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Abstract  
 

Intervertebral disc degeneration (IDD) is a complex condition influenced by genetics, 

environment, and lifestyle. Despite advancements in sequencing technologies, challenges 

remain in understanding the biology of complex diseases. The increasing use of artificial 

intelligence has led to innovative approaches in studying these conditions, benefiting 

translational medicine, drug discovery, and personalized treatment. This thesis introduces 

novel computational frameworks for studying the genetics of complex disorders, including a 

tool based on knowledge graph embeddings and Genopyc, a Python library for variant 

analysis. We exploited these tools in the study of biological underpinnings of IDD. 

Additionally, we investigated the autoimmune basis of Modic change, a comorbidity of IDD, 

using TwinsUK, the largest twin cohort worldwide. Our findings demonstrate the successful 

utility of these computational tools in advancing the understanding of IDD biology, 

emphasizing the importance of integrating diverse data sources to achieve a comprehensive 

understanding of this intricate condition. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Resum 
 

La degeneració del disc intervertebral (IDD) és una condició complexa influïda per la 

genètica, l'entorn i l'estil de vida. Malgrat els avanços en tecnologies de seqüenciació, 

persisteixen els reptes en comprendre la biologia de malalties complexes. L'augment de l'ús 

de la intel·ligència artificial (IA) ha portat a enfocaments innovadors en l'estudi d'aquestes 

condicions, beneficiant la medicina translacional, la descoberta de medicaments i el 

tractament personalitzat. Aquesta tesi presenta nous marcs computacionals per estudiar la 

genètica de trastorns complexes, incloent-hi una eina basada en "knowledge-graph 

embeddings” (KGE) i Genopyc, una llibreria de Python per a l'anàlisi de variants. Hem 

aprofitat aquestes eines en l'estudi de les bases biològiques de l'IDD i hem investigat la base 

autoimmunitària del canvi de Modic, una comorbiditat de l'IDD, utilitzant TwinsUK, la 

cohort de bessons més gran del món. Els nostres resultats demostren la implementació 

reeixida d'aquestes eines computacionals en l'avenç de la comprensió de la biologia de l'IDD, 

posant èmfasi en la importància d'integrar fonts de dades diverses per assolir una comprensió 

completa d'aquesta condició complexa. 
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Preface 

 
I've always been intrigued by getting to the heart of things because I believed that some 

hidden truths were there for us to be learned and to enrich our understanding of nature and 

ourselves. But uncovering these truths takes effort. It's only through learning and doing that 

we can grow as people and make our world a bit better by adding to our knowledge. 

 

This thought motivated me when I undertook the career path to become a scientist. At that 

time, I had the choice to stay where I was, study a “safer” subject, and aim for a job at a 

company nearby my hometown. But at that time, I knew I wanted to understand the world 

better both by doing science, finding “the reason why”, and by travelling to gather diverse 

experiences. I was fascinated by the intricate mechanisms of life to study and I wanted to 

study them with a scientific approach. Years of university have been great, I studied some 

subjects that I liked and some I didn’t but surely everything was fulfilling, and I was happy 

no matter what, I found joy in learning and growth. Yet, in biology, what I found challenging 

yet fascinating was the inherent uncertainty, the unpredictability of findings, attributed to the 

complex and ever-changing nature of biological systems. 

 

For this reason, when I discovered bioinformatics, I was compelled about the application of 

mathematical algorithms to biological data, for me it was a way to find the “reason why” of 

life, enclosing complex biological systems into well-defined boxes that we understand and 

of which we can predict the behaviour. The truth is that things are way more complicated 

than that and even if we made huge advancements in knowing the mechanisms of life we are 

still at the beginning of the puzzle of life. 

 

However, this doesn’t mean the puzzle can’t be completed. It’s being completed every day 

in front of our eyes when we experience reality, it’s only a challenge in finding the right 

pieces to advance. While some might feel discouraged from the challenge deriving from the 

incomplete picture, I must admit I'm incredibly enthusiastic about the multitude of life's 

mysteries awaiting discovery. Just as we can't fully explain an imaginary world from a 

science fiction movie, reality remains equally inexplicable. The imaginary world can’t be 

experienced and explained, reality can be experienced but not explained.  

 

And regarding experience, I am glad that I had the opportunity to live the bittersweet years 

of the PhD trying to find the “reason why” both during my research, by applying 

mathematical algorithms to biological systems, and outside the lab, where algorithms really 

don’t work most of the times. Everything surrounded by fellow researchers and humans, 

close to the sea in the vibrant city of Barcelona. 

 



vi 

 

 

 

  



vii 

 

 

Contents 

 
Acknowledgements ................................................................................................................ i 

Preface ................................................................................................................................... v 

1. Introduction ................................................................................................................... 1 

1.1 Intervertebral disc degeneration ............................................................................... 3 

1.2 The genetic landscape of complex diseases ............................................................... 4 

1.4 Genome Wide Association Studies ............................................................................ 5 

1.5 Beyond GWAS: from association to function .......................................................... 6 

1.6 In-silico investigation of complex diseases ................................................................ 9 

1.7 A brief introduction to graph theory ...................................................................... 10 

1.8 Investigating Human Diseases through biological networks ................................ 12 

1.9 AI in genomics ........................................................................................................... 16 

1.10 AI on multi-omics .................................................................................................... 17 

1.11 AI applied to networks ........................................................................................... 18 

2. Objectives ..................................................................................................................... 23 

3. Results .......................................................................................................................... 27 

3.1 Predicting gene disease associations with knowledge graph embeddings for 

diseases with curtailed information ............................................................................... 29 



viii 

 

3.2 Genopyc: a Python library for investigating the genomic basis of complex 

diseases ............................................................................................................................. 65 

3.3 Modic change is associated with increased BMI but not autoimmune diseases in 

TwinsUK .......................................................................................................................... 87 

4. Discussion ................................................................................................................... 103 

4.1 Innovative KGE GDA framework ........................................................................ 105 

4.2 Elucidating the consequences of genetic variation ............................................... 106 

4.3 Biological implications of the results ..................................................................... 107 

4.4 Data curation and interpretability ........................................................................ 109 

5. Conclusions ................................................................................................................ 113 

6. Appendix .................................................................................................................... 117 

A. Immuno modulatory effects of intervertebral disc cells ................................. 119 

B. Cartilaginous endplates: A comprehensive review on a neglected 

structure in intervertebral disc research ................................................................. 153 

References.......................................................................................................................... 177 

 

 



 

1 

 

1. Introduction 
 

 



 

2 

 

 

  



 

3 

 

1.1 Intervertebral disc degeneration 

Intervertebral disc degeneration is a multifactorial condition that significantly impacts the health of the 

spine. The intervertebral disc, composed of a gel-like nucleus pulposus (NP) surrounded by a tough 

annulus fibrosus (AF), play a crucial role in providing flexibility, shock absorption, and stability to the 

spinal column. However, with aging and various contributing factors, the disc undergoes degenerative 

changes that compromise its biomechanical properties. These changes include alterations in the 

composition and structure of the extracellular matrix, such as a decrease in proteoglycan content and 

disorganization of collagen fibers, leading to reduced hydration, diminished disc height, and 

osteophytes formation. The progressive loss of disc integrity can lead to the development of 

pathological conditions like disc herniation, spinal stenosis, and facet joint osteoarthritis, leading to 

pain and impaired spinal function [1]. 

 

Several factors contribute to IDD, including genetic predisposition, biomechanical loading, lifestyle 

factors, and environmental influences [2]. Genetic predisposition plays a significant role in determining 

an individual's susceptibility to disc degeneration, with certain gene polymorphisms associated with 

an increased risk of developing degenerative disc disease. Additionally, repetitive mechanical loading 

and trauma, as well as poor posture and sedentary lifestyle habits, can accelerate disc degeneration by 

inducing microstructural damage and promoting inflammatory responses within the disc tissue. 

Furthermore, lifestyle factors such as obesity and smoking can impair disc metabolism, further 

incentivizing degenerative changes [3]. 

 

The clinical manifestations of intervertebral disc degeneration are very broad and can range from 

asymptomatic to debilitating, depending on the severity and location of the degenerative changes. 

Common symptoms include chronic low back pain (LBP), most of the time due to spinal stenosis. In 

fact, the loss of function of the disc leads to a degenerative process affecting the surrounding 

anatomical areas such as joints, muscles and ligaments resulting in the narrowing of the spinal canal 

and compression of the nerve tissue [4]. Another frequent manifestation strongly correlated with the 

LBP and IDD are Modic Change (MC). MC are bone marrow signal intensity changes classified in 3 

types depending on how they appear in magnetic resonance imaging (MRI). The etiology of this 

condition is poorly understood, it has been theorized a multifactorial model in which genetics, trauma, 

inflammation and autoimmunity contribute to the development of the clinical symptoms [5].  The 

relationship between MC and LBP has been extensively reported in literature. For example, it was 

shown that especially MC type I, characterized by signal reduction in T1-weighted (T1w) MRI and a 

signal increase in T2-weighted (T2w) MRI are strongly correlated with more severe LBP outcomes 

[6]. MC are most common at L4-S1 spinal level and often adjacent to degenerated or herniated discs 

[7]. 

  

The current approaches for the treatment of IDD comprise conservative, interventional, and surgical 

approaches. Conservative treatment focuses on alleviating LBP and improving quality of life through 

methods like physical therapy, medication, and lifestyle adjustments. In cases of severe symptoms 

interventional treatments involve procedures such as Intra-Discal Electrothermal Therapy (IDET), 

radiofrequency myeloplasty, and ozone therapy to modify disc mechanics and manage pain. Surgical 

options, including intervertebral disc fusion, aim to provide pain relief and functional improvement by 

removing damaged discs, inserting support cages, and fixing vertebrae with pedicle screws. The choice 
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of treatment depends on the severity of symptoms and individual patient factors, with the goal of 

addressing IDD symptoms effectively and improving patient outcomes [8]. 

 

In recent years, advancements in regenerative medicine, tissue engineering, and biological therapies 

have provided promising avenues for the treatment of intervertebral disc degeneration. Strategies such 

as mesenchymal stem cell therapy, tissue engineering and gene therapy aim to enhance matrix 

synthesis, treat disc injuries and inhibit inflammatory processes within the degenerated discs. Despite 

these innovative approaches holding great promise for revolutionizing the treatment of degenerative 

disc disease, management of IDD remains a great challenge [9].  

The treatments of IDD have been supported from a deeper insight into the biological landscape of this 

complex condition.  In fact, current technologies have revolutionized our understanding of complex 

diseases by allowing the study of biological molecules on a large scale. 

 

1.2 The genetic landscape of complex diseases 

What is complex about complex diseases is the intricate interplay between genetics, environmental and 

lifestyle factors that contribute to the onset of these disorders. It was shown that these disorders don’t 

follow typical patterns of Mendelian inheritance [10]. This is the result of various phenomena such as 

the already mentioned polygenicity, the gene-gene interaction (epistasis), gene-environment 

interaction, penetrance and phenotype definition. If attention is solely focused on the genetic 

component of complex disorders, the situation remains intricate. Indeed, many unanswered questions 

persist regarding how genetics contributes to the etiology of this group of disorders.  

 

In recent years, the advent of omics technologies has significantly advanced our comprehension of 

complex diseases by offering a holistic perspective on the molecular terrain that underlies these 

conditions. Omics data can be integrated enabling the identification of disease-associated biomarkers, 

the characterization of cell types within disease-relevant tissues, patient stratification based on 

molecular profiles elucidating how the genetics is reflected on downstream biological pathways [11]. 

This led to the creation of extensive repositories to collect and harmonize information regarding genes 

associated to complex and Mendelian disorders such as DisGeNET [12]. 

 

The increasing amount of clinical data has facilitated the creation of extensive biological repositories 

which house genetic, phenotypic, and health data. For example, TwinsUK is one of the largest 

repositories of twins worldwide [13]. It focuses on the genetic basis of healthy aging and complex 

diseases such as cardiovascular, metabolic, musculoskeletal, and ophthalmologic disorders. It offers 

comprehensive 'omics' data, including genome-wide scans, next-generation sequencing, exome 

sequencing, epigenetic markers, gene expression arrays, RNA sequencing, telomere length measures, 

metabolomic profiles, and gut microbiomics. The integration of big data analytics with this repository 

enhances the discovery of new complex biological insights supporting the advancement in the 

healthcare sector. 

 

1.3 A brief introduction to omics studies 

With the term “omics” we consider disciplines such as genomics, proteomics, metabolomics, and 

transcriptomics. The study of “omics” represents a transformative approach in biology and medicine, 

offering comprehensive insights into the complex biological landscape of living organisms. At its core, 
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omics’ studies aim to characterize and quantify the entirety of biological molecules within cells, 

tissues, or organisms, providing a holistic view of their composition, interactions, and dynamics [14].  

 

Genomics, the study of an organism's entire genome, elucidates the genetic blueprint underlying its 

traits, diseases, and evolutionary history. Proteomics, on the other hand, explores the vast array of 

proteins present in biological systems, deciphering their structures, functions, modifications, and 

interactions to uncover the intricacies of cellular processes and signalling pathways. Metabolomics 

complements these efforts by profiling the diverse set of small molecules, or metabolites, produced by 

cellular metabolism, thereby offering insights into metabolic pathways, disease biomarkers, and 

environmental responses. Finally, transcriptomics focuses on the transcriptome, capturing the full 

spectrum of RNA transcripts expressed in a cell or tissue at a given time, unveiling gene expression 

patterns, alternative splicing events, and regulatory mechanisms.  

 

By integrating data from these omics disciplines, researchers can understand the complexities of 

biological systems, from molecular mechanisms underlying diseases to the discovery of novel drug 

targets. This integrative approach holds immense promise for advancing personalized medicine, drug 

discovery, agriculture, environmental science, and beyond, ultimately driving innovations that benefit 

human health [15]. 

 

 

1.4 Genome Wide Association Studies 

Genome-wide association studies (GWAS) stand as a testament to the remarkable progress made in 

genetics research over the last two decades. They trace their roots back to the early 20th century when 

geneticists first began exploring the inheritance patterns of traits in plants and animals. However, it 

wasn't until the completion of the Human Genome Project in 2003 [16] that the foundation for large-

scale genome-wide studies was laid. This monumental effort provided researchers with a reference 

map of the entire human genome, enabling them to embark on the ambitious task of identifying genetic 

variants associated with complex traits and diseases. 

 

In the years following the Human Genome Project, technological advancements in DNA sequencing 

and genotyping paved the way for the emergence of GWAS as a powerful tool in genetics research. 

The landmark study by Klein et al. in 2005 [17], which identified a genetic variant associated with age-

related macular degeneration, marked the beginning of a new era in the study of human genetics. This 

pioneer study not only provided insights into the genetic basis of macular degeneration but also 

demonstrated the potential of GWAS to unravel the genetic architecture of complex diseases. Since 

then, GWAS have rapidly expanded in scope and scale, with researchers conducting studies involving 

hundreds of thousands or even millions of individuals. Subsequent studies have uncovered genetic 

associations for a myriad of conditions, ranging from cardiovascular disease and Alzheimer's disease 

to psychiatric disorders and autoimmune diseases. 

 

Despite their success, GWAS have faced criticism and challenges. Critics have pointed out that the 

variants identified through GWAS often explain only a small fraction of the heritability of complex 

traits and diseases the so called “missing heritability” [18]. Additionally, issues such as population 
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stratification, sample size, and the functional interpretation of identified variants have posed challenges 

to researchers [19]. 

 

1.5 Beyond GWAS: from association to function 

GWAS unravelled thousands of genetic loci offering unprecedented insights into the genetic basis of 

human traits and diseases. Nevertheless, the interpretation of the mechanistic contribution of genetic 

variants to the development of complex diseases is still a challenge. Many theories have been 

postulated to interpret why the variants that have emerged from GWAS don’t explain the overall 

variance of a given trait. Due to the phenomena called linkage disequilibrium (LD) that causes the 

correlation of SNPs in the human genome, the signals coming from GWAS could be only the tip of the 

iceberg. Then, many other SNPs associated to the ones detected from GWAS but that cannot be 

detected from the study due to absence of power, could explain the variance of the trait. Another theory 

could be that GWAS could be related to rare, high penetrance SNPs that segregate in the population 

and that play a role in  the complex trait or just a phenotype that contributes to the global disease [20]. 

 

A great challenge in studying the genetic underlying complex disease is accurately defining a 

phenotype. In fact, complex traits are usually a set of clinical manifestations that occur jointly. For 

example, IDD can be conceived as a mixture of disc narrowing, osteophytes presence, and imaging 

signal that could have different biological underpinnings. A possible approach could be to break down 

complex traits into endotypes that are closer to the biology underlying the trait and are more useful to 

detect variants that are exclusively related to those functions [21]. 

Missing heritability and accurately defining a suitable phenotype are not the sole hurdles faced in 

GWAS. Another significant challenge lies in interpreting the outcomes and comprehending how the 

identified variants impact downstream biological pathways, as well as understanding the functional 

consequences of genetic variations. It's noteworthy that, in many instances, SNPs prioritized via 

GWAS are located in non-coding regions, indicating their probable regulatory role.  

 

In the past, a prevalent method to link the SNPs to their functional consequence involved designating 

the nearest upstream or downstream gene as the target gene. However, in recent years, there has been 

an emergence of a more thorough analysis regarding the functional consequences of specific variants. 

In fact, relying on physical proximity between the variant and the gene considered affected by the 

variant can be misleading as SNPs can affect gene expression across extensive genomic distances [22]. 

Research utilizing expression quantitative trait loci (eQTL) data indicates that approximately two-

thirds of the genes causally linked to GWAS loci are not the closest ones [23]. Consequently, we find 

ourselves transitioning into what could be termed as the post-GWAS era [24].  

 

Pinpointing the true causal variant, targeting the gene whose function is affected from a particular SNP 

and understanding the dysregulation of biological pathways that eventually lead to a condition are vital 

for understanding disease etiology, and for identifying potential therapeutic targets in an optic of 

personalized medicine. For these reasons, a number of heterogeneous datasets and analyses must be 

employed to understand the effect of the tagged GWAS SNPs. [25] 

 

The investigation of non-coding SNPs requires a deep understanding of the genomic landscape. The 

regulation of gene expression is a complex tissue-specific mechanism that is regulated by many 
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elements such as enhancers, suppressors, microRNAs (miRNAs), transcription factors and features 

such as chromatin conformation and accessibility [26]. 

 

With the advancements of sequencing technology many repositories that collect data relative to the 

regulatory genome have been created. Examples of the more popular repositories are listed below. 

 

• Ensembl [27]: Provides comprehensive and up-to-date genomic information for a wide range 

of species, including humans and other vertebrates, as well as model organisms and non-model 

organisms. 

 

• ENCODE (Encyclopedia of DNA Elements) [28] : A project aimed at identifying all functional 

elements in the human genome, including regions involved in gene regulation, chromatin 

structure, and transcription. 

 

• Roadmap Epigenomics Project [29]: Provides epigenomic data from various human tissues and 

cell types, including DNA methylation, histone modifications, and chromatin accessibility. 

 

• GTEx (Genotype-Tissue Expression) [30]: Characterizes gene expression patterns and 

regulation across different human tissues, providing insights into tissue-specific regulatory 

mechanisms. 

 

• FANTOM (Functional Annotation of the Mammalian Genome) [31] : Identifies and annotates 

enhancers, promoters, and other regulatory elements across the human genome, with a focus 

on transcriptional regulation. 

 

• RegulomeDB [32]: Integrates data on regulatory elements, such as transcription factor binding 

sites and DNA motifs, with genomic annotations and functional annotations. 

 

• TRANSFAC [33]: A database of transcription factors, their binding sites, and regulatory 

elements, along with information on their interactions and functional annotations. 

 

• JASPAR [34]: A database of curated, non-redundant transcription factor binding profiles 

derived from experimental data, facilitating the study of transcriptional regulation. 

 

• 3CDB (Chromatin Conformation Capture DataBase) [35]: A repository for storing and sharing 

data generated from chromatin conformation capture experiments (3C). These experiments 

involve the capture of spatial interactions between genomic regions within the three-

dimensional structure of the DNA. 

 

Additionally, a series of techniques/approaches have been developed that exploit this wealth of data. 

Some of the key methods include: 

 

SNP enrichment analysis helps to understand whether specific categories of genetic variants are more 

prevalent among SNPs associated with the trait of interest compared to what would be expected by 



 

8 

 

chance. SNP enrichment can detect if the variants from a GWAS are enriched in a specific cell type, 

present specific consequences or affect genes with a determined function [36]. 

 

Fine mapping aims to prioritize variants within each genetic locus pinpointed by GWAS, with a focus 

on those with a higher likelihood of being directly linked to the target phenotype. It utilizes patterns of 

linkage disequilibrium and association statistics. Fine mapping methods may include various 

techniques such as SNP selection based on p-value or LD thresholds, regression analysis, or Bayesian 

statistics [37]. 

 

Colocalization analysis: Is the statistical process used to investigate whether two or more traits or 

diseases share a common genetic basis at a particular genetic locus. Many different methods have been 

produced to carry out this analysis based on different statistic tests [38]. When applied to the 

interpretation of the functional effects of the variants, colocalization between a variant associated to a 

trait and an eQTL of the variant is a powerful method to detect likely target genes [39] 

 

Variant Annotation [40], [41]: Is the process in which variants are investigated in relation to functional 

genomics aspects. Several characteristics of the variants can be investigated: often prediction or 

assessments of the functional impact of a variant on gene structure or function is studied.  

 

• Variant effect: This may involve predicting variants as synonymous (not affecting the encoded 

amino acid), missense (changing a single amino acid), nonsense (creating a premature stop 

codon), frameshift (altering the reading frame), or splice site disrupting (affecting mRNA 

splicing).  

• Conservation scores indicate the degree of evolutionary conservation of a genomic region 

across different species. Highly conserved regions are more likely to be functionally important, 

and variants occurring in these regions may have a greater likelihood of affecting biological 

function. 

• Functional genomics: Annotations may include information on the functional genomic context 

of a variant, such as its location within regulatory elements (e.g., enhancers, promoters) or its 

potential effects on transcription factor binding sites. 

 

Many tools that rely on different principles have been created to predict the effect of genomic variants 

such as variant effect predictor (VEP) [42] CADD [43] SIFT [44] Polyphen [45] and UNET [46]. 

 

The abundance of data and analysis pipelines has led to the creation of numerous tools for conducting 

post-GWAS analysis. These tools aim to integrate different analyses and data in order to reach a greater 

understanding on how non-coding variants affect the downstream biological pathways. 

 

• FUMA (Functional Mapping and Annotation of GWAS) [47]: :  a web-based platform that 

performs functional annotation and mapping of GWAS results. It integrates data on gene 

expression, functional annotations, protein-protein interactions, and pathway analysis to 

prioritize candidate genes and biological pathways implicated by GWAS signals. 
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• MAGMA (Multi-marker Analysis of GenoMic Annotation) [48]: :  a tool for gene-based 

analysis of GWAS results. It aggregates SNP-level association statistics to identify genes or 

gene sets that are significantly associated with a phenotype, accounting for linkage 

disequilibrium and gene size. 

 

• GCTA (Genome-wide Complex Trait Analysis) [49]:  a software package for analyzing 

complex traits using GWAS data. It provides tools for estimating heritability, conducting 

genetic correlation analysis, and performing genome-wide association analysis with mixed 

linear models. 

 

• Finemap [50]: is a tool used to identify and prioritize candidate causal variants within a 

genomic region associated with a complex trait or disease. The building blocks of this method 

are a likelihood function, priors, efficient likelihood evaluation and efficient search algorithm. 

 

• Coloc (Colocalization Analysis for GWAS) [51]:  is a tool used to assess the likelihood that 

two or more traits or diseases share a common genetic signal at a particular genomic locus. 

Specifically, Coloc evaluates the probability that the same genetic variant(s) influence both 

traits (diseases and eQTLs), indicating potential genetic overlap or colocalization. 

 

 

1.6 In-silico investigation of complex diseases 

In recent years, alongside the advancement of GWAS, computational methodologies have emerged to 

explore and elucidate the impact of DNA sequences on gene expression and regulatory mechanisms. 

These methods analyze large-scale biological data in order to identify possible biomarkers associated 

with disease, physiological states or response to treatment [52].  

 

Through omics technologies we assess cellular features challenging to interpret. However, the 

complexity of analyzing this data is multiple; not only the volume of data is huge, but also identifying 

a mathematical framework that can efficiently represent this complexity in a scalable manner that can 

be interpreted computationally, presents a significant obstacle. This collaborative effort, involving 

contributions from biology, mathematics, and computer science, aims to personalize treatments and 

enhance health outcomes but poses formidable challenges [53]. 

 

In biology and nature in general, entities do not exist in isolation but are integral components of larger, 

interconnected systems. Numerous examples illustrate this concept: people engage in daily 

interactions, planets and stars interact through gravitational forces, and atoms form chemical bonds. 

Therefore, examining entities within the context of broader interacting systems is essential for 

comprehending their functions. 

 

As far as it concerns IDD, in the last decade many advancements have been made in the study of risk 

factors, phenotype definition and genetic influences [54]. However molecular in – silico investigation 

of the disease relies solely on the implementation of network analysis mainly on protein – protein 

interaction networks [55], [56]. Thus, the connection between genetic variability, biological pathways 

and phenotypic manifestations is far from being reached. 
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1.7 A brief introduction to graph theory 

Complex systems wherein entities interact through specific relationships can be represented as 

networks. A network or graph (𝐺) can be defined as a pair 𝐺 = (𝑉,𝐸), where 𝑉 represents a set of 

elements known as nodes (or vertices), and 𝐸 denotes a set of paired nodes, with its elements referred 

to as edges (or links). Thus, entities can be depicted as nodes, and relationships as edges connecting 

these nodes. Edges in a network are considered directed when interactions possess a specific direction, 

moving from a source to a target. Differently, edges in the network are undirected when interactions 

lack a specified direction. 

 

Every node in a specific network has a degree that refers to the number of edges incident to a particular 

node, indicating its level of connectivity within the network. Nodes with a high degree are often 

considered important hubs or central points of connectivity. Conversely, nodes with a low degree may 

serve as peripheral or isolated components. Additionally, the neighbourhood of a node encompasses 

its immediate vicinity within the network, consisting of neighbouring nodes directly connected to it.  
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Figure 1 Characteristics of the networks; A node degree, B clustering coefficient, C Betweenness centrality and D degree 

centrality 

Figure 1 summarizes some of the important network properties such as the degree (Panel A), clustering 

coefficient, which quantifies the degree to which nodes in the network tend to cluster together and 

form local communities or clusters (Panel B), betweenness centrality (Panel C) and degree centrality, 

which identify important nodes based on their position and interconnectivity in the network (Panel D). 

Other important metrics are modularity, which quantifies the degree to which a network can be divided 

into distinct, densely connected communities or modules and path length, which measures the average 

distance between pairs of nodes in the network and indicates its overall connectivity. An important 

feature of networks is degree distribution, which describes the distribution of node degrees within the 

network and provides information about the connectivity of the nodes in the network. Often biological 

networks follow a scale-free degree distribution in which node degree follows a power-law distribution 

[57]. In such networks, most nodes have relatively few connections (low degree), while a small number 

of nodes, known as hubs, have a disproportionately high number of connections. This results in a highly 

skewed distribution (Figure 2).  
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Figure 2 Degree Distribution of 2 different networks with the same number of nodes and edges. In the panel A is depicted 

the degree distribution of a random network while in panel B the degree distribution of a scale free network 

Finally, a subgraph in network theory refers to a subset of nodes and edges that are derived from a 

larger, original graph. By extracting a subgraph from a larger network, researchers can focus on 

specific regions or components of interest, allowing for more detailed examination and analysis. 

Subgraphs can represent various aspects of network topology, providing insights into local interactions 

and functional relationships within the network. 

1.8 Investigating Human Diseases through biological networks 

Analysis of biomedical data can help to understand aetiology and causes of complex conditions. The 

interplay between biological entities can be represented as biological networks where different entities 

interact through different types of relationships. In the biomedical field multiple types of networks can 

be constructed each of one having nodes and edges reflecting biological entities and relationships (refer 

to Table 1 for a summary of the primary types of biological networks). 
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Table 1: Types of biological networks 

Network Type Description Nodes Possible edges 

Gene Regulatory 

Networks (GRNs) 

Model the regulatory 

interactions between 

genes, transcription 

factors, and other 

regulatory molecules. 

Proteins, 

genes, RNAs 

Activation, 

suppression, 

silencing 

Protein-Protein 

Interaction Networks 

(PPIs) 

Represent physical 

interactions between 

proteins within a cell. 

Proteins interaction 

Disease Networks Represents relationships 

between associated 

diseases (comorbidities) 

and different phenotype 

associated to a specific 

condition 

Diseases Comorbidity, 

phenotype, 

correlation 

Drug-Target 

Interaction Networks 

Model the interactions 

between drugs and their 

target molecules (e.g., 

proteins). 

Drugs and 

proteins 

Inhibitor, 

antagonist, 

blocker 

Biological Knowledge 

Graphs 

Integrate multiple types 

of biological data to infer 

functional relationships 

between genes, proteins, 

or other biological 

entities. 

Multiple 

biological 

entities 

Heterogeneous 

biological 

interactions 

Co-expression 

Networks 

Constructed based on the 

correlation patterns of 

gene expression across 

different experimental 

conditions or samples. 

Genes Correlations in 

the expression 

levels 

Signalling Networks Model the flow of 

molecular signals within 

cells, including pathways 

such as cell signalling 

cascades, signal 

transduction, and cellular 

communication. 

Proteins Activation, 

inhibitions, 

phosphorylation 

 

With the advancements in high throughput technologies, the Human Protein Reference Database 

(HPRD) [58], a pioneering effort to systematically catalog and annotate PPI in humans was established. 

By providing a comprehensive resource of experimentally validated protein interactions, HPRD 
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facilitated deeper insights into the complex networks that govern cellular processes. This laid the basis 

for subsequent studies in systems biology, leading to a more holistic understanding of biological 

systems and their dysregulation in disease states.   

 

With the increasing number of repositories that were created there was the necessity of the integration 

of the different resources. Moved from this necessity databases such as BIANA a comprehensive 

repository integrating multiple biological entities and relations in the form of network enabling the 

possibility of inferring new biomolecular relationships exploiting similar features of the biological 

entities [59].  

 

Subsequent studies demonstrate that proteins linked to similar diseases tend to directly interact and 

form clusters within the same regions of the interactome. An early study in 2007 [60] showed that 

proteins encoded by genes associated with similar diseases exhibit a propensity to interact with one 

another, suggesting the presence of distinct functional modules within the interactome associated to 

the diseases. Expanding on this insight, they pioneered the construction of the inaugural human disease 

network, termed the human diseasome. This network was established by linking diseases with shared 

genetic components, with disease-gene associations extracted from the Online Mendelian Inheritance 

in Man (OMIM) database [61]. 

 

The approaches of identifying diseases modules can be roughly classified into 2 classes: 

 

prior knowledge identification: This category includes methods utilizing prior knowledge about 

disease-associated genes, often referred to as seed genes. These methods focus on identifying the 

vicinity of proteins that exhibit closer topological relationships with those encoded by the seed genes. 

 

“Ab-initio” identification: This category comprises methods that identify modules "ab-initio" by 

employing community structure detection algorithms. These approaches, relying on the network's 

topology, pinpoint neighborhoods of proteins characterized by high within-edge density of 

connections. 

 

Different algorithms can be implemented to investigate disease modules (diffusion state distance, 

kernel clustering, modularity optimization and random walk-based approaches). In [62] different 

algorithms were applied to a network constructed by compiling a panel of diverse human molecular 

networks. These networks were extracted from various databases and sources to provide a benchmark 

for the comparison of the algorithms. The identified disease modules were shown to belong to 

biological pathways relevant to the disease which comprised therapeutic targets. This work 

benchmarked the application of network medicine to complex disease and showed that the integration 

of heterogeneous networks leads to the discovery of complementary types of modules and is thus 

beneficial. 

 

 

Network based approaches were successfully implemented to discover functional modules for many 

complex diseases. In [63] researchers utilized advanced Network Medicine methodologies, specifically 

DIseAse MOdule Detection (DIAMOnD) and SWItch Miner (SWIM), to identify a novel gene 
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signature associated with Alzheimer's disease. By starting with a set of 99 known Alzheimer's disease-

associated genes (seed proteins), DIAMOnD predicted 238 novel putative disease genes by analyzing 

their interactions in the human interactome. Through the integration of SWIM, 14 additional genes 

were identified that had significant interactions with the seed proteins, forming a statistically 

significant disease module. This novel gene signature, comprising the 99 seed proteins and the 14 

additional genes, provides valuable insights into the molecular determinants of Alzheimer's disease 

and may offer new diagnostic biomarkers and therapeutic targets for this neurodegenerative condition. 

 

 

The algorithms can be embedded into webservers to facilitate the user experience, allowing also non – 

expert coders to benefit from their use. An example of this is Guildify [64] a web – server with the 

scope of prioritizing disease associated genes through network – based algorithms.  The output of the 

model is a score reflecting the relevance to the phenotype of interest and can be used to short-list the 

set of candidate genes. 

 

In [65] through the analysis of differentially expressed genes in metastatic cancer and the identification 

of their subnetwork in the interactome, the study detected a set of novel hub genes that are significantly 

associated with liver metastasis in gastric cancer patients. Subsequent analysis revealed the 

involvement of these hub genes in key biological pathways implicated in cancer progression and 

metastasis. The findings from this study have important clinical implications, as they provide potential 

biomarkers for predicting metastatic risk and offer new targets for therapeutic intervention tailored to 

gastric cancer patients with liver metastasis. 

 

Finally, in [66] by calculating the distance between diseases modules in the interactome the authors 

investigated the molecular relationship between complex diseases. Through this analysis the study 

revealed that diseases with overlapping modules have shared molecular basis and helped in identifying 

novel disease-disease relationships and uncover potential therapeutic targets shared across seemingly 

unrelated disorders. Thus, network models can capture the complexity of molecular interactions that 

bridge comorbidities providing an explanation on how common pathways are dysregulated and 

contribute to the etiology of certain conditions. 

 

Earlier studies like the ones cited before relied mainly on protein-protein interaction data. However, 

remaining bounded to a single omics source offers only a small portion of the global picture on the 

biology underlying complex disorders and methods to integrate different types of data holds promise 

for unravelling complex disease mechanisms in an optic of advancing precision medicine. Precision 

medicine tailors healthcare to individual patients by exploiting all clinical and molecular data available 

to optimize treatment effectiveness and minimize adverse effects [67]. A careful analysis and 

integration of different sources of biological data presents a challenge due to differences in format, 

scale, and quality. Harmonizing these data requires advanced computational methods and 

interdisciplinary expertise. Additionally, the dynamic nature of biological systems necessitates 

integrating temporal and spatial information, thus addressing technical and methodological hurdles is 

crucial to harness the full potential of biological networks in studying complex diseases. 
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Such integrative analysis was made possible thanks to projects such as the Cancer Genome Atlas 

(TCGA) who provided a comprehensive multi - omics landscape of various cancer types. Initiated by 

the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) in 

2006, TCGA aimed to characterize the molecular alterations underlying cancer development and 

progression. Through extensive multi-platform genomic analyses, including whole-genome 

sequencing, whole-exome sequencing, DNA methylation profiling, RNA sequencing, and proteomics, 

TCGA has generated vast amounts of data from thousands of tumour samples across numerous cancer 

types. These data have facilitated the identification of key genetic mutations, gene expression patterns, 

epigenetic alterations, and molecular subtypes associated with different cancers, shedding light on the 

heterogeneity and complexity of the disease.  

 

An example of heterogeneous data integration is provided in [68] where the authors researched disease 

candidate metabolites using a network method that integrates multi-omics information. The developed 

method (MetPriCNet) is based on a random walker with restart to prioritize candidate metabolites 

based on their global distance similarity with seed nodes in a composite network, which integrates 

multi-omics information from the genome, phenome, metabolome, and interactome. The method was 

tested on 87 phenotypes with a total of 602 metabolites and achieved a high AUC value of up to 0.918. 

It was also tested on 18 disease classes, with 4 classes achieving an AUC value over 0.95. MetPriCNet 

demonstrated effectiveness for diseases without known disease metabolites and was able to predict 

new high-risk metabolites for certain disease. 

 

Network-based approaches exhibit promising outcomes across numerous biomedical domains, 

including gene prioritization and biomarker discovery in complex diseases. Furthermore, the rapid 

advancements in artificial intelligence (AI) have led to exponential growth in computational 

methodologies aimed at exploring how genetics influence the development of these conditions. These 

AI-driven computational approaches offer enhanced capabilities to detect complex relationships within 

omics data, thereby increasing our understanding of disease mechanisms and facilitating the discovery 

of personalized medicine strategies. 

 

1.9 AI in genomics 

Artificial intelligence (AI) has revolutionized the field of genomics by offering powerful computational 

tools and algorithms for analyzing vast amounts of genomic data [69]. With the rapid advancements in 

sequencing technologies, genomics has entered the era of big data, presenting both challenges and 

opportunities for researchers AI techniques, such as machine learning (ML), deep learning (DL), have 

been increasingly applied to genomics to extract meaningful insights from complex datasets [70]. 

These AI-driven approaches enable the identification of genetic variants, regulatory elements, and 

disease-associated genes, facilitating the understanding of genetic mechanisms underlying complex 

conditions [71], [72], [73]. 

 

AI methods can be broadly classified into unsupervised and supervised methods. Supervised learning 

involves training a model on a labelled dataset, where each input is associated with a corresponding 

target output. The model learns to map inputs to outputs by minimizing the discrepancy between its 

predictions and the true targets. This type of learning is used for tasks like classification and regression, 

where the goal is to predict discrete labels or continuous values[74]. 
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In contrast, unsupervised learning operates on unlabelled data, seeking to find inherent structures or 

patterns within the data without explicit guidance. Algorithms in unsupervised learning aim to discover 

relationships, clusters, or distributions in the data [75].  

 

Machine learning models can be generative or discriminative. If the primary focus of the application 

is to understand which variable led the model to decide for a specific outcome i.e. the interpretability 

of the model, generative model is preferred. These models learn a joint distribution between features 

and labels, learning the underlying structure of the data and can generate new samples that closely 

resemble the training data distribution. On the other hand, discriminative model in which the only aim 

is to predict new labels generating a conditional distribution [76].  

 

Machine learning in genomics can be implemented in a multitude of different tasks. For instance, to 

acquire the ability to identify cis-regulatory elements such as transcription start sites (TSSs) within a 

genome sequence. Similarly, algorithms can be instructed to detect splice sites, promoters, enhancers, 

or positioned nucleosomes. Generally, if there exists a compilation of sequence elements of a specific 

type, it's likely that a machine learning approach can be trained to recognize those elements [77]. 

Moreover, by combining models that recognize individual types of genomic elements with learned 

logic regarding their relative positions, it becomes possible to construct machine learning systems 

capable of annotating genes across entire eukaryotic chromosomes [78]. 

 

Deep Learning DL is a subset of machine learning focused on neural networks with many layers, 

enabling automatic learning and improvement from large amounts of raw data. These layers are 

composed of neurons using activation functions like ReLU, sigmoid or thanh to process the 

information. Neural network have achieved substantial improvements for tasks such as image 

recognition, natural language processing and speech recognition [79], [80]. 

 

The initial successful applications of neural networks in regulatory genomics involved substituting a 

traditional machine learning approach with a deep model while keeping the input features unchanged. 

For instance, Xiong et al. [81] utilized a fully connected feedforward neural network to forecast the 

splicing activity of individual exons. They trained the model using over 1,000 predefined features 

extracted from the candidate exon and adjacent introns. Despite the relatively limited training data of 

10,700 samples combined with the model's complexity, this method significantly enhanced the 

accuracy of splicing activity prediction compared to simpler approaches. Moreover, it effectively 

pinpointed rare mutations associated with splicing dysregulation. 

 

1.10 AI on multi-omics 

Building predictive models that work on heterogeneous biological data poses several challenges that 

can limit the potential of this approach. One major challenge is the non-uniform missing data across 

different omics datasets, which can complicate the integration process and lead to biased results. 

Additionally, the diverse signal-to-noise ratios in various omics data types can affect the quality and 

reliability of integrated analyses. 

 

Poor biological interpretation of integrated results is another challenge, as the complexity of multi-

omics data may hinder the extraction of meaningful biological insights. Inconsistent sample annotation 
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and lack of standardized protocols for multi-omics experiments further complicate data integration 

efforts.  

 

Addressing these challenges requires the development of integration-aware methods for data 

imputation, efficient computation, and robust biological interpretation, as well as the establishment of 

community standards for multi-omics data collection and analysis. 

An important aspect of AI models applied to heterogeneous data is the integration strategy of the 

different types of omics, there are roughly 3 approaches in which data can be integrated [82]: 

 

Vectorizing each type of data: for example, in [83] the researchers after collecting gene expression, 

sequence patterns, PPI data etc., represented them using different matrices where the rows represented 

genes and columns had a different meaning depending on the types of data. 

Kernel transformations: data can be transformed before being fed to the model by the implementation 

of kernel functions. The output of this transformation is a fixed length vector for each data type and, 

depending on the function, prior knowledge can be encoded in the transformation e.g. the kernel 

function could include the correlation between data types. 

Probability-based approaches: In this model, diverse data types are depicted within a probabilistic 

framework inherent to the model itself. An instance of this utilization could be seen in the work by 

Troyanskatya et. al [84] with the implementation of Bayesian networks that merges data from gene 

interactions, transcription factors, and gene expression patterns, the network can make more accurate 

predictions about how genes work together by generating posterior probabilities of genes being 

involved in the same biological process. This approach helps improve the accuracy of gene function 

predictions by considering information from multiple sources in a systematic way. 

 

These methods play a crucial role in extracting valuable insights from multi-omics data and advancing 

our understanding of complex biological systems. 

 

1.11 AI applied to networks 

As already mentioned in this thesis, complex systems can be represented as networks that offer a simple 

and direct way to integrate different sources of data. AI applications to network biology spans to 

understand disease biology to drug repurposing and could help to investigate alterations in the 

relationships among various biomolecules in a disease state versus healthy state. This will lead to infer 

new knowledge allowing the discovery of new biomarkers, treatments, and patient stratification [85].   

 

Various categories of algorithms can be employed for graph analysis, each based on distinct 

frameworks. Table 2 presents the primary categories of these algorithms along with some illustrative 

examples. Despite their differences, these graph AI algorithms share common characteristics that 

persist across various algorithmic classes: 

  

- The generation of node representations in the latent space, namely node embeddings  

- The necessity of a task definition for training the model. The tasks can be general and applicable 

to many different algorithms, such as node classification or link prediction, or they can be very 

algorithmic specific such as the minimization of an ad-hoc loss function. 
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Table 2: Classes of graph learning algorithms 

 

 

 

 

 

 

 

 

 
 

 

 

Algorithm classes Description of the Class Algorithm Examples 

Random Walk-based Methods Generate embeddings by 

simulating random walks 

on the graph and learning 

embeddings based on the 

sequences of visited 

nodes. 

Node2Vec[86], DeepWalk 

[87], Metapath2Vec[88] 

Tensor decomposition Decompose the graph 

adjacency matrix or 

related matrices into 

lower-dimensional 

representations, which 

serve as node embeddings. 

ComplEx [89], 

DistMult[90] 

Deep Learning Methods Utilize neural network 

architectures to learn 

embeddings by optimizing 

objective functions that 

capture structural 

properties of the graph. 

Graph Convolutional 

Networks (GCNs) [91], 

Relational Graph 

Convolutional Networks 

(RGCN) [92] 

Translational Models Represent relationships 

between nodes in a graph 

as translations in a latent 

space, modeling 

connections through 

addition or subtraction 

operations. 

TransE [93], RotatE [94] 
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AI can be applied to complex systems in order to reach a greater understanding of the interplay of 

different biological entities and infer new possible interactions at different levels, from gene 

regulations to species interactions. 

 

The main tasks of graph learning models related can be classified into 3 categories [95]: 

 

• Node level: the most common task at node level is node classification. In this task the model 

is trained to predict whether the node belongs to a specific class. This task can be performed in 

a supervised, unsupervised and semi-supervised fashion. 

 

• Edge level: predicting edges in a network is applicable to many different biological fields. 

Interaction, association, activation, inhibition are different types of interactions in complex 

biological systems that are of interest in bioinformatic research. An important aspect to consider 

when predicting a connection is the directionality and quality of the predictions. Conceiving 

models that can handle these aspects is important for a better understanding of biological 

networks in which a single interaction can be of many different types. 

 

• Graph level: this task is mainly related to the generation of graphs. This is particularly 

important in the context of drug development in which the interest is to generate chemical 

compounds (that can be represented as graphs) that have similar properties of a given molecule. 

 

These algorithms have been successfully applied to biological networks; in a work by Jha et al [96] a 

graph neural network was implemented in order to predict PPI. The study proposes two graph-based 

architectures, GCN-based and GAT-based, to learn features from protein representations by integrating 

spatial structure and sequence features. The methodology consists of three modules: protein graph 

construction, feature extraction, and a classifier to predict interactions. The analysis includes the 

construction of sequence embeddings generated using a language model (LSTM-based) as node 

features. The experiments were conducted using PPI datasets from human and yeast  , showing 

promising results in predicting protein interactions. 

 

In another study, Gao et al [97] proposed a KG based disease-gene prediction system called 

GenePredict-KG. They constructed a comprehensive knowledge graph with over 2 million associations 

between various entities related to genotypic and phenotypic information. By developing a knowledge 

graph embedding model, they were able to learn low-dimensional representations of entities and 

relations, which were then used to predict new disease-gene interactions. The architecture of the model 

was based on 2 modules, an encoder and a decoder. The encoder utilized a composition-based multi-

relational graph convolutional network to acquire representations of entities and relationships. In the 

decoder module, the InteractE model was deployed to assess unseen interactions, with those receiving 

higher scores being more likely to be accurate. GenePredict-KG outperformed several state-of-the-art 

models in terms of performance metrics such as AUROC, AUPR, and MRR, showcasing its 

effectiveness in inferring disease-gene associations. The study highlights the importance of leveraging 

semantic relationships from diverse biological databases to enhance disease-gene prediction and offers 

valuable insights for understanding disease mechanisms and identifying potential therapeutic targets. 
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Machine learning applied to biological networks offers a pathway towards understanding complex 

biological systems with unprecedented depth and precision. By integrating large datasets and 

sophisticated algorithms, it allows the identification of patterns allowing new discoveries in different 

fields such as disease biology, drug discovery and personalized medicine.  
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This thesis aims to fulfill the following objectives: 

 

1. To develop a framework for gene-disease association prioritization tool based on 

knowledge graph embeddings.  

a. To generate a biomedical KG to be exploited for predicting genes associated to 

human diseases 

b. To compare different algorithms for KGE production in supervised and 

unsupervised tasks. 

c. To prioritize genes associated with IDD by exploiting the created framework 

 

2.  To develop Genopyc, a Python library designed to investigate the effects of genetic 

variants identified through GWAS. 

a. To exploit the Genopyc to investigate GWAS variants related to IDD 

 

3. To investigate if Modic change, a comorbidity of IDD, present an autoimmune etiology. 

 

Section 3.1 covers the initial three objectives. First, I created a knowledge graph containing 

information about proteins, drugs, diseases and biological processes. Furthermore, I assessed various 

algorithms for generating KGE, and tested their performance in unsupervised (biological clustering) 

and supervised (GDA prediction) tasks. The most effective model was then chosen to develop a tool 

for prioritizing genes linked to complex disorders. Subsequently, I applied this tool to prioritize genes 

associated with IDD, demonstrating that the highest-ranking genes were already documented in 

literature as being linked with this condition. Additionally, the enriched functions of the gene set were 

involved in ECM turnover. 

 

Objective 2 is covered in section 3.2, where I created a Python library that combines various analyses 

to investigate SNPs in their genomic context. This library facilitates the retrieval of information 

concerning functional elements at specific genomic sites, assesses linkage disequilibrium, and 

prioritizes causal genes at GWAS loci through the integration of diverse analyses and data sources. To 

illustrate its utility, I applied the library to interpret GWAS variants associated with IDD.  The results 

highlighted transcription factors previously linked to the condition in literature. 

 

Finally, objective 3 is addressed in section 3.3 by exploiting TwinsUK data. I performed a cross 

sectional study to assess if autoimmune positive individuals presented a higher prevalence or severity 

of (MC), a comorbidity of IDD. Our results showed that no significant differences were found in 

autoimmune positive participants and thus that having an autoimmune phenotype doesn’t contribute to 

a more severe inflammation of the vertebral body.  

 

In the appendix are listed 2 additional studies indirectly related with this thesis in which I have 

participated and contributed. In appendix A is included a review on IDD with a focus on the crosstalk 

between the IVD, immune system, and shifted metabolism during the degeneration of the disc. 

Appendix B is a review focusing on the cartilaginous endplate and its role in degenerated and healthy 

disc. 

  



 

26 

 

 

 



 

27 

 

3. Results
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3.1 Predicting gene disease associations with 

knowledge graph embeddings for diseases with 

curtailed information 
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Summary of the work  

In this chapter we developed a methodology based on knowledge graph embeddings (KGE) to prioritize genes 

associated with complex diseases. After building a knowledge graph (KG) merging multiple heterogeneous 

biological repositories, we carried out a thorough comparison of different algorithms for the creation of node 

embeddings. We evaluated the performance of the embeddings in an unsupervised task by unsupervised 

clustering and in a supervised task consisting of gene disease association predictions (GDA). Once the model 

with highest predictive capabilities was determined, we built a GDA tool that is freely available for the scientific 

community at https://github.com/freh-g/KGE. With this part of the work, we satisfied objectives 1.a and 1.b.  

Then, to accomplish objective 1.c, we implemented the tool for prioritizing genes in intervertebral disc 

degeneration (IDD) a complex condition and one of the major causes of low back pain (LBP). Of the 20,951 

tested, the model predicted 445 genes associated with the condition. The top 10 genes prioritized from the 

framework were largely reported in literature to be associated to disc degeneration in in vitro and in vivo models. 

To better assess the nature of the prioritized genes, we performed a function enrichment analysis on the 93 genes 

predicted to be associated to IDD with probability greater than 0.95. The functions enriched in this set of genes 

were related to extracellular matrix turnover and homeostasis; functions relevant to the disease. We showed that 

through the implementation of KGE algorithms on a KG composed by heterogeneous biological data sources 

we were able to prioritize genes involved in the homeostasis of the extracellular matrix and already reported in 

literature to be associated with the pathology. Moreover, predicted genes such as TGFβ - 1 and SMAD3 are 

regulated from AP2α a transcription factor which importance was highlighted from the model we developed in 

chapter 2. Taken together these results show that we successfully developed a KGE framework for prioritizing 

genes in complex diseases and that there is a concordance in the output of models built in different chapters of 

the thesis. 
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GRAPHICAL ABSTRACT 

ABSTRACT 

Knowledge graph embeddings (KGE) are a powerful technique used in the biomedical domain to 

represent biological knowledge in a low dimensional space. However, a deep understanding of 

these methods is still missing, and, in particular, regarding their applications to prioritize genes 

associated with complex diseases with reduced genetic information. In this contribution, we built 

a knowledge graph (KG) by integrating heterogeneous biomedical data and generated KGE by 

implementing state-of-the-art methods, and two novel algorithms: Dlemb and BioKG2vec. 

Extensive testing of the embeddings with unsupervised clustering and supervised methods showed 

that KGE can be successfully implemented to predict genes associated with diseases and that our 

novel approaches outperform most existing algorithms in both scenarios. Our findings underscore 

the significance of data quality, preprocessing, and integration in achieving accurate predictions. 

Additionally, we applied KGE to predict genes linked to Intervertebral Disc Degeneration (IDD) 

and illustrated that functions pertinent to the disease are enriched within the prioritized gene set. 

INTRODUCTION 

Predicting genes associated with diseases is a challenging task. Recent advancements in genomic 

technologies have contributed to reach a deeper understanding of the genetics underlying complex 

diseases. However, the difficulties related to costs and time of these technologies have prompted 

the development of in silico methods to perform this task [98]. 

In this regard, network approaches have emerged as valuable tools for building meaningful models 

allowing the integration of heterogeneous biological knowledge from numerous sources [99]. 
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These heterogeneous networks, defined as knowledge graphs (KGs), contain structured depictions 

of biological systems wherein different biological entities interact through complex relationships. 

Elucidating these intricate relations is crucial to better interpret complex biological data and thus 

the plausible causes of diseases. 

KGs are increasingly implemented in the biomedical field due to their potential in representing 

and analyzing complex biomedical data. Recent research has highlighted their importance in 

enabling intelligent applications such as recommendation systems, semantic search, and logical 

reasoning. Automated schemes have been shown to significantly reduce the cost of building 

knowledge graphs [100]. Current research is addressing challenges such as knowledge graph 

completion and extraction methods for unstructured data. There is also a growing emphasis on 

constructing KGs from natural language text, with a focus on named entity recognition and relation 

extraction [101]. The field is still facing technical challenges, but the ongoing research aims to 

enhance the quality and reliability of knowledge graphs through novel techniques, models, and 

frameworks. 

One commonly used approach to infer new interactions between biological entities involves 

expressing the entities within KGs as low-dimensional vectors using vectorial representations that 

preserve the graph’s local structure known as knowledge graph embeddings (KGE). This method 

outperforms other approaches in terms of accuracy and scalability of their prediction [102].  

Numerous methods have been developed to generate embeddings from KGs, and they can be 

broadly categorized into five main families: translational models, matrix factorization, semantic 

matching, random walks-based models, and deep neural networks. Refer to [103], [104] for a 

comprehensive overview of these methods. Recently, new techniques that combine these existing 

methods have emerged [105]. For example translational methods or PageRank [106] are merged 

with graph attention networks (GAT) to improve predictive powers of the embeddings [107]. 

Several studies have been conducted to explore the potential of KGE for predicting gene-disease 

associations (GDAs). For instance, Nunes et al investigated the impact of employing rich semantic 

representations based on more than one ontology to predict GDAs by testing different embedding 

creation models and machine learning algorithms [108]. Other works have focused on the 

heterogeneous integration of knowledge bases with the development of a single deep learning 

framework for predicting GDAs starting from a KG [97], [109]. 

In the biomedical domain KGE have been implemented for a wide range of downstream machine 

learning tasks, such as drug – target prediction [110], protein – protein interaction prediction [111] 

and therapeutic indications [112]. Also, KGE has demonstrated the ability to achieve prediction 

capabilities similar to those of raw data, while also offering the advantage of reduced 

dimensionality compared to the original dataset. [113].While previous studies have made progress 

in implementing KGE methods in GDA  research, we lack a proper benchmark of available 

methods. Existing works in this field are limited to evaluating the proposed method [97] or the 

comparison of different algorithms [108] without providing a deeper insight into the generated 

embeddings or validating a particular use case. In this work we conducted a comparison of 

different methods of KGE creation with unsupervised and supervised machine learning tasks. We 

first generated KGE from multiple ontologies and biological knowledge bases, and we 

implemented four state-of-the-art methods, and two novel algorithms. Subsequently, we analyzed 
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the generated embeddings using unsupervised clustering algorithms. Furthermore, we evaluated 

the performance of the embeddings in a GDAs prediction task. Finally, we used the best 

performing model to predict potential genes associated to intervertebral disc degeneration (IDD). 

METHODS 

 

Data sources 

To build the KG, we mined different types of biological data from publicly available repositories:  

Protein – protein interactions: We partially integrated data from multiscale interactome 

(downloaded 29/06/2022) [112]. Specifically, the data were integrated from: 

The biological general repository for interaction dataset (BioGRID) [114]. This is a repository of 

manually curated both physical and genetic interactions between proteins from 71,713 high – 

throughput and low – throughput publications. 

The database of interacting proteins (DIP)[115] in which only physical protein – protein 

interactions are reported with experimental and curated evidence. 

Four protein-protein interaction networks from the human reference protein interactome mapping 

project [116]): (HI-I-05: 2,611 interactions between 1,522 proteins; HI-II-14 13,426 interactions 

between 4,228 proteins, Venkatesan-09: 233 interactions between 229 proteins; Yu-11 1,126 

interactions between 1,126 proteins). In addition, we integrated the last version of the Human 

reference interactome (HI-III-20) [116].  

Physical protein-protein interaction from Menche et al. [66]). This repository integrates different 

resources of physical protein – protein interaction data from experimental evidence. It integrates 

regulatory interactions from TRANSFAC [117] database, binary interactions from yeast-two-

hybrid datasets and curated interactions from IntAct [118], BioGRID and HPRD [119]. It 

integrates also metabolic-enzyme interactions from KEGG [120] and BIGG [121], protein 

complex interactions from CORUM [122], kinase-substrate interactions from PhosphositePlus 

[123] and signalling interactions from Vinayagam et al. [124] 

 

Only human proteins for which existed direct experimental evidence of a physical interaction were 

considered. 

Ontologies: Ontologies are computational structures that aim to describe and classify the entities 

belonging to a certain domain in a structured and machine-readable format in order to be 

implemented in a broad range of applications. The main components of the ontology are classes 

that represent specific entities and usually are associated with an identifier. These classes are 

arranged in a hierarchical way from general to more specific and are connected to each other 

through relations. Finally, ontologies feature metadata, formats and axioms [125] For our purpose 

we integrated the following types of ontologies: 
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Gene Ontology (GO) [126], (downloaded 18/07/2022) is a knowledge base that aims to 

computationally describe biological systems ranging from molecules to organisms, as of 2023 it 

comprises 43,248 terms, 7,503,460 annotations across 5,267 species. 

Disease Ontology (DO) [127], (downloaded 02/08/2022) is an ontological structure of 

standardized disease descriptors across multiple resources. The aim of the project is to provide a 

computable structure of integrated biomedical data in order to improve the knowledge on human 

diseases. 

Human Phenotype Ontology (HPO) [128], (downloaded 22/08/2022) is a comprehensive logical 

structure that describes phenotypic abnormalities found in human diseases. This enables 

computational inference and interoperability in digital medicine. 

We integrated HPO and DO and mapped the common codes to UMLS CUIS [129]  

Gene product annotations to biological processes Proteins in the KG were mapped to their specific 

biological process through GO. GO annotations are statements about the function of a particular 

gene product, in this way, it is possible to obtain a snapshot of the current biological knowledge. 

We included gene annotations from the gene ontology association file (downloaded 29/06/2022). 

Gene products annotations to phenotypes We integrated data of genes associated to phenotypes 

from 2 sources: 

DisGeNET [130] is one of the largest publicly available collections of genes and variants 

associated with human diseases, it integrates GDAs data from curated resources with data 

automatically mined from the scientific literature using text-mining approaches. For our purposes 

we exploited DisGeNET curated (version 7.0) that integrates expert curated human gene disease 

associations from different data sources.To create a dataset, we used curated data from DisGeNET, 

comprising a total of 84,037 associations (hereafter considered as positives). We generated the 

same number of gene-disease non-associations (i.e. negatives) by considering that such 

associations were not reported in the text – mining version of DisGeNET, hence taking randomly 

any gene-disease pair not reported as positive. 

HPO gene annotations to phenotypes: HPO (downloaded 02/08/2022) provides a file that links 

between genes and HPO terms. If variants in a specific gene are associated with a disease, then all 

the phenotypes related to that specific disease are assigned to that gene. 

Phenotypes annotated to diseases We integrated annotations of phenotypes to disease from the 

phenotype.hpoa file from HPO ontology (downloaded 15/12/2022). 

Drug-disease associations We integrated data of drug-disease pairs from the multiscale 

interactome [112]. This dataset is integrated by a collection of FDA approved treatments for 

diseases including different sources: 

The drug repurposing database [131] is a database of gold-standard drug-disease pairs extracted 

from DrugCentral [132] and ClinicalTrials.gov  
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The drug repurposing hub [133] is a collection of drug-disease including 4,707 compounds. The 

database contains information mined from publicly and proprietary datasets that undergo manual 

curation. 

The drug indication database [134] integrates data from 12 openly available, commercially 

available and proprietary information sources.  

The dataset was filtered by keeping only human proteins resulting in a total number of drug – 

disease pairs of 5,926. 

 

Drug – target interaction We obtained a dataset of drugs and their mode of actions on target 

proteins by integrating DrugBank [135] and the drug repurposing hub. Proteins that were not 

included in the protein – protein interaction network were removed.  

 

KGE generation algorithms  

We tested four state-of-the-art algorithms based on different principles and we implemented two 

novel methods to generate embeddings, referred to as BioKG2vec and Dlemb. For all experiments, 

the embeddings vector dimension was 100 and we set the number of epochs to 15.  

RotatE RotatE [94] is a KGE generation algorithm that maps relations and entities to the complex 

vector space. The relations are considered as rotations from the source entity to the target entity. 

The principle lays on the assumption that given the triple “(h,r,t)”, where h is the head, r is the 

relation, t is the tail e.g. “(protein1, interacts with, protein2)”the embeddings are obtained by the 

relation t = h ◦ r where ◦ denotes the Hadamard operation between the h and r vectors. 

TransE TransE [136] is an algorithm that relies on a translational – based model. It represents 

relationships as translations in the embedding space. The principle lays on the assumption that 

given the triple “(h,r,t)”, where h is the head, r is the relation, t is the tail e.g. “(protein1, 

interacts with, protein2)”, the embedding of the tail should be similar to the head embedding 

plus the relationship embedding. 

Relational graph convolutional networks (R-GCN) [92] R-GCN is an architecture for calculating 

the forward pass of relational graphs with multiple edge types. The propagation model is calculated 

as follows: 

ℎ𝑖
(ℎ+1)

= 𝜎 (∑ ∑
1

𝑐𝑖,𝑟
𝑗𝜖𝑁𝑖

𝑟𝑟𝜖𝑅

𝑊𝑟
(𝑙)

ℎ𝑗
(𝑙)

+ 𝑊0
(𝑙)

ℎ𝑖
(𝑙)

) 

Where 𝑁𝑖
𝑟 is the set of neighbours of node I under the relation 𝑟 ∈ 𝑅 and 𝑐𝑖,𝑟 is a problem-specific 

normalization constant that is chosen beforehand. ℎ𝑗
(𝑙)

 is the node vector of neighbour j on which 

applies weight matrix 𝑊𝑟
(𝑙)

 of relation r in the iteration l. 𝑊0
(𝑙)

ℎ𝑖
(𝑙)

 is the representation of node I 

at layer l i.e. a self-representation at antecedent iteration. 



 

38 

 

Metapath2Vec [88] is an extension of the Node2Vec model [86] well suited for heterogeneous 

networks. The algorithm relies on meta-path-based random walks that capture both semantic and 

structural correlations between different types of nodes. 

 

BioKG2vec BioKG2vec relies on a biased random-walk approach in which the user can prioritize 

specific connections by assigning a weight to edges. In the KG defined in this work we used 4 

different node-types: drug, protein, function and disease. Then, the probability of visiting a specific 

neighbour at every step is given by the equation: 

 

𝑃(𝑛𝑖) =
( 𝑛𝑖  (1 +

𝑤𝑖

𝑛𝑖
 )  )

𝑊
 

 

where 𝑃(𝑛𝑖) is the probability for the random walker to visit a specific node type, 𝑛𝑖 is the number 

of paths leading to the node (of the same type), 𝑤𝑖 is the assigned weight (also specific for the 

type) and 𝑊 equals to the node degree plus the sum of all weights (i.e. ∑ 𝑤𝑖𝑖 ) .  To detect the 

optimal weights for the prediction of GDAs we performed a grid search assigning weights 

prioritizing drug -> protein -> function -> disease. Moreover, the walker stores the information of 

the visited edge type, and this information is used as input for Word2Vec algorithm in the 

embedding generation step. Thus, the algorithm handles different edges and nodes behaving 

differently for each node type being visited and storing the edge type of information too. 

BioKG2vec is available at https://zenodo.org/badge/latestdoi/624339823. 

Dlemb Dlemb is a shallow neural network (NN) that consists of 3 layers: the input layer, 

embedding layer and output layer. The input layer takes as input KG entities as numbers and 

outputs them to the embedding layer. In the dot layer the scalar product of the vector is computed 

and normalized so the result is a number that ranges between -1 and 1. A false relation yields -1 

while true relations produce +1. Then, the RMSE is calculated between the dot product and the 

expected value. Finally, the ADAM optimizer is used to adjust the embeddings layer directly since 

these are parameters of the neural network so that the model can be fitted to the data.  

Dlemb is available at https://zenodo.org/badge/latestdoi/635382680. 

 

Methods to combine embeddings 

We used 4 strategies to combine gene and disease embeddings to obtain GDAs representations: 1) 

Sum, which consisted of the addition of both vectors; 2) Average, in which we averaged them; 3) 

concatenation, in which the result is a vector in a larger dimension, representing a pair gene-disease 

by concatenating both vectors; 4) Hadamard product (i.e. each element is produced by the product 

of the elements of the two vectors). For this work we produced embeddings of fixed dimension 

(i.e. 100) in the space of reals (i.e.ℝ100). 

https://zenodo.org/badge/latestdoi/624339823
https://zenodo.org/badge/latestdoi/635382680
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Unsupervised analysis of the embeddings 

We assessed the quality of the embeddings performing k-means unsupervised clustering. 

Specifically, we used function and compartment-based classification to group gene products in 16 

different categories from human protein atlas (HPA) [137]. For diseases, we used annotations from 

UMLS to ICD-9 [138], that classify diseases into macro classes. We then used various evaluation 

scores for the comparison, such as the silhouette score, defined as: 

𝑏 –  𝑎

𝑚𝑎𝑥(𝑎, 𝑏)
 

 

where 𝑏  is the mean distance between a sample and all other points in the nearest cluster (nearest 

– cluster distance) and 𝑎 is the mean distance between a sample and all other points in the same 

class (inter – cluster distance). We calculated this score for different cluster sizes ranging from 10 

to 20 for genes (the gold standard number of clusters is 16) and from 10 to 20 for diseases (the 

gold standard number of clusters is 16).  

Finally, we evaluate the homogeneity score, defined as: 

 

1 – 
𝐻(𝑌𝑡𝑟𝑢𝑒|𝑌𝑝𝑟𝑒𝑑)

𝐻(𝑌𝑡𝑟𝑢𝑒)
 

That is a measure that quantifies the similarity of samples in each cluster. Where the 𝑌𝑡𝑟𝑢𝑒 is the 

number of classes, 𝑌𝑝𝑟𝑒𝑑 is the number of clusters and 𝐻(𝑌𝑡𝑟𝑢𝑒|𝑌𝑝𝑟𝑒𝑑) represents the ratio between 

the number of classes 𝑌𝑡𝑟𝑢𝑒 in cluster 𝑌𝑝𝑟𝑒𝑑 and the total number of samples in cluster 𝑌𝑝𝑟𝑒𝑑. When 

all the entities in the cluster belong to a class the homogeneity score equals 1. 

Then, for visualization purposes, we performed UMAP dimensionality reduction on the 

embeddings and plotted the first 2 UMAP embeddings of gene and disease embeddings. Only 3 

classes of genes and diseases are plotted. 

Grid Search to select the best predictive model. 

We performed a grid search cross-validation to find the best combination of embedding creation 

algorithm, GDAs representation and predictive machine learning (ML) and deep learning (DL) 

algorithms implemented in Scikit-learn [139] and Pytorch [140] respectively. In the grid-search 

experiment we created a KG in which we integrated all the biological data and 80% of curated 

GDAs from DisGeNET. We tested the predictions in the remaining 20% of GDAs that weren’t 

used in the embeddings creation step. To avoid data leakage, we excluded diseases with over 20 

associated genes, of which more than 90% were shared with another disease. Additionally, we 

made sure that in the validation dataset there were no GDAs included in the HPO data.  For each 

algorithm, we fitted a grid of parameters (Table 1) maximizing the area under the receiver 
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operating-characteristic curve (ROCAUC). With this, we tested a total of 120 combinations for the 

grid search (Supplementary Table 1). Then, the best parameter combination was evaluated on the 

test set by assessing additional evaluation metrics, such as: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑇𝑃  +  𝑇𝑁

𝑇𝑃  +  𝐹𝑃  + 𝑇𝑁  + 𝐹𝑁
 

𝑟𝑒𝑐𝑎𝑙𝑙  =  
𝑇𝑃 

𝑇𝑃  +  𝐹𝑁
 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =  
𝑇𝑃 

𝑇𝑃  +  𝐹𝑃
 

 

𝐹1  =  2  ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  +  𝑟𝑒𝑐𝑎𝑙𝑙
 

 

𝐹𝑃𝑅  =  
𝐹𝑃

𝐹𝑃  +  𝑇𝑁
 

 

We also report the area under the precision recall curve (AUPRC). 

Table 1: Search spaces of the algorithms tested during the grid search cross validation. 

ALGORITHM PARAMETERS VALUES 

LR C 0.001, 0.01, 1, 5, 10, 25 

PENALTY L1, L2 

RANDOM FOREST MAX DEPTH 2, 4, 6, None 

N. OF ESTIMATORS 20, 50, 100 

XGBOOST COLSAMPLE BY TREE 0.3, 0.7 

GAMMA 0, 0.5 

LEARNING RATE 0.03, 0.3 

MAX DEPTH 2, 6 

N. OF ESTIMATORS 100, 150 

SUBSAMPLE 0.4, 0.6 

SVM C 0.1, 1, 10 
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GAMMA 0.001, 0.01, 0.1 

KERNEL rbf, poly 

FFN N. OF LAYERS 2, 3 

N. OF NODES FIRST 

LAYER 

50, 100, 150 

N. OF NODES SECOND 

LAYER 

20, 50 

ACTIVATION FUNCTION sigmoid, tanh, relu 

LOSS FUNCTION Binary cross-entropy, hinge 

BATCH SIZE 30, 100 

EPOCHS 20, 60 

 

 

 

Ontology preprocessing and heterogeneous data integration 

Once we selected the model with the highest predictive power, we investigated the influence of 

integrating heterogeneous biological data in the KG on the GDAs predictions. For this experiment 

we only used ontological data. Ontologies are complex, standardized data structures composed of 

classes, relations, axioms and metadata all of which are included in the raw ontology. Moreover, 

we tested the effect of implementing a pre-processing step in the ontology in which only classes 

and relations were maintained as a graph structure (axioms and metadata were excluded).  We 

studied the following combinations of data sources: 

HPO + HPO annotations raw 

HPO + HPO annotations pre-processed 

HPO + HPO annotations + GO + GO annotations (all) pre-processed 

 

We used a comparison based on two metrics. For this experiment, we created embeddings with 

the Mtapath2vec algorithm, using concatenation for GDAs representation, and SVM as 

classification algorithm. For the processing of the ontologies nxontology and pronto [141] Python 

libraries were used. 

Influence of GDAs in the KG for GDA-predictions. 

We tested the influence of adding increasing GDAs proportions in the KG. For this experiment, 

we used 20% 50% 80% and 100% of DisGeNET and we included it in the KG. Then we generated 
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embeddings from the KGs with Metapath2Vec and we trained a SVM on 80% of DisGeNET. We 

tested the model on the 20% of remaining associations and calculated ROCAUC and AUPRC as 

evaluation metrics. 

 

Comparison with randomly generated embeddings 

To show that the information is efficiently translated from the KG to the vectorial space, we 

compared the performance of Metapath2Vec generated embeddings and random embeddings of 

the same size. We aimed to assess the effectiveness of translating the information encoded in the 

KG into embeddings by comparing KGE with a null model. To conduct this evaluation, we created 

100-dimensional random embeddings for each gene and disease, represented GDAs through 

concatenation, and tested their predictive capabilities. The number of associations is a latent 

variable that can be learned by ML to produce good predictions. This can be considered a potential 

bias. Therefore, we further tested the effect of removing the number of associations stratifying 

DisGeNET diseases by the number of associated genes. We divided the data into 23 groups in 

which the number of associations for every disease has a maximum difference of 20. Then we 

selected a disease belonging to every class, generated negative associations and performed a five-

fold cross validation on the data with the best performing algorithm. We evaluated accuracy, 

precision, recall, f1 score and ROCAUC across every fold. 

 

Generalizability of the model. 

The predictive model selected was tested to predict associations for diseases not used in the 

training set. The rationale behind this experiment was to understand the capabilities of the model 

to predict gene-disease associations of new diseases, proving that the biological information 

encoded in the embeddings was generalizable.  

To assess this, we trained the model on GDAs belonging to diseases of a specific ICD-9 disease 

class and then we tested the model on all other classes. 

 

Performance of the algorithms 

We compared the performance of the algorithm with the top predictive power i.e. Metapath2Vec, 

BioKG2vec and Dlemb. We performed n = 10 experiments by randomly selecting 1000 nodes 

from the knowledge graph, creating the subnetwork and producing the embeddings. We calculated 

the difference of the running time (in seconds) as percentage with the following formula: 

𝑇 1 −  𝑇2

𝑇1
 ×  100 
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Being T1 the running time of Metapath2Vec and T2 the running time of either BioKG2vec or  

Dlemb. The experiment was conducted on an 8-core intel i7 machine.The experiment was 

conducted on an 8-core intel i7 machine. 

 

Intervertebral Disc Degeneration Biomarker Prediction 

We tested the model to predict genes associated with IDD. We used the model selected through 

grid search cross validation with concatenation of the embeddings for the GDAs representation. 

Lastly, we performed a function enrichment analysis using g:Profiler [142] on the set of prioritized 

genes with a probability greater than 0.95 to be associated to IDD 

 

RESULTS  

Data integration and KG structure 

We integrated multiple sources of data in the form of KG for a total of  95952 nodes and 2,183,603  

edges. The KG contains 4 types of nodes: drugs (n = 2,991), phenotypes (n = 28,374), proteins (n 

=21,019) and functions (n = 43,568). These entities are connected by 81 different types of 

relationships represented as edges. The relationships are obtained through different data sources, 

18,282 proteins interacting among each other (87, 1356 edges), 19,409 proteins annotated to 

18,813 biological functions (303,404 edges) and 8, 053 proteins annotated to 13,525 phenotypes 

(246,006 edges). Moreover, drug information was included: 1,551 drugs annotated to 828 

phenotypes for a total of 5,744 edges and 2,887 connected to 2,074 proteins they target for a total 

of 14,491 edges. The degree distribution of the graph follows a scale free law (Supplementary 

Figure 1) [143]. 

 

Unsupervised clustering of the embeddings reflects the biological classification 

From the KG, we generated embeddings using six algorithms. Figure 1 shows the first 2 UMAP 

embeddings of genes and diseases. The embeddings tend to differentiate among gene products 

belonging to different groups: secreted, transcription factors, and transporters (Figure 1 A to G). 

Metapath2Vec, BioKG2vec, and Dlemb from a visual perspective achieve the best clustering of 

genes. In Figure 1, G to L only 3 categories of diseases are represented, corresponding to the ICD 

chapters disease of blood and blood-forming organs, diseases of the musculoskeletal system and 

connective tissue and mental disorders. As above, algorithms Metapath2Vec, BioKG2vec and 

Dlemb visually distinguished disease classes better than others. 

The algorithm producing the best clustering of disease classes and gene products was 

Metapath2Vec, which has a higher homogeneity score for both genes and diseases.  (Table 2). For 
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the case of diseases, the silhouette score of the embeddings produced with any algorithm couldn’t 

match the gold standard number of clusters (Supplementary Figures 2 and 3). 

 

 

 

 Homogeneity score 

 Genes Diseases 

Metapath2Vec 0.49 0.28  

Dlemb 0.35 0.17 

RotatE 0.35 0.15 

Trans-E 0.29 0.09 

BioKG2vec 0.2 0.20 

RGCN 0.008 0.02 

A B 

C D 

E F 

G H 

I J 

K L 

Figure 1: UMAP of gene-embeddings (panels A to F) and disease-embeddings (panel G to L) generated with 

BioKG2vec (A,G), Dlemb (B,H), Metapath2Vec (C,I), RGCN (D,J), RotatE (E,K) and TransE (F,L). 

Table 2: Homogeneity score of K – means algorithm calculated for genes (number of clusters = 16) and 

diseases (number of clusters = 16). True labels are classification from ICD-9 and HPA for diseases and genes 

respectively 

Figure 1 UMAP of gene-embeddings (panels A–F) and disease-embeddings (panels G–L) generated with 

BioKG2vec (A, G), Dlemb (B, H), Metapath2Vec (C, I), RGCN (D, J), RotatE (E,K) and TransE (F, L). Genes 

classes were obtained from human protein atlas while diseases classes are ICD – 9 classification. 
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The embeddings of gene products generated with Metapath2Vec produced more homogeneous 

clusters. Assigning every different gene and disease correctly to their category is a very complex 

task because of the high granularity of genes and disease classes (Supplementary Figures 4 and 5). 

Model selection through grid search cross-validation 

The best performing combination for GDA prediction was Metapath2Vec. Metapath2Vec coupled 

with concatenation of the gene and disease embedding as association representation and SVM with 

parameters C = 10 and kernel = rbf as classification algorithm. The whole output of the experiment 

is available in Supplementary Table 1. The following experiments were run using this 

combination. 

Heterogeneous data integration and preprocessing  

Pre-processing the ontologies leads to better ROCAUC and AUPRC compared to using 

embeddings generated with raw data. Nevertheless, adding heterogeneous data in the KG did not 

significantly affect the predictions of GDAs (Table 3). Integrating more data leads to similar 

performances which can be appreciated when comparing the results of generating the KG using 

HPO data with HPO and GO data. We must note the different results on the use of Dlemb algorithm 

(Supplementary Table 2). While the predictive power of Metapath2Vec is not affected by the 

preprocessing of the ontologies, Dlemb significantly improves the AUPRC and ROCAUC after 

preprocessing. 

Table 3: ROCAUC and AUPRC of different experiments of GDAs predictions using Human Phenotype 

Ontology (HPO) + annotations (A), HPO ontology processed (B) and HPO + Gene Ontology (GO) + GO 

annotations. The embeddings were generated with Metapath2Vec and we used SVM as predictive 

algorithm, and operator concatenation for combining the embeddings. 

Experiment ROCAUC AUPRC 

HPO + HPO annotations raw 0.95 0.98 

HPO + HPO annotations processed 0.93 0.97 

HPO + HPO annotations + GO + GO annotations processed 0.93 0.97 

The amount of training GDAs in the KG affects the prediction of GDAs 

We tested the effect on the predictions caused by the increase of GDAs in the KG. We expect that 

increasing the amount of GDAs in the KG will increase the quality of the predictions. Figure 2 

shows that the increase in the number of GDAs used for training the knowledge graph embeddings 

increases the values of ROCAUC and AUPRC. 
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Figure 2: ROCAUC and PRAUC of the prediction of GDAs. Several KG embeddings are obtained using 

increasing percentages of known GDAs from 20% to 100%. Note: embeddings were generated with 

Metapath2Vec, using concatenation for combining embeddings and SVM for the classification/prediction 

algorithm.  

Comparison with randomly generated embeddings 

Supplementary Table 3 presents the outcomes of the experiment contrasting embeddings produced 

by Metapath2Vec with those generated randomly. Metapath2Vec embeddings reach an average 

ROCAUC of 0.93 while random generated embeddings have random metrics. These results are 

due to the biological information intrinsic to the embeddings since the effect of the number of 

GDAs was prevented by selecting associations of one disease only. In fact, the number of 

associations is a latent variable that is learned by the model. 

Model generalization across different disease classes 

Figure 3 shows the performance of the model trained on a specific ICD9 disease class and tested 

on all the others. Training and testing in diseases belonging to the same class leads to accurate 

predictions. However, embeddings generated with Metapath2Vec have poor prediction 

capabilities across different ICD-9 classes. Similar results were observed with randomly generated 

embeddings. Biological information encoded in Dlemb generated embeddings is translated across 

disease classes and we can see that some pairs of disease classes achieved a noteworthy prediction 

(e.g. the model trained for neoplasms predicts genes associated with diseases of circulatory system 

with an ROCAUC > 0.7) (Supplementary Figure 6). As expected, randomly generated embeddings 

show ROCAUC in the heatmap with random values. 
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Figure 3: ROCAUC of the best performing combination for the prediction on different disease classes. A) 

Results for randomly generated embeddings, the ROCAUC shows random values. B) The embeddings were 

generated with Metapath2Vec , the GDAs representation was concatenation, and the algorithm was SVM 

with parameters C = 10 and kernel = rbf. We show the results of training a model on a specific ICD-9 

disease class (rows), and then testing on the others (columns).  
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Computational Performance of the best algorithms for KGE 

We compared the performance of the three algorithms that reached the highest ROCAUC during 

the grid search cross validation in terms of running time. In the supplementary figure 7 are reported 

the running times of 10 experiments. BioKG2vec and Dlemb are respectively ~100% and 360% 

faster than Metapath2Vec. 

KGE successfully predicts genes associated to IDD 

Finally, we used the selected prediction model with the best parametrization to predict GDAs for 

IDD. IDD is one of the main causes of low back pain, the largest cause of morbidity worldwide 

affecting 80% of people from Western countries during their lifetime [144]. IDD consists of the 

gradual deterioration of the intervertebral disc (IVD) in which the content of collagen and 

glycosaminoglycan decreases, and it becomes more dehydrated and fibrotic. Due to this, its 

anatomical areas nucleus pulposus (NP) and anulus fibrosus (AF) becomes less distinguishable 

[145]. Also, during IDD there is a catabolic shift in the biochemical processes of the disc 

environment with an increased expression of matrix degrading enzymes promoted by catabolic 

cytokines and vascularization of the tissues [2]. According to DisGeNET (curated sources), IDD 

is associated to TGFβ-1, HTRA1 and SPARC. We ran predictions for 20,951 genes, of those 445 

were predicted to be associated to the disease and 93 with a probability > 0.95. The results of the 

top 10 prioritized genes are shown in Table 4.  

The predictive analysis identifies the TGFβ-1 gene as the most promising candidate associated 

with Intervertebral Disc Degeneration (IDD), with isoforms TGFβ-2 and TGFβ-3 also receiving 

prioritization. Notably, TGFβ-1 emerges as the highest-scoring gene in DisGeNET’s curated 

dataset related to disc degeneration. TGFβ plays a multifaceted role in various pathways associated 

with the homeostasis and turnover of the extracellular matrix in IDD [146]. Additionally, SMAD3 

and SMAD2, integral genes in disc homeostasis, participate in the TGF-β pathway. [147]. Matrix 

metalloproteinase 9 (MMP9) and matrix metalloproteinase 2 (MMP2) enzymes contribute 

significantly to IDD by participating in matrix degradation, targeting proteins expressed in the 

intervertebral disc like collagens and aggrecan. [148]. Moreover, LOX, crucial for cartilage 

homeostasis, presents a potential strategy for cartilage regeneration[149] , with studies indicating 

its anti-apoptotic effects in TNF-α treated rat NP-cells. [150]. These genes were shown to have a 

role in IDD and could be further investigated to elucidate the mechanisms that lead to the 

degeneration of the disc. 

To further explore the biological functions of these candidate genes, we performed a function 

enrichment analysis (Figure 4). The top prioritized genes are enriched in processes related to the 

extracellular matrix organization, pathways related to collagen formation, and extracellular matrix 

degradation, all of them related to IDD.  
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Table 4: Top 10 genes prioritized from the model with highest predictive capabilities 

Gene ID Gene Symbol Probability 

7040 TGFB1 1 

4088 SMAD3 1 

4318 MMP9 1 

4015 LOX 1 

7043 TGFB3 1 

7046 TGFBR1 1 

7042 TGFB2 1 

1277 COL1A1 1 

4313 MMP2 1 

4087 SMAD2 1 

 

 

 

Figure 4: Gene ontology biological processes (GO:BP) function enrichment analysis on the genes with 

probability higher than 0.95 to be associated to C0158266 (n=93). To run the functional enrichment, we 

used g:Profiler. The nodes correspond to the pathway enriched in the gene set, their size is proportional to 

the number of genes belonging to that specific pathway and the colour is related to the significance of the 

enrichment in the gene set (calculated through hypergeometric distribution). An edge exists between 2 
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nodes if there are genes shared between the two pathways and the width of the edge is proportional to the 

number of the genes shared. 

DISCUSSION 

In this work we investigated how KGE perform to predict gene-disease associations. First, we 

generated a KG by implementing heterogeneous biological information such as protein-protein 

interactions, gene-disease associations, drug-disease associations and drug-protein interactions, 

and ontologies The integration of multiple knowledge-based datasets prevented us from using 

syntactic-based approaches for embedding-creation such as OPA2VEC [151]. Syntactic 

approaches rely in the set of axioms only for obtaining the embeddings without the intermediate 

graph-based representation [57], so the input of the algorithm must be in Web-Ontology Language 

(OWL) format. Moreover, the integration of different ontologies is a challenging task and an active 

research topic [153]. 

In this study, we systematically assessed diverse methodologies for KGE construction and 

introduced two novel algorithms, namely BioKG2vec and Dlemb. Our comprehensive evaluation 

reveals that these algorithms exhibit superior performance compared to most existing methods. 

Notably, the parallelized implementation of both BioKG2vec and Dlemb results in substantially 

reduced running times in comparison to Metapath2Vec. This enhanced scalability facilitates the 

effective utilization of computational resources.  

We conducted an extensive analysis of embeddings utilizing unsupervised machine learning 

techniques. Our investigation encompassed the integration of diverse data types and the 

comparison of GDA predictions using random features. Our findings revealed that augmenting the 

proportion of GDA within the KG enhances model performance. This observation suggests that 

task-specific embeddings implementation could enhance predictions, potentially leveraging the 

learning of pertinent features, as indicated elsewhere [113]. Furthermore, we applied KGE to 

prioritize new genes associated with IDD, illustrating their utility in inferring disease biomarkers 

even in scenarios with limited genetic data. Notably, our model, trained on a DisGeNET curated 

dataset containing merely 3 associations, prioritized 445 genes, which effectively reflected the 

underlying biology of IDD. In fact, the polygenic nature and epistatic interactions characteristic of 

non-communicable diseases pose challenges to comprehending the intricate biology underlying 

the development of complex conditions [154]. 

Finally, we emphasize the significance of scrutinizing the data quality employed in embedding 

creation, as predictive models can glean numerous latent features, potentially introducing bias to 

the outcomes. 

CONCLUSIONS 

In this work we carried out an extensive investigation on KGE from the generation and evaluation 

of the produced embeddings to the development of two new models for KGE generation and the 

utilization of the created embedding in a GDA prediction task. We showed that embeddings can 

effectively be implemented in the biomedical field to infer new knowledge over a certain domain. 

Nevertheless, many challenges remain open that require interdisciplinary collaboration to reach 

better outcomes in the healthcare sector.  
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SUPPLEMENTARY MATERIAL 

 

Supplementary Figure 1: Degree distribution of the knowledge graph, the x-axis represents the degree i.e. number of edges adjacent to a specific 

node and the y-axis is the frequency of nodes with that specific degree in the graph. The nodes in the KG follows a scale free degree distribution 

.
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 Supplementary Figure 2: Silhouette scores calculated for different numbers of K-means clusters for gene 

embeddings. The red line represents n = 16 i.e. the actual number of gene classes from Human Protein 

Atlas. 
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Supplementary Figure 3: Silhouette score calculated for different numbers of K-means clusters of  

diseases embeddings. The red line represents n = 16 i.e. the actual number of disease classes from ICD-9.  

 



 

55 

 

 

Supplementary Figure 4: K-means clusters on gene product embeddings separated by Human Protein 

Atlas protein categories. On the y axis are the 16 clusters produced from the algorithm and on the x axis 

the protein classes.  The color indicates the number of gene products in each cluster.  
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Supplementary Figure 5: K-means clusters on disease embeddings separated by ICD-9 disease codes. On 

the y axis are the 16 clusters produced from the algorithm and on the x axis the disease classes. The color 

indicates the number of diseases in each cluster. BioKG2vec 
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Supplementary table 1 : Results of grid search cross-validation. The results are ordered by ROCAUC. 

DLemb Metapath2vec and BioKG2vec with Concatenation GDA representations are the best performing 

algorithms. Svm is support vector machine, lr logistic regression, xgb xgboost, rf random forest, and ffn 

feedforward neural network 

Combination F1 PRECISION RECALL ACCURACY ROCAUC PRAUC 

Metapath2vec_Concatenation_svm 0.88 0.97 0.79 0.88 0.88 0.87 

Metapath2vec_Sum_svm 0.89 0.94 0.83 0.89 0.89 0.86 

BioKG2vec_Concatenation_svm 0.88 0.94 0.8 0.88 0.88 0.85 

Metapath2vec_Concatenation_ffn 0.87 0.95 0.77 0.87 0.87 0.85 

Metapath2vec_Concatenation_xgb 0.87 0.94 0.79 0.87 0.87 0.85 

BioKG2vec_Concatenation_ffn 0.88 0.92 0.83 0.88 0.88 0.84 

Metapath2vec_Average_svm 0.86 0.95 0.75 0.86 0.86 0.84 

Metapath2vec_Average_ffn 0.86 0.93 0.77 0.86 0.86 0.83 

Metapath2vec_Sum_ffn 0.86 0.92 0.79 0.86 0.86 0.83 

DLemb_Concatenation_svm 0.87 0.89 0.84 0.87 0.87 0.83 

DLemb_Concatenation_xgb 0.87 0.9 0.83 0.87 0.87 0.83 

BioKG2vec_Average_svm 0.86 0.91 0.8 0.86 0.86 0.82 

BioKG2vec_Concatenation_xgb 0.86 0.9 0.81 0.86 0.86 0.82 

BioKG2vec_Sum_svm 0.86 0.87 0.85 0.86 0.86 0.81 

RotatE_Concatenation_svm 0.85 0.89 0.79 0.85 0.85 0.81 

DLemb_Concatenation_rf 0.85 0.88 0.82 0.85 0.85 0.81 

Metapath2vec_Hadmard_svm 0.82 0.94 0.7 0.83 0.83 0.8 

BioKG2vec_Average_ffn 0.84 0.89 0.78 0.84 0.84 0.8 

DLemb_Hadmard_xgb 0.84 0.88 0.79 0.84 0.84 0.8 

BioKG2vec_Sum_ffn 0.84 0.89 0.77 0.84 0.84 0.8 

DLemb_Hadmard_rf 0.84 0.88 0.77 0.84 0.84 0.8 

Metapath2vec_Hadmard_xgb 0.82 0.93 0.7 0.82 0.82 0.8 

Metapath2vec_Sum_xgb 0.83 0.89 0.75 0.83 0.83 0.79 

Metapath2vec_Average_xgb 0.83 0.89 0.75 0.83 0.83 0.79 

DLemb_Concatenation_ffn 0.84 0.85 0.83 0.84 0.84 0.79 
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Metapath2vec_Hadmard_ffn 0.81 0.93 0.68 0.82 0.81 0.79 

Metapath2vec_Concatenation_rf 0.83 0.87 0.78 0.83 0.83 0.79 

DLemb_Sum_svm 0.83 0.87 0.78 0.84 0.83 0.79 

RotatE_Sum_svm 0.83 0.88 0.77 0.83 0.83 0.79 

DLemb_Average_svm 0.83 0.87 0.78 0.83 0.83 0.78 

DLemb_Hadmard_ffn 0.83 0.87 0.77 0.83 0.83 0.78 

DLemb_Hadmard_lr 0.83 0.86 0.77 0.83 0.83 0.78 

DLemb_Hadmard_svm 0.83 0.86 0.78 0.83 0.83 0.78 

BioKG2vec_Hadmard_ffn 0.82 0.87 0.75 0.82 0.82 0.78 

Metapath2vec_Hadmard_lr 0.8 0.91 0.67 0.81 0.81 0.78 

BioKG2vec_Hadmard_svm 0.81 0.88 0.72 0.81 0.81 0.78 

DLemb_Average_rf 0.83 0.85 0.8 0.83 0.83 0.78 

DLemb_Sum_rf 0.83 0.85 0.8 0.83 0.83 0.78 

DLemb_Average_xgb 0.82 0.86 0.78 0.82 0.82 0.78 

DLemb_Sum_xgb 0.82 0.86 0.78 0.82 0.82 0.78 

RotatE_Average_svm 0.82 0.87 0.75 0.82 0.82 0.77 

RotatE_Concatenation_xgb 0.82 0.86 0.77 0.82 0.82 0.77 

Metapath2vec_Hadmard_rf 0.8 0.89 0.69 0.8 0.8 0.77 

BioKG2vec_Hadmard_xgb 0.81 0.86 0.74 0.81 0.81 0.77 

BioKG2vec_Concatenation_rf 0.82 0.84 0.8 0.82 0.82 0.77 

BioKG2vec_Average_xgb 0.82 0.85 0.77 0.82 0.82 0.77 

BioKG2vec_Sum_xgb 0.82 0.85 0.77 0.82 0.82 0.77 

RotatE_Concatenation_ffn 0.82 0.83 0.8 0.82 0.82 0.76 

RotatE_Concatenation_rf 0.81 0.85 0.75 0.81 0.81 0.76 

Metapath2vec_Average_rf 0.81 0.83 0.79 0.81 0.81 0.76 

Metapath2vec_Sum_rf 0.81 0.83 0.79 0.81 0.81 0.76 

RotatE_Sum_ffn 0.8 0.83 0.75 0.8 0.8 0.75 

BioKG2vec_Hadmard_lr 0.78 0.86 0.68 0.79 0.79 0.74 

TransE_Concatenation_svm 0.8 0.82 0.75 0.8 0.8 0.74 

RotatE_Average_xgb 0.79 0.84 0.71 0.79 0.79 0.74 

RotatE_Sum_xgb 0.79 0.84 0.71 0.79 0.79 0.74 
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DLemb_Sum_ffn 0.79 0.8 0.78 0.8 0.79 0.73 

BioKG2vec_Sum_rf 0.8 0.79 0.8 0.8 0.8 0.73 

RotatE_Sum_rf 0.78 0.84 0.69 0.78 0.78 0.73 

RGCN_Concatenation_svm 0.78 0.84 0.69 0.78 0.78 0.73 

RotatE_Average_rf 0.78 0.83 0.69 0.78 0.78 0.73 

BioKG2vec_Hadmard_rf 0.79 0.8 0.78 0.79 0.79 0.73 

BioKG2vec_Average_rf 0.79 0.79 0.8 0.79 0.79 0.73 

RotatE_Hadmard_xgb 0.77 0.84 0.68 0.77 0.77 0.73 

RotatE_Hadmard_rf 0.77 0.83 0.68 0.77 0.77 0.73 

TransE_Concatenation_rf 0.78 0.81 0.72 0.78 0.78 0.72 

DLemb_Average_ffn 0.78 0.79 0.77 0.78 0.78 0.72 

RotatE_Hadmard_svm 0.77 0.83 0.68 0.77 0.77 0.72 

TransE_Concatenation_xgb 0.78 0.8 0.75 0.78 0.78 0.72 

RotatE_Average_ffn 0.78 0.78 0.77 0.78 0.78 0.72 

RGCN_Average_svm 0.75 0.83 0.63 0.75 0.75 0.71 

RGCN_Concatenation_xgb 0.75 0.82 0.65 0.75 0.75 0.7 

RotatE_Hadmard_ffn 0.75 0.8 0.68 0.76 0.76 0.7 

RotatE_Hadmard_lr 0.74 0.81 0.64 0.75 0.75 0.7 

RGCN_Concatenation_rf 0.75 0.79 0.67 0.75 0.75 0.69 

TransE_Concatenation_ffn 0.75 0.76 0.74 0.75 0.75 0.69 

DLemb_Concatenation_lr 0.75 0.76 0.72 0.75 0.75 0.69 

TransE_Sum_svm 0.74 0.76 0.7 0.74 0.74 0.68 

RotatE_Concatenation_lr 0.74 0.75 0.72 0.74 0.74 0.68 

Metapath2vec_Concatenation_lr 0.73 0.75 0.7 0.73 0.73 0.67 

RGCN_Sum_svm 0.73 0.74 0.7 0.73 0.73 0.67 

BioKG2vec_Concatenation_lr 0.73 0.74 0.7 0.73 0.73 0.67 

TransE_Concatenation_lr 0.73 0.74 0.71 0.73 0.73 0.67 

TransE_Average_svm 0.71 0.74 0.65 0.71 0.71 0.66 

TransE_Hadmard_xgb 0.71 0.74 0.65 0.71 0.71 0.66 

Metapath2vec_Sum_lr 0.72 0.73 0.69 0.72 0.72 0.66 

Metapath2vec_Average_lr 0.72 0.73 0.69 0.72 0.72 0.66 
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TransE_Hadmard_rf 0.71 0.75 0.63 0.71 0.71 0.65 

BioKG2vec_Sum_lr 0.71 0.72 0.69 0.71 0.71 0.65 

BioKG2vec_Average_lr 0.71 0.72 0.69 0.71 0.71 0.65 

DLemb_Average_lr 0.71 0.71 0.7 0.71 0.71 0.65 

DLemb_Sum_lr 0.71 0.71 0.7 0.71 0.71 0.65 

TransE_Average_rf 0.71 0.73 0.66 0.71 0.71 0.65 

TransE_Sum_rf 0.7 0.73 0.65 0.71 0.71 0.65 

TransE_Sum_xgb 0.71 0.72 0.68 0.71 0.71 0.65 

TransE_Average_xgb 0.71 0.72 0.68 0.71 0.71 0.65 

RGCN_Concatenation_ffn 0.7 0.72 0.65 0.7 0.7 0.65 

TransE_Sum_ffn 0.71 0.71 0.7 0.71 0.71 0.65 

RotatE_Sum_lr 0.7 0.71 0.69 0.7 0.7 0.64 

RotatE_Average_lr 0.7 0.71 0.69 0.7 0.7 0.64 

TransE_Hadmard_svm 0.69 0.72 0.62 0.69 0.69 0.64 

TransE_Hadmard_lr 0.69 0.72 0.62 0.69 0.69 0.63 

TransE_Hadmard_ffn 0.69 0.7 0.65 0.69 0.69 0.63 

TransE_Average_ffn 0.68 0.71 0.6 0.68 0.68 0.63 

TransE_Sum_lr 0.67 0.66 0.68 0.67 0.67 0.61 

TransE_Average_lr 0.67 0.66 0.67 0.67 0.67 0.61 

RGCN_Average_ffn 0.65 0.67 0.59 0.65 0.65 0.6 

RGCN_Sum_ffn 0.65 0.65 0.64 0.65 0.65 0.6 

RGCN_Average_rf 0.6 0.6 0.61 0.6 0.6 0.56 

RGCN_Sum_rf 0.59 0.59 0.59 0.59 0.59 0.55 

RGCN_Average_xgb 0.58 0.58 0.6 0.58 0.58 0.55 

RGCN_Sum_xgb 0.58 0.58 0.6 0.58 0.58 0.55 

RGCN_Concatenation_lr 0.56 0.56 0.59 0.56 0.56 0.53 

RGCN_Hadmard_xgb 0.54 0.53 0.63 0.54 0.54 0.52 

RGCN_Average_lr 0.54 0.54 0.59 0.54 0.54 0.52 

RGCN_Sum_lr 0.54 0.54 0.59 0.54 0.54 0.52 

RGCN_Hadmard_rf 0.48 0.51 0.81 0.53 0.53 0.51 

RGCN_Hadmard_svm 0.51 0.51 0.64 0.51 0.51 0.5 
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Supplementary Table 2 effect of data preprocessing and   integration on ROCAUC and PRAUC 

using DLemb algorithm. Preprocessing of the data significantly improves predictive 

performance of the model. 

 

Experiment ROCAUC AUPRC 

HPO + HPO annotations 

raw 

0.76 0.87 

HPO + HPO annotations 

processed 

0.92 0.96 

HPO + HPO annotations + 

GO + GO annotations 

processed 

0.92 0.93 

RGCN_Hadmard_ffn 0.51 0.51 0.6 0.51 0.51 0.5 

RGCN_Hadmard_lr 0.49 0.5 0.65 0.5 0.5 0.5 
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Supplementary Table 3: Results of 5-fold cross-validation on randomly selected diseases belonging to different number of GDA stratifications (Embedding 

creation algorithm is Metapath2vec, classification algorithm is support vector machine and GDA representation is concatenation).  

 

model 
 

Metapath2vec Random 

CUI number 

of 

associati

ons 

test_accur

acy 

test_precis

ion 

test_rec

all 

test_

f1 

test_roc_

auc 

test_accur

acy 

test_precis

ion 

test_rec

all 

test_

f1 

test_roc_

auc 

C0026764 42 0.88 0.92 0.85 0.88 0.95 0.58 0.57 0.6 0.56 0.66 

C0020517 64 0.92 0.94 0.91 0.92 0.99 0.51 0.51 0.57 0.53 0.48 

C0013421 86 0.93 0.93 0.95 0.94 0.98 0.48 0.48 0.51 0.49 0.46 

C0023890 103 0.89 0.89 0.9 0.89 0.96 0.46 0.45 0.45 0.45 0.43 

C0007134 128 0.84 0.85 0.84 0.84 0.92 0.52 0.52 0.53 0.52 0.53 

C0032460 144 0.78 0.79 0.76 0.77 0.84 0.45 0.45 0.49 0.47 0.44 

C0014175 161 0.85 0.85 0.84 0.84 0.92 0.49 0.49 0.48 0.49 0.46 

C0151744 176 0.85 0.84 0.85 0.85 0.92 0.48 0.48 0.45 0.46 0.46 

C0015397 212 0.95 0.94 0.96 0.95 0.98 0.45 0.45 0.46 0.46 0.41 

C0004352 261 0.86 0.85 0.87 0.86 0.93 0.45 0.45 0.45 0.45 0.42 
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Supplementary Figure 6: Generalization capabilities of DLemb algorithm, the KGE obtained 

with the implementation of this algorithm can predict GDAs across different disease classes. 
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Supplementary Figure 7: Comparison of algorithms performance.  On the x - axis are reported the ten 

experiments of creating embeddings of subnetworks generated by random sampling 10000 nodes from the 

knowledge graph, on the y-axis, the time in seconds. 
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3.2 Genopyc: a Python library for investigating 

the functional effects of genomic variants 

associated to complex diseases 
 

 

This chapter is based on: 

 

Genopyc: a Python library for investigating the genomic basis of complex diseases 
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08003 Barcelona, Spain 
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Published in: Oxford bioinformatics 
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Summary of the work 

In this chapter, I will accomplish objective 2 and 2.a. Firstly I developed a Python library to investigate 

functional consequences of genetic variants associated with complex diseases through Genome wide 

association studies (GWAS). Subsequently, I implemented it to interpret a set of single nucleotide 

polymorphisms (SNPs) associated with intervertebral disc degeneration (IDD). GWAS have 

successfully associated genetic loci to complex diseases, however, interpreting how the variants affect 

genes is a complex task that requires the integration of heterogeneous data and the implementation of 

different types of analysis.  Often this is accomplished by accessing multiple repositories and with the 

implementation of many tools resulting in a time-consuming process. Thus, we developed Genopyc, a 

Python library to investigate genomic underpinnings of variants associated with complex traits.  The 

library allows to perform multiple tasks on genomic data such as obtaining variants associated with a 

condition, retrieving linkage disequilibrium (LD) data, expression quantitative trait loci (eQTL), 

mapping between different variants and gene IDs and investigate functional effects of variants through 

the implementation of different tools such as variant effect predictor (VEP) and Locus to Gene pipeline 

from Open targets platform. Moreover, the tool provides different visualization features to better 

understand the results obtained. The library is freely available at  https://pypi.org/project/genopyc/ and 

can be integrated in any Python pipeline.  To showcase the library, we analized  a set of SNPs 

associated with IDD (See more details at https://github.com/freh-

g/genopyc/blob/main/tutorials/Genopyc_tutorial_notebook.ipynb). By performing a functional 

enrichment analysis in the set of genes obtained through the implementation of the library, we were 

able to prioritize transcriptional pathways that are largely reported in literature to be associated with 

the diseases in in vitro and in vivo models. These results are in concordance with chapter 3.1 where we 

prioritized genes that were reported to act in synergy with genes prioritized from Genopyc and with 

chapter 3.3 where we investigated the autoimmune basis of Modic change, a comorbidity of IDD. In 

fact, it was theorized that IDD could have autoimmune basis also due to the fact that many SNPs related 

to the conditions lay on chromosome 6 in the major histocompatibility complex (MHC). However we 

showed that by a careful data integration the attention is shifted from autoimmune pathways to 

pathways already associated with the condition such as AP-2α , HIF-1 and SP1. Taken together these 

results suggest that IDD does not have an autoimmune etiology and that Genopyc can be successfully 

implemented to better understand functional consequences of variants associated with complex traits.

https://pypi.org/project/genopyc/
https://github.com/freh-g/genopyc/blob/main/tutorials/Genopyc_tutorial_notebook.ipynb
https://github.com/freh-g/genopyc/blob/main/tutorials/Genopyc_tutorial_notebook.ipynb


 

68 

 



   

 

69 

 

Abstract  

Motivation: Understanding the genetic basis of complex diseases is a paramount challenge in 

modern genomics. However, current tools often lack the versatility to efficiently analyze the 

intricate relationships between genetic variations and disease outcomes. To address this, we 

introduce Genopyc, a novel Python library designed for comprehensive investigation of the 

genetics underlying complex diseases. Genopyc offers an extensive suite of functions for 

heterogeneous data mining and visualization, enabling researchers to delve into and integrate 

biological information from large-scale genomic datasets with ease. 

Results: In this study, we present the Genopyc library through application to real-world genome 

wide association studies variants. Using Genopyc to investigate variants associated to 

intervertebral disc degeneration (IDD) enabled a deeper understanding of the potential 

dysregulated pathways involved in the disease, which can be explored and visualized by exploiting 

the functionalities featured in the package. Genopyc emerges as a powerful asset for researchers, 

fostering advancements in the understanding of complex diseases and thus paving the way for 

more targeted therapeutic interventions. 

Availability: Genopyc is available on pip https://pypi.org/project/genopyc/.The source code of 

Genopyc is available at https://github.com/freh-g/genopyc. A tutorial notebook is available at 

https://github.com/freh-g/genopyc/blob/main/tutorials/Genopyc_tutorial_notebook.ipynb 

Finally, a detailed documentation is available at:  https://genopyc.readthedocs.io/en/latest/  

https://pypi.org/project/genopyc/
https://github.com/freh-g/genopyc
https://github.com/freh-g/genopyc/blob/main/tutorials/Genopyc_tutorial_notebook.ipynb
https://genopyc.readthedocs.io/en/latest/
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Introduction 

The onset of complex disorders is influenced by a multitude of components that include lifestyle, 

diet, environmental and genetic factors. In the last decades genome wide association studies 

(GWAS) have emerged as a powerful tool to investigate the genetic architecture underlying 

complex diseases [155]. However, now that thousands of genetic risk factors for numerous 

phenotypes have been discovered, we are facing another challenge: the interpretation of these 

associations in the biological context, we are thus entering in the so called post-GWAS Era [24]. 

Understanding how genetic variants are translated into biological pathways remains a challenging 

Figure 1 The main Genopyc features and knowledge bases accessed  schematically represented. Variants 

associated with a specific trait are initially obtained from GWAS catalog and then subjected to various 

analyses, including examination of genomic context, LD features, eQTLs, VEP and Locus2gene pipeline. 

Subsequently, as the variants are linked to genes through these analyses, the functions enriched within the 

gene set can be explored to identify potential dysregulated pathways relevant to the disease. 
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task [156] and led to the development of numerous approaches to interpret GWAS results (see [25] 

for a comprehensive review of the type of analysis and tools). 

Ascertaining the precise functional implications of the genetic variants discovered through GWAS 

has proven to be a formidable challenge due to the extensive amount of data required to perform 

these studies [156]. In response, a plethora of novel methodological approaches has emerged to 

address this knowledge gap [98]. These techniques rely on the large-scale omics datasets and 

repositories available to researchers such as Gene Expression Omnibus [157], the genotype – tissue 

expression project [158] and the Encode project [28]. The enormous amount of data regarding 

genes and variants associated to diseases is collected in knowledge bases such as the GWAS 

Catalog [159], containing a curated collection of GWAS, and DisGeNET [130] that offers a 

standardized integration from different sources. However, 90% of the genetic variation associated 

to complex diseases are non-coding type and a benchmark of methods to interpret how they alter 

genes, perturb biological pathways and ultimately lead to disease is still missing [160]. Moreover, 

the application and integration of different tools to analyze GWAS data lead to discordant results, 

thus an unbiased assessment of the methods available is still required [161]. Finally, the tools and 

data repositories useful for analyzing this type of data are scattered, which makes understanding 

GWAS results a time-consuming process. 

An advancement in associating genes to non-coding variants has been made by the Open Target 

Genetics platform, which implemented a pipeline consisting of a machine learning model that uses 

heterogeneous features such as distance from variant to the gene, expression quantitative trait loci 

(eQTL), chromatin conformation and variant effect predictions. This method outperformed the 

naïve distance-based methods in the prioritization of causal genes related to complex diseases loci 

[162]. In this context we present Genopyc, a Python library for investigating the genetic basis of 

complex diseases. 

Genopyc users to programmatically access multiple sources with the aim of understanding how 

non-coding variants impact the biological pathways and thus infer the mechanisms underlying the 

development of complex diseases (Figure 1). Moreover, being fully integrated in Python, all the 

downstream statistical analysis can be carried out in the same environment.  

Implementation and features 

Genopyc is a Python package integrating information from several knowledgebases. The tool can 

receive as an input a trait, coded with Experimental Factor Ontology identifiers [163], or the results 

of a GWA study. If an EFO code is used as an input, the variants associated to the trait are retrieved 

from the GWAS Catalog. Information such as the reported β coefficient that quantifies the 

association between a genetic variant and a trait or phenotype of interest, standard error (relevant 

for understanding the dispersion of the estimated beta coefficient), risk allele frequency (the 

frequency of the allele in the reference population) and the mapped genes closest to the SNPs are 

also retrieved.  

Additionally, other features such as genomic coordinates, linkage disequilibrium (LD) correlated 

SNPs and neighboring functional elements can be obtained by querying Ensembl Genome Browser 

[27]. Genopyc also integrates the variant effect predictor (VEP) to obtain the consequences of the 
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SNPs on the transcript and its effect on neighboring genes and functional elements [42]. Often 

SNPs associated to complex phenotypes fall in non-coding regions of the genome and are more 

likely to have regulatory effects [164]. Therefore, it is possible to retrieve the expression eQTLs 

related to variants through the eQTL Catalogue [165]. Finally, Genopyc integrates the locus to 

gene (L2G) pipeline from Open Target Genetics to uncover the target gene or genes of variants 

located in non-coding regions.  

Once a variant is associated to a gene or genes, the significantly enriched pathways are retrieved 

through G:profiler [142]. In this way the user can elucidate the functions whose perturbation could 

ultimately lead to the disease. Genopyc package also offers a functionality to visualize the results 

of the functional enrichment as an interactive network. In this network, genes of interest are 

mapped to a protein-protein interaction network derived from the HIPPIE database [166] in which 

nodes represent the gene products and edges correspond to the physical interactions between 

proteins. A dropdown menu allows the user to select the function enriched in the gene set and, 

when a function is selected, the gene-products belonging to that function are highlighted. 

Genopyc can also be implemented to retrieve a linkage-disequilibrium (LD) matrix for a set of 

SNPs by using LDlink [167], convert genome coordinates between genome versions and retrieve 

genes coordinates in the genome. LDlink calculates the LD matrix through the population-specific 

1000 genomes haplotype panels [168]. Retrieving genome coordinates and mapping between 

genome builds are made possible by accessing Ensembl genome browser.  

Comparison with state-of-the-art algorithm 

A comparison between the main functionalities of Genopyc and other tools for post-GWAS 

analysis is shown in Table 1. Genopyc is the only library that integrates multiple analysis to 

connect variants to genes (conditional, colocalization, fine mapping), gather functional 

information to annotate variants (eQTLs, HI-C, linkage disequilibrium, VEP, functional genomic 

elements), maps between different vocabularies of gene and variant identifiers and perform 

functional enrichment to detect possible pathways perturbed by genetic variations. 

Table 1 Comparison between Genopyc and the main tools for post GWAS analysis. Genopyc integrates diverse 

functionalities allowing a more flexible investigation of variants related to diseases 

 

 Tool Mapping Ids Retrieve trait 
associated 

variants 

Condition
al analysis 

Fine  

mapping 

eQTL  

Co-

localiz

ation 

HI-C Functional  

Enrichment 

Linkage 
Disequilibrium 

Genomic  

features 

Variant  

annotation 

 Genopyc ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 Coloc × × × × ✓ × × × × ✓ 

 FUMA × × ✓ × ✓ ✓ × ✓ × × 

 Finemap × × × ✓ × × × ✓ × × 

 Ensemble 
API 

✓ × × × × × × ✓ ✓ ✓ 

 Open 

Targets: 
Genetics 

✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ 
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To compare a feature of Genopyc capabilities of associating variants to genes we will compare we 

will compare the set of genes prioritized from the L2G pipeline included in Genopyc with the 

SNP2GENE pipeline of FUMA [169]. To perform this comparison, we will use variants from a 

GWAS on Chron’s disease (CD) by Frank et. al [170]. By the implementation of L2G through 

Genopyc we were able to prioritize 216 genes while FUMA a total of 255 genes were associated 

with the studied variants, of this set there was an overlapping of 142 genes, thus the majority of 

the genes belonging to each set is in common between the 2 methods (Figure 2). 

 

 

Figure 2 Venn plot showing the prioritized genes through the implementation of L2G pipeline (pink circle) 

and FUMA (green circle). 
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Figure 3 Function enrichment analysis on gene set prioritized by the implementation of L2G and FUMA 

pipeline. Nodes in the network correspond to functions. Node size reflects the number of genes associated 

to that specific function while node color is related to the significance of the function enrichment calculated 

through hypergeometric distribution and expressed as -log10 p-value. An edge exists between 2 nodes if the 

function shares genes; the number of shared genes is proportional to the edge thickness. Both gene sets 

present IFN type II pathway as the most represented function. 

By performing a function enrichment analysis on the prioritized gene sets we obtained similar 

results (Figure 3). In fact, both results reported that the interferon type II signalling pathway is the 

most represented function among the gene. This finding is further supported in literature in which 

it was shown that Chron’s disease patients intestinal CD4+ cells produce an increased amount of 

L2G 

FUMA 
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IFN – γ, in fact during CD there is an accumulation of T helper 1 cells that mediates the production 

of type II interferon [171]. This show that the genes obtained by the implementation of L2G 

pipeline through Genopyc brings to comparable results to state – of – the – art algorithms. 

Moreover, it must be underlined that L2G is only one of the many features that Genopyc offers, in 

fact the library includes many more functionalities, some of which will be presented in the next 

paragraph. 

Use Case: Intervertebral disc degeneration 

To illustrate the utility of Genopyc, we applied it to the variants associated to IDD that are available 

in the GWAS catalog (EFO:0004994). IDD is a complex multifactorial condition for which the 

molecular mechanisms are poorly understood [172]. In Table 1 are displayed all the variants 

associated to IDD that we obtained by querying GWAS catalog through Genopyc. 

Table 2 Variant associated to intervertebral disc degeneration from GWAS catalog. The table reports the risk allele 

(RA), the p-value of the association (PV), the risk allele frequency (RAF) the beta reported from the GWAS 

association (B) the confidence interval of the association (CI) and the mapped gene from the authors of the study 

(MG). A ? is reported in the RA section if the author of the study didn’t specify the risk allele related to the SNP. 

RA PV RAF B CI MG 

rs17034687-

C 

2E-09 0.09 0.23 unit 

increase 

[0.16-

0.30] 

CRBN,SUMF1 

rs2187689-

C 

3E-08 0.08 0.23 unit 

increase 

[0.15-

0.31] 

HLA-Z,PPP1R2P1 

rs926849-C 3E-08 0.31 0.13 unit 

decrease 

[0.083-

0.177] 

PRKN 

rs7744666-

C 

6E-08 0.10 0.2 unit 

increase 

[0.13-

0.27] 

PPP1R2P1,HLA-Z 

rs11969002-

A 

6E-08 0.10 0.2 unit 

increase 

[0.13-

0.27] 

HLA-Z,PPP1R2P1 

rs4802666-

A 

0.000005 0.27 0.13 unit 

decrease 

[0.073-

0.187] 

MYH14 

rs7896691-

C 

0.000002 0.10 0.17 unit 

increase 

[0.10-

0.24] 

PFKP 

rs10998466-

A 

0.000004 0.01 0.53 unit 

decrease 

[0.31-

0.75] 

STOX1 

rs1981483-

A 

0.000004 0.42 0.11 unit 

increase 

[0.065-

0.155] 

PIGQ 

rs1154053-

C 

0.000004 0.17 0.13 unit 

decrease 

[0.075-

0.185] 

CSMD1 

rs2484990-

C 

0.000004 0.01 0.68 unit 

increase 

[0.39-

0.97] 

LINC02664,ZEB1-

AS1 

rs1250307-

A 

0.000004 0.01 0.68 unit 

increase 

[0.39-

0.97] 

LINC02664,ZEB1-

AS1 
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rs7204439-

C 

0.000004 0.42 0.11 unit 

increase 

[0.065-

0.155] 

RAB40C 

rs2484992-

C 

0.000005 0.01 0.68 unit 

increase 

[0.39-

0.97] 

ZEB1-

AS1,LINC02664 

rs9488238-

A 

0.000005 0.04 0.28 unit 

decrease 

[0.16-

0.40] 

LINC02541,MARCKS 

rs1205863-

G 

0.000006 0.06 0.21 unit 

increase 

[0.12-

0.30] 

AMD1P4,HIVEP1 

rs11918654-

C 

0.000007 0.27 0.11 unit 

decrease 

[0.063-

0.157] 

ARL8B 

rs2657195-

A 

0.000008 0.22 0.13 unit 

decrease 

[0.075-

0.185] 

SLC26A7,RN7SKP231 

rs11754641-

C 

0.000008 0.03 0.29 unit 

increase 

[0.16-

0.42] 

EYS 

rs12805875-

A 

0.000009 0.42 0.09 unit 

increase 

[0.049-

0.131] 

MIR4693,DYNC2H1 

rs980238-A 0.000009 0.30 0.1 unit 

decrease 

[0.055-

0.145] 

CSMD1 

rs7103004-

C 

0.000009 0.42 0.09 unit 

increase 

[0.049-

0.131] 

DYNC2H1,MIR4693 

rs4554859-

G 

0.000009 0.42 0.09 unit 

increase 

[0.049-

0.131] 

DYNC2H1,MIR4693 

rs7118412-

A 

0.000009 0.42 0.09 unit 

increase 

[0.049-

0.131] 

DYNC2H1,MIR4693 

rs2017567-

C 

0.000009 0.42 0.1 unit 

increase 

[0.059-

0.141] 

RAB40C,PIGQ 

rs6457690-

A 

9E-08 0.10 0.19 unit 

increase 

[0.12-

0.26] 

PPP1R2P1,HLA-Z 

rs1029296-

C 

9E-08 0.10 0.19 unit 

increase 

[0.12-

0.26] 

PPP1R2P1,HLA-Z 

rs6936004-

C 

1E-07 0.10 0.19 unit 

increase 

[0.12-

0.26] 

PPP1R2P1,HLA-Z 

rs3749982-

A 

1E-07 0.10 0.19 unit 

increase 

[0.12-

0.26] 

PPP1R2P1,HLA-Z 

rs9469300-

A 

1E-07 0.10 0.19 unit 

increase 

[0.12-

0.26] 

PPP1R2P1,HLA-Z 

rs10214886-

A 

2E-07 0.10 0.19 unit 

increase 

[0.12-

0.26] 

HLA-Z,PPP1R2P1 

rs10046257-

A 

3E-07 0.10 0.19 unit 

increase 

[0.12-

0.26] 

HLA-Z,PPP1R2P1 
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rs4875102-

A 

4E-07 0.26 0.12 unit 

decrease 

[0.073-

0.167] 

CSMD1 

rs1029295-

C 

5E-07 0.10 0.19 unit 

increase 

[0.12-

0.26] 

HLA-Z,PPP1R2P1 

rs9301951-

C 

9E-07 0.04 0.26 unit 

decrease 

[0.15-

0.37] 

GPC6 

rs1245582-? 4E-08 0.44 - [1.13-

1.29] 

CHST3,SPOCK2 

rs1245582-? 0.000001 0.44 - - CHST3,SPOCK2 

rs7907616-? 2E-08 NR - [1.05-

1.11] 

CHST3 

rs4148933-? 3E-08 NR - [1.05-

1.11] 

CHST3 

rs4284332-? 3E-08 NR - [1.05-

1.11] 

CHST3 

rs7163797-? 4E-10 NR - [0.89-

0.94] 

SMAD3 

The data from retrieved from GWAS catalog report the variant associated with the trait of interest, 

the p-value that express the significance of the association (significant variants usually have a 

pvalue < 5x10-8), the beta coefficient that quantifies the influence of the SNP on the trait of interest, 

the coefficient interval referred to the beta coefficient and the mapped gene reported from the 

authors of the study that is solely based on the distance to the detected SNP 

https://www.ebi.ac.uk/gwas/docs/fileheaders.    

Subsequently, in order to provide a more comprehensive view of the genomic context in which the 

variant are located Genopyc allow the user of retrieving variant genomic locations (Table 3) and 

the neighboring functional elements. In Table 4 are shown an example of 6 transcription factor 

binding sites (TFBS) motifs in a 500kb window centered on the SNP rs1981483. 

 

Table3 Genomic locations of variants associated to IDD. The columns correspond to the rsid of the variant, the 

chromosome the position expressed as base pair. 

 

rsid chromosome position 

rs17034687 3 3638168 

rs2187689 6 32884870 

rs926849 6 161740587 

rs7744666 6 32891935 

https://www.ebi.ac.uk/gwas/docs/fileheaders


   

 

78 

 

rs11969002 6 32891971 

rs4802666 19 50217817 

rs7896691 10 3112981 

rs10998466 10 68866673 

rs1981483 16 580665 

rs1154053 8 4427868 

rs2484990 10 31226203 

rs1250307 10 31207045 

rs7204439 16 611335 

rs2484992 10 31223169 

rs9488238 6 113695931 

rs1205863 6 11943293 

rs11918654 3 5146561 

rs2657195 8 91547687 

rs11754641 6 64926030 

rs12805875 11 103658904 

rs980238 8 4425096 

rs7103004 11 103655296 

rs4554859 11 103659638 

rs7118412 11 103655026 

rs2017567 16 587212 

rs6457690 6 32887940 

rs1029296 6 32888604 

rs6936004 6 32889157 

rs3749982 6 32894830 

rs9469300 6 32892975 

rs10214886 6 32889642 

rs10046257 6 32886920 

rs4875102 8 4427170 

rs1029295 6 32888705 

rs9301951 13 94300578 
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rs1245582 10 72018509 

rs1245582 10 72018509 

rs7907616 10 72000418 

rs4148933 10 72000132 

rs4284332 10 71974194 

rs7163797 15 67072574 

 

The genomic location of a SNP is a really important feature, but it doesn’t bring information 

relative to the actual effect of the variant. To determine the functional consequences of SNPs, we 

should investigate their impact on gene transcription. Through the implementation of Genopyc we 

can retrieve all the genes that are eQTLs for that specific variant in different tissues. This is done 

by querying eQTL catalogue a repository of harmonized eQTL studies. Moreover, the library gives 

the functionality of plotting the results as a network to have a more comprehensive view on how 

the set of variants investigated is affecting the transcription of the genes. Since the eQTL catalogue 

does not include relevant tissue for IDD, the results will be plotted for musculoskeletal tissue. 

(Figure 4). 

binding_matrix_st

able_id 

end feature_

type 

score seq_region_

name 

stable_id start stra

nd 

transcription_factor

_complex 

ENSPFM0550 5805

71 

motif 0.167

248 

16 ENSM005369

01928 

5805

47 

-1 TEAD4::FOXI1 

ENSPFM0455 5805

79 

motif -

0.612

26 

16 ENSM006079

25648 

5805

50 

1 POU2F1::EOMES 

ENSPFM0547 5805

78 

motif -

0.353

99 

16 ENSM006213

07960 

5805

51 

-1 TEAD4::FOXI1 

ENSPFM0548 5805

78 

motif 2.047

45 

16 ENSM005551

28830 

5805

52 

1 TEAD4::FOXI1 

ENSPFM0467 5805

68 

motif 0.571

308 

16 ENSM006255

15756 

5805

54 

1 PRDM1 

ENSPFM0330 5805

72 

motif 3.997

266 

16 ENSM003643

42102 

5805

56 

1 HOXB2::SOX15 

Table4 TFBS overlapping rs1981483. The table reports the ensembl ID of the sequence 

(binding_matrix_stable_id) the ending coordinates, the feature type, the effect of the SNP on the motif score 

(score) that is a quantification of the binding affinity between the genomic sequence and the TF, the chromosome 

(seq_region_name), the ensembl id, the starting bp coordinates (start), the strand (1 if forward and -1 if reverse) 

and the transcription factor complex that binds that specific  
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Figure 4 eQTL network for musculoskeletal tissue. In this plot, genes are represented by yellow nodes, 

variants by green nodes, and tissues by black nodes. The edges connecting the genes and variants are of 

two types: red edges indicate that the variant decreases the expression of the gene, while green edges 

indicate that it increases expression. The thickness of the edges signifies the magnitude of the increase or 

decrease in expression. 

To precisely investigate the consequences of the set of variants associated with IDD Genopyc gives 

the possibility of running VEP a tool used to predict the impact of genetic variants on genes, 

transcripts. The output of Genopyc is a pie chart that show the proportion of different variant 

effects in the set of variants analyzed (Figure 5). 
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Figure 5 VEP consequences on the set of variants associated with IDD. 

The majority of variants associated with the pathology (35%) fall in introns and thus is non - coding 

type, other effects include intergenic variants, TFBS variants and upstream and downstream gene 

variants. As expected, severe effects such as missense variants, frameshift variants or stop gained 

are not included in the set. This is a common characteristic of variants linked to complex 

conditions. SNPs related to common complex disorders usually have a mild impact and are 

considered susceptibility loci, which only affect the likelihood of developing the condition. [173]. 

Thus, it is reasonable to think that the variants have mainly an influence on the regulation of the 

gene transcription. Variants are typically assigned to the nearest gene element as their target 

functional element. However, recent advancements have emphasized the importance of 

investigating more significantly the functional characterization of risk loci [174]. Genopyc 

includes the Locus to Gene (L2G) pipeline of Open Target Genetics to assign target genes to 

variants associated with complex conditions. This pipeline, through the integration of 

transcriptomic, proteomic and epigenomic data and statistical analysis, assign genes to GWAS 

loci. This method outperformed the naive distance – based method that was adopted for assigning 

genes to variants [175]. We thus applied the pipeline obtaining a total of 30 genes associated to 

the SNPs of IDD. 

To investigate which functions where significantly enriched in the set of gene prioritized from 

L2G pipeline, Genopyc includes the possibility of performing function enrichment analysis 

through G:profiler. This is a computational method used to identify and interpret the biological 

significance of a list of genes or proteins. The goal of this analysis is to determine whether 

certain biological functions, pathways, or processes are overrepresented (enriched) in the list 
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compared to what would be expected by chance. Moreover, Genopyc allows the visualization of 

the results through network – based plot (Figure 6). 

 

 

Figure 6 Function enrichment analysis on the gene set prioritized by the implementation of L2G pipeline. 

The functions obtained shows the activity of pathways related to studied transcription factors in the context 

of IDD such as HIF1-α SP1 and AP- 2α and less known factors such as SP4. 

The function enrichment analysis reveals that among the genes prioritized through L2G pipelines 

transcription factors such as SP1, HIF1-α and AP-2α are significantly affected highlighting their 

role in the pathogenesis of IDD. Conversely, the functional enrichment on the genes reported from 

GWAS catalog didn’t bring any result or valuable information on the pathways that could be 

dysregulated in the disease.  

From a literature perspective these proteins have already been investigated to be related to the 

condition in different animal and in vitro model. SP1 was shown to be induced from TNF‑α and 

interleukin‑1β, moreover inhibitors of SP1 - DNA binding reduced the expression of pro catabolic 

enzymes such as for MMP3, ADAMTS4, and ADAMTS5. This suggest that SP1 is an effective 

target for mitigating extracellular matrix degradation during IDD  [176]. 

Similarly, AP-2α ςασ upregulated along with TGF-β1 in NP tissues of patients and rats with IDD. 

Moreover, Silencing of AP – 2α was shown to diminish levels of MMP-2, MMP-9 and Smad3 

expression (catabolic markers) and increase Aggrecan and Col-2 expression (anabolic marker) in 

NP tissues of rats with IDD thus improving pathological changes [177]  

Finally, HIF – 1α plays a crucial role in maintaining the homeostasis of the IVD by regulating 

anaerobic glycolysis. This is particularly important given that the IVD is an anatomical structure 

characterized by low oxygen tension. It was demonstrated that in constitutively active HIF – 1α 

NP cells there was an upregulation of the expression of Glut-1, Glut-3, aggrecan, type II collagen, 
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and Sox9. Moreover, cells with constitutively active HIF – 1α showed reduced apoptosis through 

Fas ligand ligation  [178] [179]. 

We weren’t able to find any literature supporting the involvement of SP4 in IDD but further 

investigation should be carried out in order to clarify its possible role in the molecular biology 

underlying the pathology. 

Figure 7 Overlapping between the genes prioritized using 3 different Genopyc features. GWAS genes, 

eQTL genes and L2G genes. 4 genes were prioritized by all the methods: ARL8B SPOCK2 PIGQ and 

CHST3 

Additionally, visualizing the results can provide greater insight into the functional elements 

potentially involved in the etiology of the disease. To investigate even further the possible 

molecular underpinnings and the mechanisms of action of the variants related to IDD we 

overlapped the genes that were prioritized from 3 different methods: i) the genes prioritized from 

GWAS ii) the genes associated to variants through eQTL and iii) the genes prioritized through the 

implementation of the L2G pipeline. Through this method we detected 4 genes that were 

prioritized from all the methods (Figure 7). Finally, to understand how the overlapping genes relate 

to the transcription factors detected through functional enrichment analysis, we utilized the 

ENCODE transcription factor targets dataset. This repository collects gene–TF associations by 

examining the binding of transcription factors near the transcription start site of genes to 

investigate TF–gene relationships. 
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We were able to detect a functional cluster comprising SP1 SP4 HIF1-α AP2-α ARL8-β and 

CHST3 (Figure 8).  

 

 

 

Figure 8 Functional cluster of genes prioritized from 3 different sources using Genopyc (ARL8-β and 

CHST3) and factors coming from the functional enrichment analysis performed on the set of genes 

prioritized implementing L2G pipeline SP1 SP4 HIF1-α and AP2-α. An edge exist between the genes if the 

transcription factor acts on the regulates the activity of the target gene. Regarding the SP4 SP1 HIF1-α 

interaction, the activity of hypoxia factor is regulated by SP1 and SP4. 

This section showed the capabilities of Genopyc in investigating different aspects of variants 

associated with complex diseases. It allows to obtain information on the genomic context of the 

variants by listing regulatory elements in the neighboring genomic location, retrieve the genes that 

are eQTLs in a specific tissue, investigate the effect of the set of variants on the transcript and 

associate the genes that are affected through the implementation of L2G pipeline from open targets.  

We showcased how Genopyc can be implemented to investigate how variants may dysregulate 

molecular pathways and contribute to disease. While our results require further validation using 

in-vivo and in-vitro models, we have developed an all-in-one tool for in-silico investigations. This 

data-driven approach allows us to explore potential molecular interactions contributing to disease.  

The possible outcomes of using Genopyc in disease research and treatment include the 

identification of novel drug targets, facilitating the development of personalized treatment plans, 

and aiding in the discovery of predictive biomarkers. 

The visualization capabilities of the library help the user to directly unveil biological associations 

and can be fully exploited in an interactive computational environment such as jupyter notebook.  

In summary we provide an all-in-one tool to retrieve and interpret the effect of genomic variants 

on the development of complex diseases. Genopyc is easily installable via pip and can be integrated 

into Python environments being built upon main Python libraries. 
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Availability 

The library can be installed via pip: https://pypi.org/project/genopyc/ 

The source code is available at: https://github.com/freh-g/genopyc 

The notebook with the use case is available at:  https://github.com/freh-

g/genopyc/blob/main/tutorials/Genopyc_tutorial_notebook.ipynb  

The documentation of the package is available at:  https://genopyc.readthedocs.io/en/latest/  
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3.3 Modic change is associated with increased 

BMI but not autoimmune diseases in 

TwinsUK 
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Summary of the work 

This part of the thesis was carried during a stage as part of the ETN in one of my trainings in which 

I worked in the department of Genetic Epidemiology at King’s College in London supervised by 

Professor Frances Williams.  For this study we investigated, through a cross sectional study, the 

autoimmune basis of Modic change (MC), an inflammation of the vertebral body strictly correlated 

to intervertebral disc degeneration (IDD) and low back pain (LBP). It is reported in literature that 

MC could have an autoimmune etiology, this is supported also from the fact that many genetic 

variants associated with IDD are found on chromosome 6 in the major histocompatibility process. 

With the implementation of Genopyc in chapter 3.2 we showed that by performing a function 

enrichment analysis on the genes in the surroundings of the variants associated with IDD many 

autoimmune pathways were enriched, but, by performing a more careful mapping of the genes, we 

were able to prioritize different pathways already reported in literature to be associated with the 

condition. For this study we exploited the large cohort of TwinsUK, we selected participants with 

autoimmune diseases diagnosis (sample size = 764) and we investigated MC size, prevalence and 

severity in this group. We weren’t able to detect an association between autoimmunity and MC, 

further supporting the absence of an autoimmune etiology in this condition as we also showed in 

chapter 3.2 from the genetic perspective. Interestingly we found an association between Body mass 

index (BMI) and the size of the MC lesion. In conclusion, results seem to suggest that IDD does 

not have an autoimmune etiology, this is supported from the outcomes of chapter 3.2 from a genetic 

level and from the cross sectional study performed in this chapter. 
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Abstract  

Purpose 

Low back pain (LBP) is one of the largest causes of morbidity worldwide. The etiology of LBP is 

complex and many factors contribute to the onset. Bone marrow lesions within the vertebra 

adjacent to an intervertebral degenerate disc (IDD) named Modic change (MC) have been 

suggested as a diagnostic subgroup of LBP. Autoimmune response has been proposed to be one of 

the causes that promotes the development of MC. The aim of the current investigation is to assess 

prevalence and severity of MC and LBP in participants with an autoimmune disease diagnosis in 

a well-documented cohort of adult twin volunteers. 

Methods 

Multivariate generalized mixed linear models (GLMM) were implemented in order to calculate 

the association between having an autoimmune disorder and MC prevalence, width and severe and 

disabling LBP. The model was corrected for family structure as well as for covariates such as age, 

BMI and smoking. 

Results 

No association was found between diagnosis of autoimmune disorder and MC.  Interestingly, BMI 

was independently associated with MC width but not to MC prevalence. These results help to shed 

light on the relationship between MC and autoimmunity as well as the role of BMI in the 

development of the lesions. 

Conclusion 

This study is the first to examine autoimmune disorders and MC prevalence in a large, population-

based female cohort. The study was well powered to detect a small effect. No association was 

found between having a diagnosis of one or more autoimmune conditions and MC prevalence, 

width or LBP. 

Key words: intervertebral disc degeneration, low back pain, modic change, autoimmune disease. 

Introduction 

Low back pain (LBP) is one of the largest causes of disability worldwide. It is a leading cause of 

work absenteeism and medical consultation [180]. This is reflected by a huge medical and 

economic social burden. The prevalence of LBP is higher in females and a 2019 estimation of 

568.4 million LBP cases overall makes it the leading morbidity worldwide [181]. One of the main 

causes of LBP is spine degeneration, in particular the age-related changes of the intervertebral 

discs (IVD) [182]. The IVD is the largest avascular organ in the body and it composed of three 

anatomical regions: nucleus pulposus (NP) a gelatinous proteoglycan rich central structure, 

annulus fibrosus (AF): a ring of ligamental fibers surrounding the NP and cartilaginous endplates 

(CEP) that enclose the disc and separate it from vertebral bodies. Vertebral CEPs play an important 
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role in the homeostasis of IVDs serving as an interface between discs and bones and providing 

nutrients to IVD cells. Another important function of CEP is to prevent contact between host 

immune cells and the IVD acting as a physical barrier [144]. With age IVD faces biochemical and 

morphological changes and starts to degenerate. Intervertebral disc degeneration (IDD) is a 

pathological process that leads to the loss of function of this anatomical structure favoring the 

onset of a plethora of disorders that eventually lead to LBP[183].  

One of the IDD is a bone marrow lesion within the vertebra and change to adjacent bony endplates 

detectable with magnetic resonance imaging (MRI) named Modic change (MC) [184]. Evidence 

suggests these manifestations are part of the same pathological process influencing the onset of 

LBP [185]. MC were first reported by Ross in 1987 [186] and subsequently described by Modic 

et al. Risk factors for MC are similar to those for IDD and include increased age, high body mass 

index (BMI) and smoking, however the condition also has a heritable component estimated at 30% 

[187]. 

Despite known risks and heritability, it is not clear how the onset of MC is triggered, and why this 

only occurs in a subset of people affected by IDD. One possible cause could be the subjective 

ability of bone marrow to respond to inflammation coupled with the damage of CEP (ED) [188]. 

When bone marrow and protruded disc tissue get in contact, the immune-privileged disc tissue 

could trigger an autoimmune response which could enhance the onset of MC [189], [190]. One 

characteristic of IDD is a compromised endplate, which, when damaged, along with the ingrowth 

of blood vessels leads to the infiltration of activated immunocytes and inflammatory cytokines in 

the disc space.  

If MC have an autoimmune component, then people with autoimmune conditions would be 

expected to manifest higher prevalence and severity of MC. An autoimmune diagnosis may be 

associated with altered immunoreactivity [191], including a more severe response if NP tissue is 

exposed to immune cells. The aim of the current investigation was to assess prevalence and 

severity of MC and LBP in participants with an autoimmune disease diagnosis in a well-

documented cohort of adult twin volunteers having prospectively gathered data over many years 

Methods 

This cross-sectional retrospective study determined whether adults diagnosed with an autoimmune 

condition demonstrate a higher prevalence or severity of MC. The cohort is composed of twins 

enrolled in the TwinsUK adult twin registry based at King’s College London [192]. Currently, the 

registry comprises over 15,000 twins, mostly female, aged 18 - 88 making it one of the largest 

twin registries in the world. Participants are sent regular questionnaires that include questions 

regarding lifetime diagnosis of an autoimmune disease. All twins have signed informed consent 

forms for research approved by St. Thomas’ Hospital Ethics Committee and Liverpool East 

Research Ethics Committee (REC reference 19/NW/0187), IRAS ID 258513. The TwinsUK spine 

study was started in 1996. 

T2 weighted images (T2WI) sagittal spine MRIs were obtained using a Siemens scanner (Munich, 

Germany) with 1.0-T superconducting magnet and supporting data were collected from twins who 
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were included in the study. Variables such as age, sex and BMI were obtained, as well as lifestyle, 

and clinical information. 

Only participants with availability of MRI and autoimmune questionnaires were included in the 

study. Data were collected from self-reported questionnaires and health assessment visits of twins 

previously invited to participate in various studies examining a wide range of traits and common 

medical conditions. Questionnaires included doctor’s diagnosis of inflammatory bowel disease, 

rheumatoid arthritis, coeliac disease, vitiligo, autoimmune thyroid disease (hypothyroidism, 

hyperthyroidism), lupus, multiple sclerosis and type I diabetes were included as autoimmune 

conditions of interest (Figure 1). Circulating anti-thyroid peroxidase antibodies (TPOAb) were 

measured merging the results coming from two different assays: Roche assay (TPOAb titre of >34 

kU/l considered positive) and Abbott assay (TPOAb titre of >6 kU/l considered positive). Patients 

with missing data were assumed to be negatives for that specific condition. 

 

 

Figure 1 The pie chart shows the prevalence in the sample (n = 764) of the autoimmune conditions 

included in the study. 
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An individual was considered autoimmune positive if they had ever received a diagnosis of at least 

one of the conditions above or had circulating antibodies over the positivity threshold. Coding of 

the largest autoimmune sub-group, thyroid related was cross-referenced and integrated with 

prescription data that listed medications to treat autoimmune disorders affecting the thyroid. 

Coding MRI scans 

Lumbar MC was identified on MRI by presence of altered imaging signal at vertebral body levels 

as previously [187]. MC was coded as a positive binary variable if MC was present at any one of 

the lumbar segments [193]. A quantitative variable was derived from the size of both superior and 

inferior bone marrow lesions evaluated on a scale ranging from 0-5 as previously described [194], 

and values were summed to create a MC lesion size score for each lumbar level [195].  

IDD had been coded as the sum of disc bulge, disc imaging signal intensity, disc height and 

osteophytes formation at each spine level previously [196]. Briefly, each measure was assigned a 

score (0-3), grading the severity of the phenotype and a total degeneration score, summing scores 

for each of the 5 lumbar discs was assigned for each participant (total IDD range = 0-60). Back 

pain was evaluated through several methods. First, the Medical Research Council Back and Neck 

Pain Questionnaire was administered at the MRI scan visit. In addition, self-reported episodes of 

disabling LBP lasting more than one month at any period during lifetime were collected on 

subsequent questionnaires [197]. 

Statistical analysis 

Statistical parametric and non-parametric tests were used for comparing the 2 groups. T-test was 

used for comparing age and BMI, Chi-squared for MC prevalence and Mann Whitney U for MC 

width. Multivariable generalized mixed linear models (GLMM) were fitted to the data to calculate 

odds ratios for risk of developing MC and LBP in participants with an autoimmune disorder. 

A general formulation of the model conditionally on random effects 𝑏𝑖: 

𝑓(𝑦𝑖𝑗|𝑏𝑖) = exp [
𝑦𝑖𝑗𝑛𝑖𝑗 − 𝑎(𝑛𝑖𝑗)

∅
+ 𝑐(𝑦𝑖𝑗, ∅)] 

 

with mean 𝐸(𝑦𝑖𝑗|𝑏𝑖) =  𝑎′(𝑛𝑖𝑗) =  𝜇𝑖𝑗(𝑏𝑖) and variance Var(𝑦𝑖𝑗|𝑏𝑖) =  ∅𝑎′′(𝑛𝑖𝑗), GLMM permit 

the incorporation of hierarchical random effects in multiple levels thus allowing the flexibility of 

correcting for effect that act among outcomes[198], [199] . 

Moreover, it was investigated associations between diagnosis of an autoimmune disorder and the 

size of MC lesion measured in a normalized scale from 1 to 5. Multivariable analysis was adjusted 

for covariates included as dummy variables such as sex, smoking and episodes of disabling LBP, 

continuous as age and BMI and categorical such as family structure i.e., twin relatedness and 

number of autoimmune disorders. An individual was considered as smoker if reported to smoke 

more than 10 cigarette packets per year.  Data processing and analysis were planned and executed 
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in Python version 3.10.5 using “statsmodels” and “scipy” packages and R Studio version 2022.07.1 

using lme4 library. A post-hoc power analysis was carried out using G*Power software [200]. 

Results 

Data were obtained for 764 twins having MRI coded for MC and completed autoimmune self-

report questionnaires (Table 1). Twins were predominantly female (n=737 (96%)) with mean age 

of 54 years (range 34-73 years) and mean BMI = 25 kg/m2 (range 16.23-51.40 kg/m2). Participants 

reported smoking more than 10 packets a year or more (n = 213 (28%)), and 164 (22%) participants 

had had an episode of disabling LBP over their lifetime lasting more than one month (Table 1). 

BMI was significantly different between participants diagnosed with an autoimmune disease and 

those with no autoimmune diagnosis (t-test p-value = 0.001). This is because included autoimmune 

disorders were affecting thyroid and is well grounded that these conditions influence BMI [201]. 
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Modic change 

MC was defined as any individual having at least one MC affected endplate. A prevalence of 31% 

and 33% was detected in the autoimmune positive and negative participants respectively, there 

was no significant difference between the two proportions (χ2 p-value = 1). Both incidence and 

size of MC were higher in L4-5 and L5-S1 than other lumbar levels (Figure 2).  

         Autoimmune Negatives Autoimmune Positives 

  n % Mean(±SD) n % Mean(±SD) 

Age  561  53(8) 203  54(7) 

        

Sex        

 Female 535 95  202 99  

 Male 26 5  1 1  

        

BMI  561  25(4.3) 258  26(5) 

        

Smoking        

 No 400 71  151 74  

 Yes 161 29  52 26  

        

Modic Change        

 No 376 67  140 69  

 Yes 185 33  63 31  

        

Modic Change 

Size 

 166  5.9(3.5) 176  7(5) 

        

LBP        

 No 441   159 78  

 Yes 120   44 22  

        

IDD  508  12(8)  180 11.9(8) 

        

N of 

Autoimmune 

conditions 

       

 1    137 68  

 2    56 27  

 3    9 4.5  

 4    1 0.5  

Table 1 Baseline and outcome characteristics of the participants divided into autoimmune positive 

and autoimmune negative groups 
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Table 2 summarizes the results of generalized mixed logistic regression model corrected for age, 

BMI, smoking and family structure. Neither having a diagnosis of autoimmune disease nor the 

number of morbidities were associated with the presence of MC (p-value > 0.05). MC was found 

to be associated independently to IDD (OR 1.22 CI 1.16 – 1.30, p-value = 6.7 × 10−13). MC size 

and autoimmune diagnosis (r2 = 0.4) were not associated, results are summarized in Table 3. No 

association between autoimmune diagnosis and MC size was detected. Interestingly, BMI was 

associated with MC size even after correcting for IDD, providing evidence of an independent 

association between BMI and MC size. 

 

 

 

Coefficient 

 

R2 = 0.48 

 

OR 

 

CI 

 

P-VALUE 

 

Z-VALUE 

AGE 1.00 0.96 – 1.03 0.72 -0.35 

BMI 1.04 0.98 – 1.09 0.15 1.44 

SMOKING 1.13 0.70 – 1.84 0.61 1.51 

AUTOIMMUNE 0.76 0.46 – 1.27 0.30 -1.03 

IDD 1.22 1.16 – 1.30 1.46e-12 *** 7.08 

A B 

Figure 2 Prevalence of MC (Panel A) is measured as total prevalence of MC at specific level among 

MC positive participants. Size of MC (Panel B) is measured as mean MC width at specific level 

among all MC positive participants. 

Table 2 Risk factors for MC. Odd ratios were calculated through multivariate regression analysis. 

Significant results are highlighted in grey. 
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Coefficient 

 

R2 = 0.40 

 

β 

 

CI 

 

P-VALUE 

 

T-VALUE 

AGE -0.01 -0.06 – 0.03 0.48 -0.70 

BMI 0.07 0.005 – 0.135 0.03 * 2.13 

SMOKING 0.18 -0.40 – 0.77 0.54 0.61 

AUTOIMMUNE -0.23 -1.20 – 0.61 0.52 -0.64 

IDD 0.24 0.20 – 0.29 2e-16 *** 10.41 

 

 

Coefficient 

 

R2 = 0.40 

 

OR 

 

CI 

 

P-VALUE 

 

Z-VALUE 

AGE 0.91 0.92 – 1.02 0.24 -1.18 

BMI 1.06 0.99 – 1.13 0.10 1.65 

SMOKING 1.83 0.97 – 3.44 0.06 1.88 

AUTOIMMUNE 1.03 0.40 – 2.70 0.95 0.06 

MC WIDTH 1.13 1.02 – 1.25 0.01 * 2.48 

IDD 1.08 1.02 – 1.14 0.007 ** 2.70 

Table 3 Risk factors for MC width. Betas were calculated through multivariate regression analysis. 

Significant results are highlighted in grey. 

Table 4 Risk factors for LBP. Odd ratios were calculated through multivariate regression analysis. Significant 

results are highlighted in grey. 
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Finally, we examined the association between autoimmune disorders and episodes of LBP in the 

twin participants while correcting for BMI, age and smoking (r2=0.4, Table 4). No association was 

found between autoimmune phenotype and LBP (p-value > 0.05).  

Discussion 

This is the first study using a large population sample having MRI scans coded for MC and 

recorded autoimmune diagnosis. Autoimmune diagnosis does not appear to influence the 

development of MC suggesting that the development of MC is not autoimmune in etiology. We 

explored MC both as a binary variable and as continuous measure of size. None of the models 

showed autoimmune diagnosis was correlated to MC size, width, or measures of back pain but our 

study does reveal that MC is related to raised BMI.  

Related to our hypothesis that more severe autoimmune diathesis following an autoimmune 

diagnosis could result in larger MC lesions, we investigated the correlation between autoimmune 

diagnosis and MC width but found no association. BMI and MC were associated when correcting 

for disc degeneration which suggests an independent association, as we [202] and others have 

reported [161]. Clarity around how BMI influences MC prevalence or size is needed [203]. 

Whether high BMI places a physiological burden upon endplates, subjecting them to increased 

microtrauma or whether systemic inflammation by lipid-induced endo- or paracrine responses 

promotes MC is not clear. Our findings that BMI is independently associated with size but not 

prevalence of MC could suggest the association is driven by adipose-derived inflammation. In 

support to this, Teichtahl et al. showed that increased spinal adiposity is correlated with MC [204]. 

Conversely, high BMI increasing spine workload and influencing MC prevalence was not 

supported by our findings. 

Autoimmunity has been suggested to play a role in pain perception, a dysregulated interplay 

between nervous and immune systems, especially the interaction of nociceptor and immune cells 

[205]. Pathological changes promoted by altered metabolite transport due to ED and the 

subsequent recruitment of inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis 

factor alpha (TNF-α) and IL-6 have been demonstrated to stimulate pain receptors in tissues and 

play a causal role in LBP [206].  For this reason, we examined whether diagnosis of an autoimmune 

disorder increased the reporting of back pain. This question fell within our general investigation 

that autoimmune diagnosis and MC may correlate, thus MC symptomology, for example LBP may 

also correlate with autoimmune diagnosis. We found no evidence to support either of these 

relationships. We found previously in TwinsUK that smoking and high BMI was associated to 

LBP [207]. High BMI and smoking likely have several influences on back pain from reducing 

blood flow and disc nutrition, to socio-economic or physical workload factors [168][208]. The 

endocrine responses of adipose tissue chronically elevate inflammatory markers [209] with may 

increase pain susceptibility. Even if autoimmunity has a preponderant component in chronic pain 

perception, LBP is directly influenced by IDD, smoking, and BMI.  

The etiology of autoimmune disease depends, in part, from genetic susceptibilities, along with 

several other risk factors; lifestyle, environment and epigenetics have been proposed and 

demonstrated to contribute [210]. Autoimmunity is a diverse phenomenon classified into 

“systemic” and “organ specific” which share risk alleles at HLA locus on chromosome 6 [211]. In 
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contrast, alleles associated with cartilage production and vertebral health have been associated 

with MC.  Both candidate and genome wide gene association studies fail to provide evidence of a 

shared genetic risk for autoimmune diagnosis and MC [212], [213], [214]. Autoimmune disorders 

are highly heterogeneous and future investigations would likely benefit from disease specific foci 

when examining links with other conditions [215]. MC does not appear to be an autoimmune 

disorder, the autoimmune-like response of cells may not relate to autoimmune diagnosis.  

Finally, alternative hypotheses cannot be discounted; mounting evidence suggest a role for occult 

infection in the IVD  [216], [217], [218], [219]. The resulting low-level or occult infection could 

promote inflammatory processes, leading to MC [220]. This theory is supported by studies 

investigating the presence of bacteria in degenerate and MC adjacent discs[221], 

Propionibacterium acnes (among others) has been cultured, and whole bacterial genome 

sequencing studies have reported an array of findings in disc tissue [222], [223] as well its injection 

in animal models disc caused the development of MC [224], [225]. Moreover, it was shown that 

patients with LBP and type I MC treated with antibiotics improved pain symptoms and MRI Modic 

grading [226]. There has however been relatively little scale, scientifically robust research 

investigating the presence of bacterial infection in the disc especially in relation to chronic LBP 

and MC [227] and bacterial contaminants are often posited to explain findings of disc microbes 

[228]. Whether dysregulated bacteria and occult infection or pain-generating cytokines are the 

impetus for an inflammatory stimulus, leading to MC is not clear. 

A study may represent a false negative or lack of detectable association may arise where studies 

are of insufficient size. According to the power estimation of our study, we had 80% power to 

detect an association between the occurrence of MC and autoimmune disease of effect size of 0.1. 

Despite the high power we did not detect any increased MC prevalence. This suggests if MC does 

occur more frequently in participants with autoimmune diagnoses, it must be at a rate less than 

10%. Our best conclusion is there is no relationship between autoimmune diagnosis and MC 

development. Exposure of normally immune privileged NP cells to the external circulus may be 

necessary for this response, however we did not find evidence this reaction is promoted by carrying 

an autoimmune disorder but instead could depend on a specific adaptive immunity alteration. We 

can’t therefore exclude that an autoimmune response is ongoing during MC onset, but this is not 

related to a susceptibility to autoimmunity proper of autoimmune disorders. 

We acknowledge several limitations to this study. We considered autoimmunity as a single 

phenotype obtained by merging very different diseases. For this reason, further investigations 

should focus on studying relationships between autoimmunity and MC in specific autoimmune 

disorders by including biological samples and genetic data in order obtain a deeper understanding 

of the complex mechanisms underlying. Self-report was used to classify diagnosis of autoimmune 

conditions and reliance on participant self-report may bias results, although the hypothesis being 

tested was obscure to participants. The cohort is predominantly female, which may have favored 

our study as autoimmune diseases are twice as prevalent in females [229], allowing us to include 

conditions rare in the general population. It does however prevent us drawing conclusions about 

autoimmune diagnosis and MC risk in males. Lastly, our MC categorization was based on T2WI 

images only. To distinguish MC types (I, II or III) both T1WI and T2WI are required – but not 

available in this cohort for funding reasons. 
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Conclusions 

This study is the first to examine autoimmune disorders and MC prevalence in a large, population-

based cohort. The study was well powered to detect a small effect. No association was found 

between having a diagnosis of one or more autoimmune conditions and the prevalence, width or 

severity of MC. Interestingly, MC extension was associated to increased BMI after correcting for 

IDD, sign of an independent association. These results are applicable to females since the results 

presented were replicated excluding male participants 
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4. Discussion 
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Recent advancements in omics technologies have boosted biomedical research into a new era of 

discovery and understanding. With breakthroughs in genomics, transcriptomics, proteomics, 

metabolomics, scientists can now explore biological systems at an unprecedented level of detail. 

The exponential increase in biological data volume alongside the growth of computational 

resources has prompted the beginning of the application of computational models to interpret 

complex biological systems. These innovative techniques allow researchers to analyze vast 

amounts of data, uncovering intricate molecular pathways, identifying biomarkers for diseases, 

and revealing the underlying mechanisms of various biological processes. Moreover, the 

integration of multiple omics datasets has enabled a holistic approach to studying complex 

biological phenomena, providing insights into the interplay between genes, proteins, metabolites, 

and their regulatory networks. These recent developments in omics offer great potential for 

enhancing our comprehension of the origins of complex disorders, with a focus on personalized 

medicine, drug discovery, and precision healthcare. 

In this thesis, we applied innovative methods to heterogeneous biological data in order to shed 

light on the mechanisms leading to the development of IDD and its comorbidities. The developed 

method can be applied to other pathologies and are publicly available to support researchers in the 

investigation of the biology of complex disorders. We approached the problem of understanding 

how the genotype is influencing the phenotype of IDD from multiple directions. In Chapter 1, we 

developed a new method based on KGE that allows the integration of heterogeneous biological 

data in a graph-based structure. We then compared the capabilities of different embedding 

generation algorithms for translating the knowledge encoded in the graph into low-dimensional 

vectorial space, using supervised and unsupervised methods. The best performing algorithm was 

then selected to build an AI-based GDA prediction tool that is freely available for the research 

community. 

Chapter 2 introduces a tool that integrates multiple datasets to explore the genetics of complex 

diseases. In this section, we describe Genopyc, a Python library to explore how genetic variations 

linked with complex traits impact gene transcription and regulation. The lack of a consensus 

approach to reach the understanding of the functional effects of the SNPs on the downstream 

biological pathways hinders the discovery of effective therapeutical strategies. Moreover, a Python 

library for the investigation of variants detected from GWAS is still missing and to carry out the 

necessary analysis the user must rely on different sources resulting in a time-consuming approach. 

We expect this tool to be useful to the scientific community.  

Finally, in Chapter 3 we investigated IDD and its comorbidities from an epidemiological 

perspective. This study was conducted in collaboration with the department of epidemiology at 

King’s College in London. The cross-sectional study took advantage of a large cohort of twins 

(TwinsUK) to investigate the connection between autoimmune positive participants and Modic 

change, an inflammation of the vertebral body strictly related to IDD. 

 

4.1 Innovative KGE GDA framework 

In this thesis we have developed a new framework to prioritize genes that could be involved in 

complex diseases. The technology utilized allows the integration of heterogeneous data sources 



   

 

106 

 

into a graph that reflects the state-of-the-art biological knowledge, that can be easily updated and 

that can accommodate a variety of biomedical data types. Then, this knowledge is transformed 

into a vectorial space and was utilized to train an AI model to prioritize genes associated with 

complex conditions. We compared different algorithms to create embeddings relying on different 

methodologies and we created 2 novel algorithms, namely DLemb and BioKG2vec, to produce 

KGE and that outperformed most existing methods. The results of this part of the thesis showed 

that Metapath2Vec surpasses other algorithms both in supervised and unsupervised tasks and was 

the selected methodology to build the GDA framework.  

Our results showed that heterogeneous data integration in the KG leads to better GDA predictions. 

In fact, the complex interplay of genes, epigenetic, regulatory and epistatic interactions captured 

from multiple data sources can depict a more meaningful biological scenario compared to single 

sources taken singularly. 

In contrast, we showed the consequences of data preprocessing: random – walk based approaches 

such as Metapath2Vec seem to benefit from integrating the whole ontological data, comprising 

classes, properties, restrictions and metadata. In comparison, Dlemb prediction capabilities 

increase after ontology preprocessing in which only the graph hierarchical structure of the ontology 

was kept, leaving out the restrictions and metadata. This difference could be driven by the natural 

language processing capabilities of models such as Metapath2Vec or Node2vec that are based on 

language models such as Word2Vec.  

In summary, we have developed a framework for GDA predictions, which is accessible for free at 

https://github.com/freh-g/EmBioMark. This tool serves to facilitate the exploration of genes 

associated with complex diseases, offering an in-silico solution for better interpretation of GWAS 

data, that require access to restricted genetic data, which can be intricate to handle. 

 

4.2 Elucidating the consequences of genetic variation 

Despite GWAS prioritizing many different genomic loci associated to complex conditions, 

understanding how the genotype influences the development of complex conditions is still not 

fully understood. Multiple genes contribute to disease susceptibility in conjunction with 

environmental influences. Moreover, many disease-associated genetic variants prioritized from 

GWAS have modest effects, making it challenging to pinpoint their specific roles in disease 

pathogenesis. Integrative approaches, combining genetic data with functional genomics, 

epigenetics, and other omics technologies, are increasingly being used to untangle the complexities 

of disease genetics.  

However, despite these approaches holding promise for uncovering novel disease mechanisms and 

identifying potential therapeutic targets, a benchmark pipeline to understand the involvement of 

the variants in the etiology of complex condition is still to be achieved. We are entering the era in 

which we can mine multi layered data repositories to reach a greater understanding of the 

biological underpinnings of complex disorders. A service that unifies these heterogeneous 

repositories and carries out multiple analyses is still to be determined also because of lack of a 

gold-standard pipeline to understand the mechanistical effect of genome variants on the 

development of the diseases. 

https://github.com/freh-g/EmBioMark
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Several post-GWAS analysis tools are accessible for scrutinizing GWAS discoveries across 

various objectives. Despite the existence of different tools aimed at similar outcomes (e.g., fine-

mapping or colocalization), a big variation in their data prerequisites, assumptions, and outcomes 

is present. Currently, there is no established protocol or standard procedure for determining the 

optimal tool for each scenario, and perhaps a combination of tools would be the most effective 

approach [161] although very time consuming. While some methodological comparisons have 

been conducted, they have predominantly remained at the mathematical level without digging into 

the biological basis of their findings. Moreover, there is a lack of a benchmark dataset to aid in 

evaluating the performance of post-GWAS tools. Although attempts to create a collection of 

manually curated genes with moderate to high confidence in their functional significance has been 

proposed to assist in prioritizing causal genes at GWAS loci [230], [231], the use of high-quality, 

gold standard GWAS datasets that encompass a broad spectrum of molecular mechanisms and 

genetic architectures is essential to mitigate potential bias in the interpretation of the effects of the 

genetic variants. 

For these reasons, we developed Genopyc, a Python library enabling users to integrate multiple 

repositories and analyses. Genopyc serves as a versatile toolkit for navigating the genomic 

landscape, facilitating a deeper comprehension of variant effects on nearby functional genomic 

elements through the integration of diverse data and analyses. The package's code is freely 

accessible at https://github.com/freh-g/genopyc  and can be easily installed via the Python Package 

Index (PyPI). While the package currently offers features like data integration, variant-gene 

binding, genetic identifier mapping, and result visualization, its open-source nature allows for 

seamless integration of additional functionalities. Designed as a comprehensive Python library for 

genetic data management, Genopyc holds potential for further enhancements and extensions. 

 

4.3 Biological implications of the results 

The aim of this thesis extended beyond the creation of a methodological approach to prioritize 

genes linked to the etiology of IDD. It sought to explore and comprehend the influence of genetics 

on disease development and progression, as well as its comorbidities. Consequently, we 

implemented tools into the study of IDD's genetic foundations. Our findings revealed that the 

prioritized genes had previously been identified in the literature as playing a significant role in the 

disease's etiology. Additionally, through functional enrichment analysis, we observed that these 

genes are involved in pathways crucial for the homeostasis and turnover of IVD tissue. 

Analyzing biological systems is a challenging task due to their complexity and heterogeneity. 

Biological data exhibit intricate hierarchical organization and non-linear interactions, making it 

difficult to understand the underlying regulation mechanisms especially due to the absence of a 

robust statistical technique for accurate analysis. We modelled this complexity by the 

implementation of network approaches and applied learning techniques capable of extrapolating it 

to build predictive models. When applying our KGE-based tool, we obtained TGF-β as the most 

likely associated gene to the pathology confirming what was already reported in literature and in 

expert curated databases. In fact, TGF-β is connected with the homeostasis of the disc and plays a 

key double-edged role in the IVD turnover stimulating the proliferation of the cells even if was 

showed to be deleterious in high concentrations [232]. Interestingly, other top scoring genes 

prioritized from the model are part of TGF-β pathway, meaning that the detection of the disease 

https://github.com/freh-g/genopyc
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module, often composed that genes that have a role in the same functional niche is synthesized 

into the embeddings. Among the top 10 genes prioritized from the algorithm there are typical 

components of the disc such as COL1A1 [233] and MMP-2 a key enzyme that degrades the 

extracellular matrix and whose activity is positively correlated with the degeneration of the disc 

[234]. These results suggest that the genes prioritized from the model are involved in pathways 

relevant to the disc health and that are expressed in the tissue.  

Our tool could be used to shortlist candidate genes that should be validated in vitro and in vivo 

with knock-down models or in a data – driven method through gene candidate approaches. 

However, to reach a greater understanding of complex conditions and how specifically the 

genomic sequence affects the expression and the function of certain proteins, genomic variants 

should be included in computational models to understand the effect of the haplotypes on disease 

susceptibility. For this reason, we developed Genopyc a Python library to help the investigation of 

genomic data and interpretation of functional effects of the variants. Interpreting the variants 

associated with complex diseases is a difficult task that involves the mining of multiple repositories 

and the implementation of different statistical analysis. To support this, we included in Genopyc 

the possibility of querying genetic and expression data such as eQTL to understand if a variant is 

associated with the differential expression of a gene, LD to discover the correlation among 

variants. 

To show the potential of the library in interpreting the functional targets of the SNPs associated 

with a condition we applied it to the results from a GWAS on IDD. By applying the locus to gene 

pipeline from Open Target genetics included in Genopyc we prioritized a different gene set 

compared to the variant - gene distance - based methods of GWAS. The original study highlighted 

PARK2 as the most significantly associated gene to the condition. It is encoded in chromosome 

six and contributes to the development of Parkinson disease, being involved in the targeting of 

unwanted proteins and general functions such as cellular activity and growth. The function of this 

gene on the etiology and progression of IDD was not clear and the authors stated that further 

studies should be carried out to unveil its role [235]. 

Through a function enrichment analysis of the genes performed by the authors, no significant 

pathways were enriched in the gene set, thus not giving hint on the possible functional implications 

of the variants. On the other hand, after performing the same analysis on the gene set prioritized 

from Genopyc, we found out that the target genes of the SNPs play a role in regulating the activity 

of transcription factors involved in pathways related to IDD and already reported in literature as 

important component of the disease progression such as HIF1-α, SP1 and AP-2α.  

Furthermore, the results obtained from the application of the 2 tools also show concordance, 

Genopyc highlighted the importance of AP-2α, HIF-1α and SP-1. These transcription factors are 

important regulators of proteins that were prioritized with the KGE framework. In fact, AP-2α was 

shown to modulate TGFβ-1 and SMAD-3 in rat IDD models. TGFβ-1 acts as a double-edged 

sword in IDD having normally a protective effect but, if excessively activated, contributes to the 

degeneration of the disc [236]. Another concordance is shown in the HIF – 1α pathway prioritized 

from Genopyc. This transcription factor is very important in the homeostasis of the IVD [237] . It 

was shown that constitutively activated HIF – 1α leads to upregulation of proteins such as SOX9, 

ACAN and COL2A1 [237], chondrogenic proteins prioritized with the KGE framework. Having 
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prioritized the genes under the control of these transcription factors laid the basis of further studies. 

Finally, SP – 1 was shown to act in synergy with TNF-α and interleukin-1β, proteins that are 

largely reported in literature associated with IDD [238] and that were predicted to be positively 

associated with the condition.  

These findings shifted the attention from autoimmune – related genes to genes that could be 

involved in the disease; the majority of SNPs prioritized from the GWAS were located on 

chromosome six close the human leukocyte antigen (HLA) locus aligning with the theory that 

autoimmunity plays a role in the development of the degenerative disk disease [239]. 

Motivated by this, we investigated the autoimmune bases of Modic change, the inflammation of 

the vertebral body closely correlated with IDD and LBP. The rationale behind the study was to 

understand if autoimmune positive participants showed significantly increased prevalence of MC 

compared to non-autoimmune participants. Thus, we exploited the large cohort of TwinsUK to 

perform a cross-sectional study to associate MC prevalence, size and LBP to the diagnosis of an 

autoimmune disorder. The results showed the absence of association between being affected by an 

autoimmune condition and increased prevalence, size and pain of MC. Interestingly, the increased 

BMI was significantly associated with the size of the lesion but not the prevalence. This could 

mean that increased BMI leads to more severe lesions in the vertebral body probably due to the 

increased widespread inflammation typically associated with higher BMI [240]. This study 

showed that most likely MC don’t have an autoimmune nature and that the autoimmune processes 

going on during IDD are a restricted phenomenon following the exposure to NP tissue to the blood 

circulation and that isn’t more severe in persons that have an autoimmune phenotype. 

 

4.4 Data curation and interpretability 

The KG GDA tool created in this thesis allows us to capture multiple levels of biological 

information, the integration of the data into a network depicts the multi-layered nature of biological 

systems in which their proteins are expressed in a given tissue and are related to certain pathways 

interacting with each other and being associated with particular phenotypes.  

The KGE produced in this thesis were implemented in a GDA prediction task. However, the 

breadth of biological information included in the KG holds potential to explore different biological 

associations. By capturing intricate patterns and associations within biological, ontological and 

biomedical data, these embeddings can be effectively implemented to predict similar diseases or 

therapeutic indications. For instance, embeddings trained on disease – phenotype relationships can 

identify diseases with shared pathways and symptoms, thus clarifying how diseases are related. In 

a work from Biswas et al. [241] a biological KG composed of ontological and PPI data was created 

and by applying a R-GCN they were able to predict new links between diseases - phenotypes and 

drug – phenotypes. This study highlighted the capabilities of KGE to be implemented in diverse 

biological tasks. 

However, despite the usefulness of this method, we showed that the quality of the data is very 

relevant to obtain quality predictions and not bias the results. During the validation process we 

discovered latent features that could lead to biased prediction capabilities of the model. In fact, 

due to both the nature of polygenic diseases that are associated with multiple genes and the intrinsic 
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bias in literature for which there are some diseases and genes that are significantly more studied 

compared to others. This is an outcome of the biological characteristics of key genes involved in 

many pathways and polygenic diseases, that must be acknowledged when a predictive model is 

framed to be aware of this potential bias. 

Graph learning models applied to heterogeneous data face potential challenges due to the 

integration of diverse biological knowledge bases, including the risk of data leakage. This risk 

arises when incorporating multiple vocabularies and data sources, as discrepancies in disease 

definitions across ontological frameworks may occur. These discrepancies can lead to the mapping 

of identical entities to the same identifiers, resulting in redundant entries and inflated predictions. 

Additionally, biases may emerge from recurrent associations among distinct knowledge bases. For 

example, when training a predictive model to infer new links using a specific knowledge base with 

a conventional training-test split, embeddings created during the process may inadvertently encode 

some links from the test set. Consequently, this may lead to inflated predictions during model 

validation. 

A critical challenge in biology is data privacy due to the sensitive nature of genomic, medical, and 

other biological data. Personal information contained within biological datasets, including genetic 

predispositions, health records, and potentially identifiable traits, necessitate stringent privacy 

measures to safeguard individuals' confidentiality and autonomy. This led to difficult and time-

consuming processes to access the sources of information slowing the process of discovering new 

biological insight that could improve healthcare leading to the discovery of new therapeutic 

strategies. As biology increasingly intersects with fields like machine learning and genomics, 

balancing the need for keeping data private with moving science forward is of primary importance. 

Reaching a balance between facilitating research and protecting individuals' privacy rights requires 

robust regulatory frameworks, ethical guidelines, and technological safeguards to handle data 

responsibly while exploring new scientific discoveries. 

In this thesis we explored different aspects of biological studies using ontological data, publicly 

available biomedical repositories and large-scale patient specific databases. We implemented 

different techniques, from non-interpretable deep learning frameworks to more understandable 

regressions. The complexity of biological landscape causes a disconnection between structured 

data such as ontologies and patient specific cohort data that often are populated with missing 

values, unharmonized entries and unstructured data. Consortia that aim to organize discoveries 

coming from cohorts of patients into publicly available datasets faces an enormous amount of 

challenge coming from data protections, poor description of the conditions under which the study 

is carried out and lacking of a unified vocabulary for biological entities. For this reason, future 

efforts in data collection and distribution should be aimed at improving data quality and 

interpretability to reach more precise outcomes of in-silico models.  

Another layer of difficulty comes from the interpretability of AI models applied to networks. While 

these models often demonstrate impressive performance in tasks like node classification, link 

prediction, and graph embedding, understanding how they arrive at their decisions is equally 

important as data quality for real-world applications. The inherent complexity of network data 

poses unique challenges for interpretability, as relationships and interactions between nodes can 

be intricate and heterogeneous. Reaching a greater interpretability in AI models would be 
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accompanied by an easier understanding of the results and consequently the inference of causality. 

However, discerning causality from correlation remains a challenge itself. Causality comes into 

play when we aim to understand not just what happens, but why it happens. This involves 

identifying causal relationships between variables and determining how changes in one variable 

influence another. While deep learning models can implicitly capture some causal relationships 

through their learned representations, explicitly modeling causality often requires additional 

techniques [242]. Efforts to enhance interpretability include developing explainable AI techniques 

tailored to network data, such as attention mechanisms, node importance measures, and 

visualization [243]. 
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5. Conclusions
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1. We developed a knowledge graph embedding based tool able to prioritize genes 

associated to human diseases. 

2. The results of applying these tools to IVD highlighted genes previously associated to this 

condition, and functional enrichment of these genes yielded processes related to 

extracellular matrix turnover and structure. 

3. We showed that latent features such as number of associations, literature bias, data 

preprocessing are latent features that needs to be considered when applying AI in the 

biomedical field. 

4. From the integration of heterogeneous data, the functions enriched in the set of genes 

associated to intervertebral disc degeneration variants are shifted from autoimmunity to 

transcription factors such as SP1 AP2α and HIF1-α. 

5. SP1 and AP2-α are transcription-factors prioritized by the application of Genopyc. They 

contribute to the homeostasis of the catabolic/anabolic environment of the disc through 

downregulation of MMPs, ADAMTS4, Cox2 and through the TGF-β/SMAD3 signaling 

pathway respectively. MMPs, ADAMTs, TGF-β and SMAD3 were also prioritized by the 

implementation of the knowledge graph tool, yielding concordant outcomes from the 

different tools. 

6. From a cross-sectional study performed on TwinsUK, we found that Body mass index is 

correlated with Modic change size, but not with its prevalence. 

7. The study also shows that there is no correlation between an autoimmune diagnosis and 

severity, size and prevalence of MC. 
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Low back pain is a highly prevalent, chronic, and costly medical condition predominantly 

triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and 

biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an 

anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme 

generation, cytokine and chemokine production, neurotrophic and angiogenic factor 

production. The IVD is an immune-privileged organ. However, during degeneration 

immune cells and inflammatory factors can infiltrate through defects in the cartilage 

endplate and annulus fibrosus fissures, further accelerating the catabolic environment. 

Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell 

infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An 

unbalanced metabolism could be induced by many different factors, including a harsh 

microenvironment, biomechanical cues, genetics, and infection. The complex, 

multifactorial nature of IDD brings the challenge of identifying key factors which initiate the 

degenerative cascade, eventually leading to back pain. These factors are often 

investigated through methods including animal models, 3D cell culture, bioreactors, 

and computational models. However, the crosstalk between the IVD, immune system, 

and shifted metabolism is frequently misconstrued, often with the assumption that the 

presence of cytokines and chemokines is synonymous to inflammation or an immune 

response, which is not true for the intact disc. Therefore, this review will tackle 

immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular 

involvements and implications for therapeutic development and assessing models used to 

explore inflammatory or catabolic IVD environments. 

Keywords: intervertebral disc degeneration, low back pain, inflammation, catabolism, immune-privileged 

microenvironment, GWAS, artificial intelligence–AI, agent-based model (ABM) 
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INTRODUCTION 

Epidemiology of Intervertebral Disc 

Degeneration 
Low back pain (LBP) is the largest cause of morbidity worldwide, 

affecting approximately 80% of people from Western countries 

during their lifetime and resulting in 5 million disability-adjusted 

life-years in young adults (GBD 2017 Disease and Injury 

Incidence and Prevalence Collaborators, 2018). Lower 

intervertebral disc degeneration (IDD) is the cause of around half 

of all LBP cases in young adults; however not all cases of IDD result 

in LBP (Baumgartner et al., 2021c). Although IDD prevalence 

increases progressively with age, IDD is common in subjects 

younger than 30 years old, conveying those various other factors 

besides age, such as excessive or uneven mechanical load, obesity, 

genetics, nutrition, trauma, and gender are involved (Hoogendoorn 

et al., 2000; Paassilta et al., 2001; Pincus et al., 2002; Cheung et al., 

2009; Samartzis et al., 2012; Teraguchi et al., 2014; Parenteau et al., 

2021). For example, studies have shown that women experience 

greater pain and disability than men when they are treated for 

IDD (MacLean et al., 2020). Additionally, LBP prevalence in 

females after menopause further increases in comparison to men 

at comparable ages (Wáng et al., 2016). Further, it is unclear 

whether occupation- related heavy physical loading is an important 

risk factor for IDD, as studies have contradictory conclusions 

(Bongers et al., 1990; Videman and Battié, 1999). Some studies 

have found IDD is significantly more common in athletes 

compared to the general population (Swärd et al., 1991). However, 

various twin studies that have been conducted suggest that 

occupation or sport related risk factors have only a minor role in 

IDD, while genetic influences were found to play a greater role in 

predicting degeneration (Battié et al., 2004).  On the  other hand, 

obesity is associated with increased IDD severity and extent, likely 

due to altered biomechanical and/or biological processes such as 

those driven by adipokines (Samartzis et al., 2012; Li W. et al., 

2022). Due to the complexity and multifactorial nature of IDD, 

the initiating and risk factors are poorly understood, which 

critically hampers proper LBP patient stratification and limits the 

development of personalized therapies. 

The Structure of the Intervertebral Disc 
The intervertebral disc (IVD) is the largest avascular organ in the 

human body with blood vessels only present in the outer annulus 

fibrosus (AF) and boney end plates, with all nutrient and waste 

exchange taking place via diffusion through the dense 

extracellular matrix of the disc (Urban 2002). Located between 

the vertebrae within the spine, the IVD consists of three highly 

hydrated, major tissues: 1) the nucleus pulposus (NP), 2) the 

annulus fibrosus (AF), and 3) the cartilage endplate (CEP). The 

central and proteoglycan-rich NP lies between the cranial and 

caudal CEPs and is laterally constrained by the peripheral and 

fiber-reinforced AF (Figure 1). This specialized composition and 

structure of the IVD ensures both trunk movements and 

resistance to high mechanical loads. The normal human IVD 

contains nucleus pulposus cells and annulus fibrosus cells within the 

NP and AF, respectively, with AF cells becoming more 

elongated and fibroblast-like towards the periphery. Cells occupy 

1% volume of the disc, though are crucial in maintaining the 

balance between anabolic activity such as the production of 

proteoglycans and collagens type I and II, and the procatabolic 

effects of factors involved in ECM turnover, including 

metalloproteinases, prostaglandins, and nitric oxide (Kang et al., 

1997). Furthermore, mechanical loads are thought to influence 

ECM homeostasis, where both excessive and insufficient loads 

lead to catabolism (Vergroesen et al., 2015). Due to the 

avascularity of the IVD, the environment is hypoxic, where the 

oxygen tension in the IVD is considered between 1 and 5% (Yao et 

al., 2016; Yao et al., 2017). 

In comparison to NP and AF tissues, the CEP receives far less 

attention in the literature; however, it is a vital tissue when 

discussing LBP. Lakstins et al. (2021) demonstrated that 

imperfections and weakness in the CEP can be a better 

anticipator of pain than IVD degeneration because chemical 

changes to the CEP are directly related to intervertebral disc 

degeneration (IDD) (Yao et al., 2016). The CEP is rich in collagen 

type II (Yao et al., 2016) and performs both mechanical and 

chemical functions (Roberts et al., 1989; Lakstins et al., 2021). 

Mechanically, the CEP acts as a physical filter preventing 

macromolecules from escaping the disc through the subchondral 

bone and is considered important in controlling the hydration of 

the disc under mechanical loads (Roberts et al., 1989; Moore 2000; 

Ruiz Wills et al., 2018). Chemically, the CEP allows metabolites, 

small molecules and waste to travel between the IVD and neighboring 

blood vessels in the bony endplates (Roberts et al., 1989; Turgut et 

al., 2003; Yao et al., 2016; Ruiz Wills et al., 2018; Zuo et al., 2019; 

Sun et al., 2020; Lakstins et al., 2021). 

The diffusivity of solutes through the CEP and towards the IVD 

depends greatly on their size and ionic charge. The healthy IVD is 

negatively charged due to the high proteoglycan concentration 

(Moore 2000; Pfannkuche et al., 2020). Therefore, only small, 

neutrally charged solutes  such  as glucose and oxygen, as well as 

cations such as sodium and calcium can penetrate the disc, but 

small anions such as sulphate and chloride ions can only cross 

through the CEP. In turn, large, neutrally charged solutes such as 

antibodies and enzymes usually cannot penetrate the healthy IVD 

(Moore 2000). 

Intervertebral Disc Degeneration 
Regarding disc morphology, as the IVD degenerates, it becomes 

more difficult to distinguish the boundaries between the AF 

and the NP.  This  loss  of  a  distinct boundary worsens with age, 

as the nucleus loses its gel-like quality and becomes more fibrotic 

(Buckwalter 1995) which was seen as a common degenerative 

feature across all species (Dahia et al., 2021). Another significant 

biochemical change during disc degeneration is the loss of 

proteoglycans, which are necessary to provide the osmotic 

resistance for the IVD to withstand compressive loads and keep 

the disc hydrated (Knudson and Knudson, 2001).  Such  

significant  changes (loss of water content (Lyons et al., 1981) and 

disc height (Frobin et al., 2001)) in disc behavior strongly 

influence other spinal structures and may negatively impact their 

function and predispose them to injury. 
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During IDD, the CEP becomes thinner and fissured, with lower 

collagen and glycosaminoglycan (GAG) content (Turgut et al., 

2003; Sun et al., 2020). This change in morphology affects the 

physiology and the performance of the CEP (Hamilton et al., 2006; 

Roberts et al., 2006) altering its permeability (Roberts et al., 2006; 

Yao et al., 2016). Furthermore, the CEP can lose its connection 

to the vasculature (Moon et al., 2013), which 

immunohistochemistry has shown leads to blood vessel and 

nerve fiber infiltration into the IVD through the CEP and 

subchondral bone and through fissures in the AF (Freemont et 

al., 1997; Roberts et al., 2006; Binch et al., 2015b; Yao et al., 2016; 

Lama et al., 2018; Sun et al., 2020). Moreover, the crosstalk between 

IVD and the bone marrow is facilitated due to the CEP damage 

(Dudli et al., 2016), causing possible adjacent “Modic discs”. 

Modic changes (MC) are defined as magnetic resonance imaging 

(MRI) signal alterations in the vertebral bone marrow close to a 

degenerated disc. There are several different types of MC, with 

MC1 fibrotic lesion having the highest association with pain, 

followed by MC2. MC3 are rare and often asymptomatic. MC1 

and MC2 are commonly accompanied by persistent inflammatory 

stimulus. In addition, MC related pain could be related to the 

neovascularization and neurogenesis due to the increase in 

growth factor expression by blood vessels and disc 

cells and inflammatory cytokines (Rätsep et al., 2013; Sun et al., 

2013; Dudli et al., 2018) which lead to increased expression of 

neurotrophic factors (Freemont et al., 2002; Purmessur et al., 

2008; Binch et al., 2014) (Figure 1). 

During disc degeneration, the balance between anabolism and 

catabolism is dysregulated, showing decreased synthesis of 

normal matrix, of collagen type II and aggrecan and increased 

presence of matrix degrading enzymes, reviewed previously by 

Baumgartner et al. (2021c). Moreover, several studies have 

reported decreased NP cell proliferation under catabolic cytokine 

stimulation (Wang et al., 2013; Li et al., 2019; Lin and Lin, 

2020). Similarly, during the shift from anabolic to catabolic cell 

activity in the disc, the presence of  these cytokines is also related 

to NP and AF cell apoptosis, (Hu et al., 2017; Yu et al., 2018; 

Zhang J. et al., 2019; Zhang S. et al., 2019). 

These changes have been shown, at least in part, to be modulated 

by pro-catabolic cytokines in numerous studies, which are often 

referred to as inflammatory features, in the literature. However, 

since these factors are produced by native disc cells (NP, AF and 

CEP) in intact discs, this catabolic response can be easily 

misconstrued as an inflammatory response. Therefore, the aim 

of this review is to tackle 
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is composed of highly oriented concentric lamella of type I collagen whereas the cell density is higher in intact than in degenerated discs. 
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immunomodulatory and IVD cell roles in IDD and clarifying the 

differences between cellular involvements. Furthermore, different 

in-silico, in-vivo and in-vitro models used to explore 

inflammatory or catabolic IVD environments will be discussed. 

 

CROSS-TALK BETWEEN THE IMMUNE 

SYSTEM AND IVD IN IDD 

As mentioned, the IVD is the largest avascular organ with blood 

vessels only present in the outer AF and bony end plates, so all 

metabolite exchange takes place via diffusion through the dense 

extracellular matrix (ECM) of the IVD. The dense ECM of the 

IVD inhibits blood vessel ingrowth both mechanically by having a 

high physical pressure, and chemically through high proteoglycan 

concentration (Johnson et al., 2002; Johnson et al., 2005), which 

combined with secretory inhibitors prevent nerve and blood 

vessel ingrowth in non-degenerate discs (Tolofari et al., 2010; 

 
Binch et al., 2015a). The AF and the CEP, along with the secretory 

inhibitors of angiogenesis, are defined as the blood-NP barrier 

(BNB), which strongly isolates the NP from the circulation and 

thus the host immune system (Sun et al., 2020). 

Where both AF and CEP are intact, the IVD has been described 

as an immuno-privileged tissue (Sun et al.,  2020) with a lack of 

immune cells (Figure 2). However, this is often confused as the 

native cells of the disc (i.e., the NP, AF and CEP cells) have been 

shown to take on roles and markers classically expressed by 

immune cells (Le Maitre et al., 2005; Jones et al., 2008; Phillips et 

al., 2013a; Risbud and Shapiro, 2013), and thus have been 

described by some authors as immune responses or 

inflammation. However, such activity of native IVD cells is not 

true inflammation. Therefore, distinguishing which cases of IDD 

involve an immune response is important as different clinical 

interventions and treatments would be required. 

Native disc cells produce a plethora of cytokines and chemokines 

which are upregulated during disc degeneration 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

The AF herniates/bulges, which is where blood vessel in-growth primarily occurs. 
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and have been shown to drive many catabolic events in the IVD 

(Weiler et al., 2005; Le Maitre et al., 2005; Hoyland et al., 2008; 

Phillips et al., 2013a; Phillips et al., 2015). A shift to catabolism is at 

least in part driven by the increased production of cytokines in the 

disc by the native cells (in an intact disc) and a combination of 

inflammatory cells and native disc cells following CEP and AF 

rupture. Phillips et al. (2015) demonstrated that NP cells express a 

number of cytokine and chemokine receptors and are thus able to 

respond in a paracrine and autocrine manner (Figure 2). Caused 

by different, yet not fully understood mechanisms, disc cells 

upregulate the expression of inflammatory cytokines such as 

IL-1, TNFα, IL-6, IL-8 and IL-17 amongst others creating a 
cytokine rich catabolic environment. IL-1 has been shown to 

drive the catabolic events during disc degeneration (Le Maitre et 

al., 2005; Weiler et al., 2005; Hoyland et al., 2008; Phillips et al., 

2013a;  Phillips  et  al.,  2015).  Whilst  other  cytokines  and 

chemokines (e.g., MCP-1, TNFα, IL-8) produced in the disc 
appear to have limited effects on the native disc cells due to lack 

of receptor expression in vivo (Le Maitre et al., 2007; Phillips et al., 

2015), they undoubtedly diffuse to the surrounding tissues leading 

to increased inflammation in local tissues, and drive cellular 

infiltration following AF and CEP rupture and increased 

sensitisation of nerves (Ye et al., 2022). Such cytokines can 

stimulate specific intracellular signaling pathways that further 

enhance the degenerative process (Daniels et al., 2017; Suyama et 

al., 2018) and upregulate matrix-degrading enzymes known as 

matrix metalloproteinases (MMPs) and a disintegrant and 

metalloproteinase with thrombospondin motifs (ADAMTS), 

specifically MMP- 1, 2, 3, 9, 13 and ADAMTS-4, 5 (Baumgartner 

et al., 2021c). In later phases of IDD, these cytokines can upregulate 

neurotrophic and angiogenic factors, which could lead to further 

nerve and blood vessel ingrowth (Purmessur et al., 2008; Lee et 

al., 2011; Binch et al., 2014; Krock et al., 2014). 

Remarkably, some of these cytokines, such as IL-1, have also been 

shown to be expressed in cells from non-degenerate discs and 

display roles in maintaining normal homeostasis (Le Maitre et al., 

2005; Phillips et al., 2015). Indeed, if the IL-1 agonists are knocked 

out during development, IDD can be induced (Gorth et al., 2019). 

Thus, IL-1 plays a role as  a normal regulatory mechanism during 

IVD homeostasis, which becomes imbalanced during IDD (Le 

Maitre et al., 2005) (Figure 2). Native NP cells have also been 

shown to take on other roles normally associated with immune 

cells. such as phagocytosis: Jones et al. (2008) observed the 

capacity of bovine NP cells to ingest latex beads at least as 

efficiently as phagocytic cells and ingested apoptotic cells. This 

capability could be of great physiological relevance to maintain a 

healthy disc, as it may prevent inflammation triggered by the 

release of toxic or immunogenic intracellular content by 

apoptotic cells (Fadok, 1999). Clearly, the suggestion from some 

reviews that cytokine production within the disc is solely from 

immune cells is inaccurate (Ye et al., 2022). However, when the 

AF or CEP becomes ruptured or fissures occur during injury or 

disc degeneration this provides a route for blood vessel ingrowth 

and migration of immune cells into the intervertebral disc. Within 

these “non-intact” IVDs, immune cells will migrate 

including T cells (CD4+, CD8+), B cells, macrophages, 

neutrophils and mast cells (Risbud and Shapiro, 2013) (Figure 

2). 

These  immune   cells   then   contribute   to   an   inflamed 

environment in the disc, leading to further increases  in cytokine 

and chemokine expression (Phillips et al., 2015). This leads to a 

viscous circle of inflammatory driven catabolism which acts 

synergistically with the native IVD cells to cause accelerated ECM 

breakdown (Figure 3) (Risbud and Shapiro, 2013). These cytokines 

and chemokines play a number of roles within this disc, including 

direct actions on NP, AF and CEP cells where their receptors are 

present (Le Maitre et al., 2005; Le Maitre et al., 2007; Phillips et al., 

2015). They will also likely diffuse out of the IVD leading to 

increased cellular migration to the disc (Pattappa et al., 2014), or 

sensitization of local nerve roots (Leung and Cahill, 2010; 

Johnson et al., 2015). 

 
 

THE SHIFT FROM ANABOLISM TO 

CATABOLISM 

A Complex Interplay of Microenvironment, 

Biomechanics, Genetics and Epigenetics, 

Bacterial Infection and IVD Cells 
As discussed during disc degeneration, there is a shift in 

metabolism from anabolism (matrix synthesis) to catabolism 

(matrix degradation), and this shift to catabolism is accompanied 

by increased production of neurotrophic and angiogenic factors 

which lead to nerve and blood vessel ingrowth leading to 

inflammation and increased pain sensation in the disc 

(Baumgartner et al., 2021c).  There remains a poor understanding 

as to the initiating factors involved in this switch from anabolism 

to catabolism in disc degeneration, which is likely due to 

multifactorial processes including the disc microenvironment, 

biomechanics, genetics and epigenetics, and even bacterial 

infection of the disc and the gut microbiome (Figure 3) (Li W. 

et al., 2022). 

Altered Disc Microenvironment 
The IVD microenvironment is commonly described as harsh due to 

its limited nutrition (glucose and oxygen), low pH, and large 

changes in tissue osmolarity (Urban 2002). These factors not only 

impair the success of cell therapies (e.g., mesenchymal stromal 

cell injection) (Loibl et al., 2019; Williams et al., 2021) but can also 

negatively affect resident IVD cells and thus contribute to the 

catabolic-inflammatory shift observed during degeneration. 

Limited nutrition and tissue acidity are a result of the avascular nature 

of the IVD (Hukins, 1988). Glucose and oxygen transport into the 

IVD, as well as the removal of cellular waste products such as 

lactic acid (which contributes to the drop in tissue pH), are hence 

dependent on diffusion via the capillaries in the endplate. 

Degeneration-associated calcification as well as a reduction in the 

density of the bone marrow contact channels in the endplates 

might further impair these transport mechanisms (Benneker et 

al., 2005; Chen et al., 2014). In the centre of the IVD, glucose 

levels, oxygen and pH can hence drop 
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to 0.5 mM, 1% oxygen, and 6.5, respectively, although even lower 

values have also been reported (Urban et al., 2004). It is not clear 

whether glucose deprivation can activate the expression of pro- 

catabolic factors in NPC (Baumgartner et al., 2021b). However, 

multiple studies have demonstrated that glucose deprivation impairs 

NP cell proliferation and survival as well as proteoglycan 

synthesis/degradation and collagen synthesis (Bibby and Urban, 

2004; Johnson et al., 2008; Chang et al., 2017; Saggese et al., 2020), 

and recent evidence highlights that non-coding RNAs (e.g., 

circ_0075062) may be involved in these processes (Chang et al., 

2021). In contrast, oxygen deprivation alone was shown numerous 

times to have little effect on IVD cell proliferation or survival and 

mostly contributes to cell impairment prompted by other 

microenvironmental factors (Bibby and Urban, 2004; Johnson et al., 

2008). Indeed, IVD cells are likely unaffected by hypoxia because 

of their robust and constitutive expression of hypoxia-inducible 

factor (HIF) 1, and 

more importantly, the inducible subunit HIF-1α (Merceron et al., 

2014). Even more, hypoxia and HIF-1α were recently shown to 
attenuate the endoplasmic reticulum (ER) stress responses in NP 

cells (Novais et al., 2021). However, research related to 
rheumatoid arthritis demonstrated that the expression of Toll- 

like receptor 4 (TLR4) and TNF-α, but also of IL-10, are HIF-1- 

dependent  processes  in  macrophages,  indicating  that  IVD- 

infiltrating immune cells may be more affected by the hypoxic 

microenvironment than IVD cells themselves (Guo and Chen, 

2020). Similar to low glucose concentrations, high lactic acid 

concentrations and the resulting drop in pH promotes cell death 

and a catabolic shift in mRNA expression (Horner and Urban, 

2001; Bibby and Urban, 2004; Neidlinger-Wilke et al., 2012; 

Gilbert et al., 2016), likely via acid-sensing ion  channels (Gilbert 

et al., 2016). Importantly, this response was more pronounced 

when cells were simultaneously exposed to low glucose levels 

(Bibby and Urban, 2004). Therefore, low glucose and high lactic 

acid levels, but not hypoxia, contribute to the 

catabolic shift observed during IVD degeneration. In general, 

there is a clear need to increase the number of experimental 

studies where different microenvironmental factors are 

combined, including both nutritional and pro-inflammatory cues 

(Baumgartner et al., 2021b). 

Aside from low glucose, oxygen, and pH, the osmolality of the IVD 

is often considered a fourth harsh microenvironmental factor. 

This mostly refers to the relatively high osmolarity in the IVD, 

where 400 mOsm is considered iso-osmotic. However, it is important 

to note that IVD cells can be exposed to a wide range of tissue 

osmolarity, and these changes are more likely to affect IVD cell 

behaviour than the iso-osmotic condition. It can drop as low as 300 

mOsm with the loss of proteoglycans during degeneration, and 

increase to approximately 500 mOsm during high mechanical 

loading (Sadowska et al., 2018). A reduction in tissue osmolarity 

leads to cell swelling (up to 20%) by the solubility-diffusion water 

transport across the cell membrane (Sadowska et al., 2018; Snuggs 

et al., 2021). Ample publications have shown that this 

hypoosmotic shift can activate and/or interplay with pro-

inflammatory factors and catabolic responses and, hence, 

promote IVD inflammation and degeneration (Chen et al., 2002; 

Wuertz et  al.,  2007; Walter et al., 2016; Sadowska et al., 2020). 

Although the underlying mechanisms have not yet been 

identified, Transient Receptor Potential (TRP) channels and 

aquaporins may be involved (Sadowska et al., 2018; Sadowska et 

al., 2020; Snuggs et al., 2021). The hyper-osmotic shift in the IVD 

microenvironment leads to activation of the robustly expressed 

osmo-sensitive transcription factor TonEBP (tonicity-responsive 

enhancer binding protein) (Sadowska et al., 2018; Baumgartner et 

al., 2021c), which protects IVD cell viability under hyperosmotic 

stress (Tsai et al., 2006; Choi et al., 2018) and can also be 

regulated by cytokines (Johnson et  al.,  2017). These studies on 

IVD cells highlight that hyperosmolarity is likely not a main 

contributor to the catabolic shift in the IVD, 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

achieved by chemotaxis losing the immuno-privileged state of the IVD. 
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whereas hypo-osmolarity seems to have detrimental effects on 

IVD cells. However, although no studies have specifically 

investigated the effect of osmolarity on IVD-infiltrating immune 

cells yet, research on other tissues  (e.g.,  renal medulla, skin, lung 

epithelium) indicates that increased osmolarity activated 

macrophage inflammatory responses, which is at least partially 

TonEBP-dependent (with a threshold at approximately 360–380 

mOsm) (Aramburu and López- Rodríguez, 2019). More research 

will hence be needed  to better understand the role of the IVD 

microenvironment on macrophage polarization and the 

behaviour of other infiltrating immune cells. 

 

Unbalanced Biomechanics and 

Mechanobiology in Catabolism 
Biomechanics is another key contributor in the shift from anabolism 

to catabolism (Adams et al., 2000). The IVD experiences various 

forces throughout everyday life, which are necessary to maintain the 

health of the disc. For instance, the average intradiscal pressure in 

a healthy IVD ranges from 

0.1 MPa (lying prone) to 0.5 MPa (standing flexed forward) 

(Wilke et al., 1999). However, damage occurs in the disc when it 

encounters abnormal or excessive forces, leading to catabolism, 

including increased cytokine production, and matrix degradation 

(Walter et al., 2011; Vergroesen et al., 2015; Fearing et al., 2018). 

This damage is believed to cause microinjuries within the disc, 

which gradually build up over time (Adams and Roughley, 2006; 

Baumgartner et al., 2021c), and is likely to contribute to the 

infiltration of immune cells because of the chemo-attraction effect 

of the pro-inflammatory cytokines released by the native IVD 

native cells. As the tissue degenerates, the size and composition of 

the IVD changes, leading to impaired response to any mechanical 

loading placed on the disc and causing further damage, possibly 

leading to disc herniation or endplate defects. 

As a highly hydrated tissue, the NP provides protection to 

compressive forces imposed on the IVD (Adams and Roughley, 

2006) while the more fibrous, surrounding AF confines the NP 

swelling pressure and helps the IVD to resist shear and tensile forces 

(Chu et al., 2018). When the NP loses hydration, the compressive 

load is transferred to the AF (Adams et al., 1996). Whereas the 

healthy AF, as a whole, is highly resistant mechanically, aberrant 

loading can further contribute to fissure formation where the tissue is 

already weakened by altered turnover, which allows for associated 

blood vessel growth and immune cell infiltration as discussed earlier 

(Lama et al., 2018). 

At the cell level, specific biomechanical cues have been shown to 

impair IVD cell response. For example, shear stress has been 

found to lead to increased nitric oxide, causing downstream 

reduction in proteoglycan synthesis and increased apoptosis in 

IVD cells (Liu et al., 2001). Interactions with biochemical 

signalling was further demonstrated. For instance,  it  was found 

that AF and NP cells from a degenerated IVD respond differently 

to those from a healthy disc, suggesting that mechano-

transduction pathways are altered through degeneration (Le 

Maitre et al., 2008; Le Maitre et al., 2009a; Chu et al., 2018) and 

can be modulated by cytokines such as IL-1 

and IL-4 (Elfervig et al., 2001a; Gilbert et al., 2011). Additionally, 

a pro-inflammatory environment has been shown to change the 

mechanobiology of IVD cells. Treatment      with      

inflammatory      stimuli,      specifically 

liposaccharide (LPS) or TNF-α, before osmotic loading was 
shown to increase hydraulic permeability and cell size, disrupt the 

F-actin cytoskeleton, and increase aquaporin-1, which is a main 

water channel in NP cells (Maidhof et al., 2014). Recently, 

Hernandez  et  al.  demonstrated  that  inhibiting  actomyosin 

contractility in NP cells caused a similar response as TNF-α 
induced inflammation, while increasing contractility protected the 

cells against TNF-α. Actomyosin contractility was also shown to 

regulate nuclear factor kappa-B (NF-κB) and downstream  ECM  
degradation,  conveying  that  mechano- 

transduction and inflammatory pathways are connected  and the 

cross-talk could play an important role in IDD (Hernandez et al., 

2020b). Thus, altered biomechanics can lead to mechanobiology 

alterations  promoting  matrix  degradation and impacting the 

capacity of the disc  to  sense  loads normally, leading to increased 

catabolism and IDD development. 

Genetics and Epigenetics in IDD 
Among the different causes for IDD, genetic susceptibility plays a 

crucial role. High heritability (over 70%) has been systematically 

reported for IDD (Battié and Videman, 2006; Kepler et al., 2013), as 

well as specific traits such as herniation (Sambrook et al., 1999) and 

endplate defects (Munir et al., 2018) and their progression 

(Williams et al., 2011b). Genetic burden, in such elevated 

polygenicity presented by IDD, is suggested to carry a larger 

effect than environmental factors, with the exception of body 

mass index (BMI). However, BMI itself has high heritability and 

polygenicity (Robinson et al., 2017), which is partially overlapped 

with IDD (Zhou et al., 2018). 

Genetic associations for IDD have been mostly researched with 

candidate gene studies [see focalized reviews in Mayer et al. (2013), 

Feng et al. (2016), Kawaguchi (2018)]. The most representative 

functional group consists of genes of structural proteins and 

those regulating its turnover (Table 1). 

Among structural components, collagen variants have been 

extensively assessed, and several collagen types and variants have 

been associated with IDD. Collagen type IX polymorphisms in alpha 

2 and 3 (COL9A2, COL9A3) chains have been found to influence 

MRI signal intensity in NP (Wrocklage et al., 2000; Solovieva et al., 

2006; Zhang et al., 2008; Näkki et al., 2011). Further, Solovieva et al. 

(2006) stated that the effect of the Trp3 allele in COL9A3 is 

dependent on an IL-1B polymorphism, reflecting the effect of 

immune-modulators/catabolic factors on IVD degeneration. 

Nevertheless, the pathophysiology of this interaction is not yet 

described. Polymorphisms of collagen type XI (COL11) have been 

associated with higher risk of herniation (Mio et al., 2007; Videman 

et al., 2009) and other degenerative traits (Noponen-Hietala et al., 

2003; Solovieva et al., 2006; Videman et al., 2009; Kalb et al., 2012). 

Mio et al. (2007) stated that the variant rs1676486, which falls in cis 
elements region lowers COL11A1 expression due to decreased 

stability of its transcripts/mRNAs. 
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TABLE 1 | Gene variants of structural/regulatory components of IVD associated with IDD by candidate gene approach. 
 

Structural/Regulatory 

component 

Function Gene Gene variant Molecular level Contribution to IDD Referernce 

Collagen IX Cartilage COL9A2 rs7533552 - Associated with greater disc Näkki et al. 
 anabolic marker    bulging (L1-L4) (2011) 
    May contribute to reduced May contribute to disc Wrocklage et al. 
    collagen crosslinking instability and eventually (2000) 
     prolapse in the elderly  

  COL9A3 Trp3 allele in IL1B 3954 COL9A3 gene on IDD might be Influence MRI signal intensity Solovieva et al. 
   C/T variant modified by the IL 1β gene 

polymorphism 

in NP in the absence of the 

IL1β 3954 C/T allele 

(2006) 

Collagen XI Anabolic marker COL11A1 rs1676486 Lower COL11A1 expression High risk of herniation Mio et al. (2007) 
  COL11A2 rs2076311 - Association with (i) disc Videman et al. 
     signal intensity (ii) disc (2009) 
     bulging  

Collagen I AF anabolic COL1A1 rs1800012 - Not associated with IDD Anjankar et al. 
 marker    (taken as a single factor) (2015) 
    - Risk factor related to IDD in Pluijm et al. 
     older people (2004) 
    - Strong association with LDD Tilkeridis et al. 
     in young male (2005) 

Aggrecan IVD anabolic ACAN ACAN VNTR - Increased risk of LDD of Kawaguchi et al. 
 marker  polymorphisms  shorter alleles (1999), Gu et al. 
      (2013) 
    - Aggrecan allele with 26 Solovieva et al. 
     repeats is associated with (2007) 
     dark NP MRI intensity  

Cartilage Intermediate 

Layer Protein 

Cartilage-like 

catabolic marker 

CILP rs2073711 TGF-β1 inhibition mediated 

induction of ECM proteins 

Association between IDD 

and CILP rs2073711 variant 

Kelempisioti et 

al. (2011) 
    through direct interaction with in women  

    
1184T/C 

TGF-β1 
- 

 
The CILP SNP 1184T/C is a 

 
Min et al. (2010) 

     risk factor for male collegiate  

     athletes  

    - Upregulation of CILP in Seki et al. (2005) 
     intervertebral discs  

     increased disc degeneration  

     progressed  

Metalloproteinase Catabolic MMP3 Combination of the T-C IL1 promoted cartilage Association between a Karppinen et al. 
 marker  haplotype of IL 1α and 

the MMP3 minor 5A 

degradation through the 

induction of the matrix- 

combination of IL 1 and 

MMP3 gene variations and 

(2008) 

   allele degrading enzymes such as type II Modic changes  

    MMP1, MMP3, and MMP13 among middle-aged  

     Finnish men  

   promoter 5A/6A Enhanced the degeneration of accelerate IVD degeneration Takahashi et al. 
    IVD associated with in the elderly (2001) 
    environmental conditions   

    resulting from the induction of a   

    higher level of MMP3   

    expression in response to such   

    conditions   

   Intron 4 C/T - Associated with Valdes et al. 
     radiographic progression (2005) 
     of LDD  

  MMP2 1306C/T - Correlation with more severe Dong et al. 
     grades of disc degeneration (2007) 
     and thus may be a genetic  

     risk factor related to LDD  

     susceptibility in the young  

     adult population  

  MMP9 1562 C/T - Associated with a high risk of Sun et al. (2009) 
     degenerative disc disease in  

     the young adult population in  

     North China  

(Continued on following page) 
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TABLE 1 | (Continued) Gene variants of structural/regulatory components of IVD associated with IDD by candidate gene approach. 
 

Structural/Regulatory 

component 

Function Gene Gene variant Molecular level Contribution to IDD Referernce 

Interleukin Catabolic IL 1β 3954 C/T COL9A3 gene polymorphism Association between Solovieva et al. 
 marker   on IDD might be modified by collagen gene (2006) 
    the IL-1β gene polymorphism polymorphisms and disc 

degeneration of the lumbar 

 

     spine is modified or  

     negatively confounded by  

     the IL1β (C3954-T) 
polymorphism in middle- 

 

     aged working men  

  IL 1α Combination of the T-C IL1 promotedcartilage Association between a Karppinen et al. 
   haplotype of IL1A and degradation through the combination of IL1 and (2008) 
   the MMP3 minor 5A induction of matrix-degrading MMP3 gene variations and  

   allele enzymes such as MMP1, type II Modic changes  

    MMP3, and MMP13 among middle-aged  

     Finnish men  

   889C/T - IL1 gene cluster Solovieva et al. 
     polymorphisms have an (2004) 
     effect on the risk of disc  

     degeneration, particularly TT  

     genotype of the IL-1α gene 

promotes higher risk of disc 

 

     bulges  

    Significantly increased the 

transcriptional activity of the 

IL 1α −889T represented a 

significant risk factor for the 

Virtanen et al. 

(2007) 
   

IL 6 

 
rs1800797, rs1800796 

IL1A gene and IL-1β protein 
- 

IDD-phenotype 

IL 6 variants are associated 
 
Kelempisioti et 

   and rs1800795  with moderate IDD in a al. (2011) 
     sample population of young  

     adults  

   597G/A, 174G/C and - association analysis Noponen- 
   15T/A  provided support for a link Hietala et al. 
     between the IL 6 sequence (2005) 
     variants and IDD  

  IL 18 rs1420100 - Association with severe Omair et al. 
     degeneration (2013) 

Thrombospondin ECM regulation THBS2 rs9406328 lower affinity for MMP binding Regulation of Intervertebral Hirose et al. 
    and thus reduces MMP disc ECM metabolism by the (2008) 
    degradation THBS2-MMP system plays  

     an essential role in the  

     etiology and pathogenesis of  

     lumbar disc herniation  

A disintegrin and Catabolic ADAMTS5 rs151058, rs229052, Decreased binding affinity with Genetic polymorphisms of Wu et al. (2014) 

metalloproteinase with marker  and rs162502 LRP1 (protein that regulates its ADAMTS 5 may be  

thrombospondin motifs    degradation by endocytosis) associated with  

(ADAMTS)     susceptibility to LDD  

Growth differentiation Pro- GDF5 rs143383 - 5 population cohorts from Williams et al. 

factor 5 chondrogenic    Northern Europe indicate (2011a) 
 factors    that a variant in the GDF5  

     gene is a risk factor for LDD  

     in women  

tSKT  KIAA1217 11 KIAA1217 variants in - Strong causative candidates Al Dhaheri et al. 
   Exon 2, 3, 6, 7, 13, 14,  for the Vertebral (2020) 
   17 and 19  Malformation phenotypes  

   rs16924573 - Association with lumbar disc Karasugi et al. 
     herniation (2009) 
    - Association with lumbar disc Kelempisioti et 
     herniation al. (2011) 

FAS receptor and ligand Cell apoptosis FAS and rs2234767(FAS) and - FAS and FASL may be Zhu et al. (2011) 
 factors FASL rs763110(FASL)  associated with the  

     presence and severity  

     of LDD  

(Continued on following page) 
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TABLE 1 | (Continued) Gene variants of structural/regulatory components of IVD associated with IDD by candidate gene approach. 
 

Structural/Regulatory 

component 

Function Gene Gene variant Molecular level Contribution to IDD Referernce 

Caspase-9  
CASP-9 1263A/G - Risk factors in the incidence Mu et al. (2013) 

     of LBP in Chinese male  

     soldiers  

   rs1052576 - Associated with lumbar disc Sun et al. (2011) 
     herniation and disc  

     degeneration in the Han  

     population of northern China  

Tumor necrosis factor  TRAIL 1525 G/A and 1595 C/T - Associated with the Du et al. (2015) 

related apoptosis-     susceptibility and severity of  

inducing ligand     LDD in the Chinese Han  

     population  

Death receptor 4  DR4 rs4871857 - Associated with the risk and Tan et al. (2012) 
     severity of LDD in the  

     Chinese Han population  

 

Similarly, a polymorphism found in an intronic region of the 

collagen 1 gene (COL1A1) that corresponds to a binding site of 

Specificity protein 1 (Sp1) has been shown to increase the risk of 

IDD, but the mechanism is not reported yet (Pluijm et al., 2004; 

Tilkeridis et al., 2005; Anjankar et al., 2015). However, it has been 

demonstrated that Sp1 downregulates pro-inflammatory 

cytokine-induced catabolic gene  expression in  disc  cells (Xu et 

al., 2016). Additionally, Sp1-dependent mechanisms have been 

reported to modulate mechanically-induced  apoptosis and 

autophagy in IDD (Li et al., 2020). Nonetheless, Sp1 also affects 

processes in other tissues including differentiation, angiogenesis 

and chromatin remodeling (Tan and Khachigian, 2009), but its 

potential effects on disc cells remains yet to be 

identified. Interestingly, Sp1 expression is inhibited by NF-κB 
(Tapias et al., 2008), which has been shown to be able to initiate a 

pro-inflammatory cascade in other tissues, often as a reaction to 

extracellular stimuli (Hunter and De Plaen, 2014). And although it 

is possible that this dual regulation confounds the potential 

catabolic effect of Sp1 deprivation with an inflammatory-like 

response, further studies are needed to distinguish the catabolic 

and inflammatory responses. 

Another interesting gene, Aggrecan gene (ACAN), presents 

tandem repeat polymorphisms in the CS1 domain. Several studies 

have reported that lower repeat number can lead to lower 

chondroitin sulfate (CS), thus linking aggrecan with IVD 

degeneration (Kawaguchi et al., 1999; Solovieva et al., 2007; Kim 

et al., 2010; Gu et al., 2013). Low CS reduces the amount of water 

accumulated to withstand compression loadings, reducing disc 

mechanical properties. Further, it is possible that lower ACAN 

and CS reduce the IVD’s capability to recover after acute catabolic 

processes (Kim et al., 2010). 

Another protein, cartilage intermediate layer protein (CILP), 
whose expression is restricted to different cartilage(-like) tissues 

including IVD, inhibits TGFβ, therefore preventing the ECM 

anabolism and cell proliferation promoted by TGFβ in IVD 
(Liu et al., 2021). A polymorphism in the interaction region 

between CILP and TGFβ has been shown to change their 

binding affinity, consequently, identifying it as a risk factor for 

IVD degeneration (Seki et al., 2005; Min et al., 2010; Kelempisioti et 

al., 2011). Additionally, CILP is able to inhibit Insulin-like 

growth factor-1 receptor (IGFR1), acting as an antagonist of 

Insulin-like growth factor 1 (IGF1), a factor that mediates 

chondrocyte anabolism and proliferation (Liu et al., 2021). 

Similarly,  tandem  repeat  polymorphisms  in  Asporin  gene 

inhibits TGFβ-induced anabolism with likely synergic effects 
with the CILP variant (Song et al., 2008; Min et al., 2010). 

As stated before, pro-inflammatory cytokines are the key factors 
that start the catabolic shift through increase of matrix- degrading 

enzymes expression, with IL-1β being one of the most 

influential cytokines produced by the native IVD cells and 

immune cells following IVD rupture (Le Maitre et al., 2005; 
Millward-Sadler et al., 2009; Phillips et al., 2015). As mentioned 

earlier,   combinations   of   specific   IL-1   β  and   COL9A3 

polymorphisms constitute a risk factor for IVD degeneration. 

Similarly, a combination of MMP3 and IL-1 β polymorphisms also 

presents a higher risk of IVD degeneration (Karppinen et al., 

2008). Additionally, other MMP-3 (Takahashi et al., 2001; Valdes et 

al., 2005), MMP-2 (Dong et al., 2007) and MMP-9 (Sun et al., 2009) 
polymorphisms have shown greater risk. Likewise, different single 

nucleotide polymorphisms (SNPs) of IL-1 β and their 

combinations present increased risk of IDD, possibly due to 

overactivation under mechanical stress (Solovieva et al., 2004; 

Virtanen et al., 2007; Karppinen et al., 2008). Other interleukins 

such as IL-6 (Noponen-Hietala et al., 2005; Kelempisioti et al., 

2011) and IL-18 (Omair et al., 2013) have also been reported to 

increase catabolic processes in the IVD, similar to IL-1 β. 

Matrix-degrading enzymes can also be regulated through their 

degradation. A SNP in the Thrombospondin-2 gene (THBS2), 

which regulates degradation of MMPs through endocytosis, has 

shown lower affinity  for  MMP  binding which in turn reduces 

MMP degradation and increases the risk of IDD (Hirose et al., 

2008). In similar fashion, different variants of diverse ADAMTS 

family members, which degrade aggrecan, were identified to 

increase risk of degeneration (Rajasekaran et al., 2014; Wu et 

al., 2014; Liu et al., 2016) and are increased during IVD 

degeneration (Pockert et al., 2009). A SNP in ADAMTS 

identified by Wu et al. (2014) decreases binding affinity with the 

protein that regulates its degradation by endocytosis, LRP1, 

therefore increasing its catabolic activity. 
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A shift toward catabolic processes can also be provoked by 

perturbing cell differentiation and viability. This has identified 

different variants of growth factors to be associated with IDD, 

such as Growth Differentiation Factor 5 (GDF5) (Williams et 

al., 2011a), which is a key regulator of matrix  synthesis in the disc 

(Le Maitre et al., 2009b);  SKT gene (KIAA1217) (Karasugi et al., 

2009; Kelempisioti et al., 2011; Al Dhaheri et al., 2020), vascular 

endothelial growth factor (VEGF), and endothelial nitric oxide 

synthase (eNOS) (Han et al., 2013). Variants in factors that 

modulate cell apoptosis, such as FAS receptor and its ligand 

(FASL) (Zhu et al., 2011), Caspase-9 (Sun et al., 2011; Mu et 

al., 2013), tumor necrosis factor related apoptosis-inducing ligand 

(TRAIL) (Du et al.,  2015),  and  Death  receptor  4  (DR4) (Tan 

et al., 2012) have been found  to  be  associated  with IDD. 

However, exact mechanisms of  how  such  variants affect cell 

fate and IDD are still unclear and require further investigation. 

 
In addition to the candidate gene approaches, where the set of genes 

tested is preselected, a few Genome-wide Association Studies 

(GWAS) have been performed. GWAS is an agnostic method that 

tests variants covering the “whole” genome (Duncan et al., 2019). A 

GWAS performed by FMK Williams et al. found a variant of 

Parkinson protein 2, E3 ubiquitin protein ligase (PARK2) and one 

of Proteasome 20S Subunit Beta 9 (PSMB9) to be associated with 

degenerative discs (Williams et al., 2013). Those genes encode for 

proteins that aim to tag and degrade unwanted proteins, providing 

another method to remove matrix- degrading enzymes, altering the 

metabolic balance. Another GWAS identified a variant of 

Carbohydrate Sulfo-Transferase 

3 (CHST3), a catabolic enzyme that catalyses proteoglycan 

sulfation, as a susceptibility gene for IDD (Song et al., 2013). The 

authors suggest that this enzyme interacts with a micro-RNA 

(miRNA) that targets proteins with important regulatory 

functions in cell-mediated immune responses, but further analysis 

is needed to confirm such hypothesis. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

explored further through 

experiments. 



Bermudez-Lekerika et al. 
Immuno-Modulatory Effects of Intervertebral Disc 

132 

 

 

 

Bacterial Infection and Disc Microbiome in 

IDD 
Bacterial contamination has also been proposed as an important 

regulator of disc cell inflammation and catabolism, particularly in 

association to Modic changes (Gorth et al., 2015; Granville Smith et 

al., 2021). Despite the detection of various bacteria within isolated 

disc tissue, the presence of an IVD microbiome is still 

controversial as it has been traditionally considered as a sterile, 

immune privileged structure (Rajasekaran et al., 2020). 

In Stirling et al. (2001), first reported the presence of anaerobic 

bacteria, particularly of Cutibacterium acnes (Gilchrist, 1900), 

previously known as Propionibacterium acnes, within the disc 

tissue of 43 out of 140 patients with sciatica. Recently, Granville 

Smith et al. (2021) performed a PRISMA systematic review 

identifying 36 articles from 34 research studies investigating bacteria 

in human IVDs. Bacteria were identified in 27 studies, whereas nine 

attributed bacterial presence to contamination. C. acnes, a Gram-

positive anaerobic bacterium that is part of the natural skin 

microbiome, was the most abundant. Which is also associated with 

prosthetic joint infection (Jauregui et al., 2021) and was shown to be 

able to interact with bone cells (Aubin et al., 2017) and recently disc 

cells (Capoor et al., 2021). Coagulase-negative (CoNS) bacteria of the 

genus Staphylococcus Rosenbach 1884 were the second most 

abundant (Granville Smith et al., 2021). Inconsistencies between the 

identified bacteria and the prevalence of different bacteria can be 

partly administered to differences in tissue source (intact or herniated 

tissues), culture conditions (anaerobic vs. aerobic, culture time, 

culture media), differences in the methods used to detect bacteria, 

and differences in the administration of antibiotics. To date, there 

are few quantitative studies investigating bacterial infection to show 

whether bacteria are present in vivo or represent operative 

contamination. 

Albert et al. (2013a) hypothesized that type 1 Modic changes in the 

adjacent vertebrae of herniated discs may be due to infection of the 

disc, highlighting the need to investigate bacteria presence in the 

disc. Treatment of chronic LBP and Modic changes with antibiotics 

has generated great controversy. It has been shown that in a certain 

subset of patients, antibiotic treatment was effective to reduce pain 

as well as disability (Albert et al., 2013a; Gilligan et al., 2021). 

However, this result has failed to be replicated in subsequent 

studies (Bråten et al., 2020). 

Furthermore, the role of potential bacteria within the disc is 

unknown. However, previous studies have shown that LPS, a 

main component of Gram-negative bacteria, induces 

upregulation and production of various proinflammatory 

cytokines  and  matrix  degrading  enzymes  in  the  NP  over- 

activation of the NF-κB pathway (Li et al., 2016). However, 
most bacteria detected in the disc to date are Gram-positive and 

the potential influence of those bacteria on the disc remains poorly 

understood. Recently, Capoor et al. (2021) stimulated human IVD 

cells with C. acnes demonstrating an induction of catabolic 

cytokine expression by native NP cells, suggesting that at least in 

some individuals the increased catabolic cytokines during disc 

degeneration could be triggered by bacterial infection. Further work 

is required to understand whether bacteria are present within the disc 

and whether bacteria could act as a trigger 

to the catabolic stimuli seen during disc degeneration, and 

whether the gut microbiome could influence disc degeneration (Li 

W. et al., 2022). 

 

Translating Knowledge of Initiating Factors of 

IDD to Clinics 
Understanding the roles and interactions of each of these 

initiating factors is essential in order to diagnose IDD early 

and identify suitable treatments. Current treatments alleviate 

pain but do not regenerate the disc, therefore regenerative 

strategies are urgently needed in clinics (van Uden et al., 2017). 

Despite extensive research, tissue engineering strategies have 

had limited success in translating from preclinical models to 

beneficial treatments in patients as they fail to address pain (Isa 

et al., 2022). Precision medicine appears promising to use 

multiomics profiling to elucidate the pathology of IDD in each 

patient and prescribe an individualized treatment plan and 

determine which therapies could be most effective (Isa et al., 

2022). However, a more comprehensive understanding of the disc 

microenvironment, biomechanics, genetics and epigenetics, and 

even bacterial infection throughout the different stages of IDD 

and low back pain would be necessary to evaluate which therapies 

or combination of therapies could be effective in a patient. In 

particular, there is a lack of studies on cartilage endplate 

regeneration therapies, despite its importance in the nutrient 

supply of the IVD (van Uden et al., 2017). Overall, experimental 

and computational models of IDD, which will be explored in the 

next chapter, remain critical toward developing novel treatments 

and regenerative therapies for IDD. 
 

RESEARCH METHODS FOR EXPLORING 

THE INFLAMMATORY OR CATABOLIC 

ENVIRONMENT OF THE IVD 

 

Experimental Models in IVD Research 
For many years different experimental models have been 

developed for IVD research to mimic IDD. Several approaches 

have been used to replicate the physiological state of the IVD as 

closely as possible, including 3D cell and organ culture models, 

bioreactors and animal studies (Figure 4B). These approaches are 

crucial in elucidating the causes and progression of IDD, as well as 

in developing and testing novel therapies. Nevertheless, the best 

strategy to investigate IDD remains unclear, and each culture system 

or animal model offers different advantages and disadvantages 

that should be considered when planning an experiment (Table 

2). 

3D Cell Culture Systems 
Over the last decades, three-dimensional (3D) cell culture models 

have been widely accepted due to the considerable improvements 

they possess in comparison to two-dimensional (2D) culture, 

including improved phenotypic retention to that seen in vivo, 

including: cell shape preservation; proliferation rates, and gene 

and protein phenotypic marker and matrix expression (Jensen 

and Teng, 2020). Conventional 2D monolayer culture systems 
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TABLE 2 | Experimental and computational approaches applied for IDD research. 
 

Model Culture system 

or methods 

Representative 

studies 

Scale Parameters that 

can be probed 

Advantages Disadvantages Contribution to 

IDD 

Experimental 3D cell Alginate- Le Maitre et al. Cell Dynamic loading and Inexpensive, non- Not IVD phenotype 

culture based (2005), Hernandez  catabolism toxic and excellent recommended for maintenance and 
 hydrogels et al. (2020a), Naqvi  induction, cell phenotype AF cell culture recovery from 
  and Buckley,  Stimulation with maintenance,  catabolism 
  (2014), Le Maitre  cytokines and human cells are   

  et al. (2008), Zhang  catabolic factors available   

  et al. (2014), Wang      

  et al. (2014), Sun      

  et al. (2015), Öztürk      

  et al. (2016), Thorpe      

  et al. (2018),      

  Lazarus et al.      

  (2021), Rosiak et al.      

  (2021)      

 Agarose Kelly et al. (2009),  Dynamic loading and long-term 3D Cannot replicate Catabolism induction 
 carriers Smith et al. (2011)  catabolism induction culture, human macroscale forces in IVD cells 
     cells are available the IVD  

      experiences  

 Reinforced Frauchiger et al.  Porosity, coating Biodegradable The outer layer Novel therapeutic 
 hydrogels (2017), Wöltje and  and surface area of and resorbable can cause approach in IVD 
 (Silk) Böbel, (2017)  scaffold biomaterial with immune response repair 
     high   

     cytocompatibility   

 Pellet culture Thorpe et al. (2018),  Hydrostatic loading Simple, Chondrogenic Effects of hydrostatic 
 systems Wangler et al.  and nutrient inexpensive, phenotype loading and nutrient 
  (2019), Hingert et al.  perturbation human cells are induction and lack deprivation in IDD 
  (2019)   available of ECM  

Ex vivo Bioreactors for Gantenbein et al. Organ/ Mechanical loading Mimics Expensive and Determined 
 mechanical (2006), Vergroesen Tissue (compression, physiological difficult to build, physiological and 
 loading et al., 2014; Costi  torsion, bending, conditions, culture time limited catabolic ranges of 
  et al., 2008, Walter  flexion, extension, possibility for to ~1 month, no mechanical loading 
  et al. (2011), Paul  and asymmetric), automation, connection to regimens and test the 
  et al. (2012), Chan  environmental reproducible, in vasculature or mechanical 
  et al. (2013), Paul  control (nutrition, pH, line with 3R immune system, properties of suitable 
  et al. (2013), Salzer  temperature, oxygen principles most cannot test biomaterials for IVD 
  et al. (2021), Croft  level), frequency and (“Replacement, large sample sizes replacement 
  et al. (2021)  duration (static, Reduction, and at once, human  

    dynamic, or diurnal) refinement") tissue is limited  

 Perfusion Elfervig et al.  Diffusion, shear Possibility for Cannot replicate Increased cell viability 
 bioreactors, (2001b), Chou et al.  stress, fluidic automation, macroscale forces in culture provided 
 microfluidics, (2016), de  pattern, electrical reproducible, the IVD platform to 
 “disc-on-a- Bournonville et al.  impulses, extends culture experiences, investigate cellular 
 chip" (2019), Dai et al.  environmental time, in line with difficult to design response to shear 
  (2019), Hwang et al.  control (nutrition, pH, 3R principles complex systems stress and 
  (2020), Kim et al.  temperature, oxygen (“Replacement,  interactions with 
  (2021), Mainardi  level) Reduction, and  inflammatory and 
  et al. (2021)   refinement")  neurotrophic factors, 
       and test treatments 
       such as electrical 
       stimulation 

In vivo Spontaneous Daly et al. (2016) Whole Degeneration Occurs naturally Long and Chondrodystrophic 
 degeneration  body/ progression, (therefore more unpredictable time dogs and sand rats 
   Organ/ therapies/treatments ethical), immune course, inherent have similar 
   tissue/  system and pain biological and pathological changes 
   Protein/  response biochemical to human in IDD and 
   Genetic   differences to have useful in testing 
      humans, cellular therapies and 
      expensive and other clinical 
      complex, ethical treatments 
      considerations  

(Continued on following page) 
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TABLE 2 | (Continued) Experimental and computational approaches applied for IDD research. 
 

Model Culture system 

or methods 

Representative 

studies 

Scale Parameters that 

can be probed 

Advantages Disadvantages Contribution to 

IDD 

 
Altered Lindblom (1957), 

 
Magnitude, duration, Immune system Inherent biological Models of bending, 

 mechanical Iatridis et al. (1999),  and frequency of and pain and biochemical compression, and 
 loading Phillips et al. (2002),  loading response, differences to spinal fusion have 
  Ching et al. (2003)   repeatable humans, shown that loading 
     induction of IDD at expensive and changes the 
     specific time point complex, ethical mechanical 
      considerations properties of the IVD 

 
Structural Lü et al. (1997), 

 
Degeneration Immune system Inherent biological Critical in 

 models Holm et al. (2004),  progression, and pain and biochemical understanding IDD 
 (physical injury Ulrich et al. (2007),  proteoglycan response, differences to and developing/ 
 or chemical Yoon et al. (2008),  degradation, repeatable humans, testing novel 
 injection) Dudli et al. (2011),  therapies/treatments induction of IDD at expensive and therapies for clinical 
  Dudli et al. (2014),   specific time complex, ethical application 
  Alkhatib et al.   point, useful in considerations, fail  

  (2014), Zhang et al.   preclinical trials to capture  

  (2020), Zhou et al.    pathogenesis of  

  (2021)    human IDD,  

      viability of native  

      IVD cells  

      preserved  

 
Transgenic Millecamps et al. 

 
Genes and gene Immune system Inherent biological Changes in SPARC, 

 models (2011), Millecamps  pathways and pain and biochemical Tg197, CCN2, IL-1rn, 
  et al., 2012;, Li et al.   response, target differences to cAct, and SMAD3 
  (2009), Wang et al.   specific pathways humans genes have been 
  (2012), phillips et al.,   of interest  identified to 
  2013, Phillips et al.,     contribute to IDD 
  (2013a,b)Miyagi      

  et al. (2014), Gorth      

  et al. (2018)      

Computational Finite 
 

Jones and Wilcox, Organ/ Loading, Valuable Challenging Predictions about 

element  (2008), Newell et al. Tissue environmental prediction of comprehensive metabolic rates, 
  (2017), Ghezelbash  perturbations and altered mechanics validation and the oxygen and lactate 
  et al. (2020),  catabolism induction and transport at cellular and sub- transport, osmotic 
  Galbusera et al.   the tissue level of cellular level is not behaviour 
  (2011b), Malandrino   the IVD, 3Rs contemplated.  

  et al. (2011), Volz    Computationally  

  et al. (2022)    intensive and time  

      consuming  

Agent- 2D or 3D Baumgartner et al. Tissue/ Cell behavior and Dynamic, ability to Can be Visual predictions of 

based  (2021a), Cellular interactions, model computationally NP cells expressing 
  Baumgartner et al. 

(2021b) 

 microenvironment, 

time, Cell types, 

environmental 

heterogenous 

populations, 

flexible, 

intensive, only as 

good as the rules 

inputted 

TNF-α, IL-1β, or both 

TNF-α & IL-1β 

    perturbations stochastic,   

     reveals emergent   

     phenomena   

Network Knowledge Shannon et al. Protein/ Protein-protein Intuitive way to Difficult to Capture interactions 
 based or data (2003), Hu et al. Genetic interaction (PPI) and investigate, construct from between 
 driven (2004), Batagelj and  transcriptomic/ characterize, and available IVD data transcriptome, 
  Andrej, (2004),  proteomic analysis understand which has high proteins and their 
  Kashtan et al.   interactions sample variation, pathways in to 
  (2004), Yu et al.   between different stages of understand the 
  (2004), Schreiber   biological IVD and type of critical biochemical 
  and   components disc tissue, and factors in IVD 
  Schwöbbermeyer   under micro- the varying regulation. Reveal 
  (2005), Wernicke   environmental methods of complex dynamics 
  and Rasche (2006),   stimuli analysis behind unbalanced 
  Milenković et al.     metabolism 
  (2008),      

(Continued on following page) 
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TABLE 2 | (Continued) Experimental and computational approaches applied for IDD research. 
 

 Model Culture 

system 

or methods 

Representative 

studies 

Scale Parameters that 

can be probed 

Advantages Disadvantages Contribution to 

IDD 

   Baumgartner et al.      

   (2021a),      

   Baumgartner et al.,      

   2021b, Xu et al.      

   (2021)      

 Genetic Candidate Williams et al. Genetic Genes and gene Effective in Incapable of Identified large 
 analysis gene studies, (2013), Song et al.  pathways identifying genes explaining high number of risk 

  GWAS (2013), Feng et al. 

(2016), Kawaguchi 

  implicated in IDD heritability in 

complex diseases 

genomic loci involved 

in IDD (Table 1) 
   (2018), Mayer et al.    due to high  

   (2013)    polygenicity and  

       unmet “common  

       disease, common  

       variants”  

       hypothesis, and  

       due to other  

       heritable  

       properties as  

       epigenetics  

 Machine Classification Rim (2016), Whole Imaging, clinical Link seemingly Need for algorithm Deep learning model 
 learning/ of discs Niemeyer et al. body/ categories, unrelated entities creation and for the classification 
 AI/Deep  (2021) Organ/ compound of complex/ learning. Very of discs based on 
 learning   Tissue/ structures, gene diverse biological subjective score MRI with an average 
    Protein/ sequence, protein/ data system sensitivity of 90% 
    Genetic RNA data    

  Simplifying or Pfaff et al. (2020)   Highly accurate   

  coupling    surrogate models,   

  complex    significantly less   

  models    computational   

      resources and   

      less time-   

      consuming   

 
lack the spatial architecture of the tissue, inducing a loss of cell 

phenotype and cell-ECM interactions. In contrast, 3D cultures 

environments promote extracellular matrix (ECM) deposition, a 

key factor for the maintenance of NP cell phenotype (Guerrero et 

al., 2020). Likewise, previous studies using notochordal cells have 

reported the negative effects of 2D culture (Rastogi et al., 2009) 

and the necessity of 3D culture system, preferably in hypoxia, and 

raised osmolality to maintain the phenotype (Gantenbein et al., 

2014). 

In the last decade many different biomaterials have been used in 3D 

cell culture of IVD cells, which will be listed according to the best 

outcome. Alginate-based hydrogels are commonly used because 

they are inexpensive, non-toxic and an easy 3D hydrogel model 

whilst maintaining excellent cell phenotype (Hernandez et al., 

2020a). Notably, previous studies have reported IVD phenotype 

maintenance and recovery from catabolism after 3D alginate 

culture (Le Maitre et al., 2005; Naqvi and Buckley, 2014; Wang et 

al., 2014; Zhang et al., 2014; Sun et al., 2015). Additionally, 

alginate has been used with dynamic loading systems (Le Maitre 

et al., 2008) and for inducing catabolism (Le Maitre et al., 2005; 

Le Maitre et al., 2008). Moreover, modified alginates have shown 

novel properties and applications in 

biomedical research (Rosiak et al., 2021). For example, the 

sulfation of alginate hydrogel has been reported to preserve 

the phenotype of chondrocytes (Öztürk et al., 2016; Lazarus et 

al., 2021). Thus, alginate-based hydrogel systems are considered 

as promising biological constructs for NP cell culture (Thorpe et 

al., 2018). In contrast, the consistency of alginate-based hydrogels 

is not recommended for AF cell culture due to the lack of fibrotic 

structure. In addition, other materials such as agarose have been 

reported as long-term 3D culture models for inducing catabolism 

in IVD cells (Smith et al., 2011) and chondrocytes (Kelly et al., 2009). 

In contrast, other 3D hydrogel models such as fibrin-clots are not 

a realistic option for IVD 3D culture due to their lack of stiffness, 

despite the easy modification of this natural hydrogel. However, 

reinforced hydrogels with resorbable biomaterials, for instance 

silk, are a novel therapeutic approach in IVD repair due to high 

cytocompatibility (Frauchiger et al., 2017). Notably, the outer 

layer of silk filaments can cause immune response due to the 

presence of sericin (Wöltje and Böbel, 2017). 3D environment 

features can also be achieved without biomaterials through pellet 

culture. Notably, pellet culture systems have been utilized to 

investigate IVD degeneration, specifically examining the effects of 
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hydrostatic loading and nutrient deprivation (Hingert et al., 2019; 

Wangler et al., 2019), however they induce a more chondrogenic 

phenotype rather than NP phenotype (Thorpe et al., 2018). 

Furthermore, the lack of ECM after the formation of the pellets 

could influence the response of hydrostatic loading (Zeiter et al., 

2009), and they fail to mimic the cell-ECM connections and cell 

density seen in the IVD, therefore other materials would be better 

utilised. 

In contrast, 3D constructs aim to offer a more physiological 

interaction between cells with ECM components without the 

presence of vasculature and innervation as well as the interaction 

with the immune system. Nevertheless, although biomaterial- based 

therapies have been developed in the last decades to prevent IDD, 

only a small number of bioengineered therapies are currently 

undergoing clinical trials (NCT02338271, NCT01290367, 

NCT01290367 and NCT02412735). Notably, 

pain relief does not correlate adequately with functional and 

structural IVD restoration. Overall, the main clinical challenge is to 

use clinical signs, patient pain, and disability history alongside 

advanced imaging techniques to design a sufficient biomaterial 

approach (Huang et al., 2018; Isa et al., 2022). However, ex vivo 

culture systems seem to be an appealing alternative resulting in a 

more representative model. Particularly, IVD explants gained 

attention due to a higher control of the degeneration state, sample 

geometry and loading (Salzer et al., 2021). Similarly, organ culture 

bioreactor models allow the presence of the native tissue 

microenvironment together with a loading system promoting a 

bridge between in-vitro and in-vivo models (Gantenbein et al., 

2015). Such ex vivo culture systems are good model systems 

investigating intact IVDs. However, they do not enable 

connection with the vasculature and immune system, although 

co-culture systems could be developed to model these 

interactions. 

Bioreactors and Microfluidic Devices 
Bioreactors are widely accepted as pre-clinically relevant devices 

that simulate the microenvironment and offer a platform to 

evaluate the effects of limited nutrition and incorporate more 

complex parameters, such as mechanical loading and fluid flow, 

into in vitro and ex vivo experiments (Haglund et al., 2011; Illien- 

Jünger et al., 2014; Walter et al., 2014; Gantenbein et al., 2015; 

Gantenbein et al., 2019; Pfannkuche et al., 2020). 

Various materials or organ culture are used for different 

bioreactor systems. Freshly isolated IVDs from bovine tails are 

often used in organ culture studies due to well established 

operating procedures, as well as their similarities to human 

discs (Chan and Gantenbein-Ritter, 2012; Saravi et al., 2021). 

Bioreactors are also used in dynamic 3D cell culture, however the 

material used must be able to withstand the imposed forces. 

Consequently, cells are often seeded into hydrogels, such as 

agarose or alginate, to offer more protection against mechanical 

loading (Fernando et al., 2011; Cambria et al., 2020). Initial 

approaches were only capable of static loading; however, over 

time, bioreactors have gradually evolved to become more

 complex, incorporating diurnal loading 

(Gantenbein et al.,  2006)  and  dynamic  compression  (Paul et 

al., 2012; Paul et al., 2013; Vergroesen et al., 2014). More 

recently, bioreactors have advanced past compression to include 

two- and six-dimensional degrees-of-freedom, allowing for the 

analysis of torsion, bending, flexion, and extension (Costi et al., 2008; 

Chan et al., 2013; Croft et al., 2021). Additionally, asymmetrical 

complex loading has been proposed as a model to study the 

effects of scoliosis on disc mechanobiology (Walter et al., 2011). 

These increasingly complex loading devices are crucial to better 

understanding the effects of mechanical loading on IDD and how 

aberrant mechanical loading contributes to the shift to catabolism. 

Further, these devices are highly clinically relevant as they can test 

the mechanical viability of novel regenerative therapies that aim to 

replace or regenerate the NP, AF, and/or CEP. 

In addition to mechanical loading, bioreactors are useful in 

simulating fluid flow to the IVD. Perfusion bioreactors have been 

developed to allow for in vitro perfusion culture of scaffold-based 

tissue engineering constructs, offering the ability to monitor and 

control key parameters such as temperature, pH, and fluidic 

pattern (de Bournonville et al., 2019). Microfluidic, or “organ-on- a-

chip”, platforms have also been explored to study IDD and have been 

reviewed recently by Mainardi et al. (2021). In 2019, one of the first 

microfluidic “disc-on-a-chip” devices was developed by Dai et al. 

(2019), permitting continuous media flow to mimic the disc 

microenvironment, and demonstrating higher cell viability than 

cells in static culture, allowing for the possibility of long- term 

organ culture to examine chronic disc degeneration. Microfluidic 

devices have also been used to investigate mechanical loading in 

AF cells through fluid-induced shear 

stress (Chou et al., 2016). Studies have found that AF cells had a 

greater response to shear stress when stimulated with IL-1β, 

suggesting that disc cells are more sensitive to shear during catabolic 

or inflammatory conditions, possibly affecting IDD development 
(Elfervig et al., 2001b). More recently, electrical 

stimulation was tested as treatment to modulate IL-1β-mediated 
catabolism in NP cells (Kim et al., 2021). Additionally, a 

microfluidic platform was used in a co-culture system of AF, NP, 

and endothelial cells to investigate IDD development from 

inflammatory and neurotrophic factors, which could be further 

developed to examine pain mechanisms in IDD (Hwang et al., 

2020; Mainardi et al., 2021). The ability to evaluate pain in culture 

systems of IVD is currently lacking, which is a major issue in 

translating tissue engineering strategies successfully to clinics (Isa et 

al., 2022). Therefore, development of a microfluidic platform that 

could do this would be an immense step forward toward 

evaluating new therapies and treatments in vitro. Further, 

microfluidic devices have been proven valuable in testing drug 

delivery and improving screening strategies (Damiati et al., 2018). 

Although these systems have been around for less time and are 

therefore less validated than bioreactors that offer mechanical 

loading, perfusion and microfluidic systems offer a promising 

platform to probe inflammatory and catabolic parameters and test 

new treatments in vitro. 

In Vivo Animal Models of Disc Degeneration 
While in vitro and ex vivo models of the IVD are highly beneficial 
and provide insights on components of IDD, they do not offer 

the same level of complexity as in vivo studies, 
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which may better examine the multifactorial nature of IDD and can 

include an immune system and pain response (Daly et al., 2016). 

Many animal models have been used to investigate the IVD, and 

the advantages and disadvantages have been reviewed extensively 

before (Lotz 2004; Alini et al., 2008; Showalter et al., 2012; Daly et 

al., 2016; Jin et al., 2018). However, no perfect model of disc  

degeneration  currently  exists,  because  there are many biological 

and  biochemical  differences  between discs from animal species 

and those from humans (Oshima et al., 1993). 

One major difference between human discs and animal discs is the 

presence of notochordal cells in the NP. In humans, notochordal 

cells are present at birth, but rapidly decrease and are gone by 

adulthood. In most other species, notochordal cells are present in 

adulthood. However, cows and sheep and some species of dog, 

classified as “chondrodystrophic”, lose their notochordal cells 

rapidly, similarly to humans. Although notochordal cells are not 

well understood, they are often considered as progenitor cells, 

and therefore their presence in degenerative animal models may 

lead to results that are minimally relevant to understanding 

human LDD (Alini et al., 2008). Other biochemical parameters 

should also be considered, such as water, GAG, and collagen 

content, as well as how these factors change with degeneration and 

age in animals versus humans, which has been reviewed 

previously (O’Connell et al., 2007; Beckstein et al., 2008; Miyazaki 

et al., 2009; Showalter et al., 2012). It should also be noted that 

rodents have distinctly different aggrecan proteins and do not 

express the  same MMPs as humans, which is considered 

important in catabolism and tissue remodeling (Barry et al., 

1994; Flannery et al., 1998). However, while rodent models may 

not be suitable for translational research and testing new therapies 

because of the major differences to humans, they offer a useful 

platform to elucidate the genetic basis of IDD and catabolic 

changes due to aging (Masuda and Lotz, 2010; Mainardi et al., 

2021). Similarly, larger animal models are not a perfect match toward 

human IDD (Alini et al., 2008; Gullbrand et al., 2016). 

Nevertheless, they are furthermore suitable for initial tests of 

regenerative therapies as they offer valuable information on the 

changes in mechanical loading, whether an immune response is 

initiated, and possibly whether any pain is resolved. 
Spontaneous  degeneration   occurs   in   mice,   sand   rats, 
chondrodystrophic dogs, and baboons; however, these models 

are unpredictable and often time-consuming (Daly et al., 2016). 

Therefore, there are various methods, categorized under 

mechanical or structural, that have been used to induce 

degeneration in animals. 

In rat tails and rabbits, degeneration has been induced through 

altered mechanical loading, such as bending (Lindblom 1957), 

compression (Iatridis et al., 1999), or spinal fusion (Phillips et al., 

2002; Oswald et al., 2021). In compression, the magnitude, 

duration, and frequency of loading cause significant changes in 

IVD mechanical properties, and static loading produces greater 

changes than cyclic loading (Ching et al., 2003). 

Structural models involve a physical injury or chemical injection 

to the CEP, AF, or NP (Lotz 2004). Physical injuries are done 

using either a drill bit, scalpel, or needle. Annular 

injuries are commonly used and have been shown to cause 

decreased disc height, higher Pfirrman degeneration  scores, and 

decreased NP GAG content (Yoon et al., 2008). Research has 

also shown that repetitive injury causes different inflammatory 

responses in the IVD. Ulrich et al. (2007) found that while a single 

stab injury in a rat led to localized, short-term 

pro-inflammatory response, while multiple stab injuries cause a 

prolonged upregulation of proinflammatory cytokines TNF-α, 

IL1-b, and IL-8 for up to 28 days after injury. CEP injuries have 

also been demonstrated to lead to disc degeneration similar to 

that of humans, characterized by decreased NP proteoglycan 

content and intradiscal pressure (Holm et al., 2004; Dudli et al., 

2014; Zhou et al., 2021), as well as increased catabolic enzyme 

production and pro-inflammatory gene expression seen following 

CEP fracture (Dudli et al., 2011; Alkhatib et al., 2014). However 

injurious degeneration models fail to recapitulate the 

pathogenesis of human IDD and enable infiltration of 

inflammatory cells at a much earlier time frame than seen if at all 

in humans. Chemical injections with papain and chondroitinase 

ABC or papain are commonly used methods to induce 

degeneration through degrading proteoglycans in the disc (Daly et 

al., 2016). Although both cause catabolism, chymopapain was 

shown to cause greater destruction of the NP and AF 

proteoglycans, as well as greater spinal instability and  disc space 

narrowing (Lü et al., 1997). However, chondroitinase ABC 

induced a similar catabolic shift to that seen in human IDD in the 

IVD of goats (Zhang et al., 2020). 

In addition, groups have used transgenic animal models to 

represent IDD (Jin et al., 2018). The SPARC (secrete protein, 

acidic, rich in cysteine)-null transgenic mouse has been shown to 

develop behavioral signs consistent with chronic low back pain 

due to IDD, such as hypersensitivity to cold, axial discomfort, and 

motor impairment (Millecamps et al., 2011; Millecamps et al., 

2012). Further, the SPARC-null mouse showed age-dependent 

increased innervation by sensory nerve fibers near the IVD 

(Miyagi et al., 2014). Gorth et al. (2018) also used Tg197 mice, 

a TNF-α transgenic line, to investigate the effects of systemic over-

expression of TNF-α on IDD, finding that the experienced 

an increase in annulus tears and herniation with higher vascularity 

and immune cell infiltration. However, they found that intact IVDs 

remained healthy despite the elevated inflammation. Additionally, 

knockout technology has been used to create models of notochord-

specific CCN2-null mice (Bedore et al., 2013), IL-1 receptor 

antagonist knockout mice 

(Phillips et al., 2013a), and β-catenin  conditional activation 
(cAct) mice to examine the signaling pathway roles in disc 

degeneration (Wang et al., 2012). 

Finally, emerging strategies such as tissue-engineered replacement 

discs have gained substantial attention in the IVD regeneration 

field. In terms of animal models, significant technical challenges 

must be addressed including cell source, construct size, culture 

strategies, and translational models (Gullbrand et al., 2018). 

Nevertheless, several studies in disc replacement, including 

prospective randomized comparative trials, have demonstrate 

advantages such as short-term superiority to spinal fusion 

(Hellum et al., 2012; Vital and Boissière, 2014) or at least non-

inferiority to anterior spinal 
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interbody fusion (Blumenthal et al., 2005; McAfee et al., 2005; 

Vital and Boissière, 2014). 

Computational Modeling of the IVD 
While experimental studies are valuable in determining cell 

sensitivity to biochemical and mechanical cues, they are not 

sufficient to capture the full complexity of cell response and 

interactions with the microenvironment, which is crucial for 

understanding the transition to catabolism and the initiation of 

an immune response. In addition, experiments are often 

expensive and time-consuming. In-silico models can use 

published literature and experimental data to predict 

multifactorial tissue and ECM regulation at multiple scales (Figure 

4). Further, in silico models can offer the possibility of exploring 

patient-specific IDD and predicting the effects and risks of available 

therapies prior to being treated (Rijsbergen et al., 2018). Finite 

element models (FEM) are useful in determining the effect of 

mechanical loading at the tissue and organ level, while agent-based 

models (ABMs) are effective in predicting tissue and cellular level 

changes due to the microenvironment. At the subcellular level, 

network modelling provides further insight into the effects of cell 

signaling pathways and gene variants. Machine learning and deep 

learning are valuable tools to analyze and classify clinical images 

and predict the current and future status of a patient. Each of these 

in-silico tools offers a novel way to explore catabolism or 

inflammation in IDD, which will be further explained in the 

following paragraphs. 

Finite Element Models in IDD 
Finite element models (FEM) have been extensively used to 

represent the intervertebral disc and to simulate structural changes 

due to mechanical loading, providing a deeper understanding of each 

component’s role than what can be tested through experiments. 

The IVD is inhomogeneous, anisotropic, and porous, making it a 

highly complex structure (Newell et al., 2017). Material properties 

for each of IVD component, the NP, AF and CEP, are defined and 

validated through experimental measurements and clinical 

observations, however comprehensive validation of FE analysis is 

challenging due to the complex structure and interactions 

(Ghezelbash et al., 2020). The IVD components are generally 

modeled as a biphasic material, with an incompressible fluid phase 

and an elastic solid phase. Other reviews have already been written 

regarding FEM studies of the IVD (Jones and Wilcox, 2008; Newell 

et al., 2017; Ghezelbash et al., 2020), so here we will focus on how 

FEM has been applied to study degeneration and catabolism. 

FEMs are a valuable tool to examine the vicious cycle of disc 

degeneration and aberrant loading. Once a disc is degenerative, 

the tissue biomechanics are altered, leading to a catabolic 

environment and causing further damage over time. However, 

degeneration is not uniform throughout subjects, and there are 

various ways previous groups have simulated degenerative discs. 

These include geometrical changes such as decreased height and 

reduced NP area (Ghezelbash et al., 2020), but also changes in the 

material properties, including reduced water content, calcified 

and thinner CEP, and a stiffer NP characterized by a decreased 

bulk modulus (Galbusera et al., 2011a). These studies predicted 

that a degenerative IVD experiences higher forces during axial 

rotation, as well as lower fluid flow and recovery of intradiscal 

pressure after loading. Models have also shown that as the NP loses 

fluid, it carries less load under compression, as well as with bending 

and shear (Ghezelbash et al., 2020). Investigation of the geometry of 

the IVD has concluded that simplified geometry is less stiff and does 

not capture the same strain distribution as FEMs based on more 

complex geometry obtained through segmentation of MRIs, 

conveying those accurate geometries are essential (Du et al., 2021). 

However, there is a lack of studies that measure the effects of 

different patient-specific morphologies, either to observe the 

mechanical effects of deformation or their implications on 

nutrient transport. Recently, a coupled and patient-specific 

mechanoregulated model was developed to predict the effects of 

spinal fusion on disc degeneration and bone density, 

demonstrating how FEMs can be used by surgeons to provide 

insight into which patients could possibly benefit from spinal 

fusion treatments (Rijsbergen et al., 2018). Similarly, future 

models could aim to use available clinical data to help develop 

models that aid doctors in predicting which treatments and 

surgical interventions would have the best outcome. 

Many FEMs of the IVD also simulate osmotic behavior, and it has 

been shown that a swelling model with strain-dependent osmotic 

pressure most accurately represents the IVD, and could be applied 

to investigate crack opening and fissure propagation (Galbusera et 

al., 2011b). A mechano-transport FEM of the IVD developed by 

Ruiz Wills et al. (2018) found that CEP permeability increases with 

aging and degeneration, and that CEP degeneration could be a 

cause of NP dehydration and play a key role in IDD. Other 

groups have simulated cell metabolism and nutrient levels in the 

IVD, predicting that higher cell metabolic rates lead to nutrient 

depletion and that application of mechanical loading led to 

decreased glucose levels throughout the IVD (Volz et al., 2022). 

Additionally, simulations of compression on oxygen and lactate 

transport within the IVD suggested that degenerative changes 

including disc height, fluid content, nucleus pressure, and cell 

density reductions significantly affected transport (Malandrino et 

al., 2011). 

Overall, FEMs have proven valuable in predicting the effects of 

altered mechanics and transport due to degeneration at the tissue 

level of the IVD. However, FEMs fail to take into account what is 

happening at the cellular and sub-cellular level. 

Agent-Based Models 
Agent-based models (ABMs) are widely used across different 

spatial scales and research areas. Hence, agents might reflect 

human beings for socioeconomic studies (Alvarez-Galvez and 

Suarez-Lledo, 2019) or (sub-)cellular entities in cancer research 

(Metzcar et al., 2019). They are particularly useful for studying 

complex biological processes, such as inflammation and tissue 

degeneration, that are dynamic, spatially heterogeneous, and 

stochastic. ABMs can represent individual biological cells as 

computational agents and can simulate how collections of cells 

within a tissue will respond emergently to literature-derived rules. 

Previously, ABMs have been shown as valuable in simulating 

tissue degeneration and inflammation in musculoskeletal and 
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cardiac tissue, spanning many cell types including immune cells, 

fibroblasts, and stem cells (Virgilio et al., 2018; Rikard et al., 

2019). Thus, ABMs offer much potential to simulate cell 

dynamics in cartilage tissue (Pearce et al., 2020). 

In IVD research, however, ABMs have been used only recently, 

though initial studies have demonstrated their value in predicting 

IVD cell responses in a pro-inflammatory environment. 

Baumgartner et al. (2021c) coupled an ABM with mathematical 

network models (see Section “Network Modeling”) to investigate 

the relative mRNA expression of proteins and proteases in NP cells of 

different pro-inflammatory cell states, i.e., immunopositive for 

TNF-α,  IL-1β,  both,  or  none  (Baumgartner  et  al.,  2021a; 
Baumgartner et al., 2021b). The ABM was used to visualize cell 

states within the NP through predicting how immunopositive cells 

could be arranged within a 3D environment. Thus, it was assumed 

that immunopositive cells were organized in clusters based on 

experimental data of autocrine and paracrine stimulation (Phillips et 

al., 2013b; Phillips et al., 2015), short half-lives of cytokines 

according to distantly related studies (Kudo et al., 1990; Oliver et 

al., 1993; Larson et al., 2006) and diffusion of pro-inflammatory 

cytokines. While validation is still limited due to the lack of 

experimental information on the arrangement of immunopositive 

cells, the ABM presented a novel projection of how those cells 

could be spatially distributed within the NP. In this regard, ABMs can 

be useful in identifying novel parameters and interactions 

implicated in IDD and therefore guiding future experiments. 

Future work could extend the ABM to simulate AF and CEP cells 

in addition to NP cells, or to simulate advanced stages of IDD by 

including cell migration and adding in immune cells to further 

investigate the intercellular interactions in the IVD during an 

immune response. 

Network Modeling 
Modeling biological networks provides a holistic and intuitive way 

to investigate, characterize, and understand the complex interactions 

between biological components. It is a static diagram represented by 

nodes (molecules) connected by lines (physical or functional 

interactions between nodes). The nodes are the stimuli or responses 

of the network, while the lines indicate either inhibition or activation 

between nodes directly or indirectly through other signaling 

pathways. The most frequently studied networks are protein-protein 

interaction (PPI) networks and the most commonly used software 

are: Cytoscape (Shannon et al., 2003), VisANT (Hu et al., 2004), 

TopNet (Yu et al., 2004), MAVisto (Schreiber and Schwöbbermeyer, 

2005), FANMOD (Wernicke and Rasche, 2006), Pajek (Batagelj 

and Andrej, 2004), Mfinder (Kashtan et al., 2004), and 

GraphCrunch (Milenković et al., 2008). 

Biological network modeling usually relies on “bottom-up” 

approaches, where intracellular interactions are simulated to 

estimate a final cellular response. Two methods can be used to 

build a network, either by gathering literature information 

regarding the pathways and the mechanisms that take part in the 

IVD degeneration (knowledge-based), or directly from 

experimental data (data-driven). In IVD degeneration, network 

modeling tries to capture the interactions between complex sets of 

proteins and their pathways and reveal the complex dynamics 

behind the imbalance between anabolic and catabolic processes. 

Identification of known NP cell high level cell regulatory factors is 

very important in order to integrate all the single stimuli into an 

IVD regulatory network model (RNM) for cell regulation, 

through which hypothesis and testing can be explored. 

Regulatory network models can highlight the molecular 

signatures of the underlying pathological mechanisms  that drive 

a condition. The reductionist view, one gene to one disease, is not 

applicable to a highly multifactorial condition such as IDD, thus 

cell signaling pathway analysis is of high importance in order to 

understand the system as a whole. A mechanistic understanding 

of the condition could pave the way for a mechanism-based 

biomarker selection for the effective and personalized treatment of 

IDD (Baumgartner et al., 2021b). 

A common data-driven approach for modelling regulatory 

networks starts with the acquisition of -omics data from a web- 

based repository or by generating them. Differentially expressed 

genes or proteins between healthy and diseased samples are found 

and a functional enrichment analysis is performed in order to 

identify the most statistically significant pathways that are present in 

the condition. The final step includes experimental verification of 

the targets that were identified in-silico. However, constructing 

regulatory networks from IDD samples is a challenging task due to 

high sample variation, stage of IVD, type of disc tissue 

investigated and the chosen method of analysis which could be 

MassSpec, Microarrays or Next Generation RNA sequencing. Xu et 

al. (2021) created a regulatory network behind IDD by combining 

transcriptomic and proteomic analysis. They hypothesized that 

post-transcriptional regulation could have an effect on protein 

content, thus, if a gene presents elevated mRNA and protein 

levels, it could be implicated in IDD. Their results identified six 

genes with these characteristics (CHI3L1, KRT19, COL6A2, DPT, 

TNFAIP6 and COL11A2), two of which 

were identified as important IDD markers in independent studies. 

Another group used transcriptomic data collected from lumbar- 

degenerated IVDs to build gene regulatory networks, finding 

differentially expressed genes in chemotactic signaling and 

matrix-degrading pathways that could later be used to help 

develop novel pharmacological approaches for IDD treatment 

(Zamanian et al., 2022). Li H. et al. (2022) constructed a protein- 

interaction network as well as a disease-gene interaction network that 

identified two potential therapeutic drugs, entrectinib and 

larotrectinib, demonstrating how emerging network models can be 

leveraged to identify novel treatments. 

Recently, a top-down network modeling approach was presented 

to approximate cell responses of NP cells, where the cell is 

considered as a “black-box” (Baumgartner et al., 2021a; 

Baumgartner et al., 2021b). Approximations of cell responses 

were obtained by directly linking key relevant micro- 

environmental stimuli with cell responses of interest. Therefore, 

experimentally obtained data was systematically translated into 

parameters suitable for systems biology approaches. With this 

novel approach, interrelated results between   NP   cells   of   

different   pro-inflammatory   states, 

i.e., immunopositive for TNF-α, IL-1β, or both; TNF-α and IL-1β, 

could be obtained for user-defined stimulus environments. This 
high-level network modeling methodology 



Bermudez-Lekerika et al. 
Immuno-Modulatory Effects of Intervertebral Disc 

140 

 

 

 

was embedded within an ABM (see Section “Agent-Based 

Models”) to visualize a proinflammatory environment and estimate 
the percentage of cells immunopositive for more than one 

proinflammatory  cytokine, specifically TNF-α and  IL-1β. 

Considering crucial nutritional and biochemical stimuli, in-silico 
results suggest that pro-inflammatory cytokines are important 

contributors in catabolic shifts in NP cell responses (Baumgartner et 

al., 2021b). 

Top-down approaches appear promising to tackle highly complex 

multicellular multifactorial environments, as found in IVD 

tissues. Amongst others, focus might be set on the integration of 

more critical stimuli and cell responses in the network model. 

 
 

METHODS FOR GENETIC ANALYSIS IN 

IDD 

In the past decades, candidate genes and Genome-wide 

Association Studies (GWAS) have been implemented in the 

discovery of genetics underpinnings of complex disorders. The 

former strategy involves testing the association between a 

particular gene variant and a trait. Therefore, the selection of the 

studied gene is led by a priori knowledge of the biological 

pathways that are involved in the etiology of the disease. 

However, the high specificity of candidate gene approaches does 

not reflect the polygenicity in which multiple  genomic loci are 

involved in the development of the disease (Tabor et al., 2002). 

On the other hand, the aim of GWAS is to investigate 

relationships between genetic variants and traits spanning the 

whole genome in order to give an unbiased and comprehensive 

view on the allelic architecture underlying complex traits (Goddard et 

al., 2016). Despite GWAS having identified a large number of risk 

genomic loci and provided valuable outcomes on the agnostic genetic 

discovery for complex diseases such as IDD (Uffelmann et al., 

2021), there are still gaps that have to be filled. GWAS are not capable 

of explaining the high heritability of complex diseases. Several 

reasons could contribute to this limitation, such as epigenetics or 

epistasis, which is the phenomenon for which the effect of a 

genetic variant is dependent on the presence of other variants, 

known as genetic background. Another hypothesis is the “common 

variants common disease”, which considers that the genetic 

contribution to a disease would come from an elevated number of 

SNPs, each one with a very small contribution difficult to identify 

(Manolio et al., 2009; Gibson 2010). Moreover, the interpretation 

of how a specific variant affects the downstream biological 

pathways is very challenging. First, due to linkage disequilibrium 

(LD), the phenomenon for which variants close to each other are 

inherited together, associated SNPs are often correlated with 

other neighboring variants. Thus, checking LD is essential to 

include all potential causal variants. Further, the majority of 

associations discovered through GWAS (90%) fall in non-coding 

regions, hindering the interpretation of how such SNPs affect the 

phenotype (Cano-Gamez and Trynka, 2020). 

For all of these reasons, when interpreting GWAS results, one 

should consider several factors, including the number of different 

associations that exist at a given locus and their LD correlation. 

Then it is possible to pinpoint which could be the causal variant 

and establish the mechanistic effects on the downstream 

processes (Cannon and Mohlke, 2018). Many approaches have 

been carried out to tackle the challenge of understanding how 

many signals are present at a locus, such as applying a threshold of 

LD. 

Another approach for gathering independent variants, as 

conceived by Yang et al. (2012), is to perform summary-level 

statistics conditional analysis. Here, the effect of a lead SNP is 

tested for association with all the other SNPs at a locus to 

determine the degree of association between them and detect the 

independent signals (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium 2014). 

After different signals at a locus have been defined, a subsequent 

analysis, referred to as “fine mapping”, is 

performed in order to identify the potential causal variant(s). As 

reviewed by Schaid et al. (2018), several approaches can be adopted 

to perform this “fine mapping” analysis: The heuristic LD 

approach considers all of the SNPs that are related to the main signal 

with a value of LD higher than a fixed threshold. Other methods 

that rely more on statistics consist of jointly analyzing the 

correlation amongst all of the SNPs at a given locus through 

regression methods. Due to high correlation between variants, 

penalized regression models have been shown to be the most 

effective strategy. Recently, Bayesian approaches have been 

implemented (Jiang et al., 2019) to assess the probability of SNP 

causality at risk loci with success. When a subset of potential causal 

SNPs is obtained, further analyses procure the annotation of the 

variant biological effect, often referred as “Variant to Function” 

(V2F) analysis (Sun et al., 2021). So far, to relate genes to non-

coding SNPs, the closest gene is considered. However, recent works 

(Mountjoy et al., 2021; Forgetta et al., 2022) aimed to improve this 

method by integrating various data sources and statistical methods 

to reach a better interpretation of the effect of non-coding variants 

on complex traits such as IDD. For this, multiple tools such as 

Variant effect Predictor (VEP) (McLaren et al., 2016) and 

Functional Mapping and Annotation of Genome-Wide Association 

Studies (FUMA) (Watanabe et al., 2017) can be implemented to 

suggest the potential molecular alterations caused by a SNP. 

Additionally, an increasing number of   data   repositories that 

have collected information regarding gene expression, regulatory 

elements, and epigenetics, such   as   the Encyclopedia of DNA 

Elements (ENCODE) (de Souza 2012), the roadmap Epigenomics 

Project (Romanoski et al., 2015), and Genotype-Tissue Expression 

(GTEx) (The GTEX consortium, 2020) can be queried in order to 

obtain meaningful insights on the functional elements that could be 

affected by a candidate variant. In this way, one could retrieve 

information about the effect of the variant on the expression of a 

given gene. A gene- variant pair in which the variant is correlated to 

the gene expression is called expression quantitative trait locus 

(eQTL). Nicolae et al. (2010) demonstrated that common SNPs 

associated with complex diseases are significantly more likely to be 

eQTL, in comparison to rare SNPs acting on the phenotype by 

altering the expression of the gene rather than modifying the gene 

itself. 
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For instance, a study on ischemic stroke by Amini et al. (2020) 

showed that in blood, the SNP rs78046578 was significantly 

correlated to the expression of C-X-C motif chemokine ligand 10 

(CXCL10), a small protein whose increased levels in the blood serum 

have been correlated to patients with IDD and LBP as well as with 

Pfirmann grades (Vazirinejad et al., 2014; Yang et al., 2022). 

Moreover, Raine et al. (2014) showed that in cartilage, the 

polymorphism rs8031440 is correlated with the expression of 

SMAD3. Specifically, carrying the G allele caused a reduction in 

the expression of the gene. SMAD3 is a key component of the 

TGF-β signaling  pathway,  which  is  highly  involved  in  the 
anabolism of the extracellular matrix through enhancing the 

expression of type I collagen (Verrecchia and  Mauviel, 2004). It 

was reported that SMAD3 knockout mice were smaller, had 

malformed and kyphotic spines, and had reduced levels of 

collagen and proteoglycans in the disc (Li et al., 2009). Although 

further evidence is needed, it appears that carrying a variant that 

leads to a dysregulation of SMAD3 expression could lead to altered 

development of the disc and the spine itself. 

Machine Learning/AI/Deep Learning 
Advances in computer science, computer programming, 

statistics, mathematics, and modelling allowed the creation of 

new algorithms that can “learn” and make predictions on new 

data. Machine learning (ML), AI, and deep learning are relatively 

new approaches used to tackle the complexity of a disease in order to 

identify biomarkers, or therapeutic interventions. The complexity 

and diversity of biological data (i.e.,  imaging, clinical categories, 

compound structures, gene sequence, protein/RNA data) is ideal 

for ML approaches to link seemingly unrelated entities. 

A notable usage of deep learning in IDD is found in the 

classification of disc degeneration based on MRI images using the 

Pfirrman score. Although widely used, the Pfirrman score is very 

subjective and different observers sometimes classify the same 

image with differing scores (Rim 2016). Consistency in grading is 

essential for a clinician in order to have a clear idea of the patient’s 

condition, which has led to the development of deep learning 

models. Niemeyer et al. (2021) have successfully managed to 

develop a deep learning model for the classification of discs based 

on MRI data that has an average sensitivity of 90%. 

Additionally, ML can be useful in studying disc degeneration 

through simplifying complex models to decrease computational 

demand, or through coupling models across several scales to offer a 

more holistic view of IDD. For example, while patient-specific 

FEMs, which were explained previously in this review, are useful in 

studying IVD biomechanics, they usually require complex 

procedures to set up and long computing times to obtain final 

simulation results. This therefore prevents prompt feedback to 

clinicians, resulting in studies with minimal sample sizes and 

severely hindering its suitability for time-sensitive clinical 

applications. As a response, neural networks have increasingly 

been employed in complex dynamical systems, resulting in highly 

accurate surrogate models that can be evaluated with significantly 

less computational resources and several orders of magnitude 

faster than conventional finite element solvers (Pfaff et al., 2020). 

CONCLUSION 

IDD is considered a complex multifactorial and pathological disease 

which alters biomechanical and biochemical aspects of the IVD, 

resulting in a shifted metabolism associated with increased cytokine 

and chemokine production by native disc cells driving catabolism, 

this together with abnormal mechanical loading can result in disc 

rupture. Following rupture, immune cells are able to invade the disc, 

allowing crosstalk between the IVD and the immune system. 

Therefore, a disrupted or herniated disc is needed in order to obtain 

an entry point for the immune system into the disc. Nevertheless, 

although catabolic and inflammatory features are different, since 

IVD cells (NP, AF and CEP) share classical immune cell’s roles 

and markers (Le Maitre et al., 2005; Jones et al., 2008; Risbud and 

Shapiro, 2013; Phillips et al., 2013) the resulting phenotype in each 

case remains controversial. 

In terms of terminology, immunomodulatory or inflammatory terms 

should only be used when immune cells are present within the 

IVD. Consequently, the production of chemokines and cytokines 

without disc rupture are contributed by the native IVD cells (NP, 

AF and CEPs) and should be termed catabolic cytokines and 

chemokines. Hence, catabolic phenotypes which are related to 

production of inflammatory cytokines and chemokines are 

incorrectly commonly attributed to inflammatory processes and 

easily misconstrued in the literature. Further, both processes could 

also simultaneously appear during IDD, making the recognition 

of these phenotypes more challenging. 

Regarding the shift from anabolism to catabolism, it is expected 

that many factors are at play, including changes in the 

microenvironment, biomechanics, genetics, and metabolism. Within 

the microenvironment, low glucose and high lactic acid levels 

contribute to a catabolic shift in IDD, while hypo- osmolarity can 

activate pro-inflammatory and catabolic factors. Altered 

biomechanics also contributes to this catabolic shift, and aberrant 

loading can lead to CEP fractures and AF fissures that allow for 

immune cell infiltration. IDD has shown high  inheritability,  and 

gene  variants  in genes  of structural 

proteins and their turnover as well as cytokines such as IL-1β 
have been shown to provoke a catabolic shift. While bacterial 

presence in the IVD is still controversial, some studies indicate 

that in some cases of IDD, the increased catabolic cytokines 

could be due to bacterial infection and treatment with antibiotics 

could be effective to reduce pain although the results are varied. 

Overall, IDD is highly multifactorial, and each of these factors 

discussed play a role in the shift to catabolism within an intact disc 

and possible immune cell infiltration following AF or CEP 

rupture. 

However, for the best clinical treatment, early diagnosis is crucial, 

which means that data analysis must be streamlined and the disc 

pathology must be classified correctly. Therefore, it is necessary to 

understand how different methodologies have been used to study 

the different features of IDD and assign the correct terminology. For 

that purpose, a wide range of in-silico, in-vivo and in-vitro 

models have been discussed in this review to select the best 

approaches for future IDD studies and thus provide the best clinical 

output. While 3D cell culture is effective in 
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investigating individual parameters within IDD, bioreactors and 

microfluidics studies offer another level of complexity through the 

addition of mechanics and/or fluid flow. Further, animal models 

provide even more sophistication as they include interactions 

between the disc and other tissues, however there are still many 

biochemical and biological differences in comparison to IDD in 

humans. This is in part how in-silico studies can be useful, as they 

can predict changes in the IVD based on prior research, without 

harming humans. Additionally, computational modeling can offer 

insights into IDD that are difficult or expensive to obtain through 

experiments. FEMs are useful to determine the biomechanical 

effects on the disc, which are expected to simulate specific patient 

models and observe the effects of CEP shape and its implications on 

nutrient and water transport, as well as on the different NP 

morphologies. ABMs can offer visual and spatial predictions, and 

network models provide insight into complex interactions at the 

protein or genetic level. Moreover, methodologies using candidate 

genes and GWAS have identified influential gene variants in IDD. 

Machine learning can then be a useful tool to simplify these models 

and methodologies, or to streamline and reduce the bias in the 

classification of IDD. 

Hence, this review summarizes the recent advances of cross-

disciplinary approaches to  identify  the  mechanisms of the 

shift of anabolism to catabolism  in the  progress  of IDD and 

compared them with immunomodulatory features. It 

demonstrates our current knowledge  of  the  interplay  of the 

immune system, metabolism, genetics, epigenetics, physiology, 

and mechanics, as well as computational and 

experimental models used to investigate catabolism and 

inflammation in the IVD. 
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GLOSSARY 

 
ABM Agent-based model 

ADAMTS a disintegrant and metalloproteinase with thrombospondin 

motifs 

AF Annulus fibrosus AI 

Artificial intelligence 

BNB Blood NP barrier 

BMI Body mass index 

CEP Cartilage endplate 

CLIP Cartilage Intermediate layer protein 

CoNS Coagulase-negative Staphylococci 

CS Chondroitin sulfate 

CXCL10 C-X-C motif chemokine ligand 10 

DR Death receptor 

ECM Extracellular Matrix 

ENCODE Encyclopedia of DNA Elements 

ENOS Endothelial nitric oxide synthase 

eQTL expression quantitative trait locus ER 

Endoplasmic Reticulum 

FEM Finite element model 

FUMA Functional Mapping and Annotation of Genome-Wide Association 

Studies 

GAG Glycosaminoglycan 

GCN Graph convolutional networks GDF 

Growth differentiation factor GTEx 

Genotype-Tissue Expression GWAS 

Genome-wide Association Studies HIF 

Hypoxia-inducible factor 

IDD Intervertebral disc degeneration 

IGF Insulin growth factor 

IGFR Insulin growth factor receptor 

IL Interleukin 

IVD Intervertebral disc 

LBP Low Back Pain 

LD Linkage disequilibrium LDD 

Lumbar Disc Degeneration LPS 

Lipopolysaccharide miRNA micro-

RNA 

MC Modic change 

ML Machine learning 

MMP matrix metalloproteinase 

MRI Magnetic resonance imaging 

NFκ-B nuclear factor kappa-B 

NP Nucleus pulposus 

SNP Single nucleotide polymorphism 

SP1 Specificity Protein 1 (syn. Sp1 transcription factor) 

SPARC Secrete protein, acidic, rich in cysteine THBS2 

Thrombospondin-2 gene 

TonEBP Tonicity-responsive enhancer binding protein 

TGF Tumor growth factor 

TNF-α Tumor necrosis factor alpha 

TRAIL TNF-α-related apoptosis-inducing ligand 

TRP Transient receptor potential 

V2F Variant to Function 

VEP Variant effect Predictor 

VEGF Vascular endothelial growth factor 
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Abstract 

The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for 

sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging 

into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in 

maintaining its function, and 
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| INTRODUCTION  

 

| What is the CEP? 

 

The intervertebral disc (IVD) provides the spine with flexibility and 

operational mechanical support. Depending on the speed or dyna- mism 

of the mechanical loads, it can store or dissipate energy and allows 

movement in the vertebral column. The IVD comprises three anatomic 

regions: a gelatinous core, the nucleus pulposus (NP); the annulus 

fibrosus (AF), a fibrocartilage that confines the NP laterally; two 

cartilaginous endplates (CEP) that are thin hyaline-like cartilage layers, 

covering the cranial and caudal ends of NP and the inner part of the AF. 

The human CEP is 0.1–1.6 mm (~0.06 in) thick. It separates the IVD from 

the adjacent endplates of the vertebral bone, that is, the bony endplates 

(BEP).
1–4

 The CEP thickness varies greatly even within healthy IVDs, 

according to age, location in the spine (disc level), posi- tion in the IVD 

(cranial, caudal), and region in the tissue (central, peripheral). Its 

extracellular matrix consists of mainly type II collagen, proteoglycans, 

and water.
5

 

The CEP plays a key mechanical role in preventing the disc from bulging 

into the adjacent vertebral body (VB)
6

 and providing cranial and caudal 

anchorage for the fibers of the inner AF and NP of the innermost part 

of the AF (Table 1).
7–9

 In addition, the CEP provides a key path for the 

diffusion of nutrients from the peripheral vasculature to the IVD and 

waste out of the IVD, which is crucial as it is the larg- est avascular 

tissue in the human body.
10,11

 While AC relies on diffu- sion from the 

subchondral bone and via synovial fluid for nutrition,
12,13

 the CEP 

relies on diffusion from neighboring blood ves- sels. Solutes, including 

oxygen and glucose, have been hypothesized to be predominantly 

transported into the disc through the CEP and 

their availability is regulated by the bone marrow contact channels that 

cross the BEP.
14

 Often, the combined CEP and BEP are referred to as 

the vertebral endplate; however, the term vertebral endplate is also 

used interchangeably to refer purely to the BEP. Although the CEP 

and BEP have been recognized as distinct tissues since the 1930s, 

many studies do not distinguish the CEP from the BEP,
15

 for example, 

when reporting fluid transport in the IVD
16

 or radiological signs of IVD 

degeneration
17

 even if the authors acknowledge that the vertebral 

endplate is a bilayer of cartilage and bone.
18,19

 Arguably, it is difficult to 

isolate the CEP from the BEP experimentally, and this must be done very 

carefully.
20,21

 Clinically, the distinction of the two tis- sues on medical 

images is also very challenging. Thus, when reporting methods, it 

should be clearly stated what tissue or construct (CEP, BEP, or a 

combination thereof) is being used and a clear consistent 

nomenclature should be used, to avoid confusion.
22

 Further, it is the 

authors' recommendation to define the CEP and the BEP indepen- 

dently where possible, or otherwise explicitly define the vertebral 

endplate as a construct of two tissues. 

 

| Developmental biology of the CEP 

 

The CEP, AF, and vertebral bodies develop from the mesoderm, spe- 

cifically from the sclerotome.
23

 AC is also derived from the mesoderm 

(Table 1).
24,25

 In contrast, the NP develops from the notochord.
26

 The 

mesoderm (paraxial) undergoes somitogenesis promoted by precise 

and cyclic temporal and spatial regulation of Notch and Wnt, and 

fibroblast growth factor (FGF) signaling pathways, respectively.
27

 The 

Sonic Hedgehog (Shh) spatiotemporal regulation led by the notochord 

further differentiates somite to sclerotome and simultaneously 

degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP 

is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle 

the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical 

role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration 

and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP 

and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on 

the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is 

considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from 

articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP 

separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration 

therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and 

mechanical stability within the IVD. Thus, the CEP should be con- sidered and potentially targeted for 

future sustainable treatments. 

 
KE Y W O R  DS  

biologic therapies, biomechanics, degeneration, pre-clinical models 
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TA BL E 1 Differences between the cartilaginous tissues CEP, AC, NP, and AF regarding: (A) general differences, (B) biochemical composition, and 

(C) mechanics and permeability. 

 

 
Cartilaginous endplate (CEP) Articular cartilage (AC) Nucleus pulposus (NP) Annulus fibrosus (AF) 

A. General 
    

Tissue origin Mesoderm (sclerotome)
26

 Mesoderm
24,25

 Notochord
26

 Mesoderm (sclerotome)
26

 

Vascularity Vascular at birth, avascular in 

adulthood
26,29,30

 

Avascular
13,37

 regardless of 

the stage of 

development
39

 

Avascular
38

 Vascular at outer one-third of 

the AF and avascular at inner 

AF
36

 

Nutrition source Diffusion from neighboring blood 

vessels
53

 

Diffusion from synovial 

fluid
12,13

 and the 

Anaerobic glycolysis,
51

 

diffusion from 

Diffusion from neighboring blood 

vessels and CEP
50

 

subchondral bone
12

 CEP
50,51,53

 

Imaging* Hypointense on T2-weighted MR 

indistinguishable from bony endplate. Specific sequences such as 

UTE assist in differentiating CEP from bony endplate on 

MR
114,116,222 

Hypointense on 

T2-weighted MR and 

distinguishable from 

adjacent soft tissue and 

bone
113

 

Hyperintense on 

T2-weighted MR, clear 

delineation from CEP in 

healthy IVD and gradient in 

boundary between AF and 

NP
114

 

Hypointense on 

T2-weighted MR, 

indistinguishable from CEP, 

gradient in boundary 

between AF and NP in healthy 

IVD
114 

 

Cell density 15  10
6

 cells/mL
67

 14–15  10
6

 cells/mL
66

 4  10
6

 cells/mL
67

 9 10
6

 cells/mL
67

 

Water content 1.585–1.666 mg water/mg dry wt,
4

 

and 22.1%–62.4%
9,60

 

70.7%
64

 70%–90%
62

 50%–70%
62

 

Proteoglycan 7.2%–13.4% sulfated GAG μg/mg dry 

weight.
4

 and 4.37%–18.48% 

5%–15% GAG by dry 

weight
61

 

30%–50% GAG of dry 

weight
62

 

10% GAG of dry weight
62

 

 μg/mg dry weight
60

    

Collagen 681 ± 171 μg/mg dry weight,
4

 and 

329.0–886.9 μg/mg dry wt
60

 

60%–70% collagen by 

dry weight
61

 

20% of dry weight
62

 70% of dry weight,
62

 

aligned with alternate 

    orientations of an 

    average of ±30
o63

 

Cell morphology Rounded and slightly elongated in Superficial and Mid zone: Fibrochondrocyte-like Rounded chondrocyte-like 

 the direction of the collagen rounded and slightly cells
76

 cells (inner AF) and 

 fibers
65

 elongated in the  elongated, fusiform, 

  direction of the  fibroblast-like cells 

  collagen fibers  (outer AF)
77

 

  Deep Zone: round
24

   

Gene markers ERK, BMP, ACAN, COL1A1, GDF10, CYTL1, IBSP, PAX1, FOXF1, HBB, COL1, VCAN, PTN, 

 COL2A1
51

 FBLN1,
78

 ACAN, CA12, OVOS2,
78

 TNMD, BASP1, 

  PTN
79

 KRT19,
80

 ACAN, TNFAIP6, FOXF1, 

   VCAN, TNMD, BASP1, FOXF2, and AQP1
79

 

   TNFAIP6, FOXF1,  

   FOXF2 and AQP1
79

  

Pericellular matrix Randomly arranged
9

 Columnar organization
9

 Single cells in lacunae
74

 Single cell, paired, or 

    multiple cells in 

    contiguity
75

 

C. Mechanics and 
    

permeability     

Primary mechanical Resist fluid flow in and out of the Distribute load during Withstand compressive Confine the NP laterally,
7

 

function disc and maintain a uniform stress joint movement and loads to the IVD and and anchor for the IVD 

 distribution across the provide lubricated (low maintain the BEP–CEP to the VB.
48

 

 IVD,
86,223,224

 and prevent the disc friction) movement
37

 interface through fluid  

 from herniating or bulging
9,223,224

  pressure
1

  

Primary Main gateway of nutrients and N/A N/A Secondary gateway of 

permeability waste into and out of the disc and   nutrients and waste into 

function waste,
6,10,15,50,52,54

 prevent loss   and out of the 

of large proteoglycan molecules disc
10,15,50

 

from the disc
223

 

(Continues) 

B. Biochemical 

composition 
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TA BL E 1 (Continued) 

 

 

Permeability 1.27  10
 16

 and 1.66 10
 14

 m
4

/ 

Ns
4,10,53 

(0.76 

± 0.42) 10
 14

 m
4

/ 
Ns

61 

0.67 ± 0.09  10
 15

 m
4

/ 
Ns

87 0.23 ± 0.19  10
 15

 m
4

/ 
Ns

87 

 

Tensile modulus 0.5–21.8 MPa
60

 1–30 MPa
89

 1–1.66 MPa
90

 2.56–12.29 MPa
90

 

Bone interaction Parallel collagen fibers that make it Anchored by N/A Outer AF extends to the 

 weak and susceptible to 

detachment
48

 

perpendicular collagen fibers 

making them 

strongly attached
48

 

 VB anchoring the disc to the 

vertebral rim
48

 

*Multiple imaging modalities are relevant in distinguishing these structures, expecially when degenerative features are present, e.g. CT in CEP sclerosis. 

 

promotes spine segmentation.
28

 After sclerotome segmentation, cells 

proliferate, condense, and undergo chondrogenesis to form the verte- 

bral bone (through the endochondral bone process), the AF, and CEP. 

This complex regulation is governed by the coordinated action of Shh, 

SOX5/6/9, Pax1/9, and bone morphogenetic protein (BMP) 

pathways.
23

 

At birth, the human CEP is thicker and takes up approximately half of 

the intervertebral space, which is reduced to about 5% by 

adulthood.
26

 Additionally, blood vessels are present at infancy, but are 

replaced over time by cartilaginous ECM and almost disappear by 

skeletal maturity.
26,29,30

 In humans, the CEP acts as a growth plate for the 

vertebrae, but this is lost after teenage years, so that only a thin layer 

of hyaline cartilage remains.
26,29

 This is different in many animals such as 

sheep or bovine, in which the growth plate has been shown to persist 

into adulthood, and is separated from the CEP by the BEP.
31

 The shape 

of the lumbar (L4–L5) CEP also changes with age, starting with a 

biconvex shape at infancy, but evolves to a concave shape beginning 

around the age of 2 or 3 years when children start to walk.
32–35

 Weight 

bearing and movement have been shown to influ- ence the shape of the 

vertebrae and IVDs.
35

 The CEP is vascularized during fetal 

development; however, by the age of 10 there is a sub- stantial 

decrease in blood vessels, which are lost by adulthood.
36

 Simi- larly, blood 

vessels have been shown to be present in the outer third of the AF up 

until the age of two, but decrease by age 30 unless there is damage that 

allows for revascularization.
36

 In contrast, AC
13,37

 and the NP
38

 are 

avascular regardless of the stage of development.
39

 Throughout the 

20s and after adulthood, calcification is observed, often in focal points 

in the CEP. These calcified sections can drive revascularization and 

bone formation which occurs following activa- tion of matrix 

metalloproteinases (MMPs) which degrade the ECM.
29,30

 Furthermore, 

oxidative stress has been shown to induce CEP calcification through 

the p38/extracellular signal-regulated kinase (ERK)/p6 pathway,
40

 which 

acts in conjunction with mitogen- activated protein kinase (MAPK) 

stimulation. This pathway is also involved in cartilage calcification in 

osteoarthritis,
41

 and is implicated in embryonical endochondral 

ossification in coordination with the transforming growth factor beta 

(TGF-β) and BMP families.
40,42

 Simi- larly, AF and CEP have both been 

demonstrated to be the source of pathological fibrocartilage in the 

NP.
43

 Thus, the ability of CEP to move toward bone phenotype 

(calcification) and to equivalent AF cell fate (fibrocartilage) suggests that 

CEP cells maintain developmental- 

like plasticity, and consistent tissue homeostasis to maintain their 

healthy phenotype. Similarly, this de-differentiation capacity has been 

shown in articular cartilage (AC), where significant differential expres- 

sion in the ERK and BMP pathway genes is observed.
44

 

 

| HEALTHY CEP 

 

| Structure and composition of the CEP 

 

Throughout life, the composition and anatomy of the CEP and BEP con- 

tinuously change. During early life, ossification of the VB occurs. While 

the vertebra-sided part of the endplates becomes ossified forming the 

BEP in young adults, the disc-sided part remains cartilaginous forming 

the CEP.
30

 The BEP is a layer of porous, coalesced trabecular bone con- 

taining pockets of vascularized bone marrow enabling the two-way 

transport of nutrients and cellular metabolic products.
45

 In adults, the 

structure is avascular but has a base that contains a dense network of 

capillaries formed by terminal branches of metaphyseal and nutrient 

arteries.
46

 The thicker peripheral section of the BEP forms a junction 

between the CEP and AF with the vertebral body.
47

 

The structural integration of the CEP into the BEP, AF, and NP var- ies.
1

 At 

the bone interface there is minor integration, and the bone– cartilage 

junction is seen as a straight line with no gaps with collagen fibers of the 

CEP aligned parallel to the bone.
1,48,49

 This is different than AC–bone 

interfaces, where the collagen fibers of the cartilage are per- pendicular 

to the bone, anchoring the tissue types together.
48

 However, in a healthy 

disc, the fluid pressure of the NP maintains the CEP and the BEP 

pressed together and thus, under normal loading (i.e., 

compression), the limited integration of the CEP and BEP is enough to 

maintain the BEP–CEP interface.
1,48

 Also at the BEP, there are capil- laries 

that penetrate the pores of the subchondral bone and terminate by 

looping before the CEP junction.
50,51

 The capillaries are denser at the 

center of the vertebral endplates above the NP, which is where the IVD is 

thickest.
52

 As the mature IVD is considered as avascular, the nutrient 

and waste exchange occur by diffusion from these capillaries.
53

 Although 

diffusion can occur through the outer AF, the CEP is consid- ered as the 

main gateway for nutrients into the disc and waste out of it.
6,10,15,50,52,54

 

The diffusion distance between the CEP and the cells in the center of 

the NP can reach 8 mm,
14

 which provides a shorter route for diffusion than 

through the AF. 

Cartilaginous endplate (CEP) Articular cartilage (AC) Nucleus pulposus (NP) Annulus fibrosus (AF) 
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FIG U R E 1 (A) Healthy CEP. In the healthy CEP, the collagen fibers of the AF continue into the CEP parallel to the bone (bottom). The collagen 

fibers of the NP penetrate at least partially into the CEP (top). The BEP–CEP junction is seen as a straight line with no gaps. CEP chondrocytes are 

rounded, and slightly elongated in the direction of the collagen fibers. The healthy CEP is avascular but has a base that contains a dense network of 

capillaries formed by terminal branches of metaphyseal and nutrient arteries. (B) Degenerative CEP. A degenerated CEP shows loss of thickness, 

fibrosis, calcification, and apoptotic cells. Fissures allow for blood vessels and nerve ingrowth as well as bacteria entering the NP (top). The adjacent BEP 

can show sclerosis and signs of MC (top). Avulsions of the CEP from the BEP can also occur (bottom). Integration between the CEP and the NP or AF 

can also become weaker. These degenerative changes can be identified histologically.
74

 Note that details regarding the other IVD tissues are not 

included in the image. 

 

 

In addition, collagen fibers from the outer AF extend into adjacent vertebrae 

and serve as anchor for the IVD to the rim of the vertebral bone.
48

 The 

outer AF connects directly into the bone while the inner AF and NP 

connect to the CEP.
1,48,55

 The integration at the inner AF, however, is 

more complex as the collagen fibers of the AF lamellae are continuous 

with those of the CEP (Figure 1).
49,56

 Additionally, SEM analysis of ovine 

discs has shown that the collagen fibers of the AF branch, which 

strengthens the annulus–EP anchorage by increas- ing the interface area 

over which shear forces are distributed.
57

 These fibers also intertwine 

and sometimes merge with the fibrils of the CEP. The strength of this 

connection is essential for the CEP ability to resist tensile loading.
1,49

 

Collagen fibers in the CEP differ from both the NP and AF.
58

 The 

collagen network of the CEP is denser than that of the NP; and tends to 

be arranged mainly parallel to the vertebrae, although not as highly 

oriented as in the AF.
9,58

 Additionally, the colla- gen fibers at the inner 

CEP are stronger and more interconnected than those at the outer CEP, 

which could play a role in the anisotropic flow resistance of the CEP.
59

 

The highly convoluted collagen fibers within the NP penetrate at least 

partially into the CEP, providing the resistance to tensile force at the NP-

CEP interface.
7–9

 

Interestingly, the caudal CEP is usually thinner than cranial one
9

 and 

both are rich in type II collagen, proteoglycans, and water.
9

 

Measurements of cadaveric human lumbar CEPs properties found that 

collagen content was 681 ± 171 μg/mg dry weight,
4

 or within a range of 

32.9%–88.69% dry weight.
60

 In comparison, the collagen content of 

AC has a smaller range of 60%–70%
61

 while that of the NP was 

around 20%.
62

 Collagen content of the AF was around 70%
62

 and has a 

specific alternating aligned orientation of an average ±30
o
.

63

 The 

average sulfated glycosaminoglycan (GAG) content was 103 ± 31 μg/ mg 

dry weight,
4

 or within a range of 4.37% and 18.48% dry weight.
60

 The 

GAG content is similar to that of AC, which ranges between 5% and 

15%,
61

 and that of the AF which is 10%.
62

 The NP GAG content, on the 

other hand, is much higher, ranging between 30% and 50%.
62

 CEP 

hydration was 1.585–1.666 mg water/mg dry weight, and CEP porosity 

was 0.648 ± 0.069.
4

 The water content of the CEP, which ranges 

between 22.1% and 62.4%,
9,60

 is much lower than that of AC, at 

70.7%,
64

 the NP, at 70%–90%, and the AF, at 50%–70%.
62

 Chon- 

drocytes are distributed throughout the CEP and are responsible for 

maintaining the ECM and, thus, providing stability to the tissue.
2

 

Macroscopically, CEP chondrocytes are typically rounded, although 

slightly elongated in the direction of the collagen fibers, more similar to 

the chondrocytes of the mid or superficial zone of AC than to the 

chondrocytes of the deep zone of AC.
24,65

 The cell density of the CEP is 

~15 10
6

 cells/mL with the highest density closest to the 



160 

CRUMP ET AL. 
 

 

 

vertebral bone. Although similar to the cell density of AC (1.4– 

1.5 10
7

 cells/mL)
66

 this is nearly four times the cell density of the NP 

(4 10
6

 cells/mL) and two times that of the AF (9 10
6

 cells/ mL).
67

 

Recent single-cell analysis of human IVD cells have demon- strated 

that there are different IVD cell clusters non-randomly distrib- uted in 

the AF, NP, and CEP.
68

 The interactions between these IVD tissues at 

a mechanistic level are essential to understand the pivotal role of CEP 

chondrocytes in a healthy CEP structure. The main com- ponents of the 

pericellular matrix around the CEP chondrocytes are hyaluronan, 

proteoglycans, and type VI collagen,
69

 while interstitial collagen is 

mainly composed of type II collagen
70

 and proteoglycans, where the type 

chain, length, and quantity of glycosaminoglycans (GAGs) determine 

the water content.
71

 Type X collagen, a calcium- binding collagen 

which is a key marker of hypertrophy, increases with age and is 

associated with increased calcification of the CEP.
72

 Addi- tionally, 

depletion of one of the collagen type II gene (COL2) alleles has been 

shown to also promote calcification of the CEP in mice.
73

 Unlike AC, 

the CEP has a randomly arranged pericellular matrix that does not follow 

a columnar organization.
9

 In comparison, the NP has single cells in 

lacunae,
74

 and the AF has single cell, paired, or multiple cells in 

contiguity.
75

 In addition, the CEP is less hydrated and has lower GAG 

content than AC,
9

 which is why it should be considered a different and 

unique tissue. Negatively charged proteoglycans repre- sent 

approximately 15% of the dry weight of CEP tissue.
4

 CEP cells exhibit 

an elongated morphology aligned to the collagen-rich ECM and are 

arranged parallel to the VB, similar to superficial zone chon- drocytes 

of AC, while deep cartilage AC cells present a round mor- phology and 

are arranged perpendicular to the adjacent bone.
24,65

 In contrast, the NP 

has fibrochondrocyte-like cells.
76

 The cells of the AF differ between 

the inner AF, where cells are rounded and chondrocyte-like, 

and the outer AF, where cells are elongated, fusi- form, and fibroblast-

like.
77

 Furthermore, AC cells present a decreased expression of ECM 

genes (ACAN, COL1A1, COL2A1 genes) relative to CEP cell expression.
65

 

Other possible gene markers suggested for the CEP include ERK, BMP.
51

 

Genetic markers of AC have been proposed as GDF10, CYTL1, IBSP, 

FBLN1,
78

 ACAN, and PTN
79

 while NP markers are  considered  as  PAX1,  

FOXF1,  HBB,  CA12,  OVOS2,
78

  KRT19,
80

 ACAN, VCAN, TNMD, BASP1, 

TNFAIP6, FOXF1, FOXF2, and AQP1.
79

 Genetic markers of the AF have 

been indicated as COL1, VCAN, PTN, TNMD, BASP1, TNFAIP6, FOXF1, 

FOXF2, and AQP1.
79

 

 

|  Mechanics and permeability within the CEP 

 

| Effects of pressurization on CEP mechanics 

and permeability 

 

Mechanical forces are crucial in maintaining cartilage homeostasis.
81

 

Chondrocytes respond to the mechanical environment, which contrib- 

utes to the regulation of cell metabolism. As with other cartilage tis- 

sues, mechanical loading, such as compressive, tensile, and shear 

forces as well as pressure from fluid flow, is essential for the function of 

the CEP.
82

 While overloading of the disc will result in vertebral 

endplate fractures or another injury, lack of mechanical stimuli will also 

impair disc homeostasis.
83

 As it sits above and below the NP, the CEP 

acts as a mechanical barrier that adds resistance to the flow of fluid 

from the IVD to the VB, allowing for the pressurization of inter- stitial 

fluid in response to compression while preventing the disc from bulging 

into the adjacent VB.
58,84,85

 This fluid pressurization helps to maintain a 

uniform stress distribution across the IVD.
86

 Thus, the per- meability of 

the CEP is essential in maintaining the intradiscal pres- sure. In 

contrast, AC mechanically distributes load during joint movement 

and provides lubricated (low friction) movement.
37

 However, it does 

not play an important role in permeability. 

The reported permeability of cartilaginous tissue varies sig- 

nificantly. AC has been reported to have a permeability of 

0.76 ± 0.42 10 
14

 m
4

/Ns
61

 while the NP has a permeability of 

0.67 ± 0.09 10 
15

 m
4

/Ns,
87

 and the AF has a permeability of 

0.23 ± 0.19 10 
15

 m
4

/Ns.
87

 The permeability of the CEP ranges 

between 1.27 10 
16

 and 1.66 10 
14

 m
4

/Ns,
4,10,53

 depending on the 

CEP location in the IVD, the animal model, and the region of the sample 

within a CEP. Rodriguez et al. also reported a permeability of 

1.19 10 
10

 m
4

/Ns in human CEPs, and explained the significantly lower 

measured permeability as due to inhomogeneities and focal carti- lage 

lesions common in degenerated human samples.
52

 Despite the 

considerable variation in the reported CEP permeability, it is still at 

least an order of magnitude less than that of the BEP (~2.21 10 

9

 m
4

/Ns).
4,51,52,88

 However, a more accurate representa- tion would 

consider the CEP permeability as a gradient which exponen- tially 

increases from the NP toward the BEP according to proteoglycan 

content.
10

 Early studies using disulfine blue dye also demonstrated 

higher permeability across the CEP at the center than across the lateral 

regions.
15

 However, despite this, the central region of the NP experi- 

ences low nutrition and high lactate concentrations due to the large dif- 

fusion distances across discs, particularly in the lumbar region.
54

 

Further, there are differences in permeabilities in the CEPs of the same 

IVD, in which the cranial CEP is significantly more permeable than the 

caudal one
9

 possibly due to the differences in loading experience. 

 

 

| Effects of biochemical composition on CEP 

mechanics and permeability 

 

The biochemical composition is fundamental in determining the mate- 

rial properties of the CEP, and therefore the permeability and 

response to mechanical loading.
60,85

 It has been proposed that there is 

an optimal range of biochemical composition that balances both the 

biomechanical and nutritional demands of the CEP.
60

 To this extent, the 

CEP must be stiff enough to hold the disc together but porous enough 

to allow for solute transport. Therefore, the CEP tensile prop- erties have 

been found to be inversely related to the transport proper- ties.
60

 

Additionally, within the bovine CEP, the biochemical 

composition, and therefore the biomechanical properties, were found to 

vary in the central region located next to the NP, compared with the 

lateral CEP, which is stiffer and thus could withstand a more sig- nificant 

portion of loading.
85
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FIG U R E 2 Healthy CEP diffusivity to different types of solutes based on their charge for small molecules and/or on their size and shape for large 

molecules. The molecules and diffusivities are based on Roberts et al.
6

 and Sampson et al.
4

 

 

 

The tensile stresses within the CEP occur through Poisson's effects when 

the CEP is pressed against the BEP by the NP pressure, and/or through 

direct peripheral pulling by the inner AF fibers that blend with the CEP. At 

the inner AF and NP, the collagen is not as highly oriented as the outer 

AF, and therefore does not exert high tensile forces on the CEP,
1

 although 

the central CEP will experience transverse shear and some tensile 

stress when the NP bulges laterally during compression.
49

 The tensile 

modulus of the CEP was found to be 5.9 ± 5.7 MPa, ranging from 0.5 to 

21.8 MPa.
60

 In comparison, the tensile modulus of AC ranges from 1 to 

30 MPa,
89

 NP from 1 to 1.66 MPa, and AF from 2.56 to 12.29.
90

 The 

tensile modulus of the CEP positively correlates to the collagen content; 

however, water and GAG content have been shown to have minimal 

effects.
60

 In contrast, water content is expected to play a more prominent 

role than GAG content in the extrinsic viscoelastic, or poro-elastic, 

properties, that is, aggregate modulus and hydraulic per- meability, and 

diffusion of the CEP, alongside other cartilage tissues including the NP, 

AF, and AC.
9,58,85

 Yet, GAG content is considered more important in 

osmotic properties, rather than elastic properties in the CEP.
9

 In particular, 

multiphysics models showed that this character- istic might provide the 

GAG with an important role in the effective con- trol of the fluxes of fluid 

between the BEP and the NP, by the CEP.
10

 Interestingly, GAG quantity 

has been shown to not correlate with water content,
9

 suggesting that the 

type and quality of the GAGs are more important than the quantity. 

CEP transport properties depend on the porosity and collagen, GAG, 

and water content of the CEP matrix,
6,51

 while solute transport into and 

out of the IVD depends on solute size,
50

 shape, weight,
6

 and charge 

(Figure 2). For small molecules, net charge is the determining factor of 

diffusivity through the CEP.
5

 The charge of the molecules are 

important due to the Donnan osmosis effect, in which small posi- tive 

ions from the interstitial fluid migrate into proteoglycan-rich tis- sues.
91

 

Water enters the tissue to equilibrate the chemical potential, and the 

tissue swells as much as allowed by the collagen network and 

surrounding tissue constraints. Thus, electrical charge of small parti- 

cles impacts the diffusivity.
92,93

 Further, multiphysics models suggest 

that proteoglycan content has a greater effect than collagen content on 

the macroscopic hydraulic permeability of the CEP.
10

 Neverthe- less, 

when biopsies or cores of CEP are used it is challenging to 

control potential GAG loss and tissue swelling in altered osmotic envi- 

ronments in vitro compared with those seen in vivo. Thus, future 

studies where GAG release into media is prevented and osmotic pres- 

sure is controlled are essential to further the understanding of CEP 

permeability.
94

 

Conversely, for large electrically uncharged molecules, size is the 

determining factor of diffusivity as the space between GAG chains of 

aggrecan is only ~3–4 nm.
6

 Due to their ability to bend, linear poly- mers 

have a relatively high diffusivity compared with spherical mole- cules of 

the same molecular weight.
4

 However, long-chain polymers have a 

relatively low diffusivity compared with globular molecules of the same, 

or even higher, molecular weight. For example, starch, a globular 10 

kDa molecule, diffuses more than polyethylene glycol (PEG), a long-

chain 4 kDa polymer.
6

 

Additionally, dynamic loading influences convective solute transport 

of large solutes, particularly in less porous CEPs.
4,58,95,96

 However, 

dynamic compression has been shown to have a minimal effect on small 

molecule, such as glucose or lactate, transport as this acts primarily 

through diffusion.
4,94

 In contrast, static compression can decrease 

diffusivity and inhibit nutrient transport because the tissue gets 

compacted, and thus porosity decreases.
58,82

 

 

 

| In silico investigation of CEP multiphysics 

 

In silico simulations, such as finite element (FE) and computational fluid 

dynamics (CFD) analyses, have been widely used to determine the 

multiphysics mechanisms involved in biological tissues such as the ones of 

the IVD, in response to external mechanical loads. Models are useful in 

understanding the particularity of CEP mechanics. However, despite its 

importance, the CEP is often disregarded in in silico simula- tions, 

simplified to a boundary condition of the IVD,
97

 or given 

homogenized properties.
98

 Since experimental data on the CEP is lim- 

ited, equations and material properties determined for the IVD or AC 

are often used to represent the CEP.
10

 Osmo-poroelastic models have 

been demonstrated to be generic enough to use for cartilaginous 

tissues made up of proteoglycans and collagen fibers, however, CEP-

specific data should be used when possible. 
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Nevertheless, models have given insight into how the IVD gains water 

during 8 h of rest at night much faster than it loses water during 16 h of 

activity during the day. The compression of the CEP against the BEP is 

considered to close the porosity of the CEP and limit water out-flow 

when the IVD is compressed, while opening the porosity and favoring 

fluid in-flow into the IVD when unloaded.
99

 Coined as the 

“intervertebral disc valve theory,” this mechanism might explain func- 

tional anisotropic, or direction-dependent, flow resistance mechanism in 

the CEP
100

 and has been backed up by experimental measure- 

ments
100

 and independent permeability measurements.
53

 Further, in 

silico simulations used composition-dependent CEP modeling and 

incorporated cranio-caudal gradients of compositions measured in a 

healthy human disc to support the theory.
2

 These simulations found that 

CEP porosity changes additionally induced by the composition 

gradients reinforced the resistance to the mass flow of water that 

reaches the BEP when the NP is pressurized.
10

 However, there are 

contradictory findings on whether the favored direction of flow at the 

CEP is in-flow or out-flow.
94,101

 

 

 

| IMPORTANCE OF CEP IN IVD 

DEGENERATION  

 

The integrity of the CEP and BEPs are key to the homeostasis of the 

motion segment as they form an interface to exchange nutrients and 

metabolites from the IVD to the external circulation and play an 

essential role in the mechanical stability of the motion segment. Thus, 

pathological processes that occur to the CEP and BEP can alter the 

mechanical and nutritional environment of the IVD, triggering degen- 

eration. Although most studies have focused on changes to the BEP with 

degeneration, which are visible on MRI images, these are likely 

associated with CEP changes as well. Indeed, cells derived from CEP 

adjacent to degenerated discs have very similar properties (morphol- 

ogy, immune phenotyping, proliferation, and gene expression) to bone 

marrow mesenchymal cells from the same patients.
21

 BEP defects 

have been associated strongly and independently with IVD 

degeneration,
102

 where they have been hypothesized to be an initiat- ing 

factor to degeneration of the disc.
33,103–105

 

 

 

| Imaging endplate defects 

 

BEP defects include several key recognizable features, which are nor- 

mally identified on magnetic resonance imaging (MRI) images 

(Figure 3). Computed tomography (CT) has been used to identify the 

presence of endplate sclerosis in MC but is not usually suitable for 

clinical diagnosis or epidemiological studies.
106

 Generally, the term 

“endplate changes” in literature describing clinical T1- and T2-

weighted MRI features refers to changes seen in the bone marrow 

adjacent to the CEP, typically referred to as Modic changes (MC). 

Atypical changes that affect the endplate which are detectable from 

MRIs can be classified into three categories: focal, corner, and ero- 

sive.
107

 Focal changes, in which Schmorl's nodes are included, are 

defined as local hollow regions on the endplate with NP protrusion 

into the subchondral bone; while corner defects are changes in ante- 

rior or posterior end of the BEP with the compromise of the vertebral 

trabeculae. Finally erosive defects are characterized by an irregular 

extensive alteration of the endplate on T2-weighted images.
107

 How- 

ever, some features, such as endplate changes in the upper lumbar 

spine may have a developmental rather than degenerative origin.
108

 

Moreover, in a large population-based study BEP damage was strictly 

associated with MC, rather than other endplate defects.
109

 

Modic changes, although by definition connected to the CEP, are at best 

an indirect reflection of CEP status and do not correlate well with 

histology.
110,111

 The CEP itself is not clearly visible with conven- tional 

MRI sequences. Cartilage has short T2 values, so the CEP signal is not 

detected or is very hypointense. Additionally, its size ranges from 0.1 

to 1.6 mm,
1

 which is close to the typical pixel size of a sagit- tal T2-

weighted MRI of 0.5 mm
2

. This poses a significant challenge for 

identifying the role, if any, of the CEP in LBP through imaging.
112

 In 

contrast, AC is distinguishable from adjacent soft tissue and bone.
113

 In 

healthy discs, the position of the CEP can be inferred as a line of hypo-

intensity between the hyper-intense NP and the VB on T2-weighted 

MRI but it is impossible to distinguish this from the BEP (see fig. in Law 

et al. (2013)
114

). However, this feature is obscured when the AF is 

hypointense, which is characteristic of the early stages of 

degeneration. 

The terms “Schmorl's nodes” and “endplate damage/disruption” are 

often used to describe specific MRI features at the boundary between 

the IVD and the VB seen on MRI, making them more specific to the CEP. 

However, the multiple proposed classification schemes for these 

imaging features reflect a poorly defined phenotype.
32

 Considering 

the limitations of T1- and T2-weighted sequences and CT for analyzing 

CEP features, alternative quantitative MRI approaches have been 

implemented.
115

 Ultrashort time to echo (UTE) MRI is the most widely 

reported as an effective means of visualizing the CEP and can show in 

vivo the delineation of the BEP and CEP.
114,116

 Outside of the clinical 

setting, both CT and MRI are widely used in ex vivo animal or human 

studies. For example, MRI has been used in ex vivo human cadaveric 

spine segments to characterize the structure of the CEP in detail.
117

 

microcomputed tomography (μCT) has also been used in such 

settings to confirm compositional characteristics of the CEP seen in MRI 

such as sclerosis,
118

 or for detailed morphological and biochemical 

characterization using contrast enhanced μCT.
119

 These ex vivo 

imaging approaches are needed to better understand the role of early 

CEP changes in the pathogenesis of IVD degenera- tion, while clinically 

applicable sequences and accompanying analyses capable of detecting 

early CEP changes are needed for identifying at-risk patients and early 

intervention targets. 

 

 

| Significance in low back pain 

 

The evidence for innervation of the vertebral bone marrow extending to 

the endosteal surface gives a biological basis for the endplate as a 

source of nociception in vertebrogenic pain.
120

 Areas of vertebral 
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FIG U R E 3 Examples of CEP and BEP appearance in standard of care MRI from 47-year-old participants in the Northern Finland Birth Cohort 

1966. (A.1–A.2) Characteristic appearance of healthy CEP and BEP on T1- and T2-weighted MRI. (B.1) Schmorl's node as an example of a focal defect 

at the L3–L4 IVD caudal BEP (white arrow); (B.2) corner defects at the anterior edges of the L4–L5 IVD cranial and caudal BEP (white arrows) with 

accompanying type 2 MC (orange arrows); (B.3) erosive defects at the L4–L5 IVD cranial and caudal BEP (white arrows) with accompanying type 2 MC 

(orange arrows); (C.1–C.2) type 1 MC extending from the L3–L4 IVD cranial and caudal BEP (green arrows) with type 2 MC also visible in the L4 

vertebral body (orange arrows); (C.3–C.4) type 2 MC extending from the L5–S1 IVD cranial and caudal BEP (orange arrows); (C.5–C.6) type 2 and type 

3 MC (orange and blue arrows, respectively) extending from the L5–S1 IVD cranial and caudal BEP. 

 

 

endplate damage may  trigger  neoinnervation,
120–122

  with  concomi- 

tant bone marrow pathologies (MC) also shown to be inner- 

vated.
120,123–125

 While these sensory fibers generally terminate in or 

near the endosteal surface of the BEP, the CEP has also been shown to 

have small vascular spaces containing nerve fibers in some cases
121

 and 

the CEP specifically can be accessed by nerves and blood vessels in the 

case of damage.
126

 

Endplate sensory fibers may be activated mechanically and chem- ically 

in the case of endplate damage. Disc/vertebra crosstalk as a 

consequence of the breakdown of the barrier provided by the CEP 

can contribute to nerve irritation with exposure to proinflammatory 

and neurogenic factors and the by-products of NP anaerobic metabo- 

lism such as lactic acid.
18

 Additionally, damage to the endplate alters 

the distribution of IVD stress and the response to spinal loading,
18,45

 

contributing to local mechanical nerve activation. Associated changes to 

the paraspinal muscle quality may further interfere with segmental 

biomechanics and play an aggravating role in endplate nociception.
127

 

Although established as a plausible source of nociception, as with other 

spine image phenotypes, the observed relationship between vis- ible 

defects of the vertebral endplate and the experience of pain is 

unclear. Multiple grading schemes for qualitative grading have been 

put forward,
128,129

 but no consensus exists for endplate MRI image 

phenotype nomenclature,
32

 which makes it more challenging to inter- 

pret and aggregate pain association study results. There is also a 

limitation in the ability to specifically detect CEP changes using clinical 

diagnostic tools (e.g., standard T1- and T2-weighted MRI sequences), 

and these cannot distinguish changes specifically associated with 

neoinnervation. Alternative sequences such as UTE
115

 are not widely 

used in the clinical setting, and few methods for quantitative image 

analysis of the endplate have been tested.
112,130

 

 

| Modic changes: Definition, prevalence, natural 

course, and pain association 

 

MC are MRI signal intensity changes of the vertebral bone marrow 

around a degenerated IVD
104,131

 and independently associate with 

chronic low back pain (LBP).
132–136

 A meta-analysis showed that MC 

prevalence in LBP patients is about seven times higher than in the 

non-clinical population (43% vs. 6%). MC occur predominantly in the 

lower lumbar spine.
137

 There are three interconvertible types of MC 

depending on their appearance on T1- and T2-weighted MRI. Modic 

type 1 changes (MC1) (Figure 3) are hypointense on T1-weighted 

images and hyperintense on T2-weighted images and represent edema, 

fibrovascular granulation tissue, infiltration of immune  cells,  and  

expansion  of  profibrotic  stromal  cells.
131,138–140

 Modic type 2 

changes (MC2) are hyperintense on T1- and T2-weighted images 

and represent fatty marrow conversion with 
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presence of fibrotic tissue.
131,140

 Modic type 3 changes (MC3) are 

hypointense on T1-weighted and T2-weighted images and are scle- 

rotic changes.
131,141

 The reported prevalence for MC1, MC2, and 

mixed type (MC1/2, MC2/3) are highly variable. Median prevalence is 

around 15%–20% for MC1, 25%–65% for MC2, and <5% for 

MC3.
132,142

 Mixed type MC1/2 are also frequent (15%–20%), 

whereas mixed type MC2/3 are rare. The prevalence generally 

increases with age and peaks in the 60s.
143,144

 MC can inter-convert 

over time.
131,145–148

 MC1 are the least stable, where within 4 years, 

most MC1 either convert to MC2, increase in size, or resolve. MC2 

are more stable, while MC3 are a terminal stage. Smaller MC lesions are 

more likely to resolve than larger lesions.
145

 

The association of chronic LBP with MC has been extensively studied 

and reviewed..
149

 About half of the studies report a significant association 

with odds ratio ranging from 1.53 (95% CI: 1.02–2.29) to 

83.10 (95% CI: 4.85–1424) Only one study reported a significant neg- 

ative association with MC2 with an odds ratio of 3.2 (CI: 5.39 to 

 0.1). The association of MC with discography concordant pain has a 

specificity of >94% in five of six studies with a OR of 4.01 (1.52– 

10.61) in a meta-analysis.
18,149

 Larger lesions had a stronger associa- tion 

with discography-concordant pain.
150

 Overall, these data show an 

association of MC with LBP, in particular of MC1. 

Increased innervation of the CEP in MC1 and MC2 is believed to cause 

increased pain sensitization at MC levels and is often referred to as 

vertebrogenic LBP.
120,124

 Low back vertebral endplate pain (DM54.51) 

has recently been added to the International Classification of Diseases 

(ICD-11) as a subclassification of patients with LBP and MCs. 

 

 

| Association of BEP changes with CEP changes 

and MC 

 

Despite the importance of CEP and BEP in the onset of spinal pathol- 

ogies, the relationship between CEP and BEP is poorly understood 

due to the difficulty of evaluating the CEP with imaging techniques. A 

study on cadaveric lumbar spines using ultrashort time-to-echo MRI was 

used to enable investigation of CEP morphology within IVDs with BEP 

lesions, demonstrating abnormalities of the CEP were statistically 

associated with BEP lesions.
151

 After needle induction of IVD degen- 

eration in a rabbit animal model, the CEP progressively thickened and 

showed increased collagen accumulation.
152

 Along with changes in 

cartilaginous tissue, the bone interface was modified, specifically an 

increase in bone volume fraction. These findings suggest that CEP could 

have a role in the development of BEP lesions or vice versa. It has been 

shown that poor CEP composition can affect disc health with and 

without defects in the VB.
153

 However, a precise under- standing of 

the sequelae of changes in the CEP and BEP is still miss- ing. There is 

comparably little data available about the integrity and damage of the 

CEP in MC. Fields et al.
120

 showed that in cadaveric human spines, CEP 

damage is associated with histological changes consistent with MC. Still, 

not all specimens with histopathological changes had MC on MRI. In 

another human cadaveric study, Heggli et al.
125

 showed that CEP and 

BEP damage are strongly associated 

with MC2. Supporting evidence for CEP damage in MC stems from 

studies assessing CEP fragments in surgically removed herniated disc 

tissue at the MC level. CEP fragments can co-herniate with disc tissue in 

cases of avulsion-type herniations, where the CEP is torn from the BEP. 

These CEP avulsions were found to associate with MC.
154,155

 

 

 

| Mechanisms of CEP damage in Modic changes 

 

While damage to the BEP is believed to be caused mainly through 

mechanical cues, mechanisms of CEP damage are poorly under- 

stood.
156

 In MC, local biological reactions seem to contribute to CEP 

damage. In an animal model of MC1, immune reactions in the MC1 

bone marrow caused damage to the adjacent endplate. This is note- 

worthy because it demonstrates that MC1 are not just reactive 

changes to disc degeneration, but that MC1 themselves can cause 

CEP damage and maintain the cross-talk of the bone marrow with the 

adjacent disc.
157

 Recent studies confirm the possibility that activated 

immune cells in MC1 bone marrow can lead to CEP damage.
158

 

Increased lactate dehydrogenase activity and increased concentration of 

C-reactive protein and of complement factors in MC bone marrow 

indicate also a humoral immune response related to local tissue dam- 

age.
125,159

 On a cellular level, CEP cells at MC levels express more 

tumor necrosis factor (TNF), a disintegrin and metalloproteinase with 

thrombospondin motifs-5 (ADAMTS-5), macrophage migration inhibi- 

tory factor (MIF), and its receptor CD74.
124,160,161

 TNF upregulates 

MIF in CEP cells, and MIF upregulates the secretion of proinflamma- tory 

cytokines by CEP cells, through an autocrine mechanism involv- ing 

CD74. The existence of this positive inflammatory feedback loop 

suggests that the CEP has the capability to escalate inflammation in MC 

independently from the disc and the bone marrow. Together, these 

data evidence that CEP damage in MC is not a pure mechanical 

mechanism but that the local inflammatory processes in the bone mar- row 

and of the CEP itself can lead to progressive CEP damage. 

Occult disc infection, mainly with the Cutibacterium acnes (Gilchrist 

1900) and other coagulase-negative staphylococci are dis- cussed as a 

potential etiology of MC1, at least in a subset of patients.
144,162

 

This is based on reports in which disc tissue from microdiscectomy 

of herniated discs was analyzed for the presence of 

C. acnes.
144,163–165

 C. acnes has been isolated from discs adjacent to 

MC1 and the presence of this bacteria was predictive for the develop- 

ment of new MC1 after 1 year. C. acnes is assumed to migrate to 

structurally damaged discs through hematogenous spread from a dis- 

tant infection or from the skin and other epithelial surfaces through the 

blood after innocuous lesions, for example, tooth brushing.
166,167

 Disc 

herniation and endplate damage, both structural damages pre- sent in 

MC, can represent disc damage which allow bacteria to enter discs. Once 

in the disc, the low oxygen tension and low pH in the disc favor the 

proliferation of C. acnes. Furthermore, C. acnes is unlikely to colonize the 

MC1 bone marrow because of too high oxygen tension in the bone 

marrow. Rat and rabbit models have demonstrated the biological 

plausibility that C. acnes injected into disc can trigger 
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MC1-like  changes.
168–170

  For  example,  injecting  a  C.  acnes  strain, 

which had been isolated from a human MC1 disc triggered hallmarks of 

MC1 within 2 weeks after injection (i.e., MC1-like MRI changes in the 

bone marrow, disc degeneration, fibrotic-inflammatory bone mar- row 

changes, and almost complete resorption of the CEP).
170

 

The exact mechanism of how intradiscal C. acnes causes CEP 

resorption is still unclear. It has been shown that disc cells respond to 

C. acnes with the release of proinflammatory and neurotrophic factors 

through a toll-like receptor 2 (TLR2)-dependent pathway.
170–173

 Stim- 

ulation of TLR2 on disc cells also upregulates matrix proteases that can 

degrade the disc and CEP matrix. Additionally, C. acnes secrete different 

virulence factors such as proteinases, hyaluronidases, lipases, and 

neuraminidases.
174,175

 Proteinases and hyaluronidases can directly 

degrade ECM components of the CEP. Lipases hydrolyze tria- 

cylglycerides into glycerol and free fatty acids. Free fatty acids, in par- 

ticular saturated free fatty acids, are highly proinflammatory by 

signaling through toll-like receptor 4 (TLR4).
176,177

 Neuraminidases 

disrupt the ternary complex of TLRs with the membrane components 

CD24 and SiglecG/10 and abolish the inhibition of TLR signaling by 

SiglecG/10.
178

 Together, C. acnes has the capacity to cause CEP dam- 

age, yet the precise mechanism remains unclear. 

 

 

|  Role of CEP damage in Modic changes 

 

Damage to the CEP compromises its function as a sieve for cells and 

macromolecules. In MC, where endplate damages are present, the 

degenerating disc can cross-talk with the adjacent bone marrow.
157

 

Proinflammatory and pro-osteoclastic cytokines that are produced at 

higher rates from MC discs can more easily escape into the adjacent 

bone marrow.
156,157,179

 Marrow-sided leukocytes can in turn aggra- 

vate degenerative changes in the disc, even without infiltrating the 

disc.
156

 Consequently, CEP damage in MC facilitates an inflammatory 

cross-talk between the disc and the bone marrow that contributes to the 

rapid degeneration of MC segments.
104

 Furthermore, increased 

concentrations of cytokines and chemokines produced during disc 

degeneration
180,181

 could more easily diffuse out of the IVD into the 

adjacent bone marrow leading to chemotaxis gradients and activation of 

immune cells. 

 

 

|  Microscopic changes to the CEP 

 

During IVD degeneration, key structural and cellular changes occur 

within all areas of the IVD, with key features identified within the NP, 

AF, CEP, and BEP (Figure 1). While macroscopic structural changes 

can be identified by imaging techniques such as MRI, these often fail to 

identify changes to the CEP. Furthermore, cellular and fine ECM 

changes require microscopic examination to be identified. (Figure 4) 

During the development of the recently published standardized histo- 

pathology scoring system for human IVD degeneration,
74

 each of the 

regions (NP, AF, CEP, and BEP) were scored independently with equal 

weighting, demonstrating the recognition of the critical role of the 

CEP and BEP in IVD degeneration.
74

 Within the CEP the degenerative 

features identified histologically included scoring for cellularity, lesions and 

ECM structure.
74

 Cellularity changes seen during degeneration 

included: abnormal cellular clusters, empty lacunae, extensive neovas- 

cularization, and presence of apoptotic, necrotic, and senescent 

cells.
74

 Changes within ECM can be identified histologically, and 

include loss of endplate thickness; avulsions from BEP; cracks and fis- 

sures; loss of normal matrix staining; fibrosis and calcification.
74

 These 

visible microscopic changes within the CEP are due to alterations in the 

biomechanical and cellular regulation of the CEP. 

Additionally, through histological analysis Huang et al.
182

 identi- fied 

physical microdamage in 40% of degenerated CEPs. Further, pain and 

disability scores were significantly higher in these microdamaged CEPs 

than in degenerated IVDs without damaged CEPs. Six main pat- terns of 

microdamage were used to classify the CEPs, including fis- sures, 

vascular mimicry, NP herniation into the CEP, NP herniation and 

incorporation of bone tissue into the CEP, incorporation of bone tissue 

into the CEP, and traumatic nodes.
182

 

Another methodology used to categorize the endplate is the total 

endplate score, or “TEPS.”183

 MRI scans are used to quantify the 

damage, which was given a score based on diffusion patterns and 

the presence of endplate breaks or defects, focal thinning, MC, and 

irregularities or sclerosis. Five visually distinct diffusion patterns were 

identified through the study as well, that reflected disc marrow con- 

tact, focal leakage into the subchondral bone or NP, and pooling of 

liquid. These diffusion patterns correlated with degeneration level as 

well as the TEPS. As the TEPS increased, the diffusion pattern 

increased toward pooling. The TEPS was shown to correlate with 

Pfirmann's grading regardless of the age and levels of disc. Unfortunately, 

there was no distinction between CEP and BEP in that study. 

 

 

| Biomechanical regulation of CEP degeneration 

 

There are two main theories about the contribution of mechanical 

loading to IVD degeneration; the overload theory, which states that 

excessive mechanical loading damages the IVD over time, and the 

immobilization theory, which states that low mobility causes the IVD to 

adapt and leads to tissue weakness and degeneration.
83

 There is 

evidence that both overloading and immobilization contribute to IVD 

degeneration, and it is considered that there is a range of mechanical 

loading in which the disc remains healthy. Outside of this range, the 

metabolism shifts to catabolism. 

The CEP is essential in maintaining the mechanics of the disc. 

Damage to the CEP barrier alters the hydration and could allow water to 

escape from the NP under loading, leading to NP decompression and 

degeneration.
1

 FE simulations of the disc, performed in the 90s, 

suggested that initial failure always occurred in the endplates, demon- 

strating their vulnerability within the disc under loading.
184

 Neverthe- 

less, experimental testing of disc failure show that although most 

failures happen at the CEP–bone interface or disc–CEP interface, 

some primary failures also occur within the subchondral bone,
48
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which was not predicted by such early FE models.
184

 Additionally, 

endplate herniation through the CEP is a key feature seen in patients 

and is the most common type of herniation.
185,186

 However, after 

endplate damage, additional failures could propagate to the annulus or 

lead to delamination.
184

 This highlights the importance of CEP 

integrity; preventing CEP damage early on could also avert damage to 

the rest of the disc and prevent disc degeneration. 

Cyclic compression has been shown to lead to the devel- opment of 

microstructural voids at the CEP-BEP border.
187

 Microdamage 

accumulation occurred more often in flexed-joint postures in 

comparison to neutral postures. Following the damage, 

there was also a decrease in type I and II collagen content. Thus, 

overuse injuries could occur in the CEP and lead to altered 

biochemical content. 

The IVD is most vulnerable to failure under bending, in which 

stretching puts the disc under tension.
1,48

 Studies have found that in 

cadaveric thoracic IVD samples under tension, 71% of primary failures 

occur at the CEP-BEP interface.
48

 The next most common failure was at 

the IVD-CEP interface (21%), while the rest failed within the sub- 

chondral bone. When pulled in tension from the vertebral bone on 

each side, the tensile failure strength of the CEP-BEP interface is 

0.4 MPa,
48,49

 while failure strain, calculated from force–displacement 

FIG U RE 4 Hematoxylin and Eosin 

staining of human cartilaginous end 

plates (CEP) demonstrating key 

histological features of non-degenerate 

and degenerate CEP. (A) Non-

degenerate CEP with BEP top left of 

image, CEP within region of the NP. (B) 

CEP within the region of NP 

demonstrating excellent maintenance of 

eosin staining. (C) CEP/ AF enthesis 

within a non-degenerate region, image 

shows BEP at bottom left and CEP within 

the middle connecting into AF. (D) CEP 

within region of AF tissue demonstrating 

change in matrix organization at bottom 

of image. 

(E) Abnormal CEP demonstrating clear 

disorganization and fibrosis. (F) Abnormal 

CEP showing fissures and disorganization 

of the CEP. (G) Abnormal CEP showing 

disorganization of the extracellular 

matrix. 

(H) Abnormal BEP/CEP enthesis with 

boney evulsion shown. Scale bars as 

indicated: 100 μm (A, B, D, E, G, and H), 

200 μm (C and F). 
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data normalized to the initial specimen height, was found to be 

38.5% ± 20.3% with the highest principal strains occurring in the mid- 

AF.
48

 The rate of loading also affects the failure; slower rates cause 

disc pressurization with localized stretching and failure in the AF, while 

under rapid loading the AF does not have time to stretch and thus 

pulls the CEP from the bone.
188

 Further, the position of the disc affects 

the failure location; neutral discs, which would be seen during normal 

standing, tear at the CEP-inner AF interface, while flexed discs, which 

would be seen during bending movements, fail at the outer AF- endplate 

interface or in the BEP.
188,189

 

The thickness, porosity, and curvature of the CEP also influence the 

biomechanics.
48,49

 Further, Thompson Grade and bone density have 

been correlated with failure strength.
48

 Additionally, bone vol- ume 

fraction (bone volume (BV)/total volume (TV)) has been shown to 

positively correlate to the failure strength, with stress increased at the 

higher BV/TV end of the VB.
45,48,190

 In humans, the cranial endplates 

have a lower BV/TV than caudal endplates, and therefore they tend to 

fail before the caudal endplate fail.
45

 The microarchitectural fea- tures 

of endplate concavity are also significant predictors of failure 

strength.
190

 Specifically, when the concavity of the CEP is wider, more 

voluminous, and less steep, it is capable of tolerating higher loads 

before failure.
190

 Overall, CEPs are stronger when they are thicker and 

denser with a higher concave curvature that allows more space for the 

NP.
48,49,190,191

 Thickness has even been suggested to be used as a 

clinical risk measure for avulsion-type herniation.
48

 It should be 

noted that quadrupeds have a different curvature than humans, as 

well as additional material properties such as BV/TV, and therefore it is 

essential to consider the animal model used during mechanical 

tests.
190,191

 

 

 

| Animal models of the CEP 

 

As human CEP samples are not always available, it is important to 

consider animal models which can be used to elucidate the properties 

and functions of the CEP. Interestingly, rats and mice have only a CEP 

with no BEP.
31

 Rabbits and goats have a very thin CEP (1–3 cell 

layers) with a larger BEP. Larger animals such as dogs, cows, and 

sheep have both; however, the CEPs are thinner and the BEPs thicker 

than those of humans.
20

 Bovine and canine CEPs have been shown to 

have similar biochemical content to human CEPs, although canine CEPs 

have been shown to have significantly more sulfated GAG than those of 

humans.
20

 Further, bovine CEPs have been shown to have more 

proteoglycans in the outer AF–EP region in comparison to the NP–EP 

region similar to the human CEP, while canine CEPs show the 

opposite pattern. Bovine CEP cells are rounded and organized in stacked 

columns, in contrast to canine cells which have no organiza- tion and 

human CEP cells which are along the collagen fibers parallel to the disc. 

Thus, the molecular similarities of the bovine and human CEPs make 

the bovine a more suitable model for investigating mechanics and 

transport in the CEP.
20

 Additionally, baboon CEPs have been 

demonstrated to have similar biochemical content, includ- ing GAG, 

water and collagen, as those of humans, and thus could also be a good 

model to study mechanics with the CEP.
86

 Rabbits have 

also been validated as a model to investigate initial endplate failure, 

although rabbit endplates have a higher BV/TV and a steeper, nar- 

rower concavity which should be considered when translating results to 

humans.
190

 Particular care should be taken with diffusivity studies, 

taking into account the difference in thickness and CEP:BEP ratio 

compared with the human endplate.
20

 Overall, no single animal model 

provides a complete representation of the human CEP and caution 

should be taken when extrapolating data.
31

 

 

 

| Cellular regulation of CEP degeneration 

 

With increasing degeneration of the CEP, its composition undergoes 

several changes that could reduce its permeability and limit nutrient 

transport. In tissue adjacent to degenerated discs, the calcium concen- 

tration was shown to be higher. There is a delicate balance between the 

nutrient demand and the nutrient supply, which is imposed by the cell 

population and controlled by the permeability of the CEP.
51,54

 The clas- 

sical paradigm is that any reduction in CEP permeability leads to nutri- 

ent retention and accumulation of lactate that in turn decreases the pH of 

the disc. A decrease in pH is directly related to hydrogen ion concen- 

tration. CEP permeability reduction or loss would impair disc 

oxygenation,
15

 and subsequently, reduce cell survivability and activity, 

being possibly a major regulator of IVD cell populations.
51

 

Increased levels of calcium showed to enhance the cleavage of 

aggrecan by ADAMTS5.
192

 Not only was a decrease in aggrecan 

observed, but also a change in its composition changing from a 1:1 ratio 

of keratan sulfate to chondroitin sulfate to a 3:1 ratio.
71

 Those 

compositional changes result in a decrease in the net hydrophilic 

property of the tissue. Furthermore, a positive correlation between the 

degenerative state of the tissue and increased denaturation of type II 

collagen has been shown.
193

 Moreover, a mouse spondylosis model 

demonstrated that with increased age, apoptosis of chondro- cytes in 

the CEP lead to a markable decrease in cell density. Subse- quently, 

the disappearance of the CEP structure.
194

 This was corroborated 

in human CEP samples. In addition to decreased cell density and a 

higher rate of MC in degenerated CEP, expression of MMP3, MMP9, 

interleukin-1 alpha (IL-1α) and IL-1β was increased.
195

 In addition, tissue 

inhibitors of metalloproteinases-3 (TIMP3) also showed increased 

expression in degenerated CEP, suggesting a com- pensatory 

mechanism to regulate the increased ADAMTS expression. Interestingly, 

TIMP1 and TIMP2, but not TIMP3, were overexpressed in degenerated 

AF and NP compared with non-degenerate tissues.
196

 CEP chondrocytes 

have also been demonstrated to have a different response than AC 

chondrocytes to the same stimuli.
197

 In response to hypertrophic stimuli 

such as Wnt agonist, CEP chondrocytes did not undergo the 

morphological changes seen in AC chondrocytes. However, they did 

show hypertrophic gene and protein expression and a decrease in 

proteoglycans. Oxidative damage-induced stress was also shown to 

induce apoptosis and promote calcification in the human CEP.
198

 

Neidlinger-Wilke et al.
199

 showed in an in vitro model stimulating NP 

cells with conditioned media of CEPs a significant increase in IL-6, 

IL-8, and MMP3, as well as MMP13. Aggrecan and type II collagen 

were significantly decreased in NP cells exposed 
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to the CEP-conditioned media.
199

 Those findings indicate the interac- 

tions between the CEP and the NP tissue via molecular factors 

influencing the pathophysiology of disc degeneration. Limited studies 

have been performed on the expression of cytokines within the iso- 

lated CEP. In addition, there is strong evidence of genetic regulation of 

CEP cell fate through non-coding RNA, which includes microRNA, short 

interference RNA and circular RNA. Proliferation, apoptosis, 

migration, and autophagy of CEP cells are the processes shown to be 

targeted by  those RNAs and  promoters of  its  degeneration.
200–203

 

There is also evidence for epigenetic roles in CEP degeneration regu- 

lation and in extension, IVD degeneration. Overexpression of histone 

methyltransferase enhancer of zeste homologue 2 (EZH2) in CEP cells 

produces reduced expression of COL2, ACAN, and SOX-9 genes and 

increased ADAMTS5 and MMP13 genes in rat CEP cells.
204

 

Furthermore, reduced CEP permeability, and consequently reduced 

nutrition and lowered pH, can downregulate both catabolic and anabolic 

gene expression of the NP cells negatively affecting ECM homeosta- 

sis.
51,54

 Specifically, the mRNA expression for ACAN, COL2A1, and 

MMP2 in the NP reduces.
51

 Additionally, increased Ca
2+ deposition 

leads to the activation of calcium-sensing receptor (CaSR), causing 

increased catabolism through the suppression of collagen and GAG syn- 

thesis and can induce calcification of CEP tissue through upregulation of 

alkaline phosphatase (ALP).
192

 Further, deposition of Ca
2+ in the IVD has 

been associated with increased parathyroid hormone-related pro- tein 

(PTHrP) signaling, which drives calcification.
205

 

 

 

| Calcification and influence on permeability 

 

Increased Ca
2+ deposition in the CEP is seen with increased IVD 

degeneration in humans.
192,205

 Calcification of the CEP is associated 

with decreased nutrient transport into the disc and waste transport 

out of the disc, which leads to nutrient starvation disc cells and a 

decreased pH within the disc, respectively.
2

 Further, calcification can 

lead to lower porosity, hydration, and permeability.
4

 With lower poros- ity 

and hydration, diffusion is impaired, and thus, dynamic loading has a 

greater effect on nutrient transport.
4,94

 Static compression, however, 

reduces the CEP porosity and leads to reduced oxygen and greater lac- 

tate accumulation in the disc, limiting nutrient transport and gas 

exchange.
82,94

 Altered nutrient transportation through the CEP has 

thus been suggested to be a significant factor in the pathogenesis of 

IVD degeneration.
206

 Preserving sufficient metabolite transport 

through the CEP is essential for the IVD to maintain its ECM and bio- 

chemical environment.
52

 Degenerative changes in the CEP could lead to 

up to 70% decrease in CEP permeability and, ultimately cell death.
9

 

Overall, within calcified discs, dynamic compression improves disc 

nutrition while static compression impairs nutrition and leads to further 

degeneration. However, calcification is not always present in degener- 

ated discs. When the CEP degenerates, GAG and collagen concentra- tion 

decrease, which causes higher porosity and thus increased solute 

transport.
60,207

 Dynamic compression has been shown to have less 

effect on higher porosity CEPs.
4,54

 Nevertheless, the decreased matrix 

content also decreases the tensile modulus of the CEP, losing its ability to 

withstand mechanical forces.
60

 

Degeneration has not been found to be correlated to GAG or water 

content separately, but rather to fixed charge density (FCD), which is a 

property related to both. Higher FCD hinders transport through 

creating steric and ionic barriers. It has been found to be directly 

proportional to IVD degeneration and inversely proportional to CEP 

permeability.
9

 This agrees with findings that CEPs with low 

permeability have high levels of collagen, aggrecan, and minerals which 

can physically block the solutes.
51

 Shirazi-Adl et al.
50

 demon- strated 

that IVD cells start dying when CEP permeability decreases below 30% 

and the death rate increases exponentially as CEP perme- ability 

decreases further. The NP is the tissue most severely affected by CEP 

permeability changes.
10

 While the NP periphery is adjacent to the CEP, 

its center can be as far as 8–10 mm in the IVD.
51

 While there is also 

some diffusion through the outer AF, it is not enough to compensate for 

an impermeable CEP due to calcification.
4

 

While calcification and dehydration have been shown to reduce the 

permeability of the CEP,
6,51

 the effect of calcification in the CEP has also 

become a topic of debate recently. On one side, there is the hypothesis 

that calcification prevents fluid from flowing into the IVD to transport 

nutrients. Opposingly, there is the hypothesis that fluid movement, and 

thus the effect of calcification, has a negligible effect on nutrient trans- 

port. Supporters of the first hypothesis claim that calcification leads to a 

reduction of the pore volumes creating a physical impermeable barrier 

that obscures the fluid path.
6

 That, in turn, leads to reduced nutrient sup- ply 

to the cells and, ultimately IVD degeneration.
6,50,54

 Supporters of the latter 

hypothesis claim that advection, or the movement of fluid, through the CEP 

has minimal effect on nutrient supply since the nutrient concen- tration in 

the IVD is controlled by diffusion. Diffusion occurs regardless of fluid 

velocity,
88

 especially when mechanical loading is present.
208

 Further, some 

studies claim that severe nutritional deprivation does not appear until 

calcification causes a 50% blockage.
10

 This level of blockage only occurs 

at late stages of degeneration, which contrasts other hypotheses that the 

depletion of CEP ECM might promote early degenerative mecha- nisms in 

the IVD through local cell starvation in the NP.
10

 The lack of blockage at 

early stages of IVD degeneration suggests that calcification as a physical 

barrier has minimal effect on IVD degeneration, however, cell catabolism 

induced by Ca
2+ could induce IVD degeneration.

52

 

Nonetheless, there is evidence that there is a strong positive corre- lation 

between CEP porosity and hydration.
4,6

 Within extreme IVD 

degeneration, the CEP permeability barrier would be negligible due to 

the infiltration of blood vessels into the disc after damage. Therefore, 

both hypotheses could be correct depending on the age of the subject, 

degeneration level of the CEP, degree of calcification, and vasculariza- 

tion. This topic requires more intensive research to fully understand the 

effects of calcification on the IVD. Additionally, it is important to con- 

sider the poromechanical interactions among the BEP, the CEP and the NP 

to understand the mechanotransport of nutrients.
10

 

 

| EMERGING THERAPIES  

 

Nutritional supply controls the population and activity of the IVD cells to 

synthesize and maintain the ECM. Thus, for any disc cell therapy to 

succeed, maintenance of the nutrition supply is crucial. Furthermore, 
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even a successful attempt to biologically repair the IVD can fail in the 

long run if the nutrition-population balance is not maintained. 

Most therapies aim to surgically remove the source of LBP or re- 

establish IVD mechanical functions overlooking the sustainability of 

such operations, which is part of why they have a low success rate.
51

 

Intradiscal biological therapy is a non-invasive alternative that consists of 

injecting genes, growth factors, and other molecules to the IVD that 

aim to boost the cell population and produce ECM to restore a 

physiological environment.
51

 Yet, increasing the cell number without 

increasing the nutrient supply is unsustainable because it will lead to 

the supply–demand disturbance, as previously mentioned.
51

 A FE 

analysis study demonstrated that cell injection could lead to increased 

and accelerated degeneration in the IVD due to a higher supply– 

demand disturbance that is directly related to the state of the CEP, 

that is, whether it is healthy, calcified, or thinned.
54

 Thus, the harsh 

nutrient environment of the IVD, particularly concerning the state of the 

CEP, must be accounted for to make any cell therapy beneficial. They 

suggested reducing the CEP thickness to enhance nutrition in the IVD, 

but this could compromise the mechanical stability of the IVD. 

Treatments targeting the CEP are often focused on enhancing 

permeability. One possible method would be decalcification of the CEP 

through injecting compounds that can bind calcium.
209

 Other 

methods suggested include enzymatic treatment, such as trypsin or 

hyaluronidase, to remove large proteoglycans from the CEP.
209

 

However, chemical injection with enzymes is also used to induce 

degeneration in animal models.
180

 Therefore, the use of enzymes for CEP 

therapies should be strictly restricted to the CEP. Excessive/ 

untargeted protease activity as in antiquated chemonucleolysis can 

even trigger MC within 6 weeks.
210

 Dolor et al.
207

 treated the CEP with 

MMP8 to reduce the matrix and enhance solute uptake and nutrient 

diffusion. MMP8 is selective for type II collagen and aggre- can, which 

are the two main matrix components of the CEP. However, these are also 

the main components of the NP, and therefore it is cru- cial that using 

MMP8 or another enzyme does not induce degenera- tion within the 

NP or AF due to off-target digestion or matrix fragments triggering 

a catabolic response. One method Dolor et al.
207

 considered to avoid this 

was using targeted delivery through injection and linking the enzyme to 

bulky nanoparticles that cannot migrate to other tissues. Nevertheless, 

this treatment was only performed in human cadaveric CEPs, so it is 

unknown whether a catabolic response will be produced testing in vivo. 

Although therapies addressing the CEP are still preliminary, stud- ies 

have shown that incorporating the CEP into a tissue engineered disc 

improves the performance.
211

 While development of functional NP and 

AF replacements is important, these tissues must be inte- grated into 

the CEP to allow for successful and functional IVD replacement.
209,212

 

Studies have shown that using direct contact co- culture of AF
212

 or 

NP cell-seeded scaffolds
213

 with chondrocyte- seeded scaffolds 

produced native interface characteristics. However, although type I 

collagen, type II collagen, and aggrecan distribution were like native 

tissue, the apparent mechanical strength was 57-times weaker than 

in native tissue segments, which means it 

would not function well under daily mechanical loads.
212

 Obtaining 

comparable mechanical properties of a native disc has been a large 

problem in tissue engineered scaffolds.
214,215

 Gullbrand et al.
211

 have 

tested endplate-modified disc-like angle ply structures (eDAPS) as 

replacement discs in rat and goat animal models. In the eDAPS, the 

endplate was made up of acellular, porous polyE-caprolactone (PCL) 

foams which was combined with the NP and AF components.
211

 They 

showed that after 20 weeks with external fixation, native cells from 

neighboring tissues could migrate into the CEP structure and start 

producing matrix components and sparse vascularization,
211

 which is a 

focus area of CEP treatments.
209

 However, it should be noted that 

while vascularization is important for the BEP and CEP, it can lead to 

increased degeneration and pain if angiogenesis occurs in the NP.
216

 

Although Gullbrand et al.
211

 observed improvements in tensile prop- 

erties, the failure strain of the eDAPS was only 50% that of native 

values. However, it was shown that the constructs which included a CEP 

structure outperformed those without.
217

 

Bioprinting is also a popular technique for developing tissue engi- neered 

constructs but has the same issue of sub-optimal mechanical 

properties.
214

 Printing using bioinks with reinforcement structures 

such as carbon fibers or alumina platelets has been considered for rec- 

reating load-bearing tissues such as the CEP, although low printing 

resolutions can limit the functionality.
214

 Using decellularized ECM is 

another option for tissue engineered constructs, which addresses the 

problem of low printing resolutions, and could help with the design of 

3D printed scaffolds.
215

 Nevertheless, mechanics of chemically modi- 

fied decellularized ECM also have weak mechanical properties that do 

not approach the Young's modulus of native tissues.
215

 Further, scal- 

ability and reproducibility alongside high manufacturing costs are lim- 

iting in the bio fabrication of IVD constructs.
214

 

Recently, Liu et al.
21

 have identified the presence of progenitor cells in 

the CEP. After culturing in agarose, cells isolated from degen- erated 

human CEPs were found to be positive for stem cell markers OCT-4, 

NANOG, and SOX-2 as well as common BM-MSCs markers CD105, 

CD73, CD90, CD44, CD166, and Stro-1.
21

 Further, the group found that 

NP cells that were stimulated with CEP progenitor cells isolated from 

healthy subjects showed a decrease in apoptotic rate by releasing 

exosomes that activate the PI3K/AKT signaling pathway.
218

 Thus, CEP 

progenitor cell-derived exosomes could be a possible ther- apeutic tool 

in the treatment of IVD degeneration. 

Several studies have also found potential targets for the treat- ment 

of the CEP with regard to IVD degeneration, although addi- tional 

research needs to be done before testing. For example, the 

HIF1A/MIF pathways has been shown to play a role in promoting 

chondrogenesis, while also inhibiting osteogenesis.
219

 EZH2 inhibi- tion 

has also shown promise as a therapeutic target to combat CEP 

degeneration through upregulation of SOX9.
204

 Managing oxidative 

stress and damage could be another novel therapy target. For this, 

research has found inhibiting ROS reduced apoptosis in CEP cells 

under oxidative stress
198

 and, similarly, enhancing the NrF/Keap1 

pathway in CEP cells increases antioxidants that can combat damage 

from ROS.
220

 Certain microRNAs (miRNAs), specifically miR- 

495-3p
202

 and miR-34a,
201

 have been found to play a role in ECM 
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degradation and chondrocyte apoptosis, respectively. Therefore, 

silencing these miRNAs could be a novel treatment for CEP and IVD 

degeneration. 

 

| CONCLUSION  

 

The CEP is a unique tissue distinct from other cartilaginous tissues in 

morphology, gene expression, and mechanical and transport proper- 

ties. It is an essential component of the IVD and is considered to play a 

key role in the early stages of IVD degeneration due to its funda- 

mental role in nutrient transport.
10,221

 However, most data regarding IVD 

degeneration have focused on the NP and AF tissues. Further, 

research that does include the CEP often does not distinguish it from 

the BEP. New MRI techniques
114,116

 as well as the standardization of 

histopathology scoring in the CEP
74

 allow for the characterization of 

the CEP separate from the IVD or BEP, and thus future research 

should aim to investigate the CEP as an independent tissue type. In 

particular, the role of the CEP in MC should be investigated further as 

most research is limited to the BEP or the combined BEP and CEP. 

Additionally, the CEP is often considered to be the same as AC par- 

ticularly in modeling and simulations.
10

 However, as detailed in this 

review, the CEP differs from AC in function, cellular response, biochem- 

ical  content,  and  material  properties.
9,24,60,65–67,89,197

  Thus,  future 

research should aim to characterize the CEP itself, and avoid assump- 

tions that the CEP will behave and/or respond the same as AC. 

Much is still unknown about the mechanics and transport proper- ties of 

the CEP, and reported values show a large variation. The wide range of 

reported values is due to various testing methods, environmen- tal 

conditions, species, and degree of degeneration,
4,10,52,53,60

 and thus 

highlights the need for standardized, reproducible methods and 

guidelines for investigating the CEP. Likewise, the authors recom- mend 

to standardize specifying the terms cartilaginous endplate (CEP) and 

bony endplate (BEP) and advise avoiding the term vertebral end- plate. 

Further, it is essential that researchers clearly state which tissue is being 

investigated, whether it is CEP, BEP, or a combination of both. 

Calcification should also be a focus of future research, as there is 

controversy regarding the role it plays in CEP permeability. It is 

accepted that calcification occurs in degeneration. However, it is unclear 

whether disc damage occurs at an early stage due to impaired nutrient 

transport induced by calcification, cellular level changes caused by 

excess Ca
2+ in the environment,

6,10,51,52,88,208

 and/or due to early 

depletion of the CEP ECM (possibly related with MC) disrupt- ing the 

functional fluid exchange between the vertebrae and NP under 

mechanical loads.
10

 

Overall, much is still unknown about the CEP and the mechanisms of CEP 

degeneration. Additional research is needed to elucidate the 

mechanical and transport properties, gene expression, cellular 

response, and how these traits change with degeneration and age. 

Understanding the CEP is essential to develop therapies that target or 

include the CEP. Notably, the CEP should be considered in any treat- 

ment of the IVD, as the nutrient and waste transport must be func- 

tional for any therapy targeting the NP or AF to be successful. Thus, 

any long-lasting and sustainable therapy aiming to reverse IVD degen- 

eration should target the CEP first or simultaneously with the NP and AF 

to rescue the IVD from a pathological environment. 
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