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Abstract

English

In this thesis, I focused on introducing tools to quantify the per-

formance of quantum computing algorithms and their applications.

The main focus is on two of the most popular application areas

of quantum computing, quantum machine learning and quantum

chemistry. To this end, I analyze the properties of quantum ma-

chine learning models by following statistical method techniques,

which can help us build our understanding of the capabilities of

such quantum models. Moreover, I introduce the teacher-student

scheme as a computational tool to benchmark the performance of

different quantum models and their training capabilities. Until large

scale benchmarking is available, these tools can help us understand

the potential of quantum machine learning and guide the research

in the right direction. Next, in recent years substantial effort have

been devoted in the develpoment of quantum algorithms for quan-

tum chemistry applications. I introduce tools to assess the utility of

various combinations of quantum chemistry algorithms. I perform

extensive numerical simulations on computationally affordable sys-

tems of intermediate size to explore how quantum methods can ac-

celerate tasks of quantum chemistry. These works set a foundation

from which to further explore the requirements to achieve quantum

advantage in quantum chemistry. Finally, I discuss how research in

quantum computing has tended to fall into one of two camps: near-

term intermediate scale quantum (NISQ) and fault-tolerant quantum

computing (FTQC). Through a quantum chemistry application, I ex-

plore how to use quantum computers in transition between these two

eras, namely the early fault-tolerant quantum computing (EFTQC)

regime.
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Español
En esta tesis, me enfoqué en introducir herramientas para cuan-

tificar el rendimiento de los algoritmos de computación cuántica y

sus aplicaciones. El principal enfoque está en dos de las áreas de

aplicación más populares de la computación cuántica, el aprendizaje

automático cuántico y la química cuántica. Con este fin, analizo

las propiedades de los modelos de aprendizaje automático cuántico

siguiendo técnicas de métodos estadísticos, que pueden ayudarnos

a construir nuestra comprensión de las capacidades de dichos mod-

elos cuánticos. Además, introduzco el esquema maestro-alumno

como una herramienta computacional para evaluar el rendimiento

de diferentes modelos cuánticos y sus capacidades de entrenamiento.

Hasta que esté disponible el benchmarking a gran escala, estas her-

ramientas pueden ayudarnos a entender el potencial del aprendizaje

automático cuántico y guiar la investigación en la dirección correcta.

A continuación, en los últimos años se ha dedicado un esfuerzo

sustancial al desarrollo de algoritmos cuánticos para aplicaciones

en química cuántica. Presento herramientas para evaluar la utili-

dad de diversas combinaciones de algoritmos de química cuántica.

Realizo extensas simulaciones numéricas en sistemas de tamaño in-

termedio computacionalmente asequibles para explorar cómo los

métodos cuánticos pueden acelerar las tareas de química cuántica.

Estos trabajos establecen una base desde la cual explorar más a fondo

los requisitos para lograr una ventaja cuántica en química cuántica.

Finalmente, discuto cómo la investigación en computación cuántica

tiende a dividirse en uno de dos campos: la computación cuántica

a escala intermedia a corto plazo (NISQ) y la computación cuán-

tica tolerante a fallos (FTQC). A través de una aplicación de química

cuántica, exploro cómo usar computadoras cuánticas en la transi-

ción entre estas dos eras, específicamente el régimen temprano de

computación cuántica tolerante a fallos (EFTQC).
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Chapter 1

Introduction

1.1 Motivation

In recent years, quantum computing have attracted the attention of

many researchers in different fields. Interestingly, a wide range of

applications have been considered for quantum computing in the

field of math (i.e. differential equations and prime factorization) ,

optimization (i.e. runtime speed-ups and enhancement of existing

algorithms), machine learning (i.e. acceleration of machine learning

and applications of big data problems) and chemistry (i.e. ground

state approximations and estimation of systems’ properties ) among

others.

But even though quantum computing promises to revolution-

ize all the aforementioned fields, it is yet unclear on which specific

applications quantum computing has something to offer and what

exactly it will be able to deliver. To this end, extensive research is

performed to evaluate the capabilities of quantum computing in all

the aforementioned fields and the required quantum computation

power that will be necessary towards this end. This computation

power of the quantum hardware is usually referred to as Noisy-

Intermediate quantum computing (NISQ) or fault-tolerant quantum

computing (FTQC) devices. NISQ corresponds to the quantum com-

1



1. Introduction

puting devices available today with approximately 100 qubits and

100 circuit depth, while FTQC refers to quantum computing devices

with full quantum error correction capabilities. But what seems nec-

essary for further advancing the field of quantum computation in a

timely manner is bridging this dichotomy between NISQ and FTQC.

To this end, the regime of early fault-tolerant quantum computing

comes into play that we will discuss in detail in the last chapter of

this thesis.

In this thesis, we introduce tools to quantify the performance

of quantum computing algorithms with the goal of exploring their

utility for two popular quantum computing applications, quantum

machine learning and quantum chemistry. Quantum machine learn-

ing is one of the fields that has spark a lot of excitement motivated by

the question whether there would be any benefit by combining the

two fields of machine learning and quantum computation. Through-

out this work we will focus on transforming directly machine learn-

ing concepts to their quantum counterpart, i.e. neural networks to

quantum neural networks and explore their limits and capabilities.

Next, we focus on quantum chemistry applications which is one of

the most promising fields to showcase a potential quantum advan-

tage, and specifically, the simulation of quantum systems which was

mainly the motivation for the birth of quantum computers discussed

by Feynman [1982a]. Here we perform rigorous resource estimation

to quantify the feasibility of quantum algorithms and their potential

quantum advantage.

This work lays the foundations of how to assess the utility of

quantum computing for applications with potential practical interest.

1.2 Quantum Advantage

The practical interest of quantum computation lays on showcasing

quantum advantage. Everybody wants quantum advantage. Every-

body is looking for it. But the first thing to ask is:

2



1. Introduction

• What do we mean by quantum advantage?

Interestingly, different researchers have a different idea of what

quantum advantage is. Examples are:

• Run-time, i.e. showcasing a speed-up Arute et al. [2019b]; Go-

ings et al. [2022a].

• Complexity, i.e. exploring the relation between complexity

classes PP (Probabilistic Polynomial Time) and BQP (Bounded-

Error Quantum Polynomial Time) Aaronson and Arkhipov

[2013]; Fenner et al. [2009].

• Practical, i.e. perform better in a real-world task Hibat-Allah

et al. [2023]; Amsler et al. [2023].

• Capacity, i.e. model’s ability to express different relationships

between variables Abbas et al. [2021]; Wright and McMahon

[2020].

• Training capabilities, i.e model’s ability to learn through train-

ing Pérez-Salinas et al. [2020]; Schuld et al. [2020b].

• Learning capabilities , i.e. comparing generalization perfor-

mance Gili et al. [2023]; Benedetti et al. [2019b].

• Expressivity, i.e. model’s ability to represent the solution Schuld

et al. [2020b]; Sim et al. [2019a].

To better quantify whether we have a quantum advantage, we

need to introduce tools that fairly compare the performance of quan-

tum and classical machine learning models. The area of quantum

advantage is still an emerging research field with a lot of researchers

from both academia and industry actively contributing.

3



1. Introduction

1.3 Classical Perceptrons and Neural Networks
Here we revisit the notion of classical perceptrons and neural net-

works before we delve into their quantum counterparts.

1.3.1 Classical Perceptron or Neuron
The term perceptron was first introduced by Frank Rosenblatt in 1958

Rosenblatt [1958] as a probabilistic model for information storage and

organization of the brain. Interestingly, this was a side project of his

main work as a psychologistRosenblatt [1957].

For the definition of the perceptron model, F. Rosenblatt took

inspiration from the organization of the retina system, where the

inputs come from the eye, then the processing happens and finally

we get the output (or responses). Then, for the definition of the per-

ceptron he used the same organization. This is also why he uses the

term perceptron and photo-perceptron interchangeably throughout

his work. Another main contribution of his is that he described in-

formation processing with probabilistic models, instead of Boolean

functions which was prevailing at the time.

The more formal definition of perceptron as we use it today was

first introduced in the work of Minsky and Papert in their book Min-

sky and Papert [1972]. Interestingly, they devoted the book to the

memory of Frank’s perceptron. Formally, a classical perceptron is a

function that maps a 𝑁 dimensional input
®𝑖𝜇 = (𝑖𝜇

1
, . . . , 𝑖

𝜇
𝑁
)𝑇 onto an

output 𝜎𝜇, where the weight vector ®𝑤 = (𝑤1, . . . , 𝑤𝑁 )𝑇 determines

the information processing. The additional label 𝜇 ∈ {1, 2, ..., 𝑝} de-

notes different pairs of input vectors and outputs Nishimori [2001];

Minsky and Papert [1969]. They used the following activation func-

tion

𝜎𝜇 = 𝜃
(
®𝑖𝜇 · ®𝑤 − 𝜅

)
, (1.1)

where 𝜅 is the threshold and 𝜃(·) is the Heaviside function realizing

the non-linearity of the perceptron model, see Fig. 2.1a. But more

4



1. Introduction

activation function could be used Werbos [1974]. For example, Hop-

field in his work for associative memories Hopfield [1984] introduced

for the first time [Schuld] the sigmoid function

𝑥𝑖 = sgm

©­«
𝑁∑
𝑗=1

𝑤 𝑗𝑖𝑥 𝑗 ;𝜅
ª®¬ , (1.2)

where neurons are allowed to take values in a continuous range

𝑥𝑖 ∈ [−1, 1].
Generally, the goal of the perceptron is to adjust the weights to

perform the task at hand. To this end, different learning rules for

the weights have been introduced Minsky and Papert [1988]. But

different optimization algorithms could also be used to adjust the

value of the weights LeCun et al. [1998]; LeCun [1998]. Finally, the

perceptrons are simple building blocks that can be cast together to

build neural network (NN) architectures. Today, this is the main way

that perceptrons (or as they more often called neurons/nodes) are

used. This is the content of the next chapter.

1.3.2 Neural Networks (NN)

NN are an interconnected group of perceptrons/neurons. A plethora

of neural network structure have been proposed in the literature Deng

and Yu [2014]. For example, popular NN structures are the Hop-

field Neural Networks (HNNs) introduced in the works of Hop-

field [1982]; Hopfield and Tank [1986] for information storage and

retrieval. Another popular example are the feed-forward Neural

Networks (ffNN) greatly used for classification tasks (Schmidhuber

[2015]). Here we briefly elaborate on how the aforementioned NNs

work.

5



1. Introduction

Hopfield Neural Network

HNN is an interconnection of McCulloch-Pitss neurons in which the

connectivity architecture obeys 𝑤𝑖 𝑗 = 𝑤 𝑗𝑖 and 𝑤𝑖𝑖 = 0. This type of

NN can store and retrieve information in terms of networks states.

To better understand how HNN works, we can introduce the energy

function of a state (𝑥1,...,𝑥𝑁 ) with threshold vector (𝜃1,...,𝜃𝑁 ) and

synaptic connections 𝑤𝑖 𝑗 , 𝑖 , 𝑗 = 1, ..., 𝑁 which reads

𝐸 (𝑥1, . . . , 𝑥𝑁 ) = −1

2

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗 +
𝑁∑
𝑖=1

𝜃𝑖𝑥𝑖 . (1.3)

Each update of the network’s connections or weights 𝑤𝑖 𝑗 will

ideally minimize the network state or otherwise maintain it. To

store a set of patterns 𝑋𝑃 = (𝑥(1)1, ..., 𝑥(1)𝑁 ), ..., (𝑥(𝑃)1, ..., 𝑥(𝑃)𝑁 ),
the weights can be adjusted according to Hebb’s learning rule Som-

polinsky [1987]

𝑤𝑖 𝑗 =
1

𝑃

𝑃∑
𝑝=1

𝑥
(𝑝)
𝑖
𝑥
(𝑝)
𝑗
. (1.4)

This suggests that neurons that have the same state or a high anti-

parallel correlation in the majority of memory patterns will receive

a synaptic weight close to 1 or −1, respectively. Eventually, the Hop-

field network’s dynamics will converge to the minimum or ground

state of the energy function, i.e. the attractor. The property 𝑤𝑖𝑖 = 0

makes sure that all attractors are stable states (Rojas [1996]).

As discussed in the case of perceptrons, the step function (eq. (2.1))

could be replaced by a sigmoid function (eq. (1.2)). Consequently,

the activation function of a neuron 𝑥𝑖 due to the input of neurons 𝑥 𝑗 ,

𝑗 ∈ {1, ..., 𝑁} becomes

sgm(𝑎;𝜅) = 1

1 + e
−𝜅𝑎 , (1.5)

which in the limit case when 𝜅 → ∞ retrieves the step-function.
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Hopfield showed that both activation models have attractor proper-

ties.

Feed-forward Neural Networks

Feed-forward Neural Networks (ffNN) are one of the first and sim-

plest type of artificial neural networks conceived (Schmidhuber [2015]).

They are formed by stacking neurons together and creating a set of

input, hidden and output neurons. The name feed-forward comes

from the fact that information only flows in a single direction, from

the input to the output neurons. In ffNNs, each layer of neurons

performs the operation 𝑦 = 𝑓 (𝑊 ®𝑥 + ®𝑏) on its input ®𝑥, where𝑊 is the

weight matrix,
®𝑏 is the bias and 𝑓 (·) is the activation function of the

layer.

1.3.3 Classical hidden units: a review
Deep NNs with many hidden layers of neurons have been success-

fully applied to different areas such as computer vision Ciregan et al.
[2012] and reinforcement learning (Vinyals et al. [2019]). The reason

why specifically deep neural networks perform so well on many dif-

ferent tasks is still an active research field in ML (Poggio et al. [2017]).

This is a subject that we will further explore in the project related to

pruning in QNN.

Classical hidden units play a crucial role in the performance and

success of neural networks. Here, we focus our discussion on the

notion of hidden units in Boltzmann machines (BMs) and (deep)

feed-forward neural networks (ffNNs), because these two models

provide a somewhat different perspective on hidden units.

BMs aim to learn the data distribution 𝑝(x) or 𝑝(x, 𝑦) for su-

pervised tasks. For a given probability distribution 𝑝(x) of binary

strings x (Le Roux and Bengio [2008]) there exists a parameteriza-

tion of the BM to approximate 𝑝(x) up to a given error 𝜀 Younes

[1996]; Gu et al. [2020]. ffNNs on the other side are deterministic

7
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maps that approximate a function 𝑓 : 𝑋 → 𝑌. They are universal

function approximators that can learn any continuous function on

a compact space up to an error 𝜀 with only one hidden layer if it

contains enough hidden neurons (Cybenko [1989]).

BMs and ffNNs highly depend on the number of hidden units for

their performance. In both networks, the hidden nodes are feature

extractors that capture correlations between the visible nodes. But

while in ffNN the information is propagated through a layer-wise

structure of hidden nodes (Younes [1996]), BMs give an extra per-

spective on hidden nodes as an extension of the sampling space to

store conflicting patterns, known from the XOR problem in Hopfield

networks (Wittek [2014]).

Since ffNNs only need one layer of hidden units to work as uni-

versal approximators the question arises why is it even necessary to

build deep architectures that have more than one hidden layer. First,

it is worth noting that deep architectures can always be mapped to

shallow architectures and, therefore, have universal approximation

capabilities just like their shallow version (?). In the work of Pog-

gio et al. [2017], the authors study why deep architectures can learn

certain tasks more efficiently than shallow NNs. They show that

many hidden layers reduce the number of neurons needed at each

layer and that the depth of the NN depends on the structure of the

function that has to be learned. For example, the authors show how

depth influences the learning of hierarchical functions of the form

𝑓 (𝑥1, 𝑥2, . . . , 𝑥8) =

ℎ3

[
ℎ2,1

(
ℎ1,1(𝑥1, 𝑥2), ℎ1,2(𝑥3, 𝑥4)

)
,

ℎ2,2

(
ℎ1,3(𝑥5, 𝑥6), ℎ1,4(𝑥7, 𝑥8)

)]
,

(1.6)

where each function ℎ𝑖 , 𝑗 is 𝑚 times differentiable with smoothness

𝑚. They show that if one dedicates a hidden layer to each hierarchy
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stage of such a function, the number of neurons in the ffNN reduces

from 𝒪(𝜀−𝑛/𝑚) to 𝒪((𝑛 − 1)𝜀−2/𝑚), where 𝑛 is the number of neurons

and 𝜀 is the approximation error of the function. Therefore, the

depth of a NN can reduce the number of neurons that are required

substantially for certain learning tasks.

In summary, we can say that the terminology “hidden node” is

somewhat ambiguous. On one hand, the concept of hidden nodes

in ffNNs and BMs captures the correlations of previous layers. They

find fine-grained features and connect them to more coarse-grained

features. On the other hand, the hidden node in BMs work as an

extension of the sampling space. Both ways though implement the

non-linearities needed in a NN. But while the idea of adding more

hidden layers to build a deep NN does not have a straight-forward

implementation on near-term quantum devices, the idea of extend-

ing the sampling space has a clear quantum analog, which is used

in the Born machine (Liu and Wang [2018a]) or in dissipative QNNs

(Sharma et al. [2020]).

1.4 Quantum Perceptrons and Neural Net-
works

1.4.1 Quantum Perceptrons (QPs)
The task of finding an equivalent of a perceptron unit is still an ac-

tive research field. These units are mostly refereed to as quantum

neurons or perceptrons and are the building blocks of quantum neu-

ral networks. An initial attempt to define a perceptron model was

done by Lewenstein [1994]. The author M. Lewenstein formulated a

statistical theory of QPs by processing input states into output states

through unitary transforms. His work was inspired by the quantum

unitary computers introduced by Lloyd [1993]. In the aforemen-

tioned work S. Lloyd introduced the necessary conditions that must

be met by any computational system:

9
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• Preparing the input states of the computer, without previous

knowledge of the results of the computation.

• Transforming the input to the output states by following the

internal ‘computational’ dynamics of the system and its inter-

actions with its environment.

• Performing measurements on the system to extract the results

of the computation.

Contrary to the classical perceptron where each physical spin

encodes a classical bit, different encodings could be used for the

quantum perceptron Schuld et al. [2015a]. For example, the straight-

forward realization is following the standard mapping where each

classical spin is promoted to quantum spin-1/2 Pauli operator Torta

et al. [2021]. Another approach is the binary encoding where the

binary string values of the classical spins (i.e. 101) corresponds

to the computational basis states (i.e.|101⟩) of the wavefunction of

the quantum system Wiebe et al. [2016]. Also, the string values of

the classical spins could be mapped to the amplitudes of the com-

putational basis states of the wavefunction which is refereed to as

amplitude encoding Tacchino et al. [2019].

Next, one main difficulty when constructing QP models is the

realization of the non-linear dynamics of the activation function

while maintaining the unitary dynamics that govern the QP and

also having a direct quantum hardware implementation Schuld et al.
[2014]. In the recent years, more works have focused on the task of

finding a good QP model with a direct hardware implementation.

Here we mention few examples of such attempts. In the work of Yan

et al. [2020] they introduce QPs as quantum circuits that approximate

nonlinear functions, and then, propose a generalized framework to

implement any nonlinear QP. In the work of Cao et al. [2017], the

authors realized a QP by leveraging the repeat-until-success tech-

niques for quantum gate synthesis. Another example is the recent

work of Torrontegui and García-Ripoll [2019] that realizes a QP with
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a sigmoid activation function as an efficient, reversible many-body

unitary operation which is implemented as a quasi-adiabatic passage

with an Ising model. In the following chapters, we will mainly be

involved with QP introduced by Tacchino et al. [2019] which has a

direct implementation on a parameterized quantum circuit.

Exactly like their classical counterparts, QP are simple learning

machines that could be stack together to form quantum neural net-

works. In the next chapter, we further discuss on this.

1.4.2 Quantum Neural Networks
In recent years, a lot of attention has been focused on the development

of QNN. This field started to take off after the work of Kak [1995]

who introduced some first ideas on the connection between neural

networks and quantum mechanics. After this work was published,

an increasing number of works started using the term "Quantum

Neural Network" Altaisky [2001]; Andrecut and Ali [2003]; Schuld

et al. [2014]; Chen et al. [2018]; Wright and McMahon [2020]; Beer

et al. [2020]. Today the research field has expanded with a significant

number of monthly contributions on QNN.

One main approach to build QNN is by combining different QP

as already mentioned in the previous chapter. The recent work

of Tacchino et al. [2020a] follows this approach to develop a feed-

forward QNN. The main advantage of this approach is that there is a

direct hardware realization introduced by connecting the QP. The dif-

ficulty in this case is mainly coming from realizing the non-linearity

needed by following quantum mechanics in a rigorous way. In that

case, QNN could also be introduced as variational quantum algo-

rithms performing on parameterized quantum circuits. Variational

quantum algorithms are quantum-classical heuristic algorithms that

take advantage of both quantum and classical computation. The

parameters that need to be optimized are passed on the quantum

computer as parameters on the quantum circuit structure. Classi-

cal optimization techniques are used to find the optimal parameters.

11
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This is done by optimizing a cost function that measures the dif-

ference between the output of the circuit and the desired output.

Relevant works in this direction are Mitarai et al. [2018]; Grant et al.
[2018]; Schuld et al. [2018].

But there are other approaches with a more vague connection

on how classical neural networks are built. For example, quan-

tum associative memories Ventura and Martinez [2000] are quantum

algorithms that mimic the behaviour of a neural network without

attempting to replicate its dynamics or structure Schuld et al. [2014].

The main idea in that case is to find an algorithm that could create

the memory superposition

|𝑀⟩ = 1√
𝑃

𝑃∑
𝑝=1

���𝑥(𝑝)
1
, . . . , 𝑥

(𝑝)
𝑁

〉
(1.7)

where

𝑋𝑃 =

{���𝑥(1)
1
, . . . , 𝑥

(1)
𝑁

〉
, . . . ,

���𝑥(𝑃)
1
, . . . , 𝑥

(𝑃)
𝑁

〉}
(1.8)

are the 𝑃 patterns to be stored. The main advantage in that case is

that these models perform as quantum realization of classical neural

networks, but the bottleneck could be that the hardware realization

might be difficult or expensive in terms of resources. Relevant works

in this direction are Rebentrost et al. [2018]; Aguilar et al. [2020].

1.4.3 Non-linearities in QNNs
Classical hidden units play a crucial role in the performance and

success of neural networks as already explained in chapter 1.3.3. For

example, in Boltzmann machines and feed-forward neural networks,

the hidden nodes are feature extractors that capture correlations

between the visible nodes. But, while in ffNN the information is

propagated through a layer-wise structure of hidden nodes Younes

[1996], BMs give an extra perspective on hidden nodes. They extend
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the sampling space to store conflicting patterns, as happens with the

XOR problem in Hopfield networks Wittek [2014]. While adding

more hidden layers to build a deep NN does not have a straight-

forward implementation on near-term quantum devices, extending

the sampling space has a clear quantum analog already used in the

Born machine Liu and Wang [2018a] or in dissipative QNNs Sharma

et al. [2020].

To build deep structures in QNNs, non-linearities will play a

crucial role, as in their classical counterpart. The question that of-

ten arises is how to achieve the non-linearities needed in quantum

circuits when all the operations are unitary. Just because we have

a linear representation of a gate, does not necessarily imply that

the gate or the function it computes is linear. A classical logical

gate or circuit computing the function 𝑓 by definition is linear if

𝑓 (𝑥 ⊕ 𝑦) = 𝑓 (𝑥) ⊕ 𝑓 (𝑦), where ⊕ is the bit wise XOR operation Patel

et al. [2003]. One can, therefore, easily show that for example the

Toffoli gate is not linear if applied on binary input strings. Apart

from entangling gates, the measurement Tacchino et al. [2019]; Chen

et al. [2018]; Schuld et al. [2020a] and the data encoding can introduce

non-linearities on NISQ devices. Specifically, the data encoding can

introduce non-linearities if the gates are non-linear functions of the

data input 𝑥. For example, if one rotation of the data is performed,

the transformation could be linear (for example, with the reflection

matrix) and the relative distance of the data is not altered. Instead,

if the unitaries perform at least two rotations over different rotation

axes the gates are a non-linear function of the data input 𝑥 Havlíček

et al. [2019]; Pérez-Salinas et al. [2020, 2021a]. This ensures the non-

linearity of the feature map 𝑥 −→ 𝜓(𝑥) in the Hilbert space of the

quantum system Schuld [2021a].
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1.5 Gardner’s program

Statistical mechanics was introduced to study classical neural net-

works (NN) in the 1980s, mostly focusing on Hopfield-like attractor

ANN Hopfield [1982]; Amit [1989]. Then, Hopfield networks were

studied as constraint satisfaction networks and also cognitive mod-

els, e.g. as a simple model for memory, but have never obtained

any relevance for machine learning. Their relationship with con-

temporary machine learning is typically considered to be remote.

Restricted Boltzmann machines are related to them and do not fall

out of fashion completely (cf. Decelle and Furtlehner [2021]; Pozas-

Kerstjens et al. [2021] and references therein), but their working only

partially relies on capacity estimates for Hopfield networks.

Recently, this situation starts to change with the progress of sta-

tistical methods that can be applied to classical feed-forward NNs

and deep learning models Tishby. Initially, feed forward NNs and

deep learning (cf. Rumelhart et al. [1986]; McClelland et al. [1986])

were considered very separately from ANNs, but nowadays statisti-

cal physics methods are being applied to feed forward NNs (Tishby;

Carleo et al. [2019]). ANNs, and even the simple perceptrons, are back

in the centre of interests with the advent of quantum technologies,

due to the possible realization of simple quantum NNs with ultra-

cold atoms, trapped ions, Rydberg atoms, super-conducting qubits,

or photonic systems (cf. Fraxanet et al.). Importantly, tools of statis-

tical physics have already established deep relations between neu-

ral networks, spin glasses, complexity, and information processing

(Nishimori [2001]; Müller et al. [1995]). One advantage of statistical

physics is the computation of global properties of physical systems

without knowing the microscopic details. Recently, there has been

a true revival of increasing interest in using statistical physics tech-

niques to study quantum information problems (Aubin et al. [2019];

Carleo et al. [2019]).

One important application of statistical physics to information

processing concerns the Hopfield-like networks or even simpler per-
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ceptrons. For example, there are many learning rules Davey and

Adams [2004] for the Hopfield network, which can be used to ob-

tain a desired input-output relations. Still, the connection between

the global properties of the perceptron, and a specific learning rule

might be challenging to analyze.

In the seminal works Gardner [1988]; Gardner and Derrida [1988]

Gardner addressed this challenge by using statistical physics to cal-

culate the maximum storage capacity of a Hopfield network without

referring to any specific learning rule. This approach of analyzing

artificial networks without specifying the learning rule and treating

the weights as a random variable is frequently referred to as Gard-

ner’s program. So far, the maximum storage capacity has also been

considered for other QNN models Sompolinsky [1987]; Aubin et al.
[2019]; Ding and Sun [2019]. The work of Gardner demonstrated that

we can study Hopfield networks independent of the precise learn-

ing rule that is used. But, it is not only of considerable historical

significance: it sheds light on the most important questions of con-

temporary quantum ML Schuld and Killoran [2022a]. Moreover, it is

extremely general, adaptive and versatile; so far it has been applied

for very different models of quantum perceptrons or quantum neural

networks, or even to calculate volumes of quantum correlated (en-

tangled) states. Here is a list of selected examples and applications

of Gardner’s program for various models of quantum perceptrons,

quantum NN and more:

• In ref. Lewenstein [1994] quantum perceptron is defined as a

unitary map followed by projective measurments in a multi-

dimensional Hilbert space. Calculation of the relative volume

reduces to calculation of the volume in the unitary group space.

• Gardner’s relative volume approach clearly inspired the pio-

neering attempts to estimate volume of quantum correlated

states, such as entangled states Życzkowski et al. [1998]. In-

tegration consists in the first place in integration over unitary
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group in very high dimension, though.

• Recently, Gardner’s program has been used on QNN mod-

els Lewenstein et al. [2021] corresponding to completely positive

trace preserving maps (CPTP). Here relative volume requires

integration over the space of maps.

• Gardner’s program inspired investigation of the relative vol-

ume of parent Hamiltonians having a target ground state up to

some fixed error 𝜖 Díaz et al. [2021].

• A careful look on other models of quantum perceptrons imme-

diately suggests that Gardner’s approach is possible and might

turn out to be useful as well. For instance, for the quantum per-

ceptron models introduced in Torrontegui and García-Ripoll

[2019]; Beer et al. [2020] integration over the unitary group is

needed to realize the Gardner’s program.

• In the present paper, Gardner’s program is applied to the spe-

cific quantum perceptron model proposed in Tacchino et al.
[2019].

By studying these models, we are one step closer to understand

whether they provide a hope for quantum advantage.

1.6 Quantum Algorithms
The history of algorithmic development suggests that great ingenu-

ity is needed to come up with algorithms even for simple tasks, such

as the multiplication of two numbers Schönhage and Strassen [1971].

The development of quantum algorithms comes with the extra con-

straint that the algorithms should run on a quantum computer and

provide an advantage over their classical counterpart. Also, taking

into account the nature of quantum mechanics, makes it even more

difficult to construct quantum algorithms.
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Even so, the development of quantum algorithms is an active

research field for the past 30 years Montanaro [2016] with signif-

icant progress. Already more than 200 quantum algorithms are

mentioned in the website qua [Accessed 2023]. One of the early de-

velopments of quantum algorithms were Deutsch’s Deutsch [1985]

for determining whether a Boolean function is constant or balanced,

Grover’s Grover [1996] for performing quantum searching and Shor’s Shor

[1997] for factoring large numbers. Here we discuss more recent im-

plementations of quantum algorithms.

1.6.1 Variational Quantum Eigensolver (VQE)
The VQE algorithm is a quantum classical heuristic method that

was initially introduced in Peruzzo et al. [2014a] and later extened in

McClean et al. [2016]. The goal of the algorithm is to find an upped

bound for the lowest expectation value of an observable of a given

Hamiltonian 𝐻̂ with respect to a parameterized wavefunction |𝜓θ⟩

𝐸0 ⩽
⟨𝜓(θ)| 𝐻̂ |𝜓(θ)⟩
⟨𝜓(θ)|𝜓(θ)⟩ .. (1.9)

Essentially this problem reduces to finding a good parametrization of

the wavefunction |𝜓(θ)⟩ which ideally would correspond the ground

state energy of the Hamiltonian. The outline of the algorithm is:

• Prepare a quantum state |𝜓(θ)⟩ on a quantum computer with

an initial set of parameters 𝜃0.

• Measure the expectation value

• Use a classical optimizer to update the parameter values.

• Iterate this procedure until convergence with respect to the

value of energy.
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Then, the given parameters 𝜃′
in the converged state define the de-

sired quantum state.

In order to implement the VQE algorithm using a quantum com-

puter, the wavefunction |𝜓(θ)⟩ is represented by a parameterized

unitary operator 𝑈(θ). This unitary operator is applied to an initial

state of 𝑁 qubits, with θ ranging from [−𝜋 to 𝜋]. Typically, the initial

state used is |0⟩⊗𝑁 . The unitary operator 𝑈 is then applied to the

initial state and we can define the VQE cost function as

𝐸VQE = min

θ
⟨0|𝑈†(θ)𝐻̂𝑈(θ) |0⟩ . (1.10)

In order for the hybrid nature of VQE to become clear, we can further

extend the description of the VQE algorithm applied on a quantum

computer. Specifically, we can write the Hamiltonian as a tensor

product of Pauli operators, which are directly measurable on a quan-

tum computer. The Hamiltonian can be rewritten as

𝐻̂ =

𝒫∑
𝑎

𝑤𝑎𝑃̂𝑎 , (1.11)

with 𝑤𝑎 a set of weights, and 𝒫 the number of Pauli strings: 𝑃𝑎 ∈
{𝐼 , 𝑋, 𝑌, 𝑍}⊗𝑁 in the Hamiltonian with 𝑁 the number of qubits used

to model the wavefunction. Then, the cost function Eq. (1.10) be-

comes

𝐸VQE = min

θ

𝒫∑
𝑎

𝑤𝑎 ⟨0|𝑈†(θ)𝑃̂𝑎𝑈(θ) |0⟩ . (1.12)

Then the expectation value of a Pauli string 𝑃̂𝑎 is computed directly

on a quantum computer, while the summation and minimization

𝐸𝑉𝑄𝐸 = minθ
∑
𝑎 𝑤𝑎𝐸𝑃𝑎 is computed on a conventional computer.

This makes evident the hybrid nature of the VQE algorithm Tilly

et al. [2022].

Further research on VQE algorithms have identified certain issues

that are challenging to overcome:
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• The choice of circuit ansatz:

The first challenge is the choice of the circuit ansatz. It is

important to find parameterized quantum circuits that have the

expressive power to yield a sufficiently good approximation

to the optimal solution and keep the number of entangling

gates and circuit depth as low as possible. Some works have

proposed different quantum ansatzes that are problem and/or

hardware-inspired Sim et al. [2019b]. Other recent works focus

on systematically optimizing the circuit architecture. But, in

most cases, this results in a significant overhead in the classical

optimization runtime Grimsley et al. [2019].

• Classical optimization runtime:

As already mentioned above, the classical optimization run-

time is another issue of VQA. It was recently shown that VQA

optimization is inherently NP-hard, which means that VQA op-

timization is intrinsically difficult and does not merely inherit

the hardness of the given problem Bittel and Kliesch [2021].

This, though, does not prove that VQA optimization is beyond

hope- specific solutions have been found for other NP-hard

problems. This results emphasizes that VQA optimization is a

difficult problem to handle.

• Barrean plateaus:

Another problem related to the training of VQA is that partial

derivatives of an objective function based on a random pa-

rameterized quantum circuit have very small valuesMcClean

et al. [2016]. Therefore, their training landscape includes large

regions where the gradient is almost zero, but which do not

correspond to a global or local minimum. This problem makes

them difficult to train with gradient-based or related local op-

timization methods. Also, this exponential decrease in the

variance of gradients hinders the extraction of meaningful val-

ues from quantum hardware, especially in the case of current

hardware that is subject to noise.
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• The measurement problem:

Finally, another potential bottleneck of VQE is the measure-

ment problem Gonthier et al. [2020]. Recent works show that

a huge number of measurements is needed to provide good

energy estimations. This in turn needs large runtime which

is well-beyond the coherent time of current quantum devices,

and most probably of the runtime that NISQ devices are hoped

to work for.

Separable Pair Approximation (SPA) algortihm

The recent work of Kottmann and Aspuru-Guzik [2022a] which gives

a variation of the VQE algorithm optimized using a separable pair

approximation (SPA). Then, once combined with specific circuit com-

pilation strategies can give classically tractable circuit classes with

very short circuit depths. Here we discuss the main elements of the

SPA algorithm.

Let’s assume that we have a system with 𝑁 electrons. Then we

can take the pair of 𝑁/2 electrons and write the separable pair (SP)

wavefunction as a tensor product of these pairs:

|ΨSP⟩ =
𝑁𝑒/2⊗
𝑘=1

|𝜓𝑘⟩ (1.13)

where |𝜓𝑘⟩ are electron pair functions. Next each pair can be rep-

resented as a summation of spin-orbitals, which essentially are one-

electron functions

|𝜓𝑘⟩ =
∑
𝑚𝑛

𝑐𝑘𝑚𝑛 |𝜙𝑘𝑚⟩ ⊗ |𝜙𝑘𝑛⟩ (1.14)

with the extra assumption that all orbitals are orthonormal

⟨𝜙𝑘
𝑙
⟩ 𝜙𝑘′

𝑙′ = 𝛿𝑘𝑘′𝛿𝑙𝑙′ . (1.15)
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Interestingly, while the wavefunction has a product structure, the

individual pair-functions are coupled through the Hamiltonian. Fi-

nally, to realize this on a quantum device we need to find the unitaries

𝑈𝑘 that create the pair-functions |𝜓𝑘⟩ starting from the initial state

𝜓𝑖𝑛𝑖𝑡 = 𝐻𝐹 |00 . . . 0⟩. Therefore, we have

|ΨSP⟩ =
𝑁𝑒/2∏
𝑘

𝑈𝑘 (θ𝑘)𝑈HF |00 . . . 0⟩ . (1.16)

The unitaries 𝑈𝑘 can be realized on quantum hardware through

one- and two-electron excitation gates. An elementary 𝑛-electron

excitation gate is given by

𝑈𝑝q(𝜃) = 𝑒−𝑖
𝜃
2
𝐺𝑝q

(1.17)

which essentially describes excitations between spin orbitals p =

{𝑝0, 𝑝1, . . . , 𝑝𝑛} and q = {𝑞0, 𝑞1, . . . , 𝑞𝑛} with 𝑝𝑘 ≠ 𝑞𝑙∀(𝑘, 𝑙) through

the fermionic excitation generator

𝐺pq = 𝑖

(∏
𝑘

𝑎†𝑝𝑘 𝑎𝑞𝑘 − h.c.

)
. (1.18)

Now we have all the elements needed to describe the SPA algorithm.

Finally, the VQE cost function can be expressed as

𝐸 = min

θ
⟨ΨSP(θ)|𝐻 |ΨSP(θ)⟩ , (1.19)

which minimizes the expectation value of the parameterized product

of pair-functions over the full electronic Hamiltonian.

1.6.2 Low-depth boosters
Apart from VQE-type algorithms there other algorithm for state

preparation. In this section, I will briefly elaborate how the low-

depth booster Wang et al. [2022b] works as a quantum state prepara-

tion method. The main idea of this method is to compose a circuit
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that implement a function of 𝐻 so that it boosts the overlap with the

ground state of 𝐻, while suppresses the rest of the eigenstates. This

approach is what the authors refer to as boosters.

The aforementioned problem can be introduced as follow. As-

sume a Hamiltonian 𝐻 =
∑𝐷
𝑗=1

𝜆 𝑗 |𝜆 𝑗⟩ ⟨𝜆 𝑗 | with eigenvalues 𝜆 𝑗’s and

eigenstates |𝜆 𝑗⟩’s, where 𝑎 ≤ 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝐷 ≤ 𝑏 for some

𝑎, 𝑏 ∈ R. Then let |𝜓⟩ =
∑𝐷
𝑗=1

𝜇𝑗 |𝜆 𝑗⟩ be the state given by an ansatz

circuit such that 𝜇1 ≠ 0.

The goal is to find a function 𝑓 : R → C such that | 𝑓 | decreases

monotonically on the interval [𝑎, 𝑏]. Then implementing the opera-

tion 𝑓 (𝐻) on the state |𝜓⟩ yields the unnormalized state

𝑓 (𝐻) |𝜓⟩ =
𝐷∑
𝑗=1

𝜇𝑗 𝑓 (𝜆 𝑗) |𝜆 𝑗⟩ , (1.20)

whose normalized version is

𝑓 (𝐻) |𝜓⟩
∥ 𝑓 (𝐻)|𝜓⟩∥ =

𝐷∑
𝑗=1

𝜇′
𝑗 |𝜆 𝑗⟩ =

1√
𝑍

𝐷∑
𝑗=1

𝜇𝑗 𝑓 (𝜆 𝑗) |𝜆 𝑗⟩ , (1.21)

where 𝑍 =
∑𝐷
𝑗=1

|𝜇𝑗 𝑓 (𝜆 𝑗)|2 and 𝜇′
𝑗
= 𝜇𝑗 𝑓 (𝜆 𝑗)/

√
𝑍.

Then, the amplitudes of the lower-energy eigenstates of 𝐻 in

𝑓 (𝐻)|𝜓⟩
∥ 𝑓 (𝐻)|𝜓⟩∥ are larger than their counterparts in |𝜓⟩. In particular, the

overlap between
𝑓 (𝐻)|𝜓⟩

∥ 𝑓 (𝐻)|𝜓⟩∥ and the ground state of 𝐻 is larger than

the one for |𝜓⟩. This can be seen by following the assumptions on 𝑓

gives

���� 𝜇𝑖 𝑓 (𝜆𝑖)𝜇𝑗 𝑓 (𝜆𝑗)

���� ≥ ���𝜇𝑖𝜇𝑗 ���, ∀𝑖 ≤ 𝑗. In turn it follows that ∥𝜇′
𝑗
∥ ≥ ∥𝜇𝑗 ∥ for

𝑗 = 1, 2, . . . , 𝑘, for some 1 ≤ 𝑘 ≤ 𝐷.

While any function 𝑓 that satisfies the monotonicity condition

can theoretically be used to boost a Hamiltonian, the practical cost

of implementing the operation 𝑓 (𝐻) can vary widely depending on

the specific 𝑓 chosen. Additionally, 𝑓 (𝐻) is generally non-unitary,
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meaning that it cannot be implemented with certainty. Therefore, a

careful balance the following factors is necessary when choosing the

function 𝑓 :

• the overlap increment with the ground state (or the low-energy

eigenstates) of 𝐻 that 𝑓 (𝐻) can achieve

• the circuit depth implementing 𝑓 (𝐻)

• the success probability implementing 𝑓 (𝐻)

In the same work Wang et al. [2022b], the authors discuss how to

implement the function 𝑓 once it is chose. Given a function 𝑓 , the

Fourier approximation can be written as

𝑓 (𝑥) ≈
𝐾∑
𝑗=1

𝛼 𝑗𝑒
𝑖𝑡 𝑗𝑥

(1.22)

for some 𝛼 𝑗 ∈ C\{0} and 𝑡 𝑗 ∈ R. Then we can also have a Fourier

approximation of the booster operation 𝑓 (𝐻):

𝑓 (𝐻) ≈
𝐾∑
𝑗=1

𝛼 𝑗𝑒
𝑖𝑡 𝑗𝐻 . (1.23)

Therefore 𝑓 (𝐻) is expressed as a linear combination of the unitary

operations 𝑒 𝑖𝑡 𝑗𝐻 ’s. This suggests that the LCU method can be used

to implement 𝑓 (𝐻) approximately and probabilistically.

Finally, in Chapter 6 we specifically use the Gaussian function

and its Fourier transform:

𝑓𝑎(𝑥) = 𝑒−𝑎𝑥
2 ↔ 𝑓𝑎(𝜉) =

√
𝜋
𝑎
𝑒−

(𝜋𝜉)2
𝑎 ; (1.24)

as the booster function 𝑓 and a parameterized parameter 𝛼. Note that

technically the “truncated Gaussian boosters” are non-monotonic
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(due to the truncation), but as the authors emphasize non-monotonic

boosters might ensure a good performance to cost ratio if they can be

realized with short-depth quantum circuits. In the case of “truncated

Gaussian boosters” their corresponding functions have steeply de-

creasing envelopes, ensuring their performance is not compromised.

Once we find the optimal parameter 𝑎, the corresponding booster

operation 𝑓𝑎(𝐻) is implemented by the linear combination of uni-

taries (LCU) method based on the equation:

𝑓𝑎(𝑥) =
√

𝜋
𝑎

∫ ∞

−∞
𝑒−

(𝜋𝜉)2
𝑎 𝑒2𝜋𝑖𝑥𝜉𝑑𝜉 ≈ 𝑓𝑇,𝑁 ;𝑎(𝑥) =

𝑇

𝑁

√
𝜋
𝑎

𝑁−1∑
𝑗=−𝑁

𝑒−
(𝜋𝜉𝑗 )2

𝑎 𝑒2𝜋𝑖𝑥𝜉𝑗 ,

(1.25)

where 𝜉𝑗 = (𝑗 + 1/2)𝑇/𝑁 , and 𝑁 is sufficiently large so that 𝑓𝑎(𝑥) ≈
𝑓𝑇;𝑎(𝑥) ≈ 𝑓𝑇,𝑁 ;𝑎(𝑥) for all 𝑥 ∈ [0, 1].

Interestingly, the circuit operation implemented by the LCU method

used in the Gaussian booster has the same structure as the phase es-

timation circuit used in Quantum Phase estimation (QPE) algorithm

discussed in the next section.

1.6.3 Quantum phase estimation algorithm
Quantum phase estimation (QPE) algorithms, or more generally en-

ergy estimation algorithms, solve a problem that is interesting both

from a physical point of view, but also with significant industrial rel-

evance. For example, energy estimation is useful for the simulation

of molecules and materials Cao et al. [2020]. Also, other interesting

problems can be reduced to the task of QPE, such as factoring Nielsen

and Chuang [2011]. What is the task of QPE?

The aforementioned algorithms can estimate the eigenvalue as-

sociated to a given eigenvector of a unitary operator. Formally, the

goal of QPE algorithm is given an eigenvector𝜓 of a unitary operator

𝑈 to find the eigenvalue 𝑒2𝜋𝑖𝜃
of |𝜓⟩, i.e 𝑒2𝜋𝑖𝜃 = ⟨𝜓 |𝑈 |𝜓⟩.
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In most cases thought we do not have the exact ground state of

the system, but rather an approximation. Therefore, we need a good

trial initial state |𝜓𝑖⟩ that has significant overlap with the true ground

state of the studied Hamiltonian. The QPE algorithm consists of a set

of qubits that are necessary to encode the trial input state along with

a set of control qubits (usually referred to as ancilla qubits) initiated

to |0⟩. The initial state of the system is |0⟩⊗𝑛 |𝜓⟩.
The first step of the algorithm is to apply the Hadamard gate to

each qubit of the control qubits. The state of the system becomes

1

2

𝑛
2

(|0⟩ + |1⟩)⊗𝑛 |𝜓𝑖⟩ =
1

2
𝑛/2

2
𝑛−1∑
𝑗=0

| 𝑗⟩|𝜓𝑖⟩. (1.26)

Then we perform a set of controlled time evolutions of the studied

Hamiltonian𝐻 on the trial state. This could be interpreted as a black

box which performs a controlled-𝑈 𝑗
operation for an integer 𝑗

𝑈 𝑗 = 𝑒−2
(𝑗−1) 𝑖𝜏𝐻 . (1.27)

This black box operation results to

|𝜙⟩ = 1√
2
𝑛

2
𝑛−1∑
𝑗=0

𝑒2𝜋𝑖 𝑗𝜃 | 𝑗⟩|𝜓𝑖⟩ (1.28)

Finally, we apply the inverse Fourier transform and perform a

measurement in the computational basis on the controlled qubits.

The output of the aforementioned procedure is a 𝑛-bit approximation

𝜃 to 𝜃.

One significant concern of the aforementioned procedure is the

runtime necessary to perform the algorithm. This scales as 𝑂̃
(
𝜖−1𝛾−2

)
,

where 𝜖 is the target accuracy and 𝛾 is the overlap between the trial

input quantum state with the true ground state of the Hamiltonian.

The dependence 𝜖−1
is referred to as the Heisenberg-limited preci-

sion scaling which is the optimal that could be realized. Variations
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of the QPE algorithm along with other algorithms for ground state

energy estimation can be found in Gilyén et al. [2015] and references

therein.
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Chapter 2

Storage capacity of QP and
QNNs

In recent years there has been an increasing interest in the field of

Quantum Machine Learning (QML) which either refers to classical

ML techniques applied to quantum physics problems or ML con-

cepts implemented directly on quantum hardware. Here we are

involved with the latter and we are interested in exploring whether

there could be any potential quantum advantage emerging from such

implementations.

Specifically, we transform the building block of classical neural

networks, the perceptron, to its quantum version, i.e. the quantum

percepton and ask whether there could be any advantage over its

classical counterpart in terms of its storage properties, i.e. the num-

ber of patterns it could store. To explore this question we revisit the

techniques used to describe the properties of a classical perceptron,

essentially by applying statistical physics techniques. Therefore, we

follow the same approach and apply statistical physics techniques to

this quantum information problem. Finally we explore the storage

properties of quantum neural networks.

In this chapter we introduce techniques that could bridge the gab

between quantum computation and learning theory.
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2.1 Introduction

As the perceptron is the simplest learning machine, it is of great value

to explore its storage capacity, i.e. the ratio 𝛼 of the patterns 𝑝 that

could be stored over the computational resources. In the classical

case, the computational resources are equivalent to the number of

physical spins 𝑁 , and thus the patterns that could be stored are

𝑝 = 𝛼𝑁 . In the quantum case, the computational resources are

equal to the number of the computational basis 𝑚 = 2
𝑁

, and thus

𝑝 = 𝛼𝑚 = 𝛼2
𝑁

. We already see the exponential dependence on the

number of physics spins 𝑁 for the quantum perceptron, but a fair

comparison between these two perceptrons is over the computational

resources.

In Sec. 2.2, a potential quantum advantage is explored through

the notion of maximal storage capacity of the quantum perceptron

versus its classical counterpart. To do so, we apply statistical physics

techniques to this information problem. One advantage of the sta-

tistical physics approach is that one can frequently make statements

about the system’s global properties without knowing the micro-

scopic details. Specifically, we analyze the quantum perceptron

without specifying the learning rule and treating this ignorance as

a statistical physics problem which is the Gardner program, intro-

duced in Sec. 1.5.

As with perceptrons, one crucial feature of NNs is their storage ca-

pacity for associative memory, that is, the number of patterns (stored

memories/attractors) the network has for a given number of neurons

n. Despite recent progress, the storage properties of generic QNN is

still an open question. In Sec. 2.3, a potential quantum advantage is

explored through the number of patterns that could be stored. We

address this question by associating attractor QNNs to CPTP, where

the total volume of attractor QNN corresponds to the volume of

CPTP maps that have a fixed set of stationary states. We analyze the

learning capability, i.e. the number of patterns that could be learned

by the QNN by applying Gardner’s program and estimating the rel-
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ative volume of QNNs realizing the desired attractor input-output

relations.

The original results presented in this chapter are based on the

publication [Gratsea et al., 2021] with V. Kasper and M. Lewenstein

and [Lewenstein et al., 2021] with M. Lewenstein, A. Riera-Campeny,

A. Aloy, V. Kasper and A. Sanpera.

2.2 Gardner’s program applied to a quantum
perceptron architecture

In this work, we apply Gardner’s program to a specific quantum

analog of the classical perceptron introduced in Tacchino et al. [2019]

to explore its storage capacity. This quantum perceptron model has

a direct implementation on quantum hardware Tacchino et al. [2019]

and uses amplitude encoding which is beneficial in terms of memory

resources as mentioned earlier. But, for this perceptron model it

is not clear how the storage capacity will compare to its classical

counterpart contrary to the quantum perceptron models Torta et al.
[2021]; ?, which have the same storage capacity. Therefore, we aim to

perform a reasonable comparison of the maximum storage capacity

of this quantum perceptron model with its classical counterpart.

This work brings us one step closer to understanding whether they

provide hope for quantum advantage and sheds light on the most

important questions of contemporary quantum machine learning

models as general learning machines Schuld and Killoran [2022a].

2.2.1 Perceptron model
Classical perceptron model

A classical perceptron is a function that maps a 𝑁 dimensional in-

put
®𝑖𝜇 = (𝑖𝜇

1
, . . . , 𝑖

𝜇
𝑁
)𝑇 onto an output 𝜎𝜇, where the weight vector

®𝑤 = (𝑤1, . . . , 𝑤𝑁 )𝑇 determines the information processing. The ad-
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ditional label 𝜇 ∈ {1, 2, ..., 𝑝} denotes different pairs of input vectors

and outputs Nishimori [2001]; Minsky and Papert [1969]. Moreover,

we consider the following activation function

𝜎𝜇 = 𝜃
(
®𝑖𝜇 · ®𝑤 − 𝜅

)
, (2.1)

where 𝜅 is the threshold and 𝜃(·) is the Heaviside function realizing

the non-linearity of the perceptron model, see Fig. 2.1a.

Quantum perceptron model

A quantum analog of the classical perceptron Tacchino et al. [2019]

is depicted in Fig. 2.1b with the corresponding quantum circuit in

Fig. 2.1c. In this quantum perceptron the connection between the

inputs, outputs and weights is given by the activation function

𝜎𝜇 = 𝜃
(

1

𝑚 |®𝑖
𝜇 · ®𝑤 |2 − 𝜅

)
, (2.2)

where the non-linearity of the perceptron is realized by the measure-

ment, see Fig. 2.1b.

In the quantum case the input vector is
®𝑖𝜇 = (𝑖𝜇

0
, . . . , 𝑖

𝜇
𝑚−1

)𝑇 and

the weight vector is ®𝑤 = (𝑤0, . . . , 𝑤𝑚−1)𝑇 , where 𝑚 is the dimension

of the Hilbert space. The vectors
®𝑖𝜇 and ®𝑤 are encoded in quantum

states

|𝜓®𝑖⟩ =
1√
𝑚

𝑚−1∑
𝑗=0

𝑖 𝑗 | 𝑗⟩ , (2.3a)

|𝜙 ®𝑤⟩ =
1√
𝑚

𝑚−1∑
𝑗=0

𝑤 𝑗 | 𝑗⟩ , (2.3b)

respectively with the orthonormal basis vectors | 𝑗⟩ form the com-

putational basis and we focused on the case of binary inputs and

weights. The encoding unitary𝑈®𝑖 prepares the input state, while the
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processing unitary 𝑉®𝑤 computes the inner product between
®𝑖 and

®𝑤. The precise definition of the unitaries can be found in App. B.2.

After the encoding and processing step (depicted by two blocks in

Fig. 2.1c), a multi-controlled NOT gate is applied between the reg-

ister and an ancilla qubit. Measuring the ancilla qubit in the com-

putational basis gives |1⟩ with probability |®𝑖𝜇 · ®𝑤 |2, see Fig. 2.1c and

App. B.2 for details.

2.2.2 Activation functions
It is important to discuss the differences between the classical activa-

tion function and the quantum (i.e., quadratic) activation function.

In the classical case, the perceptron is a linear classifier, and its acti-

vation function depends linearly on the weighted signal. In general,

the quadratic activation function introduces a nonlinearity to the

model. We refer here to Ref. Müller et al. [1995], where the concept

of a quadratic activation function has already been discussed.

In general, according to Ref. Müller et al. [1995], quadratic, or

more generally nonlinear activation function might improve or de-

teriorate the performance of the classical perceptron. In fact, re-

cent works have explored a quadratic activation function of a clas-

sical neuron. Even though their increased representation and effi-

ciency Fan et al. [2018], they have increased computational costs and

restricted expressive abilities Fan et al. [2020]. Regarding the storage

capacity, the authors in the work of Fan et al. [2020] discuss that a

two-layer neural network with 𝑁 inputs, 𝐾 hidden units, binary out-

puts, and a quadratic activation function results in the same value of

the storage capacity with the quantum perceptron. Moreover, taking

into account that 𝛼𝑐,max has a finite value for the quantum percep-

tron and that 𝑚 equals the dimension of the Hilbert space (𝑚 = 2
𝑁

),

the number of patterns that can be stored is exponential in the num-

ber of spins 𝑁 in agreement with recent works Andrecut and Ali

[2003]; Ventura and Martinez [2000]; Wright and McMahon [2020].
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Figure 2.1 Classical and quantum perceptrons (a) Schematic outline of the

classical perceptron: An 𝑁-dimensional input array
®𝑖 is processed with a

weight vector ®𝑤 such that
®𝑖 · ®𝑤 enters the activation function. (b) Schematic

outline of the quantum perceptron: An 𝑚-dimensional input array
®𝑖 is pro-

cessed with a weight vector ®𝑤 to produce the inner product squared of these

vectors. Both cases, the classical and the quantum, employ a non-linear ac-

tivation leading to the output 𝜎. (c) Quantum circuit implementation of

the quantum perceptron following the work of Tacchino et al. [2019]. An

encoding unitary realizes the input state |𝜓®𝑖⟩ and the processing unitary

computes the inner product of the input and weight vectors. The outcome is

then written on the ancilla qubit with a multi-controlled NOT gate. Finally,

the activation is measured by the readout of the ancilla qubit.
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For example, in the recent work Lewenstein et al. [2021] the authors

applied Gardner’s program to attractor Quantum Neural Networks

and found that the learning of 𝑃 patterns at the order of 2
𝑁/2

is

possible.

The same quadratic activation function that we use for quantum

perceptron can be directly implemented in a classical perceptron,

but it does not seem to make a lot of sense. Our activation function

is directly related to quantum measurement theory: it estimates

how much a given set of normalized weights can be similar (in the

sense of the squared scalar product) to a random pattern. This is

in principle a geometrical question and be considered in a purely

classical system, but it is not the true goal for introducing nonlinear

activation functions.

2.2.3 Gardner’s program
The correct choice of the weights results in a desired input-output

relation, i.e., a specific mapping between the input
®𝑖𝜇 and the output

𝜎𝜇. A learning rule is usually applied to find the correct weights, such

as the Hebbian rule Sompolinsky [1987]. While the Hebbian rule

has an appealing simplicity, Gardner, in her works Gardner [1988];

Gardner and Derrida [1988], was interested in the global properties of

the classical perceptron model without specifying the learning rule.

She asked the question: What is the maximum number of input-

output patterns that the classical perceptron can realize? Therefore,

she considered the relative volume in the space of possible weights,

which realizes a given input-output relation.

2.2.4 Storage capacity
The problem of storage capacity goes indeed back to the theory

of classical perceptrons Minsky and Papert [1972]. In the "classic"

paper from 1964 Cover [1965], T.M. Cover demonstrated using simple

geometrical arguments that the separating capacities of families of
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nonlinear decision surfaces by a direct application of a theorem in

classical combinatorial geometry. It is shown that a family of surfaces

having𝑁 degrees of freedom has a natural separating capacity of 2𝑁

pattern vectors, thus extending and unifying earlier results of others

on the pattern-separating capacity of hyperplanes. Thus, the critical

storage capacity of a classical perceptron is 𝛼𝑐 = 2.

The problem of storage capacity returned in 1982 in the seminal

paper of J. Hopfield Hopfield [1982], who has shown numerically

that the Hopfield model with the, so-called, Hebbian learning rule

may store 0.14𝑁 random patterns. E. Gardner came back to the

problem analyzing the shrinking in the volume of perceptrons that

correctly reproduce the desired input-output relations normalized

to the volume of connection vectors ®𝑤. The advantage of the work

of Gardner was that it calculated storage capacity independently of

the learning rule used. It also reproduced correctly the classical

geometrical bound of T.M. Cover Cover [1965].

Following Gardner’s work, the storage capacity can be obtained

from the fraction of ®𝑤-space which correctly and exactly reproduces

the desired input-output relations normalized to the volume of vec-

tors ®𝑤. When increasing the number of patterns, the volume of

vectors ®𝑤 typically shrinks, and the relative volume of the weights

vanishes. The limit of vanishing relative volume defines the storage

capacity of the perceptron Nishimori [2001].

From the definition of the storage capacity, the difference between

the classical and quantum perceptrons results from two aspects of

to the definition of quantum perceptron proposed in Tacchino et al.
[2019]. The classical perceptron checks whether the signal corre-

sponding to a given input pattern has an appropriate sign at the

output. Quantum perceptron uses quantum measurement princi-

ples, and checks for a given input pattern how big are the quantum

overlaps of output states. Quantum perceptron by definition does

not reproduce the input patterns correctly and exactly; it does it with

certain optimal error, or better to say accuracy.

The other important aspect is that of the different dimensionality
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of the input vectors, which equals 𝑁 physical inputs for the classical

perceptron. In contrast, in the quantum case, the number of inputs

equals the dimension of the Hilbert space 𝑚. Hence, for the classical

perceptron we have 𝛼𝑐 = 𝑝/𝑁 (i.e. the capacity 𝑝 is proportional to

the number of spins 𝑁), while for the quantum perceptron 𝛼𝑐 = 𝑝/𝑚
(i.e. the capacity is exponential in the number of spin configurations,

𝑝 ∝ 𝑚 = 2
𝑁

). For the classical perceptron, the storage capacity is

known to be 2 (for 𝜅 = 0) and was calculated for example in Cover

[1965]; Gardner [1988]; Gardner and Derrida [1988]; Müller et al.
[1995]; Nishimori [2001]. More, precisely in the classical perceptron,

when 𝛼 > 𝛼𝑐(𝜅), the relative volume shrinks abruptly to zero. In

contrast, when 𝛼 ≤ 𝛼𝑐(𝜅), the relative volume is non-zero but shrinks

moderately slowly exponentially with 𝑚.

It is rather difficult to compare this situation with our results ob-

tained for the quantum perceptron. First of all, critical capacity and

the nature of the phase transition depend on the form of weights we

use (spherical weights, Gaussian distributed inputs, Ising weights

and inputs). For various cases, capacity ranges between more than

13 and 0.125, but as noted above it corresponds to recognition intrin-

sically associated with quantum measurement errors.

Finally, we would like to mention parameter 𝜅, introduced by

Gardner in her original paper Gardner [1988]. While strictly speak-

ing, the classical perceptron checks whether the signal corresponding

to a given input pattern has an appropriate (say positive) sign at the

output, in principle one can demand that the signal is greater than

a certain parameter 𝜅. In the case of classical perceptrons with the

scaling of connections proposed by Gardner, 𝜅 is 𝑁 independent. In

the more complex quantum case, we need to scale 𝜅 appropriately

as in Eq. (2.2), and as discussed in the next section.
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2.2.5 Storage capacity calculated using Gardner’s pro-
gram

As discussed in Chapter 1.5, the correct choice of the weights results

in a desired input-output relation, i.e., a specific mapping between

the input
®𝑖𝜇 and the output 𝜎𝜇. A learning rule is usually applied

to find the correct weights, such as the Hebbian rule Sompolinsky

[1987]. While the Hebbian rule has an appealing simplicity, Gard-

ner, in her works Gardner [1988]; Gardner and Derrida [1988], was

interested in the global properties of the classical perceptron model

without specifying the learning rule. She asked the question: What is

the maximum number of input-output patterns that the classical per-

ceptron can realize? Therefore, she considered the relative volume

in the space of possible weights, which realizes a given input-output

relation.

Following Gardner’s work, the storage capacity can be obtained

from the fraction of ®𝑤-space which correctly reproduces the desired

input-output relations normalized to the volume of vectors ®𝑤. When

increasing the number of patterns, the volume of vectors ®𝑤 typi-

cally shrinks, and the relative volume of the weights vanishes. The

limit of vanishing relative volume defines the storage capacity of the

perceptron Nishimori [2001]. From the definition of the storage ca-

pacity the difference between the classical and quantum perceptrons

results from the different dimensionality of the input vectors, which

equals 𝑁 physical inputs for the classical perceptron. In contrast,

in the quantum case, the number of inputs equals the dimension of

the Hilbert space 𝑚. Hence, for the classical perceptron we have

𝛼𝑐 = 𝑝/𝑁 , while for the quantum perceptron 𝛼𝑐 = 𝑝/𝑚. For the clas-

sical perceptron, the storage capacity is known to be 2 and was cal-

culated for example in Gardner [1988]; Gardner and Derrida [1988];

Müller et al. [1995]; Nishimori [2001].

The abundance of weights, which lead to desired input-output

relations, can be treated by averaging over the weight vectors ®𝑤. This

averaging gives rise to an ensemble of quantum machines, which can
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be analyzed with statistical physics tools. To define a finite volume of

weights Gardner and Derrida [1988] we constrain the weight vector

®𝑤. Similar to Gardner’s work one can consider two types of con-

straints: spherical weights, i.e., | ®𝑤 |2 = 𝑚 and Ising weights 𝑤𝑖 = ±1.

The corresponding integration measures Müller et al. [1995] are

𝜌𝑆[ ®𝑤] =
1

𝑉𝑆0

𝛿
(
| ®𝑤 |2 − 𝑚

)
, (2.4a)

𝜌𝐼[ ®𝑤] =
1

𝑉𝐼0

∏
𝑘

[𝛿 (𝑤𝑘 − 1) + 𝛿 (𝑤𝑘 + 1)] (2.4b)

with the normalization (see Appendix B.3)

𝑉𝑆0
=

∫
𝑤

𝛿(| ®𝑤 |2 − 𝑚) , (2.5a)

𝑉𝐼0 =

∫
𝑤

∏
𝑘

[𝛿 (𝑤𝑘 − 1) + 𝛿 (𝑤𝑘 + 1)] . (2.5b)

Then the relative volume of perceptrons, which fulfill a specific input-

output relation, is given by

𝑉𝑀 =

∫
𝑤

∏
𝜇

𝜃
(

1

𝑚 |®𝑖
𝜇 · ®𝑤 |2 − 𝜅

)
𝜌𝑀[ ®𝑤] , (2.6)

where the label 𝑀 = 𝑆 for the spherical constraint or 𝑀 = 𝐼 for the

Ising constraint. The threshold𝜅 takes values in [0, 𝑚]and in the limit

𝜅 → 0 the relative volume allows us to obtain the maximum storage

capacity of the quantum perceptron model Nishimori [2001]; Müller

et al. [1995]. We calculate the relative volume using the integral

representation of the Heaviside function

𝜃 (𝑦 − 𝜅) =
∫ ∞

𝜅
𝑑𝜆

∫ ∞

−∞

𝑑𝑥

2𝜋
𝑒 𝑖𝑥(𝜆−𝑦), (2.7)

which we insert into Eq. (2.6). In the following we outline the cal-

culation of the relative volume for the case of spherical weights and

present the details of the calculation in App. B.
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Spherical weights

The distribution of the spherical weights is given in Eq. (2.4a) and

contains a delta function, which we represent via

𝛿(| ®𝑤 |2 − 𝑚) =
∫ ∞

−∞

𝑑𝐸

2𝜋
𝑒 𝑖𝐸(| ®𝑤 |2−𝑚) . (2.8)

Further, we average over the input vector
®𝑖𝜇 to avoid bias towards

specific input vectors. The average with respect to
®𝑖𝜇 is denoted as

⟨⟨·⟩⟩. The expression for the relative volume becomes

⟨⟨𝑉𝑆⟩⟩ =
1

𝑉𝑆0

∫
𝑤

∫
𝜆

∫
𝑥

∫
𝐸

exp

[
𝑖𝐸

(
| ®𝑤 |2 − 𝑚

)]
× ⟨⟨exp

[
𝑖
∑
𝜇

𝑥𝜇
(
𝜆𝜇 − 1

𝑚 |®𝑖
𝜇 · ®𝑤 |2

)]
⟩⟩ , (2.9)

where the integration measure is given in App. B.3.

Similar to Gardner we make the observation that Eq. (2.9) is a

partition function of a classical spin glass, where ⟨⟨·⟩⟩ is interpreted

as a disorder average and ®𝑤 is a classical spin variable. As for clas-

sical spin glasses Nishimori [2001]; Müller et al. [1995] we calculate

⟨⟨log𝑉𝑆⟩⟩ via the replica trick

⟨⟨log𝑉𝑆⟩⟩ = lim

𝑛→0

⟨⟨𝑉𝑛
𝑆
⟩⟩ − 1

𝑛
, (2.10)

which leads to the replicated variables ®𝑤𝛼
, 𝑥𝛼, 𝜆𝛼

with the replica

index 𝛼 ∈ {1, . . . , 𝑛}. Following the notation introduced in Nishi-

mori [2001], we would like to emphasize that the reader should not

confuse the storage capacity 𝛼 with the replica index. In addition,

we introduce the spin glass order parameter 𝑞𝛼𝛽 and its conjugate
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𝐹𝛼𝛽 via the integral

1 =

∫ ∞

−∞
𝑑𝑞𝛼𝛽𝛿

(
𝑞𝛼𝛽 − 1

𝑚

∑
𝑘

𝑤𝛼
𝑘
𝑤

𝛽
𝑘

)
= 𝑚

∫ ∞

−∞
𝑑𝑞𝛼𝛽

∫ ∞

−∞

𝑑𝐹𝛼𝛽

2𝜋
𝑒 𝑖𝑚𝐹

𝛼𝛽(𝑞𝛼𝛽− 1

𝑚

∑
𝑘 𝑤

𝛼
𝑘
𝑤

𝛽
𝑘
)

(2.11)

with 𝛼 < 𝛽. This identity is also referred to as Hubbard-Stratonovich

transformation, see Sherrington and Kirkpatrick [1975]; Mezard et al.
[1986] for details.

Ising inputs

In the next step, we perform the average over the inputs and assume

small fluctuations of 𝑥𝛼, which leads to

⟨⟨𝑉𝑛
𝑆 ⟩⟩ =

1

𝑉𝑛
𝑆0

∫
𝐹

∫
𝑞

∫
𝐸

𝑒𝑚𝐺 , (2.12)

with integration measure given in App. B.3 and where we introduced

the effective potential

𝐺=𝛼𝐺1[𝑞𝛼𝛽] + 𝐺2[𝐸𝛼 , 𝐹𝛼𝛽] − 𝑖
∑
𝛼

𝐸𝛼 + 𝑖
∑
𝛼<𝛽

𝐹𝛼𝛽𝑞𝛼𝛽 (2.13)

with the storage capacity 𝛼 and the two contributions

𝐺1[𝑞𝛼𝛽] = log

∫ ∞

−∞

∏
𝛼

𝑑𝑥𝛼

2𝜋

∫ ∞

𝜅

∏
𝛼

𝑑𝜆𝛼

× exp

©­«𝑖
∑
𝛼

𝑥𝛼 (𝜆𝛼 − 1) − 1

2

∑
𝛼

(𝑥𝛼)2 −
∑
𝛼<𝛽

(𝑞𝛼𝛽)2𝑥𝛼𝑥𝛽ª®¬ (2.14)
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and

𝐺2[𝐸𝛼 , 𝐹𝛼𝛽] = log

∫ ∞

−∞

∏
𝛼

𝑑𝑤𝛼

× exp

©­«𝑖
∑
𝛼

𝐸𝛼(𝑤𝛼)2 − 𝑖
∑
𝛼<𝛽

𝐹𝛼𝛽𝑤𝛼𝑤𝛽ª®¬ . (2.15)

Comparing the integrals for the effective potential reveals a quadratic

dependency on 𝑞𝛼𝛽 for the quantum model and a linear dependence

on 𝑞𝛼𝛽 for the classical model within the exponents. The non-linear

dependence in the quantum case is a consequence of the measuring

process, which involves the modulus square.

Note that𝐺 = 𝐺(𝐹, 𝐸, 𝑞; 𝛼, 𝜅) is a function of integration variables,

and depends parametrically on 𝛼 and 𝜅. The integral over 𝐹, 𝐸, 𝑞 in

Eq. (2.13) can be evaluated using the saddle point method, due to the

exponential dependence on 𝑚. In the replica symmetric case, one

can eliminate dependence on 𝐸, 𝐹, so that the effective potential/free

energy of interest can be defined in the limit 𝑛 going to zero,

𝑔(𝑞; 𝛼, 𝜅) = lim

𝑛→0

1

𝑛
𝐺(𝑞; 𝛼, 𝜅) , (2.16)

It is useful also to introduce the proper normalization for the

saddle point value of the effective potential, coming from subtracting

the logarithm of 𝑛 log(𝑉𝑆0
):

𝑔̃(𝑞𝑠 ; 𝛼, 𝜅) = 𝑔(𝑞𝑠 ; 𝛼, 𝜅) − 𝑔(𝑞𝑠 ; 𝛼, 𝜅 = 0). (2.17)

This quantity is strictly non-positive. If 𝑔̃ is one, then the volume

is one (as it should happen for 𝜅 = 0). If 𝑔̃ is −∞, then the volume

shrinks to zero (as it should happen for 𝛼 > 𝛼𝑐 . This may happen

even for 𝜅 = 0, due to the approximate character of our calculations.

Finally, when 0 > 𝑔̃ > −∞, the relative volume decreases exponen-

tially with 𝑚 as exp(𝑚𝑔̃).
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After the Hubbard-Stratonovich transformation we perform a

saddle-point approximation for large 𝑚 and assume replica sym-

metry, i.e.,

𝑞𝛼𝛽 = 𝑞, 𝐹𝛼𝛽 = 𝐹, 𝐸𝛼 = 𝐸 . (2.18)

The saddle-point equations are

𝜕𝐺

𝜕𝐸
=

𝜕𝐺

𝜕𝐹
=

𝜕𝐺

𝜕𝑞
= 0 , (2.19)

which we solve and subsequently perform the limit 𝑛 → 0.

Taking the derivative of 𝐺 with respect to 𝑞 and analyzing the

limit 𝑞 → 1, we observe that it leads to the saddle point solution for

𝑞 is 𝑞 = 0 for 𝛼 ≤ 𝛼𝑐(𝜅) to the maximum critical storage capacity at

𝜅 = 0 of

𝛼𝑐,max = 13.27 ≥ 2. (2.20)

In contrast, for 𝛼 > 𝛼𝑐(𝜅), 𝑞 at the minimum of the effective potential

becomes equal to 1, and the volume abruptly shrinks to zero. The

saddle-point approximation allows us to study the critical storage

capacity 𝛼𝑐(𝜅) as a function of the threshold 𝜅, which we depict in

Fig. 2.2. Note, the phase transition has here similar nature as in the

classical perceptron. For 𝛼 ≤ 𝛼𝑐(𝜅), the relative volume is equal to

1 for 𝜅 = 0. For 𝜅 > 0, the effective potential 𝑔̃ < 0, and the volume

shrinks moderately slowly exponentially with 𝑚 as exp(𝑚𝑔). For

𝛼 > 𝛼𝑐(𝜅), 𝑔 = −∞, and the volume is strictly equal to zero (for

details see Methods section).

Taking the derivative of 𝐺 with respect to 𝑞 and analyzing the

limits 𝑞 → 1 and 𝜅 → 0 leads to the maximum critical storage

capacity of

𝛼𝑐,max = 4. (2.21)

Additionally, the saddle-point approximation allows us to study the

critical storage capacity 𝛼𝑐 as a function of the threshold 𝜅, which we

depict in Fig. 2.2.
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Figure 2.2 Storage properties of perceptrons for spherical weights: Stor-
age capacity for the classical (red) and quantum (blue) perceptrons as a
function of the threshold 𝜅 with Ising inputs. For 𝜅 = 0, the storage
capacity has a maximum, whereas the storage capacity decays for 𝜅 ≫ 0.
In the inset, we plot the critical storage capacity as a function of 𝜅 for
spherical weights, but with Gaussian distributed inputs.
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Gaussian distributed inputs

In this section, we discuss the case of inputs distributed according to

a Gaussian normal distribution. The weights in turn are distributed

according to Eq. (2.4a). We apply the replica trick Eq. (2.10), introduce

the order parameters as in Eq. (2.11) and average over the inputs to

calculate the effective potential 𝐺. A comparison to Eq. (2.12) reveals

that only the expression for 𝐺1 changes

𝐺1[𝑞𝛼𝛽] = log

∫ ∞

−∞

∏
𝛼

𝑑𝑥𝛼

2𝜋

∫ ∞

𝜅

∏
𝛼

𝑑𝜆𝛼

× exp

[
𝑖
∑
𝛼

𝑥𝛼𝜆𝛼 − log det

(
1 + 2𝑖𝐴̂

)]
, (2.22)

where we introduce the matrix𝐴 later in Eq. (B.20). Next, we assume

replica symmetry, i.e.,

𝑞𝑎𝑏 = 𝑞, 𝐹𝑎𝑏 = 𝑖𝐹, (2.23)

where the imaginary unit i is used to assure that the saddle point

solutions are real. Then the saddle-point equations are

𝜕𝐺

𝜕𝐹
=

𝜕𝐺

𝜕𝑞
= 0, (2.24)

which we solve and subsequently perform the limit 𝑛 → 0. The

saddle-point equation given by the derivative with respect to 𝑞 leads

to

𝛼 (2 + 𝜅)2 𝑞 =
𝑞

2 (1 − 𝑞)2
. (2.25)

This equation has one trivial solution 𝑞 = 0 and one non-trivial in

0 < 𝑞 < 1. The non-trivial solution exists if and only if

2𝛼 (2 + 𝜅)2 ≥ 1. (2.26)
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For 𝛼 ≤ 𝛼𝑐 = (1/2)(2+𝜅)2 the solution is trivial, and the logarithm of

the relative volume is close to zero, it is proportional to 𝑔̃ = −𝛼𝜅/2,

and for 𝜅 = 0 the volume is equal to one, while for 𝜅 > 0 it decreases

exponentially as exp(𝑚𝑔̃) Above 𝛼𝑐 , the saddle point solution for

𝑞 is non-zero, and the volume shrinks also exponentially with 𝑚,

but much faster (for details see Methods section). We plot 𝛼𝑐 in

Fig. 2.2 for different values of 𝜅 and observe 𝛼𝑐 → 1/8 for 𝜅 = 0. The

phase transition has a different character in comparison to Gardner’s

work Gardner [1988]. In her work, the volume decreases exponen-

tially with 𝑚 below the critical 𝛼𝑐 (where 𝑞 < 1), and strictly shrinks

to zero above the critical 𝛼𝑐 (where 𝑞 = 1). In our work, the volume

is close to one below 𝛼𝑐 (although it decreases slowly exponentially

with 𝑚, and it starts to decrease much more rapidly exponentially

with 𝑚 above 𝛼𝑐 . This is the result of the approximations used (ex-

pansion in 𝑞). In App. B.5 we speculate, how one could to restore

the "Gardner’s nature" of the phase transition in our model with

Gaussian inputs.

Ising weights

In the classical case the Ising weights were treated for example

in Nishimori [2001]; Müller et al. [1995]; Gardner and Derrida [1988].

Here, we use the Ising weights for the quantum case and employ

Eq. (2.4b) and Eq. (2.5) for the integration measure and normaliza-

tion of the volume, respectively. We apply the replica trick Eq. (2.10),

introduce the order parameters Eq. (2.11) and average over the inputs

to calculate the effective potential. The contribution 𝐺1 is the same

as Eq. (2.15), while 𝐺2 becomes

𝐺2[𝐹𝛼𝛽] = log

∑
{𝑤𝛼=±1}

exp

©­«
∑
𝛼<𝛽

𝐹𝛼𝛽𝑤𝛼𝑤𝛽ª®¬ . (2.27)

We assume replica symmetry, i.e.,

𝑞𝑎𝑏 = 𝑞, 𝐹𝑎𝑏 = 𝑖𝐹, (2.28)
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and the saddle-point equations are

𝜕𝐺

𝜕𝐹
=

𝜕𝐺

𝜕𝑞
= 0. (2.29)

Solving the saddle point equations in the limit for 𝑞 → 1 we conclude

that the storage capacity is

𝛼𝑐(𝜅) =
4

𝜋

[∫ ∞

−𝜅
𝐷𝑦(𝜅 + 𝑦)2

]−1

, (2.30)

where we used the abbreviation∫ ∞

−∞
𝐷𝑦 =

√
1

2𝜋

∫ ∞

−∞
𝑑𝑦 𝑒−

𝑦2

2 . (2.31)

In addition, we present the results of a Monte Carlo simulation in

Fig. D.1, which shows that as 𝑚 → ∞ and 𝜅 → 0, the storage

capacity is 3.55 ± 0.01 (see App. B.4 for details). We interpret this

discrepancy as the necessity for replica symmetry breaking. This

analysis, however, goes beyond the scope of this paper.

2.2.6 Discussion
In this work, we calculated the storage capacity of a quantum per-

ceptron proposed in a recent work Tacchino et al. [2019], which uses

less memory resources compared to its classical counterpart (for 𝑁

classical spins only log
2
(𝑁) are needed) and has already been im-

plemented on IBM’s quantum devices Tacchino et al. [2019, 2020a].

Following the seminal works of Gardner Gardner [1988]; Gardner

and Derrida [1988], we use statistical physics techniques to calculate

the storage capacity of this perceptron. In particular, we interpret

this quantum perceptron as a classical perceptron on an extended

input space with a different activation function, see Fig. 2.1. This in-

terpretation allows us to calculate the storage capacity of a quantum
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Figure 2.3 Storage properties of perceptrons for the Ising weights Storage

capacity for the classical (red) and quantum (blue) Ising perceptrons as a

function of the number of inputs 𝑁−1
and 𝑚−1

, respectively. The dots are

the result of the Monte Carlo simulations. The intersection of the lines

with the 𝑦-axis gives the storage capacity 0.86 ± 0.01 for the classical and

0.010 ± 0.005 for the quantum perceptron in the limits 𝑁, 𝑚 → ∞.
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perceptron by computing the relative volume of quantum percep-

trons which fulfill a given input-output relation.

To handle the multitude of inputs and learning rules, we inte-

grate over the input and the weights. Formally, this averaging over

input and weights maps the calculation of the relative volume to the

partition function of a classical spin glass problem. Similar to prob-

lems in classical spin glass theory, we compute the logarithm of the

partition function using the replica trick Nishimori [2001]; Müller

et al. [1995]. Further, by using the large 𝑚 expansion, we can de-

termine the storage capacity 𝛼𝑐 in leading order, which is the ratio

of the stored patterns 𝑝 over the computational resources 𝑚. No-

tably, the techniques presented here are applicable to other quantum

architectures.

Given the model of Fig. 2.1c, we obtain a maximal critical storage

capacity of 𝛼𝑐,max = 4 for the spherical weights, see Fig. 2.2. To

put these results in perspective, we compare them with the classical

perceptron. In the classical case, the maximal storage capacity is

𝛼𝑐,max = 2, see Fig. 2.2. Therefore, the maximum storage capacity of

the quantum perceptron its double the maximum storage capacity of

the classical perceptron. This result is in accordance with the recent

work Abbas et al. [2021] where the authors found a similar relation to

the capacity of quantum neural networks compared to the classical.

Even though their definition of capacity is determined by the effective

dimension, it also exploits the model’s ability to express different

relationships between variables. Moreover, taking into account that

𝛼𝑐,max has a finite value for the quantum perceptron and that 𝑚

equals the dimension of the Hilbert space (𝑚 = 2
𝑁

), the number of

patterns that can be stored is exponential in the number of spins𝑁 in

accordance with recent works Andrecut and Ali [2003]; Ventura and

Martinez [2000]; Wright and McMahon [2020]. For example, in the

recent work Lewenstein et al. [2021] the authors applied Gardner’s

program to attractor Quantum Neural Networks and found that the

learning of 𝑃 patterns at the order of 2
𝑁/2

is possible.

Given the model of Fig. 2.1c, we obtain a maximal critical storage
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capacity of 𝛼𝑐,max > 13 for the spherical weights and Ising inputs,

see Fig. 2.2. To put these results in perspective, we compare them

with the classical perceptron. In the classical case, the maximal

storage capacity is 𝛼𝑐,max = 2, see Fig. 2.2. Therefore, the maximum

storage capacity of the quantum perceptron is clearly larger than the

maximum storage capacity of the classical perceptron. This result

agrees with the recent work Abbas et al. [2021] where the authors

found a similar relation to the capacity of quantum neural networks

compared to the classical. Even though their definition of capacity

is determined by the effective dimension, it also exploits the model’s

ability to express different relationships between variables.

For Gaussian distributed inputs, the performance of the quantum

perceptron is quite different from the classical perceptron in accor-

dance with a related work Benatti et al. [2022]. In the classical case,

the relative volume shrinks exponentially with 𝑚 below the critical

capacity, and shrinks suddenly to zero above 𝛼𝑐 , see Fontanari and

Meir [1989]. In the present study, the volume shrinks exponentially

with𝑚, but the rate of shrinking changes from below ("easy learning"

phase) to above 𝛼𝑐 ("hard learning" phase). The maximum storage

capacity of the "easy learning" phase is 0.125. These results suggest

that the performance of quantum perceptron models does not al-

ways follow the behaviour of their classical counterparts. Therefore,

it emphasizes the need to rigorously study these models and explore

their properties as general learning machines.

Another example where contradictory behaviour is observed be-

tween classical and quantum perceptrons is in the case of Ising

weights. The analytical results suggests that 𝛼𝑐,max = 8/𝜋 while the

Monte Carlo simulation suggests that 𝛼𝑐,max = 3.55 ± 0.01. A sim-

ilar discrepancy is observed in the classical perceptron with Ising

weights as well. It is already known that the replica symmetry

breaking is necessary to resolve this discrepancy for the classical

perceptron Gardner and Derrida [1989a]; Nishimori [2001]. There-

fore, a similar approach might be necessary to tackle the difference

between the analytical and numerical result in the quantum case. We
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leave this open for future work.

Moreover it would be highly important for practical applications

to explore the storage properties of the quantum perceptron with

correlated inputs or input-output patterns. In a previous analysis of

quantum perceptrons Lewenstein [1994], one distinguished between

three different phases an ignorant phase, a random phase, and learn-
ing phase, and it would be interesting to detect these phases in the

quantum perceptron architecture of Tacchino et al. [2019]. Future

studies should also investigate the storage capacity away from 𝑞 ≈ 1

and the dependency on 𝜅. Also, it will be essential to include correc-

tions to the large 𝑚 expansion and study the stability of the replica

symmetric saddle point solution Mezard et al. [1986]. Finally, an

exciting continuation of this work would be to consider other archi-

tectures of quantum perceptrons Schuld et al. [2015b]; Torrontegui

and García-Ripoll [2019]; Gratsea and Huembeli [2021], e.g., qudit

based platforms Kasper et al. [2020]; Weggemans et al. [2021]; Ring-

bauer et al. [2021] and analyze them with the tools presented in this

work.

This work studied the storage properties of different quantum

perceptron models with a direct hardware implementation Tacchino

et al. [2019]. Importantly, inspired by the analysis of classical percep-

trons Nishimori [2001], we applied statistical physics techniques of

spin glasses to the studied quantum models. This also facilitated a

certain comparison between the quantum and classical models, even

though such a comparison is not perfectly sound. In particular, our

work shows and validates that the number of patterns that can be

stored in the considered models of quantum perceptrons is exponen-

tial in the number of spins 𝑁 . We defined thus and calculated the

corresponding values of the storage capacity for the studied quan-

tum perceptrons as a ratio of the number of patterns 𝑝 and the total

number of spin configurations, 𝛼 = 𝑝/𝑚 = 𝑝/2
𝑁

.
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Figure 2.4 Color Online. Schematic representation of the action of CPTP

maps Λ with 𝑁 fixed states. Successive applications of Λ : ℬ(ℋ𝐴) ↦→
ℬ(ℋ𝐴), brings arbitrary states 𝜌 ∈ ℬ(ℋ𝐴) to the set (depicted by red area)

of stationary states of the map.

2.3 Gardner’s program applied to attractor
QNN

2.3.1 Storage capacity of attractor QNN
We associate QNNs with CPTP maps transforming initial states into

final states in a finite (or infinite) time. Attractors (stored mem-

ory/patterns) correspond to the stationary states of the map, i.e.,

Λ(𝜌) = 𝜌. We identify the storage capacity of QNNs (number of

stored memories) with the maximal number of stationary points of

CPTP maps acting on density matrices in 𝑁-dimensional Hilbert

spaces. These maps act as attractors in the space of states, i.e., the

successive application of the map brings an arbitrary state to the set

of its fixed points, see Fig. 2.4. We interpret this class of maps as

attractors QNNs (aQNNs).

To formalize the problem of the storage capacity of attractor QNN

(aQNN), we consider an input (output) Hilbert space ℋ𝐴 (ℋ𝐵) of

dimension 𝑁𝐴 (𝑁𝐵), and denote by ℬ(ℋ𝐴) (ℬ(ℋ𝐵)) their respec-
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tive sets of linear bounded operators. Quantum states 𝜌𝐴 (𝜌𝐵) cor-

respond to positive semidefinite operators of unit trace in ℬ(ℋ𝐴)
(ℬ(ℋ𝐵)). Physical transformations can be characterized by CPTP

maps, i.e., linear maps Λ : ℬ(ℋ𝐴) ↦→ ℬ(ℋ𝐵) fulfilling: (i) positiv-

ity, Λ(𝜌) ≥ 0, ∀𝜌 ≥ 0; (ii) complete positivity, that is, any extension

of the form (ℐ ⊗ Λ) : ℬ(ℋ𝐶 ⊗ ℋ𝐴) ↦→ ℬ(ℋ𝐶 ⊗ ℋ𝐵) is also a posi-

tive map, where ℐ is the identity map acting in an arbitrary space

ℋ𝐶 ; and (iii) trace preservation, Tr[Λ(𝜌)] = Tr[𝜌]. A map Λ can

be characterized by an Hermitian operator 𝐸Λ ∈ ℬ(ℋ𝐴 ⊗ ℋ𝐵), via

the Jamiołkowski-Choi-Sudarshan (JCS) isomorphism ???. For CPTP

maps, the corresponding JCS operator is positive semidefinite𝐸Λ ≥ 0

and fulfills (trace preserving condition) Tr𝐵[𝐸Λ] = 1𝐴. The JCS op-

erator reads 𝐸Λ = (ℐ ⊗ Λ)(|Ω⟩⟨Ω|), where |Ω⟩ =
∑𝑁𝐴

𝑖=1
|𝑖⟩|𝑖⟩ is an

unnormalized maximally entangled state in ℋ𝐴 ⊗ ℋ𝐴′, with ℋ𝐴′ a

duplicate of the input space. In fact, this constitutes an isomorphism

since Λ(𝜌𝐴) = Tr𝐴[𝐸Λ𝜌𝑇𝐴].
It is is well known that each CPTP map has, at least, one stationary

state. Here we investigate which is the maximal number of linearly

independent stationary states that non-trivial maps (Λ ≠ ℐ ) may

have. In what follows, we address first this question assuming that

stationary states correspond to projectors onto pure states. Unless

specified, henceforth we take the Hilbert spaces dimensions to be

𝑁𝐴 = 𝑁𝐵 = 𝑁 .

Theorem 1 There exist non-trivial CPTP maps Λ s.t. Λ(|𝑟𝜇⟩⟨𝑟𝜇 |) =
|𝑟𝜇⟩⟨𝑟𝜇 |, where {|𝑟𝜇⟩} are linearly independent and 𝜇 = 1, . . . , 𝑁 .

Proof: 1) First, we transform Λ into a canonical form by noting

that there always exist a linear, invertible transformation 𝑇, s.t.

|𝑟𝜇⟩ = 𝑇 |𝜇⟩, where {|𝜇⟩}𝑁𝜇=1
form an orthonormal basis. Such trans-

formation is unique up to : (a) the choice of the basis; (b) the phases

of the basis elements that cancel in the projectors; and (c) the per-

mutations of the elements of the basis. We define the canonical

form Λ̃ as Λ̃(𝜌) = 𝑇−1Λ(𝑇𝜌𝑇†)(𝑇†)−1
, which has the property that if
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Λ̃(|𝜇⟩⟨𝜇|) = |𝜇⟩⟨𝜇| then Λ(|𝑟𝜇⟩⟨𝑟𝜇 |) = |𝑟𝜇⟩⟨𝑟𝜇 |.
2) We decompose the corresponding JCS operator as𝐸Λ̃ = 𝐸ℐ+𝑄 ≥ 0,

where 𝐸ℐ is the JCS operator corresponding to the identity map.

Then, non-triviality of 𝐸Λ̃ requires that𝑄 ≠ 0. By definition𝑄 = 𝑄†
,

and Tr𝐵[𝑄] = 0 (trace preserving). Moreover, for every |𝜇⟩ we have

that ⟨𝜇|𝑄 |𝜇⟩ = 0, ergo ⟨𝜈 |⟨𝜇|𝑄 |𝜇⟩|𝜈⟩ = 0 for any 𝜇, 𝜈. This implies

that ⟨𝜇𝜈 |𝐸Λ̃ |𝜇𝜈⟩=0 for 𝜇 ≠ 𝜈 and, because 𝐸Λ̃ ≥ 0, then 𝐸Λ̃ |𝜇𝜈⟩ = 0

for 𝜈 ≠ 𝜇. As a consequence, 𝑄 |𝜇𝜈⟩ = 0 for 𝜇 ≠ 𝜈, which implies that

𝑄 has only nonzero matrix elements in the subspace spanned by the

vectors |𝜇𝜇⟩. Therefore, 𝑄 =
∑

𝜇𝜈 𝛼𝜇𝜈 |𝜇𝜇⟩⟨𝜈𝜈 |, with 𝛼𝜇𝜇 = 0. Finally,

from 𝐸Λ̃ ≥ 0, it follows that |1 + 𝛼𝜇𝜈 |2 ≤ 1 for all 𝜇 ≠ 𝜈.

Such maps cause reduction of coherences in the orthonormal ba-

sis {|𝜇⟩}, namely if 𝜌′ = Λ(𝜌), we find |⟨𝜇|𝜌′|𝜈⟩| = |1+𝛼𝜇𝜈 | |⟨𝜇|𝜌|𝜈⟩| ≤
|⟨𝜇|𝜌|𝜈⟩| for 𝜇 ≠ 𝜈. The multiple iteration of these maps lead gener-

ically to a total decay of coherences (if for all 𝜇 ≠ 𝜈, |1 + 𝛼𝜇𝜈 | < 1),

and the memories stored will correspond to the fixed points of the

dynamics (see Fig.2.4). Notice also that if |1 + 𝛼𝜇𝜈 | = 1 for 𝜇 ≠ 𝜈, the

state |𝜑⟩ = 𝑎 |𝜇⟩ + 𝑏 |𝜈⟩ is also stationary. From the above theorem we

immediately obtain:

Lemma 1 Any CPTP map Λ, s.t. Λ(|𝜇⟩⟨𝜇|) = |𝜇⟩⟨𝜇|, where {|𝜇⟩}𝑁𝜇=1

forms an orthonormal basis, has associated a JCS operator of the

form:

𝐸Λ =

𝑁∑
𝜇

|𝜇𝜇⟩⟨𝜇𝜇| +
𝑁∑
𝜇≠𝜈

(1 + 𝛼𝜇𝜈)|𝜇𝜇⟩⟨𝜈𝜈 |, (2.32)

with 𝛼𝜇𝜈 ∈ C and |1 + 𝛼𝜇𝜈 | ≤ 1.

Here, we search for non-trivial maps i.e. neither the identity nor

the unitary maps. Notice that unitary maps, and thus all evolution

maps from a Hamiltonian, Λ (𝜌) = 𝑈𝜌𝑈†
are the extreme case in

which 1+𝛼𝜇𝜈 are the phase factors 𝑒 𝑖(𝜑𝜇−𝜑𝜈)
, where 𝑒 𝑖𝜑𝜇

are eigenval-
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ues of 𝑈 . The convergence speed to the attractors is determined by

|1 + 𝛼𝜇𝜈 | and the initial state.

Theorem 2.3.1. Since a non-trivial Λ exists for 𝑀 = 𝑁 , there are even
more such maps for 𝑀 < 𝑁 .

Theorem 2.3.2. If 𝑀 ≥ 𝑁 + 1, that is, Λ(|𝜇⟩⟨𝜇|) = |𝜇⟩⟨𝜇| for 𝜇 =

1, · · · , 𝑁 and Λ(|𝑒⟩⟨𝑒 |) = |𝑒⟩⟨𝑒 |, where |𝑒⟩ = ∑𝑁
𝜇=1

𝑐𝜇 |𝜇⟩ with all 𝑐𝜇 ≠ 0,
then the map is trivial, Λ ≡ ℐ.

This implies that the non-trivial CPTP maps with 𝑀 ≥ 𝑁 + 1

stationary pure states ceases to exist if for all 𝜇 ≠ 𝜈, |1 + 𝛼𝜇,𝜈 | < 1,

which is, generically, the case.

2.3.2 Calculation of the relative volume using Gar-
nder’s program

The total volume of aQNN corresponds to the volume of CPTP maps

that have a fixed set of stationary states. The volumes of various

sets of maps have been estimated in ?? using the JCS isomorphism.

The approach used by Szarek et al. ?? estimates, using the Hilbert-

Schmidt norm, the radius of a ball that approximates the volume of

CPTP maps in the asymptotic limit. In this limit, 𝑁 → ∞, this radius

is 𝑅 = exp(−1/4). The manifold of CPTP maps acting on a Hilbert

space of dimension 𝑁 , has dimension 𝑑 = 𝑁4 − 𝑁2
, which corre-

sponds to the dimension of the space of Hermitian JCS matrices (𝑁4
),

minus the number of real constraints imposed by trace-preserving

condition (𝑁2
). Using the volume of the unit ball, in the limit of suf-

ficiently large 𝑁 , the volume of the CPTP manifold approximates ?
to:

𝑉CPTP(𝑑) =
𝜋𝑑/2

Γ(𝑑/2 + 1) exp(−𝑑/4). (2.33)
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An estimate for the volume of the aQNN manifold with exactly 𝑀

stationary linearly independent pure states, is obtained by imposing

𝑀 conditions in the 𝑑-dimensional space of the CPTP manifold:

𝑉aQNN(𝜖, 𝑀, 𝑑) =
∫

𝑑𝑑𝑉HS

𝑀∏
𝜇=1

1[1−𝜖] (⟨𝜇𝜇|𝐸Λ |𝜇𝜇⟩) , (2.34)

where 𝑑𝑑𝑉HS is the Hilbert-Schmidt measure ? and 1[1−𝜖](𝑥) is the

indicator function, being one for 𝑥 ∈ [1− 𝜖] and zero otherwise. The

parameter 𝜖 defines a basin of attraction. By definition, 𝑉aQNN must

be smaller than 𝑉CPTP. For sufficiently small 𝜖, we may approximate

1[1−𝜖](𝑥) ≃ 𝜖𝛿(𝑥−1). In this case, the integral over the 𝑑-dimensional

manifold of CPTP maps with the 𝑀 constraints reduces from 𝑑 to

𝑑 − 𝑀 dimensions. For 1 ≪ 𝑀 ≪ 𝑁 but still large 𝑑, the radius

of the corresponding ball remains asymptotically the same, and the

volume of CPTP maps with𝑀 stationary states (see Fig. 2.5) becomes

𝑉aQNN(𝜖, 𝑀, 𝑑) ≃ 𝜖𝑀𝜋(𝑑−𝑀)/2

Γ((𝑑 −𝑀)/2 + 1) 𝑒
−(𝑑−𝑀)/4. (2.35)

Note that this result does not depend on the concrete choice of the

stationary states {|𝜇𝜇⟩}. Notice also that, as shown in Lemma 1,

there are infinitely many CPTP maps with 𝑀 stationary states, but

their volume is of measure zero for 𝜖 = 0.

The relative volume reads then:

𝑉𝑅(𝜖, 𝑀, 𝑑) = 𝑉aQNN(𝜖, 𝑀, 𝑑)
𝑉CPTP(𝑑)

≃ 𝜖𝑀𝑒𝑀/4𝜋−𝑀/2(𝑑/2)!
((𝑑 −𝑀)/2)! . (2.36)

Using Stirling’s formula we obtain:

ln𝑉𝑅(𝜖, 𝑀, 𝑑) ≃ 𝑀

2

ln

(√
𝑒𝑑𝜖2

2𝜋

)
− 𝑀2

4𝑑
. (2.37)

The choice of the parameter 𝜖 should be sufficiently small in order

to be consistent with 𝑉𝑅(𝜖, 𝑀, 𝑑) < 1, which follows from Eq. (2.34).
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VR(1) = 1
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VCPTP
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VR(2)
<latexit sha1_base64="UnHROdCLyeNlxSSJ0YzBb0Sy8lU="></latexit>

Figure 2.5 Color online. Representation of the relative volume 𝑉𝑅(𝑀) of

CPTP maps acting as aQNN and storing 𝑀 stationary pure states. The

volume shrinks as we increase the number of stationary states from𝑉CPTP =

𝑉𝑅(1) for 𝑀 = 1, to 𝑉𝑅(𝑁) for 𝑀 = 𝑁 .

Since we are interested in the scaling with 𝑀, an upper bound corre-

sponds to setting 𝜖 = 𝑒−1/4

√
(2𝜋)/𝑑. Then the relative volume scales

as

𝑉𝑅(𝑀, 𝑑) ≃ exp(−𝑀2/4𝑑), (2.38)

shrinking surprisingly slowly with 𝑀. Hence, the learning of 𝑀 ≪
𝑁 patterns should be feasible for aQNNs. In particular, for systems

of 𝑛 qubits where 𝑁 = 2
𝑛
, 𝑀 can be of order 2

𝑛/2
, that is, exponential

in the number of qubits.

In what follows, we generalize our results to the case where the

fixed points (stored memories) correspond to mixed states. To this

aim we introduce the so-called classical ensembles as defined recently

by Kronberg ?.

Definition 1 Let ℰ = {𝜌𝜇} with 𝜇 = 1, · · · , 𝑀 be an ensemble of

𝑁-dimensional density matrices in ℬ(C𝑁 ). The ensemble ℰ is called

classical if there exists a single invertible operation𝑇 that diagonalizes

all elements of the ensemble; i.e., 𝑇𝜌𝜇𝑇† = 𝐷𝜇, where all 𝐷𝜇 are

simultaneously diagonal. We call this basis the computational basis.
The above definition generalizes the one given in ?, since in our case

𝑇 does not have to be unitary. Although the maximal number of
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linearly independent density matrices in ℰ equals 𝑁 , the ensemble

may contain many more elements, 𝑀 ≥ 𝑁 .

Theorem 1’ There exist non-trivial CPTP maps Λ, s.t. Λ(𝜌𝜇) = 𝜌𝜇,

where 𝜌𝜇 ∈ ℰ with 𝜇 = 1, . . . , 𝑀, and arbitrary 𝑀.

Proof: The ensemble is determined by the complete basis in which

all elements are diagonal. The required map, up to the canonical

transformation to the corresponding orthonormal basis {|𝜇⟩} , has

the form given by Eq. (2.32). Since Λ(|𝜇⟩⟨𝜇|) = |𝜇⟩⟨𝜇| for all |𝜇⟩⟨𝜇|,
then Λ(𝜌𝜇) = 𝜌𝜇 is also true for any 𝜌𝜇 that is a mixture of projectors

|𝜇⟩⟨𝜇| and, therefore, for all the members of ℰ.

The relative volume of the aQNN for the ensemble ℰ behaves,

however, differently that in the case of storing linearly indepedent

pure states. Now, having 𝑀 ≤ 𝑁 stationary mixed states Λ(𝜌𝜇) = 𝜌𝜇
for 𝜇 = 1, · · · , 𝑀, demands imposing ∼ 𝑀 × 𝑁2

constrains in the

𝑑-dimensional space of the CPTP manifold. In turn, this means that

the relative volume of CPTP maps storing 𝑀 mixed states should

behave approximately as 𝑉𝑅(𝑀, 𝑑) ∼ 𝑒−𝑀
2

, decreasing very rapidly

with 𝑀.

Storage capacity of feed-forward QNN The generalization of the

above results to feed-forward QNNs is presented in the Appendix.

There, we consider the case corresponding to different input and

output dimensions.

2.3.3 Discussion
As already emphasized, one crucial feature of NNs is their stor-

age capacity for associative memory, that is, the number of patterns
(stored memories/attractors) the network has for a given number of

neurons 𝑛. For attractor NNs (aNNs) of the Hopfield-type Hopfield

[1982], the relevant question is to determine how many stationary

states, serving as stored memories, the network may have. In stan-
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dard Hopfield models, where neurons are Ising spins and attractors

correspond to metastable states resulting from two-body spin-spin

interactions, the storage capacity scales ∼ 𝑂(𝑛). Recently, it has been

shown that if the Hopfield model is extended to 𝑝-body interactions,

in the so-called Dense Associative Network model Hopfield and Tank

[1986], the capacity of storage can be highly increased, surpassing the

linear 𝑂(𝑛) behaviour and reaching 𝑂(𝑛𝑝−1/ln 𝑛), or even beyond ?.

Preliminary attempts to analyze the storage capacity of QNNs

were pursued in Lewenstein [1994]. In a different approach, an

exponential increase of the storage capacity for a specific quantum

search algorithm was demonstrated in Ventura and Martinez [1998].

More recently Rebentrost et al. [2018]; Meinhardt et al. [2020], an

increased storage capacity was obtained by using a feed-forward

interpretation of quantum Hopfield NNs. Similarly, qudits have

been studied in the context of quantum machine learning ?Beer et al.
[2020]. One crucial question in this context is whether the storage

capacity of QNNs offers a quantum advantage.

In this work we addressed this question by associating QNNs

to CPTP maps transforming initial states into final states in a finite

(or infinite) time. We demonstrated that there exist a family of (non-

trivial) CPTP maps that have 𝑀 = 𝑁 linearly independent stationary

pure states, and provide the generic expression of such maps. We

demonstrated, using CPTP maps acting on a Hilbert space of di-

mension 𝑁 , that aQNN’s can store up to 𝑁 linear independent pure

states. For 𝑛 qubits, quantum channels reach thus the capacity 2
𝑛
,

clearly outperforming the storage capacity of standard classical neu-

ral networks∼ 𝑂(𝑛), where 𝑛 is the number of binary neurons, or the

best Dense Associative Networks whose storage capacity∼ 𝑂(2(𝑛/2)).
We also analyzed the learning capability of QNN’s by applying

Gardner’s program to the quantum case and estimate the relative

volume of QNNs realizing the desired attractor input-output rela-

tions. We related the learning capability of aQNN’s to the relative

volume 𝑉𝑅(𝑀) of CPTP maps with 𝑀 stationary pure states, and

show, in the limit of large 𝑁 , that this volume decreases very slowly
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with the number of stored patterns 𝑀 as exp(−𝑀2/(𝑁4 − 𝑁2)). Our

results signal quantum advantage meaning that CPTP maps acting

on 𝑛-qubit states may reach a storage capacity of 𝒪(2𝑛), surpassing

the storage capacity of classical neural networks, including Dense

Associative Networks.

Next, we derived analogous results for bilayer QNNs and their

respective attractor input-output relations. Finally, we applied our

procedure to feed-forward QNN with different input and output

spaces. Our results are simple and mathematically rigorous. Fur-

thermore, they open the path to study the relation between the stor-

age capacity of QNNs and the quantum features, such as coherence

and entanglement, of the desired attractor input-output relations.

2.4 Conclusions
Both our works on quantum perceptrons and quantum neural net-

works suggest that we are still in search of good models for quantum

machine learning. We believe that we could take inspiration of how

classical perceptrons and neural networks were explored- by distill-

ing information of how the neurons in our brain work instead of

trying to mimic their behaviour. Similarly, we need to distill the

information of how classical perceptrons and neural networks work

when we investigate how to implement their quantum version. Fur-

thermore, we introduce tools to describe these models and explore

their properties. As we move forward, more fundamental research

is necessary to further bridge this gab. This is essentially a good

way to spend our time until fault-tolerant quantum computation

will be available to perform a large scale benchmarking of QML

models Schuld and Killoran [2022b].
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Chapter 3

Exploring QP and QNN
structures with a
teacher-student scheme

In recent years different implementations of quantum perceptron

(QP) and quantum neural networks (QNN) have been proposed on

quantum hardware. Even though the plethora of the quantum circuit

structures that emerge, tools that could directly benchmark them are

missing. In this work, we address this question by introducing a

systematic tool that could be used to directly benchmark different

quantum models.

Specifically we introduce the teacher-student scheme which has

also been applied to the training and benchmarking of classical mod-

els. The main idea is that each quantum model plays once the role of

the teacher and once the role of the student. Therefore this method

helps to explore the quantum model’s performance in terms of its

training capability. This in turn allows to look for a potential quan-

tum advantage of a certain quantum circuit structure over others.

In this chapter we introduce the teacher-student scheme that

could be used for benchmarking quantum models even when large

scale quantum computing simulations could be realized.
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3.1 Introduction

In the previous chapter we explored the quantum advantage that QP

and QNN have over their classical counterparts in terms of their stor-

age properties by applying Gardner’s program. Here we introduce

numerical tools to further explore the performance of such quan-

tum models in terms of the models’ ability to learn through training.

The QP and QNN are defined through variational quantum circuits

(VQC) Peruzzo et al. [2014a]; Grimsley et al. [2019]; Babbush et al.
[2014]; Lewenstein [1994]; Schuld et al. [2014] which have attracted a

lot of interest for applications on NISQ quantum devices and is one

of the leading models for implementing quantum machine learning.

An increasing number of literature tries to understand the potential

power of quantum models as variational circuits.

To this end we introduce the teacher-student scheme as a numer-

ical tool to compare the relative expressive power of different quan-

tum models and explore a potential quantum advantage of a specific

QP or QNN structure over the increasing number of such quantum

models that are introduced in the literature. With the teacher-student

scheme Torrey and Taylor [2013]; Ba and Caruana [2014]; Hinton et al.
[2015], the studied quantum models are introduced once as a teacher

and once as a student. This way we can avoid to generate synthetic

datasets that might give an advantage to certain architecture struc-

tures. Therefore, the teacher-student scheme creates a fair framework

for comparing any quantum models. Moreover we use different re-

alizations of the teachers and obtain the average performances for

the students. And thus, this scheme offers a systematic comparison

which, for example, could help further understand the role of the

hidden units and non-linearities of quantum models.

The chapter is organized as follows: In Section 3.2 we intro-

duce the QP and QNN as variational quantum circuits inspired by

recent works Tacchino et al. [2019]; Pérez-Salinas et al. [2020]. In Sec-

tion 3.3 we introduce the teacher-student scheme which allows for a

systematic comparison between different quantum models and can
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explore which quantum models have a potential quantum advantage

in terms of their expressive power. In Section 3.4 we compare the QP

and QNN along with some alterations of these models to better un-

derstand the role of the hidden units and the non-linearities. Finally,

Section 3.5 contains the conclusions and outlook.

The original results presented in this chapter are based on the

publication [Gratsea and Huembeli, 2021] with P. Huembeli.

3.2 Quantum Perceptrons as variational quan-
tum circuit models

Different works define quantum perceptron and QNN models as

variational quantum circuits (VQC): Tacchino et al. [2020b]; Pérez-

Salinas et al. [2020]; Sharma et al. [2020]; Cong et al. [2019]. Following

this approach, for a given data set 𝒟 = {(x𝑘 , 𝑦𝑘)}, a quantum circuit

𝑈(x𝑘 ,w) is parameterized for every input data point x𝑘 with label

𝑦𝑘 and with trainable parameters w. The initial state is |0⟩⊗𝑁 , where

𝑁 is the number of qubits. We denote |𝜓𝑘⟩ = 𝑈(x𝑘 ,w) |0⟩⊗𝑁 as the

output state of the quantum perceptron. To do classification with

only two labels we measure one qubit in a single direction, e.g. in 𝑍

direction and interpret the expectation value ⟨𝜓𝑘 | 𝑍 |𝜓𝑘⟩ as the label

prediction. To train the quantum model, we define the cost function

𝐶 =
∑
𝑘

(𝑦𝑘 − ⟨𝜓𝑘 | 𝑍 |𝜓𝑘⟩)2, (3.1)

which is minimized during the training. Here, we choose a two

dimensional input data set with x𝑘 = (𝑥𝑘
1
, 𝑥𝑘

2
) and encode the data

to the circuit with the gates 𝑈(x) = 𝑅𝑥(𝑥1) ⊗ 𝑅𝑥(𝑥2) applied on two

distinct qubits, where 𝑅𝑥(𝜙) = exp(−𝑖𝜙𝜎𝑥/2) is the single qubit 𝑋

rotation gate. These data encoding gates are depicted in light and

dark orange colors respectively in the circuit diagrams (e.g. Fig-

ure 3.1) and we will refer to it as the angle encoding. Throughout
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this work, we use the same encoding for all models to have a fair

comparison. The trainable part of the perceptron is realized by pa-

rameterized single qubit rotations 𝑅𝑜𝑡(𝜙, 𝜃, 𝜔) = 𝑅𝑧(𝜔)𝑅𝑦(𝜃)𝑅𝑧(𝜙)
and controlled-Z gates. At the output of each QP we apply a multi-

controlled NOT gate inspired by Tacchino et al. [2019]. The trainable

gates are depicted in blue colors in the figure and we will refer to

them as processing gates.

Here we focus on two models, the QP and the RU quantum

models. The main advantage of the QP is its simplicity and analogy

to the classical perceptron Tacchino et al. [2019], while the RU has

attracted a lot of interest recently and has shown great success Schuld

et al. [2020b]; Pérez-Salinas et al. [2020].

3.2.1 Quantum Perceptron (QP)
The QP is inspired by the recent work of Tacchino et. al. Tacchino et al.
[2019]. In their work, the quantum perceptron closely resembles the

binary valued classical perceptron. The input is a 𝑚-dimensional

real vector x with binary values ±1 for each element 𝑥𝑖 . The in-

put quantum state |𝜓𝑘⟩ = 𝑈(x𝑘) |0⟩⊗𝑁 is realized by an encoding

gate 𝑈(x𝑘) acting on 𝑁 qubits. The output state of the perceptron

is defined as 𝑈(w) |𝜓𝑘⟩, where 𝑈(w) is a parameterized unitary. A

multi-controlled NOT gate activates the ancillary qubit which is mea-

sured to obtain the quantum perceptron output. The weights w are

chosen such that the ancillary qubit is activated with a probability

𝑝(|1⟩𝑎) = |∑𝑚
𝑖 𝑥𝑖𝑤𝑖 |2. One can set a threshold for the expectation

value ⟨𝑍⟩ of the ancilla qubit to obtain a binary output from this

probability.

To build deep structures from QPs one can, like for their clas-

sical analog, use the output of one perceptron as the input of the

next Tacchino et al. [2020a]. Therefore, for a hidden QP, the input

state |𝜓𝑘⟩ comes from the ancillary qubit of the previous perceptron

and the hidden perceptron itself consists of a parameterized process-

ing gate 𝑈(w), a (multi)-controlled NOT gate that activates another
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ancillary system and a deferred measurement. This architecture al-

lows one to build deep structures in a coherent way and the ancillary

systems can be measured at the very end of the circuit. The idea is

that because of this deferred measurement the required non-linearity

is still introduced between the layers.

In their original work Tacchino et al. [2019], the authors focus on

binary valued inputs and weights and later they extended it to a

continuous values Mangini et al. [2020]. Both methods though need

the basis encoding which requires many qubits to encode the data.

To avoid this, we use the angle encoding introduced earlier in this

section. This will now play the role of the gate 𝑈(x𝑘), while the

parameterized gates 𝑅𝑜𝑡(𝜙, 𝜃, 𝜔) (in blue in the circuit diagrams)

together with the CZ entangling gates realize the𝑈(w) gates for the

data processing. This allows for continuous inputs and weights. The

perceptron model for the simple case of a two dimensional input is

illustrated in Fig. 3.1a.

3.2.2 Re-Uploading Architecture (RU)
The RU is inspired by the recent work of Perez-Salinas et. al. Pérez-

Salinas et al. [2020]. In their work, they propose a quantum version

of a ffNN with only one hidden layer. To emulate the behaviour of a

ffNN, they repeatedly apply data encoding unitaries 𝑈(x𝑘) param-

eterized with the input data x𝑘 to the circuit. Each of these data

dependent unitaries is followed by a parameterized unitary 𝑈(w)
with trainable parameters w. Because of the repeated application of

𝐿𝑖 = 𝑈(w)𝑈(x) to the circuit, this scheme is called data re-uploading.

A single application of 𝐿𝑖 is often referred as a re-uploading layer and

their number determine the architecture of the re-uploading circuits.

In this work, we use the angle encoding as defined earlier and we

parameterize the processing gates with 𝑅(𝜙, 𝜃, 𝜔) and CZ gates. To

simplify the measurement procedure and make the two perceptron

models more comparable, we also use a multi-controlled NOT gate

to activate an ancilla qubit exactly like in QP. We also use the same
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= R (x )x 1 = Rx(x )2
= Rot(φ,θ,ω)

(a) (b)

Figure 3.1 The quantum circuits that represent the quantum perceptron

(QP) (a) and re-uploading quantum model (RU) (b).

cost function from Eq. (3.1).

The notion of depth is not as clearly defined for the re-uploading

scheme as it is for the QP. It is known that more layers of re-uploading

lead to better expressivity of the model Schuld et al. [2020b], but there

is no clear classical analog to this. Therefore, we will compare the RU

with an increasing number of re-uploading layers 𝐿𝑖 to QNN models

with an increasing number of QPs. In the next section, we elaborate

the scheme that we use to compare the aforementioned architectures.

3.3 Teacher-student scheme

Here, we introduce the teacher-student scheme that aims to to bench-

mark different realizations of QP and QNN against each other. We

systematically compare the two aforementioned architectures (QP

and RU see Fig.3.1), but the scheme could be used for any circuits.

The main idea is that one architecture (for example the QP) will play

the role of the teacher and generate the labels that will be used to

train the student (for example the re-uploading quantum model).

Thus, we avoid to generate artificial data sets, such as e.g the circle

data set in Pérez-Salinas et al. [2020], that could possibly favour one

of the architectures. With the teacher-student scheme, we directly

see the data structures that each architecture can generate and how

well other architectures could learn them.

64



3. Exploring QP and QNN structures with a teacher-student scheme

3.3.1 Notion of teacher
The teacher generates the labels for a fixed set of inputs 𝒟 = {x𝑘}
with 2 dimensional input vectors x = {𝑥1, 𝑥2} on a grid 𝑥𝑖 ∈ [−𝜋,𝜋].
For a fixed teacher architecture we choose several random initial-

izations for the parameters w of the processing gates (blue squares

in the figures). We use the measurement outcomes of the ancilla

qubit as the model predictions 𝑦𝑘 of the input data. This way we

can generate several data sets for different random initializations.

The predictions have continuous values 𝑦𝑘 ∈ [−1, 1] given by the

outcome of the measurement ⟨𝜓𝑘 | 𝑍 |𝜓𝑘⟩, but we also generate bi-

nary valued labels by choosing 𝑦𝑘
binary

= sign(𝑦𝑘). The teachers with

binary labels focus more on the basic characteristics of the data struc-

tures, while the ones with continuous labels also care for the details.

We can visualize the data structures with prediction maps, which are

the density plots of the model predictions and labels 𝑦𝑘 for the input

data x𝑘 .

3.3.2 Notion of student
We train the students with the labeled data generated by their teach-

ers to learn those data structures. It is not obvious how to define

a good/bad student, since different tools can be used to character-

ize their performance. The prediction maps of the students are best

for visualizing the similarity of the student’s and teacher’s predic-

tions of the label 𝑦𝑘 to gain qualitative results. For a more rigorous

quantitative comparison we compute the relative entropy between the

student’s and teacher’s outputs 𝑦𝑘 . Specifically, we use the infor-

mation divergence (Kullback–Leibler divergence or relative entropy)

which defines a distinguishable measure between two probability

distributions 𝑃 and 𝑄 ?:

𝑆(𝑃∥𝑄) =
𝑁∑
𝑖=1

𝑝𝑖 ln
𝑝𝑖

𝑞𝑖
. (3.2)

65



3. Exploring QP and QNN structures with a teacher-student scheme

When the two distributions are similar, the value of the relative

entropy is close to zero. To interpret the predicted labels 𝑦𝑘 as prob-

abilities, we offset and re-normalize them (𝑦𝑘 > 0,

∑
xk∈𝒟 𝑦𝑘 = 1).

Then, to compare two prediction maps, the information divergence

is calculated by summing over the whole input space. Here, we are

interested in the average relative entropy of all teacher-student pairs.

Another qualitative metric is the loss function which determines the

success of the training. When the student is trained with the binary

valued labels the percentage of the correctly predicted labels can be

computed. We refer to this as the accuracy score which gives an over-

all performance of the student. To identify a good/bad student all

these tools should be taken into account.

3.4 Results

3.4.1 Toy model
Here, we will elaborate the notion of the teacher-student scheme

with an illustrative example. We use the RU architecture as a teacher

(Fig. 3.1b) and both, QP and RU, as students (Fig. 3.1a and b). A very

characteristic example for the prediction maps is shown in Fig. 3.2,

where the Student - QP does not learn the inner structure (circles)

at the left and right sides of the prediction map of the teacher. The

Student - RU reproduces almost perfectly the teacher as expected,

since they have the same circuit architecture. But the Student RU

finds a different set of parameters compared to the one of the Teacher

RU. We present the parameters of the processing gates for both of

them in the Appendix (C.1.1). The solid lines in the “Loss curve"

in Fig.3.2 show the loss of the two students that correspond to these

particular prediction maps, where Student - Re-uploading achieves

a much lower loss. If we use the binary labels of the teacher and train

again the students we reach the accuracy score approximately equal

to 0.9 compared to 0.8 for the QP. Both students have a high accuracy

score, since the topology of the prediction maps of the students and
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Figure 3.2 Teacher-student training for the teacher RU (Fig. 3.1b) and 2

students (QP and RU in Fig. 3.1 a and b, respectively). The prediction maps

show one particular example of the training with the corresponding losses

(solid loss curves). The average loss (dashed lines) show the average over

all 10 random initializations. The teacher-student training for the teacher

QP can be found in the appendix Fig.C.3.

67



3. Exploring QP and QNN structures with a teacher-student scheme

the teacher with binary labels are very similar (see Appendix C.1.2,

Fig. C.2).

We generated 10 different data sets by randomly initializing the

teacher’s parameters as explained earlier to obtain the average per-

formance of the student. Both students are trained on those data

sets and we characterize their performance with the tools mentioned

earlier. The dashed lines in Fig. 3.2 show the average of the loss

function over all the initializations of the teacher for both students.

The Student - RU shows good convergence (blue dashed line) for

all data sets generated by the teacher, since the teacher and student

have the same architecture in this Toy example. The average loss for

the Student - QP (black dashed line) is larger than the single exam-

ple shown in the prediction map (black solid line), which suggests

some of the teacher’s data sets can be learned more accurately by the

student than others. These results are also supported by the calcu-

lation of the average relative entropy over all prediction maps which

is equal to 0.247 and 0.001 for the Student - QP and the Student -

RU, respectively. It is worth noting here that the loss captures better

the global differences in the prediction (i.e. a general off-set of the

whole prediction maps), while the relative entropy captures local

differences in the maps (i.e. the local minima that do not appear in

one of the maps). For more details, we provide the explicit code used

for this toy model in ?.

In order to have a complete comparison of the two models, we

now use the QP architecture as the teacher and train again for both

students (see Fig. C.1 in Appendix). The average loss for both stu-

dents converges to similar low values (see Fig. C.1 in Appendix) and

we have a high accuracy score 0.9 of both students. The average

relative entropy is approximately equal to zero for both students (

0.0002 for the QP and 0.0013 for the RU). These results suggest that

the QP generates simpler data structures and both architectures can

learn them.

In conclusion, the RU architecture can generate and learn more

complex output distributions than the QP. It can learn all the data sets
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generated by the QP with almost zero loss and relative entropy. On

the contrary, the QP is not able to learn the data sets provided by the

RU. Even for this toy example, all four metrics defined earlier were

taken into account, which reveals the difficulty on how to determine

whether a student is good or bad. Therefore, one should take under

consideration all the different tools introduced earlier (the prediction

maps, the accuracy score, the (average) loss and relative entropy) to

characterize the performance of the students.

3.4.2 A more complex teacher

Next, we compare the behaviour of the two models in Fig. 3.1 (Stu-

dents) to a “deep" re-uploading architecture in Fig. 3.3 (Teacher) with

many repetitions of the encoding gates. In Fig. 3.3, we show a char-

acteristic result for the prediction maps. The Student - RU learns the

basic features of the teacher’s architecture contrary to the Student

- QP which learns a very simplified version of the data structure.

As mentioned earlier, the number of encoding unitaries determine

the function complexity that can be learned Schuld et al. [2020b].

Therefore, the teacher with four pairs of encoding gates generate a

more complex data structure compared to the ones that the student

of the QP and RU can learn with one and two pairs of encoding

unitaries, respectively. If we train the students on the binary val-

ued outputs, we reach accuracy scores approximately equal to 0.8

for both students, because the topology of the prediction maps of

the students and the teacher with binary labels are very similar (see

Appendix C.1.2 Fig. C.3). Therefore, the accuracy score does not al-

low to determine which student learns the teacher more accurately.

But the prediction maps for this characteristic example (see Fig. 3.3)

shows the better performance of the Student - RU. Even more, the

loss curves, and specifically the average loss curves, support this

claim. As we can see from Fig. 3.3, the average loss curve for Student

- RU (blue dashed line) over 10 realizations of the teacher is much

lower than the average loss curve of Student - QP (black dashed line).
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Finally, the average relative entropy is equal to 0.15 and 0.11 for the

Student - QP and the Student - RU, respectively and enhances this

statement.

3.4.3 Improving the QP
Here, we present some alterations of the Student - QP to improve

its performance and further understand its behaviour. So far, we

used four general single qubit rotations and two 2-qubit gates (the

multi-controlled NOT included). Sousa et al. ? show that eight

single qubit unitaries and four entangling gates realize an arbitrary

two qubit gate. Therefore, we add four more processing gates to the

Student - QP each followed by CNOT entangling gates (see figure

B.1a). We still have a single perceptron with two inputs, but with a

more general unitary for processing the data. The performance of

the perceptron though did not improve, suggesting that the structure

of the circuit is not enough to simulate the data structure of the re-

uploading perceptron as a teacher.

Next, we try to increase the complexity of the QP by realizing

a deep QNN from single QPs inspired by Tacchino et al. [2020a].

The structure is shown in Fig. B.1b with the classical analog in the

inset which can be understood in the following way: The input data

(light and dark orange circles in the inset) are introduced with the

encoding unitaries (light and dark orange squares). The processing

happens with the blue unitaries which correspond to the blue circles

in the inset. The output of each blue circle is realized with the

CNOT gate acting on both ancilla qubits 1 and 2. These outputs are

then introduced in the last ancilla qubit 3 with the CZ gates. The

performance of the circuit did not improve though (see Fig. B.2),

which means that the deferred measurement on the second ancilla

is not enough to improve the performance of the architecture. This

shows that the formation of coherent deep QNN structures does not

follow the classical analog of a classical deep NN, i.e. by staking

several perceptrons together.
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Figure 3.3 The “deep" architecture of the teacher in terms of the number of

times the data are encoded. The prediction maps of the teacher with the

deep architecture and the students: Student - QP and Student - RU as in

Fig. 3.1. In the upper right corner, we plot the loss curves for the Student

- QP (black line), Student - RU (blue line) and the student averages over 10

different realizations of the teacher (Student - QP: black dashed line and

Student - RU: blue dashed line).
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(a)

Η

|0�1

|0�3
|0�2

(b)

|0�1

Η|0�3
|0�2

(c)

Figure 3.4 The alterations of the Student - QP to an eight gate QP (a), a

QNN model (b) and a quantum ffNN as proposed in Tacchino et al. [2020a].

In the insets, the analogy to classical deep NN is shown for the circuits in

(b) and (c). The models in (a) and (b) have the same expressivity with the

QP, contrary to the quantum ffNN (c) which performs better as the RU (see

Fig. B.2).
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Figure 3.5 The prediction maps of the students in Figures B.1a, B.1b and

B.1c and their loss curves.
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Another alteration of the QP is shown in Fig. B.1c. There we use

the QNN structure that Tacchino et. al. proposed in Tacchino et al.
[2020a], where the QP is used as a building block to create the QNN,

exactly like in the classical case. Specifically, instead of using the

output of one QP twice as in Fig. B.1b, we use two QP to form a

QNN. This circuit shows improved learning capability and performs

quite well as suggested by the convergence to a low value of the

loss curve (see Fig.B.2). Therefore, comparing the QNN (Fig. B.1c)

with the deep QP (Fig.B.1b) suggests that the deferred measurement

does not provide the necessary depth to the circuit and shows the

importance of re-uploading the data several times to increase the

performance of the architecture.

Even though the QNN architecture in Fig. B.1c seems quite com-

plex (many qubits and entangling gates), at the end is very similar

to the circuit architecture of the RU (Fig. 3.1b). Both circuits encode

the data twice in a vertical or in a horizontal way, respectively. For

the vertical case 2𝑁 qubits are used for 𝑁 encodings of the data (see

Fig. B.1c), while in the horizontal case the 𝑁 encodings apply in the

same two qubits (see Fig. 3.1b). The recent work of Schuld et. al.

Schuld et al. [2020b] shows that the complexity of the functions that a

circuit learns is determined by the number of times that the encoding

gates are applied. They emphasize that there is no difference if the

encoding data are introduced in a circuit vertically (as in the QNN

Fig. B.1c) or horizontally (as in the RU Fig. 3.1b). In that sense, the

architectures of these two models are equivalent and the prediction

maps enhance this claim. But, as suggested in the work Schuld et al.
[2020b], the trainable circuit and measurement could affect the func-

tions that can be approximated. We already see here the qualitative

difference of these two models. For the QNN in Fig. B.1c, the aver-

age accuracy score is equal to 0.84 and the average relative entropy

gives 0.098 which is significantly different from the values of the

RU in Fig. 3.1b (0.9 and 0.0009, respectively). This suggests that the

architecture Fig. B.1c has similar performance to the RU, but as the

metrics suggest there are some qualitative differences between them
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due to the differences at the trainable part of the circuits Schuld et al.
[2020b].

3.4.4 Role of the encoding
Contrary to classical perceptrons, quantum perceptrons can have

different encodings, i.e. amplitude, basis and angle encoding ?. In

this work, the encoding of the two-dimensional data x = (𝑥1, 𝑥2) is

achieved with the application of 𝑅𝑥(𝑥1) and 𝑅𝑥(𝑥2) to two distinct

qubits. A good choice of the encoding can immediately lead to a lin-

ear separation of the data as suggested in recent works ??. Therefore,

exploring a quantum perceptron model is interconnected with ex-

ploring the encoding of the input data. Here, we want to compare the

aforementioned angle encoding with the encoding 𝑅𝑜𝑡(𝑥1, 𝑥2, 0)𝐻
applied at each qubit. The Hadamard gate 𝐻 is applied to |0⟩, since

otherwise for 𝑅𝑜𝑡(𝜙, 𝜃, 𝜔) = 𝑅𝑧(𝜔)𝑅𝑦(𝜃)𝑅𝑧(𝜙), the first gate 𝑅𝑧(𝑥1)
applied to |0⟩ would not contribute anything.

To see how important the encoding is to separate a predefined

data set, we apply the encoding for all datax𝑘 from a circular data set

(see Fig. C.5 in Appendix) without the processing unitaries and gen-

erate the states |𝜓𝑘⟩ = 𝑈(x𝑘) |0⟩ = 𝑐00 |00⟩+𝑐01 |01⟩+𝑐10 |10⟩+𝑐11 |11⟩
for both encodings. Specifically, we have |𝜓𝑘⟩𝑅𝑋 for𝑈(x𝑘) = 𝑅𝑥(𝑥1)⊗
𝑅𝑥(𝑥2) and |𝜓𝑘⟩𝑅𝑜𝑡 for 𝑈(x𝑘) = 𝑅𝑜𝑡(𝑥1, 𝑥2, 0) ⊗ 𝐻 ⊗ 𝑅𝑜𝑡(𝑥1, 𝑥2, 0)𝐻.

We find the probability vectors 𝑃 = [𝑝00, 𝑝01, 𝑝10, 𝑝11] for each of the

states |𝜓𝑘⟩, with 𝑝𝑖 , 𝑗 = |𝑐𝑖 , 𝑗 |2. We are interested in the probabil-

ity vectors and not the quantum states themselves because for our

perceptron models, the probability 𝑝11 corresponds to the activation

probability of the Toffoli gate. Specifically, we encode 500 input data

points {𝑥1, 𝑥2} from the circular data set and create the probability

vectors for each one of them for the different encodings. We apply

principle component analysis (PCA) on each one of the probability

vectors which converts them to two dimensional data sets. Then,

we can see whether the data are already separable just after the en-

coding. In Fig.3.6, we plot these two dimensional data sets for both
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encodings. With the RX encoding the data are already separable,

contrary to the Rot encoding where the data are along the same

curve. The data encoded with 𝑅𝑋, shown in Fig.3.6(left), can be

separated with a quadratic function as discussed in the work ? and

a single general parameterized unitary𝑈(w) that post processes the

state |𝜓𝑘⟩ would suffice. The data in 3.6(right) cannot be separated

by a single parameterized processing unitary and would need for

example more data re-uploadings.

The aforementioned results stress the importance of the encoding

in a quantum circuit Schuld et al. [2020b] and shows that synthetic

data sets can favour certain architectures. If the data are already sep-

arated after the encoding gates, the parameterized gates will simply

rotate the data along the measurement axis. But, if the encoding fails

to separate the data as in the case of 𝑅𝑜𝑡, the parameterized gates

will not be able to separate them on their own. Also, we want to

emphasize that the re-normalization of the data affects the success of

the training, since the quantum functions are periodic and the input

data should lie within the period of the function ? (see Appendix

C.1.4 Fig. C.6). Finally, it worths mentioning that the encoding of the

data labels could also affect the success of the training (see Appendix

C.1.3 Fig. C.5).

3.5 Discussion

Inspired by the recent works Pérez-Salinas et al. [2020]; Tacchino et al.
[2019], we explored the expressive power of QPs, their formation to

QNNs and the RU models implemented on NISQ devices. In order to

systematically compare the architectures, we introduced a so-called

teacher-student scheme, where the studied models are introduced

once as a teacher and once as a student. This way we can avoid to

generate synthetic data sets that might give an advantage to certain

architectures and it creates a more fair framework for comparing any

quantum models.
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Figure 3.6 PCA on the probability distribution for the 𝑅𝑋 (left) and 𝑅𝑜𝑡

(right) encodings. One can see that the circuit data immediately separates

for the 𝑅𝑋 encoding but it does not for the 𝑅𝑜𝑡.

Specifically, we showed that the deep structures that can be built

with QPs only increase the expressivity of a model if the data are

uploaded several times. It is not sufficient to use deferred measure-

ments to generate hidden non-linearities similar to classical NNs if

the output of a QP is reused. We explored several different ways

of how to leverage deferred measurements to generate hidden non-

linearities, but the expressive power of QNNs only improved when

additional data-uploadings were added (Fig. B.1c). This suggests

that the non-linear behaviour induced by a measurement of a sin-

gle QP cannot be generalized to deep QNNs if the single QPs are

cast together in a coherent way (Fig. B.1b). Therefore, it is still an

open question how to build deep QNNs in a coherent way, where

measurements only occur at the end of the computation. Thus, one

should not expect a one-to-one mapping of quantum and classical

NNs.

These results are in accordance with the recent work ?, which

shows that the number of times that the data are encoded determines

the functions that can be approximated. The needed non-linearities

in a quantum model can be generated (apart from the measurement)

from the encoding gates that are non-linear functions of the input
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data. Performing PCA on the probability vectors, we showed that

given the encoding, the data can already be separated without fur-

ther processing. Therefore, the performance of a QP is strongly

affected by the encoding and the dataset itself. Apart from the en-

coding, the processing plays an important role as well. The universal

approximation capability of different quantum models has been dis-

cussed extensively in Pérez-Salinas et al. [2020]; Schuld et al. [2020b];

Pérez-Salinas et al. [2021a,b], but it does not provide any information

about how well the circuit could perform or how many parameters it

needs to approximate a function within a certain error. The calcula-

tion of the average relative entropy for Fig.B.1c and Fig.3.1b showed

that the trainable part of the circuit affects the functions that can be

approximated. This effect will be further explored in subsequent

research.

For future work, it will be of great interest to explore different

perceptron models and compare their performance with the teacher-

student scheme. Then, the question arises which perceptron model

will be the ideal building block of QNN architectures and how quan-

tum perceptrons could be combined to form a deep QNN. Another

research direction is to explore other quantum models with no direct

analog with classical NN, like the re-uploading model or quantum

kernels in general. Finally, it would be of great importance to fur-

ther explore the role of entanglement and encoding in QPs, in their

formation to QNNs and in other quantum models.

3.6 Conclusion

This work is a first example of systematic tools that could be used to

benchmark different QP and QNN architectures. Moving forward

the teacher-student scheme could be applied to benchmark the train-

ing capabilities of quantum models on different problem instances.

Therefore, this work set the foundation from where to explore a po-

tential quantum advantage in terms of the training capabilities of
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different quantum models.
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Chapter 4

The performance of quantum
models

In recent years a plethora of Quantum Machine Learning (QML)

models are introduced as parameterized quantum circuits Tacchino

et al. [2019]; Torrontegui and García-Ripoll [2019]; Peruzzo et al.
[2014a]. In this work, we extend the tools that could be used to

explore their performance. The performance could be defined as the

model’s ability to learn through training Pérez-Salinas et al. [2020];

Schuld et al. [2020b], but also the model’s ability to extract informa-

tion from the input state to the readout qubit Schuld et al. [2020b];

Sim et al. [2019a].

To this end, we introduce relevant tools that could quantify the

performance and help us better understand how different elements

affect the overall performance of the studied model Schuld et al.
[2020b]; Casas and Cervera-Lierta [2023]. We focus on small circuit

structures in order to better understand the effect of the different

elements to the overall performance, but also to clarify how to use

these tools in practise.

This work is a stepping stone to better understand how to explore

the performance of quantum models that could potentially result in

a quantum advantage.
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4.1 Introduction

In the previous chapter we introduced the Teacher-student scheme

as a tool to compare the performance of different QP and QNNs ar-

chitectures as VQC and explored a potential quantum advantage in

terms of the model’s ability to learn through training. In this chapter,

we shift the focus from QP and QNN models to arbitrary quantum

machine learning (QML) models, which consist of an encoding, pro-

cessing and measurement part. Specifically, the QML models are

defined as VQC, since the processing part is parameterized. We fo-

cus on small quantum circuits with a few number of qubits due to

many open questions: ”How many parameterized gates should be

used?”, ”How many entangling gates and where?”, ”Where should

the circuit be measured?” and ”Do ancilla qubits help improve the

expressivity of the circuit?”.

Inspired by these questions, in this chapter we focus on extend-

ing the numerical tools used to analyze a potential quantum ad-

vantage of QML models in terms of their performance. Here the

term performance characterizes the model’s ability to learn through

training Benedetti et al. [2019a], the type of functions that it can ex-

press Schuld et al. [2020b] and its scrambling capability Wu et al.
[2021]; Shen et al. [2020], i.e. extracting information from the input

state to the readout qubit. Specifically, we extend the TS scheme

introduced in chapter 3 to further characterize the model’s ability

to learn through training. We also apply the averaged operator size

that characterizes quantum information scrambling. Finally, we use

the representation of quantum models as Fourier series to explore

the function classes that quantum circuits "have access to".

The original results presented in this chapter are based on the

publication Gratsea and Huembeli [2022] with P. Huembeli.
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4.2 Tools for analysing QML models
We study quantum circuits that consist of three parts: the encoding

unitaries 𝑆 (𝑥), the processing gates 𝑈𝜃 (consisting of data indepen-

dent but parameterized gates) and the measurement operator 𝑀.

The building blocks of such arbitrary quantum circuits are shown

in Fig. 4.1. Throughout this work, we focus on supervised learning

Figure 4.1 The building blocks for an arbitrary quantum circuit: encoding

(yellow unitary), processing (blue parameterized unitary) and measure-

ment (green operator).

tasks with a given data set 𝒟 = {(x𝑘 , 𝑦𝑘)}, where the input data x𝑘

are encoded by 𝑆
(
x𝑘

)
and 𝑦𝑘 are the labels given by the measure-

ment outcome. The initial state is |0⟩⊗𝑁 , where 𝑁 is the number of

qubits. As shown in Fig.4.1, we first apply the encoding unitary 𝑆 (x)
(yellow), then the processing𝑈𝜃 (blue) and finally the measurement

operator 𝑀 (green).

In this section, we focus on two theoretical tools for characterizing

the performance of QML models, i.e. the averaged operator size Wu

et al. [2021] and the Fourier representation Schuld et al. [2020b]. These

methods give us quantitative results on the effect of the processing

and measurement operators (blue parameterized unitary and green
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operator in Fig.4.1). We also employ an extended version of the

teacher-student scheme discussed in the previous chapter to quantify

differences in the prediction maps numerically, i.e. the density plots

of the model predictions or labels 𝑦𝑘 for the input data x𝑘 .

4.2.1 Averaged operator size
In the works Wu et al. [2021]; Nahum et al. [2018]; Roberts et al. [2018],

the authors introduce related quantities to characterize quantum in-

formation scrambling, i.e. extracting information from the input

state 𝑆(x)|0⟩ to the readout qubit. In the work of Wu et al. [2021], the

authors propose the averaged operator size - a quantity that depends

on the circuit architecture, the processing and the measurement op-

erators. Moreover, its value is positively correlated with the learning

efficiency of the QNN architecture.

To calculate the averaged operator size of an arbitrary operator 𝑂̂,

we decompose it into a summation of a Pauli strings, which can be

done for any Hermitian operator Nielsen and Chuang [2011]. Such

a decomposition has the form

𝑂̂ =
∑
α

𝑐α𝜎̂
1

𝛼1

⊗ 𝜎̂2

𝛼2

· · · ⊗ 𝜎̂𝑛𝛼𝑛 , (4.1)

where 𝜎̂𝑖𝛼𝑖 for 𝛼𝑖 ∈ {0, 1, 2, 3} define the Pauli operators including the

identity acting on qubit i. The coefficients 𝑐𝛼 can be computed by

𝑐𝛼 =
1

2
𝑛

Tr

(
𝑂 𝜎̂1

𝛼1

⊗ 𝜎̂2

𝛼2

· · · ⊗ 𝜎̂𝑛𝛼𝑛

)
. (4.2)

The operator size of a Hermitian operator 𝑂̂ is given by

Size(𝑂̂) =
∑
α

|𝑐α |2 𝑙(α), (4.3)

where 𝑐α are the coefficients of decomposition in Eq. (4.1) and 𝑙(α)
counts the number of non-identity matrices in each Kronecker prod-

uct in the summation given by the same equation. In our case, the
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hermitian operator 𝑂̂ = 𝑈𝜃
†
𝑀̂𝒰̂𝜃 depends only on the processing

unitary𝑈𝜃 and the measurement 𝑀 operators.

To obtain the averaged operator size for a given circuit architec-

ture𝑈𝜃 and a fixed measurement 𝑀, we take the average over Haar

random unitaries𝑈𝜃

Size =

∫
𝑑𝑈𝜃 Size

(
𝑈𝜃

†
𝑀̂𝑈𝜃

)
. (4.4)

A larger value of the average operator size suggests a more expressive

circuit structure Wu et al. [2021].

4.2.2 Map differencies from teacher-student scheme
The teacher student scheme introduced in Chapter 3 can be used

to compare performance of quantum models with three different

quantitative scores were considered: the accuracy score, the (aver-

age) loss and the relative entropy and the prediction maps for a more

qualitative overview. Here, we add another score to the TS scheme

that directly compares differences between prediction maps which

allows us to better quantify them. Specifically, we compute the av-

erage of the differences between the prediction maps of the teacher

and student

Δ𝑦 =
1

𝑝

𝑝∑
𝑘

|𝑦𝑘𝑇 − 𝑦𝑘𝑆 |, (4.5)

where {𝑦𝑘
𝑇
} are the generated labels from the teacher and {𝑦𝑘

𝑆
} the

learned labels of the student where 𝑘 runs over all points 𝑝 of a given

input dataset {𝑥𝑘}. Also, 𝑦𝑘
𝑇
, 𝑦𝑘

𝑆
take continuous values in [−1, 1],

but for the calculation of the Δ𝑦 we re-scale them to be in [0, 1].
We can present the Δ𝑦 as a percentage difference between the two

studied models. This allows us directly to compare how similar the

prediction maps of the two models are. It is a quantitative measure

of how well the student can learn the teacher, i.e. a Δ𝑦 equal to
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zero suggests that the student learns the teacher perfectly, while

high values for Δ𝑦 indicate that the student is not able to learn the

labeling provided by the teacher.

4.2.3 The representation of quantum models with par-
tial Fourier series

In the work of Schuld et al. [2020b], the authors explore how the data

encoding influences the class of functions that a quantum model

can learn. Circuit architectures employed in supervised tasks with

multiple encoding unitaries on different qubit can be mapped to a

partial multivariate Fourier series

𝑓θ(x) =
∑
j

∑
k

𝑐jk𝑒
𝑖x·(λk−λ𝑗), (4.6)

where 𝑗 , 𝑘 ∈
[
2
𝑑
]𝑁

with 𝑁 the number of qubits and 𝑑 is the dimen-

sion of an encoding gate, i.e. 𝑑 = 1 if it is a single qubit gate. As

it is explained in the original work, the frequency spectrum deter-

mines the functions that the quantum model could express, while

the coefficients 𝑐jk determine how the accessible functions can be

combined.

The number of Fourier basis functions is solely determined by

the eigenvalues of the data-encoding Hamiltonians. This means that

repeated data encoding gives rise to a larger frequency spectrum

Ω and more complicated function classes. The processing and the

measurement of the circuit determine the coefficients, and therefore,

how the accessible functions can be combined. Inspired by the work

of Schuld et al. [2020b], in Section 4.3.3, we study how the process-

ing and measurement operators of simple quantum circuits affect

the coefficients, and therefore, the final function classes that these

quantum circuits "has access to". This analysis sheds light on how

individual elements of the processing and measurement architecture

affect the function classes that the quantum model can express.
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Figure 4.2 A 2-qubit and 3-qubit simple circuit architecture. The light and

dark orange colors represent the data encoding gates, while the blue the

parameterized gates. A CNOT gate is applied before the measurement

operator for the 2-qubit circuit, while a Toffoli gate for the 3-qubit circuit.

4.3 Simple quantum models
In this section, we apply the tools described in the Section 4.2 on two

simple quantum models shown in Fig. 4.2. We use a two dimensional

input data set with x𝑘 = (𝑥𝑘
1
, 𝑥𝑘

2
) and encode it to the circuit with the

gates 𝑆(x) = 𝑅𝑥(𝑥1) ⊗ 𝑅𝑥(𝑥2) applied on two distinct qubits, where

𝑅𝑥(𝜙) = exp(−𝑖𝜙𝜎𝑥/2) is the single qubit 𝑋 rotation gate. These

data encoding gates are depicted in light and dark orange colors

respectively in the circuit diagrams. The blue gates represent the pa-

rameterized single qubit rotations 𝑅𝑜𝑡(𝜙, 𝜃, 𝜔) = 𝑅𝑧(𝜔)𝑅𝑦(𝜃)𝑅𝑧(𝜙).
The predictions take continuous values 𝑦𝑘 ∈ [−1, 1] given by the out-

come of the measurement ⟨𝜓𝑘 | 𝑍 |𝜓𝑘⟩, where |𝜓𝑘⟩ = 𝑈𝜃𝑆(x) |0⟩⊗𝑁 .

4.3.1 Averaged operator size of simple quantum mod-
els

We compute the averaged operator size of Eq. (4.4) for the 2-qubit and

3-qubit circuits of Fig. 4.2 by taking the average over the Haar random

unitaries for the parameterized single qubit unitaries depicted with

blue color. For the numerical simulation we use a Monte-Carlo

integration McClean introduced in the Appendix D.1. In Fig.4.3,

we plot the averaged operator size as a function of the number of
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parameterized gates. The error bars are the standard deviation from

the mean value. We increase the number of parameterized gates

by adding a layer 𝐿 with two arbitrary single qubit gates (blues

color) and an a CNOT entangling gate, 𝐿 = 𝐶𝑁𝑂𝑇𝑅𝑜𝑡(𝜙, 𝜃, 𝜔) ⊗
𝑅𝑜𝑡(𝜙′, 𝜃′, 𝜔′). We stress here that the 3-qubit circuit always has a

Toffoli gate before the measurement operator.

The average operator size for the 2-qubit case has approximately

the same value around 1.60 independent of the number of gates used

(see blue solid line of Fig. 4.3). The drop observed from two to four

parameterized gates is small while the error is large. Therefore, this

suggests that for the 2-qubit case the performance is approximately

the same as we increase the number of parameterized gates. On the

contrary, for the 3-qubit case, the averaged operator size significantly

increases once we move from two to four parameterized gates, and

afterwards, reaches a plateau. These results already suggest that

the 3-qubit case performs better than the 2-qubit case, i.e. the cir-

cuit structure of the processing and measurement operator is more

expressive.

Next, we focus on the maximum value of the operator size, which

corresponds to specific values of the parameterized angles that give

the best possible performance of this circuit structure (represented

with the dashed line in Fig. 4.3). From the dashed lines in Fig. 4.3,

we see that for both circuits the maximum value of the operator size

is equal to 2 for the circuits with two parameterized gates. As we

increase the number of parameterized (and entangling gates), the

maximum value of the operator size is increased for the 3-qubit, but

quickly reaches a plateau. Once again, these results suggest that the

3-qubit circuit structure is more expressive than the 2-qubit.

4.3.2 Teacher-student scheme
To further analyze the expressive power of the two models in Fig. 4.2,

we employ the Teacher-student scheme introduced in Section 4.2.2.

The analysis of the differences Δ𝑦 of the prediction maps validates
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Figure 4.3 We plot the averaged operator sizes defined in Eq.(4.4) and

their standard deviation as we increase the number of parameterized and

entangling gates. The orange and blue solid lines are for the MC simulation

of 2 and 3 qubits, respectively. The dashed orange and blue solid lines give

the maximum value that each operator size could get for a given number of

parameterized and entangling gates of 2 and 3 qubits, respectively. These

results suggest that the 3-qubit circuit architecture is more expressive than

the 2-qubit.

89



4. The performance of quantum models

the results from the average operator size in the previous section.

We compute the Δ𝑦 defined in Eq. 4.5 and see that on average

both students are approximately 30% off from the desired target

distributions of their teachers. An example of the prediction maps

are shown in Fig. D.1 in the Appendix D.2, which suggests that

the student learns pretty much uncorrelated labeling. These results

are in accordance with the results from the averaged operator size

of Fig. 4.3 for two parameterized gates in the sense that both of

them have similar values for their averaged operator size, i.e. 2 and

approximately 1.7 for the 2-qubit and 3-qubit students, respectively.

Next, we increase the number of parameterized (and entangling

gates) by adding a layer 𝐿 and present the results in Fig. 4.4. We see

a significant improvement in performance by increasing the param-

eterized gates from 2 to 4 for the 3-qubit student. This means that it

can learn more reliably the labeling provided by the 2-qubit teacher.

On the contrary, the 2-qubit student has almost a constant Δ𝑦 for any

amount of parameterized gates which suggests that it can’t improve

and learn more reliably the 3-qubit teacher’s outputs.

To obtain these results we used a dataset of 500 points on a 2D grid

with 𝑥𝑖 ∈ [−𝜋,𝜋] on a grid and we generated 100 different labelings

via different random initalizations of the teacher. The students are

as well randomly initiallized and trained until convergence. These

results are in agreement with the calculations from the averaged

operator size of the previous subsection 4.3.1. In both cases, for

the 3-qubit circuit, we observe an improvement in performance as

we increase the number of parameterized gates. Finally, we quickly

reach a plateau in performance as we increase further the number of

gates as it is also observed in the analysis of the averaged operator

size.
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Figure 4.4 We plot the average of the differences between the prediction

maps of the teacher and student defined in Eq.(4.4) as we increase the num-

ber of parameterized and entangling gates for the simple circuits shown in

Fig.4.2. The blue line is for the Teacher with 3 qubits and the student with

2, while the orange line is for the opposite case.

4.3.3 The type of functions that simple quantum mod-
els learn

The results from the previous two subsections { 4.3.1 4.3.2} suggest

that simple changes in the structure of the circuit highly affects the

average operator size and Δ𝑦, i.e. the learning capability and expres-

sive power of the models. Therefore, the number of parameterized

(and entangling) gates, the circuit architecture and the number of

(ancilla) qubits play an important role in QML model’s performance.

To further analyze the effect of the processing and measurement

operators on the expressive power of the models, we use the repre-

sentation of quantum models as partial Fourier series introduced in

subsection 4.2.3.

The Fourier coefficients defined in Eq.4.6 are determined by the
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eigenvalues of the data-encoding Hamiltonians. For example, the

data-encoding Hamiltonian for each qubit from the circuits of Fig. 4.2

is 𝐻 =
1

2

𝜎𝑥 and we can assume without loss of generality that it

has two distinct eigenvalues, i.e. 𝜆1 = −1,𝜆2 = 1. Importantly,

since we have the same type of encoding gate for each qubit, they

have the same frequency spectrum Ω. As it is explained in detail

in the work of Schuld et al. [2020b], we can derive the frequency

spectrum for each qubit Ω = {−1, 0, 1} from the possible differences

𝑛𝑞𝑢𝑏𝑖𝑡 = 𝜆
𝑞𝑢𝑏𝑖𝑡

𝑗
− 𝜆

𝑞𝑢𝑏𝑖𝑡

𝑖
for 𝜆

𝑞𝑢𝑏𝑖𝑡

𝑗
,𝜆

𝑞𝑢𝑏𝑖𝑡

𝑖
∈ {−1, 1}. Then, we have the

Fourier coefficients as 𝑐𝑛1𝑛2
and Eq. (4.6) can be written as

𝑓 (𝑥) =
∑
𝑛1∈Ω

∑
𝑛2∈Ω

𝑐𝑛1𝑛2
𝑒−𝑖𝑛1𝑥1𝑒−𝑖𝑛2𝑥2 . (4.7)

Both circuit models in Fig. 4.2 have the same number of Fourier

basis functions given by Eq. 4.7, since they have the same number

of encoding gates. This fundamentally limits their learning ability.

But importantly, the structure of the processing and measurement

operator affect the distribution of the coefficients.

In Fig. 4.5, we plot the real and imaginary parts of the Fourier coef-

ficients for the 2-qubit (blue color) and 3-qubit (orange color) explicit

circuits of Fig. 4.2 with two parameterized gates each. The coeffi-

cients 𝑐00, 𝑐01, 𝑐10, 𝑐−10, 𝑐0,−1 from Fig. 4.2 for the 2-qubit circuit are

all zero (blue color), while they are non-zero for the 3-qubit (orange

color). But what happens with the coefficients 𝑐11, 𝑐−1,−1, 𝑐−11, 𝑐1,−1?

Interestingly, computing the exact analytical formula for the distribu-

tions of the coefficient 𝑐1,1 shows that they are different. We present

these analytical formulas in Appendix D.3. In summary, even though

the two quantum models of Fig. 4.2 have access to the same Fourier

basis functions, the different distribution of their coefficients results

in a different combination of these basis functions, and hence, give

rise to different function classes.

This is also in accordance with the results from the previous

two subsections { 4.3.1 4.3.2}. The 2-qubit student (Fig.4.2 left) has
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Figure 4.5 The real and imaginary part of the Fourier coefficients for the

2-qubit (blue color) and 3-qubit (orange color) explicit circuits of Fig. 4.2

with two parameterized gates each.

difficulties learning the prediction map of the 3-qubit teacher (Fig.4.2

right), since it has four coefficients strictly equal to zero which does

not help approximating the more complicated distribution of the 3-

qubit teacher. But reversing the roles, the 3-qubit student has also

difficulties learning the 2-qubit teacher. Even though, the student

could learn the zero coefficients, the coefficients 𝑐11, 𝑐−1,−1, 𝑐−11, 𝑐1,−1

of the teacher belong to a different function class, i.e. they draw

their values from a different distribution. This could be seen from

the larger spread of the coefficients in Fig. 4.5. These results are in
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accordance with the averaged operator size (Fig.4.3) andΔ𝑦 (Fig.4.4),

since they also suggest that for just two parameterized gates both the

2-qubit and 3-qubit circuit have similar performance.

Most importantly, once we add an extra layer 𝐿 to the 3-qubit

circuit, the spread of the Fourier coefficients in Figure 4.5 (in orange)

increases and overlaps with the coefficients of the 2-qubit circuit (in

blue) almost completely. These results are shown in light blue color at

Fig.D.3 in the Appendix D.4). This is in accordance with the averaged

operator size andΔ𝑦 from the teacher-student scheme where a better

performance is observed for the 3-qubit case by adding an extra layer

𝐿. On the contrary, adding an extra layer in the 2-qubit case does not

improve the performance of the student as suggested as well from

Fig.4.3 and Fig.4.4, i.e. the distribution of the coefficients shown in

Figure 4.5 in blue stays the same.

But what more can we say for the distribution of these coefficients?

Could we understand which circuit elements determine the exact

zero terms? We tackle these questions in the next section.

4.4 Variational measurement
We can describe the expectation value of any circuit of Fig. 4.1

with the representation of matrix blocks shown in Fig.4.6a. Fol-

lowing Schuld et al. [2020b], the data encoding unitary can be writ-

ten as 𝑆(𝑥) = 𝑉†𝑒−𝑖𝑥Σ𝑉 via an eigenvalue decomposition, where

Σ is a diagonal matrix of eigenvalues and 𝑉 is the unitary formed

with the eigenvectors as columns. We absorb 𝑉,𝑉†
into the ini-

tial state |𝜓′⟩ = 𝑉 |𝜓⟩ and into the processing part of the circuit

𝑈′ = 𝑉𝑈𝑉†
. For consistency, we transform the measurement oper-

ator with 𝑀′ = 𝑉𝑀𝑉†
. As a result, the encoding unitary is simply

a diagonal matrix exp(−𝑖𝑥Σ). The transformed matrix blocks are

shown in Fig. 4.6b.

In Fig. 4.7, we schematically illustrate the mapping between the

Fourier coefficients and the frequencies instead of explicitly writing
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the full matrix given by the inner product of the orange, blue and

green matrix blocks of Fig. 4.6b. The Fourier coefficients depend only

on the processing and measurement operators, therefore the matrix

elements of 𝑀 = 𝑈†′𝑀′𝑈′
, while the frequencies on the encoding

operator, i.e. the diagonal matrix of the encoding Hamiltonian as

explained in detail in Schuld et al. [2020b]. As introduced in Eq. 4.7,

the Fourier coefficients are defined as 𝑐𝑛1 ,𝑛2
. For example, 𝑐00 corre-

sponds to the frequencies with 𝑛1 = 𝑛2 = 0 for both qubits, which

after explicitly calculating the expectation value in Eq. 4.7 in turn

correspond to the diagonal matrix elements of 𝑀. Following the

same procedure, 𝑐01 is the sum of elements 𝑀12 and 𝑀34, 𝑐10 is the

sum of elements 𝑀13 and 𝑀24, 𝑐11 is the element 𝑀14 and 𝑐1,−1 is

the element 𝑀23. Finally, 𝑐0,−1, 𝑐−10, 𝑐−1−1 and 𝑐−11 are the complex

conjugates of 𝑐01, 𝑐10, 𝑐11 and 𝑐1−1, respectively.

We now discuss the simple example of the 2-qubit case from

Fig. 4.2 with the Pauli Z operator applied to the 2nd qubit (𝑀′
1
= 𝐼,

𝑀′
2
= 𝑍). The transformed measurement operator 𝑀′ = 𝑀′

1
⊗ 𝑀′

2
=

𝐼 ⊗
(
𝑉𝑍𝑉†)

of the data-encoding Hamiltonian) becomes

𝑀′ =


0 ℎ 0 0

𝑘 0 0 0

0 0 0 ℎ∗

0 0 𝑘∗ 0

 , (4.8)

where ℎ, 𝑘 are complex trigonometric functions that determine the

distribution of the coefficients. But the mapping between the zero

elements and the coefficients that are zero does not match. For

example, 𝑐11 which is determined by 𝑀14 has a non zero distribution

as shown in Fig.4.5 (blue color), while eq. (4.8) suggests that 𝑀14 it

should be strictly zero.

To resolve this discrepancy, we need to consider the process-

ing and measurement operators as one matrix block 𝑀 = 𝑈†′𝑀′𝑈′

(shown in green in Fig. 4.6c). This is in accordance with recent

works Schuld [2021a]; Jerbi et al. [2021], where the processing and
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measurement operators are regarded as one part in the circuit struc-

ture.

For the 2-qubit case, the combined matrix 𝑀 (green blocks in

Fig.4.6c) becomes:

𝑀 =


0 0 0 𝑓

0 0 𝑔 0

0 𝑔∗ 0 0

𝑓 ∗ 0 0 0

 , (4.9)

where 𝑓 , 𝑔 are complex trigonometric functions that determine the

distribution of the coefficients shown in Fig. 4.5. Following the

mapping between the coefficients and the elements of the combined

matrix 𝑀, we can immediately see which coefficients are zero. The

only non-zero coefficients are the 𝑐11, 𝑐1,−1 and their complex conju-

gates determined by 𝑀14, 𝑀23 and 𝑀41,𝑀32, respectively.

This analysis suggests that in some cases replacing the usual seg-

regation of a quantum circuit into three parts: encoding, processing

and measurement with just two parts: encoding and variational

measurement could reveal further insights on the performance and

properties of QML models.

4.4.1 Toy application
To further emphasize the importance of the measurement operators

of a circuit, we present a simple quantum model with two qubits

(Fig.4.8). The Fourier coefficients of this circuit are represented in

Fig.4.9, where the coefficients in purple represent the measurement

of the 1st qubit and the Fourier coefficients in green represent the

measurement on the 2nd qubit. As we see, the distribution of the

Fourier coefficients differ greatly. Therefore, with the same circuit

structure, we could create two different functions classes depending

on where we measure. This might have a more relevant applications,

but it already suggests that once we better understand how simple
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elements on our circuit structure affect the overall performance it is

more natural to think of applications.

4.5 Discussion
The results presented in this chapter gives us a better understand-

ing on the basic questions posed earlier in the introduction: "How

many parameterized gates to use?", "How many entangling gates

and where?", "Do ancilla qubits help?" and "Where to measure?". If

we want to find the great applications that QML promises Alcazar

and Perdomo-Ortiz [2021]; Schuld and Killoran [2022b], we first need

to understand how QML models work. The data encoding funda-

mentally limits the performance of a circuit, but as we also showed

in this chapter the processing and measurement also significantly

affect the capabilities of the model. We showed that different parts

of processing and measurement operators affect the performance of

the QML model.

To quantify the model’s performance, we introduced three dif-

ferent tools: the averaged operator size, the Δ𝑦 and the coefficient

from the partial Fourier series. By applying the Fourier representa-

tion, we observed that two different circuits with the same number

of parameters could give rise to different function classes. Finally,

we found that the segregation of the processing and measurement

operator might not be ideal when interpreting the parts of the cir-

cuit. Instead when considered as one, i.e. the variational measure-

ment, could give insights on the model’s performance. The idea of

the variational measurement has also been presented in the context

of quantum kernels Schuld [2021b]. This might bring the relation

between the Fourier representation and quantum kernels one step

closer.

Once we better understand how QML models work, we can nat-

urally start thinking about applications. For example, we presented

a trivial implementation that arises from where we measure. Specif-
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ically, measuring either one of the two qubits on a 2-qubit circuit

gives rise to fundamentally different classes of functions that this

model could express. Therefore, with the same circuit structure one

could learn or express two different function classes as shown by the

numerical calculation of the real and imaginary part of the Fourier

coefficients in Fig. 4.8. We understand that computing the analytical

trigonometric expression for more qubits, or even gates, is similar

to opening Pandora’s box. Instead we suggest to focus on the other

two tools proposed, i.e. the averaged operator size and the map

differencies from the Teacher-student scheme.

In this work, we focused on simple quantum models and verified

that the tools presented here are robust. The analytical and numer-

ical results are in agreement, and therefore, these tools could be

further used to test the performance of more complex circuit struc-

tures. Moreover, applying the averaged operator size and Teacher-

student scheme to other simple circuit structures could further help

understand how QML models work. It would also be interesting

to exploit the effect of measurement for a more interesting use-case

application. But to do so, a careful study on how the measurement

position affects the model’s performance should be undertaken, i.e.

by increasing the number of qubits and circuit complexity Hafer-

kamp et al. [2022]. This study could also further strengthen the belief

that quantum models with ancillary qubits have better performance

overall Du et al. [2020].

4.6 Conclusion
In this work we explored the performance of small quantum models

from different perspectives, i.e. their training capability and informa-

tion scrambling. This study helps us better understand how different

elements of the quantum circuits affect its overall performance. Mov-

ing forward these tools could potentially be applied to larger scale

quantum simulations.
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(a)

(b)

(c)

eigenvalue
decomposition

Figure 4.6 We illustrate the matrix block representation of the expectation

value of any circuit given by Fig. 4.1 (a), after following the Fourier analysis,

i.e. with the eigenvalue decomposition of the encoding unitaries (orange

color) (b) and after considering as one the processing and measurement

operators shown in green color (c).
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Figure 4.7 The mapping between the Fourier coefficient and the matrix ele-

ments of an arbitrary matrix 𝑀. The colors represent the five independent

Fourier coefficients from the nine coefficients in total, if we exclude the

complex conjugates shown in grey color.

Figure 4.8 A 2-qubit circuit with 4 parameterized and two entangling gates

where we could either measure on the 1st or 2nd qubit.
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Figure 4.9 The real and imaginary part of the Fourier coefficients of the

circuit structure shown in Fig. 4.8. If the circuit is measure on the first qubit

we obtain the Fourier coefficients in purple, if we measure on the second

qubit we obtain the coefficients in green.
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Chapter 5

Benchmarking quantum
algorithms for quantum
chemistry

In the Section 4.4.1 of the previous chapter, we got a glimpse at the

potential of quantum algorithms, and specifically, variational quan-

tum algorithms for realizing toy applications. In this chapter, we

shift our focus to the field of quantum chemistry which is one of the

main industrial relevant fields that promise to be the killer applica-

tion of quantum computation. Specifically, quantum computation

promises to unlock new computational capabilities for certain tasks

such as the ground state energy estimation (GSEE) for molecules

and materials Aspuru-Guzik et al. [2005]; Goings et al. [2022b]; Elfv-

ing et al. [2020a].

However, realizing quantum advantage for the task of GSEE re-

quires improvements in the quantum algorithms that will reduce the

resource requirements needed, such as the circuit depth Wang et al.
[2022d]. This has led to extensive research on the development of

algorithms with modest circuit depths Wang et al. [2022d]; Ding and

Lin [2022a]. But the performance of GSEE algorithms also strongly

depends on the overlap of the true ground state of the Hamiltonian
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and the initial state generated by a ground state preparation (GSP)

method Zhang et al. [2022]; Dong et al. [2022a]; Lee et al. [2022]. For

quantum chemistry applications, the Hartree-Fock (HF) Slater de-

terminant state is widely used for GSP, since the cost (in terms of

circuit depth) of implementing it on quantum hardware is insignifi-

cant compared to GSEE algorithms Nielsen and Chuang [2011] and it

provides satisfactory results for many molecules and materials Tub-

man et al. [2018]. However, in some important cases the overlap is

relatively small (for example molecules with a bond distance out of

equilibrium Tubman et al. [2018]; Ceroni et al. [2022]), which creates

a need for methods that can provide a larger initial overlap.

The notion of "good overlap", as usually referred to, is vague and

does not explore a performance to resource cost ratio as a bench-

marking tool Tubman et al. [2018]; Lee et al. [2022]. In this chapter,

we introduce the acceptability criteria that address the trade-off be-

tween the resource cost and performance improvement of the GSP

and GSEE subroutines. Such a tool could be used to answer questions

like: Is it worth the high circuit depth cost to use a GSP algorithm

that provides almost perfect overlap values? Or is it better to settle

for a heuristic method like VQE with smaller ground state overlap

even though it increases the runtime of the GSEE subroutine? It pro-

vides a reliable tool to benchmark the performance of the plethora

of GSP algorithms for the task of GSEE.

The original results presented in this chapter are based on Gratsea

et al. [2024], a joint collaboration with C. Sun and P. D. Johnson.

5.1 Evaluating the efficiency of Ground State
Preparation (GSP) algorithms

5.1.1 Acceptability criteria of GSP algorithms
The efficiency of a GSP algorithm gives the right tools to understand

the appropriate balance of resource cost and performance of GSP
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and GSEE algorithms. To evaluate the performance of quantum al-

gorithms, recent work proposed a resource efficiency metric as the

ratio of the success metric over the resource cost Auffè ves [2022].

Instead of defining efficiency metrics, in this work we introduce a

criteria to evaluate whether to accept or reject a given GSP algo-

rithm. Specifically, we propose a systematic way to benchmark GSP

methods for the problem of GSEE. We use the HF method as a ref-

erence and explore under which conditions a GSP method will be

accepted over HF. The benchmarking criteria incorporate both the

reduction of the total runtime for GSEE and the resource cost of the

GSP algorithm (see Fig.1). We perform numerical simulations to

showcase how to use the criteria in practice and provide a resource

estimation of the maximum allowed depth of a GSP to be acceptable

over HF.

The chapter is organized as follows: in Sec. 5.1.2 we introduce

the criteria for acceptability of GSP that do not require repetitions,

while we incorporate repetitions of GSP in Sec. 5.1.3. In Sec. 5.1.4,

we present numerical simulations on how to use the benchmarking

criteria set in the first two sections. Also, we include a resource

estimation of the maximum allowed GSP circuit depth for solid-state

materials. Sec. 5.1.5, contains the conclusions and future research

directions.

5.1.2 Criteria for acceptability of state preparation with-
out repetitions

Here we discuss the criteria under which a state preparation method

is acceptable for the purposes of GSEE. Any ground state energy

estimation method has a runtime that depends on the features of the

ground state preparation: the GSP circuit depth 𝐷 and the overlap

between the prepared state and the ground state 𝜂 = 𝛾2
. The runtime

also depends on the target accuracy 𝜖. For a given energy estimation
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Figure 5.1 The acceptability criteria is used to benchmark the given GSP

method over the HF reference with the goal of reducing the total runtime

of the GSEE algorithm.

algorithm Dong et al. [2022a], the runtime can be formulated as

𝒯 (𝒟 , 𝛾; 𝜖) = (number of repetitions)
×(total circuit depth of each repetition)
= (number of repetitions)

×(GSP depth + GSEE depth)

= 𝑂̃

(
1

𝛾𝛼

(
𝐷 + 1

𝜖𝛾𝛽

))
. (5.1)

According to the table given in reference Dong et al. [2022a], example

GSEE algorithms have values 𝛼 ∈ {0, 2, 4} and 𝛽 ∈ {0, 1, 2}. The

units for the GSP and GSEE circuit depths need to match, but as

it will become evident from the numerical simulations in the next

section different choices for the units could be used, such as the

circuit depth and the T-gate count. Also, we are ignoring constant

factors and logarithmic dependence on the parameters for now to

simplify the introduction of this technique; but these should ulti-

mately be included to set a more accurate benchmark. Finally, some

state preparation methods require a number of repetitions to ensure

their success (with high probability). In Sec. 5.1.3, we discuss the
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runtime cost that includes repetitions of the GSP algorithms.

To establish the concept of an acceptable state preparation, we

must assume that the ground state energy estimation algorithm has

a reference or default method to compare with. A reference initial

state could be simply a product state of the measurement basis, or

the solution to a mean-field-level method, such as the Hartree-Fock

ground state. The circuit depth for preparing a reference state can

usually be neglected, thus we label the depth and overlap as 𝐷0 = 0

and 𝛾0. In this work, we focus on the HF method as a reference

exactly due to the zero depth cost. Other methods, such as adiabatic

state preparation Aspuru-Guzik et al. [2005]; Albash and Lidar [2018],

which have non-zero depth cost, could be used as reference in future

work. The runtime of GSEE using the HF reference state preparation

is

𝒯0(𝐷0, 𝛾0; 𝜖) = 𝑂̃

(
1

𝜖𝛾
𝛼+𝛽
0

)
. (5.2)

The condition for a state preparation method to be acceptable over

the reference is that the total runtime of the GSEE with the GSP (𝒯 ) is

smaller than the total runtime of the GSEE with HF (𝒯0), i.e. 𝒯 < 𝒯0.

This puts constraints on the state preparation parameters:

1

𝛾𝛼

(
𝐷 + 1

𝜖𝛾𝛽

)
<

1

𝜖𝛾
𝛼+𝛽
0

. (5.3)

Observe that if 𝐷 = 0, then the acceptability criteria reduce to the

condition 𝛾 > 𝛾0. We can rewrite the general condition (5.3) as

𝐷 <
1

𝜖𝛾𝛽

((
𝛾

𝛾0

)𝛼+𝛽
− 1

)
. (5.4)

This shows that if 𝜖 is decreased then a state preparation with larger

𝐷 will be accepted. In other words, for less demanding GSEE al-

gorithms with a worse target accuracy 𝜖 more costly GSP algorithm
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could be accepted over the HF. Finally, we could write the above

inequality as following

𝐷 + 1/𝜖𝛾𝛽

1/𝜖𝛾𝛽
<

(
𝛾

𝛾0

)𝛼+𝛽
. (5.5)

Therefore, the acceptability criterion in the more strict case when

𝛼 + 𝛽 = 1, could be expressed in words as

total depth

GSEE depth

<
gsp overlap

HF overlap

(5.6)

or

total depth

GSEE depth

<
𝑁𝑟𝑒𝑝𝑠 from HF

𝑁0,𝑟𝑒𝑝𝑠 from GSP

, (5.7)

where 𝑁𝑟𝑒𝑝𝑠 is the number of repetitions due to the GSP overlap

value, i.e. 𝑁𝑟𝑒𝑝𝑠 = 1/𝛾 and 𝑁0,𝑟𝑒𝑝𝑠 = 1/𝛾0.

Next, we discuss the simple case when the GSP query depth is

much smaller than the GSEE query depth. Then, we have

GSP depth

GSEE depth

≪ 1 (5.8)

𝐷𝛾𝛽 ≪ 1

𝜖
. (5.9)

For typical values of 𝜖 ≃ 10
−3

Wang et al. [2022d]; Babbush et al.
[2018a], the condition becomes 𝐷𝛾𝛽 ≪ 10

3
. Since 𝛽 ∈ {0, 1, 2} Dong

et al. [2022a] and 𝛾 ≤ 1, the more strict condition is 𝐷 ≪ 1

𝜖
.

Then, the acceptability criteria for any 𝛼 ∈ {0, 2, 4}, 𝛽 ∈ {0, 1, 2}Dong

et al. [2022a] is simplified to

1 <

(
𝛾

𝛾0

)𝛼+𝛽
, (5.10)
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which simply states that the acceptance of the GSP over HF is deter-

mined by the respective overlap values ratio.

Next, we compare the acceptability criteria for two different GSEE

algorithms presented in the table of GSEE performance Dong et al.
[2022a], the quantum phase estimation semi-classical (QPE) Berry

et al. [2009, 2015] and the GSEE algorithm developed by Tong et.

al. (referred as LT20) Dong et al. [2022a] for a given GSP algorithm

introduced in Lin and Tong [2020a] whose depth depends on the

lower bound of the spectral gap Δ and the overlap 𝛾0. For QPE we

have 𝛼 = 𝛽 = 2 and

𝜖𝛾2 + Δ𝛾0

Δ𝛾0

<

(
𝛾

𝛾0

)
4

, (5.11)

while for LT20 we have 𝛼 = 0, 𝛽 = 1 and

𝜖𝛾 + Δ𝛾0

Δ𝛾0

<

(
𝛾

𝛾0

)
. (5.12)

Since 𝛾 ≤ 1, we have

𝜖𝛾2 + Δ𝛾0

Δ𝛾0

≤ 𝜖𝛾 + Δ𝛾0

Δ𝛾0

<

(
𝛾

𝛾0

)
<

(
𝛾

𝛾0

)
4

. (5.13)

This suggests that the acceptability criteria for the LT20 is more strict

than the QPE. The LT20 has a smaller GSEE query depth compared to

QPE, so it is harder to accept a GSP algorithm with non-zero depth

over the HF. Therefore, the better the GSEE algorithms becomes

in terms of query depth reduction, the more strict the criteria for

the acceptance of a GSP method over HF. In other words, as the

query depth of the GSEE becomes smaller, the number of repetitions

imposed by the overlap prepared from the GSP algorithm becomes

less significant.

Finally, the acceptability criteria allow us to explore the maximum

values of the GSP depth that enable the given GSP method to be

acceptable over the HF state. Given a specific GSEE algorithm and
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the value of 𝛾0, and assuming that the GSP provides a specific value

of 𝛾, i.e. 𝛾 = 1, we find the corresponding maximum acceptable

depth of a GSP method. To this end, Eq. (5.5) can be written as

𝐷 <
𝛾 − 𝛾0

𝛾0

𝐷GSEE, (5.14)

for more demanding GSEE algorithms with 𝛼 + 𝛽 = 1 and depth

𝐷GSEE. The above equation can be expressed as

GSP depth <
performance gain

HF performance

GSEE depth . (5.15)

5.1.3 Criteria for acceptability of state preparation meth-
ods with repetitions

In this section, we discuss the criteria under which a GSP method that

requires repetitions to reach an overlap 𝛾 is acceptable for a given

GSEE algorithm. The runtime Eq. (5.1) discussed in the previous

section becomes

𝒯 (𝒟 , 𝛾; 𝜖) = (number of repetitions of GSEE)
×[(number of repetitions of GSP)
×(circuit depth of GSP)
+(circuit depth of GSEE)]

= 𝑂̃

(
1

𝛾𝛼

(
1

𝑃succ

× 𝐷 + 1

𝜖𝛾𝛽

))
. (5.16)

As explained earlier, the runtime for the GSEE using the HF ref-

erence state preparation 𝒯0 is given by Eq. (5.2). Then, the condition,

i.e. 𝒯 < 𝒯0, for a state preparation method being acceptable over the

reference becomes

𝐷/𝑃𝑠𝑢𝑐𝑐 + 1/𝜖𝛾𝛽

1/𝜖𝛾𝛽
<

(
𝛾

𝛾0

)𝛼+𝛽
, (5.17)
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which can be expressed as

total query depth

GSEE query depth

<
𝑁reps from HF

𝑁𝑟𝑒𝑝𝑠 from GSP

.

5.1.4 Preliminary numerical simulations
In this section, we apply the acceptability criteria and benchmark

different GSP methods over the HF for different Hamiltonians of

molecules and solid-state materials, starting from small molecules

(H2 molecule) and moving on to larger molecules (N2 molecule).

Finally, we perform a resource estimation of the maximal acceptable

circuit depth of GSP for different solid-state materials over HF state.

For the numerical simulations we followed the notebook Kottmann

and Aspuru-Guzik [2022b] and the molecular data Kottmann et al.
[2021b].

Molecules We explore the acceptability criteria for a small molecule

(H2) with 4 spin-orbitals or qubits in an adapted basis Kottmann et al.
[2021b]. We compare the HF method to the separable pair approxi-

mation (SPA) approach introduced in the recent work of Kottmann

and Aspuru-Guzik [2022b] as the GSP method. According to this

work, the circuit depth of SPA for the H2 molecule equals to 3. Since

the depth is 𝐷𝐺𝑆𝑃 = 3 << 10
3

for typical values of chemical accuracy

𝜖 = 10
−3

, we are in the simple case discussed in Sec. 5.1.2 where

the criteria are simplified to the overlap values ratio (Eq. (5.10)). We

assume a more demanding GSEE algorithms with 𝛼 + 𝛽 = 1 and the

criteria is given by

1 <
𝛾

𝛾0

. (5.18)

In Fig.5.2, we plot the fidelity of the two different GSP methods.

For all bond distances presented in Fig.5.2, the criteria is satisfied.

Specifically, at bond distance 𝑑 = 0.5 the ratio
𝛾
𝛾0

is 1.005 leading
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up to the value of 1.5 for 𝑑 = 2.6. This suggests that initially SPA

is comparable to HF and as we increase the bond distance (Å), SPA

is acceptable over HF. For a less demanding GSEE algorithm (i.e.

with 𝛼 + 𝛽 possessing different values than 1), the criteria would be

satisfied and SPA would be acceptable over the HF method.

0.5 1.0 1.5 2.0 2.5
Bond distance (Å)

0.7

0.8

0.9

1.0

Fid
el

ity

HF
SPA

Figure 5.2 Fidelity as a function of bond distance of the H2 molecule for

the HF method and the SPA algorithm as GSP methods respectively. The

value of alpha and beta is set to be alpha + beta = 1, which corresponds to

a GSEE method that has a more strict acceptability criteria.

Next, we explore the larger molecule 𝑁2 considering 6 active

electrons in 12 spin-orbitals or qubits in an adapted basis Kottmann

et al. [2021b] at bond distance 𝑑 = 2.0. Initially, we benchmark the

SPA method over the HF. Since 𝐷𝐺𝑆𝑃 = 3 Kottmann and Aspuru-
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Guzik [2022b], we could apply the criteria of Eq.5.18 which gives

1 <
𝛾

𝛾0

=
0.85

0.72

= 1.18. (5.19)

Therefore, the SPA is acceptable over the HF method.

Next, we benchmark a more costly heuristic algorithm: the low-

depth-booster from the recent work of Wang et al. [2022b]. To this

end, we change the unit of depth from the circuit depth to the ac-

cumulations of the controlled time evolution 𝑒𝑝𝑥 (2𝑖𝜋𝐻) operations,

where H is the Hamiltonian of the system. Following the aforemen-

tioned work Wang et al. [2022b], we have 𝐷𝐺𝑆𝑃 = 10
3

with 𝛾 ≈ 1,

while 𝐷𝐺𝑆𝐸𝐸 = 2 × 10
4

and 𝛾0 = 0.72. The success probability of the

low-depth-booster GSP algorithm applied with the linear combina-

tion of unitaries (LCU) method is 𝑃𝑠𝑢𝑐𝑐 ≈ 0.5 Wang et al. [2022b].

Therefore, the criteria of Eq. 5.17 becomes

𝐷/(𝑃𝑠𝑢𝑐𝑐) + 1/𝜖𝛾𝛽

1/𝜖𝛾𝛽
<

(
𝛾

𝛾0

)𝛼+𝛽
⇒ (5.20)

2.2

2

<

(
1

0.72

)𝛼+𝛽
⇒ 1.1 < (1.39)𝛼+𝛽 , (5.21)

which is satisfied for any values of 𝛼, 𝛽 of the GSEE algorithms.

Solid-state materials Here, we perform a resource estimation of

the maximal acceptable depth of the GSP methods for different solid-

state materials.

Recent work Babbush et al. [2018a] estimates the T gates needed

for quantum simulation of 3D spinful jellium (or the homogeneous

electron gas). It focuses on T-count since applying a T gate requires a

lot of logical qubits and takes much longer than any other operation

in a quantum circuit Fowler and Devitt [2012]. The 3D spinful jellium

is in the dual basis at Wigner-Seitz radius of 10 Bohr radii assuming

the system is at half filling. For 54 spin-orbitals and a target chemical

accuracy Δ𝐸 = 0.0016 Hartree the depth is equal to 1.8× 10
7

T-count.
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As explained in the work of Babbush et al. [2018a], the jellium

is a good proxy for different solid-state materials, such as diamond,

graphite, silicon, metallic lithium and crystalline lithium hydride.

For these materials, the HF overlap could range from smaller to larger

values as presented in Fig. 5.3. Assuming that the GSP method gives

𝛾 ≈ 1, we have a resource estimation of the maximum depth allowed

for the GSP method to be acceptable over HF (see Fig. 5.3) given by

Eq. (5.14).

0.2 0.4 0.6 0.8
0
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108

D
m

ax

Resource estimation for solid-state materials

Figure 5.3 Maximum acceptable depth 𝐷𝑚𝑎𝑥 of the GSP algorithm with

𝛾 = 1 and 𝐷𝐺𝑆𝐸𝐸 = 1.8× 10
7

for solid state materials as a function of the HF

overlap 𝛾0.
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5.1.5 Discussion
We introduced a method to assess when to accept or reject a ground

state preparation (GSP) method over the Hartree-Fock (HF) reference

for the task of ground state energy estimation (GSEE) by introduc-

ing acceptability criteria. The criteria are defined through the total

runtime of the GSEE algorithm that incorporates both the number of

repetitions needed and the total circuit depth of each repetition—i.e.

the GSP and the GSEE depth. If the inequality introduced in Eq. 5.5

is satisfied, then the GSP method is acceptable over the HF—i.e. pro-

vides a speedup in the total runtime of the GSEE algorithm. The

criteria explores the trade-off of both the resource cost and perfor-

mance of GSP and GSEE subroutines.

We explored under which conditions the acceptability criteria

could be simplified and also established them for GSP methods that

require repetitions to reach an overlap 𝛾. Comparing the acceptabil-

ity criteria for two different GSEE algorithms with a GSP, we found

that the better the GSEE algorithms becomes in terms of query depth

reduction, the more strict the criteria to accept a GSP over the HF.

This could be due to the fact that the number of repetitions intro-

duced by the GSP overlap becomes less significant as the GSEE query

depth becomes smaller. The ability to trade circuit depth with run-

time is also motivated in recent works Wang et al. [2022d]; Ding and

Lin [2022a]. In agreement, the resource estimation performed in this

work suggests that a GSP method with a larger circuit depth than

the GSEE could be accepted for total runtime reduction.

Next, we showed that the separable pair approximation (SPA)

method is acceptable over the HF for the hydrogen molecule for dif-

ferent bond lengths, which suggests that even for a simple molecule,

there exists GSP that could offer an improved performance to the

GSEE algorithm over using HF. We also evaluated the more ex-

pensive low-depth-booster GSP algorithm for the nitrogen molecule

which is widely used for benchmarking quantum chemistry simula-

tions; in particular, when the bond is stretched Tubman et al. [2018];

Kottmann and Aspuru-Guzik [2022b]; Wang et al. [2022b]. These

115



5. Benchmarking quantum algorithms for quantum chemistry

results suggest that more expensive GSP methods could reduce the

total runtime, thus being acceptable over the HF reference. In accor-

dance, the resource estimation of the maximum allowed depth of a

GSP does not provide evidence against the use of VQE and more ex-

pensive heuristic methods. Further numerical and theoretical work

is needed to draw a more definitive conclusion.

This work sets a foundation to further explore resource efficiency

metrics for GSP and GSEE algorithms. It would be interesting to

apply the criteria introduced here to molecules and materials of in-

dustrial relevance Gonthier et al. [2022a] and further use them for re-

source estimations. Moreover, they could be adjusted to incorporate

logarithmic dependencies on the parameters or the recent GSEE al-

gorithm with an exponential improvement in the circuit depth Wang

et al. [2022d]. Finally, other GSP methods could play the role of the

reference method instead of the HF. It is challenging to assess what

combination of methods will ultimately be used in practice, and fur-

ther research will help evaluate the utility of various combinations

of GSEE and GSP methods.

5.2 Comparing Classical and Quantum Ground
State Preparation Heuristics

As already discussed in the previous section, one promising field

of quantum computation is the simulation of quantum systems,

and specifically, the task of ground state energy estimation (GSEE).

Ground state preparation (GSP) is a crucial component in GSEE al-

gorithms, and classical methods like Hartree-Fock state preparation

are commonly used. However, the efficiency of such classical meth-

ods diminishes exponentially with increasing system size in certain

cases. In this study, we investigated whether in those cases quantum

heuristic GSP methods could improve the overlap values compared

to Hartree-Fock. Moreover, we carefully studied the performance

gain for GSEE algorithms by exploring the trade-off between the over-
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lap improvement and the associated resource cost in terms of T-gates

of the GSP algorithm. Our findings indicate that quantum heuristic

GSP can accelerate GSEE tasks, already for computationally afford-

able strongly-correlated systems of intermediate size. These results

suggest that quantum heuristic GSP has the potential to significantly

reduce the runtime requirements of GSEE algorithms, thereby en-

hancing their suitability for implementation on quantum hardware.

5.2.1 Importance of numerical simulations and resource
estimations

The simulation of quantum systems is one of the more promising

applications of quantum computers Cao et al. [2019]. In particular,

many methods have been proposed to solve the ubiquitous task of

ground state energy estimation Poulin et al. [2018]; Lin and Tong

[2022a]; Wang et al. [2022d]. Unfortunately, the quantum resources

needed to solve this task for industrial applications is many millions

of physical qubits Kim et al. [2022a]; Goings et al. [2022c] and the

computations can take days to months to run. The value of large-

scale quantum computing will depend on the degree to which these

costs can be reduced Lee et al. [2022]; Katabarwa et al. [2023].

For the task of ground state energy estimation in both classical

and quantum computing, a critical subtask is ground state preparation.

Examples of approximate ground state preparation include Hartree-

Fock (HF) Echenique and Alonso [2007], configuration interaction

(CI) Sherrill and Schaefer III [1999], and density-matrix renormaliza-

tion (DMRG) Wouters et al. [2014]; Zhai et al. [2023]. The performance

of the ground state energy estimation method depends on the quality

of an approximate ground state, known as a trial or ansatz state Tub-

man et al. [2018]; Zhang et al. [2022]; Ding and Lin [2022a]; Dong et al.
[2022a]; the greater the magnitude of the inner product or overlap
between the ansatz and the true ground state, the more efficient the

ground state energy estimation can be.

This dependence has led to an increased interest in approximate
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ground state preparation (GSP) algorithms Tubman et al. [2018];

Fomichev et al. [2023]. The Hartree-Fock state preparation, one of

the most established classical methods for state preparation, is often

the baseline method for ground state preparation in quantum algo-

rithms for quantum chemistry. HF state preparation works well for

many systems Tubman et al. [2018], but in strongly correlated cases,

the overlap can decrease exponentially with the system size Lee et al.
[2022]. Recent works Gratsea et al. [2022]; Pathak et al. [2023] discuss

the cost-benefit ratio of quantum GSP over HF for the task of GSEE,

while other works focus on more expensive and accurate classical

GSP methods Elfving et al. [2020b]; Lee et al. [2022]; Babbush et al.
[2018b]. If quantum GSP methods offer a better trade-off between

performance and resource cost over HF, then the same holds for most

other classical chemistry methods Babbush et al. [2023].

Regardless of the recent progress in the field, there is still ongoing

research on how quantum GSP methods could significantly improve

the task of GSEE. A lot of progress has been made in GSP algorith-

mic development, but it remains unclear how costly these quantum

heuristic algorithms are in regard to GSEE algorithms. To tackle

such questions, numerical simulations of quantum heuristic GSP are

necessary to reach efficient ground state preparation as emphasized

in Lee et al. [2022]. In this work, we carefully evaluate the trade-

off of the resource cost in terms of the gate count for an improved

overlap value of the studied quantum heuristic GSP over classical

methods Gratsea et al. [2022].

Towards this goal, we perform numerical simulations and re-

source estimations motivated by the following questions:

• To what degree can GSP algorithms improve the ground state

overlap when the corresponding HF overlap has small values?

(see Sec. 5.2.2 and Fig. 5.4)

• Could quantum heuristic algorithms continue to improve the

ground state overlap beyond that of HF as we increase the

system size? (see Sec. 5.2.3 and Fig. 5.5)
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• Assuming the quantum GSP algorithms as subroutines of GSEE,

to what degree do they improve the performance while main-

taining moderate computational cost? (see Sec. 5.2.4 and Fig. 5.6)

We focus on two heuristic quantum GSP methods, the variational

quantum eigensolver (VQE) method known as separable pair ap-

proximation (SPA) Kottmann and Aspuru-Guzik [2022a] and the

ground state booster Wang et al. [2022b].The recent work Pathak

et al. [2023] explored similar aspects of the aforementioned ques-

tions but for the near-optimal “non-heuristic” GSP method of Lin

and Tong Lin and Tong [2020b]. Given the near-optimal provable

performance guarantees of such methods, we choose to investigate

heuristic ground state preparation techniques that stand to outper-

form these methods (though just empirically).

Here, we perform a detailed numerical analysis and resource es-

timation to compare heuristic ground state preparation techniques.

Quantitatively, we aim to determine the degree to which different

ground state preparation methods reduce the runtime of ground

state energy estimation. This involves estimating the overlaps be-

tween the ansatz states and the ground state as well as estimating

the number of quantum gates used to implement the circuits; as we

will explain, both components play a role in determining the runtime

reduction. As is common in fault-tolerant resource estimation Kim

et al. [2022b]; Goings et al. [2022c]; Beverland et al. [2022]; Pathak et al.
[2023], we will assume that the number of non-Clifford operations,

specifically T-gates, governs the runtime of the quantum circuit and

therefore measure runtimes in terms of circuit T-gate counts.

As a system of study, we use the 1-D hydrogen chains, which are

good candidates for strongly correlated multi-electron systems Kottmann

and Aspuru-Guzik [2022a]; Stair and Evangelista [2020]. Such sys-

tems capture many central themes of modern condensed-matter

physics Motta et al. [2020] and the essential features of the many-

electron problems in real materials Graner et al. [2019]. Interestingly,

even for such simple models as linear hydrogen chains, research

is still ongoing; only recently, fundamental ground state properties
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were computed in Ref. Motta et al. [2020].

This paper is organized as follows. In Sec. 5.2.2, we focus on

the first question posed on how quantum GSP methods can improve

small values of the HF overlap. In Sec. 5.2.3, we explore the perfor-

mance of quantum GSP methods as a function of the system size.

In Sec. 5.2.4, we analyze the speed-ups that quantum GSP methods

could give for the task of GSEE. Finally, we present the conclusions

and outlook in Sec. 5.2.5.

5.2.2 Quantum GSP performance over HF
In this section, we focus on the first question posed in the introduc-

tion: To what degree can GSP algorithms improve the ground state overlap
when the corresponding HF overlap has small values? Both the SPA and

booster algorithms have the potential to boost the overlap value even

when the value of the initial HF overlap is very small, though the gate

costs of the methods may need to increase as the overlap decreases

Kottmann and Aspuru-Guzik [2022a]; Wang et al. [2022b].

The SPA algorithms are variations of the VQE algorithm opti-

mized using a separable pair approximation (SPA), which assumes

that a (closed shell) 𝑁-electron system could be described by a wave-

function of 𝑁/2 electron pairs. Each electron pair is represented

by a wavefunction restricted to a disjoint subset of orbitals. Once

combined with specific circuit compilation strategies, they can give

classically tractable circuit classes with very short circuit depths.

Specifically, the circuit depths are constant with the system size 𝑁

and scale linearly with the basis size Kottmann and Aspuru-Guzik

[2022a]. Moreover, as with other variational methods like adiabatic

state preparation, the SPA does not necessarily require high overlap

between its input state (e.g., Hartree-Fock) and the true ground state,

as it can, in principle, prepare states orthogonal to Hartree-Fock due

to its unitary nature.

The booster algorithm implements a function 𝑓 (i.e., a Gaussian)

of a Hamiltonian𝐻, which suppresses the high-energy eigenstates of
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the Hamiltonian and enhances the low-energy ones in the expansion

of an initial state. These functions 𝑓 are referred to as boosters Wang

et al. [2022b]. Even though some initial non-zero overlap is necessary

for the booster algorithm to perform, it was demonstrated that it

can convert an increase in circuit depth into an increase in overlap

value, which in general, is not a feature of VQE-type algorithms. The

aforementioned question becomes quite interesting for the booster

algorithm if we limit the depth proxy 𝐷 (or truncation level, see

App. E.2 for more details) of the truncated Fourier expansion 𝑓𝐷 (𝐻)
of the booster function 𝑓 to a certain value. Then, boosting the over-

lap becomes more challenging but also practical for implementations

on early fault-tolerant quantum hardware Katabarwa et al. [2023].

In Fig. 5.4, we compare the behavior of the SPA algorithm to

restricted HF for the system of𝐻6 with 8 spin-orbitals or qubits in an

adapted basis (MRA-PNO basis) Kottmann et al. [2021b] for a range

of bond distances (i.e. the spacing between hydrogen atoms). As

already discussed, the SPA algorithm can improve the performance

over the initial HF overlaps even when the HF fidelity has a very small

value, i.e., 10
−7

. Interestingly though, while the HF overlaps decrease

exponentially as we increase the bond distance, the overlaps obtained

with the SPA remain approximately constant. Even better, in the case

of the booster algorithm, the squared overlaps are approximately

equal to one for all bond distances.

For each bond distance shown in Fig. 5.4, we used different circuit

variants of the SPA algorithm Kottmann and Aspuru-Guzik [2022a]

and plotted the variants that give the maximum overlap. Specifi-

cally, for the 𝐻6 molecule, we have the following variants SPA+GAS,

SPA, SPA, SPA+GS, SPA+GS, and SPA+GS (referred to as "SPA+X" in

Fig. 5.4) for the corresponding bond distances 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 Å.

The three variants supplement the SPA with unitary singles excita-

tions: S adds singles from occupied to virtual orbitals, GS adds single

excitations between all orbitals, and GAS approximates the singles

by neglecting Pauli-𝑍 operations in the Jordan-Wigner encoding.
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Figure 5.4 Here we plot the HF, SPA+X with approximates orbital rotations

on different levels: 𝑋 ∈ GS, GAS, and booster |⟨Ψ𝐺𝑆𝑃 |Ψ0⟩|2 for the 𝐻6

system with MRA-PNO basis set for an increasing bond distance.

5.2.3 Performance of quantum GSP algorithms versus
system size

Next, we investigate the second question posed in the introduc-

tion: Could quantum heuristic algorithms improve the ansatz overlap in
terms of the exponential decrease with the system size?

To this end, we explore the behavior of the hydrogen chains 𝐻𝑛

with 𝑅(𝐻 − 𝐻) = 3.0 Å in terms of the overlaps as a function of

the system size 𝑛 ∈ {2, 4, 6, 8}. We use the MRA-PNO basis for 𝐻𝑛 ,

which is closer to being complete compared to the minimal basis and

122



5. Benchmarking quantum algorithms for quantum chemistry

is a better proxy for real-world use cases. Therefore, we have 𝐻𝑛 for

𝑛 ∈ {2, 4, 6, 8} with 4, 8, 12, 16 spin-orbitals or qubits respectively in

an adapted basis Kottmann et al. [2021b].

In Fig. 5.5, we plot the HF, SPA-variants, and booster fidelities

for the hydrogen chains 𝐻𝑛 . In App. E.1, we plot the aforemen-

tioned fidelities for the same systems but with STO-3G basis set for

comparison following Kottmann [2022] (see Fig. E.1). In Fig. 5.5, we

have used the following SPA-variants (referred to as "SPA+X"): SPA,

SPA+S, SPA+GAS, SPA+GS for 𝑛 equal to 2, 4, 6, 8, respectively.

2 4 6 8
n
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10 1

100

|
G

SP
|

0
|2

Hn

HF
SPA+X
booster

Figure 5.5 Here we plot the HF, SPA+X, and booster overlap squared for the

𝐻𝑛 systems with MRA-PNO basis set and bond distance 𝑅(𝐻 −𝐻) = 3.0 Å

for increasing system size 𝑛.

While the HF fidelities drop exponentially with the system size 𝑛,

the SPA algorithm gives more consistent performance. Interestingly
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though, the booster algorithm gives the maximum fidelity for all

system sizes 𝑛. Potentially, for the case of 𝑛 = 8, the SPA algorithm

performance could be further improved.

Generally, the SPA algorithm optimizes the orbitals to give the

best energy in the chosen electron pair model which was approxi-

mated through pair natural orbitals in the original work Kottmann

and Aspuru-Guzik [2022a]. Some molecular instances though, re-

quire different shapes of orbitals to be optimal for SPA wavefunctions

and the success of the orbital optimization depends on good initial

guesses, which is, for example, relevant for 𝐻𝑛 = 8 in Fig. 5.5.

Moreover, the SPA-variant could be further optimized since the

SPA+GS depends on the initial guess of ansatz parameters, taken

to be "random-close-to-zero" throughout this work, but with suit-

able intuition as in Kottmann [2022], the fidelity can be increased

to around 90%. Extensive numerical analysis, to this end, goes be-

yond the scope of this work, which aims to analyze state-of-the-art

procedures that can be applied in a semi-automatic way.

Another important factor for VQE algorithms relates to the num-

ber of individual measurements 𝑀 that affect the runtime linearly

and grow inversely proportional to the square of the total energy

estimation error. This error can be expressed as 𝜂 + 𝜖, where 𝜖 refers

to the ansatz expressivity error, while 𝜂 to the sampling error with

𝜂 ≤ 𝜖 Gonthier et al. [2022a]. In the worst case, 𝜂 = 𝜖 which suggests

that 𝑀 grows as 1/(2𝜖)2).
Generally getting the energy error within 𝜖 does not guarantee

that the fidelity error will be within the desirable precision Mayer

[2003]; Saad [2011]. But in certain cases, like the studied 𝐻6 system

we end up with an acceptable error in both the energy (𝜖 = 17.9𝑚𝐻𝑎)

and fidelity (𝐹 = 0.94) estimations. Specifically, the energy estima-

tion of the VQE algorithm within 𝜖 = 17.9𝑚𝐻𝑎 is acceptable in sce-

narios where QPE will be applied and improve the energy estimation

to within chemical accuracy. Next, the efficiency criteria introduced

in Gratsea et al. [2022] are satisfied which renders the VQE algorithm

studied here as an acceptable quantum GSP over HF. This is because
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the fidelity provides a high success rate and a significant speedup in

the total runtime of the GSEE algorithm.

Usually, chemical accuracy 𝜖0 = 1.6𝑚𝐻 is the target for the en-

ergy estimation error 𝜖 of a VQE algorithm, but as discussed in the

example above a larger energy error, i.e. 𝜖 = 17.9𝑚𝐻𝑎, might be

acceptable. In that case, we are afforded a significant reduction in

the number of measurements 𝑀0/𝑀 = 𝜖2/𝜖2

0
= 100 required for

a single energy evaluation of the VQE algorithm. The decreased

sampling rates might negatively affect the gradient computations of

VQE Sweke et al. [2020]; Gonthier et al. [2022a], but in the studied

VQE algorithm the SPA angles could be optimized classically and

avoid the aforementioned issue.

5.2.4 Speed-ups of quantum GSP algorithms over HF
In this section, we focus on the last question posed in the introduc-

tion: Assuming the quantum GSP algorithms as subroutines of GSEE,
what speed-ups could they offer? To this end, we first apply the accept-

ability criteria introduced in the recent work of Gratsea et al. [2022].

According to this work, to determine whether to accept or reject a

GSP over the HF we need to carefully examine the cost-benefit ratio,

i.e., the resource cost needed to gain an increased overlap value.

In Table 5.1, we present the circuit depths of the studied SPA-

variant circuits after compiling the unitaries containing single- and

double-excitation gates to single-qubit Pauli rotations 𝑅 and CNOT

gates (see App. E.6). Then, each Pauli rotation is assumed to be imple-

mented as a Cliffort+T circuit following the suggestion in Ref. Ross

and Selinger [2016] giving the total T-gate count of

T-count ≈ 3 × 𝑅 × log
2

(
1

𝛿

)
, (5.22)

where 𝛿 is the necessary precision per gate for operating 𝑅 gates. As

described in App. E.5, we choose 𝛿 through the failure tolerance 𝛿𝐶
of the GSP circuit. that we are willing to tolerate. If we set the circuit

125



5. Benchmarking quantum algorithms for quantum chemistry

failure tolerance to 𝛿𝐶 = 0.001 for all 𝑛, we get the respective values

of 𝛿 (see Table 5.1 and App. E.5 for more details). Note that the main

conclusions will not significantly depend on the value of the failure

tolerance.

In Table 5.1, we also give the T-gate counts of the method among

the SPA variants with the fewest T-gates per circuit. Moreover, we

report the T-gate counts of the SPA+GS as a proxy for more advanced

methods where explicit representations of the orbital rotations in the

circuit are necessary, as for example in Kottmann [2022] or in case the

following GSEE would require the Hamiltonian to be in a different

orbital representation. As shown in table 5.1, the 𝐻2 system remains

on the SPA level as it is already represented exactly.

Next, we estimate the T-gate counts 𝑇𝐺𝑆𝐸𝐸 of the GSEE algorithm

for the 𝑛 system size by using the OpenFermion resource estimation

module McClean et al. [2020]. Specifically, we get the estimated

resources in terms of Toffoli gate count for single factorized QPE as

described in Ref. Motta et al. [2021]; Berry et al. [2019]; Lee et al. [2021].

To convert the Toffoli gate count to T-gate we assumed Toffoli =

4 × T-gate Jones [2013].

Table 5.1 The lower (𝑇𝑆𝑃𝐴) and upper (𝑇𝑆𝑃𝐴+𝐺𝑆) bounds on the T-gate counts

of the SPA circuits for 𝐻𝑛 . Also, we give the T-gate counts of the GSEE

algorithm (𝑇𝐺𝑆𝐸𝐸).

𝐻𝑛 𝑇𝑆𝑃𝐴 𝑇𝑆𝑃𝐴+𝐺𝑆 𝑇𝐺𝑆𝐸𝐸
𝐻2 21 21 9.6 × 10

5

𝐻4 46 4.2 × 10
3

1.3 × 10
7

𝐻6 72 1.1 × 10
4

5.2 × 10
7

𝐻8 100 2.2 × 10
4

1.6 × 10
8

Comparing the T-gate counts of the SPA and GSEE algorithms

shown in Table 5.1, we observe that𝑇𝐺𝑆𝐸𝐸+𝑇𝑆𝑃𝐴+𝑋 ≈ 𝑇𝐺𝑆𝐸𝐸. Then, as

discussed in Gratsea et al. [2022], the acceptability criterion becomes

1 <
(
𝛾
𝛾0

)𝛼+𝛽
, where 𝛾 and 𝛾0 correspond to SPA and HF overlap, re-
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spectively. Here 𝛾𝛽
is the scaling of the gate complexity of the ground

state energy estimation circuit (excluding the state preparation) while

𝛾𝛼
is the scaling of the number of circuit repetitions needed to ensure

the success for the given GSEE algorithm Dong et al. [2022a]. Given

the criterion’s dependence on the sum of these parameters and taking

a few example algorithms from Dong et al. [2022a], we consider the

GSEE algorithms to be represented by 𝛼+𝛽 = {1, 2, 4}. For example,

𝛼 + 𝛽 = 1, 2 and 4 correspond to the works of Lin and Tong [2020c];

Knill et al. [2007] and Lin and Tong [2022b], respectively. Generally,

a lower sum indicates a more-performant GSEE algorithm. Figure

5.6 demonstrates that the SPA-variants are acceptable for all of the

aforementioned values of 𝛼 + 𝛽 over the HF state preparation for the

𝐻𝑛 systems shown in Fig. 5.5.

According to Gratsea et al. [2022] the speed-up ratio becomes

𝑇0

𝑇
=(

𝛾

𝛾0

)𝛼+𝛽
, where 𝑇0 and 𝑇 refers to running the GSEE algorithm with

HF and SPA-variants as subroutines for ground state preparation,

respectively. In Fig. 5.6, we plot the aforementioned speed-up ratios

for the values of 𝛼 + 𝛽 ∈ [1, 2, 4].
Next, we perform the same analysis, but with the low-depth

booster as the GSP method. In that case, the circuit depth (measured

as the number of accumulated controlled-exp (2𝜋𝑖𝐻) operations) is

2𝐷 where 𝐷 is the depth proxy (or truncation level) of the truncated

Fourier expansion of 𝑓𝐷 (𝐻) (see App. E.2).

Given that the booster operation can be implemented with the

linear combination of unitaries (LCU), we use a Trotter decompo-

sition with one Trotter step to estimate the lowest cost in terms of

Pauli rotations 𝑅 and CNOT gates (see Table E.3). We can convert

the Pauli rotations to T-gates using Eq. 5.22 (see 𝑇𝐾=1 in Table 5.2).

The cost of the booster circuits in T-gate count is 𝑇𝐵 = 2𝐷𝐾𝑇𝐾=1 (see

Table 5.2), where 𝐾 is the number of total Trotter steps required.

A more detailed analysis of the booster resource estimation can be

found in App. E.2.
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Figure 5.6 Here we plot the speed-up ratios 𝑇0/𝑇 for SPA+X and booster

algorithms over HF of 𝐻𝑛 system for an increasing system size 𝑛 and bond

distance 𝑅(𝐻 −𝐻) = 3.0 Å. The 𝛼 and 𝛽 parameters are scaling parameters

for GSEE algorithms

The recent work of von Burg et al. [2021] empirically found that

the required number of Trotter steps 𝐾 for the 1-D Hydrogen chain

is approximately equal to 10 and we discuss in more detail the ap-

plicability of this result in our case in App. E.3. In this work, we fix

𝐷 = 10, since it is sufficient for the booster to give overlap values

equal to 1.0 with the respective success probability 𝑃𝑠𝑢𝑐𝑐 shown in

Table 5.2. The 𝑇𝐺𝑆𝐸𝐸 is the same as in Table 5.1.

Following the work of Gratsea et al. [2022], we can calculate the

speed-up ratio

𝑇0

𝑇
. Here we drop the 𝑂̃ by using the T-gate counts

128



5. Benchmarking quantum algorithms for quantum chemistry

Table 5.2 We present the important factors for the booster resource estima-

tion analysis: the success probability (𝑃𝑠𝑢𝑐𝑐) and the total T-gate counts (𝑇𝐵)

along with the T-gate counts 𝑇𝐾=1 of the Trotter decomposition with one

Trotter step 𝐾 = 1 and of the GSEE algorithm (𝑇𝐺𝑆𝐸𝐸) for 𝐻𝑛 .

𝐻𝑛 𝑃𝑠𝑢𝑐𝑐 𝑇𝐾=1 𝑇𝐵 𝑇𝐺𝑆𝐸𝐸
𝐻2 0.46 9.3 × 10

2
1.9 × 10

5
9.6 × 10

5

𝐻4 0.027 5.6 × 10
4

1.1 × 10
7

1.3 × 10
7

𝐻6 1.1 × 10
−4

3.5 × 10
5

7.0 × 10
7

5.2 × 10
7

𝐻8 1.1 × 10
−4

1.3 × 10
6

2.6 × 10
8

1.6 × 10
8

presented in Table 5.2 for both the booster and GSEE algorithm.

Thus, the acceptability criteria can be written as

𝒯0

𝒯 =

(
𝑇𝐺𝑆𝐸𝐸

𝜖̃𝛾
𝛼+𝛽
0

)
(

1

𝛾𝛼

(
𝑇𝐵

𝑃𝑠𝑢𝑐𝑐
+ 𝑇𝐺𝑆𝐸𝐸

𝜖̃𝛾𝛽

)) , (5.23)

where 𝑇𝐵 and 𝑇𝐺𝑆𝐸𝐸 are the T-gate counts of the booster and GSEE

algorithm with target accuracy 𝜖̃. In Fig. 5.6, we plot the speed-up

ratios for the systems presented in Fig. 5.5 with the corresponding

T-gate counts presented in Table 5.2 (see App. E.4 for the respective

overlap values). According to the work of Gratsea et al. [2022], since

all speed-up ratios are larger than one, the booster is acceptable over

HF for all system sizes presented in Fig. 5.6.

5.2.5 Discussion and Outlook
We performed simulations on small strongly correlated systems 𝐻𝑛

with an increasing bond distance 𝑅(𝐻 −𝐻) and system size 𝑛. These

systems show a rapid decrease in fidelity between the restricted

Hartree-Fock state and the ground state. On the contrary, both quan-

tum GSP methods studied, i.e., SPA and booster, give fidelities close
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to 1.0. Similar performance is observed in Fig. 5.5, where we study

different hydrogen chains with increasing system size 𝑛 ∈ [2, 4, 6, 8].
Following the work of Gratsea et al. [2022], we also focused on

the cost-benefit ratio for the quantum GSP methods for the task of

GSEE. In Fig. 5.6, we plot the speed-up ratios gained by using the

SPA and booster algorithm over the HF for the studied 𝐻𝑛 systems

with increasing size 𝑛. The 𝛼 + 𝛽 determines the dependence of the

GSEE algorithm on the ground state overlap 𝛾, i.e. (𝛾)−(𝛼+𝛽) Dong

et al. [2022a]. Therefore, as suggested by Fig. 5.6, the smaller the

value of 𝛼+ 𝛽, the smaller the speed-up ratio gained by the quantum

GSP algorithm over the HF.

To put these results into context, recently there have been ongo-

ing research on whether quantum GSP methods are necessary over

classical ones. Different works have stressed the difficulties with

classical GSP methods and the related problem of vanishing over-

laps for certain chemical systems Kohn [1999]; Lee et al. [2022]. But

other works have proposed that classical state preparation methods

should not be a limiting factor in phase estimation even for large

or strongly-correlated systems Goings et al. [2022c]; Tubman et al.
[2018].

Our work suggests that quantum heuristic GSP methods could

be beneficial over classical ones by reducing the runtime require-

ments of the GSEE algorithms in which they are used. Even for

computationally affordable (i.e. requiring few resources and time to

complete) strongly-correlated systems of intermediate size, i.e. 𝐻𝑛

with 𝑛 ∈ [4, 6, 8], we observe significant speed-ups over HF method

for both SPA and booster algorithm. Already for 𝑛 = 4 we report an

order of magnitude speed-up for both studied GSP methods, while

for most instances of 𝑛 and 𝛼+ 𝛽 we have many orders of magnitude

runtime improvement.

Most literature that explores runtime improvements of quantum

algorithms on quantum chemistry tasks has focused on large-scale

systems and materials Kim et al. [2022b]; Lee et al. [2022]; Goings

et al. [2022c]. However, recent works on classical chemistry methods
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establish the linear hydrogen chain as a benchmarking system for nu-

merical simulations Motta et al. [2020]; Stair and Evangelista [2020];

Graner et al. [2019]. Thus, despite its simplicity, the hydrogen chain

incorporates a rich set of physical and chemical properties Motta

et al. [2020] and could be used as a benchmarking set to help develop

quantum computing applications for quantum chemistry.

In principle, the success of the studied quantum GSP algorithms

for the hydrogen chains could have been predicted but not the exact

values of the scaling. For example, other systems that could exhibit

similar behavior with the 1-D hydrogen chains are linear and cyclic

organic molecules with pi-bonds (for example, alkenes or aromatic

hydrocarbons 𝐶𝑛𝐻𝑛).

There are several directions following this line of exploration that

we leave for future work. First, it would be important to assess the

GSEE runtime savings in cases where the HF state preparation may

have an associated cost. In this paper, we assumed that HF state

preparation is a cost-free operation on quantum hardware, which is

valid in second quantization of the Hamiltonian but not necessar-

ily valid with other approaches such as first quantization Su et al.
[2021]. It would be important for future work to re-evaluate the con-

clusions of this paper using such methods where the Hartree-Fock

preparation incurs a T-gate cost.

Second, the analysis could be extended to hydrogen chains with

an increased system size 𝑁 Fomichev et al. [2023] and with different

bond distances and geometries Stair and Evangelista [2020]. The

studied bond distance 3.0 for the linear hydrogen chain corresponds

to a Mott insulator phase Motta et al. [2020]; Graner et al. [2019], and

the correlations can be characterized by a spin-1/2 Heisenberg chain.

Decreasing the bond distance below 1.7 Motta et al. [2020]; Graner

et al. [2019] will allow us to study significant subjects in quantum

material physics, such as metal-insulator transitions and magnetism.

As ground-state energy estimation is one of the most promising

tasks for realizing on quantum computers, our work sheds light on

how quantum heuristic GSP algorithms could reduce the runtime
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requirements of GSEE, and, therefore, make them more realistic for

implementations on quantum hardware. Our work highlights that

runtime improvements could be achieved for the task of GSEE by

quantum heuristic GSP methods over HF for computationally af-

fordable strongly correlated systems of intermediate size, like linear

𝐻𝑛 with 𝑛 ∈ [4, 6, 8], which can capture interesting physical phe-

nomena. This work aims to elucidate the landscape of methods that

might someday be used to solve utility-scale problems in quantum

chemistry.

5.3 Conclusions
This work is one of the first attempts to benchmark the performance

of quantum and classical algorithms by incorporating both the re-

source cost (in terms of quantum circuit depth) and performance

boost (in terms of overlap achieved between the prepared and true

ground state of the studied system). This study performs a care-

ful analysis of how quantum algorithms could perform in quantum

chemistry computationally affordable strongly-correlated systems of

intermediate size. Next, it would be interesting to perform the same

analysis to larger quantum systems.
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Chapter 6

Early fault-tolerant quantum
computing

The previous chapter focused on the performing a resource estima-

tion on two different quantum algorithms for the task of ground state

energy estimation (GSEE). Generally, extensive research is performed

to evaluate the capabilities of quantum computing for specific appli-

cations and the required quantum computation power that will be

necessary towards this end. This computation power of the quan-

tum hardware is usually labeled as Noisy-Intermediate quantum

computing (NISQ) or fault-tolerant quantum computing (FTQC) de-

vices. NISQ refers to the quantum computing devices available today

with approximately 100 qubits and 100 circuit depth, while FTQC

corresponds to quantum computing devices with full quantum er-

ror correction capabilities. But what seems necessary for further

advancing the field of quantum computation in a timely manner is

bridging this dichotomy between NISQ and FTQC. To this end, the

regime of early fault-tolerant quantum computing comes into play.

This work aims to discuss how research could drive the transition

from NISQ to FTQC:
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NISQ : In the seminal paper from J. Perskill in 2016, the term noisy

intermediate scale quantum computers (NISQ) was introduced. Even

though the definition of the term was not very strict it characterized

the quantum devices with a small number of qubits and circuit depth

where quantum error correction is too costly to be implemented on

hardware. Since then, the NISQ era has seen significant progress

in reducing the error rates characterizing the quantum hardware.

There are numerous experimental demonstrations that current quan-

tum devices could still perform certain tasks in the regime of small

number of qubits and shallow circuit depth despite all the problems

that arise. Of course, the pressing question is whether this era could

give practical quantum advantage, i.e. showcase that these devices

are capable of performing tasks with, for example, industrial rel-

evance by either aiding classical quantum computers or targeting

tasks beyond the capabilities of classical computation. Interestingly,

this now brings the question back to quantum algorithm developers

to come up with interesting problems that current quantum devices

could tackle in the range of 100 qubits and 100 circuit depth.

FTQC : The seminal papers of P.Shor and others, introducing the

Shor’s algorithm and quantum error correction, revolutionized the

understanding of the capabilities of quantum computation. Un-

fortunately, the cost of these operations on quantum hardware are

beyond the capabilities of NISQ devices and further research will be

necessary in the span of the following decades to make this a reality.

Interesting results have been discussed on the potential capabilities

of FTQC from complexity theorem and resource estimation analysis

to further quantify the performance of these devices and the potential

quantum advantages that could be unlocked in this regime.

NISQ-to-EFTQC-to-FTQC : But what seems necessary for further

advancing the field of quantum computation in a timely manner is

bridging this dichotomy between NISQ and FTQC. To this end, the

regime of early fault-tolerant quantum (EFTQC) computing comes
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into play. The EFTQC regime could help better understand how the

transition from NISQ to FTQC could be realized in practice. For

example, studying the interplay between QEM and QEC can char-

acterize the transition from NISQ-to-EFTQC. Introducing realistic

noise models that capture the performance of quantum devices can

guide algorithm developers in exploiting the capabilities of quan-

tum hardware. Another interesting direction to further work on

is the transition from EFTQC-to-FTQC. To this end, benchmarking

quantum algorithms that traditionally belong to EFTQC and FTQC

could help understand what problem sizes in terms of number of

logical qubits each algorithm could tackle for the same number of

physical qubits and error correction scheme. The EFTQC era could

help bridge the gap between NISQ and FTQC regimes and the cor-

responding efforts in these two fields of quantum computation.

The original results presented in this chapter are based on Katabarwa

et al. [2023], a joint collaboration with A. Katabarwa, A. Caesura and

P. D. Johnson.

6.1 Introduction

Quantum computers were first proposed to efficiently simulate quan-

tum systems Feynman [1982b]. It then it took about a decade before it

was discovered that quantum phenomena, such as superposition and

entanglement, could be leveraged to provide an exponential advan-

tage in performing tasks unrelated to quantum mechanics Deutsch

and Jozsa [1992]. Although of no practical use, the Deutsch–Jozsa

algorithm sparked interest in using a quantum computer to perform

other tasks beyond simulating quantum systems Grover [1997]; Bern-

stein and Vazirani [1993], the most famous case being Shor’s algo-

rithm ?. Around the same time the ground-breaking discovery of

quantum error correcting codes (QECC) Shor [1995]; Steane [1997];

Laflamme et al. [1996]; Knill and Laflamme [1996]; Calderbank et al.
[1997] set the stage for practical quantum computing. This showed
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that errors due to faulty hardware could not only be identified but

also corrected. Two pieces of the puzzle were left, namely:

1. Could quantum computation be done in a fault tolerant manner

i.e. could error-corrected qubits perform better than physical

qubits?

2. Can one rigorously prove the existence of a threshold1 below

which error can be reduced exponentially in the time and mem-

ory overhead cost?

The first piece of the puzzle was tackled by Peter Shor Shor and later,

building on his work, threshold theorems were proved assuming

various kinds of error models Aharonov et al. [2006]; Aharonov and

Ben-Or [2008a]; Kitaev [2003]. For a specific quantum error correct-

ing code and a noise model it is then left to prove and find error

thresholds, with early works being Aliferis and Leung [2006]; Alif-

eris and Preskill [2008]; Aliferis et al. [2008, 2006]; this continues to be

an active area of research Fowler et al. [2012]; Kovalev and Pryadko

[2013]; Breuckmann and Eberhardt [2021]; Cohen et al. [2022].

Meanwhile on the hardware side, astonishing progress has been

made across various modalities (e.g. superconducting, ion trap,

photonic, etc.) in terms of extending qubit coherence times and im-

proving entangling operations Wintersperger et al. [2023]; Shi [2022];

Debnath et al. [2016]; Hanneke et al. [2009]; Monroe et al. [1995]; Bao

et al. [2018]; Chen et al. [2014]. Driven by such advances, a water-

shed moment occurred in 2016 when IBM put the first quantum

computer on the cloud giving the public access to quantum com-

puters. This event spurred widespread interest in finding near-term

quantum algorithms that did not need the full machinery of fault

tolerance. These algorithms first formulate the problem as a solution

to the ground state of some Hamiltonian store a trial ansatz on the

quantum processing unit (QPU) and use a classical optimizer to find

1A further requirement is that realistic assumptions be made on the noise

model.
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the optimal parameters. The variational principle guarantees that

the optimized parameters will produce a state whose energy upper

bounds that of the target Hamiltonian. These so called hybrid quan-
tum/classical algorithms allow one to use short depth quantum cir-

cuits and reduce the need for high quality quantum coherence. They

have found application in areas of quantum chemistry Peruzzo et al.
[2014b], machine learning Liu and Wang [2018b]; Dallaire-Demers

and Killoran [2018] and optimization Farhi et al. [2014]. Another wa-

tershed moment occurred when the Google Quantum AI team along

with collaborators announced their achievement of so-called “quan-

tum supremacy” Arute et al. [2019a]; they argued that their hardware

accomplished a computational sampling task far faster than possible

with available supercomputers.

Despite this progress, there is still need to reduce errors and

the area of quantum error mitigation arose as attempts were made to

meet the needs of these applications Temme et al. [2017]; Czarnik et al.
[2021]; Giurgica-Tiron et al. [2020]; Huggins et al. [2021]; van den Berg

et al. [2023]. This way of using a QPU is what is characteristic of the so

called NISQ era Preskill [2018]. Although there is no strict definition

of what constitutes a NISQ device it can generally be assumed that

NISQ devices are too large to be simulated classically, but also too

small to implement quantum error correction. IBM’s work Kim et al.
[2023b] in some sense is the true dawn of the NISQ era i.e a quantum

device where error mitigation is important and classical simulation

is hard. The flurry of work Kechedzhi et al. [2023]; Tindall et al.
[2023]; Begušić and Chan [2023] immediately arose pushing classical

methods of simulation and claiming to reproduce IBM’s results. This

is a new phase in which NISQ devices will be put to the test by

state of the art classical simulators and vice-versa. This back and

forth will not last long as Hilbert space for quantum systems grows

exponentially and the NISQ device will be the only viable simulation

approach.

But an important question remains and in a very obvious sense

the elephant in the room is, “are NISQ devices and NISQ algorithms
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up for the task of realizing quantum advantage at utility scale?”

Work has been done in quantum chemistry where the problem can

be precisely asked, for example, in finding the ground state of large

molecules. The best estimates so far for resource estimates suggest

the variational quantum eigensolver (VQE) is not up to the task

Gonthier et al. [2022b]. Other work suggests a possible quantum

advantage for the quantum adiabatic optimization ansatz (QAOA)

Farhi and Harrow [2016]; Shaydulin et al. [2023]; Lykov et al. [2023]

in optimization but it remains to be seen whether these claims can

be confirmed in the presence of noise at scale.

Given these roadblocks, should our attitude be to wait for fully

fault tolerant devices? An area of research offers an intriguing pos-

sibility; we are offered a trade-off, we require fault tolerant quantum

computing but the ability to run smaller quantum circuits at the cost

of requiring more sampling for the quantum device. Such a trade-off

has been the focus of a substantial amount of research in the past

few years Wang et al. [2019]; Parrish and McMahon [2019]; Wang

et al. [2021]; Giurgica-Tiron et al. [2022b]; Klymko et al. [2022]; Wang

et al. [2023a]; Dong et al. [2022b]; Wang et al. [2022c]; Ding and Lin

[2022b]; Kirby et al. [2023] However, in a regime where we are able

to arbitrarily scale the number of physical qubits while maintaining

quality fault-tolerant protocols, such a trade-off would not be favor-

able; by increasing the circuit size using methods such as quantum

amplitude amplification Cleve et al. [1998], the additional overhead of

efficient fault-tolerant protocols is negligible compared to the overall

reduction in runtime. Accordingly, such a trade-off would be better

suited to a setting in which the efficiency of fault-tolerant protocols

worsens with increasing system size. If the ability to scale the num-

ber of physical qubits (i.e. the “scalability”) is compromised by a

worsening of the operations, then this diminishing returns will, in

turn, limit size of problems that can be solved. Such a regime of

computation has been referred to as early fault tolerant quantum com-
puting (EFTQC) Campbell [2021], a natural successor to the NISQ

era. A field of research has emerged recently where the proposed
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quantum algorithms enable this “circuit-size vs sample-cost” trade-

off Wang et al. [2019]; Zhang et al. [2021]; Wang et al. [2021]; Lin and

Tong [2022a]; Wan et al. [2022]; Giurgica-Tiron et al. [2022b]; Dong

et al. [2022b]; Ding and Lin [2023]; Wang et al. [2022a, 2023b]. Two

questions are then placed before us:

1. Will this regime of limited-scale quantum computers exist in a

meaningful way?

2. If so, will we be able to unlock intrinsic quantum value at scale

in this regime?

The ultimate answers to these questions will depend on hard-to-

predict factors including hardware, QECC and quantum algorithm

advances, and improvements in competing classical hardware and

algorithms. Rather than predicting the timeline of these advances,

we propose a quantitative framework to track their progress. Fig-

ure 6.1 depicts the landscape in which this framework assesses the

ability of a given hardware vendor to supply useful physical qubits,

transitioning from NISQ to EFTQC to FTQC.
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Figure 6.1 This figure roughly demarcates the regimes of NISQ, EFTQC,

and FTQC according to the scalability model introduced in Section 6.2. The

vertical axis quantifies the base error rate (i.e. that achievable for a single-

qubit), while the horizontal axis quantifies the ability of the architecture to

maintain low error rates as it is scaled (i.e. its scalability). Contours indicate

the maximum physical qubit number that the architecture is warranted in

scaling to as predicted by the scalability model of Equation 6.3. The NISQ-

to-EFTQC transition is characterized by having enough qubits to implement

fault-tolerant non-Clifford operations (e.g. T factories), while the EFTQC-

to-FTQC transition is characterized by the ability to accommodate very

large problem instances (e.g. encoding 10,000 logical qubits using in 10
9

physical qubits). The red x corresponds to data presented in Section F.1,

which estimates that a hardware vendor of today (IBM) has a scalability of

1.75 with 𝑝0 = 0.005. An editable version of the plot can be accessed here:

https://www.desmos.com/calculator/9iphmmdjfp
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To address the first question we propose a very simple model (see

Equation 6.3) to quantitatively discuss these regimes. This simple

model describes how the quality of elementary quantum operations

degrade as system size is increased; that is, we model the physical

gate error rate as a function of physical qubit number. We dub this

model the scalability of a device. For the second question, we quantify

how recently-developed algorithms can extend the “reach” of quan-

tum computers with limited scalability. This is an important step

towards understanding what value such methods can provide. Two

results that we will establish (see Equations 6.10 and 6.12) are that,

according to the scalability model, the optimal number of physical

qubits to use in the architecture is the following function of scalability

parameter 𝑠

𝑄
opt

phys
=

1

𝑒2

(
𝑝

th

𝑝0

) 𝑠
(6.1)

and the maximum problem size, measured in terms of the largest

number of logical qubits, is predicted to be
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𝛽
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ª®¬
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The various parameters are defined in Section 6.2.2. We will ul-

timately explore so-called “EFTQC algorithms”, which enable an

increase in𝑄max

𝐿
. We will explain how these expressions show 1) the

importance of the scalability parameter 𝑠 in governing the capabil-

ities of a quantum hardware vendor and 2) the role played by the

“fault-tolerance burden factor”
𝐴𝛼
𝑝𝐶

, that combines gate count, error

correction, and algorithm robustness parameters. These elucidate

multiple ways to improve a quantum computation towards solving

utility-scale problem instances in the finite-scalability regime.
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6.2 Modeling Early Fault-tolerant Quantum
Computations

6.2.1 Introduction to the scalability model
In this section we establish and discuss the precise sense in which a

device can be an early fault tolerant device. We first note the tension in

the very phrase early fault tolerance. Fault-tolerance evokes the ability

to ensure efficient suppression of error despite the use of faulty oper-

ations Shor. The string of results Aharonov and Ben-Or [2008b]; Knill

and Laflamme [1996]; Aliferis et al. [2008]; Aharonov et al. [2006] col-

lectively known as the threshold theorems show that in principle this

can be achieved. In fact thanks to these results we know Aharonov

et al. [2006] that under quite general assumptions such as allowing

for long range correlations of noise and non-Markovianity, fault-

tolerance is still possible. These foundational works would put the

threshold error rate around 10
−5

to 10
−6

. However, more optimistic

threshold predictions have been made using numerical investiga-

tions Zalka [1996]. For the surface code Dennis et al. [2002], which is

a leading contender for practical quantum computing AI [2022], such

simulations have led to the prediction of quite optimistic thresholds

of ∼ 1% Wang et al. [2011], which have also been argued for an-

alytically Fowler [2012]. On the other hand, numerical thresholds

are based on particular assumptions of noise and error that cannot

fully capture the complexity of quantum architectures at scale. For

example, an important assumption is that a single number can be

used to capture the performance of operations and that this single

number remains constant as larger code distances2 are used Wang

et al. [2011]. Such thresholds have become the established targets

for hardware developers Xue et al. [2022]; Blume-Kohout et al. [2017];

2In the surface code, the degree of resilience to error is controlled by the size

of the two-dimensional grid of qubits used to encode each qubit. The minimal

number of single-qubit errors needed to cause a logical error, or the code distance,

is the diameter of the two-dimensional grid of qubits.
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Postler et al. [2022]; Egan et al. [2020].

The "early" in "early fault tolerance" on the other hand suggests

some kind of limited ability to achieve fault tolerance i.e using poly-

nomial amount of resources to achieve exponential error suppres-

sionGottesman [1997]; Raussendorf et al. [2006]. This tension is what

lies behind the motivation for this work.

A key insight towards resolving this tension is to realize what we

might call the scalability requirement:

In order to reap the benefits of being below any threshold, an
approach to building a quantum architecture must be able to
maintain each operation below the threshold error rate as larger
and larger architectures are built.

The failure to achieve the scalability requirement implies the ex-

istence of scale dependent errors. To motivate where these scale

dependent errors might come from we consider the general setup

used to prove the threshold theorem. It is assumed we have the

following Hamiltonian as

ℋ = ℋ𝑆 +ℋ𝐵 +ℋ𝑆𝐵 ,

where ℋ𝑠 is the hamiltonian governing the evolution of the system

which for our discussion can be the evolution corresponding to im-

plementing the quantum gate,ℋ𝐵 governs the evolution of some bath

and ℋ𝑆𝐵 entangles the bath with the qubits in the computation. The

scale dependent errors arise from the engineering details involved

in implementing ℋ𝑆 as larger and larger chips are developed. These

engineering problems can’t be completely inserted into ℋ𝑆𝐵 and yet

would ultimately impact how easily we could stay below threshold as

we try to scale up. For fixed frequency qubits in superconducting ar-

chitectures the issue of "frequency crowding" affects the quality that

any single two-qubit gate can achieve Hutchings et al. [2017]. The

number of frequencies that must be avoided when implementing the

cross resonant gate, increases as the number of qubits increases in the
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chip; this makes targeting the required frequency harder and harder

as you scale up. Another scale dependent engineering difficulty can

arise from unwanted interactions between control lines going into

the chip. The calibration of these pulses is partly a classical problem

that gets more complicated and cumbersome as the chip gets larger.

The issue of "cross mode coupling" at ion-traps will affect the fidelity

of the gate Leung and Brown [2018]; Liang et al. [2023a], where the

target has a specific motional mode but unwanted couplings destroy

the quality of the gate. The problem has a classical component that

scales with the number of qubits. In the above cases the physics

of accurate addressability of a qubit or pairs of qubits is a problem

that becomes harder with increasing number of qubits, and thus,

affects the quality of the gate operation. Recent works have explored

the consequences of scale dependent errors which would most likely

arise from the limited resources to control qubits and design good

quality operations Fellous-Asiani et al. [2021]; Fellous-Asiani [2021].

It is reasonable to believe that the assumption of scale-independent

error rates may eventually become effectively true on account of

modularity, as future quantum architectures will likely be made

from repeated modular components. And while the holy-grail of

(effectively) scale-independent, sub-threshold error rates may some-

day be realized, quantum architectures will necessarily undergo a

transition from today’s scale-dependent error to the future of scale-

independent error. We will take this transition to be the defining

characteristic of early fault-tolerant quantum computing.

Ultimately, this investigation is motivated by wanting to under-

stand the prospects of using early fault-tolerant quantum computers

to solve utility-scale problems. We take such machines to be char-

acterized by a non-negligible degree of scale-dependent error. The

standard approach to predicting the performance of fault-tolerant

architectures for utility-scale problems is to assume that the error is

scale independent Kim et al. [2022a]; Goings et al. [2022c]; Beverland

et al. [2022]. Therefore, our approach will be seen as 1) a general-

ization that incorporates both the scale-independent and dependent
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settings and 2) an attempt to bridge the observed scale-dependence

of error in today’s devices with the hoped-for scale-independence

of error in future quantum architectures. We expect that the degree

of scale-dependence will inform the capabilities of the architecture

being modeled. Furthermore, scale-dependent error may warrant

the development and use of quantum algorithms that are suited to

this limitation. These considerations motivate the main question

pursued in the remainder of this manuscript: how does the degree of
scale-dependent error determine the capabilities of early fault-tolerant quan-
tum computers? Next, we introduce a model to capture the degree of

scale-dependent error.

We start by describing the particular setting in which we model

scale-dependent error. Our model will center around the concept of

scalability, the ability to maintain low error rates (e.g. sub-threshold)

as larger architectures are requested. Our setting and model are

driven by the need to answer the question: for a series of quantum

computations of increasing size, how well will a hardware vendor

be able to service the request to run the quantum computations. Ac-

cordingly, we will not consider the capabilities of a single quantum

device or a single quantum architecture, as the hardware vendor

might have several architectures to service computations of various

sizes. Furthermore, we will not consider the capabilities of the hard-

ware vendor as they improve over time, as our hypothetical test is

used to assess capability at one moment in time.
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Figure 6.2 The concept of scalability captures the ability of a quantum archi-

tecture to maintain low physical error rates as the number of physical qubits

of the architecture is increased. This figure shows the scalability profiles of

different quantum architectures given by the scalability model (Eq. 6.3) for

different scalability values (𝑠 = 0.5, 1.5, 2.5, 3.5, 4.5,∞) and base error rate

𝑝0 = 10
−4

. A finite scalability implies that beyond a certain physical qubit

size, the architecture cannot maintain physical error rates below the error

threshold (𝑝𝑡ℎ) of the fault-tolerant protocol. An editable version of the plot

can be accessed here: https://www.desmos.com/calculator/jlmbygcqrp

In order to make this quantitative, we can consider a scalability
profile: an empirically derived function that reports the worst-case er-

ror rate among the elementary operations of the device as a function

of the requested number of physical qubits. For the case of today’s

IBM devices, we present data on their scalability profile in Appendix

F.1. In lieu of scalability profile data for future quantum vendors, we

propose a simple parameterized model for this function
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𝑝
phys

(𝑄
phys

;𝒱) = 𝑝0𝑄
1/𝑠
phys

, (6.3)

where 𝑄
phys

is the number of physical qubits in the architecture and

𝒱 labels the particular hardware vendor that is providing the qubits

at any time. Parameters 𝑝0 and 𝑠 capture the base error rate and

the “scalability”, respectively. It is helpful to view this model as a

power-law fit of a scalability profile. In Appendix F.2 we investigate

the more optimistic case of a logarithmic model. The case of 𝑠 = ∞
corresponds to scale-independent error, or infinite scalability, while

any finite value of 𝑠 corresponds to the case of finite or limited

scalability.

As we will show in the next section, in the context of fault-tolerant

quantum computing, a finite scalability will result in a finite limit on

the number of physical qubits being used before fault-tolerant pro-

tocols yield diminishing returns. We then explain how this limit on

physical qubit number places a limit on the problem sizes that the

architecture can accommodate. Importantly, all of these consider-

ations apply in the setting where fault-tolerant protocols are being

used. This differs from the setting assumed for NISQ quantum com-

puting Preskill [2018], where physical qubits instead of logical qubits

are used for computation. Before moving to the next section, we pro-

vide some perspective on the transition from the NISQ regime to the

EFTQC regime. Specifically, in the rest of this subsection we estimate

the minimal number for 𝑄
phys

in an EFTQC computation assuming

a simple surface code architecture.

The total number of physical qubits for a computation can be writ-

ten as 𝑄
phys

= 𝑄comp +𝑄MSD where 𝑄comp is the number of physical

qubits used to compute (i.e. storing and routing the logical data)

and 𝑄MSD are the physical qubits used for magic state distillation.

To calculate the minimum number of qubits required for QEC, we

will set𝑄comp = 2(𝑑+1)2 Goings et al. [2022c] corresponding to single

surface code logical qubit and pick the smallest distillation widgets

which give an improvement on the error rate.

The most efficient distillation widgets known in the surface code
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Quality of operations Factory name 𝑝
phys

𝑄
phys

𝑝out 𝑄min, EFTQC 𝑝𝐿
High (15-to-1)

5,3,3 10
−4

522 4.7 × 10
−6

554 10
−5

Lower (15-to-1)
7,3,3 10

−3
810 5.4 × 10

−4
842 10

−3

Figure 6.3 A table containing the two smallest possible magic state distilla-

tion factories given by Litinski [2019]. 𝑝
phys

is the physical error rate, 𝑄
phys

is the number of physical qubits required to create the factory, 𝑝out is the

probability that the output state magic state is incorrect, 𝑄min, EFTQC is a

rough lower bound on the number of qubits in an EFTQC calculation, and

𝑝𝐿 is the logical failure rate in that lower bound calculation. Note that in

the case of superconducting qubits, the lower bound EFTQC example does

not decrease the logical error rate 𝑝𝐿.

are given in Litinski [2019]. We have listed the smallest of these

in Figure 6.3 (note that these do not give much of an improvement

over the physical error rate). An important property of the magic

state injection process is that it cannot have error rates which are less

than the current logical level. Thus a magic state which is injected

into a code with error rate 𝑝𝐿 can have at most error rate 𝑝𝐿. If we

have a single logical qubit in the smallest non-trivial surface code

(i.e. distance 3), then this minimum viable example of EFTQC will

be at least 540 and 826 qubits for lower and high-quality operations,

respectively.

Note that the magic state distillation factory dominated the num-

ber of qubits. As a result, the FTQC community has put a lot of

work into decreasing the size of factories Litinski [2019], improving

injection protocolsGavriel et al. [2022], or eliminating distillation en-

tirely Akahoshi et al. [2023]. One would expect that the first EFTQC

demonstrations will employ many of these techniques rather than

the "pure FTQC" calculation presented above. In a more careful cal-

culation to estimate a lower bound for the EFTQC range, one may

want to take such techniques into account and calculate𝑄
phys

. Refin-

ing this estimate to clarify and lower the NISQ-to-EFTQC transition

is important future work.
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6.2.2 Example: quantum phase estimation compiled
to the surface code

Figure 6.4 The scalability model of Eq. 6.3 predicts that, for each finite

value of scalability parameter 𝑠, there is a maximum problem instance size

that can be accommodated by the architecture. Each curve is a contour

in the 𝑄
phys

-𝑄𝐿 plane of a solution to Eq. 6.9 for a particular value of the

scalability parameter 𝑠 (3, 3.5, 4, 4.5, ∞). The remaining parameters of

Eq. 6.9 are set to 𝑝𝑡ℎ = 10
−2

, 𝑝0 = 10
−4

, 𝛼 = 4.12 · 10
9
, 𝛽 = 0.515 following

Table II in Campbell [2021]. The transition from solid to faded dashed

curves occurs when the physical qubit number reaches 𝑄
opt

phys
= 𝑄max

phys
/𝑒2

,

beyond which increasing the code distance leads to diminishing returns.

The diagonal black dotted lines show the physical qubit count for two

fixed code distances: 7 (small distance) and 51 (large distance). Note that

code distance is discrete, which, if taken into account, would result in the

contours jumping from one fixed-code-distance line to the next. However,

we have chosen to allow for the distance parameter to be continuous, for

ease of viewing the trends of the contours. An editable version of the plot

can be accessed here: https://www.desmos.com/calculator/7mbziuf8gd
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In the preceding subsection, we introduced Eq. 6.3 as a model for

how physical operation error rates might increase with system size.

To understand the implications of this model, we work through the

example of using the quantum phase estimation (QPE) algorithm

Cleve et al. [1998] to solve the phase estimation task. The task of

phase estimation is to estimate the eigenphase of a unitary operator

𝑈 with respect to an eigenstate |𝜓⟩ assuming access to circuits that

implement 𝑐-𝑈 and prepare |𝜓⟩. We review how to estimate the

quantum resources required to perform this task under the scalabil-

ity model and compare these to the ideal model case (i.e. 𝑠 → ∞).

A fault-tolerant resource estimation answers the question: how

many physical qubits are needed per logical qubit to ensure that the

logical error rates are sufficiently low to make the algorithm succeed

(with some probability)? To answer this, we must 1) determine what

logical error rates the algorithm deems as “sufficiently low” and 2)

establish the relationship between logical error rate and quantum

resources.

For 1), the QPE algorithm will succeed with sufficiently high

probability as long as the total circuit error rate is below some value

𝑝𝐶 . We will set 𝑝𝐶 = 0.1, noting that, in the literature, this tolerable

circuit error rate varies from 0.1 Goings et al. [2022c] to 0.01 Kim

et al. [2022a], but can be made lower using alternative algorithms

Kimmel et al. [2015]; Kshirsagar et al. [2022]; Li et al. [2023]. This

tolerable circuit error rate, along with the number of operations per

circuit, lets us bound the tolerable operation error rate. The quantum

circuit will ultimately be compiled into a set of logical operations that

are implemented using fault-tolerant protocols (e.g. initialization of

|0⟩, measurement in the computational basis, 𝐻 gate, CNOT gate,

and 𝑇 gate). We define 𝐺𝐶 to be the number of elementary logical

operations (including idling3) used by the circuit. To ensure that the

3Especially in the case where the quantum computation is rate-limited by magic

state distillation, the computational qubits would be required to idle without

accruing error while waiting for T gates or Toffoli gates to be teleported into the

computation.
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circuit error rate is less than 𝑝𝐶 , it suffices4 to ensure a logical error

rate of 𝑝𝐿 ≤ 𝑝𝐶/𝐺𝐶 (by the union bound).

For the quantum phase estimation algorithm, 𝐺𝐶 is determined

by the target accuracy and the number of operations per 𝑐-𝑈 . To

yield an estimate of the phase angle to within 𝜖 of the true value

requires using a circuit with 1/𝜖 applications of 𝑐-𝑈 Brassard et al.
[2002]. For our purposes we assume a model for 𝐺𝐶 by fitting data

in Table II of Campbell [2021] to the following power law, where the

𝜖 is set to be approximately half a percent of the total system energy,

𝐺𝐶 = 𝛼𝑄
𝛽
𝐿
, (6.4)

yielding 𝛼 = 4.12 · 10
9

and 𝛽 ≈ 0.515. Thus, the algorithm success is

ensured (with high probability) by

𝑝𝐿 ≤
𝑝𝐶

𝛼𝑄
𝛽
𝐿

. (6.5)

For simplicity, we’ll assume that the number of logical qubits needed

for magic state factories are accounted for in this model (see notes

in the desmos plot of Figure 6.4 for details of the assumptions and

the relevant references) and we will assume that the physical qubit

overhead is captured by the code distance used for the data qubits

(though the factories typically have multiple layers of concatenation

with differing code distance).

For 2) we will assume a model of error suppression based on

simulations of the surface code in Fowler and Gidney [2018]. This

model is

𝑝𝐿 = 𝐴(𝑝
phys

/𝑝
th
)(𝑑+1)/2, (6.6)

where Fowler and Gidney [2018]; Goings et al. [2022c] estimates 𝐴 =

0.1 and 𝑝
th

= 0.01. The number of physical qubits used to encode

4In the case where the tolerable circuit error rate approaches 1, 𝑝𝐿 ≤
(1/𝐺𝐶) ln(1/(1 − 𝑝𝐶)) can be used as a tighter bound.
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one logical qubit in the surface code is 2(𝑑 + 1)2, leading to

𝑄
phys

= 2(𝑑 + 1)2𝑄𝐿. (6.7)

In the case that 𝑝
phys

is independent of the number of physical qubits,

𝑝𝐿 can be made arbitrarily small, with cost (depending on code dis-

tance 𝑑) scaling as 𝑑 ∼ log(1/𝑝𝐿). However, if we replace 𝑝
phys

with

the 𝑄
phys

-dependent function 𝑝
phys

(𝑄
phys

) of Eq. 6.3 (i.e. the scala-

bility model), the logical error rates cannot be made arbitrarily small.

The smallest error rate is achieved when 𝑝
phys

= 𝑝
th

, which occurs

when 𝑄
phys

= (𝑝𝑡ℎ/𝑝0)𝑠 ; including more qubits (i.e. increasing the

code distance) will lead to a decrease in the logical error rate. This

number of physical qubits is therefore the maximal number of phys-

ical qubits that should be used under the scalability model:

𝑄max

phys
= (𝑝𝑡ℎ/𝑝0)𝑠 . (6.8)

So, for example, when 𝑝𝑡ℎ = 0.01 and 𝑝0 = 0.001 (as is sometimes

assumed for superconducting qubit resource estimates with the sur-

face code Goings et al. [2022c]) we have 𝑄max

phys
= 10

𝑠
. A more opti-

mistic setting of 𝑝0 = 0.0001 leads to 𝑄max

phys
= 10

2𝑠
. Figure 6.1 depicts

contours of 𝑄max

phys
in the plane of 𝑝0/𝑝𝑡ℎ vs 𝑠.
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The above concepts can be summarized as follows:

Requirement
𝑝𝐶 ≥ 𝐺𝐶𝑝𝐿 (Algorithm Error Tolerance)

Cost
𝑄

phys
= 2(𝑑 + 1)2𝑄𝐿 (Surface Code Overhead)

Models
𝐺𝐶 = 𝛼𝑄

𝛽
𝐿

(QPE Circuit Gate Count)

𝑝𝐿 = 𝐴
(
𝑝

phys

𝑝
th

) 𝑑+1

2 (Surface Code Logical Error Rate)
𝑝

phys
= 𝑝0𝑄

1/𝑠
phys

(Scalability Physical Error Rate Model)

Putting these together, we can determine the number of physical

qubits required to ensure that QPE returns an 𝜖-accurate estimate

(with high probability) as a function of the number of logical qubits

𝑄𝐿 (roughly corresponding to problem size). This relationship is

expressed by 𝑄
phys

-𝑄𝐿 pairs that ensure Eq. 6.5 is satisfied (i.e. that

logical error rates are low enough for the algorithm to succeed),√
8𝑄𝐿 log

(
𝐴𝛼
𝑝𝐶

𝑄
𝛽
𝐿

)
≤

√
𝑄

phys
log

(
𝑝

th

𝑝0

𝑄
−1/𝑠
phys

)
. (6.9)

Before applying this result to the quantitative example that has been

set up, we make a few general remarks that apply to any algorithm

analyzed in this manner.

First, we consider the right-hand side of this inequality. This

function will determine an optimal value for 𝑄
phys

, which we label

as 𝑄
opt

phys
. Previously, we described a maximum value of 𝑄

phys
as

set by the condition of 𝑝
phys

being below threshold. However, the

maximum allowed value of 𝑄𝐿 is now set by a function of 𝑄
phys

;

154



6. Early fault-tolerant quantum computing

to increase this ceiling, we should maximize the right hand side

function of𝑄
phys

. This function achieves its maximum of

(
2𝑒
𝑠

)
2

(
𝑝

th

𝑝0

) 𝑠
at a value of

𝑄
opt

phys
=

1

𝑒2

(
𝑝

th

𝑝0

) 𝑠
≤ 𝑄max

phys
. (6.10)

This is considered the optimal number of physical qubits in that

it enables the use of the largest number of logical qubits. As an

example, for 𝑝
th
= 0.01, 𝑝0 = 0.0001, and 𝑠 = 3.5, the optimal number

of physical qubits is 𝑄
opt

phys
≈ 1.35 × 10

6
.

These quantities of 𝑄max

phys
and 𝑄

opt

phys
can help us to quantify the

scalability parameters 𝑝0 and 𝑠 that are relevant to the NISQ-to-

EFTQC transition and the EFTQC-to-FTQC transitions. At the end

of the previous subsection we described how the NISQ-to-EFTQC

might occur in the range of 100 to 10,000 physical qubits. Considering

Equation 6.8 and 6.10, this determines the (𝑝0,𝑠) pairs characteristic

of this transition and shown as the red-to-green blend in Figure 6.1.

We motivate the idea that the transition from EFTQC to FTQC

is characterized by how the quantum computations are “bottle-

necked”. In the case of fault-tolerant quantum computing, it is

envisioned that the ability to run larger and larger quantum com-

putations is possible as long as the computations are not practically

limited by resources such as time and energy. We propose that early

fault-tolerant quantum computing be characterized by the regime in

which the largest possible quantum computations are limited by the

maximum number of physical qubits warranted in the architecture

(𝑄max

phys
or𝑄

opt

phys
). Viewing time as the limiting resource, if we assume

that the quantum computation must finish within a month, then

this limits the problem sizes that can be accommodated accordingly.

Using the quantum chemistry resource estimations of Goings et al.
[2022c] as a point of reference, problem instances that would take

a month would require on the order of 10
7

physical qubits. There

155



6. Early fault-tolerant quantum computing

may be other classes of problems that become runtime-limited when

fewer or more physical qubits are required. Thus, in Figure 6.1 we

depict the transition from EFTQC to FTQC as the green-to-blue gra-

dient ranging from 10
6

to 10
8
.

Second, we consider the left-hand side of Equation 6.9. Most of

the parameters are contained in the factor 𝐴𝛼/𝜖𝑝𝐶 . In Section 6.3

we will explain the importance of this factor in quantifying the “bur-

den” placed on the elementary fault-tolerant protocols. Equation

6.9 shows that decreasing this burden factor affords a decrease in

the number of physical qubits 𝑄
phys

. Alternatively, when fixing the

number of physical qubits, a reduction in the burden factor affords

an increase in the number of logical qubits, and subsequently the

maximum problem size or “reach” of the quantum computer. The

methods introduced in Section ?? will be understood to reduce this

burden factor, enabling algorithms to be run using fewer physical

qubits, though at the cost of an increase in runtime.

Figure 6.4 shows the contours of solutions to Equation 6.9 for

several scalability values 𝑠. The most striking feature is that, for

the finite values of scalability (𝑠 < ∞), there is a maximum-size

instance (measured by 𝑄𝐿) that the architecture can accommodate

using the QPE algorithm. For example, in the case of 𝑠 = 3.5, 𝑝0 =

0.0001, and 𝑝
th

= 0.01, we find that the largest instance that can

be accommodated (i.e. the “reach” of the quantum architecture) is

𝑄𝐿 ≈ 90. The maximum number of logical qubits𝑄max

𝐿
can be solved

for by setting 𝑄
phys

= 𝑄
opt

phys
in Equation 6.9 and solving for 𝑄𝐿,

𝑄max

𝐿 =

𝑄
opt

phys

8𝑠2𝛽2𝑊

(√(
𝐴𝛼
𝑝𝐶

) 1

𝛽 𝑄
opt

phys

8𝑠2𝛽2

)
2

, (6.11)

where 𝑊(𝑥) is the solution to 𝑊(𝑥) exp(𝑊(𝑥)) = 𝑥, known as the

Lambert 𝑊 function. Using the upper bound of 𝑊(𝑥) ≤ ln(𝑥), we
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can lower bound the maximum qubit number as

𝑄max

𝐿 ≥

(
𝑝

th

𝑝0

) 𝑠
2𝑒2𝑠2𝛽2

ln

((
𝐴𝛼
𝑝𝐶

) 1

𝛽

(
𝑝
th

𝑝
0

) 𝑠
8𝑒2𝑠2𝛽2

)
2

, (6.12)

where we have used the expression for 𝑄
opt

phys
. This maximum solv-

able problem size motivates the question explored in the next section:

with a fixed scalability, is it possible to extend the “reach” of a quantum
architecture using algorithms designed for finite scalability?

6.3 Example: randomized Fourier estimation
under finite scalability

Section 6.2.2 ended with the question of how we might extend the

reach of finite scalability quantum computers. The previous subsec-

tion overviewed a host of quantum algorithms suited for addressing

this question. In this section we take one quantum algorithm from

the previous section and quantitatively investigate its ability to ex-

tend the reach of a finite scalability quantum computer for the task

of phase estimation.

We use as our example the randomized Fourier estimation (RFE)

algorithm as introduced in Kshirsagar et al. [2022] and adapted for

trading circuit repetitions for number of operations per circuit in

Liang et al. [2023b]. The RFE algorithm solves the task of phase

estimation introduced in Section 6.2.2. It is an alternative to the

standard quantum phase estimation (QPE) algorithm Nielsen and

Chuang [2011] and related algorithms such as robust phase estima-

tion (RPE) Kimmel et al. [2015].

We consider the RFE algorithm to be a prototypical quantum

algorithm suited for early fault-tolerant quantum computing given

that it has the following features:
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• Qubit conservation: the (high-level) circuit conserves qubit

count by using just one ancilla qubit.

• Circuit trading: the number of operations per circuit is tuned

by input parameter 𝐾, enabling a trade-off between this quan-

tity and the required number of circuit repetitions.

• Robustness: the algorithm is robust to circuit error and this

robustness can be understood in terms of a signal corrupted by

a noise floor.

As we will show, and like many of the other EFTQC algorithms

introduced in Section ??, these features equip the algorithm to ac-

commodate limited scalability in the early fault-tolerant quantum

computing regime. Furthermore, RFE is very simple, helping to

facilitate discussion of these algorithmic concepts relevant to early

fault-tolerant quantum computing.

We will a) briefly review randomized Fourier estimation, and

then investigate b) how trading circuit repetitions for decrease of

operations and c) how robustness to error help to increase the prob-

lem instance size (i.e. the “reach”) that can be solved with a finite

scalability architecture.

RFE Intro The RFE algorithm relies on the Hadamard test circuit (as

depicted in Figure 6.5). Each Hadamard test circuit is parameterized

by the circuit depth (𝑘) and a phase parameter (𝜙). The output

measurement probabilities correspond to an oscillatory function that

encodes 𝜃:

Pr(𝑧 |𝜃; 𝑘, 𝜙) = 1

2

(1 + 𝑧Re(𝑒 𝑖𝜙 ⟨𝜓 |𝑈 𝑘 |𝜓⟩)) (6.13)

=
1

2

(1 + 𝑧 cos(𝑘𝜃 + 𝜙)) (6.14)

(6.15)

It is convenient to view the expected value of 𝑧, which is 𝑔(𝑘) =

cos(𝑘𝜃 + 𝜙), as the true signal encoding 𝜃. The phase 𝜃 is then
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Measurement in 𝜎𝜙

|0⟩ 𝐻 𝑆(𝜙) 𝐻

|𝜓⟩ 𝑈 𝑘

Figure 6.5 An archetypal circuit template used by many EFTQC algo-

rithms. The measurement outcome probabilites depend on |𝜓⟩ and 𝑈

as Pr(±1|𝑘, 𝜙) = 1

2
(1 ± cos(𝑘𝜃 + 𝜙)). Measurement outcomes can be pro-

cessed to In the case of the Randomized Fourier Estimation (RFE) algo-

rithm, the measurement outcomes encode the The parameter 𝑘 is uni-

formly randomly chosen among {0, . . . , 𝐾−1} for each circuit repetition. 𝐾

then controls the maximal circuit depth and is used to reduce the num-

ber of operations per circuit. The boxed-up elements in blue can be

collectively interpreted as a measurement with respect to the observable

𝜎𝜙 = cos(𝜙)𝜎𝑥 − sin(𝜙)𝜎𝑦 , where 𝜎𝑥 and 𝜎𝑦 are the conventional Pauli op-

erators and 𝑆(𝜙) =
[
1 0

0 exp(𝑖𝜙)

]
.

estimated from measurement outcome data in a manner similar to

estimating the frequency of a noisy estimate of 𝑔(𝑘). The parameters

𝑘 and 𝜙 are chosen uniformly randomly in each sample, with 𝑘 ∈
[0, 𝐾 − 1] and 𝜙 ranging between 0 and 2𝜋. Each measurement

outcome 𝑧 obtained from the circuit is used to form an unbiased

estimator 𝑓𝑗 = 2𝑧𝑒−𝑖2𝜋𝑘 𝑗/𝐽 𝑒−𝑖𝜙 of the discrete Fourier transform of the

signal 𝑔(𝑘), where 𝐽 is an algorithm parameter that sets the grid size

of the Fourier spectrum. The estimate of the Fourier signal can be

made more accurate by taking multiple samples and averaging them:

𝑓𝑗 =
1

𝑀

𝑀∑
𝑖=1

𝑓
(𝑖)
𝑗
. (6.16)

By accumulating enough measurement outcomes, one can estimate

𝜃 accurately (i.e. within 𝜖) with high probability (i.e. less than 1− 𝛿)
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by locating the tallest peak (or point of largest magnitude) in the

estimate of the discrete Fourier transform,

𝜃̂ =
2𝜋
𝐽

argmax𝑗

1

𝑀

𝑀∑
𝑖=1

𝑓
(𝑖)
𝑗
. (6.17)

The algorithm’s accuracy is limited by parameter 𝐽, which is set to

ensure that the Fourier resolution matches the desired accuracy.

Algorithm Parameters
𝐽 Sets the Fourier domain grid spacing.

𝐾 Sets the maximum number of 𝑐-𝑈 per circuit.

𝑀 Sets the number of circuit repetitions (i.e. samples).

Error and Confidence Requirements
𝜖 = 2𝜋/𝐽 Ensures that the 𝜃-adjacent discrete frequencies are accurate.

𝛿 = 8𝐽 exp(−𝑀/𝑊(𝐾, 𝐽,𝜆)) Ensures that enough samples are taken, given 𝐾, 𝐽, and 𝜆 (see below).

Operations Per Circuit
E𝐺𝐶 = 𝐾−1

2
𝐺𝑈 Expected value, with max being (𝐾 − 1)𝐺𝑈

Circuit Repetitions
𝑀 =𝑊(𝐾, 𝐽,𝜆) log(16𝜋

𝛿𝜖 ) Number of samples needed. See Liang et al. [2023b] for definition of𝑊(𝐾, 𝐽,𝜆).
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Figure 6.6 This plot shows that, under the scalability model, the EFTQC

algorithm robust Fourier estimation (RFE) can extend the reach of the quan-

tum computation from 90 logical qubits to over 200 logical qubits. This is

achieved by either reducing the number of 𝑐-𝑈 used per circuit or in-

creasing the tolerable circuit error rate 𝑝𝐶 in the RFE algorithm. Both of

these reduce the burden factor 𝐴𝛼/𝜖𝑝𝐶 appearing in Equation 6.9. This

increase in the “reach” of the quantum computer comes at the cost of

an increase in the runtime (roughly by the burden factor), which is a

combination of the decrease in time per circuit and increase in number

of circuit repetitions. Here we take the scalability to be 𝑠 = 3.5 with

𝑝0 = 10
−4

, which implies that the optimal number of physical qubits is

𝑄
opt

phys
= 1

𝑒2

(
𝑝

th

𝑝0

) 𝑠
≈ 1.35 × 10

6
. An editable version of the plot can be ac-

cessed here: https://www.desmos.com/calculator/nf43nafwet

Circuit trading We now describe how this algorithm is able to

trade number of operations per circuit for circuit repetitions. The

maximum number of operations per circuit (in expectation) is (𝐾 −
1)𝐺𝑈 , where 𝐺𝑈 is the number of operations in a single 𝑐-𝑈 . In

the quantum phase estimation algorithm, 1/𝜖 calls are made to 𝑐-𝑈 ,

corresponding to setting 𝐾 ≈ 1/𝜖. In RFE we can reduce the number
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of operations per circuit by setting 𝐾 to any value less than 1/𝜖.

This reduction in 𝐾 reduces the burden factor in Equations 6.9 and

6.12 proportionally. Figure 6.6 shows how varying reductions in the

burden factor lead to an increase in the problem size that RFE can

accommodate. Equation 6.12 predicts that this increase in problem

size grows as 𝑂(1/ln
2(𝐵)) with burden factor 𝐵. For the specific

example considered, the largest problem instance can be increased

from 90 to over 200 by decreasing 𝐾 by a factor of 100,000.

As mentioned previously, circuit trading means that a decrease in

operations per circuit comes at the cost of an increase in the number

of circuit repetitions. This trade-off can be understood as follows.

Decreasing 𝐾 causes the width of the peak in the discrete Fourier

spectrum to increase. With the spectrum being more flat near the

peak, smaller amounts of noise in the signal are able to shift the peak

location more than 𝜖 (leading to algorithm failure). This statistical

sampling noise must then be reduced by taking more samples. The

analytic relationship is given in the appendix of Liang et al. [2023b].

This describes the nature of the trade-off between operations per

circuit and circuit repetitions.

Robustness The RFE algorithm has been analyzed in previous

work with respect to three different algorithmic noise models: ad-

versarial noise and Gaussian noise Kshirsagar et al. [2022] and expo-

nential decay noise Liang et al. [2023b]. We give brief explanations of

how the Gaussian noise and the exponential decay noise impact the

algorithm performance and thus explain the robustness of the RFE

algorithm to a particular model of noise. In Kshirsagar et al. [2022],

the Gaussian noise model is analyzed, wherein it is assumed that, for

each circuit (labeled by 𝑘), the output probability has been corrupted

by a small perturbation drawn from a Gaussian distribution,

Pr(𝑧 |𝜃; 𝑘, 𝜙) = 1

2

(1 + 𝑧(cos(𝑘𝜃 + 𝜙) + 𝜂𝑘)), (6.18)
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where each 𝜂𝑘 has been drawn from a Gaussian distribution with

mean zero and standard deviation 𝜎. How does this impact the

performance of the algorithm? The 𝜂𝑘 can be understood to corrupt

the expected value of 𝑧 (i.e. the signal 𝑔(𝑘)). This impacts the Fourier

spectrum by adding a “noise floor” related to the Fourier transform

of the 𝜂𝑘 . The algorithm can still succeed as long as this noise floor

does not shift the location of the peak by more than 𝜖. The authors

of Kshirsagar et al. [2022] proved that if 𝜎 is below a certain quantity

(dependent on 𝜖 and 𝛿) then the algorithm can succeed with more

than 1 − 𝛿 probability.

In Liang et al. [2023b], the exponential decay model is derived

from a lower-level noise model. The exponential decay model as-

sumes that the likelihood function now includes a factor that de-

creases exponentially in 𝑘,

Pr(𝑧 |𝜃; 𝑘, 𝜙) = 1

2

(1 + 𝑧𝑒−𝑘𝜆 cos(𝑘𝜃 + 𝜙)), (6.19)

with decay parameter𝜆. Experiments Katabarwa et al. [2021]; Giurgica-

Tiron et al. [2022a] show that this model is accurate for small systems.

This exponential decay factor causes the expected value of 𝑧 (i.e. the

underlying signal 𝑔(𝑘)) to attenuate as 𝑘 is increased. In the Fourier

domain, this attenuation translates into an attenuation of the peak

(see this desmos plot). As with the peak broadening due to reducing

𝐾, a smaller amount of statistical noise is sufficient to shift the loca-

tion of the estimated peak more than 𝜖. Accordingly, more samples

must be taken to sufficiently reduce this statistical noise.

Under the assumption that the exponential decay model holds

exactly, Liang et al. [2023b] shows that with arbitrarily large decay

parameter 𝜆, the algorithm can generate an 𝜖 accurate estimate with

probability greater than 1 − 𝛿. In other words, the algorithm can be

made arbitrarily robust. The reason is that the exponential decay

error does not shift the location of the peak in the Fourier spectrum

of the expected signal. This increase in robustness translates into a

decrease in the burden: allowing the circuit error rate 𝑝𝐶 to increase
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towards 1 increases the allowed logical error rate 𝑝𝐿, decreasing the

burden factor.

Consider a reduction in the burden on account of an increase in

the tolerable circuit error rate 𝑝𝐶 , which quantifies the the robustness

of the algorithm. Note that in the case where 𝑝𝐶 is close to 1, a better

approximation than the union bound can be used to replace 𝑝𝐶 with

ln(1/(1 − 𝑝𝐶)), which grows to infinity as 𝑝𝐶 → ∞. We remark that

in the case of the exponential decay model, the circuit error rate is

𝑝𝐶 = 1 − 𝑒−𝑘𝜆, which leads to ln(1/(1 − 𝑝𝐶)) = 𝑘𝜆. Therefore, as we

allow for an increase in𝜆, the burden factor is reduced proportionally

(where we keep in mind that, for small values of 𝑝𝐶 , the burden factor

scales proportionally to it).

We previously discussed Figure 6.6 in the context of circuit trad-

ing. This figure can also be used to demonstrate the impact of in-

creased robustness. Considering an increase in 𝑝𝐶 to be the cause of

the burden factor reduction, Figure 6.6 shows how the reach of the

quantum computer is increased accordingly. As with circuit trading,

there is a price paid for this extended reach of the quantum computer:

for the RFE algorithm, Liang et al. [2023b] shows that the runtime

grows exponentially in 𝜆 for 𝜆 ≥ 1/2 (where 𝐾 is set to its minimum

value of 2). Therefore, in practice, there may be an upper limit to the

degree of robustness, beyond which the runtime becomes too large

to be practical. This is an issue that many error mitigation techniques

face Cai et al. [2022]. This similarity may not be surprising in that the

way RFE accommodates error is a type of error mitigation.

In practice, the exponential decay model is not exact. Instead, we

expect that in any given device and compilation of 𝑐-𝑈 , the likelihood

function will include some deviation (possibly varying over time)

from the exponential decay model likelihoods. While in the exact

exponential decay model the Fourier peak location is unchanged,

allowing deviations from this model can shift the location of the

peak. This sets a lower limit to the achievable accuracy 𝜖, a feature

which is found in the bounded adversarial noise model and the

Gaussian noise model of Kshirsagar et al. [2022].
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We have demonstrated how the RFE algorithm, as an archetypal

EFTQC algorithm, enables a reduction in the burden placed on the

fault-tolerant protocols. Figure 6.6 demonstrates how larger problem

instance sizes can be accommodated by either reducing the number

of operations per circuit (decreasing 𝐾) or by increasing the robust-

ness of the algorithm (increasing 𝑝𝐶). This is because the burden

factor
𝐴𝛼
𝑝𝐶

incorporates both of these quantities. For both examples

of reducing the burden factor, there is an increase in the runtime

of the algorithm. Although the RFE algorithm enables parallelizing

the circuit repetitions over multiple quantum computers to reduce

runtime, the runtime is expected to be a bottleneck for many appli-

cations. Therefore, the runtime costs of reducing the fault-tolerance

burden must be carefully considered. See Liang et al. [2023b] for

an quantitative account of such runtime costs for RFE. We leave a

thorough investigation of the runtime costs of decreasing the fault-

tolerance burden for EFTQC algorithms to future work.

6.4 Discussion and Outlook

In this perspective we investigated the regime between NISQ and

FTQC, which is referred to as “early fault-tolerant quantum com-

puting”. To understand the prospects for utility in this regime, we

proposed a simple computational model to quantitatively capture the

performance of quantum architectures within these three regimes.

The scalability model characterizes the ability of a quantum hard-

ware vendor to provide systems with low physical error rates as

the requested number of physical qubits is increased. This differs

from previous approaches that assume a scale-independent perfor-

mance for their quantum architectures Kim et al. [2022a]; Goings et al.
[2022c]; Beverland et al. [2022]. We demonstrated that the QPE al-

gorithm Cleve et al. [1998] compiled to the surface code Fowler and

Gidney [2018] has a limit on the problem size that can be accommo-

dated by a vendor with finite scalability, according to our model. Un-
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surprisingly, this is due to scale-dependent error rates (Equation 6.3)

combined with the diminishing returns of fault-tolerant protocols

as the error rates of the device approach the numerically-estimated

threshold value Wang et al. [2011]. Next, we showed that by using

an algorithm suited to finite-scalability (the randomized Fourier es-

timation algorithm Kshirsagar et al. [2022]), when granted the same

scalability, the problem size limit can be extended from around 90

qubits (for QPE) to around 130 qubits (using the same number of

physical qubits). This comes at the cost of roughly a 100 times in-

crease in runtime.

The scalability model enabled us to quantitatively discuss the

transition from NISQ to EFTQC to FTQC. This transition is charac-

terized by the waning of scale-dependent physical error rates (see

Eq. 6.3). At the end of Section 6.2.1 we described how the nature

of the transition from the regime of NISQ to EFTQC is difficult

to predict; future advances might allow for implementing certain

fault-tolerant components far sooner than current methods would

enable. However, we mentioned some of the technical considera-

tions that might govern the transition and, accordingly, depict this

transition in Figure 6.1 to occur through the range of 𝑄max

phys
being

100 to 10,000. Regarding the transition from EFTQC to FTQC, we

described in Section 6.2.1 how each regime might be characterized by

different bottlenecks; EFTQC is characterized by the largest solvable

problem instances being bottle-necked by the number of available

physical qubits (or, better, 𝑄
opt

phys
), whereas FTQC is characterized by

the largest solvable problem instances being bottle-necked by run-

time. Accordingly, we explain how this transition might occur in the

range of 𝑄max

phys
being 10

6
to 10

8
.

Different factors, such as hardware, algorithmic, and fault-tolerance

advances, play a dominant role in characterizing the EFTQC regime.

The recent work of Kim et al. [2023a] provides evidence for the utility

of noisy quantum devices in the pre-fault tolerant era and empha-

sizes the role of hardware advances to achieve this. Moreover, many
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works have highlighted the importance that quantum algorithm de-

velopment has in leveraging the capabilities of the quantum devices

to their maximum potential Wang et al. [2019, 2021]; Katabarwa et al.
[2021]; Xiao et al. [2023]. Recent works have also explored the effect of

noise in the performance of quantum algorithms and highlighted the

need to use QEC prudently Alcazar et al. [2022]; Johnson et al. [2022];

Liang et al. [2023b]. This work is a first attempt to incorporate all the

aforementioned factors (hardware, algorithmic, and fault-tolerance

advances) in order to validate the assumption that there is a mean-

ingful regime of early fault-tolerant quantum computing methods,

which is usually assumed in papers on the subject Lin and Tong

[2022a]; Wang et al. [2023a]; Ding and Lin [2022b]. What remains

to be determined is how rapidly quantum hardware will progress

through this regime; or, in other words, it remains to determine how

the scalability of quantum hardware vendors will increase over time.

To put these results into context, recent resource estimates on

a variety of molecules relevant to Li-on electrolyte chemistry Kim

et al. [2022c] show that above 100 logical qubits would be necessary

to tackle such systems. This indicates that extending the reach of

the problem size limit from 90 logical qubits to over 130 with the

framework discussed here might have interesting implications, i.e.

allowing to study problems of interest before the realization of FTQC

regime. Our results suggest that the EFTQC regime could exist in a

meaningful way, i.e. using the same quantum resources compared

to FTQC (number of physical qubits and scalability model), while

affording the use of a larger number of logical qubits (Fig. 6.6).

This work explored the usefulness of the EFTQC regime for a

specific quantum algorithm and QEC model, namely the RFE Kshir-

sagar et al. [2022] and the surface code Fowler and Gidney [2018]. The

underlying methodology, however, can be easily extended to other

algorithms and fault-tolerant protocols while using the suggested

or alternative scalability models. Although the proposed model of

scalability is quite general, we do not expect it to perfectly fit the

scalability profile of vendors over many orders of magnitude. But,
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we anticipate that it could capture the qualitative behavior over at

least a few orders of magnitude. Moreover, we showed in Appendix

F.2 that, even when a more optimistic model is used (specifically

a logarithmic model), the qualitative finding remains: there is an

upper limit on the size of the quantum computation.

Future work could explore other models of scalability that, for

example, might be given directly by the hardware provider and ac-

commodate the features of the architecture as it is scaled. Another

interesting direction is to adapt the scalability model to address the

interplay between quantum error mitigation and quantum error cor-

rection Piveteau et al. [2021]; Suzuki et al. [2022] which will help

drive the transition from NISQ to EFTQC. Moreover, the proposed

framework could be applied to other combinations of algorithms and

quantum error correcting codes and be used to examine the utility of

the EFTQC regime for other potential application fields of quantum

computing.

Our work provides evidence for the utility of the EFTQC regime

within a framework that includes crucial factors of quantum com-

puting, such as hardware, algorithm, and fault-tolerance advances.

To incorporate the hardware advances, we have introduced a sim-

ple scalability model to capture the performance of devices that are

continually improving. As it is yet unclear how exactly quantum

devices will scale up to incorporate millions or billions of physi-

cal qubits Preskill [2018], the proposed model of scalability is just

a first attempt to bridge the gap between NISQ and FTQC. Future

works in these directions could help move beyond the NISQ-FTQC

dichotomy and further explore how EFTQC might deliver practical

quantum advantage at scale.

6.5 Conlcusions

In this perspective work we explored the regime between NISQ

and FTQC referred to as early fault-tolerant quantum computing
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(EFTQC). This work is a first attempt to incorporate hardware, algo-

rithmic and fault-toletant advances to validate that EFTQC will exist

in a meaningful way. Next, it would be interesting to apply a similar

analysis to other application areas of quantum computing.
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Chapter 7

Conclusions

This thesis focused on introducing tools to quantify the performance

of quantum computing algorithms and their applications. The main

focus was on the two most popular application areas of quantum

computing, quantum machine learning (QML) and quantum chem-

istry.

7.1 Quantum machine learning
Following the methods used for the early development of neural net-

works, namely statistical physics techniques of spin glasses we an-

alyzed the storage properties of quantum perceptrons models with

a direct hardware implementation. This work merged quantum in-

formation with statistical physics (referred to as Gardner’s program)

and opened a new approach of studying quantum models and their

learning capabilities. Next, we applied the same methodology to

quantum neural networks where once again one crucial feature is

their storage capacity for associative memory, that is, the number of

patterns (stored memories/attractors) the network has for a given

number of neurons. These tools could help us build our fundamen-

tal understanding of quantum machine learning models and their

capabilities.
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Eventually, like with classical machine learning models large-

scale computational benchmarking will be necessary to understand

the maximum potential of quantum machine learning models. To

this end, we introduced the teacher-student scheme as a computa-

tional tool to benchmark the performance of quantum models. With

the teacher-student scheme, we can benchmark two or more differ-

ent QML models directly, without the use of any artificial data that

might unwittingly favor the performance of one model versus the

others. Importantly, the teacher-student scheme could help explore

a potential quantum advantage of certain models in terms of their

training capabilities.

Until large-scale benchmarking is available, small-scale quantum

simulations could help better understand the role of different ele-

ments in quantum models. Through numerical simulations on small

size systems, we explored how ancilla qubits could help improve

and how the measurement location could affect the overall the per-

formance of quantum models. This work brought together different

tools discussed in the literature to explore the training capabilities of

quantum models for quantum machine learning applications.

7.2 Quantum Chemistry

In recent years substantial research effort has been devoted to quan-

tum algorithms for ground state energy estimation (GSEE) in chem-

istry and materials. For most GSEE algorithms, the runtime de-

pends on the ground state preparation (GSP) method. Initially, we

introduce the efficiency criteria which provide a method to care-

fully assessing the utility of various combinations of GSEE and GSP

methods, by accepting or rejecting a GSP method for the purposes of

GSEE. This work sets a foundation from which to further explore the

requirements to achieve quantum advantage in quantum chemistry.

Next, we used the efficiency criteria for extensive numerical simu-

lations to investigate whether in those cases quantum heuristic GSP

172



7. Conclusions

methods could improve the overlap values compared to Hartree-

Fock, which is one of the most common method in classical chem-

istry. Our findings indicate that quantum heuristic GSP can accel-

erate GSEE tasks, already for computationally affordable strongly-

correlated systems of intermediate size. These results suggest that

quantum heuristic GSP has the potential to significantly reduce the

runtime requirements of GSEE algorithms, thereby enhancing their

suitability for implementation on quantum hardware.

Finally, over the past decade, research in quantum computing has

tended to fall into one of two camps: near-term intermediate scale

quantum (NISQ) and fault-tolerant quantum computing (FTQC). Fo-

cusing again on the task of energy estimation, we explored how to use

quantum computers in transition between these two eras, namely the

early fault-tolerant quantum computing (EFTQC) regime. This work

was a first attempt to incorporate hardware, algorithmic and fault-

toletant advances to validate that EFTQC will exist in a meaningful

way.
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Appendix A

A.1 Abstracts of research papers

A.1.1 Storage properties of a quantum perceptron
Driven by growing computational power and algorithmic develop-

ments, machine learning methods have become valuable tools for

analyzing vast amounts of data. Simultaneously, the fast technologi-

cal progress of quantum information processing suggests employing

quantum hardware for machine learning purposes. Recent works

discuss different architectures of quantum perceptrons, but the abil-

ities of such quantum devices remain debated. Here, we investigate

the storage capacity of a particular quantum perceptron architecture

by using statistical mechanics techniques and connect our analysis to

the theory of classical spin glasses. Specifically, we focus on one con-

crete quantum perceptron model and explore its storage properties

in the limit of a large number of inputs.

A.1.2 Storage capacity and learning capability of quan-
tum neural networks

We study the storage capacity of quantum neural networks (QNNs),

described by completely positive trace preserving (CPTP) maps act-

ing on a𝑁-dimensional Hilbert space. We demonstrate that attractor
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QNNs can store in a non-trivial manner up to𝑁 linearly independent

pure states. For 𝑛 qubits, QNNs can reach an exponential storage

capacity, 𝒪(2𝑛), clearly outperforming standard classical neural net-

works whose storage capacity scales linearly with the number of

neurons 𝑛. We estimate, employing the Gardner program, the rela-

tive volume of CPTP maps with 𝑀 ≤ 𝑁 stationary states and show

that this volume decreases exponentially with 𝑀 and shrinks to zero

for 𝑀 ≥ 𝑁 + 1. We generalize our results to QNNs storing mixed

states as well as input-output relations for feed-forward QNNs. Our

approach opens the path to relate storage properties of QNNs to the

quantum features of the input-output states.

A.1.3 Exploring quantum perceptron and quantum neu-
ral network structures with a teacher-student
scheme

Near-term quantum devices can be used to build quantum machine

learning models, such as quantum kernel methods and quantum

neural networks (QNN) to perform classification tasks. There have

been many proposals on how to use variational quantum circuits as

quantum perceptrons or as QNNs. The aim of this work is to in-

troduce a teacher-student scheme that could systematically compare

any QNN architectures and evaluate their relative expressive power.

Specifically, the teacher model generates the datasets mapping ran-

dom inputs to outputs which then have to be learned by the student

models. This way, we avoid training on arbitrary data sets and al-

low to compare the learning capacity of different models directly

via the loss, the prediction map, the accuracy and the relative en-

tropy between the prediction maps. Here, we focus particularly on a

quantum perceptron model inspired by the recent work of Tacchino

et. al. Tacchino et al. [2019] and compare it to the data re-uploading

scheme that was originally introduced by Pérez-Salinas et. al. Pérez-

Salinas et al. [2020]. We discuss alterations of the perceptron model

and the formation of deep QNN to better understand the role of
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hidden units and the non-linearities in these architectures.

A.1.4 The effect of the processing and measurement
operators on the expressive power of quantum
models

There is an increasing interest in Quantum Machine Learning (QML)

models, how they work and for which applications they could be use-

ful. There have been many different proposals on how classical data

can be encoded and what circuit ansätze and measurement operators

should be used to process the encoded data and measure the output

state of an ansatz. The choice of the aforementioned operators plays

a determinant role in the expressive power of the QML model. In

this work we investigate how certain changes in the circuit structure

change this expressivity. We introduce both numerical and analyti-

cal tools to explore the effect that these operators have in the overall

performance of the QML model. These tools are based on previous

work on the teacher-student scheme, the partial Fourier series and

the averaged operator size. We focus our analysis on simple QML

models with two and three qubits and observe that increasing the

number of parameterized and entangling gates leads to a more ex-

pressive model for certain circuit structures. Also, on which qubit

the measurement is performed affects the type of functions that QML

models could learn. This work sketches the determinant role that

the processing and measurement operators have on the expressive

power of simple quantum circuits.

A.1.5 Evaluating the efficiency of ground state prepa-
ration algorithms

In recent years substantial research effort has been devoted to quan-

tum algorithms for ground state energy estimation (GSEE) in chem-

istry and materials. Given the many heuristic and non-heuristic
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methods being developed, it is challenging to assess what combi-

nation of these will ultimately be used in practice. One important

metric for assessing utility is runtime. For most GSEE algorithms, the

runtime depends on the ground state preparation (GSP) method. To-

wards assessing the utility of various combinations of GSEE and GSP

methods, we asked under which conditions a GSP method should

be accepted over a reference method, such as the Hartree-Fock state.

We introduce a criteria for accepting or rejecting a GSP method for

the purposes of GSEE. We consider different GSP methods ranging

from heuristics to algorithms with provable performance guarantees

and perform numerical simulations to benchmark their performance

on different chemical systems, starting from small molecules like the

hydrogen atom to larger systems like the jellium. In the future this

approach may be used to abandon certain VQE ansatzes and other

heursitics. Yet so far our findings do not provide evidence against

the use of VQE and more expensive heuristic methods, like the low-

depth booster. This work sets a foundation from which to further

explore the requirements to achieve quantum advantage in quantum

chemistry.

A.1.6 Early-fault tolerant quantum computing

Over the past decade, research in quantum computing has tended

to fall into one of two camps: near-term intermediate scale quantum

(NISQ) and fault-tolerant quantum computing (FTQC). Yet, a grow-

ing body of work has been investigating how to use quantum com-

puters in transition between these two eras. This envisions operating

with tens of thousands to millions of physical qubits, able to support

fault-tolerant protocols, though operating close to the fault-tolerant

threshold. Two challenges emerge from this picture: how to model

the performance of devices that are continually improving and how

to design algorithms to make the most use of these devices? In this

work we develop a model for the performance of early fault-tolerant

quantum computing (EFTQC) architectures and use this model to
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elucidate the regimes in which algorithms suited to such architec-

tures are advantageous. As a concrete example, we show that, for

the canonical task of phase estimation, in a regime of moderate scal-

ability and using just over one million physical qubits, the “reach” of

the quantum computer can be extended (compared to the standard

approach) from 90-qubit instances to over 130-qubit instances using

a simple early fault-tolerant quantum algorithm, which reduces the

number of operations per circuit by a factor of 100 and increases the

number of circuit repetitions by a factor of 10,000. This clarifies the

role that such algorithms might play in the era of limited-scalability

quantum computing.

A.1.7 Comparing Classical and Quantum Ground State
Preparation Heuristics

One promising field of quantum computation is the simulation of

quantum systems, and specifically, the task of ground state energy

estimation (GSEE). Ground state preparation (GSP) is a crucial com-

ponent in GSEE algorithms, and classical methods like Hartree-Fock

state preparation are commonly used. However, the efficiency of

such classical methods diminishes exponentially with increasing sys-

tem size in certain cases. In this study, we investigated whether

in those cases quantum heuristic GSP methods could improve the

overlap values compared to Hartree-Fock. Moreover, we carefully

studied the performance gain for GSEE algorithms by exploring the

trade-off between the overlap improvement and the associated re-

source cost in terms of T-gates of the GSP algorithm. Our findings

indicate that quantum heuristic GSP can accelerate GSEE tasks, al-

ready for computationally affordable strongly-correlated systems of

intermediate size. These results suggest that quantum heuristic GSP

has the potential to significantly reduce the runtime requirements of

GSEE algorithms, thereby enhancing their suitability for implemen-

tation on quantum hardware.
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B.1 Methods

In this section, we elaborate on the computational details presented

in Sec. 2.2.5, i.e., the averaging over the inputs, the calculation of the

effective potential, and the saddle-point approximation.

B.1.1 Averaging over the input patterns

We perform the average ⟨⟨·⟩⟩ and assume weak correlations between

the weights. Then we can approximate

⟨⟨
∏
𝛼,𝜇

𝑒−
𝑖
𝑚 𝑥

𝛼
𝜇 |®𝑖𝜇· ®𝑤𝛼 |2⟩⟩ = 𝑒
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∑
𝛼
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𝑤𝛼
𝑙

)
. (B.1)

The above expressions are somewhat similar to those derived in

Kohring [1990], but not the exponential phase factor, effectively shift-

ing the values of 𝜆’s by -1, and the pre-factor 2/𝑚, multiplying the

argument of the cos(.) function. Using Eq. (B.1) the relative volume
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becomes
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Next, we use the approximation log cos 𝑥 ≈ −𝑥2/2 and use Eq. (2.11).

In addition, we employ that the integral
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factorizes according to
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which leads to Eq. (2.12) - (2.15).

B.1.2 Calculation of 𝐺1

We assume replica symmetry of 𝑞𝛼𝛽 and after the integration over

𝑥𝜇 we have

lim

𝑛→0

1

𝑛
𝐺1[𝑞] =

∫ ∞

−∞
𝐷𝑦 log 𝐿(𝑦) , (B.5)
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where we used the abbreviation Eq. (2.31) and introduce

𝐿(𝑦) = 2

√
𝜋Erfc

[
𝜅 − 1 + 𝑦𝑞√

2(1 − 𝑞2)

]
. (B.6)

The function 𝐿(𝑦) is the main object that distinguishes the classical

and the quantum perceptron. In the classical case we have

𝐿(𝑦) = 2

√
𝜋Erfc

[
𝜅 + 𝑦𝑞√
(1 − 𝑞)

]
. (B.7)

In the quantum case 𝐿(𝑦) depends on 𝑞2
, since we are dealing with

squared scalar products, which leads to an additional factor of two in

the denominator of 𝐿(𝑦); this factor will then be responsible for the

increase of the storage capacity for the quantum case in comparison

to the classical case.

B.1.3 Calculation of 𝐺2 for spherical weights
We also assume replica symmetry of 𝐸𝛼

and 𝐹𝛼𝛽 and perform the

multi-dimensional Gaussian integral in Eq. (2.15) resulting in

𝐺2[𝐸, 𝐹] = log

[
(2𝜋𝑖)𝑛/2(det𝑀)−1/2

]
, (B.8)

where we introduced the matrix

𝑀𝑎𝑏 = (2𝐸 + 𝐹)𝛿𝑎𝑏 − 𝐹 . (B.9)

The matrix 𝑀 has 𝑛 − 1 degenerate eigenvalues Λ1 = . . . = Λ𝑛−1 =

2𝐸 + 𝐹 and one non-degenerate eigenvalue Λ𝑛 = 2𝐸 − (𝑛 − 1)𝐹 such

that the determinant of the matrix 𝑀 becomes

log det𝑀 = (𝑛 − 1) log(2𝐸 + 𝐹) + log[2𝐸 − (𝑛 − 1)𝐹] . (B.10)
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B.1.4 Saddle-point equations of𝐺 for spherical weights
Since 𝐺1 does not depend on 𝐸 and 𝐹 the saddle-point equations

with respect to 𝐸 and 𝐹 are

0 =
1

𝑛

𝜕𝐺

𝜕𝐸
= −𝑖 + 1

𝑛

𝜕𝐺2

𝜕𝐸
, (B.11a)

0 =
1

𝑛

𝜕𝐺

𝜕𝐹
=
𝑖

2

(𝑛 − 1)𝑞 + 1

𝑛

𝜕𝐺2

𝜕𝐹
, (B.11b)

with

1

𝑛

𝜕𝐺2

𝜕𝐸
=

(𝑛 − 1)𝐹 + 2𝐸(𝑛 − 2)
2(2𝐸 + 𝐹)(−𝐹𝑛 + 2𝐸 + 𝐹) , (B.12a)

1

𝑛

𝜕𝐺2

𝜕𝐹
=

(𝑛 − 1)𝐹
2(2𝐸 + 𝐹)(−𝐹𝑛 + 2𝐸 + 𝐹) . (B.12b)

Performing the limit 𝑛 → 0 and solving for 𝐸 and 𝐹 results in

𝐸 =
𝑖(1 − 2𝑞)
2(1 − 𝑞)2 , (B.13a)

𝐹 =
𝑖𝑞

(1 − 𝑞)2 . (B.13b)

Further, we define the effective potential

𝑔 = lim

𝑛→0

1

𝑛
𝐺 (B.14)

and insert the solution of the saddle point equation into 𝐺. As a

result, we obtain

𝑔 = 𝛼

∫ ∞

−∞
𝐷𝑦 log 𝐿(𝑦) + 1

2

log (1 − 𝑞) + 1

2 (1 − 𝑞) (B.15)

plus constant terms independent of 𝑞. We can interpret the averaged

logarithm of the volume, 𝑔, as a kind of free energy (an effective
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potential), which is a regular function of 0 ≤ 𝑞 < 1, but has a singu-

larity at 𝑞 = 1. To analyze the role of this singularity, we employ the

asymptotic expansion of Erfc(𝑥) ≈
√
𝜋𝑥−1𝑒−𝑥

2

𝜃(𝑥) for 𝑥 → ∞. We

see that

𝑔 ≃ − 𝛼

2(1 − 𝑞)

∫ ∞

1−𝜅
𝐷𝑦(𝜅 − 1 + 𝑦)2 + 1

2 (1 − 𝑞) , (B.16)

has two singular terms as 𝑞 → 1.

We observe that there is a here is phase transition. When 𝛼 is

small the term 1/2(1 − 𝑞) is dominant at 𝑞 going to 1, and "pushes"

the minimum of 𝑔 to zero. For 𝛼 > 𝛼𝑐(𝜅), where

𝛼𝑐(𝜅) = [
∫ ∞

1−𝜅
𝐷𝑦(𝜅 − 1 + 𝑦)2]−1 , (B.17)

the term with 1/(1 − 𝑞) is negative, and the minimum of 𝑔 is at −∞
so that in effect the relative volume shrinks to zero. One can check

explicitly that 𝛼𝑐(𝜅) is a decreasing function of 𝜅. The free energy at

𝑞 = 0 becomes -

𝑔(𝑞 = 0;𝜅) = 𝛼 log[2
√
𝜋Erfc

[
𝜅 − 1√

2

]
] + 1

2

, (B.18)

or after normalization

𝑔̃(𝑞 = 0) = 𝑔(𝑞 = 0;𝜅) − 𝑔(𝑞 = 0;𝜅 = 0) . (B.19)

We plot the effective potential as a function of 𝛼 and 𝜅 in Fig. B.1.

The above analysis implies that the critical value of the storage

capacity for 𝜅 = 1, 𝛼𝑐 . = 2. Since 𝛼𝑐(𝜅) grows as 𝜅 becomes smaller,

performing the integral leads to the maximal critical storage capacity

of 𝛼𝑐,max > 2 for 𝜅 → 0.

B.1.5 Calculation of 𝐺1 for Gaussian distributed in-
puts

First, we define the matrix
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Figure B.1 The effective potential for the spherical weights. We plot the

normalized effective potential 𝑔̃ of Eq. (B.19). It changes from finite negative

values below 𝛼𝑐 to −∞ (represented by the grey area) above 𝛼𝑐 . The black

line shows the 𝛼𝑐 curve given by Eq. (B.36).
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𝐴𝑘𝑘′ =
1

𝑛

∑
𝛼

𝑥𝛼𝑤𝛼
𝑘
𝑤𝛼
𝑘′ , (B.20)

which is spanned by the vectors𝑤𝛼
We can write its nontrivial eigen-

vectors as combinations of 𝑤𝛼
. The eigenvalue equation is

1

𝑛

∑
𝛼,𝑘′

𝑥𝛼𝑤𝛼
𝑘
𝑤𝛼
𝑘′

∑
𝛽

𝑐𝛽𝑤
𝛽
𝑘′ = Λ

∑
𝛼

𝑐𝛼𝑤
𝛼
𝑘
. (B.21)

All other eigenvectors of 1 + 2𝑖𝐴̂ (orthogonal to the vectors 𝑤𝛼
) are

trivial – they correspond to eigenvalues 1 and do not contribute to

the log det. Comparing coefficients, using the definition of 𝑞𝛼𝛽 and

assuming replica symmetry 𝑞𝛼𝛽 = 𝑞 for 𝛼 ≠ 𝛽, leads to a closed

equation

1 =
∑
𝑎

𝑥𝛼𝑞

Λ − 𝑥𝛼 (1 − 𝑞) (B.22)

for eigenvalues Λ of 𝐴̂. Using the eigenvalues of 𝐴̂ we can rewrite

𝐺1 as

𝐺1[𝑞] = log

∫ ∏
𝛼

𝑑𝜆𝛼

∫ ∏
𝛼

𝑑𝑥𝛼
exp (𝑖∑𝛼 𝑥

𝛼𝜆𝛼)∏
𝑛 (1 + 2𝑖Λ𝑛)

. (B.23)

In order to rewrite the product of eigenvalues we transform the

self-consistent equation for the eigenvalues Λ into the characteristic

polynomial of 𝐴̂ to define the function

𝑊(Λ, 𝑥) =
∏
𝛼

[Λ − (1 − 𝑞)𝑥𝛼]

−
∑
𝛼

𝑞𝑥𝛼
∏
𝛼≠𝛽

[
Λ − (1 − 𝑞)𝑥𝛽

]
. (B.24)
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Next, we introduce the auxiliary quantity

𝐿(𝜖) = log det(1 + 2𝑖𝜖𝐴̂) =
∑
𝑛

log(1 + 2𝑖𝜖Λ𝑛) , (B.25)

where we are interested in the value of 𝐿(1). Differentiating with

respect to 𝜖 we obtain

𝑑𝐿

𝑑𝜖
=
𝑛

𝜖
− 1

𝜖

∑
Λ

1

1 + 2𝑖Λ𝜖
. (B.26)

The sum can be rewritten by using Cauchy’s theorem and employing

an appropriate contour 𝒞. Using this integral representation for the

sum we obtain

𝑑𝐿

𝑑𝜖
=
𝑛

𝜖
+ 𝑑

𝑑𝜖
log𝑊 (𝑖/(2𝜖), 𝑥) . (B.27)

Integrating 𝜖 from 0 to 1 we get

𝐿(1) = log𝑊 (𝑖/2, 𝑥) (B.28)

since 𝐿(𝜖) goes to zero for 𝜖 → 0. Expanding Λ in 𝑞, i.e., treating 𝑞

as a perturbation, 𝐺1 becomes

𝐺1[𝑞] = log

∫ ∏
𝛼

𝑑𝜆𝛼

∫ ∏
𝛼

𝑑𝑥𝛼 exp

(
𝑖
∑
𝛼

𝑥𝛼𝜆𝛼

)

× 1∏
𝛼

(
𝑖

2

− 𝑥𝛼
)


1 +

∑
𝛼,𝛽

𝑞2𝑥𝛼𝑥𝛽(
𝑖

2

− 𝑥𝛼
) (

𝑖

2

− 𝑥𝛽
)

. (B.29)

Performing the integration over 𝑥𝛼 and 𝜆𝛼
gives

𝐺1(𝑞) =
𝜅𝑛
2

− 1

2

𝑛𝑞2 (2 + 𝜅)2 . (B.30)

Due to the perturbative expansion in 𝑞 the function 𝐺1(𝑞) does not

exhibit any singularity at 𝑞 = 1, which will affect the nature of the

phase transition, as we will see below.
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B.1.6 Saddle-point equations of 𝐺 for Gaussian dis-
tributed inputs

The effective potential of Eq. (2.13) becomes

𝑔 = 𝛼

[
−𝜅

2

− 1

2

𝑞2(2 + 𝜅)2
]

+ 1

2

log (1 − 𝑞) + 1

2 (1 − 𝑞) , (B.31)

plus constant terms independent of 𝑞. This function does contain a

singular term (1− 𝑞)−1
, which repulses the saddle point solutions for

the minimal value away from 𝑞 = 1. Indeed, taking the derivative of

𝑔 with respect to 𝑞 gives

𝛼 (2 + 𝜅)2 𝑞 =
𝑞

2 (1 − 𝑞)2
. (B.32)

This equation has a trivial solution 𝑞 = 0 for which 𝑔 becomes mini-

mal, and

𝑔̃ = 𝑔(𝜅) − 𝑔(𝜅 = 0) = −(𝛼𝜅)/2 (B.33)

This equation has also a non-trivial solution, which exists for 2𝛼 (2 + 𝜅)2 ≥
1. The critical value of the storage capacity is given by (see App. B.5)

𝛼𝑐 =
1

2(2 + 𝜅)2 . (B.34)

Note that the phase transition, in this case, has a different charac-

ter: for both solutions, 𝑔, or more importantly 𝑔̃, take finite negative

values, but it changes from −(𝛼𝜅)/2 in the "easy to learn" phase to

larger negative values in the "hard to learn phase", see Fig. B.2. This

behavior might be the result of expansion in 𝑞 that we used to ob-

tain the effective potential. In the "easy to learn" phase, the relative

volume is 1 at 𝜅 = 0, as expected, but decreases moderately slowly

exponentially with 𝑚 as exp(𝑚𝑔̃) for non-zero 𝜅. This exponential

decrease becomes much faster in the "hard to learn phase", as illus-

trated in Fig. (B.2). Furthermore, the effective potential might be
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the first term of expansion of (1 − 𝑞2)−1
and we discuss this idea in

App. B.5, which will bring us back to the volume shrinking phase

transition à la Gardner.

B.1.7 Calculation of 𝐺2 for Ising weights
Assuming replica symmetry of 𝐹𝑎𝑏 and averaging over the binary

weights, Eq. (2.27) becomes

𝐺2 = −1

2

𝐹𝑛 + 𝑛
∫ ∞

−∞
𝐷𝑧 log

[
2 cosh(𝑧

√
𝐹)

]
, (B.35)

as in the classical case Krauth and Mézard [1989].

B.1.8 Saddle-point equations of 𝐺 for Ising weights
The effective potential with replica symmetry of 𝑞𝑎𝑏 and 𝐹𝑎𝑏 becomes

𝑔 = 𝛼

∫ ∞

−∞
𝐷𝑦 log 𝐿(𝑦) + 𝑅(𝐹, 𝑞) (B.36)

with

𝑅(𝐹, 𝑞) = −1

2

𝐹 (1 − 𝑞) +
∫ ∞

−∞
𝐷𝑧 log

[
2 cosh

(
𝑧
√
𝐹
)]
. (B.37)

Then, the saddle-point equation with respect to 𝐹 is

−1

2

(1 − 𝑞) +
∫ ∞

−∞
𝐷𝑧

𝑧

2

√
𝐹

tanh

(
𝑧
√
𝐹
)
= 0, (B.38)

which is similar to equation obtained for the classical perceptron with

binary weights Gardner and Derrida [1988], where it was argued that

the solution with 𝐹 → ∞ as 𝑞 → 1 is invalid. Instead, for the cor-

rect solution of the classical perceptron problem, replica-symmetry

breaking must be taken into account.
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Figure B.2 The effective potential for Gaussian distributed inputs. We

plot the effective potential 𝑔 at the minimum, i.e. at 𝑞 = 0 for 𝛼 ≤ 𝛼𝑐 , and

𝑞 = 1 −
√

1/[2(2 + 𝜅)2𝛼] for 𝛼 > 𝛼𝑐 . It changes from small negative values

close to zero of Eq. (B.33) below the 𝛼𝑐 curve to larger negative values of

Eq. (B.31) above. The black line shows the 𝛼𝑐 curve given by Eq. (B.34).

191



B.

Here, we analyze results for replica symmetric case and compare

them with Monte Carlo simulations. For the quantum perceptron, 𝐹

is a well defined function of 𝑞, and it tends to infinity as 𝑞 → 1. The

last equation can be solved

√
𝐹 ≈

√
2

𝜋
1

(1 − 𝑞) , (B.39)

where sign(𝑥) = 𝑥/|𝑥 | and we approximated the tanh by sign(x).
Comparing the leading terms when 𝑞 → 1, we arrive at

𝑔 ≈ 1

(1 − 𝑞)

[
−𝛼

4

∫ ∞

−𝜅
𝐷𝑦(𝜅 + 𝑦)2 + 1

𝜋

]
. (B.40)

In this way we obtain the critical value

𝛼𝑐(𝜅) =
4

𝜋

[∫ ∞

−𝜅
𝐷𝑦(𝜅 + 𝑦)2

]−1

, (B.41)

which implies the maximal value of 𝛼𝑐(0) = 8/𝜋. In contrast the MC

simulations suggest that 𝛼𝑐(0) ≃ 0 as illustrated in Fig. D.1. As in

the classical case, we interpret this discrepancy as the necessity of

replica symmetry breaking.

B.2 Details on the quantum perceptron pro-
posed in Tacchino et al. [2019]

The first unitary𝑈®𝑖 should fulfill

|𝜓®𝑖⟩ = 𝑈®𝑖 |0⟩
⊗𝑁 , (B.42)

and in this way encodes the information on 𝑁 qubits. Particularly,

any 𝑚 ×𝑚 unitary matrix with the first column being identical with
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®𝑖 and normalized is a valid candidate for such a unitary. The in-

formation is processed by applying the second unitary 𝑉®𝑤 which

fulfills

𝑉®𝑤 |𝜓 ®𝑤⟩ = |1⟩⊗𝑁 = |𝑚 − 1⟩ . (B.43)

Applying the unitary 𝑉®𝑤 on the encoded state leads to

|𝜙®𝑖 , ®𝑤⟩ ≡ 𝑉®𝑤 |𝜓®𝑖⟩ =
𝑚−1∑
𝑗=0

𝑐 𝑗 | 𝑗⟩ . (B.44)

Performing multi-controlled NOT gates with a readout qubit leads

to the state

|𝜙𝑖 ,𝑤⟩ |0⟩ =
𝑚−2∑
𝑗=0

𝑐 𝑗 | 𝑗⟩ |0⟩ + 𝑐𝑚−1 |𝑚 − 1⟩ |1⟩ . (B.45)

As a result, when measuring 1 on the readout qubit, the proba-

bility amplitude is

|𝑐𝑚−1 |2 = |®𝑖𝜇 · ®𝑤 |2. (B.46)

B.3 Abbreviations
In this appendix, we summarize the abbreviation used in the main

text. In Eq. (2.5) and Eq. (2.6) we used∫
𝑤

=

∫ ∞

−∞

∏
𝑘

𝑑𝑤𝑘 , (B.47)

and in Eq. (2.9) the measure is∫
𝑤

∫
𝜆

∫
𝑥

∫
𝐸

=

∫ ∞

−∞

∏
𝑘

𝑑𝑤𝑘

∫ ∞

𝜅

∏
𝜇

𝑑𝜆𝜇

×
∫ ∞

−∞

∏
𝜇

𝑑𝑥𝜇

2𝜋

∫ ∞

−∞

𝑑𝐸

2𝜋
, (B.48)
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in Eq. (2.12) the abbreviation means∫
𝐹

∫
𝑞

∫
𝐸

=

∫ ∞

−∞

∏
𝛼<𝛽

𝑑𝑞𝛼𝛽
∫ ∞

−∞

∏
𝛼<𝛽

𝑑𝐹𝛼𝛽

2𝜋

∫ ∞

−∞

∏
𝛼

𝑑𝐸𝛼

2𝜋
, (B.49)

and in Eq. (B.2) we used∫
𝑤

∫
𝜆

∫
𝑥

∫
𝐸

∫
𝑞

∫
𝐹

=

∫ ∞

−∞

∏
𝑘,𝛼

𝑑𝑤𝛼
𝑘

∫ ∞

𝜅

∏
𝜇,𝛼

𝑑𝜆𝛼
𝜇

∫ ∞

−∞

∏
𝛼,𝜇

𝑑𝑥𝛼𝜇

2𝜋

×
∫ ∞

−∞

∏
𝛼

𝑑𝐸𝛼

2𝜋

∫ ∞

−∞

∏
𝛼<𝛽

𝑑𝑞𝛼𝛽
∫ ∞

−∞

∏
𝛼<𝛽

𝑑𝐹𝛼𝛽

2𝜋
. (B.50)

B.4 Monte Carlo simulation
We apply the Monte Carlo simulation of the classical perceptron with

Ising weights Gardner and Derrida [1989b] to the quantum percep-

tron. Here, we elaborate the details of the Monte Carlo simulation.

The first pattern 𝑖1
𝑗
= ±1 is chosen at random and we fix a certain

threshold 𝜅. Then, we go through all possible realizations of the

weights and keep only the weights that satisfy the given threshold 𝜅.

This forms the remaining set of the weights. Then, a second pattern

is chosen at random and we go through all possible realizations of the

remaining set of the weights to keep again only the subset of weights

which satisfy the given threshold 𝜅. Then, we continue by choosing

more random patterns and updating the set of the weights that fulfill

the given threshold. After a certain number of 𝑃 patterns that have

been introduced to the perceptron, no choice for the weights exist for

𝑃 + 1 patterns. This means that for this sample the system can store

exactly 𝑃 patterns.

Therefore, the value of 𝑃 depends on the random choices of the∑
𝑖
𝜇
𝑗
= ±1 and the threshold 𝜅. The threshold 𝜅 in the classical case

is zero, since the output is either ±1. For the quantum case, the
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threshold 𝜅 is 𝑚/2 since 𝜅 ∈ [0, 𝑚]. We need to average 𝑃 over many

samples and define the estimate of the storage capacity for a system

of size 𝑁𝑠

𝛼(𝑁𝑠) =
⟨𝑃⟩
𝑁𝑠

. (B.51)

For the numerical simulations in Fig. D.1, 𝑁𝑠 is equal to 𝑁 and 𝑚

for the classical and quantum percepton, respectively. Moreover,

we have 2
𝑁

and 2
𝑚

realizations of the weights for the classical and

quantum models, respectively. We used 10000 samples for each

simulation and we performed them three times to estimate the error.

In Fig. D.1, we choose odd values of 𝑁 to always have ±1 for the

output and we use 𝑚 = 8, 16, 32 since for larger 𝑚 the computation

becomes intractable.

B.5 Speculations about the Gaussian inputs
In the derivation of the basic expression

𝑔 = 𝛼

[
−𝜅

2

− 1

2

𝑞2(2 + 𝜅)2
]

+ 1

2

log (1 − 𝑞) + 1

2 (1 − 𝑞) , (B.52)

where we used an expansion in 𝑞, eliminating a part of the singular

behavior at 𝑞 → 1. The next order contribution in the effective

potential is presumably[
−𝜅

2

− 1

2

𝑞2(2 + 𝜅)2
]
≈

[
−𝜅

2

+ 1

2

(2 + 𝜅)2 − 1

2(1 − 𝑞2)(2 + 𝜅)2
]

and suggests that

𝛼𝑐(2 + 𝜅)2/2 = 1,

implying maximal 𝛼𝑐(𝜅 = 0) = 1/2.
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Appendix C

C.1 Appendix

C.1.1 Parameters
The parameters of the four arbitrary single qubit gates [𝜙𝑖 , 𝜃𝑖 , 𝜔𝑖] of

Teacher RU are

[[2.71, 6.15, 0.42], [3.26, 1.13, 6.10],
[0.71, 2.54, 4.63], [4.43, 2.66, 2.18]],

while for the Student RU we have

[[−1.30, 0.40,−1.86], [0.60, 1.89, 0.37],
[0.17, 2.69, 0.67], [0.49,−0.14, 0.68]].

This is one of the many local minima that the training of Student RU

could reach.

C.1.2 Additional plots
In Fig. C.1, we show the prediction maps and loss curves for the

toy model with the QP (Fig. 3.1a) as the teacher and the students

(Fig. 3.1a and b).

196



C.

In Fig. C.2 and C.3 we present the prediction maps and loss

curves with binary labels of the teachers for the students of the

toy model (Fig. 3.1) and the deep-shallow architectures (Fig. 3.3),

respectively. In Fig. C.4, we present the alteration of the QP with

many processing and entangling gates. This alteration does not

improve the performance of the model. This again validates that

the functions that can be learned are definitely determined by the

number of times the data are encoded in the circuit ? and not the

amount of deferred measurements.

C.1.3 Labelling matters

In Fig. C.5, we show how the labelling affects the results. We plot

the prediction map for the circular data with labels −1 for the inner

(black) and 1 for the outer circles (yellow) (Student 1 in Fig. C.5).

Then, we plot the prediction map for the student with opposite

labelling of the data, i.e. 1 for the inner (black) and −1 (yellow) for

the outer circles (Student 2 in Fig. C.5). As shown, the prediction

map of Student 2 with RX is very different from the circular structure

of the data and the training is not successful.

The final state of the ancilla qubit is of the form |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩
and the measurement gives ⟨𝑍⟩ = 𝛼2 − 𝛽2

. Therefore, for the label

−1, ⟨𝑍⟩ should be close to −1. The average probability vector of

the ancilla qubit for the label −1 is 𝑃−1 = [𝛼2, 𝛽2] = [0.37, 0.64],
and indeed, 𝛼2 − 𝛽2 < 0. Then, the training is successful and the

prediction map of Student 1 is similar to the data structure. If we

change the labelling, we get the following average probability vector

𝑃−1 = [0.94, 0.06] for the label −1, where now 𝛼2 − 𝛽2 > 0. This is the

reason why the training fails for Student 2, which is fixed by adding

a PauliX gate before the measurement (see Student - Re-uploading

with RX in Fig. C.5).
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C.1.4 Input data
As emphasized in the main text, the normalization of the input data

highly affect the training and success of the circuits, since the quan-

tum functions are periodic in the input data. For example, we train

the students in Fig. 3.3, but with a different normalization, i.e. in-

stead of [−𝜋,𝜋] with [−1, 1]. As it can be seen in Fig. C.6, the pre-

diction maps do not show the whole structure of the data and both

students seem to perform well, contrary to Fig. 3.3 where Student

- Re-uploading performs better. Therefore, one should be careful

when choosing the normalization of the input data.
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Figure C.1 Teacher-student training for teacher (Fig. 3.1a) and the two stu-

dents (Fig. 3.1 a and b). The prediction maps show one particular example

of the training with the corresponding losses (solid loss curves). The aver-

age loss (dashed lines) show the average over all 10 random initializations.
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Figure C.2 The binary prediction maps of the teacher RU and the students:

Student - QP and Student - RU as in Fig. 3.1. In the upper right corner,

we plot the accuracy curves for the QP (Student - QP black line), RU (Stu-

dent - Re-uploading blue line) and the student averages over 10 different

realizations of the teacher (Student - QP black dashed line and Student -

Re-uploading blue dashed line).
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Figure C.3 The binary prediction maps of the teacher with the deep archi-

tecture in Fig. 3.3 and the students: Student - QP and Student - RU as in

Fig. 3.1. In the upper right corner, we plot the accuracy curves for the QP

(Student - QP black line), RU (Student - Re-uploading blue line) and the

student averages over 10 different realizations of the teacher (Student - QP

black dashed line and Student - Re-uploading blue dashed line).
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Figure C.4 An alteration of the QP with many processing and entangling

gates.
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Figure C.5 We present the input data along with the prediction maps for

QP students with different labelling, i.e. Student 1 has labelling -1 for the

inner (black) and 1 for the outer circles (yellow), while Student 2 has exactly

the opposite. Student 2 with RX has the same labelling as Student 2, but a

RX gate is applied before the measurement.
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Figure C.6 The prediction maps of the teacher with the deep architecture

in Fig. 3.3 and the students: Student - QP and Student - RU as in Fig. 3.1

but with normalization [−1, 1] instead of [−𝜋,𝜋]. In the upper right corner,

we plot the loss curves for the QP (Student - QP black line) and the RU

(Student - Re-uploading blue line).
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Appendix D

D.1 Monte-Carlo integration
For the numerical simulation we use Monte-Carlo integration Mc-

Clean and approximate the integral as∫
𝑈(𝑁)

𝑓 (𝑈)𝑑𝑈 ≈ 1

𝑝

𝑝∑
𝑖=1

𝑓 (𝑈𝑖) , (D.1)

where 𝑝 is the total number of random unitaries used and 𝑈𝑖 is a

randomly drawn unitary according to the Haar measure. To define

such unitary numerically, we start by calling a 𝑁 × 𝑁 matrix with

Gaussian values. Then, we perform a QR decomposition on this

matrix which gives two matrices 𝑄 and 𝑅. Next, we define the

diagonal matrix D from the diagonal elements of the matrix 𝑅, i.e.

𝐷𝑖𝑖 = 𝑅𝑖𝑖/|𝑅𝑖𝑖 |. Finally, the unitary random matrix according to the

Haar measure is defined as𝑈𝑖 = 𝑄𝐷 McClean.

D.2 Prediction maps
Fig. D.1 shows an example of the prediction maps for the 2-qubit

circuit as a teacher and the 3-qubit circuit as a student along with

the reverse roles for each circuit. In both cases, the student deviates

from the data distribution of its teacher.
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Figure D.1 Examples of the prediction maps for the 2-qubit and 3-qubit

circuits at the roles of the teacher and student. In both cases, the students

have significant discrepancies with their teachers.
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D.3 Coefficient formula
Here, we present the explicit formula of the real and imaginary parts

of the coefficient 𝑐11 for the 2-qubit and 3-qubit circuits in Fig. 4.2

in Eq. (D.2),(D.3) and Eq. (D.4),(D.5), respectively for the real and

imaginary parts.

𝑅𝑒 (𝑐11) = sin

(
𝜃2

2

)
sin
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2
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)
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Figure D.2 A 3-qubit circuit with an extra layer 𝐿 marked by the dashed

lines.

D.4 3-qubit circuit with 4 gates
Here, we present the Fourier coefficients in Fig. D.3 for the circuit

with 3 qubits and four parameterized gates sketched in Fig. D.2. We

see that the coefficients 𝑐1,1 and 𝑐1,−1 now take similar values with

their corresponding coefficients shown in Fig. 4.5 in orange color.
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Figure D.3 The real and imaginary part of the Fourier coefficients for the

3-qubit (light blue color) circuit of Fig. D.2.
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Appendix E

E.1 STO-3G
Here, we explore the behaviour of the 𝐻𝑛 with the STO-3G basis

set in terms of the ansatz overlap as a function of the system size

𝑛 ∈ {2, 4, 6, 8}. In Fig. E.1, we see that HF fidelities drop faster than

SPA, which on the contrary gives reasonable high fidelity values for

all studied 𝑛.

E.2 Booster resource estimation analysis

Following the analysis of the booster algorithm Wang et al. [2022b],

the booster operation 𝑓 (𝐻) of the given Hamiltonian 𝐻 could be

implemented by obtaining a Fourier approximation of 𝑓 and imple-

menting a linear combination of unitaries (LCU) method as

𝑓𝐷(𝑥) =
∫ 𝐷

−𝐷
𝑓 (𝜉)𝑒 𝑖2𝜋𝑥𝜉𝑑𝜉. (E.1)

According to the aforementioned work, the proxy depth of this op-

eration could be estimated as 2𝐷. Next, the integral could be further

discretized as
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Figure E.1 Here we plot the HF, SPA and booster overlap squared for the

𝐻𝑛 systems with STO-3G basis set with an increasing system size 𝑛.

𝑓𝐷,𝑁 (𝑥) =
𝐷

𝑁

𝑁−1∑
𝑗=−𝑁

𝑓
(
𝜉𝑗

)
𝑒 𝑖2𝜋𝑥𝜉𝑗 , (E.2)

with 𝜉𝑗 = (𝑗+1/2)𝐷𝑁 for 𝑗 = −𝑁,−𝑁+1, . . . , 𝑁−1. Next, assuming

a Gaussian booster 𝑒𝑥𝑝
(
−𝑎𝑥2

)
the above equation becomes

𝑓𝐷,𝑁 ;𝑎(𝑥) =
𝐷

𝑁

√
𝜋
𝑎

𝑁−1∑
𝑗=−𝑁

𝑒−
(𝜋𝜉𝑗)2

𝑎 𝑒2𝜋𝑖𝑥𝜉𝑗 , (E.3)

where 𝜉𝑗 = (𝑗+1/2)𝐷/𝑁 , and𝑁 is sufficiently large so that 𝑓𝑎(𝑥) ≈
𝑓𝐷;𝑎(𝑥) ≈ 𝑓𝐷,𝑁 ;𝑎(𝑥). Finally, we can apply a Trotter decomposition to

211



E.

the operation 𝑒2𝜋𝑖𝐻𝜉𝑗
of the given Hamiltonian 𝐻 for one Trotter

step to estimate the Pauli rotations, and in turn, the T-gate count

𝑇𝐾=1. Usually, a required number of Trotter steps 𝐾 is necessary to

reach the desired precision. Thus, the total number of T-gates for the

booster algorithm is given by 𝑇 = 2𝐷𝐾𝑇𝐾=1.

Finally, following the work of Gratsea et al. [2022], the booster

algorithm requires a number of repetitions 1/𝑃𝑠𝑢𝑐𝑐 to ensure their

success, where the success probability 𝑃𝑠𝑢𝑐𝑐 is given by

𝑝𝑠𝑢𝑐𝑐 ( 𝑓𝑇,𝑁 ) ≈
〈
𝜓

�� 𝑓 2(𝐻)
��𝜓〉

𝑓 2(0) =
〈
𝜓

�� 𝑓 2(𝐻)
��𝜓〉

, (E.4)

since 𝑓 2(0) = 1 for the Gaussian booster.

E.3 Number of Trotter steps

The work of von Burg et al. [2021] estimates the necessary number

of Trotter steps for 1-D Hydrogen chains to chemical accuracy. To

apply this analysis to the operation 𝑒2𝜋𝑖𝐻𝜉𝑗
discussed in the previous

section and Eq. (E.3), we need that the maximal simulation time of

the aforementioned operation is smaller than the time 𝜖−1 = 625

considered in the work von Burg et al. [2021], where 𝜖 is the chemical

accuracy 1.6𝑚𝐻𝑎.

We estimate the maximal simulation time by summing over the

absolute value of 𝑥 𝑗 = (𝑗 + 1/2)𝐷/𝑁 from 𝑗 = −𝑁 to 𝑁 − 1, which

results to
𝜋𝐷
Δ

. The proxy depth 𝐷 is a hyper-parameter in the op-

timization of the booster and is set to 10. The spectral gap Δ is

equal to [1.1580, 2.7287, 4.48, 6.35] for the hydrogen chains with 𝑛 =

[2, 4, 6, 8], which results to the maximal simulation time [27, 12, 7, 2],
respectively. This suggests that the maximal simulation time is

smaller than the simulation time considered in the work of von Burg

et al. [2021] and the results presented there are applicable in this

analysis.
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The authors present an empirical estimation of the number of

Trotter steps necessary for the linear hydrogen chains with bond

distance 𝑑 = 1.7 and find that approximately 𝐾 = 10 number of

Trotter steps are required. According to the work of Tranter et al.
[2019], increasing the bond distance decreases the Trotter error, and

therefore, in our resource estimations of linear hydrogen chains with

𝑑 = 3.0 the empirical calculation of 𝐾 = 10 Trotter steps is a good

proxy (see Fig. 5.6, Table 5.2).

Finally, the authors of the work von Burg et al. [2021] observe a

10

√
𝑛 reduction in the number of Trotter steps required compared to

a rigorous bound analysis given in Cohen et al. [2012]. In Fig. E.2, we

present the runtime ratios while taking into account the increased

number of Trotter steps 𝐾 = 100

√
(𝑛) for the booster algorithm in-

stead of 𝐾 = 10 in Fig. 5.6.

E.4 Overlap values
In Table E.1 we presented the overlap squared values used in Fig. 5.5.

Table E.1 We present overlap squared values used in Fig. 5.5 for 𝐻𝑛 .

𝐻𝑛 𝛾2

0
𝛾2

𝑆𝑃𝐴+𝑋 𝛾2

𝑏

𝐻2 0.63 0.99 1.0

𝐻4 0.0375 0.69 1.0

𝐻6 0.0052 0.94 1.0

𝐻8 0.00073 0.19 1.0

E.5 Failure tolerance

Usually 𝛿 is chosen through the maximal probability with which

ones allow the algorithm to fail. Therefore, we define the failure
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Figure E.2 Here we plot the ratios 𝑇𝑜/𝑇 for SPA and booster over HF with

𝐾 = 100

√
𝑛 of 𝐻𝑛 system for an increasing system size 𝑛 = [2, 4, 6, 8] and

bond distance 𝑑 = 3.0.
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tolerance 𝛿𝐶 as

𝛿𝐶 = 1 − (1 − 𝛿)𝑅 ≈ 𝑅𝛿 ⇒ 𝛿 ≈ 𝛿𝐶 × (𝑅)−1 , (E.5)

where 𝑅 is the number of Pauli Rotations and 𝛿 is the necessary

precision for operating the 𝑅 number of gates.

E.6 Computational details

We compiled the SPA-variant circuits of Fig. 5.5 to Pauli Rotations

𝑅𝑆𝑃𝐴 and CNOT gates by using the circuit compilation incorporated

in tequila Kottmann et al. [2021a]. In Table E.3, we present the

number of Pauli Rotations 𝑅𝑆𝑃𝐴 and the respective values of 𝛿𝑆𝑃𝐴
for the T-gate counts of the SPA-variant circuits also presented in

Table 5.1.

Table E.2 We present the Pauli rotations (𝑅𝑆𝑃𝐴, 𝑅𝑆𝑃𝐴+𝐺𝑆), the necessary

precision for operating the aforementioned number of gates (𝛿𝑆𝑃𝐴 , 𝛿𝑆𝑃𝐴+𝐺𝑆)

of the SPA-variants circuits for 𝐻𝑛 .

𝐻𝑛 𝑅𝑆𝑃𝐴 𝛿𝑆𝑃𝐴 𝑅𝑆𝑃𝐴+𝐺𝑆 𝛿𝑆𝑃𝐴+𝐺𝑆
𝐻2 1 10

−3
21 5 × 10

−5

𝐻4 2 5 × 10
−4

2.7 × 10
3

8.3 × 10
−6

𝐻6 3 3 × 10
−4

4.2 × 10
3

3.3 × 10
−6

𝐻8 560 2.5 × 10
−4

2.2 × 10
4

1.8 × 10
−6

For estimating the number of T-gate counts of the booster algo-

rithm presented in Table 5.1, we used a Trotter decomposition with

𝐾 = 1 number of steps for the Hamiltonians of 𝐻𝑛 by using the

time evolution function in orquestra Zapata AI [2023]. Then, we

exported the circuit with Qiskit Qiskit contributors [2023] and com-

puted the number of Pauli Rotations 𝑅𝑏 with their respective values

of 𝛿𝑏 (presented in the Table E.3 above).
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Table E.3 We present the Pauli rotations (𝑅𝑏), the necessary precision for

operating the aforementioned number of gates (𝛿𝑏) and T-gate counts of

the booster algorithm (𝑇𝐵) for 𝐻𝑛 .

𝐻𝑛 𝑅𝑏 𝛿𝑏 𝑇𝐵
𝐻2 9.3 × 10

2
3.3 × 10

−5
1.9 × 10

5

𝐻4 1.3 × 10
7

7.6 × 10
−7

1.3 × 10
7

𝐻6 7.4 × 10
3

1.4 × 10
−7

5.2 × 10
7

𝐻8 2.5 × 10
5

4.0 × 10
−8

1.6 × 10
8

Classical FCI and HF energies are computed with pyscf Sun et al.
[2018]. MRA-PNOs are computed with madness Harrison et al. [2016]

using the implementation described in Kottmann et al. [2021b, 2020]

on top of the framework described in Harrison et al. [2004]; Bischoff

[2014]. Exact diagonalization of Hamiltonians was performed with

sparse solvers implemented in scipy Virtanen et al. [2020]. The

quantum simulation backend was qulacs Suzuki et al. [2021].
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F.1 Scalability of today’s devices

Figure F.1 We plot the worst two qubit gate error of two IBM quantum

devices on the cloud as a function of the number of qubits. The power law

fit (blue line) suggests today’s scalability is 𝑠 = 1.75 and 𝑝0 = 0.005.

Here we estimate the scalability of today’s quantum devices. To
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this end, we collected data from two IBM devices available on the

cloud, namely lagos and brisbane. We collected the CNOT error rates

at 10:00 am each day over 30 days. In Fig. F.1, we plot the mean and

standard deviation of the worst-case CNOT error rates for the studied

devices. We then make a power-law fit of the data to estimate the 𝑝0

and 𝑠 as introduced in Eq. 6.3. We find that 𝑝0 = 0.005 and 𝑠 = 1.75,

which we refer to as today’s scalability. Figure 6.1 shows this point

to lie in the NISQ regime, despite 𝑝0 being below threshold.

F.2 Logarithmic scalability model
In this section we investigate the implications of a more optimistic

scalability model. Instead of the power law model of Equation 6.3,

we consider a logarithmic model for the scalability profile,

𝑝
phys

(𝑄
phys

;𝒱) = 𝑝0

(
1 + 1

𝜎
ln(𝑄

phys
)
)
, (F.1)

where 𝜎 is the scalability parameter analogous to 𝑠 in Equation 6.3.

The parameterization is chosen such that at 𝑄
phys

= 1, the function

value and slope match those of Equation 6.3. With this alternative

scalability model, the physical qubit number at which the physical

error rate exceeds the threshold value is now

𝑄max

phys
= exp

(
𝜎
𝑝0 − 𝑝th

𝑝
th

)
, (F.2)

which, compared to the power law model, grows exponentially in

the gap between 𝑝0 and 𝑝
th

.
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Figure F.2 This plot shows the QPE resource overhead under the loga-

rithmic scalability model of Eq. F.1. Similar to the power law model

shown in Figure 6.4, the logarithmic scalability model also predicts that,

for each finite value of scalability parameter 𝜎, there is a maximum prob-

lem instance size that can be accommodated by the architecture. How-

ever, the logarithmic scalability model is more optimistic in that, for the

same base error rate 𝑝
phys

(𝑄
phys

= 1) = 𝑝0 and for the same (logarith-

mic) slope at 𝑄
phys

= 1, the maximum problem instance size is far larger

for the logarithmic scalability model. Thus, in order to observe the lim-

ited problem instance size in the range of 10 to 10,000 logical qubits, we

use the larger base error rate of 𝑝0 = 0.001 compared to the 𝑝0 = 0.0001

used in Figure 6.4. An editable version of the plot can be accessed here:

https://www.desmos.com/calculator/cnh0vchq6l
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