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Summary

After a global introduction and background, there will be two main parts of the thesis,
ordered by the topological size of the surfaces considered. Chapters 2 and 3 are written
so that experts can read them independently.

Part 1

The first part has a purely topological base with combinatorial methods, and with ap-
plications to hyperbolic geometry. It presents some results on the discrete counting
problem of counting the exact number of closed curves of a given word-length and with
a given self-intersection number, all while characterizing the figure-eight curves on the
once-punctured torus. This is part of a joint work with Mingkun Liu [FL24].

Next, we will use the combinatorial study of curves to describe the hyperbolic simple
length spectrum of the modular torus and reformulate Markov’s conjecture in combina-
torial terms. This is part of an individual work yet to appear on arXiv.

Part 2

In the second part, we present a Riemannian analog to Basmajian’s celebrated identity
for hyperbolic surfaces, which becomes an inequality involving the volume entropy. We
do this by first obtaining an inequality for a special class of metric graphs which encode
the set of orthogeodesics of the surface. This is part of a joint work with Florent Bal-
acheff [BF23].

Lastly, there is a chapter about more general perspectives and discussions on the ap-
proaches used in this work and a vision of the area, without putting as much effort into
the rigor as with the rest of the dissertation, but instead on the intuition and overview.

vii



Introduction and main results

This thesis contains two main parts, that will be later expanded into Chapters 2 and 3.
Firstly, we will introduce and motivate the main results historically, and in case of doubt
about any definition, the reader should refer to Chapter 1, containing the background.

During this introduction, referenced theorems for historical reasons will be numbered
(i.e. Theorem 1, Theorem 2, etc.), whilst all original results will be labeled alphabetically
(i.e. Theorem A, Theorem B, etc.).

The main object of study is surfaces, from topological to hyperbolic and Riemannian.
The thesis’ results will be ordered by increasing the topological size of the surfaces, the
first ones being results on the so-called one-holed torus, which is a topological surface
of signature (1, 1).

Word-length curve counting on the once-punctured torus

Let us first introduce counting problems. The following classical result, the Prime
Geodesic theorem, is sometimes considered the first curve counting result on hyper-
bolic surfaces. This became a topic in the mid-20th century, and the names of Del-
sarte, Hejhal, Huber, Margulis, Selberg, and Sarnak are the most prominent. By a
curve, we understand a free homotopy class of a loop, or equivalently a conjugation
class in the fundamental group. Primitive curves are classes of elements that are not
proper powers of nontrivial elements. Essential curves are those not represented by
a loop around a boundary component, a puncture, or a point in the surface. Through-
out this part, later explained in the background, given a surface S, we will denote by
C(S),PC(S),C∗(S),PC∗(S) to be the set of curves, primitive curves, essential curves
and essential primitive curves on S, respectively. For a more detailed definition see
Definition 1.2.1.

Theorem 1 ([Hub59, Mar69]). Let S be a finite-type hyperbolic surface, then

|{γ ∈ PC(S) | ℓ(γ) ≤ L}| ∼ eL

L
.
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The estimate in Theorem 1 can be made effective, and the error terms are related to the
Laplacian spectrum of X; see, for example, [Ber16, Section 5.4.2], [Bus92, Section 9.6].

A natural next step is to count not only the number of curves with bounded length but
also those that share some properties. In this case, we will be interested in those with
a given intersection number. We will denote by ι : C(S) → Z≥0 the geometric self-
intersection number of a curve. For a more detailed definition check Definition 1.2.2.

Among efforts by [Ree81, BS85, MR95, Riv01], the next result on curve-counting that
is especially relevant for us as it is on our same setting is the following, counting the
number of curves with no self-intersection and bounded length. We will call the set of
curves without self-intersection to be simple curves.

Theorem 2 ([MR95]). Let S be a hyperbolic once-punctured torus. Then, there is a
constant CS > 0 depending on the hyperbolic structure such that

|{γ ∈ PC(S) | ι(γ) = 0, ℓ(γ) ≤ L} ∼ CS · L2

when L grows.

Note that, in the above theorem, one could substitute PC(S) by C(S), since all simple
curves are primitive.

The next big groundbreaking result was due to Maryam Mirzakhani in [Mir08], who
instead of counting all curves of bounded length, counted the ones with a given topo-
logical type, and generalized also by them to this next result.

Theorem 3 (Special case of [Mir16]). For any hyperbolic structure on a surface S of
signature (g, n), X ∈ T(S), and for any k ∈ Z≥0, there exist explicit constants Cg,n,k > 0
depending only on g , n, and k, and BX > 0 depending only on the hyperbolic metric X
such that

|{γ ∈ PC(S) | ι(γ) = k, ℓX(γ) ≤ L}| ∼ Cg,n,k ·BX · L6g+6−2n.

After these, many efforts on curve counting have been made. And the biggest gener-
alization of it is by Erlandsson, Parlier, and Souto in [EPS20]. We will however state
a later version of the theorem by Erlandsson and Souto because the language and
notation used fits better this introduction.

Theorem 4 (Special case of [ES22]). Let ℓ be any positive, continuous, and homoge-
neous function on the space of geodesic currents on a surface S of signature (g, n).
Then, for any k ∈ Z≥0, there exist positive constants Cg,n,k and Bℓ depending only on
g, n, and k, and ℓ, respectively, such that

|{γ ∈ PC(S) | ι(γ) = k, ℓ(γ) ≤ L}| ∼ Cg,m,k ·Bℓ · L6g−6+2n.

Background on geodesic currents is referenced to [ES22], as will not be used in this the-
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sis. However, the set of curves of a surface S can be immersed in the set of geodesic
currents, and, moreover, this result generalizes the theorems before to not only hyper-
bolic length but to any positive continuous and homogeneous function on the space of
geodesic currents on the surface.

In particular, we will be interested in one specific length that comes in at this gener-
alization, the word-length. Given a surface, fix generators of the fundamental group,
then the word-length denoted by ℓω : C(S) → Z≥0 is the minimal number of letters of
the words on the generating set representing a given curve. This specific combinato-
rial length satisfies the conditions in Theorem 4, and hence the asymptotic counting of
curves with given intersection is known.

For hyperbolic lengths, aiming to find an exact explicit formula for the number of curves
with a given self-intersection and bounded length in terms of some coordinates of the
moduli space of hyperbolic metrics seems to be too ambitious. However, taking inspi-
ration on [EPS20], we will try and investigate this question for the word-length.

Let Σ1,1 be a once-punctured torus, i.e. a surface with signature (1, 1). Fix a canonical
generating set on the fundamental group and denote it by {a, b}. Let ℓω be the word-
length function on the set of curves with respect to this generating set. Then, in this
special case, we do not only want to study the asymptotics on the growth of the number
of curves with a given type, but we want to find a closed formula for the following number,

|{γ ∈ Γ ⊆ C(Σ1,1) | ι(γ) = k, ℓω(γ) = L}, (0.0.1)

for Γ ∈ {C(Σ1,1),PC(Σ1,1),C
∗(Σ1,1),PC

∗(Σ1,1)}.

In terms of counting curves with a given word-length and self-intersection, there are
works by Chas, Phillips, Lalley, and McMullen; see [CP10, CL12, Cha15, MCP19].
Many bounds have been found for the general cases and closed formulas for given
length-intersection difference, as well as computational experiments and conjectures.
Even if being on a different surface, an outstanding result on this topic worth mentioning
is the following.

Theorem 5 ([MCP19]). Let S be a surface of signature (0, 3). Then, for any k ≥ −1,
there exists a quadratic polynomial Pk(L) such that, for every L ≥ k + 4

Pk(L) = |{γ ∈ PC(S) | ℓω(γ) = L, ι(γ) = k + L}|.

This polynomial is, in general, not explicit. However, given some computations for short
curves with small self-intersection by Chas, some low-complexity examples of these
polynomials have been made explicit via interpolation.

Hence, back to our surface Σ1,1, we will now present our main results. The general
case for the counting of 0.0.1 is still open because our methods highly rely on combi-
natorics whose complexity grows exponentially when self-intersection grows. Our main
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results are finding closed formulas for the cases with self-intersection 0 and 1 and for
any length. We will also study the case with no restriction on the self-intersection. A
combinatorial function that will appear often is Euler’s totient function, which counts the
number of positive integers up to a given number that are relatively prime to this upper
bound. We will usually denote it by φ, see Definition 1.5.5. For simple curves, we obtain
the following counting.

Theorem A ([FL24]). For any L ∈ Z≥4, we have

|{γ ∈ PC(Σ1,1) | ι(γ) = 0, ℓω(γ) = L}| = 4φ(L),

where φ stands for Euler’s totient function.

Solving the problem for simple curves. Note also that given Möbius inversion formula
(Theorem 1.5.6), one can use primitive counting to count all powers of curves with
a given length. For curves with a single self-intersection, also known as figure-eight
curves, we have the following counting theorem.

Theorem B ([FL24]). There are 8 primitive closed curves on Σ1,1 of length 4 with 1
self-intersection. For any L ∈ Z>4, we have

|{γ ∈ PC(Σ1,1) | ι(γ) = 1, ℓω(γ) = L}| =

{
8φ(L− 4) if L is odd,
8
(
φ(L− 4) + φ(L/2)/2

)
if L is even.

The main strategy for these proofs is the combinatorial study of the words representing
curves with a given self-intersection. For the simple case, there was already an existing
classification theorem.

Theorem 6 ([BS88, Theorem 6.2]). Every simple closed curve on Σ1,1 can be repre-
sented, after suitably renaming the generators, by one of the following words:

1. a,

2. aba−1b−1,

3. abn1abn2 · · · abnr , where [n1, . . . , nr] has small variation.

Conversely, each of these words is homotopic to a power of a simple closed curve.

Here, a small-variation necklace is a cyclic class of finite sequences of positive integers
such that any two blocks of consecutive entries of the same size have sum difference
at most 1, see Definition 2.2.2. With this characterization, we study the rigidity of small
variation necklaces in terms of their entries and the number of occurrences of their
entries, see Proposition 2.2.8. To do this, we apply a reduction of the necklaces by
assigning to a necklace a (when necessary) shorter necklace encoding every time that
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an integer is repeated, see Figure 1. This reduction takes the necklace of integers
generated by the exponents and keeps reducing them to the size of runs of consecutive
numbers, in a specific way. By proving that this reduction preserves small variation,
see Lemma 2.2.9, we have all the necessary ingredients to do the counting and proof
Theorem 2.1.1.

7→ 7→ 7→a3

b

a3 b

a2

b

a3

ba2
b

3

2

3

3

2 1

2

Figure 1

To prove Theorem B with similar methods, there was no characterization of all the words
representing curves with a single self-intersection. We prove an analog characterization
for these curves. The main ingredient of the proof of the next characterization is Cohen
and Lustig’s algorithm to determine self-intersection [CL87], finding some exceptional
short cases and some general cases.

Theorem C ([FL24]). A primitive curve in PC(Σ1,1) has self-intersection one if and only
if, up to renaming the generators in {a, b, a−1, b−1}, it can be written as one of the
following:

1. a2b2, aba−1b, ab−1a−1b2, or

2. ab−1a−1ban1b · · · ankb, or ab−1a−1ba−n1b · · · a−nkb, where the words an1b · · · ankb,
and a−n1b · · · a−nkb are uniquely determined representatives of primitive simple
curves, or

3. an1b · · · ankb, where [n1, . . . , nk] satisfies that exists an m ∈ Z≥1 such that for all
i ∈ {1, . . . , k}, ni ∈ {m,m+ 1} and it is a necklace with 2-variation (see Definition
2.3.4), or

4. ambam+2b, for some m ∈ Z≥1.

For curves of type 2 above, the uniqueness of the representative of the simple curve is
proved explicitly in Lemma 2.3.3. For curves of type 3, a 2-variation necklace (Definition
2.3.4), breaks the small-variation condition minimally, meaning that it is a cyclic shift
class of finite sequences of positive integers such that there are exactly two blocks of
consecutive integers of the same size with sum differing by 2, and the rest of the blocks
of the same size have sum difference at most 1.

To prove Theorem B, once the classification is done, the methods are very similar to
the methods for the simple case. We study the rigidity of the 2-variation necklaces, i.e.
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Proposition 2.3.8. These, with the necklace reduction in Lemma 2.2.9 again, make it
enough to do the counting.

The combinatorial method with the reduction on the necklaces has proved to be very
useful. However, classifying words for the general case of self-intersection k is a very
complex question. Indeed, a weaker version of the question that could help to apply
the necklace reduction and make the counting for a general case is an open question in
research about the number of mapping class group orbits of the number of curves with
a given self-intersection. We will now expand on that.

The mapping class group is defined as the group of orientation-preserving homeomor-
phisms fixing of S modulo isotopy, see Definition 1.2.3. This group acts on the set
of curves C(S) and preserves self-intersection. For simple curves, there is a unique
mapping class group orbit of essential simple curves. For primitive curves with self-
intersection 1, there are 2 orbits of curves. The general number of orbits is unknown,
and some asymptotic bounds and works on it can be found in [AS16, CFP18a].

We are now interested in another natural question, which is the counting when we
do not have restrictions on the self-intersection of curves, as on the style of Theorem
1. This counting problem turns out to be purely algebraic, but could not be found in
literature. Here is the geometric statement.

Theorem D ([FL24]). There are 4 primitive curves of length 1, 8 of length 2, and for any
L ∈ Z≥3, we have the formula

|{γ ∈ PC∗(Σ1,1) | ℓω(γ) = L}| = 1

L

∑
d|L

µ(d) 3L/d,

where µ is the Möbius function. For not necessarily primitive curves, we have, for any
L ∈ Z≥1,

|{γ ∈ C∗(Σ1,1) | ℓω(γ) = L}| = 1

L

∑
d|L

φ(d) 3L/d +
3 + (−1)L

2
.

For the explicit definition of the Möbius function and its relation to Euler’s totient function
see 1.5.5. This counting is for essential curves, meaning that they do not bound the
cusp. However, this only changes by not considering the commutator, and gives a
cleaner formula.

Now, consider a classical combinatorial object: necklaces with beads. Given a necklace
with n > 0 white beads, one wants to color it with a palette of k > 0 colors, painting
every bead of a unique color without leaving any white beads. The number of possible
colorings is well-known and leads to the following very intriguing remark.

6



Remark. For L ∈ Z≥1,

|{γ ∈ PC∗(Σ1,1) | ℓω(γ) = L}| =
= |{aperiodic necklaces with L beads and 3 colors}|+ δ{1,2}(L),

where δ{1,2}(L) = 1 if L ∈ {1, 2} and vanishes otherwise, and

|{γ ∈ C∗(Σ1,1) | ℓω(γ) = L}| = |{necklaces with L beads and 3 colors}|+ ϵ(L),

where ϵ(L) = 1 if L is odd and ϵ(L) = 2 if L is even.

Here, a colored necklace is periodic if it can be realized as the cyclic class of a proper
power of a sequence of colors.

Despite observing this numerical coincidence, we could not find any straightforward nat-
ural bijection between these sets. Finding such a bijection remains an open question,
whose answer would possibly give tools for the counting in higher genus by recharac-
terizing the problem.

Finally, let us give some consequences of Theorems A and B. These theorems allow us
to also count the number of curves with bounded word-length that are not necessarily
primitive, and get the asymptotics using the already known asymptotics for Euler’s to-
tient function. Recall that a simple multicurve can be defined as a formal integer linear
combination of simple curves.

Corollary E ([FL24]). Let φ be Euler’s totient function, and Φ(L) =
∑L

i=1 φ(i) for L > 0,
its sum up to a number. Then, for L ∈ Z≥4

1. By summing Theorem A we get the counting for bounded length,

|{γ ∈ PC(Σ1,1) | ι(γ) = 0, ℓω(γ) ≤ L}| = 4Φ(L) + 2 ∼ 12

π2
L2.

2. By applying Möbius inversion formula (Theorem 1.5.6) to Theorem A we get the
simple multicurves

|{γ simple multicurve on Σ1,1 | ι(γ) = 0, ℓω(γ) = L}| = 4L.

3. By summing the above we get the counting for bounded length and also the simple
multicurves

|{γ simple multicurve on Σ1,1 | ι(γ) = 0, ℓω(γ) ≤ L}| = 2L2 + 2L.

4. By summing Theorem B we get the asymptotic counting for bounded length

|{γ ∈ PC(Σ1,1) | ι(γ) = 1, ℓω(γ) ≤ L}| = 8(Φ(L− 4) + Φ(⌊L/2⌋)/2) ∼ 27

π2
L2.
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5. By summing Theorem D we get the asymptotic counting for bounded length

|{γ ∈ PC∗(Σ1,1) | ℓω(γ) = L}| ∼ 3L

L
, |{γ ∈ PC∗(Σ1,1) | ℓω(γ) ≤ L}| ∼ 3

2
· 3

L

L
.

As a consequence of Corollary E and the result of Theorem 4, since quotients of the
following kind do not depend on the function choice, the next statement follows.

Corollary F ([FL24]). Let X ∈ T(S1,1) be a hyperbolic structure on the once-punctured
torus, then

lim
L→∞

|{γ ∈ PC(Σ1,1) | ι(γ) = 0, ℓX(γ) ≤ L}|
|{γ ∈ PC(Σ1,1) | ι(γ) = 1, ℓX(γ) ≤ L}|

=
4

9
.

This means that the probability of choosing a simple curve over the curves with self-
intersection at most 1 is exactly 4/13.

The last piece of the first part of the thesis will be on how to use this combinatorial study
of curves to study hyperbolic spectra, i.e. the sets of lengths of curves with respect
to a hyperbolic structure. The main objective will be to describe combinatorially the
simple length spectrum of a specific hyperbolic structure on the once-punctured torus
to reformulate Markov’s conjecture. This is based on an individual work yet to appear
on arXiv.

A triple of positive integers x, y, z > 0 such that

x2 + y2 + z2 = 3xyz

is called a Markov triple and were introduced by Markov in the late XIX century. Frobe-
nius conjectured in [Fro13] that these triples are always determined by their largest
number, also called a Markov number. This is known as Markov’s uniqueness conjec-
ture, see [Aig13]. Since then, many partial results have been made for Markov numbers
of a given form, such as prime powers or particular linear functions of prime powers,
see e.g. [Bar96, Zha07]. However, the general statement remains open.

Define the modular torus M as the unique hyperbolic structure on the once-punctured
torus such that the isometry group is of maximal order, it being of order 12. As proved
by Cohn in [Coh71], there is a map from Markov’s triples to lengths of simple closed
geodesics on the modular torus. This allows us to reformulate Markov’s conjecture in
geometric terms.

Markov’s conjecture is equivalent to the following conjecture on the modular torus.

Conjecture 7 (Geometric Markov’s uniqueness conjecture). For every two simple closed
geodesics on M of the same length, there is an isometry bringing one to the other.

We refer to [MP08] for more explanation on this equivalence. This has a translation
in terms of the multiplicity of the simple length spectrum on the modular torus, SS(M):
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the first two lengths have multiplicity 6 and all the rest have multiplicity 12. Here again,
multiplicity refers to the number of geodesics attaining these lengths. This is due to the
shortest 12 geodesics being invariant (up to orientation) by one of the isometries, whilst
the rest are not.

We will use the combinatorics in the set of curves on the once-punctured torus to re-
formulate Markov’s uniqueness conjecture in combinatorial terms by passing through
geometry.

Denote by N the set of nontrivial primitive necklaces of positive integers with small
variation, i.e. cyclic classes of finite sequences of positive integers such that the sum
of any two blocks of the same size has difference at most 1 (see Definition 2.2.2).
Primitivity refers to not being represented by a power by concatenation of a smaller
sequence.

Define the following function on this set of necklaces.

Φ : N → Z>0

[n1, . . . , nk] 7→
1

10k · 2n1+···+nk

∑
S⊆{1,...,k}

3r(S)2k−r(S)(ξ + 2)|S|(ξ + 2)|S
c|ξ

∑
i∈S niξ

∑
i∈Sc ni ,

(0.0.2)

for ξ = 3+
√
5 and ξ = 3−

√
5, where r(S) =

∑
s∈{runs of S and Sc} |s|−1 if S ̸= {1, . . . , k},

and r({1, . . . , k}) = k. A run s of S ⊆ {1, . . . , k} is a maximal subset s ⊆ S such that
the numbers are (cyclically) consecutive.

We prove an equivalent statement to Markov’s uniqueness conjecture as follows.

Theorem G. Markov’s uniqueness conjecture is equivalent to

The function Φ is injective in N.

We prove this via using the trace formula for a specific representation ρ : π1(S) →
PSL2(R), with the classification of all simple curves in Theorem 6, to compute in com-
binatorial terms the simple length spectrum of the modular torus via identifying it as the
zero-shear hyperbolic structure on the once-punctured torus (see Section 2.5). This will
give the expression of the spectrum that will be found in 2.5.1.

Open questions

The first natural open question is to find the closed formula for any self-intersection num-
ber. To approach this question, the expected strategy would be to find first the number
of orbits in the mapping class group Map(S), which is already a known open question
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(see [AS18, CFP18b]). Then, use the counting and reduction methods explained in
Chapter 2 to count the size of every orbit by finding representatives.

A follow-up question is to explore the simple curve counting on a surface of bigger
genus. In this regard, we are still missing a complete characterization of all the words
representing simple curves for bigger genus surfaces. This is being explored by adapt-
ing Cohen and Lustig’s algorithm to determine the self-intersection of given words (see
[CL87]).

Finally, these kinds of characterizations can be used to study the length spectra of the
once-punctured torus, as done for Theorem G. Here, two areas of research appear,
one is to study Markov’s conjecture in this new form as for subsets of the set of small-
variation necklaces that we have parametrized in three integer variables, and the other
one is to keep studying other length spectra as a consequence of the combinatorial
work already done.

A Basmajian-type inequality for Riemannian surfaces

Let us now enter the second part of the thesis, and so increase the topological size of
the surface. From now on, our results will apply to surfaces S with one unique boundary
component and finite genus g, i.e., of signature (g, 1).

We will study Riemannian surfaces, i.e. surfaces equipped with Riemannian metrics.
We will be especially interested in their orthospectrum. We define arcs on a Riemannian
surface with boundary S as relative homotopy classes of immersed paths with endpoints
on the boundary. Denote it by A(S). Define then the orthospectrum of S as the set O(S)
of lengths of the set A(S) with multiplicity. ”With multiplicity” refers to that whenever two
or more classes have the same lengths, this number is repeated in the set O(S), as if
used as an index set, then every number appears as many times as classes attaining
it.

We will study if a classical identity for hyperbolic surfaces relating the orhtospectrum
and the length of the boundary admits some analog in the moduli space of Riemannian
metrics. That is, once we lose the rigidity of its curvature, how much of this phenomenon
can be attributed to it being a Riemannian metric.

There are many results on hyperbolic manifolds that have found their Riemannian ana-
log. We will give three examples of this phenomenon that we find especially notorious.

Let sys(S) denote the systole of a Riemannian surface, meaning the infimum of the
lengths of the non-contractible curves with positive lengths, see Definition 1.4.5. Note
that the positivity of curves in this definition is due to our definition of curves as free
homotopy classes of loops.

Theorem 8 (Classical, [BS94]). Let S be a closed hyperbolic surface of genus g ≥ 2.
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Then,
sys(S) ≤ 2 log(4g − 2),

and exists a family of surfaces Sn with growing genus {gn}n → ∞ such that

sys(Sn) ∼
4

3
log gn.

There has been found an analogous behavior for Riemannian metrics split into the two
following two results. For the first one, note that a closed hyperbolic surface has always
area 4π(g−1), which recovers a similar growth rate of Theorem 8 for hyperbolic metrics.

Theorem 9 ([KS04]). Let S be a closed Riemannian surface of genus g. Then,

Area(S)

sys(S)2
≳ π

g

log2 g
+ o(1),

when g grows.

And, as for the second example, it will involve the metric invariant called volume entropy.
Define the volume entropy of a compact manifold M as the exponential growth rate of
the volume of balls with growing radius and fixed centre in its universal cover and denote
it by h(M) (see Definition 1.4.1).

Theorem 10 ([Sab06]). Let S be a closed Riemannian surface of genus g and volume
entropy h(S). Then, there is a constant Cg > 0 depending on the genus such that,

h(S) · sys(S) ≤ Cg.

Note that for closed hyperbolic surfaces the volume entropy is always 1, and therefore
we can see the above theorem as an analog of Theorem 8 for Riemannian metrics.

It turns out that many hyperbolic identities and inequalities as we shall see next have
found a Riemannian analog by re-scaling by the volume entropy, as a measure of how
far asymptotically the lengths are from hyperbolicity. One way to gain intuition on why
this happens is by looking at an alternative expression of the volume entropy. The
volume entropy of a surface is also the exponential growth rate of the number of curves
with bounded length as the length grows (see Proposition 1.4.3).

When exploring Riemannian versions of hyperbolic phenomena, with the loss of rigidity
inequalities might become weaker as happened in the last example, or even equali-
ties might become inequalities, as will be the case for the following example. Another
classical identity for hyperbolic surfaces is that, as mentioned earlier, for any closed
hyperbolic surface S of genus g,

Area(S) = 4π(g − 1),
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which is a direct result of Gauss-Bonnet’s theorem. We can consider Gauss-Bonnet’s
theorem as a generalization of it where the integral of the curvature measures how far
is the surface from being hyperbolic. However, as said before, one can also use the
volume entropy for the same purpose, leading to the following classical theorem.

Theorem 11 ([Kat82]). Let S be a closed hyperbolic surface of genus g and volume
entropy h(S), then

h(S)2Area(S) ≥ 4π(g − 1).

There is a bigger generalization of this theorem by Besson, Courtois, and Gallot that
states the following.

Theorem 12 ([BCG95]). For any two compact, oriented, and connected Riemannian
manifolds M,N of the same dimension n. Let f : M → N be a continuous function of
degree d > 0. If N is locally symmetric with negative curvature, then

h(M)nVol(M) ≥ d · h(N)nVol(N).

When n ≥ 3 these two quantities are equal if and only if a scalar multiple of the metric
in M is a covering of N .

The above can be used to reprove Mostow’s rigidity Theorem (Theorem 1.3.5), see
[BCG96].

In this case, hyperbolic surfaces are the optimal case for the general inequality, as they
minimize h(S)2Area(S) for a given topology. A last example is the log(2k− 1) theorem,
which states as follows, after losing some of the original assumptions in [ACCS96] given
later work of [Can08].

Theorem 13 ([ACCS96, Can08]). ] Let k ≥ 1 be an integer, for a Kleinian group Γ freely
generated by elements γ1, . . . , γk, then for any x̃ ∈ H3, the following inequality holds

k∑
i=1

1

1 + ed(x̃,γix̃)
≥ 1

2
.

This was later generalized to any Riemannian metric by Balacheff and Merlin as follows.
This time, the re-scaling involves a generalization of the volume entropy, which is the
critical exponent. Let Γ be a subgroup of isometries of a given Riemannian manifold,
and define its critical exponent as the exponential growth rate of the number of elements
with bounded translation length, see Definition 1.4.4.

Theorem 14 ([BM23]). For any M̃ simply connected, complete Riemannian manifold,
let Γ be a discrete subgroup of isometries freely generated by some elements γ1, . . . , γk.
For any point x̃ ∈ M̃ ,

k∑
i=1

1

1 + eδ(Γ)·d(x̃,γix̃)
≥ 1

2
,
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being δ(Γ) the critical exponent of Γ.

Note that the critical exponent of the group Γ coincides with the volume entropy h(M)
when taking M̃ to be the universal cover of a closed Riemannian manifold M and Γ =
π1(M). This is a consequence of the already mentioned characterization of the volume
entropy in Proposition 1.4.3.

After all these examples, what we will try to generalize will be the celebrated Basma-
jian’s identity, relating the boundary of a compact hyperbolic surface to its orthospec-
trum. The general identity proved by Basmajian is for n-dimensional hyperbolic mani-
folds and with possibly different arc sets. The following is the special case of the identity
we are interested in.

Theorem 15 ([Bas93]). Let S be a compact hyperbolic surface with boundary. Let O(S)
be its orthospectrum. Then

ℓ(∂S) = 2
∑

ℓ∈O(S)

log coth(ℓ/2).

Basmajian’s identity can be seen as a result on the rigidity of the orthospectrum, proving
that the length of the boundary is determined by the orthospectrum.

The orthospectrum has since been widely studied in hyperbolic geometry. Two exam-
ples of it are the following.

Theorem 16 ([Bri11]). Let S be a compact hyperbolic surface with boundary, and O(S)
its orthospectrum, then ∑

ℓ∈O(S)

L(1/ cosh2(ℓ/2)) =
π

4
Area(S),

being L Roger’s dilogarithm function.

Note that since the area of a hyperbolic surface is a multiple of its Euler character-
istic, this result proves that the orthospectrum determines the possible topologies of
the surface. The other example on the rigidity of the orthospectrum, still for hyperbolic
surfaces, is the following.

Theorem 17 ([MM22]). Given a surface with a unique boundary component and genus
g and a hyperbolically attainable orthospectrum, there are finitely many hyperbolic struc-
tures with this orthospectrum.

In this fashion, we found an analog inequality to Basmajian’s identity, this time for Rie-
mannian surfaces with a unique boundary component. The last ingredient needed for
the statement is doubled surfaces. The doubled surface of a compact Riemannian sur-
face with geodesic boundary S is the closed Riemannian surface obtained by taking
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two copies of the surface and gluing them via the identity map on the boundary (see
Definition 1.3.6). We usually denote it by S′.

Theorem H ([BF23]). Let S be a compact orientable Riemannian surface with negative
Euler characteristic and one geodesic boundary component. Then the following holds:

ℓ(∂S) ≥ 2

h(S′)
arcsinh

 ∑
ℓ∈O(S)

1

1 + eh(S′)ℓ


where h(S′) denotes the volume entropy of the doubled surface S′.

As later expanded in Chapter 3, this result is achieved by first finding an inequality on
a special family of metric graphs, that will encode the orthospectrum of the surface.
Given a compact Riemannian surface S with a unique geodesic boundary component,
we will construct the following sequence of metric graphs (see Figure 2). Fix an order on
the set of arcs by non-decreasing length, as the number of arcs with the same length is
always finite because the Riemannian metric is quasi-isometric to any hyperbolic metric
on the surface, by compactness.

Choose a length-minimizing geodesic representative of the first arc and construct the
first metric graph by first taking a circle of length equal to the length of the boundary
component of S with two vertices splitting it into two parts of lengths equal to the splitting
this first orthogeodesic makes to the boundary. Add an edge with endpoints on the two
vertices with length equal to the length of the chosen orthogeodesic. Construct the
sequence of metric graphs recursively, where the nth step is as follows. Choose a
length-minimizing geodesic representative of the nth arc, add to the (n−1)th graph two
vertices such that the circle length is split into 2n segments distributed as the boundary
length in S is distributed with the n orthogeodesic representatives fixed for the first n
arcs. Add an edge between those two vertices of length equal to the nth arc.

S Γ3

7−→

Figure 2

This sequence of graphs satisfies the assumptions of our following theorem.
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Theorem I ([BF23]). Fix n ≥ 1. Let Γ be a metric graph formed by a circle of length L
with 2n disjoint vertices on it, and n edges of lengths ℓ1, . . . , ℓn joining these vertices by
pairs. Then the following holds:

tanh

(
h(Γ)L

2

)
< 2

n∑
i=1

1

1 + eh(Γ)ℓi
< sinh

(
h(Γ)L

2

)
where h(Γ) denotes the volume entropy of the metric graph Γ.

The main idea of the proof of this theorem is to study the dynamics of this family of
graphs given Lim’s Theorem in [Lim08]. The final main ingredient to prove Theorem H
is to show that for any n > 0, with Γn being the nth metric graph constructed above,
the volume entropy of the doubled surface S′ is controlled by the volume entropy of the
graph Γn (see Proposition 3.3.1), letting us deduce Theorem H from Theorem I.

Open questions

The first question that one can ask is whether the main result is still valid for any num-
ber of boundary components. The only part of the argument that is not straightforward
generalizable to a multiple boundary case is Theorem I. After many efforts on applying
Lim’s theorem to the graph that appears in the multiple boundary case, and trying to
extract an inequality from the linear system, we were not able to solve it. The combina-
torics on the system grow very fast. However, that is a very natural open question that
should be solvable even with the same methods.

Many open questions also arise by looking at other hyperbolic phenomena that have
not yet been studied in the Riemannian moduli space.

Another celebrated identity, very much related to Basmajian’s, is McShane’s identity,
and that has been generalized in many ways, one of them by Maryam Mirzakhani for
any signature in [Mir07]. This one is on the rigidity of the simple length spectrum.

Theorem 18 (McShane’s identity, [McS98]). Let S be a once-punctured torus. Let X ∈
T(S) be any hyperbolic structure. Then,∑

γ∈C(S)

1

1 + eℓX(γ)
=

1

2
.

It still does not have a proper Riemannian analog, and we did not find any argument
against its existence, nor a strategy to find it still. However, it seems to be a natural
next step as it was proved by Parlier in [Par20] that there is an interpolation between
Basmajian’s identity and McShane’s by choosing coherent markings of C(S), being S
our fixed surface.
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In particular, when the marking is empty, it recovers Basmajian’s identity, whilst for the
marking being PC(S), it recovers McShane’s identity.
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Chapter 1

Background

This chapter contains the necessary background including some basic material. How-
ever, its intention is not only to provide background but also to fix the notation and
conventions for the rest of the dissertation. To allow independent reading, some of
the definitions will be repeated inside the chapters, in more of an article-level style for
experts on the topics.

1.1 Graphs and surfaces

For our interest, the lowest-dimensional geometrical object we will care about will be
graphs, that will encode in 1 dimension much higher-dimensional information in many
ways.

Definition 1.1.1 (Graph). Define a graph to be a one-dimensional CW complex Γ.
Denote its 0-skeleton by V (Γ) and call them vertices and call an edge the closure of
every connected component in Γ\V (Γ), denoting the set of all edges by E(Γ). Note that
the set E(Γ) corresponds to unoriented edges to which by the CW-structure one can
associate an unordered pair of vertices eij 7→ {vi, vj}. We will call those the endpoints.

Moreover, every edge is homeomorphic to [0, 1] ⊆ R, admitting two orientations. Hence,
there are 2|E(Γ)| oriented edges in Γ, and each of them has an associated startpoint
vertex and an endpoint vertex. Denote the set of oriented edges by E∗(Γ).

Even though graphs appear frequently, our focus is on surfaces.

Recall that a surface is a two-dimensional manifold. For the rest of the thesis, we will
always consider them to be connected and orientable, when not said explicitly other-
wise.

Throughout this entire work, S1 will denote the one-dimensional circle.
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Definition 1.1.2 (Fundamental group). As usual, given a path-connected topological
space X we will denote its fundamental group as: fixed any basepoint x ∈ X,

π1(X) := π(X,x) = {f : [0, 1] → X continuous map with f(0) = f(1) = x}/homotopy,

the group of homotopy classes of loops with the concatenation of loops by fixing a
common endpoint. This definition is valid, in particular, for X being a graph or a surface.
We do not make explicit the basepoint in the notation, as the group will be isomorphic
independently of the choice. Another set we will be interested in for a surface S is

{f : [0, 1] → S continuous map with f(0), f(1) ∈ ∂S}/homotopy rel. to ∂S,

the set of relative homotopy classes of arcs with endpoints on the boundary.

Surfaces with finitely generated fundamental groups are called finite-type surfaces and
can be classified up to homeomorphism by their signature. We say that a surface S has
signature (g, n) if it is homeomorphic to a surface with genus g and n punctures (see
Figure 1.1).

a1 a2
ag

p1 p2 pn

Figure 1.1

Otherwise, when their fundamental group is not finitely generated, we will say that the
surface is of infinite type.

Two examples of infinite-type surfaces are the following, the so-called Ladder surface
with two ends, and the Cantor Set surface which is planar and with a Cantor set as a
space of ends, see Figure 1.2, where there is either geni or punctures accumulating to
infinity.

Every original result in this work will be on finite-type surfaces. More specifically, sur-
faces with signature (g, 1) for some genus g > 0.
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(a) Ladder surface. (b) Cantor Set surface.

Figure 1.2

1.2 Curves and arcs

Definition 1.2.1. Define a curve on a surface S as a free homotopy class of a loop on
S, where a loop is a continuous function c : S1 → S. These are in correspondence with
the conjugation classes in π1(S), as it is equivalent to losing the basepoint. Define an
arc on a surface S as a relative homotopy class of an induced path α : [0, 1] → S with
endpoints on the boundary. Denote the set of curves on a surface S as C(S) and the set
of arcs as A(S). Denote also by PC(S) ⊆ C(S) the set of primitive curves, meaning
that cannot be written as a power of another non-trivial element in π1(S).

Note that, with our definitions, we are always considering oriented curves and arcs.

We say that a curve γ ∈ C(S) is essential if it is not represented by a loop around a
puncture or a boundary component or a point. Denote by C∗(S) the set of essential
curves, and by PC∗(S) the set of primitive essential curves.

Curves on a graph Γ are again free homotopy classes of loops on Γ, which are also
in correspondence with the conjugation classes in π1(Γ). We will also denote them by
C(Γ).

There are two main quantities we will be interested in regarding curves, one is the
length which we will define later, and the other one is their intersection number.

Definition 1.2.2 (Intersection number). Let α, β ∈ C(S) be two curves on S, then their
intersection number is

ι(α, β) = min |{(t1, t2) ∈ S1 × S1 | a(t1) = b(t2)}|,

where the minimum runs over all immersed loops a, b : S1 → S representing α and β,
respectively.

The self-intersection number of a curve is defined as ι(α) = 1
2 ι(α, α), see Figure 1.3.
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ι(α, β) = 1 ι(α) = 1

α
α

β

Figure 1.3

Definitions for arcs are analogous by changing S1 for [0, 1].

Definition 1.2.3 (Mapping class group). For a surface S, its mapping class group
Map(S) is the group of orientation preserving homeomorphisms, fixing the boundary of
the surface modulo isotopy, i.e.

Map(S) = Homeo(S, ∂S)+/Homeo0(S, ∂S).

That is, for two homeomorphisms f, g : S → S, define f ∼ g if f · g−1 is isotopic to the
identity, then Map(S) = Homeo(S, ∂S)+/ ∼.

This has a natural action on the set of curves, that moreover preserves pairwise inter-
section numbers.

1.3 Metrics

Definition 1.3.1 (Metric graph). A metric graph is a graph Γ equipped with a length
function on the edges

ℓ : E(Γ) → R>0.

This induces a length function on paths and hence on the fundamental group, as the
length of an element of the fundamental group is just the sum of the lengths of the
edges in a non-backtracking representative.

Definition 1.3.2 (Riemannian surface). A Riemannian surface (S, h) is a smooth (see
[dC16, page 431]) surface S equipped with a Riemannian metric h, i.e. for each point
p ∈ S, assign a positive-definite inner product on the tangent space

hp : TpS × TpS → R
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that varies smoothly on the point p. For the rest of the thesis, we consider every metric
to be complete with respect to the exponential map. That is: every geodesic path that
will be defined later either continues for infinite time or hits a boundary component.

This leads to the notion of (sectional) curvature at every point (see [dC16, page 448]).
We are especially interested in the case where we restrict this curvature.

Definition 1.3.3 (Hyperbolic surface). A hyperbolic surface is a Riemannian surface
(S, h) with constant sectional curvature −1.

This is equivalent to saying that the universal cover of the surface with the lifted metric
is the hyperbolic plane, which we will denote by H2. The hyperbolic plane can be
defined as the only simply connected 2-dimensional manifold with constant curvature
−1. Hence, one can take coordinate charts of the surface onto the hyperbolic plane.

By abuse of notation, whenever we do not need to make the metric explicit, we will just
say that S is a (hyperbolic) Riemannian surface.

We will now define the space of all hyperbolic structures on a surface. Fix Sg,n a surface
of signature (g, n). A marking on a hyperbolic surface S is a homeomorphism f : Sg,n →
S, and we call the pair (S, f) to be a marked hyperbolic surface. Moreover, two
marked hyperbolic surfaces (S, f) and (S′, f ′) are said to be equivalent if there is an
isometry m : S → S′ such that m ◦ f and f ′ are isotopic to each other.

Definition 1.3.4 (Teichmuller space). The Teichmüller space of a finite-type surface S
admitting a hyperbolic metric is denoted by T(S) and is the set of equivalence classes
of marked finite-area hyperbolic surfaces homeomorphic to S.

As for the intuition on the markings, there is an equivalent definition by changing the
markings for canonical generating sets of the fundamental group, which will not be
defined here and can be read at [Bus92].

A surface of signature (g, n) admits a hyperbolic metric if and only if its Euler charac-
teristic χ(S) = 2 − 2g − n is negative (see [Bus92]). Hyperbolic metrics turn out to be
much more rigid than Riemannian metrics. For dimension at least 3, hyperbolic metrics
are completely determined by their topology.

Theorem 1.3.5 (Mostow’s rigidity Theorem [Mos68]). If two hyperbolic, finite-volume,
complete manifolds of dimension at least 3 have isomorphic fundamental groups, then
they are isometric.

This implies that the analog of the Teichmüller space defined above for surfaces would
contain a unique point for manifolds of higher dimension.

For surfaces, rigidity is weaker, making the Teichmüller space of a surface of signature
(g, n) a space of real dimension 6g − 6 + 3n. One way to understand this phenomenon
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is by defining the so-called Fenchel-Nielsen coordinates on the Teichmüller space. A
sketch is as follows. Start by decomposing the surface into pairs of pants, i.e., three-
holed spheres, by cutting through a maximal set of disjoint simple closed curves. Figure
1.4 is a pants decomposition of a surface of signature (2, 1). Two hyperbolic pairs of
pants are isometric if and only if the unordered triple given by the lengths of their three
boundaries coincide (see [Bus92, Chapter 3]). Therefore, by decomposing a surface
into pairs of pants, all hyperbolic metrics on the surface can be expressed in terms of
the lengths of the boundaries of the pants decomposition and how you twist them when
you glue them, giving the 6g − 6 + 3n dimensions. For further explanation see [Hub16].

Figure 1.4

Another construction on a surface that will be useful later is the so-called doubled sur-
face.

Definition 1.3.6 (Doubled surface). Let (S, h) be a Riemannian surface with non-empty
totally geodesic boundary. Call (S1, h1), (S2, h2) two copies of (S, h). Let γi1, . . . , γ

i
n :

S1 → Si be pairwise (for i = 1, 2) copies of parameterizations of the distinct boundary
components of Si. Define the doubled surface (see Figure 1.5) as the surface (S′, h′)
where

S′ = S1 ⊔ S2/ ∼,

for γ1j (p) ∼ γ2j (p) for all p ∈ S1 and all j = 1, . . . , n. The metric h′ coincides with h1
and h2 on every distinct surface and agrees on the boundary given the totally geodesic
condition.

The feature we will be most interested in regarding the metric on a Riemannian surface
is that it induces a length function on arcs and loops. Given any Riemannian surface
(S, h), one can naturally measure the length of any loop on the surface. For a contin-
uous embedding c : S1 → S, define

ℓh(c) :=

∫
S1

√
h(ċ(t), ċ(t))dt.

We will denote it by ℓX(c) whenever we are only considering hyperbolic metrics, with
X ∈ T(S) a point in the Teichmüller space. The definition for arcs is analogous by
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γ11 γ21

γ12 γ22

S1 S2

Figure 1.5

changing S1 for [0, 1] ⊆ R. This induces a length function on the fundamental group.
A path a : D → S with D a connected domain of R is called geodesic if it is locally
distance-minimizing between its points and it is parametrized by its arc-length.

Definition 1.3.7 (Length of curves). Given a Riemannian surface (S, h), we define a
length function on its set of curves as

ℓ : C(S) = π1(S)/conj → R>0

α 7→ inf
[a]=α

{ℓh(a) | a : S1 → S}.

The definition for the set of arcs A(S) is analogous by changing S1 for [0, 1]. For a
metric graph (Γ, ℓ), by abusing notation calling it also ℓ,

ℓ : C(Γ) = π1(Γ)/conj → R>0

α 7→ min
[a]=α

{ℓ(a) | a : S1 → Γ}.

For surfaces, whenever the infimum is attained by a loop, it is done by a geodesic loop
in its homotopy class. Moreover, in the hyperbolic case, there is a unique geodesic
loop (or arc) in any homotopy class due to the surface being modeled on the hyperbolic
plane H2, see e.g. [FM12, Proposition 1.3]. In fact, this phenomenon is true for any
metric with strictly negative curvature. In this case, the length of the homotopy class of
the curve will be attained by the hyperbolic length of the unique geodesic representing
it, see e.g. [Bus92, Theorem 1.5.3].

Definition 1.3.8 ((Simple) length spectrum and orthospectrum). Define the length
spectrum of a Riemannian surface S to be the set of lengths (with multiplicity) of its
curves C(S), its simple length spectrum to be the analog for simple curves, and its
orthospectrum to be the set of lengths with multiplicity of its arcs A(S). We denote
the length spectrum, simple length spectrum, and orthospectrum by S(S), SS(S),O(S),
respectively.
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Here, with multiplicity means that if there are n ≥ 1 curves γ1, . . . , γn ∈ C(S) with
ℓ(γ1) = · · · = ℓ(γn) = l, then the positive number l appears n times in S(S).

One of the main reasons for studying the rigidity of the length spectra is the following
classical theorem of Huber.

Theorem 1.3.9 ([Hub59]). Two finite-type hyperbolic surfaces have the same Laplace
spectrum if and only if they have the same area and the same length spectrum.

Also note that, as a consequence of Gauss-Bonet, every hyperbolic surface of signature
(g, k) has area (4g − 4 + 2k)π, giving even more rigidity to hyperbolic structures.

However, that is not the only length we are interested in for the fundamental group. The
above is the most naturally associated with a Riemannian metric, however, when only
considering topological data, we will also be interested in another type of length.

Definition 1.3.10 (Word-length). Let S be a surface. Fix a generating set G ⊆ π(S).
Call the word-length the following length function on curves,

ℓω : C(S) → Z≥0,

such that, for γ ∈ C(S), ℓω(γ) = n if and only if it can be represented by a cyclically re-
duced word of n letters in G∪G−1. Here, if G = {a1, . . . , an}, then G−1 = {a−1

1 , . . . , a−1
n }.

1.4 Some metric invariants

The length function on a metric graph Γ derives a distance function on its vertices V (Γ).
Two distinct vertices x, y ∈ V (Γ) are at distance dΓ(x, y) > 0 if the shortest path joining
them has length dΓ(x, y), where the distance of a path is the sum of the lengths of
the edges it goes through with multiplicity. One can also measure the distance from a
vertex x ∈ V (Γ) to an edge e ∈ E(Γ) by saying that dΓ(x, e) ≤ R ≥ 0 if both endpoints
of e are at distance at most R from x.

Consequently, we can define a ball of centre x ∈ V (Γ) and radius R ≥ 0 as

B(x,R) = {y ∈ V (Γ), e ∈ E(Γ) | dΓ(x, y) ≤ R, dΓ(x, e) ≤ R}.

Define ℓ(B(x,R)) as the sum of the lengths of the edges in the set.

For Riemannian surfaces, distance is as usual defined as the minimum of the length of
the paths joining two points. Then balls are the sets of all points with bounded distance
from the central point.

The above allows us to define the exponential volume growth rate of the universal cover
of our objects. This will be the main tool for the second part of the thesis.
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Definition 1.4.1 (Volume entropy). Let Γ be a metric graph, its volume entropy is the
quantity h(Γ) defined as follows. Fix a point x̃ in Γ̃, its universal covering tree with the
lifted length. Then,

h(Γ) := lim
R→∞

log ℓ(B(x̃, R))

R
,

where B(x̃, R) is the ball of radius R centered at x̃.

Let S be a compact Riemannian surface, its volume entropy is the quantity h(S) de-
fined as follows. Fix a point p̃ in S̃, the universal cover of S. Then,

h(S) = lim
R→∞

logArea(B(p̃, R))

R
.

This quantity does not depend on the basepoint chosen (see e.g. [Lim08] and [Man79]).
In Figure 1.6 there is a sketch of how the balls on the universal cover grow for a hyper-
bolic once-punctured torus and a trivalent metric graph.

Figure 1.6

This quantity is in general a lower bound for the topological entropy of the geodesic
flow, which can explain its name.

Theorem 1.4.2 ([Man79]). Let S be a compact Riemannian surface, h(S) its volume
entropy, and htop(S) the topological entropy of its geodesic flow. Then,

h(S) ≤ htop(S),

and the two are equal when S has non-positive curvature.

The volume entropy can be equally defined for any finite simplicial complex X endowed
with a piecewise smooth Riemannian metric, which englobes the definition for surfaces
and graphs. This leads to the following characterization of the volume entropy in terms
of the fundamental group.
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Proposition 1.4.3 ([Sab06]). Let X be a finite simplicial complex with a piecewise
smooth Riemannian metric. For any point x ∈ X,

h(X) = lim
R→∞

1

R
log#{α ∈ π1(X,x) | ℓ(α) ≤ R}.

This straightforwardly implies that the volume entropy of a surface or graph coincides
with the critical exponent of its fundamental group.

Definition 1.4.4 (Critical exponent). Let Γ be a subgroup of isometries of a Riemannian
manifold M . Consider the following series for any s > 0, and x ∈ M ,

σs(x) =
∑
γ∈Γ

esd(x,γx).

The critical exponent of Γ is the real number δ(Γ) ≥ 0 such that σs(x) converges
when s > δ(Γ) and diverges for s < δ(Γ). Note that it does not depend on the choice of
basepoint.

An alternative definition of the critical exponent is, in the above situation,

δ(Γ) = lim sup
L→∞

1

L
log |{γ ∈ Γ | d(x, γx)},

where the quantity again does not depend on the choice of the basepoint.

Finally, we will define the so-called systole. It is usually referred to as the length of the
shortest curve on a surface.

Definition 1.4.5 (Systole). The systole of a Riemannian surface S, denoted sys(S), is
the infimum of the length of the non-contractible curves with positive length, i.e.

sys(S) = inf
α∈C(S)

{ℓ(α) | ℓ(α) > 0},

This will be attained on compact surfaces by the shortest non-contractible geodesic
loop.

In hyperbolic surfaces, there are many phenomena that prevent the systole from grow-
ing too much with a fixed topology. For example, the Collar Lemma.

Theorem 1.4.6 (Collar Lemma, [Kee74]). Let S be a hyperbolic surface. Let γ1, γ2 ∈
C(S) with ι(γ1) = 0 and ι(γ1, γ2) > 0. Then

sinh(ℓ(γ1)/2) · sinh(ℓ(γ2)/2) > 1.

The hyperbolic rigidity leads to a result on the systole as in Theorem 8. However,
nothing prevents the systole from exploding in the moduli space of Riemannian metrics

26



on a given surface. That is how in Theorem 10 the volume entropy of the surface
comes into play, giving a measure of how far away is the Riemannian metric from being
hyperbolic.

1.5 Combinatorial objects

Many combinatorial objects will be key to the first part of the thesis. Let us define them
and fix the notation.

Definition 1.5.1 (Word and circular word). Given a dictionary, i.e. a finite set D =
{a1, . . . , an}, we call a word ω to be a finite sequence ω = (ω1, . . . , ωn) where ωi ∈
{a1, a−1

1 , . . . , an, a
−1
n } for all i = 1, . . . , n. A circular word is a class of words in the

quotient by cyclic shifts, denoted by [ω] = [ω1, . . . , ωn].

We will be very interested in circular words as when fixing the dictionary to be a gener-
ating set of the fundamental group of the once-punctured torus, the cyclically reduced
words correspond to closed curves. However, to ease up the notation, whenever we
are interested in circular words where the dictionary is made of integers, we will call
them necklaces of integers.

Definition 1.5.2 (Necklace). A necklace of integers, or simply a necklace, is an equiv-
alence class of a finite sequence of positive integers (ni)i where two sequences are
equivalent if they differ by a circular shift.

We use “(. . . )” to denote sequences, and use “[. . . ]” to denote necklaces. These will
appear encoding the circular words of a certain form by only giving their exponents,
making them easier to work with.

Let ω be a circular word or necklace. Denote the size of ω, i.e. number of symbols in a
word or necklace ω, by |ω|, and for any a ∈ D, the number of occurrences of a symbol
a in ω by |ω|a.

Remark 1.5.3. We will often see necklaces as a (finite) sequence of positive numbers
written on a circle.

However, there is another classical notion of necklace in combinatorics that will naturally
appear in one of the results of the first part.

Definition 1.5.4 (Necklace of beads). A necklace of beads is a circular word such that
every symbol represents a color in a dictionary of colors D. Note that in this case, every
symbol in the word is a color, and no inverses are allowed.

When not written explicitly ”necklace of/with beads”, ”necklace” will always refer to a
necklace of integers.
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Moreover, we call a circular word or a necklace to be periodic if it can be represented
by a power by composition of a word or finite sequence, respectively.

Two classical arithmetic functions that will appear often in our counting are the following.

Definition 1.5.5 (Euler’s totient function and Möbius function). Let Euler’s totient func-
tion be φ : Z>0 → Z>0 the function counting, for a given n > 0, how many relatively
prime to n natural numbers there are in the set {1, . . . , n}. Define also the Möbius
function µ : Z>0 → {−1, 0, 1} as, for any n > 0,

µ(n) =


1 if n = 1

(−1)k if n is a product of k different primes
0 otherwise.

To give an idea of the growth of Euler’s function, a classical bound is the following. For
any ε > 0, there is a big enough integer n > 0 such that

n1−ε < φ(n) < n.

The above Möbius function has been proven to be very effective in terms of counting
after knowing the non-periodic elements because of the following classical result proved
in the first instance by Möbius.

Theorem 1.5.6 (Möbius inversion formula). Let f, g : Z>0 → C be two arithmetic func-
tions satisfying that for any positive integer n, g(n) =

∑
d|n f(d). Then, for any positive

integer n,
f(n) =

∑
d|n

µ(d)g(n/d).

In particular, the special case of this identity that relates Möbius function to Euler’s
totient function and that will be very useful for us later is that, for any integer n > 0,

φ(n) = n
∑
d|n

µ(d)

d
.
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Chapter 2

Word-length curve counting on the
once-punctured torus

2.1 Introduction

This chapter is part of a joint work with Mingkun Liu [FL24]. To facilitate independent
reading, we will briefly present again the results we will prove. We classify closed
curves on a once-punctured torus with a single self-intersection from a combinatorial
perspective. We determine the number of closed curves with a given word-length and
with zero, one, and arbitrary self-intersections. That is, in this chapter we will proof
Theorems A, B, D and C, and Corollaries E and F from the introduction.

Throughout this chapter, let S = Σ1,1 be a (topological) torus with a puncture. Re-
call that free homotopy classes of oriented closed curves on S naturally correspond to
conjugacy classes of the fundamental group π1(S). We will tactically identify each free
homotopy class of closed curves with its representatives, shifting freely between these
two viewpoints, and henceforth referring to both as curves. Let γ be a curve in S, de-
noted by γ ∈ C(S). Recall that γ is essential if it is not freely homotopic to a point or a
loop around the puncture.

a

b

Figure 2.1: A once-punctured torus.
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Recall that γ is primitive if its free homotopy class is not a proper power of another class,
and we denote by PC(S) ⊂ C(S) the set of primitive essential curves, and PC∗(S) ⊂
C∗(S) the set of all primitive curves. The (geometric) intersection number of γ, denoted
by ι(γ), is the minimum number of self-intersections among all curves within its free
homotopy class:

ι(γ) :=
1

2
min
c

{(t1, t2) ∈ S1 × S1 | c(t1) = c(t2), t1 ̸= t2}

where c runs over the set of loops on S in the free homotopy class γ. Curves with 0
self-intersection are commonly referred to as simple curves.

The fundamental group π1(S) is a free group of rank 2. By choosing a pair (a, b) of
generators for the fundamental group (see Figure 2.1 for an example), we can identify
π1(S) with the free group F2 generated by a and b. A word is a finite sequence (xi)

n
i=1

such that xi ∈ {a, b, a−1, b−1} for all 1 ≤ i ≤ n. A circular word can be seen as a word
written on a circle, or more formally, a circular word is an equivalence class of words
where two words are equivalent if they differ by a circular shift. A word (xi)

n
i is called

reduced if xi+1 ̸= x−1
i for all i = 1, . . . , n− 1, and x1 ̸= x−1

n . A circular word is reduced
if one (or all) of its representatives are reduced. In this note, we consider only reduced
(circular) words. Words can be seen as elements in F2, and circular words can be
seen as conjugacy classes in F2. Curves in C(S) are in one-to-one correspondence
with reduced circular words. We say that a circular word is primitive if none of its
representatives is a proper power of another word. Primitive curves correspond to
primitive reduced circular words.

We say that a curve γ ∈ C(S) has word length n, denoted by ℓω(γ) = n, if it can be
represented by a reduced word of n letters.

2.1.1 Results

We will again go through the results that will be proved in this chapter. The following re-
sult is thought to be known by some but no proof or reference was found in the literature
by the authors. We shall give a new proof of combinatorial nature, whose ingredients
are useful later.

Theorem 2.1.1 (Theorem A). For any L ∈ Z≥4, we have

|{γ ∈ PC(S) | ι(γ) = 0, ℓω(γ) = L}| = 4φ(L),

where φ stands for Euler’s totient function.

Corollary 2.1.2 (Corollary E). For L ∈ Z≥4, we have

|{γ ∈ PC(S) | ι(γ) = 0, ℓω(γ) ≤ L}| = 4Φ(L) + 2, where Φ(L) :=

L∑
n=1

φ(n),
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and asymptotically,

|{γ ∈ PC(S) | ι(γ) = 0, ℓω(γ) ≤ L}| = 12

π2
L2 +O(L(logL)

2
3 (log logL)

4
3 ).

This estimate for the error term is the best known and is due to Walfisz, for further study
on this see [OS20, Theorem 1.3].

A simple multicurve is a formal sum of pairwise non-homotopic primitive simple curves
with positive integer coefficients. On S, the set of multicurves is nothing but C(S). The
last result allows us to count multicurves on S, which the authors found missing in the
literature.

Corollary 2.1.3 (Corollary E). For L ∈ Z≥4, we have

|{γ ∈ C(S) | ι(γ) = 0, ℓω(γ) = L}| = 4L

and
|{γ ∈ C(S) | ι(γ) = 0, ℓω(γ) ≤ L}| = 2L2 + 2L.

The main result of the paper is the following. In the effort of counting non-necessarily
simple curves on the one one-holed torus, we give a combinatorial classification of all
curves with a single self-intersection, an analog theorem to Buser–Semmler’s Theo-
rem 2.2.5 for simple curves.

Theorem 2.1.4 (Theorem C). A primitive curve in PC(S) has self-intersection one if and
only if, up to renaming the generators in {a, b, a−1, b−1}, it can be written as one of the
following:

1. a2b2, aba−1b, ab−1a−1b2, or

2. ab−1a−1ban1b · · · ankb, or ab−1a−1ba−n1b · · · a−nkb, where the words an1b · · · ankb,
and a−n1b · · · a−nkb are uniquely determined representatives of primitive simple
curves, or

3. an1b · · · ankb, where [n1, . . . , nk] satisfies that exists an m ∈ Z≥1 such that for all
i ∈ {1, . . . , k}, ni ∈ {m,m+ 1} and it is a necklace with 2-variation (see Definition
2.3.4), or

4. ambam+2b, for some m ∈ Z≥1.

The non-necessarily primitive case is just the sum of the number of primitive ones plus
the number of primitive simple ones with half the length (as these will square to a single
self-intersection). The classification allows us to again do the exact counting for any L,
via using the techniques from the proofs of the simple case.
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Theorem 2.1.5 (Theorem B). There are 8 primitive closed curves on S of length 4 with
1 self-intersection. For any L ∈ Z>4, we have

|{γ ∈ PC(S) | ι(γ) = 1, ℓω(γ) = L}| =

{
8φ(L− 4) if L is odd,
8
(
φ(L− 4) + φ(L/2)/2

)
if L is even.

Remark 2.1.6. It was brought to the attention of the authors, after finding this counting
as a consequence of the classification, that some strategy of the counting is shared at
Moira Chas’ Preprint [Cha16, Proposition 3.2].

Corollary 2.1.7 (Corollary E). Under the same assumptions, the expressions sum up
to

|{γ ∈ PC(S) | ι(γ) = 1, ℓω(γ) ≤ L}| = 8(Φ(L− 4) + Φ(⌊L/2⌋)/2),

where Φ(L) denotes the summation up to L of Euler’s totient function, and, asymptoti-
cally,

|{γ ∈ PC(S) | ι(γ) = 1, ℓω(γ) ≤ L}| ∼ 27

π2
L2.

Corollary 2.1.8 (Corollary F). We have

lim
L→∞

|{γ ∈ PC(S) | ι(γ) = 0, ℓω(γ) ≤ L}|
|{γ ∈ PC(S) | ι(γ) = 1, ℓω(γ) ≤ L}|

=
4

9
.

Here the word length ℓω can be replaced by the hyperbolic length induced by any com-
plete hyperbolic metric on S (see the section “Related work”), and this corollary can
be interpreted as follows: on S, the probability that a random curve with at most one
self-intersection has one self-intersection is 9/13.

Lastly, with different methods, we count the curves with given word length without re-
striction on the self-intersection.

Theorem 2.1.9 (Theorem D). There are 4 primtive curves of length 1, 8 of length 2, and
for any L ∈ Z≥3, we have formula

|{γ ∈ PC∗(S) | ℓω(γ) = L}| = 1

L

∑
d|L

µ(d) 3L/d,

where µ is the Möbius function. For not necessarily primitive curves, we have for any
L ∈ Z≥1,

|{γ ∈ C∗(S) | ℓω(γ) = L}| = 1

L

∑
d|L

φ(d) 3L/d +
3 + (−1)L

2
.

Corollary 2.1.10 (Corollary E). We have

|{γ ∈ PC∗(S) | ℓω(γ) = L}| ∼ 3L

L
, |{γ ∈ PC∗(S) | ℓω(γ) ≤ L}| ∼ 3

2
· 3

L

L
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and the same holds true if PC∗ is replaced by C∗.

Remark 2.1.11. Hence, for L ∈ Z≥1,

|{γ ∈ PC∗(S) | ℓω(γ) = L}| =
= |{aperiodic necklaces with L beads and 3 colors}|+ δ{1,2}(L),

where δ{1,2}(L) = 1 if L ∈ {1, 2} and vanishes otherwise, and

|{γ ∈ C∗(S) | ℓω(γ) = L}| = |{necklaces with L beads and 3 colors}|+ ϵ(L),

where ϵ(L) = 1 if L is odd and ϵ(L) = 2 if L is even.

Even when knowing this numerical coincidence, the authors could not find straightfor-
wardly any natural bijection between these sets. However, it remains an open question,
whose answer would possibly give automatically the counting on higher genus.

2.1.2 Related work

Curve counting problems have been extensively studied, especially in the context of hy-
perbolic geometry. More precisely, given a complete hyperbolic metric X on a topolog-
ical surface Σg,n of genus g with n punctures, in each free homotopy class of essential
curves, there exists a unique geodesic representative. Therefore, rather than using the
word length, we can also define the length of a free homotopy class γ ∈ C(Σg,n) by the
length ℓX(γ) of its geodesic representative induced by X. The famous prime number
theorem for geodesics asserts that

|{γ ∈ PC(Σg,n) | ℓX(γ) ≤ L}| ∼ eL

L
. (2.1.1)

This was an achievement initiated in the mid-20th century, and the names of Delsarte,
Hejhal, Huber, Margulis, Selberg, and Sarnak feature most strongly. The estimate
(2.1.1) can be made effective, and the error terms are related to the Laplacian spectrum
of X; see, for example, [Ber16, Section 5.4.2], [Bus92, Section 9.6].

One can also count curves under more topological constraints. For example, one may
restrict consideration to curves with no self-intersection, or a given number of self-
intersections. Efforts in this direction (see for example [Ree81, BS85, MR95, Riv01])
reached their greatest heights with Mirzakhani’s groundbreaking work [Mir08]. As a
consequence of her findings, there exist explicit constants Cg,n > 0 depending only on
g and n and BX > 0 depending only on the hyperbolic metric X such that

|{γ ∈ PC(Σg,n) | ι(γ) = 0, ℓX(γ) ≤ L}| ∼ Cg,n ·BX · L6g−6+2n. (2.1.2)

This result was extended to the non-simple case by Mirzakhani twelve years later
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[Mir16]: for any k ∈ Z≥0 there exists a constant Cg,n;k, such that (2.1.2) remains valid
when replacing “ι(γ) = 0” by “ι(γ) = k” and Cg,n by Cg,n;k.

It turns out that the length function ℓX : PC(Σg,n) → R defined by the hyperbolic metric
X is not essential: Erlandson and Souto [ES22, Theorem 1.2] proved that a very similar
result holds for any “positive, continuous and homogeneous function on the space of
geodesic currents on Σg,n”. More precisely, for any such a function ℓ, which can be
taken as ℓω (see [Erl19]) or ℓX , there exist constants Cg,n;k depending only on g, n and
k, and Bℓ depending only on the function ℓ, such that

|{γ ∈ PC(Σg,n) | ι(γ) = k, ℓ(γ) ≤ L}| ∼ Cg,n;k ·Bℓ · L6g−6+2n. (2.1.3)

As a result, the following limit

lim
L→∞

|{γ ∈ PC(Σg,n) | ι(γ) = 0, ℓ(γ) ≤ L}|
|{γ ∈ PC(Σg,n) | ι(γ) = 1, ℓ(γ) ≤ L}|

exists and does not depend on the choice of length function ℓ. Finally, let us mention
that the estimate (2.1.2) can also be made effective; see [MR95, AEM22, AH21].

In terms of counting curves with a given word-length and self-intersection, there are
many works by Chas, Phillips, Lalley, and McMullen; see [CP10, CL12, Cha15, MCP19].
Many bounds have been found for the general cases and closed formulas for given
length-intersection difference. The main question in this regard is to classify all words
of a given self-intersection and find a closed formula for

|{γ ∈ PC(S) | ι(γ) = k, ℓω(γ) = L}|.

Organization of the chapter

Section 2.2 of the paper will first introduce in our notation the characterization of simple
closed curves by [BS88], study its combinatorial rigidity, and then prove Theorem 2.1.1
with it. Section 2.3 will start by doing the analogous characterization of curves, but this
time targeting self-intersection one, hence proving Theorem 2.1.4. The last part of the
section will prove Theorem 2.1.5 by using the combinatorics already studied in Section
2.2. Finally, in Section 2.4 we use different methods to prove Theorem 2.1.9, which will
be analytic combinatorics, giving the broadest image of our counting.

2.2 Simple curves

In this section, we study simple curves, namely closed curves without self-intersection,
on the once-punctured torus S. As an application of the techniques we are about to
develop, we provide an alternative proof for Theorem 2.1.1.
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2.2.1 Curves as necklaces

As we will soon see, the following seemingly unrelated definition will simplify our dis-
cussion.

Definition 2.2.1 (Necklace). A necklace of integers, or simply a necklace, which can
be seen as a (finite) sequence of positive numbers written on a circle, is an equivalence
class of a finite sequence of positive integers (ni)i where two sequences are equivalent
if they differ by a circular shift.

We use “(. . . )” to denote sequences, and use “[. . . ]” to denote necklaces. For instance,
(1, 2, 3), (2, 3, 1), and (3, 1, 2) are different sequences but represent the same necklace
[1, 2, 3].

Definition 2.2.2 (Small variation). A necklace [ni]i has small variation if, for any s ∈
Z≥1, sums of s consecutive elements never differ by more than ±1. In symbols, this
means ∣∣∣∣ s∑

j=1

ni1+j −
s∑

j=1

ni2+j

∣∣∣∣ ≤ 1 (2.2.1)

for all i1, i2, and indices are taken modulo k.

For example, the necklaces [5, 5, 5, 5], [5, 5, 5, 4], and [5, 4, 5, 4] have small variation, but
[5, 5, 3], [5, 5, 4, 4], and [5, 5, 4, 5, 5, 5, 4, 5, 4] do not.

The following definitions are standard. Let w be a necklace and m ∈ Z. We denote by
|w|m the number of occurrences of m in w. A sequence is called a block of w if it can
be found as a contiguous subsequence within a sequential representation of w. For
example, (1, 2) and (4, 1) are blocks of [1, 2, 3, 4], but (1, 4) is not. A run is a constant
block that is not properly contained in any constant block. For instance, there are 3 runs
of 2 in [2, 1, 2, 1, 2, 1, 2, 2] (two of length 1 and one of length 3).

Remark 2.2.3. Let w = [ni]i be a non-constant necklace. If (2.2.1) holds for s = 1,
then there exists m ∈ Z such that ni ∈ {m,m + 1} for all index i. If (2.2.1) holds for
s = 2 too, then m (resp. m + 1) cannot appear consecutively if |w|m ≤ |w|m+1 (resp.
|w|m+1 ≤ |w|m).

Lemma 2.2.4. Let m,x, y ≥ 1, and let w be a necklace with small variation that contains
exactly x occurrences of the number m, and y occurrences of the number m+ 1. Write
q := max(x, y)/min(x, y). If x ≥ y, then all runs of m in w have size ⌊q⌋ or ⌈q⌉, and all
runs of m+ 1 in w have size 1. If x ≤ y, then all runs of m+ 1 have size ⌊q⌋ or ⌈q⌉, and
all runs of m have size 1.

Proof. Without loss of generality, we assume that x ≥ y. It follows from (2.2.1) by taking
s = 2 that all runs of m+1 have size 1. If there exists a run of m of size at most ⌊q⌋− 1,
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then there is a run of m of size at least ⌊q⌋ + 1, and it follows from (2.2.1) by taking
s = ⌊q⌋+ 1 the necklace does not have small variation. Similarly, if there exists a run of
m of size at least ⌈q⌉+ 1, then the necklace does not have small variation.

One of the main reasons why we are interested in necklaces with small variation is the
following.

Theorem 2.2.5 ([BS88, Theorem 6.2]). Every simple closed curve on S can be repre-
sented, after suitably renaming the generators, by one of the following words:

1. a,

2. aba−1b−1,

3. abn1abn2 · · · abnr , where [n1, . . . , nr] has small variation.

Conversely, each of these words is homotopic to a power of a simple closed curve.

Remark 2.2.6. Finite words can be seen as periodic infinite words. The small variation
condition on the exponents is nothing but the balance condition on words that defines
finite Sturmian words in the literature (see for example [Vui03, GJ09]).

We say that a simple closed curve on S has general type if it falls into the third case
described in Theorem 2.2.5. For such a curve, we associate it with the necklace
[n1, . . . , nr], which we will refer to as its exponent necklace. See Figure 2.2a and 2.2b
for an example.

Write M(L) for the set of closed multicurves of general type on S of length L, and N(L)
for the set of necklaces [n1, . . . , nr] such that r +

∑
i ni = L.

Corollary 2.2.7. For L odd, M(L) and N(L) are in eight-to-one correspondence. For
L even, we have |M(L)| = 8|N(L)| − 4.

Proof. First, it is not hard to check that a power of a necklace (the square of [1, 2, 3] is
[1, 2, 3, 1, 2, 3]) with small variation has small variation. Thus every power of a (primitive)
simple curve of general type is of general type. The eight-to-one correspondence in the
case where L is odd arises from the 8 possible renamings of the generators. This cor-
respondence breaks down when L is even because the necklace [1, . . . , 1] corresponds
to only 4 curves (for example, ab · · · ab and ba · · · ba give the same curve).

Therefore, counting simple closed curves on S with respect to the word length can be
boiled down to the enumeration of necklaces with small variation. In the next section,
we will prove a rigidity result for such necklaces, which allows us to further reduce our
curve counting problem to a problem of lattice point counting.
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2.2.2 Necklaces with small variation

The following is the main result of the section. That is, from the periodic Sturmian
word perspective, the equivalence in definitions as balanced words mentioned before
in Remark 2.2.6 and as cutting sequences on the integer grid for an infinite ray starting
at the origin with rational slope. This fact is well-known to the experts, however, as far
as the knowledge of the authors gets, there seems not to be any good reference on this
fact and a proper bijection. In what follows we give a self-contained elementary proof.

Proposition 2.2.8. Given m ∈ Z≥1, and x,y ∈ Z≥0, there exists a unique necklace with
small variation that contains exactly x occurrences of the number m, and y occurrences
of the number m+ 1.

The proof proceeds by induction, where the operations on necklaces we are defining
now play an important role.

Let us start with the following automorphisms of F2 defined for any m ∈ Z≥1 by

αm :
amb 7→ b,
am+1b 7→ a,

α̃m :
amb 7→ a,
am+1b 7→ b.

(2.2.2)

They are well-defined because amb and am+1b form a basis of F2.

The following elementary lemma will be important for our purposes.

Lemma 2.2.9. For any word w and any m ∈ Z≥1, the curves represented by w, αm(w),
α̃m(w), α−1

m (w), and α̃−1
m (w) have the same self-intersection number.

Proof. The automorphisms αm and α̃m preserve the set of conjugacy classes that cor-
respond to the puncture (the conjugacy class of aba−1b−1 and the conjugacy class of its
inverse bab−1a−1). Now the Dehn–Nielsen–Baer theorem implies that the actions of αm

and α̃m on conjugacy classes of F2 ≃ π1(S) (circular words and free homotopy classes
of curves) are induced by some self-homeomorphisms of S. The lemma follows.

Let w be a necklace with small variation. Recall that we write |w|m for the number of
occurrences of m in w. We define a new necklace A(w) as follows. By Remark 2.2.3,
there exists m ∈ Z≥1 such that ni ∈ {m,m + 1} for all i. If |w|m ≤ |w|m+1 (resp.
|w|m+1 ≤ |w|m), we define A(w) to be the necklace obtained by removing all the m’s
(resp. (m + 1)’s) from w and replacing each run of m + 1 (resp. m) by the length of
the run. For example, A[4, 5, 5, 4, 5, 5, 5, 4, 5, 5] = [2, 3, 2] and A[4, 5, 5, 5, 4, 5, 4, 5, 5] =
[3, 1, 2]. Note that if |w|m = |w|m+1, then A(w) is a constant necklace [1, . . . , 1] of size
|w|m = |w|m+1.

This operation can be defined equivalently as follows. Let w = [n1, . . . , nr], and consider
the word ω = an1b · · · anrb. If |w|m ≤ |w|m+1 (resp. |w|m+1 ≤ |w|m), then A(w) is the
exponent necklace of αm(ω) (resp. α̃m(ω)).
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With certain supplementary information, the map A can be reversed. We define Bm(w)
(resp. B̃m(w)) to be the necklace obtained by replacing each ni by a run of m + 1
(resp. m) of length ni and inserting a m (resp. m + 1) between every two consecutive
runs of m + 1 (resp. m). For example, B3[1, 1, 3, 2] = [4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 3]. In other
words, if |w|m ≤ |w|m+1 (resp. |w|m+1 ≤ |w|m), then Bm(w) is the exponent necklace
of α−1

m (ω) (resp. α̃−1
m (ω)). Now, by construction, if w is a necklace with small variation,

then Bm(A(w)) = w if |w|m ≤ |w|m+1, and B̃m(A(w)) = w if |w|m ≥ |w|m+1.

(a) A circular word

3

2

23
2

3

2

3

2
2 2

3

2

(b) Its exponent necklace

21

1

3

1

(c) Image of A

A necklace w = [ni]i is said to have profile (m,x, y), if ni ∈ {m,m+1} for all i, |w|m = x,
and |w|m+1 = y.

Note now that by Lemma 2.2.4, if min(x, y) divides max(x, y), then Proposition 2.2.8
follows immediately.

Lemma 2.2.10. Let m,x, y ∈ Z≥1, and w1, w2 be two necklaces with the same profile
(m,x, y). Then A(w1) and A(w2) have the same profile (m′, x′, y′) where

m′ = ⌊max(x, y)/min(x, y)⌋,
x′ = min(x, y)−max(x, y) + min(x, y)⌊max(x, y)/min(x, y)⌋,
y′ = max(x, y)−min(x, y)⌊max(x, y)/min(x, y)⌋,

(2.2.3)

which depends only on (x, y). Moreover, we have 0 ≤ min(x′, y′) < min(x, y).

Proof. Let (m′, x′, y′) be the profile of A(w1). Note that m′ is determined by Lemma 2.2.4,
the total size of A(w1) is given by construction by min(x, y) and the sum of all the ele-
ments in A(w1) is given by construction by max(x, y). Hence, (m′, x′, y′) is determined
by the system

m′ = ⌊max(x, y)/min(x, y)⌋, x′ + y′ = min(x, y), x′m′ + y′(m′ + 1) = max(x, y).

These equations have a unique solution given by (2.2.3). A direct computation shows
that

x′ ≤ min(x, y), y′ ≤ min(x, y)

and x′ = min(x, y) if and only if min(x, y) divides max(x, y), in which case y′ = 0 and
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hence y′ < min(x, y). The lemma follows.

Now, we are ready for the main result of the section.

Proof of Proposition 2.2.8. The assertion is evident if min(x, y) = 0. Assume x, y ≥ 1.
We proceed by induction on min(x, y). Suppose that the proposition holds for all triples
(m,x, y) ∈ Z3

≥1 where min(x, y) ≤ k. We will prove that the proposition holds for all
(m,x, y) ∈ Z3

≥1 such that min(x, y) = k + 1.

By Lemma 2.2.10 and the induction hypothesis, there exist a unique necklace w′ with
profile (m′, x′, y′), defined by (2.2.3). By Lemma 2.2.9, if x ≥ y (resp. x ≤ y), then
Bm(w′) represents a simple curve with profile (m,x, y). This proves the existence. The
uniqueness follows from Lemma 2.2.10 the fact that A is injective (by Lemma 2.2.9).
This completes the proof.

2.2.3 Counting

We will start by counting the curves of general type, which means it can be represented
by a word of the form abn1abn2 · · · abnr , and then at the rest of the curves. Note that
such a curve is determined by its exponent necklace w = [n1, . . . , nr].

Now, if ni ∈ {m,m+ 1}, the curve γ = abn1abn2 · · · abnr has word length |w|m(m+ 1) +
|w|m+1(m+ 2).

Proposition 2.2.11. For any positive integer L, there are exactly 4(L− 1) simple multi-
curves of general type and length L.

To prove so we first prove a proposition on our Diophantine equations.

Proposition 2.2.12. Consider the equation

x(m+ 1) + y(m+ 2) = L (2.2.4)

where L ∈ Z≥1 is given, and x,m ∈ Z≥1, y ∈ Z≥0 are unknown. Then, there are exactly
L/2 solutions (x, y,m) if L is even, and (L− 1)/2 solutions if L is odd.

Proof. Let S(L) denote the set of triples (m,x, y) ∈ Z2
≥1 × Z≥0 satisfying (2.2.4). Since

|S(2)| = 1, it suffices to prove that for any L ∈ Z≥2, |S(L + 1)| = |S(L)| if L is even,
and |S(L+ 1)| = |S(L)|+ 1 if L is odd. The strategy is to show that there exists a map
Λ+ : S(L) → S(L+ 1) such that, when L is even, Λ+ is a bijection, and when L is odd,
Λ+ is an injection and |Λ+(S(L))| = |S(L+ 1)| − 1.
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Let us define Λ+ : Z3 → Z3 by the formula

Λ+(x, y,m) :=

{
(x− 1, y + 1,m) if x ≥ 2,

(y + 1, 0,m+ 1) if x = 1.

A direct computation shows that Λ+(S(L)) ⊂ S(L+1). Now consider the map Λ− : Z3 →
Z3 defined by

Λ−(x, y,m) :=

{
(x+ 1, y − 1,m) if y ≥ 1,

(1, x− 1,m− 1) if y = 0.

Again, a straightforward computation shows that Λ−(S(L+1)) ⊂ S(L), and the compo-
sition Λ− ◦ Λ+ : S(L) → S(L) is the identity. In particular, the restriction of Λ+ on S(L)
is an injection. Now, observe that (x, y,m) ∈ S(L + 1) and Λ−(x, y,m) /∈ S(L) if and
only if (y,m) = (0, 1), and there exists x ∈ Z≥1 such that (x, 0, 1) ∈ S(L+ 1) if and only
if L+ 1 is even. This completes the proof.

Proof of Proposition 2.2.11. This follows immediately from Corollary 2.2.7, Proposition 2.2.8
and 2.2.12.

Now we are ready to prove the simple curve counting result.

Proof of Theorem 2.1.1. Define

M(n) := |{γ ∈ C(S) | ι(γ) = 0, γ is of general type, ℓω(γ) = n}|. (2.2.5)

By Proposition 2.2.11, m(n) = 4(n− 1). Define also

P (n) := |{γ ∈ PC(S) | ι(γ) = 0, γ is of general type, ℓω(γ) = n}|.

By definition, M(n) =
∑

d|n P (d). Applying the Möbius inversion formula we obtain

P (n) =
∑
d|n

µ(d)M(n/d)

where µ(d) stands for the Möbius function. Using the arithmetic identities

∑
d|n

µ(d)

d
=

φ(n)

n
,

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n ≥ 2,

where φ is Euler’s totient function, we obtain for n ≥ 1,

P (n) = 4φ(n)− 4δ{1}(n),
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where δ{1}(n) = 0 for n > 1 and δ{1}(1) = 1. After summing rewrites as:

L∑
n=1

P (n) = 4Φ(L)− 4.

Adding the four essential simple curves of non-general type: a, b, a−1, b−1, the first part
of the theorem follows.

For the second part, by Proposition 2.2.11, we know that the number of powers of
simple closed curves of general type with word length exactly L is M(L) = 4(L − 1).
Hence,

L∑
n=1

M(n) =

L∑
n=1

4(n− 1) = 2(L2 − L).

Adding the words of type ak, bk, a−k, b−k for k = 1, . . . , L, the theorem follows.

2.3 Self-intersection one

In this section, we classify self-intersection one curves and derive a formula for the
number of such curves of a given length.

2.3.1 Characterization

The aim of this section is to prove Theorem 2.1.4.

One of the main tools for the section will be the algorithm to determine self-intersection
proposed by Cohen and Lustig [CL87] built on the work of Birman and Series [BS84].
We will shortly introduce our notation on it right now.

Let ω = x1 · · ·xn, where xi ∈ {a, b, a−1, b−1} be a reduced word. Consider all of its
circular shifts {ωi}ni=1 where ωi = xixi+1 · · ·xnx1x2 · · ·xi−1 and the cyclic lexicographic
ordering induced by a < b < a−1 < b−1: two words α = x1 · · ·xn and β = y1 · · · yn
satisfy α < β if either x1 < y1, or for some 1 < t ≤ n, we have xi = yi for 1 ≤ i ≤ t− 1,
and xt < yt under the new ordering obtained by cyclically shifting the original one until
it starts with x−1

t−1.

For example, baab−1 < baab. We will call (i, j) ∈ {1, . . . , n}2 a linking pair if ωi <
ωj < ω−1

i < ω−1
j or ωi < ω−1

j < ω−1
i < ωj . Consider the set of linking pairs with the

equivalence relation induced by (i, j) ∼ (i + 1, j + 1) if ωi and ωj start with the same
letter and same sign, and (i+1, j) ∼ (i, j+1) if ωi and ωj start with the same letter and
opposite sign. Cohen and Lustig proved that the self-intersection number of the curve
represented by ω equals the number of equivalence classes of linking pairs found this

41



way. We refer the reader to [CL87] for more details.

Proposition 2.3.1. Let ω = an1bm1 · · · ankbnk be a reduced word representing a curve
with a single self-intersection. If there exist i, j ∈ {1, . . . , k} such that |ni|, |mj | ≥ 2, then
up to renaming of the generators and circular shift, the only possible ω is a2b2.

Proof. Take a word that writes reduced as ω1a
n1ω2b

n2ω3 with n1 = n2 = 2 and ω1, . . . , ω3

being subwords, at least one of them being non-empty. This word is the image by the
“cross-corner surgery” described in [CP10] of a word ω−1

1 ab−1ω−1
2 a−1bω3. By [CP10,

Proposition 2.2] this surgery increases self-intersection by at least one, and by Theorem
2.2.5, the initial word did not represent a simple curve, hence, self-intersection of the
image is at least two. Same proceeding applies for ni = −2 just by switching a for a−1,
b for b−1 or both.

Hence, from now on we can assume that one of the generators has only exponents
{−1, 1}. Following then,

Proposition 2.3.2. Let ω be a word representing a curve with a single self-intersection
of the form an1bϵ1 · · · ankbϵk where ϵi ∈ {−1, 1} for all i and mimj = −1 for some i, j.
Then, ω is, up to renaming the generators and circular shift, of the form

ab−1a−1b · am1b · · · amrb or ab−1a−1b · a−m1b · · · a−mrb (2.3.1)

where am1b · · · amrb represents a primitive simple curve, with the short exceptional
cases ab−1ab, b−1a−1ba2. Conversely, every word representing a primitive simple curve
of the form am1b · · · amrb can be circularly shifted to a unique word σ such that ab−1a−1b·
σ represents a curve with a single self-intersection.

Proof. We will characterize all possible changes of sign. Start by considering a reduced
word of the form ab−1aibaω, with i ≥ 1 and ω being a subword. By applying a surgery as
in Figure 2.3b, if i ≥ 2, the word will lose one self-intersection and become ab−1ai−1baω
(coming in the linking pair notation as losing the linking pair given by the cyclic shifts of
the word: ω1 = baωab−1ai and ω2 = abaωab−1ai−1). And, for i = 1, the word also loses
a self-intersection and becomes ab−1a−1bω (in linking pairs notation loses the linking
pair given by the two cyclic shifts of the word: ω1 = ab−1aibaω and ω2 = abaωab−1ai−1).
Now, by the classification of simple closed curves, this word is simple if and only if
ω = ∅, hence we find that the only candidate of the form ab−1aibaω, with i ≥ 1, for self-
intersection one is ab−1aba, which indeed can be checked by the algorithm in [CL87]
to have a single self-intersection and will correspond to one of the exceptional short
cases.

For the rest of the cases, one can assume that when there is a change of sign in b, there
is also a change of sign in a. In particular, since renaming all a for a−1 (and respectively
with b) does not change the self-intersection number, we will consider words of the form
ab−1a−ibω, with i ≥ 2, and ω being a subword.
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a
b

(a) i = 1

a
b

(b) i ≥ 2

Figure 2.3: Surgery on a word of the form ab−1aibaω: remove the orange part and add
the blue part.

a

b

Figure 2.4: Surgery on a word of the form ab−1a−ibω with i ≥ 2.

Again, by applying a surgery as in Figure 2.4, if i ≥ 2, the word will lose one self-
intersection and become ab−1a−i+1baω (corresponding to losing the linking pair coming
from the permutations of the word ω1 = bωab−1a−i and ω2 = a−1bωab−1a−i+1). Once
again, by the classification of simple words, if ω ̸= ∅ this will never be simple and hence
the initial word does not have a single self-intersection, whilst if ω = ∅, this will be
simple if and only if i = 2, in which case the only possible candidate for a single self-
intersection is the word ab−1a−2b, which can be checked by the algorithm in [CL87] to
be indeed of self-intersection one, giving the other short exceptional case.

Hence, we can restrict to the case where the changes of sign come from subwords
of the kind ab−1a−1b (up to renaming a for a−1 or b for b−1). Hence, take a reduced
word ab−1a−1bω with ω a subword such that the exponents on b are ±1. Note that if ω
starts with an a, up to homotopy, one finds the first situation in Figure 2.5, meaning that
the surface is divided into two regions with the startpoint of the curve in one of them
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and the continuation in the other one. Thus, the curve will intersect at some point the
arcs given by the commutator ab−1a−1b, and so ι(ω) ≤ ι(ab−1a−1bω) − 1. Therefore,
ω has to represent a simple word starting with a. Moreover, ω has to be of the form
an1b · · · ankb, as if it was of the form an1b−1 · · · ankb−1 the curve ab−1a−1bω would contain
the subword ban1b−1an2 and the only such a word with self-intersection one is bab−1a
as proved above, or if ω = ab−1a−1b, the word would not be primitive.

a

b

a

b

a

b

Figure 2.5: Possible words starting by ab−1a−1b

On the other hand, if ω = a−ibϵω′ with i ≥ 1 and ϵ = ±1, note first again that for ϵ = −1
it is proved above that the only case containing a subword a−1ba−ib−1 with a single
self-intersection is a−1ba−1b−1 and this is not the case. Therefore, ϵ = 1, leading to the
second case in Figure 2.5. In this case, all ω has to be of the form a−n1b · · · a−nkb, as
any change of sign would lead again to the non-possible subword. Therefore, at the
last step, one can perform a surgery as in the third part of Figure 2.5, transforming at
one component ab−1abω into ω and lowering the self-intersection by at least 1, hence ω
must represent a simple curve.

Lemma 2.3.3. Let ab−1a−1bω be a word with self-intersection one, being ω a simple
word of the form an1b · · · ankb. Then, it will always write as

ab−1a−1bam+1b(amb)t1 · · · am+1b(amb)ts

with t1 < ts if m > 0, and as

ab−1a−1b(am+1b)t1amb · · · (am+1b)tsamb

with t1 > ts if m < −1.

Proof. Start by writing the word as ab−1a−1bω with ω = an1b . . . ankb with ni being pos-
itive for all i. The word ab−1a−1bω instantly gives a linking pair given the cyclic shifts
ω1 = bab−1a−1ban1b · · · ank and ω2 = ban1b · · · ankbab−1a−1, satisfying ω−1

2 < ω1 < ω2 <
ω−1
1 .

Assume now that ni ∈ {m,m+ 1} for some m ≥ 1, as it represents a simple word, and
k > 1, as otherwise the result is trivial.
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Note first that if the curve has self-intersection one, then n1 = m + 1 and nk = m:
if n1 = m, then exists j ∈ {1, . . . , k} such that nj = m + 1 giving another link-
ing pair associated to the permutations ω1 = banjb · · · ankbab−1a−1ban1b · · · anj−1 and
ω2 = ban1b · · · ankbab−1a−1, rising the total self-intersection to 2. Similarly, if nk = m+1,
there is some j ∈ {1, . . . , k} such that nj = m and so we find a linking pair with the per-
mutations ω1 = ank−1bab−1a−1ban1b · · · ba and ω2 = anjb · · · ankbab−1a−1ban1b · · · anj−1b.

Write now the word as ab−1a−1bam+1b(amb)t1 · · · am+1b(amb)ts .

Finally, t1 < ts, as otherwise a new linking pair arises with the permutations ω1 =
b(amb)tsab−1a−1bam+1b(amb)t1 · · · am+1 and ω2 = b(amb)t1 · · · am+1b(amb)tsab−1a−1bam+1.

The negative case can be proved by noting that after renaming generators and shifting
cyclically, ab−1a−1ban1b · · · ankb can be rewritten as ab−1a−1babn1 · · · abnk and there is
an analog proof for the case with the exponents on b.

Note now that the maps αm, α̃m defined in (2.2.2) fix the set of conjugacy classes
{[ab−1a−1b], [(ab−1a−1b)−1]}. Hence, considering a reduced circular word of the kind
ab−1a−1bω, such that it has a single self-intersection and such that ω = an1b · · · ankb
with ni ∈ {m,m + 1} for some m ̸= 0, 1 represents a primitive simple word, we can
apply the reduction αm(ab−1a−1bω) = ω′αm(ω) if |{i | ni = m}| > |{i | ni = m + 1}|
(or with α̃m otherwise), where ω′ is a cyclically reduced representative of the conjugacy
classes of the commutators of a, b. As we are assuming that ω represents a simple
word, applying finitely many times maps of the family αm, α̃m, this reduction acts as A
on the necklace [n1, . . . , nk] defined in Figure 2.2c, and it will reduce to a word of the
kind An(ω) = an

′
b up to renaming the generators. Therefore, by inversing A with the

appropriate Bm’s, and given Lemma 2.3.3, after renaming properly the generators such
that the representative of the commutator is of the form ab−1a−1b, we find that there is
a unique permutation of every simple word ω of the form an1b · · · ankb or a−n1b · · · a−nkb
making ab−1a−1bω a self-intersection one curve.

Moreover, applying this reduction to Lemma 2.3.3, one sees that, in order to obtain a
self-intersection one curve from a simple one of the form an1b · · · ankb with ni ∈ {m,m+
1} for some m ̸= 0,−1, the commutator ab−1a−1b, has to be inserted before a block
anib such that ni = m+1, ni−1 = m and maximizing as much as possible the beginning
of the chain {

∑s
j=1 |ni+ϵj |}s≥1 with ϵ = 1 for positive m and −1 for negative (e.g. see

Figure 2.6).

Finally, up to generator renaming and circular shifting ab−1a−1ban1b · · · ankb generates
the same curves as ab−1a−1ab−n1 · · · ab−nk , whilst ab−1a−1abn1 · · · abnk generates the
same curves as ab−1a−1ba−n1b · · · a−nkb, leaving us with the two cases in the statement
of this proposition. This concludes the proof.

Note also that if all the exponents of the letter b are of the same sign, it has been proved
already that the only possible word with self-intersection one and with a change of signs
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a2b
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a3ba2b
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a3b

ab−1a−1b

a2b
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a2b

Figure 2.6: Words representing a curve with self-intersection one

in the exponents of a is, up to renaming of the generators, a−1bab, which was already
considered as an exceptional short case. Thus, now we can assume that there is no
change of signs in the exponents and that the exponents of all b’s are 1. Hence, up to
renaming, we are left with words of the form

an1ban2b · · · ankb

with all exponents being positive. For the next proposition, we will need an extra defini-
tion, which is analogous to Definition 2.2.2 for a single self-intersection.

Definition 2.3.4 (2-variation). Let m ∈ Z≥1 and w = [ni]i be a necklace with ni ∈
{m,m+1} for all i. We say that a pair of blocks of w of the same size is an essential pair
if one block is (m,x2, x3, . . . , xk−1,m) and the other block is (m+1, x2, x3, . . . , xk−1,m+
1) where xi ∈ {m,m+ 1}. We say that w has 2-variation if, among all pairs of blocks of
w, only one is essential.

Remark 2.3.5. Such a name is given after Buser–Semmler’s small variation since we
consider this to be the smallest case without small variation, hence variation 2: an
essential pair of blocks will always look like

B1 = (m,x2, x3, . . . , xk−1,m), B2 = (m+ 1, x2, x3, . . . , xk−1,m+ 1),

with xi ∈ {m,m+ 1}. Therefore, ∣∣∣∣∑
S1

ni −
∑
S2

nj

∣∣∣∣ = 2,

and whenever the small variation condition is broken, there will always exist at least one
essential pair of blocks.

Proposition 2.3.6. The only circular words representing a curve with a single self-
intersection of the form an1b · · · ankb with all exponents being positive are

• amb am+2b where m ∈ Z≥1,
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• an1b · · · ankb where the exponent necklace [n1, . . . , nk] has 2-variation.

Proof. Let us start by assuming that there are at least two exponents of a with a differ-
ence of 3, i.e. there are i, j,m ≥ 1 such that ni = m, nj ≥ m + 3. Take then the cyclic
shifts of the word ω1 = anib · · · , ω2 = anj−1banj+1 · · · ba, and ω3 = anj−2banj+1 · · · ba2.
By the lexicographic ordering, one has

ωk < ω1 < ω−1
k < ω−1

1 for k ∈ {2, 3},

which in [CL87] gives 2 linking pairs associated to the pairs (ω2, ω1), and (ω3, ω1), in
different classes, and hence self-intersection of at least 2.

Let us now move to the case where there are i, j,m ≥ 1 such that ni = m, nj = m+ 2.
Note that, from the existence of such a pair, we can straightforwardly take two cyclic
shifts of the word: ω1 = anib · · · ani−1b and ω2 = anj−1banj+1b · · · ba, given by the same
ordering as above ω2 < ω1 < ω−1

2 < ω−1
1 , hence one linking pair giving one self-

intersection. Now, if there was a 1 ≤ k ̸= i, j such that nk ̸= m + 1, by the same
procedure we would find an extra self-intersection, giving at least two. Thus, assume
now the word is of the form

an1b · · · ankbambam1b · · · amk′ bam+2b,

with ni,mj = m + 1. If k′ ̸= 0, choosing the cyclic shifts ω1 = ambam1 · · · ankb and
ω2 = amk′−1bam+2 · · · ba, again one has ω2 < ω1 < ω−1

2 < ω−1
1 giving another linking

pair in a different class, and hence an extra self-intersection, i.e. at least 2. If k′ = 0 and
k ̸= 0, one can find analogously an extra intersection. Implying then that if there are
two exponents with a difference of two, the only candidate with a single self-intersection
(up to renaming and cyclic shift) is when k = k′ = 0, that is abmabm+2, and by [CP10,
Proposition A.1], indeed has a single self-intersection for every m ∈ Z≥1.

Let us now move to the case where we have a word of the form an1b · · · ankb with all
ni ∈ {m,m+ 1} for some m ∈ Z≥1. We want to prove that it has self-intersection one if
and only if the necklace of positive integers [n1, . . . , nk] has 2-variation.

It is enough to see that in this case there is a 1 : 1 correspondence between classes of
linking pairs in [CL87] algorithm and essential pairs of blocks in the necklace [n1, . . . , nk].
We will start by constructing a class of linking pairs in the word given an essential pair
of blocks in the associated necklace.

Recall from Remark 2.3.5 such a pair of blocks is always going to be of the form

S1 = {m,ni1+2, . . . , ni1+s−1,m}, S2 = {m+ 1, ni2+2, . . . , ni2+s−1,m+ 1},

with ni1+j = ni2+j ∈ {m,m + 1} for j = 2, . . . , s − 1. Note that every such pair gives
rise to a linking pair on the word an1b · · · ankb by taking ω1 = ambani1+2b · · · b, ω2 =
ambani2+2b · · · ba with ω2 < ω1 < ω−1

2 < ω−1
1 with respect to the lexicographic order

47



a < b < a−1 < b−1. Note also that by this construction every pair of blocks gives rise to
a different class of linking pairs, given by the difference in first and last number, and that
two linking pairs (i, j) ∼ (i+ 1, j + 1) are in the same class if and only if the ith and jth
letters of the word representative start by the same letter, being the only equivalence
between linking pairs possible in this case. Hence, we found an injection from the set
of essential pairs of blocks into self-intersections of the curve represented by the word.

The converse injection is given by the following: take a linking pair (i1, i2), that is we
have two permutations of the initial word giving

ωi1 < ωi2 < ω−1
i1

< ω−1
i2

. (2.3.2)

Assume that both start with a, then they are of the form ωit = altbanjt+1b · · · and ω−1
it

=

a−(njt−lt)b−1a−njt−1b−1 · · · for t = 1, 2. Now, first inequality of Equation (2.3.2) implies
that either l1 ≥ l2 + 1, or l1 = l2 and nj1+r = nj2+r for r = 1, . . . , s − 1 for some s and
nj1+s = nj2+s + 1. Similarly, the last inequality of the equation gives for the other side
nj1 − l1 ≥ nj2 − l2 + 1 or nj1 − l1 = nj2 − l2 and nj1−r = nj2−r for r = 1, . . . , s′ − 1
for some s′ and nj1−s′ = nj2−s′ + 1. Note that since all ni ∈ {m,m + 1}, at most
l1 = l2 + 1 and so in all cases one finds at the extremes two subwords of the form
bam+1bam1b · · · bamsbam+1b, bambam1b · · · bamsbamb, that give an essential pair of blocks
on the necklace of positive integers.

Moreover, when both words start with a b, then the same argument for l1 = l2 = 0 ap-
plies. Finally, assume they start with different letters. By Equation (2.3.2), ωi1 starts with
a and ωi2 with b, i.e. ωi1 = albanj1+1b · · · for some 0 < l < nj1 and ωi2 = banj2

+1b · · · .
In this case, ω−1

i1
= a−(nj1

−l)b−1anj1−1b · · · and ω−1
i2

= a−nj2 b−1anj1−1b · · · .The first
two inequalities of Equation (2.3.2) are automatically true. The third inequality implies
nj1−l ≥ nj2 , and since they can only differ by one it can only happen if l = 1, nj1 = m+1,
and nj2 = m. Then, all nj1−r = nj2−r for r = 1, . . . , s− 1 until some nj1−s = m+ 1 and
nj2−s = m, for which we get again an essential pair of blocks in the necklace of positive
integers. Moreover, note that by the construction above all the linking pairs giving the
same essential pair of blocks are in the same class, as again the only possible equiva-
lence is (i, j) ∼ (i+1, j+1) are in the same class if and only if the ith and jth letters of
the word representative start by the same letter.

Remark 2.3.7. The proofs of the above propositions have inside all the steps to prove
that Theorem 2.2.5 follows from [CL87] algorithm.

2.3.2 Counting

This section is dedicated to counting primitive curves with self-intersection one, i.e. the
following proof.

Proof of Theorem 2.1.5. The exceptional cases are for length 4 and 5. For length 4
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there are two cases: a2b2 and aba−1b, which after renaming of generators give us 8
conjugacy classes, i.e. |{γ ∈ PC1(S | ι(γ) = 1, ℓω(γ) = 4}| = 8, and for length 5 we have
only the words of type ab−1a−1b2 which give |{γ ∈ PC1(S) | ι(γ) = 1, ℓω(γ) = 5}| = 8.

For the general case of length L ≥ 6, name P1(L) the number of words arising from
Proposition 2.3.2, P2(L) the number of words arising from Proposition 2.3.6 of the form
abmabm+2, and P3(L) the number of the rest words arising from Proposition 2.3.6. Then,
for L ≥ 6, we will have

|{γ ∈ PC1(S) | ι(γ) = 1, ℓω(γ) = L}| = 8 · (P1(L) + P2(L) + P3(L)),

since each of these words will give different conjugacy classes after all the possible
renamings of generators {a, b, a−1, b−1}.

It is straightforward from the proposition that P1(L) = 2·|{aperiodic necklaces of positive
integers [n1, . . . , nk] with small variation such that k +

∑k
i=1 ni = L − 4}|. Hence, from

the proof of Theorem 2.1.1, that is

P1(L) = 2 ·
∑

d|(L−4)

µ(d)

⌊
L− 4

2d

⌋
= φ(L− 4),

where again µ and φ denote the Möbius function and Euler’s totient function, respec-
tively.

Now, P2(L) = 1 for even L and vanishes otherwise. Lastly, to count P3(L), we need to
count the number of 2-variation necklaces of positive integers that give a word of length
L.

Proposition 2.3.8. Let m,x, y ∈ Z≥1. If gcd(x, y) = 2, then there exists a unique
necklace of integers with 2-variation that contains exactly x occurrences of the number
m, and y occurrences of the number m+ 1. Otherwise, no such necklaces exist.

Proof. Without loss of generality, we assume throughout the proof that x ≤ y. Let
k ∈ Z≥1, and let [ni]i = [n1, . . . , nk] be a necklace such that ni ∈ {m,m + 1} for all
1 ≤ i ≤ k, |{i | ni = m}| = x, and |{i | ni = m+ 1}| = y.

First, we prove that if x | y then the necklace [ni]i does not have variation 2. If every run
of m+1 has size y/x, then [ni]i has small variation. If there exist two runs of m+1 with
sizes differing by at least 3 (for example, y/x− 1 and y/x+ 2), then [ni]i does not have
variation 2. Thus, if [ni]i has variation 2, then the sizes of its runs of m+1 can only take
values in {y/x− 1, y/x, y/x+ 1}, as the sum of the runs have to sum y and there are x
of them.

Further, if there is one run of size y/x+ 1, then there is at least one run of size y/x− 1
and there can only be one as otherwise, these give immediately two essential pairs of
blocks. Therefore, for a necklace with 2-variation, there is one run of size y/x − 1, one
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of size y/x+ 1, and x− 2 runs of size y/x.

If x > 2, then the necklace cannot have 2-variation, as one essential pair of blocks is
given straight by the runs with difference 2, i.e. {m,m + 1, y/x−1. . . ,m + 1,m} and {m +

1, y/x+1. . . ,m + 1}, and another one by extending these sets to an adjacent gap of size
y/x (e.g. see Figure 2.7a). When x = 2, there are only two runs, of sizes y/x − 1 and
y/x+1, and one unique possible configuration with these, giving always variation 2 (see
Figure 2.7b).

3

33

2

3

2
3

3

2

(a) x = 3, y = 6,

3

3

3

2

3

2

(b) x = 2, y = 4.

Assume from now on x ∤ y. First note that for a necklace with variation 2 the sizes of
its runs have to take values in {⌊y/x⌋, ⌈y/x⌉}: the existence of a run of size at least
⌈y/x⌉ + 1 implies that there should be at most one run of size ⌊y/x⌋, as every couple
of runs with difference two gives rise to an essential pair of blocks, be of size ⌈y/x⌉.
However, there are x runs and so y = (⌈y/x⌉ + 1) + ⌊y/x⌋ + (x − 2)⌈y/x⌉ = x⌈y/x⌉,
contradicting x ∤ y. The case for the existence of a run of size at most ⌊y/x⌋ − 1 is
symmetric.

Moreover, the necklace [ni]i has 2-variation if and only if the associated run necklace
A[ni]i described in Figure 2.2c has. This comes naturally from the map A as two blocks
of the form S1 = {m,nj+2, . . . , nj+s−1,m} and S2 = {m+1, nj+2, . . . , nj+s−1,m+1} will
map to the same sequence of runs with the first and last one being bigger by one at the
second case. Conversely, if there is such a sequence of runs, finding the associated
pair of blocks in [ni]i is straightforward.

Finally, note that by the same computations in Lemma 2.2.10, a necklace of profile
(m,x, y) maps to a necklace of profile (⌊y/x⌋, x − y + x⌊y/x⌋, y − x⌊y/x⌋), and by el-
ementary properties gcd(x, y) = gcd(x − y + x⌊y/x⌋, y − x⌊y/x⌋). Therefore, as the
number of appearances in the profile keeps decreasing while they do not divide each
other, this will only stop when they do, and as the gcd is maintained, that will hap-
pen when the minimum reaches gcd(x, y), and as the dividing case has already been
proved, there will exist a 2-variation necklace if and only if gcd(x, y) = 2.
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Hence, since a word abn1 · · · abnk has length k +
∑k

i=1 ni, P3(L) will be exactly the
number of solutions to the following equation.

Proposition 2.3.9. Consider the equation

x(m+ 1) + y(m+ 2) = L (2.3.3)

where L ∈ Z≥1 is given, and x, y,m ∈ Z≥1 are unknown such that gcd(x, y) = 2. Then
for even L, there are exactly ⌈φ(L/2)/2⌉ − 1 solutions, and none for odd L.

Proof. Let us start by introducing some notation. Define

S(L) := {(x, y,m) ∈ Z3
≥1 | x(m+ 1) + y(m+ 2) = L},

S>1(L) := {(x, y,m) ∈ S(L) | gcd(x, y) > 1},
S1(L) := {(x, y,m) ∈ S(L) | gcd(x, y) = 1},
S2(L) := {(x, y,m) ∈ S(L) | gcd(x, y) = 2}.

Our objective is to determine |S2(L)|. The set of solutions S2(L) is empty if L is odd.
When L is even, the mapping (x, y) 7→ (x/2, y/2) defines a bijection from S2(L) to
S1(L), and hence, we have |S2(L)| = |S1(L/2)| for L even. By Proposition 2.2.12, we
have

|S>1(L)|+ |S1(L)| = ⌊L/2⌋ − σ0(L) + 1,

where σ0(L) denotes the number of divisors of L. (Here, we exclude solutions where
y = 0.) Since any solution (x, y,m) ∈ S>1(L) corresponds to a solution in S1(L/ gcd(x, y)),
we have

|S>1| =
∑

d|L,d ̸=1

|S1(L/d)|.

Therefore, we have ∑
d|L

|S1(L/d)| = ⌊L/2⌋ − σ0(L) + 1, (2.3.4)

and in particular, we have

|S1(p)| = ⌊p/2⌋, for any prime p. (2.3.5)

Now, note that since S1(0) = 1, |S1(L)| can be uniquely determined by (2.3.4) and
(2.3.5) for any L ∈ Z≥1. On the other hand, a direct computation shows that the function
defined by L 7→ ⌈φ(L)/2⌉ − 1 maps 0 to 1, and satisfies (2.3.4) and (2.3.5). Hence, for
any L ∈ Z≥1, we have

|S1(L)| = ⌈φ(L)/2⌉ − 1

and therefore, for any L even, we have

|S2(L)| = |S1(L/2)| = ⌈φ(L/2)/2⌉ − 1.
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The proposition follows.

Concluding, Proposition 2.3.9 implies that P3(L) = ⌈φ(L/2)/2⌉− 1 for even L, and zero
otherwise, hence one gets for L ≥ 4,

|{γ ∈ π1(S) | ℓω(γ) = L, ι(γ) = 1}| = 8 · (P1(L) + P2(L) + P3(L))

=

{
8φ(L− 4) for odd L,

8 (φ(L− 4) + 1 + ⌈φ(L/2)/2⌉ − 1) for even L.

by summing the general cases and checking that it coincides for L = 4, 5 with the
convention φ(0) = 0.

2.4 All curves

In this section, we shall count all closed curves on S of given word length, regardless of
their self-intersection numbers.

This result (Theorem 2.1.9) is expected to be known because of its elementary nature.
However, despite our search in the literature, we couldn’t find a reference. Hence, we
provide a complete proof here.

Proof of Theorem 2.1.9. Let n ∈ Z≥1. Let us denote by wn the number of reduced
words in {a, b, a−1, b−1} of length n. Define generating functions

W (t) :=
∞∑
n=1

wnt
n.

Every word ω under consideration can be written in the form

xn1
1 xn2

2 · · ·xnk
k

where for all i, xi ∈ {a, a−1, b, b−1}, ni ∈ Z≥1, and xi+1 /∈ {xi, x−1
i }. We discuss based

on the parity of k. If k is even, then the last letter xk must be b or b−1. Thus

∞∑
n=1

w2nt
2n = 4

∞∑
i=1

t

1− t

(
2t

1− t

)2i−1

=
8t2

−3t2 − 2t+ 1
.

This arises from the following reasoning. We assume x1 = a. The exponent n1 can
be any positive integer, giving a factor t + t2 + · · · = t/(1 − t). Next, n2 can also be
any positive integer, and x2 can be chosen between b and b−1. This gives a factor of
2t/(1 − t), and so on and so forth. Finally, x1 can also be a−1, b, or b−1, which gives a
factor of 4.
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If k is odd and k ̸= 1, then we have xk = x1. So by a similar argument, we have

∞∑
n=1

w2n+1t
2n+1 = 4

∞∑
i=1

t

1− t

(
2t

1− t

)2i−1 t

1− t
=

8t3

(1− t)(−3t2 − 2t+ 1)
.

Therefore,

W (t) =
8t2

−3t2 − 2t+ 1
+

8t3

(1− t)(−3t2 − 2t+ 1)
+

4t

1− t
=

4t− 12t3

(1− t)(−3t2 − 2t+ 1)

where the term 1/(1− t) corresponds to the case k = 1. This can be rewritten as

W (t) = −4 +
2

1− t
+

1

1 + t
+

1

1− 3t
=

∞∑
n=1

(2 + (−1)n + 3n) tn,

and hence, for any n ∈ Z≥1, we have

wn = 2 + (−1)n + 3n.

Now, the Möbius inversion formula implies that the number of primitive reduced words
of length n is equal to ∑

d|n

µ(d)
(
2 + (−1)n/d + 3n/d

)
,

and therefore, as primitive words of length n and primitive words of length n are in n-to-1
correspondence, the number of primitive reduced necklaces in {a, b, a−1, b−1} is

1

n

∑
d|n

µ(d)
(
2 + (−1)n/d + 3n/d

)
=


4 if n = 1, 2,
1

n

∑
d|n

µ(d) 3n/d if n ≥ 3 (2.4.1)

where we have used the arithmetic identities

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n ≥ 2,
and

∑
d|n

µ(d)(−1)n/d =


−1 if n = 1,

2 if n = 2,

0 if n ≥ 3.

Now, (2.4.1) imp+lies that (by summing over all factors of n) the number of (not neces-
sarily primitive) reduced necklaces of length n is

3 + (−1)n

2
+

1

n

∑
d|n

φ(d) 3n/d.

This completes the proof.

53



2.5 From combinatorics into hyperbolic geometry: Markov’s
uniqueness conjecture

The aim of this section is to give a glimpse into passing from combinatorial to hyperbolic
length and prove Theorem G from the introduction. This is based on an individual work
still to appear on arXiv.

In 1913 Fröbenius stated a big conjecture on the set of solutions to a specific Diophan-
tine equation. After many years of effort, the general statement is still open.

Conjecture 2.5.1 (Markov’s uniqueness conjecture). Call a triple of positive integers
(a, b, c) ∈ Z≥1 a Markov triple if

a2 + b2 + c2 = 3abc.

Then, there are no distinct triples with the same largest number.

There is a well-known geometric conjecture analogous to this one. We should first
define shear coordinates on Teichmüller space of the once-punctured torus.

The once-punctured torus can be constructed as a gluing of two ideal triangles. Since
all hyperbolic ideal triangles are isometric (see [Bus92]), every hyperbolic metric on
the torus can be described in terms of the gluing of these two triangles. These are
called shear coordinates and were introduced by Thurston in [Thu98]. Fix an edge
ei on the gluing and fix an orientation on it. On the two triangles T1, T2 glued by ei,
consider the orthogonal geodesic going from the vertex at infinity opposite to ei and
hitting orthogonally ei. Then define the shear coordinate si as the signed hyperbolic
distance separating the hitting points (see Figure 2.8).

e1

T1

T2

s1

Figure 2.8

The modular torus M is defined as the hyperbolic once-punctured torus with zero shear
coordinates, which is the only hyperbolic once-punctured torus with isometry group of
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maximal order, being order 12. There is a well-known equivalent conjecture to Markov’s
uniqueness conjecture in terms of the multiplicity of curves in the modular torus. For
further reading on this equivalence, see [MP10]. Recall that SS(M) denotes the simple
length spectrum (Definition 1.3.8).

Conjecture 2.5.2 (Equivalent to Markov’s uniqueness conjecture). Let ℓ1 < ℓ2 be the
two smallest lengths in SS(M). Then, ℓ1 and ℓ2 have multiplicity 6 in SS(M), and for all
ℓ ∈ SS(M)>ℓ2 , there are exactly 12 curves attaining this length.

To the given triangulation from the shear coordinates construction, there is an associ-
ated dual graph embedded on M with two vertices of valence 3 and 3 edges. This graph
is a spine of the surface, and any closed curve on the surface can then be represented
by a circular class of sequences of left/right moves on the graph, following the retraction
of the curve to the graph. Starting at any basepoint, at every vertex of the graph the
path turns either left or right. This gives a correspondence between curves in C(M) and
circular words in {L,R}. For example, the curve represented in Figure 2.9 has [LR] as
its associated circular word. Note that the choice of basepoint translates to a circular
shift in the left/right word.

L

R

Figure 2.9

There is a well-known trace formula in M relating hyperbolic length and the left/right
words (see e.g. [MS16]). Fix

L =

(
1 1
0 1

)
, and R =

(
1 0
1 1

)
.

Let γ ∈ C(M) and ω(γ) its associated left/right circular word in {L,R}. Consider ω(γ)
as a matrix by the product of the L,R matrices above. Then,

ℓM(γ) = 2 arccosh(Tr(ω(γ))/2).

Recall that we have fixed canonical generators of the fundamental group on M as in
Figure 2.1. By Buser and Semmler’s Theorem 2.2.5, other than the commutators that
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have zero hyperbolic length and the curves a and b (and their inverses) that correspond
to the circular word LR, the rest of the curves are coming from small variation necklaces
[n1, . . . , nk]. For [n1, . . . , nk] ̸= [1], each of these gives rise to eight different curves,
which are the following and their inverses:

abn1 · · · abnk , ban1 · · · bank , ab−n1 · · · ab−nk , and ba−n1 · · · ba−nk .

These correspond to the circular words

L(LR)n1−1R · · ·L(LR)nk−1R, R(RL)n1−1L · · ·R(RL)nk−1L,

L(LR)n1R · · ·L(LR)nkR, and R(RL)n1L · · ·R(RL)nkL,

from which the first two will have the same trace, and so will the second two. Similarly,
for the exceptional necklace [1] there are only four closed curves via renaming the
generators, which are ab, ab−1 and their inverses, corresponding to the cyclic words in
the graph LR and LLRR, respectively.

Denote by N the set of primitive small variation necklaces of positive integers different
from [1], and define the real-valued function θ( ) = 2 · acosh(Trace( )/2) on SL2(Z). We
have

SS(M) = 6{θ(LR)} ∪ 2{θ(LLRR)} ∪ 4{θ(L(LR)n1R · · ·L(LR)nkR) | [n1, . . . , nk] ∈ N}
∪ 4{θ(L(LR)n1−1R · · ·L(LR)nk−1R) | [n1, . . . , nk] ∈ N},

where the scalar multiples denote multiplicity of the set.

The small variation condition is invariant under the choice of the two consecutive inte-
gers appearing. Define N∗ as the set of primitive necklaces with all elements in {0, 1}
with small variation, excluding the two simplest necklaces [0] and [1]. It follows that

SS(M) =8{θ(L(LR)n1R · · ·L(LR)nkR) | [n1, . . . , nk] ∈ N}∪
4{θ(L(LR)n1R · · ·L(LR)nkR) | [n1, . . . , nk] ∈ N∗}∪
6{θ(LR)} ∪ 6{θ(LLRR)}.

(2.5.1)

Moreover, we can prove that a natural bijection between N and N∗ preserves the trace
of the associated word in ”L,R”.

Lemma 2.5.3. Let η = [η1, . . . , ηl] ∈ N∗. Write it uniquely (up to cyclic shifting) as

η = [0, n1−1. . . , 0, 1, 0, n2−1. . . , 0, 1, . . . , 0, nk−1. . . , 0, 1].

Then,
Tr(L(LR)η1R · · ·L(LR)ηlR) = Tr(L(LR)n1R · · ·L(LR)nkR).

Proof. The lemma follows from elementary properties of the trace. We will write it for
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convenience of the reader. First of all,

L(LR)η1R · · ·L(LR)ηlR = (LR)n1−1LLRR · (LR)n2−1LLRR · · · · · (LR)nk−1LLRR.

Applying a double cyclic shift and regrouping one finds

RR(LR)n1−1LLRR · (LR)n2−1LLRR · · · · ·(LR)nk−1LL =

= R(RL)n1L ·R(RL)n2L · · ·R(RL)nkL,

which has the same trace as L(LR)n1R · · ·L(LR)nkR.

Note that in the bijection

Θ : {necklace of positive integers} −→ {necklace of integers in {0, 1}}
η = [n1, . . . , nk] 7−→ [0, n1−1. . . , 0, 1, 0, n2−1. . . , 0, 1, . . . , 0, nk−1. . . , 0, 1],

it follows from Lemma 2.2.9 that a necklace of positive integers η has small variation if
and only if Θ(η) has, as η is the necklace of runs of its image plus 1, ensuring positivity.

Hence, to compute the simple length spectrum of M, we are left with finding what is the
trace of L(LR)n1R · · ·L(LR)nkR, where [n1, . . . , nk] are small variation necklaces.

Proposition 2.5.4. Let ξ = 3 +
√
5 and ξ = 3−

√
5. For any n1, . . . nk ∈ Z≥0,

Trace(L(LR)n1R · · ·L(LR)nkR) =

=
1

10k · 2n1+···+nk

∑
S⊆{1,...,k}

3r(s)2k−r(S)(ξ + 2)|S|(ξ + 2)|S
c|ξ

∑
i∈S niξ

∑
i∈Sc ni ,

where r(S) =
∑

s∈{runs of S and Sc} |s| − 1 if S ̸= {1, . . . , k}, and r({1, . . . , k}) = k. A run
s of S ⊆ {1, . . . , k} is a maximal subset s ⊆ S such that the numbers are (cyclically)
consecutive.

Proof. Note that

LR =

(
2 1
1 1

)
= S · 1

2

(
ξ 0
0 ξ

)
· S−1,

where ξ = 3 +
√
5, ξ = 3−

√
5, S = 1

2

(
ξ − 2 ξ − 2
2 2

)
and S−1 = 1

10

(
2(ξ − 3) ξ + 2

2(ξ − 3) ξ + 2

)
.

Hence,

L(LR)nR =
1

2n
· S̃ ·

(
ξ
n

0
0 ξn

)
· ˜̃S,

where S̃ = 1
2

(
ξ ξ
2 2

)
and ˜̃S = 1

10

(
ξ + 2 ξ + 2

ξ + 2 ξ + 2

)
.
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Thus,

Tr(L(LR)n1R · · ·L(LR)nkR) =

=
1

10k · 2n1+···+nk
· Tr

(
M ·

(
ξ
n1

0
0 ξn1

)
· · · · ·M ·

(
ξ
nk 0
0 ξnk

))
,

where M = 10 · ˜̃S · S̃ =

(
3(ξ + 2) 2(ξ + 2)

2(ξ + 2) 3(ξ + 2)

)
.

Therefore, it is left to study

Tr

(
M ·

(
ξ
n1

0
0 ξn1

)
· · · · ·M ·

(
ξ
nk 0
0 ξnk

))
= Tr(

k∏
l=1

Al),

with Al =

(
3(ξ + 2)ξ

nl 2(ξ + 2)ξnl

2(ξ + 2)ξ
nl 3(ξ + 2)ξnl

)
= (ali1,i2)i1,i2 .

Write ali1,i2 = ci1,i2 · dli2 for i1, i2 = 1, 2, and l = 1, . . . k, where

ci1,i2 =

{
3 if i1 = i2

3 if i1 ̸= i2
, and dli2 =

{
(ξ + 2)ξ

n
l if i2 = 1

(ξ + 2)ξnl if i2 = 2.

Thus,

Tr(
k∏

l=1

Al) =
2∑

j1=1

· · ·
2∑

jk=1

a1j1,j2 · · · a
k
jk,j1

=
∑

S⊆{1,...,k}

a1j1,j2 · · · a
k
jk,j1

,

where ji = 1 if i ∈ S and ji = 2 otherwise.

Hence,

Tr(
k∏

l=1

Al) =
∑

S⊆{1,...,k}

cj1,j2 · · · cjk,j1 · d
1
j2 · · · d

k
j1

=
∑

S⊆{1,...,k}

3r(s)2k−r(S)(ξ + 2)|S|(ξ + 2)|S
c|ξ

∑
i∈S niξ

∑
i∈Sc ni ,

as was to be proven.

Hence, defining the function Φ : N → Z>0 in the set of nontrivial primitive necklaces of
positive integers with small variation N, again as

Φ([n1, . . . , nk]) =
1

10k · 2n1+···+nk

∑
S⊆{1,...,k}

3r(S)2k−r(S)(ξ+2)|S|(ξ+2)|S
c|ξ

∑
i∈S niξ

∑
i∈Sc ni ,
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we have just proven the following reformulation of Markov’s conjecture.

Theorem 2.5.5. Markov’s uniqueness conjecture is equivalent to

The function Φ is injective in N.

We passed through geometry to reformulate Markov’s uniqueness conjecture in combi-
natorial terms.
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Chapter 3

A Basmajian-type inequality for
Riemannian surfaces

3.1 Introduction

This chapter is based on a joint work with Florent Balacheff (see [BF23]). To facilitate
independent reading, we will briefly present again the results we will prove. We explore
for compact Riemannian surfaces whose boundary consists of a single closed geodesic
the relationship between orthospectrum and boundary length. More precisely, we es-
tablish a uniform lower bound on the boundary length in terms of the orthospectrum
when fixing a metric invariant of the surface related to the classical notion of volume en-
tropy. This inequality can be thought of as a Riemannian analog of Basmajian’s identity
for hyperbolic surfaces. That is, in this chapter we will prove Theorems H and I from the
introduction.

Let S be a compact orientable Riemannian surface with geodesic boundary ∂S and
negative Euler characteristic. Define its orthospectrum O(S) as the set of (oriented)
lengths of homotopy classes relative to ∂S with multiplicity, i.e., the lengths of the set
of arcs A(S). Here, given such a homotopy class η, its length ℓ(η) is defined as the
minimal length ℓ(c) over all of its representative arcs c. This minimal length is always
realized as the length of a geodesic arc lying in the corresponding class and hitting
orthogonally the boundary. See Figure 3.1 for example.

3.1.1 Results

We will again go through the results that will be proved in this chapter.

Our purpose is to study a generalization of Basmajian’s identity to the Riemannian
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Figure 3.1

world. To do so, we will need to first relax the equality into an inequality, and sec-
ondly to involve an auxiliary Riemannian invariant. This auxiliary Riemannian invariant
will be constructed using the classical notion of volume entropy for closed Riemannian
surfaces defined as the exponential growth rate of the volume of large metric balls in
their universal cover. More specifically, denoting by S′ the Riemannian closed surface
obtained by doubling S, that is

S′ = S ⊔ S/ ∼

where ∼ identifies the boundary of the two copies of S via the identity map. Denote by
S̃ the universal Riemannian cover of S′. We will be interested in the volume entropy of
S′ defined as the quantity

h(S′) := lim
R→∞

1

R
logAreaS̃B(x̃, R),

where x̃ ∈ S̃ and B(x̃, R) is the ball of radius R centered at x̃ in S̃. This limit always
exists and does not depend on the chosen point x̃ (see [Man79]). Observe that closed
orientable Riemannian surfaces with negative Euler characteristic always have positive
volume entropy, and that their volume entropy will always be equal to 1 in the particular
case where the metric is hyperbolic.

Since adding positive curvature can enlarge the orthospectrum without changing the
boundary length of the surface, the orthospectrum cannot determine the length of the
boundary in the Riemannian moduli space. However, if we also fix the volume entropy
of the doubled surface, then the orthospectrum provides the following lower bound on
the boundary length.

The main result is the following, which we view as a curvature-free analog of the cel-
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ebrated Basmajian’s identity for hyperbolic surfaces with one geodesic boundary com-
ponent.

Theorem 3.1.1 (Theorem H). Let S be a compact orientable Riemannian surface with
negative Euler characteristic and one geodesic boundary component. Then the follow-
ing holds true:

ℓ(∂S) ≥ 2

h(S′)
arcsinh

 ∑
ℓ∈O(S)

1

1 + eh(S′)ℓ


where h(S′) denotes the volume entropy of the doubled surface S′.

Note that
arcsinh(x) = log(x+

√
1 + x2) ≥ log(1 + x),

and, on the other hand,

log coth(ℓ/2) = log(1 +
2

eℓ − 1
).

Hence, comparing Theorem 3.1.1 and Basmajian’s Theorem 3.1.3, as in the hyperbolic
case the volume entropy of the doubled surface is always 1, Theorem 3.1.1 recovers
asymptotically the linear term of Basmajian’s identity when the length of the boundary
goes to zero and consequently all the terms in the orthospectrum grow up to infinity.

Theorem 3.1.1 is another evidence of how analogs of hyperbolic identities and inequal-
ities can be found in the Riemannian free-curvature setting by involving Riemannian
invariants associated to the volume entropy, like in [BM23] where a curvature-free ver-
sion of the classic log(2k−1) Theorem was proved using the notion of critical exponent.
So far, the question to know if a Riemannian analog of Basmajian’s identity holds for
several geodesic boundary components remains open. To prove Theorem 3.1.1, we
prove the following result for a special family of metric graphs that will encode the or-
thospectrum.

Theorem 3.1.2 (Theorem I). Fix n ≥ 1. Let Γ be a metric graph formed by a circle of
length L with 2n disjoint vertices on it, and n edges of lengths ℓ1, . . . , ℓn joining these
vertices by pairs. Then the following holds true:

tanh

(
h(Γ)L

2

)
< 2

n∑
i=1

1

1 + eh(Γ)ℓi
< sinh

(
h(Γ)L

2

)
where h(Γ) denotes the volume entropy of the metric graph Γ.
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3.1.2 Related work

The orthospectrum has been widely studied in hyperbolic geometry, where each homo-
topy class admits a unique geodesic representative. There have been some celebrated
results on the rigidity of the hyperbolic structures with a given orthospectrum. For ex-
ample, Basmajian’s identity [Bas93] gives an expression of the length of the boundary
in terms of the orthospectrum, Bridgeman’s identity [Bri11] gives an expression of the
area given its orthospectrum, Parker proved in [Par95] that the entropy of the geodesic
flow of the surface can be expressed using Poincaré series with a given orthospectrum,
and most recently, Masai and McShane [MM22] proved that for a given surface and
orthospectrum, there are only finitely many hyperbolic structures. In the present article,
we will focus on Basmajian’s identity which can be stated as follows.

Theorem 3.1.3 (Special case of [Bas93]). Suppose that the Riemannian surface S is
hyperbolic. Then

ℓ(∂S) = 2
∑

ℓ∈O(S)

log coth(ℓ/2).

Organization of the chapter

Here is the plan of the chapter. In order to prove the main theorem, i.e., Theorem 3.1.1,
we will prove in the first section Theorem 3.1.2 for metric graphs.

In the second section, we will show how to transfer this result from metric graphs to Rie-
mannian surfaces and prove Theorem 3.1.1. The idea is to embed a suitable sequence
of metric graphs in our initial surface S whose volume entropies will be controlled by the
volume entropy of the doubled surface using a ping-pong map.

3.2 A generalization of Basmajian’s identity for metric graphs

To prove Theorem 3.1.2, we start by giving some notation for the graphs we are inter-
ested in. These graphs topologically consist of a circle, playing the role of the boundary,
with some additional edges playing the role of the orthogeodesics and joining disjoint
pairs of disjoint points on the circle. We will consider the various possible metrics on
such a graph, and prove a Basmajian-type inequality for them. Afterward, we analyze
the optimality of our result.
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3.2.1 Notation and proof of Theorem 3.1.2

By a metric graph, we mean a 1-dimensional simplicial complex Γ endowed with a
piecewise Riemannian metric denoted by ℓ. We will simply denote by Γ the metric
graph (Γ, ℓ) when the metric ℓ is clear out from the context. For such a choice of metric,
each 1-simplex (or edge) e turns out to be isometric to the segment [0, ℓ(e)] with the
standard Euclidean metric for some positive real number ℓ(e) called its length. The
length of a graph Γ is then the sum of the lengths of its edges, which could possibly
be infinite. As any subset X ⊂ Γ which is itself a 1-complex inherits from ℓ an induced
metric, its induced length is then well defined and will be denoted by ℓ(X). With this
notation in mind, the volume entropy of a metric graph Γ is then the quantity

h(Γ) := lim
R→∞

log ℓ(B(x̃, R))

R

where B(x̃, R) denotes the ball of radius R centered at some point x̃ in the universal
covering tree of Γ endowed with the lifted metric. This limit always exists and does not
depend on the chosen point x̃, see [Lim08].

S1

f1

f2

fn

Figure 3.2

Our special metric graphs are constructed as follows. Let n ≥ 1 be an integer. Consider
the circle S1 with some orientation and fix 2n cyclically ordered vertices v1, . . . , v2n on
S1. We denote by ei the edge defined as the portion of the circle between vi−1 and
vi for i = 1, . . . , 2n using a cyclic index. Then fix a decomposition of {1, . . . , 2n} =
{i1, j1}∪. . .∪{in, jn} into n pairs of indices. For each k = 1, . . . , n join vik and vjk through
an extra edge denoted by fk and denote by τk ∈ S2n the transposition permuting ik
and jk. For latter purposes set ω := τ1 . . . τn. The topological structure of our graph
is defined as Γ := S1 ∪ f1 ∪ . . . ∪ fn which is a finite simplicial 1-complex. Now fix
(L1, . . . , L2n) ∈ (R>0)

2n and (ℓ1, . . . , ℓn) ∈ (R>0)
n, and choose a metric ℓ on our graph

Γ such that ℓ(ei) = Li for i = 1, . . . , 2n, and ℓ(fk) = ℓk for k = 1, . . . , n. Finally set
L :=

∑2n
i=1 Li.

We will now show that these special metric graphs (Γ, ℓ) satisfy the Basmajian’s type
double inequality already stated in Theorem 3.1.2 that we recall here for reader’s con-
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venience:

tanh

(
hL

2

)
< 2

n∑
i=1

1

1 + ehℓi
< sinh

(
hL

2

)
.

The idea of the proof is quite simple. By [Lim08, Theorem 4] we can associate to our
graph a system of linear equations with 6n variables, whose coefficients depend only
on the volume entropy of Γ and the lengths of the edges, and such that the system
admits a positive solution. We will prove that the existence of such a positive solution
implies that the double inequality holds true.

Proof of Theorem 3.1.2. Start by identifying the finite simplicial 1-complex Γ with an
unoriented graph, see [Lim08]. Then we associate to each oriented edge of Γ a variable
as follows. Using a cyclic index, we denote by

• xk the variable associated to the oriented edge corresponding to ek and going
from vk−1 to vk for k = 1, . . . , 2n (therefore x1 is associated to the oriented edge
e1 from v2n to v1),

• x1, . . . , x2n the 2n variables associated to the same edges but with opposite ori-
entation,

• yk the variable associated to the extra oriented edge going from vk to vω(k) for
k = 1, . . . , 2n (that is, fk′ for some k′ ∈ {1, . . . , n}).

Finally, define ℓ′k as the length of the oriented edge associated to the variable yk. Here
the length of an oriented edge is defined as the length of the 1-simplex to which it is
naturally associated. We do not need to introduce the variables yk because they would
satisfy that yk = yω(k). In a similar way, observe that ℓ′ω(k) = ℓ′k for k = 1, . . . , 2n and

thus
∑2n

k=1 ℓ
′
k = 2 ·

∑n
k=1 ℓk.

We now form the following system of linear equations:

{xf =
∑

f ′∈E(f)

e−hℓ(f ′)xf ′ | f ∈ E∗(Γ)}

where h denotes the volume entropy h(Γ) of our graph, xf is the variable associated to
an oriented edge f , E∗(Γ) denotes the set of oriented edges of Γ and E(f) is the set of
oriented edges different from f whose startpoint is f ’s endpoint. By [Lim08, Theorem 4]
we know that h is the only positive number such that this system admits a positive solu-
tion. Therefore there exist positive real numbers (X1, . . . , X2n, X1, . . . , X2n, Y1, . . . , Y2n)
∈ R6n

>0 satisfying the following system of equations:
Yk = e−hLω(k)+1Xω(k)+1 + e−hLω(k)Xω(k)

Xk = e−hLk+1Xk+1 + e−hℓ′kYk

Xk = e−hLk−1Xk−1 + e−hℓ′k−1Yk−1
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where k = 1 . . . , 2n.

By substituting cyclically the equations of the second line of our system as follows:

Xk = e−hℓ′kYk + e−hLk+1(e−hℓ′k+1Yk+1 + e−hLk+2(e−hℓ′k+2Yk+2 + . . .)),

one obtains that

Xk =

2n∑
i=1

αi,k
e−hℓ′i

1− e−hL
Yi

where αi,k := e−h(
∑i

j=k Lj−Lk) is cyclically summed, as L =
∑2n

i=1 Li. Analogously,
starting by substituting cyclically the equations of the third line in our system we obtain
that for k = 1, . . . , 2n

Xk =

2n∑
i=1

βi,k
e−hℓ′i

1− e−hL
Yi

where βi,k = e−h(
∑k

j=i+1 Lj−Lk) is cyclically summed. Combining both equalities above,
one obtains using the equations of the first line in our system that

Yω(k) = e−hLk+1Xk+1 + e−hLkXk =

2n∑
i=1

e−hℓ′i
e−hLk+1αi,k+1 + e−hLkβi,k

1− e−hL
Yi

for k = 1, . . . , 2n.

Note that, on one hand, we have for i ̸= k

e−hLk+1αi,k+1 + e−hLkβi,k
1− e−hL

=
e−h

∑i
j=k+1 Lj + e−h

∑k
j=i+1 Lj

1− e−hL

=
e−h

∑i
j=k+1 Lj + e−hL+h

∑i
j=k+1 Lj

1− e−hL

=
ehL/2−h

∑i
j=k+1 Lj + e−hL/2+h

∑i
j=k+1 Lj

ehL/2 − e−hL/2

=
cosh(h(

∑i
j=k+1 Lj − L/2))

sinh(hL/2)
,

and, on the other hand,

e−hLk+1αk,k+1 + e−hLkβk,k
1− e−hL

=
2e−hL

1− e−hL
=

e−hL/2

sinh(hL/2)
.

Hence

Yω(k) + e−hℓ′kYk =

2n∑
i=1

e−hℓ′i
cosh(h(

∑i
j=k+1 Lj − L/2))

sinh(hL/2)
Yi,
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and finally

(1 + e−hℓ′k)(Yk + Yω(k))

=
2n∑
i=1

e−hℓ′i ·
cosh(h(

∑i
j=k+1 Lj − L/2)) + cosh(h(

∑i
j=ω(k)+1 Lj − L/2))

sinh(hL/2)
Yi

for k = 1, . . . , 2n using that ℓ′ω(k) = ℓ′k.

Applying now that for all k, i ∈ {1, . . . , 2n} the inequality

cosh(h(
i∑

j=k+1

Lj − L/2)) ≤ cosh(hL/2),

one obtains for all k = 1, . . . , 2n,

(1 + e−hℓ′k)(Yk + Yω(k)) ≤
2n∑
i=1

2e−hℓ′i

tanh(hL/2)
Yi =

1

tanh(hL/2)

2n∑
i=1

e−hℓ′i(Yi + Yω(i)).

With a change of variables to Z1, . . . , Zn ∈ R>0, where Zk′ = (1+ e−hℓ′k)(Yk +Yω(k)), for
k′ being such that ℓk′ = ℓ′k, one finds for k = 1, . . . , n

Zk ≤ 2

tanh(hL/2)

n∑
i=1

1

1 + ehℓi
Zi.

Finally, taking the equation for Zmax = maxZi, and since Zk > 0 for all k, we obtain

tanh

(
hL

2

)
≤ 2

n∑
i=1

1

1 + ehℓi
.

Analogously, applying that for all k, i ∈ {1, . . . , 2n}, cosh(h(
∑i

j=k+1 Lj − L/2)) ≥ 1, and
taking the minimum for Zj at the end, we obtain

sinh

(
hL

2

)
≥ 2

n∑
i=1

1

1 + ehℓi
.

Strictness of both inequalities follows from the fact that it is impossible for any se-
quence {L1, . . . , L2n} of positive numbers to achieve

∑i
j=k+1 Lj = L/2 for all k, i, or∑i

j=k+1 Lj − L/2 = ±L/2 for all k, i.
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3.2.2 On the optimality of the Basmajian-type inequality for metric graphs

Observe that if one allows the Li’s to be zero, Theorem 3.1.2 is still true with the in-
equalities being non-strict by continuity of the volume entropy in terms of the involved
lengths. Moreover, the condition

i∑
j=k+1

Lj − L/2 = ±L/2

∀k, i = 1, . . . , 2n is then achievable and corresponds to the extremal case where all of
the Li’s are zero except one. Even if this kind of graph will not appear as the ortho-
geodesic graph that will be constructed in the next section from a smooth Riemannian
surface with boundary, it proves that the first inequality in Theorem 3.1.2 is optimal.
More precisely, we have the following.

Proposition 3.2.1. Fix L ∈ R>0 and (ℓ1, . . . , ℓn) ∈ (R>0)
n. Any metric graph of the type

(
∨n

i=0 S1i , ℓ) where ℓ(S10) = L and ℓ(S1i ) = ℓi for all i = 1 . . . , n satisfies

tanh

(
hL

2

)
= 2

n∑
i=1

1

1 + ehℓi

where h denotes its volume entropy.

Proof. It easily follows from the fact that

1

1 + ehL
+

n∑
i=1

1

1 + ehℓi
=

1

2

which holds true by [BM23, Lemma 5].

A second graph will exemplify that this phenomenon is not rigid.

Example 3.2.2. Take a graph Γ with a circle of length L with two vertices at distance
L/2, and n edges joining the two vertices of length ℓ1, . . . , ℓn. Again, this is a limit case
of the graphs at the statement of Theorem 3.1.2 with L1 = Ln+1 = L/2 and Lj = 0
otherwise.

In this case, the example is simple enough so one can solve it by using Lim’s system
directly. Associating to every unoriented edge a variable xf for the left to right orienta-
tion and a variable xf for right to left, one gets that Lim’s system can be written, after
summing equations for opposite orientations, as

(xf + xf )(1 + ehℓ(f)) =
∑

f∈E(Γ)

e−hℓ(f)(xf + xf ),
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S1

f1

f2
fn

Figure 3.3

where E(Γ) here is the set of unoriented edges in Γ. This implies 1 =
∑

f∈E(Γ)
1

1+ehℓ(f)
,

that translates to

tanh(hL/4) =
n∑

i=1

1

1 + ehℓi
.

Remark 3.2.3 (Non-sharpness of the upper bound). For the upper bound to be sharp
one would need to limit graphs of the form in Theorem 3.1.2 to get (cosh(h(Γ)·(

∑i
j=k+1 Lj

−L/2)))i,k = (1)i,k. Let now Γ be a metric graph now consisting of a circle, N > 0 ver-
tices on it, and h > 0 a positive real number. Denote the lengths of the segments of the
circle by L1, . . . , LN , and L := L1 + · · ·+ LN . Set, for i = 1, . . . , N ,

C(i) = #{k ∈ {1, . . . , N} | cosh(h(
i∑

j=k+1

Lj − L/2)) > cosh(hL/4)},

where the sum is cyclic. We claim that #{i ∈ {1, . . . , N} | C(i) ≥ N/4} ≥ N/2, hence
the bound cannot be sharp.

One can prove it in the following way: rewrite

C(i) = #{k ∈ {1, . . . , N} |
i∑

j=k+1

Lj < L/4 or
i∑

j=k+1

Lj > 3L/4}.

For any λ ∈ [0, 1], #{i ∈ {1, . . . , N} | C(i) ≥ N/4} ≥ λN if and only if #{v ∈ V (Γ) |
|B(v, L/4)| ≥ N/4} ≥ λN . Assume now the opposite, i.e. #{v ∈ V (Γ) | |B(v, L/4)| ≥
N/4} < λN . This implies the existence of ⌈(1− λ)N⌉ vertices such that |B(v, L/4)| <
N/4. However, each of these balls is a half circle centered at a vertex v ∈ V (Γ), hence
at most there are N/2 vertices with this property. Therefore, λ > 1/2 which proves the
claim.
This argument shows how the bound is not sharp, however, it only leads to non-explicit
expressions that do not improve the behavior other than maintaining a sinh-order bound.
On the other hand, every example computed by the authors has a tanh growth which
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makes us think that the behavior is more rigid than the proved statement.

3.3 From metric graphs to Riemannian surfaces with bound-
ary

Let S be a compact orientable Riemannian surface with negative Euler characteristic
and one geodesic boundary component of length L that we will denote by γ.

3.3.1 A sequence of special metric graphs

Fix any order {ηk}k≥1 on the set of homotopy classes of S relative to ∂S = γ. For any
k ≥ 1, denote by ℓk the length of the homotopy class ηk, and fix any length-minimizing
arc ck in this class. In particular, each arc ck will be geodesic, have length ℓ(ck) = ℓk,
and meet the boundary curve γ orthogonally at two points that we will denote by wk,1

and wk,2. Furthermore observe that {ℓk | k ≥ 1} = O(S), and that all points {wk,i} are
pairwise disjoint.

We now construct a sequence of special metric graphs {Γn}n≥1 associated to our Rie-
mannian surface with one boundary geodesic as follows.

S Γ3

7−→

Figure 3.4

Choose an orientation of γ. For each n ≥ 1, rewrite the set {wi,j | i = 1, . . . , n , j = 1, 2}
of intersecting points as a cyclically ordered set along γ of 2n pairwise distinct vertices
{v1, . . . , v2n}. We have a natural decomposition {1, . . . , 2n} = {i1, j1} ∪ . . . ∪ {in, jn}
such that for any k = 1, . . . , n the arc ck joins vik and vjk . Define Li as the length of
the subarc of γ going from vi−1 to vi for i = 1, . . . , 2n using a cyclic index. Given a
diffeomorphism γ ≃ S1, we can consider the ordered set of 2n vertices {v1, . . . , v2n}
constructed above as laying on S1. We denote by ei the edge defined as the portion of
S1 between vi−1 and vi for i = 1, . . . , 2n using a cyclic index. Next, for each k = 1, . . . , n
join vik and vjk through an extra edge denoted by fk. The topological structure of our
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graph Γn is then defined as the finite 1-dimensional simplicial complex (see Figure 3.4
for an example of Γ3 for some Riemannian surface S of signature (1, 1))

Γn = S1 ∪ f1 ∪ . . . ∪ fn.

Now choose any metric ℓ on our graph Γn such that ℓ(ei) = Li for i = 1, . . . , 2n, and
ℓ(fk) = ℓk for k = 1, . . . , n. Denote simply by Γn the metric graph (Γn, ℓ) thus defined.
Observe that each metric graph Γn could be viewed as a subgraph of the metric graph
Γn+1. According to Theorem 3.1.2 we have that

ℓ(∂S) >
2

h(Γn)
arcsinh

(
2

n∑
k=1

1

1 + eh(Γn)ℓk

)
. (3.3.1)

3.3.2 Proof of Theorem 3.1.1 via the doubled surface

Denote by S′ the closed Riemannian surface obtained by doubling S, that is

S′ = S ⊔ S/ ∼

where ∼ identifies the boundary of the two copies of S via the identity map. Denote by
S̃ the universal Riemannian cover of S′.

Theorem 3.1.1 will be a direct consequence of the following result.

Proposition 3.3.1. For any n ≥ 1, the volume entropy of the metric graph Γn is at most
equal to the volume entropy of S′, that is:

h(Γn) ≤ h(S′).

Indeed, from Equation (3.3.1) and Proposition 3.3.1, we derive that for any n ≥ 1

ℓ(∂S) >
2

h(S′)
arcsinh

(
2

n∑
k=1

1

1 + eh(S′)ℓk

)
,

which implies Theorem 3.1.1 by letting n → +∞ as O(S) = {ℓk | k ≥ 1}.

Proof. First recall that the volume entropy of a finite simplicial complex X endowed with
a piecewise smooth Riemannian metric (such as a metric graph, or a closed Rieman-
nian surface) satisfies the formula

h(X) = lim
R→∞

1

R
log#{α ∈ π1(X,x) | ℓ(α) ≤ R},

for any point x ∈ X, see [Sab06, Lemma 2.3]. Here we have denoted by ℓ(α) the length
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of a homotopy class α ∈ π1(X,x) defined as the shortest length of a loop based at x
belonging to the class α.

Fix some point x ∈ γ ≃ S1 distinct from the vi’s. Note first that any homotopy class of
the fundamental group of Γn based at x is uniquely represented as a length minimizing
path of the form ω0fi1ω1 · · · fimωm for some m ≥ 0, where the letters fij stand for
the edges associated to the chosen orthogeodesics c1, . . . , cn, and the words ωj ’s are
locally length minimizing paths of the subgraph S1 ⊂ Γn. If m = 0 the path is reduced
to a closed minimal loop ω0 of S1 ⊂ Γn.

Now we define a ping-pong map as follows (see Figure 3.5). Denote by S1, S2 ⊆ S′ the
two natural copies of S contained in S′, and by γ′ = S1 ∩ S2 ⊆ S′ their intersection. By
construction of Γn, there is a natural identification between the closed geodesic γ′ ⊆ S′

and the subgraph S1 ⊆ Γn. Denote by x′ the point of γ′ corresponding to the point
x of γ ≃ S1. To a given homotopy class α of Γn based at x and represented by the
sequence ω0fi1ω1 · · · fimωm, we associate the homotopy class h(α) ∈ π1(S

′, x′) based
at the point x′ corresponding to the path formed by following first the subarc denoted by
ω′
0 of γ′ corresponding to ω0, then through the copy f ′

i1
of the orthogeodesic associated

to fi1 and laying in S1, then through the segment ω′
1 associated to ω1 in γ′, following

through the orthogeodesic f ′
i2

associated to fi2 in S2, and keep alternating S1 and S2

until completing the word ω0fi1ω1 · · · fimωm and closing up in a loop ω′
0f

′
i1
ω′
1 · · · f ′

im
ω′
m

of S′. The ping-pong map φn : π1(Γn, x) → π1(S
′, x′) thus defined is not a morphism of

groups, but satisfies the following property.

Lemma 3.3.2. The map φn : π1(Γn, x) → π1(S
′, x′) is injective.

Proof of Lemma 3.3.2. Lift the geodesic γ′ to an infinite geodesic γ̃ in the universal
cover S̃ of S′, and the point x′ to a point x̃ on γ̃. If p : S̃ → S′ denotes the universal cov-
ering map, we define S̃1 as the connected component of p−1(S1) ⊂ S̃ whose boundary
contains γ̃. The boundary of S̃1 consists of a numerable set of infinite geodesics. There
exists an injective correspondence between sequences of the form ω0fi1 and boundary
infinite geodesics of ∂S̃1 described as follows.

First, we lift to S̃ the path ω′
0 contained in γ′ and corresponding to ω0 starting from the

point x̃ into a geodesic subarc of γ̃ denoted by ω̃0. Next, we lift the orthogeodesic arc
f ′
i1

of S1 ⊂ S′ corresponding to fi1 starting from the final point of the arc ω̃0 into a
geodesic arc of S̃1 denoted by f̃i1 . By construction, the final point of f̃i1 belongs to a
boundary component of S̃1 which defines our correspondence. One can see that the
final points of two sequences of the form ω0fi1 belong to the same boundary infinite
geodesic if and only if sequences are equal: since this statement only depends on
the topology of the surface, replace the metric in S′ by a hyperbolic metric, and if two
different sequences of the form ω0fi1 translated x̃ to the same boundary component,
we would have constructed a hyperbolic rectangle which is impossible.

With a fixed ω0fi1 , repeat the argument for the next sequence ω1fi2 , which will give an
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S̃
γ̃

x̃

ω̃0

f̃i1
ω̃1

f̃i2

S̃1

Figure 3.5

injective correspondence between all possible sequences of this kind and the countably
many boundaries of the lift of S2 ⊆ S′ bounded by the lift of γ′ which contains the
endpoint of f̃i1 . Iteratively, one finds that the set of all possible sequences on the graph
of the form ω0fi1ω1 · · · fim injects to the set of lifts of γ′ lying in the half-space of the
universal cover S̃ bounded by γ̃ and starting with S̃1 (see figure above). Moreover, the
last letters ωm give you all possible lifts of x′ in the particular lift of γ′ corresponding to
the sequence ω0fi1ω1 · · · fim .

So the image by φn of two different homotopy classes of π1(Γn, x) send x′ to two differ-
ent endpoints, and hence φn is injective.

Now by construction, we have that ℓ(φn(α)) ≤ ℓ(α) for all α ∈ π1(Γn, x). Therefore we
find that

#{α ∈ π1(Γn, x) | ℓ(α) ⩽ R} ⩽ #{β ∈ π1(S
′, x′) | ℓ(β) ⩽ R}

from which we derive the desired inequality h(Γn) ≤ h(S′).

3.3.3 On the double inequality for compact surfaces

Note that, even though we obtained a double inequality for the metric graph case, for
a general Riemannian surface, an upper bound for the boundary in terms of the or-
thospectrum and volume entropy cannot hold, as one can deform the metric such that
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the boundary length increases with a controlled orthospectrum and entropy. A further
question is whether with additional assumptions on the surface (as requiring the bound-
ary geodesic to be length minimizing in its free homotopy class) this could be possible.
With the techniques used in this article, this question translates to the following.

Via the same construction of a sequence of metric graphs Γn in 3.3.1, limiting the con-
struction we get an infinite graph Γ encoding the entire set of relative homotopy classes
to the boundary. This graph will have an infinite set of trivalent vertices. Referring to
[CP20, Lemma 2.3], the entropy of this graph is finite and well-defined, and in fact, by
continuity h(Γ) = limn→∞ h(Γn). This follows, for example, from the expression of the
volume entropy of a graph as the critical exponent of the fundamental group. Then,
the existence of an upper bound in Theorem 3.1.1 would be implied by controlling the
volume entropy of the doubled surface in terms of the volume entropy of the graph.
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Chapter 4

Perspectives

I would like to use this space to share a more relaxed and heuristic approach to the
content and results above, and my personal point of view on the topic.

Studying arcs and curves on manifolds has been a huge topic in one of the most fun-
damental branches of Mathematics, Geometry. Open problems on curves on surfaces
are very intricate. On one hand, it being such an elementary topic in nature, makes still
open problems hard to approach and often they are solved by impressively technical
methods and even passing through more subtle branches of mathematics. However,
their simplicity is at times forgotten. One (our ) big example is how much the combina-
torial nature of arcs and curves plays a big role in the geometry of smooth manifolds.

In the second part of the thesis, we are using graphs as the main tool to study the or-
thogeodesics hitting the boundary on a given Riemannian surface. Basmajian’s identity
is a perfect example of how by the rigidity of hyperbolic metrics, simple trigonometry
can make you deduce something as strong as the length of the boundary only given
the lengths of the geodesics hitting it orthogonally. When losing this rigidity and letting
the distances in the surface deform, one asks what it is that one is left with. For us the
answer to this question was clear: one is left with the boundary, the hitting points of the
arcs we are studying, and the lengths of these arcs. Giving us the family of graphs that
we are studying, and with only two tasks: understand these graphs, and translate this
information back to the surface. Getting the maximum information from these graphs
would fulfill the problem in the elementary way we wanted. So far, we achieved sharp-
ness on one bound of Theorem I but not on the other. However, the job of translating
the whole world of information that one has on a moduli space of Riemannian metrics
into getting just the right combinatorial information to give some answer to the question
we had, was successful.

There is still one more question to finish this matter. What about admitting multiple
boundary components? The answer is hidden in a very elementary question: can we
find a relation between the lengths of the edges and the volume entropy of the following
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type of graph?

Figure 4.1

The question has been reduced to a very elementary statement on graphs. However,
sometimes very elementary questions are the hardest to answer.

On the other hand, in the first part of the thesis, we approached curve counting also in
the most elementary way possible. Fixing generators of the fundamental group, can we
know explicitly the words representing curves of a given type? And if so, can we count
exactly how many curves there are with a given length? This world of only caring about
the most combinatorial aspect of curve counting is still full of potential.

On one hand, one would like to get a similar formula for any intersection number and
for any genus. To approach the question, we should look at what has been done from
a bigger perspective. The explicit classification of all words giving you a certain type
of curve is comforting. However, our strategy can be reduced to counting how many
types of curves (orbits of the mapping class group) there are with a given condition and
counting how the lengths grow within a given type. To address this, we can also try to
understand all the recurrences behind it. We can see what kind of transformations of
a given word can increase intersection and by how much. With these, for every inter-
section, there are ”pure orbits of self-intersection k”, transformations of ”pure orbits of
self-intersection k − 1” to increase self-intersection by 1, and, in general, transforma-
tions of ”pure orbits of self-intersection k − k′” to increase self-intersection by k′. An
example of the latter is attaching to a certain point of a simple curve a loop around the
cusp, making it a transformation of kind 1. These kinds of transformations should all be
encoded in Cohen and Lustig’s algorithm which has been used before.

The below picture illustrates what are these types in self-intersection 1. On the left, one
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has a transformation by concatenation at a specific point of a simple curve a2ba3b into
a self-intersection 1 curve ab−1a−1bab2ab3. On the right, one has an example in the
”pure orbit of self-intersection 1”, that would be a curve whose exponent necklace has
2-variation, as a2ba3ba3ba2b.

Figure 4.2

After all the explicit work on this topic, there is a way of taking the most elementary
and combinatorial part of the problem, which is: how do word transformations change
self-intersection numbers and what recurrences does this build?

The above leads to applying this work to hyperbolic metrics, where even with just
the work already done there are still many consequences to explore from this point
of view. This is a purely combinatorial path to study spectra in Tiechmüller spaces.
When parametrizing Teichmüller space with shear coordinates, one has a trace for-
mula with the spine given by the dual graph of the chosen triangulation. This spine of
the surface is nothing but a way to rewrite words in the generators of the fundamental
group into Left/Right/Shear words. This combinatorial way of studying spectra opens
up the possibility of rewriting many hyperbolic known and conjectured identities to their
combinatorial analogue, giving new tools to explore the easiest solutions to intricate
problems.

In conclusion, this entire work follows the idea of trying to study curves and arcs on
surfaces by choosing the minimum vital information and making these problems as
elementary as possible.

I vet aquı́ un gos, vet aquı́ un gat, aquesta tesi s’ha acabat.
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