1|vn+1⟩ := |ṽn+1⟩ = Ĥ|vn⟩ − an|vn⟩ − bn|vn−1⟩, (A.7)

with an = ⟨vn|H|vn⟩ and bn = ⟨vn|H|vn−1⟩. In this way the projected Hamiltonian
HKL becomes a tridiagonal matrix

HKL =


a0 b1 0 . . . 0
b1 a1 b2 . . . 0
0 b2 a2 . . . 0
...

...
...

. . .
...

0 0 0 . . . aL−1

 . (A.8)

By denoting as ΨL and EL the ground state and the ground state energy of HKL , we
can then write the ground state of H as

|Ψ0⟩ =
L−1

∑
i=0

ΨL
i |vi⟩. (A.9)

Dynamics in the Exact Diagonalization framework

The solution of the time-dependent Schrödinger equation can usually be represented
in terms of a unitary time evolution operator U(t) such that

|Ψ(t)⟩ = U(t)|Ψ(0)⟩, i∂tU(t) = H(t)U(t). (A.10)

The solution of this equation for a time dependent Hamiltonian H(t) is usually ob-
tained by the time-ordered exponential

U(t) = T exp
(
−i
∫ t

0
H(t′)dt′

)
. (A.11)

The computation of this exponential is numerically infeasible, and we usually resort
to a trotterization of the time evolution operator. This amounts to approximating the
exponential as a product of N infinitesimal evolutions over a time step δt = t/N of
the form

U(t) ≈
N−1

∏
n=0

e−iH(nδt)δt. (A.12)

By using efficient trotterization, usually the error per step compared to the exact
solution is of the order of δt2 [517]. The problem then reduces to computing the
infinitesimal evolution operator e−iH(nδt)δt. One way to do that is to use the Crank-
Nicholson method
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e−iH(nδt)δt ∼ 1 − iH(nδt)δt/2
1 + iH(nδt)δt/2

, (A.13)

where the denominator indicates the inverse of the matrix. This approach, compared
to a naive discretization e−iH(nδt)δt ∼ 1 − iH(nδt)δt, has a smaller error of the order
of δt3 and keeps the unitary nature of the evolution operator at any step.
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Appendix B

Monte Carlo Integration of ansatz
FQHE wavefunctions

For large systems of more than N ∼ 10 particles, the Exact Diagonalization of the
full Hamiltonian of majority particles interacting with impurities in the lowest Lan-
dau Level becomes intractable. In this scenario, by assuming that the impurities
directly bind to quasi-holes, we can compute the ground state quantities by directly
sampling the ansatz wavefunction representing the liquid-impurities mixture. The
correctness of this approach has been crosschecked with exact diagonalization re-
sults for small sizes. In this Appendix we briefly review the algorithm that we used
to perform the Monte Carlo integration.

Our goal is to compute the expectation value of quantities on either the Laughlin
state or the Moore-Read state. We will generally call it Ψ({z}, {w}), and it will be a
function of the positions of the majority particles and the impurities.

The expectation value of a generic operator O can be written as

⟨O⟩ = ⟨Ψ|O|Ψ⟩
⟨Ψ|Ψ⟩ =

∫
dNzdnwΨ∗({z, w})OΨ({z, w})∫
dNzdnwΨ∗({z, w})Ψ({z, w}) . (B.1)

The Monte-Carlo procedure then starts from rewriting this integral in terms of a
probability distribution P({z, w}):

⟨O⟩ =
∫

dNzdnwP({z, w})OΨ({z, w})
Ψ({z, w}) , P({z, w}) = |Ψ({z, w})|2∫

dNzdnw|Ψ({z, w})|2 .

(B.2)
We can then compute the expectation value ⟨O⟩ by sampling configurations from the
probability distribution P({z, w}) and computing the average of OΨ({z, w})/Ψ({z, w})
over the samples

⟨O⟩ ≈ 1
N

N

∑
i=1

OΨ({zi, wi})
Ψ({zi, wi})

, (B.3)

where N is the number of samples and {zi, wi} are the sampled configurations. The
error of this estimate scales as 1/

√
N. This procedure is particularly efficient for

FQH ansatz states and the computation of the angular momentum. We can indeed
write the total angular momentum operator as

Lz =
N

∑
i=1

zi∂zi +
n

∑
j=1

wj∂wj + h.c., (B.4)

or, if we are only interested in the impurities’ contribution to the angular momen-
tum, we can sum only over the impurities coordinates. As these are differential
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operators, we can write the term to be summed on in (B.3) as

zi∂zi Ψ({z, w})
Ψ({z, w}) = zi∂zi log Ψ({z, w}). (B.5)

This means that we are only interested in computing the logarithm of the states. As
the FQH wavefunctions are polynomials in the coordinates, this amounts to com-
puting the sum of linear terms (plus a quadratic term to account for the exponential
decay). For Moore-Read states the Pfaffian can be computed by efficient algorithms
[518]. Finally, directly computing the logarithm of the wavefunctions also solves the
problem of their magnitude. Indeed, the FQHE wavefunctions are not normalized,
and can have values ranging several orders of magnitudes, leading to numerical
instabilities.

The algorithm is then structured as follows:

1. Generate a random configuration of particles and impurities coordinates {z, w},
sampled from a uniform distribution, and compute log Ψ({z, w}).

2. Generate a random shift of the particles and impurities positions {δz, δw},,
sampled from a uniform distribution. Compute the value of the wavefunction
at the shifted position log Ψ({z′, w′}).

3. Accept or reject the new configuration using a Metropolis rule. Generate a ran-
dom number r ∈ [0, 1) from a uniform distribution. If r < exp(2 log Ψ({z′, w′})−
2 log Ψ({z, w})), accept the new configuration, otherwise keep the old one.

4. Repeat steps number 2. and 3. for a fixed number of times to thermalize the
system. In this way the final configuration will be sampled from the probabil-
ity distribution P({z, w}).

5. Compute the values of the total and impurities angular momenta on this con-
figuration.

6. Repeat steps 1. to 5. for N times, and compute the average of the angular
momenta over all the samples.
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Appendix C

Bosonization analysis of
deconfined quantum critical points
in the Hubbard model

Interacting spinful one dimensional fermions in the low energy limit are usually well
described by a sine-Gordon model [177]

HSG
ν

.
=

1
2

∫
dx
[

vνKν(∇ϑν)
2 +

vν

Kν
(∇φν)

2 +
gν

π2a2 cos(
√

8πφν)

]
. (C.1)

Here vν, Kν and gν are the excitations velocities, Luttinger parameters, and scat-
tering amplitudes respectively while φν(x), ϑν(x) (ν = c, s denote the charge and
spin channels respectively) are bosonic fields. While the first two terms in Eq. (C.1)
describe free fermions and thus promote fluctuations of the bosonic fields, the last
term favors the pinning of φν(x) to specific fixed values. In particular, within a RG
analysis the equation

2πvν(Kν − 1) ≥ |gν| (C.2)

describes the gapless condition for the ν channel. On the other hand, a pinned
value of φν signals the presence of a finite gap. Here, we are exactly interested in
those phases where the spontaneous breaking of discrete symmetries (SSB), associ-
ated with the presence of a local order, gives rise to a finite gap in both the charge
and spin channel. This fact is motivated by the possible appearance of continuous
phase transitions between different SSB regimes thus representing examples of the
recently introduced concept [roberts2019a, 173, 174, 383–385, 503] of 1D deconfined
quantum critical points (DQCP).

Within the sine-Gordon description above, three possible fully gapped SSB phases
can occur: an antiferromagnet (AF) with perfect alternation between fermions with
opposite spin associated with the breaking of the spin rotational symmetry; a bond-
ordered-wave (BOW) with an effective lattice dimerization induced by the breaking
of the site-inversion symmetry; a charge-density-wave (CDW) with perfect alter-
nation between empty sites and fermionic pairs generated by the breaking of the
translational symmetry. These phases are captured by the behavior of the relative
microscopic order parameters

OAF(j) ≡ (−1)j(nj↑ − nj↓),

OBOW(j) = (−1)j ∑
σ

(c†
jσcj+1σ + h.c.),

OCDW(j) = (−1)j ∑
σ

(njσ − 1).

(C.3)
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Hubbard model

The standard field theory treatment of 1D lattice systems of correlated fermions is
based on a weak coupling approach in the continuum limit, known as bosonization.
Upon replacing the discrete sum over sites j with integrals over the coordinate x,
namely: ∑j → 1

a

∫
dx, with a lattice spacing, the discrete ladder operators cjσ, c†

jσ are
replaced with fermionic fields. Thanks to the peculiar nature of the one dimensional
Fermi surface, which consists of just two disconnected points ±kF, these fields can
be conveniently rewritten as a sum of right (R) and left (L) fields ψχσ(x) (χ = R, L),
each of which acts as ladder operator at one of the two Fermi points. Explicitly:

cjσ →
√

a
[
eikFxψRσ(x) + e−ikFxψLσ(x)

]
(C.4)

Then, the bosonization procedure amounts to rewrite ψχσ(x) in terms of bosonic
fields, namely:

ψχσ =
ηχσ

2πα
ei
√

π
2 [χφc(x)+ϑc(x)+σ(χφs(x)+ϑs(x))] , (C.5)

where ηχσ are Klein factors preserving the anticommutation rules and α ∼ a is an
ultraviolet cutoff. In this way, Eqs. (C.3) can be rewritten in terms of the bosonic
field appearing in Eq. (C.1)

OAF(x) ∼ cos(
√

2πφc) sin(
√

2πφs),

OBOW(x) ∼ cos(
√

2πφc) cos(
√

2πφs),

OCDW(x) ∼ sin(
√

2πφc) cos(
√

2πφs).

(C.6)

Within a RG treatment, one can show that in each of the three phases both the charge
and spin bosonic field φν are pinned to specific values [519, 520], see the table below

φs φc

AF
√

π
8 0

BOW 0 0

CDW 0
√

π
8

It is now important to relate the behavior of the two possible gaps to the Luttinger
constants Kν. Indeed, one can rigorously show that Kν = 0 implies the presence
of a finite gap in the ν channel. One can now derive the behavior of the two-point
correlation functions relative to the order parameters in Eq. (C.6). As demonstrated
in the table above, φs has the same value for BOW and CDW. This point shows that
the spin gap remains open at the transition between these two phases and therefore
that Ks = 0. On the other hand, this is not the case for φc. Crucially, it is possible to
demonstrate that at this transition point

⟨OBOW(r)†OBOW(0)⟩ ∼ r−Kc ∼ ⟨OCDW(r)†OCDW(0)⟩ . (C.7)

Eq. (C.7) thus proves that at this transition point the correlators capturing the BOW
and CDW phases vanish algebraically with same critical exponent. This result thus
unambiguously rules out a possible first order phase transition and, at the same
time, proves the presence of deconfined quantum critical point associated with the
closing uniquely in one point of the charge gap. Moreover, we can derive further
properties occurring at this DQCP. Specifically, as the spin gap remain open and
φs = 0 this implies the presence of an emergent SU(2) symmetry associated with
the presence of a Luther-Emery phase captured by the long-range order of the parity
operator
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C(s)
P (r) = ⟨∏

j≤r
eiπ(nj↑−nj↓)⟩ ∼ ⟨[cos(

√
2πφs)]

2⟩. (C.8)

A similar analysis can be performed for the AF-BOW transition. Contrary to the just
discussed case, here φc = 0 in both phases while φs acquires different values. In this
way one can understand that at the BOW-AF transition point the charge gap remains
finite so that Kc = 0. An analogous analysis as before can prove that at the transition
point

⟨OAF(r)†OAF(0)⟩ ∼ r−Ks ∼ ⟨OBOW(r)†OBOW(0)⟩ . (C.9)

This behavior again proves the presence of a DQCP with emergent SU(2) symmetry
this time associated with a charge gapped Mott insulator captured by the long-range
behavior of the parity charge operator

C(c)
P (r) = ⟨∏

j≤r
eiπ(nj−1)⟩ ∼ ⟨[cos(

√
2πφc)]

2⟩ . (C.10)

While these results clearly show the presence of DQCPs, special attention has to
be devoted to the CDW-AF transition. Specifically, in these two phases φs and φc
have different values, implying the closure of both gaps at the transition point. This
scenario is thus compatible uniquely with the presence of fully gapless Luttinger-
Liquid (LL) at criticality. In a LL the correlators have to follow the specific decay
r−(K∗

c +K∗
s ), where K∗

ν are the fixed point of Eq. (C.2). Here, microscopic parameters
of specific Hamiltonians can in principle allow for the condition K∗

c = K∗
s = 1 to be

fulfilled and thus for a continuous phase transition. If we now apply bosonization
to the Hubbard model in Eq.(5.33), we can derive the following expressions for the
Luttinger parameters, velocities and scattering amplitudes in Eq. (C.1):

vν = 2at(2 − Kν) ,

Kc = 1 − 1
4πt

(
U + 6V +

Jz

2
)

,

Ks = 1 − 1
4πt

(
−U + 2V + 3

Jz

2
)

,

gc = −
(
U − 2V +

Jz

2
)
a = −gs . (C.11)

At first order in the field expansion in Eq. C.5, bosonization predicts the three tran-
sitions described above to occur on the same line

U +
Jz

2
= 2V . (C.12)

Notice that by including a correlated hopping term as done in [520], the BOW-
CDW and AF-BOW become distinct. Apart from this limitation imposed by our
approximation, the expressions in Eqs. (C.11) allow observing that the condition
K∗

c = K∗
s = 1 is never fulfilled. In particular, at the AF-CDW transition we would

have Kc ≈ 1 − 2V
πt and Ks ≈ 1 − Jz

2πt , which for any non-vanishing interaction are
both lesser than 1. Since bosonization is believed to provide accurate results in the
low energy limit, VUMPS calculations as in Chapter 5 are necessary to explore the
possible appearance of DQCPs away from this regime.
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M. Lewenstein, T. Grass, and U. Bhattacharya. “Topological Phase Detection
through High-Harmonic Spectroscopy in Extended Su-Schrieffer-Heeger Chains”.
In: Phys. Rev. B 108.21 (2023), p. 214104.

[308] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum.
“Theory of High-Harmonic Generation by Low-Frequency Laser Fields”. In:
Phys. Rev. A 49.3 (1994), pp. 2117–2132.

[309] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, and T.
Brabec. “Theoretical Analysis of High-Harmonic Generation in Solids”. In:
Phys. Rev. Lett. 113.7 (2014), p. 073901.

[310] Y.-J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwen-
hoven, and S. De Franceschi. “Tunable Supercurrent Through Semiconduc-
tor Nanowires”. In: Science 309.5732 (2005), pp. 272–275.

[311] M. Leijnse and K. Flensberg. “Introduction to Topological Superconductivity
and Majorana Fermions”. In: Semicond. Sci. Technol. 27.12 (2012), p. 124003.

[312] M. Kanega, T. N. Ikeda, and M. Sato. “Linear and Nonlinear Optical Re-
sponses in Kitaev Spin Liquids”. In: Phys. Rev. Res. 3.3 (2021), p. L032024.



160 Bibliography

[313] J.-Y. Guan et al. “Experimental Evidence of Anomalously Large Supercon-
ducting Gap on Topological Surface State of β-Bi2Pd Film”. In: Sci. Bull. 64.17
(2019), pp. 1215–1221.

[314] K. Hagiwara et al. “Superconducting Gap and Pseudogap in the Surface
States of the Iron-Based Superconductor PrFeAsO1-y Studied by Angle-Resolved
Photoemission Spectroscopy”. In: Phys. Rev. Res. 3.4 (2021), p. 043151.

[315] J. C. Baggesen and L. B. Madsen. “On the Dipole, Velocity and Acceler-
ation Forms in High-Order Harmonic Generation from a Single Atom or
Molecule”. In: J. Phys. B At. Mol. Opt. 44.11 (2011), p. 115601.

[316] M. Dziurawiec, J. O. de Almeida, M. L. Bera, M. Płodzień, M. M. Maśka, M.
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