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Abstract

(English) Understanding the cause and effect relationships behind ob-
served correlations is central to how we reason and interact with the world.
Causal relationships help us make sense of the patterns we observe and
predict what interventions in nature might lead to a desired outcome. These
patterns can be mathematically framed as the joint probability distribution of
a set of classical random variables which capture information gathered from
the environment. This information may range from abstract data, like survey
response statistics, to physical events, such as the probability of triggering
a photon detector. A fundamental question is that of causal compatibility:
Are the observed correlations compatible with a given causal explanation?
A causal explanation can be expressed in terms of causal models, which
can be systematically studied with the tools provided by the field of causal
inference. Causal models consist of observable random variables with known
probability distributions and latent variables with unknown distributions
which, together, explain observed correlations through causal influences,
that is, functional relationships between the values of these variables. Quan-
tum theory—one of the most accurate theories at a fundamental level—is
inherently probabilistic. Measurement results are, therefore, represented
as random variables. This naturally leads to causal analysis: Which cause
and effect relationships can explain observed measurement statistics in a
quantum experiment? One of the simplest quantum experiments is that of
two distant parties performing space-like separated, independently chosen
measurements on a shared quantum state. In 1964, John Bell showed that in
this experiment quantum theory predicts correlations that defy any classical
common-cause explanation through a result known as Bell’s Theorem. This
phenomenon is known as Bell nonlocality. This thesis aims to operationally
characterize the fundamental differences between classical and quantum
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theories within causal scenarios beyond Bell’s common-cause scenario. Such
an understanding may eventually help integrate quantum phenomena into
a coherent, conceptually clear framework of causality. Towards this goal,
we explore how classical and quantum causal models diverge in operational
tasks in specific causal scenarios. We focus on simple scenarios that go
beyond Bell’s, while seeking to discover new forms of quantum advantage
that are fundamentally different from traditional Bell nonlocality. Our goal
is to link these new forms of quantum advantage to different nonclassical
features of quantum theory and study their potential applications. A critical
component of this research is testing for the causal compatibility of specific
correlations with a given causal model. As such, an important part of this
thesis is dedicated to expanding and refining the scope of current methods
for testing causal compatibility.

(Catalan) Entendre les relacions de causa i efecte darrere de les correla-
cions observades és central per a la nostra manera de raonar i interactuar
amb el món. Les relacions de causa i efecte ens ajuden a donar sentit als
patrons que observem i predir quines intervencions en la naturalesa podrien
portar a un resultat desitjat. Aquests patrons es poden emmarcar matemàti-
cament com la distribució de probabilitat conjunta d’un conjunt de variables
aleatòries clàssiques que capturen informació recollida de l’entorn. Aquesta
informació pot variar des de dades abstractes, com estadístiques de respostes
d’enquestes, fins a esdeveniments físics, com la probabilitat d’activar un
fotodetector. Una pregunta fonamental és la de la compatibilitat causal: Són
les correlacions observades compatibles amb una explicació causal donada?
Una explicació causal pot expressar-se en termes de models causals, els
quals poden ser estudiats sistemàticament amb les eines proporcionades pel
camp de la inferència causal. Els models causals consisteixen en variables
aleatòries observables amb distribucions de probabilitat conegudes i variables
latents amb distribucions desconegudes que, juntes, expliquen les correlacions
observades a través d’influències causals, és a dir, relacions funcionals entre
els valors d’aquestes variables. La teoria quàntica—una de les teories més
precises a nivell fonamental—és inherentment probabilística. Per tant, els
resultats de les mesures es representen com a variables aleatòries. Això
porta naturalment a l’anàlisi causal: Quines relacions de causa i efecte
poden explicar els resultats obtinguts en un experiment quàntic? Un dels
experiments quàntics més simples és aquell en què dos laboratoris distants
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realitzen mesures triades independentment i separades espacialment sobre
un estat quàntic compartit. El 1964, John Bell va demostrar que en aquest
experiment la teoria quàntica prediu correlacions que desafien qualsevol
explicació clàssica en termes de causes comunes. Aquest resultat és conegut
com el Teorema de Bell, i el fenomen com no localitat de Bell. Aquesta tesi
té com a objectiu caracteritzar operacionalment les diferències fonamentals
entre les teories clàssiques i quàntiques dins d’escenaris causals més enllà de
l’escenari de causa comuna de Bell. Aquest enteniment eventualment pot
ajudar a integrar fenòmens quàntics en un marc de causalitat coherent i
conceptualment clar. Per assolir aquest objectiu, explorem com els models
causals clàssics i quàntics divergeixen en tasques operacionals en escenaris
causals específics. Ens centrem en escenaris simples que van més enllà dels
de Bell, mentre busquem descobrir noves formes d’avantatge quàntic que són
fonamentalment diferents de la no localitat de Bell tradicional. El nostre
objectiu és vincular aquestes noves formes d’avantatge quàntic amb diferents
propietats no clàssiques de la teoria quàntica i estudiar les seves aplicacions
potencials. Un component crític d’aquesta investigació és provar la compati-
bilitat causal de correlacions específiques amb un model causal donat. Així
doncs, una part important d’aquesta tesi està dedicada a expandir i refinar
l’abast dels mètodes actuals per provar la compatibilitat causal.

(Castilian Spanish) Entender las relaciones de causa y efecto detrás
de las correlaciones observadas es central para nuestra forma de razonar e
interactuar con el mundo. Las relaciones de causa y efecto nos ayudan a dar
sentido a los patrones que observamos y predecir qué intervenciones en la
naturaleza podrían llevar a un resultado deseado. Estos patrones pueden
enmarcarse matemáticamente como la distribución de probabilidad conjunta
de un conjunto de variables aleatorias clásicas que capturan información
recogida del entorno. Esta información puede variar desde datos abstractos,
como estadísticas de respuestas de encuestas, hasta eventos físicos, como la
probabilidad de activar un fotodetector. Una pregunta fundamental es la de
la compatibilidad causal: ¿Son las correlaciones observadas compatibles con
una explicación causal dada? Una explicación causal puede expresarse en
términos de modelos causales, los cuales pueden ser estudiados sistemática-
mente con las herramientas proporcionadas por el campo de la inferencia
causal. Los modelos causales consisten en variables aleatorias observables
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con distribuciones de probabilidad conocidas y variables latentes con dis-
tribuciones desconocidas que, juntas, explican las correlaciones observadas
a través de influencias causales, es decir, relaciones funcionales entre los
valores de estas variables. La teoría cuántica—una de las teorías más precisas
a nivel fundamental—es inherentemente probabilística. Por lo tanto, los
resultados de las mediciones se representan como variables aleatorias. Esto
lleva naturalmente al análisis causal: ¿Qué relaciones de causa y efecto
pueden explicar las resultados obtenidos en un experimento cuántico? Uno
de los experimentos cuánticos más simples es aquel en el que dos laboratorios
distantes realizan mediciones independientemente elegidas y espacialmente
separadas sobre un estado cuántico compartido. En 1964, John Bell demostró
que en este experimento la teoría cuántica predice correlaciones que desafían
cualquier explicación clásica en terminos de causas comunes. Este resultado
es conocido como el Teorema de Bell, y el fenómeno como no localidad
de Bell. Esta tesis tiene como objetivo caracterizar operacionalmente las
diferencias fundamentales entre las teorías clásicas y cuánticas dentro de
escenarios causales más allá del escenario de causa común de Bell. Tal
entendimiento eventualmente puede ayudar a integrar fenómenos cuánticos
en un marco de causalidad coherente y conceptualmente claro. Hacia este
objetivo, exploramos cómo los modelos causales clásicos y cuánticos divergen
en tareas operacionales en escenarios causales específicos. Nos enfocamos
en escenarios simples que van más allá de los de Bell, mientras buscamos
descubrir nuevas formas de ventaja cuántica que son fundamentalmente
diferentes de la no localidad de Bell tradicional. Nuestro objetivo es vin-
cular estas nuevas formas de ventaja cuántica con diferentes propiedades
no clásicas de la teoría cuántica y estudiar sus potenciales aplicaciones. Un
componente crítico de esta investigación es probar la compatibilidad causal
de correlaciones específicas con un modelo causal dado. Como tal, una parte
importante de esta tesis está dedicada a expandir y refinar el alcance de los
métodos actuales para probar la compatibilidad causal.
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Chapter 1

Overview

1.1 Motivation
Understanding the cause and effect relationships behind observed corre-
lations is central to how we reason and interact with the world. Causal
relationships help us make sense of the patterns we observe and predict what
interventions in nature might lead to a desired outcome. These patterns
can be mathematically framed as the joint probability distribution of a set
of classical random variables which capture information gathered from the
environment. This information may range from abstract data, like survey
response statistics, to physical events, such as the probability of triggering
a photon detector. A fundamental question is that of causal compatibility:
Are the observed correlations compatible with a given causal explanation?
A causal explanation can be expressed in terms of causal models, which
can be systematically studied with the tools provided by the field of causal
inference [Pea09]. Causal models consist of observable random variables
with known probability distributions and latent variables with unknown
distributions which, together, explain observed correlations through causal
influences, i.e., functional relationships between the values of these variables.

Quantum theory—one of the most accurate theories at a fundamental
level—is inherently probabilistic. Measurement results are, therefore, repre-
sented as random variables. This naturally leads to causal analysis: Which
cause and effect relationships can explain observed measurement statistics
in a quantum experiment? One of the simplest quantum experiments is
that of two distant parties performing space-like separated, independently
chosen measurements on a shared quantum state. Physical principles such as
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no-superdeterminism and local causality imply that, due to space-like separa-
tion, any correlation between the measurement results must be coincidental,
rather than causal [WC17b]. This type of coincidental link, known as a spu-
rious correlation, occurs when two variables are correlated but have no direct
causal influence on each other. Instead, this correlation can be explained by
a third variable, known as a common-cause variable, which influences both
variables in question. In 1964, John Bell showed that in this experiment
quantum theory predicts correlations that defy any classical common-cause
explanation through a result known as Bell’s Theorem [Bel64]. Bell’s Theo-
rem describes how quantum theory violates so-called Bell inequalities, which
describe upper bounds on the strength of correlations achievable via classical
common-causes; this phenomenon is known as Bell nonlocality. The term
“nonlocality” reflects the prevalent view within the scientific community that
nature is not superdeterministic and therefore, that it is the principle of
local causality that is taken to be incompatible with quantum theory.

Overview of Bell nonlocality. Exploring the mismatch between quantum
theory and local causality gave rise to an extensive field of research focused
on understanding this incompatibility [Bru+14]. Significant progress has
been made in comprehending the role of various nonclassical features of
quantum theory in producing Bell nonlocal correlations, such as measurement
incompatibility and quantum entanglement. Measurement incompatibility
describes quantum measurements or properties that cannot be assigned
a well-defined value at the same time, a concept with no counterpart in
classical theories. Quantum entanglement refers to correlations between
quantum systems strong enough that it appears as if these systems can
affect each other instantaneously, even when separated by large distances.
This behaviour, colloquially known as “spooky action at a distance”, led
Einstein, Podolsky and Rosen to argue in 1935 that quantum theory must
be an incomplete theory of reality [EPR35].

Some key advancements in the field include understanding that quantum
entanglement and Bell nonlocality correspond to different types of resources,
as recently formalized in Ref. [Sch+23], or that quantum joint measurability—
a generalization of quantum measurement incompatibility—is equivalent to
the phenomenon of “spooky action at a distance”, formally known as EPR
steering [WJD07; CS16; Uol+20]. Another important development was the
creation of device-independent (DI) protocols. The term “device-independent”
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reflects the fact that these protocols do not require any assumptions about
the inner workings of the devices producing the observed correlations. This
is appealing from a practical perspective, as one can certify the correct
functioning of a device without needing to trust its manufacturer. Bell
nonlocality is central to various DI protocols such as DI quantum key
distribution [Eke91; Ac07], DI certified randomness generation [AM16] and
self-testing [MY98; MY04; ŠB20]. Self-testing, in particular, constitutes one
of the strongest types of certification as it allows for the DI certification of a
quantum device’s internal operations—the implemented quantum states and
measurements—based solely on the observed correlations.

Bell’s Theorem has undergone a long history of experimental scrutiny.
This started in the 1970s, with the experimental proposal of Clauser, Horne,
Shimony and Holt [Cla+69] which sparked the first experimental test of
Bell nonlocality [FC72]. This test, while important, relied on additional
assumptions beyond those intrinsic to Bell’s Theorem. Over the years,
the experimental tests grew in precision and sophistication (for example,
Refs. [AGR81; AGR82; Wei+98] among others), culminating in a series of
experiments in 2015 that were designed to eliminate any extra assumptions,
and address all the loopholes that had been a subject of debate in earlier
experiments [Giu+15a; Sha+15; Hen+15]. These experiments lead to a broad
consensus within the scientific community about the empirical validation of
Bell’s Theorem. In 2022, Alain Aspect, John Clauser and Anton Zeilinger
were awarded the Nobel Prize in Physics for their contributions to the
experimental verification of Bell’s Theorem [Nev22]. For a more in-depth
review of Bell nonlocality, see Ref. [Bru+14].

Beyond Bell’s Theorem. Bell’s Theorem has been crucial for demon-
strating the inadequacy of classical notions of causality to explain phenomena
at nature’s most fundamental level. However, it does not provide guidance
on how to understand causality at this fundamental level. In classical set-
tings, the concept of causality is well-defined, where causal influences are
seen as functional relationships between classical variables, and probabilities
represent incomplete knowledge about these variables. This clarity, however,
does not extend to quantum contexts. Here, the interpretation of probability,
or amplitudes, remains ambiguous and largely depends on one’s preferred
interpretation of quantum theory. Furthermore, quantum theory allows for
causal phenomena with no classical counterparts. For instance, quantum
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theory seems to be compatible with a superposition of causal orders [OCB12;
Chi+13], the significance of which is difficult to understand, and where
fundamental questions like its physical realizability are still a matter of
debate within the scientific community [Ore19; VR23].

There exist proposals which expand the classical notions of causality
to include quantum phenomena, such as the framework of quantum causal
models [All+17; BLO20; BLO21]. These proposals, while mathematically
consistent, do not fully solve all conceptual issues surrounding the notion of
causality in quantum theory. However, they provide a framework in which
to systematically explore the full range of quantum behaviour. Given that
our interaction with the world is in terms of classical information, it is
meaningful to study the classical information produced by quantum causal
models, that is, classical probability distributions. These distributions can
be contrasted against those that can be generated by classical theories in a
similar “causal scenario”.

The concept of a “causal scenario” may be articulated independently
of any specific theory through what is known as the operational frame-
work [DCP17]. The operational framework describes processes directly
controllable in a laboratory, such as preparations, transformations, and mea-
surements that can be performed on physical systems, and the probability
distributions that are observable when connecting such processes together in
a circuit. A quantum causal model is understood as such a circuit, with its
elements, or processes, following the rules of quantum theory. By comparing
the correlations achievable in the same circuit structure but with classical
processes as elements, a fair comparison can be made between quantum and
classical theories.

Comparing classical and quantum correlations can reveal new forms of
quantum advantage, defined as operational tasks where quantum theory
outperforms classical theories. These tasks can be expressed as a game
between distant players, each equipped with a device in the circuit, that
can be won with a higher probability via quantum as opposed to classical
processes in the circuit. An intriguing question is whether all the nonclassical
features of quantum theory can lead to quantum advantage. In other words:
Can the fundamental difference between quantum and classical theories be
operationally characterized through causal scenarios? Such a characterization
would improve our understanding of causality at the fundamental level. This
improved understanding may lead to progress on other fronts, such as in



1.2. Main thesis contributions 5

developing a theory of quantum gravity, where causal order can potentially
be subject to quantum uncertainty [Har09]. It may also shed light on
controversial issues such as the measurement problem or, as suggested by
recent evidence [WC20b; WC20a; Ren+21], potentially inspire new physical
principles, based on causality, that may uniquely define quantum theory
among all possible theories.

Vision of this thesis. This thesis aims to operationally characterize
the fundamental differences between classical and quantum theories within
causal scenarios. Such an understanding may eventually help integrate quan-
tum phenomena into a coherent, conceptually clear framework of causality.
Towards this goal, we explore how classical and quantum causal models
diverge in operational tasks in specific causal scenarios. We focus on simple
scenarios that go beyond Bell’s, while seeking to discover new forms of
quantum advantage that are fundamentally different from traditional Bell
nonlocality. Our goal is to link these new forms of quantum advantage to
different nonclassical features of quantum theory and study their potential
applications. A critical component of this research is testing for the causal
compatibility of specific correlations with a given causal model. As such,
an important part of this thesis is dedicated to expanding and refining the
scope of current methods for testing causal compatibility.

1.2 Main thesis contributions
In this thesis, we start by considering two families of causal scenarios that
lie in the middle ground between the common-cause scenario and general
scenarios:

• Network scenarios. In a typical common-cause scenario, a single
state is prepared and distributed among various parties, each equipped
with a measurement device, and where the parties are sufficiently
separated such that their measurement events are space-like separated.
In contrast, network scenarios involve multiple, independent state
preparations. These preparations are distributed among subsets of
the distant parties but, crucially, not all parties need to have access
to every state preparation. This differs from common-cause scenarios,
where the state preparations are accessible to all involved parties.
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• Broadcast scenarios. Common-cause and network scenarios involve
only “trivial” transformations, i.e., those that can be included as part
of the preparations or measurements. Broadcast scenarios involve a
single state preparation together with channels which distribute, or
“broadcast”, shares of the initial prepared state to multiple parties,
which themselves can implement space-like separated measurements.
These parties themselves may further broadcast their shares of the
state to other parties and so forth.

Individually, these scenarios allow for the focused study of specific aspects of
general causal scenarios, while when composed together, they can describe
for the whole spectrum of causal behaviour. In Chapter 2 we provide
formal definitions of these and more general causal scenarios and present
the primary methods used for their characterization.

In Chapter 4, we analyse quantum advantage in network scenar-
ios. The study of network scenarios has recently become a subfield of its
own [Tav+22]. In part, the growing interest in networks is due to their ability
to manifest nonclassical phenomena with no counterpart in common-cause
scenarios. One example is given by the phenomenon of entanglement swap-
ping, whereby entanglement is distributed between initially independent,
distant parties in the network [Żuk+93]. Additionally, networks allow for
the generation of nonclassicality “without inputs” , i.e. without requiring
local, independent measurement choices [Fri12; Ren+19a]. This constitutes
a new phenomenon, as common-cause scenarios cannot lead to nonclassical
correlations without such measurement choices. Furthermore, the ongoing
technological development of large-scale quantum networks motivates more
practical concerns [Kim08; WEH18; KW19]. These include the development
of novel applications for quantum networks, or the creation of new, noise-
robust methods for certifying the proper functioning of quantum networks
in real-world settings.

We focus our study on single-photon nonlocality in network scenarios.
A quantum state is said to be nonlocal if it can lead to Bell nonlocal
correlations. We focus particularly on the following single-photon entangled
state:

|ψ+⟩AB = |01⟩AB + |10⟩AB√
2

, (1.1)



1.2. Main thesis contributions 7

which is obtained by sending a single photon into a balanced beamsplitter,
where |10⟩AB (resp. |01⟩AB) represents the photon occupying optical mode A
(resp. B). The resulting state is entangled in the two spatial modes. Whether
this state can lead to nonlocal correlations has been a matter of intense debate
(e.g., [TWC91; YS92a; YS92b; Har94; Ger96; Vai95; AV00; Hes+04; D’A+06;
BCB13; Mor+13a; Don+14; Das+21; GPS21]). An affirmative answer can
be given either when the mode populations can be transferred to excitations
of massive particles [Ger96; Vai95; AV00] or, if restricted to purely optical
means, when using active measurements [TWC91; Har94; BCB13; Das+21]
which locally insert extra photons in the modes during the measurement
process. It can be argued that without active measurements, measuring the
state |ψ+⟩AB allows for the parties to deduce the path of the photon, thereby
decohering the state. This implies that passive measurements, such as phase
shifters, beamsplitters and photodetectors, cannot be used to produce Bell
nonlocal correlations from a single-photon entangled state.

Our contributions. The main result our work is to show that single-
photon entangled states, when placed in a network, can generate nonclassical
correlations through passive measurements alone, which arguably is not
possible in the Bell scenario. Moreover, we manifest a strong form of
nonclassicality with no equivalent in the Bell scenario, namely, without the
need for independent measurement choices. We achieve this by arranging
three copies of the state |ψ+⟩AB within a triangle causal network (cf. Chapter
4 for more details). The network’s structure induces indeterminancy in the
photon’s path, necessary for exploiting the superposition of the modes.
The combination of passive measurements only, and the lack of need of
independent measurement choices, arguably makes this of the simplest
experimental proposals for demonstrating the nonlocality of a single-photon
entangled state. Our published work can be accessed at the following
reference:

Paolo Abiuso, Tamás Kriváchy, Emanuel-Cristian Boghiu, Marc-Olivier
Renou, Alejandro Pozas-Kerstjens, and Antonio Acín, “Single-photon nonlo-
cality in quantum networks”, Phys. Rev. Research 4, L012041—Published
29 March 2022

Subsequent works. Following the publication of our work, there have



8 Chapter 1. Overview

been some important advancements in the study of the triangle causal net-
work. For instance, Ref. [Pol+23] reports the experimental verification of
nonclassical correlations without measurement choices in a triangle network.
The triangle network in this experiment is built with one quantum state
entangled in polarization degrees of freedom and two classical states. An-
other recent experiment, presented in Ref. [Wan+24], uses three entangled
pairs of photons and entangling measurements—the so-called “elegant” joint
measurement [Gis19]—and report machine-learning based evidence of nonlo-
cality in the experiment. Other works include the development of partial
self-testing techniques that do not require measurement choices [SBB23],
improvements in methods for causal compatibility [PKGR23a], studies of
particularly symmetric quantum distributions [GG23] and simpler versions
of the triangle scenario [Bor+23b]. Additionally, there has been a focus on
the analysis of post-quantum correlations in the triangle scenario [PK+23],
along with similar extensions and experimental implementations [Cao+22;
Mao+22]. Particularly relevant is a recent preprint which presents novel
noise-robust proofs of nonclassicality for the triangle network [Bor+23a].

In Chapter 5, we study fundamental applications of broadcast sce-
narios. We focus on their potential to manifest nonclassical correlations
by leveraging quantum phenomena that cannot produce nonclassicality in
common-cause scenarios. For example, it is known that certain quantum
states, despite being entangled, have a so-called local hidden variable (LHV)
model [Wer89; ADA14; Hir+17]. A LHV model for an entangled quantum
state provides a classical explanation, in terms of common causes, for any
possible correlation observed when performing local, independently chosen
measurements on the state. There also exist examples of incompatible quan-
tum measurements—the other resource for Bell nonlocality—which cannot
lead to nonclassical correlations [BV18; HQB18; Gho+23]. The existence
of LHV models proves that not all of nonclassical phenomena in quantum
theory can necessarily lead to Bell nonlocal correlations.

A key development was the discovery of the phenomenon of activation
of nonlocality. This phenomenon describes how states with LHV mod-
els can nevertheless lead to nonclassical correlations—be “activated”—in
more complex causal scenarios. These scenarios can be broadly catego-
rized into single-copy and multiple-copy scenarios. Single-copy scenarios
achieve activation through a single copy of the quantum state and multiple
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rounds of measurements, such as local filtering operations [Pop95; Hir+16]
or more generally, time-ordered sequential measurements [Ż+98; Gal+14].
In contrast, in multiple-copy scenarios, nonlocality is activated through the
simultaneous joint measurement of multiple copies of the quantum state,
either in parallel [NV11; Pal12] or distributed in a network of distant par-
ties [Sen+05; Cav+11], aided by filtering operations. The broadcast scenario,
initially introduced in Ref. [BHC21], constitutes a novel scenario that can
activate entangled states with LHV models using a single copy of the state,
a broadcasting channel and local measurements.

Our contributions. We expand on the work of Ref. [BHC21] in
several directions. We start by constructing Bell inequalities specific to the
broadcast scenario, and show how broadcasting can lead to stronger notions
of activation of nonlocality. In particular, we exploit these ideas to show
that entangled states admitting a LHV model for the most general class of
quantum measurements can lead to genuine tripartite nonlocal correlations,
as defined in Ref. [Ban+13]. We then analyse DI entanglement certification
in the broadcast scenario, and show through convex optimization techniques
that DI entanglement certification is possible for the two-qubit Werner
state [Wer89] in almost its entire range of entanglement. Lastly, we extend
the concept of EPR steering to the broadcast scenario, and present new
examples of activation for the two-qubit isotropic state. Our published work
can be accessed at the following reference:

Emanuel-Cristian Boghiu, Flavien Hirsch, Pei-Sheng Lin, Marco Túlio
Quintino, Joseph Bowles, “Device-independent and semi-device-independent
entanglement certification in broadcast Bell scenarios”, SciPost Phys. Core
6, 028 (2023)—Published 11 April 2023

Subsequent works. Concerning LHV models, Ref. [Des+23] expands
the family of known bipartite and tripartite entangled states with LHV mod-
els. Regarding the broadcast scenario, the preprint of Ref. [Rod+23] uncovers
new Bell inequalities via the exclusivity graph approach. Another recent
preprint reports the experimental confirmation of activation of nonlocality
via the broadcasting of quantum states [VA+23]. This work highlights the
potential real-world applicability of the broadcasting technique, particularly
for protocols fuelled by noisy quantum states with LHV models, that is,
states not viable in standard DI protocols based on Bell nonlocality.
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In Chapter 6 we turn our attention towards methods for testing
causal compatibility in general causal scenarios. Recent developments
lead to the creation of numerous such methods, such as those that uti-
lize conditional independence relations [BGP10; Bra+12; Ros+16; Tav+14;
Cha16; PK+19], entropic constraints [WC17a], correlation matrices [Å+20;
Kel+20; Kra+21; BR22], Finner inequalities [Ren+19b; Shu+23; Luo21],
token-counting [Ren+19a; RB22c; RB22a] or the principle of device replica-
tion [WSF19; NW20a; Wol+21]. For a complete review of these techniques,
we point to Ref. [Tav+22]. We focus on the method based on the principle
of device replication, known as the inflation technique [WSF19; NW20a;
Gis+20a; Wol+21], as it is the most promising method to tackle causal
compatibility with full generality.

The inflation technique considers gedankenexperiments where one has
access to multiple copies of the elements that connect together to define the
causal scenario under study. The copies of these elements are assembled
into a new, expanded “inflated” scenario. This inflated scenario includes
subsets of elements connected in a manner which mirrors the connections
of the original scenario. Tests for causal compatibility in the inflated sce-
nario are simpler due to the ability to exploit additional symmetries of the
scenario. The inflation technique can be used for causal compatibility with
classical [WSF19; NW20a], quantum [Wol+21] and even beyond-quantum
sources of correlations [WSF19; Gis+20a]. Inflation methods are, in general,
technically complex to implement due to the large amount of symbolic
computations initially required. As a result, current implementations are
restricted to small, specific networks and particular inflated causal scenarios
(see, e.g., the computational appendices of [PKGT22; PKGR23a]).

Our contributions. We develop a Python library for implementing
the inflation hierarchies of Ref. [Wol+21; NW20a]. The library can test for
causal compatibility with network scenarios with classical, quantum and
no-signaling sources of correlations, and also optimize linear functions of the
correlations. In addition, we expand the scope of the original technique of
Ref. [Wol+21] to test for possibilistic causal compatibility with networks, that
is, to test whether a partition of all the possible events into a group of strictly
possible and strictly impossible events is realizable in the causal network. To
promote ease of use, contributions and further development, the library was
developed following best software development practices, including modular
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architecture, a comprehensive testing suite and detailed documentation. Our
published work can be accessed at the following reference:

Emanuel-Cristian Boghiu, Elie Wolfe, and Alejandro Pozas-Kerstjens,
“Inflation: a Python library for classical and quantum causal compatibility”,
Quantum 7, 996 (2023)—Published 4 May 2023

The package is hosted on GitHub1, with a documentation website2 and it is
also distributed on the Python Package Index3.

Subsequent works. Following the publication of our library, it has
been used in different works, such as in estimating the volume of sets of
correlations in networks [Cam+23] and for evaluating the compatibility of
distributions with the triangle causal scenario [PK+23].

Lastly, in Chapter 7 we conclude this thesis with an overview of impor-
tant open problems in the field of quantum causality.

1https://github.com/ecboghiu/inflation
2https://ecboghiu.github.io/inflation/_build/html/index.html
3https://pypi.org/project/inflation/

https://github.com/ecboghiu/inflation
https://ecboghiu.github.io/inflation/_build/html/index.html
https://pypi.org/project/inflation/
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Chapter 2

Preliminaries

In this chapter we introduce the basic concepts and definitions that will be
used throughout this dissertation. We present the concept of a causal scenario
within the operational framework based on the approach of Ref. [DCP17].
We then study the sets of correlations achievable in the common-cause
scenario (to be defined) under different assumptions on the nature of the
common-cause.

2.1 Definition of a causal scenario
We define the concept of a causal scenario in the operational framework,
together with its pictorial representation in terms of directed-acyclic-graphs
(to be defined), following the approach of Ref. [DCP17]. We adapt their
terminology and notation to fit the conventions used in this thesis.

The operational framework can be understood as an extension of prob-
ability theory [DCP17, Ch. 3], just as probability theory can be seen as
an extension of logic [Cox01; Jay03]. At the heart of probability theory
lies the concept of event and probability. The operational approach further
enhances this view through the idea of connectivity of events. An event
can be described, without loss of generality, as a moment when classical
information about a physical process is obtained through a physical device.
For example, this could involve acquiring some information about a process
by noting whether a display shows “0” or “1” during the run of an experiment.
Physical processes act upon and transform physical systems. The system
before the modification is the input to the process, while the system after
the modification is the output of the process. It is important to note that
the input and output may be different types of systems; for example, the
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input could be the spin of a particle represented as a qubit, and the output
could be a qutrit encoded in the modes of the electromagnetic field.
Definition 2.1.1 (Physical process). A physical process A is a transforma-
tion of an input system, Ai, into an output system, Ao, accompanied by an
associated set of events, {Aa}a∈N where N = {1, . . . , n} for some integer n.1
The set of events represents some classical information about the process
obtained through an experimental device. We define a random variable, A,
which maps events to their integer index, A(Ae) = e. Probabilities will be
specified over the values of the random variable, rather than over events.
Graphically, we depict it as follows:

where the process is identified through its random variable, A, and wires
represent systems, with arrows indicating whether the system is an input or
output system.
Definition 2.1.2 (Hidden/latent/deterministic process). A physical process
is hidden or latent whenever its associated set of events has a single element,
i.e., it is deterministic. Graphically, it can be represented as follows:

where we use the colour grey and dashed lines to represent that it is a hidden
process. We have no classical information about a hidden process except
that it occurs, and how it connects with other processes. Note that here we
use “deterministic” not in the sense that the outcomes follow a probability
distribution that is deterministic in a sample space of various events, but
rather that the sample space contains a single, trivial, event.

The connectivity of events relates to how processes and systems compose
together.
Definition 2.1.3 (Sequential process composition). Given a process with
input Ai, output Ao and events {Aa}a∈NA

and another with input Bi, output
Bo and events {Bb}b∈NB

, their sequential composition is a process with input
Ai, output Bo and events {C(a,b)}(a,b)∈NA×NB

provided the system types of
Ao and Bi are equal. Graphically, we depict it as follows:

1A physical process is known as a test in Ref. [DCP17].
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where Ao = Bi and where CAB denotes that the random variable C is
indexed by the outcomes of A and B.

Definition 2.1.4 (System composition). Two physical systems, A and B
can be composed together into a joint system AB.

Remark 2.1.1. A process with several inputs (respectively, outputs) can be
seen as a single input (resp. output) process through system composition.

Definition 2.1.5 (Parallel process composition). Given a process with input
Ai, output Ao and events {Aa}a∈NA

and another with input Bi, output Bo
and events {Bb}b∈NB

, their parallel composition is a process with input
AiBi, output AoBo and events {C(a,b)}(a,b)∈NA×NB

. Graphically, it can be
represented as follows:

where CAB denotes that the random variable C is indexed by the outcomes
of A and B.

More definitions can be given concerning systems and processes, such as
operational equivalence of physical systems and processes, but they are not
relevant for this thesis.

Next, we introduce the concept of the trivial system. This allows us to
define two special types of processes, namely, preparations and measurements.

Definition 2.1.6 (Trivial system, Id). The trivial system is characterized
as either the absence of a system, or a system that transmits classical
information. It acts as the identity element in the composition of systems.
In graphical representation, it is depicted either by a wire intersected by
an orthogonal segment or by the absence of a wire, indicating no input or
output system. For examples, see Definitions 2.1.7 and 2.1.8.

Definition 2.1.7 (Preparation process). A preparation process is defined
as a process where the input system is the trivial system. Graphically, it
can be represented as follows:
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either with the input wire as the identity (left) or absent altogether (right).

Definition 2.1.8 (Measurement process). A measurement process is defined
as a process where the output system is the trivial system. Graphically, it
can be represented as follows:

either with the output wire as the identity (left) or absent altogether (right).

Definition 2.1.9 (Pure randomness). When a process has both its input
and output as the trivial system, this indicates randomness that is causally
independent of the rest of the circuit. Graphically, we represent it as follows:

The existence of this type of randomness is taken as an axiom in this thesis.

We are now ready to define a causal scenario.

Definition 2.1.10 (Causal scenario/causal structure). A causal scenario,
often referred to as a causal structure, corresponds to a closed circuit
created through the composition of physical processes. A circuit is considered
closed if the only unconnected systems are the trivial ones. These processes
can be conceptualizes as nodes, and the systems as edges in a directed graph,
represented by G. The direction of these edges indicates the inputs and
outputs linked to each process. Additionally, a causal scenario is associated
with a joint probability distribution p(A=a,B=b, . . .) which relates
to the events A,B, . . . tied to the processes within the causal scenario.
Whenever it leads to no confusion, the joint probability will be expressed
succinctly only in terms of the values of the random variables, p(ab . . .). In
this thesis, the term “probability distribution” is interchangeably used with
“correlation”.

Definition 2.1.11 (Acyclic causal scenario). Acyclic causal scenarios are
characterized by the absence of closed loops. These scenarios correspond to
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directed acyclic graphs (DAGs). Acyclic scenarios avoid causal paradoxes
akin to the “grandfather paradox”, where an effect can be its own cause.
Throughout this thesis, we will focus only on acyclic causal scenarios.

Example 2.1.1 (Prepare and measure scenario). One of the simplest causal
scenarios is that of a preparation followed by a measurement, as shown in
the following illustration:

We define causality in terms of statistical independence of events.

Axiom (Causality). The marginal probability of an event in a process
is independent of any subsequent processes connected to it. This forbids
signaling from future events to the past, where the arrow of time is indicated
by the input and output system labels.

Example 2.1.2 (Causality in the prepare and measure scenario). In the
scenario of Example 2.1.1, the causality axiom is expressed as the marginal
of A being independent of the posterior choice of measurement process. That
is, p(a) :=

∑
b p(ab) =

∑
b′ p(ab′) where p(ab′) represents the probability of a

scenario with measurement process B′ instead of B.

That the probability distribution of the first process event is independent
of the choice of posterior process allows for conditioning the choice of a
process on a previous event.

Definition 2.1.12 (Conditioned process). Given a process with input Ai,
output Ao and events {Aa}a∈NA

and another process with input Bi, output
Bo and events {Ba

b }b∈(NB)a
for all a ∈ NA, the conditioned process is a

process with input Ai, output Bo and events {(Aa, Ba
b )}(a,b)∈∪a{{a}×(NB)a}.

Graphically, it can be represented as follows:

where BA denotes that the set of events of B is conditioned on the events
of A and C = Ao = Bi. The conditioned process BA can equivalently be
understood as a set of processes, and where the outcome of A determines
which specific process from the set is implemented.
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Remark 2.1.2. A conditioned process simplifies to a sequential composition
whenever the number of events of the conditioned process does not depend
on the conditioned variable, i.e., |(NB)a| = |(NB)a′ | for all a, a′ ∈ NA in
Definition 2.1.12.

Example 2.1.3 (Measure and prepare scenario). A special type of condi-
tioned process is one where the system connecting process A and BA is the
trivial system, C = Id:

This corresponds to the preparation of a new system conditioned on a
previous measurement result.

The causality axiom also allows for post-selection of preparations, which
allows for deterministic preparations of physical systems.

Definition 2.1.13 (Post-selection). Post-selection refers to discarding cer-
tain observed events from the experimental data table from which the
probabilities are constructed.

Definition 2.1.14 (Local post-selection). A local post-selection is one where
the decision to accept or discard an observed event is made independently
of the criteria applied at a different node in the causal scenario. Such local
post-selections need not occur after the main experiment (“post”); they can
also be simulated during the experiment through local filtering techniques.
In this context, local filtering means that the output system of a process is
passed on as input to a subsequent process only if a specific event is observed.
If this event is not observed, the experimental run is discarded.

Definition 2.1.15 (Deterministic preparation). In the prepare-and-measure
scenario of Example 2.1.1 one may post-select on the preparation A keeping
only a subset of the possible outcomes. When only one outcome is kept,
this can be understood as a deterministic state preparation (also known as
heralding). This is allowed by the causality axiom, as the probability of
preparation is independent of any posterior process connected to it.

Remark 2.1.3 (Arbitrary preparation probability). Post-selection allows for
more than just deterministic state preparation; it also enables the simulation



2.2. Classical, quantum and no-signaling processes 19

of a specific frequency of preparation, p′(a), based on the natural frequency
of the process p(a). In a given causal scenario, these probabilities can be
effectively simulated through local post-selection. Therefore, we can without
loss of generality consider just the joint probability distribution conditioned
on the observable preparations of the causal scenario.

Example 2.1.4 (Conditioned distribution in the prepare and measure
scenario). In the prepare-and-measure scenario of Example 2.1.1, per Re-
mark 2.1.3, the joint probability may be written as p(ab) = p(b|a)p(a). Given
that the probability of preparation p(a) can be fixed arbitrarily, it is sufficient
to consider only the joint distribution conditioned on the preparation, p(b|a).
While the amount of data is the same, the usefulness of considering just the
conditioned distribution will be apparent when exploring different causal
scenarios.

Example 2.1.5 (Double prepare and measure scenario). Consider the follow-
ing causal scenario, where B is a process that performs a joint measurement
on two independent state preparations:

such that b = 0 if a = c and b = 1 if a ̸= c. This is reflected through the lack
of a connected one-way path between A and C. While the full probability
table respects the causality axiom, i.e.,

∑
b p(abc) = p(ac) = p(a)p(c), a

post-selection on the values of B induces correlations between A and C
which are not compatible with the causal scenario. On the other hand, local
post-selections on A and C lead to probability tables that respect the causal
constraints of the scenario.

2.2 Classical, quantum and no-signaling processes
Now we will describe different types of processes: classical, quantum and
no-signaling processes.

2.2.1 Classical process

Using the notion of a conditioned process (Definition 2.1.12), we define
a classical process as any physical process with input Ai and output Bo
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which is operationally indistinguishable from a measure and prepare process
(Example 2.1.3), which prepares a state on Bo conditioned on a measurement
of Ai. This captures the intuition that any classical process can be thought
of as a sequence of three steps: measuring the exact state of the input,
simulating the output of the process based on this measurement and then
physically preparing the simulated output state. Furthermore, if the process
has not only one output but a collection of output systems, {Bio}i, then a
classical process will implement parallel preparations on {Bio}i, conditioned
on the result of the measurement of the input:

This also captures the intuition that a joint classical system consists of a
statistical mixture of locally well-defined classical systems. Additionally, it
implies that the output of a classical process can be arbitrarily cloned.

In order to define a quantum process, we first give an overview of the
basic elements of quantum theory while also introducing the notation used
throughout the thesis.

2.2.2 A short review of finite-dimensional quantum theory

Quantum theory is built on three main elements: states, transformations
and measurements, which are defined within the framework of Hilbert spaces.
We denote the set of operators acting on a Hilbert space, H, by L(H), and
the set of positive semidefinite operators by PSD(H).

Quantum states. A quantum state, ρ, is a positive semidefinite operator,
written as ρ ⪰ 0, with trace one, tr ρ = 1, acting on a Hilbert space H.

• Purity. A state is pure if its rank is equal to one. Pure states can be
uniquely represented by a projector onto a normalised vector, |ψ⟩⟨ψ|,



2.2. Classical, quantum and no-signaling processes 21

where ⟨ψ|ψ⟩ = 1, ⟨ψ| := (|ψ⟩)† and (·)† represents the Hermitian adjoint.
Non-pure states are called mixed. Through the spectral decomposition
theorem, any mixed state can be expressed as a statistical mixture of
pure states:

ρ =
∑
x

p(x)|x⟩⟨x|, (2.1)

where {|x⟩}x defines an orthonormal basis, and p(x) : N→ R satisfies∑
x p(x) = 1 and p(x) ≥ 0 for all x.

• Convexity. The set of quantum states is convex. This means that if
ρ1 and ρ2 are quantum states acting on the same Hilbert space, then
tρ1 + (1− t)ρ2 for any t in the range [0, 1] is also a valid quantum state.

• Composition. States ρA and ρB, each acting on different Hilbert spaces
HA, HB , can be combined to form a joint state ρAB = ρA ⊗ ρB acting
on the joint Hilbert space, HAB = HA ⊗HB.

• Separability. A joint state acting on HAB is considered separable across
the bipartition (A|B) if it can be expressed as a convex combination
of product states acting on HA and HB:

ρAB =
∑
i

ti ρ
i
A ⊗ ρiB

∑
i

ti = 1, ti ≥ 0 ∀i. (2.2)

A state that is not separable is said to be entangled.

• Purification. The concept of purification describes how any mixed state
acting on HS can be seen as a pure state acting on a larger Hilbert
space HS ⊗HA. The larger Hilbert space includes an auxiliary system
HA which we have no control over. Having “no control” over part of
a Hilbert space is modelled through the partial trace, defined as the
unique linear operator trA : HS⊗HA → HS such that tr((M⊗1A)N) =
tr(M(trAN)) [Par12]. Therefore, the purification property can be
formally written as follows:

ρS = trA |ψ⟩⟨ψ|SA, (2.3)

where ρ is an arbitrary state acting on HS and |ψ⟩SA ∈ HS ⊗ HA.
From the spectral decomposition of the state, ρS =

∑
i p(x)|x⟩⟨x|S ,

we can build the purified state as |ψ⟩SA =
∑
x

√
p(x) |x⟩S ⊗ |x⟩A
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where {|x⟩A}x defines an orthonormal basis on HA. The minimal
dimension of HA for a purification to exist depends on the rank of the
quantum state. It can be shown that all purifications are equivalent,
as they only differ by a local change of basis on the auxiliary system,
i.e., |ψ⟩SA = 1S ⊗ UA|ψ⟩′SA where |ψ⟩′SA is another purification that
satisfies Eq. (2.3) and UA is an orthonormal change of basis matrix.

The properties of convexity, composition and separability, although presented
for two states and two subsystems, can be easily generalized to any number
of states and subsystems.

Quantum transformations. A quantum map, Λ : L(HI)→ L(HO), is a
linear map between operators, Λ(α1ρ1 + α2ρ2) = α1Λ(ρ1) + α2Λ(ρ2), where
α1, α2 are scalars and ρ1, ρ2 are quantum states acting on HI .

• Positivity. A map is said to be positive if it transforms positive
semidefinite operators into positive semidefinite operators, ρ ⪰ 0 ⇒
Λ(ρ) ⪰ 0.

• Complete positivity (CP). A map is said to be completely positive if
the output of the channel is positive even when it acts locally on a
state on a bigger Hilbert space, i.e., σ ⪰ 0 ⇒ Λ ⊗ 1A(σ) ⪰ 0 with
σ ∈ PSD(H⊗HA), for any HA.

• Trace preservation (TP). A map is said to be trace preserving if
tr(Λ(ρ)) = tr(ρ).

For the next properties, we will restrict to endomorphisms, that is, HI = HO.

• Unitality. A map is said to be unital if it maps the identity to itself,
Λ(1) = 1.

• Unitary. A unitary map is one which corresponds to a orthonormal
change of basis, Λ(ρ) = UρU † where UU † = U †U = 1. A unitary is a
completely positive and trace preserving (CPTP) map.

• Channels. Consider a mixed state, ρ, acting on a space HS . We may
prepare in our laboratory an additional state ρE on an auxiliary space
HE . Given perfect control over the auxiliary space, we can assume the
state we prepare to be pure, ρE = |0⟩⟨0|E where |0⟩E is an arbitrary
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pure state on HE . Now we can jointly evolve HS and HE through a
unitary, and then discard the auxiliary system E:

Λ(ρ) = trE USE(ρ⊗ |0⟩⟨0|E)(USE)†. (2.4)

Equivalently, one may absorb the state on the auxiliary space into the
unitary defining an isometry V S→SE := USE(1S ⊗ |0⟩E) such that:

Λ(ρ) = trE V S→SEρ(V S→SE)†.

Maps of this form are called channels, and they are CPTP maps. Note
that we assume that we do not have control over the purification of ρ;
if we did, we would take ρ to be pure. Importantly, all CPTP maps
are also channels, and thus may be expressed as in Eq. (2.4) (cf. the
Choi-Kraus theorem [Cho75a; Cho75c]).

• Operator sum representation. Let Ma := (1S ⊗ ⟨a|E)USE (1S ⊗ |0⟩E)
where |a⟩E is an orthonormal basis on HE . It is easy to check the
following identity:

Λ(ρ) =
∑
a

MaρM
†
a . (2.5)

This is the operator sum representation of a channel. The set of
operators {Ma}a are referred to as Kraus operators and they satisfy∑
aM

†
aMa = 1S .

• Dual channel. We can define the dual channel, Λ†(ρ) =
∑
aM

†
aρMa.

The dual channel is always unital, Λ†(1) = 1, due to the property∑
aM

†
aMa = 1. The dual channels satisfies tr[Λ(M)N ] = tr[MΛ†(N)].

• Purification. We have shown how given the unitary description of
Eq. (2.4), we can build the operator sum representation (2.5). The
reverse can also be done, namely, given a collection of Kraus operators
{Ma}a, one can build an isometry V S→SE =

∑
aMa ⊗ |a⟩E where

{|a⟩E}a is an orthonormal basis on HE such that:

Λ(ρ) =
∑
a

MaρM
†
a = trE V S→SEρ(V S→SE)†. (2.6)

• Arbitrary dimensions. More general channels between arbitrary Hilbert
spaces, Λ : L(HI)→ L(HO), can be realized through a bigger channel
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acting on the tensor product of the input and output Hilbert spaces,
ΛC : L(HI)⊗ L(HO)→ L(HI)⊗ L(HO), and feeding a junk state on
the “output” part of the input space, and “forgetting” the “input” part
of the output Hilbert space:

Λ(ρ) = trI
(
ΛC(ρ⊗ |0⟩⟨0|O)

)
. (2.7)

If {MC
i }i are the Kraus operators of ΛC and we express them in a

basis that is the product of an orthonormal basis {|α⟩I}α of HI and
{|β⟩O}α of HO:

MC
i =

∑
α,β,α′,β′

ci(α,β),(α′,β′)|α, β⟩⟨α
′, β′|IO,

then the Kraus operators of Λ are {M(i,e)}(i,e) where

M(i,e) =
∑
β,α′

ci(e,β),(α′,0)|β⟩O⟨α
′|I .

• Choi-Jamiołkowski isomorphism. Just as an operator M is fully speci-
fied through its action on a basis {|i⟩}i, a channel Λ : HI → HO is fully
specified by its action on a complete basis of the space of operators in
the input space, such as {|i⟩⟨i′|}i,i′ where {|i⟩}i is a basis of HI . We
can collect in an operator the image under Λ of all the basis elements
{|i⟩⟨i′|}i,i′ :

CΛ =
∑
i,i′

|i⟩⟨i′|I ⊗ Λ(|i⟩⟨i′|I), (2.8)

where CΛ ∈ HI ⊗HO is called Choi state of Λ. Given a Choi state,
the image of ρ can be computed as follows:

Λ(ρ) = trI CΛ(ρT ⊗ 1O), (2.9)

where (·)T denotes the transpose. The Choi state is a positive operator,
CΛ ⪰ 0, and furthermore, when tracing out the output system we
get the identity, trO CΛ = 1I , which expresses that there can be no
signaling backwards in time. The mapping between the standard
description of an operator map and its Choi state representation is
known as the Choi-Jamiołkowski isomorphism [Cho75b].
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• Quantum instrument. We define a quantum instrument ΛE as a channel
which keeps a record of the auxiliary system E after the global unitary
in the definition of a channel in Eq. (2.4):

ΛE(ρ) =
∑
a

MaρM
†
a ⊗ |a⟩⟨a|E . (2.10)

Note that tracing out E in (2.10) recovers the standard definition of a
channel. We may consider a fine-graining of the auxiliary system and
trace out only parts of the information content of the auxiliary system:

ΛE2(ρ) = trE1 ΛE1E2(ρ) (2.11)
=
∑
a1,a2

Ma1,a2ρM
†
a1,a2 ⊗ |a1, a2⟩⟨a1, a2|P1P2 (2.12)

=
∑
a2

(
trE1

∑
a1

Ma1,a2ρM
†
a1,a2 ⊗ |a1⟩⟨a1|E1

)
⊗ |a2⟩⟨a2|E2

(2.13)
=
∑
a2

ΛE1
a2 (ρ)⊗ |a2⟩⟨a2|E2 . (2.14)

Note that the set of maps {ΛE1
a2 }a2 are collectively trace-preserving,

but not necessarily individually.

Quantum measurements. A quantum measurement is implemented by
interacting a measurement probe P with the system S, and then reading
information from the probe. Note that this is precisely the definition of a
quantum instrument (2.10):

ΛP (ρ) =
∑
a

MaρM
†
a ⊗ |a⟩⟨a|P . (2.15)

Now we will describe the rules for measuring the state of the probe.

• Born rule. Given a pure state |ψ⟩ ∈ H, the probability of measuring if
it is state |a⟩ where {|a⟩}a defines an orthonormal basis of H is given
by the Born rule:

p(a|ψ) = |⟨a|ψ⟩|2 = tr[(|a⟩⟨a|)(|ψ⟩⟨ψ|)]. (2.16)
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If we have a mixed state, which can always be written as a statistical
mixture of orthogonal pure states ρ =

∑
x p(x)|x⟩⟨x|, then the proba-

bility of reading outcome a is a statistical mixture of the probabilities
of reading outcome a of each pure state |x⟩⟨x|:

p(a|ρ) =
∑
x

p(x)p(a|x) =
∑
x

p(x) tr[(|a⟩⟨a|)(|x⟩⟨x|)] = tr(|a⟩⟨a|)ρ.

(2.17)
The Born rule may also be used for measuring if only part of a system
is in a given pure state. In the case of the quantum instrument (2.15),
the probability of the probe being in state |a⟩P is given by:

p(a|ΛP (ρ)) = tr(1S ⊗ |a⟩)(1S ⊗ ⟨a|)ΛP (ρ) =
= trMaρM

†
a = trM †

aMaρ, (2.18)

where in the last step we used the cyclicity of the trace, trAB = trBA.

• As an operator measure. The probability of the probe being in state
|a⟩E is given by trM †

aMaρ. Recall that the Kraus operators satisfy∑
aM

†
aMa = 1S . Let use define Pa := M †

aMa. Then, the set {Pa}a
defines an positive operator valued measure (POVM). We may identify
a quantum measurement as a POVM. For orthogonal projectors, that
is, PaPa′ = δaa′Pa (with δaa′ being the Kronecker delta function, i.e.,
δaa′ = 0 if a = a′ and δaa′ = 1 otherwise), the set {Pa}a constitutes a
Projection-Valued Measure (PVM).

• State update. After reading that the probe is in state |a⟩E , our descrip-
tion of the state after the application of the instrument is updated to
one where the state of the probe is well-defined:

ρ→ MaρM
†
a

trM †
aMaρ

⊗ |a⟩⟨a|E . (2.19)

Note that now the joint state of the probe and the system is a product
state.

• Purification. Analogous to the purification of mixed states, POVMs can
be “purified” to a PVM through the Naimark’s dilation (see Ref. [Wil13,
Ch. 5.2.2]). For any measurement {Pa}a∈N on HS , there is an isometry
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V : HS → HS ⊗HA defined by V =
∑
iMi ⊗ |i⟩ such that:

Pa ≡M †
aMa = V † (1S ⊗ |a⟩⟨a|A)V, (2.20)

where {|a⟩A}a defines an orthonormal basis on HA, and {|a⟩⟨a|A}a
defines a PVM on HA.

2.2.3 Quantum process

A quantum process corresponds to a general quantum instrument, which is a
quantum channel that takes as input a quantum state, and outputs another
quantum state accompanied by a classical variable. This classical variable
represents the classical outcomes we observe in the laboratory.

2.2.4 No-signaling process

A no-signaling process is any process that satisfies the Axiom of Causality.
Often this imposes constraints on the set of joint distributions achievable
in a given causal scenario. This is exemplified in the next section, which
presents causal scenarios that will appear throughout the thesis.

2.3 Bell’s common cause scenario
Bell’s scenario, shown in Figure 2.1, involves the deterministic preparation2

by a process Λ of two physical systems, SA and SB , that are then submitted
to causally-disconnected measurement processes, A and B, which themselves
take as input the outputs of processes X and Y . In this section we study how
the possible joint probabilities over the events of the scenarios depend on as-
sumptions made about the processes (whether they are classical, quantum or
no-signaling). Per Remark 2.1.3, instead of the full joint probability distribu-
tion p(A=a,B=b,X=x, Y=y) we can work with the conditional distribution
p(A=a,B=b|X=x, Y=y), written as p(ab|xy) in simplified notation. Note
that since Λ has a single outcome, it does not appear in the probability
distribution.

2Recall that in this thesis, a deterministic preparation is merely a process whose
associated classical event has a single outcome, i.e., there is no information available about
the process except how it is wired with the other processes in the circuit.
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Figure 2.1: Bell’s common cause scenario in which two
physical systems SA and SB are prepared, and then measured
independently by processes A and B which depend on X
and Y .

(a) General deterministic classical process (b) Process sharing a random variable Λ̃

Figure 2.2: (2.2a) Bell’s common cause scenario of Fig-
ure 2.1 with the assumption that the deterministic process
Λ is a general (deterministic, i.e., single observable event)
classical process, per Definition 2.2.1. (2.2b) A classical
process which distributes a random variable Λ̃, and where
the output systems are trivial systems.

2.3.1 Classical common cause

If the process Λ is classical, then as shown in Figure 2.2a, it is simulable
with a measure and prepare scenario where on each output system SA, SB,
there is a local state preparation Σ̃Λ̃

A, Σ̃Λ̃
B, conditioned on a measurement of

the input Λ̃. Given that the input of Λ is the trivial system, then Λ̃ is a pure
random variable, cf. Definition 2.1.9. Note that Λ and Λ̃ are independent
random variables; one has a single outcome and is accessible experimentally,
while the other is internal and there is no bound on the number of possible
outcomes. The choice of using similar names, distinguished only by a tilde,
is deliberate, aiming to facilitate the association of the internal random
variable with its corresponding deterministic process.
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Shared randomness. We will use q to denote the joint probability dis-
tribution over the events of Figure 2.2a, which includes internal variables
Λ̃, Σ̃Λ̃

A, Σ̃Λ̃
B, whereas we will use p to refer to the experimentally accessible

joint distribution over the events of Figure 2.1. The two are related, as when
marginalizing over the unobservable events Λ̃, Σ̃Λ̃

A, Σ̃Λ̃
B we recover the joint

distribution p:

p(ab|xy) =
∫
λ̃∈NΛ̃

∫
σ̃A∈N λ̃

A

∫
σ̃B∈N λ̃

B

q(abλ̃σ̃Aσ̃B|xy) dλ̃dσ̃A dσ̃B (2.21)

where NΛ̃, N λ̃
A and N λ̃

B refer to the set of possible outcomes of Λ̃, Σ̃Λ̃
A, Σ̃Λ̃

B.
Using the chain rule of conditional probabilities, we expand q(abλ̃σ̃Aσ̃B|xy)
as follows:

q(abλ̃σ̃Aσ̃B|xy) = q(a|xybσ̃Aσ̃Bλ̃)q(b|xyσ̃Aσ̃Bλ̃)·
· q(σ̃A|xyσ̃Bλ̃)q(σ̃B|xyλ̃)q(λ̃|xy) (2.22)

Per the causality axiom, any variables that are not connected by a directed
path in the causal scenario are statistically independent:

q(a|xybσ̃Aσ̃Bλ̃) = q(a|xσ̃Aλ̃) (2.23)
q(b|xyσ̃Aσ̃Bλ̃) = q(b|yσ̃Bλ̃) (2.24)
q(σ̃A|xyσ̃Bλ̃) = q(σ̃A|λ̃) (2.25)
q(σ̃B|xyλ̃) = q(σ̃B|λ̃) (2.26)
q(λ̃|xy) = q(λ̃). (2.27)
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We may now rewrite Eq. (2.21):

p(ab|xy) =
∫
λ̃∈NΛ̃

(∫
σ̃A∈N λ̃

A

q(a|xσ̃Aλ̃)q(σ̃A|λ̃) dσ̃A

)
︸ ︷︷ ︸

q(a|xλ̃)

· (2.28)

·
(∫

σ̃B∈N λ̃
B

q(b|yσ̃Bλ̃)q(σ̃B|λ̃) dσ̃B

)
︸ ︷︷ ︸

q(b|yλ̃)

q(λ̃) dλ̃ (2.29)

=
∫
λ̃∈NΛ̃

q(a|xλ̃) q(b|yλ̃) q(λ̃) dλ̃ . (2.30)

The state preparations Σ̃Λ̃
A, Σ̃Λ̃

B have been absorbed into the local response
functions q(a|xλ̃), q(b|yλ̃). This means that whether the systems SA, SB are
prepared by Λ or later, as part of the measurement processes A and B, is not
relevant. The key function of Λ in this context is to coordinate these local
state preparations through the shared random variable Λ̃. As such, a classical
process can be conceptually simplified to the idea of distribution of classical
information, or “shared randomness”. This is depicted in Figure 2.2b, where
the systems being sent to A and B are trivial, emphasizing the role of shared
randomness rather than any specific physical transmission.

Local causality. Regardless of whether Λ is a classical process, if it
contains an internal variable Λ̃, the following equation is universally true:
p(ab|xy) =

∫
λ̃∈NΛ̃

q(ab|xyλ̃) q(λ̃) dλ̃. The key defining property of a classical
process is the factorization of the response function upon conditioning on
the shared random variable Λ̃, as demonstrated in Eq. (2.30):

q(ab|xyλ̃) = q(a|xλ̃) q(b|yλ̃).

That is, knowledge of the value of Λ̃ “explains” the correlations between A
and B in the sense that conditioning on Λ̃ removes the apparent correlation.
This is known as Reichenbach’s common cause principle [Rei91]. Reichen-
bach’s common cause principle together with the assumption of relativistic
causality—the notion that causes must precede effects in all possible frames
of reference—form the principle of local causality [WC17b].
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Local determinism. The variable Λ̃ does not have a predefined number of
outcomes, that is, its cardinality is unspecified, as long as the set of outcomes
is a measurable set. This flexibility allows for a simplification of Eq. (2.30).
Knowledge of Λ̃ fully determines the local response functions q(a|xλ̃), q(b|yλ̃).
These response functions can always be simulated through the generation
of a uniform random variable plus a deterministic function through what
is known as inverse transform sampling. For example, consider sampling
a discrete outcome a according to the distribution q(a|xλ̃). One may do
this by first sampling a continuous uniform random variable MA with values
between zero and one, M = µA ∈ [0, 1]. Then one needs to determine k such
that

∑a=k−1
a=0 q(a|xλ̃) ≤ µA ≤

∑a=k
a=0 q(a|xλ̃) and return a = k. Averaged

over µA, this method will return outcome a = k with probability q(k|xλ̃).
Inverse transform sampling therefore provides a systematic way in which
to sample from a known probability distribution together with a uniform
random variable.

Given that there is no limitation on the number of outcomes of Λ̃, we can
define a larger joint variable Λ̃′ = (Λ̃,MA,MB). With this variable, both A
and B can determine their outcome deterministically by using the values of
the second and third component of Λ̃′. As such, Eq. (2.30) can be rewritten
as a convex combination of local deterministic response functions:

p(ab|xy) =
∫
λ̃′∈NΛ̃′

D(a|xλ̃′)D(b|yλ̃′) q(λ̃′) dλ̃, (2.31)

where D(a|xλ̃′), D(b|yλ̃′) are conditional probability distributions where a
single outcome occurs with unit probability. Mathematically, they may be
described using the Kronecker delta function as follows:

D(a|xλ̃′) = δfλ̃′ (x),a D(b|yλ̃′) = δgλ̃′ (y),b,

where f maps each value of the input x one of the possible outcomes a,
f : NX → NA, and {fλ̃′}λ̃′ represents a collection of such mappings, each
indexed by λ̃′. There are exactly |NX ||NA| unique assignments, which can
be indexed through a superscript as {f i}i=|NX ||NA|

i=1 . Similar logic applies to
g and the deterministic response of process B.
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We may now group the set of values of Λ̃′ into subsets where for every
value in the set, the deterministic assignment is the same. That is:

NΛ̃′ =
⋃
ij

N ij

Λ̃′ where N ij

Λ̃′ = {λ̃′|fλ̃′ = f i and gλ̃′ = gj}. (2.32)

Now Eq. (2.31) simplifies as follows:

p(ab|xy) =
|NX ||NA|∑
i=1

|NY ||NB |∑
j=1

∫
λ̃′∈N ij

Λ̃′

D(a|xλ̃′)D(b|yλ̃′) q(λ̃′) dλ̃ (2.33)

=
|NX ||NA|∑
i=1

|NY ||NB |∑
j=1

D(a|xi)D(b|yj)
∫
λ̃′∈N ij

Λ̃′

q(λ̃′) dλ̃︸ ︷︷ ︸
:=qij

(2.34)

=
|NX ||NA|∑
i=1

|NY ||NB |∑
j=1

D(a|xi)D(b|yj) qij , (2.35)

where D(a|xi) = δf i(x),a, D(b|yj) = δgj(y),b and qij represents a measure of
the set of values of Λ̃′ which assign the deterministic response functions
described by f i and gj .

One important consequence of this derivation is that we have shown that
a finite cardinality Λ̃ is sufficient to reproduce all correlations achievable
with a common cause of continuous cardinality, as we may simply set the
values of Λ̃ to be (i, j) in (2.33) which occur with probability qij .

Unpacking. The unboundedness of the internal variables may be used in
yet a different approach called “unpacking”, first introduced in Ref. [NW20b].
Consider the preparations to contain as many copies of the prepared state
as different possible values of the inputs:

Σ̃Λ̃
A →

(
(Σ̃Λ̃

A)1, . . . , (Σ̃Λ̃
A)|NX |

)
, (2.36)

Σ̃Λ̃
B →

(
(Σ̃Λ̃

B)1, . . . , (Σ̃Λ̃
B)|NY |

)
. (2.37)

We may imagine A to contain NX copies of the original process A →
{A1, . . . A|NX |}, which are applied in parallel to the NX preparations. This
process will have NX outcomes with a local response functions q(ai|λ̃). When
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reporting an outcome given an input value X = x, A simply reports the
outcome of the x-th process applied to the x-th preparation, and similarly
for B. This corresponds to a marginalization over the joint distribution
averaged over Λ̃:

p(ab|xy) =
∑

{ai}i\ax

∑
{bj}j\by

∫
λ̃

|NX |∏
α=1

q(aα|λ̃)
|NX |∏
β=1

q(bβ|λ̃) q(λ̃) dλ̃ (2.38)

=
∑

{ai}i\ax

∑
{bj}j\by

q(a1, . . . , ax, . . . , a|NX |, b1, . . . , by, . . . , b|NY |)

(2.39)
=
∑
ā\ax

∑
b̄\by

q(ā, b̄) (2.40)

where we use bar variables:

ā = (a1, . . . , ax, . . . , a|NX |), b̄ = (b1, . . . , by, . . . , b|NY |),

to simplify the expressions.3 In the step (2.38)→(2.39) we used that in the
absence of inputs, a classical common cause explanation spans the whole
space of probability distributions:

∀p(a1, . . . , an) ∃ q(λ), q(aj |λ) s.t. p(a1, . . . , an) =
∫
λ

∏
i

q(ai|λ) q(λ) dλ.

(2.41)
This is true as any probability distribution p(a1, . . . , an) can be trivially
written as a convex combination of deterministic probability distributions.
One may choose

∏
i q(ai|λ) to enumerate the different deterministic dis-

tributions for different values of λ, and fix q(λ) such that p(a1, . . . , an) =∫
λ∈D(a1,...,an)

q(λ) dλ, where D(a1,...,an) is the set of λ that specify
∏
i q(ai|λ)

to be deterministic with outcome (a1, . . . , an).
Through unpacking, therefore, testing for compatibility of p(ab|xy) with a

classical common-cause model simplifies to finding a joint distribution q(ā, b̄)
3We make a deliberate choice to slightly abuse notation in order to simplify the mathe-

matical expressions, though this should not lead to confusion. For example, there is an
inconsistency when we combine tuples with a set substraction symbol, e.g., ā\ax = {ai}i\ax.
Furthermore, we equate a function that takes two tuples as arguments to a function applied
to the combined elements of these tuples, e.g., q(ā, b̄) = q(a1, . . . , a|NX |, b1, . . . , b|NY |).
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Figure 2.3: “Unpacked” processes A and B, where copies
of the original process of Figure 2.2b are applied to n and
m preparations of their respective states. When n = |NX |
and m = |MY |, one can simulate given statistics p(ab|xy) by
returning the outcome of the measurement of the x-th and
y-th preparations.

which marginalizes to the observed distribution per Eq. (2.40). Unpacking is
shown in Figure 2.3, and it will be relevant later on during the thesis. The
equivalence with a model in terms of local deterministic response functions
is formalized through Fine’s Theorem [Fin82].

Set of classical common-cause distributions. Now we will consider
only the local deterministic description of Eq. (2.35), but one may equivalently
work with unpacking as in Eq. (2.40). To determine whether some joint
probability p(ab|xy) is compatible with a common cause model where the
process Λ is classical, one needs to find values qij such that qij ≥ 0 and∑
ij qij = 1 and which satisfy Eq. (2.35):

find qij
s.t. p(ab|xy) =

∑
iD(a|xi)D(b|yj) qij∑

qij = 1
qij ≥ 0

(2.42)

This is a linear programming (LP) problem. If a solution does not exist
to Eq. (2.42), then the joint probability p(ab|xy) is not compatible with
a classical common cause process Λ. As detailed in Appendix A, Farkas’
lemma ensures that finding a set of values {η0} ∪ {ηabxy}abxy such that:∑

abxy

ηabxyp(ab|xy) + η0 > 0, (2.43)

∑
abxy

ηabxyD(a|xi)D(b|yj) + η0 ≤ 0, ∀ i, j (2.44)
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proves that the program of Eq. (2.42) is infeasible.4 By averaging expression
(2.44) over qij we arrive at what is known as a Bell inequality:

I(p(ab|xy)) :=
∑
abxy

ηabxyp(ab|xy) + η0 ≤ 0, (2.45)

which holds for p(ab|xy) =
∑
ij D(a|xi)D(b|yj)qij . That is, a Bell inequal-

ity is an algebraic bound on an affine function of the joint distribution
p(ab|xy) that holds for distributions compatible with a classical common
cause explanation.

We define the local set5 as the set of all such probabilities:

L =

p(ab|xy)
∣∣∣ ∃qij s.t. p(ab|xy) =

∑
ij

D(a|xi)D(b|yj)qij ,

∑
ij

qij = 1, qij ≥ 0 ∀i, j

 . (2.46)

A given correlation p(ab|xy) is called local if it belongs to L; otherwise it is
said to be nonlocal.

The structure of L is that of a polytope living in the vector space
of conditional joint probabilities, R|NA||NB ||NX ||NY |, with vertices Vij =
D(a|xi)D(b|yj). A Bell inequality can be interpreted geometrically as a
hyperplane which either does not intersect with the local set, or is only
tangent to it. Therefore, any nonlocal distribution p(ab|xy) can be certified
to be such by specifying a hyperplane which separates it from L, i.e., a Bell
inequality which is violated by p(ab|xy). The local bound of a Bell inequal-
ity is the optimal value of the affine function I(p(ab|xy)) over distributions

4Note that we flip the sign in Farkas’ lemma with respect to the proof of Appendix A
for convenience.

5The terminology comes historically comes from compatibility or incompatibility with
the principle of local causality.
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in L. Such bound may be computed using a modification of LP (2.42):

max
p(ab|xy)∈L

I(p(ab|xy)) =

=

max I(p(ab|xy))
s.t. p(ab|xy) =

∑
iD(a|xi)D(b|yj) qij∑

qij = 1
qij ≥ 0

. (2.47)

A distribution p(ab|xy) is said to violate a Bell inequality if the value of
the affine function I(p(ab|xy)) is greater than the local bound. Note that
talking about minimums or maximums of Bell inequalities is arbitrary, as
this convention can be changed through a sign flip.

2.3.2 Quantum common cause

If the process Λ is a quantum process, then it corresponds to a generalised
quantum instrument. However, since the input of Λ is trivial, this is just the
preparation of an arbitrary quantum state. Therefore, the joint probabilities
achievable when Λ is a quantum process are given by the Born rule:

p(ab|xy) = tr
[
ρΛ
(
Aa|x ⊗Bb|y

)]
, (2.48)

where {Aa|x}a and {Bb|y}b define on Hilbert spaces HA and HB, for all the
values of x and y respectively, and ρΛ is a mixed quantum state on HA⊗HB.
Notably, we make no assumption on the dimensions HA, HB.

Quantum set of correlations. We define the quantum set of corre-
lations, Q, as the set of all probability distributions achievable through
expression (2.48):

Q =
{
p(ab|xy)

∣∣∣ p(ab|xy) = tr
[
ρΛ
(
Aa|x ⊗Bb|y

)]}
, (2.49)

where ρΛ, Aa|x, Bb|y have the same meaning as in Eq. (2.48).
The setQ is convex, as for any two distributions p1(ab|xy), p2(ab|xy) built

from states ρ1, ρ2 and measurements {A1
a|x}xa, {B

1
b|y}yb, {A

2
a|x}xa, {B

2
b|y}yb,

the distribution t p1(ab|xy) + (1− t) p2(ab|xy) belongs to Q for any t ∈ [0, 1].
This can be proven by enlarging the Hilbert space to include two flags F1,
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F2 which allows A and B to synchronize their strategies to be either the one
that generates p1(ab|xy) with frequency t or the one that generates p2(ab|xy)
with frequency (1 − t). One can simply check that through the following
states and measurements:

ρ = t|00⟩⟨00|F1F2 ⊗ ρ1 + (1− t)|11⟩⟨11|F1F2 ⊗ ρ2, (2.50)
Aa|x = |0⟩⟨0|F1 ⊗A1

a|x + |1⟩⟨1|F1 ⊗A2
a|x, (2.51)

Bb|y = |0⟩⟨0|F2 ⊗B1
b|y + |1⟩⟨1|F2 ⊗B2

b|y, (2.52)

and Born’s rule, one generates the distribution t p1(ab|xy) + (1− t) p2(ab|xy).

Bell’s Theorem. Bell’s Theorem states that the local set is strictly in-
cluded in the quantum set:

L ⊊ Q.

This can be proven by specifying a point in Q which is not in L. One such
point can be built using the following states and measurements with two
outcomes:

ρΛ = |Ψ+⟩⟨Ψ+| where |Ψ+⟩ = |00⟩+ |11⟩√
2

(2.53)

A0|0 = |+⟩⟨+| where |+⟩ = |0⟩+ |1⟩√
2

(2.54)

A0|1 = |0⟩⟨0| (2.55)

B0|0 = |v⟩⟨v| where |v⟩ = (1 +
√

2)|0⟩+ |1⟩√
(1 +

√
2)2 + 1

(2.56)

B0| = |v′⟩⟨v′| where |v′⟩ = |0⟩+ (1 +
√

2)|1⟩√
(1 +

√
2)2 + 1

(2.57)

The other measurement operators can be deduced from the completeness
relation. The measurements correspond to PVMs whose effects, for each
outcome, project onto the eigenvectors of the operators σx, σz, 1√

2(−σx−σz),
1√
2(−σx + σz), respectively, where {σx, σy, σz} are the Pauli matrices:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.58)
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The joint probability p(ab|xy) constructed from the above states and measure-
ment is nonlocal, and its nonlocality can be certified through the following
Bell inequality:

p(00|00) +p(00|01) +p(00|10)−p(00|11)−pA(0|0)−pB(0|0) + 1 ≤ 0 (2.59)

where
pA(a|x) :=

∑
b

p(ab|xy) pB(b|y) :=
∑
a

p(ab|xy).

Note that due to the axiom of causality, pA(a|x) does not functionally
depend on the values of Y and neither pB(b|y) on the values of X. By using
correlators, defined as follows:

⟨Ax⟩ := pA(0|x)− pA(1|x) (2.60)
⟨By⟩ := pB(0|y)− pB(1|y) (2.61)

⟨AxBy⟩ :=
∑
ab

(−1)a+bp(ab|xy), (2.62)

the inequality (2.59) takes the form:

⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2. (2.63)

This is the standard form of the Clauser-Horne-Shimony-Holt (CHSH) in-
equality [Cla+69]. Evaluated with the strategy of (2.53)—(2.57), it achieves
a value of 2

√
2, which is also the maximum value it can achieve over dis-

tributions inQ. This is known as the Tsirelson bound or quantum bound.

Given an arbitrary distribution p(ab|xy), is it possible to determine
whether it belongs to the quantum set, Q, analogously to the linear pro-
gram method (2.42) for testing membership in the local set? To determine
whether p(ab|xy) is a member of the quantum set one needs to find states
and measurements that reproduce the distribution. This is very difficult as
the dimension of the Hilbert space is unbounded. One strategy consists of
relaxing the problem, and looking for necessary but not sufficient conditions
for p(ab|xy) to belong to the quantum set of correlations. One such relax-
ation is the hierarchy of Navascués-Pironio-Acín (NPA) based on moment
matrices [NPA08], which we will introduce following the presentation of
Ref. [Mor+13b].
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If p(ab|xy) belongs to Q, then there exists a state ρΛ and measurement
operators {Aa|x}xa, {Bb|y}yb which simulate p(ab|xy) using Born’s rule. For
any finite dimensional Hilbert space, one may define “locality” not through
a tensor product structure, but through commutativity. As such, Born’s
rule becomes:

p(ab|xy) = tr ρΛAa|xBb|y s.t. [Aa|x, Bb|y] = 0 ∀x, a, y, b. (2.64)

where [A,B] := AB − BA. This is known as the commuting-operator
formalism [Slo20]. Let Q̃ be the set of correlations achievable through
expressions of the form (2.64). Whether Q = Q̃ is known as Tsirelson’s
problem [Tsi93] which Tsirelson himself solved for finite dimension quantum
systems [Tsi06], proving that they are indeed equal. For infinite dimensional
systems, it is now believed that the tensor-product and commuting-operator
frameworks are inequivalent [Ji+22; CQK23]. Given that in this thesis we
will work only with finite-dimensional quantum systems, we will use the
commuting-operator framework in the remainder of this section (i.e., the
support of Aa|x and Bb|y, which are taken to commute, is the joint Hilbert
space HA ⊗HB).

Similarly to how the unboundedness of the shared randomness in the
classical common cause model can be used to make the local response
functions as certain as possible, i.e., deterministic (Eq. (2.35)), we can use the
unboundedness of the Hilbert space dimension to remove as much uncertainty
from the states and measurements as possible, that is, purify both the state
and the measurements. This is done by enlarging the total Hilbert space
with an auxiliary space used for purification: HA ⊗HB → HA ⊗HB ⊗Haux.
We will henceforth assume that we are working with pure states and PVMs,
i.e., we write the probability as p(ab|xy) = ⟨ψ|Aa|xBb|y|ψ⟩ where {Aa|x}a,
{Bb|y}b are PVMs for all x, y.

NPA hierarchy. Let O = {1AB} ∪ {Aa|x}xa ∪ {Bb|y}yb the set of all the
measurements operators, together with the identity operator, which we will
call an alphabet. We many now define a set S of monomials built from the
alphabet O. We can use a set S to build a completely positive map, ΓS ,
with Kraus operators Mi =

∑
s |s⟩⟨i|Ss. Then:

Γ(ρΛ) =
∑
i

MiρΛM
†
i =

∑
st

|s⟩⟨t| tr
[
ρΛS†

sSt
]
. (2.65)



40 Chapter 2. Preliminaries

We shall refer to expectation values of monomials as moments, and sim-
plify notation using angled brackets: ⟨M⟩ := tr ρΛM . If ρΛ is a positive
semidefinite operator, then ΓS(ρΛ) is also positive semidefinite:

ρΛ ⪰ 0⇒ ΓS(ρΛ) ⪰ 0.

While ΓS(ρΛ) itself need not be a quantum state, it can always be renormal-
ized such that its trace is equal to one. As such, one may think of ΓS as a
quantum channel that could be in principle implemented in a laboratory.
The (0, 0) element of ΓS(ρΛ) encodes the normalization of the state:

⟨0|ΓS(ρΛ)|0⟩ = tr ρΛ.

Generally, most entries (s, t) of the moment matrix can only be known if we
have complete knowledge of the states and measurements, but some depend
only on the joint probability p(ab|xy), such as:

⟨0|ΓS(ρΛ)|1⟩ = tr ρΛA0|0 = pA(0|0).

Such entries can be assigned a known numerical value. In general, the
moment matrix can be decomposed into a sum over entries which depend
on the probability and ones which do not:

ΓS(ρΛ) =: Γ = Γ0 +
∑
i

xiΓi, (2.66)

where Γ0 is a constant matrix whose value may depend on p(ab|xy), and Γi
are matrices that encode the coefficients of the moment xi in the moment
matrix.

Let us consider a simple example. If S = {1, A0|1, B0|0, A0|0A0|1}, then
the moment matrix is given by:

Γ =


1 A0|1 B0|0 A0|0A0|1

1 1 pA(0|1) pB(0|0) ⟨A0|0A0|1⟩
A0|1 pA(0|1) p(00|10) ⟨A0|1A0|0A0|1⟩
B0|0 pB(0|0) ⟨B0|0A0|0A0|1⟩

A0|0A0|1 ⟨A0|1A0|0A0|1⟩

 . (2.67)

As the moment matrix is hermitian—as it can be checked from Eq. (2.65)—we
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only show the upper triangular elements. Note that we used commutativity
[Aa|x, Bb|y] = 0, orthogonality and that the measurement operators are
projectors to algebraically simplify the monomials. Noticeably, some entries
of the moment matrix are fully determined by the probability while others,
such as ⟨A0|0A0|1⟩ or ⟨B0|0A0|0A0|1⟩, are expectation values that can only be
determined with full knowledge of the states and measurements. However, if
p(ab|xy) ∈ Q, then we know that there must exist states and measurements
that give rise to p(ab|xy), and that therefore there must exist values for
expectation values, e.g., ⟨A0|0A0|1⟩ or ⟨B0|0A0|0A0|1⟩, such that Γ ⪰ 0. This
defines a semidefinite program (SDP):

find x1, x2, x3 ∈ C
s.t. Γ = Γ0 +

∑
i xiΓi ⪰ 0 (2.68)

where

Γ0 =


1 pA(0|1) pB(0|0) 0

pA(0|1) p(00|10) 0
pB(0|0) 0

0

 Γ1 =


0 0 0 1

0 0 0
0 0

0

 (2.69)

Γ2 =


0 0 0 0

0 0 1
0 0

1

 Γ3 =


0 0 0 0

0 0 0
0 1

0

 (2.70)

If the program (2.68) is infeasible, then we reached a contradiction and
therefore, p(ab|xy) /∈ Q. If however, the program (2.68) is feasible, this test
is inconclusive, as the semidefinite positivity of Γ is a necessary but not
sufficient condition for p(ab|xy) to belong to Q. In general, the solution to
SDP (2.68) is complex, however, for any solution Γ to the SDP, we also have,
from convexity, that the real part of the solution matrix, Re(Γ) = Γ+Γ∗

2 , is
also a solution. Therefore, without loss of generality we may consider only
the SDP over real numbers:

find x1, x2, x3 ∈ R
s.t. Γ = Γ0 +

∑
i xiΓi ⪰ 0 (2.71)

as infeasibility of SDP (2.71) implies infeasibility of SDP (2.68). If a distri-
bution p(ab|xy) leads to an infeasible SDP (2.71), as with linear programs,
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we can use Farkas’ lemma (cf. Appendix A) to extract a Bell-type inequality
which is valid for all p(ab|xy) ∈ QS .

Instead of proving at the level of the SDP that real matrices are sufficient,
one may also use flags, such as in (2.50)—(2.52), to coordinate A and B to
both use either the quantum state and measurements ρΛ, {Aa|x}xa, {Bb|y}yb
or their complex conjugate, ρ∗

Λ, {A∗
a|x}xa, {B

∗
b|y}yb, which when averaging

over the flag with probability 1
2 will be operationally indistinguishable from

using real states and measurement operators [Ren+21]:

ρΛ →
|+i,+i⟩⟨+i,+i|F1F2 ⊗ ρΛ + |−i,−i⟩⟨−i,−i|F1F2 ⊗ ρ∗

Λ
2 , (2.72)

Aa|x → |+i⟩⟨+i|F1 ⊗Aa|x + |−i⟩⟨−i|F1 ⊗A∗
a|x, (2.73)

Bb|y → |+i⟩⟨+i|F2 ⊗Bb|y + |−i⟩⟨−i|F2 ⊗B∗
b|y, (2.74)

where | ± i⟩ = 1√
2(|0⟩ ± i|1⟩).

Let QS be the set of all distributions p(ab|xy) which are compatible
with the moment matrix relaxation based on the set of monomials S. The
NPA hierarchy consists of a recipe for building sets Sn such that the sets
of correlations QSn provide tighter approximations to the quantum set
as n increases while ultimately converging to it, QS1 ⊇ QS2 ⊇ · · · ⊇
limn→∞QSn = Q.6 These sets are the n-fold products of elements of
O: Sn = {Oi1Oi2 · · · Oin}i1,i2,...,in . One may algebraically simplify the set by
removing elements of Sn which are equivalent under substitutions derived
from commutations and orthogonality of operators for different outcomes.
One may also use the completeness relation of POVMs to exclude operators
corresponding to the last outcome from the alphabet O.

Given that Q ⊆ QSn , the NPA hierarchy may be used to compute upper
bounds on the Tsirelson bound of a Bell inequality, I(p(ab|xy)), as follows:

max
p(ab|xy)∈Q

I(p(ab|xy)) ≤ max
p(ab|xy)∈QSn

I(p(ab|xy)) =

=
max I(p(ab|xy))
s.t. Γ = Γ0 +

∑
abxy p(ab|xy)Γabxy +

∑
i xiΓi ⪰ 0

xi ∈ R, p(ab|xy) ∈ R
(2.75)

6Recall that strictly speaking it converges to the quantum set of correlations in the
commuting-operator framework.
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where p(ab|xy) are now variables in the SDP.

DI certification of entanglement. The NPA hierarchy is “device inde-
pendent”, as no assumptions are made about the states and measurements,
except that they follow the rules of quantum theory.7 However, we may con-
sider semi-device independent scenarios where more assumptions are made
about the inner workings of the (quantum) process Λ and the processes
A and B. For example, we may consider the set of quantum correlations
arising from measuring separable states:

QSEP = {p(ab|xy) | p(ab|xy) = tr
[
ρΛ ·

(
Aa|x ⊗Bb|y

)]
,

ρΛ =
∫
λ
q(λ)ρλA ⊗ ρλB dλ}. (2.76)

It is easy to see that QSEP = L:

p(ab|xy) = tr
[
ρΛ ·

(
Aa|x ⊗Bb|y

)]
(2.77)

= tr
[(∫

λ
q(λ)ρλA ⊗ ρλB dλ

)
·
(
Aa|x ⊗Bb|y

)]
(2.78)

=
∫
λ

(tr ρλAAa|x)︸ ︷︷ ︸
=:q(a|xλ)

(tr ρλBBb|y)︸ ︷︷ ︸
=:q(b|yλ)

dλ (2.79)

=
∫
λ
q(a|xλ)q(b|yλ) dλ. (2.80)

Since QSEP = L, any instance of nonlocality is immediately a device-
independent certification of entanglement.

The set QSEP is fully characterizable through linear programming tech-
niques. While linear programs can be solved in time that is polynomial in
the number of variables, the number of vertices of the local polytope scales
exponentially with the number of inputs, |NA||NX ||NB||NY |. As such, it is
of interest to develop new techniques that may be solved more efficiently,
either when increasing the cardinalities of the inputs or outputs, or when
considering a common cause between more than two processes (known as
“multipartite scenarios”).

7We use quotation marks—“device independent”—as full device independence is also
theory independent, whilst here we assume quantum theory to be true.
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All-commuting NPA hierarchy. One approach is to discover necessary
but not sufficient conditions for separability that may be more scalable. If
a state is separable, then it can be prepared locally with the aid of shared
randomness, i.e., it is the output of a classical common cause process. The
output of a classical process can be cloned arbitrarily, so each process can
locally prepare as many copies of the state as needed (this the same as
unpacking, as previously defined, and related to notions such as symmetric
extensions of quantum states [DPS02; DPS04]). In particular, A may prepare
as many copies as the cardinality of the input X, NX , and measure the
x-th local copy when X = x. Since the measurement operators {Aa|x}xa act
on disjoint subspaces for different x, they commute. As such, separability
of the quantum state implies that for any general measurement {Aa|x}xa,
there exists a protocol where the measurements commute for different pairs
of values of x while reproducing the same expectation values. A similar
protocol can be implemented in process B. One may then build a hierarchy
of moment matrix relaxations of QSEP where all operators commute with
each other, and which converges to QSEP at a finite level n of the hierarchy.
This relaxation is used in Ref. [Bac+17] for device-independent certification
of entanglement, and in this thesis in Chapter 6.

PPT-NPA. A well-known necessary but not sufficient criteria for separa-
bility is that of positivity under the partial transpose (PPT):

ρ separable⇒ ρTA ⪰ 0, (2.81)

where (·)TA denotes that partial transpose, which acts on a basis of operators
as (|i1i2⟩⟨j1j2|)TA = |j1i2⟩⟨i1j2|. One may define the set of PPT-quantum
correlations, which are joint distributions that arise from measuring a PPT
state:

QPPT = {p(ab|xy) | p(ab|xy) = tr
[
ρΛ
(
Aa|x ⊗Bb|y

)]
, ρTA

Λ ⪰ 0}. (2.82)

One can easily check the following mathematical identity:

trMTAN =
∑

Mj1i2,i1,j2Nj1j2,i1,i2 =
j1↔i1︷︸︸︷=

∑
Mi1i2,j1,j2Ni1j2,j1,i2 =: trMNTA . (2.83)
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Consider an expectation value evaluated on the state ρTA :

tr ρTA
Λ Ai1Ai2 · · ·Ain ⊗Bj1 · · ·Bjm =

= tr ρΛ(Ai1Ai2 · · ·Ain)T ⊗Bj1 · · ·Bjm =
= tr ρΛA

∗
inA

∗
in−1 · · ·A

∗
i1 ⊗Bj1 · · ·Bjm , (2.84)

where i1, i2, . . . , in and j1, j2, . . . , jn represent tuples of values (a|x) and (b|y)
respectively. Using flags, as in (2.72)—(2.74), one may take the state and
measurements to be real, A∗

a|x = Aa|x. Furthermore, we can move from the
tensor-product formalism to the commuting-operator formalism:

⟨Ai1Ai2 . . . AinBj1 . . . Bjm⟩ρTA
Λ

= ⟨AinAin−1 . . . Ai1Bj1 . . . Bjm⟩ρΛ . (2.85)

Now, given a set of monomials S we may build two moment matrices

Γ := ΓS(ρΛ) (2.86)
Γ̃ := ΓS(ρTA

Λ ) (2.87)

whose moments are connected by Eq. (2.85). Since ΓS is a completely
positive map, and ρTA

Λ ⪰ 0 by hypothesis, then ΓS(ρTA
Λ ) ⪰ 0. This leads

to a SDP which is feasible if the correlations p(ab|xy) can be generated by
measuring a state that is PPT:

find xi ∈ R ∀i
s.t. Γ = Γ0 +

∑
i xiΓi ⪰ 0

Γ̃ = Γ̃0 +
∑
i xiΓ̃i ⪰ 0

(2.88)

If SDP (2.88) is infeasible, then the underlying state ρΛ giving rise to p(ab|xy)
must be entangled. Some moments xi are present both in Γ and in ΓPPT,
while others are not (for those, either Γi = 0 or Γ̃i = 0). Ref. [Mor+13b] pro-
vides a construction of sets SPPT

n such that the set of distributions compatible
with the SDP relaxation (2.88) converges to the set of PPT correlations,
QS1

PPT ⊇ Q
S2
PPT ⊇ · · · ⊇ limn→∞QSn

PPT = QPPT. We use this hierarchy in
Chapter 5 for semi-device independent entanglement certification.

NPA as NCPOP. The NPA hierarchy can be seen as a particular example
of a non-commuting polynomial optimization problem (NCPOP) [BKP+16;
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NPA08]. A NCPOP consists of optimizing a polynomial of non-commuting
variables subject to polynomial constraints.

A non-commuting polynomial is built from an alphabet O of variables
which do not commute. We also equip our description with an involution
such that (X1X2 · · ·Xn)∗ = X∗

nX
∗
n1 · · ·X

∗
1 where Xi are elements of O. A

non-commuting polynomial is a formal sum of monomials built from O. For
example, if O = {1, X, Y, Z}, a non-commuting polynomial is an expression
such as f(O) = XY + Y 2Z + 1. The formal polynomial f may be evaluated
on a tuple of operators, such as Ō = (1, σx, σy, σz), by substituting the i-th
element of O with the i-th operator in Ō: f(Ō) = σxσy + σ2

yσz +1. We may
now impose polynomial constraints, such as for example g(O) = Y 2 − 1 ⪰ 0,
which are understood as all evaluations of g on tuples of operators to be
positive semidefinite, g(Ō) ⪰ 0 ∀Ō. Equality constraints, g(O) = 0, may
be expressed as two inequalities, g(O) ⪰ 0,−g(O) ⪰ 0. An optimization
function is a linear function L(f(O)) which takes a numerical value when
f(O) is evaluated on a tuple of operators Ō. For example, we can consider
an eigenvalue maximization problem:

max|ψ⟩,Ō ⟨ψ|f(Ō)|ψ⟩
s.t. gα(Ō) ⪰ 0 α = 1, . . . , p

⟨ψ|ψ⟩ = 1
(2.89)

which aims to determine the maximum possible eigenvalue of f(Ō) subject
to constraints gα(Ō) ⪰ 0.

We can express the problem of determining the quantum bound of a Bell
inequality, maxp(ab|xy)∈Q I(p(ab|xy)), as an eigenvalue optimization problem
using the linearity of the trace in Born’s rule:

max|ψ⟩,Aa|x,Bb|y ⟨ψ|
(
η01+

∑
abxy ηabxyAa|xBb|y

)
|ψ⟩

s.t. [Aa|x, Bb|y] = 0,∑
aAa|x = 1,

∑
bBb|y = 1,

Aa|xAxa′ = δaa′Aa|x,

Bb|yByb′ = δbb′Bb|y,

Aa|x ⪰ 0, Bb|y ⪰ 0,
⟨ψ|ψ⟩ = 1.

(2.90)

Membership of p(ab|xy) in Q can be cast as a similar NCPOP by having a
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trivial objective function in (2.89) together with the additional constraints
p(ab|xy) = tr ρAa|xBb|y. Solving NCPOP (2.89) is difficult as we put no
bound on the possible tuples of operators Ō we can consider. However, the
problem can be relaxed by considering moment matrix relaxations of
the problem (in what continues, we follow the presentation of Ref. [IR22]).

As with NPA, let S be a set of monomials in O, including the identity 1,
and let S⃗ be the vector whose i-th element is the i-th element of S.8 We
define a matrix of moments Γ:

Γ = ⟨ψ|S⃗ · S⃗†|ψ⟩, (2.91)

where (·)† = ((·)∗)T . It is easy to see that the matrix Γ is positive semidefinite:

v⃗†Γv⃗ = ⟨ψ|v⃗†S⃗ · S⃗†v⃗|ψ⟩ = ⟨ψ|PP ∗|ψ⟩ ≥ 0 ∀v⃗ ∈ C|S|, (2.92)

where P = v⃗†S⃗, as ⟨ψ|P (Ō)P (Ō)∗|ψ⟩ = ⟨ψ′|ψ′⟩ ≥ 0 for any choice of
operators Ō, where |ψ′⟩ := P (Ō)∗|ψ⟩.

Let us consider a set M = {S⃗iS⃗∗
j }ij . Then if f(O) can be written as a

linear combination of elements ofM, the objective function ⟨ψ|f(O)|ψ⟩ may
be expressed as a linear combination of entries of Γ:

f(O) =
∑
ij

cijMij ⇒ ⟨ψ|f(O)|ψ⟩ =
∑
ij

cijΓij . (2.93)

Furthermore, the constraints gα(O) ⪰ 0 can be also be expressed in terms of
a localizing matrix, Γgα = ⟨ψ|(S⃗gα) · S⃗†|ψ⟩, which is positive semidefinite
on any choice of operators Ō since gα(Ō) ⪰ 0:

v⃗†Γgα v⃗ = ⟨ψ|v⃗†(S⃗gα) · S⃗†v⃗|ψ⟩ = ⟨ψ|PgαP ∗|ψ⟩ ≥ 0 ∀v⃗ ∈ C|S|. (2.94)

Given a NCPOP (2.89), and a generating set S, we define a SDP relaxation
of it as follows:

max
∑
ij cijΓij

s.t. Γ = Γ0 +
∑
i xiΓi ⪰ 0

Γgα = (Γgα)0 +
∑
i xi

˜(Γgα)i ⪰ 0 α = 1, . . . , p
Γ00 = 1

(2.95)

8In full generality, S could be a set of polynomials in O, however, a subset of a monomial
basis of the space of non-commuting polynomials is sufficient.
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where (Γ0)00 = 1, which captures that ⟨ψ|ψ⟩ = 1. Note that this constitutes a
relaxation as instead of optimizing over sets of operators |ψ⟩, Ō as in NCPOP
(2.89), we are optimizing over values xi = ⟨Mi⟩ of expectation values of
monomials. There does not necessarily need to exist |ψ⟩, Ō that realize
values the xi found by the SDP (2.95). However, sometimes this is possible
through what is known as the Gelfand-Naimark-Segal (GNS) construction,
through a judicious choice of a set S or a limit of sets, limn→∞ Sn [NPA08].

It is noteworthy that in practice, when utilizing the same generating
set S for both the moment matrix Γ and localizing matrices Γgα , several
moments xi may appear in Γgα but not in Γ. Therefore, for constructing
localizing matrices, in practice it is preferred to use the largest set S ′ that
avoids generating monomials in Γgα not present in Γ.

Lastly, often constraints gα may be eliminated through symbolic substitu-
tions, which is usually the case for problems in quantum information theory.
For example, if the objective polynomial is f(O) = X2 + Y X + XY with
constraint g(O) = XY − Y X = 0, we need not build a localizing matrix for
g(O) = 0, as it can be used to rewrite the objective as f ′(O) = X2 + 2XY .

For a more thorough review of NPA as a NCPOP, we point to Ref. [IR22],
which also introduces Sums-Of-Squares relaxations of NCPOPs, which is the
dual perspective to that of relaxations based on moment matrices.

2.3.3 No-signaling common cause

If no assumptions are made about the process Λ except that it satisfies the
axiom of causality—no-signaling between space-like separated processes—
then we say we are dealing with a no-signaling process, or a more-than-
quantum or post-quantum source of correlations Λ. The axiom of causality
implies that the marginal distribution for each process is independent of the
input of the other process. We define the no-signaling set as the set of
distributions which satisfy no-signaling constraints:

NS :=
{
p(ab|xy)

∣∣∣ ∑
b

p(ab|xy) =: pA(a|xy) = pA(a|x) ∀y,

∑
a

p(ab|xy) =: pB(b|xy) = pB(b|y)∀x
}
. (2.96)
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Figure 2.4: The sets of correlations L, Q, and NS achiev-
able in a common-cause scenario under different assumptions
on the process Λ. We also represent a Bell inequality I as a
hyperplane which separates a point p := p(ab|xy) from the
appropriate set of correlations. In this case, I separates p
from both L and Q.

A slice of the higher-dimensional sets of local, quantum and no-signaling
correlations is graphically depicted in Figure 2.4.

That the quantum set is strictly included in the no-signaling set is
shown by Popescu and Rohrlich in their seminal work [Tsi93; PR94; Pop14],
where they provide an example of a distribution which satisfies the axiom
of causality but is nevertheless incompatible with quantum theory. This
distribution is known as the “PR box”, and it is over events with two outputs
and two inputs (a, b, x, y ∈ {0, 1}):

pPR(ab|xy) =


1
2 a ̸= b, x = 1, y = 1
1
2 a = b, x ̸= 1, y ̸= 1
0 otherwise

. (2.97)

It achieves the maximum algebraic bound of the CHSH inequality of Eq.
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(2.59), namely 4. It does so as it manifests perfect correlation and anti-
correlation of the outputs in terms of the inputs x, y. This correlation,
however, is only present when considering the joint statistics; locally the
marginal distributions of the PR box are uniformly random, thus they are
no-signaling. One may see the distribution resulting from the quantum
strategy of Eqs. (2.53)—(2.57), p̃(ab|xy), as a noisy version of the PR box:
p̃(ab|xy) = 1√

2p
PR(ab|xy) + (1 − 1√

2)1
4 . As such, p̃(ab|xy) is the closest

approximation in nature9 of the PR box.
In addition, PR boxes can be used to help distant parties infer strictly

more classical bits of information about each other than the ones physically
communicated [Dam05]. This inspired physical principles such as information
causality, which limit the information that can be inferred about distant
parties in such scenarios [Paw+09], and may potentially uniquely identify
quantum theory among all possible theories.

Collins-Gisin (CG) parametrization. There is a useful parameteriza-
tion of the set of no-signaling distributions. Let us consider the case of binary
inputs and outputs. Then the set of distributions is fully parameterized
by considering a set of 32 parameters {p(ab|xy)}a,b,x,y∈{0,1} together with
normalization and no-signaling constraints:

{p(ab|xy)}a,b,x,y∈{0,1} + NS constraints + normalization. (2.98)

We may however reduce the number of parameters from 32 to 9:

{1} ∪ {pA(0|x)}x∈{0,1} ∪ {pB(0|y)}y∈{0,1} ∪ {p(00|xy)}x,y∈{0,1} +
+ normalization inequalities. (2.99)

The no-signaling constraints have disappeared as they are implicitly used
when labelling marginal distributions only by the input of the relevant party,
e.g., pA(0|x) does not depend on y. The number 1 is written as an explicit
parameter as it may have a different value when the distribution p(ab|xy) is
subnormalized. Regarding the normalization constraints, these have been
included by removing events that involve the last outcome (a=1, b=1) of
each party. Events with last outcomes can be expressed in terms of CG
parameters, but they need to be positive in order to specify a valid joint

9Assuming quantum theory is the most precise theory in its regimes of applicability.
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probability distribution:

p(11|xy) = 1− pA(0|x)− pB(0|y) + p(00|xy) ≥ 0 . (2.100)

The “normalization inequalities” of expression (2.99) include all expressions
such as those of Eq. (2.100). This representation is also known as Collins-
Gisin (CG) notation, introduced in Ref. [CG04]. We use CG notation in
Chapter 6.
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Chapter 3

Beyond common cause
scenarios

In this chapter we study causal structures involving more than one indepen-
dent system preparation, that is, several independent common-causes. We
present a novel unified description of the inflation method for characterizing
the compatibility of correlations with a given causal structure.

3.1 3-party chain scenario
The Bell common-cause scenario of Section 2.3 presents a single prepared
system shared among various measurement devices. Here we consider another
scenario with two independent preparations of bipartite systems that undergo
three measurement processes, A, B and C, forming a chain-like causal

Figure 3.1: The three party chain scenario, also known as
the “bilocal scenario”, where three parties receive bipartite
systems that are the output of two independent processes
Λ and Σ. The input systems of B are labelled as “left” (L),
SL

B , and “right” (R), SR
B .
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structure, as shown in Figure 3.1. This scenario is also known as the “bilocal
scenario” in the literature.1

If the preparations Λ, Σ are classical, the set of distributions achievable in
the 3-party chain-like scenario, through unpacking as presented in Section 2.3,
is given by:

L3-chain = {p(abc|xyz) | p(abc|xyz) =
∑
ā\ax

∑
b̄\by

∑
c̄\cz

q(ā, b̄, c̄)

s.t.
∑
ā,b̄,c̄

q(ā, b̄, c̄) = 1, q(ā, b̄, c̄) ≥ 0, q(ā, c̄) = q(ā)q(c̄)}, (3.1)

where recall that bar notation is used to denote tuples of unpacked variables,
ā := (a1, . . . , a|NX |), b̄ := (b1, . . . , b|NY |) and c̄ := (c1, . . . , c|NZ |), and that we
use standard notation for marginalized distributions, q(ā, c̄) :=

∑
b̄ q(ā, b̄, c̄),

q(ā) :=
∑
b̄c̄ q(ā, b̄, c̄), q(c̄) :=

∑
āb̄ q(ā, b̄, c̄).2

Noticeably, the constraint q(ā, c̄) = q(ā)q(c̄) is a quadratic constraint. As
such, determining membership of a distribution p(abc|xyz) in the set L3-chain

is no longer a convex optimization program, but a quadratic programming
(QP) problem; this implies that L3-chain is not a convex set of distributions.
For small instances, QP problems may be solved using branch-and-bound
methods available through commercial software, such as GUROBI [Gur22],
or open-source software, such as the BMIBNB solver available through
YALMIP [Löf04].3

1Since the concept of a causal scenario as presented in this thesis makes no reference
to any underlying theory, we choose a nomenclature that makes no reference to local
causality.

2The set L3-chain may also be defined, through the arguments of Section 2.3, in
terms of local deterministic strategies, as distributions that satisfy p(abc|xyz) =∑

αβγ
qαβγD(a|xα)D(b|yβ)D(c|zγ) where

∑
αβγ

qαβγ = 1, qαβγ ≥ 0 and qαγ = qαqγ .
3More precisely, QPs involve constraints of the form xT Qx + Ax + b ≥ 0, where Q is a

semidefinite positive matrix, A a constant matrix and b a constant vector. While not all
non-convex causal constraints are of the form of a QP, they can all be mapped to a QP
through the addition of extra auxiliary variables. For example, the constraint x = yzw
can be mapped to quadratic two constraints (x = yα, α = yz) through the addition of the
variable α.
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If Λ, Σ prepare quantum states, the set of quantum correlations is given
by Born’s rule:

Q3-chain = {p(abc|xyz) |
p(abc|xyz) = tr(ρΛ ⊗ ρΣ)(Aa|x ⊗Bb|y ⊗ Cc|z)}, (3.2)

where the meaning of the operators is the same as in the quantum common
cause scenario of Section 2.3. The quantum state is fixed by the causal
constraint of the scenario to be a product state, ρΛ ⊗ ρΣ. As such, the
quantum set of correlations Q3-chain is not convex. Arguments to prove
convexity that use flags to construct a quantum strategy as in Eqs. (2.50)—
(2.52) will construct a quantum state that is no longer a product state, thus
the resulting distribution will be outside the set Q3-chain.

If Λ, Σ are no-signaling processes, the only constraint imposed by the
axiom of causality is that of no-signaling and the statistical independence of
A and C upon marginalizing B:

NS3-chain = {p(abc|xyz) |
p(abc|xyz) ∈ NSABC and p(ac|xz) = p(a|x)p(c|z)}. (3.3)

Statistical independence is also non-convex constraint, thus the set NS3-chain

is non-convex.

3.2 Inflation of the 3-party chain scenario
We will now present a relaxation of the sets of correlations—the “inflation”
method [WSF19; NW20a; Wol+21]—which relies on the principle of device
replication. The rationale behind device replication is rooted in the practical
consideration that any experimental setup requires the preparation of a device
which implements a specific physical process. However, one may prepare
more than one such device, and wire them in any compatible configuration.
For example, the device Σ in the 3-party chain scenario may be prepared
twice, and the two preparations may be wired with the other elements in the
circuit as in Figure 3.2. Such scenarios are called “inflations” of the original
scenario.
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Figure 3.2: A causal scenario corresponding to an in-
flation of the 3-party chain scenario of Figure 3.1. The
device implementing process Σ is manufactured two times,
implementing processes Σ1 and Σ2 which are operationally
indistinguishable. The inner working of the devices A, B
and C is assumed to be the same, except that B and C,
which have access to the copies of Σ, receive extra inputs,
I and J respectively, which specify whether the processes
take as input Σ1 or Σ2. In this inflation given that there
are only two copies of Σ and one copy of Λ, the settings I, J
take binary values, I = i ∈ {1, 2}, J = j ∈ {1, 2}.

The inflated scenario may be envisioned as an independent causal scenario
of its own. However, one can consider strategies and protocols that connect
the distributions realizable in the inflated scenario to those realizable in
the original scenario. For example, while B in the inflated scenario receives
three input systems (SLB,SRB1

,SRB2
), as opposed to just (SLB,SRB ), one possible

inflated process B is the one which implements the original process of the
base scenario on either (SLB,SRB1

) or (SLB,SRB2
). We introduce an extra input

I to the inflated process which can be used to specify on which input systems
the process is applied to, with I = i representing the choice of systems
(SLB,SRBi

). Similarly, J acts as an input to C, enabling the selection of
the system SCj upon which the original process from the base scenario is
implemented.

Following this protocol, one can produce a distribution over the inflated
scenario, q(abc|x, (y, i), (z, j)), that is connected to that of the original
scenario, p(abc|xyz), for different values of I and J :

q(abc|x, (y, i), (z, j)) =
{
p(abc|xyz) i = j

p(ab|xy)p(c|z) i ̸= j
. (3.4)
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Whenever i ̸= j, it is the case that B and C do not measure the same copy
of the source Σ, thus they are causally disconnected.

In addition, the preparations Σ1, Σ2 are operationally indistinguishable,
therefore index labels are arbitrary. We denote by G the group of symmetries
of the inflated scenario arising from the operational equivalence of prepa-
rations. In this example, as we only have two copies of Σ, the symmetry
group is the permutation group of two elements, G = Perm({1, 2}). The
distribution over the inflated graph must be invariant under the action of
the group, which in this inflation corresponds to a simultaneous relabelling
of the I, J indices:

q(abc|x, (y, i), (z, j)) = q(abc|x, (y, π(i)), (z, π(j))) ∀ π ∈ G (3.5)

Whenever p(abc|xyz) is realizable in the 3-partite chain scenario, through
the above protocol a distribution q(abc|x, (y, i), (z, j)) satisfying (3.4) and
(3.5) can be produced in the inflated scenario:

p(abc|xyz) ∈ D3-chain ⇒
⇒ ∃ q(abc|x, (y, i), (z, j)) ∈ InfnΛ=1,nΣ=2[D3-chain], (3.6)

where D3-chain is the set of distributions realizable in the 3-party chain
scenario (for some assumptions on the nature of the processes Λ, Σ; to be
considered shortly) and InfnΛ=1,nΣ=2[D3-chain] denotes the set of distributions
realizable in the inflated scenario corresponding to one copy of Λ, two copies
of Σ, and satisfying (3.4), (3.5).

Through the contrapositive of (3.6), if there does not exist a distri-
bution q(abc|x, (y, i), (z, j)) compatible with (3.4) and (3.5), p(abc|xyz) is
incompatible with the 3-party chain scenario:

∄ q(abc|x, (y, i), (z, j)) ∈ InfnΛ=1,nΣ=2[D3-chain] ⇒
p(abc|xyz) /∈ D3-chain. (3.7)

It is important to remark that the set InfnΛ=1,nΣ=2[D3-chain] is strictly speak-
ing more challenging to characterize than D3-chain. This is due to its non-
convexity and to its larger dimension following the addition of the extra
inputs I and J . We may however relax the non-linear constraints defining
the sets, which corresponds to considering the convex hull of the set of
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distributions. The convex hull of the set of correlations of the 3-party chain
scenario is the same as that of a 3-party common-cause scenario,

Conv(D3-chain) = DABC|XY Z ,

where DABC|XY Z is the set of distributions achievable with a common-
cause scenario with three processes A, B, C with inputs X, Y , Z. The
convexification of the inflated scenario, however, is that of a common-cause
(of a scenario with more inputs, I and J) together with extra linear constraints,
(3.4) and (3.5), which are a consequence of the causal independence of Λ
and Σ:

Conv(InfnΛ=1,nΣ=2[D3-chain]) :=
{q(abc|x, (y, i), (z, j)) |

q(abc|x, (y, i), (z, j)) ∈ DABC|X(Y,I)(Z,J) s.t. (3.4), (3.5)}. (3.8)

Clearly, if a distribution exists on the inflated scenario, it also exists on its
convexification. We may thus update the contrapositive (3.7) to:

∄ q(abc|x, (y, i), (z, j)) ∈ Conv(InfnΛ=1,nΣ=2[D3-chain]) ⇒
⇒ p(abc|xyz) /∈ D3-chain. (3.9)

This captures the essence of the inflation technique. Namely, inflated scenar-
ios introduce extra symmetries which “survive” convexification, and which
are a consequence of the non-convex properties of the original set of correla-
tions. These constitute necessary but not sufficient conditions—expressed in
terms of convex sets—for a distribution p(abc|xyz) to be realizable in the
original scenario of interest. The number of copies of preparations is known
as the level of the inflation technique, and it may be a tuple (nΛ, nΣ) or a
unique number such that n = nΛ = nΣ.

In what follows, we describe different methods for characterizing the set
Conv(InfnΛ=1,nΣ=2[D3-chain]) under different assumptions about the type of
processes Λ, Σ. The generalization to arbitrary numbers of copies of Λ, Σ is
straightforward, but we will not present it in this section.
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3.2.1 Classical preparations

If the preparations Λ, Σ, are classical processes, then as reasoned in Section
2.3, one may fully unpack the random variables. To simplify the graphical
representation further on, it is useful to consider an intermediate unpacking.
For example, for B, we “repack” the variable Y , leaving two unpacked
variables BI=0, BI=1 with inputs Y1, Y2:

BY=0,I=0, . . . , BY=|NY |,I=0︸ ︷︷ ︸
=:BI=0

, BY=0,I=1, . . . , BY=|NY |,I=1︸ ︷︷ ︸
=:BI=1

. (3.10)

With full generality, the unpacked variables are connected to all the input
systems of B, e.g., BI=1 can be connected to Σ2 and BI=2 to Σ1. However,
we may restrict to the protocol in which I acts as a flag fixing a particular
wiring of the input systems. This justifies removing the causal connections
from BI=1 to Σ2 and from BI=2 to Σ1.4 Similar considerations hold for C.
This results in the scenario of Figure 3.3. Note that we only use hybrid
unpacking for the graphical representation; in the formulaic description we
use full unpacking.

It is noteworthy that Λ is now being shared between three processes,
as opposed to two as in the original scenario. As such, a (nΛ= 1, nΣ= 2)
inflation makes use of the classical nature of Λ, whereas the type of process
Σ is not constrained in any way.5 An inflation which considers several copies
of both preparations, Λ and Σ, through unpacking will lead to scenarios that
exploit the classical nature of both processes.

Lastly, note that while we only duplicated a preparation device, through
unpacking we arrived at duplicated measurement processes B1, B2 and C1,
C2, with their own independent inputs Y1, Y2 and Z1, Z2. The unpacked
distribution q(ā, b̄I=1, b̄I=2, c̄J=1, c̄J=2) =: q(ā, b̄1, b̄2, c̄1, c̄2) connects with

4Recall that without this protocol, we cannot connect the distribution over the inflated
scenario with that over the original scenario. An alternative to removing said connections
from the causal scenario is to make a fine-tuning argument, and define processes B1 and
B2 to be such that the factorization (3.4) holds. However, it is more convenient to depict
this fine-tuning assumption graphically by removing the appropriate connections.

5This observation lead to the definition of “full network nonlocality” of Ref. [PKGT22].
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Figure 3.3: The scenario resulting from unpacking inputs
I and J in the inflation of Figure 3.2. The interpretation of
I and J as inputs that determine a wiring has been used to
remove the connections—denoted by a dashed red arrows
in the figure—from Σ2 to B1 and Σ1 to B2, and similarly,
from Σ2 to C1 and Σ1 to C2.

q(abc|x, (y, i), (z, j)) as follows:

q(abc|x, (y, 1), (z, 1)) :=
∑
ā\ax

∑
b̄1\by

∑̄
b2

∑
c̄1\cz

∑̄
c2
q(ā, b̄1, b̄2, c̄1, c̄2),

q(abc|x, (y, 1), (z, 2)) :=
∑
ā\ax

∑
b̄1\by

∑̄
b2

∑̄
c1

∑
c̄2\cz

q(ā, b̄1, b̄2, c̄1, c̄2),

q(abc|x, (y, 2), (z, 1)) :=
∑
ā\ax

∑̄
b1

∑
b̄2\by

∑
c̄1\cz

∑̄
c2
q(ā, b̄1, b̄2, c̄1, c̄2),

q(abc|x, (y, 2), (z, 2)) :=
∑
ā\ax

∑̄
b1

∑
b̄2\by

∑̄
c1

∑
c̄2\cz

q(ā, b̄1, b̄2, c̄1, c̄2).

(3.11)

Consider that there exists an unpacked distribution which marginalizes to
q(abc|x, (y, i), (z, j)) and which satisfies the appropriate symmetries (3.5).
Invariance under relabelling of Σi implies invariance under the joint swap
(I = 1, J = 1)↔ (I = 2, J = 2). Let us consider q(abc|x, (y, 1), (z, 1)) and
q(abc|x, (y, 2), (z, 2)). Since they are equal, averaging them does not change



3.2. Inflation of the 3-party chain scenario 61

their value:

q(abc|x, (y, 1), (z, 1)) = q(abc|x, (y, 1), (z, 1)) + q(abc|x, (y, 2), (z, 2))
2 =

= 1
2

∑
ā\ax

∑
b̄1\by

∑
b̄2

∑
c̄1\cz

∑
c̄2

q(ā, b̄1, b̄2, c̄1, c̄2)+

+
∑
ā\ax

∑
b̄1

∑
b̄2\by

∑
c̄1

∑
c̄2\cz

q(ā, b̄1, b̄2, c̄1, c̄2)

 =

=
∑
ā\ax

∑
b̄1\by

∑
b̄2

∑
c̄1\cz

∑
c̄2

q(ā, b̄1, b̄2, c̄1, c̄2) + q(ā, b̄2, b̄1, c̄2, c̄1)
2︸ ︷︷ ︸

=:q̃(ā,b̄1,b̄2,c̄1,c̄2)

(3.12)

where in the last step we relabelled jointly the indices (I=1, J=1) ↔
(I=2, J=2) of the second sum, which can be done with full generality.
Note that q̃(ā, b̄1, b̄2, c̄1, c̄2) is invariant under the joint swap of the parties
(B1, C1) and (B2, C2). Therefore, if there exists a (potentially asymmetric)
unpacked distribution that marginalizes to a symmetric q(abc|x, (y, i), (z, j)),
one can construct a symmetric unpacked distribution q̃ which marginalizes
to the same distribution. We have thus lifted the symmetries of Eq. (3.5),
described at the level of q(abc|x, (y, i), (z, j)), to the level of the unpacked
distribution. This can be done without loss of generality as long as we do
not consider non-convex constraints. The convex constraints implied by the
inflated causal scenario are the following:∑

b̄1

q(ā, b̄1, b̄2, c̄1, c̄2) = q(ā, b̄2, c̄2) q(c̄1), (3.13)

∑
b̄2

q(ā, b̄1, b̄2, c̄1, c̄2) = q(ā, b̄1, c̄1) q(c̄2). (3.14)

It is easy to check that the symmetrized unpacked distribution q̃ need not
satisfy them. For example:

∑
b̄1

q̃(ā, b̄1, b̄2, c̄1, c̄2) = qAB2C2(ā, b̄2, c̄2)qC1(c̄1) + qAB1C1(ā, b̄2, c̄2)qC2(c̄1)
2

̸= q̃(ā, b̄2, c̄2) q̃(c̄1).
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While non-convex constraints are relevant for characterizing the set of distri-
butions on the inflated scenario, InfnΛ=1,nΣ=2[L3-chain], they are not relevant
when considering its convexification, Conv(InfnΛ=1,nΣ=2[L3-chain]). There-
fore, we may without loss of generality consider symmetrized unpacked
distributions.

Now we may define a program that looks for the existence of an unpacked
distribution satisfying the inflation symmetries and which marginalizes to
(products of marginals of) the distribution of interest:

find q̃(ā, b̄1, b̄2, c̄1, c̄2)

s.t. q̃(ā, b̄1, b̄2, c̄1, c̄2) ≥ 0 ∀ā, b̄1, b̄2, c̄1, c̄2∑
ā,b̄1,b̄2,c̄1,c̄2

q̃(ā, b̄1, b̄2, c̄1, c̄2) = 1

q(abc|x, (y, i), (z, j)) :=
∑
ā\ax

∑
b̄i\by

∑
{b̄α}α̸=i

∑
c̄j\cz

∑
{c̄β}β ̸=j

q̃(ā, b̄1, b̄2, c̄1, c̄2)

q(abc|x, (y, i), (z, j)) =
{
p(abc|xyz) i = j

p(ab|xy)p(c|z) i ̸= j

q̃(ā, b̄1, b̄2, c̄1, c̄2) = q̃(ā, b̄2, b̄1, c̄2, c̄1) ∀ā, b̄1, b̄2, c̄1, c̄2

(3.15)
Note that the assumption that q̃ satisfies the inflation symmetries can be
used to significantly reduce the number of variables in the linear program.

We re-emphasize that the convexified problem corresponds to a scenario
which has no causal independence constraints, thus it is equivalent to a
common-cause scenario with extra symmetries where only marginals of the
total joint distribution are known. The convexified scenario is depicted in
Figure 3.4.

As the program (3.15) is a linear programming problem, we may use
Farkas’ lemma (Appendix A) to extract a certificate in case of infeasibility.
Such certificate will be a linear combination of the constant part of the
linear constraints of LP (3.15), which are non-linear in terms of the original
distribution p(abc|xyz). As such, the certificates of infeasibility that arise
from inflation methods are polynomial in p(abc|xyz). For a concrete example,
consider a distribution resulting from a wiring of two PR boxes [Bra+12],
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Figure 3.4: The convexification of the scenario of Figure 3.3
which results from removing the non-convex constraints of
program (3.15). The symmetries derived from inflation, that
is, the invariance under the joint swap (B1, C1)↔ (B2, C2),
survive the convexification.

Figure 3.5: The convexification of the scenario of Figure
3.3 together with symmetries derived from inflation, that is,
the invariance under the joint swap of indexes (I = 1, J =
1) ↔ (I = 2, J = 2). This is used for characterizing the
quantum set of correlations in the 3-party chain scenario.
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mixed with the uniform distribution:

pv2-PR(abc|xyz) = 1 + v(−1)a+b+c+xy+yz

8 . (3.16)

It is known that the distribution pv2-PR(abc|xyz) is compatible with clas-
sical preparations for 0 ≤ v ≤ 1

4 . The inflation considered so far in this
section detects pv2-PR(abc|xyz) to be incompatible with the 3-party chain
scenario with classical preparations for v > 1

2 . Running the LP (3.15) with
p(abc|xyz) = p

1/2+ϵ
2-PR (abc|xyz) with ϵ = 10−5 we find that there is no solution;

with Farkas’ lemma we extract the following certificate of infeasibility:

(pC(0|0)− 1) (p(000|001) + p(000|101)− pBC(00|01)− pA(0|1) pC(0|1))+
pC(0|1) (p(000|110)− p(000|010) + pAB(00|01)− pAB(00|11)) ≤ 0, (3.17)

which is nonlinear in the original observed distribution. Higher levels of
inflation can certify lower visibilities v as being infeasible; for (nΛ = 2, nΣ =
2), we can certify the range v ⪆ 0.3 as being incompatible with the classical
3-party chain scenario. In the limit of infinite number of preparation copies,
n = nΛ = nΣ the inflation technique for classical preparations is known to
converge [WSF19], i.e.,

lim
n→∞

Conv(InfnΛ=n,nΣ=n[L3-chain]) = L3-chain.

3.2.2 Quantum preparations

If the preparations Λ, Σ are quantum processes, we may characterize the set
of correlations Conv(InfnΛ=1,nΣ=2[Q3-chain]) with the following modification
of the NPA hierarchy. We build the standard alphabet, including also the
inputs I and J :

O = {1} ∪ {Aa|x}xa ∪ {BI=1
b|y }yb ∪ {B

I=2
b|y }yb ∪ {C

J=1
c|z }zc ∪ {C

J=2
c|z }zc,

and a generating set S of monomials in O. Note that while C’s operators
commute for different values of J , [CJ=1

c|z , CJ=2
c|z ] = 0, this is not the case for

B:
[BI=1

b|y , B
I=2
b|y ] ̸= 0, (3.18)
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as the operators of B overlap by acting on the same share of the state
prepared by Λ. The moment matrix has elements (α, β) given by:

ΓO
αβ(ρ) = tr ρS†

αSβ.

The distribution q(abc|x, (y, i), (z, j)) corresponds to the following moments
(we simplify the notation by writing BI=i

b|y =: Bi
yb and similarly for C):

q(abc|x, (y, i), (z, j)) = ⟨Aa|xB
i
b|yC

j
c|z⟩ =

{
p(abc|xyz) i = j

p(ab|xy)p(c|z) i ̸= j
. (3.19)

There exist more moments, however, that connect to q(abc|x, (y, i), (z, j)),
which are built from monomials in which all the operators commute. Mo-
ments of sequences of all-commuting positive semidefinite operators are
themselves non-negative, as such they define a probability distribution. For
this inflated scenario, the following are the only two patterns of sequences of
maximum length of all-commuting operators:

q1(ab1c1c2|xy1z1z2) := ⟨Aa|xB
1
y1b1C

1
z1c1C

2
z1c2⟩ = (3.20)

= q1(ab1c1|x, (y1, 1), (z1, 1)) q1(c2|(z2, 2)) (3.21)
q2(ab2c1c2|xy2z1z2) := ⟨Aa|xB

2
y2b2C

1
z1c1C

2
z1c2⟩ = (3.22)

= q2(ab2c2|x, (y2, 2), (z1, 2)) q2(c1|(z1, 1)) (3.23)

Note that q1 and q2 correspond to a partial unpacking of the distribution
q(abc|x, (y, i), (z, j)):

q(abc|x, (y, i=1), (z, j)) =
∑

{cα}α̸=j

q1(ab1c1c2|xy1z1z2) (3.24)

q(abc|x, (y, i=2), (z, j)) =
∑

{cα}α̸=j

q2(ab2c1c2|xy2z1z2) (3.25)

In addition, since for different values of the settings z1, z2, the operators of
C1 and C2 may not commute, [CJzc, CJz′c′ ] ̸= 0 for z ̸= z′, the distribution
cannot be unpacked over z1, z2 (similarly for B and unpacking over y1,
y2). We may interpret q1 and q2 as being distributions over two different
inflations:
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Analogous constraints hold for other moments which cannot be associated
with the known distribution, such as:

⟨A00B
1
00B

1
10C

2
00C

2
10⟩ = ⟨A00B

1
00B

1
10⟩⟨C2

00C
2
10⟩. (3.26)

As these types of constraints are non-convex, they do not form part of the
definition of the convexified set Conv(InfnΛ=1,nΣ=2[Q3-chain]), and thus we
need not consider them.

Lastly, we need to consider the action of the symmetry group G on the
set of moments. This corresponds to a simultaneous index relabelling of the
values of I and J consistent with a swap in the preparations Σ1, Σ2. For
example, the following moments are equivalent:

⟨A00B
1
00B

1
10C

2
00C

2
10⟩

(I=1,J=1)↔(I=2,J=2)︷︸︸︷= ⟨A00B
2
00B

2
10C

1
00C

1
10⟩. (3.27)

For the classical case, in Eq. (3.12), we showed how given an unpacked
distribution giving rise to a symmetric q(abc|x, (y, i), (z, j)), we may generally
construct a symmetric unpacked distribution. By using the convexity of the
set of solutions of a SDP, we can show a similar result. For any moments
{xi}i giving rise to a symmetric q(abc|x, (y, i), (z, j)), we can build a solution
{x∗

i }i that satisfies the inflation symmetries by averaging the action of the
group of symmetries G on the solution {xi}i:

x∗
i = 1
|G|

∑
g∈G

g(xi), (3.28)

where |G| is the number of elements in the group. Therefore, we may without
loss of generality assume that all moments in the NPA relaxation—including
those that are not connected to q(abc|x, (y, i), (z, j))—satisfy the inflation
symmetries.

3.2.3 No-signaling preparations

If Λ and Σ satisfy only no-signaling constraints, distributing the prepared
systems across more measurement devices than in the initial setup becomes
infeasible. This is possible when the preparations are classical systems as
classical information can be arbitrarily copied, thus it can correlate equally
an indefinite number of measurement devices. This process is referred to
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as “fanning out” the preparation. A fanout inflation is one which fans out
preparations, such as the one of Figure 3.3, where the system prepared by
Λ is being distributed among three measurement devices, (A, B1, B2), as
opposed to just (A,B) as in the baseline scenario. Conversely, a non-fanout
inflation is one which does not expand the distribution of the preparation
beyond the initial setup.

The protocol in which I and J are interpreted as fixing a certain wiring
between the preparations and the measurement devices is still compatible
with non-fanout inflations and with certain unpackings. For example, for
a fixed value of I, one may unpack over J as observed when considering
quantum inflation in Eqs. (3.24) and (3.25). These partial unpackings
correspond to looking for distributions q1 and q2 compatible with the inflation
of Figure 3.6. This inflation is “trivial” as it includes the original scenario,
thus it does not add new constraints. As a consequence, we cannot develop
convex programming tests for membership inNS3-chain, as the convexification
of inflation scenarios are in essence equivalent to just the common-cause
no-signaling set of correlations, with no extra symmetries.

The non-convex nature of the sets of distributions is graphically depicted
in Figure 3.7, together with a representation of a polynomial Bell inequality
such as that of Eq. (3.17).

3.3 Triangle scenario
The last scenario that we will consider is that of three preparations Λ,
Σ and Γ of bipartite systems subject to measurements A, B and C in a
triangle-like causal structure. This is known as the triangle scenario, and
it is depicted in Figure 3.8. Note that in this scenario the measurement
devices A, B and C do not have independent inputs X, Y and Z as in the
other scenarios considered so far. The observed joint distribution over this
scenario is then p(abc). We will now define the three sets of correlations
under the assumptions of classical, quantum and no-signaling preparations.

The classical set of correlations is given by:

p(abc) =
∫
λ̃∈R

∫
σ̃∈R

∫
γ̃∈R

q(a|λ̃ σ̃)q(b|λ̃ γ̃)q(c|σ̃ γ̃)q(λ̃)q(σ̃)q(γ̃) dλ̃dσ̃dγ̃

(3.29)
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Figure 3.6: A visual depiction of the causal constraints
the partial unpackings described by Eqs. (3.24) and (3.25)
must satisfy. Note that this is circular: by inflating the
original scenario, we arrive at the several scenarios which
are essentially equivalent to the original scenario if we do
not impose non-convex constraints. Therefore, non-fanout
inflation (see text for definition) does not lead to any novel
constraints that survive convexification.
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Figure 3.7: A visual depiction the non-convex nature of
the sets of distributions L3-chain, Q3-chain and NS3-chain.
See in text Eqs. (3.1), (3.2) and ((3.3)) for the definition of
these sets. The vertices of the set L3-chain are the same as
those of the classical common-cause set, LABC|XY Z . From
inflation methods one may extract polynomial bell inequali-
ties I(p(abc|xyz) ≤ 0, where I(p(abc|xyz)) is a polynomial
in p(abc|xyz). For an example, see the Bell inequality of
Eq. (3.17).
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Figure 3.8: The triangle causal scenario where the bipartite
systems prepared by three preparations Λ, Σ and Γ are
submitted to measurements A, B and C that each receive
two subsystems. Note that in this scenario, as opposed to
common-cause scenarios or the 3-party chain scenario, there
are no inputs X, Y , Z to the processes A, B, C.

Using the same derivation as for the common-cause scenario, we can use in-
verse transform sampling to simulate the response functions q(a|λ̃σ̃), q(b|λ̃γ̃),
q(c|σ̃γ̃) using a deterministic function and a uniform random variable. For
this, we enlarge the latent variables to include a uniform random variable
and denote the enlarged variables with primes, Λ̃′, Σ̃′, Γ̃′. In addition, we
can perform a change of variables to the cumulative distribution function
for each latent variable:

λ̃′′ =
∫ λ̃′′

−∞
q(λ̃′) dλ̃′, σ̃′′ =

∫ σ̃′′

−∞
q(σ̃′) dσ̃′, γ̃′′ =

∫ γ̃′′

−∞
q(γ̃′) dγ̃′,

where the new variables are denoted with double prime. This is an invertible
change of variable, λ̃′′ = f(λ̃′), σ̃′′ = g(σ̃′), γ̃′′ = h(γ̃′), where f, g, h are
injective functions. Note that dλ̃′′ = df

dλ̃′ (λ̃′) dλ̃′ = q(λ̃′) dλ̃′ and similarly for
the other variables. This allows us to absorb the marginals q(λ̃′), q(σ̃′), q(γ̃′)
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into the new variables. Altogether:

p(abc) =
∫
λ̃,σ̃,γ̃∈R3

q(a|λ̃σ̃)q(b|λ̃γ̃)q(c|σ̃γ̃)q(λ̃)q(σ̃)q(γ̃) dλ̃dσ̃dγ̃ (3.30)

↓ (change to deterministic response functions)

=
∫
λ̃′,σ̃′,γ̃′∈R3

q(a|λ̃′σ̃′)q(b|λ̃′γ̃′)q(c|σ̃′γ̃′)q(λ̃′)q(σ̃′)q(γ̃′) dλ̃′dσ̃′dγ̃′

(3.31)
↓ (change to cumulative variables)

=
∫
λ̃′′,σ̃′′,γ̃′′∈[0,1]3

q(a|f−1(λ̃′′)g−1(σ̃)′′)·

· q(b|f−1(λ̃′′)h−1(γ̃′′)) q(c|g−1(σ̃′′)h−1(γ̃′′)) dλ̃′′dσ̃′′dγ̃′′ (3.32)
↓ (redefine q to absorb f−1, g−1, h−1)

=
∫
λ̃′′,σ̃′′,γ̃′′∈[0,1]3

q(a|λ̃′′σ̃′′)q(b|λ̃′′γ̃′′)q(c|σ̃′′γ̃′′)dλ̃′′dσ̃′′ dγ̃′′. (3.33)

We have now arrived, without loss of generality, at a simplified description
of the classical set of correlations in the triangle scenario:

Ltriangle = {p(abc) | p(abc) =∫
λ̃′′,σ̃′′,γ̃′′∈[0,1]3

q(a|λ̃′′σ̃′′) q(b|λ̃′′γ̃′′) q(c|σ̃′′γ̃′′) dλ̃′′ dσ̃′′ dγ̃′′}. (3.34)

In this description, the values of the latent variables are continuous and
restricted to a unit cube, while the response functions are deterministic.
Note that in the 3-party chain scenario, it was possible to coarse grain the
distributions and to arrive at a relatively simple description polynomial
description of the non-convex set of correlations (cf. Eq. (3.1)). This is not
so straightforward in the triangle scenario. There are techniques to restrict
the cardinality of the latent variables through Carathéodory’s theorem (see
Ref. [Wol]), however we will not cover this in this dissertation. Note that
even though the response functions are deterministic, the other measurement
devices cannot predict the response of the rest from only two values for the
latent variables. For example, while A has access to λ̃′′ and σ̃′′, they do not
know the value of γ̃′′, needed to predict the outcome of B and C.
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The quantum set of correlations is given by

Qtriangle = {p(abc|xyz) | p(abc|xyz) =
tr(ρΛ ⊗ ρΣ ⊗ ρΓ)(Aa|x ⊗Bb|y ⊗ Cc|z)}. (3.35)

Lastly, given that there are no inputs X, Y and Z for A, B and C, it
is not immediately clear how the axiom of causality is expressed in this
scenario at the level of correlations. We defer the definition of NStriangle to
a later section.

3.4 Inflation of the triangle scenario
We consider an inflation of the triangle scenario which includes two copies
of the preparations Λ, Σ and Γ. This inflation is depicted in Figure 3.9.
The inputs IA, IB and IC describe which copy of the preparations each
measurement uses. Their value is a tuple of two numbers:

IA = (iAΣ, iAΛ), IB = (iBΛ , iBΓ ), IC = (iCΓ , iCΣ),

where iAΣ, i
A
Λ , i

B
Λ , i

B
Γ , i

C
Γ , i

C
Σ ∈ {1, 2}. The fundamental object is the joint

distribution over the inflated scenario given these inputs:

q(abc|(iAΣ, iAΛ), (iBΛ , iBΓ ), (iCΓ , iCΣ)) =

=



p(abc) iAΣ = iCΣ , i
A
Λ = iBΛ , i

C
Σ = iBΣ

p(ac)p(b) iAΣ = iCΣ , i
A
Λ ̸= iBΛ , i

C
Σ ̸= iBΣ

p(ab)p(c) iAΣ ̸= iCΣ , i
A
Λ = iBΛ , i

C
Σ ̸= iBΣ

p(a)p(bc) iAΣ ̸= iCΣ , i
A
Λ ̸= iBΛ , i

C
Σ = iBΣ

p(a)p(b)p(c) iAΣ ̸= iCΣ , i
A
Λ ̸= iBΛ , i

C
Σ ̸= iBΣ

unknown otherwise

. (3.36)

The other combinations of indices cannot be connected to the distribution
p(abc).
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Figure 3.9: An inflation of the triangle causal scenario
with 2 copies of Λ, Σ and Γ. The inputs IA, IB and IC

describe which copy each measurement device uses.

Figure 3.10: The fully unpacked scenario of the inflation
of Figure 3.9, known as the web inflation [WSF19].
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3.4.1 Classical preparations

If the preparations are classical, we may unpack the distribution q over
all the inputs, whilst “removing” connections between unpacked variables
to reflect independence constraints, as in the 3-party chain scenario in-
flation of Figure 3.3. The fully unpacked distribution marginalizes to
q(abc|(iAΣ, iAΛ), (iBΛ , iBΓ ), (iCΓ , iCΣ)) as follows:

q(abc|(iAΣ, iAΛ), (iBΛ , iBΓ ), (iCΓ , iCΣ)) =∑
{aii′ }ii′ \a(iA

Σ ,iA
Λ )

∑
{bii′ }ii′ \b(iB

Λ ,iB
Γ )

∑
{cii′ }ii′ \c(iC

Γ ,iC
Σ )

q(a11 a12 a21 a22 b11 b12 b21 b22 c11 c12 c21 c22). (3.37)

The unpacked distribution must be compatible with the unpacked causal
scenario of Figure 3.10, which is also known as the “web inflation” [WSF19].

In the general case in which there are (nΛ, nΣ, nΓ) replicas of each
prepared system, the group determining the inflation symmetries is generated
by the combination of permutations for each set of replicated states:

G = ⟨Perm({1, . . . , nΛ})× Perm({1, . . . , nΣ})× Perm({1, . . . , nΓ})⟩,

where G = ⟨S⟩ denotes that G is the smallest group containing all the elements
of S. The group acts on the conditioned distribution through a simultaneous
relabelling of the indices (iAΛ , iBΛ ), (iAΣ, iCΣ) and (iBΓ , iCΓ ) respectively. For
example, swapping copy number 1 and 2 of Σ changes the corresponding
indices as follows:

(iAΣ = 1, iCΣ = 1)→ (iAΣ = 2, iCΣ = 2), (3.38)
(iAΣ = 2, iCΣ = 1)→ (iAΣ = 1, iCΣ = 2). (3.39)
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Given that the conditioned distribution is invariant under such relabellings,
we can replace it with an average over the group action:

q(abc|(iAΣ, iAΛ), (iBΛ , iBΓ ), (iCΓ , iCΣ))→

→ 1
|G|

∑
g∈G

q(abc|(πΣ
g (iAΣ), πΛ

g (iAΛ)), (πΛ
g (iBΛ ), πΓ

g (iBΓ )), (πΓ
g (iCΓ ), πΣ

g (iCΣ))),

(3.40)

where for a group element g we have associated permutations πΛ
g , πΣ

g , πΓ
g for

each corresponding tuples of indices. The average over the group action can
be lifted to the fully unpacked distribution as in the 3-party chain scenario
(compare with Eq. (3.12)):

q(a11 a12 a21 a22 b11 b12 b21 b22 c11 c12 c21 c22) =
= q(. . . , a(iAΣ ,i

A
Λ ), . . . , b(iBΛ ,i

B
Γ ), . . . , c(iCΓ ,i

C
Σ ), . . .)→

→ 1
|G|

∑
g∈G

q(. . . , a(πΣ
g (iAΣ),πΛ

g (iAΛ )), . . . , b(πΛ
g (iBΛ ),πΓ

g (iBΓ )), . . . ,

. . . , c(πΓ
g (iCΓ ),πΣ

g (iCΣ )), . . .). (3.41)

This symmetrization is incompatible with other non-convex causal con-
straints, such as:

q(a11 a12 c21 c22) = q(a11 a12) q(c21 c22), (3.42)
q(b11 b21 c12 c22) = q(b11 b21) q(c11 c12), (3.43)
q(a12 a22 b11 b12) = q(a11 a12) q(b11 b12), (3.44)

however such constraints are not relevant when considering the convexified
set Conv(InfnΛ=2,nΣ=2,nΓ=2[Ltriangle]). One now can establish a LP such as
that of the 3-party chain scenario in expression (3.15) whose infeasibility
proves that the distribution p(abc) is incompatible with the triangle scenario
with classical sources of correlations.

3.4.2 Quantum preparations

If the preparations Λ, Σ, Γ are quantum processes, we may characterize
the set of correlations Conv(InfnΛ,nΣ,nΓ [Qtriangle]) with a modification to the
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NPA hierarchy analogous to that used for the 3-party chain scenario. This
involves constructing an alphabet which incorporates also the inputs IA, IB
and IC :

O = {1} ∪
⋃

iA∈N
IA

{AiAa|x}xa ∪
⋃

iB∈N
IB

{BiB

b|y}yb ∪
⋃

iC∈N
IC

{CiCc|z}yb,

where iA, iB and iC represent tuples of indices that correspond to each
subsystem accessible by the measurement device in the original setup.

Consider the measurement operators of A. They will commute for the
same values of input x and outcome a whenever their inflation indices have
no overlap:

[A(iAΣ ,i
A
Λ )

a|x , A
(jA

Σ ,j
A
Λ )

a|x ] = 0 if iAΣ ̸= jAΣ iAΛ ̸= jAΛ . (3.45)

More concisely, we write iA ∩ jA = ∅ to denote that the tuples iA and jA

have different values for all entries. Similar commutation rules hold for B
and C.

We can now construct a generating set S of monomials in O which de-
termines a moment matrix. The distribution q(abc|(iAΣ, iAΛ), (iBΛ , iBΓ ), (iCΓ , iCΣ))
connects with the following entries of the moment matrix:

q(abc|(iAΣ, iAΛ), (iBΛ , iBΓ ), (iCΓ , iCΣ)) = ⟨A(iAΣ ,i
A
Λ )

a|x B
(iBΛ ,i

B
Γ )

b|y C
(iCΓ ,i

C
Σ )

c|z ⟩. (3.46)

The group acts on an arbitrary moment by jointly relabelling the appropriate
indices according to the symmetry group element g:

⟨Ai
A
1
α1 · · ·Ai

A
n
αn
B
iB1
β1
· · ·BiBm

βm
C
iC1
γ1 · · ·Ci

C
o
γo
⟩ →

→ ⟨Aπg(iA1 )
α1 · · ·Aπg(iAn )

αn
B
πg(iB1 )
β1

· · ·Bπg(iBm)
βm

C
πg(iC1 )
γ1 · · ·Cπg(iCo )

γo
⟩, (3.47)

where n,m, o are arbitrary integers. The values of these integers depend on
the maximum degree of the monomials that appear in the NPA relaxation,
which in turn depend on the choice of S. We simplified the index description
for readability, where {αi}i, {βi}i, {γi}i describe input and output tuples,
and {iAα}α, {iBα }α, {iCα }α describe the tuples of copy indices. The action of
the group is not fully specified at the level of the individual entries of the
tuples as it similar as in previous expressions such as (3.40) and (3.42).
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Through an analogous reasoning to the one of the 3-party chain scenario,
given a solution to the SDP of the NPA relaxation, we may build other
solutions to the SDP through the symmetry group action. As such, we may
without loss of generality assume that all moments are invariant under the
action of the inflation symmetry group. We do not explicitly write the SDP
as it is very similar to other formulations presented in this thesis.

3.4.3 No-signaling preparations

As mentioned in the presentation of the triangle scenario (Section 3.3)
the axiom of causality seems to impose no constraints on the observed
distribution p(abc). However, through inflation, one can build scenarios
where causality restricts the distribution on the inflated graph non-trivially.
This is possible in the triangle scenario, whereas it is not possible in the
3-party chain scenario (recall Figure 3.6).

To do so, we may analyse the combinations of indices which fix a non-
fanout wiring, i.e., where a prepared system is not distributed to more
measurement devices than in the original scenario. Such combinations of
indices can be unpacked, as the wiring protocol itself ensures that the
distribution is jointly measurable over the different wiring inputs IA, IB , IC .
Let us consider an example. In the level 2 inflation of the triangle scenario,
one compatible unpacking is the following:

q(a11 a22 b11 b22 c12 c21), (3.48)

together with all its index relabellings per the inflation symmetries. This
unpacking corresponds to a hexagonal inflation, as shown in Figure 3.11.
This unpacking connects with the conditioned distribution as follows:

q(abc|(iAΣ=1, iAΛ=1), (iBΛ =1, iBΓ =1), (iCΓ =1, iCΣ=2)) =
=

∑
a22b22c21

q(a11 a22 b11 b22 c12 c21), (3.49)

q(abc|(iAΣ=1, iAΛ=1), (iBΛ =2, iBΓ =2), (iCΓ =1, iCΣ=2)) =
=

∑
a22b11c21

q(a11 a22 b11 b22 c12 c21), (3.50)
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Figure 3.11: One possible non-fanout unpacking of the
inflation of the triangle scenario of Figure 3.9, known as
the hexagon inflation [Gis+20b]. This inflation contains
also other inflated graphs such as the “cut inflation” of
Figure 3.12.

Figure 3.12: One possible non-fanout unpacking of infla-
tion of the triangle scenario of Figure 3.9, known as the cut
inflation [WSF19]. This inflated scenario is contained in the
hexagon inflation of Figure 3.11.
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q(abc|(iAΣ=2, iAΛ=2), (iBΛ =2, iBΓ =2), (iCΓ =1, iCΣ=2)) = etc.

We do not write the rest of the input combinations as the pattern is clear.
As done so far in this dissertation, we may lift the symmetries at the level of
the unpacked distribution by averaging over the group action. This enables
us to assume without loss of generality that unpacked distributions such
as q(a11, a22, b11, b22, c12, c21) are invariant under the action of the group
provided we do not consider non-convex constraints, that is, provided we
work with the convexified set Conv(InfnΛ=2,nΣ=2,nΓ=2[NStriangle]). One can
then write a linear program analogous to the one of classical preparations
(recall LP (3.15)) which looks for the existence of an unpacked distribution
that marginalizes to the distribution conditioned on compatible inputs.

It is important to remark that not all combinations of inputs in the
conditioned distribution q(abc|(iAΣ, iAΛ), (iBΛ , iBΓ ), (iCΓ , iCΣ)) are compatible. In
non-fanout inflation, the inputs IA, IB and IC cannot be freely chosen
locally, as there is a global consistency condition, namely, that preparations
cannot be fanout. Combinations of inputs which fanout preparations are not
merely unknown variables, rather they are ill-defined; as such, they are not
present in the linear programming relaxation. One may then interpret IA,
IB and IC not as locally independent choices for A, B and C, but rather
as meta-parameters which determine the topology of the experiment, which
may be determined before the run of the experiment in a correlated fashion
(to satisfy the global consistency condition).

Lastly, observe that the hexagon inflation of Figure 3.11 contains other
inflations such as the cut inflation of Figure 3.12. The hexagon inflation
itself is sub-contained in the web inflation for classical preparations (see
Figure 3.10). As such, when considering all possible compatible combinations
of inputs IA, IB, IC , one simultaneously tests for all possible inflation
scenarios that are achievable with (nΛ, nΣ, nΓ) copies of each preparation.
This observation is merely to clarify that the thought process when using
the inflation method need not be “start by drawing an inflated scenario”,
but rather, choose the number of copies of each preparation, and then
consider unpackings for all possible compatible wirings. In doing so, one
automatically considers all possible inflation scenarios for a given inflation
level (nΛ, nΣ, nΓ). This is the approach we take in the Python package
we developed which implements the inflation method, which we explain in
Chapter 6.
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Remark on symmetries and non-convex constraints. In the current
presentation of the inflation method, we have opted for a unifying approach in
which the marginal distribution, for example, q(abc|(iAΣ, iAΛ), (iBΛ , iBΓ ), (iCΓ , iCΣ)),
is the fundamental object satisfying the inflation symmetries. The lifting of
the symmetries to the unpacked distribution under different assumptions
on the nature of the preparations can be done without loss of generality as
long as non-convex constraints are not considered. We are not suggesting
that non-convex constraints and symmetries cannot be addressed together;
rather, we note a potential conflict between them in this unified framework.
Nevertheless, investigating the effects of non-convex constraints, either by
considering the complete quadratic program tied to an inflation or by soft-
ening the non-convex constraints using polynomial optimization techniques,
and their compatibility with symmetries, presents an interesting research
direction.

In this chapter we presented a cohesive description of the inflation
technique where the fundamental inflation is that which adds extra inputs,
and the other types of inflation (fanout, non-fanout and quantum) are
derived depending on the assumptions on the nature of the preparations.
This unified description may pave the way for a proof of convergence of the
non-fanout and quantum inflation hierarchies, which currently is absent.
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Chapter 4

Single photon nonlocality in
quantum networks

This chapter is based on Ref. [Abi+22]:
Paolo Abiuso, Tamás Kriváchy, Emanuel-Cristian Boghiu, Marc-Olivier
Renou, Alejandro Pozas-Kerstjens, and Antonio Acín, “Single-photon nonlo-
cality in quantum networks”, Phys. Rev. Research 4, L012041—Published
29 March 2022

4.1 Background
As shown in the preliminaries, classical common cause models cannot ac-
count for all the predictions of quantum theory. Bell nonlocality manifests
in so-called Bell tests, defined by the correlations obtained when performing
appropriate local measurements on a well-chosen entangled state (cf. Sec-
tion 2.3.2). Bell tests have been performed in many different systems, from
massive particles [Hen+15] to photons [Giu+15b; Sha+15], and using many
different degrees of freedom, such as electronic levels, polarization, orbital
angular momentum or time bins. In most of these realizations the relevant
degrees of freedom used to encode the entanglement are transmitted to each
distant observer by a physical carrier, such as, for instance, a photon.

In this chapter we are interested in whether single-particle quantum states
can display nonlocal correlations with no classical analogue. In particular,
we consider the question in the context of single-photon entanglement, that
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is, the state
|ψ+⟩AB = 1√

2
(|01⟩AB + |10⟩AB), (4.1)

obtained when sending a single photon into a balanced beamsplitter. Here
|01⟩AB (resp. |10⟩AB) represents the situation in which the photon is sent
to the right party B (resp. the left party A). The resulting state therefore
consists of only one photon and entanglement is encoded in the two optical
spatial modes.

Is the state (4.1) nonlocal? A state is understood to be nonlocal if it can
lead to Bell nonlocal correlations. This question has been intensively debated
in the quantum foundations and quantum optics community, e.g. [TWC91;
Har94; Ger96; Vai95; AV00; Hes+04; D’A+06; BCB13; Mor+13a; Don+14;
Das+21; YS92a; YS92b; GPS21]. In principle, a positive answer is provided
by the following simple argument [Ger96; Vai95; AV00]: the two optical
modes can be transferred to the population of two energy levels of two distant
massive particles. Single-photon entanglement is therefore mapped into two-
particle entanglement and a Bell test can now be implemented. The question
is subtler when considering only optical means. To obtain a nonlocal correla-
tion, the two observers need to use local active measurements involving local
oscillators creating extra local photons [TWC91; Har94; BCB13; Das+21]:
without such active measurements, measuring the information content of
the state (4.1) allows the observers to deduce if they received the photon
sent by the source, destroying the indeterminacy in the photon path, that is,
the coherences in (4.1). Then, the correlations become classically simulable.
One might be tempted to conclude that the observation of nonlocal effects
in the single-photon entangled state by passive optical means, that is, phase
shifters, beamsplitters and photodetectors, is impossible.

The main result of our work is to show that this is not the case; one can
indeed reveal the nonlocality of state (4.1) with only passive measurements.
To do so, we go beyond standard Bell tests and consider setups defined by
more sophisticated causal scenarios, more particularly, network scenarios.
Network scenarios are causal structures involving several independent sources,
each being distributed to a subset of the parties involved in the scenario,
according to a structure defined by a network [Tav+22]. It understood that
these networks offer new possibilities to design quantum experiments with
no classical analogue [BGP10; Fri12; Fri16; Cha+17; VH+19; Ren+19a].
We show how three copies of single-photon entangled states placed in a
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triangle causal network (cf. Section 3.3 in the Preliminaries; Figure 4.1
contains a depiction of the experimental proposal) can exhibit non-classical
correlations. The main idea is to exploit the topology of the network to
reintroduce indeterminacy in the photon path, necessary to exploit the
coherences of these states. Interestingly, the obtained setup is not only
passive in terms of the implemented measurements, but also because it
does not require any active choice of measurements. Our setup contains
no classical inputs, and observers perform a single measurement on their
received shares. These characteristics make the proposal, arguably, the
simplest experimental demonstration of the nonlocality of the single-photon
entangled state, as well as the first experimental proposal for genuine network
nonlocality [Ren+19a].

Beyond the fundamental motivation, our results may also be relevant
from an applied point of view. Correlations with no classical analogue are the
main resource for device-independent applications. For instance, the security
of DI protocols for quantum random number generation [Col07; Pir+10]
and quantum key distribution [Ac07] is based on the observation of Bell
inequality violations. For that, the simplest way of producing entangled states
is through Spontaneous Parametric Down Conversion (SPDC). Entanglement
can be encoded on different degrees of freedom of the resulting two photons.
However, the state produced by SPDC is a mixture of the desired entangled
state and vacuum [CV+15]. In fact, a heralded preparation of a two-photon
maximally entangled state is challenging [SB03]. In turn, single-photon
entanglement can be easily prepared in a heralded way: an arbitrarily good
approximation to it can be obtained when detecting photons in one of the
two modes resulting from the SPDC process and sending the non-measured
mode into a balanced beamsplitter (see Appendix B.3). Moreover, this form
of entanglement does not require the control of any other light degrees of
freedom, such as, for example, polarization or orbital angular momentum.
Therefore, the design of simple setups to generate correlations with no
classical analogue from this state opens new avenues for the implementation
of DI protocols.

4.2 The triangle network
The considered Bell-type experiment consists of a triangle causal network
(cf. Section 3.3 in the Preliminaries) where three measurement devices A,
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A B

C

Figure 4.1: Schematics of the proposed quantum optical
experiment. A, B and C share single-photon entangled
states |ψ+⟩ = (|01⟩ + |10⟩)/

√
2 prepared by the sources.

Each party receives two optical modes that are mixed on a
beamsplitter, the resulting output modes being measured
by photodetectors. In the specific experimental instance
depicted here, A does not detect any photon, B has one
detector firing, and C has both detectors firing.

B and C, receive states prepared by three sources, see Figure 4.1. These
states are measured producing outcomes a, b and c with probability p(abc).
Recall that if the observed correlations p(abc) are compatible with classical
preparations, they must have a decomposition of the following form:

p(abc) =
∫
γ,σ,λ∈[0,1]3

q(a|σλ)q(b|λγ)q(c|γσ) dγdσdλ. (4.2)

The causal model therefore consists of classical variables γ, σ and λ dis-
tributed by the preparations and local deterministic response functions
producing the measurement outcomes. In analogy with standard Bell tests,
we define probability distribution p(abc) that can be written as Eq. (4.2) as
causally classical or, simpler, local.
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A quantum description of the experiment compatible with the causal
network replaces the random variables by quantum states ργ , ρσ and ρλ and
the local response functions by quantum measurements. Therefore, quantum
probabilities compatible with the triangle network have the form:

p(abc) = Tr [(ργ ⊗ ρσ ⊗ ρλ)(Aa ⊗Bb ⊗ Cc)] , (4.3)

where Aa is a POVM, and similarly for B and C. We slightly abuse the
notation in Eq. (4.3) by not specifying the tensor products and different
Hilbert spaces in which the different operators act. We say that a quantum
experiment, defined by states and measurements producing the outcome
distribution p(abc) according to Eq. (4.3), is nonlocal whenever this distribu-
tion cannot be described by a classical model (4.2). Our goal in what follows
is to provide a nonlocal quantum experiment in the triangle network using
only single-photon entangled states, beamsplitters and photodetectors.

The essential idea of the experimental proposal is depicted in Figure 4.1:
three parties A, B, C share, for each pair AB, BC, CA, the single photon
entangled state |ψ+⟩, see Eq. (4.1). The initial state is thus:

|ψ+⟩A2B1 ⊗ |ψ+⟩B2C1 ⊗ |ψ+⟩C2A1 ≡ |Ψ+⟩A1A2B1B2C1C2
. (4.4)

Each party then receives its two optical inputs on modes X1X2 (X = A,B,C)
and mixes them with a beamsplitter, which induces a unitary transformation
BX1X2(t, ϕ) parametrized by its transmissivity t and phase ϕ. All parties
use the same value for t, and the phases are all null for simplicity in the
following (cf. Appendix B.1).

After passing through the beamsplitters, the photons end up in pho-
todetectors. For each mode Xi, the operators describing a perfectly effi-
cient photodetection correspond to the projectors onto the vacuum state
D□
Xi

= |0⟩⟨0|Xi (detector off) and the projector on its orthogonal comple-
ment D■

Xi
= 1Xi − |0⟩⟨0|Xi (detector firing). Indeed, we assume that the

detectors do not resolve the number of photons but only their presence. The
measurement obtained by mixing two modes with the beamsplitter and the
ideal photodetectors can be accordingly expressed as a POVM for each party
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(here BX1X2 = BX1X2(t, 0)):

Π(0)
t X1X2

= B†
X1X2

(D□
X1 ⊗D

□
X2)BX1X2 ,

Π(L)
t X1X2

= B†
X1X2

(D■
X1 ⊗D

□
X2)BX1X2 ,

Π(R)
t X1X2

= B†
X1X2

(D□
X1 ⊗D

■
X2)BX1X2 , (4.5)

Π(2)
t X1X2

= B†
X1X2

(D■
X1 ⊗D

■
X2)BX1X2 ,

where the measurement labels stand respectively for no photon counts (0), a
count in the left detector (L), a count in the right detector (R), or counts
in both detectors (2). The crucial point is that when t ̸= 0, the L and R
measurements actually detect superpositions of photons in the incoming
modes (see details in Appendix B.1).

The quantum experiment described here results in the output distribution

pt(abc) = Tr[|Ψ+⟩⟨Ψ+| (Π(a)
t ⊗Π(b)

t ⊗Π(c)
t )]

a, b, c ∈ {0, L,R, 2} (4.6)

which depends on the transmissivity t of the beamsplitters used by the
parties and whose exact expression can be found in the Appendix B.1.

4.3 Witnessing single-photon nonlocality
The first main result of this work is that

The distribution pt obtained from the experiment described in Figure 4.1 (cf.
previous section), is nonlocal (at least) for values of the beamsplitter
transmissivity in the intervals t ∈ (0, 0.215) and t ∈ (0.785, 1).

We give in the following a sketch of the proof, which is analytical and detailed
in Appendix B.2. As expressed in Eq. (4.2), any local model is specified by
deterministic triangle-local response functions that map all the points of the
cube [0, 1]3 to the observed outputs:

{γ, σ, λ} → {a(σ, λ), b(λ, γ), c(γ, σ)}. (4.7)

We were able to identify strict constraints that need to be satisfied by
all possible classical causal models simulating the considered experimental
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output pt(abc) in the triangle network. In particular, we exploited the cyclic
symmetry and null components of the distribution. For example, all outputs
of the form (here χ represents any of L or R) {(000), (00χ), (2χχ), (22χ)}, or
any of their permutations, have zero probability, due to the fact that there
are initially 3 photons in the network, of which at most 2 can end up in the
same photodetector. That is, in each run of the experiment the total number
of clicks in the detectors must be 2 or 3. By taking all the relevant properties
of pt into account, one can identify constraints that need to be satisfied
by any classical strategy, specified by the response functions (4.7), aiming
at reproducing pt. In fact, while the exact form of the response functions
remains in general unknown, some of its marginals can be expressed in terms
of the output pt. These relevant marginals are nothing other than linear
constraints on the response functions, parametrized by t. Together with
standard normalization and positivity constraints, these define a Linear
Program. The feasibility of such Linear Program is, by definition, necessary
for the existence of such local response functions. Therefore, when infeasible,
no local model exists to simulate our experiment proposal. Results show
that the Linear Program is infeasible for t ∈ (0.785, 1) and t ∈ (0, 0.215),
proving the claims of this section.

The techniques we used are similar to those introduced in [Ren+19a] and
generalized in [RB22b]. However, their findings cannot be applied directly
to our scenario. The reason behind this is that the works [Ren+19a; RB22b]
are based on a token-counting approach to some physical “tokens” that are:
i) generated from the sources, ii) distributed to the parties in a coherent
superposition of different ways, and iii) counted at the output. In our exper-
iment the physical tokens are the photons, which however can be miscounted
at the output, as more than one could enter in the same photodetector. For
these reasons, in the proof of Appendix B.2 we had to extend these techniques
so that they could be applied to our setup. As part of the proof, we showed
that our distribution is nonlocal if and only if the distribution proposed
in [Ren+19a], which we dub p′

t, is nonlocal as well. In Ref. [PKGR23b], they
prove nonlocality of p′

t for discrete points in the range t ∈ (0.5, 0.785) as well.
Nonlocality of p′

t in such interval has been conjectured already [Kri+20].
Given the above mentioned equivalence between the nonlocality of pt and p′

t

proven in this work, this would imply that the proposed ideal experiment is
nonlocal for all transmissivities except t ∈ {0.0, 0.215, 0.5, 0.785, 1.0}, which
are known to have local models (cf. [Ren+19a]).
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4.4 Noise tolerance and machine learning analysis
After proving the nonlocality of the outputs of the ideal noiseless experiment,
we analyzed the robustness of our results against typical noise errors, by
modelling imperfections which occur in experimental realizations of the
optical network presented in Figure 4.1. Therefore, the resulting output
distribution, pQ,T,νt (abc) depends on additional noise parameters quantify-
ing: the impurity of the generated single-photon entangled state (Q), the
transmissivity of the optical channels (T ) of the network, and the efficiency
of the final photodetectors (ν). It follows that:

pQ=0,T=1,ν=1
t (abc) ≡ pt(abc), (4.8)

that is, with no impurity, and perfect transmission and detection, we recover
the idealized experiment. The details of the modelling employed are deferred
to the Appendix B.3.

Inevitably, part of the key properties and symmetries of pt(abc) disappear
as soon as noise is introduced in the network. This makes the analytic
approach unworkable in this case. Consequently, in order to estimate the
tolerance to the noises introduced above, we resorted to a technique recently
introduced in [Kri+20]: there, a feed-forward neural network is shaped with
the same topology of the causal network under study, and it is then asked
to reproduce the target distribution p

(Q,T,ν)
t . Each output of the neural

network is thus literally an instance of a classical model (which can be
therefore described by Eq. (4.2) in our case) trying to reproduce p(Q,T,ν)

t .
For a fixed target distribution, the neural network is trained by minimizing
the Euclidean distance from the neural network’s local model to the target.
When the target distribution is inside the local set, a sufficiently large
neural network should be capable of learning it. Instead, a large distance
between the machine’s best guess and the target is taken as an indication of
nonlocality. What it means to be “large” enough can be somewhat arbitrary,
since some nonlocal behaviors are extremely close to the local set (as is the
case here), and additionally the neural network’s model is not guaranteed to
converge to the optimal solution as it can get stuck in local minima during
training. In order to gain deeper insight into the boundary between locality
and nonlocality we examine transitions of the learning algorithm’s behaviour
when adding noise to the target distribution, and retraining the machine
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Figure 4.2: Euclidean distance of machine learned local
models to the target distributions pt(abc), for various levels
of artificial noise on the singlets (4.1) (visibilities r of Werner
states r |ψ+⟩ ⟨ψ+|+ (1− r)1/4). With red vertical lines we
depict the transmissivities t at which analytic local models
exist (t ∈ {0.5, 0.785, 1}). At the top of the figure a purple
line shows the regime where we have proven nonlocality,
while the blue line shows the regime where we conjecture
nonlocality, based on these numerics and the relation to the
distribution in Ref. [Ren+19a], which was studied numeri-
cally in Ref. [Kri+20].

independently for each target distribution. The very noisy case is guaranteed
to be local and the machine learning results on those give a reference to
which we can compare the nonlocal regime. By definition, this technique
does not certify nonlocality analytically, but has been shown to be reliable
and efficient from the point of view of computational resources [Kri+20].

The results of the analysis are summarized in Figs. 4.2 and 4.3, where
we consider only t ≥ 0.5 because of the symmetry of the experiment when
mirroring the beamsplitters t′ = 1− t. For the noiseless distribution (perfect
visibility r = 1 in Figure 4.2), the neural network’s best guess is distant from
the experimental output, corroborating the analytical proof of nonlocality
for t ∈ (0.785, 1). At the same time the neural network hints at the locality
of the output distribution for t = 0.5 and t = 1, which clearly have local
strategies. A local model exists as well for t ∼ 0.785 (cf. Ref. [Ren+19a],
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Figure 4.3: Euclidean distance of machine learned local
models from the noisy distribution p(Q,T,ν)

t under an experi-
mentally realistic noise model for t = 0.65 (left) and t = 0.85
(right), with Q = 0.006875 for both.

Appendix B.2) where the neural network struggles to get closer; however,
note that the distance of 0.003 achieved there is already very close to the
local set. Moreover, the same machine indicates (seemingly even stronger)
nonlocality in the range t ∈ (0.5, 0.785), in line with the conjecture of
Ref. [Kri+20] and the results of Ref. [PKGR23b].

The noise robustness is, however, small. In Figure 4.2 an artificial noise
is considered by adding a Werner state visibility to the source (4.1) of ideal
experiment (Q = 0, T = 1, ν = 1). The neural network seems to indicate that
the points that are “most nonlocal” are t ∼ 0.85 in the proven region (purple
interval in Figure 4.2), and t ∼ 0.65 in the conjectured region (blue interval).
For these two points we tested the tolerance to the physical noises introduced
above, see Figure 4.3: choosing Q ≃ 0, 7% (cf. Appendix B.3), the neural
network tries to learn p

(Q,T,ν)
t for different values of the transmissivity T

and detector efficiency ν. Results show that nonlocality is more robust for
t = 0.65, where it is lost when T ≲ 95% or ν ≲ 95%.

All data was obtained by representing each of the three response function
(q(a|λσ), q(b|λγ), q(c|γσ)) by a multilayer perceptron of depth 4 and width
20 with rectified linear activation functions. For each target distribution we
retrained the neural network independently 30 times and kept the smallest
distance among those.
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4.5 Discussion
In this chapter, we have shown how single-photon entangled states can be
used to generate an outcome distribution with no classical analogue in a
triangle causal network. The considered setup only requires passive optical
elements, namely beam-splitters, phase shifters and photodetectors, and
involves a single measurement choice per observer. Our results not only
challenge the current understanding of the nonlocal properties of single-
photon entanglement, but also open new perspective for the use of this
form of entanglement for quantum information applications, as they provide
the first proposal of an experimental demonstration of genuine network
nonlocality.

We have shown that the nonlocality of such proposal has (small) noise-
tolerance to natural noises that can arise in its implementation, through
a machine learning analysis. Such approach is however not exact, and it
remains an open question to prove nonlocality in the noisy regime by other
means, for example, certifying it by inflation techniques [WSF19], which
would be crucial for an experimental implementation.

Finally, in Appendix B.4 we show that our main result on the nonlocality
of the ideal experimental proposal in the triangle network can be extended
to any ring network with N ≥ 3 parties, although increasing the number
of parties does not improve the detectability of nonlocality in the proposed
experiment with our current techniques.
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Chapter 5

Broadcasting of quantum
states

This chapter is based on Ref. [Bog+23]:
Emanuel-Cristian Boghiu, Flavien Hirsch, Pei-Sheng Lin, Marco Túlio
Quintino, Joseph Bowles, “Device-independent and semi-device-independent
entanglement certification in broadcast Bell scenarios”, SciPost Phys. Core
6, 028 (2023)—Published 11 April 2023

5.1 Introduction
In this chapter, we study how Bell nonlocality and other notions of non-
classicality such as EPR steering [WJD07; CS16; Uol+20; Jev+15; CV16;
Bow+16] relate to quantum entanglement. Like Bell nonlocality, EPR
steering is a form of non-classicality exhibited by entangled quantum states,
and relates to the fact that a measurement made on one subsystem of an
entangled state has the ability to influence or “steer” the distant quantum
state of another subsystem. EPR steering is similar to Bell nonlocality but
involves more specific assumptions about one of the measurement devices,
rendering it easier to demonstrate in experiments [Sau+10; Wit+12].

One of the most basic questions one can ask is which entangled states
can manifest these forms of non-classicality. It is known that entanglement
alone is not sufficient to observe neither Bell nonlocality nor EPR steering,
since some mixed entangled states are known to admit so-called local hidden-
variable, or local hidden state models [Wer89; Bar02; Qui+15]. A deeper
understanding of this question is not only interesting from a foundational
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perspective, but also from a technological perspective, given their connection
to quantum information technologies.

An important discovery in this respect was that of activation. The
essential idea is the following: some quantum states that show only classical
behaviour in simple causal scenarios (i.e., common-cause scenarios) can have
their non-classicality activated, or revealed, by subjecting the state to a more
complex measurement protocol. This broadens the spectrum of entangled
states showing non-classical correlations and rekindles the hope of proving
Bell nonlocality or EPR steering of all entangled states. There are a number
of different techniques that have been shown to activate quantum states
(see [BHC21] for a more detailed discussion). In Refs. [Pop95; Hir+13],
it is shown that Bell nonlocality can be activated by applying local filters
to the state before a Bell test. This can be seen as a specific case of the
more general sequential measurement scenario, where a sequence of time-
ordered measurements is made on the local subsystems of the state [Gal+14].
Afterwards, it was shown that activation of Bell nonlocal and EPR-steering
is also possible by taking multiple copies of the state, and performing joint
measurements on the local subsystems [Pal12; QBH16]. This method appears
to be more powerful than the sequential scenario [Hir+16], which is perhaps
to be expected given the additional resources and entanglement granted by
the multiple copies.

Recently, a new technique based on broadcasting was discovered and
shown to lead to Bell nonlocality activation [BHC21] (see also [TRC19] for
a prior related work which inspired the definition of broadcast nonlocality).
In this scenario (cf. Chapter 5.1.1) one or more of the local subsystems is
broadcast to a number of additional measurement devices (see Figure 5.2).
The entanglement present in the original state is thus spread between a
larger number of systems, and interestingly, this can be used to activate the
Bell nonlocality of the original state. The broadcast scenario also appears to
be significantly more powerful than the sequential measurement scenario: for
instance, for the two-qubit Werner state, broadcasting leads to activation of
Bell nonlocality for significantly lower visibilities [BHC21]. This has practical
implications, since although stronger examples of activation are known by
using many copies, the broadcast scenario requires the manipulation of
a single copy of the state per experimental round, does not require joint
measurements, and may thus admit a simpler implementation.

In this chapter we build on this initial work, and prove a number of
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new results related to nonlocality, device-independent (DI) and semi-DI
entanglement certification, which we summarize in the following:

• Bell nonlocality in broadcast scenarios—We give two methods
to construct Bell inequalities tailored to the broadcast Bell scenario,
starting from a Bell inequality in the standard scenario. We also
study detector inefficiencies in the broadcast scenario. For the case of
the two-qubit maximally entangled state |Φ+⟩ = [|00⟩+ |11⟩]/

√
2, we

show how one can demonstrate Bell nonlocality with lower detection
inefficiencies than in the standard scenario.

• Stronger activation through broadcasting—We prove a stronger
notion of activation than previously shown in [BHC21]. More pre-
cisely, we show that through broadcasting, it is possible to convert a
state with a local hidden-variable (LHV) model for general (POVM)
measurements, to a state this exhibits genuinely multipartite nonlocal
correlations. This is the most extreme “jump” in Bell nonlocality class
that has been demonstrated using a single quantum state. Such a
result highlights the extent to which notions of locality in the standard
scenario, such as the existence of a LHV model, are unable to capture
the strongly nonlocal properties of entangled states.

• Device-independent entanglement certification—We investigate
device-independent entanglement certification in the broadcast scenario.
In Ref. [BHC21] it was shown that broadcasting allows entanglement
certification for noise thresholds much lower than previously known.
For the case of the isotropic state of two qubits (local unitary equivalent
to the two-qubit Werner state [Wer89]),

ρ(α) = α|Φ+⟩⟨Φ+|+ (1− α)1/4, (5.1)

it was shown that DI entanglement certification is possible for visi-
bilities α > 1

2 . Here, we show that this can in fact be extended to
visibilities greater than α > 0.338, using a numerical technique based
on the NPA hierarchy. Since the state is entangled for α > 1

3 , this
is essentially the entire range of entanglement, and we suspect that
with more computational power this could be proven for values of
α arbitrarily close to 1

3 . This suggests the possibility of designing
device-independent protocols with much greater tolerance to noise,
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which is highly desirable given the high experimental requirements
that hinder device-independent protocols.

• Broadcast steering—We extend the definition of EPR steering to
the broadcast scenario, and study the phenomenon using the two-
qubit isotropic state, showing that broadcast steering is possible for
visibilities greater than 0.4945 when broadcasting to two parties and
visibility greater than 0.4679 when broadcasting to three parties. This
is below the threshold of 1

2 below which the state has a local hidden
state model in the standard scenario [Wer89; WJD07], and is the first
example of the activation of steering using a single copy of this state.

5.1.1 Bell nonlocality in broadcast scenarios

In the “broadcast” scenario, introduced in Ref. [BHC21], a common cause Λ,
instead of outputting a three-partite system sent to A, B and C, as in Figure
5.1a, outputs a bipartite system which undergoes a further transformation
Σ, before undergoing measurements B and C, as shown in Figure 5.1.
Broadcasting reflects the assumption that the final three-partite system is
generated from an initial bipartite system, which is useful for investigating
properties of bipartite systems.

The different sets of correlations in the broadcast scenario depend on
the assumptions made on the processes Λ, Σ. If Λ, Σ are both classical
with unbounded cardinality, then Σ may copy Λ and forward it to B, C,
therefore the distributions achievable in the all-classical broadcast scenario
are indistinguishable from those achievable through a classical three-way
common cause, denoted by LABC|XY Z . The three-way common cause sce-
nario is depicted in Figure 5.1a. If both processes are quantum instruments,
the set of quantum correlations in the broadcast scenario is given by

QA,(B,C)|X,(Y,Z) = {p(abc|xyz) |
p(abc|xyz) = tr(1A ⊗ ΣB0→BC)(ρΛ)(Aa|x ⊗Bb|y ⊗ Cc|z)} (5.2)

where we use parenthesis to denote the broadcast parties, and where ΣB0→BC

is a quantum channel (a quantum instrument with a single classical outcome)
and the rest of the operators have a similar meaning as in the quantum
common cause scenario of Section 2.3. Examples of such channels are ap-
proximate cloning [Wer98; Sca+05] or broadcasting of quantum information
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(a) Common-cause scenario

(b) Broadcast scenario

Figure 5.1: (5.1a) A three-way common cause scenario
with the process Λ outputting a three-partite system that
is shared with A, B and C. The local, quantum and no-
signaling sets are denoted with superscripts, LABC|XY Z ,
QABC|XY Z and NSABC|XY Z , to distinguish them from the
analogous sets in the standard Bell scenario. (5.1b) The
broadcast scenario, which differs from Bell’s scenario as one
of the output systems of the common cause Λ is submitted to
another latent process Σ before being transmitted to B and
C. This represents the assumption that the tripartite joint
state shared between A, B and C is built from an original
bipartite state prepared by Λ.
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as in Ref. [YHD11], although the channel need not be of this form. If the
dimension of the Hilbert spaces is unbounded, the set of quantum correla-
tions QA,(B,C)|X,(Y,Z) is the same as the one achievable through a quantum
three-way common cause, QABC|XY Z . To see this, given any three-partite
quantum state ρ with support on HA ⊗ HB ⊗ HC , one may coarse grain
the Hilbert spaces, HB0 = HB ⊗HC , and treat ρ as a bipartite system on
HA ⊗HB0 . Then the action of Σ is simply that of physically separating HB
and HC . If Λ, Σ are both no-signaling resources, then the set of broadcast-
no-signaling correlations is the same as that of a three-way no-signaling
common cause, NSA,(B,C)|X,(Y,Z) ≡ NSABC|XY Z .

It is more interesting to consider a hybrid scenario, where Λ is classical
process and Σ is no-signaling. We call the set of correlations achievable with
such processes the broadcast-local set, LA,(B,C)|X,(Y,Z), and it can be shown
that it is given by all distributions that satisfy the following decomposition:

LA,(B,C)|X,(Y,Z) = {p(abc|xyz) | p(abc|xyz) =
∑
α

D(a|xα)pN S
α (bc|yz)

s.t. pN S
α (bc|yz) ∈ NS ∀α,

∑
bc

pN S
α (bc|yz) =: pα ≤ 1 ∀α}, (5.3)

where the notation has the same meaning as in the Section 2.3. The last
constraint captures that for each α, pN S

α (bc|yz) is a subnormalized probability
distribution which satisfies no-signaling between B and C, but also that the
value of α is independent of the inputs Y and Z. This is more interesting,
as in Ref. [BHC21], the authors show how a bipartite entangled quantum
state that can never lead to Bell nonlocal correlations in the standard Bell
scenario can nevertheless be used to generate correlations that are broadcast-
nonlocal, i.e., that are outside LA,(B,C)|X,(Y,Z) but inside QA,(B,C)|X,(Y,Z).
This demonstrates that while broadcasting is not “interesting” from the
perspective of the span of achievable correlations—it is identical to the span
of a three-way common cause scenario—it nevertheless allows for the DI
certification of properties of bipartite quantum states when such certification
is not possible in scenarios such as Bell’s scenario.

In a similar vein, one can also consider a broadcast scenario where the
broadcast channel broadcasts the state into multiple parties, as in example
5.2a of Figure 5.2 or both sides (A and B) perform broadcast channels
before the Bell test, as in Figure 5.2b. The corresponding definitions of
broadcast nonlocality in these scenarios follow the same logic as above, by
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allowing measurement devices that share a common broadcast channel to
share non-signaling resources.

5.2 Novel results and methods for broadcast non-
locality

5.2.1 Promoting standard Bell inequalities to the broadcast
scenario

Here we give a method to construct Bell inequalities tailored to the broadcast
scenario, starting from Bell inequalities defined in the standard scenario. In
the broadcast scenario, it is shown that one can activate nonlocality for the
isotropic state, ρα = α

∣∣Φ+〉 〈Φ+∣∣+ (1− α)1/4, for α > 1√
3 [BHC21]. This

is certified by the inequality:

I = ⟨A0B0C0⟩+ ⟨A0B1C1⟩+ ⟨A1B1C1⟩ − ⟨A1B0C0⟩
+ ⟨A0B0C1⟩+ ⟨A0B1C0⟩+ ⟨A1B0C1⟩ − ⟨A1B1C0⟩

+2 ⟨A2B1⟩ − 2 ⟨A2B0⟩ ≤ 4 ,
(5.4)

written in the standard correlator notation, where:

⟨AxByCz⟩ =
∑

a,b,c=±1
abc p(abc|xyz), (5.5)

⟨AxBy⟩ =
∑

a,b=±1
ab p(ab|xy), (5.6)

⟨Ax⟩ =
∑
a=±1

a p(a|x). (5.7)

Similar definitions hold for ⟨AxCz⟩ and ⟨ByCz⟩, and for ⟨By⟩ and ⟨Cz⟩. The
best quantum violation found for this inequality is 4

√
3 with the measure-

ments and channel given in Ref. [BHC21] and using the isotropic state with
α = 1.

Ineq. (5.4) can be restructured as follows:

⟨CHSH [A0, A1, C0, C1] (B0 +B1)⟩+
+ LCHSH⟨A2 (B1 −B0)⟩ ≤ 2LCHSH , (5.8)
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(a) n-party broadcast scenario

(b) Symmetric 2-party broadcast scenario

Figure 5.2: Generalizations of the broadcast scenario of
Figure 5.1b. One (or more) of the local systems is broadcast
via the application of a quantum channel, resulting in a mul-
tipartite state, sent to distant parties. Local measurements
are then performed on this state, and the resulting statistics
are used to rule out a local hidden-variable description for
the original bipartite state.
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where:

CHSH [A0, A1, C0, C1] := (A0 −A1)C0 + (A0 +A1)C1, (5.9)

and LCHSH denotes the local bound of the CHSH inequality in the standard
Bell scenario, that is, LCHSH = 2. Here, we slightly abuse notation so that
for example ⟨A2 (B1 −B0)⟩ is understood as ⟨A2B1⟩ − ⟨A2B0⟩. The form
of (5.8) suggests the following recipe for promoting any two-outcome Bell
inequality I [A0, . . . , Am, C0, . . . , Ck] to the broadcast scenario through the
following ansatz:

⟨I [A0, . . . , Am, C0, . . . , Ck] (B0 +B1)⟩+
+ LI⟨Am+1 (B1 −B0)⟩ ≤ 2LI , (5.10)

where LI is the local bound of I in the standard scenario. We prove in
Appendix C.4 that (5.10) is valid so long as the Bell inequality I does not
contain any 1-body correlator terms ⟨Ax⟩ for device A.

The same procedure can also be applied to the 4-partite symmetric
broadcast scenario of Figure 5.2. In [BHC21, Sec. 4.2] an inequality is given
for this scenario which can be written:

⟨CHSH [A0, A1, B0, B1]C0 (D0 +D1)⟩+
+ LCHSH⟨C1 (D1 −D0)⟩ ≤ 2LCHSH, (5.11)

where A and D are on the left side and B and C are on the right side, as
in Figure 5.2b. This inequality is also violated by the isotropic state for
α > 1√

3 . Similarly to above, this suggests the construction:

⟨I [A0, . . . , Am, B0, . . . , Bk]C0 (D0 +D1)⟩+
+ LI⟨C1 (D1 −D0)⟩ ≤ 2LI . (5.12)

We prove in Appendix C.4 that (5.12) is valid so long as the Bell inequality
does not contain any 1-body correlator terms ⟨Ax⟩ or ⟨By⟩.

We now apply these constructions to two well-known Bell inequalities in
the standard scenario, and study noise resistance with respect to the isotropic
state (5.1). The two Bell inequalities we consider are (i) the chained Bell
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inequality [Pea70; BC90] in the case of both measurements having inputs
of cardinality 3, and (ii) the elegant Bell inequality [BG03], where A has a
trichotomic input and B has an input of cardinality 4. These inequalities
are both maximally violated by the maximally entangled state (α = 1), and
are violated by the isotropic state for (i) α > 4/(6 cos π6 ) ≈ 0.7698, and (ii)
α > 6/(4

√
3) ≈ 0.8660 respectively. Via a numerical see-saw optimization in

the broadcast scenario, we have found that the corresponding inequalities
(5.10) are violated in the broadcast scenario for visibilities (i) α > 0.6100
and (ii) α > 0.6799. Surprisingly, the same bounds are obtained using
the construction (5.12). Notice that for both examples this visibility is
below α = 1/K3 where 0.683 < 1/K3 < 0.697 and K3 is Grothendieck’s
constant [Gro56; Hir+17; DBV17]. This means that both examples show
activation of nonlocality of the isotropic state in the range in which it has a
projective-LHV model [AGT06]. These examples however do not improve
on the α > 1√

3 visibility achieved via the CHSH inequality. It would be
interesting to investigate further if other Bell inequalities (probably with
more input settings) could be used to show activation of the isotropic state
below this threshold.

5.2.2 Robustness to detection inefficiencies

The isotropic state, ρα = α
∣∣Φ+〉 〈Φ+∣∣ + (1 − α)1

4 , is a simple model for
a noisy quantum state, with α representing the probability of applying a
depolarizing channel to one half of a pair of maximally entangled qubits.
From an experimental perspective, there are other interesting notions of noise.
Notably, detectors are not ideal, and they often fail to register an outcome.
Thus, it is important to study the robustness of nonlocality with respect to
detector inefficiencies. Let us first consider the standard Bell scenario and let
η represent the detection efficiency, the probability of the detector working
correctly. We take all detectors to have the same detection efficiency, and
assume no detection events of different detectors are statistically independent.
Here we consider scenarios with binary inputs taking values in {0, 1} and
binary outcomes taking values in {+1,−1}. When a no detection event
occurs, an outcome in {+1,−1} is chosen deterministically as a function
of the measurement input of the detector in the round. Mathematically,
this is described by two functions fA(x), fB(y) : {0, 1} → ±1 which give the
corresponding outputs given a failure event for each party and their input in
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that round. Given ideal statistics p(ab|xy) —computed with the noiseless
quantum state and measurements— the noisy statistics P η(a, b|x, y) are
given by:

P η(ab |xy) = η2 p(ab|xy)

+ η(1− η)
[
δfA(x),a p(b|y) + δfB(y),b p(a|x)

]
+ (1− η)2δfA(x),aδfB(y),b , (5.13)

where δi,j is the Kronecker delta function. The critical detection threshold
ηc is defined as the lowest η such that, for all η′ > η, P η′(a, b|x, y) is outside
the local set. In this scenario, the best known critical visibility for the
two-qubit maximally entangled state is η = 0.8214 achieved using a Bell
inequality with four settings per party [BG08]. This is very close to the
critical detection efficiency of η = 2(

√
2 − 1) ≃ 0.8284 resulting from the

CHSH Bell inequality.
Here, we show that by using a single copy of the maximally entangled

state in the broadcast scenario, one can achieve a significantly lower critical
detection efficiency of ηc = 0.7355. We consider the tripartite broadcast
scenario of Figure 5.1b. In this case, we have three measurement devices,
and we assume again the same detection efficiency η for each device. We
similarly consider a strategy in which the detectors output either ±1 when a
failure event occurs, and describe this choice of strategy by three functions
fA(x), fB(y), fC(z) : {0, 1} → ±1. The statistics given a detection efficiency
η are thus:

P η(abc |xyz) = η3 p(abc|xyz)

+ η2(1− η)
[
δfA(x),a p(bc|yz) + δfB(y),b p(ac|xz) + δfC(z),c p(ab|xy)

]
+ η(1− η)2

[
δfA(x),aδfB(y),b p(c|z) + δfA(x),aδfC(z),c p(c|z) +

+ δfB(y),bδfC(z),c p(a|x)
]

+ (1− η)3δfA(x),aδfB(y),bδfC(z),c . (5.14)

To find the noiseless statistics that give ηc = 0.7355, we use the see-saw
algorithm from [BHC21, Appx. B]. This algorithm optimizes the robustness
of the isotropic state with respect to the visibility parameter α and returns a
corresponding Bell inequality valid in the broadcast scenario. We extract the
channel and measurements after the algorithm converges and build the ideal
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statistics p(abc|xyz) using the noiseless isotropic state (i.e. the maximally
entangled two-qubit state). Then we find η such that P η(abc|xyz) saturates
the local bound of the returned Bell inequality, and we do this process over
all possible detector strategies fA, fB and fC . The lowest efficiency found is
ηc = 0.7355, certified by the following inequality:

⟨CHSH [A0, A1, B0, B1]C1⟩ − ⟨CHSH [A0, A1, B0, B1]⟩+ 2(⟨C1⟩ − 1) ≤ 0,
(5.15)

where CHSH [A0, A1, B0, B1] := (A0−A1)B0+(A0+A1)B1. Here, one adopts
a detector failure strategy such that fA(x) = −1 ∀x, fB(y) = 1 ∀y, fC(z) =
1 ∀z. We remark that the best detection efficiency is not achieved for the
inequality that gives the best visibility (i.e., Eq. (5.4)). For this inequality,
the best critical efficiency we found is ηc = 0.7997.

We note here that depending on the experimental implementation of
the considered scenario, one will not only have inefficiencies coming from
detector imperfections (losses, etc.), but also from transmission of the state,
and in the case of the broadcast scenario, potential inefficiencies coming
from the implementation of the channel are expected.

Previous studies of detector inefficiencies focus on the noise from the
detectors and neglect other sources of noise. Therefore, we have adopted the
same approach so that we can meaningfully benchmark our results against
the existing literature, e.g., [Ban+13], [Ebe93], and [Bru+07].

Our result can be compared with the results of [MBV23], where improved
bounds are found by using multiple copies of the maximally entangled two-
qubit state achieving ηc = 0.8086, ηc = 0.7399 and ηc = 0.6929 for two, three,
and four copies of the state respectively (and local quantum measurements).
Note that that our bound is strictly better than that achieved with three
copies of the state, while using a single copy in our scenario (plus a channel).
It would be interesting to study if the techniques presented in [MBV23]
could be used to find lower efficiency thresholds by applying our strategy in
parallel with the use of several copies of the maximally entangled state.

5.3 Activation of non-signaling genuine multipar-
tite nonlocality

In Refs. [Ban+13; Gal+12], the authors analyse different notions of genuine
multipartite Bell nonlocality and introduce the concept of non-signaling
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Figure 5.3: A vector p⃗ corresponding to a behaviour
{p(abc|xyz)} is non-signaling bilocal if it is inside the con-
vex hull of all bipartite local polytopes (dashed line), where
distant parties respect the non-signaling constraints. Be-
haviours which are not non-signaling bilocal are referred
here as NS genuine tripartite Bell nonlocal. Here, we show
that using the broadcast scenario bipartite quantum states
with a LHV model for all POVMs can lead to NS genuine
tripartite nonlocality.

bilocality, which is intimately related to the idea of broadcast nonlocality
presented here. Following Ref. [Ban+13], a tripartite behaviour with prob-
abilities p(abc|xyz) is non-signaling bilocal (NS2-local) if it can be written
as:

p(abc|xyz) = t1
∑
λ

qA(λ)qA(a|xλ)qN S
BC (bc|yzλ) +

t2
∑
λ

qB(λ)qB(b|yλ)qN S
AC (ac|xzλ) +

(1− t1 − t2)
∑
λ

qC(λ)qC(c|zλ)qN S
AB (ab|xyλ), (5.16)

where t1, t2 ∈ [0, 1], all functions are probability distributions and qN S
BC (bc|yzλ),

qN S
AC (ac|xzλ), qN S

AB (ab|xyλ) are non-signaling behaviours for all λ. Behaviours
that are not NS2-local are then referred to as non-signaling (NS) genuine
multipartite nonlocal, see Figure 5.3.
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We recall from Eq. (5.3) that a tripartite behaviour with probabilities
p(abc|xyz) is broadcast local if it can be written as:

p(abc|xyz) =
∑
λ

q(λ)qA(a|xλ)qN S
BC (bc|yzλ). (5.17)

By direct inspection, we then see that any NS genuine multipartite nonlocal
behaviour (that is, under definition Eq. (5.16)) is also broadcast nonlocal.
Indeed, the set of non-signaling bilocal behaviours may be viewed as the
convex hull of the set of broadcast local in every possible bipartition.

We now present a bipartite state which admits a local hidden-variable
model for all possible local measurements but can lead to correlations that
are nonlocal in the broadcast scenario. Additionally, we will show that,
despite being Bell local in bipartite scenarios, this state displays NS genuine
multipartite nonlocality, following the definition of Eq. (5.16). Consider the
following family of two-qubit states:

ρPOVM(α, χ) := 1
2ρ(α, χ) + 1

2ρA ⊗ |0⟩⟨0|, (5.18)

where:

ρ(α, χ) := α |ψχ⟩ ⟨ψχ|+ (1− α)1
2 ⊗ ρ

B
χ , (5.19)

|ψχ⟩ := cosχ|00⟩+ sinχ|11⟩, (5.20)

and:

ρBχ := TrA |ψχ⟩ ⟨ψχ| , ρA := TrB ρ(α, χ). (5.21)

As shown in Ref. [Bow+16], if cos2(2χ) ≥ 2α−1
(2−α)α3 , the state ρPOVM(α, χ)

admits a local hidden-variable model for all local POVMs performed by
Alice and Bob.

We will make use of the inequalities for NS genuine tripartite nonlocality.
Reference [Ban+13] listed all non-signaling bilocal Bell inequalities in a
tripartite scenario where each party has two inputs and two outputs. Using
the optimization methods detailed in Appendix B.1 of Ref. [BHC21], we
have analysed all these inequalities to check whether there exist a channel
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ΣB0→BC and local quantum measurements such that the tripartite state:

ρABC := 1⊗ ΣB0→BC [ρPOVM(α, χ)], (5.22)

leads to NS-bilocal nonlocality. We have identified that the inequality 16 of
Ref. [Ban+13]:

− 2 ⟨C0⟩+ ⟨A1B0⟩+ ⟨A0B1⟩ − ⟨A0B0⟩ − ⟨A1B1⟩+ 2 ⟨A1C1⟩+ 2 ⟨B1C1⟩
+ ⟨A1B0C0⟩ − ⟨A0B0C0⟩+ ⟨A0B1C0⟩+ ⟨A1B1C0⟩ ≤ 4,

can be used to show that the state ρPOVM(α, χ) is NS-genuine tripartite
nonlocal (hence, also broadcast nonlocal) in a region where it admits a
LHV model for general POVMs. In Figure 5.4 we present the (α, χ) values
for which ρPOVM(α, χ) is guaranteed to have a local hidden-variable model
(shaded region) and, for each χ, the lowest visibility α for which the state
violates a NS2 inequality (dashed blue line). In the intersection of these
two regions, the POVM local state (5.18) can therefore be transformed to a
NS genuinely multipartite nonlocal state via the application of a broadcast
channel. We note that although standard bipartite nonlocality has been
activated from bipartite POVM-local states before, this is the first example
of the creation of genuine multipartite nonlocality using a single copy of
such a state.
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Figure 5.4: In the shaded (yellow) region, the state
ρPOVM(α, χ) admits a local hidden-variable model for all
POVM measurements. Also, above the (blue) dashed line
the state ρPOVM(α, χ), with χ > 0, violates the NS2 genuine
tripartite inequality number 16 of Ref. [Ban+13]. We can
see that for small values of χ, there is a range of visibility α
such that the state ρPOVM(α, χ) is bipartite Bell local in the
standard scenario but broadcast nonlocal and NS genuine
tripartite nonlocal.
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5.3.1 Broadcast activation without a broadcast channel

A reinterpretation of the above results also allows us to construct an example
of broadcast activation without a broadcast channel. That is, we consider
scenario 5.1b of Figure 5.2, and take the broadcast channel ΣB0→BC to be
the identity channel:

1⊗ ΣB0→BC [ρAB0 ] = ρAB0 . (5.23)

Let us now take the state ρPOVM defined in Eq. (5.18), in the activation
region of Figure 5.4 (i.e., anywhere in the yellow-blue intersection). We
then apply the channel ΣB0→BC which leads to activation of NS genuine
multipartite nonlocality, the final state thus being:

ρΣ = 1⊗ ΣB0→BC [ρPOVM]. (5.24)

Note that, since local quantum channels cannot create Bell nonlocality from
states admitting a LHV model for all POVMs1 [Bar02], ρΣ has a POVM
LHV model on the partition A|BC:

ρΣ → Bell local for all POVMs on A|BC. (5.25)

However, our previous result shows that ρΣ is NS genuine tripartite nonlo-
cal, and thus broadcast nonlocal too, using scenario (a) of Figure 5.2 and
inequality (5.23):

ρΣ → broadcast nonlocal on A|BC. (5.26)

From this perspective, starting with ρΣ as a bipartite state on (A|BC) we
obtain “activation” by performing the identity channel, i.e., no broadcast
channel, and by understanding Bob and Charlie as distinct parties (meaning
here that they are restricted to local measurements quantum mechanically
and non-signaling strategies classically).

1Essentially because applying the dual channel on the measurements (instead of applying
the channel on the state) gives rise to the same behaviour, implying a model for all POVMs
still holds for that final behaviour.
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5.4 Device-independent entanglement certification
Here we apply the broadcast scenario to the task of DI entanglement certi-
fication. In [BHC21] it was shown that DI entanglement of the two-qubit
isotropic state (5.1) is possible for α > 1

2 , significantly lower than previous
best known bound α ≈ 0.6964 [DBV17]. This result gave promising evidence
that DI entanglement certification may be possible in the entire range α > 1

3
in which the state is entangled. In this section, we give strong evidence this
is the case, by showing that DI entanglement certification is possible for
α > 0.338. To do this, we make use of SDP tools [VB96]. As we discuss
below, given the proximity of 0.338 to 1

3 , we suspect that this value could
be improved to any visibility arbitrarily close to 1

3 with more computational
resources.

The broadcast scenario we consider is the four party scenario shown in
Figure 5.2b). Each local subsystem of the state of the source is broadcasted
to two additional parties through channels Σ and Γ. If one considers an
arbitrary separable state at the source:

ρSEP =
∫
q(λ)σA0

λ ⊗ σ
B0
λ dλ, (5.27)

with q(λ) a normalized probability density, then after the application of the
broadcast channels, the most general state shared between the four parties
is:

ρABCD =
∫
q(λ)σADλ ⊗ σBCλ dλ, (5.28)

where σBDλ = ΓA0→AD(σA0
λ ) and σBCλ = ΣB0→BC(σB0

λ ) and ΣB0→BC and
ΣA0→AD are the quantum channels describing the broadcasting. Local
measurements performed on this state lead to behaviours of the form:

p(abcd|xyzw) = Tr
[
ρABCDAa|x ⊗Bb|y ⊗ Cc|z ⊗Dd|w

]
(5.29)

=
∫
q(λ) Tr

[
σADλ Aa|x ⊗Bb|y

]
Tr
[
σBCλ Cc|z ⊗Dd|w

]
dλ

(5.30)

=
∫
q(λ) pQ

AD(ad|xwλ) pQ
BC(bc|yzλ) dλ, (5.31)
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where for each λ, pQ
AD(ad|xwλ) and pQ

BC(bc|yzλ) are behaviours from the
quantum set of correlations. Alternatively, the behaviours (5.31) are the
most general that can be obtained by making local measurements on a state
which is separable with respect to the bipartition AD vs BC. Since these
behaviours are the most general that can be obtained from a separable source
state, it follows that if a decomposition (5.31) cannot be found, the source
must be entangled, and this therefore constitutes a DI certification of the
entanglement of the source.

The question remains, however, of how to prove that a given behaviour
does not admit a decomposition (5.31). This is complicated by the fact that
the states and the measurements can in principle act on infinite dimensional
Hilbert spaces. In order to tackle this, we will make use of a semi-definite
programming technique introduced in [Mor+13b] and based on the NPA
hierarchy [NPA08]. For a fixed number of inputs and outputs, let us denote
the set of behaviours admitting a decomposition (5.31) by QAD|BC so that
p ∈ QAD|BC if and only if (5.31) is satisfied. Furthermore, let us denote
by QPPTAD|BC the set of correlations obtained by using states that admit a
positive partial transpose (PPT) with respect to the bipartition AB vs CD.
Since separable states are PPT, it follows that QAD|BC ⊆ QPPTAD|BC and thus
p ̸∈ QPPTAD|BC =⇒ p ̸∈ QAD|BC . A certificate that p ̸∈ QPPTAD|BC is therefore
a device-independent proof of entanglement.

Such a certificate may be obtained by using a modification of the PPT-
NPA hierarchy presented for a partition A vs B in the preliminaries in
Chapter 2.3.2, and which we extend to the partition AD vs BC. One builds
the NPA hierarchy for 4 measurement devices A, B, C and D.

Now the separability of ρABCD across the bipartition (AD|BC) implying
that it is PPT across the same bipartition leads to the following constraints
at the level of the moments of the NPA relaxation (cf. Eq. (2.85) from the
preliminaries):

⟨Ai1 . . . Ain−1AinBj1 . . . BjmCk1 . . . CkoDl1 . . . Dlp−1Dlp⟩ρTAD
Λ

=

= ⟨AinAin−1 . . . Ai1Bj1 . . . BjmCk1 . . . CkoDlpDlp−1 . . . Dl1⟩ρΛ . (5.32)

One may now define a SDP program analogous to that of SDP (2.88) which
whose infeasibility certifies that a correlation p(abcd|xyzw) /∈ QPPTAD|BC .

Using the above, we were able to prove device-independent entanglement
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certification for ρα for α > 0.338. To achieve this, we used a heuristic
optimization procedure described in Appendix C.1. The precise strategy
involves each of the measurement devices having inputs of cardinality 3 =
N|X| = N|Y | = N|Z| = N|W |. The numerical values of the measurement
and channels, as well as the corresponding Bell inequality that certifies
this visibility, can be found in the GitHub repository for the article [Git].
Although we could not obtain a proof that α > 1

3 implies the possibility
of a DI entanglement certification in the broadcast scenario, our numerical
analysis strongly suggests that all entangled two-qubit Werner states can be
DI certified in the broadcast scenario. This result suggests that an analytic
proof of DI entanglement certification for α > 1

3 may be within reach, and
would be an exciting avenue of future research. Given that this is exactly
the separability limit, one may even hope that broadcasting could activate
DI entanglement certification for all entangled states.

5.5 Broadcast steering
In this section, we introduce a new broadcast scenario which is based on
EPR-steering from one measurement device B to another, A. This represents
a scenario where the measurement A is completely characterized, but no
assumption is made on the device B. In this broadcast steering scenario we
present a novel example of activation of EPR-steering correlations, which
does not rely on previous methods such as local filtering [Qui+15] or the
multi-copy regime [QBH16].

5.5.1 Standard quantum steering

Before presenting the EPR-steering broadcast scenario, we review the concept
of standard EPR-steering [WJD07]. For a more detailed introduction, we
recommend the review articles [CS16; Uol+20]. We consider a scenario where
a bipartite state ρ is measured by two devices A and B, and B implements a
set of local POVMs described by {Bb|y}. When B performs the measurement
labelled by y and obtains the outcome b, the physical system accessible by
A is described by its assemblage, a set of unnormalized states defined by:

σb|y := TrB(1⊗Bb|yρ), (5.33)
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(a) Standard steering

(b) Broadcast steering

Figure 5.5: Illustration of a steering scenario where the
measurement A is trusted to be completely characterized
(hence, represented by a square and by the colour blue).
Figure 5.5a represents the standard steering scenario and
5.5b represents the case where a broadcast channel sends the
system to two measurement devices which only have access
to non-signaling resources.
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where TrB denotes the partial trace over Bob’s subsystem and the Tr(σb|y)
corresponds to the probability of obtaining the output b given input y for
Bob. An assemblage admits a local hidden-state (LHS) model if it can be
written as :

σb|y =
∫
q(λ)σλqB(b|yλ) dλ, (5.34)

where λ stands for a hidden variable and {q(λ)}λ and {qB(b|y, λ)}b are
probability distributions. We thus say that an assemblage σb|y is steerable if
it does not admit a LHS decomposition of the form (5.34).

5.5.2 Steering in the broadcast scenario

In the simplest broadcast scenario, we start with bipartite state ρAB0 , which
after channel ΣB0→BC is mapped to state ρABC , which is then subject to
measurement devices A, B and C which have inputs X, Y and Z. The
question is then whether the statistics observed by A can be explained by a
local hidden-state model. That is, can the assemblage:

σbc|yz = TrBC
(
1⊗Bb|y ⊗ Cc|z [1⊗ ΣB0→BC(ρ)]

)
, (5.35)

be written as:

σbc|yz =
∫
q(λ)σλpN S

BC (bc|yzλ) dλ, (5.36)

where pN S
BC (bc|yzλ) is an arbitrary non-signaling distribution over B and

C, for each value λ. We refer to a violation of (5.36) as broadcast steering,
and similarly to broadcast nonlocality, such a violation cannot be explained
by the transformation device alone, as long as it generates non-signaling
resources only.

In this chapter, we also consider the scenario where the broadcast channel
Σ maps the space B0 to a tripartite space B ⊗ C ⊗D. That is, after the
channel the state is a four-partite state ρABCD, subjected to measurement
devices A, B, C and D. We then consider an assemblage:

σbcd|yzw = TrBCD
(
1⊗Bb|y ⊗ Cc|z ⊗Dd|w [1⊗ ΣB0→BCD(ρ)]

)
, (5.37)
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which is broadcast steerable if it can be written as:

σbcd|yzw =
∫

Π(λ) σλ pN S
BCD(bcd|yzwλ) dλ, (5.38)

where pN S
BCD(bcd|yzwλ) is an arbitrary non-signaling behaviour for each λ.

Before finishing this subsection, we remark that, in a standard steering
scenario (steering from B to A), the main hypothesis is that the device A is
trusted to be fully characterized. In the broadcast steering case, we need an
additional hypothesis, which is that the output of the channel Σ may be any
no-signaling resource, and that B and C implement local measurements, that
is, they may be strongly correlated through a common cause, but the devices
cannot influence one another. Nevertheless, this hypothesis can be imposed
in a physical and fair way by ensuring that the devices after the broadcast
channel are in sufficiently separated at the time of the measurements.

Other potential notions of broadcast steering

We presented broadcast steering for the case where A is the trusted device.
In principle, one could consider other natural configurations for defining
broadcast steering:

• B and C are the trusted devices: in that case, one wonders whether
the assemblage:

σa|x = TrA(Aa|x ⊗ 1B ⊗ 1C [1⊗ ΣB0→BC(ρ)]), (5.39)

can be written as:

σa|x =
∫
q(λ) σλ qA(a|xλ) dλ. (5.40)

Note however that, this corresponds to standard steering, where B
and C can be seen as a single device. Thus, this scenario is trivial and
no activation is possible in this case.

• Hybrid cases: either A and B are trusted devices, or only C is trusted.
In either case, the absence of a LHS model does not imply anything
about ρAB0 , since it could be explained by (standard) bipartite steering
between B and C.
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Since these two other approaches lead to trivial definitions, we focus on
the definition described by (5.36) where only device A is trusted to perform
characterized measurements.

5.5.3 Broadcast steering with the two-qubit isotropic state

We now present some steering activation results in broadcast scenarios by
carefully analysing the two-qubit isotropic state2:

ρα = α|ϕ+⟩⟨ϕ+|+ (1− α)1
4 . (5.41)

The isotropic state represents a maximally entangled state which undergoes
white noise. Due to its symmetry, simplicity, and experimental relevance,
the isotropic state is often used as a benchmark for several tasks in quantum
information. In the standard steering scenario, the two-qubit isotropic state
was only shown to be steerable for visibility α > 1

2 [WJD07]. Moreover,
the two-qubit isotropic state has a LHS model for projective measurements
when α ≤ 1

2 [WJD07], and there is evidence that it also has a LHS model for
general POVMs when α ≤ 1

2 [Bav+17; Cha+18]. The results presented in
this subsection were obtained with the help of the heuristic search described
in the Appendix C.3 found in the GitHub online repository [Git].

Two broadcasted devices—We first consider a scenario where there is
broadcasting to two devices B and C, as in Figure 5.1b. When B and C
have dichotomic inputs, that is, y ∈ {0, 1} and z ∈ {0, 1}, we could find a
channel Σ and measurements {Bb|y}, {Cc|z}, to certify broadcast steering
for α > 0.5616. We also investigated the scenario where B and C have three
dichotomic measurements each, i.e., y ∈ {0, 1, 2} and z ∈ {0, 1, 2}. In this
case, we detected broadcast steering up to α > 0.4945.

Three broadcasted devices—We now consider the scenario where there are
three devices B, C, and D, after the broadcast channel as in Figure 5.2a. We
focused on the scenario where B, C and D have dichotomic inputs.. Since the
vertices of the 3-partite non-signaling polytope performing two dichotomic
measurements were explicitly obtained in Ref. [PBS11], we can use these
vertices to run (a straightforward extension of) our heuristic procedure

2We remark that since the two-qubit isotropic state is local-unitary equivalent to the
two-qubit Werner state, all results presented in this subsection also hold for the two-qubit
Werner state.
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presented in Appendix C.3. This allowed us to certify that the two-qubit
isotropic state exhibits broadcast steering for α > 0.4678, showcasing an
even stronger example of steering activation.

Note that the latter two results are example of activation of steering
(relative to projective measurements), since the isotropic state admits a
LHS model in the range α ≤ 1

2 . These are the first examples of single-copy
activation of steering for this class of states.

5.6 Discussion
The relationship between quantum entanglement and Bell nonlocality plays
a major role in understanding quantum correlations and the development
of device-independent protocols. In a seminal paper, Werner showed that
entangled states may admit a local hidden-variable model and cannot lead
to Bell nonlocal correlations in the standard Bell scenario [Wer89]. What
seemed to be definite proof that some entangled states cannot lead to
nonlocality is today recognized as only a first (fundamental) step. Over the
past years, natural extensions of Bell scenarios revealed that states admitting
local hidden-variable models may also display nonlocal correlations [Pop95]
and we are forced to accept that the relationship between entanglement and
nonlocality is far from being fully understood.

In this chapter we investigated entanglement and nonlocality scenarios
where broadcasted systems reveal strong correlations which are hidden in
the standard Bell test. From a foundational perspective, we provided novel
examples of how to activate the nonlocality of entangled states which admit
local hidden-variable models. We presented an example of bipartite local
states leading to genuine multipartite nonlocality, introduced the concept of
broadcast device-independent entanglement certification and the concept of
broadcast steering. From a more practical aspect, we developed analytical
and computational methods to analyse entanglement and nonlocality in
broadcast scenarios. Our findings advance the discussion on whether entan-
glement can lead to nonlocality, and we hope that the methods presented here
may pave the way for network-based and broadcast-based device-independent
protocols.

All the code can be found in the GitHub online repository [Git] and can
be freely used under the MIT licence [Lic].
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Chapter 6

Tests for causal compatibility

This chapter is based on Ref. [BWPK23]:
Emanuel-Cristian Boghiu, Elie Wolfe, and Alejandro Pozas-Kerstjens,
“Inflation: a Python library for classical and quantum causal compatibility”,
Quantum 7, 996 (2023)—Published 4 May 2023

In this chapter, we focus on improving existing methods for testing for
causal compatibility of observed correlations with a given causal structure.
A particularly successful and versatile tool for testing causal compatibility is
the inflation method [WSF19; Gis+20a; Wol+21], which consists of a series
of increasingly strict necessary conditions that can be tested via linear or
semidefinite programming (cf. Sections 3.2 and 3.4 of the preliminaries).
Despite its broad applicability within and outside the field of quantum
nonlocality, available implementations of the inflation technique are typically
limited in terms of the type of causal structures it applies to, or in the type
of inflations considered (see, e.g., [PKGT22; PKGR23b]). This means that
researchers must code their own programs every time they seek to analyse
a different structure or try a different solution, adding an extra level of
difficulty to the application of the technique.

In this chapter we discuss the package Inflation [BWPK], an open-source
library, written in Python, that implements the inflation framework for causal
compatibility. It allows both for solving feasibility problems (i.e., answering
the question “can I generate this distribution in this causal scenario?”) and
for bounding optimal values of functionals over distributions compatible with
a causal structure. These include all network scenarios considered in the field
of quantum nonlocality [Tav+22], and structures that have recently gained
attention in that field, such as the so-called instrumental scenario [VH+19].
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Currently, Inflation implements both the quantum inflation hierarchy of
Ref. [Wol+21] and the fanout and non-fanout inflations of Ref. [WSF19;
Gis+20b]. The library can also be used, by setting the corresponding flags,
for assessing compatibility with distributions generated when latent nodes
represent mixes sources of correlations, namely either quantum or classical
(framed within the quantum inflation hierarchy, thereby extending the ideas
in [Bac+17; SG11]) or no-signaling or classical sources of correlations. In
addition, one may also easily consider any network together with a global
source of classical shared randomness.

This chapter presents the package and illustrates simple use cases, which
are extended in the library documentation. The fundamental ideas behind
the inflation technique have already been presented in Sections 3.2 and 3.4
of the preliminaries. In Section 6.1 we show how to get started with the
library and describe its main components and features. In Sections 6.2 and
6.3 we demonstrate with code snippets the different types of problems that
can be addressed with Inflation. We discuss further software details and
library information in Section 6.4 including future development, contribution
guidelines, and planned maintenance and support, and we provide some
concluding remarks in Section 6.5.

6.1 The library

6.1.1 Requirements and installation

Inflation is a Python library that can be installed on Mac, Windows, and
Linux operating systems via pip by executing the instruction below at a
command line.

pip install inflation

The core requirements of Inflation are NumPy [HMW+20] (used for general
numerical procedures), SymPy [MSP+17] (used to make the input format
more user-friendly), and SciPy [VGO+20] (used for handling sparse matri-
ces). It can also use Numba [LPS15] as a just-in-time compiler to speed up
core calculations. For solving the generated relaxations, the library uses the
MOSEK Fusion API [ApS19] to solve the linear and semidefinite program-
ming problems. It also allows for writing the problem in a human-readable
form as a comma-separated values file, to a MATLAB-compatible .mat file,
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or to SDPA data format for further manipulation in other interfaces such as
Yalmip [Löf04].

To test installation, one can run the following.
import inflation
inflation . about ()

These lines print basic information about the version of Inflation installed
and the versions of installed dependencies.
# Inflation : Implementations of the Inflation Technique for Causal

Inference
# ===================================================================
# Authored by: Emanuel - Cristian Boghiu , Elie Wolfe and Alejandro Pozas

- Kerstjens

# Inflation Version : 0.1
#
# Core Dependencies
# -----------------
# NumPy Version : 1.23.1
# SciPy Version : 1.8.1
# SymPy Version : 1.11.1
# Numba Version : 0.56.2
# Mosek Version : 10.0.20
#
# Python Version : 3.10.4
# Platform Info: Windows ( AMD64 )

The source code for Inflation is hosted on GitHub at
https://github.com/ecboghiu/inflation

and is distributed with an open-source software licence: GNU GPL version
3.0. More details about the software, packaging information, and guidelines
for contributing to Inflation are included in Section 6.4.

6.1.2 Components

There are two main layers in Inflation. First, the basic characterization of the
causal scenario and its desired inflation are stored in an InflationProblem.
This includes the directed-acyclic-graph (DAG) describing the causal struc-
ture, the number of inputs and outputs of each of its visible nodes, and
the number of copies of each latent node in the desired inflation. If the
causal structure furthermore contains visible-to-visible connections, then the
procedures in, e.g., [NW20a, Sec. V], [Wol+21, Sec. V] and [LGG23, Sec.
IV.C] are executed in order to find the network and suitable constraints that
generate the same distributions as the original causal structure.

https://github.com/ecboghiu/inflation


122 Chapter 6. Tests for causal compatibility

The second layer takes an InflationProblem object and sets up and
solves the compatibility or optimization problem of interest. Currently, the
library supports the quantum inflation hierarchy described in Ref. [Wol+21]
via the InflationSDP object, and the fanout and non-fanout inflations of
Refs. [WSF19; Gis+20b] via the InflationLP object.

In the quantum inflation hierarchy, the characterization of the set of
probability distributions is given by a list of operators, in the spirit of the NPA
hierarchy [NPA07; NPA08; PNA10]. This is input to the InflationSDP
object via the function generate_relaxation(), which admits either a
generic list-of-lists notation for arbitrary lists of operators, or string-based
notations for operator sets that are routinely used in the literature: npa#
for the sets describing the NPA hierarchy (denoted as Tn in Ref. [NPA07]
and as Sn in Ref. [NPA08]), local# for the so-called local levels (denoted as
Ln in [Wol+21, App. C], see also Ref. [Mor+13b]), and physical# for the
sets of operators of bounded length whose expectation value is non-negative
for any quantum state.

The function generate_relaxation() automatically imposes the equal-
ity constraints that are derived from the invariance of the inflation under
permutation of copies of a same original element (this is, it imposes the con-
straints described in [Wol+21, Eq. (10)]). Furthermore, it identifies which
marginals of distributions in the inflation must coincide with marginals of
distributions in the original scenario. After this, the user can specify either a
probability distribution over the visible nodes for a feasibility problem (i.e.,
to determine whether the distribution can be identified as incompatible with
the causal structure) using the function set_values(), or a combination of
operators whose expectation value will be optimized, by using the function
set_objective(). When using set_values(), the user can choose to set
also the so-called linearized polynomial constraints, which constrain the set
of compatible distributions further at the expense of obtaining certificates
with more limited applicability [PK19; PKGR23b].

In the fanout and non-fanout inflation hierarchies instead of inputting a
list of operators, the package automatically generates all combinations of
events (in Collins-Gisin notation, cf. Section 2.3.3) which are compatible
with the nature of the preparations. As such, when using InflationLP
it is not necessary to call generate_relaxation(). With an instance of
InflationLP one may use methods such as set_values() to fix an observed
distribution or set_objective() to specify a linear functional to optimize
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over the convex relaxation. If we consider the triangle scenario with an
inflation of level 2 with all classical preparations, then the package will
automatically generate the Web inflation presented in Section 3.4; if the
preparations are restricted to all be no-signaling, then this will generate
the hexagon inflation presented in Section 3.4. In a hybrid scenario with
both classical and no-signaling preparations, the library will generate the
most general inflation which fans out the classical preparations, and does
not fanout the no-signaling preparations.

6.1.3 Reductions of the feasible region

In general, the fact that one must consider multiple copies of the elements
in the original causal structure leads to a large computational load when
storing and solving the relevant problems. Inflation implements a number
of additional constraints not included in the original definitions of the
hierarchies, either automatically or at the user’s choice, that give a tighter
relaxation for the same level of computational resources. These constraints
are:

Non-negativity of physical moments. This is a feature only relevant
for the implementations of inflation that characterize distributions generated
by measuring quantum systems. Recall that implementations of quantum
inflation require the use of the NPA hierarchy [NPA07] in order to assess
whether a compatible inflation exists. The main object in the NPA hierarchy
are the so-called moment matrices, whose rows and columns are indexed by
products of (a priori unknown) projection operators. Each cell of the moment
matrix contains the expectation of the product of the operators in the row
and the operators in the column under an also unknown quantum state.
Despite all elements being unknown a priori, one can derive constraints
for some of them in certain situations. For instance, it is known that
eigenpotent operators have a non-negative expectation value under any
possible quantum state, and thus these non-negativity constraints are always
imposed in Inflation. In fact, using operator products which have a non-
negative expectation value under any quantum state in the generating set
for InflationSDP leads to drastic reductions in problem size for certain
problems, as we explicitly show in Section 6.2.1.
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Sandwich-nonnegativity. The operator products described above have
a non-negative expectation value also if they appear sandwiched between
another product of operators and its conjugate. Indeed, if O2 is a product
of operators that has non-negative expectation value with any state, then
⟨ψ|O†

1O2O1|ψ⟩ = ⟨ψ′|O2|ψ′⟩ ≥ 0 for any O1, |ψ⟩. An example of these
products are those that correspond to subsequent measurements on a same
state, whose expectation values represent the probabilities of sequences of
outcomes. This feature is also automatically imposed when generating an
instance of InflationSDP.

Linearized polynomial constraints. Both in the inflation methods
for compatibility with quantum (based on semidefinite programming) and
classical and generalized physical models (based on linear programming), it
is possible to transform certain non-linear relations between the unknowns
in the problems into linear ones when one assesses the compatibility of
a given distribution with the scenario. When a subgraph of the inflation
contains more than one connected components, and (at least) one of these
components can be associated a numerical value from the distribution under
scrutiny (these are known as injectable components in the terminology of
Ref. [WSF19]), the variables associated to the subgraph can be related to
those corresponding to its non-injectable connected components via linear
relations, reducing the feasible region. Linearized polynomial constraints are
used, for instance, in Ref. [PKGR23b] in the case of inflation for compatibility
with classical models. For compatibility with quantum models, [PK19, App.
D.2] contains a demonstration of its advantage in several scenarios. It
should be noted that when using linearized polynomial constraints, in case
of infeasibility, the dual of the semidefinite (or linear) program can only
serve as a certificate of infeasibility for the tested distribution, given that for
other distributions the feasible region reduction under linearized polynomial
constraints can be different [PKGR23b]. Inflation allows imposing linearized
polynomial constraints by setting the flag use_lpi_constraints=True in
set_values().

6.2 Main functionality
We showcase here the user experience in using Inflation to solve a series
of problems that routinely appear in causal inference scenarios. All these
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examples can be downloaded as ready-to-run Jupyter notebooks from the
repository of the library (see Section 6.4.3).

6.2.1 Feasibility problems and extraction of certificates

The first example we will consider is that of demonstrating that a particular
distribution can not be generated in a specific network arrangement when
the preparations distribute quantum systems, and the measurement devices
(the visible nodes) implement quantum measurements on the systems re-
ceived. We illustrate this type of problems by showing that the so-called W
distribution, defined as

PW (a, b, c) =
{1

3 if a+ b+ c = 1,
0 otherwise

, (6.1)

where a, b, c ∈ {0, 1}, is incompatible with the quantum triangle causal
scenario.

The first step is to specify the original scenario and its desired inflation
by creating an instance of InflationProblem. This requires specifying (i)
the DAG of the original scenario as a dictionary where the keys are parent
nodes and the values are lists of the corresponding children, (ii) the number
of possible outcomes and number of possible measurement settings of each of
the visible nodes in the scenario, and (iii) the inflation levels, which represent
the number of copies of each latent node that will be considered in the
inflated scenario:

dag = {" rho_AB ": ["A", "B"],
" rho_BC ": ["B", "C"],
" rho_AC ": ["A", "C"]}

nr_outputs = [2, 2, 2]
nr_inputs = [1, 1, 1]
nr_copies = [2, 2, 2]
classical_sources = []
scenario = InflationProblem (dag , nr_outputs , nr_inputs ,

nr_copies , order =[’A’, ’B’, ’C’], classical_sources =
classical_sources )

The order of the parties is specified via the order optional argument, and
the order of the sources is taken to be the same as insertion order in the
dag dictionary. Which sources, or preparations, are classical is specified
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by the classical_sources argument, which is a list of the names of the
preparations, as specified in the keys of dag, which are classical in nature.

The generated instance of InflationProblem is fed to an InflationSDP
instance. This object controls all the features related to the semidefinite
relaxation of the problem considered. For instance, one can easily specify
the relaxation obtained when using as generating monomials all products of
operators of length at most 2 (this is, what is known as the second level in
the NPA hierarchy [NPA07; NPA08]):

sdp = InflationSDP ( scenario )
sdp. generate_relaxation ("npa2")

Similarly, one may also feed the generated instance of InflationProblem
to InflationLP:

lp = InflationLP ( scenario )

Note that it is not necessary to call generate_relaxation() when instanti-
ating an InflationLP object. In the code snippets that follow we will mostly
use an InflationSDP instance, but most of the examples works similarly
with an InflationLP instance.

We need to set the constraints corresponding to observing the target
probability distribution in marginals of the inflation distribution that can be
identified with marginals of the original scenario. If one wants to do this for
all marginals, this can be achieved with the function set_distribution(),
but if more granularity is needed one must use the function set_values()
instead (see Section 6.3.2 for an explicit example using this function). The
distribution must be input as a multidimensional NumPy array:

P[out1,...,outn,in1,...,inn],

where each cell contains the corresponding probability, and where the i-th
output and input, outi and ini, correspond to the party in the i-th position
in the order keyword argument.

sdp. set_distribution (P_W)

Then, running sdp.solve() executes the semidefinite program and stores
its status in sdp.status. For the problem at hand, this is infeasible,
meaning that the W distribution of Eq. (6.1) does not admit a second-order
(because of our specification of nr_copies) quantum inflation of the triangle
scenario, and thus by the inflation arguments, it cannot be generated in the
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triangle causal scenario when the latent nodes represent sources of bipartite
quantum states.

Once the problem is determined to be infeasible, linear and semidefinite
programming provides a certificate of such infeasibility. These certificates
of infeasibility, which witness incompatibility with a given inflation, can be
transformed into polynomial Bell-like inequalities that witness distributions
incompatible with the original causal scenario (see, e.g., [Wol+21, Sec.
VII.B]). Inflation automatically computes these certificates and provides
them in a variety of useful forms. For instance, running

sdp. certificate_as_probs (clean=True)

produces as output a SymPy object of the following form

− 0.476pA(0|0)2 + 0.059pA(0|0)pAB(00|00)+
+ 0.476pA(0|0)pABC(000|000) + · · ·+ 0.563,

which signals distributions that produce a negative value as incompatible
with the triangle scenario. This object can be further manipulated easily
with SymPy’s built-in functions.

Feasibility as optimization. In terms of numerical stability, it is often
advised to frame feasibility problems as optimization problems. This is
specially relevant when the distribution whose compatibility we are testing is
close to the boundary of the feasible set, where analytically feasible problems
can be reported as infeasible.

Inflation allows for this framing in the case of quantum inflation by
optimizing the smallest eigenvalue of the problem’s moment matrix1. This
is achieved by passing one argument at solving time:

sdp.solve( feas_as_optim =True)

The optimal (largest) value of the smallest eigenvalue of the moment ma-
trix is stored in sdp.objective_value and by inspecting its value one can de-
termine whether the original problem is feasible (if sdp.objective_value ≥
0) or not (if sdp.objective_value < 0). Furthermore, the quantity in
sdp.objective_value can provide a rudimentary notion of distance to the

1If the largest value that the smallest eigenvalue can achieve is negative, it means that
the moment matrix associated to the problem cannot be made positive-semidefinite, and
thus the corresponding feasibility problem is infeasible.
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feasible set, and help estimating how the size of the feasible set changes
when adding extra constraints to the problem or when changing the gener-
ating set. Importantly, the extraction of certificates is unaffected, and can
still be performed even when treating feasibility problems as optimization
problems. In the case of a linear programming relaxation, Inflation reframes
all linear constraints as a greater than or equal to zero inequality constraints,
Ax+ b ≥ 0, and then maximises λ such that Ax+ b ≥ λ. If the result of the
opimization is 0, then the original problem was feasible and infeasible in any
other scenario.

Physical moments as generating set. It is known that, when consider-
ing the distribution in Eq. (6.1) subject to white noise,

νPW + (1− ν)1
8 , ν ∈ [0, 1], (6.2)

quantum inflation of order 2 can certify its incompatibility with the triangle
with quantum latent nodes at least down to ν = 0.8038. This result was
obtained in Ref. [Wol+21] by using a moment matrix of size 1175×1175. By
using as monomials indexing the rows and columns of the moment matrix
only those with non-negative expectation values under any quantum state
as mentioned in Sec. 6.1, one can recover the same νcrit but with a much
smaller moment matrix, of size 287×287. Due to its notable gains in memory
(and its consequent gains in speed), using the non-negative monomials in the
generating set is made very easy in Inflation. In order to recover the result
mentioned above with the much smaller moment matrix, one just needs to
run:

genset = sdp. build_columns (" physical2 ", max_monomial_length
=4)
sdp. generate_relaxation ( genset )
v = 0.8039
sdp. set_distribution (v*P_W + (1-v)/8)
sdp.solve ()
# infeasible

This improvement, is most notable when dealing with problems that involve
distributions without settings. In our experience, in the case where the
parties in the problem have a choice of different measurements to perform
on the states received by the sources, gains are more moderate.
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6.2.2 Optimization of Bell operators

The second large class of problems that can be solved within Inflation is
obtaining bounds on expectation values of Bell operators. For example, let
us consider Mermin’s operator [Mer90]:

Mermin = ⟨A1B0C0⟩+ ⟨A0B1C0⟩+ ⟨A0B0C1⟩ − ⟨A1B1C1⟩,

where ⟨AxByCz⟩ =
∑
a,b,c∈{0,1}(−1)a+b+c p(a, b, c|x, y, z). Ref. [Wol+21]

bounds this quantity in the quantum triangle scenario by using its second-
order inflation and a generating set composed of the union of the second
level in the associated NPA hierarchy and the first local level, obtaining that
its maximum value cannot be larger than 3.085.

In order to reproduce these results in Inflation, one needs to pass the cor-
responding generating set to generate_relaxation() and set the objective
function. The former can be easily done since generate_relaxation() also
admits an explicit list of operators as argument:

npa2 = sdp. build_columns ("npa2", symbolic =True)
local1 = sdp. build_columns (" local1 ", symbolic =True)

npa2_union_local1 = set(npa2).union(set( local1 ))

sdp. generate_relaxation (list( npa2_union_local1 ))

Setting the objective is done via the function set_objective(), which
admits as input a SymPy object that is a polynomial of the operators
involved in the problem

mmnts = sdp. measurements
A0 , B0 , C0 , A1 , B1 , C1 = (1 - 2* mmnts[party ][0][x][0]

for x in [0, 1]
for party in [0, 1, 2])

Mermin = A1*B0*C0 + A0*B1*C0 + A0*B0*C1 - A1*B1*C1

sdp. set_objective ( objective =Mermin , direction ="max")
sdp.solve ()
print(sdp. objective_value )
# 3.0851...

Note that, as mentioned in [Wol+21, Sec. VII.C.2], one can also opti-
mize polynomial expressions of distributions compatible with the original
scenario as long as they can be written as linear combinations of products
of the operators in the inflation. For example, one can optimize the mean
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squared distance to a target distribution in a second-order inflation by using
operators corresponding to non-overlapping inflation copies. In Inflation,
these operators are stored in the second dimension of sdp.measurements.

6.2.3 Bounds on critical parameter values

A third large class of problems of interest in quantum information theory that
can be solved in Inflation is the calculation of critical values of some parameter
that characterize the family of distributions under scrutiny. Examples of this
are the estimation of the maximum amount of noise [PK+19], the maximum
angle between the measurements of a party [PKGT22], or the maximum
probability of detection failure [Abi+22] beyond which nonlocality cannot be
certified. This type of problems can be handled within Inflation by using the
function max_within_feasible. This function takes as input an instance of
an InflationSDP that characterizes the set of feasible distributions, and a
mapping (in the form of a Python dictionary) from cells in the corresponding
moment matrix to arbitrary symbolic expressions depending on the variable
to be optimized.

Currently Inflation features two ways for obtaining critical parameter val-
ues, which are specified through the method flag in max_within_feasible.
The first one, method="bisection", is a bisection algorithm, which takes
increasingly small steps in the direction of the critical value of the parameter,
taking n = ⌈log2 ∆− log2 ε⌉ iterations to reach a solution within accuracy ε
(where ∆ is the width of the interval that the variable is constrained to lie in).
The second method, method="dual", exploits the certificates of infeasibility
in order to reduce the number of iterations required. The certificates of
infeasibility are surfaces that always leave the feasible region in the half-space
that takes positive values. This second method, instead of modifying the pa-
rameter by a fixed value, chooses as next candidate the value that lies in the
boundary of the certificate, typically leading to fewer evaluations of semidefi-
nite programs. Furthermore, it is possible to use the functions set_values()
and set_distribution() as shortcuts to obtain complete dictionaries of
assignments that are stored in InflationSDP.known_moments.

As an illustration of the use of max_within_feasible, the following
example computes, after defining the relevant InflationSDP, the critical
visibility for the W distribution of Eq. (6.1):

from inflation import max_within_feasible
from sympy import Symbol
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v = Symbol ("v")
sdp. set_distribution (v*P_W + (1-v)/8)
max_within_feasible (sdp , sdp. known_moments , "dual", bounds

=[0, 1])
# 0.8038...

6.3 Further features
In this section we collect additional functionality of Inflation when restricting
to specific kinds of problems and situations. All the functionality described
in this section can be combined seamlessly, both among them and with that
described earlier.

6.3.1 Standard NPA hierarchy

Since multipartite Bell scenarios (namely those where all parties receive
states distributed by the same source) are particular instances of causal
scenarios, Inflation can also be used for analysing standard multipartite
quantum correlations using the NPA hierarchy [NPA07; NPA08]. In order to
do so, one can call InflationProblem without specifying its dag argument.
For instance, the code to optimize the CHSH inequality in the bipartite Bell
scenario with quantum preparations is:

scenario = InflationProblem ( outcomes_per_party =[2, 2],
settings_per_party =[2, 2])

# UserWarning : The DAG must be a non -empty dictionary with
parent variables as keys and lists of children as values .
Defaulting to one global source .
sdp = InflationSDP ( scenario )
sdp. generate_relaxation ("npa1")
mmnts = sdp. measurements
A0 , B0 , A1 , B1 = (1 - 2* mmnts[party ][0][x][0] for x in

[0, 1]
for party in

[0, 1])
CHSH = A0*(B0+B1) + A1*(B0 -B1)
sdp. set_objective (CHSH)
sdp.solve ()
print(sdp. objective_value )
# 2.8284...
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By using an instance of InflationLP one may similarly explore the Bell
scenario with classical bipartite preparations.

6.3.2 Scenarios with partial information

Inflation can also handle scenarios where not all the information about a
particular distribution in the original scenario is known. An important
example is the analysis of cryptographic scenarios, where the honest parties
may know what is their joint distribution but they can not know what is
the joint distribution with a potential adversary. One simple such scenario
is considered in Ref. [Wol+21, Sec. VIII]. Specifying particular elements
of a distribution in an InflationSDP object is achieved via the use of the
function set_values(), which admits as input a dictionary where the keys
are the variables to be assigned numerical quantities, and the corresponding
values are the quantities themselves. In order to address the problem in
Ref. [Wol+21, Sec. VIII] in Inflation, one would write:

p0 = sum( probability [0,b ,0 ,0 ,0] for b in range (4))
mmnts = sdp. measurements
A = mmnts [0][0]
B = mmnts [0][0][0]
C = mmnts [2][0]
E = mmnts [3][0][0]
sdp. set_objective (A [0][0]* C [0][0]* E[0]/ p0 - E[0])
known_values = {}
for a, b, c, x, z in numpy. ndindex (1, 3, 1, 2, 2):

known_values [A[x][a]*B[b]*C[z][c]] = probability [a, b,
c, x, z]
# Proceed analogously for all other known quantities
sdp. set_values ( known_values )

6.3.3 Scenarios beyond networks

So far, all the examples described have involved causal scenarios known as
networks. These are bipartite DAGs with a layer of visible variables denoting
the parties outcomes, and a layer of both latent and visible variables that
denote the sources of physical systems and the measurements performed
by the parties on them, respectively. Importantly, there are no connections
between the nodes in each of the layers. Not all DAGs fall in this category,
and some non-network DAGs have received considerable attention recently
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(a) The instrumental scenario (b) Interruption of the instrumental scenario

Figure 6.1: 6.1a The instrumental scenario written as a
DAG. Because of the arrow originating at A and pointing to
B, the scenario is not a network. 6.1b The interruption of
6.1a. This is a network scenario, where the input to B and
the output of A are restricted to coincide. The similarity
of this scenario with the Bell scenario has motivated its
investigation within quantum information theory.

in the literature. The most important example is the so-called instrumen-
tal scenario [Pea09], which has been extensively studied in the quantum
information literature [VH+19; GMC20; Agr+20; Agr+22] (see Figure 6.1a).
Inflation is capable of handling with causal inference problems in these sce-
narios, by internally considering equivalent network-type scenarios such as
that depicted in Figure 6.1b (see [NW20a; Wol+21] for the details on the
equivalence). The user experience in considering these problems is no differ-
ent to that of considering causal inference over network-type DAGs. As an
illustration, the following snippet recovers the bounds of Bonet’s inequality
in [VH+19, Eq. (23)].

from sympy import Symbol as Sym
inst = InflationProblem (dag ={"rhoAB": ["A", "B"],

"A": ["B"]},
outcomes_per_party =(2, 2),
settings_per_party =(3, 1))

sdp = InflationSDP (inst)
sdp. generate_relaxation (" local1 ")
objective = Sym("pAB (00|00) ")
objective += Sym("pA (1|0)") - Sym("pAB (10|00) ") # pAB

(11|0)
objective += Sym("pAB (00|10) ") + Sym("pAB (10|10) ") # pB

(0|1)
objective += Sym("pA (0|2)") - Sym("pAB (00|20) ") # pAB

(01|2)
sdp. set_objective ( objective )
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sdp.solve ()
# 2.2071...

6.3.4 Feasibility based on distribution supports

The violation of Bell-type inequalities is the main method for the certification
of non-classical behaviour. However, there exist even simpler certifications
of non-classicality, that instead rely on possibilistic arguments: instead of
setting bounds on combinations of the elements of compatible probability
distributions, they only assume whether certain events are possible (positive
probability) or impossible (zero probability) in order to reach a contradiction.
These certificates are known as Hardy-type paradoxes [MF12].

Inflation can handle proofs of causal incompatibility with arbitrary DAGs
based on possibilistic arguments. In the case of classical and/or no-signaling
inflation, the corresponding linear programming relaxations may be written
as find q = qconst⊕q(≥0) such that Aq = 0, qconst = 1, q(≥0) ≥ 0 where q is the
joint distribution over the inflated graph in Collins-Gisin notation. In this
case q is expressed as the direct sum of the normalization variable in Collins-
Gisin notation, qconst, and the rest of the variables which are non-negative,
q(≥0). We may now consider a possibilistic constraint, whereby some elements
of q(≥0) are restricted to be either exactly zero or strictly positive, while
the rest are non-negative. We may thus write the possibilistic LP as find
q = qconst⊕q(=0)⊕q(>0)⊕q(≥0) such that Aq = 0, qconst = 1, q(=0) = 0, q(≥0) >
0, q(≥0) ≥ 0. Consider that this linear program is feasible, and let q∗ be
a solution satisfying the possibilistic constraints. Let us now consider the
smallest of the variables constrained to be strictly positive, ϵ = min(q∗

(>0)),
and let us define q̄∗ := q∗/ϵ. This new rescales solution will satisfy the
following constraints: Aq̄∗ = 0, q̄∗

const ≥ 1, q̄∗
(=0) = 0, q̄∗

(≥0) ≥ 1, q̄∗
(≥0) ≥ 0.

Notice that the strict positivity constraint q(≥0) > 0 is mapped under
rescaling by ϵ to an inequality constraint, q̄∗

(≥0) ≥ 1. We may now define a
rescaled possibilistic LP which looks for q̄ satisfying the previous constraints;
if the program is infeasible, then there cannot exist a q satisfying the
possibilistic LP either. Furthermore, in case of feasibility of the rescaled
possibilistic LP, one may descale q̄ by the value of the rescaled normalization
variable, q̄ → q := q̄/q̄const, which constructs a feasible solution to the
original, possibilistic LP. As such, for possibilistic LP, rescaling is not a
relaxation, but an equivalent transformation.
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Similarly, in the case quantum inflation, it assesses whether an inflation
exists (with commuting or non-commuting operators, respectively) where the
probability elements inside the support are constrained to lie in the interval
[1,∞) while those outside the support are given the value 0. This represents
a re-scaled version of a standard quantum inflation moment matrix, Γ̄ = Γ/ϵ,
that does not suffer from floating-point instabilities when determining if a
probability element is outside the support or has assigned a very small value.
To get back the original moment matrix Γ, which contains probabilities as
some of its cells, one just needs to divide Γ̄ by the numerical value in its
top-left corner, which corresponds to the re-scaled value of the expectation
value for the identity, Γ̄00 = ⟨1⟩/ϵ.

In order to deal with possibilistic feasibility problems in Inflation one sets
the argument supports_problem=True when instantiating InflationSDP
or InflationSDP. As an example, in order to recover the result that the
distribution from [VH+19, Eq. (19)] is incompatible with the scenario of
Figure 6.1a, one would run the following code.

sdp = InflationSDP (inst , supports_problem =True)
sdp. generate_relaxation (" local1 ")
sdp. set_distribution ( P_Eq19 )
sdp.solve ()
# " infeasible "

Note that, in contrast with other functionalities discussed in this section, op-
timization of objective functions is not possible when assessing the feasibility
of distribution supports.

6.4 Additional library information
Here we provide further information concerning the development of the
Inflation library.

6.4.1 Computational considerations

Inflation has been developed with speed and efficiency in mind. It uses
just-in-time compilation through Numba [LPS15] in order to speed up core
calculations, and dictionary caching to avoid needless function calls. This
results in all examples in the documentation being executable on a standard
laptop with 8 GB of RAM. Moment matrices of around 200 columns and
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1500 free scalar variables can be generated in 5 seconds and the SDP solved
in 3 seconds; those of around 2000 columns and around 2500 variables
can be generated in 8 minutes and the SDP solved in 10 minutes, and
those of around 20000 columns can be generated in 17 hours. In this last
case, however, the SDP is too large to be solvable on a traditional desktop
computer.2 In order to solve these larger problems, a promising venue to
pursue is using symmetries to block diagonalize the moment matrix. In the
library documentation we provide an example using the MATLAB software
RepLAB [RMMB21].

6.4.2 Future extensions

Inflation is a general technique that comprises a collection of routines specific
to different types of physical systems. Moreover, the fact that it is a
young technique makes it not unreasonable to expect that refinements and
alternative hierarchies will be developed in the future. For these reasons,
Inflation is built having modularity in mind, so that new functionalities are
easy to implement.

The main feature of the current implementation of Inflation is the charac-
terization of sets of quantum correlations in networks and certain non-network
causal structures. Moreover, it is also capable of handling the characteriza-
tion of sets of classical correlations, and it contains the necessary equipment
to handle simple non-network scenarios. Subsequent releases will be focused
on consolidating these capabilities, as well as adding functionalities to im-
prove user experience and increase the range of problems and scenarios it
can handle. Planned additions to the library include:

Arbitrary causal scenarios. One of the most exciting features of inflation
methods is their ability to handle scenarios with latent-to-latent, visible-to-
visible and visible-to-latent connections. By the application of unpacking and
exogenization algorithms (see Refs. [NW20a; Wol+21] for their descriptions),
probability distributions compatible with any causal structure encoded in
a DAG can be transformed into and analysed as distributions compatible
with an equivalent network-form DAG and satisfying additional equality
constraints. While the library already allows handling scenarios with visible-
to-visible connections, in future versions we plan to add support for scenarios

2Tested on a PC with an Intel Core i9-10900X CPU @ 3.70GHz and 32 GB of RAM.
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with visible-to-latent connections. The automatic handling of this type
of networks will mostly be integrated in the InflationProblem object,
although it is expected that, due to the need of handling differently the cases
of classical and quantum latent nodes (see [Wol+21, Figure 8]), processing
is needed also further down in the pipeline.

Localizing matrices. The library currently focuses on operator con-
straints relevant for standard causal compatibility problems, namely it
assumes Projection-Valued-Measurements (PVMs). One however might
consider further restricting the algebra of operators, e.g., by assuming Pauli
algebras, or consider more general algebras relevant for applications such
as computing device-independent lower bounds on the conditional von Neu-
mann entropy [BFF21], relevant for several device-independent protocols, or
operator sub-algebras as used in convergent quantum inflation hierarchies
[LGG23]. These constraints will be able to be imposed, in future versions of
the library, either through so-called localizing matrices, or through repeated
substitutions when computing monomial canonical forms if the constraints
are simple enough, or by imposing extra symmetries to the semidefinite
program.

Interfacing. Future plans include adding support for other optimizers
widely available such as SDPT3 [TTT99], CVXPY [DB16], SCS [O’D+21]
and Gurobi [Gur22] (this last one is especially interesting since it is not
restricted to linear and semidefinite programming problems), and translating
the problems generated to forms compatible with other optimization libraries
such as PICOS [SS22] and CVXOPT [ADV15]. Interfacing with other tools,
such as SDPSymmetryReduction.jl [BK22] for reducing the memory and
computational load of the problems via exploitation of symmetries, and
scalar extension [PK+19] for imposing the independence of variables in the
inflation scenarios, will also prove useful. Currently, it is possible to export
the problem in a MATLAB-compatible form that can be directly read out
by RepLAB [RMMB21] in order to block diagonalize it.

6.4.3 Documentation for Inflation
The documentation of the library, which includes a user’s guide and an
API glossary, can be found online at https://ecboghiu.github.io/inflation.

https://ecboghiu.github.io/inflation
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The user’s guide contains more information on the installation and the
topics covered in this manuscript, as well as subjects not covered here;
for example, more applications, tips on improving performance, and in-
depth tutorials. The API glossary is automatically generated from the
documentation comments written in the code and contains information
about the public functions and classes defined.

6.4.4 Contribution guidelines

We welcome contributions to Inflation from the larger community interested
in causality, quantum nonlocality, and software for quantum information
theory. Contributions can come in the form of feedback about the library,
feature requests, bug fixes, or code contributions (pull requests). Feedback
and feature requests can be done by opening an issue on the Inflation GitHub
repository. Bug fixes and other pull requests can be done by forking the
Inflation source code, making changes, and then opening a pull request to
the Inflation GitHub repository. Pull requests are peer-reviewed by Inflation’s
core developers to provide feedback and/or request changes.

Contributors are expected to adhere to Inflation development practices
including style guidelines and unit tests. Tests are written with the UnitTest
Python framework and are implemented outside the module. To test instal-
lation or changes, one can download the source code from the repository,
and use standard UnitTest functions. For example, executing the following
in a Unix terminal in the test folder runs all the tests:

python -m unittest -v

More details can be found in the Contribution guidelines documentation.

6.5 Concluding remarks
We have presented the first open-source implementation of the inflation
framework for causal compatibility. Its focus is put in user experience and
modularity, with the goal of being easy to use off the shelf while allowing
for modifications needed by expert users.

While the current core implements the quantum inflation technique of
Ref. [Wol+21], the library can be used off the shelf to characterize the sets
of classical and quantum correlations in any network-type DAG, and non-
network scenarios with visible-to-visible connections. After briefly mentioning

https://www.github.com/ecboghiu/inflation
https://www.github.com/ecboghiu/inflation
https://github.com/ecboghiu/inflation/blob/main/CONTRIBUTE.md
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the principles behind inflation, we described the main components of the
library and techniques to achieve tighter characterizations, and we illustrated
its use in multiple problems of interest. Finally, we outlined different ways in
which the library can be extended to accommodate problems of interest for
the broad community interested in quantum nonlocality and causality, and
described additional software information including support and contribution
guidelines.
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Chapter 7

Outlook

In this thesis we explored quantum advantage in causal structures beyond
Bell’s scenario:

• We gave a proposal for an experimental setup where a triangle causal
network device-independently reveals the non-classicality of a single-
photon entangled state using passive optical measurements alone, which
is not possible in common-cause scenarios.

• We went beyond network-type scenarios by studying the broadcast
scenario, which includes transformations in addition to preparations
and measurements. In the broadcast scenario, we have strengthened
known results for activation of nonlocality, extended the notion of EPR
steering to the broadcast scenario and provided the first examples of
activation of EPR steering in this scenario. In addition, we demon-
strated that broadcasting enhances robustness of device-independent
entanglement certification against white noise in the quantum state.

• We developed the Python library Inflation for testing causal com-
patibility of observed probability distributions with arbitrary causal
scenarios via the inflation method. In addition, we made several im-
provements to the inflation technique, namely, we generalized it to
hybrid scenarios with mixed classical, quantum or no-signaling prepa-
rations and expanded its range of applicability to include possibilistic
proofs of nonclassicality.

These results highlight that already relatively small causal structures—in
terms of number of nodes and preparations involved—provide an advantage
over common-cause scenarios. Structures beyond networks, which involve
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transformations, seem particularly promising to explore due to their capabil-
ity to activate nonlocality. In contrast, network-type scenario have yet to
demonstrate this capability. This motivates the study of more complex causal
structures, involving more nodes and transformations, and the nonclassical
phenomena emerging from these structures.

It is particularly important to understand when such nonclassical phenom-
ena constitute “interesting” or “genuinely novel” examples of nonclassicality.
For instance, if these phenomena can be traced back to standard Bell non-
locality, it can be argued that the more complex causal structure is not
being fully utilized to achieve novel results. In addition, such a sophisticated
structure might be considered an unnecessary complication if it does not
contribute to extending beyond standard Bell nonlocality. In the following,
we give an overview of various existing definitions and concepts related
to genuinely novel nonclassicality, and highlight some interesting research
directions.

What constitutes genuinely novel nonclassicality? We understand by
“standard” nonclassicality the presence of correlations between measurement
devices which are incompatible with classical common-cause explanations,
that is, Bell nonlocality. In network-type causal scenarios, there are several
independent common-causes correlating various measurement devices.

Let us consider the 3-party chain scenario involving two independent
preparations of bipartite systems, with one measurement device having ac-
cess to both preparations (cf. Figure 3.1). One quantum strategy involves
preparing one maximally entangled two-qubit state and one arbitrary sepa-
rable state; the quantum state is measured with the appropriate quantum
observables such as to maximally violate the CHSH inequality (cf. Eq. (2.63)),
whereas arbitrary measurements are performed on the separable state. While
through this strategy one may generate correlations incompatible with the 3-
party chain scenarios with classical preparations, arguably this nonclassicality
is not novel, as it can be traced back to Bell nonlocality.

Interestingly, through a similar protocol, a well known Bell inequality
characterizing the 3-party chain scenario (the “IJ” inequality [Bra+12])
can be maximally violated [PKGT22]. This shows that a violation of this
inequality does not necessarily imply that the nonclassicality present in the
correlations is novel. This motivated the definition of full network nonlo-
cality of Ref. [PKGT22]. Full network nonlocality is a theory-independent
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definition, as nonclassicality is not limited to quantum sources of correlations.
Furthermore, it leads to linear programming tests based on the inflation
technique [WSF19; NW20a] which, if they fail, certify that a given correla-
tion is fully network nonlocal. These tests are noise robust, facilitating the
experimental demonstration of full network nonlocality [Gu+23].

It can be argued that full network nonlocality does not capture all the
desiderata for a definition of genuinely novel nonclassicality. For example, in
the 3-party chain scenario one may consider two parallel Bell tests, where the
device with access to the two preparations can perform a classical processing
of the two outcomes of the parallel Bell tests. Such a protocol requires all
sources to be nonclassical, however, it is simply a wiring of two Bell tests, and
thus in some sense, does not constitute a novel example of nonclassicality.

This motivated the definition of genuine network quantum non-
locality [Šu+22], which is the set of quantum correlations realizable in a
network where the measurement devices are only allowed to perform local
measurements on the preparations they receive, and local wirings of their lo-
cal measurement settings and outcomes. Some examples of correlations have
been proven to be genuine network quantum nonlocal, by certifying, through
self-testing [ŠB20], the use of entangling measurements [RKB18; BSS18] or
the use of non-entangling measurements that cannot be implemented with
local operations and local wirings [ŠB23].

Characterizing this set of genuine network quantum nonlocal correlations
is very complex, and no general test exists to determine whether a given
correlation is genuine network quantum nonlocal. The existing techniques
based on self-testing, while powerful forms of certification, are technically
challenging to prove and expensive in terms of experimental noise sensitivity,
as self-testing typically requires close to ideal quantum sources to demon-
strate. As such, it is of interest to develop more noise robust tests of genuine
network quantum nonlocality. A particularly interesting research direction is
to explore whether it is possible to use quantum inflation hierarchy [Wol+21],
or the PPT hierarchy [Mor+13b], to device-independently certify the use of
entangling measurements in a network-type causal scenario.

Other examples of new forms of nonclassicality have been proposed,
where nonclassical correlations manifest in networks without the need for
independent measurement choices [Ren+19a; PKGR23b; Abi+22]. This
differs from standard Bell-type nonclassicality, where choosing measurement
settings independently is critical to reveal nonclassical behaviour. However,
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as Tobias Fritz demonstrated in Ref. [Fri12, Thm. 2.16], Bell nonlocality
can be used to produce this form of network nonclassicality. Fritz provided
an explicit example in a triangle network structure (cf. Fig. 3.8) where
only one of the three preparations needs to be nonclassical to generate
this form of nonclassicality. Currently, there is no established method nor
commonly accepted definition to determine whether a given correlation in a
network, where measurement choices are absent, is attributable merely to
some underlying Bell-type nonclassicality. The self-testing method, while
useful for proving genuine quantum network nonlocality, depends on having
measurement choices and thus is not applicable in this context.

Lastly, any example of activation of nonlocality is a clear sign of quantum
advantage, as the causal structure is exploited to achieve nonclassical corre-
lations with resources that cannot generate nonclassicality in Bell scenarios.
Causal scenarios such as broadcasting, which include transformations, can
manifest activation. Network-type scenarios with many measurement devices
are also known to manifest activation of nonlocality, however the scalability
of the existing inflation techniques is currently inadequate for investigating
these scenarios, as they require at least 21 measurement devices [Cav+11].

How to explore larger causal networks? The number of variables in
the convex relaxation of fanout inflation scales superexponentially with the
number of copies of each preparation [NW20a, Sec. 4.2]. Consequently there
is a need to develop more scalable methods for evaluating causal compatibility.
For quantum inflation, symmetries are currently used to reduce the number of
variables in the convex relaxation. Further exploitation of these symmetries
is possible, for instance, through transforming the basis to block-diagonalise
the moment matrix (see Ref. [IR22] for a reference on symmetry exploitation
within semidefinite programming). One may explore adding additional
assumptions which make the inflation method more scalable, at the cost of
losing generality and restricting the strength of the infeasibility certificates.
For example, one may consider scenarios with stronger symmetries, such as
all preparations being identical.

Alternatively, one may rely on heuristic methods to explore correlations
in quantum causal scenarios, such as those based on machine learning-
based constructions of local models [Kri+20]. One may use such heuristic
techniques in combination with the inflation technique (cf. the see-saw
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heuristic optimisation described in Appendix C.3) to search for examples of
activation of nonlocality in general causal structures.

How to connect quantum advantage with practical applications?
In this thesis we explored quantum advantage described in terms of an
operational task where quantum resources outperform classical resources.
However, these operational tasks need not be beneficial for technological
purposes. For instance, despite various examples of activation of nonlocality,
none have yet demonstrated a practical advantage for device-independent
applications. An important open question is thus whether a quantum state
with a local model can be used, via nonlocality activation techniques, to
generate, for example, a non-zero key rate in DI quantum key distribution or
certify DI private randomness generation. Towards this goal, the broadcast
scenario seems promising as it uses a relatively small number of components
in order to achieve activation of nonlocality.
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Appendix A

Feasibility in convex
programming

A feasibility problem is a type of optimization problem where the goal is to
determine whether a set of constraints can be satisfied or not. The objective
function is not relevant in this type of problem, and the focus is solely on
finding a feasible solution that satisfies the constraints.

Often, the constraints are continuously parameterized, and one is inter-
ested in finding the range of parameters for which the constraints are feasible.
Close to the threshold in parameter space where the constraints become
infeasible, numerical instabilities may appear. These are manifested as either
the solver failing to find a feasible solution, or the solver finding a feasible
solution where it should be infeasible. This is due to the fact that the solver
works with finite precision. One approach to avoid these instabilities is to
reformulate the feasibility problem as an optimization problem.

A.1 Feasibility as optimization
Consider a generic linear program with constraints Ax = b, x ≥ 0. One
equivalent formulation as an optimization problem is as follows:

find x
s.t. Ax− b = 0

x ≥ 0
←→

max λ

s.t. −λ1⃗ ≥ Ax− b ≥ λ1⃗
x ≥ λ1⃗, λ ∈ R

where 1⃗ is a vector of ones. If the solution of the optimization program,
λ∗, is strictly negative λ∗ < 0, then the original program is infeasible. If,
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however, the optimal solution is nonnegative, λ∗ ≥ 0, the original program
is feasible.

As another example, consider a semidefinite programming feasibility
problem, where one wants to find whether a matrix F = F0 +

∑
xiFi can be

made positive semidefinite, where F0, Fi are fixed. This can be formulated
as an optimization problem in the following manner:

find xi
s.t. F = F0 +

∑
xiFi ⪰ 0

xi ∈ R
←→

max λ
s.t. F = F0 +

∑
xiFi ⪰ λ1

xi ∈ R, λ ∈ R
.

The solution λ∗ is the maximum smallest eigenvalue of F over xi. Strictly
negative values, λ∗ < 0, imply that the matrix F cannot be made positive
semidefinite, thus the original program is infeasible. If the solution is
λ∗ = −∞, then the only way to make the original problem feasible is by
removing the constraint F ⪰ 0. All other values of λ∗ correspond to feasible
programs.

A.2 Farkas’ lemma and certificates of infeasibility
Farkas’ lemma is of central importance in convex programming, as it allows
one to certify that a given convex program will be infeasible for a wide choice
of parameters without having to solve the program. This is particularly
useful in the context of quantum information theory, as it allows for the
construction of entanglement witnesses [DCPSM04], the construction of Bell
inequalities [Bru+14] or bounding the set of quantum correlations [NPA08]
amongst other applications.

Linear programming. The standard formulation of Farkas’ lemma states
that a linear program with constraints Ax = b, x ≥ 0 is infeasible if and only
if there exists a vector y such that AT y ≥ 0 and b · y < 0.

Proof. This can be shown directly from the dual problem to the feasibility
problem expressed as optimization. Following the standard approach from
Ref. [BV04], we derive the dual formulation. We start by writing the
Lagrangian of the optimization problem for the linear program:

L(x, λ, µ, ν, γ) =λ+ µ · (Ax− b− λ1⃗) + ν · (−Ax+ b+ λ1⃗) + γ · (x− λ1⃗),
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which for µ ≥ 0, ν ≥ 0, γ ≥ 0, and for λ, x satisfying the constraints of the
original problem, gives the upper bound

L(x, λ, µ, ν, γ) ≥ λ .

In particular, this upper bound holds for the optimal value of the optimization
program, λ∗, which we can get by maximising both sides over x, λ satisfying
the constraints of the problem:

g(µ, ν, γ) := max
x,λ

L(x, λ, µ, ν, γ) ≥ λ∗,

where:

g(µ, ν, γ) =


ν · b− µ · b if 1− µ · 1⃗ + ν · 1⃗− γ · 1⃗ = 0

ATµ−AT ν + γ = 0

∞ otherwise

.

This follows by grouping together the terms in the Lagrangian by primal
variables. Now to get the tightest upper bound on the optimal value of the
optimization program, λ∗, we minimise the upper bound g(µ, ν, γ):

min
µ,ν,γ

(ν − µ) · b

s.t. −AT (ν − µ) + γ = 0
1− µ · 1⃗ + ν · 1⃗− γ · 1⃗ = 0 = 0
µ ≥ 0, ν ≥ 0, γ ≥ 0 .

By introducing the variable y := ν−µ, and replacing ν = y+µ, and removing
the slack variable γ thereby converting equality constraints to inequality
constraints, we arrive at the dual problem:

min
y,ν,γ

b · y (A.1)

s.t. AT y ≥ 0 (A.2)
1 + y · 1⃗ ≥ 0 . (A.3)

Any y such that b · y < 0 and AT y ≥ 0, proves that the original program is
infeasible, as this certifies that the optimal value of optimization program
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is strictly negative, thus the original program is infeasible. This is the
statement of Farkas’ lemma for linear programs.

Note that any y satisfying b · y ≤ 0 and AT y ≥ 0 can be rescaled to
satisfy 1 + y · 1⃗ ≥ 0 through yi → yi/|

∑
yi|.

Bell inequalities. As a particularly relevant example, consider the prob-
lem of determining whether a particular probability distribution p(ab|xy)
admits a local hidden variable model. This is formulated as the following
feasibility problem:

find qij ,
s.t. p(ab|xy) =

∑
iD(a|xi)D(b|yj) qij ,∑

qij = 1,
qij ≥ 0.

where D(a|xi), D(b|yj) are all possible deterministic functions labeled by i,
j. This connects to the standard form Ax = b, x ≥ 0 by writing:

b =


p(00|00)
p(00|01)

...
p(11|11)

1

 , A =
[
D

1⃗T

]
,

where the matrix D has elements D(a,b,x,y),(i,j) = D(a|xi)D(b|yj). Farkas’
lemma then states that the existence of a vector y = (yabxy, y0) such that:∑

abxy

yabxyp(ab|xy) + y0 < 0,

∑
abxy

yabxyD(a|xi)D(b|yj) + y0 ≥ 0 ∀ i, j,

certifies that the program is infeasible, and that thus p(ab|xy) does not admit
a local hidden variable model. This is the standard form of Bell inequalities
[Bru+14].

The geometric intuition is the following: the vector y defines a hyperplane
in the space of probability distributions such that it does not intersect
the polytope of local hidden variable models. Therefore, if a probability
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distribution p(ab|xy) lies on the other side of the hyperplane then it cannot
admit a local hidden variable model.

Semidefinite programming. We can derive analogues of Farkas’ lemma
for semidefinite programs by following the same steps as in the previous
paragraph. The Lagrangian of the semidefinite feasibility problem written
as an optimization problem is:

L(λ, xi, Z) = λ+ TrZ
(
F0 +

∑
xiFi − λ1

)
= TrZF0 + λ(1− TrZ) +

∑
xi(TrZFi) .

It holds that:

g(Z) := max
λ,xi

L(λ, xi, Z) =


TrZF0 if 1− TrZ = 0

TrZFi = 0

∞ otherwise

.

for Z ⪰ 0 and xi, λ satisfying the constraints of the problem. The dual is
then:

min
Z

TrZF0

s.t. TrZ = 1, TrZFi = 0, Z ⪰ 0 .

Therefore any Z ⪰ 0 such that TrZF0 < 0 and TrZFi = 0 proves that
the original program is infeasible, as this certifies that the optimal value of
optimization program λ∗ is strictly negative. For any such Z, we can rescale
it to satisfy TrZ = 1 through Z → Z/TrZ.
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Appendix B

Single photon nonlocality

B.1 Noiseless output distribution
Here we derive the form of the noiseless output distribution:

pQ=0,T=1,ν=1
t (abc) ≡ pt(abc),

produced when all the elements of the optical scheme described in Section
B.2 of this Appendix are perfect.

The initial state shared among the parties is:

|ψ+⟩⟨ψ+|A2B1
⊗ |ψ+⟩⟨ψ+|B2C1

⊗ |ψ+⟩⟨ψ+|C2A1

with |ψ+⟩ = |01⟩+ |10⟩√
2

. (S1)

The action of a beamsplitter with transmissivity t and phase ϕ is described
in terms of the input and output optical modes with creation operators a†

i

as: (
a†

2
a†

1

)
in

=
( √

t −e−iϕ√1− t
eiϕ
√

1− t
√
t

)(
a†

2
a†

1

)
out

. (S2)

Consequently, the corresponding unitary induced by the transformation can
be derived in the Fock basis by expressing |mn⟩X2X1 ≡

a†m
2√
m!

a†n
1√
n! |00⟩X2X1 , to
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obtain

|10⟩in =
√
t|10⟩out − e−iϕ√1− t|01⟩out, (S3)

|01⟩in =
√
t|01⟩out + eiϕ

√
1− t|10⟩out, (S4)

|00⟩in =|00⟩out, (S5)

|11⟩in =(2t− 1)|11⟩out − e−iϕ
√

2t(1− t)|02⟩out + eiϕ
√

2t(1− t)|20⟩out.
(S6)

Accordingly, the POVM (4.6) can be written as

Π(0)
t =|00⟩⟨00|, (S7)

Π(R)
t =|χr⟩⟨χr|+ 2t(1− t)|11⟩⟨11|, (S8)

Π(L)
t =|χl⟩⟨χl|+ 2t(1− t)|11⟩⟨11|, (S9)

Π(2)
t =(2t− 1)2|11⟩⟨11|, (S10)

where |χr⟩ =
√
t|01⟩ − eiϕ

√
1− t|10⟩, |χl⟩ =

√
t|10⟩ + e−iϕ√1− t|01⟩, and

where we truncated the Hilbert space considering that the input state consists
only of combinations of vacuum and a single-photon excitation. Therefore,
each party has four possible outputs a, b, c ∈ {0, L,R, 2}, standing for no
detector counts □□, a count in the left detector ■□, a count in the right
detector □■, or counts in both detectors ■■, respectively, described by the
POVM above.

The resulting network output

pt(abc) = Tr[
(
|ψ+⟩⟨ψ+|A2B1

⊗ |ψ+⟩⟨ψ+|B2C1
⊗ |ψ+⟩⟨ψ+|C2A1

)
·

·
(
Π(a)
t A1A2

⊗Π(b)
t B1B2

⊗Π(c)
t C1C2

)
] (S11)

has multiple constraints due to the cyclic symmetry of the experiment, due
to all the parties using the same value for the beamsplitter transmissivity t
(S2), as well as photon number conservation. For example, all outputs of
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the form (here χ represents any of L or R):

pt(000) = 0 , pt(00χ) = 0 , (too few photons would be detected)
(S12)

pt(2χχ) = 0 , pt(22χ) = 0 , (too many photons would be detected)
(S13)

are null, due to the fact that there are initially 3 photons in the network, of
which at most 2 can end up in the same photodetector.

The non-zero probabilities are, modulo the cyclic symmetry, in the
form p(0χχ), p(02χ), p(0χ2), p(χχχ), and are summarized, in order, in the
following.

pt(0LL) = pt(0RR) = 1
4 t(1− t), (S14)

pt(0RL) = 1
2 t(1− t)

2, (S15)

pt(0LR) = 1
2 t

2(1− t), (S16)

pt(02R) =1
8(2t− 1)2t, pt(02L) =1

8(2t− 1)2(1− t), (S17)

pt(0R2) =1
8(2t− 1)2(1− t), pt(0L2) =1

8(2t− 1)2t, (S18)

pt(RRL) =1
8 t(1− t)(1 + 2 cos(Φ)

√
t(1− t)),

pt(LLR) =1
8 t(1− t)(1− 2 cos(Φ)

√
t(1− t)), (S19)

pt(LLL) =1
8(1− 3t(1− t) + 2t

3
2 (1− t)

3
2 cos(Φ)), (S20)

pt(RRR) =1
8(1− 3t(1− t)− 2t

3
2 (1− t)

3
2 cos(Φ)), (S21)

where Φ ≡ ϕA + ϕB + ϕC .
In what follows, we take Φ = 0, as the range of values of t for which

the distribution is proven to be nonlocal decreases when Φ ̸= 0 (that is, the
following analysis can be performed for an arbitrary value of Φ, and the
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interval of values of t for which pt is nonlocal is maximized when Φ = 0).
Also, note that Φ = ϕA +ϕB +ϕC can be tuned locally by any of the parties.

B.2 Nonlocality of the noiseless distribution
To prove the nonlocality of the ideal noiseless distribution pt presented above,
we take an approach inspired by the one presented in [Ren+19a]. There, a
quantum distribution is proposed, which is based on the same input state in
the triangle network (we report it in our notation):

|ψ+⟩A2B1 ⊗ |ψ+⟩B2C1 ⊗ |ψ+⟩C2A1 ≡ |Ψ+⟩A1A2B1B2C1C2
, (S22)

with |ψ+⟩ = |01⟩+|10⟩√
2 , and the following POVM on the two modes X2X1 of

each party X = A,B,C (again, we use a notation that makes the comparison
easier with the experiment proposed in the present thesis):

Π′(0)
t = |00⟩⟨00|, Π′(R)

t = |χr⟩⟨χr|, Π′(L)
t = |χl⟩⟨χl|, Π′(2)

t = |11⟩⟨11|,
(S23)

where |χr⟩ =
√
t|01⟩ −

√
1− t|10⟩ and |χl⟩ =

√
t|10⟩+

√
1− t|01⟩ (here we

put all the phases ϕx to zero, as mentioned above). The output distribution
of our experiment is not equivalent to that of [Ren+19a], as our POVM
consists, as described in Sec. B.1, of:

Π(0)
t = |00⟩⟨00|, Π(R)

t = |χr⟩⟨χr|+ 2t(1− t)|11⟩⟨11|,

Π(L)
t = |χl⟩⟨χl|+ 2t(1− t)|11⟩⟨11|, Π(2)

t = (2t− 1)2|11⟩⟨11|. (S24)

Notice that both POVMs Π and Π′ are a coarse graining of the measurement

Π′′(0)
t = |00⟩⟨00|, Π′′(R1)

t = |χr⟩⟨χr|, Π′′(R2)
t = 2t(1− t)|11⟩⟨11|,

Π′′(L)
t = |χl⟩⟨χl|, Π′′(L2)

t = 2t(1− t)|11⟩⟨11|, Π′′(2)
t = (2t− 1)2|11⟩⟨11|.

(S25)

The POVM Π′′ is the one that would be obtained from the scheme described
in the main text if the photodetectors were able to resolve photon numbers,
and has thus six possible outputs (cf.(S7)—(S10)). Accordingly, it is possible
to define distributions pt, p′

t, p′′
t , obtained from the state (S22) and applying
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(respectively) Πt, Π′
t, Π′′

t at each party modes X2X1, i.e.:

pt(abc) = Tr[|Ψ+⟩⟨Ψ+|A1A2B1B2C1C2
(Π(a)

t A1A2
⊗Π(b)

t B1B2
⊗Π(c)

t C1C2
)]
(S26)

p′
t(abc) = Tr[|Ψ+⟩⟨Ψ+|A1A2B1B2C1C2

(Π′(a)
t A1A2

⊗Π′(b)
t B1B2

⊗Π′(c)
t C1C2

)]
(S27)

p′′
t (abc) = Tr[|Ψ+⟩⟨Ψ+|A1A2B1B2C1C2

(Π′′(a)
t A1A2

⊗Π′′(b)
t B1B2

⊗Π′′(c)
t C1C2

)]
(S28)

Surprisingly, we prove that pt, p′
t, and p′′

t , have the same range of nonlocality
for the parameter t. That is, for a fixed t, if one among pt, p′

t, p′′
t , is classically

reproducible in the triangle network, then all of them are. At the same time,
the infeasibility of one among pt, p′

t, p′′
t , implies the infeasibility of all of

them. From the physical point of view, this means that the possibility of
performing perfect number-resolving photodetection does not enhance the
“nonlocality” of the output distribution of our ideal experiment, although it
may improve its resistance to noise.

To prove the nonlocal equivalence (in the triangle network) of the three
distributions pt, p′

t, p′′
t we proceed as follows:

feasibility p′
t ⇒ feasibility p′′

t ⇒ feasibility pt ⇒ feasibility p′
t , (S29)

where by “feasibility” we mean the feasibility of classically simulating the
distribution with a local model, as from Eq. (4.2). The first two implications
follow immediately, without assumptions on the input state |Ψ⟩, from simple
properties of the POVMs involved. Indeed:

• The POVM Π′′ can be obtained as a fine-graining of Π′ via a probabilis-
tic splitting of Π′(2) in three outcomes Π′′(L2), Π′′(R2), Π′′(2), which is
just a classical local post-processing of the original projector |11⟩⟨11|.

• The POVM Π is a local coarse-graining of Π′′ and thus pt is classically
simulable whenever p′′

t is.

The last implication requires more effort and we prove it in the following
subsections. To do so, we identify constraints on local strategies simulating
pt and show that these are the same as those needed to simulate p′

t, as
from [Ren+19a] (cf. following derivations and Paragraph B.2.3).
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B.2.1 Constraints on local models simulating pt

We start by assuming that there exists a classical model that simulates the
output distribution pt of the experiment proposed in the main text, and we
find the constraints that it has to respect. That is, we assume that indeed
pt (which is summarized in Sec. B.1), can be written as

pt(abc) =
∫
σ,λ,γ∈[0,1]3

q(a|σλ)q(b|λγ)q(c|γσ) dγdσdλ. (S30)

Recall from Section 3.3 of the preliminaries that the local response functions
may be taken to be deterministic without loss of generality, that is:

q(a|σ, λ) = δ(a−A(σ, λ)), (S31)

where A(σ, λ) is some deterministic response function. Let X, Y and Z
denote the set of possible γ, σ and λ respectively. Let us define

XB
0 = {γ | ∃λ : B(λ, γ) = 0}, XB

2 = {γ | ∃λ : B(λ, γ) = 2},
XC

2 = {γ | ∃σ : C(γ, σ) = 2}, XC
0 = {γ | ∃σ : C(γ, σ) = 0},

Y C
0 = {σ | ∃ γ : C(γ, σ) = 0}, Y C

2 = {σ | ∃ γ : C(γ, σ) = 2},
Y A

2 = {σ | ∃λ : A(σ, λ) = 2}, Y A
0 = {σ | ∃λ : A(σ, λ) = 0},

ZA0 = {λ | ∃σ : A(σ, λ) = 0}, ZA2 = {λ | ∃σ : A(σ, λ) = 2},
ZB2 = {λ | ∃ γ : B(λ, γ) = 2}, ZB0 = {λ | ∃ γ : B(λ, γ) = 0}. (S32)

In short, set XP
i is the set of γ’s for which party P can potentially obtain

output i, and similarly for the Y P
i and ZPi sets for σ’s and λ’s, respectively.

We coarse-grain the possible outcomes by grouping outcomes L and R as
χ, which means that the possible outcomes are now a, b, c ∈ {0, χ, 2}. Then,
according to Sec. B.1, the set of outcomes with nonzero probability in our
setup are (up to permutations):

abc ∈ {χχχ, 0χχ, 0χ2}. (S33)

Observe that:

• two 0’s never appear at the same time, nor two 2’s,

• 2 only appears together with exactly one χ and one 0.
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These properties are simply due to the fact that the number of photons is
conserved, and that at most two photons can end up in the same photode-
tector. Already from these observations we obtain some structure on the
previously defined sets in three steps. We demonstrate the steps for the
{XP

i }i,P sets, but they can be done with the {Y P
i }i,P and {ZPi }i,P similarly.

Proof that XB
2 ∩XC

2 = ∅, XB
0 ∩XC

0 = ∅:

This is a direct consequence of the previous observation (Eq. S33). There
cannot be 4 photons among 4 parties or 0 photons in total for two parties.

Proof that XB
0 ∪XC

0 = X:

Assume by contradiction that ∃ γ∗ ∈ X \
(
XB

0 ∪XC
0

)
. Then by definition

∀σ, λ :

B(λ, γ∗) ∈ {χ, 2},
C(γ∗, σ) ∈ {χ, 2}.

Observe that when γ = γ∗, Alice must not answer a = 2, due to (S33).
However, to do this, since she does not know the value of γ, Alice must
always not answer a = 2. A similar conclusion can be drawn for the other
parties, due to the cyclic symmetry. This, however, leads to a contradiction
since parties can in general output 2, e.g., pt(a = 2) ̸= 0.

Proof that XB
0 ∩XB

2 = ∅, XC
0 ∩XC

2 = ∅:

Assume by contradiction that ∃γ∗ ∈ XB
0 ∩XB

2 . Then ∃γ1, γ2 such that:

B(γ1, γ
∗) = 0,

B(γ2, γ
∗) = 2.

Charlie does not know λ, so if γ = γ∗, he knows he must answer χ for any σ,
since that is the only symbol consistent with both 0 and 2. Thus, we have
that:

∀σ : C(γ∗, σ) = χ.



190 Appendix B. Single photon nonlocality

Figure S1: The relation of the sets {XP
i }i,P to each other.

Say Alice receives λ = γ2. Alice does not know whether γ = γ∗ or not. Thus,
her response must be one that is consistent with the scenario that γ = γ∗.
Because of Charlie’s response being χ, this implies that for any σ she must
answer a = 0, that is:

∀σ : A(σ, γ2) = 0.

This means, by definition, that Y A
0 = Y . This implies, after doing steps 1

and 2 for the sets {Y P
i }i,P , that Y C

0 = ∅. However, since pt(c = 0) ̸= 0, we
arrive at a contradiction.

Proof that all sets XP
0 , Y

P
0 , ZP0 have probability 1/2:

The previous constraints B.2.1-B.2.1 on the sets XP
i are can be summarized

as in Fig. S1. We now give a partial quantitative assessment on the size of
these sets. Note that by the definition of the sets Y A

0 and ZA0 we have:

1
4 = pt(a = 0) ≤ p(σ ∈ Y A

0 , λ ∈ ZA0 ) = p(Y A
0 )p(ZA0 ), (S34)

where in the last step we used the statistical independence of the hidden
variables. At the same time, by using the inequality ab ≤ ((a+ b)/2)2 we
have:

p(Y A
0 )p(Y C

0 ) ≤
(
p(Y A

0 ) + p(Y C
0 )

2

)2

= 1
4 .
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Combining the two we see that p(Y C
0 ) ≤ p(ZA0 ). Repeating the same argu-

ment (cyclically) for the other parties we get:

p(Y C
0 ) ≤ p(ZA0 ) ≤ p(XB

0 ) ≤ p(Y C
0 ),

which implies that they are all equal. Using also (S34) it is clear that all
sets with i = 0 are equally probable with probability 1

2 , i.e.:

p(Y C
0 ) = p(ZA0 ) = p(XB

0 ) = p(Y C
0 ) = p(Y A

0 ) = p(ZB0 ) = p(XC
0 ) = p(Y A

0 ) = 1
2 .

(S35)

Equation (S35) combined with (S34) tells us that Alice, when receiving from
Y A

0 on one side and from ZA0 on the other, will deterministically output 0.
The same holds for the other parties (Bob when receiving from XB

0 and
ZB0 , and Charlie when receiving from XB

0 and Y B
0 ). This consideration

combined with the previous ones and the definition of the sets (S32), yields
a constrained picture of all possible classical models that simulate the coarse
graining of pt in the triangle network. This is illustrated in Fig. S2 where:

• Alice outputs 0 when receiving from Y A
0 and ZA0 .

• Alice outputs χ when receiving from Y A
0 and ZB0 , or when receiving

from Y C
0 and ZA0 (in both cases Alice cannot output a = 2 because of

property B.2.1).

• Alice outputs either χ or 2 when receiving from Y C
0 and ZB0 , (further

structure can be given using the sets ZB2 and XB
2 ).

Bob and Charlie follow similar strategies when cycling the indices.

B.2.2 Breaking up the coarse-graining

Now, the main idea is the following: If there exists a local
model for pt(a, b, c) as from Fig. S2, then there should exist a distri-
bution qt(i, j, k, s) representing the parties collective response function
(i, j, k = L,R) when the hidden variables γ, σ, λ come from XC

0 ×Y A
0 ×ZB0

(s=0) or S1 = XB
0 ×Y C

0 ×ZA0 (s=1). We cannot directly derive qt(i, j, k, s)
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Face B

Face A

Face C

XC
0

XB
0

2, χ
χ

χ

0

0
χ

χ
2, χ

ZA0

ZB0Y
C0

Y
A0

χ

2, χ

0
χ

ZA0

ZB2

XC
0
XB

2

χ χ

χ 2, χ

Figure S2: (Left) Classical strategies visualized on a cube.
The edges of the cube represent the interval [0, 1], on which
the hidden variables {γ, σ, λ} distributed, and the sets (S32)
are represented, all having probability 1/2 due to (S35). The
labels on faces are the possible responses of a given party.
(Right) The 2, χ part on face B, for example, can be further
decomposed using XB

2 and ZB
2 .

from pt(a, b, c), however, we can derive its marginals (see below). These
marginals will be incompatible for some values of transmissivity t. For
these situations, thus, we can deduce that there does not exist a lo-
cal model for pt(a, b, c). Additionally, the marginals constraints on
qt(i, j, k, s), are the same as in [Ren+19a] for the distribution p′

t, mean-
ing that the classical feasibility of pt implies the classical feasibility of
p′
t, as stated in (S29).

To start, consider the two sets S0 = XC
0 ×Y A

0 ×ZB0 and S1 = XB
0 ×Y C

0 ×ZA0 .
Note that S0 ∩ S1 = ∅ and the events χχχ can happen if and only if
(γ, σ, λ) ∈ S0 ∪ S1. We define:

qt(i, j, k, s) = p(a = i, b = j, c = k, (γ, σ, λ) ∈ Ss | (γ, σ, λ) ∈ S0 ∪ S1), (S36)

where the indices i, j, k are each either L or R, and the index s is either
0 or 1. This is a probability distribution, since if (γ, σ, λ) ∈ S0 ∪ S1, then
it must be either in S0 or S1, and all parties must output either L or R
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(hence normalization and positivity are satisfied). Using the definition of
conditional probability and the fact that the sets S0 and S1 have probability
1/8 (cf. B.2.1 and Fig. S2), we see that:

qt(i, j, k, s) = 4p(a = i, b = j, c = k, (γ, σ, λ) ∈ Ss). (S37)

Marginalizing over s gives us:

qt(i, j, k) = 4pt(a = i, b = j, c = k) , (S38)

the value of which is given by the parameters of the model, e.g., the trans-
missivity.

Next we would like to express other marginals, for example, qt(i, s) ≡∑
jk qt(i, j, k, s), as a function of the target probability distribution. To do

this, first note that if b = 0 then γ ∈ ZB0 , λ ∈ XB
0 and either σ ∈ Y A

0 or
σ ∈ Y C

0 . Note that next to a 0 output we can only have the other two parties
answering {χ, 2} or {χ, χ}. For qt(i, s) we are, however, interested in the
probabilities of a = i, therefore we break up the χ in Alice’s response. In
terms of probabilities this means

pt(a=i, b = 0, c = χ)+pt(a=i, b = 0, c = 2) =
= pt(a=i, (γ, σ, λ) ∈ XB

0 × Y A
0 × ZB0 )+pt(a=i, (γ, σ, λ) ∈ XB

0 × Y C
0 × ZB0 )

(S39)

where we used colours to simplify the reading, separating the sets in a local
strategy on which Bob bases his choice (in blue), from those to which he has
no access (in red). From now on we use a shorthand for expressions like this,
indicating, for example, (γ, σ, λ) ∈ XB

0 × Y C
0 × ZB0 simply as XB

0 Y
C

0 ZB0 .
Next, consider the sum where we force Alice to output i, but Bob

and Charlie can either output 0 or χ. In other words we are focusing on
the χ0χ, χ02, χχ0, χ20 outputs, breaking coarse-graining χ→ L,R only in
Alice’s case. Define the quantity Di

A as:

Di
A := pt(a = i, b = 0, c = χ) + pt(a = i, b = 0, c = 2)+

− [pt(a = i, b = χ, c = 0) + pt(a = i, b = 2, c = 0] . (S40)
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A few manipulations show that

Di
A = pt(a = i,XB

0 Y
A

0 Z
B
0 ) + pt(a = i,XB

0 Y
C

0 ZB0 )+

−
[
pt(a = i,XC

0 Y
C

0 ZA0 ) + pt(a = i,XC
0 Y

C
0 ZB0 )

]
=

= pt(a = i,XC
0 Y

A
0 Z

B
0 ) + pt(a = i,XC

0 Y
C

0 ZB0 )+
− pt(a = i,XB

0 Y
C

0 ZA0 )− pt(a = i,XC
0 Y

C
0 ZB0 ) =

= pt(a = i, S0)− pt(a = i, S1),

where we first used (S39) (and a similar expression for c = 0), and then that
Alice does not have access to γ, so the probabilities stay the same under the
swap of XB

0 for XC
0 and XC

0 for XB
0 . Finally, we identified S0 and S1 in the

relevant expressions. Hence, we could express the differences of q(i, s = 0)
and q(i, s = 1) as an expression of known terms. We also know that the sum
is

pt(a = i, S0) + pt(a = i, S1) = p(a = i, b = χ, c = χ) =
=

∑
j,k=L,R

p(a = i, b = j, c = k). (S41)

Combining the two we get that:

q(i, s = 0) = 2pt(a = i, b = χ, c = χ) + 2Di
A , (S42)

q(i, s = 1) = 2pt(a = i, b = χ, c = χ)− 2Di
A . (S43)

B.2.3 Testing qt(i, j, k, s) using linear programming

We sum up here the marginal properties (boxed equations in the previous
section B.2.2) of the distribution qt(i, j, k, s) found above. These properties
are linear constraints on the vector qt(i, j, k, s) which are parametrized by
the transmissivity t. A linear program can be implemented to verify if a
distribution a qt(i, j, k, s) compatible with these marginals exists.

Constraint 0 (normalization). First of all,

qt(i, j, k, s) ≥ 0 ∀i, j, k, s and
∑
i,j,k,s

qt(i, j, k, s) = 1 (S44)
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that is, it truly represents a probability vector.

Constraint 1. Then:∑
s

qt(i, j, k, s) = 4pt(a = i, b = j, c = k), (S45)

with (cf. Sec. B.1):

4pt(RRL) = 1
2 t(1− t)(1 + 2

√
t(1− t)),

4pt(RLL) = 1
2 t(1− t)(1− 2

√
t(1− t)), (S46)

4pt(LLL) = 1
2((1− t)

3
2 + t

3
2 )2, (S47)

4pt(RRR) = 1
2((1− t)

3
2 − t

3
2 )2, (S48)

and cyclic combinations (meaning only the number of Ls and Rs matters).

Constraint 2. This constraint is actually a consequence of Constraint 1,
but we write it for completeness:∑
s,j,k

qt(i, j, k, s) = 4pt(a = i, χ, χ) and cyclic cases i→ j → k → i. (S49)

Constraint 3.∑
j,k

qt(i, j, k, s = 0)− qt(i, j, k, s = 1) =

= 4
[
pt(a = i, 0, χ) + p(a = i, 0, 2)− p(a = i, χ, 0)− p(a = i, 2, 0)

]
(S50)

and cyclic combinations. This last constraint can be made explicit (cf.
Sec. B.1):

i = L→ 4
[
pt(a = i, 0, χ) + pt(a = i, 0, 2)

− pt(a = i, χ, 0)− pt(a = i, 2, 0)
]

= 1
2 − t, (S51)
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i = R→ 4
[
pt(a = i, 0, χ) + pt(a = i, 0, 2)

− pt(a = i, χ, 0)− pt(a = i, 2, 0)
]

= t− 1
2 . (S52)

Relation to Ref. [Ren+19a] and equivalence between pt and p′
t

The constraints defining the linear program above, can be translated to be
the same constraints of a linear program found in Ref. [Ren+19a], where
the distribution p′

t (S27) is considered (in [Ren+19a] t is identified as u2).
Specifically, both the distributions pt and p′

t are local if a solution q̄t(i, j, k, t)
to the same linear program exists and can be generated via a local model
(cf. [Ren+19a]). This proves that the local feasibility of pt is equivalent
to that of p′

t. At the same time, the existence of q̄t(i, j, k, t) is a necessary
condition for the local feasibility of pt. This means that when the linear
program fails to find a solution, the nonlocality of pt is certified, while if a
solution is found, this does not directly imply the locality of pt.

The Linear Program resulting from the constraint above is infeasible for
t ∈ (0, 0.215) and t ∈ (0.785, 1).

B.3 Noisy optical realization
As introduced in the main material, after proving the nonlocality of the
idealized experiment, in this section we give the modelling details of the
imperfections that can arise in the different elements of the optical network
presented in Fig. 4.1, when realized experimentally. We focused on:

a. the impurity of the generated single-photon entangled state (Q),
b. the transmissivity of the optical channels (T ) of the network, and
c. the efficiency of the final photodetectors (ν).

Our results (see Chapter 4) indicate that the noise tolerance with respect to
these parameters is of the order of few percentage points, which makes the
proposal very stringent from the experimental point of view, but possible on
a table-optical experiment with high-efficient detectors.

Source imperfections. Firstly, we considered a realistic process of cre-
ation for the single photon entangled state |ψ+⟩ = (|01⟩+ |10⟩)/

√
2. This is

generated by a single photon sent onto a 50:50 beamsplitter. Typical sources
achieve the heralding of single photons from two-photon states created in a
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SPDC process, followed by the detection of one of the two photons [Boy20;
Cou18].

An externally controlled laser pulses at high frequency on a χ(2) non-
linear crystal. For each pulse, the crystal consequently outputs a two-mode
squeezed vacuum state |Ψ⟩ ∝

∑
n q

n|nn⟩. Then, photodetection is performed
on one of the two modes. Conditioning on a detection allows to isolate a very
good approximation of the one-photon Fock state on the unmeasured mode
[CS12]. The trade-off between probability of heralding and quality (fidelity
to target) of the heralded state is strongly conditioned by the photodetector
efficiency and ability to resolve photon number, as well as the characteristics
of the crystal and the laser power, which tune the value of q [CS12]. Here we
chose typical currently achievable values for the SPDC, which we assume to
have q = 0.01 and 10MHz frequency of the pulses [Cas+20]. The heralding
is simulated by currently available number-resolving photodetectors which
we assume to have 8-photon resolution achieved with an array of M = 8
single photon detectors pixels, having each a η = 70% efficiency, well in the
range of present technologies [Mos+19; Zhu+20]. Conditioning on the firing
of a single pixel in the detector, the resulting state in the unmeasured mode
can be approximated by:

ϱ ∼ (1−Q) |1⟩ ⟨1|+Q |2⟩ ⟨2|+O(Q2), (S53)

where Q ∝ q is the ratio between the chance of obtaining a single pixel firing
due to a double-photon hitting the detector, and the chance of obtaining a
single pixel fire due to a single photon, that is:

Q =
q2
(

1
M (1− (1− η)2) + 2M−1

M η(1− η)
)

qη
. (S54)

Note that the probability of heralding is qη and thus for the three sources (of
the experiment proposed in the main text) to be heralded at the same time,
the corresponding total experimental repetition rate is of approximately
q3η310MHz ∼ 1Hz 1. Considering the imperfect state ϱ (S53), propagated
through a 50:50 beamsplitter, the resulting true source shared by each couple

1Notice that lasers pulsed at GHz rates have been used recently [Nga+15], which would
result in an experimental repetition rate of ∼ KHz.
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in the triangle network is:

ρ = (1−Q) |ψ+⟩ ⟨ψ+|+Q |φ⟩ ⟨φ|+O(Q2). (S55)

With the above-mentioned values of q, η, and M , it results Q = 0.006875.
Notice that the same single-photon preparation could be done with simple,

non-number-resolving (NNR) photodetection. In such a case the value of Q
(which we remind, is the ratio between the chance of the detector clicking
due to a double-photon, and the chance of a click due to a single-photon),
would be:

Q(NNR) = q2(1− (1− η)2)
qη

= q(2− η), (S56)

where η is the efficiency of the detectors. We see that in such a case Q
is bounded to be larger than q, for example with the same values above
(q = 0.01, η = 70%), one obtains Q(NNR) = 0.013, essentially double what can
be obtained with number-resolving detectors. This is not a huge limitation
per se, as we can rescale q to make Q(NNR) smaller. At the same time,
halving q makes the total repetition rate of the experiment (∝ q3η3) decrease
by one order of magnitude.

Finally, let us notice how basing our proposal on the single-photon state
|ψ+⟩ ∝ |01⟩+ |10⟩ is crucial in our scenario. A unitarily equivalent state is
the two-photon state ∝ |HV ⟩+ |V H⟩, which encodes the information in the
polarization degree of freedom. However the creation of such state from a
SPDC source typically needs the heralding of the 6-photons term |33⟩ from∑
n q

n |nn⟩ (and 4 photodetectors per source) [SB03]. This means that even
in an ideal scenario in which all detectors have unit efficiency, the probability
of heralding the correct state would be ∼ q3, and for the whole experiment
with 3 sources, q9, compared to q3 for our single-photon proposal. For a 1%
error in the source, we chose q = 0.01, which is translated into 12 orders of
magnitude of difference in the heralding rate.

Losses in the channels. Secondly, loss might happen during the trans-
mission along the channels that form the sides of the triangle network of
Fig. 4.1, before the local POVM performed by the parties. We denote by T
the transmissivity of these optical channels. The resulting correction due to
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photon loss can be computed as:

δρ =
∑
n,Xi

K
(n)
Xi
ρK

(n)†
Xi

, (S57)

where Kraus operators of the form:

K
(n)
Xi

=
√

(1− T )
√
n |n− 1⟩Xi

⟨n| , (S58)

act on each of the six modes Xi, and the sum is truncated to n = 1, 2 (given
the support of input state (S55)). In fact, as we work in the regime of low
losses, we only keep the first-order terms in 1− T in Eq. (S57).

Detectors Finally, the photodetectors used at the vertices of the triangle
(Fig. 4.1) do not resolve photon number, and are assumed to have a finite,
high efficiency ν, thus modelled, at first order in 1− ν as:

D□(ν) = |0⟩ ⟨0|+ (1− ν) |1⟩ ⟨1| ,
D■(ν) =1− (1− ν) |1⟩ ⟨1| − |0⟩ ⟨0| . (S59)

Notice that high efficiencies close to 100% have been reached by modern
photodetection systems [NTH12; LMN08; Mil+11; Fuk+11; Red+19].

B.4 Generalization to chains of N parties

In this section, we sketch a generalization of the experiment
presented in the main text (which is proposed in the triangle
scenario), to a chain of N parties in a circular network. For such
case, we generalize the procedure carried out through Sec. B.2 which
proves the existence of a range of transmissivities for which the network
output is nonlocal.

The generalized experiment is described as follows: N parties Ai share a
copy of the single photon state |ψ+⟩ = |01⟩+|10⟩√

2 for each couple of neigh-
bouring parties AiAi+1 with i = 1, . . . , N (the total network is circular and
thus we identify N + 1 ≡ 1). Each party consequently receives two input
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modes containing at most 1 photon, and performs the same measurement
described in the main text (4.6), and detailed in Sec. B.1, consisting in a
local mixing of the modes with a beamsplitter of transmissivity t, followed
by photodetection on both modes. All the parties choose the same value
for t and the photodetectors do not resolve the number of photons, thus
being described by projective measurements on vacuum and its orthogonal
complement M□ = |0⟩⟨0|, M■ = 1 − |0⟩⟨0|. Consequently, the resulting
output distribution is given by:

pt(a1, . . . , an) = Tr

( N⊗
i=1

ψ+
A

(R)
i A

(L)
i+1

) N⊗
j=1

Π(aj)
t
A

(L)
j

A
(R)
j


aj = 0, L,R, 2, (S60)

where the state ψ+ ≡ |ψ+⟩ ⟨ψ+| is shared between each “right mode” of
the ith party (A(R)

i ) and the “left mode” (A(L)
i+1) of the following, and each

party performs the POVM operationally described above, corresponding to
Πt (4.6) (detailed in Eqs (S7)-(S10)) on its two modes.

We now put constraints on any possible local strategy aiming at repro-
ducing the same statistical output of pt in the circular network. That is we
assume pt can be written as:

pt(a1 . . . aN ) =
∫
p(a1|αN1α12)p(a2|α12α23) . . .

. . . p(aN |α(N−1)NαN1) dα12dα23 . . . dαN1, (S61)

where ai is the output of party Ai, which is based on a local response on the
hidden variables {αi(i+1), α(i−1)i} shared with his left and right neighbours.
In the coarse grained scenario, parties can output 0, χ, 2 as before (χ is the
coarse graining of {L,R}, cf. Sec. B.2), representing the outcomes with 0,
1, or 2 photodetectors firing respectively at each party station. Following
Sec. B.2 we define the equivalent of the sets (S32), accompanying the formal
definitions with an intuitive notation and explanation of the underlying
local model; the sets are represented by arrows that intuitively suggest
the direction of “classical photons” in a corresponding local hidden variable
model. The following definitions are pictured in Figure S3. We have formally,
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for the set of sources α(k−1)k between Ak−1 and Ak ,

(↛k) :={α(k−1)k | ∃αk(k+1) : Ak(α(k−1)k, αk(k+1)) = 0} (S62)
This is the set allowing Ak to output 0 for some of the
hidden variables that come from the other side. (S63)
That is, classical photons are not sent to Ak from the left.

(k−1↚) :={α(k−1)k | ∃α(k−2)(k−1) : Ak−1(α(k−2)(k−1), α(k−1)k) = 0} (S64)
This is the set allowing Ak−1 to output 0 for some of the
hidden variables that come from the other side. (S65)
That is, classical photons are not sent to Ak−1 from the right.

(→k) :={α(k−1)k | ∃αk(k+1) : Ak(α(k−1)k, αk(k+1)) = 2} (S66)
This is the set allowing Ak to output 2 for some of the
hidden variables that come from the other side. (S67)
That is, some classical photons are sent to Ak from the left.

(k−1←) :={α(k−1)k | ∃α(k−2)(k−1) : Ak−1(α(k−2)(k−1), α(k−1)k) = 2} (S68)
This is the set allowing Ak−1 to output 2 for some of the
hidden variables that come from the other side. (S69)
That is, some classical photons are sent to Ak−1 from the right.

B.4.1 Constraints on the sets

We here derive in this generalized N -party scenario the constraints on any
local model reproducing pt corresponding to those obtained for the triangle
network (B.2.1 to B.2.1).

As depicted in Fig. S3 we have, firstly:

(↛k) ∩ (k−1↚) = ∅, (S70)

because otherwise two neighbouring parties Ak−1, Ak, would be allowed to
output 0 at the same time, which is in contrast with the output of pt (the
photon shared between two parties ends up in one of their detectors).



202 Appendix B. Single photon nonlocality

Figure S3: Generalized setting with N parties Ak, and rep-
resentation of the sets (S62)-(S68) describing a local strategy
that simulates pt (cf. Eqs. (S60) and (S61)).

Secondly:

(↛k) ∪ (k−1↚) = 1, (S71)

meaning that, together, the two sets form the total set of sources α(k−1)k
between Ak−1 and Ak. This is proven as a consequence of the fact that
at least one between Ak−1 and Ak must be allowed to output 0 (otherwise
there would be a non-zero probability of more than N photodetectors firing,
as in {ak−1 = χ, ak = χ, ak+1 = 2, χ, χ, χ . . . }). The initial total number of
photons is N , therefore this cannot happen.

Thirdly we have:

(→k) ⊆ (k−1↚) , (S72)
(k−1←) ⊆ (↛k) . (S73)

This is true again because otherwise an event like {ak−1 = χ, ak = 2, ak+1 =
χ, χ, χ, . . . } or {ak−1 = 2, ak−1 = χ, ak+1 = χ, χ, χ, . . . } would have nonzero
probability. All the above constraints are derived out of photon number
conservation (note that in our optical setup, if we do not resolve the number
of photons, sometimes we may lose track of some of them when they end up
in the same detector, which is why we are not able to say that the above
equations are equalities, but just inclusions).



B.4. Generalization to chains of N parties 203

Now, it is also true that:

all the (↛k) and (k↚) sets have probability equal to 1
2∀k . (S74)

This can be proven by using the definitions as:

(↛k) ∗ (k↚) ≥ p(ak = 0) = 1
4 =

(
(k↚) + (↛k+1)

2

)2

≥ (k↚) ∗ (↛k+1)

(S75)
which implies (↛k) ≥ (↛k+1), but such inequality can be cycled until
obtaining (↛k) ≥ (↛k), which entails that all the inequalities are actually
equalities.

B.4.2 Constraints on the local coarse grained strategy

Given (S74), we have that the parties will output deterministically 0 when
allowed from both sides, as they have to simulate p(0) = 1

4 . Summing up we
have:

(↛k)Ak(k↚) ⇒ Ak outputs 0, (S76)
(k−1↚)Ak(k↚) or (↛k)Ak(↛k+1) ⇒ Ak outputs χ, (S77)

(k−1↚)Ak(↛k+1) ⇒ Ak outputs χ or 2. (S78)

B.4.3 Breaking the coarse-graining and finding linear con-
straints

Here we repeat and generalize the scheme presented in B.2.2 to give lin-
ear constraints on a subset of the local response functions. We define
qt(i1, i2, ..., iN , s), analogously to (S36) as the probability of outputting
{χi1 , χi2 , ..., χiN , } given sources γs coming from left (s = 0) or right (s = 1)
part of the sets drawn in Fig. S3, i.e.

qt(i1, i2, ..., iN , s) =

=
{
pt(a1 = χi1 , a2 = χi2 , ..., aN = χiN , (α12, α23, . . . ) ∈ S0) s = 0
pt(a1 = χi1 , a2 = χi2 , ..., aN = χiN , (α12, α23, . . . ) ∈ S1) s = 1

(S79)
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where we formally define the above mentioned sets as:

S0 := ×j(↛j) ≡ (↛1)× (↛2)× · · · × (↛N ) ,
S1 := ×j(j↚) ≡ (1↚)× (2↚)× · · · × (N↚) . (S80)

Given that the configurations of sources ×j(↛j) and ×j(j↚) are the only
ones allowing possible outputs being all χ, q satisfies the following equality
involving one of its marginal distributions:∑

s=0,1
qt(i1, i2, ..., iN , t) = pt(χi1 , χi2 , ..., χiN ) . (S81)

We now consider instead the marginal on ik and t:

qt(ik, s) =
∑

i1,...,ik−1,ik+1,...,iN

qt(i1, i2, ..., iN , s).

This satisfies:

qt(ik, 0)− qt(ik, 1) = pt(ak = χi, ak+1 = 0)− pt(ak−1 = 0, ak = χi)
2N−3 . (S82)

The proof of this equation is formalized as follows:

qt(ik, 0)− qt(ik, 1)
= pt(ak = χik ,×j(↛

j))− pt(ak = χik ,×j(
j↚))

= pt
(
ak = χik , (×j ̸=k+2(↛j))× (k+1↚)

)
− pt

(
ak = χik , (×j ̸=k−2(j↚))× (↛k−1)

)
= 1

2N−3

[
pt
(
ak = χik , (↛

k)× (↛k+1)× (k+1↚)
)

−pt
(
ak = χik , (↛

k−1)× (k−1↚)× (k↚)
)]

= pt(ak = χi, ak+1 = 0)− pt(ak−1 = 0, ak = χi)
2N−3 . (S83)

The first equality above simply follows from the definition of qt(ik, s) for
s = 0, 1. The second equality is obtained by noticing that all sets (↛j) and
(j↚) have probability 1/2, and that the output ak does not depend on the
source shared between Ak+1 and Ak+2, nor it depends on the source shared
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between Ak−2 and Ak−1. The third equality is obtained by tracing out the
probability of N − 3 of the sets which were included in the previous lines.
Finally, the last inequality is implied by property (S76).

The above constraints on qt coincide with the ones derived in the Ap-
pendix C of [Ren+19a]. There, it is proven that it is always possible to
choose the value of the transmissivity t such that no solution can be found for
qt(i1, i2, . . . , iN , s) satisfying the linear constraints (S81) and (S82). There-
fore, for those values t the output pt of the experiment is proven to be
nonlocal.
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Appendix C

Broadcasting appendices

C.1 Heuristic method for device-independent en-
tanglement certification

To search for a witness for ρα>0.338, we employ the following heuristic
optimization.

1. Pick random (projective) measurements {Aa|x}, {Bb|y}, {Cc|z}, {Dd|w},
and channels σABλ = ΩA0→AB[σB0

λ ], σCDλ = ΩC0→CD[σC0
λ ].

2. Find α∗ such that the resulting correlation from ρα is on the bound-
ary of QPPT,1AB|CD. This can be done via a semi-definite programming
described below.

3. Extract corresponding inequality F .

4. For state ρα∗ , optimize the inequality F over all POVMs {Aa|x},
{Bb|y}, {Cc|z}, {Dd|w} and channels σABλ = ΩA0→AB[σB0

λ ], σCDλ =
ΩC0→CD[σC0

λ ].

5. Repeat point 2-4 until two successive values of α∗ are identical.

In order to find the value such that ρα∗ is on the boundary of QPPT,1AB|CD,
one can run the following SDP

maximize α
s.t. Γ(p(abcd|xyzw)) ⪰ 0

hierarchy by employing the corresponding moment matrix in the above
optimization.
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C.2 Efficient method for computing the LHS bound
of steering inequalities

We now describe the method for computing LHS bounds of steering inequali-
ties used in our work. A similar formula was previously used in Refs. [SC15]
and [Ben+12]. We derive a proof here for completeness:

For an assemblage, σa|x a steering inequality is of the form:∑
a,x

Tr(Fa|xσa|x) ≤ L (S1)

where Fa|x are matrices of the same dimension of σa|x, and L is the LHS
bound of the inequality, that is, the maximal value attained with a LHS
assemblage. Formally:

L = max
σλ

{∑
a,x

Tr(Fa|xσa|x)
∣∣∣∣∣

σa|x =
∑
λ

σλD(a|xλ), σλ ≥ 0, Tr
(∑

λ

σλ

)
= 1

}
(S2)

where λ runs over all deterministic strategies D(a|xλ). From equation
(S2), one can see that the LHS bound L can be computed with a SDP
optimization (linear objective function and SDP conditions of the variables
σλ). However, one can devise a more efficient formula to compute it. Let
us define Mk :=

∑
a,x Fa|xD(a|xk) and consider the inequality applied to an

unsteerable assemblage:

∑
a,x

Tr
(
Fa|xσ

LHS
a|x

)
=
∑
a,x

Tr
(
Fa|x

∑
k

σkD(a|xk)
)

(S3)

=
∑
k

Tr
(
σk
∑
a,x

Fa|xD(a|xk)
)

(S4)

=
∑
k

Tr (σkMk) =
∑
k

pk Tr (σ̂kMk) (S5)

≤ max
k

Tr (σ̂kMk) ≤ max
k

λM (Mk) (S6)
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where σ̂ means Tr(σ̂) = 1 and λM (A) means the largest eigenvalue of A.
Moreover, one can see that the bound is tight (it can be achieved by setting
all σk to 0 but the one corresponding to the Mk with the maximal largest
eigenvalue, which is set to the projector onto the corresponding eigenvector).
All in all we have that:

L = max
k

λM (Mk) . (S7)

C.3 Heuristic search for certifying broadcast steer-
ing of bipartite states

Here we describe how we searched for interesting examples of steering in
the broadcast scenario. For convenience, we consider the scenario featuring
broadcasting to 3 devices, see the scenario of figure 5.2a. Note however that
it extends straightforwardly to more devices. Let us consider a family of
state of the form:

ρv = vρNL + (1− v)ρSEP , (S8)

where ρNL is typically a Bell nonlocal state while ρSEP is separable, and the
linear parameter 0 ≤ v ≤ 1. For example, the isotropic state of two qubits is
of that form:

ρα = α|ϕ+⟩⟨ϕ+|+ (1− α)1
4 . (S9)

Here the goal is to find the smallest possible v such that the state exhibits
broadcast steering. We used the following procedure:

1. Pick random (projective) measurements {Bb|y}, {Cc|z} and channel
ΩB0→BC .

2. Find v∗ such that the resulting assemblage using state ρv is broadcast
steerable. This can be done via a semi-definite programming described
below.

3. Extract corresponding steering inequality F .

4. For state ρv∗ , optimize steering inequality F over all POVMs {Bb|y},
{Cc|z} and channels ΩB0→BC .
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5. Repeat point 2-4 until two successive values of v∗ are identical.

In order to find the value such that ρv is broadcast steerable for fixed
measurements and channel (step 2), one can run the following SDP:

maximise v
s.t. TrBC(1⊗Bb|y ⊗ Cc|z[1⊗ ΩB0→BC(ρv)]) =

∑
k

σkDN S(bc|yzk),

σk ≥ 0,Tr(
∑
k

σk) = 1,

where the σk (together with v) are the SDP variables and the DN S(bc|yzk)
are the extremal non-signalling strategies between B and C. The dual
variables of the equality constraints of this SDP provide a witness F , that
is, a steering inequality of the form:∑

a,x

Tr(Fa|xσa|x) ≤ L, (S10)

here Fa|x are matrices of the same dimension of σa|x, and L is the LHS
bound of the inequality, that is, the maximal value attained with a LHS
assemblage. Formally:

L = max
σλ

{∑
a,x

Tr(Fa|xσa|x)
∣∣∣∣∣

σa|x =
∑
λ

σλD(a|xλ), σλ ≥ 0, Tr
(∑

λ

σλ

)
= 1

}
(S11)

where λ runs over all deterministic strategies D(a|xλ). A formula to compute
the LHS bound L of such an inequality is given in Appendix C.2. An
algorithm to maximize such a steering inequality (step 4) over measurements
and channels is given in Appendix C.3.1.

C.3.1 Optimizing a steering inequality

Assume one wants to maximize the violation of a steering inequality charac-
terized by operators Fbc|yz for a fixed state ρAB0 and over channels ΩB0→BC
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and POVMs {Bb|y}, {Cc|z}. This means one wants to maximize:

Tr

 ∑
b,c,y,z

Fbc|yz TrB0BC(1A ⊗Bb|y ⊗ Cc|z [1A ⊗ ΩB0→BC(ρAB0)]

 . (S12)

Both the objective function and the constraints on the variables are thus
nonlinear, making the naive parametrization and optimization potentially
inefficient. One can instead decompose the optimization on several subsets
of variables, such that each optimization can be performed efficiently (aka
see-saw optimization). Here, we used the following procedure:

1. Fix randomly POVMs {Cc|z} and channel ΩB0→BC .

2. Optimize the inequality with respect to POVMs {Bb|y}, update vari-
ables accordingly.

3. Optimize the inequality with respect to POVMs {Cc|z}, update vari-
ables accordingly.

4. Optimize the inequality with respect to channels ΩB0→BC , update
variables accordingly.

5. Repeat point 2 - 4 until two successive values of the inequality are
equal (up to some desired precision).

The motivation for such a heuristic is that steps 2-4 can be written
as single-shot SDPs. Indeed, for step 2 the constraints are Bb|y ≥ 0 and∑
bBb|y = 1, and the objective function is linear. Step 3 is similar. For step

4, we can use the Choi-Jamiolkowski isomorphism [Cho75b]: the action of
the map ΩB0→BC on some state σB0 can be written as:

ΩB0→BC(σB0) = Tr1(ρΩ(σTB0 ⊗ 1BC)) (S13)

where ρΩ ≡ d · 1⊗Ω[|Φ+⟩⟨Φ+|] is called the Choi state of the map ΩB0→BC

(where |Φ+⟩ is the maximally entangled state of local dimension d =
dim(HB0)).

For valid channels, the Choi state satisfies ρΩ ≥ 0 and TrBC(ρΩ) = 1B0 .
The Choi-Jamiolkowski isomorphism ensures that for each state satisfying
these two constraints, there is a unique corresponding channel. We can thus
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use the variable ρΩ, which can be treated as a SDP variable, to solve step 4.
One can indeed write the steering inequality as a linear function of ρΩ:

Tr

 ∑
b,c,y,z

Fbc|yz TrB0BC((1A ⊗ 1B0 ⊗Bb|y ⊗ Cc|z) (1A ⊗ ρΩ)(ρTB0
AB0
⊗ 1BC))

 .
(S14)

Therefore, each step of the aforementioned procedure can be efficiently
carried, since single-shot SDPs provide global optimums in polynomial time.
In practice, we indeed observe that the entire see-saw optimization converges
to what seems to be the global maximum in a few dozens seconds, for
two-qubit states on bipartite and tripartite broadcast steering scenarios.

C.4 Proof of the lifting ansatz in Ineq. (5.10)
We rewrite Ineq. (5.10) for convenience:

⟨I [A0, . . . , Am, C0, . . . , Ck] (B0 +B1)⟩+ LI⟨Am+1 (B1 −B0)⟩ ≤ 2LI .
(S15)

To prove it, we follow the same logic as in [BHC21, Sec. 4.1]. For the
set of broadcast local distributions, the extremal strategies1 consist of a
deterministic strategy for A (this already implies ⟨AxByCz⟩ = ⟨Ax⟩⟨ByCz⟩),
and, for B and C either a local deterministic strategy or a nonlocal extremal
strategy.

Assuming a local deterministic strategy for B and C, this further implies
⟨ByCz⟩ = ⟨By⟩⟨Cz⟩. Ineq. (5.10) becomes:

⟨I [A0, . . . , Am, C0, . . . , Ck]⟩⟨B0 +B1⟩+ LI⟨Am+1⟩⟨B1 −B0⟩ ≤ 2LI .

For any deterministic strategy, the values of the 1-body correlators are
extremal, i.e., ⟨By⟩, ⟨Cz⟩ ∈ {+1,−1}. As such, either ⟨B0 + B1⟩ = 0 and
⟨B0 −B1⟩ = ±2, or vice versa. Assuming the first case, then the first term
is zero, and it is direct to see that the bound is satisfied. It is also easy to
check that this is true for the other case.

1We use “probability distribution”, “strategy” and “behaviour” interchangeably.
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Assume now a nonlocal extremal strategy for B and C. The correlators
in the second term do not involve C, and as such, it factorizes as follows:

LI⟨Am+1(B1 −B0)⟩ = LI⟨Am+1⟩(⟨B1⟩ − ⟨B0⟩) .

It has been shown [JM05, Table. II] that for any 2-output non-local extremal
distribution with 2 inputs for one device and any number of inputs for the
other device in a 2-device setting (e.g., a Bell test), the marginals for the
device with 2 inputs are all equal to 1

2 . This means that ⟨B0⟩ = ⟨B1⟩ = 0,
which implies that the second term is zero.

Regarding the first term, expand I as a linear combination of correlators:

⟨I [A0, . . . , Am, C0, . . . , Ck] (B0 +B1)⟩ =

=
m∑
i=0

k∑
j=0

Mij⟨Ai⟩⟨(B0 +B1)Cj⟩+

+
m∑
i=0

νi⟨Ai⟩(⟨B0⟩+ ⟨B1⟩) +
k∑
j=0

µj⟨(B0 +B1)Cj⟩ (S16)

Notice that since ⟨B0⟩ + ⟨B1⟩ = 0, any contribution from the ⟨Ai⟩ terms
in the inequality vanishes, which might affect the bound of the inequality.
From henceforth, assume that I contains no 1-body correlator terms for A
(i.e., νi = 0). Then we can absorb B0 and B1 into the C’s in the following
sense:

⟨I [A0, . . . , Am, C0, . . . , Ck] (B0 +B1)⟩ = ⟨I [A0, . . . , Am, B0C0, . . . , B0Ck]⟩+
⟨I [A0, . . . , Am, B1C0, . . . , B1Ck]⟩ .

Now, from ⟨AxByCz⟩ = ⟨Ax⟩⟨ByCz⟩ and since −1 ≤ ⟨Ax⟩ ≤ 1 and −1 ≤
⟨ByCz⟩ ≤ 1 one has :

⟨I [A0, . . . , Am, ByC0, . . . , ByCk]⟩ ≤
≤ max

|⟨Ax⟩|,|⟨ByCz⟩|≤1
I [⟨A0⟩, . . . , ⟨Am⟩, ⟨ByC0⟩, . . . , ⟨ByCk⟩] =

= max
|⟨Ax⟩|,|⟨Cz⟩|≤1

I [⟨A0⟩, . . . , ⟨Am⟩, ⟨C0⟩, . . . , ⟨Ck⟩] = LI . (S17)

which implies the bound of 2LI .
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This concludes the proof of equation (5.10). The other lifting ansatz
concerns the 4-partite symmetric broadcast scenario:

⟨I [A0, . . . , Am, B0, . . . , Bk] (D0 +D1)C0⟩+ LI⟨C1 (D1 −D0)⟩ ≤ 2LI .

If all devices have a local deterministic strategy, then the expression simplifies
to:

⟨I [A0, . . . , Am, B0, . . . , Bk]⟩⟨C0⟩⟨D0 +D1⟩+ LI⟨C1⟩⟨D1 −D0⟩ .

Since either ⟨D0 + D1⟩ = ±2 and ⟨D1 − D0⟩ = 0 or vice-versa, the 2LI
bound follows using the reasoning from the previous proof in this section.

If A and D share a NS resource and B and C do a local deterministic
strategy, then the second term in the inequality is zero because ⟨D0⟩ =
⟨D1⟩ = 0. The first term simplifies to:

⟨I [A0(D0 +D1), . . . , Am(D0 +D1), B0, . . . , Bk]⟩⟨C0⟩ .

Because of the reasoning from the previous proof, this is upper-bounded by
2LI . Notice that here we need to assume, as in the previous proof, that the
Bell expression I [A0, . . . , Am, B0, . . . , Bk] has no 1-body correlator terms
for C.

If A and D have a local deterministic strategy and B and C share a no-
signaling resource, notice that ⟨C1⟩ = 0, therefore, the second term vanishes.
The first one becomes:

⟨I [A0, . . . , Am, B0C0, . . . , BkC0]⟩⟨D0 +D1⟩ .

Now for all values of ⟨D0 +D1⟩ ∈ {0,±2} the 2LI bound is satisfied. Here
we need to assume that I [A0, . . . , Am, B0, . . . , Bk] has no 1-body correlator
terms for A.

Lastly, we consider the case where A and D share a NS resource and
B and C also share a NS resource. Notice that in this case, the 4-body
correlator still factorizes between the two pairs because of the definition of
broadcast nonlocality, ⟨AiBjCkDl⟩ = ⟨AiDl⟩⟨BjCk⟩. The second term of
the inequality vanishes and the first one, because of the factorization, can
be written as:

⟨I [A0(D0 +D1), . . . , Am(D0 +D1), B0C0, . . . , BkC0]⟩ .
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It is also clear from the arguments in the previous proof that this is upper
bounded by 2LI .
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