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ABSTRACT

Blockchain is a decentralized distributed database where information, stored in blocks,
is cryptographically linked to ensure the security of transactions. This technology repre-
sents an evolution in many areas of technology, including digital services, the economy,
electronic commerce, and other fields. The decentralized nature of blockchain ensures
that no single entity has control over the entire network, thereby enhancing security
and ensuring robustness. On the other hand, the rapid growth of e-commerce has led
to increasing demand for secure and efficient online transactions. The emergence of
blockchain technology has provided a promising solution to the challenges of online
transactions, including security, transparency, auditability, and immutability. This
thesis explores the potential of blockchain technology in the e-commerce industry
and proposes a set of blockchain-based e-commerce protocols that can enhance the
security and efficiency of online transactions.

This thesis first reviews the existing literature on blockchain technology and its
applications in various domains. It analyses a range of blockchain-based or blockchain-
related technologies and standards, that will help us to create a novel set of protocols
that need decentralization, as well as robust security and privacy mechanisms, to en-
hance fair exchange operations. The technologies and standards that will be used to
create these protocols can vary from token standards such as Non-Fungible tokens,
Soulbound tokens, and Rejectable tokens, design patterns such as Factory smart con-
tracts, to other cryptographic protocols or standards like hash functions, Merkle trees,
Elliptic Curve Cryptography, and Identity-Based Encryption.

As a shared, immutable database, blockchain can be utilized for various purposes,
including the elimination of the need for a Trusted Third Party (TTP), among other
use cases that will be enumerated in this study. Some new protocols and standards
are proposed, like certified notifications or registered eDeliveries, contract signing,
micropayments, and confidential digital identity management, all of them related
to e-commerce. All of these are possible thanks to more advanced blockchains like
Ethereum, which is a globally decentralized computing infrastructure that executes
programs called smart contracts. Ethereum, as a Turing-complete machine, can act as
a general-purpose computer and gives us a lot of new opportunities in the information
and computing decentralization objective.

But blockchain technology also has some problems and challenges to be solved, like
scalability and gas consumption. These are critical issues that can impact the efficiency
and usability of blockchain protocols. For this reason, this study will also analyze the
proposed protocols from the performance point of view. A thorough analysis of security
properties will also be carried out, such as integrity, authenticity, non-repudiation, and
fairness.
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Taking all of this into consideration, this thesis will contribute to the understanding
of the potential of blockchain technology in the e-commerce industry and will provide
practical solutions for enhancing the security and efficiency of online transactions.
By addressing these critical areas, this research endeavors to pave the way for a more
decentralized, transparent, trustworthy, and robust e-commerce ecosystem, fostering
innovation and driving the growth of online businesses in the digital age.



RESUM

Blockchain és una base de dades distribuïda descentralitzada on la informació, em-
magatzemada en blocs, s’enllaça criptogràficament per garantir la seguretat de les
transaccions. Aquesta tecnologia representa una evolució en moltes àrees de la tec-
nologia, inclosos els serveis digitals, l’economia, el comerç electrònic, i altres camps.
La naturalesa descentralitzada de la cadena de blocs garanteix que cap entitat tingui
control sobre tota la xarxa, millorant així la seguretat i garantint la robustesa. D’altra
banda, el ràpid creixement del comerç electrònic ha fet augmentar la demanda de
transaccions en línia segures i eficients. L’aparició de la tecnologia blockchain ha pro-
porcionat una solució prometedora als reptes de les transaccions en línia, incloent
seguretat, transparència, auditabilitat i immutabilitat. Aquesta tesi explora el potencial
de la tecnologia blockchain a la indústria del comerç electrònic i proposa un conjunt
de protocols de comerç electrònic basats en blockchain que poden millorar la seguretat
i l’eficiència de les transaccions en línia.

Aquesta tesi revisa primer la literatura existent sobre tecnologia blockchain i les
seves aplicacions en diversos dominis. Analitza una sèrie de tecnologies i estàndards
basats o relacionats amb blockchain, que ens ajudaran a crear un nou conjunt de pro-
tocols que necessiten descentralització, així com mecanismes de seguretat i privadesa
robusts, per millorar les operacions d’intercanvi just. Les tecnologies i estàndards que
s’utilitzaran per crear aquests protocols poden variar des d’estàndards de tokens, com
ara tokens no fungibles, Soulbound tokens i tokens rebutjables, patrons de disseny com
Factory smart contracts, fins a altres protocols criptogràfics o estàndards com funcions
hash, arbres Merkle, criptografia de corba el·líptica i xifratge basat en la identitat.

Com a base de dades compartida i immutable, la cadena de blocs es pot utilitzar per
a diversos propòsits, inclosa l’eliminació de la necessitat d’una Tercera Part Confiable o
Trusted Third Party (TTP), entre altres casos d’ús que s’enumeraran en aquest estudi.
Es proposen alguns nous protocols i estàndards, com ara notificacions certificades
o lliuraments electrònics registrats (registered eDeliveries), signatura de contractes,
micropagaments, i gestió d’identitat digital confidencial, tots ells relacionats amb el
comerç electrònic. Tot això és possible gràcies a cadenes de blocs més avançades com
Ethereum, que és una infraestructura informàtica descentralitzada a nivell mundial
que executa programes anomenats smart contracts. Ethereum, com a màquina com-
pleta de Turing, pot actuar com un ordinador de propòsit general i ens ofereix moltes
oportunitats noves en l’objectiu de descentralització de la informació i la computació.

Però la tecnologia blockchain també té alguns problemes i reptes per resoldre, com
l’escalabilitat i el consum de gas. Aquests són problemes crítics que poden afectar
l’eficiència i la usabilitat dels protocols blockchain. Per aquest motiu, aquest estudi
també analitzarà els protocols proposats des del punt de vista del rendiment. També es
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realitzarà una anàlisi exhaustiva de les propietats de seguretat, com ara la integritat,
l’autenticitat, el no repudi i l’equitat.

Tenint en compte tot això, aquesta tesi contribuirà a entendre el potencial de la
tecnologia blockchain en la indústria del comerç electrònic i proporcionarà solucions
pràctiques per millorar la seguretat i l’eficiència de les transaccions en línia. En abordar
aquestes àrees crítiques, aquesta investigació intenta obrir el camí cap a un ecosistema
de comerç electrònic més descentralitzat, transparent, fiable i robust, fomentant la
innovació i impulsant el creixement de les empreses en línia a l’era digital.



RESUMEN

Blockchain es una base de datos distribuida descentralizada donde la información,
almacenada en bloques, se enlaza criptográficamente para garantizar la seguridad de
las transacciones. Esta tecnología representa una evolución en muchas áreas de la
tecnología, incluidos los servicios digitales, la economía, el comercio electrónico, y
otros campos. La naturaleza descentralizada de la cadena de bloques garantiza que
ninguna entidad tenga control sobre toda la red, mejorando así la seguridad y garanti-
zando la robustez. Por otra parte, el rápido crecimiento del comercio electrónico ha
hecho aumentar la demanda de transacciones online seguras y eficientes. La apari-
ción de la tecnología blockchain ha proporcionado una solución prometedora a los
retos de las transacciones online, incluyendo seguridad, transparencia, auditabilidad
e inmutabilidad. Esta tesis explora el potencial de la tecnología blockchain en la in-
dustria del comercio electrónico y propone un conjunto de protocolos de comercio
electrónico basados en blockchain que pueden mejorar la seguridad y la eficiencia de
las transacciones online.

Esta tesis revisa primero la literatura existente sobre tecnología blockchain y sus
aplicaciones en varios dominios. Analiza una serie de tecnologías y estándares basa-
dos o relacionados con blockchain, que nos ayudarán a crear un nuevo conjunto de
protocolos que necesitan descentralización, así como mecanismos de seguridad y pri-
vacidad robustos, para mejorar las operaciones de intercambio justo. Las tecnologías
y estándares que se utilizarán para crear estos protocolos pueden variar desde están-
dares de tokens, tales como tokens no fungibles, Soulbound tokens y tokens rechazables,
patrones de diseño como Factory smart contracts, hasta otros protocolos criptográficos
o estándares como funciones hash, árboles Merkle, criptografía de curva elíptica y
cifrado basado en la identidad.

Como base de datos compartida e inmutable, la cadena de bloques se puede uti-
lizar para diversos fines, incluida la eliminación de la necesidad de una Tercera Parte
Confiable o Trusted Third Party (TTP), entre otros casos de uso que se enumerarán en
este estudio. Se proponen algunos nuevos protocolos y estándares como notificaciones
certificadas o entregas electrónicas registradas (registered eDeliveries), firma de con-
tratos, micropagos, y gestión de identidad digital confidencial, todos ellos relacionados
con el comercio electrónico. Todo esto es posible gracias a cadenas de bloques más
avanzadas como Ethereum, que es una infraestructura informática descentralizada
a nivel mundial que ejecuta programas llamados smart contracts. Ethereum, como
máquina completa de Turing, puede actuar como un ordenador de propósito general
y nos ofrece muchas nuevas oportunidades en el objetivo de descentralización de la
información y la computación.

Pero la tecnología blockchain también tiene algunos problemas y retos por re-
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solver, como la escalabilidad y el consumo de gas. Estos son problemas críticos que
pueden afectar a la eficiencia y la usabilidad de los protocolos blockchain. Por este
motivo, este estudio analizará también los protocolos propuestos desde el punto de
vista del rendimiento. También se realizará un análisis exhaustivo de las propiedades
de seguridad, tales como la integridad, la autenticidad, el no repudio y la equidad.

Teniendo en cuenta todo esto, esta tesis contribuirá a entender el potencial de
la tecnología blockchain en la industria del comercio electrónico y proporcionará
soluciones prácticas para mejorar la seguridad y la eficiencia de las transacciones
online. Al abordar estas áreas críticas, esta investigación intenta abrir el camino hacia
un ecosistema de comercio electrónico más descentralizado, transparente, fiable y
robusto, fomentando la innovación e impulsando el crecimiento de las empresas online
en la era digital.
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INTRODUCTION

1.1 Blockchain technology

Blockchain has revolutionized the information society since Satoshi Nakamoto pub-
lished the article "Bitcoin: A Peer-to-Peer Electronic Cash System" [1], where a purely
Peer-to-Peer (P2P) version of electronic cash is described, using a consensus mecha-
nism to record a public history of transactions that can’t be modified. The key innova-
tion of Bitcoin is the use of a distributed computation system, a Proof-of-Work (PoW)
algorithm, to allow this decentralized network to arrive at a consensus about the state
of transactions [2].

Basically, we can consider a blockchain as a decentralized and distributed ledger
that records transactions and other data across a network of computers, known as
nodes. It enables P2P transactions without the need for intermediaries, such as banks,
by allowing participants to directly interact and validate transactions on the network.
By leveraging cryptographic techniques and consensus algorithms, blockchain en-
sures that transactions are secure, transparent, and tamper-proof, promoting trust and
eliminating the reliance on centralized authorities.

First blockchains, like Bitcoin or Ripple, were limited to store only value and were
improved by a second generation of blockchains like Ethereum and Cardano, that
enable decentralized computing thanks to programmable smart contracts. Ethereum,
for example, is a deterministic state machine, with a virtual machine that applies
changes to that state. It uses blockchain technology to synchronize and store the state
changes [3]. In Ethereum, the state represents the current state of the entire network,
including all account balances, contract code, and storage. The state is updated through
a series of transactions, which are instructions sent by participants on the network.
These transactions can involve transferring Ether (ETH), the native cryptocurrency of
Ethereum, or executing smart contracts. Every transaction in Ethereum is executed by
the nodes on the network in a deterministic manner. This means that given the same
initial state and set of transactions, all nodes will produce the same final state. The
deterministic nature ensures that the network reaches a consensus on the order and
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outcome of transactions.
To achieve determinism, Ethereum uses a virtual machine called the Ethereum Vir-

tual Machine (EVM). The EVM is a runtime environment that executes smart contracts
and processes transactions. It provides a sandboxed and isolated environment for the
execution of code, ensuring that the execution is predictable and secure.

Blockchain is also bringing us the Internet of value, revolutionizing the way we
perceive and engage in financial and business transactions. This groundbreaking tech-
nology utilizes cryptography to enable secure and transparent transactions on a global
scale. The singularity of blockchain lies in its unique ability to significantly reduce the
risk of fraud and hacking throughout the entire history of transactions across various
industries. By employing cryptographic techniques, blockchain ensures that each trans-
action recorded on the decentralized ledger is securely encrypted, making it virtually
impossible for unauthorized parties to tamper with or manipulate the data. This inher-
ent immutability and transparency creates a high level of trust and reliability, as every
participant in the network can independently verify the integrity of transactions.

Moreover, the decentralized nature of blockchain removes the need for intermedi-
aries, such as banks or clearinghouses, as transactions can be directly executed between
parties. This not only streamlines processes but also eliminates the associated costs
and delays typically encountered in traditional financial systems.

The impact of blockchain extends beyond financial transactions, encompassing
various sectors such as supply chain management, healthcare, real estate, and more.
It opens up new possibilities for enhanced efficiency, traceability, and accountability
across industries. Through the decentralized consensus mechanisms employed by
blockchain, it enables Peer-to-Peer interactions, empowering individuals and organiza-
tions to transact directly, bypassing traditional gatekeepers.

With blockchain technology, the possibilities for creating diverse cryptocurren-
cies are virtually limitless, giving rise to a wide array of tokens that can be utilized in
various software solutions. These cryptocurrencies serve as a medium of exchange,
enabling secure and efficient transactions within their respective ecosystems, while
their ownership and transaction history are securely recorded on the blockchain ledger.

Beyond their function as a means of exchange, cryptocurrencies often possess
additional utility within their respective networks. For instance, certain tokens may be
utilized as network fees, serving as a form of payment for the computational resources
required to process and validate transactions on the blockchain. These fees incentivize
network participants, including miners, to contribute their computational power and
maintain the decentralized nature of the blockchain network.

Furthermore, cryptocurrencies can act as a reward mechanism, providing an incen-
tive for miners who play a crucial role in securing and validating transactions on the
blockchain. These miners dedicate their computational resources to solving complex
mathematical puzzles, a process known as mining. In return for their efforts, they are
rewarded with newly minted tokens or transaction fees, thus encouraging their ongoing
participation in maintaining the integrity and security of the blockchain network.

The ability to create and utilize different types of tokens within blockchain-based
software solutions opens up routes for innovative applications and business models [4].
Tokens can represent various assets, such as digital collectibles, real estate holdings, or
even voting rights within decentralized governance systems. This tokenization of assets
enables fractional ownership, increased liquidity, and opens up new opportunities for
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Decentralized Finance (DeFi) applications, where individuals can engage in lending,
borrowing, and other financial activities without relying on traditional intermediaries.
Instead of the need for intermediaries, these financial transactions are directly made
between users, mediated by smart contract programs.

With these characteristics, blockchain technology has been compared to the Inter-
net in the 90s. As Internet 1.0 revolutionized access to information, Blockchain is now
revolutionizing access to finances and commerce. This is due to its decentralization
and business cost reduction. But blockchain has also other non-finance uses, that will
be reviewed in this thesis.

One concept derived from Blockchain technology is Web3, which is an idea for a new
iteration of the World Wide Web that incorporates concepts such as decentralization,
blockchain technologies, and token-based economics, that encapsulates a vision of a
more open, trustless, and user-centric internet. The Ethereum co-founder Gavin Wood
coined this term, "Web3" (originally "Web 3.0"), back in 2014.

In the Web3 paradigm, decentralized applications, commonly known as DApps,
play a central role. These applications are built on blockchain platforms like Ethereum,
allowing for the development and deployment of smart contracts that govern their
functionalities. DApps are designed to operate in a Peer-to-Peer manner, with data and
transactions executed directly between users without relying on intermediaries.

To interact with these DApps, users employ browser extensions like Metamask.
Metamask serves as a digital wallet that not only stores and manages users’ cryptocur-
rency accounts but also acts as a bridge between traditional web browsers and the
decentralized world of Web3. It seamlessly integrates with popular web browsers, pro-
viding a user-friendly interface and allowing users to securely interact with DApps, sign
transactions, and manage their digital assets.

The introduction of Web3 and DApps brings about numerous possibilities for inno-
vation and disruption across various industries. By leveraging the decentralized nature
of blockchain technology, Web3 aims to tackle the challenges of data privacy, security,
and control that are prevalent in the traditional Web 2.0 model. It empowers users
with ownership and control over their digital identities and data, enabling Peer-to-Peer
transactions, and promoting a more inclusive and equitable digital ecosystem.

Moreover, Web3 promotes the growth of Decentralized Finance (DeFi) applications,
enabling individuals to participate in various financial activities without relying on tra-
ditional financial institutions. It promotes the development of decentralized exchanges,
lending platforms, and other financial tools that operate autonomously, transparently,
and without the need for intermediaries.

To summarize, blockchain technology possesses several key properties that distin-
guish it from traditional centralized systems. Here are some prominent properties of
blockchain technology:

1. Decentralization Blockchain operates as a decentralized network, eliminating
the need for a central authority or intermediary to control transactions and data.
Instead, multiple participants (nodes) in the network validate and maintain the
blockchain’s integrity.

2. Transparency Blockchain offers transparent access to its data and transactions.
Once recorded, information on the blockchain becomes immutable, signifying
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that it cannot be altered without consensus from the network participants. This
inherent transparency not only promotes trust but also strengthens accountabil-
ity within the system.

3. Security Blockchain employs cryptographic techniques to ensure the security of
transactions and data. Each block in the chain contains a cryptographic hash,
linking it to the previous block, creating a tamper-proof record. Additionally,
consensus mechanisms prevent unauthorized modifications to the blockchain.

4. Immutability As mentioned earlier, once information is recorded on the block-
chain, it becomes virtually impossible to alter retroactively. This immutability
helps maintain data integrity and prevents fraud or manipulation of records.

5. Distributed Ledger The blockchain maintains a distributed ledger, which means
that copies of the entire blockchain are replicated across multiple nodes in the
network. This redundancy enhances fault tolerance, as there is no single point
of failure. It also enables all participants to have a synchronized view of the
blockchain.

6. Trust and Consensus Blockchain employs consensus mechanisms to validate
and agree on the state of the blockchain. These mechanisms ensure that all
participants reach a consensus on the validity of transactions and maintain the
integrity of the blockchain.

7. Anonymity and Pseudonymity Blockchain allows users to maintain different
levels of privacy. While transactions are visible on the blockchain, the real-
world identities behind the transactions are often encrypted or represented by
pseudonyms. This feature enhances privacy while ensuring transaction traceabil-
ity.

8. Programmable Blockchain platforms often support smart contracts, which are
self-executing contracts with predefined rules and conditions. These contracts
are automatically enforced and executed when the predetermined criteria are
met, eliminating the need for intermediaries and reducing transaction costs.

9. Interoperability Blockchain technology can be designed to allow interoperability
between different blockchain networks. This feature enables seamless communi-
cation and data exchange between disparate blockchain systems, expanding the
potential applications and usefulness of the technology.

It’s important to note that while these properties generally apply to blockchain
technology, specific implementations and variations may differ in certain aspects.

1.2 E-commerce protocols

E-commerce, short for electronic commerce, refers to the buying and selling of goods,
services, or information over the Internet. It involves conducting commercial transac-
tions online, typically through websites or online platforms. E-commerce encompasses
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a wide range of activities, including online retail, online auctions, online ticketing,
digital downloads, online banking, certified notifications, contract signing, and more.

In e-commerce, businesses or individuals use digital platforms to showcase their
products or services, facilitate transactions, and interact with customers. Customers
can browse through product catalogs, compare prices, make purchases, and make pay-
ments electronically. E-commerce has transformed the way businesses and consumers
engage in commerce, offering convenience, accessibility, and a global reach.

There are different types of e-commerce models, including:

1. Business-to-Consumer (B2C): This model involves businesses selling products
or services directly to individual consumers. Examples include online retail stores,
where customers can purchase items from various sellers through a website.

2. Business-to-Business (B2B): In this model, businesses engage in e-commerce
transactions with other businesses. It typically involves the exchange of goods,
services, or information between companies. B2B e-commerce often involves
large-scale transactions, supply chain management, and Electronic Data Inter-
change (EDI).

3. Consumer-to-Consumer (C2C): C2C e-commerce enables individuals to engage
in commerce with each other. Online marketplaces or platforms facilitate these
transactions, allowing individuals to buy and sell products or services directly
to other individuals. Popular examples include online classifieds or auction
websites.

4. Consumer-to-Business (C2B): C2B e-commerce occurs when individuals offer
products, services, or expertise to businesses. This model is commonly seen in
freelance platforms or websites where individuals can provide services such as
graphic design, writing, or consulting to businesses.

5. Business-to-Government (B2G): B2G e-commerce involves businesses engag-
ing in online transactions with government entities. This can include businesses
bidding on government contracts or providing goods and services to government
agencies through digital platforms.

E-commerce has experienced significant growth due to advancements in technol-
ogy, widespread internet access, and evolving consumer preferences. It offers benefits
such as convenience, 24/7 availability, access to a global customer base, reduced costs,
and personalized shopping experiences.

There are various operations associated with e-commerce protocols that extend
beyond the typical ones like buying/selling or payments. These include confidential and
non-confidential notifications, contract signing, micropurchases, and digital identity
management. Let’s look at each of them in more detail:

1. Confidential and Non-Confidential Notifications (or certified eDeliveries): in-
volve sending information securely between parties involved in an e-commerce
transaction. This can include notifications of order status, shipment updates,
payment confirmations, or any other communication related to the transaction.
These notifications can be public (non-confidential) or private (confidential).
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In the case of confidential notifications, ensuring the confidentiality of these
notifications is crucial to maintaining privacy and security in e-commerce.

2. Contract Signing: Contract signing involves the application of cryptographic
methods to validate the authenticity and integrity of digital contracts or agree-
ments. In e-commerce and business transactions, contract signing serves to
authenticate the identity of the signatories and guarantee the preservation of
data integrity throughout transmission. This process offers confidence that the
signing parties are genuine and that the contract content has remained unaltered.

3. Micropurchases: Micropurchases refer to small-value transactions conducted in
e-commerce, typically involving low-cost products or services. Micropurchases
are often characterized by their simplicity, speed, and convenience. They can
include quick online purchases of digital goods, small physical items, or services
with minimal financial commitment.

4. Digital Identity Management: Digital identity management refers to the process
of managing and controlling the online representation of an individual or entity.
In e-commerce, digital identity management plays a crucial role in establishing
trust and verifying the identities of users involved in transactions. Digital iden-
tity management systems focus on validating the attributes of user identities,
ensuring their authenticity and security in e-commerce transactions.

While these operations are not exclusive to e-commerce protocols, they are of-
ten utilized within e-commerce platforms and systems to enhance security, privacy,
convenience, and trust in online transactions.

1.3 Blockchain technology applied to e-commerce protocols

Blockchain technology can be applied to e-commerce protocols and has the potential
to bring several advantages to the e-commerce industry. Here are some ways in which
blockchain can be used in e-commerce:

1. Enhanced Security: Blockchain’s decentralized and cryptographic nature pro-
vides a higher level of security for e-commerce transactions. It can help protect
sensitive customer information, prevent fraud, and ensure the integrity of data.

2. Transparent and Trustworthy Transactions: Blockchain’s transparency enables
customers and businesses to have greater trust in the e-commerce process. By
recording transaction details on the blockchain, customers can verify the authen-
ticity of products, track the supply chain, and ensure fair pricing.

3. Streamlined Payments: Blockchain-based cryptocurrencies, such as Bitcoin
(BTC) or Ether (ETH), can simplify and speed up payment processes in e-com-
merce. By eliminating the need for intermediaries like banks or payment proces-
sors, blockchain-based payments can reduce transaction fees and enable faster
cross-border transactions.
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4. Smart Contracts for Automation: Smart contracts on the blockchain can auto-
mate various aspects of e-commerce, such as order fulfillment, payment releases,
and dispute resolution. These self-executing contracts can streamline and expe-
dite transactions while reducing reliance on intermediaries.

5. Decentralized Marketplaces: Blockchain technology can enable the develop-
ment of decentralized e-commerce platforms. These platforms allow buyers and
sellers to interact directly, eliminating the need for a central authority. They can
also provide features like reputation systems, dispute resolution, and transparent
feedback mechanisms.

6. Supply Chain Transparency: Blockchain can enhance supply chain manage-
ment in e-commerce by providing a transparent and immutable record of the
entire supply chain process. This enables customers to trace the origin and
authenticity of products, ensuring ethical sourcing and reducing counterfeiting.

7. Loyalty Programs and Customer Rewards: Blockchain-based loyalty programs
can provide customers with more transparent and flexible rewards systems. By
tokenizing loyalty points on the blockchain, customers can easily track, transfer,
and redeem their rewards across different merchants.

8. Data Privacy and Ownership: Blockchain technology can give customers more
control over their personal data by enabling secure and permissioned access.
Customers can choose which information to share and with whom, reducing the
risks of data breaches and unauthorized use of personal data.

While blockchain technology holds promise for e-commerce, it’s important to
consider factors like scalability, user experience, and regulatory compliance when
implementing blockchain solutions in this domain.

In the current landscape of e-commerce, trust and security are paramount. Block-
chain’s decentralized architecture eliminates the need for a central authority, reducing
the risk of fraud and ensuring transparency in transactions. The use of smart con-
tracts, self-executing contracts with coded terms, further enhances the efficiency of
e-commerce processes by automating and enforcing contractual agreements.

Several existing blockchain-based e-commerce applications and protocols show-
case the technology’s potential. From supply chain management to payment pro-
cessing, blockchain introduces innovative solutions that streamline operations and
enhance the overall integrity of transactions. Notable examples include traceability of
goods, enabling consumers to verify the authenticity of products, and the facilitation of
cross-border transactions with reduced intermediary involvement.

Despite these advancements, challenges persist, and the adoption of blockchain in
e-commerce is not without hurdles. Issues such as scalability, interoperability, as well
as security properties like privacy, efficiency, and integrity, need careful examination.
The thesis aims to delve into these challenges, proposing solutions and contributing to
the evolving body of knowledge surrounding the effective integration of blockchain in
e-commerce protocols.

By examining the current state of blockchain in e-commerce, this research seeks
to identify gaps and opportunities for improvement. The analysis will not only focus

7



1. INTRODUCTION

on protocol definitions but also provide a balanced perspective on the technology’s
viability. As blockchain continues to evolve, its integration into e-commerce protocols
has the potential to redefine the way online transactions are conducted, promoting a
more secure, transparent, and efficient digital marketplace.

1.4 Structure of this thesis

The thesis is organized into a logical progression of chapters, beginning with the intro-
ductory and foundational aspects and culminating in a comprehensive exploration of
blockchain technology’s applications in e-commerce. Chapter 1, Chapter 2 and Chap-
ter 3 lay the groundwork for the thesis, encompassing the introduction, which outlines
the research problem, objectives, and significance, followed by a detailed exposition of
the research methodology. These initial chapters are crucial for setting the context and
providing the reader with a clear understanding of the study’s aims and approach.

Chapter 4 stands alone as an in-depth examination of blockchain technology, pro-
viding the necessary background information and technical foundation. This chap-
ter also addresses the evaluation of blockchain-related technologies in practical e-
commerce scenarios. Chapter 5 transitions into specific use-cases of blockchain in
e-commerce, demonstrating the technology’s potential and challenges, while Chapter 6
further delves into the development and implementation aspects.

The main body of the thesis, from Chapter 8 to Chapter 16, is dedicated to block-
chain protocols and their applications within e-commerce. This section forms the
core of the research, presenting detailed investigations, applications, and evaluations
of various blockchain protocols and their integration into e-commerce systems. It
is here that the thesis makes its most significant contributions, detailing the design,
implementation, and impacts of blockchain-based solutions. It includes the detailed
description of the following protocols: rejectable NFTs (Chapter 7), two-party certi-
fied notifications (Chapter 8), multiparty non-confidential and confidential (using a
TTP) certified notifications (Chapter 9), confidential certified notifications without TTP
(Chapter 10), improved certified notifications protocol (Chapter 11), two-steps certi-
fied notifications (Chapter 12), two-party contract signing (Chapter 13), confidential
multiparty contract signing (Chapter 14), micropurchases using payment channels
(Chapter 15), and decentralized and confidential digital identity management system
using Zero-Knowledge Proof (ZKP) (Chapter 16).

The concluding section, Chapter 17, wrap up the thesis with a presentation of the
research results, a comprehensive discussion linking the findings back to the research
objectives, and a conclusion that summarizes the study’s main contributions and
implications. This final chapter also outlines the limitations of the current research
and suggests routes for future work, providing a clear path forward for subsequent
investigations in the field.

Through this structured approach, the thesis offers a cohesive and thorough ex-
amination of blockchain technology in the e-commerce domain, from foundational
concepts to advanced applications and critical evaluations, ensuring a comprehensive
understanding of the subject matter for the reader.
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2
OBJECTIVES

The main objective of this research project is to study and create different blockchain-
based protocols applied to e-commerce, emphasizing the need for robust security
mechanisms. The research aims to achieve enhanced characteristics of security, privacy,
and trust through a distributed structure enabled by blockchain technology. Unlike
traditional structures that rely on the intervention of a centralized TTP, the proposed
approach seeks to minimize the need for trust in third parties and instead leverage the
decentralized nature of blockchain.

By adopting a distributed structure, the research project intends to increase effec-
tiveness and efficiency while reducing reliance on centralized authorities. Technologies
based on blockchain will be evaluated to check their suitability in achieving the de-
sired outcomes for applications that require secure and private interchange operations.
These applications encompass various areas such as fair exchanges, notifications, con-
tract signatures, payment systems, and digital identity management.

The underlying principle of fair interchange in these applications is to ensure that
all users receive fair and egalitarian treatment. At the conclusion of each execution, the
aim is for each party involved to have obtained the desired element or to determine
that the exchange has not been completed correctly. This equitable approach aims to
create a balanced and just system that eliminates bias and promotes equal participation
among users.

Taking all of this into consideration, the general objectives of this thesis are:

1. To analyze the limitations and challenges of traditional e-commerce protocols:
This objective involves identifying the shortcomings of existing e-commerce
protocols, such as security vulnerabilities, lack of transparency, scalability issues,
or dependence on TTPs.

2. To explore the potential of blockchain technology in enhancing e-commerce
protocols: This objective aims to investigate how blockchain can address the
identified limitations of traditional e-commerce protocols. It involves under-
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standing the unique properties of blockchain, such as decentralization, trans-
parency, immutability, and security, and assessing how they can be leveraged to
improve e-commerce transactions.

3. To design and create a set of blockchain-based e-commerce protocols: This objec-
tive involves designing new e-commerce protocols that incorporate blockchain
technology. The focus is on creating protocols that take advantage of blockchain’s
features to enhance security, transparency, efficiency, and trust in e-commerce
transactions.

4. To evaluate the performance and effectiveness of these blockchain-based e-
commerce protocols: This objective entails assessing the performance of the
developed protocols by evaluating factors like scalability, transaction speed, trans-
action costs, and security. It may involve conducting experiments, simulations,
or user studies to gather data and analyze the protocol’s effectiveness.

By leveraging the security, transparency, and decentralized nature of blockchain
technology, the research project seeks to enable secure and private interactions in
e-commerce. The goal is to develop protocols that can provide robust security mecha-
nisms, protect privacy, and establish trust without relying on centralized authorities.
Ultimately, the successful implementation of these protocols will contribute to the
advancement of fair and efficient interchange operations, paving the way for enhanced
e-commerce experiences and facilitating fair and secure transactions for all participants
involved.
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3
METHODOLOGY

The methodology employed in this thesis on blockchain-based e-commerce protocols
will involve several key steps to ensure a comprehensive and effective approach. It will
start with an extensive review of existing literature and prior research in the field. This
literature review will provide a solid foundation and understanding of the current state-
of-the-art, technologies, and challenges associated with blockchain-based e-commerce
protocols.

Based on the insights gained from the literature review, the next step will be to gener-
ate a list of requirements that the proposed protocols should meet. These requirements
will encompass various aspects such as security, privacy, scalability, interoperability,
and usability, among others. This step is crucial in defining the scope and objectives of
the research project and setting the criteria against which the proposed protocols will
be evaluated.

Following the establishment of requirements, the research will progress to the
design and development of new protocol proposals. These proposals will aim to ad-
dress the identified requirements and overcome the limitations of existing protocols.
The design phase will involve the formulation of new approaches, algorithms, and
mechanisms that can enhance security, privacy, and overall efficiency in e-commerce
transactions conducted on the blockchain.

Subsequently, the proposed protocols will undergo a thorough analysis of their
security aspects. This analysis will involve evaluating the protocols against potential
vulnerabilities, threats, and attack vectors. Any identified weaknesses or areas for
improvement will be addressed, and appropriate countermeasures will be developed
to enhance the security of the protocols.

Once the protocols have been refined and improved, the next step will involve their
implementation and performance testing. The implementation phase will bring the
proposed protocols to life, transforming the designs into functional code that can be
tested and evaluated. The performance tests will measure the efficiency, scalability,
and robustness of the protocols under various scenarios and workloads.

In the final stage, efforts will be made to disseminate and transfer the knowledge
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gained from the research to interested companies or entities. This may involve collabo-
rating with industry partners, presenting research findings at conferences or workshops,
and publishing academic papers. The aim is to bridge the gap between academic
research and practical applications by sharing valuable insights, techniques, and proto-
cols with relevant stakeholders who can benefit from the materials.

Overall, this methodology ensures a systematic and rigorous approach to the re-
search project, encompassing literature review, requirements generation, protocol
design, security analysis, implementation, performance testing, and knowledge trans-
fer. By following this methodology, the research aims to contribute to the advancement
of blockchain-based e-commerce protocols and provide valuable insights and solutions
to the broader e-commerce community.
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4
BLOCKCHAIN AND RELATED TECHNOLOGIES

AND STANDARDS

A blockchain is a distributed database, made up of a chain of blocks that are designed
to prevent modification once a piece of data has been published. This is achieved
by linking these blocks to their previous block through the cryptographic hash of the
previous block. Blocks also contain a timestamp and transaction data. With that,
blockchains are specially used for storing data in an orderly manner over time and
without the possibility of modification.

Blockchains are also considered as a distributed computing system with high Byzan-
tine fault tolerance, being managed by a Peer-to-Peer (P2P) network, where its nodes
collaborate to communicate and validate new blocks.

Blockchain technology is used to solve the problem of trust through cooperation to
achieve common goals. It uses advanced mathematics, cryptography, programming
languages, and distributed ledger technology.

4.1 Components of a blockchain

The common components of a blockchain are

• Transactions that represent the messages that change the state of the data in the
blockchain.

• A state machine that stores the data and processes transactions. This information
is stored in blocks.

• A hash function that secures the information stored in the blocks, preventing its
modification. Each block includes the hash of the prior block, confirming the
integrity of the previous block.
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• A Peer-to-Peer (P2P) network that propagates transactions and blocks. The
nodes of this network broadcast the transactions that pretend to be included in
the blocks.

• A consensus rule like Proof-of-Work (PoW), Proof-of-Stake (PoS), or Proof-of-
Authority (PoA) that controls who can add blocks to the chain. In PoW consensus,
each node of the blockchain competes to solve a guessing game problem. PoS
consensus attempts to overcome scalability concerns imposed by PoW consensus,
removing the guessing game from consensus. In PoS the validator is selected
in proportion to their quantity of holdings in the associated cryptocurrency. In
PoA consensus there are approved accounts, known as validators, that validate
transactions and blocks.

These components are typically combined in client software, like Bitcoin Client, Go
Ethereum (geth), or the Parity Ethereum Client.

With that, we can see that the term "Blockchain" not only refers to the decentralized
ledger that stores information or the Peer-to-Peer network of nodes, but it also refers to
the rules and protocols that manage this system.

4.2 Properties of the blockchain

Once we have defined what is a blockchain and what components it has, we will analyze
its properties.

A blockchain is decentralized because we store data across its Peer-to-Peer net-
work (see Figure 4.1). It doesn’t have a single governing authority looking after the
framework. One of the key benefits of decentralization is that we eliminate a central
point of vulnerability, ensuring its security. But we can have the risk of a "51% attack",
where an entity can manipulate a specific blockchain if it gains control of more than
half of a network.

In the blockchains, all the nodes have a copy of the information, replicating the
entire database, and transactions are broadcasted to the network. The nodes validate
the transactions, add them to a new block, and broadcast this new block to the rest

Figure 4.1: Blockchain Peer-to-Peer network
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of the nodes. To serialize changes, the nodes use various time-stamping schemes like
Proof-of-Work or Proof-of-Stake to serialize changes [5].

A blockchain is also immutable because its information can’t be changed or altered.
This is accomplished with the use of a hash function that secures the information
stored in the blocks. With that, no one can go back to a previous block and change
the information, because the hash value won’t be valid. This prevents the edition and
deletion of information.

Another fact that helps to the inalterability of the information is the need for the
validation of most of the nodes of the blockchain. To validate a new transaction every
node needs to check its correctness. And if most of the nodes validate the transaction,
then the information is added to the ledger. With that, we can’t add new information
without consent from most of the nodes of the network.

Blockchain technology is more secure than other database systems. This is because
transactions are added only when the majority of the nodes of the network validate
the information, with a consensus system. If the block is validated, it is encrypted
and linked with the previous block. A hash mechanism is used to secure and link the
information stored in the blocks. With that, every block includes the hash of the prior
block (see Figure 4.2), making it very difficult to modify a block as it requires altering
the information in other blocks in the chain too.

Figure 4.2: Simplified blockchain diagram

Other important properties of this technology are traceability and auditability.
This is due to the ease of tracking the transactions because they are visible to all parties.
Blockchain incorporates accounting mechanisms that let it to a traceable source of truth
for transaction evidence. We can consult the information of the blockchain transactions
and check its veracity because everyone can read this information because we also have
the transparency property. Taking advantage of these properties, for example, Zou et al.
[6] propose a new Proof-of-Trust (PoT) consensus protocol, that uses blockchain as the
underlying technology to enable tracing transactions for service contracts and dispute
arbitration. The traceability property is also used in different articles, to be applied to
complex manufacturing systems [7], general supply chain [8], mineral supply chain [9],
fruit and vegetable agricultural products [10], etc...

These core properties collectively contribute to the robustness and reliability of
blockchain technology, as summarized in Table 4.1.
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Table 4.1: Summary of blockchain properties

Property Description

Decentralization Distribution of control among network participants.
Immutability Inability to alter data once recorded on the blockchain.
Security High level of protection against tampering and unauthorized

access.
Traceability and Ability to trace and audit transactions for accountability.
Auditability
Transparency Openness and visibility of transactions to all network

participants.

4.3 Types of blockchain networks

Depending on the access type of the users of the blockchain, we can have four different
types of blockchains.

First of all, a blockchain can be public or permissionless [11], if it has no access
restrictions. In these types of blockchains, anyone can send transactions to it or become
a miner who can validate the transactions. Normally, these networks use consensus
mechanisms that offer economic incentives to their miners, like Proof-of-Work and
Proof-of-Stake. The largest blockchains, like Ethereum or Bitcoin, are of this type.

Blockchains can also be private or permissioned [12], where only certain partici-
pants have write and read permissions. In these kinds of networks, the nodes cannot
join unless invited by the network administrators. Hyperledger, for example, is a per-
missioned and private blockchain infrastructure, which can give different roles to the
participants of this network. Hyperledger can use different consensus algorithms, like
Practical Byzantine Fault Tolerance (PBFT) [13]. These kinds of networks can be applied
to different use cases, like securing medical forensic systems [14], supply chain finance
[15] and multistage quality control and enhancing security in smart manufacturing [16].
Sometimes, to refer to private blockchain we use the terminology Distributed Ledger
Technology (DLT).

We can also use hybrid blockchains that have a combination of centralized and
decentralized features [17]. Depending on the network, we can find different portions
of centralization and decentralization properties.

There are also sidechains, which are secondary blockchain ledgers that run in par-
allel to the main blockchain [18]. They can have their own consensus protocol and can
have different properties to add new functionalities, to improve the scalability, privacy,
and security of the main blockchain. Sidechains can also operate independently of the
primary blockchain.

4.4 Ethereum blockchain

Ethereum is considered a Blockchain 2.0 technology. It’s an open-source Blockchain
network that can act as a decentralized Turing-complete Virtual Machine [19]. Its native
token is Ether (ETH), which is also used to perform payments, in the form of gas, for
executing computer programs [20].
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One of the innovations of Ethereum is the use of smart contracts [21], that store
computer code written in multiple languages like Solidity or Vyper. This code is exe-
cuted on the Ethereum Virtual Machine (EVM), which can run Ethereum Bytecode.
EVM follows the EVM specifications, written in the Ethereum protocol, and runs as a
process on a computer. The EVM is implemented in different programming languages.

Ethereum is not only a state machine that tracks the transitions of the state of
currency ownership, like Bitcoin. Ethereum also tracks the state of a general-purpose
data store. In this data store, it can be stored both code and data, and the data can
be any data expressible as a key-value tuple. This blockchain can act as a general-
purpose computer, running the smart contract’s code, and storing the results. But this
distributed computer uses a consensus system to govern the state changes and the data
is stored globally.

In Ethereum, we have two types of accounts: Externally-Owned Accounts (EOAs),
which represent external users and are controlled by a private key, and Smart Contract
Accounts. Both types of accounts can store Ether (ETH) balance and both types of
accounts can create new smart contracts or call any public function of a smart contract.
Additionally, Smart Contract Accounts can store code, which defines the logic and
functionality of the smart contract.

All the accounts are identified by their address. In the case of the EOA accounts,
they are composed of the prefix ”0x” and the rightmost 20 bytes of the Keccak-256 hash
of the ECDSA public key of that account. The public key is calculated from the private
key using elliptic curve multiplication, as defined in a standard secp256k1, and the
private keys are a 64-character hexadecimal string. EOA accounts are the only type of
accounts that can create transactions that need to be signed by the account’s private key.
It’s important to notice that anyone can derive the signer’s address from the signature
without knowing the private key.

On the other hand, smart contract addresses have the same format as the EOA or
users’ accounts, but they are determined by the creator’s address and the transaction
nonce that creates it. As mentioned earlier, smart contracts are the only type of accounts
with associated code.

There are mechanisms like Ethereum Name Service (ENS) to translate account
addresses to human-readable names with a dot-separated right-to-left hierarchical
naming structure [3]. It works similarly to the Domain Name System (DNS) in the
traditional Internet but in a decentralized manner.

4.5 Scalability problems in Ethereum

The Ethereum network has some scalability issues, affecting the efficient use of the
network in a massive way, being waiting time and transaction fees as the most prob-
lematic ones. These problems have become more evident with the emergence of DeFi
protocols and applications.

Ethereum underwent a significant transformation with the launch of Ethereum
2.0, transitioning from the Proof-of-Work (PoW) to the Proof-of-Stake (PoS) consensus
mechanism. This upgrade has vastly improved the platform’s energy efficiency, reduced
hardware requirements, and facilitated the proliferation of network nodes. Additionally,
Ethereum 2.0 introduced robust support for shard chains, which distribute the network’s
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workload across 64 new chains, greatly enhancing scalability and capacity. Shard chains
are individual chains within the Ethereum network that process and store specific
subsets of transactions, allowing for parallel processing and significantly increasing
the overall throughput of the network. While this marks a substantial step forward
in addressing Ethereum’s scalability issues, it’s important to note that the merge to
Ethereum 2.0 was successfully completed in September 2022.

Many articles, like [22, 23, 24], try to suggest different approaches to the scalabil-
ity problem. These articles describe the scalability problem, caused by the typical
blockchain design, that requires every node in the network to process every transaction.
With that, the capacity of a single node limits the transaction processing capacity of the
entire system.

There are other solutions, taking advantage of a second layer, that operate on the
native layer to improve its performance. The second layer takes a portion of the native or
first layer’s transactions, offloading them, and giving it to another system architecture.
With that, the second layer handles the processing load and informs the first layer for
result finalization, reducing network congestion.

In [25] it’s proposed a scalability solution with rollups, a second layer scaling para-
digm. This solution performs transaction execution outside the main layer but posts
transaction data on it. As transaction data is on the first layer, rollups are secured by
this layer. There are many kinds of rollups, for example, ones using fraud proofs, or ZK
rollups using validity proofs.

4.6 Token standards

Token standards are fundamental to the functionality and interoperability of digi-
tal assets within the blockchain technology ecosystem. These standards, which are
predominantly established within the Ethereum network, provide a uniform proto-
col for the creation, transaction, and management of tokens. In this context, ERC
stands for Ethereum Request for Comment, denoting a standardized protocol within
the Ethereum ecosystem. This section introduces the token standard such as ERC-
721 or Non-Fungible Token (NFT), and further explores innovative concepts such as
Soulbound tokens (SBTs).

Tokens represent digital assets exchanged and operated within the blockchain
ecosystem, significantly enhancing the security, efficiency, and scalability of e-com-
merce transactions. Standards such as ERC-20 and ERC-721 facilitate the creation and
management of fungible and non-fungible tokens, respectively. The ERC-20 standard
[26] enables the creation of interchangeable tokens where each token holds the same
value, thus ideal for creating cryptocurrencies. On the other hand, the ERC-721 stan-
dard [27] defines the necessary specifications for Non-Fungible Tokens (NFTs), which
represent unique digital properties and cannot be interchanged directly with other
tokens due to their distinct characteristics. Additionally, Soulbound tokens, which are
tokens permanently or semi-permanently tied to a wallet, pave the way for innova-
tive applications in identity verification and beyond, and will be used in the protocols
described in Chapter 12 and Chapter 16.

By leveraging these token standards, the thesis aims to develop blockchain-based
e-commerce protocols that address the challenges faced by traditional systems while
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promoting an interconnected digital economy. The standardized approach ensures
consistency and compatibility across multiple platforms and applications, laying the
foundation for a robust and versatile e-commerce ecosystem.

4.6.1 EIP-721: Non-Fungible Token Standard

EIP-721 represents a standard interface for Non-Fungible Tokens [28], providing basic
functionality to track and transfer them, letting us track the ownership of each one
separately. Non-Fungible Tokens (NFTs) can represent ownership of distinguishable
digital or physical assets and the right of possession is recorded in the blockchain. The
owner of the NFT is represented by its wallet address. However, the NFT transfer cannot
only be initiated by its owner but also by its approved address or even by an authorized
operator of the current owner of the NFT.

This standard has the following events (see Listing 1):

• Transfer: emitted when any NFT changes its ownership. This is also emitted
when the NFT is created and destroyed.

• Approval: emitted when the approved address for an NFT is changed or reaf-
firmed. It’s also emitted when the Transfer event is emitted and the approved
address for that NFT is reset to none, with the approved address set to the zero
address.

• ApprovalForAll: emitted when an operator is enabled or disabled for an owner.
Operators can manage all NFTs of the owner.� �

event Transfer ( address indexed _from , address indexed _to ,
uint256 indexed _tokenId );

event Approval ( address indexed _owner ,
address indexed _approved , uint256 indexed _tokenId );

event ApprovalForAll ( address indexed _owner ,
address indexed _operator , bool _approved );� �

Listing 1: ERC-721 Events.

In addition, the EIP-721 standard has the following functions (see Listing 2):

• balanceOf(address _owner) returns (uint256): Returns the number of
non-fungible tokens owned by the specified owner.

• ownerOf(uint256 _tokenId) returns(address): Returns the address of the
owner of the NFT with the specified Id.

• safeTransferFrom(address _from, address _to, uint256 _tokenId,
bytes data): Transfers the ownership of an NFT from one address to another
address. This function also checks if _to parameter is a smart contract (codesi ze
> 0).

• safeTransferFrom (address _from, address _to, uint256 _tokenId):
Same as previous function, with d at a parameter set to blank string ("").
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• transferFrom(address _from, address _to, uint256 _tokenId): Trans-
fers the ownership of an NFT from one address to another address, without
checking if _to parameter is a smart contract.

• approve(address _approved, uint256 _tokenId): Changes or reaffirms
the approved address for an NFT. If _appr oved is set to the zero address, that
indicates that there is no approved address.

• setApprovalForAll(address _operator, bool _approved): Enables or
disables approval for a third party "operator" to manage all of the caller of the
function assets.

• getApproved(uint256 _tokenId) returns (address): Gets the approved
address for a single NFT.

• isApprovedForAll(address _owner, _operator) returns (bool):
Queries if an address is an authorized operator for another address.� �

function balanceOf ( address _owner ) external view
returns ( uint256 );

function ownerOf ( uint256 _tokenId ) external view
returns ( address );

function safeTransferFrom ( address _from , address _to ,
uint256 _tokenId , bytes data) external payable ;

function safeTransferFrom ( address _from , address _to ,
uint256 _tokenId ) external payable ;

function transferFrom ( address _from , address _to ,
uint256 _tokenId ) external payable ;

function approve ( address _approved , uint256 _tokenId )
external payable ;

function setApprovalForAll ( address _operator ,
bool _approved ) external ;

function getApproved ( uint256 _tokenId ) external view
returns ( address );

function isApprovedForAll ( address _owner ,
address _operator ) external view returns (bool);� �

Listing 2: ERC-721 Functions

4.6.2 Soulbound tokens

Soulbound tokens (SBTs) are a type of digital asset that is designed to be unique, non-
fungible, and tied to a specific individual. They are also called Non-Transferable Non-
Fungible Tokens (NFTs). This special type of token was introduced by Weyl et al. in
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[29]. They are created using blockchain technology and are often used as a means of
verifying and managing digital identities in a self-sovereign manner.

Soulbound tokens can be used in Self-Sovereign Identity (SSI) systems (see sec-
tion 5.4) as a way of establishing and verifying an individual’s identity. When author-
ities create a Soulbound token, they are essentially creating a digital representation
of something that is unique and tied to a specific identity. This token can be used
to authenticate the individual’s identity when interacting with other parties, such as
financial institutions, government agencies, or online service providers.

Because Soulbound tokens are based on blockchain technology, they are highly
secure and difficult to tamper with. This makes them an ideal tool for managing digital
identities in a self-sovereign manner, as they provide a high degree of security and
privacy while still allowing individuals to maintain control over their personal data.

There exists EIPs like EIP-4671 [30], EIP-5114 [31] or EIP-5484 [32] that describe
a Soulbound token. In any case, we must bear in mind that these EIPs are under
constant review. This kind of token is attached to a "soul" at mint time and cannot be
transferred after that. Typically this "soul" is another NFT, thus a collection of NFTs
can be linked to a single NFT to guarantee non-separability and non-mergeability of
the token collection. With this standard, we have tokens that cannot be sent to another
account because they are attached to a token but, in this thesis, we will propose tokens
that could only be sent with the approval of the receiver.

To develop the SBTs of the protocol described in Chapter 16 we will use the Non-
Transferable Tokens (NTTs), standardized by EIP-4671[30], which facilitates interoper-
ability and seamless integration of SBTs across diverse blockchain ecosystems. Notably,
EIP-4671 creates a new interface, and it doesn’t extend the ERC-721 standard. An-
other interesting capability of NTTs is the faculty of the deliverer of these tokens to
revoke it, but not to delete it [33]. This fosters a more coherent and cohesive identity
infrastructure, empowering users with enhanced control and security over their digital
identities.

4.7 Cryptographic technologies used in blockchain

Cryptographic technologies serve as the backbone of security and privacy in blockchain-
based e-commerce protocols. Public-key cryptography, symmetric-key cryptography,
and cryptographic hashing algorithms are utilized to safeguard sensitive information,
secure transactions, and ensure data integrity. Through the use of cryptographic tech-
niques, such as digital signatures and encryption, we can authenticate users, protect
their identities, and enable secure communication within the e-commerce protocol.
Additionally, cryptographic hash functions play a critical role in verifying the integrity
of data and ensuring its immutability on the blockchain. In this section, we will de-
scribe the cryptographic technologies that are fundamental to our discussion and will
later be applied to elaborate specific protocols within this thesis on blockchain-based
e-commerce protocols.

4.7.1 Hash functions

Hash functions play a crucial role in blockchain technology, serving as the foundation
for ensuring security, integrity, and efficiency within the blockchain ecosystem. A hash
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function is a mathematical algorithm that takes input data of any size and produces
a fixed-size output, known as a hash value or hash code. This output is unique to the
specific input data, meaning even a minor change in the input will result in a completely
different hash value.

In blockchain technology, hash functions serve several essential purposes. One
primary use is in the creation of digital signatures. Hash functions allow users to create
a unique fingerprint of a digital document or transaction, which can be securely and
efficiently verified without revealing the original content. This property makes hash
functions invaluable for ensuring the authenticity and integrity of data within the
blockchain.

Another critical use of hash functions is in the creation of blocks in the blockchain.
Each block contains a unique hash value that represents the entire content of that block,
including the transactions it contains and the hash value of the previous block. By
linking blocks together using hash values, the blockchain creates an immutable and
tamper-resistant ledger. Any alteration of the data within a block would result in a
different hash value, thereby breaking the chain and immediately alerting participants
of the tampering attempt.

Moreover, hash functions contribute to the efficiency and security of blockchain
networks. They allow for quick verification of data integrity, as comparing hash values
is computationally efficient. Furthermore, hash functions are designed to be one-way,
meaning it is practically impossible to reverse-engineer the original input data from its
hash value. This property protects sensitive information and ensures the privacy and
security of participants within the blockchain.

Overall, hash functions are a fundamental building block of blockchain technology.
They provide the cryptographic foundations necessary for secure and reliable data
storage, transaction validation, and consensus mechanisms within a decentralized net-
work. The use of hash functions in blockchain technology ensures trust, transparency,
and immutability, enabling a wide range of applications such as cryptocurrency, smart
contracts, supply chain management, and more.

4.7.2 Merkle trees

The Merkle tree is a fundamental data structure used in blockchain technology that
provides efficient and secure verification of data integrity. It was named after Ralph
Merkle, who invented the concept in the late 1970s. The Merkle tree’s unique properties
make it an essential component of many blockchain systems, including Bitcoin and
Ethereum.

The Merkle tree, also known as a hash tree, is a binary tree structure where each leaf
node represents a data block or transaction (see Figure 4.3). The parent nodes in the
tree are created by hashing the concatenation of their child nodes’ hashes. This process
continues until a single root hash, known as the Merkle root, is obtained at the top of
the tree.

One of the key benefits of a Merkle tree is its ability to efficiently verify the integrity
of a large dataset without requiring access to all the individual data elements. By
comparing a small subset of hash values—typically logarithmic in the total number
of data elements—a participant can ensure that the data has not been tampered with.
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Figure 4.3: Merkle tree structure

This property makes the Merkle tree ideal for use in blockchain systems, where data
integrity and security are paramount.

In the context of blockchain technology, Merkle trees are extensively used in various
ways. One of the prominent applications is in the efficient verification of transactions
within a block. Instead of validating each transaction individually, which can be compu-
tationally expensive, a participant can simply validate the Merkle root against a known
value. If the Merkle root matches the expected value, it guarantees the integrity and
inclusion of all the transactions in that block.

Furthermore, Merkle trees play a crucial role in ensuring the security and immutabil-
ity of the blockchain. Since the Merkle root is included in the block header, any change
in the underlying data would result in a different Merkle root. This property enables
easy detection of any tampering or unauthorized modifications to the blockchain data.

Moreover, Merkle proofs, which are generated using the Merkle tree structure,
enable efficient and compact verification of individual transactions. By providing a
series of hash values and their corresponding sibling nodes, a participant can prove the
inclusion or absence of a specific transaction without needing the entire block data.

In addition to Merkle trees, Ethereum also utilizes a more complex structure known
as a Merkle Patricia Trie. This data structure combines the advantages of a Merkle tree
with those of a Patricia trie, enabling more efficient searches and updates. A Merkle
Patricia Trie differs from a traditional Merkle tree in that it provides a path to every
inserted value based on its key, significantly optimizing the process of looking up and
updating values. This is especially beneficial in Ethereum, where it is used to store all
the state information, including accounts, balances, and storage. The trie structure
ensures that every state transition results in a new, unique root hash, thus maintaining
a historical record of all changes in a compact form.

In summary, the Merkle tree and the Merkle Patricia Trie are foundational compo-
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nents in blockchain technology, providing efficient and secure data integrity verification.
Their ability to reduce computational overhead, detect tampering, and enable compact
proofs makes them integral parts of blockchain systems, contributing to the trust and
reliability of decentralized networks.

4.7.3 Elliptic-curve cryptography

Elliptic Curve Cryptography (ECC) is an approach to public-key cryptography based
on the algebraic structure of elliptic curves over finite fields. This cryptography allows
smaller keys compared to other types of cryptography to provide equivalent security
[34]. ECC is the foundation of the use of private keys and digital signatures in Ethereum
[3], and it can be also used to reduce the execution cost of the transactions, due to
the use of smaller keys. For example, a 256-bits ECC key offers a security level of 128-
bits, according to the NIST recommendation [35]. The better performance of ECC
cryptography is also reviewed in [36], explaining their extensive use in blockchain
technology.

At its core, ECC utilizes the properties of elliptic curves to provide secure encryption,
digital signatures, and key exchange mechanisms. An elliptic curve is a mathematical
curve defined by an equation of the form y2 = x3 +ax +b, where a and b are constants.
The curve’s points form a group structure, allowing for mathematical operations such
as point addition and scalar multiplication.

The security of ECC is based on the difficulty of solving the Elliptic Curve Discrete
Logarithm Problem (ECDLP). Given a point P on the curve and a scalar k, determining
the scalar k from the point kP is computationally challenging. This property forms the
foundation of ECC’s security.

ECC is widely used in various cryptographic protocols and applications. Here are
some key aspects of ECC:

1. Key Generation: In ECC, a user generates a private key, which is a randomly
selected scalar. The corresponding public key is obtained by scalar multiplication
of a standard base point on the curve by the private key.

2. Key Exchange: ECC enables secure key exchange using protocols such as Elliptic
Curve Diffie-Hellman (ECDH). Two parties, each with their private key and the
other party’s public key, can compute a shared secret using scalar multiplication.

3. Encryption: ECC can be used for symmetric key encryption through techniques
like Elliptic Curve Integrated Encryption Scheme (ECIES). It combines the se-
curity of ECC with symmetric encryption algorithms, allowing for secure data
transmission.

4. Digital Signatures: ECC-based digital signatures provide integrity and authen-
ticity of digital data. The Elliptic Curve Digital Signature Algorithm (ECDSA) is
commonly used for signing and verifying digital signatures in ECC.

5. Performance: ECC offers significant advantages in terms of performance com-
pared to traditional cryptographic algorithms. It requires smaller key sizes while
providing the same level of security. This leads to faster computations, lower
memory requirements, and more efficient use of network bandwidth.
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6. Security: ECC is considered secure against various cryptographic attacks when
implemented correctly. The security strength depends on the size of the elliptic
curve used and the selected cryptographic parameters.

In [37] there is defined the set of elliptic curves recommended for the U.S. Gov-
ernment use, and different alternative representations for these curves to allow more
implementation flexibility. With that, we can see the cryptographic parameters that
must be published to ensure privacy and security according to international standards.

The encryption systems for the purpose of data confidentiality are defined in [38],
and it can be applied to ECC, like in [39], where it’s provided an extensive review of the
Elliptic Curve Integrated Encryption Scheme (ECIES), the best-known scheme based on
ECC, to be used as a tool for encrypting data, creating digital signatures or performing
key exchanges.

With all of that, we can conclude that ECC cryptography is the better alternative
to improve security and preserve privacy in the data stored in the blockchain. There
are several studies like [40] and [41] that have already applied this cryptography to
blockchain technology to achieve these results without prejudice to the cost of transac-
tions.

4.7.4 Identity-based encryption

Identity-Based Encryption (IBE) is a form of public-key cryptography that simplifies
traditional key management challenges by allowing a user’s public key to be directly
derived from identifiable information, such as an email address or a username. This
approach, proposed to alleviate the complexities associated with the Public Key In-
frastructure (PKI), marks a significant shift towards a more manageable cryptographic
framework.

At the heart of IBE is the concept of a Private Key Generator (PKG), which uses
a master secret to generate private keys from users’ public identifiers. This process
typically relies on advanced mathematical constructs, such as bilinear pairings on
elliptic curves, to secure the encryption scheme against potential attacks.

Identity-Based Encryption has been already used in different solutions, like making
high-security multicasting in wireless sensor networks [42], to enhance authentication
among the various communicating devices within wireless sensor networks during
broadcasting for secure end-users message distribution [43], or to overcome the key
management issue but still guarantee security even when attackers corrupt the keys,
extending the FS-PEKS scheme (Lattice-Based Forward Secure Public-Key Encryption
with Keyword Search) [44].

Despite its advantages, IBE is not without its challenges. The key escrow problem
remains a significant concern, as the PKG’s ability to generate private keys for any
public identifier means it can decrypt all messages. Additionally, the computational
demands of certain IBE schemes may render them impractical for resource-constrained
environments.

Recent developments in the field of IBE aim to mitigate these limitations, focusing
on enhancing the efficiency and security of IBE schemes. Innovations such as lattice-
based cryptography offer promising routes for constructing more secure and efficient
IBE systems.
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In conclusion, Identity-Based Encryption represents a pivotal advancement in
cryptographic technology, addressing key distribution challenges inherent to traditional
PKG. As research continues to evolve, IBE stands on the cusp of broader adoption,
promising to play a crucial role in the secure communication paradigms of the future.

4.7.5 Zero-Knowledge Proofs

Another cryptographic method that can be applied to blockchain technology to achieve
certain properties is the Zero-Knowledge Proof (ZKP). With this method, one party, the
prover, can prove to another party, the verifier, that a given statement is true while
the prover avoids sending any additional information apart from the fact that the
statement is indeed true [45]. In other words, ZKPs allow one party to demonstrate
knowledge of a fact or secret without disclosing any details about the knowledge itself.
Since all information stored in the blockchain ledger is public, and all transactions
are broadcasted to all participants, with ZKP we can allow users to share confidential
information with security.

There are two main types of Zero-Knowledge Proofs (ZKPs), interactive and non-
interactive. In an interactive ZKP there are a series of tasks that the provers must
complete to verify that they have particular information. This usually involves concepts
of mathematical probability. In a non-interactive ZKP, there is no need for interaction
between the prover and the verifier. Typically, the validation of the proof relies on
computational assumptions. One example of a non-interactive ZKP is the Schnorr Non-
Interactive Zero-Knowledge (NIZK) proof [46]. With the Schnorr NIZK proof anyone
can prove the knowledge of a discrete logarithm without leaking any information about
its value.

ZKP has the potential to encrypt data in pieces, enabling users to control certain
blocks and the visibility of the information contained within them, allowing some users
access while restricting others.

There are some surveys about the application of Zero-Knowledge Proof to the
blockchain technology, like [47] and [48] that identify some potential problems of
the ZKP application and future research directions and show the application of ZKP
in usage in blockchain in real life examples. [49] follows an approach based on Zero-
Knowledge Proofs as a verifiable computation technique to prove the correctness of a
differentially private query output.

ZKPs can also be used to enable secure and private authentication and verification
of identity. For example, an individual could use a ZKP to prove their identity to a third
party, such as a bank or government agency, without actually revealing any personally
identifying information. This can help to reduce the risk of identity theft and other
types of fraud, while still enabling individuals to maintain control over their personal
data.

Overall, Zero-Knowledge Proofs have the potential to greatly enhance the security
and privacy of Self-Sovereign Identity systems, by enabling individuals to selectively
share only the specific pieces of information that are needed for a particular transaction
or interaction, while keeping the rest of their personal data private and under their own
control.
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zkSNARKs

A Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARK) is
a specific type of Zero-Knowledge Proof that allows for very efficient verification of
complex computations. zkSNARKs are especially useful for blockchain applications,
particularly when privacy and scalability are crucial factors [50] Its key advantage is
that they can be used when there is no possibility that the prover and the verifier could
interact in real-time. They are used in blockchains like Zcash [51], where they enable
users to prove that they have the right to spend a certain amount of cryptocurrency
without revealing their account balance or the identities of the sender and receiver. In
[52] we can read a formal and complete model of zkSNARK.

Circom1 [53] is an open-source toolkit for creating zkSNARK circuits, which is
designed to be more user-friendly and efficient than other circuit compilers. It allows
developers to write circuits in a high-level language, which is then compiled into an
optimized arithmetic circuit that can be used to generate zkSNARK proofs. Circom also
provides a tool called snarkjs, which can be used to create and verify proofs. Further
details about these tools can be found in [54].

In combination with Circom, it is highly recommended to use Poseidon as a hashing
algorithm [55]. Poseidon was specifically designed for use in zkSNARK, and is already
used in some blockchain-based applications on Ethereum.

In summary, zkSNARKs are a powerful cryptographic tool that enable efficient
verification of complex computations without revealing any additional information,
and Circom is a popular toolkit for developing zkSNARK applications.

Schnorr Non-Interactive Zero-Knowledge Proofs

Schnorr Non-Interactive Zero-Knowledge (NIZK) proofs [46] offer a distinctive ap-
proach to achieving zero-knowledge without interaction between the prover and the
verifier. Leveraging the simplicity and efficiency inherent in Schnorr signatures, Schnorr
NIZKs are constructed through a well-known cryptographic technique called the Fiat-
Shamir transformation. This transformation converts an interactive proof system into
a non-interactive one by employing a cryptographic hash function to simulate the
challenges that would typically be provided by the verifier in an interactive setting.

The appeal of Schnorr NIZKs lies in their concise proof size and the minimal compu-
tational overhead, making them particularly suitable for applications where bandwidth
and computational resources are limited. Unlike zkSNARKs, Schnorr NIZKs do not
require a trusted setup, thereby mitigating certain security risks associated with the
setup phase. This characteristic makes them advantageous for blockchain applications
that prioritize transparency and security.

Schnorr NIZKs are highly regarded for their robustness and efficacy in cryptographic
applications. Their strength is particularly advantageous for blockchain protocols,
which demand high levels of integrity and security for cryptographic operations. These
proofs are crucial in environments like blockchain-based e-commerce protocols, where
it is essential to verify the authenticity of a transaction without revealing its contents.
This ensures that transaction integrity is maintained while preserving the privacy of the
transaction details.

1https://docs.circom.io/
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In this thesis, Schnorr NIZKs are utilized in various blockchain e-commerce pro-
tocols to reinforce security without sacrificing efficiency. Their integration into these
systems is crucial, enhancing the cryptographic toolkit available to blockchain develop-
ers and contributing significantly to the robust security architecture of these protocols.

4.8 Design patterns for smart contracts

Smart contracts are self-executing contracts with the terms of the agreement directly
written into code. As blockchain technology, particularly Ethereum, has evolved to sup-
port complex applications, the need for efficient and secure design patterns in smart
contract development has become paramount. This section examines various design
patterns that enhance the functionality, security, and efficiency of smart contracts. We
explore foundational patterns such as Factory smart contracts, and address advanced
implementations like the Minimal Proxy Contract (EIP-1167), which optimizes deploy-
ment costs and contract interactions. By integrating these design patterns, developers
can build more robust, scalable, and secure decentralized applications, pushing the
boundaries of what blockchain technologies can achieve in various sectors.

4.8.1 Factory smart contracts

The concept of factory smart contracts plays a significant role in the management and
deployment of new smart contracts within a blockchain ecosystem. A factory smart
contract, also known as a contract factory, serves as a template or blueprint for creating
and initializing new instances of smart contracts.

The primary purpose of a factory smart contract is to streamline and automate the
process of deploying new contracts. It provides a standardized approach for creating
new contracts with predefined rules, parameters, and functionalities. The factory
contract typically contains the logic and code necessary to create and manage new
instances of smart contracts.

Here’s a simplified overview of how a factory smart contract operates:

1. Contract Deployment: The factory smart contract is deployed on the blockchain,
becoming a permanent and immutable part of the network.

2. Contract Creation: When a user or entity wants to create a new smart contract,
they interact with the factory contract and provide the necessary input parame-
ters. These parameters might include contract-specific details, such as contract
name, addresses of involved parties, initial settings, or any other required infor-
mation.

3. Initialization: The factory contract takes the input parameters provided by the
user and uses them to create a new instance of the smart contract. The initial-
ization process involves executing the necessary code to set up the new contract
with the desired configurations.

4. Contract Registration: Once the new contract is created, the factory contract
may also take on the responsibility of registering and keeping track of the newly
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deployed smart contracts. It maintains a record or registry of all the contracts
created by storing their addresses or other identifying information.

5. Management and Upgrades: The factory contract can provide additional func-
tionalities to manage the registered contracts. It can include features like contract
ownership transfer, access control mechanisms, upgradeability options, or other
administrative capabilities. These management features ensure that the deployed
contracts can be effectively controlled and modified if needed.

By utilizing a factory smart contract, the process of creating and managing new
contracts becomes more efficient and standardized. It reduces the need for manual
intervention and enhances the overall reliability and transparency of the contract
deployment process. Moreover, the factory contract can be designed to enforce specific
rules or conditions for creating new contracts, ensuring compliance and consistency
across the network.

It’s important to note that the exact implementation and features of factory smart
contracts may vary depending on the blockchain platform or programming language
used. Developers have the flexibility to design the factory contract according to their
specific requirements and the capabilities of the underlying blockchain technology.

4.8.2 Factory clone smart contracts and EIP-1167: Minimal Proxy Contract

The Factory Clone programming pattern is a better gas-cost solution than the traditional
Factory method programming pattern, achieving an easier management system for the
newly deployed smart contracts and also a simple storage method for the addresses.

The clones, also known as minimal proxies, work on the same objective as the
traditional factory but also reduce the elevated gas costs. It is explained in the standard
ERC-1167 [56], which provides a very simple functionality to clone a contract in an
immutable way. To achieve this functionality, the standard presents a minimal Solidity
bytecode implementation that delegates all calls to a known and fixed address.

Using the implementation with clones, instead of deploying a smart contract, we
can deploy a cheaper minimal smart contract that points to a smart contract template
that has previously been deployed on-chain. So, the minimal contracts delegate all calls
to the implementation of this main smart contract that is used as a reference.

Here’s how it generally works:

1. A master contract, containing all the necessary logic, is deployed once.

2. The factory contract, which holds the address of the master contract, can create
new clones. These clones are lightweight and contain almost no logic.

3. When a function call is made to a clone, it delegates the call to the master contract
using Ethereum’s delegatecall feature. This means the master contract’s code is
executed in the context of the clone’s storage, allowing each clone to behave as if
it were a fully independent contract.

The benefits of using EIP-1167 include:
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1. Reduced Deployment Costs: Since clones are minimal and share the master
contract’s code, deploying them is much cheaper than deploying full contracts.

2. Upgradeability: If the logic in the master contract needs to be updated, only the
master contract needs to be redeployed and updated in the factory. All clones
can remain untouched but will use the new logic due to delegatecall.

3. Consistency and Reusability: Using a standard pattern for clones ensures consis-
tency across different projects and allows developers to reuse existing, well-tested
implementations.

However, it’s important to note that while EIP-1167 and factory clones can provide
significant gas savings and flexibility, they also introduce complexity and potential
security risks, particularly around the delegation of calls and shared logic. It’s essential
to thoroughly understand and test the implications of using such patterns in our smart
contracts.

4.9 Blockchain-related infrastructures

Beyond token standards and cryptographic technologies, a range of infrastructural tech-
nologies significantly enhance blockchain-based e-commerce protocols. Among these,
the InterPlanetary File System (IPFS) stands out as a key component for decentralized
and efficient storage solutions. As a Peer-to-Peer distributed file system, IPFS utilizes
content-addressable storage to improve the availability, resilience, and censorship re-
sistance of digital assets. This technology enables the elimination of centralized servers,
providing a robust infrastructure for hosting product images, descriptions, and other
vital e-commerce media. Furthermore, IPFS optimizes the retrieval and distribution of
files through a content-based addressing system, which greatly enhances the scalability
and accessibility of e-commerce platforms.

4.9.1 InterPlanetary File System

InterPlanetary File System (IPFS) provides a distributed Peer-to-Peer system where
users can store any type of content, that will be shared with all the network users, getting
a censorship-resistant system. The main difference with the HTTP protocol is that IPFS
uses content addressing, unlike HTTP protocol which uses location addressing.

The IPFS content addressing protocol, identifies the content by a Content Identifier
(CID), a cryptographic hash of the content that is used as the content address. The users
send it to the IPFS nodes to obtain the content. This protocol provides immutability
of the stored content, for the simple fact that if stored data is edited then its CID will
change [57].

In the implementation of the protocol described in Chapter 11, we have used the
Infura IPFS gateway to perform the notifications upload and download. The Infura
IPFS service also provides us the pinning of the documents until six months after the
last access, or the document upload. Also, an own IPFS node could be used, then there
wouldn’t be any type of time limit for pinned files.

The pinning service fixes permanently a CID content to a node so this content
is excluded from being deleted by the garbage collector system [57] that periodically
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removes the not recently used content stored in a node, in order to clean part of the
node memory [58]. In other words, the pinning service prevents certain content from
being deleted completely from the network.
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5
USE-CASES OF THE BLOCKCHAIN

TECHNOLOGY

The primary use of blockchain technology was as a distributed ledger for cryptocur-
rencies such as Bitcoin, but as an unalterable database, it can enable new solutions
for a wide range of traditional applications: financial services, games, trading, health-
care [59, 60, 61, 62], etc. . . Also, blockchain technology has been used in Internet of
Things (IoT) systems; for instance, [63, 64] propose schemes where blockchain-based
IoT has the potential to create more feasible solutions than cloud-based IoT systems in
terms of consumption, maintenance, and upgrade costs, and more effective in terms of
access control and authentication management. Moreover, blockchain-based propos-
als expand their scope in many areas in combination with IoT such as transportation
systems. [65] highlights the factors that affect the design of a trust model for the so-
called social Internet of vehicles and explains how blockchain technology can be used
to preserve privacy in such systems. In [66], blockchain technology is applied to the
supply chain and logistics methods to improve product visibility, tracking, and pro-
cess automation. The most prominent fields of applications of blockchain technology
are summarized in [67]: Financial Applications, Smart Contract as law intermediaries,
Blockchain in combination with IoT, Securing Communications, Medical Data, and
Blockchain as a decentralized platform for Artificial Intelligence. Thus, blockchain
technology, as an emerging and disruptive technology, is proposed to enhance the
security of different kinds of applications that range from voting systems or the aviation
industry to energy management or mobile payments [68, 69, 70, 71] in order to provide
trusted transparency, immutability, traceability, and auditability for the exchanged and
stored information.

Another potential application of blockchain is in electronic tickets (e-tickets), which
represent a user’s right to access services and can be transferred to others along with
their associated rights. Various research works focus on achieving security, privacy,
and functionality in e-ticket systems, addressing aspects like user exculpability [72],
reusability [73], and transferability [74, 75]. The advent of blockchain and Non-Fungible
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Tokens (NFTs) introduces a novel framework for redefining e-tickets. NFTs, primarily
hosted on blockchain networks like Ethereum, encapsulate ownership and are based
on standards like Ethereum’s ERC-721, ensuring the authenticity of assets ranging
from artworks to tickets [76]. This blockchain-based innovation meets the stringent
security and privacy demands of e-tickets [77, 78], encouraging opportunities in various
applications including transportation, where the integrity and confidentiality of tickets
are capital.

In recent years, there has been a significant surge in interest and adoption of
blockchain-based finances, commonly referred to as Decentralized Finance (DeFi).
This financial paradigm eliminates the need for traditional central financial interme-
diaries like banks or exchanges to facilitate various financial services such as lending,
trading, earning, borrowing, or staking. Instead, these services are provided through the
utilization of smart contracts, which are self-executing agreements coded on blockchain
platforms like Ethereum.

A notable milestone in the growth of DeFi occurred in October 2021 when the total
value of assets utilized in decentralized finance surpassed $100 billion for the first time.
This data was compiled and reported by DeFi Pulse [79], a leading platform that tracks
and analyses the progress of the DeFi ecosystem.

However, this thesis aims to explore a different aspect of blockchain technology,
specifically focusing on its applications within the e-commerce sector. This research
will delve into various use cases that leverage blockchain, including certified notifica-
tions or registered eDeliveries, contract signing, micropayments, and digital identity.

By examining these specific use cases of blockchain technology within the e-com-
merce domain, this thesis seeks to shed light on the potential benefits, challenges, and
implications of integrating blockchain into existing e-commerce infrastructures.

5.1 Certified notifications or registered eDeliveries

Certified notifications, or registered eDeliveries, include an exchange of elements
between the sender and the receiver or set of receivers. In these kinds of deliveries, the
sender sends a message, and then the receiver can read it, sending proof of reception to
the sender. These notifications don’t have a definitive and standardized solution in their
electronic version. For example, a notification can be done using electronic mail, and
there are several proposals for this service. However, not all certificated notifications
require the use of electronic mail. The term "registered eDeliveries" is employed by the
Regulation (EU)910/2014 of the European Union Agency for Network and Information
Security [80]. This will be further detailed in subsection 5.1.1.

Almost all the existing proposals for certified notifications include the existence
of a Trusted Third Party (TTP) to solve disputes and to ensure fairness between the
different parties of the exchange. This TTP can play an important role (pessimistic pro-
tocols), participating in all the steps of the exchange, or a more relaxed role (optimistic
protocols), where TTPs are only active in case of dispute between the parties.

Fair exchange protocols proposed so far usually use TTPs [81, 82, 83], which are
responsible for resolving any conflict that arises as a result of interrupted exchanges
or fraud attempts. In addition to that, these protocols normally use non-repudiation
mechanisms in order to generate evidence that proves the behavior of the actors of

34



5.1. Certified notifications or registered eDeliveries

the protocol. Currently, with the advent of blockchain technology and smart contracts,
TTPs can be replaced or complemented by this new know-how, which opens a range of
new possibilities to find effective solutions to the electronic versions of the protocols
that fulfill the generic pattern of fair exchange of values. A method for designing new
fair exchanges by means of the Bitcoin network is to motivate parties to complete the
protocol in order to ensure fairness by using a bond or a monetary penalty for dishonest
parties [84, 85, 86].

The ideal properties for fair certified notification protocols [87, 88, 89] are:

• Effectiveness. If both parties have the correct behavior, they will receive the
expected items.

• Fairness. After completion of the phases of the protocol, either each party re-
ceives the expected item or neither party receives any useful information about
the other’s item. We can have weak fairness if at the end of the execution, both
parties have received the expected items or if one entity receives the expected
item and another entity does not, the latter can get evidence of this situation.
A multiparty protocol is said to be fair if, at the end of the protocol, all parties
receive what they expect or none of them receive any valuable information.

• Timeliness. At any time, each party can unilaterally choose to terminate the pro-
tocol without losing fairness. A multiparty protocol is said to respect timeliness if
all honest entities can terminate the protocol in a finite amount of time without
losing fairness.

• Non-repudiation. If an item has been sent from a sender to a receiver, the sender
cannot deny the origin of the item and the receiver cannot deny receipt of the
item.

• Verifiability of Third Party. If the third party does not behave as expected, re-
sulting in the loss of fairness for a party, any other party can prove this fact in a
dispute.

• Confidentiality. Only the sender and the receiver of the notification know the
contents of the certified message. A multiparty protocol is said to be confidential
if only the aimed honest recipients can reveal the message.

• Efficiency. An efficient protocol uses the minimum number of steps to allow an
effective exchange at a minimum cost.

• Transferability of evidence. The proofs generated by the system can be trans-
ferred to external entities to prove the result of the exchange.

• State Storage. If the TTP is not required to maintain state information when it
needs to be involved in the exchange, then the system is stateless.

Some of the above properties cannot be achieved in the same protocol. The authors
of [90] enumerate the incompatibilities among the ideal features. Some examples
are Weak Fairness and Transferability of Evidence, Stateless TTP and timeliness, and
Verifiability and transparency of the TTP. In this research, we will see that in a protocol
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that offers weak fairness, a party cannot transfer the evidence to an arbiter since the
other party could have contradictory evidence.

There can exist incompatibility among some of the properties and it can be difficult
to achieve simultaneously some other properties. Some protocols solve the exchange
efficiently with an optimistic TTP but only achieve weak fairness [91]. Other systems
focus on the achievement of specific features such as the transferability of the evidence
[92] the verifiability of the TTP [93], the avoidance of the selective rejection based on
the identity of the sender [94], the flexibility to allow the delivery to multiple receivers
[95] or the reduction of the volume of state information that the TTP must store [96].

There are surveys like [88] that analyze the properties of these exchanges in multi-
party scenarios. In the same way, as in the exchanges between two parties, the literature
does not agree on the properties that the protocols must offer, which is why a compro-
mise is made between properties, depending on the specific application.

There is a dominant trend in the use of an optimistic approach of the Trusted Third
Party in multiparty protocols. For example, in [97] there is a protocol that uses group
signatures with an online TTP, [95] presents an efficient multiparty optimistic protocol
with the properties of asynchrony and verifiability of the TTP while [98] describes a
more efficient, asynchronous optimistic protocol.

There are some previous studies [99, 100, 101, 102] on fairness using blockchain
that focus on fair purchase operations between a product or a receipt in exchange for
cryptocurrencies (usually Bitcoin).

In [103] we can see, for the first time, a smart contract for the resolution of a purchase
operation while [104] uses smart contracts and trusted execution environments to
guarantee the fair exchange of payment and the result of execution. The authors
investigate the fair exchange problem and propose two solutions for fair payment using
smart contracts supported by the functionality of blockchain with a Turing-complete
language. Thus, most of the solutions using blockchain technology for fair exchanges
are focused on performing atomic payments. For example, in [105] Delgado-Segura et
al. propose a protocol based on Bitcoin scripting language for fair exchange between
data and a payment where the seller of the data cannot cash in the payment if the buyer
has not obtained the data and the buyer will not get the data without executing the
payment. In [85] some variants of a protocol for exchanging Bitcoins for digital goods
are presented by using an escrow system. Also in [106] another problem related to fair
exchange and blockchain technology is studied. The authors propose a solution for a
Proof-of-Delivery of physical assets without the involvement of any TTP. The provided
solution can be applied to many shipped physical items in exchange for a payment.

In [107], Hasan et al. propose a non-repudiation protocol using blockchain tech-
nology and the Ethereum smart contracts. This solution is applied to a trade exchange
between crypto-tokens and digital assets. The protocol requires a deposit of collateral
by the involved parties to incentivize the honest behavior of the actors. Thus, this
protocol is only appropriate for trade scenarios to provide proof of delivery but the
fairness of the exchange between sender and receiver is not proven. Esposito et al. in
[108] describe a possible blockchain notification system for mobile apps. The system
is applied to event-based subscriptions supported by a blockchain infrastructure de-
ployed as a cloud service, however, the concision of the proposed system is not clear
and no smart contracts are proposed to secure the messaging scheme. Also, Zupan
et al. in [109] propose a notification system based on smart contracts deployed on a
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blockchain using Hyperledger Fabric. Although the system provides authentication via
certificates issued by Fabric’s CA, this scheme does not provide either a fair exchange
scheme of delivery notifications or proof of reception of the issued information.

A multiparty certified notification allows the sender to send a message efficiently
to multiple receivers. Typically, such protocols employ TTPs in optimistic approaches
to manage the exchange and do not utilize blockchain technology. For instance, [110]
presents a proposal for a multiparty fair exchange that operates optimally for any net-
work topology, requiring only a constant number of rounds and relying entirely on the
TTP for ensuring fairness. Additionally, [88] describes a multiparty non-repudiation
scheme as a protocol where "n | n > 2 entities agree to use a non-repudiation protocol for
exchanging messages (general or specific purpose) and collecting evidence of the transac-
tions performed for the exchange of those messages". The method of message exchange
can vary based on the application, with configurations such as ring or mesh networks or
a one-to-many distribution approach. Despite these developments, there are currently
no proposals that leverage blockchain to address multiparty fair exchanges.

5.1.1 Qualified electronic registered delivery services

In July 2016, Regulation (EU)910/2014 of the European Union Agency for Network
and Information Security [80], also known as eIDAS Regulation, became applicable.
This regulation establishes the rules on electronic identification and trust services for
electronic transactions in the internal market and covers all 28 member states.

Several trust services are defined in the document: electronic signatures, seals,
timestamps, registered delivered services and certificates for website authentication.
The regulation introduces the notions of qualified trust service and qualified trust
service providers with the requirements and obligations that ensure the high-level
security of the trust service. Also, there are a series of documents, like [111] that aim to
assist parties wishing to use the aforementioned services.

In the US we can find the FICAM Trust Framework Solutions (TFS)1, the federated
identity framework for the U.S. federal government. It includes guidance, processes and
supporting infrastructure to enable secure and streamlined citizen and business-facing
online service delivery. However, the framework does not include the specifications for
the registered electronic delivery of data.

Certified notifications or registered delivery services are mainly offered by postal
services in many countries and they have different denominations depending on each
service provider. For instance, most postal services offer a Registered mail service that
includes the sending of lettermail, documents and valuables. In the case of the United
States Postal Service (USPS), the service is called Certified Mail, but it also offers a Reg-
istered Mail service that additionally provides the Chain of custody properties. In other
words, the collection of information that provides evidence about the chronological
actions in the delivery service or sequence of custody, control, transfer, analysis, and
disposition of the delivery. Also, the Registered Mail service of the USPS can specify
the delivery status or attempted delivery status when the item reaches its destination 2.
This way, these kinds of services provide evidence that a user who acts as a receiver (or
set of receivers) has access to the data since a specific instant. As trust services, these

1https://www.idmanagement.gov/trust-services/
2(https://faq.usps.com/s/article/What-is-Registered-Mail#international)
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proposals must offer a high level of security and protection of the privacy of the users
but they also have to consider the regulations on the subject. Therefore, distributed
ledger, data protection and immutability features of the blockchain technologies make
the blockchain an ideal tool to offer trust and data trail for new certified notifications
or eDelivery solutions.

We will focus on the electronic registered delivery service, also called eDelivery.
For simplicity, we will use the term Certified Notification in the proposed protocols.
Data sent and received using this service achieve the properties of the integrity of the
data, the identification of the sender of the data and also of its receiver. Examples
of the use of qualified electronic registered delivery services are electronic registered
mail, official submissions in e-government services, access and exchange of sensitive
data and notarization of events. It is important to highlight that the eIDAS regulation
establishes the principle that an electronic document should not be denied legal effect
because it is in electronic form.

Article 3.36 of the regulation [80] states that an eDelivery service is "a service that
makes it possible to transmit data between third parties by electronic means and provides
evidence related to the handling of the transmitted data, including proof of sending and
receiving data, and that protects transmitted data against the risk of loss, theft, damage
or any unauthorized alterations".

A qualified eDelivery service must offer the following functionalities according
to the directive: data integrity, authentication of origin (both natural person or legal
person) and authentication of the time of the delivery. Confidentiality is not considered
a core functionality but it is usually provided as part of a more complete solution. This
consideration will be taken into account in the design of the protocols. For an eDelivery
service in order to be a Qualified Electronic Registered Delivery Service according to
[80], the service must be provided by qualified trust service providers whose compliance
with the requirements is regularly checked by an accredited entity.

The data, that can be sent in an eDelivery service from a sender to a receiver, can
be of any type (thus, it includes electronic documents) and the transmission means
can be of any kind. Usually, the data referred to by the definition of eDelivery services
is generally called a "message". This way, certified notifications and certified electronic
mail are included in the e-Deliviery services. Email is a means of transmission that can
be used, but eDelivery is not limited to email. Registered email is a general-purpose
implementation of eDelivery [111], whereas there are more specific eDelivery services.

Some use cases for eDelivery services are included in [111]:

• Electronic registered mail, an enhanced form of email transmitted by electronic
means that provides evidence relating to the handling of an e-mail including
proof of submission and delivery.

• Delivery of official electronic notifications and supporting official submissions in
eGovernment services.

• Accessing and exchanging sensitive electronic data.

• Electronic notarization of events.

38



5.2. Contract signing

5.2 Contract signing

Contract signing is increasingly used in electronic commerce and digital government
to implement electronic signatures in a cryptographically protected way. An electronic
signature is a juridic concept, where a person validates the content of an electronic
message through any electronic medium that is legitimate and permitted. One of these
electronic mediums is a digital signature, a cryptographic mechanism that lets anyone
verify the authenticity and integrity of a message, checking that a message was created
by a known sender and that the message was not altered in transit.

This electronic signature of a contract can’t be done simultaneously and in the same
place by both parties. For this reason, we need a fair exchange protocol that can also
follow the regulations for this kind of service, such as [80] or [112]. In these documents,
we can see that there exist some legal concerns like the proofs generated using the
signature service and the time of the signature of the contract. These proofs will be
useful in case of disputes among the signers. For example, in [112] it is described a
model that has three steps: offer, acceptance, and acknowledgment of the acceptance.

Typically, the electronic contract signing depends on a Trusted Third Party (TTP)
that can manage the exchange and solve the conflicts that could arise among the signers.
There are protocols, like [113, 82, 114, 115], that involve more or less these TTPs, from
in-line protocols where the TTP is involved in all the steps, on-line protocols where
the TTP is involved only in certain steps of the signature, and optimistic protocols
where the TTP is only involved in case of disputes among the signers or in case of
execution problems. The protocols that need the presence of a TTP have problems like
low performance, high costs, and security concerns. With that, removing the TTP from
the protocol would be very useful and efficient for electronic contract signing protocols,
like in [116].

There are also different proposals for multiparty contract signing protocols. One of
the biggest issues in the multiparty signature is efficiency. For example, in [115] we can
see a low performance in the solutions, because when the number of signers increases,
the execution costs, the number of interactions among the parties, and the general
complexity of the protocols also increase.

Blockchain can be included in the design of contract signing protocols, but like
in other protocols, the data and state changes that involve the different participants
of the signature will be stored in the blockchain ledger. On the other hand, the time
when the transactions are performed is also stored in the blockchain. With that, we will
have all generated evidence of that signature in the blockchain ledger, but this is to the
detriment of privacy properties, such as confidentiality of data.

There are several proposals to manage the exchange of signatures in contract sign-
ing using blockchain technology. For example, [117] proposes a system that stores
signed documents in the blockchain using RSA signatures embedded in a PDF file.
[118] proposes a complex solution for the signature of a contract that is limited to three
signers, suitable for the fog computing paradigm. This is a very expensive proposal
because it uses the threshold public key encryption and verification cryptography to
provide fairness to the exchange, which is computationally very expensive. In [119] we
can see a solution that uses the Emercoin blockchain and applies its Name-Value Stor-
age (NVS) technology to propose a method for multilateral data signing. In this solution,
the authors claim that "presumably" the solution could be useful to sign contracts and
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deeds. But this contract signing scheme can be only applied with the NVS technology
on the Emercoin blockchain. The solution proposed in [116] presents a contract signing
protocol with proof of existence that also uses blockchain technology. It’s based on
a three-step pattern, and the blockchain ledger is not used to store the contract, it’s
used to timestamp a hash of the contract. However, this protocol is not able to check
the integrity of the contract to be signed. [120] presents another solution that uses the
Bitcoin blockchain and smart contracts to create a multiparty fair exchange in a star
topology that could be applied to the exchange of signatures. This protocol guarantees
fairness, but it does not consider some properties of contract signing protocols and it is
not as efficient as an explicit contract signing system.

5.3 Micropayments

E-commerce evolves day by day, introducing new applications and services that trans-
form how we interact with digital markets. Among these innovations, micropayments
facilitate the payment of small amounts for low-cost goods or services, a process com-
monly referred to as micropurchases. These transactions attend to unique security and
functional requirements within the field of electronic payments. Primarily utilized for
acquiring intangible goods such as digital media (music, videos), electronic data, virtual
gifts, and access to premium digital content (e.g., newspapers and product reviews),
micropurchases involve low-value transactions that require highly efficient payment
systems to remain cost-effective.

The principal challenge in facilitating micropurchases lies in minimizing operating
costs—including transaction fees and processing overheads—to ensure profitability
for both sellers and buyers. This is crucial in services like location-based services
where transactions are frequent but involve small amounts. By simplifying the payment
process and reducing associated costs, micropurchases enable users to economically
acquire digital content and services on a per-use or subscription basis. This streamlined
financial mechanism is essential for the monetization strategies of companies dealing
with digital content and services, ensuring that the dynamic nature of e-commerce is
supported by equally dynamic and efficient payment solutions.

First, we need to consider that security properties are a primary concern for the
development of micropayment systems to avoid financial risks for merchants and also
to ensure customer privacy. On the other hand, the efficiency and cost of individual
transactions are critical factors for the development of these systems. However, effi-
ciency and security are generally opposed, so micropayments must provide a trade-off
between these requirements.

Cryptocurrencies, digital means of exchange that we have talked about in previous
sections, have many advantages over fiat currencies, but they also have limitations,
such as the high costs of transactions. In addition, the operations carried out on the
blockchain are not completely anonymous, since they can be traced by being publicly
visible. But users cannot be easily identified, as they use addresses that are pseudonyms.

We can make instant transactions outside the blockchain using so-called payment
channels, which will allow us to make instant transactions with cryptocurrencies. These
allow us to overcome the problems of the blockchain in terms of high costs and scala-
bility, in terms of transactions per second and the space occupied in it. The payment
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channels are based on the inclusion of many operations in the same transaction of the
main blockchain. Therefore, they are an excellent second-layer solution that eliminates
direct dependency on the blockchain.

[121] presents an efficient and secure micropayment scheme, where a fair exchange
between the currency and the desired good or service is described, ensuring anonymity
and the impossibility of tracing customers. Rivest et al. [122] introduce two simple
micropayment schemes, PayWord and MicroMint, which use offline hash chains, but it
still didn’t use blockchain technology.

The emergence of the Ethereum blockchain has led to the proposal of a multitude
of solutions with micropayment channels. For example, these kinds of channels on
the Ethereum network have already been discussed in [123], trying to improve their
performance and cost. The protocol proposed in this article scales logarithmically with
the capacity of the channel, using a variant of the Merkle tree, and does not require
the payer to lock the entire balance at the creation of the channel. In [124] Di Ferrante
also showed how to build payment channels in Ethereum using only "50 lines of code",
between the payer and the payee. The smart contract implemented allows verifying the
digital signatures of payments made outside the blockchain using the operation code
ecrecover, which returns the address of the signer. [125] also uses Ethereum technology,
proposing the decentralized Hybrid cryptocurrency Exchange (HEX) to combine the
benefits of CEX (centralized) and DEX (decentralized) token exchanges. This HEX
extends existing solutions by adding a new payment channel layer to benefit frequent
merchants and alleviate backlog congestion.

In [126] was proposed the use of a network of multihop and anonymous payment
channels. The solution is based on Elliptic Curve Cryptography (ECC) and has been
proven to be secure while achieving payment path privacy and sender and receiver
anonymity.

There are also other networks such as Raiden [127], a network for instant trans-
actions, which operates on the Ethereum platform, that aims to solve the scalability
problem that currently has this network. Raiden is extended in [128] to implement the
payGo protocol. The results indicate that, in comparison with the conventional linear
pricing for latency, payGo can improve about 90% of the payer’s utility by optimizing la-
tency and incentive. Raiden network is an analog to the idea of the Lightning Network
[129], a second layer payment protocol designed to be layered on top of blockchain-
based cryptocurrencies such as Bitcoin. It is intended to enable fast transactions among
participating nodes and proposes a solution to the Bitcoin scalability problem.

In the case of cryptocurrencies, the solution to implement micropayments lies
in designing layer two protocols [130] in which each payment operation is prevented
from representing a transaction on the blockchain. A channel, once opened, allows
off-chain operations to be carried out that will not materialize on the blockchain until
the channel is settled.

However, although payment channel networks have tried to mitigate the scalability
problems inherent to blockchain networks, they still do not provide significant security
and privacy guarantees, as demonstrated in [131].
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5.4 Identity-related attribute verification preserving privacy

Self-Sovereign Identity (SSI) and Privacy-Preserving Identity (PPI) concepts are becom-
ing increasingly prominent in the digital world, driven by growing concerns about data
privacy and security [132, 133, 134]. Both are related concepts but have some key differ-
ences. Privacy-Preserving Identity focuses on maintaining user privacy and security
during the identity verification process. It can involve the use of technologies such as
ZKPs to verify user identities without revealing any personally identifiable information.
Self-Sovereign Identity, on the other hand, is a broader concept that includes giving
individuals complete control over their personal data and identities [135]. It is based on
the principle that individuals should be the owners and controllers of their own identity
information, rather than relying on centralized authorities or intermediaries.

While both Privacy-Preserving Identity and Self-Sovereign Identity aim to address
issues around privacy and security in identity verification, they differ in their ap-
proach. Privacy-Preserving Identity focuses on the verification process itself, while
Self-Sovereign Identity is a more comprehensive concept that encompasses the en-
tire identity management system, including ownership and control of personal data.
Windley’s book, "Learning Digital Identity: Design, Deploy, and Manage Identity Ar-
chitectures," provides further insights into how digital identity architectures can be
designed and managed effectively, supporting both privacy-preserving techniques and
Self-Sovereign Identity principles [136].

Decentralized digital identity management systems face several significant security
challenges. A primary challenge is ensuring the confidentiality of personal data to
prevent it from being publicly available. Identity and personal information theft are
critical concerns, where attackers try to commit fraud using sensitive user data through
malicious actions [137].

Current threat landscapes reveal that decentralized systems are vulnerable to vari-
ous specific attack vectors. Including data breaches where unauthorized entities gain
access to sensitive information, phishing attacks aimed to mislead users into revealing
personal data, and social engineering attacks to exploit human behavior to obtain
sensitive information.

Moreover, a digital identity management system must ensure the integrity and
authenticity of the identity attributes. It should be possible for an authorized external
party to verify the attributes, ensuring effectiveness and the transferability of the data
evidence.

In addition to these common risks digital identity protocols must address additional
challenges associated with the underlying technologies used in the implementation.
A major concern is the usability of the protocol which in the usage of blockchain
technology is highly related with the key management. Concern that can be mitigated
by providing a secure key management system for users or by implementing an account
abstraction system.

Furthermore, the selected blockchain network must address important risks and
potential attacks. It should offer scalability to handle a large number of transactions and
be secure against various threads, including Sybil, Denial of Service (DoS), Distributed
Denial of Service (DDoS), Domain Name System (DNS) attacks, and 51% attacks [137].
The robustness of the network against these threats is critical to the overall security
and effectiveness of the digital identity management system. For this reason in the
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presented evaluation of properties we define a group of general assumptions mainly
related to the selected blockchain, along with the assessment of the correct achievement
of the above mentioned security properties.

Christopher Allen first introduced the term Self-Sovereign Identity (SSI) in 2016
[138], emphasizing the principles of freedom and decentralization within such systems.
Mazzocca et al. provide in [139] a comprehensive survey of Decentralized Identi-
fiers (DIDs) and Verifiable Credentials (VCs) within SSI systems, marking a significant
transition from centralized to decentralized digital identity management. It offers an
overview of DIDs and VCs, standardized by the World Wide Web Community (W3C), to
enhance secure and decentralized digital identity systems. The paper reviews available
implementations and details their applications across various use-case scenarios be-
yond SSI systems, examines recent regulations and global initiatives related to these
technologies, and identifies challenges hindering their real-world adoption while sug-
gesting directions for future research. This extensive analysis aims to fill the gap in
the existing literature by providing a thorough understanding of DIDs and VCs, their
applications, regulatory landscape, and potential future developments. In their work,
Satybaldy et al. [140] discuss the evolution of digital identity systems, positioning SSI as
the subsequent stage in identity management. The discussion underscores the pivotal
role of blockchain technology and distributed ledgers in advancing SSI systems. Con-
versely, Keršič et al. [141] leverage SSI principles to demonstrate the feasibility of voting
in Decentralized Autonomous Organizations (DAOs). Their publication outlines the
creation of SSI-based DIDs and the management of VCs, ultimately serving as voting
tickets in a DAO. However, it’s worth noting that their approach does not incorporate
SBTs or ZKPs.

The user experiences significant benefits through the decentralization of digital
identity management, attaining full ownership of their identity. Mecozzi et al. [142]
provides a comprehensive overview of the current landscape of Identity and Access
Management within the blockchain realm, along with relevant regulatory frameworks
and guidelines.

The use of SBTs in SSI systems is explored in [143], while [144] provides further
insights into the potential of Non-Transferable Non-Fungible Tokens for enhancing
document traceability within decentralized identity systems. [145] introduces a novel
OpenID Connect (OIDC) model leveraging Ethereum Blockchain and ERC-721 tokens
to enhance security and privacy. Additional investigations, such as those conducted by
[146, 147, 148], also delve into the utilization of SBTs. However, these studies exhibit
significant limitations. Notably, none of them provide comprehensive details on the
encryption and verification methods for the associated data. This lack of specificity
hampers the understanding of how SBTs can ensure data security and privacy within SSI
frameworks. Moreover, the absence of a unified approach to integrating ZKPs with SBTs
to strengthen privacy remains a critical gap in the literature. As a result, these proposals
fall short of demonstrating a robust and scalable solution for secure, privacy-preserving
and non-transferable credential verification in decentralized identity systems.

Numerous existing proposals in the literature improve privacy in identity verifica-
tion contexts through the utilization of ZKPs. For instance, [149] is built on pairings,
short signatures, commitment and ZKP cryptographic schemes, and [49] adopts a ZKP-
based approach as a verifiable computation technique to validate the accuracy of a
differentially private query output. Other studies, like [150] and [151], outline privacy-
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preserving identity schemes, utilizing a blockchain-stored Merkle tree to ensure the
user data is not altered. Although these solutions incorporate ZKPs, they omit storing
the data on-chain, the use of SBTs, and the identity holder’s public/private key for
data encryption. In a more intricate system, Wang et al. [152] describe a decentral-
ized identity system generating ZKP proof during the verification and storing it in a
smart contract. To preserve anonymity, user-account mappings employ linkable ring
signatures. Despite its complexity, this solution, involving Soul and Seed accounts,
does not leverage the public/private key of the end user for data encryption. Other
solutions like zkLogin [153] also use ZKPs to authenticate transactions, ensuring that
the link between a user’s off-chain and on-chain identities is hidden. [154] describe
a blockchain-based decentralized Identity Management System (IMS) referred to as
BADIMAC. This model ensures secure and transparent identity verification through a
decentralized consensus-based design. Zero-Knowledge Proofs verify claims without
disclosing data, while documents are encrypted with the owner’s public key, ensuring
they can only be decrypted by the owner. Verification requests reveal only necessary
information with user consent, and the results are securely encrypted and returned to
the requester. The proposal presented in [155] delves into digital identity in the Web
3.0 era, introducing a new authentication scheme using verifiable credentials. The
paper employs blockchain, smart contracts, and cryptographic concepts like Public Key
Infrastructure (PKI) and ZKPs in its theoretical framework. The main findings show that
the proposed scheme improves user control, security, and privacy in digital interactions.
The broader implications highlight a move towards self-sovereignty in digital identity
management and less dependence on centralized authorities for online transactions.
Song et al. in [156] propose a novel approach that separates identity verification and
credential issuance into two distinct roles, significantly mitigating the risk of identity
information leakage, a common issue in traditional schemes where a single entity
performs both tasks. It uses linkable ring signatures to map the user’s physical identity
to a digital identity. It also introduces advanced techniques like cryptographic commit-
ments, ZKPs, randomized signatures, cryptographic accumulators, and AES encryption
to support proactive and passive identity revocation while preserving privacy. The study
presented in [157] provides a comprehensive review of the literature on integrating ZKP
technology into blockchain to enhance privacy in identity sharing while maintaining
transparency. Notably, none of these works that propose ZKP-based mechanisms to im-
prove privacy in identity verification contexts [149, 49, 150, 151, 152, 153, 155, 156, 157]
utilize SBTs to hold the user’s digital identity.

The Sovrin Foundation [158] outlines a decentralized SSI framework, empowering
individuals and organizations to autonomously manage their digital identities without
dependence on a central authority. This framework strategically integrates ZKPs as a
crucial element for preserving privacy and upholding data integrity. Notably, the Sovrin
Foundation identity protocol does not incorporate SBTs. Its primary emphasis is on
delivering a decentralized SSI framework, with a particular focus on the overall architec-
ture rather than the implementation of specific token models. There are other projects
such as uPort [159], Holonym [160], and Iden3 [161] contributing to the development
of SSI systems using blockchain technology. However, none of these projects integrate
SBTs, public key cryptography, and ZKPs.

A privacy-preserving Multi-Factor Authentication (MFA) framework for zero trust
networks is presented in [162]. It proposes a Distributed Authentication Mechanism
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(DAM) that leverages the decentralized architecture of blockchain technology. The
framework features a distributed One-Time Password (OTP) creation method, where
each node generates a segment of a secret, which is then aggregated to form an OTP. A
ZKP scheme is integrated to ensure privacy-preserving OTP verification. Additionally,
modified ERC-721 tokens are used as unique, non-transferable authentication tokens.
These tokens, which have a specific period of validity, are used for authenticating
user access within their valid time frame. Therefore, while they provide a secure and
controlled method for verifying user authentication, these tokens are not intended to
hold or represent the user’s digital identity.
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6
DEVELOPMENT TOOLS OF THE PROPOSED

SOLUTIONS

In this thesis, several of the proposed protocols have been implemented as smart con-
tracts on the Ethereum blockchain, developed using the Solidity programming language.
This choice of technology leverages Ethereum’s robust and versatile environment, al-
lowing for the creation of complex, decentralized applications integral to e-commerce
protocols. Following the development phase, each smart contract underwent testing
through unit tests to ensure reliability and functionality. A critical aspect of our analysis
focused on the gas costs associated with executing these contracts, providing insight
into their efficiency and the economic feasibility of deploying them on Ethereum or
other EVM-compatible networks. This evaluation is paramount, as gas costs directly
impact the scalability and user adoption of blockchain-based applications.

In the literature, several resources, such as Prusty (2017) [163] and Antonopoulos
(2019) [3], offer comprehensive methodologies and best practices for writing and testing
smart contracts. These references typically advocate for the use of the web3.js1 library
for interacting with Ethereum nodes. However, diverging from this standard approach,
our work employs ethers.js2, a library known for its lightweight architecture and increas-
ing popularity among developers. ethers.js offers a streamlined and efficient interface
for interacting with the Ethereum blockchain, which has contributed significantly to its
adoption and the robustness of our testing procedures.

For a subset of the proposed solutions, specifically the confidential and non-confi-
dential certified notifications and the decentralized and confidential digital identity
using ZKP, we have advanced to the development of user interfaces. These interfaces
are designed to enhance user interaction, providing an intuitive and secure means for
accessing the functionalities offered by our smart contracts. The development process
of these interfaces, discussed in subsequent sections, adheres to principles of user-

1https://web3js.org/
2https://ethers.org/
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centric design, ensuring that the end product is not only functional but also accessible
to users with varying degrees of blockchain familiarity.

The creation and testing of these protocols, along with the strategic choice of
development tools and libraries, underscore our commitment to developing scalable,
efficient, and user-friendly blockchain-based e-commerce solutions. Our approach,
detailed in the following sections, reflects a comprehensive understanding of both
the technical and user-experience aspects critical to the successful implementation of
these protocols in real-world scenarios.

6.1 Working Environment for the development of the smart
contracts

A common working environment for Ethereum smart contract development typically
involves a combination of tools, frameworks, and infrastructure that enable developers
to create, test, and deploy smart contracts on the Ethereum blockchain. Here’s an
overview of the components we have used in our environment to develop the smart
contracts:

1. Integrated Development Environment (IDE): We have used popular IDEs like
Visual Studio Code3 and Remix4. These IDEs provide a user-friendly interface for
writing, debugging, and deploying smart contracts. They offer features such as
syntax highlighting, code completion, and integrated testing frameworks. Visual
Studio Code has a version for Windows, Linux, and macOS, while Remix is a web
application.

2. Solidity Language: Solidity is the primary programming language for Ethereum
smart contract development. It is a statically typed language specifically designed
for writing smart contracts. We have written Solidity code to define the logic and
behavior of the smart contracts of the proposed protocols.

3. Ethereum Client: Developers need an Ethereum client to interact with the Ethe-
reum network. Popular choices include Geth5 and Parity6. These clients allow you
to connect to the Ethereum network, create local test networks, deploy contracts,
and interact with existing contracts. But to facilitate the interaction with the
Ethereum network, we have used one of the simplest solutions: an Infura7 node.
Infura is a popular web service that provides developers with a reliable and
scalable infrastructure to connect to the Ethereum blockchain. It acts as a gateway
or access point to the Ethereum network, allowing developers to interact with
the blockchain without having to run their own Ethereum node.

3https://code.visualstudio.com/
4https://remix.ethereum.org
5https://geth.ethereum.org/
6https://www.parity.io/technologies/ethereum/
7https://www.infura.io/
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4. Testing Frameworks: Robust testing is crucial for smart contract development.
Tools like Truffle8 and Hardhat9 provide testing frameworks that help develop-
ers write and execute unit tests, integration tests, and even simulate complex
scenarios to ensure the reliability and security of the smart contracts. We have
chosen Hardhat as our main framework. Hardhat is an open-source development
environment and task runner specifically designed for Ethereum smart contract
development. It offers a wide range of features and tools that help developers
build, test, and deploy smart contracts more efficiently.

5. Ethereum Network: Developers deploy and interact with smart contracts on
the Ethereum network. We have used the Harhat local test network, and real
Ethereum test networks like Goerli and Rinkeby, for development and testing
purposes. In some cases, we also have tested our solutions in the Mumbai test
network, a test network specifically designed for Ethereum developers and users
of the Polygon network. It is a Layer 2 scaling solution that aims to improve the
scalability and performance of Ethereum-based applications.

6. Web3 Libraries: Web3 libraries, such as Web3.js10 or ethers.js11, provide APIs to
interact with the Ethereum network. These libraries allow developers to send
transactions, query contract data, and listen for events emitted by smart contracts.
In this case, we have chosen ethers.js.

7. Version Control System: We have used Git12, a commonly used software for
version control to manage code changes, collaborate with team members, and
maintain a history of the project. We also have used GitHub13, an Internet hosting
service for software development and version control using Git, to publish the
repositories with the code of the proposed solutions.

8. Security Tools: To enhance smart contract security, developers may use tools
Slither14 to analyze code for vulnerabilities, perform static analysis, and detect
potential security risks. We have used this software in some of the protocols.

In Figure 6.1 we have depicted our development configuration. It’s important to
note that the Ethereum ecosystem is continually evolving, and new tools and frame-
works may emerge over time. Developers should stay updated with the latest develop-
ments and adapt their working environment accordingly.

To integrate the majority of these tools, we have used Node JS15, a JavaScript runtime
that allows developers to execute JavaScript code outside of a web browser. It provides
a robust and scalable environment for server-side applications, making it a popular
choice for Ethereum smart contract development. Functionalities provided by Node
JS are implemented by independent modules and packages. In this way, we use NPM

8https://trufflesuite.com/
9https://hardhat.org/

10https://web3js.readthedocs.io/
11https://docs.ethers.org/
12https://git-scm.com/
13https://github.com/
14https://github.com/crytic/slither
15https://nodejs.org/
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Figure 6.1: Smart contracts development architecture

(Node Package Manager)16 to easily install/uninstall, configure and update the different
modules and software packages of the platform (called third-party modules).

An important configuration file of a Node JS project is package.json. This is a
JSON format file that is stored in the application root folder. This file provides the
specific aspects to manage the module dependencies that the application requires.
For instance, the file states information like our application name, package versions
(name and version together work as an identifier that is assumed to be unique), license,
directories, version control repository and so on. Keeping in mind this structure, a
smart contract ready to deploy will be stored inside a folder within the solidity file that
specifies the code of our application, the package.json and the node modules folder
with all the necessary packages.

To see all the required modules in a repository, we can look at the dependencies
section in the package.json file. Commonly packages used in a smart contract repository
are:

• ethers.js17 is a powerful JavaScript library that provides a wide range of tools and
utilities for interacting with the Ethereum blockchain. It offers a user-friendly
and consistent API for working with smart contracts, sending transactions, and

16https://www.npmjs.com/
17https://www.npmjs.com/package/ethers
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querying blockchain data. ethers.js supports multiple Ethereum networks, inte-
grates well with Node.js, and simplifies tasks like contract deployment, function
calls, and event listening.

• Hardhat18 is a development environment and task runner for Ethereum smart
contract development. It offers a comprehensive suite of tools and features that
streamline the development workflow. Hardhat supports tasks like contract com-
pilation, testing, deployment, and script execution. It integrates with popular
testing frameworks and provides an extensible plugin system, allowing devel-
opers to customize their development environment according to their specific
requirements.

• hardhat-gas-reporter19 is a plugin for Hardhat that generates detailed gas con-
sumption reports for smart contract transactions and function calls. It helps
developers analyze and optimize gas usage in their contracts. The gas reporter
plugin provides valuable insights into gas costs, allows for performance compar-
isons, and aids in identifying potential gas optimization opportunities.

• OpenZeppelin20 is a widely used library for developing secure and audited smart
contracts on Ethereum. It provides a collection of reusable and battle-tested
contracts that follow best practices for security and functionality. OpenZeppelin
covers various areas like access control, token standards (ERC-20, ERC-721),
payment channels, and more. By leveraging OpenZeppelin, developers can save
time and reduce risks by utilizing pre-audited and community-reviewed smart
contracts.

• Mocha21 is a widely adopted JavaScript testing framework that provides a flex-
ible and feature-rich environment for writing test suites. It is commonly used
in Ethereum smart contract development to write and execute unit tests and
integration tests. Mocha offers powerful features such as test organization, test
hooks, asynchronous testing support, and comprehensive reporting, making it a
preferred choice for testing Ethereum smart contracts.

• Chai22 is a popular assertion library for JavaScript that is often used in Ethereum
smart contract testing. It provides a readable and expressive syntax for defining
assertions, making tests more concise and intuitive. Chai offers a variety of
assertion styles (such as should, expect, and assert) and integrates seamlessly
with testing frameworks like Mocha.

• circomlib23 is a library that provides cryptographic primitives and circuits for
zero-knowledge proofs (ZKPs) on Ethereum. It includes functions and tools for
building circuits using the Circom language, which is used to create arithmetic
and boolean circuits for ZKPs. circomlib is commonly used for developing privacy-
focused applications and protocols on Ethereum.

18https://www.npmjs.com/package/hardhat
19https://www.npmjs.com/package/hardhat-gas-reporter
20https://www.npmjs.com/package/@openzeppelin/contracts
21https://www.npmjs.com/package/mocha
22https://www.npmjs.com/package/chai
23https://www.npmjs.com/package/circomlib
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• snarkjs24 is a JavaScript library for creating and verifying Zero-Knowledge Proofs
(ZKPs) on the Ethereum blockchain. It provides a set of tools for working with
Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARK)
proofs. snarkjs allows developers to generate proofs, verify proofs, and perform
other operations related to zero-knowledge proofs. It is commonly used in appli-
cations requiring privacy-preserving features, such as confidential transactions
or identity management.

Inside the package.json file we also define the scripts of the project. Important
scripts of a typical smart contract solution, using the Hardhat framework, are:

• Compile: This script compiles the Solidity smart contracts using the Solidity
compiler. It may also include additional steps like cleaning the build artifacts
before compilation.

• Test: This script runs the smart contract tests using a testing framework like
Mocha. It allows an optional flag to track the gas usage of test cases, which can
be useful for optimizing gas consumption.

• Deploy: This script deploys the smart contracts to a specified network, typically
the local Hardhat development network by default. It compiles the contracts, de-
ploys the desired contract using the deploy function from Hardhat’s deployment
module, and logs the deployed contract’s address.

6.2 Architecture of the web interface

In some cases, we have also developed the web user interface to interact with the smart
contracts deployed in a real test network like Rinkeby or Goerli. The architecture of
a web3 application that interacts with Ethereum smart contracts typically involves
multiple layers and components. Here’s an overview of the architecture that we have
used (see Figure 6.2):

Figure 6.2: Web3 application user interface architecture

24https://www.npmjs.com/package/snarkjs
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1. User Interface (UI) Layer

• React.js25: React.js is a popular JavaScript library for building user inter-
faces. It provides a component-based approach for creating interactive and
responsive UIs.

• React Router26: React Router is a library for handling routing within a React
application. It enables navigation between different views and components
of the web3 application.

2. Ethereum Integration Layer:

• Metamask27: Metamask is a browser extension wallet that allows users to
interact with Ethereum-enabled applications. It provides a secure way to
manage user accounts, sign transactions, and connect to the Ethereum
network.

• ethers.js: ethers.js is a powerful JavaScript library that serves as the bridge
between the web application and the Ethereum network. It provides a
set of APIs for interacting with smart contracts, sending transactions, and
querying blockchain data. It also handles the communication with the
Ethereum network through Metamask.

3. Smart Contract Abstraction Layer:

• Smart Contract ABIs: Application Binary Interfaces (ABIs) are JSON repre-
sentations of smart contracts that define the contract’s functions, events,
and data structures. ABIs are used to interact with smart contracts from the
web application.

• Contract Instances: Contract instances are generated from the smart con-
tract ABIs using ethers.js. They represent the deployed instances of the
smart contracts on the Ethereum network and provide methods for inter-
acting with the contracts’ functions and events.

4. Ethereum Network:

• The Ethereum network, including testnets (like Rinkeby or Goerli) or the
Ethereum mainnet, serves as the decentralized infrastructure where the
smart contracts are deployed and transactions are executed.

The flow of the application typically involves the following steps:

• The React.js components render the UI, presenting information and allowing
user interactions.

• When the user performs an action that requires interaction with a smart contract
(e.g., calling a function, sending a transaction), the request is sent from the UI
layer to the Ethereum Integration layer.

25https://www.npmjs.com/package/react
26https://www.npmjs.com/package/react-router
27https://metamask.io/
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• Metamask, as a browser extension, provides a pop-up window for the user to
review and confirm the transaction details, sign the transaction, and provide
access to the user’s Ethereum account.

• ethers.js, integrated with React.js, handles the communication with Metamask
and the Ethereum network, sending the transaction or querying data from smart
contracts.

• The Ethereum network processes the transaction or provides the requested data,
and ethers.js receives the response.

• The UI layer updates with the results, displaying the appropriate information to
the user.

By leveraging this architecture, developers can build web3 applications that seam-
lessly interact with Ethereum smart contracts using the Metamask wallet, the ethers.js
library, and React.js components.
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REJECTABLE NFTS PROTOCOL

As detailed in subsection 4.6.1, the EIP-721 standard proposal defines the interface
for Non-Fungible Tokens (NFTs). This type of token was designed to create unique
and non-fungible tokens, with the impossibility of being damaged or destroyed. The
EIP-721 standard has almost limitless applications: it can represent ownership of digital
or physical assets, unlock access to certain services, and more. In short, it can represent
any single object or right transferable between a sender and a receiver.

After analyzing the rejectability property of NFTs, we propose an improvement of
the EIP-721 standard to enable selective transfers of tokens. Currently, NFTs can be
transferred with the owner’s consent (by themselves or by an authorized party), but the
receiver cannot decline the reception of the token, which will be transferred to their
wallet. Therefore, we propose an enhancement to the NFT standard that allows the
rejection of token reception, creating a token usable in a secure way for applications
requiring selective reception.

This improved protocol for the EIP-721 standard, allowing rejection of token recep-
tion, is instrumental in another protocol discussed within this thesis. Notably, it will
be utilized in the "Two-steps Certified Notifications Protocol" described in Chapter 12.
The development of Rejectable NFTs becomes essential for advancing this protocol,
demonstrating its versatility and potential to enhance security and user control in vari-
ous blockchain-based applications. This highlights its significance in scenarios where
selective acceptance of digital assets is crucial.

7.1 Contribution

Regarding Blockchain technology, one of the most widespread uses of Ethereum or
compatible blockchain networks is the use of the ERC-20 and ERC-721 token standards.
The first represents a fungible token, interchangeable with each other because they all
represent the same value, and the second represents a non-fungible token, unique and
not interchangeable. Since these unique tokens can be transferred and the transfers are
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recorded on the blockchain, they could be considered a valid medium of information
transfer.

If we analyze the properties of Non-Fungible Tokens (NFTs), we can see that this
standard lacks inherent rejectability, which limits control over unwanted or unso-
licited transfers. Recognizing this gap, we propose the development of a new protocol,
Rejectable Non-Fungible Tokens (RejNFTs). This protocol, introduces the capability for
recipients to accept or reject NFTs, thus enhancing user autonomy and security within
the blockchain ecosystem.

A foundational concept in the field of fair exchange, particularly within the context
of certified email exchanges, is addressed in one of the seminal papers by Kremer
et al. [92]. This paper introduces the concept of no author-based selective receipt,
emphasizing the necessity for fair exchanges in certified delivery systems. Fairness
in this context is achieved when the recipient can make an informed decision about
accepting or declining the notification or delivery, thereby providing non-repudiation
of reception evidence.

The concept described by Kremer et al. is known as the selective receipt property,
which allows recipients to decide whether to accept or reject the delivery based on
certain criteria [92]. The paper distinguishes between two types of selective receipt:
one based on the content of the message and another based on the sender’s identity. It
argues that selective receipt based on content is not feasible for a notification or delivery
service, as it would undermine the integrity of the service. Conversely, rejection based
on the sender’s identity is possible, as recipients might infer the content of the message
from the sender’s identity, thus necessitating the concealment of the sender’s identity
until the recipient accepts the message.

This idea of selective reception of data has been used in several protocols since
its definition. There are previous studies related to the selective reception of certified
E-mail, like in [164] or [94]. These papers propose different solutions to the selective
reception of E-mails, to guarantee the non-repudiation of origin and reception proofs.

The explicit and clear acceptance of the exchanged item in fair exchange protocols
can lead a stronger protocol specifications with new interesting security features. We
have applied one of the consequences of the idea introduced by Kremer et al. in a fair
exchange of digital tokens by creating new evidence to reveal the receiver’s commitment
to accept the token. The introduction of this new evidence causes an interesting
property in a token transfer that we have called: discriminating or selective reception of
tokens. In other words, a receiver of a token has to be able to decide whether he wants
to be the new owner of it or not. Since the existing standards for tokens do not offer this
feature this thesis presents a new standard proposal.

Reviewing the Ethereum Improvement Proposals (EIPs) 1, that describe standards
for the Ethereum platform, we can see that there does not exist an EIP that lets the
receiver the possibility to cancel or reject the transfer of a token. There exists a pro-
posal, the EIP-1404, "Simple Restricted Token Standard" 2, that is an easily extendable
standard for issuing tokens with transfer restrictions. But if we see this proposal in
detail, we can check that this EIP doesn’t have the same goal as the one presented
in the current thesis. The EIP-1404 proposal tries to help token issuers manage their

1https://eips.ethereum.org/
2erc1404.org/
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compliance requirements, enforcing complex transfer restrictions. Some examples can
be: restricting the maximum ownership of a single individual or entity, preventing token
holders in a single jurisdiction from trading with token holders in another jurisdiction,
letting the issuer revoke a token if necessary, etc...

Regarding the withdrawn EIP proposals we can find the following related EIP docu-
ment:

• EIP-875. It proposes to reduce the cost of transfer transactions using a new
method called trade that allows its processing in batches and thus to make a
change of ownership by P2P.

Additionally, concerning the stagnant EIP proposals that have had more than six
months of inactivity as of July 2022, we have identified the following related EIPs:

• EIP-902 Token validation proposal. In this case, although the effect is not men-
tioned as applying to NFT tokens, they specifically mention a series of methods
intended to validate the change of ownership. This concept should apply to
Non-Fungible Tokens and we must define some mechanism to invalidate the
change of ownership transaction.

• EIP-926 Address metadata registry. In this case, an attempt is made to define a
metadata registry, in which a specific attempt is made to define a mechanism
to control "authorizations, acceptances of token content, and requests or com-
plaints". An interesting aspect of this proposal is the implementation of an
informal registry or issuing entity that allows such control, under a term called
provider.

• EIP-927. Generalized authorizations. In this proposal there is no mention of
a space or structure for metadata as in the previous case but, nevertheless, a
structure similar to that of the supplier is defined. In this case, an external registry
is proposed to validate the operations. This external agent is directly involved
in the actions that affect the user. This concept applies directly to the ERC-20
standard instead of the NFT or ERC-721.

• EIP-1056. Low-weight identities. This concept involves an additional level of
identity/property that can be interpreted similarly to the previous one, EIP-927.
This proposal applies to ERC-20.

• EIP-1080. Recoverable tokens. This proposal discusses the options and mecha-
nisms for undoing a change of ownership, allowing the generation of additional
status. This proposal applies to ERC-20.

• EIP-1132. Ability to temporarily apply a lock to a token. In this case, a mecha-
nism is defined to prevent actions with temporary character and that could be
applicable to transfer request actions. However, its application is only for ERC-20.

• EIP-2615. NFT token with mortgage and rental functions. It introduces a new
type of functionality that covers the approval of the operation and that is of
application to the transfer of ownership.
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In addition to that, concerning the draft EIP proposals, there are the following
related EIPs documents:

• EIP-4494. Permit for ERC-721 NFTs. This proposal applies to NFTs and makes
specific mention of a change of ownership with an additional permit that is
without cost. It is based on ERC-2612 which applies to fungible tokens or ERC-20.
In this sense, an additional method is generated that allows generating the permit
and that is without associated cost. As mentioned, the permit() function would
be sufficient to enable a safeTransferFrom, which in this case would allow
accepting the change of ownership operation without additional cost.

• EIP-5050. Interactive NFTs with Modular Environments. This proposal, of a
general and broad nature, explicitly specifies as a benefit the generation of ad-
ditional action chains for the transmission of property, and, in this sense, a
series of actions are allowed that must validate the transfer through the function
getApprovedForAction(address _account,bytes4 _action)method and
generating a state machine that could be applicable.

Finally, in the accepted EIP proposals (final status) there is the following EIPs
document:

• EIP-2309. ERC-721 Consecutive Transfer Extension. Applicable to NFTs, this
approved proposal allows a block of transfers or changes of ownership that allows
to minimize the number of transactions in a block during minting. This process
would allow the transfer of A - B, the denial of B (B - A) and, in such a case, an A-A
result that would not generate any change of ownership.

In relation to the EIP proposals under review and last call, no proposals related to
the denial of ownership have been found.

Thus, we can conclude that there are no proposals aimed at the change of ownership
at no additional cost and considering a competent or legal authority. However, there
are some proposals related to this concept for fungible tokens that could be adapted.
In the case of NFTs, although there is no issue of the cost for such an avoided change
of ownership (reject to NFT), we must highlight the proposal in draft quality EIP-4494
that would allow a transfer with lower cost. However, the proposal that we make in this
chapter is innovative and, overall, does not exist as rejected to any effect as it is the case
for similar proposals related to fungible tokens.

As a result of this analysis, as far as we know, it does not exist any previous work
related to the use of Non-Fungible Tokens to add the possibility to reject a transfer of
ERC-721 tokens thus there is no solution to use NFTs for the applications that require
this property, as some of the protocols that will be presented in this thesis.

With this, after analyzing the properties of the NFTs, we have determined that these
tokens would lack some useful security properties. This protocol is focused on one of
these problems, the impossibility of rejecting the reception of a token. This problem
is due to the fact that we can transfer both ERC-20 and ERC-721 tokens, but we can’t
perform a selective reception, because we can’t reject these transfers. A rejectable token
would allow the selective reception of tokens.
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To visualize the importance of the selective rejection of tokens we will see two
examples of applications that can be benefited from this property.

The first is the case of certified notifications or eDeliveries. In section 5.1, we
presented some use cases for certified notifications. These kinds of notifications provide
users with both evidence that the sender has sent the intended message and evidence
that the data was delivered or, at least, the delivery attempt was made. If a selective
reception of ERC-721 tokens could be made, that is, allowing the receiver to reject
their transfer, the problem of sending tokens as notifications could be solved. Another
use case is the use of tokens to represent a passive value and not an active one, such
as Non-Fungible Tokens (NFTs) that represent a “negative value” asset, like a loan, a
burden, the membership to groups where we do not want to be, any kind of liability,
etc... In this case, it is evident that a receiver must approve the reception of the token.

Since there is no Ethereum Improvement Proposal (EIP) that allows us to reject
the transfer of an ERC-721 token, this protocol proposes a new standard that allows
selective reception of this type of token, implementing the possibility of rejecting them.

7.2 Protocol design

To let receivers of an ERC-721 token reject the transfer, we must add certain functions
and events to the code of a regular NFT. In our proposal, we have a new mapping,
_transferableOwners, that will store the owner to whom we want to transfer the
token. With this, when we transfer the NFT, instead of directly transferring the owner-
ship, we add the address of the receiver, for that NFT id, to the _transferableOwners
mapping.

Then, the receiver will be able to accept or reject the transfer. Besides, we have
introduced another alternative: if the receiver hasn’t yet accepted or rejected the transfer,
the sender will still have the chance to cancel the transfer by removing the receiver from
the _transferableOwners mapping. This new mapping stores the proposed owners
of the tokens and it is defined in Listing 3.

We also need to take into consideration the mint() function, where the NFT is
created and doesn’t have yet an owner. In fact, minting an NFT represents also a
transfer of ownership, from the zero address to the receiver.

In Figure 7.1 there is a state diagram of the proposed protocol, where we can see
the states of the exchange of the NFT between the sender and the receiver. Let A be the
creator of an NFT and let B be the intended receiver of it. Then:

• A creates the token executing the operation A.mint(B). With this operation, the
address of B is introduced in _transferableOwners.

• Now B can accept the transfer by executing B.acceptTransfer() or, alternativ-
elly, it can reject the NFT with B.rejectTransfer().

� �
// Mapping from token ID to transferable owner
mapping ( uint256 => address ) private _transferableOwners ;� �

Listing 3: transferableOwners mapping

59



7. REJECTABLE NFTS PROTOCOL

Figure 7.1: States of the RejectableNFT protocol

• The procedure is similar if the NFT was already minted (A simply changes the
minting operation by a transfer A.transfer(B)).

• In addition to that, as we have mentioned above, if B has not yet accepted the
transfer, A has the ability to cancel the transfer by executingA.cancelTransfer().

To enable the rejection of an ERC-721 token, apart from the introduction of the
_transferableOwnersmapping, we also need to modify the private functions_mint()
and _transfer(), that will add the proposed receiver of the token to the mapping
_transferableOwners, instead of directly transfer the NFT. These private functions
are called from the following functions of the ERC-721 standard:

• safeTransferFrom()

• transferFrom()

• mint()

These public functions already check that the only accounts that can transfer a
token are its owner or the corresponding approved or approvedForAll accounts. To
implement this additional feature of the standard, we also need these new three events,
that will be emitted from the corresponding functions:

• TransferRequest: emitted when a token is proposed to be transferred.

• RejectTransferRequest: emitted when the receiver rejects the transfer of the
token.

• CancelTransferRequest: emitted when the sender cancels the transfer of the
token.
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The Transfer event, that already exists in the current ERC-721 implementation,
will be emitted when the transfer is really performed, changing the ownership from the
sender to the receiver.

With this, the code of the private functions _mint() and _transfer() is described
in Listing 4� �
function _mint( address to , uint256 tokenId ) internal

virtual {
require (to != address (0) , " ERC721 : mint to the zero

address ");
require (! _exists ( tokenId ), " ERC721 : token already

minted ");

_beforeTokenTransfer ( address (0) , to , tokenId );

_transferableOwners [ tokenId ] = to;

emit TransferRequest ( address (0) , to , tokenId );

_afterTokenTransfer ( address (0) , to , tokenId );
}

function _transfer (
address from ,
address to ,
uint256 tokenId

) internal virtual {
require ( RejectableNFT . ownerOf ( tokenId ) == from ,

" ERC721 : transfer from incorrect owner");
require (to != address (0) , " ERC721 : transfer to the

zero address ");

_beforeTokenTransfer (from , to , tokenId );

// Clear approvals from the previous owner
_approve ( address (0) , tokenId );

_transferableOwners [ tokenId ] = to;

emit TransferRequest (from , to , tokenId );

_afterTokenTransfer (from , to , tokenId );
}� �

Listing 4: Modified mint and transfer Functions

There are hooks like the beforetokenTransfer() hook that allow lots of flexibility
in modifying the behavior of a token before the token is transferred. This will let us
restrict transfer to only registered candidates, or to only allow tokens that are already
accepted by the receiver. But it doesn’t help us to do what we want to do, because in our
proposed protocol the first step must be the call to the transfer function by the sender,
and to use this hook, we would need a first step of the receiver calling an acceptance
function.
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In addition to the three events described above, in order to complete the protocol
we also need to implement the three new functions:

• acceptTransfer(): the receiver can call this function to accept the transfer
proposal made by the sender. We need to check that the receiver is included in
the _transferableOwners mapping.

• rejectTransfer(): the receiver can call this function to reject the transfer
proposal made by the sender. Once again, this can be only done by the proposed
receiver of the token.

• cancelTransfer(): the sender of the transfer proposal can cancel it by call-
ing this function, if the receiver hasn’t still called the acceptTransfer() or
rejectTransfer() functions. This function can also be called by the minter of
the token, if the token is new and it still hasn’t an owner.

The code of these functions is specified in Listing 5

7.3 Implementation

All the code of the Rejectable Non-Fungible Token (RejNFT) can be found in the
rejectable-nft3 repository of the Security and e-Commerce (SECOM) Research Group
from the University of the Balearic Islands. This repository has the code of a simple
ERC-721 token, the code of the new RejectableNFT token, and the necessary scripts
to compile, deploy and test the cited smart contracts, comparing the gas cost of the
current NFT code and the proposed one.

7.4 Security properties analysis

NFT adoption requires the definition of exchange protocols on a Peer-to-Peer (P2P)
network. The first NFT projects were born thinking on an owner-buyer basis. However,
with the Ethereum blockchain and the release of the ERC-721 standard, NFTs expanded
to many applications. For example, NFTs are used for digital art, fashion, certifications,
gaming, virtual events, collectibles, healthcare and so on [76, 165]. With ERC-721
standard, every single token is unique and identified by a uint256 variable called
tokenId in its context. But, to globally identify a NFT we have to use the pair of
contract address and tokenId. Later, the standard ERC-1155 [166] was introduced,
which extends the representation of ERC-20 and ERC-721 tokens. This is a multi-token
standard where tokens are grouped into different types and the tokens of the same type
are fungible.

Despite the different standards and many NFT applications, the logic between
owner and buyer in a token transfer has not been overcome. Hence, the standards
specify an active owner who transfers the token to a passive buyer, thus any transfer
cannot be rejected by the receiver. However, not only NFTs can represent assets (goods
and rights of a company or other economic entity) but also they can represent liabil-
ities (obligations and debts) that not always the receiver wants to assume. Also, for

3https://github.com/secomuib/rejectable-nft
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� �
function acceptTransfer ( uint256 tokenId ) public {

require ( _transferableOwners [ tokenId ] == _msgSender (),
" RejectableNFT : accept transfer caller is not the
receiver of the token");

address from = RejectableNFT . ownerOf ( tokenId );
address to = _msgSender ();

if (from != address (0)) { // Perhaps previous owner is
address (0) , when minting

_balances [from] -= 1;
}
_balances [to] += 1;
_owners [ tokenId ] = to;

// remove the transferable owner from the mapping
_transferableOwners [ tokenId ] = address (0);

emit Transfer (from , to , tokenId );
}

function rejectTransfer ( uint256 tokenId ) public {
require ( _transferableOwners [ tokenId ] == _msgSender (),

" RejectableNFT : reject transfer caller is not the
receiver of the token");

address from = RejectableNFT . ownerOf ( tokenId );
address to = _msgSender ();

_transferableOwners [ tokenId ] = address (0);

emit RejectTransferRequest (from , to , tokenId );
}

function cancelTransfer ( uint256 tokenId ) public {
// solhint -disable -next -line max -line - length
require (

// perhaps previous owner is address (0) , when minting
( RejectableNFT . ownerOf ( tokenId ) == address (0) &&

owner () == _msgSender ()) ||
_isApprovedOrOwner ( _msgSender (), tokenId ),
" ERC721 : transfer caller is not owner nor approved ");

address from = RejectableNFT . ownerOf ( tokenId );
address to = _transferableOwners [ tokenId ];

require (to != address (0) , " RejectableNFT : token is not
transferable ");

_transferableOwners [ tokenId ] = address (0);

emit CancelTransferRequest (from , to , tokenId );
}� �

Listing 5: New functions of the Rejectable NFT protocol
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instance, a token can represent a notification that the receiver may not want to receive
for temporary reasons (e.g. he/she is now on vacation) or for permanent reasons (e.g.
the receiver is no longer interested in this type of topic).

Therefore, the introduction of our Rejectable NFTs can provide new security prop-
erties to the ones introduced by ERC-721 tokens. Actions concerning data managed
in a blockchain provide specific data features, such as transparency, immutability and
consistency [167]. Rejectable NFTs are a blockchain-based technique and, for this rea-
son, offer the following security properties thanks to the specific blockchain features
mentioned above and the protocol described in this chapter:

• Accountability and Verifiability: The NFT, the metadata associated with the
token and the ownership of the token can be publicly verified because all the
operations concerning the tokens are conducted through smart contracts. There-
fore, minting and transferring NFTs actions are publicly accessible. This property
ensures Authenticity and Non-Repudiation of Origin since the transfer action
is triggered by a signed confirmed transaction on the blockchain that invokes the
smart contract that manages the NFTs.

• Integrity and Availability: the NFT metadata and ownership are added to a new
block on the blockchain after a minting or trading action. As a result, the history
of the NFT and its associated data remains tamper-resistant, and they are always
available since blockchain is considered a persistent storage that never goes down
(i.e. if at least one node is in the blockchain network).

• Transferability and No-overspending: Every single NFT can be arbitrarily trans-
ferred, traded or exchanged by its owner. The data immutability and consistency
ensured by the distributed consensus make visible to all future data manipula-
tions and, establish a single truth across the blockchain network. In addition to
that, the consensus mechanism prevents any overspending cases because miners
can check the entire history of every transaction before validating it.

• Non-repudiation of reception and Selective Receipt: With the introductions of
our proposal in section 7.2 any transfer action switches the token to a standby
state until the receiver accepts or rejects it (see Figure 7.1). Thus, the receiver can
decide whether to accept the token or not on a particular basis. That creates what
is called a transfer with Selective Receipt. Moreover, the acceptance transaction
generates a non-repudiation of reception evidence.

7.5 Performance analysis

In Figure 7.2 we can see the output of the gas cost analysis of the functions described
in section 7.2. This report has been generated by the hardhat-gas-reporter4 plugin,
executed into the hardhat5 Ethereum development environment. This gas cost is
calculated using the Ether (ETH) price of day 24/07/2022, 1604.46 USD/ETH.

4www.npmjs.com/package/hardhat-gas-reporter
5hardhat.org/
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Figure 7.2: Gas cost of the RejectableNFT smart contract

Table 7.1: Comparison of the gas cost of the deployment of the TraditionalNFT and
RejectableNFT smart contracts

TraditionalNFT RejectableNFT Difference
1353505 1539173 +13.72%

Table 7.2: Comparison of the gas cost of the functions of the TraditionalNFT and
RejectableNFT smart contracts

Function TraditionalNFT RejectableNFT Difference
safeMint() 95689 75426 -21.18%

transferFrom() 57575 53937 -6.32%
acceptTransfer() 66259
rejectTransfer() 26189
cancelTransfer() 27739

If we compare the cost of the deployment of the smart contracts in Table 7.1, we
can see that deploying the new RejectableNFT smart contract is 13.72% greater than
deploying an ERC-721 token. This is due to the added code in section 7.2.

And regarding the gas cost of the functions, in Table 7.2 we can see that the minting
is 21.18% cheaper in the RejectableNFT, and the transfer is 6.32% cheaper. But we
must take into consideration that the transfer in the RejectableNFT smart contract is
only a transfer proposal, and the receiver will need to accept the transfer by calling the
acceptTransfer() function. This supposes that the real transfer of ownership of the
token is more expensive in the new standard, but the costs are distributed between the
sender and the receiver.
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The functions acceptTransfer(), rejectTransfer(), and cancelTransfer()
have gas costs that cannot be compared to those of a traditional ERC-721 token, because
these functions don’t exist in the previous standard.

As a summary, we can say that the gas cost of both standards is not worth mention-
ing, because they are within normal terms of cost increase due to the added code, so
we can state that the new proposal is worth it due to the benefits obtained by this little
increase in terms of cost.

7.6 Conclusions

In this chapter, we have presented a proposal to improve the ERC-721 standard to
include a selective reception of the NFT by the receiver. With this, we achieve a non-
repudiation of origin and reception proof when we send an NFT. The non-repudiation
of reception proof can be especially useful when we send an ERC-721 token that doesn’t
represent an active, but a passive, a burden or any liability. The new proposal maintains
the security properties of the ERC-721 standard and adds new properties to them, as it
has been depicted in section 7.4.

The proposed protocol doesn’t imply a big increment in gas cost terms, as we have
demonstrated in section 7.5. The gas cost is the best measure of performance that we
can have in blockchain networks like Ethereum, and the gas cost analysis demonstrates
that adding some new functions and variables to achieve the capability to reject a NFT
transfer doesn’t necessarily imply a high increase in this measure.

As future work, we can continue with different improvements to the proposed
standard:

• Let the sender propose to send the token to a member of a set of more than one
receiver. In the end, only one of the members of the set will receive the NFT.

• Set a timeout for the transfer proposal. If the receiver doesn’t accept the transfer
in a certain amount of time, the transfer is automatically canceled.

This new protocol also leads us to other improvements, such as applying the same
rejectable transfer protocol to ERC-20 or ERC-1155 tokens or implementing the selective
receipt implementing other kinds of algorithms, such as blocking the transfer and using
the permit() function described in EIP-44946.

Once this protocol is fully developed, it can be leveraged in subsequent protocols
described in this thesis. Specifically, by utilizing the selective reception capabilities of
the new protocol, we can simplify the certified notifications process in the protocols dis-
cussed in the next chapters, reducing operational complexity as detailed in Chapter 12.
This enhancement not only demonstrates the practical applicability of the rejectable
transfer feature but also underscores its potential to improve the efficiency and user
experience of blockchain-based transactions.

6eips.ethereum.org/EIPS/eip-4494
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8
TWO-PARTY CERTIFIED NOTIFICATIONS

PROTOCOL

In this chapter we introduce a protocol in the realm of Blockchain technologies, fo-
cusing on the provision of fair certified notifications, a topic previously analyzed in
section 5.1. Certified notifications are one of the applications that require a fair ex-
change of values: a message and non-repudiation of origin proof in exchange for a
non-repudiation of reception evidence. We propose two solutions that allow send-
ing certified notifications when confidentiality is required or when it is necessary to
register the content of the notification, respectively. First, we present a protocol for Non-
Confidential Fair Certified Notifications that satisfies the properties of strong fairness
and transferability of the proofs thanks to the use of a smart contract and without the
need for a Trusted Third Party. Then, we also present a DApp for Confidential Certified
Notifications with a smart contract that allows a timeliness optimistic exchange of
values with a stateless Trusted Third Party.

8.1 Contribution

As discussed in Chapter 4, blockchain technology provides an immutable data registry
that supports innovative solutions for traditional services. An example of such a service
benefiting from blockchain’s unique features is certified notifications, which enable
senders to prove that they have sent a message to a receiver or set of receivers. This
service ensures receivers have been granted access to messages from a definite point in
time.

Certified notifications, along with other electronic services, such as the electronic
signature of contracts, electronic purchase (payment in exchange for a receipt or digital
product) or certified mail, require a fair exchange of items between two or more users.
In order to create protocols that allow carrying out these exchanges and, at the same
time, maintain the security of communications, there are solutions that fall into the
generic pattern named fair exchange of values. A fair exchange always provides equal
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treatment of all users, and, at the end of each execution, either each party has the
element she wishes to obtain from the other party, or the exchange has not been
carried out successfully for anyone (any party has received the expected item). In
a typical notification case, the element to be exchanged is the message along with
non-repudiation proof of origin and reception.

Most existing fair exchange protocols [81, 82, 83] rely on TTPs to mediate and re-
solve any disputes that emerge from transaction interruptions or fraudulent activities.
These protocols also employ non-repudiation methods to create evidence documenting
the actions of the participants involved. With the introduction of blockchain technol-
ogy and smart contracts, there is potential to either substitute or enhance the role
of TTPs with these innovations. This shift opens up new opportunities for devising
more effective digital fair exchange solutions that adhere to the principles of equitable
value exchange. An innovative approach within the Bitcoin network for creating fair
exchanges involves encouraging participants to fulfill their end of the agreement by
implementing financial incentives or penalties for those who act dishonestly [84, 85, 86].

In addition to that, the Ethereum blockchain and its cryptocurrency Ether (ETH)
offers an even richer functionality set than conventional cryptocurrencies such as
bitcoin, since they support smart contracts in a fully distributed system that could
lead, as we will see in this chapter, to enable fair exchanges of tokens without the
involvement of a TTP (since smart contracts are self-applied and reduce the need for
trusted intermediaries or reputation systems that decrease transaction risks). This
new technology allows us to define transactions with predetermined rules (written in a
contract) in a programmable logic that can guarantee a fair exchange between parties
with an initial mutual distrust. This feature prevents parties from cheating each other
by aborting the exchange protocol and discharges the need for intermediaries with the
consequent reduction of delays and commissions for their services.

The revealing power of the blockchain is further enhanced by the fact that block-
chains naturally incorporate a discrete notion of time, a clock that increases each time
a new block is added. The existence of a trusted clock/register is crucial to achieve the
property of fairness in the protocols. This feature can make the cryptography model in
the blockchain even more powerful than the traditional model without a blockchain
where fairness is very difficult to guarantee without the intervention of a TTP.

Previous studies on fairness using blockchain have focused on fair purchase opera-
tions between a product (or a receipt) in exchange for cryptocurrencies (usually bitcoin)
[99, 105, 100, 101]. [168], for example, uses a smart contract for the resolution of a pur-
chase operation while [104] uses smart contracts and trusted execution environments
to guarantee the fair exchange of a payment and the result of an execution.

In this chapter, we present two Blockchain-based Systems for Fair Certified Notifi-
cations. The first proposal facilitates a non-confidential fair exchange of a notification
message for a non-repudiation of reception token without the involvement of any
TTP, while the second enables a confidential fair exchange of a notification for a non-
repudiation of reception token with the optimistic intervention of a stateless TTP. These
protocols demonstrate how blockchain technology and smart contracts can introduce
a new paradigm to address the fair exchange problem, potentially reducing or even
eliminating the need for TTPs within such protocols.
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8.2 Protocol design

In this section, we will analyze the possibilities of the use of blockchain-based tech-
nologies to provide a DApp for fair certified notifications reducing the involvement of
trusted third parties compared with traditional approaches. We present a high-level
description of two solutions (the details of them will be presented in subsection 8.3.1
and subsection 8.3.2, respectively). One of them is well suited for those notifications
that do not require the confidentiality of the message (or even it is required that the
message can be public and accessible to everybody). The other solution allows the
message to be hidden from others than the receiver. As it is shown in the descriptions,
in the first approach there is no need for a TTP in any step of the exchange nor in a
dispute resolution phase while in the second proposal, the TTP will be involved only in
the dispute resolution phase (optimistic protocol). Moreover, it is not required that this
TTP stores information on the state of any transaction.

8.2.1 Non-confidential Certified Notifications without TTP

In this first proposal, we consider that confidentiality is not required or even desired.
The sender executes the first step of the protocol using the DApp to register the hash of
the notification message on the blockchain. At this point, the receiver does not have
access to the message, although the transaction remains stored in the blockchain due
to the fact that the registered value is the hash of the message and not the message
itself.

The sender will make a new transaction including the message in a third step,
provided that the receiver would have made a previous transaction manifesting his
desire to receive the notification.

The protocol for non-confidential certified notifications has the states depicted in
Figure 8.1, and works as follows:

1. The sender, who originates the message, uses the smart contract to publish in
the blockchain the hash of the notification message. Other parameters of this

Figure 8.1: States of the non-confidential two-party certified notifications protocol
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transaction are the address of the receiver and the deadline for the notification to
be completed. Moreover, a deposit can be required in this step. The amount will
be included in the transaction.

2. The receiver, if he accepts the reception of the notification, publishes a message
expressing his will.

3. Finally, before the expiration of the deadline, the sender can execute the finish
procedure to publish the message. As a consequence, the smart contract pub-
lishes the non-repudiation proof. If the execution of the exchange requires a
deposit, the smart contract returns the amount to the sender.

After the deadline, if the three steps have not been executed properly, the state
of the exchange is not finish and then both parties can access a function in the
smart contract to request the cancellation of the transferred elements.

a) Cancellation of reception, requested by the receiver if the sender does not
publish the message when the receiver has accepted the notification.

b) Cancellation of delivery, requested by the sender, if the receiver has not
accepted the notification.

In both cases, the smart contract checks the identity of the user and the deadline.
The smart contract generates a transaction to point out that the notification
has been canceled. In the first case, the sender will not receive the refund of
the deposit (this way, the deposit is useful to motivate the sender to finish the
exchange before the deadline).

Since the message is included in a transaction, it will be registered in the blockchain, so
the notification in this case is not confidential. This protocol is executed entirely over
Ethereum, so no off-chain communication between the parties is required. This way,
there is no need for communication channels between the parties.

8.2.2 Confidential Certified Notifications with Stateless TTP

This second proposal has been designed to take into account those notifications that
require confidentiality. That is, the blockchain has to preserve the fairness of the
exchange but the message cannot be stored in a publicly accessible block. The main
difference with the first proposal is that in this case, the protocol allows an optimistic
exchange, that is, the exchange can be executed completely without the intervention of
the TTP nor the blockchain. Another important feature is that this proposal does not
require a deadline and can be finished at any moment. A stateless TTP can be used to
resolve the disputes that can arise between the parties.

The proposed protocol for confidential fair certified notifications is based on the
protocol described in [91], an optimistic protocol in three steps with a trusted third
party that is involved only in case of disputes between the parties. In [91] both parties
can contact the TTP who maintains state information. The three steps of [91] are:

1. The sender A encrypts the message M with a symmetric key K, producing a
ciphertext c. The key K is encrypted with the public key of the TTP (it means that
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the TTP, who knows the correspondent private key, can decrypt it), producing
Kt . A third element hA is the signature of A on the concatenation of the hash
of ciphertext c and Kt , part of the evidence of Non-Repudiation of Origin for B.
Then A sends the triplet c, kt and hA .

2. B sends hB , a signature of B on the concatenation of the hash of ciphertext c and
kt , evidence of Non-Repudiation of Receipt for B, to A.

3. A sends kA , the key K enciphered with the private key of A, the second part of the
Non-Repudiation of Origin evidence for B.

During this three-step protocol, the parties exchange the Non-Repudiation proofs
together with elements that are useful in case of interruption of the exchange. These
elements, as Kt , are managed by the TTP during a dispute resolution subprotocol. The
execution of the dispute resolution subprotocol can be requested by both A and B
contacting the TTP.

In this new blockchain-based solution, the originator A and the recipient B will
exchange messages and non-repudiation pieces of evidence directly. Only as a last
resort, in the case they cannot get the expected items from the other party, the smart
contract or the TTP would be invoked, by initiating the cancel or finish functions. In
comparison with the protocol described in [91], in the blockchain-based solution the
role of the TTP has been reduced. The sender will never contact the TTP. The TTP will
answer only requests from the receiver B by accessing the smart contract that has been
deployed. The TTP is totally stateless and, in any case, it stores information about the
state of any exchange.

The states of the protocol for confidential certified notifications are depicted in
Figure 8.2, and the protocol works as follows: The parties, A (the sender) and B (the
receiver) will execute a direct exchange in three steps, using the DApp (the details of it
will be presented in subsection 8.3.2).

Figure 8.2: States of the confidential two-party certified notifications protocol
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1. A sends an encrypted message to B using a session key. Moreover, A also sends
an element to B that could be useful in case of dispute, that is, if A does not follow
the steps of the protocol (i.e.: the session key encrypted with the public key of
the TTP). The TTP is responsible for the deployment of the smart contract that
will manage the exchange.

2. B sends the non-repudiation proof.

3. A sends the key to decipher the message.

If some party does not follow the protocol, the exchange can be resolved as
follows:

a) If A does not receive the element of step 2., she can send a request to the
smart contract. If the state of the notification is ’Created’ (neither ’Canceled’
nor ’Finished’), then the state will be changed to ’Canceled’, indicating that
the notification has not been performed successfully.

b) If B does not receive the message in step 3, B will contact the TTP providing
the received elements in step 1 together with the non-repudiation of recep-
tion proof. The TTP will access the smart contract to check the state of the
notification. If the notification has not been canceled, the TTP will publish
in the blockchain a non-repudiation of reception proof and the required
elements for B to obtain the confidential message.

8.3 Implementation

The code of the non-confidencial1 and confidential2 smart contracts described in this
section can be accessed via the GitHub repositories maintained by the Security and
e-Commerce (SECOM) Research Group from the University of the Balearic Islands. You
can review the development environment details in Chapter 6.

8.3.1 Non-confidential Certified Notifications without TTP

We have designed and implemented the smart contract for non-confidential notifica-
tions. For this proposal, a new instance of the smart contract will be created by the
sender and it will manage all the steps of the exchange. It has been programmed using
Solidity and it has been deployed over an Ethereum network. Ethereum addresses have
been assigned to both the sender A and the receiver B . Both A and B will interact with
the blockchain using Web3.js interfaces.

Listing 6 shows the smart contract that manages the non-confidential notifications.
The constructor of the smart contract includes variables to store the addresses of the
sender and the receiver, the hash of the notification message, the instant of execution of
the first step of the exchange and the value of the execution period (the deadline). The
contract includes five functions: to initiate the notification (the constructor), to accept
a notification, to deliver the message, to cancel the exchange and to inquire about the
state of the exchange. The certified notification is created by the sender, who specifies

1https://github.com/secomuib/NonConfidentialCertNotification/tree/master/contracts_2party
2https://github.com/secomuib/ConfidentialCertNotification/tree/master/contracts_2party
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� �
pragma solidity ^0.4.24;

contract Notification {
address public sender ; // Parties involved
address public receiver ;
bytes32 public messageHash ; // Message
string public message ;
uint public term; // Time limit (in seconds )
uint public start; // Start time
enum State {created , canceled , accepted , finished }
State public state;

event StateInfo (State state);

constructor ( address _sender , address _receiver , bytes32
_messageHash , uint _term) payable {
require (msg.value >0); // sender deposit
sender = _sender ;
receiver = _receiver ;
messageHash = _messageHash ;
start = now; // now = block. timestamp
term = _term;
state = State. created ;
emit StateInfo (state);

}
function accept () public {

require (msg. sender == receiver && state == State. created );
state = State. accepted ;
emit StateInfo (state);

}
function finish ( string _message ) public {

require (now < start+term); // check deadline
require (msg. sender == sender && state == State. accepted );
require ( messageHash == keccak256 ( _message ));
message = _message ;

// Sender receives the refund of the deposit
sender . transfer (this. balance );
state = State. finished ;
emit StateInfo (state);

}
function cancel () public {

require (now >= start+term); // check deadline
require (( msg. sender == sender && state == State. created ) ||

(msg. sender == receiver && state == State. accepted ));
if (msg. sender == sender && state == State. created ) {

// Sender receives the refund of the deposit
sender . transfer (this. balance );

}
state = State. canceled ;
emit StateInfo (state);

}
}� �

Listing 6: Non-confidential two-party certified notifications smart contract
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the receiver, the hash of the message and the maximum duration of the exchange. The
smart contract also has an attribute to store the content of the message.

The contract also manages a Solidity event to follow the progress of the exchange.
This event stateInfo allows the parties to see the evolution of the state of the exchange
(created, accepted, finished or canceled).

Functions Accept and Finish check the identity of the address that throws the trans-
action. The address of the receiver and the sender are verified before updating the
state. The function Cancel also checks the addresses. In this case, both the sender and
receiver can execute the function, depending on the state of the exchange. Moreover,
all the functions that can cause any change in the state of the exchange check the value
of the variable State. The function Finish requires that the present time does not exceed
the deadline before executing its code. Also, the function Cancel verifies that the current
time is greater than the deadline before carrying on with the execution of it.

The smart contract will manage the publication on the blockchain of all the values
of the required variables to maintain the fairness of the exchange following the protocol
described in subsection 8.2.1.

8.3.2 Confidential Certified Notifications with Stateless TTP

We have designed and implemented a DApp that allows the optimistic exchange be-
tween the parties and a smart contract for the resolution of disputes. The smart contract
has been programmed in Solidity and deployed over the Ethereum network. Ethereum
addresses have been assigned to the sender A, the receiver B and the TTP. In compar-
ison with the protocol described in [91], the role of the TTP has been reduced. The
sender will never contact the TTP. The TTP will answer only requests from the receiver
B by accessing the smart contract that has been deployed. The TTP is totally stateless
and, in any case, it stores information about the state of any exchange. Both A and B
can interact with the blockchain if it is necessary through the Web3.js interface. For this
reason, we have also designed a web service where the web client can connect using
TLS protocol. This web service is used on the off-chain communication exchanges
between sender and recipient described in the protocol. In order to implement the
cryptographic operations, we have used Stanford Javascript Crypto Library3. This en-
ables us to use AES for the symmetric encryption operation, EC-ElGammal for the
asymmetric encryption operations and ECDSA for the signature functions. However,
the implementation of a PKI and the secure exchange of public keys are beyond the
scope of this work. Listing 7 shows the smart contract that will manage the possible
disputes between the parties after the execution of the exchange described in subsec-
tion 8.2.2 for confidential notifications. This smart contract is deployed by the TTP,
which defines the identities of the sender and the receiver. The smart contract manages
the variable state in order to keep track of the state of each exchange.

The event stateInfo allows the tracking of the evolution of each exchange state. The
function Cancel checks the identity of the address that throws the transaction, which
must be the address of the sender, together with the value of the variable state. This
function can be executed only by the sender. The function Finish checks the identity
of the party that sends the transaction, that is, the TTP, together with the value of the

3http://bitwiseshiftleft.github.io/sjcl/
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� �
pragma solidity ^0.4.11;

contract ConfidentialNotifications {
// Parties involved
address sender ;
address receiver ;
address ttp;

string hB; // NMR proof
string hBt; // Intervention proof
enum State { created , canceled , finished }
State public state;

event stateInfo (State state);

function ConfidentialNotification ( address _sender , address
_receiver ){
ttp = msg. sender ;
sender = _sender ;
receiver = _receiver ;
state = State. created ;

}
function Cancel () returns ( string ) {

if(msg. sender == sender ){
if(state == State. created ){

state=State. canceled ;
// return abort token
stateInfo (state);

}else if (state == State. finished ){
return hB;

}
}

}
function Finish ( string _hB , string _hBt) returns (State) {

if (msg. sender == ttp){
if(state == State. canceled ){

return state;
}else{

hB=_hB;
hBt=_hBt;
state=State. finished ;

}
}

}
function getState () returns ( string ){

if(state == State. canceled ) return " canceled ";
if(state == State. created ) return " created ";
if(state == State. finished ) return " finished ";

}
}� �

Listing 7: Confidential two-party certified notifications smart contract

variable state. The TTP will execute this function if it receives a request from the receiver.
The smart contract is responsible for the publication in the blockchain of the values
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of the elements used to maintain the fairness of the exchange following the protocol
described in subsection 8.2.2. In function Finish, if the conditions are fulfilled, the
smart contract publishes in the blockchain both the non-repudiation of reception proof
(hB) and the session key encrypted with B’s public key (hBt).

8.4 Security properties analysis

8.4.1 Non-confidential Certified Notifications without TTP

The non-confidential certified notifications protocol allows the fair exchange of a mes-
sage and non-repudiation proofs. The main properties achieved by the protocol are
analyzed in this section.

• Strong Fairness. A will not receive the non-repudiation proof of reception pro-
vided by the smart contract unless she executes the transaction to register the
message in the blockchain (case State=finished). On the other hand, B will not
have access to the message unless he executes the transaction to accept the noti-
fication (State=Accepted). While it is true that the information on the blockchain
is public and anyone can execute the smart contract code locally, the protocol
ensures that the smart contract does not generate alternative cancellation or
finalization proofs that could create contradictory evidence. Additionally, po-
tential race conditions where nodes could delay or prioritize transactions for
their own benefit are mitigated by the inherent consensus mechanisms of the
blockchain network, ensuring fairness and order of transactions.

• Total absence of centralized TTP. Substitution by a decentralized smart con-
tract. This proposal does not require an external centralized party acting as a
TTP. Instead, the blockchain itself, through smart contracts, fulfills this role in a
decentralized manner. This decentralized TTP provides enhanced security and
trust by removing the single point of failure and central authority. The parties
execute the functions of the smart contract creating the associated transactions,
and there is no need for dispute resolution by an external entity.

• Transferability of the proofs. Since the parties cannot obtain contradictory
proofs in any way, the generated proofs can be presented as evidence to an
external entity. Moreover, its transferability is easy, since the results of the ex-
change are stored in the blockchain. Due to the immutability of the blockchain,
the content of the notification cannot be modified so the system provides in-
tegrity to the notification. The moment that the notification takes place can be
derived from the timestamp of the block where the transaction is included.

• Weak Timeliness. The protocol is not asynchronous. If one of the parties delays
its intervention in the exchange, the other party will not be able to resolve it
until the deadline. However, after the deadline, both parties can request the
finalization of the exchange. Moreover, the protocol wants to motivate the sender
to conclude the exchange before the timeout blocks an amount of money in the
smart contract. This amount will only be refunded to the sender if she concludes
before the deadline.
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• Non Repudiation. The protocol achieves non-repudiation of origin together with
non-repudiation of receipt after the execution of the exchange. A cannot deny
having sent the message since there is a transaction on the blockchain from her
address containing the message and another one related to the same message
including the address of the receiver and the hash of the message. B cannot deny
having received the notification since there is a transaction from his address
in the blockchain accepting the reception of the message and the State of the
exchange is Finished, so the message is publicly accessible in the blockchain.

8.4.2 Confidential Certified Notifications with Stateless TTP

The main properties achieved by the confidential certified notifications protocol are
analyzed in this section.

• Weak Fairness. The protocol does not allow any of the parties to receive the
expected item if the other party does not receive it. However, the intervention of
the TTP can lead to a situation in which one of the parties possesses contradictory
evidence. A malicious A can have the non-repudiation proof received directly
from B and also the cancellation proof generated by the smart contract after a
cancellation request from A. For this reason, the fairness will be weak and the
generated proofs are non-transferable. Comparing this feature with the version of
the protocol without blockchain, this protocol does not require that the arbitrator
consult both parties to resolve the final state of the exchange. It is enough to
check one of the parties and then match this version with the contents of the
blockchain.

• Optimistic. The parties can finalize the exchange without the need to contact a
TTP or execute any function of the smart contract. If the parties do not follow the
protocol and the execution of the smart contract is required, the gas necessary for
its operation would be reduced compared with the protocol for non-confidential
notifications.

• Stateless TTP. When the TTP is involved in the exchange, it can resolve the
exchange through the use of the smart contract. The TTP does not need to store
any kind of state information of the exchange.

• Timeliness. The parties can finish the exchange at any moment by accessing the
smart contract (sender A) or contacting the TTP (receiver B). The duration of
the resolution will depend on the block notification treatment. The protocol can
assume that the transactions are valid immediately (zero confirmation) or wait
until the block is confirmed in the chain (full confirmation).

• Non repudiation. The protocol achieves non-repudiation of origin together with
non-repudiation of receipt after the execution of the three-step exchange or the
finalization using the smart contract. A cannot deny having sent the message
since B has the element received in the third step or the state of the smart contract
is Finished. B cannot deny having received the notification since A has the
elements sent by B in the second step of the protocol.
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• Confidentiality. If the exchange is finished through the execution of the three-
step exchange protocol, then no other entity is involved in the exchange, and
the message remains confidential. If the TTP is involved or the functions of the
smart contract are executed, then the TTP will process the received elements and
will make a transaction including the element that will allow B to decrypt the
message but the plain message is not included in the transaction so it will not be
included in a block of the blockchain to preserve confidentiality.

8.5 Performance analysis

Table 8.1 and Table 8.2 present the gas required for the execution of each function, for
both protocols.

The comparison between non-confidential and confidential smart contract deploy-
ments reveals distinct gas consumption patterns, which serve as a proxy for transaction
costs and computational resources required. For the non-confidential version, deploy-
ment is significantly more resource-intensive, consuming 1,086,913 gas, compared to
the confidential version, which requires 800,433 gas, indicating a more efficient initial-
ization process for the latter. The operation costs vary between contexts: for instance,
the ’Accept’ action, specific to the non-confidential contract, costs 43,644 gas, whereas
the confidential contract’s comparable actions, such as ’Finish’ and ’Cancel’, are slightly
different in nature and cost 88,387 and 44,698 gas respectively. Notably, the ’Finish’ oper-
ation in the confidential setting shows a marked increase in gas requirement compared
to the non-confidential setting.

Table 8.1: Gas cost of the non-confidential two-party certified notifications smart
contract

Non-Confidential Two-party Certified Notifications
Deployment 1086913
Accept 43644
Finish 59835
Cancel (created) 53011
Cancel (accepted) 30443

Table 8.2: Gas cost of the confidential two-party certified notifications smart contract

Confidential Two-party Certified Notifications
Deployment 800433
Finish (Canceled) 26388
Finish 88387
Cancel 44698
Cancel (Finished) 24772
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8.6 Conclusions

Previous solutions for fair certified notifications are mainly based on the intervention
of a TTP that acts as an intermediary between sender and receiver. In this model of
fair exchange, both parties obtain the expected item from the other or neither obtains
what was expected. That is, either the issuer has received non-repudiation of reception
evidence and the recipient has received the message, or neither party obtains the
desired item, the TTP can intervene to guarantee the fairness of the exchange if some
participant misbehaves.

This chapter presents two alternatives for sending certified notifications on a
blockchain-based fairness. On the one hand, the first solution (see subsection 8.3.1)
allows users to send non-confidential notifications, the new DApp supports the send-
ing and receiving of certified messages and guarantees the fairness of the exchange
without requiring the intervention of any TTP to guarantee the security properties of
the exchange since the actions of the different actors are recorded in the blockchain
and, in the event that any actor does not fulfill the protocol, the smart contract will
generate the corresponding evidence to preserve fairness. This proposal also preserves
the properties of limited Timeliness (involved parties can be certain that the protocol
will be completed at a certain finite point in time[103]), Transferability of proofs and
Non-repudiation as it is stated in subsection 8.4.1.

Table 8.3: Comparison of the properties of the non-confidential and confidential two-
party certified notifications protocols

Property Non Confidential Confidential
Notifications Notifications

Non-repudiation YES YES
Fairness STRONG WEAK

Timeliness LIMITED YES
Effectiveness YES YES

TTP NO OPTIMISTIC/STATELESS
Evidence Transferibility YES NO

Confidentiality NO YES

On the other hand, the second solution (see subsection 8.3.2) is a fair exchange
protocol that enables the transmission of confidential notifications and introduces an
optimistic TTP, whose intervention is only required if a party does not fulfill the protocol.
Using blockchain technology and a smart contract allows the TTP to operate statelessly;
it does not need to maintain the state of the exchange for any protocol execution as all
transaction data is stored on the blockchain via the smart contract. This method ensures
weak fairness (see subsection 8.4.2), maintaining Timeliness and Non-repudiation
properties like the first solution. However, it does not strictly provide Transferability of
proofs since verifying the correctness of the exchange requires not only examining the
evidence provided by the parties but also consulting the blockchain (Table 8.3 compares
the properties of both solutions). The choice of system, as presented in this chapter,
largely depends on the specific needs of each exchange.
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9
MULTIPARTY CERTIFIED NOTIFICATIONS

PROTOCOLS

In Chapter 8, we have presented two certified notifications protocols used for individual
interactions. One focusing on non-confidential notifications and the other on confi-
dential notifications. These protocols were specifically designed for communication
between a single sender and a single receiver. The protocol for non-confidential notifi-
cations operates independently of a Trusted Third Party (TTP), whereas the confidential
notification protocol requires one, to mediate and resolve disputes.

This chapter introduces two innovative protocols aimed at multiparty certified
notifications, broadening the scope of our earlier efforts to include scenarios with mul-
tiple recipients. The first of these new protocols continues to handle non-confidential
notifications and operates independently of a TTP, enhancing its utility by supporting
multiple receivers simultaneously. The second protocol, which manages confiden-
tial notifications, still requires the involvement of a TTP for dispute mediation, thus
ensuring secure and private communication across multiple parties. Together, these
protocols mark a considerable evolution in the domain of secure communications,
enhancing both autonomy and operational efficiency.

Central to our discussion is the typical case of certified notifications where the
primary elements exchanged are the delivered data accompanied by Non-Repudiation
of Origin (NRO) and Non-Repudiation of Reception (NRR) proofs. This framework is
vital for understanding the operational dynamics of our newly introduced protocols.
Both protocols use smart contracts on the Ethereum blockchain to ensure integrity
and non-repudiation, emphasizing the decentralized nature of blockchain technology.
We thoroughly analyze the properties of these protocols, such as security, and cost-
efficiency, and provide a comparative performance analysis. This comprehensive
examination not only clarifies the practical applications of our protocols but also sets
the stage for future innovations in blockchain-based secure communication.
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9.1 Contribution

This chapter significantly advances the field of secure multiparty communications
by introducing two innovative protocols for multiparty certified notifications. Using
blockchain technology, these protocols establish a secure and efficient framework for
the delivery of notifications from a single sender to multiple receivers, reducing or even
removing the role of the Trusted Third Partys (TTPs) inside such protocols.

The first protocol is tailored for non-confidential notifications, facilitating trans-
parency and public verifiability by allowing the notification content to be accessible to
all. This protocol is designed to function without a TTP, reflecting a major shift towards
more decentralized notification systems. The second protocol ensures privacy and
security for confidential notifications by keeping the notification content hidden from
all except the intended receivers. Remarkably, this protocol is particularly notable for
its minimal reliance on a TTP, which is only involved in dispute resolutions, making it
an optimistic protocol.

Both protocols are designed to comply with the European Union norms for reg-
istered eDeliveries, as outlined in subsection 5.1.1. This compliance demonstrates
not only their practical applicability but also their alignment with current regulatory
frameworks. By offering solutions for both public and private communications, these
protocols provide the versatility needed to cater to a wide range of applications. As
noted in the directive that does not mandate confidentiality for all types of notifica-
tions [80], these protocols are structured to allow flexibility in the confidentiality of the
delivered messages, attending to the specific needs of different use cases.

In addition to discussing the implementation details of the protocols using Eth-
ereum smart contracts, this chapter highlights how smart contract technology can
be effectively used to manage multiparty interactions. The analysis covers various
aspects of the protocols, including security, cost-efficiency, and performance, providing
a comprehensive overview of their capabilities and advantages.

This chapter analyzes the potential of blockchain-based technologies to provide
two multiparty certified notification schemes that significantly reduce the reliance on
Trusted Third Partys compared to traditional approaches while meeting the standards
set by the European Union for registered eDeliveries. Notably, the protocols developed
here do not require any TTP involvement for the non-confidential and confidential
notifications.

Moreover, the protocols have been fully analyzed to ensure they satisfy both the
legislative requirements and the ideal properties for such systems, like fairness in
exchange. Performance analyses compare the costs of deploying and executing the
main functions of the smart contracts, with findings suggesting superior efficiency
over two-party systems. These protocols represent a pioneering effort in the realm of
blockchain-based multiparty certified notifications, achieving key property, privacy,
and performance goals.

9.2 Protocol design

This section presents an overview of the system, describing the participating actors, the
two proposed alternatives, the methods and the interactions among the actors.

82



9.2. Protocol design

The proposed system presents solutions for both confidential and non-confidential
(or public) certified delivery of messages. The proposals consider the following actors
with these roles:

• Sender (A). The user that generates the data to deliver, chooses the receiver or set
of receivers and sends the message. The sender also provides a Non-Repudiation
of Origin proof.

• Receivers (B). The user or set of users that receive the delivery. The receivers
must accept the delivery and provide a Non-Repudiation of Reception proof. The
delivery can be accepted by a subset of receivers so the protocol must manage
the exchange to maintain fairness in case of a selective acceptance.

• Trusted Third Party (TTP). Independent and trusted party that can act as an in-
termediary to solve disputes among senders and receivers. Only the confidential
protocol involves a TTP.

• Smart Contract. Contract deployed on the blockchain that can manage, depend-
ing on the proposal, both the exchange of elements during the delivery and/or
the resolution of disputes among senders and receivers.

All the participating actors (senders, receivers and TTP when it is required), possess
blockchain addresses and are able to communicate with each other and with the smart
contract. These entities interact as follows: first, the sender chooses whether he wants
to send a confidential notification or a public notification. Then, in both protocols,
the parties execute a three-step exchange to deliver the message and provide non-
repudiation proofs:

• In the first step the sender proposes the message to be delivered and sends it in a
hidden way to the set of receivers. This step must include elements to ensure the
fairness of the exchange.

• Each receiver can choose individually if he accepts or not the delivery. The
receivers who accept the delivery must send a Non-Repudiation of Reception
proof related to the hidden message.

• The sender determines the group of receivers that has accepted the delivery and
concludes the exchange by providing the message in clear and Non-Repudiation
of Origin proof.

Both proposed protocols follow the three-step exchange. The main difference
between the non-confidential and the confidential solution in regard to this three-
step protocol is that in the confidential solution, the parties can exchange messages
directly (off-chain communication exchange), while in the non-confidential solution,
the parties execute the three-step protocol on-chain, by invoking functions of the smart
contract deployed for this service. The on-chain interaction among the actors for the
non-confidential protocol is depicted in Figure 9.1, while the off-chain interaction for
the confidential protocol is depicted in Figure 9.2.
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Figure 9.1: Interaction between the actors in the Non-Confidential Multiparty Ceritified
Notifications protocol

Figure 9.2: Interaction between the actors in the Confidential Multiparty Certified
Notifications protocol

Due to the differences in the execution of the three-step protocol, a conflict reso-
lution subprotocol has to be designed for the confidential solution in order to ensure
fairness. This subprotocol uses the smart contract for the confidential certified notifica-
tion service and involves a Trusted Third Party, as it is depicted in Figure 9.2.

Moreover, the three steps of the exchange are slightly different in the two protocols.
They differ in the way they hide the data to deliver and also in the format of the non-
repudiation proofs, as it will be explained in subsection 9.2.1 and subsection 9.2.2.

9.2.1 Non-Confidential Multiparty Certified Notifications

In Chapter 8 we presented a blockchain-based protocol for Certified Notifications for
a single receiver. The proposal is a non-confidential fair exchange of a notification
message together with a Non-Repudiation of Origin token for a Non-Repudiation of
Reception token. This approach is well suited for those applications that require the
storage of the delivered data, which must be registered and publicly accessible. How-
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Figure 9.3: Description of the Non-Confidential Multiparty Certified Notifications

ever, the scheme is a two-party protocol, thus the notification can only have a single
recipient.

Now, in this chapter, we present an improved non-confidential protocol with the
new property of reusability and multiparty capabilities (i.e. multiple receivers), for
certified notifications.

The multiparty protocol for non-confidential certified notifications presents a solu-
tion for fair deliveries with one Sender (A) and multiple Recipients (B = {B1,B2...,Bn}).
Figure 9.3 is the diagram of the sequence of the messages exchanged by Sender and
Recipients in the non-confidential certified notification for the on-chain communi-
cation scheme proposed. In Figure 9.3 the blue arrows represent the steps described
above and designate the signed requests to a blockchain address. Also, the text in red
inside the boxes describes the processes that have to be performed by the certified
notifications service deployed on the blockchain.

The sender of the delivery, A, and the set of receivers, B , will follow the steps of the
general exchange protocol depicted at the beginning of section 9.2. In the following
complete description of the protocol, the requests sent by the actors of the protocol are
directed to the address of the certified notifications service deployed on the blockchain.
The details of the exchange protocol are (see Table 9.1 for notation):

1. The sender A sends a request to create a new notification. This request includes
the identification address of the sender, the hash of the message to deliver (c, this
hash code is also used as the identification number of the certified notification),
the addresses of the receivers and the periods ter m1 and ter m2. ter m1 spec-
ifies the valid period for the receivers to accept the delivery before the sender
finishes the delivery, and ter m2 specifies the time to allow receivers to cancel an
unfinished delivery. We will see in section 9.4 that this cancellation is required
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Table 9.1: Elements of the Non-Confidential Multiparty Certified Notifications Protocol

Elements

A Blockchain address of the sender A
B Set of receivers
M Message, data or file to deliver
Bi Blockchain address of the receiver Bi

B ′ Subset of B with the users that have accepted
the delivery.

ter m1 Period for receivers to accept the delivery,
specified as time since its creation.

ter m2 Period to allow receivers to cancel the delivery,
specified as time since its creation.

c = H(M) Collision-resistant hash function applied to M .
D Deposit sent to the certified notifications Service.

to guarantee effectiveness and fairness. A deposit is used in this transaction to
encourage finalization, but it could be optional.

2. Each receiver Bi in B has to individually accept the reception of the delivery
during ter m1, publishing a message expressing his will. This signed transaction
will act as a Non-Repudiation of Reception proof. If a receiver does not accept
during ter m1, then a rejection is assumed.

3. After the deadline of ter m1, or after all receivers (members of B) have accepted
the reception, sender A can publish the message by using the blockchain, fin-
ishing the delivery with the subset of receivers B ′ (B ′ ⊂ B) that has accepted
the delivery. As a consequence, the certified notifications service deployed
on the blockchain checks the integrity of the message and publishes the Non-
Repudiation of Origin proof for the receivers in B ′. After the finalization, the
sender receives the refund of the deposit.

4. In this case, we have added a final step to the general three-step protocol: after
the deadline of ter m2 any receiver in B ′ can get the message or can request the
cancellation of the notification in case the message was not properly deposited
in the previous step.

Finally, after the execution of the exchange protocol:

• All the receivers can read the message M since it is stored in the blockchain,
but only members of B ′ can prove that they have been notified and have Non-
Repudiation of Origin proofs.

• If after ter m2 the sender A hasn’t published the message, each receiver Bi can
cancel the notification. In this case, the state of these receivers will be cancel ed .
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9.2.2 Confidential Multiparty Certified Notifications

The second proposal has been designed to take into account those deliveries that
require confidentiality. That is, the blockchain has to help to preserve the fairness of
the exchange but the message cannot be stored in a publicly accessible block.

The main difference with the non-confidential one is that the protocol, in the
confidential case, allows an off-chain optimistic exchange, that is, the exchange can be
executed completely without the intervention of the blockchain or the TTP.

Another important feature is that this proposal does not require a deadline and any
exchange can be finished at any moment. A stateless TTP can be used to resolve the
disputes that could arise between the parties.

Figure 9.4: Optimistic Off-Chain Communication Subprotocol for the Confidential
Multiparty Certified Notifications protocol

In [91, 95] we described a non-blockchain-based optimistic fair exchange that we
partially reuse (i.e. the off-chain three-step exchange) and adapt for this purpose in
the new blockchain-based proposal described in this chapter. In the new protocol,
the originator A and the set of recipients B exchange messages and non-repudiation
evidence directly, using the three-step off-chain communication depicted in subsec-
tion 9.2.2. Only as a last resort, in case they cannot get the expected items from the
other party, the smart contract or the TTP would be invoked, by sending a cancellation
request (Figure 9.5) or a finish request (Figure 9.6). In comparison with the protocol
described in [95], the role of the TTP has been substantially reduced in the blockchain-
based solution. Moreover, the sender will never contact the TTP. In this new proposal,
the TTP will answer only requests from the receivers (members of B) by accessing the
smart contract that has been deployed. The TTP is totally stateless, so it never stores
information about the state of any exchange.

Our new multiparty protocol has three subprotocols. Next, we explain in detail
these subprotocols, including the values that must be exchanged by the different parties.
The subprotocols are: Optimistic Exchange, Cancel and Finish Subprotocols. Note that
blue arrows in Figures represent signed request to a blockchain address, while black
arrows are off-chain communication messages. Also, the text in red inside the boxes
describes the processes that have to be performed by the certified notifications service
deployed on the blockchain. Moreover, the description of the protocol follows the
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Table 9.2: Elements of the Confidential Multiparty Certified Notifications Protocol

Elements

M Message, data or file to deliver.
A Sender of the delivered data.
B Set of Receivers.
Bi A specific receiver.

Subset of B with the users
B ′ that will finish the exchange with A.

Subset of B with the users that will
B ′′ not finish the optimistic exchange with A.

Members of B that have contacted the TTP
B ′′− f i ni shed before the cancellation of the exchange.

Members of B that have not contacted the
B ′′− cancel ed TTP before the cancellation of the exchange.
c = EK (M) Symmetric cipher of message M with key K .
kT = PUT (K ) Key K encrypted with TTP’s public key

A’s signature (using her private key) on the
hA = PRA [H [H(c),B ,kT ]] concatenation of the hash of c, B and kT and I d .

First part of Non-Repudiation of Origin proof.
Bi ’s signature (using his private key) on the

hBi = PRBi [H [H(c),kT ]] concatenation of the hash of c and kT and I d .
Non-Repudiation of Reception proof.
A’s signature (using her private key) on the

kA = PRA [K ,B ′] key K together with B ′. Second part of the
Non-Repudiation of Origin proof for Bi εB ′.
TTP’s signature (using its private key) on

k ′
T = PRT [K ,Bi ] key k for user Bi . Alternative second part of

the Non-Repudiation of Origin proof.
hBi T = PRB [H [H(c),kT , Evidence of the TTP intervention

hA ,hBi ]] requested by Bi .

notation included in Table 9.2.

Multiparty Optimistic Exchange Subprotocol.

The protocol is optimistic in the sense that it is possible for a sender A to complete
the exchange with the set of receivers B without the intervention of the TTP. subsec-
tion 9.2.2 depicts the three-step off-chain message sequence exchanged by sender and
recipients of a confidential notification to solve the exchange through the optimistic
approach.

The exchange is as follows:

1. The sender sends a message to the set of receivers including the encrypted mes-
sage, the addresses of the receivers and the first part of the Non-Repudiation of
Origin proof, kT , hA .

2. Each receiver decides if he follows the exchange sending the Non-Repudiation of
Reception proof, hBi .

3. The sender sends to each receiver, which has sent the message of step 2, a message
containing the decryption key. Thus, this subset of receivers will receive the key
to open the message and the remaining part of the Non-Repudiation of Origin
proof, kA .

If the execution of these steps has been successfully completed, the sender will hold
Non-Repudiation of Reception (NRR) evidence from all recipients and every recipient
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will hold the message and Non-Repudiation of Origin (NRO) evidence. Every recipient
has the key and so he can decrypt the message, then each of the recipients of the
set B obtains the key used to decipher the message, kA , as well as the corresponding
NRO evidence (hA). In the same way, the sender of the message will obtain the NRR
evidence (hBi ) from each recipient. If some of the recipients don’t send the message
of step 2, those recipients won’t receive the message of the last step. In fact, this last
message contains the list of recipients that have completed the protocol. Therefore, a
receiver that is not in the subset B ′ cannot use the message of step 3 received by other
receivers as an NRO evidence. If some party does not follow this exchange protocol, the
remaining users need to correct the unfair situation by requesting the cancel or finish
resolutions.

This way, the protocol allows an optimistic exchange, that is, the exchange can be
executed completely without the intervention of the TTP or the blockchain. Another
important feature is that this proposal does not require a deadline and can be finished
at any moment. The following subprotocols can be executed if disputes arise between
the parties.

Multiparty Cancel Subprotocol.

The Cancel subprotocol will be initiated by the sender of the message. The sender
executes the corresponding function of the smart contract in case of not receiving the
element hBi from all the recipients of the message. In Figure 9.5 there is a graphical
description of the actions taken by the sender and the blockchain to cancel a confi-
dential notification for non-finished recipients. The hash code H(c) is used as the
identification number of the certified notification.

When the sender executes the Cancel function of the smart contract, she has to
indicate the identity of all those users who have not sent hBi (represented by the set
B"). The smart contract, for its part, will be responsible for checking if any of the users
in the set B" has already finished the exchange employing the TTP. In this case, it will

Figure 9.5: On-Chain Cancel Subprotocol for the Confidential Multiparty Certified
Notifications protocol
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send the corresponding NRR evidence (for a particular Bi ) to the sender. Otherwise, the
unfinished recipients will be included in the group of canceled users (B"− cancel ed).
Therefore, at the end of this phase, the sender A will have concluded the fair exchange
with all recipients, either satisfactorily, because she has received the correspondent hBi ,
or as a result of a cancellation.

Figure 9.6: On-Chain Finish Subprotocol for the Confidential Multiparty Certified
Notifications protocol

Multiparty Finish Subprotocol.

The Finish subprotocol will be initiated by any receiver, in the case of having sent the
corresponding hBi but not having received the element to obtain the encryption key,
kA . This finalization will be carried out by the TTP based on the request received from
a recipient Bi . After checking the correctness of all the different parameters received
from Bi the TTP executes the finish function of the smart contract (the TTP submits
Bi ’s NRR evidence (hBi ) to the smart contract). In Figure 9.6 there is the description of
the actions taken by recipients, TTP and blockchain to finish a confidential notification
in case of exception. The TTP’s response is based on the information stored on the
blockchain about this certified notification.

In this subprotocol, the smart contract checks that the request comes from the
TTP, and then it verifies if the claimed recipient is among the users whose message
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delivery has been canceled. In this case, the appropriate cancellation evidence is issued.
Otherwise, the smart contract stores in the blockchain the received hBi and updates the
set of users who have finished this exchange by adding Bi to B"− f i ni shed . Finally, the
TTP sends kT to Bi in order to enable the recipient to read the message and to complete
the NRO evidence.

9.3 Implementation

The implemented protocols depicted in subsection 9.2.1 and subsection 9.2.2 can
be accessed via the NonConfidentialMultipartyRegisteredEDelivery1 and Confidential-
MultipartyRegisteredEDelivery2 GitHub repositories maintained by the Security and
e-Commerce (SECOM) Research Group from the University of the Balearic Islands.

9.3.1 Non-Confidential Multiparty Certified Notifications

In this protocol, we have used a Smart Contract to allow the sender A to send the
same non-confidential message to several receivers, members of B , exchanging non-
repudiation evidence to complete the delivery.

Data structures are required to store the set of receivers and provide multiparty
capabilities, so an array stores the list of addresses of the receivers, and a mapping stores
the state of the exchange for each receiver. As it has been explained in subsection 9.2.1,
in this multipaty protocol the state of the exchange depends on each receiver. We
use a mapping to get a constant time search, and, at the same time, a constant cost
search. But mappings are not iterable. For this reason, we have also an array to store all
addresses of the receivers, to iterate through all these addresses.

The contract also needs to save the messageHash and the message values of the
certified notification and use two periods: term1 and term2. The start variable stores the
time when the delivery is created, and is used to set the timeouts. acceptedReceivers will
count the number of receivers that have accepted, to let the sender finish the delivery,

1https://github.com/secomuib/NonConfidentialCertNotification/tree/master/contracts
2https://github.com/secomuib/ConfidentialCertNotification/tree/master/contracts

� �
enum State {notexists , created , canceled , accepted , finished ,

rejected }

address public sender ;
address [] public receivers ;
mapping ( address => State) public receiversState ;
uint acceptedReceivers ;

bytes32 public messageHash ;
string public message ;

uint public term1;
uint public term2;
uint public start;
� �

Listing 8: Variables of the Non-Confidential smart contract
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� �
function accept () public {

require (now < start+term1 , "The timeout term1 has been reached ");
require ( receiversState [msg. sender ]== State.created , "Only receivers

with ’created ’ state can accept ");

acceptedReceivers = acceptedReceivers +1;
receiversState [msg. sender ] = State. accepted ;

}
� �
Listing 9: accept() function

� �
function finish ( string _message ) public {

require (( now >= start+term1) || ( acceptedReceivers >= receivers .
length ), "The timeout term1 has not been reached and not all

receivers have been accepted the delivery ");
require (msg. sender == sender , "Only sender of the notification

can finish ");
require ( messageHash == keccak256 ( _message ), " Message not valid (

different hash)");

message = _message ;
sender . transfer (this. balance );
for (uint i = 0; i< receivers . length ; i++) {

if ( receiversState [ receivers [i]] == State. accepted ) {
receiversState [ receivers [i]] = State. finished ;

} else if ( receiversState [ receivers [i]] == State. created ) {
receiversState [ receivers [i]] = State. rejected ;

}
}

}
� �
Listing 10: finish() function

avoiding waiting until the deadline of term1. The use of this variable will avoid the
need to check the state of all receivers, which is expensive in terms of gas. These data
structures can be seen in Listing 8.

When a new Smart Contract of this type is created, an array of receivers are set with
the parameters passed by the sender, and then the state of every receiver of the delivery
are initialized to created.

The Accept function (see Listing 9) checks that the sender of the function is in the
receivers mapping, and its delivery state is created. It also checks that the deadline of
term1 has not been reached. If all these conditions are satisfied, the delivery state of
this receiver is set to accepted.

The Finish function (see Listing 10) checks that the deadline of term1 has been
reached or if all receivers have been accepted. The function also verifies that its caller
is the sender of the notification, and that the text of the message matches the hash
specified before. If all of these conditions are fulfilled, the delivery states of the receivers
that were accepted are set to finished, and the states of the receivers that were created
are set to rejected.

Finally, the Cancel function (see Listing 11) checks that the term2 timeout has been
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� �
function cancel () public {

require (now >= start+term2 , "The timeout term2 has not been
reached ");

require ( receiversState [msg. sender ]== State.accepted , "Only
receivers with ’accepted ’ state can cancel ");

receiversState [msg. sender ] = State. canceled ;
}
� �

Listing 11: cancel() function

reached and that the function is called by a receiver with delivery state accepted. If all
these conditions are satisfied, the receiver’s delivery state is set to canceled.

In order to create and deploy reusable certified notification contracts we use a
commonly used design pattern, a Factory Contract, a type of contract that creates
and deploys other contracts. With this pattern, we achieve the reusability of the Non-
Confidential Multiparty Certified Notification contracts, and we get the following ad-
vantages:

• The factory can be used to store the addresses of the child contracts so that they
can be extracted whenever necessary. This is safer than storing it in an external
database, preventing the loss of references to these contracts.

• Our front-end service only needs to store the address of the factory contract.

• The front-end service has to pay only for the deployment of this factory contract.

• Users could invoke a function in the factory to deploy a new delivery contract,
paying deployment costs (see section 9.5). Then, the factory itself deploys the
delivery contract and stores the address of the deployed contract in an internal
list.

9.3.2 Non-Confidential Multiparty Certified Notifications

In the Confidential Multiparty blockchain-based protocol, the sender A and the set of
receivers B will exchange messages and non-repudiation evidence directly. Only as
a last resort, in the case they cannot get the expected items from the other party, the
smart contract or the TTP would be invoked, by calling their cancel or finish functions.

A Smart Contract based on the smart contract presented in Chapter 8 is used,
adapted to the new protocol, so now there is a possibility for a message to be sent to
several receivers. A data structure allows the association of multiple receivers to the
same message and is in charge of storing the necessary parameters and determining
the state of the exchange. The state of the exchange is no longer uniquely defined in
the message but depends on each receiver. The set of receivers will be stored within the
struct message by using a mapping, as can be seen in the code in Listing 12. In the ttp
variable, we will store the address of the account that creates this smart contract.

The function Cancel (Listing 13) uses as the input parameter an array that contains
the set B". The function goes through this set and cancels the exchange for each receiver
if it does not exist previously.
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� �
enum State {notexists , canceled , finished }

struct ReceiverState {
bytes32 receiverSignature ;
bytes32 keySignature ;
State state;

}

struct Message {
bool messageExists ;
address sender ;
address [] receivers ;
mapping ( address => ReceiverState ) receiversState ;

}

mapping ( address => mapping (uint => Message )) messages ;
address public ttp;
� �

Listing 12: Variables and constructor of the Non-Confidential smart contract

� �
function cancel (uint _id , address [] _receivers ) public {

for (uint i = 0; i< _receivers . length ;i++){
address receiverToCancel = _receivers [i];
if ( messages [msg. sender ][ _id ]. receiversState [ receiverToCancel

]. state == State. notexists ) {
addReceiver (_id , msg.sender , receiverToCancel , 0, 0, State.

canceled );
}

}
}
� �

Listing 13: cancel() function

� �
function finish (uint _id , address _sender , address _receiver ,

bytes32 _receiverSignature , bytes32 _keySignature ) public {
require (msg. sender ==ttp , "Only TTP can finish ");
if ( messages [ _sender ][ _id ]. receiversState [ _receiver ]. state ==

State. notexists ) {
addReceiver (_id , _sender , _receiver , _receiverSignature ,

_keySignature , State. finished );
}

}
� �
Listing 14: finish() function

Function Finish (Listing 14) checks if Bi exists. If Bi does not exist, the TTP includes
it in B"-finished, and the NRR proof hBi and the key k, with its corresponding private
key, are stored.

The smart contract also includes a function for the addition of a new receiver
(Listing 15), that also checks if that message exists and creates it if necessary.

It is important to stress that unlike the non-confidential protocol, in the confidential
protocol we don’t use the Factory Contract pattern to create new deliveries. This is due
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� �
function addReceiver (uint _id , address _sender , address

_receiver , bytes32 _receiverSignature , bytes32 _keySignature
, State _state ) private {

if (! messages [msg. sender ][ _id ]. messageExists ) {
messages [ _sender ][ _id ]. sender = _sender ;
messages [ _sender ][ _id ]. messageExists = true;

}
messages [ _sender ][ _id ]. receivers .push( _receiver );
messages [ _sender ][ _id ]. receiversState [ _receiver ].

receiverSignature = _receiverSignature ;
messages [ _sender ][ _id ]. receiversState [ _receiver ]. keySignature

= _keySignature ;
messages [ _sender ][ _id ]. receiversState [ _receiver ]. state =

_state ;
}
� �

Listing 15: addReceiver() function

to the fact that in this protocol we only need to store simple variables like addresses,
states and binary signatures, in contrast to the non-confidential protocol, where we
need to use more complex structures and functions for each delivery. For this reason,
we can store all this in a single smart contract, using mappings and structs, which is
cheaper than deploying a smart contract for every single delivery.

9.4 Security properties analysis

This section presents an analysis of the ideal properties of a certified notification system
(listed in section 5.1) for both proposals. The basis of this rationale about the security
and privacy properties is the correct use of the cryptographic primitives. Our proposals
make use of the following primitives:

• Digital Signatures

• Symmetric Encryption

• Public Key Encryption

• Key Wrapping

• Hash Functions

Thus, in order to make a secure implementation, any deployment has to take into
consideration the official documents that address the use of cryptographic algorithms
and which key lengths are specified. The last issue of the NIST document [169] includes
an explanation of the projected maximum-security strength of key lengths associated
with the cryptographic algorithms. Also, the document has a prediction of the period of
time throughout the algorithms and the proposed key lengths are expected to provide
probable security. That is to say, in order to break the security any attacker must solve
the underlying problem of the implemented cryptographic operations. Thus, the proto-
cols provide suitable and practice-oriented provable security as far as implementors
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choose sufficiently large values of the security parameters and key lengths according
to the international standards [169]. Regarding the specific cryptographic operations
used in our protocols, the digital signature algorithms [170], key wrapping and public
key encryption operations are based on the length and the proper generation of the
domain parameters used.

In our proposals, we have both operations that are performed off-chain and on-
chain. For the off-chain operations, in order to provide acceptable security (i.e. no
security risk is currently known when used in accordance with any associated guidance),
the DSA domain parameter lengths have to be (2048, 224) or (2048, 256), which provide a
security strength of 112 bits; or (3072, 256), which provides a security strength of 128 bits
[169]. Finally, hash function family SHA-2 specified in [171] provides acceptable security
for all hash function applications. Regarding on-chain communication, signatures are
used to authorize transactions on behalf of the signer. They are also used to prove to
a smart contract that a certain account approved a certain message. Therefore, these
signed messages can be used as non-repudiation evidence. Well-known blockchains
such as Bitcoin and Ethereum apply the ECDSA algorithm to create signatures on
transactions. In particular, Ethereum signatures use ECDSA and secp256k1 constants
to define the elliptic curve and create secure signatures[172]. Providing that developers
follow the standard guidelines to use this cryptography in the implementation of our
protocol, the following discussion holds.

The discussion about security includes six propositions to evaluate properties:
effectiveness, fairness and evidence transferability, temporal parameters (timeliness
and timestamping), non-repudiation, Trusted Third Partys (presence, verifiability and
maintenance of state information) and confidentiality. Each proposition is formed by
different claims with its respective proofs and a final result.

The property of efficiency is not included in this analysis because we have performed
a list of experiments to evaluate the efficiency of the protocols, and their results are
included in section 9.5.

Proposition 1 Effectiveness.
The proposed protocols for certified notifications are effective, that is, if the parties behave
correctly, they will receive the expected items.

Claim 1 The non-confidential protocol for multiparty certified notifications is ef-
fective.

Proof: In order to send a new notification, the sender creates a new in-
stance of the smart contract to perform the specified functions according to
the regular operational mode of the specified protocol. If all parties invoke all
the functions correctly, all of them will receive the expected items, as it is easily
deduced from the smart contract solidity code included in Listing 8, Listing 9,
Listing 10 and Listing 11 and in more detail in our GitHub repository. Actually,
no TTP will be involved in the protocol in any case, even if any party does not
follow the three-step exchange protocol, the smart contract will ensure a fair
result for each party :

• If the receiver does not invoke the accept() function, then the sender can
invoke the finish() function to solve the exchange.
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• If the sender does not invoke the finish() function, then the receiver can
invoke the cancel() function to solve the exchange.

Claim 2 The confidential protocol for multiparty certified notifications is effective.

Proof: This protocol has an optimistic approach for a notification issuing,
thus if the parties correctly execute the off-chain steps specified in section 9.2.2
the exchange will successfully conclude without any intervention of the TTP
and will produce the desired result for each one. Only if the sender does not
execute step number 3 of this subprotocol, the receiver has to invoke the TTP
to conclude the exchange. The first step uses public key encryption while all
the steps include digital signatures. All these operations take into account
the secure use of cryptographic primitives included in the beginning of this
section.

Result 1 According to what is said in Claim 1 and Claim 2, the proposed certified notifi-
cations protocols fulfill the property of effectiveness.

Proposition 2 Fairness and evidence.
The proposed protocols for certified notifications are fair, so after completion of a protocol
run, either each party receives the expected item or neither party receives any useful infor-
mation about the other’s item. Moreover, in the proposed protocol for non-confidential
certified notifications, the proofs generated by the system can be transferred to external
entities to prove the result of the exchange.

Claim 3 The multiparty non-confidential certified notifications protocol provides
strong fairness.

Proof: On the one hand, according to the protocol described in subsec-
tion 9.2.1, the sender A will not receive the Non-Repudiation of Reception proof
provided by the smart contract unless she makes the transaction that registers
the message on the blockchain (case state.eDelivery=finished). On the other
hand, a recipient Bi will not have access to the message unless he executes a
transaction to accept the certified notification (state.eDelivery=accepted). At
any moment, the smart contract does not generate alternative cancellation
or finalization proofs that could create any situation where one of the parties
could have contradictory proofs (thus, there is no action that can lead the
exchange to weak fairness situation), as can be seen in Figure 9.7.

Claim 4 The generated proofs in the multiparty non-confidential certified notifica-
tions protocol can be presented as evidence to an external entity.

Proof: Since the parties cannot obtain contradictory proofs in any way
(evidence can be only generated by the logic of the smart contract), the gen-
erated proofs can be presented as evidence to an external entity. Moreover,
its transferability is easy, since the results of the exchange are stored on the
blockchain. Due to the immutability of the blockchain, the content of the
message cannot be modified so the system provides integrity to the message.
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Figure 9.7: States in the Non-Confidential Multiparty Certified Notifications Protocol

The moment the delivery takes place can be derived from the timestamp of
the block where the transaction was included.

Claim 5 The multiparty confidential certified notifications protocol provides weak
fairness.

Proof: The confidential protocol, described in subsection 9.2.2, does not
allow any party to receive the expected item from the other party unless the
latter is in a position to get access to the correspondent expected item. How-
ever, the intervention of the TTP can lead to a situation where one of the
parties possesses contradictory evidence. For instance, a malicious sender
A can have the non-repudiation proof received directly from the recipient B
and, in addition, she can get the cancellation proof generated by the smart
contract after invoking the correspondent cancellation request to the smart
contract. For this reason, the fairness will be weak and the generated proofs
are non-transferable.

Claim 6 The confidential certified notifications protocol proposed in subsection 9.2.2
does not have the property of transferability although the evidence of the final state
of the exchange can be consulted in the blockchain.

Proof: The sender can get a non-repudiation proof from the recipient in
step 2 of the exchange protocol (section 9.2.2). However, this is not enough
to certainly prove to a third party that the recipient has received the mes-
sage. Additionally, the third party should check the information stored on the
blockchain related to this particular notification to confirm this issue. Thus,
this protocol does not provide transferable evidence, since a protocol gen-
erates transferable evidence only if the sender and recipient can separately
demonstrate to any third party the result of the exchange without the need to
request other entities.

Result 2 In the non-confidential protocol, the evidence can only be generated by the
smart contract. Thus, according to what is stated in Claim 3 and Claim 4, the smart
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contract will guarantee the fairness of the exchange (strong fairness) and provide trans-
ferability of evidence. In contrast, in the confidential protocol, actors can get evidence
from the exchange protocol and from the smart contract. Thus, if a claim arises, the
arbitrator has to consult both parties to resolve the final state of the exchange (weak
fairness).

Proposition 3 Temporal parameters.
The multiparty certified notification approaches in subsection 9.2.1 and subsection 9.2.2
offer timestamp and timeliness.

Claim 7 The multiparty non-confidential certified notifications protocol satisfies
weak timeliness.

Proof: The protocol is not asynchronous. If one of the parties delays its
intervention in the exchange, the other party will not be able to resolve it
until the deadline. However, after the deadline, both parties can request the
finalization of the exchange (see Figure 9.3, Listing 10 and Listing 11). Moreover,
the protocol wants to motivate the sender to conclude the exchange before the
timeout blocking an amount of money in the smart contract. This amount will
only be refunded to the sender if she concludes before the deadline. All the
transactions performed on the blockchain are timestamped.

Claim 8 The multiparty confidential certified notifications protocol fulfills the
strong timeliness property.

Proof: The parties can finish the exchange at any moment by accessing the
smart contract (sender A) or contacting the TTP (receiver B). The duration of
the resolution will depend on the block notification treatment. The protocol
can assume that transactions are valid immediately (zero confirmation) or wait
until the block is confirmed in the chain (full confirmation). All the transactions
performed on the blockchain are timestamped.

Result 3 The confidential multiparty certified notifications protocol fulfills the strong
timeliness property since either party can invoke the correspondent finalization proce-
dure at any moment. However, the non-confidential protocol satisfies weak timeliness
since parties cannot decide to finish the exchange sooner than the specific timeouts.

Proposition 4 Non-repudiation.
In the proposed protocols for certified notifications any sender cannot deny being the
origin of an item and any recipient cannot deny being the receiver of an item either.

Claim 9 The multiparty non-confidential certified notifications protocol achieves
Non-Repudiation of Origin together with Non-Repudiation of Reception after the
execution of the exchange.

Proof: Regarding the sender A, she cannot deny having sent the message
since there is a transaction on the blockchain from her address containing the
message and another one related to the same message including the address
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of the receiver and the hash of the message. With respect to the recipient B ,
he cannot deny having received the delivered data since there is a transaction
from his address in the blockchain accepting the reception of the message and
the State of the exchange is Finished, so the message is publicly accessible in
the blockchain.

Claim 10 The multiparty confidential certified notifications protocol provides Non-
Repudiation of Origin together with Non-Repudiation of Reception evidence to the
involved parties in an exchange.

Proof: The protocol achieves Non-Repudiation of Origin together with Non-
Repudiation of Reception after successful execution of the three-step exchange
where secure cryptographic primitives are used or, if this subprotocol does
not finish successfully, then users can complete the exchange by means of the
smart contract. Thus, sender A cannot deny having sent the message since
recipient B has the element received in the third step of the protocol (signed by
A) or the state of the smart contract is Finished. In addition to that, B cannot
deny having received the message since A has the elements sent by B in the
second step of the protocol.

Result 4 As it is stated in 9 and 10, senders and recipients will get the correspondent non-
repudiation evidence from the proposed certified notifications protocols. Thus, certified
notification schemes proposed in this chapter achieve the non-repudiation property.

Proposition 5 Trusted Third Parties.
The protocols proposed in this chapter are verifiable. A TTP is only used in the confi-
dential multiparty protocol. The involvement of the third party in this protocol can be
verified and it is not required that the TTP maintains state information.

Claim 11 There is a total absence of TTP in the multiparty non-confidential certi-
fied notifications protocol. It has been substituted completely by the smart contract,
but even so, the actions performed in the protocol are verifiable.

Proof: This proposal does not require an external party acting as a TTP.
Parties execute the functions of the smart contract creating the associate trans-
actions and there is no need for dispute resolution. All the communications in
this protocol are on-chain, thus, they are stored on the blockchain. Blockchain
has been designed to be immutable and publicly verifiable, therefore the ac-
tions completed in the protocol can be verified and anyone can know which
address is accountable for that.

Claim 12 In the multiparty confidential certified notifications protocol, the TTP
is only involved in case of exception. This third party is an optimistic stateless
TTP. Moreover, the blockchain and the smart contract provide evidence of the TTP
intervention.
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Proof: The TTP is not involved in the exchange subprotocol described in
subsection 9.2.2. The TTP only intervenes in the protocol if the exception case:
is when the recipient claims that she has not received the expected item from
the sender, according to the first step of the exchange protocol. When the TTP
is involved in the dispute resolution, it can resolve the exchange through the
use of the smart contract, executing the finish function. The TTP does not
need to store any kind of state information of the exchange.

The TTP is only able to invoke the finish() function of the smart contract
according to the data provided by the recipient of the certified notification
(the recipient will provide the sender address and the identifier to identify a
notification). Then, the TTP will answer the recipient’s request as the smart
contract stated. If the TTP misbehaves, anyone who knows the notification
identifiers (i.e. sender address and message identifier) can verify the answer of
the TTP according to the data stored on the blockchain.

Result 5 Thanks to blockchain technology there is no need for TTP involvement in the
non-confidential certified notifications protocol. Nevertheless, the protocol is verifiable.
In the confidential multiparty protocol, the TTP will only be involved if the recipient
claims that she has not received the appropriate item from the sender. In this case,
the TTP will act according to what is established in the smart contract, otherwise, the
blockchain can provide evidence of any wrong behavior. Thus, the actions of the TTP
are verifiable. Also, the blockchain allows keeping public and verifiable the state of any
certified notification that uses the confidential scheme, therefore the TTP involved in the
exchange is stateless.

Proposition 6 Confidentiality.
Confidentiality is an optional property in certified notifications protocols. The protocols
proposed in this chapter provide solutions for both confidential and non-confidential (or
public) deliveries.

Claim 13 Since confidentiality is an optional property, the multiparty non-confi-
dential certified notifications protocol does not implement this feature, allowing
public deliveries.

Proof: Instead of keeping the message secret, the protocol specified in
subsection 9.2.1 stores the data related to any exchange on the blockchain.
Thus, it offers the possibility to access the message of any certified notification
through a blockchain explorer.

Claim 14 The multiparty confidential certified notifications protocol ensures the
confidentiality of the delivered data.

Proof: If the exchange is finished through the execution of the three-step
exchange subprotocol, then no other entity is involved in the exchange, and
the message remains confidential (the message is encrypted using a symmetric
cipher prior to sending it). If the TTP is involved or the functions of the smart
contract are executed, then the TTP will process the received elements and will
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make a transaction including the element that will allow the recipient B to de-
crypt the message but the plain message is not included in the transaction so it
will not be included in a block of the blockchain to preserve the confidentiality.

Result 6 The confidential blockchain-based protocol of subsection 9.2.2 can be used if
the confidentially of the message is desired in a certified notification exchange. Otherwise,
when the message has to be public, the scheme of subsection 9.2.1 is suitable.

9.5 Performance analysis

This performance analysis includes experiments to determine the efficiency of the
system in terms of cost since the economical execution costs could be a concert in the
development of the certified notifications service. These tests have been performed
using the Smart Contracts explained in section 9.3, deployed in the Ganache network,
a personal blockchain used for Ethereum development, to isolate the performance
conditions and possible problems of a real network like the main Ethereum network or
the Rinkeby test network. For both Non-Confidential and Confidential protocols, we
have detailed the gas cost of their main functions, comparing the Two-Party version with
the Multiparty protocol for one, two and ten receivers. With these tests, we have two
main objectives: on the one hand we want to obtain absolute values of the economic
costs to evaluate the viability of the protocols and on the other hand we want to evaluate
if the multiparty protocols are able to reduce the cost of the Two-party protocols.

We have also tested the performance in terms of delay, to have an illustrative
reference of the delays introduced by the functions, although we have not included
the complete list of results in this chapter. In the Ganache network, all the functions
have been executed with a delay between 35 and 170 milliseconds, closely related to
the gas cost of each function. However, in a normal production Ethereum blockchain
network, the transaction validation delay varies due to the recent transition to Proof of
Stake (PoS), generally taking between 15 to 30 seconds. Additionally, the delay depends
on the transaction fee the sender is willing to pay, as higher fees can result in faster
inclusion in the blockchain.

Regarding the protocols, we can say that they use the minimum number of steps
that allow the effective exchange. In the confidential protocol, moreover, the parties
can finalize the exchange without the need to contact a TTP or execute any function
of the smart contract. If the parties do not follow the protocol and the execution of
the smart contract is required, the gas necessary for its operation would be reduced
compared with the protocol for non-confidential certified notifications protocol.

The exact value of the execution cost will be useful to check when a multiparty
version of a protocol would be more efficient than a two-party protocol. Moreover,
the results will be also useful to compare the cost of the non-confidential and the
confidential protocols.

In Figure 9.8 we can see the gas cost of the main functions of the Non-Confidential
two-party and multiparty protocol. From their analysis we can conclude:

• The deployment of the factory and the deployment of the delivery (createDeliv-
ery() function) are considerably more expensive than the accept() and finish()
functions.
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Figure 9.8: Gas cost of the Non-Confidential multiparty certified notifications smart
contract

Table 9.3: Non Confidential multiparty certified notifications protocol cost in gas and
equivalent US-Dollars price with 1 Gwei - 20 Gwei gas price

Cost Two-party Multiparty Multiparty Multiparty
in Gas 1 receiver 2 receivers 10 receivers

factory 0 1,568,284 1,568,284 1,568,284
deploy() (0.23$-4.58$) (0.23$-4.58$) (0.23$-4.58$)

create- 742,569 1,038,402 1,122,305 1,793,522
Delivery() (0.11$-2.17$) (0.15$-3.03$) (0.16$-3.28$) (0.26$-5.23$)

accept() 43,545 47,711 47,711 47,711
(0.01$-0.13$) (0.01$-0.14$) (0.01$-0.14$) (0.01$-0.14$)

finish() 59,489 60,642 67,725 124,389
(0.01$-0.17$) (0.01$-0.18$) (0.01$-0.20$) (0.02$-0.36$)

• We have to take into account that the cost of the two more expensive operations
(deploy and createDelivery function) is distributed between the owner of the
service (the Factory deployer) and the sender of the delivery.

• It is cheaper to deploy a two-party delivery than a Muliparty delivery with only
one receiver. But when the same data have to be sent to two or more receivers, it
is cheaper to do it with the Multiparty protocol, because it avoids the deployment
of one smart contract for each receiver.

In Figure 9.9 we can see the performance in terms of gas cost of the Confidential
two-party and multiparty protocols. We can highlight the following conclusions:

• The gas cost is, in general, cheaper than the Non-Confidential protocol, but we
have to consider that the smart contract of the Confidential protocol will be used
only when the TTP is required. The rest of this protocol’s functionalities are out
of the blockchain.
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Figure 9.9: Gas cost of the Confidential multiparty certified notifications smart contract

Table 9.4: Confidential multiparty certified notifications protocol cost in gas and equiv-
alent US-Dollars price with 1 Gwei - 20 Gwei gas price

Cost Two-party Multiparty Multiparty Multiparty
in Gas 1 receiver 2 receivers 10 receivers

deploy() 650,451 537,397 537,397 537,397
(0.09$-1.90$) (0.08$-1.57$) (0.08$- 1.57$) (0.08$- 1.57$)

finish() 216,921 151,697 151,674 151,687
(0.03$-0.63$) (0.02$-0.44$) (0.02$- 0.44$) (0.02$- 0.44$)

cancel() 44,462 116,385 174,950 643,982
(0.01$-0.13$) (0.02$-0.34$) (0.03$- 0.51$) (0.09$- 1.88$)

• The deploy() and finish() functions are cheaper in the Multiparty protocol than in
the Two-party protocol because we have optimized the code presented in Chap-
ter 8 for the two-party protocol, making the multiparty protocol more efficient in
any case.

• With respect to the Multiparty protocol, the deploy() and finish() functions cost
the same because the former do not depend on the number of receivers, and
the latter can only finish the protocol for one receiver. On the other hand, in the
cancel() function we can cancel the delivery for a variable number of receivers.

The cost of this analysis is computed in gas. To determine the exact price of these
transactions, we need both the gas price, set in Ethers (ETHs), and the Ether to US-
Dollars exchange rate, which are variable. Therefore, the US-Dollar prices listed in
Table 9.3 and Table 9.4 are provided as reference, based on the exchange rate on Febru-
ary 21, 2019, considering gas prices of 1 Gwei and 20 Gwei. The main difference, besides
the total transaction cost, is the transaction confirmation time. A transaction with 1
Gwei can take nearly 100 minutes (depending on network traffic), while with 20 Gwei it

104



9.6. Conclusions

can be reduced to 30 seconds3. For more accurate comparisons with other results, it is
recommended to use gas units.

9.6 Conclusions

Existing legislation lays down the rules for electronic identification and trust services for
electronic transactions. Then technical proposals must achieve the legal requirements
to be qualified. The features of Qualified Electronic Registered Delivery, one of the
trust services included in the regulation, are similar to those offered by fair exchange
protocols: Non-Repudiation of Origin and Non-Repudiation of Reception together with
the integrity of the data. For this reason, it is possible to design a fair exchange protocol
for registered e-delivery or certified notification. However, these kinds of services
usually rely heavily on the use of Trusted Third Partys and are costly and inefficient and
the behavior of the TTP has to be verified.

We have proved that blockchain-based technologies can be very useful in the design
of a qualified certified notifications service, solving the problems related to the use of
TTPs.

The main conclusions of the new solution are:

• It is possible to create both a solution that registers the delivery and also a pro-
posal that protects the confidentiality of the delivered data. The choice affects
strongly the design of the protocol.

• A multiparty protocol is much more efficient than a two-party protocol. The per-
formance analysis shows that even for only two receivers the multiparty protocol
requires less gas than the use of the two-party protocol.

• Using smart contracts it is possible to achieve the ideal properties without the
intervention of a TTP or with minimal involvement.

• How, when and by whom a smart contract is deployed depends on the protocol.
Another difference is who pays for the service.

• The use of a factory to deploy the smart contract is well suited for the non-
confidential protocol but is useless in the confidential protocol. Instead, this
protocol makes use of message identifiers.

• The results of the analysis of properties prove that the protocols achieve the ideal
properties of the service: effectiveness, fairness, timeliness, non-repudiation,
verifiability and confidentiality, as it is summarized in Table 9.5.

• The results of the performance analysis are useful to compare the protocols
in terms of efficiency. The two proposed protocols differ in the amount of gas
required to execute the functions of the smart contracts. Moreover, we have to
take into account that some functions are not mandatory to finish the exchange.

3https://ethgasstation.info/
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Table 9.5: Comparison of Properties for the Multiparty Certified Notifications Protocols

Property Non-Confidential Confidential
Multiparty Multiparty
Protocol Protocol

Effectiveness YES YES
Fairness STRONG WEAK
Timeliness WEAK STRONG
Non-repudiation YES YES
Verifiability YES YES
Confidentiality NO YES
Evidence Transferibility YES NO
TTP VOID OPTIMISTIC

STATELESS

• The price to execute the smart contract and the time required for the validation
of the transactions are related to the gas price. This way, for a low gas price, the
certified notification can be executed at a cost of only a few cents of a dollar.
However, the delay will be greater than an hour. Incrementing the gas price we
have obtained validation times of a few seconds, while the execution costs are
increased to more than a dollar. In conclusion, the delay and the cost of the
certified notification can be controlled by adjusting the gas price.

• Blockchain-based technologies have been proven useful in the design of fair
exchange protocols, so they may be used for the design of protocols for different
services.

• The role of Trusted Third Partys can be affected by the incorporation of blockchain-
based technologies in the design of protocols.
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CONFIDENTIAL MULTIPARTY CERTIFIED

NOTIFICATIONS PROTOCOL WITHOUT TTP

In Chapter 8 and Chapter 9, we have discussed blockchain-based methods for certified
notification services, where users receive the sender’s proof of message dispatch and
electronic verification of delivery attempts, that is, Non-Repudiation of Origin (NRO) ev-
idence against Non-Repudiation of Reception (NRR) evidence. For a detailed discussion
on the properties of certified notifications, refer to section 5.1.

While the earlier chapters covered two-party and multiparty protocols requiring
a Trusted Third Party for confidential notifications, this chapter introduces a new
protocol that ensures confidential notification without the involvement of Trusted
Third Partys. The reliance on TTPs can pose technical problems like bottlenecks and
delays, increase operational costs, and introduce security risks if vulnerabilities are
present. Furthermore, TTPs need to be universally reliable and applicable across
various legal frameworks, which is not always feasible.

The protocol proposed here combines the best attributes of the previous protocols.
It allows for the certified notification of confidential data without a TTP, avoiding the
technical, financial, and security disadvantages inherent in TTPs systems.

This chapter will detail a novel approach that enables both confidential data delivery
and the provision of Non-Repudiation of Reception and Non-Repudiation of Origin
proofs without compromising the benefits previously achieved. It eliminates the need
for Trusted Third Partys entirely, thus enhancing the protocol’s efficiency and security.

10.1 Contribution

In Chapter 9, two protocols have been presented. Each one of them satisfied interesting
requirements. While the first proposal has allowed the complete execution of the
delivery or notification operation without the implication of any Trusted Third Party for
non-confidential certified notifications, the second proposal has allowed confidential
certified notifications thanks to the possible use of a Trusted Third Party. Thus, to
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send a notification, users first had to select if they would like to send a secret or a
public notification. In both cases, the sender and receivers run a three-step exchange
to transmit the content of a notification together with non-repudiation evidence.

We can summarize the protocols as follows:

• First step: the sender presents a new notification and submits it in a hidden mode
to all recipients. Some parameters are incorporated in this step to guarantee the
fairness property of the exchange, related to the content of the notification and
the non-repudiation evidence.

• Second step: Every recipient is able to decide whether he wants to receive or
not the notification. The ones who had accepted the message have to issue a
Non-Repudiation of Reception evidence.

• Third step: the sender is able to finish the protocol providing a way to get the
plain content of the notification and the Non-Repudiation of Origin evidence for
all recipients who had accepted the notification.

The execution of the three-step protocol in the confidential scheme was off-chain,
since the sender and recipients exchanged messages directly. Only, in case of problems,
to ensure the security properties, the sender was able to cancel the exchange using a
smart contract deployed specifically for this issue. Also, if receivers cannot successfully
conclude the exchange, they are able to contact the TTP which will check the status
of the certified notification with the assistance of the smart contract and, depending
on the result, it will issue alternative evidence to guarantee fairness. Therefore, an
additional conflict resolution protocol was specified between recipients and TTP to
solve the exception cases. The actions of the TTP were recorded on the blockchain
using the smart contract. The interaction of the confidential protocol was depicted in
Figure 9.2 (section 9.2).

Whereas, in the non-confidential certified notifications protocol, all users execute
the three-step procedure on-chain, they call the smart contract functions to perform
and provide evidence of each action.

This new proposal achieves the fulfillment of the best part of each one of the pre-
vious protocols in a single protocol. This way, the protocol allows the delivery of
confidential data without the need for Trusted Third Partys.

In order to achieve confidentiality in an exchange that is publicly managed by a
smart contract and, as a method for the improvement of the previous proposal, we have
determined that the protocol has the following requirements:

• The delivered data must be encrypted until the acceptance by the receiver when
the Non-Repudiation of Reception proof is provided by the receiver.

• The smart contract cannot access the key required to decrypt the delivered data.
The key cannot be included in clear in a transaction.

• The smart contract must ensure that the receivers will be able to decrypt the data
after acceptance of the delivery.
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• Since the protocol is multiparty, the smart contract must ensure that all the
receivers decrypt the same data.

These requirements must be achieved together with the requirements to obtain
fairness and the other desired properties.

Next, we present the protocol, the description of the cryptographic operations used
in it and the implemented application with the smart contracts. The new protocol will
be analyzed both in terms of performance and security.

10.2 Protocol design

In this proposal, confidentiality is required. The solution provides fairness to the
exchange of elements: message and non-repudiation proofs even when the smart
contract does not know the content of the delivered data and the plain message is not
registered on the blockchain. The sender, A, executes the first step of the protocol
by means of the DApp in order to register the encrypted data on the blockchain. The
encryption has to guarantee that only the receivers can get access to the content of the
notification. Moreover, due to the nature of the multiparty notification service, this step
has to be designed in a way that the smart contract executes a verification to ensure
that the message that each receiver can decrypt has the same content. To execute this
step, all users have to generate a pair of keys, which will be called Notification Keys.
The receivers, members of B , have to accept the notification by means of a transaction.
The transaction is stored in the blockchain. Finally, A will execute a new transaction
finishing the exchange in the third step of the protocol.

The cryptographic algorithms used in the design of the protocol are:

• ElGamal Encryption. The encryption and decryption processes are performed
off-chain.

• Schnorr Zero-Knowledge Proof (ZKP). The verification of the ZKP is performed
on-chain by the smart contract. The description of the solidity implementation
of the ZKP is included in this chapter. For a more detailed description of the
Schnorr ZKP, see subsection 4.7.5.

The ZKP proof is introduced in the protocol to check whether all receivers are able
to decrypt the same notification content or not and, at the same time, the scheme
preserves the confidentiality of the delivered data. In this way, the sender commits to
sending a key to all the receivers during the creation of a new notification. This key will
allow each receiver, who has accepted the message, to open its content. Thus, the key,
instead of being published, is encrypted with every secret shared notification key that
it is only known by each receiver and the sender. The ZKP introduced in the protocol
allows the smart contract to check that the key to open the message is the same for all
the receivers without knowing the bit string of the key. Therefore, the protocol preserves
the confidentiality between sender and receiver and, at the same time, it can publicly
verify that each receiver has access to the same content.
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Cryptographic Background and Notation

Proper parameters should be published prior to the use of the protocol. Also, users
have to be able to check the correctness of these domain parameters. The appropriate
operational conditions, before starting with the Creation phase of the protocol as it is
described in the next section, are the following:

• Two large primes have to be published: p and q with q|p −1 (q is a primer large
factor of (p −1))

• The operations will be made in GF (p) and in Gq . Where Gq denotes the subgroup
of the multiplicative group of GF (p), of prime order q

• Let g be a generator for the subgroup Gq , such that 1 < g < p

• Random numbers r and s are uniformly chosen between 0 and (p −1)

• Private keys xi are randomly (or pseudorandomly) generated from [0, q −1]

• Public keys are created as: yi = g xi mod p

• Fragments of the message M [ j ] to be encrypted are in the range 0 < M [ j ] < p

The notation used in the description of the protocol is included in Table 10.1.

Phases of the Protocol

The exchange protocol that ensures the fairness of the exchange and fulfills the confi-
dentiality requirements listed in section 10.1 includes three phases. These phases are
called Creation, Acceptation and Finalization. A fourth phase, Cancellation, is optional.
There is also a Verification process to check the status of the exchange. The main flow
of the protocol is depicted in Figure 10.1. In this Figure, the three actors are represented
at the top (Sender, Blockchain and Receivers) and, as it is illustrated in the outline, all
phases are executed on-chain. Before the deadline ter m1, there are depicted phase 1
(Creation), which is executed by the sender, and phase 2 (Accept) executed by all the re-
ceivers who agree to get the notification. In the Figure, between the two red lines, which
represent the deadlines ter m1 and ter m2, there is the Finish phase that is performed
by the sender for each particular receiver and, at the end of this phase, the receiver is
able to decrypt the notification content. If the decryption has not been successful, there
is an optional phase (Cancellation) that can be executed by any receiver to conclude
the notification in a fair way. The phases are described in this section.

1. Creation Subprotocol 1. A encrypts the message M in cipher text C using a vari-
ant of ElGamal encryption and the Discrete Logarithm Integrated Encryption
Scheme (DLIES)1. To do this, the sender A uses a secret encryption element r to
generate the final ke y to encrypt the message M using an XOR cipher operation.
If it is necessary, the message can be fragmented in M [ j ] and, thus, the result of
the encryption will be the C2[ j ] fragments. Then, C1 represents the bit commit-
ment with secret encryption element r that will be used by the Smart Contract

1Encryption method standardized in ANSI X9.63, IEEE 1363a, and ISO/IEC 18033-2
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Table 10.1: Notation of the confidential multiparty certified notifications protocol
without TTP

Notation

A Sender.
B Set of receivers.

Bi is used for a single receiver.
B ′ Set of receivers that have accepted

the delivery
M Message, content of the notification.
M [ j ] Fragment of the message.
X ,Y Concatenation of messages X and Y.
U I e. f Execution of function f of e by user U .
ter m1 Timeout for Bi to accept the notification.
ter m2 Timeout for A to finish the exchange.
D Deposit sent to the Smart Contract (ethers).
xA A’s notification private key.
y A A’s notification public key.
xBi Bi ’s notification secret shared key.
yBi Bi ’s notification public key.
g , p, q, g System parameters.
r Encryption secret nonce used by A.
s Encryption nonce used by B.
C1 = g r

mod p First part of ElGamal encryption

of the data to deliver.
C2[ j ] = M [ j ] XOR ke y Second part of ElGamal encryption

of the data to deliver.
ke y = Encryption key
r andom.seed(hash(r ))
h() Hash Function
chal leng e Challenge sent by B to A
w Response to the challenge.
Zi 1=g si

mod p First part of the encryption of the receiver
notification secret key

Zi 2=xBi ∗ y si
A mod p Second part of the encryption of the receiver

notification secret key

during the F i ni sh phase to verify that all receivers have access to the same r and,
therefore they can decrypt the same content of the notification.

To generate a new notification, sender A has his own pair of notification keys
created specifically for this exchange, (xA , y A). Next, A creates a new instance of
a smart contract to manage the new notification delivery by invoking the factory
constructor function provided by the service provider, including the following
parameters: the encrypted message {C1,C2}, the public notification key y A , the
addresses of the proposed receivers (the set B) and the deadlines ter m1 and
ter m2. The first one (ter m1) is the deadline for each receiver to accept the
delivery. The second deadline (ter m2) specifies the valid period for the sender to
finish the exchange. Also ter m2 designates the moment since when the receivers
will be able to have evidence of origin and the plain message or, if the protocol
run has not finished successfully, they can obtain evidence of the cancellation of
the process that has not been properly completed by the sender. At this point,
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Figure 10.1: Description of the confidential multiparty certified notifications protocol
without TTP

we want to highlight the purpose of the parameter C1: the parameter represents
the bit commitment of sender A with the encryption secret key r , in such a way
that by making public this parameter (C1) the smart contract can publicly verify
that the sender is sending the same key to all recipient and, the key is the one
that A is being committed to send once C1 has been made public. We will see
how, in our protocol, A sends r in an encrypted envelope created with a shared
secret key between each receiver and the sender. These shared keys are created
by each recipient and they are confidentially sent to the sender in the Accept
phase. Then, at the F i ni sh phase, the smart contract will check that C1 contains
the right key r using the Schnorr ZKP primitive without the need to know r .

A payment for the service or a deposit D can be included in this stage. Even if
fairness is ensured in any case, in order to avoid dishonest behavior and fraud
attempts, the protocol includes a penalty mechanism to avoid this behavior
from bothering other users, in terms of delay or differences in the distribution of
execution costs. For this reason, we have included in this phase of the protocol a
deposit with the aim of encouraging the sender to conclude the exchange in the
expected way, that is, following the phases of the protocol. As it will be explained
in the Finish phase the deposit D will be returned to the sender if he finishes the
exchange according to the protocol.

2. Accept Subprotocol 2. In this multiparty scenario, each receiver can decide
individually whether to accept the delivery or not, by executing the correspond-
ing function of the smart contract before the deadline ter m1. If a receiver ac-
cepts the delivery, he executes a function of the smart contract expressing his
will. If the receiver Bi does not accept before ter m1, a rejection is assumed
(St atei = Re j ected), otherwise, the delivery has been accepted by the receiver
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Subprotocol 1: Step 1. Creation

1. A :
Generation of M ,r, y A = g xA

mod p
ke y = r andom.seed(hash(r ))
Encryption of M .

If required, fragmentation of M in blocks: M [ j ]
C1 = g r

mod p
FOR j = 1 TO M .leng th

C2[ j ] = M [ j ] XOR ke y
ke y = r andom.seed(hash(ke y))

2. A I SM .cr eati on(A,B ,C1,C2, ter m1, ter m2,
y A , g , p, q,D)

3. SM :
St atei =Cr eated ,∀i

Bi (St atei = Accepted). Since A has to allow access to the delivered contents to
those members of B that have accepted the delivery while keeping it confidential
for the rest of the world, the plain message cannot be included in a transaction
nor stored in the blockchain. Thus, the sender A must generate the necessary ele-
ments to confidentially deliver the key to decipher the message, (that is, sending
the key that has been committed to send at the Creation phase, C1). The smart
contract must ensure that all the receivers that have accepted the delivery can
access the same message. In order to achieve this goal, each receiver Bi generates
its own pair of shared notification keys xBi , yBi . This pair of keys is called shar ed
because they will be shared between a particular recipient and the sender. While
xBi is the private key because it is only known by the recipient and the sender,
yBi is the public key because everybody can know it. This public shared noti-
fication key will be used in the next phase (F i ni sh) by the smart contract to
check whether all receivers are able to decrypt the same message and, thus, they
can read the same notification content. Accordingly, Bi generates parameters
{Zi1 , Zi2 } that will allow sender A to get the shared key xBi as we will see at the
F i ni sh phase. The calling to the function accept () also includes the parameters
yBi and chal leng ei . The latter is a uniformly random chosen challenge that the
sender should appropriately respond in conjunction with the secret encryption
element r . The response will be used by the smart contract to verify that every
recipient receives the same key r at the F i ni sh phase. Note that, in spite of being
able to verify the correctness of the secret r , the smart contract will not be able to
know the secret r thanks to the use of the ZKP primitive.

Since each receiver is free to accept the notification or not, he can’t be punished
if he does not accept the notification. For this reason, no penalty mechanism has
been included in this phase of the protocol.

3. Finish Subprotocol 3. Finally, before the deadline ter m2, A can finish the delivery
process for those Bi who have accepted the notification, executing the finish()
function of the smart contract.
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Subprotocol 2: Step 2. Accept

1. Bi :
generation of the parameters: yBi = g

xBi

mod p , si

Zi1 =g si

mod p , Zi2 =xBi ∗ y si
A mod p

2. Bi I SM .accept (Zi1 , Zi2 , yBi ,chal leng ei )

3. SM:
IF(now < ter m1) AND (I d == Bi ) AND (St atei ==Cr eated)

St atei = Accepted
Add Bi to B ′

The sender A generates for each receiver in B ′, that is, receivers that have accepted
the delivery, a response to the challenge in the form of a ZKP using the secret
element r used in the encryption of the message in the first step of the protocol,
the challenge provided in phase 2 and Bi ’s secret shared notification key, xBi .
Note that, although the secret shared notification key, xBi , was created by Bi , Bi

has sent the secret shared key to A, encrypted with A’s public key using ElGamal
cryptosystem, resulting in {Zi1 , Zi2 }. This way, A can obtain the secret shared

notification key for each Bi using its private key:
(
Zi1

xA
)−1 ∗Zi2 = xBi .

The Smart Contract will store the parameters. With this response, the Smart
Contract can verify, by means of the stored data, that each receiver Bi in B ′ will be
able to know the secret element r in order to decipher the message. However, the
Smart Contract will not know this element and therefore the message will remain
confidential. Thus, the ZKP allows the Smart Contract to verify the commitment
with the secret key r that did A in the Cr eati on phase of the certified notification,
in such a way that A can prove to the Smart Contract that he is sending the
proper secret element r to each receiver without disclosing its value, because
his response wi to the challenge sent by any receiver chal leng ei is coherent
with the committed value of the secret key, publicly expressed in C1. Therefore, if

g wi == g r ∗ ychal l eng ei

Bi mod p
holds, then the Smart Contract can be sure that the

receiver is able to get access to the right key and the state of the notification for
this receiver will be F i ni shed .

In the last step of this phase, receivers can isolate r from w due to knowledge
of xBi and chal l eng e and, then, they will be able to read the content of the
message.

At this point, if the sender has executed Finish in the right period of time, and if
the verification performed by the smart contract stands, since the sender A has
followed the protocol, the smart contract returns the amount D, deposited in
the creation phase, to the sender A. With this procedure, the protocol wants to
avoid misbehavior from A. If at term2 Finish has not been executed satisfactorily,
then the deposit D will not be returned. As it will be explained in phase Cancel,
in this situation, a receiver that has accepted the notification can execute Cancel
and the exchange will remain in a fair situation. However, this has to be executed
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Subprotocol 3: Step 3. Finish

1. A :
xBi =

(
Zi1

xA
)−1 ∗Zi2 mod p

generation of wi =r + chal l eng ei ∗xBi mod q

2. A I SM.finish(wi )

3. SM:
IF (I d == A) AND ((ter m1 < now < ter m2) OR ((B ′ == B) AND

(now < ter m2))
FOR (∀Bi ∈ B ′)

IF (g wi == g r ∗ ychal l eng ei

Bi mod p
)

St atei = F i ni shed
FOR (∀Bi ∉ B ′)

St atei = Re j ected
Deposit D is refunded to A

4. Bi :
r = wi − chal l eng ei *xBi mod q

ke y = r andom.seed(hash(r ))
FOR j = 1 TO n

M [ j ] =C2[ j ] XOR ke y
ke y = r andom.seed(hash(ke y))

after term2 and it is the receiver who has to execute the function in the smart
contract, causing delay and a different distribution of the execution costs. It has
to be said that if no receiver accepts the notification then the deposit D is also
returned to the sender.

Finally, after ter m2, each receiver in B ′ (receivers that have accepted the delivery)
can access the message through the Web3 or similar interface or, in the event that
the issuer has not successfully completed the protocol, the receivers will have
access to the corresponding cancellation evidence.

4. Cancellation Subprotocol 4. Cancellation of acceptance. This step is optional
and it will be executed by any receiver Bi , if the sender A does not finish the
exchange providing the decryption key when the receiver has accepted the con-
tract.

If a receiver tries to cheat by executing Cancel when the state is not Accepted
(then it is finished), the protocol will not change the state, maintaining fairness.
However, the dishonest behavior of this receiver can be punished by including
him in a blacklist of dishonest users.

5. Verification The verification process can be carried out by both the sender A and
any receiver Bi , as well as any third party involved. In this verification process,
the status of each receiver can be checked, with the getState function, as well as
any variables involved in the exchange, as they are public in the smart contract,
except the message M , which for reasons of confidentiality, is encrypted.
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Subprotocol 4: Cancellation of Acceptance

1. Bi I SM.cancel()

2. SM:
IF(now >= ter m2, I d == Bi AND St atei == Accepted)

St atei =C ancel ed

In addition, as the verification of the ZKP is performed on-chain, in the Finish
function, we can ensure that the state of any receiver Bi is checked by the contract
itself.

10.3 Implementation

The protocol presented in section 10.2 has been implemented to prove its viability and
also to check the execution costs. For this implementation, we have used the Ethereum
blockchain. This will offer us more functionalities than conventional blockchains such
as Bitcoin, using programs called Smart Contracts, which allow us to program on a
distributed Turing complete machine, developed in Solidity language, and to store
system state changes. Ethereum will use Ether (ETH), its cryptocurrency, to meter
and limit the costs of resources used to execute the code. This section includes the
development procedure and the description of the smart contracts.

In this protocol, a Smart Contract is used to manage the distribution of a confi-
dential message from a sender A to several recipients (all recipients are the members
of a set called B) and to exchange Non-Repudiation of Origin evidence against Non-
Repudiation of Reception evidence.

To do this, we need some data structures to keep the group of recipients, thus an
array is declared to keep their addresses. Also, a mapping structure has been declared to
keep track of the state of each exchange for every recipient, and the variables z1, z2, yb,
c and w (that correspond to the elements Zi 1, Zi 2, yBi , chal l eng ei and wi according to
the notation of the protocol) of the implementation of the ZKP, for each recipient. This
mapping allows us to maintain the cast and the time for searching the information from
a receiver as constant values. On the other hand, the array lets us to iterate through all
the addresses of the receivers.

In addition to that, two variables (term1 and term2) are also declared in the smart
contract to store the correspondent deadlines and, also, an additional variable (sender)
to save the sender’s address. We have defined the variable called start to set the current
time when a delivery is created, and the deadlines term1 and term2 are set from this
value. A new variable acceptedReceivers is used to count the amount of recipients that
have accepted the delivery. This way, the sender can finish the delivery of the data and
he does not need to wait until term1. Thanks to the acceptedReceivers variable, the
smart contract does not have to verify the state of the exchange from all the receivers,
thus we are avoiding an expensive operation in terms of gas consumption thanks to
this variable.

We also need to store all the general variables of the Zero-Knowledge Proof (ZKP):
c1, c2, ya, g, q and p (C1, C2, y A , g , q and p). All data structures are written down in
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� �
enum State { notexists , created , canceled , accepted , finished , rejected }

struct ReceiverState {
bytes z1 ;
bytes z2 ;
bytes yb ;
bytes c ;
bytes w;
State s t a t e ;

}

address public sender ;
address [ ] public receivers ;
mapping ( address => ReceiverState ) public r e c e i v e r s S t a t e ;
uint acceptedReceivers ;

bytes public c1 ;
bytes public c2 ;
bytes public ya ;
bytes public g ;
bytes public p ;
bytes public q ;

uint public term1 ;
uint public term2 ;
uint public s t a r t ;� �

Listing 16: Data structures

� �
function accept ( bytes _z1 , bytes _z2 , bytes _yb , bytes _c ) public {

require (now < s t a r t +term1 , "The timeout term1 has been reached" ) ;
require (

r e c e i v e r s S t a t e [msg . sender ] . s t a t e ==State . created ,
"Only receivers with ’created’ state can accept" ) ;

acceptedReceivers = acceptedReceivers +1;
r e c e i v e r s S t a t e [msg . sender ] . z1 = _z1 ;
r e c e i v e r s S t a t e [msg . sender ] . z2 = _z2 ;
r e c e i v e r s S t a t e [msg . sender ] . yb = _yb ;
r e c e i v e r s S t a t e [msg . sender ] . c = _c ;
r e c e i v e r s S t a t e [msg . sender ] . s t a t e =State . accepted ;

}� �
Listing 17: accept() function

Listing 16.
The following variables are initialized when a new instance of the Smart Contract

is created: first, an array of recipients is initialized with the values sent by the sender,
and next the delivery’s state for each recipient is set to created. We will also store the
timeouts and all the general variables for the ZKP and the sender makes a deposit in
Ether.

The Accept function verifies that the user who has called the function (msg.sender)
has the address in the recipients mapping (see Listing 17), and the correspondent
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� �
function f i n i s h ( address _receiver , bytes _w) public {

require ( (now >= s t a r t +term1 ) | | ( acceptedReceivers >= receivers . length ) ,
"The timeout term1 has not been reached and not all receivers have accepted

the delivery" ) ;
require (msg . sender==sender , "Only sender of the delivery can finish" ) ;

bytes memory check_1=bignumber_modexp( g , _w, p) ;
bytes memory check_2=bignumber_modmul( c1 ,

bignumber_modexp( r e c e i v e r s S t a t e [ _receiver ] . yb ,
r e c e i v e r s S t a t e [ _receiver ] . c , p) , p) ;

require ( bignumber_equals ( check_1 , check_2 ) ,
"(g^w mod p) and (((g^r mod p)(ybc mod p)) mod p) are not equals" ) ;

sender . transfer ( t h i s . balance ) ;
for ( uint i = 0 ; i < receivers . length ; i ++) {

r e c e i v e r s S t a t e [ receivers [ i ] ] .w = _w ;
i f ( r e c e i v e r s S t a t e [ recei vers [ i ] ] . s t a t e == State . accepted ) {

r e c e i v e r s S t a t e [ receivers [ i ] ] . s t a t e = State . f inished ;
} else i f ( r e c e i v e r s S t a t e [ recei vers [ i ] ] . s t a t e == State . created ) {

r e c e i v e r s S t a t e [ receivers [ i ] ] . s t a t e = State . rejected ;
}

}
}� �

Listing 18: finish() function

delivery state is created. Then, the function also verifies that term1 deadline has not
been overtaken. The delivery state of the recipient will be updated to accepted if all
verifications are fulfilled, and all variables for the ZKP which depends on each receiver
are stored for that particular receiver.

The Finish function is depicted in Listing 18. This function first verifies that the
current time is greater than term1 or whether all recipients have accepted the exchange
or not. So as to carry on with the function, it is also necessary to check that the user
who has invoked the function is the sender of the notification. Finally, the function also
checks that the w variable fulfills the equality g w mod p = (c1∗ (yb

c mod p))mod p,
using the solutions explained in section 10.3. Then, if all of these verifications are met,
the delivery states of all the recipients that have been accepted are updated to finished.
Also, for the recipients whose state is created, the state is changed to rejected, and the
sender will be refunded.

Lastly, we have depicted the Cancel function in Listing 19. This function first

� �
function cancel ( ) public {

require (now >= s t a r t +term2 ,
"The timeout term2 has not been reached" ) ;

require ( r e c e i v e r s S t a t e [msg . sender ] . s t a t e ==State . accepted ,
"Only receivers with ’accepted’ state can cancel" ) ;

r e c e i v e r s S t a t e [msg . sender ] . s t a t e = State . canceled ;
}� �

Listing 19: cancel() function
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verifies that the current time is greater than the deadline term2 and that the caller of
the function is one of the recipients whose delivery state is accepted. If these conditions
are met, then the smart contract updates the receiver’s delivery state to canceled.

Factory Contract

We have also used the well-known factory method programming pattern in order to
generate new instances of a smart contract to manage each newly certified notification.
We have created the Factory Contract that generates and deploys new contracts for this
purpose, the use of this pattern will achieve the following advantages:

• The code used to generate and manage a newly certified notification will be
reusable.

• The factory also works as a storage of the addresses of the child contracts, the
certified notifications.

• We can easily access all the notifications that we have made using this service
thanks to this new address storage inside the factory contract.

• The provider of the central service only has to pay for the deployment of the
factory contract.

• Each user who wants to send a new notification has to pay for the creation of a new
instance. We have analyzed the deployment costs in section 10.5. According to
this pattern, the factory contract is in charge of the deployment of new instances
to manage a new notification and it will keep the address of this newly deployed
contract in an inner data structure.

ZKP in Solidity

Implementing the ZKP in solidity is challenging due to the use of big numbers. An
inefficient implementation would result in high execution costs in terms of gas.

The most important problem found to implement the Zero-Knowledge Proof in
Solidity is that we need to operate with numbers of minimum 256 bits, and there is
an operation that checks an equality, g w mod p = (c1∗ (yb

c mod p))mod p, that needs
more bits to operate.

The solution found consists of using the bytes data type, which can hold a sequence
of bytes of any size, instead of using the uint data type, which can hold unsigned
integers of a maximum of 256 bits. If we use this data type in the parameters of the
functions and to store values, we can use these Smart Contracts with numbers of any
size, like 256, 512, 1024 or 2048 bits.

Then, we have also used the Big Number Library for Solidity 2 to operate with these
numbers. First of all, we convert the bytes values to BigNumber values, and then we
perform the equals(), modmul() and modexp() functions using this type, employing the
following functions from the Big Number library:

2(https://github.com/zcoinofficial/solidity-BigNumber/)
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1. bignumber_equals(bytes _a, bytes _b): Compares two BigNumber ins-
tances for equality. It returns true if the two numbers are equal and false
otherwise.

2. bignumber_modmul(bytes _a, bytes _b, bytes _m): Performs modular
multiplication of two BigNumber instances _a and _b with respect to modulus
_m. It returns the result as a bytes value.

3. bignumber_modexp(bytes _b, bytes _e, bytes _m): Performs modular
exponentiation of a BigNumber instance _b raised to the exponent _e with respect
to modulus _m. It returns the result as a bytes value.

10.4 Security properties analysis

Now, this section presents a survey and a security discussion of the desired properties
for certified notifications schemes that were enumerated in section 5.1.

Regarding the security properties defined in section 5.1, we have removed the effi-
ciency property because it will be evaluated separately, in section 10.5, where the results
and a set of experiments to evaluate the performance of the protocol are presented. We
also have grouped together the properties of fairness and evidence transferability for
discussion purposes.

1. Effectiveness. The system for certified notifications presented in this chapter is
effective. So, all parties will receive the expected items in case of behave according
to protocol.
To create a new notification, the sender generates a new instance of the smart
contract to execute the functions following the specifications of the protocol. If
all the parties execute all the functions correctly (Accept() and Finish() functions),
they will have the items that they expect to receive. This can easily be deduced
from the solidity code depicted in section 10.3. At the end of the exchange, the
receivers that have followed the protocol will have the key to decrypt the delivered
data and the Non-Repudiation of Origin proof whereas the sender will have the
Non-Repudiation of Reception proof and the state of this delivery will be Finished
for every recipient.

2. Fairness and Transferability of evidence. The proposed protocol for certified
notifications is fair. At the end of a protocol execution, either each party has
received the proper element or neither party has received any useful data about
the other’s element, providing strong fairness[87]. Moreover, the evidence gener-
ated by the protocol can be transferred to an external party in order to prove the
outcome and the effects of the exchange without further verifications.
On the one hand, according to the protocol, the sender is not going to receive
the Non-Repudiation of Reception evidence generated by the smart contract
except if he executes a transaction in order to allow the receivers to decrypt the
message and, at the same time, allows the smart contract to check the validity of
the provided key (when state = Finished). On the other hand, any receiver Bi is
able to get access to the delivered data only if he runs a transaction in order to
agree to receive the notification (case state = accepted).
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Figure 10.2: States of the confidential multiparty certified notifications protocol without
TTP

If the parties do not follow the specifications of the protocol, that is, if they do
not execute the functions Accept() and/or Finish(), the smart contract guarantees
a result that is fair for every user without the need of any intervention of a TTP.

We have analyzed all the cases where the protocol can lead the exchange to
prove the strong fairness of the protocol. We have used a state transition diagram.
For each receiver, this diagram is formed by three final states: Finished, Canceled
and Rejected and two intermediate states: Created and Accepted. These states
cannot be final states because the protocol will eventually change the state in
any case. The states and the transactions are represented in Figure 10.2.

Finished implies that the exchange has been completed following all the stages
of the protocol, while Canceled and Rejected represent exchanges that have not
been completed, for different reasons. Now, we will show how the protocol leads
the exchange to a fair situation in all cases:

• creation() not executed. If the first step of the protocol is not executed satis-
factorily, the notification is not created, any element of the fair exchange
has been provided and the parties are in a fair situation.

• accept() not executed satisfactorily. If, after the creation of the notification in
the first step of the protocol, a receiver does not execute accept, before the
deadline term1, then the smart contract will set the state for this receiver
to Rejected. This way, after the first timeout, those receivers that have not
called the accept() function are not included in the set B’ and the sender will
not finish the exchange with these receivers, so the delivery will not be com-
pleted for them and they will not receive the decryption key. These receivers
do not have access to the delivered data and to the non-repudiation of origin
element. On the other hand, the sender does not have a Non-Repudiation
of Reception proof generated by these receivers. So, the situation is fair for
all the parties. The final state for this exchange will be Rejected.
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• finish() executed successfully. The sender can execute finish() only for those
receivers that have executed accept(), that is, the receivers in B’, with state
equal to accepted. The sender can, consequently have the Non-Repudiation
of Reception proof. When the sender executes finish() then the smart con-
tract checks the provided elements and verifies that the receiver will have
access to the delivered data and also that he obtains the Non-Repudiation
of Origin proof (state==finished). This way, after successful execution of
finish(), the protocol leads the exchange to a fair state, where the parties
have received all the desired elements.

• finish() not executed successfully. Execution of cancel(). If after the execution
of accept(), a receiver does not receive the decryption key (that is, the sender
has not executed finish() or the smart contract does not verify the provided
elements), then, after the expiration of the deadline, the receiver can call
the cancel() function to conclude the exchange with fairness. This way the
smart contract will set the state to Canceled, meaning that the exchange
has not been performed successfully, that is, the receiver hasn’t had access
to the delivered data and the protocol has not generated non-repudiation
proofs.

According to the previous evaluation, the fairness provided by the protocol is
strong fairness. Although the smart contract can create finalization and alterna-
tive cancellation proofs, the protocol does not allow any circumstance where
a user could get contradictory evidence since the state for each receiver is only
updated by the smart contract. Therefore, it is not possible to do an action that
could lead to an unfair situation (the contrary would be considered weak fairness
[87]).

The proofs generated during the execution of a protocol run can be submitted
as proofs or evidence to an external arbiter. We have to take into account that
users cannot get contradictory proofs and valid evidence are only created by
the execution sequence of the smart contract. The evidence can be evaluated
by an external arbiter who can determine whether the exchange has concluded
successfully or not. In addition to that, its transferability is easy, because the
proofs generated during the exchange are all stored on the blockchain. Therefore,
since the blockchain is immutable, it is not possible to change the content of any
message and, thus, the scheme provides message integrity. It is also possible to
deduce the exact point in time when the delivery took place from the timestamp
of the block where the transaction was included.

3. Temporal parameters: Timeliness and Timestamping. A successful delivery will
always be completed before deadline term2.
If the delivery is not successful we have different deadlines in function of how
the exchange has been performed. If a receiver does not accept the delivery, then
the delivery will be classified as Rejected at term1. If after the acceptance of the
delivery by a receiver the sender does not finish the exchange, then the exchange
can be canceled at term2.

Moreover, the system prompts the sender to end a notification exchange before
the deadline term2. This motivation is performed by means of a deposit that is
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blocked in the smart contract. The deposit will be given back to the sender in case
of conclusion before term2. We have to take into account that the blockchain
timestamps all transactions performed on it.

4. Non-repudiation. The certified notifications protocol must provide a Non-Repu-
diation of Reception evidence and a Non-Repudiation of Origin evidence too.

• Regarding the origin, a sender A of the notification cannot deny having exe-
cuted the function to create the notification since there is a transaction on
the blockchain from her address containing the addresses of the receivers
and the encrypted message (see Subprotocol 1). In addition, the transac-
tion related to the execution of the finish(() function (see Subprotocol 3)
proves that the sender has provided the key to decrypt the message to the
receivers that accepted the certified notification, and is considered the Non-
Repudiation of Origin element since this transaction leads the exchange to
the Finished state.

• Concerning the reception, each recipient Bi is not able to refuse having ac-
cepted the notification, because an accepting transaction from his address
is stored on the blockchain. This transaction accepts the reception of the
notification and, according to that, the smart contract changed the state
of the notification to Finished after the execution of finish() function. The
protocol ensures that each receiver has obtained the right decryption key
since the smart contract validates it by using the ZKP (see Subprotocol 2
and Subprotocol 3).

5. Trusted Third parties. The proposed scheme does not need the intervention of
an external Trusted Third Party.
In this protocol, the parties run the functions of the smart contract by generating
the appropriate transactions and, thanks to the use of the smart contract, no
further dispute-resolution phase is needed. The exchange of information in
the proposed system is all on-chain, as a consequence, all communications
related to a notification are stored on the blockchain. We have to take into
account that blockchain technology has been conceived to be immutable and
publicly verifiable, thus the actions that have been carried out in a protocol run
are publicly verifiable and anyone can know which address is accountable for
that.

6. Confidentiality. A delivery will be confidential if only the receivers that accept
the delivery can access the delivered data. For this reason, the data cannot be
included in clear in any transaction and must not be registered in the blockchain.
The data cannot be a parameter in the smart contract functions and the smart
contract cannot gain access to the decryption key. Even though, the protocol
must check that the data received by all the receivers is the same.
In Subprotocol 1 the sender runs the creation function of the smart contract
including C1 and C2, that represent the encrypted message. In Subprotocol 2
each receiver provides a way for the sender to send privately the key to decrypt
the message, through the elements Z1 and Z2. The smart contract verifies in
Subprotocol 3 that the right decryption key is provided and that can be derived
from wi , isolating r .
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There are no more entities involved in the notification exchange, and the
transactions only include encrypted messages and hidden decryption keys that
are only recoverable for receivers who have accepted the exchange. Thus, the
delivered data will remain confidential.

10.5 Performance analysis

Once we have finished the implementation of the proposal and we have tested the
results, we have performed some experiments to determine the efficiency of the sys-
tem in terms of cost, since the economical execution costs could be a concern in the
development of the certified notifications service.

The performance analysis includes several tests, performed using the Smart Con-
tracts explained in section 10.3. We have deployed it to the Ganache network, a personal
blockchain used for Ethereum development, to isolate the performance conditions
and possible problems of a real network like the main Ethereum or the Rinkeby test
networks.

Figure 10.3: Gas cost of the createDelivery() function

Table 10.2: createDelivery() function gas cost and equivalent US-Dollars price with 1
Gwei - 20 Gwei gas price

Cost in Gas 256 bits 512 bits 1024 bits

1 receiver 2,743,000 2,826,871 3,077,925
(0.35$-7.09$) (0.35$-7.21$) (0.38$-7.78$)

2 receivers 2,826,871 2,938,640 3,161,732
(0.35$-7.14$) (0.36$-7.43$) (0.40$-8.00$)

Cost per Receiver (0.17$-3.57$) (0.18$-3.71$) (0.20$-4.01$)
10 receivers 3,498,345 3,610,115 3,833,208

(0.43$-8.85$) (0.45$-9.13$) (0.48$-9.70$)
Cost per Receiver (0.04$-0.87$) (0.04$-0.91$) (0.04$-0.96$)
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From the results of the tests, we have detailed the gas cost of the functions, executing
the protocol with different values for the number of receivers, selecting the values
of one, two and ten receivers. With these tests, we want to obtain absolute values
of the economic costs to evaluate the viability of the protocol and also evaluate the
performance of multiparty protocols compared to Two-party protocols and for this
reason, the cost per receiver has been taken into account.

We have also tested the performance in terms of delay to provide an illustrative
reference of the delays introduced by the functions, although we have not included the
complete list of results in this chapter. In the Ganache network, all the functions have
been executed with a delay between 55 and 837 milliseconds, closely related to the gas
cost of each function. However, in a normal production Ethereum blockchain network,
the delay for transaction validation varies depending on the fee the sender is willing
to pay and the current network conditions. With the transition to Proof of Stake (PoS),
the average delay is generally reduced compared to the Proof of Work (PoW) consensus
mechanism, typically ranging between 15-30 seconds.

In Figure 10.3, Figure 10.4, and Figure 10.5, we can see the gas cost of the main
functions of the protocol. The cost analysis is computed in gas, but to determine
the exact price of these transactions, we also need the gas price, set in Ethers (ETHs),

Figure 10.4: Gas cost of the accept() function

Table 10.3: accept() function gas cost and equivalent US-Dollars price with 1 Gwei - 20
Gwei gas price

Cost in Gas 256 bits 512 bits 1024 bits

1 receiver 244,207 355,403 577,988
(0.03$-0.61$) (0.04$-0.90$) (0.07$-1.46$)

2 receiver 244,207 355,403 577,988
(0.03$-0.61$) (0.04$-0.90$) (0.07$-1.46$)

10 receiver 244,207 355,403 577,988
(0.03$-0.61$) (0.04$-0.90$) (0.07$-1.46$)
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and the Ether to US-Dollars exchange rate, both of which fluctuate. Therefore, we
have added in Table 10.2, Table 10.3, and Table 10.4 the price in US-Dollars of each
functionality as a reference, considering the exchange rate on January 1, 20203, with
gas prices of 1 Gwei and 20 Gwei. The cost in gas of the deploy() function of the factory
is not included, as it is independent of the number of receivers and the number of bits:
3,864,642 (between 0.49$ and 9.78$). The main difference, in addition to the total cost
of the transaction, is the time it will take for the transaction to be accepted by a mining
node. A transaction made on the main Ethereum network with a value of 1 Gwei can
take almost 100 minutes (depending on the current network traffic), while in the case
of 20 Gwei, it can be reduced to 30 seconds4. To accurately compare with other results,
it is better to compare the gas costs directly.

From the analysis of the results included in Figure 10.3, Figure 10.4, Figure 10.5,
Table 10.2, Table 10.3 and Table 10.4 we can conclude that:

• Cost of the functions:

3Ether Price = 130.27$
4https://ethgasstation.info/

Figure 10.5: Gas cost of the finish() function

Table 10.4: finish() function gas cost and equivalent US-Dollars price with 1 Gwei - 20
Gwei gas price

Cost in Gas 256 bits 512 bits 1024 bits

1 receiver 192.681 516.563 2.343.311
(0.02$-0.49$) (0.06$-1.30$) (0.29$-5.92$)

2 receivers 261.149 625.171 2.532.199
(0.03$-0.65$) (0.07$-1.57$) (0.32$-6.40$)

Cost per Receiver (0.01$-0.32$) (0.03$-0.70$) (0.15$-3.20$)
10 receivers 808.893 1.494.035 4.043.303

(0.10$-2.04$) (0.19$-3.78$) (0.50$-10.22$)
Cost per Receiver (0.008$-0.20$) (0.01$-0.37$) (0.04$-1.01$)
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– The factory deploy() and the createDelivery() functions are considerably
more expensive than the accept() and finish() functions. An exception to
this statement occurs when we use long keys and the number of receivers is
big.

– The factory deploy() is executed only once and its cost is amortized by the
number of deliveries created using the factory. We have to take into account
that the cost of the two more expensive operations (factory deploy and
createDelivery functions) is distributed between the owner of the service
(the Factory deployer) and the sender of the delivery.

– The only function executed by the receiver, accept() is very cheap in terms
of gas.

• Number of receivers.

– The factory deploy() and the accept() functions are independent of the num-
ber of receivers.

– The createDelivery() and the finish() functions depend on the number of
receivers and the total cost grows as the number of receivers increases.
However, although the total cost grows, the cost per receiver decreases,
making the multiparty protocol more efficient with a bigger number of
receivers.

• Length of the security elements.

– The most costly operation, factory deploy() function, is independent of the
length of the parameters, allowing us to use longer parameters.

– The cost of execution of the createDelivery() and the accept() functions rises
slightly with the length of the parameters.

– finish() is the function that includes the verification of the ZKP and is the
function more affected by the change in the length of the parameters. How-
ever, as the number of receivers increases, the cost introduced by the use of
longer parameters is reduced.

• Execution delay

– The execution delay is not greater than 900 ms in any case. This means that
the execution time is small compared with the block validation time in the
Ethereum network through the mining process, so this will be the greatest
component of the total delay value.

– The validation delays are closely related to the gas cost used in each function.
This way a user can choose the gas cost values, analyzed above, that best
adjust to its cost and delay requirements That is, the delay and the cost of
the notification can be controlled by adjusting the gas price.

– As it could be expected, the greatest execution time corresponds to the
finish() function, where the ZKP is checked while accept() is the quickest
function. In addition, longer parameters require bigger execution times.
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10.6 Conclusions

It has been proved that blockchain-based technologies can be very useful in the design
of a qualified certified notifications service, solving the problems related to the use of
TTPs.

The results of the analysis of properties included in section 10.4 prove that the
protocol achieves the ideal properties of the service: effectiveness, fairness, timeliness,
non-repudiation and confidentiality, as it is summarized in a table that compares the
new protocol with previous studies Table 10.5.

Table 10.5: Comparison of the properties of confidential multiparty certified notifica-
tions protocol without TTP with previous proposals

Property Non-Confidential Confidential Confidential

Protocol Protocol Protocol
With TTP Without TTP

Effectiveness YES YES YES
Fairness STRONG WEAK STRONG
Timeliness YES YES YES
Non-repudiation YES YES YES
Confidentiality NO YES YES
Evidence Transferibility YES NO YES
Use of TTP NO OPTIMISTIC NO

In Chapter 9 we proposed two protocols to send multiparty certified notifications
also based on blockchain technology. However, with respect to the scheme we propose
here, the first protocol in Chapter 9 does not have the property of confidentiality, since
the content of the notification is public. Although the second certified notifications
proposal in Chapter 9 achieves confidentiality, in order to ensure the fairness of the
exchange, it needs the intervention of an independent Trusted Third Party (TTP) that
takes actions as an intermediary to resolve disputes between sender and receivers.
Thus, the proposed scheme in this chapter improves the previous systems because
it achieves confidentiality with respect to the former proposal in Chapter 9, and it
removes the intervention of the TTP with respect to the latter proposal in Chapter 9.

In addition to that, our new scheme not only provides fairness and confidentiality
without needing the intervention of a TTP thanks to the implementation of a ZKP
primitive inside the protocol but also the fairness that guarantees is strong. In Chapter 9
the protocol that has confidentiality has some cases where users (sender and receivers)
can have contradictory evidence. That is, for example, a malicious sender can obtain,
at the same time, a piece of non-repudiation evidence from a receiver and cancellation
evidence from the smart contract. Thus, the sender can get evidence that a certain
notification has been canceled or has been finished successfully. That is the reason why
the fairness of the previous proposal is weak, in contrast to the strong fairness of the
new proposal of this chapter.

Summarizing the comparison of features included in Table 10.5 we can say that the
presented protocol not only allows the protocol to be executed without the involvement
of a TTP but also improves the behavior of the previous confidential protocol offering
strong fairness and transferability of evidence. These properties were only achieved by
a non-confidential protocol.
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Regarding the performance of the proposals, we can say that the confidential pro-
tocol without TTP executes more on-chain operations that the confidential protocol
with TTP. For this reason, the gas cost could be bigger. However, we have to take into
account that this proposal does not require payment for the services of the TTP, so the
gas cost has to be added to the cost of the TTP for the previous protocol. Moreover, the
new protocol obtains greater benefits of the multiparty operation, since the previous
protocol executes independent resolutions of the exchange for each receiver.

Table 10.6 shows the differences in the cost per receiver between the confidential
protocol with TTP and the new confidential protocol without TTP, for the function that
differs the most between the two protocols, finish() function. In this comparison, we
have to take into account two important facts. The first one in that in the protocol with
TTP the finish() function is not mandatory. The second one is that while in the protocol
without TTP the finish() function is executed once, independently of the number of
receivers, in the protocol with TTP the function is executed once for each receiver. Thus,
the cost for the protocol without TTP decreases with the number of receivers.

Table 10.6: finish() function gas cost and equivalent US-Dollars price with 1 Gwei - 20
Gwei gas price

Cost per receiver Without TTP With TTP
256 bits

1 receiver (0.02$-0.49$) (0.019$-0.39$)+TTP cost
2 receivers (0.01$-0.32$) (0.019$-0.39$)+TTP cost

10 receivers (0.008$-0.2$) (0.019$-0.39$)+TTP cost

We also have evaluated the delay in the execution of the functions in both protocols.
For the confidential protocol without TTP, after the execution of the functions, the block
including the transaction has to be confirmed in the blockchain. The execution time
for all the functions is lower than 900 ms while the block confirmation delay depends
on the gas price but can be included in the interval of 15-30 seconds, being the main
component of the delay of the protocol. This delay can be considered much lower than
the delay introduced by the resolution of an exchange executed by a TTP. When a user
asks the TTP for a resolution, the TTP has to queue the request, check the received
data and make a decision about the final result of the exchange, so the user could have
to wait a considerable amount of time to obtain a response, compared with the block
confirmation time.

To conclude, this chapter proposes a new protocol that achieves the fulfillment of
all the desired properties of a certified notifications service using blockchain. Since
now, these properties have been partially achieved by the existing protocols. So the
new scheme includes the best part of each one of the previous protocols in a single
protocol. This way, the new protocol allows the certified notification of confidential
data without the need for a Trusted Third Party. The new protocol has been detailed,
implemented and analyzed, obtaining the following conclusions:

• The presented protocol uses blockchain to allow a fair exchange for certified
notifications. This way, data, proof of origin and proof of reception are exchanged
without the involvement of any Trusted Third Party while achieving the desired
properties for fair exchange protocols: efficiency, strong fairness, transferability,
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non-repudiation and confidentiality. For this reason, the protocol is an obvious
improvement from previous proposals.

• The protocol allows multiparty deliveries, useful to reduce costs in those scenar-
ios in which the same delivery involves several receivers, like notifications for
enterprise staff, shareholders meetings,...

• The delivered data is confidential, only the sender and receiver can access the
data. This means that the smart contract must manage the exchange and ensure
fairness without being able to access the delivered data. In protocol terms, this
means that the delivered data must be encrypted until acceptance when the Non-
Repudiation of Reception is provided, and the smart contract, without having
access to the decryption key, must ensure that all the receivers will be able to
decrypt the same message.

• To achieve all the desired properties, including confidentiality, the protocol uses
more complex cryptography than previous protocols. The protocol has been
implemented and tested on Ethereum to analyze the performance of these opera-
tions. The results show that although the execution costs are slightly greater than
those of non-confidential protocols, the protocol is viable. The smart contracts
are described in this chapter.

• With the introduction of this new protocol, users can choose between protocols
that register the contents of the delivered data or the confidential protocol. Due
to execution costs, users must use the non-confidential protocol not only when
the data registry in the blockchain is required, but also in all the deliveries where
confidentiality is not required.

• The performance analysis shows that the execution costs depend on the number
of receivers, the gas price and the length of the cryptographic parameters. The
efficiency of the protocol rises with the number of receivers. The gas price will
affect the execution delay, but since the deliveries are asynchronous the execution
delay is not a critical parameter. We have also evaluated the execution delay but
the resulting values are small enough compared to the block verification time, so
the total delay depends strongly on the block verification time. The length of the
cryptographic parameters are related to the strength of the confidentiality but
they don’t have any effect on the strength of the fairness offered by the protocol.

The performance analysis has allowed the detection of the most costly operations.
The use of longer parameters leads to higher levels of protection but is expensive in
terms of cost. As a future work, we intend to implement the protocol using Elliptic
Curve Cryptography. According to our initial tests, we expect to have similar results to
those obtained with lengths of 256 bits while offering higher security standards. Thus,
the Table 10.6 could have the appropriate parameters to establish a comparison point
for future works.

As a significant achievement in the development of this protocol, we have secured
a European patent titled "Method for notifications and certified deliveries based on
blockchain technology", with Patent number ES2802420. This patent was officially
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issued on April 25, 2022. For more details, the full documentation is available for
consultation at consultas2.oepm.es.
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IMPROVING THE EFFICIENCY OF A

CONFIDENTIAL MULTIPARTY CERTIFIED

NOTIFICATIONS PROTOCOL

In Chapter 8 and Chapter 9, we have discussed blockchain-based methods for certified
notification services, where users receive the sender’s proof of message dispatch and
electronic verification of delivery attempts, that is, Non-Repudiation of Origin (NRO)
evidence against Non-Repudiation of Reception (NRR) evidence. The protocol we
presented in Chapter 10 builds upon these discussions by achieving the best properties
of the solution presented in Chapter 9. It operates without the involvement of a TTP at
any stage, enabling the certified notification of confidential data.

To ensure confidentiality in a public smart contract environment, the protocol
forces that data remain encrypted until the receiver accepts it, at which point the
Non-Repudiation of Reception (NRR) proof is issued. Importantly, the smart contract
does not access the decryption key directly, ensuring it cannot be embedded in the
transaction in clear text. The protocol is designed to guarantee that receivers can
decrypt the data upon accepting delivery, and in multiparty scenarios, it ensures that
all parties decrypt the same data.

In this chapter, we will explore significant improvements to this protocol, focusing
on enhancing its efficiency and scalability while maintaining security and privacy.
These enhancements are critical as they address potential bottlenecks associated with
blockchain technology, such as transaction speed and cost, which are pivotal for real-
world applications.

11.1 Contribution

Even though the confidential multiparty certified notifications protocol without Trusted
Third Party explained in Chapter 10 achieves the desired properties, and the chapter
presents a performance analysis proving its viability, the efficiency of the system would
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be improved if the costs associated with the deployment and execution of the smart
contracts could be reduced. In this chapter we present how the costs can be reduced by
acting in three different aspects of the protocol: the storage system for the encrypted
data, the cryptographic algorithms used and the method used to create the smart
contracts for each delivery. The resulting protocol maintains the desired properties of
the original one since the steps of the fair exchange and the generated proofs are the
same. We include in this chapter the description of the improved protocol, the cost
analysis and the comparison of the results with those of Chapter 10, proving how the
execution costs have been reduced significantly.

This improvement also uses the Ethereum blockchain network due to its main fea-
tures, providing a scenario to compare the implementation of both protocols. Then, we
have changed the storage system for the encrypted data, replacing the on-chain storage
of the encrypted certified notification content with the use of the decentralized storage
system IPFS (see subsection 4.9.1). Moreover, in order to be able to use shorter encryp-
tion keys to maintain the security level, we have changed the ElGamal cryptosystem
algorithm for Elliptic Curve Cryptography (ECC), described on subsection 4.7.3. Finally,
to obtain the best price rates on new certified notification smart contracts deployment,
the new implementation uses the Factory Clone programming pattern, described on
subsection 4.8.1.

11.2 Protocol design

The improvement of the original Certified Notifications Protocol (Chapter 10) presents
the same phases of the original version, with some enhancements thanks to the new
technologies introduced. There are three compulsory phases Creation, Acceptation and
Finalization, and two optional phases, Cancellation and Verification.

However, prior to explaining each phase in detail, we describe how the protocol
works in general terms. Alice, the certified notification sender, registers the delivery
encrypted message, achieving the necessary confidentiality. Nevertheless, the smart
contract will have to check that all receivers can decrypt the same delivered message.
Before this verification, the receivers have to generate the called Notification Keys and
accept the certified notification in the Accept phase. The Notification Keys will be finally
used by Alice when she executes the Finish phase, to encrypt the delivery message
encryption key, allowing the user to obtain the notification content. The Accept and
Finalization phases are restricted by two timelines defined by Alice. A first deadline,
term1, sets the time before which the receivers can accept the notification. From this
(term1) to the next deadline, (term2), Alice can finish the certified notification, sending
the encryption key to the receivers that have accepted it.

The verification made by the smart contract by means of a ZKP (Schnorr Zero-
Knowledge Proof [46]) is performed on-chain, assuring that Alice provides the same
notification content for all receivers, preserving, at the same time, the confidentiality
of the exchanged message. Specifically, the ZKP doesn’t allow the smart contract to
obtain the notification content, however, it provides the tools to detect that the key to
obtaining the decrypted message is the same for all receivers.

The phases of the original protocol have been modified as follows:
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Creation

Ali ce generates her pair of public and private encryption keys (a, A) and generates the
random seed v that will be used to encrypt the message M . If it is necessary, for this
encryption operation, the content of the message can be divided into fragments (M [ j ]).

Then, before the encryption, Ali ce generates the element V of an adapted method
of the Elliptic Curve Integrated Encryption Scheme (ECIES) [173], [39]. Element V is
used as a commitment to the emission of the right key by Alice. It will be verified by the
smart contract through the non-interactive Schnorr Zero-Knowledge Proof [46], used
on the Finish phase to verify that all receivers have access to the same v , to decrypt the
registered message.

Subprotocol 5: Step 1. Creation

1. Ali ce :
Generation of a ← [1,n −1], A =Gx[a], v ← [1,n −1], M
ke y = r andom.seed(hash(v))
Encryption of M .

If required, fragmentation of M in blocks: M [ j ]
V =Gx[v]
FOR j = 1 TO M .leng th

C [ j ] = M [ j ] ⊕ ke y
ke y = r andom.seed(hash(ke y))

2. Ali ce I IPFS: Upload C = hashI PF S
3. Ali ce I SM .cr eati on(Ali ce,B ,V ,hashI PF S, A, ter m1, ter m2,D)
4. SM :

St atei =Cr eated ,∀i

Following the encryption of the message, the improved implementation performs
the upload of the encrypted message to the IPFS system, from which Ali ce obtains the
content CID (i.e. IPFS identification label of a message) of the delivery. At this point,
Ali ce executes the function creation(), where the Factory Clone smart contract clones a
new Delivery smart contract, with all the parameters set. This function includes: the set
of receiving B , Ali ce commitment V , the IPFS CID of the encrypted delivery hashI PF S
and two deadlines: ter m1 for each receiver to accept the delivery and ter m2 for Ali ce
to finish the exchange. Also, as an additional parameter, there is an optional payment
for the service or a deposit D. Finally, the state is updated for each receiver i and the
Smart Contract defines the state as Created.

Accept

If a receiver decides to accept a certified notification, he has to do it before the dead-
line ter m1, by executing the corresponding function accept () of the Delivery smart
contract. Otherwise, a rejection of the receiver is assumed. In the Accept phase, the
receiver Bobi , generates its own public and private shared notification keys (bi , Bi ),
which will be shared between a concrete recipient (Bobi ) and the sender. To share
the notification key that will be used in the F i ni sh phase on the ZKP step, first Bobi
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generates his encryption nonce si and the challenge variable ci . Next, he generates
parameters Zi1 , Zi2 to allow Alice to get the secret shared key bi .

When Bobi has generated all the required parameters, he can execute the Smart
Contract function accept (), sending Zi1 , Zi2 , Bi and ci parameters, which are needed
by Alice on the Finish phase to generate the response (ri ) to the challenge (ci ) sent by
Bobi to Ali ce.

Subprotocol 6: Step 2. Accept

1. Bobi :
Generation of the parameters: bi ← [1,n −1],Bi =Gx[bi ], si

Zi1 =Gx[si ], Zi2 = (Ax[si ])⊕ (bi ), ci ← [1,n −1]
2. Bobi I SM .accept (Zi1 , Zi2 ,Bi ,ci )
3. SM:

IF(now < ter m1) AND (I d == Bi ) AND (St atei ==Cr eated)
St atei = Accepted
Add Bi to B ′

Finish

Between the deadlines (ter m1, ter m2), Ali ce can finish the certified notification
process executing the f i ni sh() function for all Bobi that have accepted the notification,
from now on Bob′ users.

First of all, in this phase, Ali ce must create the response for each challenge received
by Bob′ users, using the element v , used in the first phase of the protocol to encrypt
the delivery, the secret shared notification key (bi ) and Bobi challenge (ci ). So, Ali ce
must obtain from the delivery smart contract Bi public key, Zi1 and Zi2 parameters and
the receiver challenge ci . Using these parameters, Ali ce decrypts the shared secret
notification key (bi ) and then encrypts the delivery encryption key v using the challenge
received and Bobi shared secret key. Finally, she invokes the f i ni sh() function of the
smart contract to submit the result.

Then, Bobi can request the parameters needed for the smart contract, getting the
IPFS CID of the delivery (hashI PF S), Alice’s public key A and Alice challenge response
ri . Then, Bobi needs to obtain the encrypted delivery, through an IPFS request sending
the hashI PF S parameter. Once, Bobi has the encrypted delivery message C , using the
received ri , his ci and bi parameters only have to decrypt C through an XOR function
with the key derived from v .

Cancellation of Acceptance

The protocol takes into account the possible case in which the sender does not finish
the certified notification. Therefore, an optional subprotocol is provided that will be
executed in case Ali ce does not provide the decryption key once a receiver has accepted
the certified notification.

A user Bi is allowed to cancel if ter m2 has been exceeded and the delivery status
is Accepted. The smart contract will change the state of the delivery from Accepted to
Canceled.
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Subprotocol 7: Step 3. Finish

1. Ali ce I SM.getParameters(): Zi1 , Zi2 ,Bi ,ci

2. Ali ce :
Decrypts: bi = Zi2 ⊕ (Zi1 x[a])
Generation of ri =v −bi ∗ ci modn

3. A I SM.finish(ri )
4. SM:

IF (I d == Ali ce) AND ((ter m1 < now < ter m2) OR ((Bob′ == Bob) AND
(now < ter m2)))

FOR (∀Bobi ∈ Bob′)
IF V ==Gx[ri ]+Bi x[ci ]

St atei = F i ni shed
FOR (∀Bobi ∉ Bob′)

St atei = Re j ected
Deposit D is refunded to Ali ce

5. Bobi I SM.getParameters(): hashI PF S, A,ri

6. Bobi I IPFS: Download hashI PF S =C
7. Bobi : v = ri +bi *ci modn

ke y = r andom.seed(hash(v))
FOR j = 1 TO n

M [ j ] =C [ j ] ⊕ ke y
ke y = r andom.seed(hash(ke y))

Subprotocol 8: Cancellation of Acceptance

1. Bi I SM.cancel()
2. SM:

IF(now >= ter m2, I d == Bi AND St atei == Accepted)
St atei =C ancel ed

Verification

As in the original implementation, all variables and states stored on the smart contract
are public, allowing any verification carried out by the sender Ali ce, any receiver Bobi

of the delivery and, also, from any third party.

11.3 Implementation

The implementation of the improved protocol can be found in a GitHub repository1

maintained by the Security and e-Commerce (SECOM) Research Group from the Uni-
versity of the Balearic Islands. It has been developed from the creation of the smart
contracts Factory Clone and eDelivery (that represents the certified notification) that
provide the methods explained in the previous section. The eDelivery smart contract is
responsible for the execution of the ZKP using an Elliptic Curve Cryptography (ECC)

1https://github.com/secomuib/ConfidentialRegisteredEDeliveryProtocolImproved-IPFS-ECC
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library that provides the arithmetic operations over elliptic curves to achieve the ZKP
calculations. For this purpose, the smart contract implementation uses the Witnet
Foundation Elliptic Curve Library2. The Factory Clone smart contract has the clone()
method, which follows the Open Zeppelin library3.

The two smart contracts of the improved implementation contain the same func-
tions as the two smart contracts of the original implementation. There are only some
changes due to the cryptographic improvement (i.e. from ElGamal cryptosystem to
ECC). An explanation of the Solidity code of the smart contract is omitted due to the
space limitation of the thesis. However, the full content of our implementation is
available at the GitHub site previously specified.

Besides the Solidity smart contracts code, we have also implemented a front-end in-
terface using JavaScript React that allows the execution of the protocol in a user-friendly
mode. Moreover, any user can make use of this interface to upload and download the
encrypted messages of the delivery to the IPFS system.

In addition to that, the user interface has to be able to encrypt and decrypt the
delivered messages and generate all the elliptic curve parameters. In order to compute
the parameters, we use an elliptic curve Javascript library4 configured with the same
secp256k1 curve as in the Solidity library.

11.4 Performance analysis

Once we have finished the improved implementation of the protocol, we have tested it
together with the original protocol, in order to determine the efficiency improvement
in terms of cost. In the test, we have evaluated the methods of the smart contract that
define the three compulsory phases Creation, Acceptation and Finalization. These
functions are the ones that execute more instructions on-chain and they depend on the
three new technologies introduced. The cost tests have been made using the Hardhat
environment, specifically executed over the provided local blockchain node.

In order to obtain data to determine the improvements introduced by the use of the
IPFS system, the cost tests of the original implementation have been carried out again
to have results for both protocols with a different number of receivers and different
lengths of the delivered messages.

The improved implementation, as it has been explained in previous sections, uses
ECC. Specifically, we have selected the secp256k1 curve. This change has improved
significantly the encryption security of the implementation, compared to the security
provided by the same key length of the cryptosystem ElGamal. In order to analyze and
compare the costs of the two implementations we have selected the key lengths which
provide the same security level, and performed the required experiments to obtain
the costs. Following the NIST recommendations [174], we have selected the key of
3072 bits for ElGamal, which provides the same security level of keys of 256 bits in the
ECC implementation. Therefore, with this change, we have highly reduced the key bits
stored in the blockchain.

2https://www.npmjs.com/package/elliptic-curve-solidity
3https://docs.openzeppelin.com/contracts/4.x/api/proxy#Clones
4https://www.npmjs.com/package/elliptic
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We have evaluated the gas cost of the functions for both the original and the im-
proved protocol, taking into account the parameters that affect the cost.

• The createDelivery() function of the original protocol requires an amount of gas
that depends on the message length. For this reason, we have tested it with three
message lengths (10, 5000 and 10000 characters). In contrast, the message length
doesn’t affect the improved protocol, because it only stores on the blockchain the
CID of IPFS that identifies the message.

• The accept() and finish() functions are independent of the message length, but
finish() depends on the number of receivers.

• The deploy() function of the Factory Clone smart contract doesn’t have significant
changes from the original implementation and it is independent of the number
of receivers and the message length. It costs 3,419,964 Gwei in both protocols.

Figure 11.1: Gas cost of the improved confidential multiparty certified notifications
smart contract

Figure 11.1 shows the results of the analysis. The horizontal axis of the graph is
divided into the three compulsory phases (Create Delivery, Accept and Finish). Each
one of these parts is also divided into two sections, one for the Original Protocol and
the other one for the Improved Protocol.

Sections are formed by three bars that represent the test results of a certified notifi-
cation with 1, 2 and 10 receivers, (1R, 2R and 10R, respectively). Over each vertical bar,
the cost results of the corresponding function test are indicated, computed in values of
gas, setting a gas price of 1 gwei.
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The first section of Figure 11.1 represents the Create Delivery of the Original Protocol.
In this section, there are three bars that represent the gas cost for 1, 2 and 10 receivers.
In addition, each bar also represents the results for the three message lengths, presented
in the legend at the top of the graph.

Finally, in the center of the figure, we present the percentage cost reduction between
the results of the Improved Protocol and the Original Protocol of the same method, pro-
viding a quantitative evaluation of the improvement. The percentage of improvement
for the Create Delivery function has been computed from the average results of the
three message lengths for each number of receivers.

From the results introduced in Figure 11.1 we can determine how each improvement
has affected the efficiency of the protocol.

• Elliptic Curve Cryptography

– The usage of the Elliptic Curve Cryptography provides a significantly impor-
tant enhancement in gas cost thanks to the short keys of 256 bits in front of
the 3072 bits keys of the ElGamal cryptosystem to achieve the same security
level. Specifically on the createDelivery() and finish() functions, as it can be
seen in Figure 11.1.

– In the results obtained from the original implementation with 3072 bits of
key length, accept() and factory deploy() functions are the cheapest func-
tions, followed by createDelivery() and finish(), the ones that use the 3072
bit keys of ElGamal cryptosystem.

– In the improved implementation, the cheapest functions are accept() and
then createDelivery(), followed by finish() and factory deploy(). This is the
same order obtained when testing the original implementation with shorter
keys (256, 512 or 1024), as it is presented in Chapter 10.

• Factory Clone

– The improvement generated by the use of the Factory Clone is represented
in the gas costs of the createDelivery() function. A large part of the improve-
ment percentage of the createDelivery() section in Figure 11.1 is achieved
thanks to the introduction of this feature.

– We have also analyzed the gas costs of the functions using the Factory
Clone vs. an implementation without this programming pattern in order
to evaluate the improvement when this change is isolated from the others.
The results show that function createDelivery() obtains a 71,78%, 68,36%
and 49,45% improvement for 1, 2 and 10 receivers respectively.

• Use of IPFS

– The createDelivery() function has also obtained a cost reduction thanks to
the use of the IPFS system to store encrypted certified notification mes-
sages. As it is represented in the section Create Delivery of Figure 11.1, this
improvement increments with the number of characters used.

– This feature enhances the implementation by providing an easy way to
deliver not only text messages but also any type of file and size.
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When the three improvements are evaluated together, we have obtained a cost
reduction between 79,89% and 92,15%, as it can be seen in the table that appears in
Figure 11.1. From this cost analysis, we can state that we have maintained the most
important properties of the certified notification system on the improved protocol,
and we have significantly boosted the efficiency in terms of cost, related to the costs
obtained in Chapter 10.

11.5 Conclusions

There are some important features that will help to introduce blockchain-based appli-
cations to the general public. We think that improving efficiency and costs is capital
for such adoption. In this chapter, we present how we have improved a powerful
blockchain-based security protocol for certified notifications that originally was able
to remove the need for Trusted Third Partys while providing fairness, confidentiality
and multiparty capabilities. Since the original protocol fulfilled the desired security
properties we have focused our improvement on the efficiency and cost of the protocol,
modifying the interactions among the actors of the protocol and also changing the
cryptographic operations performed in some phases of the protocol. Concretely, we
have changed the place where the encrypted data are stored, we have also changed the
cryptosystem used to encrypt the data and we have used more efficient functions in
the smart contracts.

With these improvements, we have achieved a solution where the encrypted data
can be accessed off-chain. Moreover, the keys used in the new cryptosystem can
be shorter while maintaining the same security level. We have described the new
protocol and how we have implemented it. Later the original and the improved protocol
have been compared. We have shown how the new protocol reduces significantly
the cost associated with the deployment and execution of smart contracts. We have
presented the percentage of reduction for each function depending on the number of
receivers. For all functions and number of receivers, the improved protocol presents a
cost reduction higher than 80%. We can conclude that the presented protocol is secure
and efficient, making it a perfect solution for the certified notifications service. Thus, the
patterns that are presented in this chapter can be shown as a set of best implementation
practices for security protocols deployment using blockchain technology.
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In this chapter, we explore a new approach by integrating Soulbound tokens (SBTs)
with Rejectable Non-Fungible Tokens (RejNFTs) and Identity-Based Encryption (IBE).
As detailed in subsection 4.6.2, SBTs are a type of Non-Fungible Token (NFT) that is
permanently owned by a single individual and cannot be sold or transferred. On the
other hand, in Chapter 7 we presented a protocol enhancement to the ERC-721 stan-
dard, which includes the possibility of rejection by the recipient, thus enabling selective
reception of NFTs. This integration leads to the development of Rejectable Soulbound
tokens (RejSBTs), which combines the properties of the SBTs and the RejNFTs. This
functionality is particularly useful for representing certified notifications as RejSBTs,
which effectively track the distribution and confirmation of notifications, providing
reliable evidence of Non-Repudiation of Origins (NROs) and Non-Repudiation of Re-
ceptions (NRRs).

This protocol presents a significant improvement in the management of certified
notifications over previous methods discussed in earlier chapters. By streamlining
the process to only two key actions, issuance and acceptance of a RejSBT, we sim-
plify the interaction needed to manage notifications. Once a RejSBT is accepted, the
new holder can apply Identity-Based Cryptography, described in subsection 4.7.4, to
decrypt sensitive data embedded within the token, with the help of a Middleware ser-
vice. This protocol is designed to ensure the confidentiality of the notification content
and to prevent the receiver from accessing the message until they have accepted the
notification.

12.1 Contribution

The objective of the protocol presented in this chapter is to enhance the efficiency and
security of managing electronic certified notifications. Traditional certified notification
protocols typically involve a three-step exchange: first, the sender dispatches an en-
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crypted message; next, the receiver acknowledges and accepts the message; and finally,
the sender provides the decryption key or method, enabling the receiver to access the
message’s content. This multi-step process, while secure, often results in delays and
operational inefficiencies, particularly in scenarios requiring rapid confirmation and
response. The new protocol proposed herein simplifies this procedure by reducing the
interaction to a two-step process, thanks to the combination of Soulbound tokens and
Rejectable Non-Fungible Tokens. This advancement marks a substantial improvement
over existing methods by minimizing the necessary interactions between the sender
and the receiver and introducing an integrated approach to encryption and decryption
based Identity-Based Encryption (IBE).

Regarding Blockchain technology, one of the most widespread uses of Ethereum or
compatible blockchain networks is the use of tokens, such as the ERC-20 and ERC-721
token standards. The first one represents fungible tokens, interchangeable between
them because they all represent the same value, and the second one represents a Non-
Fungible Tokens (NFTs), unique and not interchangeable. Since these unique tokens
can be transferred and the transfers are recorded on the blockchain, they could be
considered a valid medium of information transfer. On the other hand, Soulbound
tokens are a kind of NFT specially designed to avoid their transfer after the initial
assignment.

The Soulbound tokens can be very useful in representing a certified notification
sent from a user to a specific receiver. Due to the notification is unique as an NFT, and
with the non-transferable property, the receiver won’t be able to transfer this token to
another user. This means that there can only be one transfer, the initial transfer from
the sender to the receiver.

However, if we want to use the Soulbound tokens as a representation of a certified
notification, this standard would lack an important property: the impossibility of
rejecting the reception of a token. This problem is because we can transfer tokens
defined by the standards cited before, but we cannot perform a selective reception,
because we cannot reject these transfers.

This can be solved with a rejectable token, that enables the selective reception of
tokens, that is, allowing the receiver to reject its transfer. In our protocol described in
Chapter 7, we proposed an improvement to the NFTs standard defined in ERC-721 to
achieve selective receipt, in the form of Rejectable Non-Fungible Tokens (RejNFTs).
This kind of token allows selective reception, implementing the possibility to reject
them. This protocol can also be applied to SBTs to obtain a new standard defined in
this chapter, Rejectable Soulbound token (RejSBT). In this RejSBT standard, we also
have included a deadline to let receivers accept or reject the transfer proposal.

Once the receiver has accepted the certified notification, represented by a Rejectable
Soulbound token, we can use a Middleware service that can check the ownership of
the notification, and, using Identity-Based Cryptography, decrypt the confidential
information stored in that service and show it to the receiver.

In this chapter, we present an improvement of the certified notifications protocol
that leverages the newly defined RejSBT. The protocol ensures the certified notification
or delivery of data providing both NRO and NRR proofs. Moreover, the use of Identity-
Based Cryptography allows to achieve the property of confidentiality of the delivered
notification and at the same time hides the contents of the notification to the receiver
until he accepts the notification.
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This proposed new protocol for confidential certified notifications improves the
previous protocols presented in this thesis, as it requires the involvement of the sender
and the receiver only once. That is, the exchange is performed in two steps: the sender
sends a RejSBT that represents the notification, and the receiver accepts the RejSBT.
Once the receiver has accepted the RejSBT, the middleware delivers the message to the
receiver, decrypting it using Identity-Based Cryptography.

For all the reasons explained above, we can underline the novelty of the proposal
compared with other recent studies. The protocol presented in this chapter uses tokens
to represent notifications, allowing the protocol to benefit from the intrinsic properties
of tokens. One important aspect of the novelty of the protocol is the proposition of a
new kind of token, the RejSBTs. This new kind of token is suitable for the application
described in this chapter but will also be useful in future works to solve the challenges
in the definition of other protocols. The adoption of the RejSFTs in the definition of a
protocol for confidential certified notifications allows the achievement of a goal in this
kind of protocol, to reduce the number of steps to be executed by the involved actors
reducing them to two, the minimum number until the date, one step per actor. This
feature in itself represents an important novelty.

To summarize, the contribution of the protocol presented in this chapter is:

• Blockchain-based protocol for confidential certified notifications with the mini-
mum number of steps. In the protocol the actors are only involved in one step,
reducing the total number of steps to two.

• Extension of RejNFTs and definition of RejSBTs. In Chapter 7, we described the
concept of RejNFT which has now been improved to enhance its functionality by
adding temporal parameters.

• Use of RejSBTs and Identity-Based Encryption (IBE) to define the protocol that
achieves all the desired properties of confidential certified notifications.

• Security and performance analysis of the proposed protocol.

12.2 Protocol design

In this chapter, we present a new protocol to send certified notifications used to com-
municate a message from a sender S to a receiver R in a confidential way. For instance,
the notification can be an official communication from an Authority to officially inform
the receiver of something important (e.g., the result of a medical test).

The protocol described in this chapter is composed of two subprotocols, Notifica-
tion Release and Notification Reception. The notification is bonded to a RejSBT in such
a way that the ownership of the token by the receiver indicates the reception of the
message (i.e., the receiver’s ability to read the content of the message). The ownership
of the token can be publicly checked, as well as the address from whom the token was
minted and transferred. Therefore, Non-Repudiation of Origin and Non-Repudiation
of Reception are guaranteed.

We use the notation in Table 12.1 to describe the protocol. Additionally to the
sender S and receiver R actors, we also have defined a service provider that deploys a
smart contract to manage the tokens and a MW service to generate the security keys
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Table 12.1: Notation of the two-steps certified notifications protocol

Name Description
S Notification Sender
R Notification Receiver

MW Middleware
H() Secure hash algorithm
m Notification message content
C Encrypted message content

I D Notification Identifier
K Symmetric encryption key
d deadline
k Symmetric encryption key encrypted

AES.decr y ptK (C ) Symmetric decryption of C using K
AES.encr y ptK (m) Symmetric encryption of m using K

I BE .encr y pti onI D (K ) Asymmetric encryption of K using
an IBE scheme with I D as public key

SK Security key used as the
private key of an IBE cryptosystem

I BE .extr act smS (I D) Generation of the corresponding
private key to I D of an IBE scheme
using as master secret mS

I BE .decr y ptSK (k) Asymmetric decryption of k using
an IBE scheme with SK as private key

U IBl ockchai n : f () User U call function f of a deployed
smart contract

U ⇒SecC h V : M User U sends M to V through
a secure channel SecC h

for the notification receivers. The MW acts as the PKG of an IBE cryptosystem and
publishes the public parameters to allow users to perform the encryption operations.
Also, prior to the sending of any notification, the sender must ask permission to the
service provider to mint the tokens.

We introduce a new approach to this kind of protocol by the tokenization of the
sending together with the use of blockchain technology to attest to the transfer of the
token. Then, the communication will be between two blockchain addresses, which
represent the communicating parties (i.e., from the sender’s address to the receiver’s
address). In addition to that, an IBE cryptosystem is used to avoid the costly PKI
management and to make it easier to create new public keys for each new notification.
Thus, as a requirement of any IBE schema, a PKG has to be introduced in the protocol
to publish the public parameters of the cryptosystem and to create new private keys
following the acceptance of the notification from a receiver.

The tokenization process needs the deployment of the new token type that repre-
sents each notification sent. For this purpose, we have defined a new type of token
derived from the SBTs1 and the RejNFT2. We need a combination of the features of
these two types of tokens in the protocol because:

• The notification must be a non-transferable token (the reception of the notifica-

1Information about the motivation and the features of the SoulBound NFT standard can be found in:
https://www.nftstandards.wtf/NFT/NFT+Soulbound+Tokens

2The EIP-5896 describes the motivation and the specification of the Rejectable tokens. Further informa-
tion can be found at: https://ethereum-magicians.org/t/eip-5896-rejectable-non-fungible-token/11674
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tion is symbolized by the token and it cannot be transferred in order to attest the
acceptance of the message). This is a singular feature of the SBTs.

• The receiver can refuse the reception prior to seeing the content. This is a singular
feature of the RejNFTs.

To implement the proposed scheme we have considered that the authority that
represents the PKG is also in charge of deploying the smart contract on the blockchain
for the management of the new RejSBTs and to give the right to mint tokens to the
sender of the notifications.

Thus, before starting the sending of any certified notification, a previous stage must
be carried out: the PKG has to issue the public parameters (IBE.publ i cPar ameter s)
of the IBE cryptosystem, as well as any intended sender has to ask permission to mint
tokens. Consequently, the outline of the protocol for sending a certified electronic
notification is as follows:

1. The sender (S) creates a new notification message content: m

2. S encrypts the message content m using a key K from a symmetric encryption
algorithm (e.g., AES), to obtain the ciphertext C : C = AESK (m) (encrypt mode)

3. S sends C to the receiver (R) through a secure channel (e.g., an SSL connection)

4. S creates an ID of this notification and uses this identifier as a public key of the
IBE cryptosystem to encrypt K : k = I BE .encr y ptI D (K )

5. The sender S mints a new token with the following information related to the
certified notification: ID, H(m), H(C ), H(K ), k

Now, the receiver R has C and an event has been triggered from the blockchain
that there is an attempt to transfer a token to its address. If R accepts the transfers,
then the smart contract triggers a new event to inform the PKG that the private key
corresponding to the public key ID has to be released. Note that this ID is the identifier
of the notification referred by the token that has just been accepted by R.

The PKG can read the information inside the token to get the ID of the notification
and then execute:

1. pr i vateK e y = IBE.extract(IBE.publ i cPar ameter s, IBE.master Secr et , ID)

2. Transfers the pr i vateK e y to the smart contract to insert this information inside
the metadata associated with the token of the correspondent notification.

This way, R can get access to the publ i cK e y and the item k from the metadata of
the token that now owns.

Next, R performs:

1. K = IBE.decrypt(k, pr i vateK e y)

2. N = AESK (C ) (decrypt mode)
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Therefore, R has the message content of the notification. Note that, in the protocol
description, the regular IBE naming of the key provided by the PKG (pr i vateK e y)
is used. Despite this name, this key is not private at all in our protocol. In contrast,
the protocol sends the encrypted message C through a secure channel to keep its
confidentiality, thus only R can decrypt C using the pr i vateK e y . For this reason, we
have changed the standard naming of the pr i vateK e y by secur i t yK e y from now on,
which is more appropriate for the purpose of this element within our protocol.

In addition to that, the proposed scheme can have two different branches:

• Cancellation: The sender S can cancel the sending after minting the token and
before the acceptance by R.

• Rejection: Instead of accepting the token transfer, R can reject the transfer and,
thus, the PKG will not issue the secur i t yK e y to enable access to the message.

Notification Release

The sending of a notification is described in Protocol 1: Notification Release. Its func-
tionality is as follows:

1. Notification setup: the sender creates a content of the notification message m
together with its identifier (I D). This identifier is a combination of the receiver’s
address and a timestamp. Then, S generates a secure AES key, K , and encrypts m
using the symmetric cryptosystem. We denote as C the result of the encryption
operation.

2. Sending the encrypted message: S sends to R the encrypted content of the notifi-
cation, C , using a secure channel [175] that ensures confidentiality, integrity and
replay protection, as well as mutual authentication between the entities.

3. Minting the token: the sender mints a new token bonded to the notification. To
do that the sender has to link the following data to the new token: the notification
identifier (I D), a newly created deadline (d), and the hash code of each of the
following items: m, C , and K .

These hash codes are computed by means of the Keccak-256 hashing algorithm.
Finally, I D is used as the public key of an IBE-based cryptosystem to encrypt the
AES key K getting as a result k (see description in Protocol 9 algorithm).

The new d represents the time before which the receiver must accept the token
transfer in order to have the notification content available. In addition to this, d
is also the deadline for S to cancel the transfer, R to reject it, and MW to issue
the key.

Notification Reception

At this point, R has received an encrypted message through a secure channel and S has
minted a new RejSBT. The mint operation stores all parameters in the blockchain as
metadata of the newly minted token and returns the tokenId. In addition to that, mi nt
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Subprotocol 9: Notification Release

1. S creates: m identified by I D
2. S encrypts: C = AES.encr y ptK (m)
3. S encrypts: k = I BE .encr y pti onI D (K )
4. S ⇒Secur eC hannel R : C
5. S IBl ockchai n : mi nt (I D,d , H(m), H(C ), H(K ),k)

operation sets the transferableOwners[tokenId] mapping to the receiver address value
and the state of the token is now mi nted (See Figure 12.1). The transferableOwners[]
mapping is used by RejSBTs to store the address of the intended new owner of the token
(see section 12.3 for details). Now, it is up to R to decide if he accepts or not the token
transfer before the established deadline. For example, the decision of R could be based
on the verification that the hash result of the encrypted message (C ) received through
the secure channel is equal to the hash stored in the smart contract by the sender in the
mint operation (H(C )).Thus, as illustrated in Figure 12.1 the protocol branches into
two paths depending on whether R accepts or not:

resume If the receiver R accepts (Protocol 10 algorithm), then R invokes the accept-
Transfer() function of the smart contract. Then the smart contract assigns the
ownership of the token to R and the state of it is accepted .

a) The MW listens out for accepting transfer events from the blockchain
and generates the corresponding security key (from now on SK ) for the
notification identifier represented by the token. Note that the key K was
encrypted by S using an IBE cryptosystem with the public key I D of the
notification. Therefore, the MW , which possesses the masterSecret, can
generate and submit the related security key to the blockchain, making it
available to the receiver. Once the MW has generated SK , it submits the
key to the smart contract indicating the tokenI d .

b) After receiving the data from the MW , the smart contract adds the SK
as a metadata of the token identified by tokenI d and updates the token
status to secur i t yke y sent (See Figure 12.1).

c) R can get the security key SK from the blockchain and then he computes
K = I BE .decr y ptSK (k). In section 12.4 the fairness and the confidential-
ity of the protocol will be analyzed. This analysis proves that the system
is sound and protected from fraud attempts performed by the MW .

d) Next, R decrypts the message C received through the secure channel
using the recently computed K : m′ = AES.decr y ptK (C ). Note that, since
R has accepted the transfer, R has checked that the hash code of the
received encrypted message is equal to H(C ) inside the token metadata.
Therefore, the hash code of the decrypted message m′ must match the
hash code of the message stored by the sender in the mint operation:
H(m′) = H(m).

resume If the receiver R does not accept, R can actively reject the transfer or can simply
do nothing. In the first case, R has to call the rejectTransfer(tokenId) function
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Figure 12.1: States of the two-steps certified notifications protocol

Subprotocol 10: Notification Reception

1. R IBl ockchai n : acceptTr ans f er (tokenI d)
2. MW JBl ockchai n : event AcceptTr ans f er ( f r om, to, tokenI d)
3. MW IBl ockchai n : retrieveTokenData(tokenI d)
4. MW generates security key: SK = I BE .extr act smaster Secr et (I D)
5. MW IBl ockchai n : sendSecur i t yK e y(tokenI d ,SK )
6. R IBl ockchai n : retrieveTokenData(tokenI d)
7. R computes: K = I BE .decr y ptSK (k)
8. R decrypts: m = AES.decr y ptK (C ).

of the smart contract before the deadline d and if the transfer has not been
canceled by S, then the token state will be set to rejected by the smart contract.
In the other case, if R has neither been accepted nor rejected and the sender
has not canceled the token transference, the token state will be expired after
the deadline.

resume If R has neither accepted nor rejected the notification, then the sender S can
cancel the transfer before the deadline d . In this case, S calls the cancelTrans-
fer(tokenId) function of the smart contract. This function sets the token state to
canceled as long as the token transfer has been previously accepted or rejected
by R and the current time and date are prior to the deadline (see Figure 12.1).
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After the execution of this protocol, if the receiver has accepted the notification,
then the following evidence has been collected:

• Sender S: the blockchain stores a signed transaction by the receiver accepting
the notification, which can be easily checked by means of the smart contract
that returns the notification state. Moreover, the availability of the security key,
published by the MW , can be also checked.

• Receiver R: R has received C from S through a secure channel. The mint oper-
ation registered on the blockchain by S is non-repudiation evidence to prove
that S is the actual sender of the notification identified by I D . Also, R can verify
that the decrypted result of the message content, m, matches H(m) stored as an
element of the token metadata.

The pieces of evidence collected by the actors in this protocol are fully analyzed in
section 12.4.

Identity-based encryption (IBE)

In our protocol, we have used an IBE cryptosystem (presented in subsection 4.7.4)
to encrypt the content of the certified notifications. We have carefully chosen the
identifier to single out a specific certified notification transmission that we have bound
to a token. Therefore, the domain range of the public keys is defined by the format used
to identify the sending of a certified notification. For this purpose, we have used in our
implementation a JSON object made up of the receiver address and a timestamp:

notificationID = {
receiver.address,
Timestamp

};

The protocol uses a timestamp to create an arbitrary object that unambiguously
designates the communication of a message in the proposed system. Then, our schema
transfers a RejSBT (with the identifier noti f i cati onI D in the metadata structure of
the token) from the sender to the receiver of the notification during the mint operation,
in such a way that the ownership of the token by the receiver indicates that the message
content of the notification is available by this user.

Thus, we have to implement a framework for IBE-based messaging but adapted to
the blockchain technology and the token infrastructure. The actors are the following:
the Private Key Generator (PKG), the sender (S) and the receiver (R).

The PKG is the entity that knows the masterSecret3 and publishes the sharable
public parameters (IBE.publicParameters) of the IBE cryptosystem. The PKG accepts
an IBE user’s private key request and, after successfully checking that this user is the
intended receiver of a certified notification, returns the IBE private key to open the

3The masterSecret is generated by the PKG and, then, it is privately stored by this entity. Then, after
receiving a request from a user, the PKG uses the masterSecret to generate the private keys for this user
[176].
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message content of the notification. To do that the PKG has the following cryptographic
primitive:

privateKey = IBE.extract(
IBE.publicParameters,
IBE.masterSecret,
notificationID

);

The sender of a notification creates a public key of the IBE cryptosystem and en-
crypts a message content using:

encryptResult = IBE.encrypt(
IBE.publicParameters,
publicKey,
message

);

In our case publ i cK e y = noti f i cati onI D . Then, the receiver of the notification,
after receiving the private key from the PKG, can decrypt the content message by using:

decryptResult = IBE.decrypt(
IBE.publicParameters,
privateKey,
encryptResult

);

Of course, if the actions are sound then decr y ptResul t = messag e. To sum up,
the standard IBE framework adapted to our schema consists of four processes:

• IBE.set up: where the I BE .publ i cPar ameter s are created by the PKG.

• IBE.encrypt: the sender encrypts a message using a public key.

• IBE.extract: when the receiver accepts the token transfer, the PKG creates a
private key corresponding to the public key.

• IBE.decrypt: the receiver decrypts the message with the private key provided by
the PKG.

In our system we have used an implementation of the Boneh-Franklin identity-
based cryptosystem as described by Boneh and Franklin in [177] that is available on
the CyptID. Cross-platform Identity-Based Encryption solution GitHub site4.

To address the shortcomings of the traditional Public Key Infrastructure (PKI) and to
simplify key management, we have introduced an IBE cryptosystem in a new certified
notification scheme in combination with blockchain technology. In this way, neither the
sender nor the receiver need to obtain each other’s public keys to exchange messages,

4https://github.com/cryptid-org/getting-started#Identity-based-Cryptography
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which can reduce a lot of processes for the certificate management and the transmission
of any certificate notification. Because there is no need for an online lookup for a
sender to obtain the receiver’s public key certificate and enable the sender to send the
notification in just one step. In addition, the PKG can provide new private keys for the
receiver of each notification, so it is easy to update the private keys of the receivers at
each sending of a new notification.

12.3 Implementation

We have written in Solidity language some Smart Contracts to implement, test, and
check the performance of the protocol presented in the previous Section. The code of
these smart contracts and their tests are accessible in the rejectable-soulboundtoken-
ibe5 GitHub repository maintained by the Security and e-Commerce (SECOM) Research
Group from the University of the Balearic Islands. We have used Polygon PoS, a com-
patible Ethereum Virtual Machine (EVM) blockchain, to test its performance and gas
costs. The EVM-compatible blockchains use programs called Smart Contract, and
a distributed Turing Complete machine, to store system state changes. These EVM
blockchains use their native currency, like Ether (ETH) in Ethereum or Matic in Polygon
PoS, to meter and limit the costs of resources used to execute the code. In this Section,
we will see the development procedure and the description of the Smart Contracts.

In this protocol, we will use a RejSBT Smart Contract to store the information
related to the confidential certified notification and to track its acceptance by the
receiver. Using an improvement proposal of the NFTs, introduced in Chapter 7, that
allows a selective reception of these tokens, the sender will be able to cancel the transfer
of this notification, and the receiver will be able to accept or reject this transfer. At
the same time, we will use a deadline to determine the maximum time allowed to
accept, reject, or cancel the transfer, and to let the MW send the security key. The
information about the Identity-Based Cryptography system and information related
to the encrypted message will also be stored in these RejSBTs. Once they are accepted
by the receiver, a MW service will send the security key to the receiver to allow him to
decrypt the symmetric AES session key, which will permit decrypting the notification.
All these steps will be tracked by the EVM blockchain to certify the authenticity and
integrity of all the information and the steps executed by all involved parties.

To explain the implementation of the RejSBTs used to send confidential certifica-
tion notifications with Identity-Based Cryptography we will divide the code into the
following parts:

• Soulbound token

• Rejectable Soulbound token

• Rejectable Soulbound token with a deadline

• Rejectable Soulbound token with a deadline that stores a confidential notification
using IBE

5https://github.com/secomuib/rejectable-soulboundtoken-ibe
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Soulbound token

There is no standard implementation of a SBT so far. To do this, we will get the code of
an NFT (ERC-721)[28] and will remove all the tr ans f er functions and events. We will
also remove all appr ove functions because they are only needed to enable or disable
approval for a third party ("operator") to transfer or manage all of the assets of a specific
owner. We will also change the event Tr ans f er to two different events, Mi nt and
Bur n, because the SBTs cannot be transferred, but they can be minted and burned.

With this, we will get the interface of an NFT or ERC-721 as presented in Listing 20,
and will simplify it by removing some functions and events. In Listing 21 we can see the
new interface of an SBT.� �
interface ERC721 {

event Transfer ( address indexed _from , address indexed _to , uint256 indexed
_tokenId ) ;

event Approval ( address indexed _owner , address indexed _approved , uint256
indexed _tokenId ) ;

event ApprovalForAll ( address indexed _owner , address indexed _operator , bool
_approved ) ;

function balanceOf ( address _owner ) external view returns ( uint256 ) ;

function ownerOf ( uint256 _tokenId ) external view returns ( address ) ;

function safeTransferFrom ( address _from , address _to , uint256 _tokenId , bytes
data ) external payable ;

function safeTransferFrom ( address _from , address _to , uint256 _tokenId )
external payable ;

function transferFrom ( address _from , address _to , uint256 _tokenId ) external
payable ;

function approve ( address _approved , uint256 _tokenId ) external payable ;

function setApprovalForAll ( address _operator , bool _approved ) external ;

function getApproved ( uint256 _tokenId ) external view returns ( address ) ;

function isApprovedForAll ( address _owner , address _operator ) external view
returns ( bool ) ;

}
� �
Listing 20: Interface of an NFT

Rejectable Soulbound token

To obtain a RejSBT, we will get the implementation of a RejNFT that we included in
Chapter 7. This implementation will be easier than a RejNFT because the RejSBT won’t
need to implement the tr ans f er functions. In fact, the receiver will only need to accept
or reject the minting of a SBT.
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� �
interface ISBT {

event Mint ( address indexed _owner , uint256 indexed _tokenId ) ;

event Burn ( address indexed _owner , uint256 indexed _tokenId ) ;

function balanceOf ( address _owner ) external view returns ( uint256 ) ;

function ownerOf ( uint256 _tokenId ) external view returns ( address ) ;
}
� �

Listing 21: Interface of a SBT

To let receivers of an SBT reject the mint, we must add certain functions and events
to the code of a regular SBT. In our proposal, we have a new mapping that will store the
owner to whom we want to transfer the token: _transferableOwners. With this, when
we mint the SBT, instead of directly transferring the ownership, we add the address of
the receiver, for that SBT TokenId, to the _transferableOwners mapping.

Then, the receiver will be able to accept or reject the transfer. Besides, we have
introduced another alternative: if the receiver hasn’t yet accepted or rejected the transfer,
the sender will still have the chance to cancel the transfer by removing the receiver from
the _transferableOwners mapping. This new mapping stores the proposed owners
of the tokens and it is defined in Listing 22.� �
// Mapping from token ID to transferable owner
mapping( uint256 => address ) private _transferableOwners ;
� �

Listing 22: transferableOwners mapping

We only need to take into consideration the mint() function, where the SBT is
created and doesn’t have yet an owner. In fact, minting a SBT also represents a transfer
of ownership, from the zero address to the receiver.

In Figure 12.2 there is a state diagram of the proposed protocol, where we can see
the states of the exchange of the SBT between the sender and the receiver. Let A be the
creator of a SBT and let B be the intended receiver of it. Then:

• A creates the token executing the operation A.mint(B). With this operation, the
address of B is introduced in _transferableOwners.

• Now B can accept the transfer by executing B.acceptTransfer() or, alternativ-
elly, it can reject the SBT with B.rejectTransfer().

• Furthermore, as we have mentioned above, if B has not yet accepted the transfer,
A has the ability to cancel the transfer by executing A.cancelTransfer().

To enable the rejection of an SBT, it is essential not only to introduce the mapping
_transferableOwners but also to modify the private function _mint(), which will
add the proposed receiver of the token to the _transferableOwnersmapping, instead
of directly transfer the SBT. This private function is called from the public mint()
function of the SBT.
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Figure 12.2: States of the RejSBT protocol

To implement the rejectable feature, we also need these new three events, that will
be emitted from the corresponding functions:

• TransferRequest: emitted when a token is minted and proposed to be trans-
ferred.

• RejectTransfer: emitted when the receiver rejects the transfer of the token.

• CancelTransfer: emitted when the sender cancels the transfer of the token.

• AcceptTransfer: emitted when the transfer is really performed, changing the
ownership from the sender to the receiver.

With this, the code of the private function _mint() is described in Listing 23� �
function _mint ( address to , uint256 tokenId ) internal v i r t u a l override {

require ( to != address ( 0 ) , "RejectableSBT: mint to the zero address" ) ;
require ( ! _ e x i s t s ( tokenId ) , "RejectableSBT: token already minted" ) ;

_minters [ tokenId ] = _msgSender ( ) ;
_transferableOwners [ tokenId ] = to ;

emit TransferRequest ( _msgSender ( ) , to , tokenId ) ;
}
� �

Listing 23: mint() function

In addition to the three events described above, in order to complete the protocol
we also need to implement the three new functions:

• acceptTransfer(): the receiver can call this function to accept the transfer
proposal made by the sender when he mints the token. We need to check that
the receiver is included in the _transferableOwners mapping.

• rejectTransfer(): the receiver can call this function to reject the transfer
proposal made by the sender. Once again, this can only be done by the proposed
receiver of the token.

• cancelTransfer(): the sender of the transfer proposal (token minter) is able to
cancel it by calling this function, provided the receiver has yet to execute either
the acceptTransfer() or rejectTransfer() functions.
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Rejectable Soulbound token with deadline

We also have created the smart contract RejectableSBTDeadline, inherited from
RejectableSBT, that lets receivers accept or reject the notification only before a dead-
line. This deadline represents a specific time by which the acceptance, rejection, or
cancellation of the dispatch of the token must be done. To do this, when we mint a new
token, we also need to provide a deadl i ne parameter. This deadl i ne will be stored for
every tokenI d in a mapping variable. The new _mint() function is listed in Listing 24.� �
function _mint (

address to ,
uint256 tokenId ,
uint256 deadline

) internal v i r t u a l {
require (

to != address ( 0 ) ,
"RejectableSBTDeadline: mint to the zero address"

) ;
require (

! _ e x i s t s ( tokenId ) ,
"RejectableSBTDeadline: token already minted"

) ;
require (

deadline > block . timestamp ,
"RejectableSBTDeadline: deadline expired"

) ;

_minters [ tokenId ] = _msgSender ( ) ;
_transferableOwners [ tokenId ] = to ;
_deadlines [ tokenId ] = deadline ;
_ s t a t e s [ tokenId ] = State . Minted ;

emit TransferRequest ( _msgSender ( ) , to , tokenId ) ;
}
� �

Listing 24: _mint() function

We also have added an State enumeration that stores the possible states of a
RejectableSBTDeadline token:

• Minted: the token is minted, but the receiver hasn’t accepted or rejected the
transfer, and the sender hasn’t canceled the transfer. The deadline hasn’t expired.

• Accepted: the receiver has accepted the transfer.

• Rejected: the receiver has rejected the transfer.

• Canceled: the sender has canceled the transfer.

• Expired: nobody has accepted, rejected, or canceled the transfer, and the dead-
line has expired.

To override the acceptTransfer(), rejectTransfer() and cancelTransfer()
functions, we must take into consideration the deadline that cannot be expired, and
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the token must also be in the required State. With this, the code of these functions is
specified in Listing 25, Listing 26 and Listing 27

� �
function acceptTransfer ( uint256 tokenId ) public v i r t u a l override {

require (
_transferableOwners [ tokenId ] == _msgSender ( ) ,
"RejectableSBTDeadline: accept transfer caller is not the receiver of the

token"
) ;
require (

_deadlines [ tokenId ] > block . timestamp ,
"RejectableSBTDeadline: deadline expired"

) ;
require (

_ s t a t e s [ tokenId ] == State . Minted ,
"RejectableSBTDeadline: token is not in minted state"

) ;
address from = minterOf ( tokenId ) ;
address to = _msgSender ( ) ;
_balances [ to ] += 1 ;
_owners [ tokenId ] = to ;
_ s t a t e s [ tokenId ] = State . Accepted ;
// remove the transferable owner from the mapping
_transferableOwners [ tokenId ] = address ( 0 ) ;
emit AcceptTransfer ( from , to , tokenId ) ;

}
� �
Listing 25: acceptTransfer() function

� �
function r e j ec tTr ans fer ( uint256 tokenId ) public v i r t u a l override {

require (
_transferableOwners [ tokenId ] == _msgSender ( ) ,
"RejectableSBTDeadline: reject transfer caller is not the receiver of the

token"
) ;
require (

_deadlines [ tokenId ] > block . timestamp ,
"RejectableSBTDeadline: deadline expired"

) ;
require (

_ s t a t e s [ tokenId ] == State . Minted ,
"IBERejectableSBT: token is not in minted state"

) ;
address from = minterOf ( tokenId ) ;
address to = _msgSender ( ) ;
_ s t a t e s [ tokenId ] = State . Rejected ;
_transferableOwners [ tokenId ] = address ( 0 ) ;
emit RejectTransfer ( from , to , tokenId ) ;

}
� �
Listing 26: rejectTransfer() function
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� �
function cancelTransfer ( uint256 tokenId ) public v i r t u a l override {

require (
minterOf ( tokenId ) == _msgSender ( ) ,
"RejectableSBTDeadline: cancel transfer caller is not the minter of the

token"
) ;
require (

_deadlines [ tokenId ] > block . timestamp ,
"RejectableSBTDeadline: deadline expired"

) ;
require (

_ s t a t e s [ tokenId ] == State . Minted ,
"IBERejectableSBT: token is not in minted state"

) ;
address from = minterOf ( tokenId ) ;
address to = _transferableOwners [ tokenId ] ;
require (

to != address ( 0 ) ,
"RejectableSBTDeadline: token is not transferable"

) ;
_ s t a t e s [ tokenId ] = State . Canceled ;
_transferableOwners [ tokenId ] = address ( 0 ) ;
emit CancelTransfer ( from , to , tokenId ) ;

}
� �
Listing 27: cancelTransfer() function

Rejectable SBT with a deadline that stores a confidential notification using IBE

Finally, to obtain a RejSBT with a deadline that stores a confidential notification us-
ing IBE, we will create a new smart contract, IBERejectableSBT, that inherits from
RejectableSBTDeadline. This new smart contract will add three main changes: store
the metadata of each notification for every tokenId, store the public parameters of
the IBE algorithm, and add a new functionality, letting the MW server send the private
key to decrypt the symmetric AES session key that let decrypt the notification to the
receiver.

To implement the IBE algorithm, we will use CryptID.js library6. Using this li-
brary, first of all, the MW will need to set up its parameters, and its public parameters
will be stored in the IBERejectableSBT smart contract. This setup also generates a
masterSecret, to obtain the private keys, but this secret must be stored securely in
the MW . Taking all of this into consideration, when we deploy the IBERejectableSBT
smart contract, we will pass the MW address and the public parameters of the algo-
rithm to the constructor of this smart contract, stored as a bytes type, because its
size is greater than 256 bits. On the other hand, to encrypt the message, we will use
AES symmetric cryptography implemented by the crypto native library of NodeJS
7. This library needs a general initialization vector that will also be generated by the
MW . These values will be stored in the smart contract (Listing 28) and can be queried
publicly.

6https://www.npmjs.com/package/@cryptid/cryptid-js
7https://nodejs.org/api/crypto.html
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� �
// address of the middleware which will send the private key
address public middleware ;

// public parameter of the AES algorithm
bytes public a e s I n i t i a l i z a t i o n V e c t o r ;
// public parameters of the IBE algorithm
bytes public f ieldOrder ;
bytes public subgroupOrder ;
bytes public pointP_x ;
bytes public pointP_y ;
bytes public pointPpublic_x ;
bytes public pointPpublic_y ;
� �

Listing 28: Middleware address and public parameters of the IBE algorithm

� �
struct MessageData {

// identity of the receiver
address idReceiver ;
uint256 idTimestamp ;
// hash of the message in plain text
bytes messageHash ;
// hash of the cipher of the message
bytes encryptedMessageHash ;
// the cipher of the AES key, encrypted with the identity of the receiver
bytes encryptedKey_cipherU_x ;
bytes encryptedKey_cipherU_y ;
string encryptedKey_cipherV ;
string encryptedKey_cipherW ;
// private key to decrypt the cipher
bytes privateKey_x ;
bytes privateKey_y ;

}

// Mapping from token ID to message data
mapping( uint256 => MessageData ) public messageData ;
� �

Listing 29: Data stored for every notification

When a sender wants to send a confidential notification, he will encrypt the message
with a symmetric AES session key, and then he will use the public parameters of the
IBE algorithm to encrypt this session key using the identity of the receiver as the public
key that encrypts it. This encrypted message will be sent in a secure way, off-chain,
without using the blockchain, to the receiver. Then, the sender will mint a new SBT to
the receiver. For every new message/SBT that we want to send, we will store the identity
of the receiver, which will let the MW generate its private key, using the masterSecret.
We will also store for every message the hash of the message, which will let the receiver
check that its value hasn’t been modified, the hash of the cipher of the message, that
the sender has encrypted and sent off-chain to the receiver, and the cipher of the AES
key, encrypted with the identity of the receiver. For every message, we will also need to
store the private key to decrypt the AES key. This private key will be sent by the MW in
the last step of this protocol.
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� �
function mint (

address to ,
uint256 timestamp ,
uint256 deadline ,
bytes memory messageHash ,
bytes memory encryptedMessageHash ,
bytes memory encryptedKey_cipherU_x ,
bytes memory encryptedKey_cipherU_y ,
string memory encryptedKey_cipherV ,
string memory encryptedKey_cipherW

) public returns ( uint256 ) {
uint256 tokenId = _tokenIdCounter . current ( ) ;
_tokenIdCounter . increment ( ) ;
_mint ( to , tokenId , deadline ) ;

messageData [ tokenId ] = MessageData ( {
idReceiver : to ,
idTimestamp : timestamp ,
messageHash : messageHash ,
encryptedMessageHash : encryptedMessageHash ,
encryptedKey_cipherU_x : encryptedKey_cipherU_x ,
encryptedKey_cipherU_y : encryptedKey_cipherU_y ,
encryptedKey_cipherV : encryptedKey_cipherV ,
encryptedKey_cipherW : encryptedKey_cipherW ,
privateKey_x : "" ,
privateKey_y : ""

} ) ;

return tokenId ;
}
� �

Listing 30: mint() function of IBERejectableSBT

Taking all of this into consideration, we will use a struct, MessageData to store this
information for every message, and a mapping, messageData, that will map this data
for every tokenId. These values are listed in Listing 29.

Once the sender has encrypted the notification, and sent it off-chain to the receiver,
he will mint a new SBT calling the mint() function. When he calls this function, he
will need to provide the address of the receiver and the timestamp (the combination
of these parameters determines the identity of the IBE algorithm). He will also need
to provide the deadline to accept or reject the notification, and the message hash, the
cipher of the message hash, and the cipher of the AES key. The mint() function is listed
in Listing 30.

Now, the MW will be listening to the smart contract IBERejectableSBT events,
and when a receiver accepts the transfer of an SBT, that represents a message sent
to him, the MW will generate the private key of this message and will send it to the
smart contract. To generate the private key the MW needs the public parameters of
the algorithm, the masterSecret, stored securely in the MW itself, and the identity of
the receiver.

To store the private key of a concrete tokenId, we will use the sendPrivateKey()
function, listed in Listing 31. In this function the smart contract will verify that the
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� �
function sendPrivateKey (

uint256 tokenId ,
bytes memory privateKey_x ,
bytes memory privateKey_y

) public {
require (

_msgSender ( ) == middleware ,
"IBERejectableSBT: caller is not the middleware"

) ;
require ( _ e x i s t s ( tokenId ) , "IBERejectableSBT: token does not exist" ) ;
require (

keccak256 ( abi . encodePacked ( ( messageData [ tokenId ] . privateKey_x ) ) ) ==
keccak256 ( abi . encodePacked ( ( "" ) ) ) ,

"IBERejectableSBT: private key already sent"
) ;
require (

keccak256 ( abi . encodePacked ( ( messageData [ tokenId ] . privateKey_y ) ) ) ==
keccak256 ( abi . encodePacked ( ( "" ) ) ) ,

"IBERejectableSBT: private key already sent"
) ;
require (

_deadlines [ tokenId ] > block . timestamp ,
"IBERejectableSBT: deadline expired"

) ;
require (

_ s t a t e s [ tokenId ] == State . Accepted ,
"IBERejectableSBT: token is not in accepted state"

) ;

messageData [ tokenId ] . privateKey_x = privateKey_x ;
messageData [ tokenId ] . privateKey_y = privateKey_y ;

emit PrivateKeySent ( tokenId , privateKey_x , privateKey_y ) ;
}
� �

Listing 31: sendPrivateKey() function of IBERejectableSBT

caller of this function is the MW , and the deadline hasn’t expired.
Once the MW has sent the private key, the receiver will be able to decrypt the AES

key, and this AES key will let the receiver decrypt the notification (sent off-chain).

12.4 Security properties analysis

In this section, the properties related to the security, privacy, and functionality of the
protocol will be evaluated. For this reason, we will evaluate Effectiveness, Fairness,
Evidence transferability, Timeliness, Timestamping, Non-repudiation, and Confiden-
tiality, the desired properties for certified notification schemes that were enumerated
in section 5.1. Regarding the security properties defined in section 5.1, we have re-
moved the efficiency property because it will be evaluated separately, in section 12.5,
where the results and a set of experiments to evaluate the performance of the protocol
are presented. We also have grouped together the properties of fairness and evidence
transferability for discussion purposes.
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1. Effectiveness. The system for certified notification presented in this chapter is
effective. So, all parties will receive the expected items in case of behave according
to the protocol.

To create a new Certified Notification, the sender generates a new token and
executes the functions following the specifications of the protocol. If all the
parties execute all the steps of the exchange correctly, that is, if the receiver
accepts the transfer of the token, the certified notification will be completed
and the ownership of the token will prove the notification. At the end of the
execution, if the receiver and the MW have followed the protocol, R will have
the key to decrypt the delivered data. The state that represents this situation is
SecurityKeySent.

2. Fairness and Transferability of evidence. The proposed protocol for Certified
Notifications is fair. At the end of a protocol execution, the receiver has possession
of the token that represents the notification and the sender can prove that the re-
ceiver has accepted the notification. Moreover, either each party has received the
proper element (token and Non-Repudiation of Reception evidence) or neither
party has received any useful data about the other’s element, providing strong
fairness[87]. Moreover, the evidence generated by the protocol can be verified by
an external party in order to prove the outcome and the effects of the exchange.
On the one hand, according to the protocol, the sender S is not going to receive
the non-repudiation evidence of reception generated by the smart contract (state
= SecurityKeySent) except if the receiver executes the function AcceptTransfer() of
the smart contract and the MW executes a transaction in order to provide the
IBE security key to allow the receiver to decrypt the AES key, K . On the other
hand, the receiver R is able to receive the token and get access to the delivered
data only if he runs a transaction in order to agree to receive the Notification
(case state = accepted, previous to SecurityKeySent).

If the parties do not follow the specifications of the protocol, that is, if they do not
execute the functions AcceptTranfer() and/or CancelTransfer(), the smart contract
guarantees a result that is fair for every user without the need of any intervention
of a T T P , since at the deadline d the state will automatically change to Expired.

We have analyzed all the cases where the protocol can lead the exchange, in
order to prove the strong fairness of the protocol. We have used a state transition
diagram. This diagram is formed by four final states: SecurityKeySent, Canceled,
Rejected and Expired and two intermediate states: Created and Accepted. These
two states cannot be final states because the protocol will eventually change the
state in any case. The states and the transactions are represented in Figure 12.1.

SecurityKeySent implies that the exchange has been completed following all the
stages of the protocol, while Canceled, Rejected and Expired represent deliveries
that have not been completed, for different reasons. The first one represents a
cancellation by the sender, the second one an explicit rejection by the receiver,
and the third one the rejection due to the expiration of the offer. Now, we will
show how the protocol leads the delivery and the exchange of pieces of evidence
to a fair situation in all cases:

163



12. TWO-STEPS CERTIFIED NOTIFICATIONS PROTOCOL

• Element C not received or invalid C received.

If R does not receive off-chain the element C , then he will not accept the
transfer of the token. If R receives the element and the offer of the token
but the H (C ) included in the token does not correspond with the element C
received off-chain, then R will reject the notification. R can reject explicitly
(RejectTransfer(token ID), leading to state Rejected or he can do nothing and
after the deadline the state will be Expired, invalidating the notification.

• Element C received correctly but AcceptTransfer() not executed.

If, after the minting of the token, the receiver R does not want to receive
the notification, he will not execute AcceptTransfer before the deadline d.
Then the smart contract will set the state to Expired. If R decides to execute
RejectTransfer(token ID) then the smart contract will set the state to Rejected.
In both cases, as a consequence, R will not receive the decryption key and
will not have access to the notification. For this reason, the element C
received off-chain is useless. On the other hand, the sender will not have a
Non-Repudiation of Reception proof generated by the receiver (reception
of the token). So, the situation is fair for all the parties. The final state for
this exchange will be Expired or Rejected depending on the behavior of the
receiver.

• R accepts the notification but does not receive the key SK .

After the execution of AcceptTransfer, the state of the notification changes
to Accepted. If the MW behaves dishonestly and does not provide the IBE
key, the state will not change to SecuritykeySent. Instead, after the deadline
d , the state will change to Expired. This ensures that the NRR evidence will
not be generated, as the token will not be associated with R’s wallet.

• R accepts the notification but the MW provides an invalid Security Key,
SK .

After the execution of AcceptTransfer the state of the notification is Ac-
cepted. If the MW tries to act dishonestly by providing an invalid IBE key,
(we will call it SK ′) R will be able to prove this fraud attempt. When the
MW provides the false SK ′ then R will use it to obtain an invalid K , K ′,
since K ′ = I BE .decr y ptSK ′(k). R will also use the element C received off-
chain together with this key K ′ to obtain the message. When the false
K , K ′ is used, the element obtained will be a false m, called m′, being
m′ = AES.decr y ptK ′(C ). Then, the receiver R will check if the hash of m′

corresponds to the element H(m) included in the token. When the com-
parison does not stand, R knows that the MW has not acted honestly. To
prove this misbehavior, R must show C and m′. Since H(C ) is included in
the token, everybody can verify that it is a valid element. Then it can be
proved that the SK ′ provided by the MW does not correspond to the key
that allows to decrypting of the message. With this verification, fairness is
ensured. Moreover, since the misbehavior of the MW could be detected,
and taking into account that once the proof of the fraud is revealed the
reputation of the MW is destroyed, it is assumed that the MW will not try
to act dishonestly.
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• The receiver accepts, receives the corresponding key, and decrypts the
notification.

If the receiver executes AcceptTransfer to accept the notification, then the
MW will provide the IBE security key SK . With this key K can be revealed,
since K = I BE .decr y ptSK (k). Then, R will use the element C received off-
chain together with this key K to obtain m, m = AES.decr y ptK (C ). The
receiver R will check if the hash of m corresponds to the element H(m)
included in the token. After this verification, R has access to the notification.
The final state of the protocol is SecurityKeySent and R is the owner of the
token. The transfer of the token represents the NRO and NRR pieces of
evidence.

• S cancels the transfer.

After the execution of Protocol 1: Notification Release, before the deadline
and before the acceptance by R , if S wants to cancel the notification, he can
do it by executing the Cancel function. This function can be useful in case of
a mistake by S. The notification can be canceled without any consequences
to the receiver R. Since R has not performed any action, there will be no
damage to him. In this case, the notification is not completed and neither
NRO nor NRR pieces of evidence are generated.

According to the previous evaluation, the fairness provided by the protocol is
strong fairness. Although the execution of the protocol can lead to different
states, the protocol does not allow any circumstance where a user could get
contradictory evidence since the state is only updated by the smart contract.
Therefore, it is not possible to do an action that could lead to an unfair situation.

The proofs generated during the execution of a protocol run can serve as evidence
and can be submitted to an external arbiter. It is essential to note that users
cannot get contradictory proofs, and valid evidence is only created by following
the execution sequence of the smart contract. The evidence can be evaluated by
an external arbiter who can determine whether the notification has concluded
successfully or not. In addition to that, its transferability is easy, because the
proofs generated during the exchange are all stored on the blockchain. Therefore,
since the blockchain is immutable, it is not possible to change the content of any
message and, thus, the scheme provides message integrity. It is also possible to
deduce the exact point in time when the delivery took place from the timestamp
of the block where the transaction was included.

3. Temporal parameters: Timeliness and Timestamping. A successful notification
will always be completed before the deadline d .

If the notification is not successful we have different situations depending on
how the exchange has been performed. If the receiver R does not accept the
notification and executes RejectTransfer, then the delivery will immediately lead
to Rejected state. If the receiver R does not accept and does not make any action,
the delivery will lead to the state Expired at the deadline d . The same happens if,
after the acceptance of the notification by the receiver, the MW does not provide
the security key, SK .
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Moreover, we have to take into account that the blockchain timestamps all trans-
actions performed on it.

4. Non-repudiation.

The notification protocol must provide a Non-Repudiation of Reception evidence
and a Non-Repudiation of Origin evidence too.

• Regarding the Non-Repudiation of Origin (NRO) evidence, the sender S
cannot deny having executed the functions included in Protocol 1 to create
the notification since there is a mint of a token by his address containing I D ,
d , H (m), H (C ) and k. The related smart contract can prove that the steps of
Protocol 2 have been executed and that the final state of this notification is
SecurityKeySent, proving that R has received the key to decrypt the message.
The pieces of evidence are related to a notification whose hash is included
in the token, H(m).

• Concerning the Non-Repudiation of Reception (NRR) evidence, R is not able
to refuse the notification acceptance, because an AcceptTransfer transaction
from his address is stored on the blockchain. This transaction accepts the
reception of the Notification and, according to that, the smart contract
changed the state of the notification to SecurityKeySent after the delivery of
SK by the MW .

5. Confidentiality. A notification will be confidential if only the receiver that accepts
the notification can access the delivered message. For this reason, the data cannot
be included in clear text in any transaction and must not be registered on the
blockchain. The data cannot be a parameter in the smart contract functions and
the smart contract cannot gain access to the decryption key if it has access to the
encrypted message.

In Protocol1 the sender encrypts the message C = AES.encr y ptK (m) and then
encrypts the key K using an IBE scheme k = I BE .encr y pti onI D (K ). Neither the
notification message m nor the encrypted message C are included in a blockchain
transaction. When Protocol 2 is executed, the smart contract will gain access to
k, and then to K , but since the smart contract does not have access to C , he will
not be able to decrypt the notification message. Thus, the protocol achieves the
confidentiality property.

6. Race Conditions and Trust in Layer 2 Solutions.

While the proposed protocol effectively handles security properties like fairness,
non-repudiation, and confidentiality, it is essential to consider potential race
conditions in nodes that include transactions in the blockchain, especially when
using a Layer 2 (L2) solution like Polygon PoS.

In L2 networks, a limited number of validator nodes may introduce trust de-
pendencies that differ from the decentralized nature of Ethereum’s mainnet.
These validators are responsible for confirming and including transactions in the
blockchain. If validators act dishonestly or if there are synchronization issues
between them, it may lead to race conditions or delayed transactions, potentially
impacting the protocol’s integrity.
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Therefore, while L2 solutions provide cost efficiency and scalability, they also
introduce a level of trust in the validator set. The middleware in our protocol,
while not a traditional TTP, must be considered in this context. Its behavior and
reliability are crucial, as it ensures that the security keys are correctly issued to
the receivers.

To mitigate these risks, it is vital to implement robust validator selection mech-
anisms and ensure high standards of validator performance and reliability in
the chosen L2 network. Additionally, the protocol’s ability to trace and verify
actions on the blockchain helps maintain transparency and trust, even in a more
centralized L2 environment.

12.5 Performance analysis

The implementation of this protocol was tested for performance using the hardhat-
gas-reporter plugin8, an integral part of the Hardhat development environment. This
plugin facilitates the calculation of Gas usage per unit test, using metrics for method
calls and deployments.

To validate the correctness of the protocol, we designed tests that we executed using
the aforementioned hardhat-gas-reporter plugin, which provides us with metrics for
the evaluation of the efficiency of the system in terms of gas cost.

In the Ethereum Virtual Machine (EVM) compatible blockchains, gas execution
costs play a crucial role for the efficiency of the execution of smart contracts, and
subsequently, they are a significant concern in the development of this service.

To calculate the gas cost in US Dollars, we utilized the Polygon PoS network, a layer
2 scaling solution for Ethereum that aims to provide faster and cheaper transactions.
Polygon PoS generally incurs lower gas costs compared to Ethereum due to its distinct
fee structure. Furthermore, as a layer 2 scaling solution, it batches transactions and
settles them on the Ethereum mainnet in a single transaction, reducing the overall gas
costs. This makes Polygon PoS a good alternative to Ethereum, especially to for users
requiring frequent or high-value transactions.

Based on the test results, we analyzed the gas cost of all the functions employed in
the protocol. Figure 12.3 represents these costs, according to the Hardhat–gas–reporter
plugin. Notably, these costs are denominated in gas units. To determine the exact
transaction price, we require information about the current gas price in MATIC (the
native currency of the Polygon PoS) and the MATIC to US Dollars exchange rate. For this
analysis, we used the MATIC price from November 14, 2023, which is 0.90 USD/MATIC.
This conversion to USD is provided for reference purposes only and reflects the rates at
the time of this study. For comparison with other results, it is recommended to use the
gas units.

Analyzing the gas cost of the smart contract deployment and the execution of
the function, we notice that the most expensive function, in terms of gas cost, is the
deployment of the IBERejectableSBT smart contract itself, which costs 0.30 US Dol-
lars in the execution of our tests and maintaining an average cost of 0.48 US Dollars
over the past year. In contrast, the remaining functions (mint(), acceptTransfer(),

8https://www.npmjs.com/package/hardhat-gas-reporter
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Figure 12.3: Gas cost of the two-steps certified notifications smart contract

Figure 12.4: Gas cost of the RejSBT smart contract

rejectTransfer(), cancelTransfer() and sendPrivateKey()) are relatively inex-
pensive, with average costs of 0.1, 0.015, 0.009, 0.009 and 0.03 US Dollars, respectively
(see Table 12.2).

Considering these results, alongside a notable peak in gas costs observed in early
November 2022, the costs associated with the defined and implemented protocol are
reasonably affordable, meeting the desired properties for handling confidential certified
notifications.

12.6 Conclusions

The protocol presented in this chapter uses blockchain and tokens to represent the
delivery of data. Due to the nature of these technologies, we obtain some essential
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Table 12.2: Average costs of the two-steps certified notifications smart contract

US Dollars
IBERejectableSBT deployment 0.47699

acceptTransfer 0.01574
cancelTransfer 0.00958

mint 0.10164
rejectTransfer 0.00953

sendPrivateKey 0.03247

security properties. However, the standards related to tokens defined up to the current
date do not fulfill the requirements for certified notifications. For this reason, we have
enhanced our previous proposal for tokens, RejNFTs, that provide the receiver the
ability to reject a token delivery proposal and then we have proposed a new kind of
token. Taking into account that the notifications cannot be transfered by the receiver
we have presented a token proposal, RejSBTs. The transference of the token represents
the delivery process and the token itself can be used to obtain Non-Repudiation of
Origin and Non-Repudiation of Reception evidence.

The receiver of a notification must accept or reject it before accessing its contents.
Using the proposed tokens together with IBE Cryptography, we have designed a con-
fidential certified notifications protocol that allows the delivery with only one action
performed by the sender and one by the receiver, obtaining a very efficient proposal.
The IBE scheme is used to link the token with the ID of the notification and helps to
keep it confidential.

Finding efficient and secure fair exchange protocols has been an open challenge
[178]. The solution presented in this chapter is a significant contribution that can
securely solve the problem with a 2-step protocol. In this way, the sender just has to
perform one step to submit the message and, then, the non-repudiation evidence will
be available on the blockchain. In contrast to the regular three-step solutions where
the sender also has to intervene in the third step to open the message to the receiver.
Taking this into account, as further works, we can study how our certified notification
protocol can be integrated as a new fair messaging exchange paradigm as an external
system in other software applications [179].

The security of the protocol has been evaluated proving that the protocol fulfills the
desired properties including effectiveness, fairness, transferability of pieces of evidence,
timestamping, non-repudiation, and even confidentiality of the delivered message.
Moreover, the performance of the system has been also evaluated in order to check the
viability of the proposal, obtaining interesting results.

Despite the improvement done in this protocol, reducing the number of steps to
two, where each actor is only involved in one step, there are also some limitations. For
example, the use of a Middleware introduces a third party that can represent a single
point of failure. Despite the fact that this middleware must participate fairly in the
exchange, and its malfunction is controlled by the protocol itself, if it stops working,
a lack of service would occur. In any case, the protocol has the capacity the verify the
Middleware behavior in such a way that any action made by the Middleware that is not
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12. TWO-STEPS CERTIFIED NOTIFICATIONS PROTOCOL

in accordance with the protocol specification can be detected and proved because it
can be traced in the blockchain records.

The RejSBTs proposed in this chapter are not only useful for their usage in certi-
fied notifications, but they have great potential and in the future, they will be useful
in the development of other applications with similar requirements to those of the
certified notifications. These tokens could find application in secure access control
systems, identity verification processes, financial transactions, and even healthcare
data management, ensuring a versatile and reliable solution across a spectrum of fields
demanding heightened security measures.

170



C
H

A
P

T
E

R

13
TWO-PARTY CONTRACT SIGNING PROTOCOL

In this chapter, we explore a contract signing protocol as a trusted service, which
fundamentally relies on the fair exchange of signatures from each participating party.
Traditionally, such services have depended heavily on Trusted Third Partys (TTPs).
However, these entities often introduce complications that can impede the broader
adoption of these services.

After a thorough analysis of several certified notification protocols in previous
chapters, we present a new protocol that utilizes blockchain-based technologies. This
approach effectively eliminates the need for TTPs while still fulfilling the essential
requirements for secure and reliable contract signing. Our protocol supports the execu-
tion of both public (non-confidential) and private (confidential) contracts, providing a
versatile solution adaptable to various legal and business needs.

Moreover, the design of our protocol considers future enhancements, specifically its
extension to include multiparty contracts. This expansion, which will be addressed in
the next chapter, will allow for more complex contractual agreements involving multiple
stakeholders, thereby broadening the applicability of our blockchain-based solution.
By removing TTPs and leveraging the inherent security properties of blockchain, our
protocol promises to streamline the contract signing process, making it more accessible
and efficient for all parties involved.

13.1 Contribution

Electronic contract signing, described in section 5.2, is a trusted service offered to users
who want to obtain a signed copy of a contract from another user. Protocols for contract
signing have to provide irrefutable evidence to the parts to prove, at the end of the
exchange, whether the contract is signed and, if it is the case, the terms of the contract.
The signature of a contract is handled as a fair exchange of values: the proposer has an
item (the text of a contract together with a non-repudiation or commitment token) to
be exchanged for a recipient’s item (a non-repudiation token bounded to the text of
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the contract). The exchange of these items will be fair if, at the end of its execution, all
users have received the item they expected to receive or no user has received it [114].

However, in practice, the implementation and acceptance of this type of entity is
an obstacle to extending the use of protocols in the network. On the one hand, it is
difficult to have TTPs that are really reliable for any user in the network and that have a
defined framework of action (e.g. the electronic documents generated by the TTP have
to be accepted to resolve disputes in a court of law in different countries). Moreover,
TTPs can also cause problems at a technical level (e.g., they can cause bottlenecks from
a communications point of view), lack of efficiency in the protocols (e.g., slow down
the resolution of problems) and increase the cost of the execution of the protocol (e.g.
charging high rates for the provision of services). Besides, they are a very sensitive
point in the network since they play an important role in the security of electronic
protocols and their reliability is a problem that needs attention because the security
of the exchange can be broken if the TTP has any vulnerability. Although TTPs are
still a basic actor in fair exchange protocols, currently, with the advent of blockchain
technologies and smart contracts, TTPs could be replaced or complemented by this
new know-how, which opens a range of new possibilities to find effective solutions to
the electronic versions of the protocols that fulfill the generic pattern of fair exchange
of values.

This protocol aims to show how blockchain technology and smart contracts can
introduce a new paradigm to deal with contract signing operations. By using this tech-
nology, we can reduce or even remove the role of the TTPs inside such protocols. This
means that this new technology allows us to define transactions with predetermined
rules (written in a contract) in a programmable logic that can guarantee a fair exchange
between parties with an initial mutual distrust. This feature prevents parties from
cheating each other and discharges the need for intermediaries with the consequent
reduction of delays and commissions for their services. The revealing power of the
blockchain is further enhanced by the fact that blockchains naturally incorporate a
discrete notion of time, a clock that increases each time a new block is added. The
existence of a trusted clock/register is crucial to achieve the property of fairness in the
protocols.

In this chapter, we present a contract signing protocol that avoids the involvement
of Trusted Third Partys while satisfying the security and privacy requirements, including
the confidentiality of the contract.

13.2 Properties and requirements

Some ideal properties for optimistic fair exchange are effectiveness, fairness, timeliness,
non-repudiation and verifiability of the third party. Two additional properties are
efficiency and privacy. These properties are described in section 5.1. During the design
process we have determined some other requirements for this particular contract
signing protocol:

• The process requires three steps, according to [112].

• The designed protocol uses a similar approach to the solution we presented
for certified notifications in Chapter 8, but they must differ in the way to get
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access to the provided information. In a certified notification the receiver cannot
access the data until the finalization of the exchange and in the case of contract
signing all signers have to be able to read the contract before its signature for
both non-confidential and confidential contracts.

• A contract, in order to be signed, requires the signatures of all the involved
signers. When a signer does not accept the contract, then the exchange has to
be canceled. In multiparty exchanges, partially signed contracts are not allowed.
This is another difference with the protocol presented in Chapter 8 because
partial notifications are allowed.

• If the contract requires more than two signers, the smart contract has to ensure
that all the signers read the same contract, even if the smart contract cannot
access the contents of the contract.

• Even if the contract is confidential, any signer has to be able to prove to an
external party, using the evidence stored in the blockchain, that the contract is
signed.

13.3 Protocol design

The proposed system presents solutions for both confidential and non-confidential (or
public) contract signing between two signers. The proposals consider the following
actors with these roles:

• Proposer or Signer A. The user that generates the contents of the contract,
chooses the signer B and starts the exchange. A has to generate the contract
and send it to B in order to obtain B ’s signature on the contract and finish the
exchange.

• Receiver or Signer B . The user that receives the contract to sign. The receiver
must accept the contents of the contract and provide a signature on it.

• Smart Contract. Contract deployed on the blockchain that can manage the
exchange and ensure fairness.

All the participating actors have blockchain addresses and are able to communicate
with the smart contract. These entities interact as follows: first A chooses whether he
wants to propose the signature of a non-confidential or a confidential contract. Then,
in both cases, the parties execute a three-step exchange to provide the contract, to sign
it and also to generate the non-repudiation elements. Both proposed protocols follow
a three-step on-chain exchange using the smart contract. The confidential proposal
uses additional steps to guarantee that the smart contract will not have access to the
contents of the contract. The proposed protocols will be explained in subsection 13.3.1
and subsection 13.3.2. Table 13.1 includes the notation used in the definition of the
proposed protocols.

We use states to manage the exchange process. The state diagram for the confi-
dential contract signing protocol is depicted in Figure 13.1. We have programmed the
smart contracts and checked it on the Ethereum blockchain.
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Table 13.1: Notation of the two-party contract signing protocol

Notation

C Contract
X ,Y Concatenation of messages X and Y.
p I e. f Execution of function f of e by p.
ter m Timeout for A to finish the exchange.
D Deposit sent to the Smart Contract (ethers).
xA A’s contracting private key.
y A A’s contracting public key.
xB B’s contracting private key.
yB B’s contracting public key.
g , p, g System parameters.
r Encryption secret element used by A.
s Encryption element used by B.
M1 = g r

mod p First part of ElGamal encryption

of the contract.
M2[i ] = c[i ] XOR ke y Second part of ElGamal encryption

of the contract.
ke y = Encryption key
r andom.seed(hash(r ))
c[i ] Fragment of the contract.
h() Hash Function
chal leng e Challenge sent by B to A
w Response to the challenge.

13.3.1 Non-confidential two-party contract signing protocol

In this first proposal, we consider that confidentiality is not required or even desired.
The proposer A executes the first step of the protocol using the DApp to register the
content of the contract on the blockchain. At this point, the receiver can have access to
the contract, and the transaction remains stored in the blockchain. The proposer will
make a new transaction representing the signature on the contract in a third step, pro-
vided that the receiver B would have made a previous transaction signing the content
of the contract.

1. Subprotocol 11. Creation of a Contract Signing Operation. The proposer (signer
A) and creator of the contract, uses the smart contract to publish in the blockchain
the contents of the contract. Other parameters of this transaction are the address
of the receiver and the deadline for the signature of the contract to be completed.
Moreover, a deposit can be required in this step. The amount will be included in
the transaction.

Subprotocol 11: Create a Contract Signing Operation

1. A I SM : c,B , ter m,D
2. SM : St ate =Cr eated

2. Subprotocol 12. The proposed signer B , in case of accepting to sign the contract,
makes a transaction expressing his will. B can individually decide whether to
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Figure 13.1: States of the two-party contract signing protocol

accept to sign the contract or not, by executing the corresponding function of the
smart contract before de deadline term. In case the signer B does not accept the
contract, the exchange will be Rejected. The smart contract checks the identity of
the user who has invoked the function. In the prevision of multiparty exchanges,
if a signer does not accept before term, the signature of the contract would be
canceled for all signers.

Subprotocol 12: Accept the Contract

1. B I SM .accept
2. SM:

IF(now < ter m, I d = B AND St ate ==Cr eated)
St ate = Accepted

3. Subprotocol 13. Finally, before the expiration of the deadline, if the proposed
signer B has accepted/signed the contract, the proposer A can finish the signature
process, executing the finish procedure to sign the contract. As a consequence,
the smart contract publishes the signature. If the execution of the exchange
requires a deposit, the smart contract returns the amount to the sender.

After the deadline, if the three steps have not been executed properly, the state of
the exchange is not finished and then both parties can access a function in the smart
contract to request the cancellation of the transferred elements.

1. Subprotocol 14. Cancellation of acceptance. This function is requested by signer
B , if the proposer (signer A) does not publish its signature when the receiver has
accepted the contract.
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Subprotocol 13: Finish the Contract Signing Process

1. A I SM.finish(M)
2. SM:

IF(now < ter m, I d = A AND St ate == Accepted)
St ate = F i ni shed
Contract C is stored in the blockchain
Deposit D is refunded to A

Subprotocol 14: Cancellation of Acceptance

1. B I SM.cancel()
2. SM:

IF(now >= ter m, I d = B AND St ate == Accepted)
St ate =C ancel ed

2. Subprotocol 15. Cancellation of proposal. This function is requested by the
proposer if the receiver has not accepted the contract.

Subprotocol 15: Cancellation of Proposal

1. A I SM.cancel()
2. SM:

IF(now >= ter m, I d = A AND St ate ==Cr eated)
St ate =C ancel ed

In both cases, the smart contract checks the identity of the user and the deadline.
The smart contract generates a transaction to point out that the signature of the contract
has been canceled. In the first case, the proposer will not receive the refund of the
deposit (this way, the deposit is useful to motivate the proposer to finish the exchange
before the deadline).

After the exchange protocol, the text of the contract and the addresses of the signers
are public and are stored in the blockchain. If after the deadline term, the proposer A
has not proceeded with the finalization/signature of the contract, there is evidence of
the cancellation of the contract.

Since the contract is included in a transaction, it will be registered on the blockchain.
Thus, the contract is not confidential. This protocol is executed entirely over Ethereum,
so no off-chain communication between the parties is required. This way, there is no
need for extra communication channels between the parties.

13.3.2 Confidential two-party contract signing protocol

In this second proposal, confidentiality is required. This solution provides fairness to
the exchange of signatures even when the smart contract does not know the content of
the contract and it is not registered on the blockchain. The proposer A executes the first
step of the protocol using the DApp to register the encrypted content of the contract on
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the blockchain. This encryption has to guarantee that only the signers can access the
content of the contract. Moreover, in the prevision of multiparty contracts, this step
has to be designed in a way that the smart contract executes a verification to ensure
that the contract that each signer can decrypt is the same contract. To execute this step
all signers have to generate a pair of keys, that will be called Contracting Keys.

At this point, the receiver does not have access to the contract, so the smart contract
includes new steps to allow the receiver to access the content of the contract before
its acceptance. These steps take the form of a challenge-response stage. Thanks to
this response, the smart contract verifies that all signers can access the contract, even
though the smart contract is to able to know its content. Then, the signer B has to
accept the contract by means of a transaction. This transaction remains stored in
the blockchain. Finally, the proposer A will make a new transaction representing the
signature on the contract in a third step, provided that the receiver B would have made
a previous transaction signing the content of the contract.

The cryptographic algorithms used in the design of the protocol are:

• ElGamal Encryption. The encryption and decryption processes are performed
off-chain.

• Schnorr Zero-Knowledge Proofs (ZKPs). The verification of the ZKP is performed
on-chain by the smart contract. The description of the Solidity implementation
of the ZKP is not included in this chapter.

The proposer of the contract A and the proposed signer B will exchange the confi-
dential contract and the evidence of non-repudiation following the steps of an exchange
protocol.

1. Creation Subprotocol 16. Proposer A encrypts the contract to be signed, C using
ElGamal encryption with a secret encryption element r and its private key from
a pair of contracting keys created specifically for this exchange, xA , y A (if it is
necessary the contract can be fragmented). To do this, A creates a smart contract
by invoking the factory constructor function provided by the service provider,
including as parameters the encrypted message {M1, M2}, the public contracting
key of the proposer y A , the address of the proposed signer, B and the deadline
ter m. This deadline specifies the valid period for the proposer to finish the
exchange and the moment from which the receivers will be able to have evidence
of the signature of the contract or obtain evidence of the cancellation of the
process that has not been completed by the proposer. Optionally, a deposit D or
payment for the service can be included in this stage.

2. Challenge Subprotocol 17. Before term, the signer B has to accept the contract
and sign it. But first, the proposer A has to allow access to the message to B while
keeping it confidential for the rest of the world. That is why the plain contract
cannot be included in a transaction nor stored in the blockchain. A must generate
the necessary elements so that he can confidentially deliver the key to decipher
the contract, (that is, the proposer sends the key that has been committed to send
at the beginning of the exchange. See Subprotocol 18) and also that the smart
contract can ensure that the signer B can access the contract. Signer B generates
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Subprotocol 16: Step 1. Creation

1. A : generation of C ,r, y A = g x A
mod p

2. A : ke y = r andom.seed(hash(r ))
3. A: Fragmentation of C , if necessary.

for i = 1 to c.length
M1 = g r

mod p
M2[i ] =C [i ] XOR ke y
ke y = r andom.seed(hash(ke y))

4. A I SM : SM .cr eati on(M1, M2,B , ter m, y A , g , p,D)
5. SM : St ate =Cr eated

its own pair of contracting keys xB , yB and sends its public contracting key yB , a
variable that will be used as a challenge, and its private contracting key encrypted
with the public contracting key of the proposer A {Z1, Z2}.

Subprotocol 17: Step 2. Challenge

1. B : generation of yB = g xB
mod p , s

2. B : Z1=g s
mod p , Z2=xB ∗ y s

Amod p
3. B I SM .chal l eng e(Z1, Z2, yB ,chal l eng e)
4. SM :

IF(now < ter m, I d = B AND St ate ==Cr eated)
St ate =C hal leng e

3. Response Subprotocol 18. Then, the sender generates for this signer a response
to the challenge in the form of a ZKP using the secret element r used in the en-
cryption of the message in the first step of the protocol, the challenge and B ’s
private contracting key. The Smart Contract will store the parameters. With this
response, the Smart Contract can verify, by means of the stored data, that Signer
B will be able to know the secret element that will allow him to decipher the
message. However, the Smart Contract will not know this element and therefore
the message will remain confidential.

4. Accept Subprotocol 19. The proposed signer B decides whether to accept the
contract or not. If he accepts to sign the contract, publishes a message expressing
his will. If the signer B does not accept before term, a rejection is assumed
(St ate = Re j ected), otherwise, the contract has been accepted by the signer B
(St ate = Accepted). In the case of multiple signers, each possible signer can
decide individually whether to accept to sign the contract or not, by executing
the corresponding function of the smart contract before de deadline term. In
case, the signer B does not accept the contract, the exchange will be canceled.
In the prevision of multiparty exchanges, If there is a signer that does not accept
before term, the signing of the contract will be canceled for all signers.
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Subprotocol 18: Step 3. Response

1. A : generation of w=t’r + chal leng e ∗xB mod q
2. A I SM : r esponse(w)
3. SM :

IF(now <= ter m), I d = A, St ate ==C hal leng e AND

(g w == g r ∗ ychal l eng e
B mod p ) St ate = Responded

4. B :
ke y = r andom.seed(hash(r ))
for i = 1 to n

C [i ] = M2[i ] XOR ke y
ke y = r andom.seed(hash(ke y))

Subprotocol 19: Step 4. Accept

1. B I SM.accept
2. SM:

IF(now < ter m), I d = B AND (St ate = Responded)
St ate = Accepted

5. Finish Subprotocol 20. Finally, before the expiration of the deadline, if the pro-
posed signer B has accepted/signed the contract, the proposer A can finish the
signature process. The proposer can execute the finish procedure to sign the
contract. As a consequence, the smart contract concludes the signature process.
If the execution of the exchange requires a deposit, the smart contract returns
the amount to the sender.

Subprotocol 20: Step 5. Finish

1. A I SM.finish(M)
2. SM:

IF(now < ter m) AND (St ate = Accepted)
St ate = F i ni shed
Deposit D is refunded to A

After the exchange protocol, the contract C is confidential and is not stored on
the blockchain. However, the Smart Contract can prove that signers have the element
to decipher the message. Moreover, the encrypted contract and the addresses of the
signers are public and are stored on the blockchain.

If after the deadline term, the proposer A has not proceeded with the finaliza-
tion/signature of the contract, the other signer may have evidence of the cancellation of
the contract. After the deadline, if the steps have not been executed properly, the state
of the exchange is not Finished and then both parties can access a function in the smart
contract to request the cancellation of the transferred elements. Protocols described in
the previous section Subprotocol 14 and Subprotocol 15 could be executed.
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13.4 Conclusions

Previous solutions for fair contract signing are mainly based on the intervention of a
TTP that acts as an intermediary between the signers. In this model of fair exchange,
both parties obtain the expected item from the other or neither obtains what was
expected. That is, either all the signers have received the acceptance of the contract
from the other signers or neither party obtains the desired item. In these traditional
solutions, the TTP can intervene to guarantee the fairness of the exchange if some
participant misbehaves.

This protocol presents two alternatives for contract signing operations using block-
chain-based fairness.

On the one hand, the first solution allows users to sign non-confidential contracts. It
supports the exchange of signatures between signers and guarantees the fairness of the
exchange without requiring the intervention of any TTP to guarantee the security prop-
erties since the actions of the different actors are recorded in the blockchain and if any
actor does not fulfill the protocol, the smart contract will generate the corresponding
evidence to preserve fairness.

On the other hand, the second solution is a fair exchange protocol that allows
users to sign contracts that require confidentiality. To achieve this property, and taking
in mind the future extension of the protocol to multiparty contract signing, we have
included in the protocol a challenge-response stage and a Zero-Knowledge Proof.

Both protocols preserve the properties of limited Timeliness (involved parties can
be certain that the protocol will be completed at a certain finite point in time), Transfer-
ability of proofs, and Non-repudiation.
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CONFIDENTIAL MULTIPARTY CONTRACT

SIGNING PROTOCOL

After introducing a confidential and a non-confidential two-party contract signing
protocol in Chapter 13, this chapter expands the discussion to multiparty scenarios.
Managing signed information is particularly challenging when it involves the atomic
exchange of digitally signed documents. Multiparty contract signing, an application of
fair value exchange, needs the exchange of signed versions of a contract. As mentioned
before in this thesis, this trust service has depended on the involvement of a Trusted
Third Party (TTP), which has been a major limitation in the general adoption of elec-
tronic contract signing protocols. Additionally, the complexity of multiparty protocols
significantly surpasses that of two-party agreements, with a recurring demand from
signers for protocols that ensure confidentiality.

Responding to these challenges, the protocol described in this chapter leverages
blockchain-based technologies and smart contracts to forge an electronic contract
signing protocol that requires no TTP at any procedural stage. This protocol fulfills
the essential requirements for effective contract signing services and allows for the
signing of confidential contracts. Moreover, this solution offers substantially greater
efficiency compared to previous blockchain-based fair exchange protocols, thanks to
the utilization of Elliptic Curve Cryptography (ECC).

14.1 Contribution

Multiparty contract signing is a very common e-commerce operation. In multiparty
contract signing several users, called signers, generate and sign a contract. One of them
will perform as a proposing signer presenting the contract to be signed and the list of
signers. Then the signers have to follow a protocol to add their signatures to the contract
and send the signed contract to the remaining signers. The protocol must ensure that
the signers cannot have access to partially signed contracts. That is, all signatures on
the contract have to be canceled in case a signer does not sign the contract.
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In practice, this objective is difficult to achieve without the use of a TTP. If a problem
arises during the exchange or one of the users does not follow the phases of the protocol
it is possible that some signers have received the contract signed by other users while
other signers have not received it. The TTP can then solve this situation.

When the TTP is removed, the blockchain can be used to manage the exchange.
Blockchain is a distributed registry of data, with the property of immutability of the
stored data that can be verified through a decentralized structure. Blockchain will not
only replace the role of the TTP but also it does it with better results: it eliminates the
need to agree on which TTP to use, it reduces execution costs, it avoids queues and
delays waiting for the TTP to solve the exchange and solves the issues related with
transparency of the intermediary.

Using blockchain the costs of having a TTP are replaced by the cost of the use of the
blockchain. Using smart contracts the execution costs are related to the computational
cost of the operations performed by the smart contract. To achieve the goals of the
protocol we have used complex algorithms. However, we have kept the cost reduced
thanks to the use of Elliptic Curve Cryptography.

This chapter proposes a multiparty contract signing protocol that does not require
the participation of TTPs but satisfies the requirements for fair exchange and contract
signing related to security and privacy, allowing the signature of confidential contracts.
We have used Elliptic Curve Cryptography in the design of the protocol to obtain the
desired security properties with reduced execution costs.

14.2 Properties and requirements

In this section, we include the list of desired properties for fair exchange protocols.
These properties are included in several papers, as the one explained in section 5.1. The
properties are fairness, effectiveness, non-repudiation and timeliness. Since we are not
using TTPs we are not considering the properties related to the TTP as Transparency or
Verifiability.

• Fairness: in a fair protocol a party can’t obtain the desired element while another
party does not obtain it.

• Effectiveness: a protocol achieves effectiveness if when all the parties follow the
phases of the protocol then the contract is signed.

• Non-repudiation: no party can deny its involvement in the steps of the protocol.

• Timeliness: no party has to wait indefinitely to know the final state of the ex-
change.

We have evaluated these usual requirements for fair exchange protocols during
the design process we have determined some other requirements. Additionally, we
have taken into account two more properties, confidentiality and efficiency, and the
following requirements.

• Contract signing is based on a three-step exchange, according to [112], to propose,
accept and confirm the signature of the contract.
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• A contract signing process has some similarities with a certified notification pro-
cess, as the protocols proposed in Chapter 8, Chapter 9 and Chapter 12, but they
have important differences in the management of the transferred information.
While for notifications the recipient will not be allowed to read the transferred
data until the end of the exchange in the signature of a contract all the users must
have access to the contents of the contract from the beginning, in order to decide
if they want to sign the contract or not.

• In a multiparty protocol with more than two signers, all the signers must sign the
same contract. A function of the smart contract is to ensure, even when it does
not have access to the contract, that all the signers have accepted and signed the
same contract.

• A valid signed contract must include the signatures of all the signers. If any signer
does not accept the signature of the contract, then the signature process must be
canceled. That is, a contract has to be signed by all the specified signers while
partially signed contracts are not valid. This has to be taken into account when the
protocol is designed, being a main difference with certified notification protocols,
like the protocols explained in previous chapters, where partial notifications are
allowed.

• Regarding the transferability of pieces of evidence, all the signers must be able to
prove to any external arbiter, using as evidence the data stored in the blockchain,
that the contract has been signed. This evidence has to be provided even when
the contract signing protocol is confidential.

14.3 Protocol design

The scheme that we propose in this chapter allows the fair signature of confidential
contracts. Even if the system does not involve a TTP, it fulfills the properties and
additional requirements listed in section section 14.2. The actors of the protocol are:

• Proposing Signer Ali ce. Generator of the contract. The proposing signer also sets
the group of signers R. This is the user that starts the execution of the protocol.
Ali ce defines the contents of the contract and provides it to the users of the set R
(formed by users Bobi , for i = 1 to i = n −1, where n is the number of signers of
the multiparty contract) to receive the signatures of Bobi on the contract, for ∀i .

• Receiving Signer Bobi . Recipient of the contract to be signed. These signers have
to decide if they want to accept the text of the contract and whether to sign it or
not.

• Smart Contract. Program deployed on the blockchain that is used to manage the
contract signing process providing fairness to the exchange.

Both the proposing signer and the set of receiving signers interact with the smart
contract using their blockchain addresses. In brief, the protocol has the following steps.

• Ali ce decides whether she wants to sign a confidential contract or a public
contract. Public contracts would use a simplified version of the protocol.
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• Ali ce defines the set of signers of the contract.

• The parties execute a blockchain-based exchange in order to sign the contract
and to provide non-repudiation proofs. This exchange is performed on-chain
executing the functions provided by a smart contract. The protocol ensures that
the smart contract cannot access the contract when confidentiality is required,
thanks to the use of an innovative technique that will be explained in this section

States have been used to manage the signature process. Figure 14.1 depicts the states
for the confidential contract signing protocol. States Rejected, Canceled and Finished
are final states. The first and the second represent aborted signature processes caused
by different reasons. The last is the state that represents a completed signature process.

Figure 14.1: States of the multiparty contract signing protocol

The first phase of the contract signing operation, the Creation stage, is performed
by Ali ce. Before executing this stage and in order to configure the protocol operational
conditions the corresponding ECC cryptographic parameters must be published to
ensure privacy and security according to the international standards [180]. These
parameters must be:

• Fp : finite field of p elements, where p is a prime number.

• E(Fp ): elliptic curve on Fp .

• G : cyclic subgroup generator of points over E(Fp ) with order n.

• n: order of the subgroup G .
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• h: cofactor of the subgroup generated by G , the same as the order of the elliptic
curve divided by the order of the cyclic subgroup n (normally 6 4).

• Px[b]: product of a point P and the scalar b on E(Fp ).

• a ← [1,n −1]: Ali ce’s private key, randomly generated in [1,n −1].

• A =Gx[a]: Ali ce’s public key.

• The users that interact with Ali ce must verify that A is a valid point of the curve
and that Ax[h] is not a point in the infinite.

The notation that will be used for the definition of the protocol is summarized in
Table 14.1.

The protocol provides a fair exchange of signatures on a confidential contract. Since
the contract is confidential it cannot be stored in the blockchain. Moreover, the smart
contract could not access the text of the contract in any case. The proposing signer
Ali ce initiates the exchange using the DApp to execute the first step of the protocol. In
this step, the contract, previously encrypted, is registered on the blockchain executing
a function of the smart contract. The encryption of the contract guarantees that all the
signers, and only them, can access the contract.

After this step, the signers cannot decrypt the contract yet. To allow the signers
to decrypt the contract, the smart contract includes two steps. The users will execute
these steps to obtain the contract before they decide to accept or reject the contract.
These steps follow the challenge-response formula. Using the response to the challenge,
the smart contract verifies that all the signers can access the content of the contract,
although it is not able to decrypt it.

Since the protocol allows the signature of multiparty contracts, the smart contract
has to verify that every signer can decrypt the same contract. We use a pair of keys, that
we call Contracting Keys. Each signer has its own pair of Contracting Keys before the
signature of the contract.

After the decryption of the contract, each signer Bobi has to accept and sign the
contract executing the acceptance function provided by the smart contract, making a
transaction on the blockchain. At the end, the proposer Ali ce executes the last transac-
tion. If all the members of R have accepted the contract, this transaction represents the
signature of Ali ce on the contract.

The protocol for the multiparty fair signature of contracts has several phases. The
names of these phases are Creation, Challenge, Response, Accept and Finish. Moreover,
we have included an additional phase, Cancel, that can be executed optionally by the
receiving signers. These phases are described below using the notation included in
Table 14.1:

1. Creation. Ali ce generates her pair of contracting keys (a, A) and generates the
random seed v that will be used to encrypt the contract M . If it is necessary,
for this encryption operation, the content of the contract can be divided into
fragments (M [ j ]).

Starting with the contract signing, Ali ce executes the function cr eati on() of the
constructor of the factory of the smart contract deployed by the service provider.
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Table 14.1: Notation of the multiparty contract signing protocol

Notation

Ali ce Proposing Signer.
R Set of Receiving Signers.
Bobi Single receiving signer.
Ra Set of receiving signers that have accepted

to sign the contract.
M Contract to be signed.
X ,Y Messages X and Y are concatenated.
U I e. f Function f of e are executed by U .
← [, ] Randomly generated number in the interval.
ter m1 Timeout for Bobi to accept the contract.
ter m2 Timeout for Ali ce to finish the exchange.
D Deposit.
a Ali ce’s contracting secret key.
A Ali ce’s contracting public key.
bi Bobi ’s contracting shared secret key.
Bi Bobi ’s contracting public key.
G , p,n System cryptographic parameters.
v Encryption secret nonce used by Ali ce.
si Encryption secret nonce used by Bobi .
V =Gx[v] First element of the ZKP proof.
M [i ] Fragments of contract M to be encrypted,

in the range 0 < Mi < leng th.
ke y = r andom.seed(hash(v)) Encryption key.
hash() Hash function.
C [i ] = M [i ] XOR ke y Encrypted contrat.
ci Challenge sent by Bobi to Ali ce.
ri Response to the challenge ci .
Zi 1=Gxsi Encryption of the receiving signer

shared secret contracting key. First Part.
Zi2 = (Ax[si ])⊕ (bi ) Encryption of the receiving signer

shared secret contracting key. Second Part
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This new instance will be useful for the management of the new contract signa-
ture. The execution of the function cr eati on() includes the following parameters:
the set of receiving signers R, Ali ce commitment to send the correct key V , the
ciphered element C , the terms for the signature of the contract {ter m1, ter m2}
and the remaining cryptographic parameters. The first term ter m1 determines
the acceptance period for the receiving signers, while the second term ter m2
specifies the term for the proposing signer to finish the signature of the contract,
that is, the instant since when the signers will have access to the signed contract
together with the non-repudiation proofs. If the proposing signer has not com-
pleted the exchange by ter m2, the remaining signers can obtain a cancellation
proof executing the function cancel () of the smart contract. Optionally, a deposit
D or payment for the service can be included in this stage.

We have performed an adaptation of the encryption method of the Elliptic Curve
Integrated Encryption Scheme (ECIES)[38], where the element V is not used by
the receiving signers to decrypt the contract. Instead, V is used as a commitment
by Ali ce of emission of the right key that will be checked by the smart contract
through a Zero-Knowledge Proof (ZKP) in the third phase of this protocol (Re-
sponse subprotocol). In this way, the smart contract verifies on-chain that all
signers will be able to decrypt the same plain text of the contract without access-
ing the actual content of the contract. The ZKP performed to achieve this feature
of our proposal is a customized version of the Identification Scheme proposed by
Schnorr and translated to ECC [181, 46]. In general, an identification scheme is a
cryptographic tool for a user to prove his/her identity to other parties. This user
is often called prover and the parties that check the identity are called verifiers.
In our case, the prover is the party who proposes the contract to be signed and
the deployed smart contract plays the role of a verifier, which checks and gives
evidence that the signed contract is the same for all signers (i.e. all signers can
get access to the same key to enable the decryption of the encrypted contract).

2. Challenge. In a multiparty contract signing scenario, each signer can choose
individually if he wants to sign the contract or reject it. In order to sign the

Subprotocol 21: Creation

1. Ali ce : generates M , a ← [1,n −1], A =Gx[a], v ← [1,n −1]
2. Ali ce : ke y0 = r andom.seed(hash(v))
3. Ali ce: encryption of C .

If it is required, M can be fragmented in blocks.
V =Gx[v]
FOR j = 1 TO M .leng th

C [ j ] = M [ j ] XOR ke y j−1

ke y j = r andom.seed(hash( j ||v))
4. Ali ce I SM :

SM .cr eati on(Ali ce,R,V ,C , ter m1, ter m2, A,G , p,n,D)
5. SM : St atei =Cr eated ,∀i
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contract, each signer Bobi has to accept and sign the contract before the deadline
ter m1. Before the acceptance, Ali ce allows access to the contract to all Bob′

i s
while keeping it confidential. For this reason, the text of the contract cannot be
stored in the blockchain, so it cannot be part of a transaction. Ali ce generates
the elements to deliver, in a confidential way, the key that will be used to decipher
the contract, (that is, the proposing signer sends the key that has been committed
to send at the beginning of the exchange, at it is explained in Subprotocol 23)
and also that the smart contract can ensure that a signer Bobi can access the
contract. Signer Bobi generates its own pair of contracting keys bi , Bi and uses
its public contracting key bi , a variable that will be used as a challenge ci , and
its contracting shared secret key encrypted with the public contracting key of
the proposer Ali ce {Z1, Z2} as parameters when Bobi executes the function
challenge() of the smart contract.

The smart contract then checks that ter m1 has not expired, that the state for
each signer is created and that the identity of the executor of the function, Bobi is
a member of R. If all the checks stand, the state for the signer is set to Challenge
and the signer, Bobi , is added to the set Ra .

Subprotocol 22: Challenge

1. Bobi : generation: bi ← [1,n −1],Bi =Gx[bi ], si

2. Bobi : Zi1 =Gx[si ], Zi2 = (Ax[si ])⊕ (bi ), ci ← [1,n −1]
3. Bobi I SM .chal l eng e(Zi1 , Zi2 ,Bi ,ci )
4. SM:

IF(now < ter m1) AND (I d == Bobi ) AND (St atei ==Cr eated)
St atei =C hal leng e
Add Bobi to Ra

3. Response. The proposing signer Ali ce has to allow access to the contract to be
signed by all the members of R, keeping it hidden from the rest of the world. For
this reason, the content of the contract cannot be included in any transaction on
the blockchain. This situation leads us to a solution in which Ali ce generates
the elements that are required to guarantee access to the contract, taking into
account that the protocol has to ensure that the key that all the signers, members
of Ra , obtain is the same. This way all the receiving signers will sign the same
contract. That is, Ali ce has to send the key that was committed during the phase
Cr eati on, using parameter V .

The smart contract has to guarantee that all the signers Ra will have access to the
same decrypted element. With this objective, in phase 2, C hal leng e, each signer
Bobi has generated his pair of contracting keys (bi ,Bi ) and has provided to the
smart contract his public contracting key Bi , together with a nonce ci used as a
challenge for the execution of a Zero-Knowledge Proof used by the smart contract
to check that all the receiving signers can receive the key that Ali ce had hidden in
V . Moreover, the signer Bobi encrypts his contracting secret shared key resulting
in {Zi1 , Zi2 } using Ali ce public contracting key. This way Ali ce can recover the
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contracting secret shared key and send a response to Bobi to open the contents
of the contract. During the execution of this subprotocol, the signers can obtain
the contracting secret shared keys of other signers. However, after this step, the
contracting shared secret key is never used again by any signer, since the final
acceptance of the contract is made by a regular function call to the smart contract,
so the knowledge of this key does not lead to anything else that the content of the
Contract, that all signers already have using its own contracting shared secret key.
Then, no further information is leaked that could lead to security breaches.

To answer the challenge, the proposing signer generates for each signer a re-
sponse to the challenge in the form of a ZKP using the secret element used in
the encryption of the contract in the first step of the protocol, the challenge,
ci , and Bobi ’s contracting shared secret key. The Smart Contract will store the
parameters. With this response, the Smart Contract can verify, by means of the
stored data, that the signer Bobi will be able to know the secret element that will
allow him to decipher the contract. However, the Smart Contract will not know
this element and therefore the contract will remain confidential.

The performed ZKP allows the smart contract to verify the commitment using
the secret key v performed by Ali ce in phase 1, Creation. This way Ali ce can
prove to the Smart contract that she is sending the appropriate secret element
v to every receiver signer, without revealing its value, because the response to
the challenge ci sent by any signer is coherent with the value committed publicly
in V . If the verification stands, the smart contract concludes satisfactorily the
process and sets the state to Responded .

In the last step of this phase, the signers’ members of R can isolate v from ri due
to their knowledge of bi and then they will be able to read the contents of the
confidential contract to be signed.

Subprotocol 23: Response

1. Ali ce : decrypts: bi = Zi2 ⊕ (Zi1 x[a])
2. Ali ce : computes: ri =v −bi ∗ ci modn

3. Ali ce I SM.response(ri )
4. SM:

IF (I d == Ali ce) AND ((now < ter m1) OR (Ra == R))
FOR (∀Bobi ∈ Ra)

IF V ==Gx[ri ]+Bi x[ci ]
St atei = Responded

Deposit D is refunded to Ali ce
5. Bobi :

v = ri +bi *ci modn

ke y0 = r andom.seed(hash(v))
FOR j = 1 TO n

M [ j ] =C [ j ] XOR ke y j−1

ke y j = r andom.seed(hash( j ||v))
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4. Accept. In a multiparty contract signing scenario, each signer, Bobi , has to sign
the contract using function accept() before deadline ter m1. The state of this
signer will be changed to St atei = Accepted . If a signer Bobi does not sign the
contract before ter m1, it is assumed that he doesn’t want to sign the contract
and the state for this signer will be St atei ==Rejected.

Since it is required that all signers sign the contract for this to be valid, the protocol
will not accept partially signed contracts, that is Ra has to be the same set R, for
the contract to be signed.

Subprotocol 24: Accept

1. Bobi I SM .accept ()
2. SM:

IF(now < ter m1) AND (I d == Bobi ) AND (St atei == Responded)
St atei = Accepted
Add Bobi to Ra

5. Finish. To conclude the contract signing process, before the deadline defined
by ter m2, Ali ce must also sign the contract. As it has been said before, in a
multiparty contract signing operation all signers must sign the contract. For
this reason Ali ce checks the state of all the receiving signers using the function
finish() of the smart contract. St atei must be Accepted for all the signers Bobi .

The smart contract realizes three verifications:

• The identity of the user who executes the function, that can be only the
proposing signer, Ali ce.

• The instant of the execution of the function, that has to be between ter m1
and ter m2.

• The acceptance of the contract. All the receiving signers must have accepted
the contract. The state for these signers should be Accepted , and they are
included in Ra . IF R == Ra , then all the receiving signers have signed the
contract.

If the three verifications stand, then Ali ce can finish the exchange before ter m2.
Now the contract has been signed by all the parties.

Ultimately, if all parties sign the contract, that is, if St atei == F i ni shed ∀i , both
the proposing signer Ali ce and the members of R will have access to the signed
contract through WEB3 or similar interface. However, if Ali ce does not execute
satisfactorily the finish() function the signers can execute the optional phase 6,
C ancel l ati on.

6. Cancellation. This function can be executed by the signers Bobi , if the proposing
signer A does not execute the finish() function during its execution period when
the receiver signer has accepted the contract. This step is optional. If the propos-
ing signer Ali ce follows the protocol and executes finish(), then the state for the

190



14.4. Implementation

Subprotocol 25: Finish

1. Ali ce I SM.finish( )
2. SM:

IF (I d == Ali ce) AND ((ter m1 < now < ter m2) AND (Ra == R))
FOR (∀Bobi ∈ Ra)

St atei = F i ni shed
ELSE (∀Bobi ∈ Ra)

St atei = Re j ected
Deposit Ali ce receives the refund of deposit D .

Subprotocol 26: Cancellation of Acceptance

1. Bobi I SM.cancel()
2. SM:

IF(now >= ter m2, I d == Bobi AND St atei == Accepted)
St atei =C ancel ed

receiving signer that executes the function would be either finished or rejected.
These states are the final states of the protocol, as can be seen in Figure 14.1. Only
if the state for Bobi is accepted, meaning that finish() has not been executed, then
the state of Bobi will be changed to the value canceled.

In this phase, the smart contract makes three verifications: the identity of the receiving
signer, the state of the exchange (Accepted , meaning that the proposing signer has not
finished the exchange) and the deadline (this phase can only be executed after ter m2).

The smart contract makes a transaction to cancel the exchange. In this case, if
the state is Accepted for all the receiver signers, the proposer Ali ce will not receive
the refund of the deposit. Thus, this deposit is used to motivate Ali ce to finish the
exchange before the deadline.

14.4 Implementation

The implementation of the protocol is useful to prove that the costs related to the
execution of the functions of the smart contracts are small enough for the protocol to
be viable. For the implementation of the proposed protocol we have used the Ethereum
blockchain and the smart contract has been programmed using Solidity.

Instead of using an isolated smart contract for each contract signature using the
protocol, we have deployed a Smart Contract that will be used to deploy the smart
contracts for the signature of confidential contracts. This matches the factory method
programming pattern to deploy new instances of a smart contract to process each
new contract signature. The Factory Contract deploys new smart contracts for each
signature process. Thanks to the use of this pattern we obtain reusability of the code
and easy access to the generated contract signatures reducing execution costs.

We use several data structures to keep the variables of the protocol, such as the
group of signers, where an array is declared to store their addresses. Moreover, the
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smart contract has to maintain the value of the state of the exchange for each signer,
thus a mapping structure has been used to keep track of these states, for every signer,
together with the values used in the implementation of the Zero-Knowledge Proof.

Moreover, we have also used variables of the smart contract to keep the timeouts
used in the protocol (ter m1, ter m2). Another variable stores the blockchain address
of the proposing signer Ali ce. In order to manage the time we have declared a variable
called start to keep the current time of the instant a contract signature process is
initiated, so the timeouts ter m1 and ter m2 are calculated using this value.

Implementing cryptographic operations in solidity could be challenging. If the
implementation of a protocol is not efficient enough, it will have high execution costs,
both in terms of time and gas consumption. For this reason, we have used Elliptic
Curve Cryptography (ECC) to specify and implement the protocol. In this way, the
implementation of our protocol uses 256-bits ECC that offers a security level of 128 bits
according to the NIST recommendation [35]. Therefore, to achieve the same level of
security by using RSA-like cryptosystems (as in the protocols described in Chapter 8,
Chapter 9, and Chapter 13), the variables used in the implementation should have
a length of 3072 bits that will result in poor performance due to the high cost of the
modular exponentiation operation over 3072-bit numbers.

We have chosen the same ECC settings as ECDSA in [170] for our pilot study of the
protocol implementation. In order to implement the ECC operators, such as scalar
multiplications and additions, we have used the library published by Jordi Baylina in
[182]. Also, the benchmark of Baylina’s library1 outlines the gas cost of using this library
in ROPSTEN network.

Also, we have checked the time consumption for each local operation in order to
know the computational time of the isolated ECC operations used in the protocol. The
addition of two points in the curve takes 110ms on average and the scalar multiplication
takes 180ms on average in an Intel Core i5 CPU computer running a Mac OS 11.3.1
Big Sur operating system with RAM of 16Gb. Therefore, the delay introduced by the
performance of the operations in relation to the waiting time of each transaction is
negligible. The use of 256-bit numbers instead of 3072-bit not only saves time but also
saves storage space and, thus, money (according to the Ethereum Yellow Paper [19] the
fee is 20,000 Gas to keep each 256-bit word).

Most smart contract functions contain ordinary tasks, such as checking timeouts
or executing them by authorized accounts. The most challenging function of the
development of the smart contract is the response() function, where it must be verified
that Bobi will be able to know the secret element that will allow him to decipher the
contract.

This verification will be done by the smart contract, which will perform the ZKP to
verify that Ali ce has sent the appropriate secret key v in the creation phase, without
revealing its value, checking the response r to the ci challenge sent by Bobi . The
verification consists in checking the equality between the V point of the elliptic curve
sent by Ali ce at creation, and the result of this expression G x [ri ] + Bi x [ci ]. If this
verification is accomplished, the smart contract will save the response ri , and will set
the receiver’s state to r esponded . Listing 32 depicts the r esponse() function.

1https://github.com/jbaylina/ecsol/pull/8
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� �
function response ( address _receiver , uint256 _r) public {

uint256 Grx;
uint256 Gry;
uint256 Bcx;
uint256 Bcy;
require (

block. timestamp < start + term1 ,
"The timeout has been reached "

);
require (

sender == msg.sender ,
"Who try to response the challenge is not the original

proposer "
);
require (

receiversState [ _receiver ]. state == State.challenged ,
"The receiver is not in the challenged state"

);

// Check V == G x [ri] + Bi x [ci]
(Grx , Gry) = deriveKey (_r , gx , gy);
(Bcx , Bcy) = deriveKey (

receiversState [ _receiver ].c,
receiversState [ _receiver ].bx ,
receiversState [ _receiver ].by

);
require (vx == Grx + Bcx , "V and Gx[ri]+ Bix[ci] are not equals ");
require (vy == Gry + Bcy , "V and Gx[ri]+ Bix[ci] are not equals ");
receiversState [ _receiver ].r = _r;
receiversState [ _receiver ]. state = State. responded ;

}� �
Listing 32: response() function

The implementation of these smart contracts has been done with the Hardhat
Ethereum development environment, and using the Ethers.js, a library that lets us
interact with the Ethereum Blockchain and its ecosystem.

14.5 Security properties analysis

The security analysis of the presented protocol analyses the desired properties for
electronic contract signing systems, including confidentiality.

1. Effectiveness.

The presented electronic contract signing protocol is effective. Therefore, all
parties will have access to the signed contract if they behave in accordance with
the protocol. In order to sign a new contract, the proposing signer creates a new
instance of the smart contract. If all parties execute the step according to the
protocol correctly (chal l eng e(), r esponse(), accept () and f i ni sh()), they will
have access to the proofs of the signature of the contract. This can be easily
deduced from the protocol presented in section 14.3. After the exchange, all the
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signers will have non-repudiation proofs of having signed the contract from all
the signers.

2. Fairness and Transferability of Evidence

The contract signing protocol provides strong fairness [168]. After the execution
of the protocol, all the parties have received the appropriate element or, if it is
not the case, neither party has received any useful data on the element from the
other party, which provides great impartiality.

In addition to this, the proofs generated by the protocol could be transferred to
any external arbiter to check the final state of the exchange, without the need of
any further verification.

According to the protocol, any signer Bobi signs the contract if he makes a trans-
action to accept the proposal (St atei == Accepted). The execution of the func-
tion accept() is considered the non-repudiation of acceptance proof for the signers
since this transaction leads the exchange to the state Accepted . Moreover, the
proposing signer will not receive the non-repudiation evidence of the signature
of the contract generated by the smart contract, unless she makes a final trans-
action, after allowing the recipients to decrypt the contract (allowing the smart
contract to verify the provided decryption key), to finish the exchange signing
himself the contract (St ate == F i ni shed).

If any party misbehaves and does not follow the steps of the protocol specifi-
cations, that is, if it does not execute the functions accept () or f i ni sh(), then
the smart contract guarantees a fair state for all users without the need for TTP
intervention:

• accept () not executed. The smart contract will set its status to Re j ected ,
after the timeout, if any signer has not executed the accept () function.

• f i ni sh() not executed. Signers can execute function cancel () to finish the
exchange in a fair way, if the proposing signer has not executed function
f i ni sh(). Then the smart contract will change the final state of the exchange
to C ancel ed .

The protocol does not allow any circumstance in which a signer can obtain
contradictory evidence because the state of the exchange is actualized in the
smart contract (for this reason, there is no action that may lead to a situation of
weak fairness [168]).

3. Time Parameters

The time parameters to consider are t i mel i ness and t i mest amps. For the
proposed protocol a successful signature will always be completed before the
term2 deadline. If the signature is not successful, we have different deadlines
depending on how the exchange was performed. If a signer does not accept
the contract, the signature process will be classified as Rejected. If after the
acceptance of the contract by the signers, the proposing signer does not finish the
exchange, then the exchange can be canceled at term2. In addition, the system
motivates the sender to complete the exchange before term2. This motivation is
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done through a deposit that is locked in the smart contract. The deposit will be
returned to the sender in case of completion before term2.

Keep in mind that the blockchain marks the time of all the transactions carried
out on it, so the exchange has timestamps for all operations on the smart contract
that generate transactions, such as the phases of the proposed protocol.

4. Non-repudiation

The contract signing protocol must provide evidence of non-repudiation of signa-
ture. Regarding the origin, the proposing signer cannot deny having executed the
cr eati on() function since there is a transaction in the blockchain from her ad-
dress that contains the addresses of the signers and the encrypted contract. The
execution of the function accept() is considered the non-repudiation of accep-
tance proof for the signers since this transaction leads the exchange to the state
Accepted . In addition, the transaction related to function r esponse() proves
that the proposing signer has provided the key to decrypt the contract to all
signers. The function finish() is considered the non-repudiation proof for the
proposing signer since this transaction leads the exchange to the state F i ni shed .

Regarding the receiving signers, each signer Bobi cannot deny having signed
the contract because there is an acceptance transaction from his address stored
in the blockchain. This transaction is the signature of the signer on the text of
the contract deciphered after the execution of r esponse(). The smart contract
validates that all the signers have been able to decrypt the contract and also that
all the signers have signed the same contract.

5. Confidentiality

The signed contract is confidential, only the signers can access its content. For
this reason, the contract cannot be included in clear in any blockchain transaction
and cannot be stored in the blockchain. This way the contract cannot be included
as a parameter in the functions of the smart contract and also we have to prevent
the smart contract could obtain the decryption key. However, the protocol has to
verify that the contract obtained by all the signers is the same.

In the first step of the protocol, the proposing signer executes the function to cre-
ate the contract signing operation, including the encrypted contract (C1 and C2).
Then each signer provides a way for the proposing signer to send the decryption
key privately, using elements Z1 and Z2. in a Zero-Knowledge Proof. The smart
contract verifies that the proposing signer has provided the right decryption key,
that can be obtained from the response to the challenge.

No other entity is involved in the procedure and the transactions on the block-
chain are limited to the encrypted contract and some hidden decryption keys, so
the contract will be confidential.

14.6 Performance analysis

Once we have finished the implementation of the proposal, we have tested the results
with the help of the H ar dhat development environment, which has some useful plug-
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ins like har dhat − g as − r epor ter . With this plug-in, we have a Gas usage per unit
test, that uses metrics for method calls and deployments.

We have performed some tests to determine the efficiency of the system in terms of
gas cost since the economical execution costs could be a concern in the development
of this service. We have used the local Hardhat network, a personal blockchain used for
Ethereum development, to isolate the performance conditions and possible problems
of a real network like the main Ethereum or the Rinkeby test networks.

From the results of the tests, we have detailed the gas cost of the functions, executing
the protocol with two signers. In Figure 14.2 we can see the gas cost of the main
functions of the protocol, according to the Hardhat-gas-reporter plug-in. The cost of
this analysis is computed in gas, but to know the exact price of these transactions we
also need the gas price, set in Ethers (ETHs), and the Ether to US-Dollars exchange
rate, but neither one nor the other is fixed. The cost can also be improved using
different Ethereum Virtual Machine (EVM) compatible networks, like Binance Smart
Chain (BSC), that uses Binance Coin (BNB) cryptocurrency coins.

Figure 14.2: Gas cost of the multiparty contract signing smart contract

If we analyze the gas cost of the functions and deployments of these smart contracts,
we can notice that the more expensive functions in terms of gas cost are the deployment
of the Factory smart contract, the deployment of the Contr actSi g ni ng contract via
the cr eateDel i ver y() function of the factory, and, above all, the response() function,
where the elliptic curve related calculations are performed.
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14.7 Conclusions

This chapter presents a complete confidential multiparty solution for the electronic con-
tract signing service using blockchain-based fairness, based on the two-party solution
introduced in the previous chapter. The protocol manages the exchange of signatures
among signers and guarantees the fairness of the exchange without the involvement
of any TTP to guarantee the required properties since the actions of the signers are
stored in the blockchain and, in case any signer does not follow the protocol, the smart
contract will generate the corresponding evidence to preserve fairness. Although the
presented solution is a multiparty protocol, the execution costs will be kept controlled
since the number of interactions among the parties is not directly related to the number
of signers.

Since the contracts are confidential, only the signers can access the text of the
contract. This way the smart contract must manage the exchange and guarantee
fairness without being able to access the contract. In terms of protocol, this means
that the contract must be encrypted, and the smart contract, without having access to
the decryption key, must ensure that all recipients can decipher the same contract. To
achieve this property we have included in the protocol a challenge-response stage and a
Zero-Knowledge Proof. This way, the smart contract can verify that all the signers have
access to the contract and that the contents of the contract that the users can decrypt
and sign are the same for all of them. Moreover, the involved parties can be certain that
the protocol will be completed at a certain finite point in time. The subprotocols have
been designed using Elliptic Curve Cryptography operations.

The transactions on the blockchain and the state of the contract signing instance are
proofs of the final state of the exchange. These proofs can be transferred and checked by
any validator. This way, the signers cannot deny having signed the contract. A validator
can check that the provided contract is the contract that was signed using the protocol
in a precise instant of time, thanks to the timestamp of the blockchain blocks.

Regarding the implementation, we have used smart contracts that are able to man-
age more than just one contract-signing operation. We have not included in this chapter
the details of the smart contracts and the implementation of the ZKP. However, some
hints about the most relevant operations are depicted in section section 14.4. The im-
plementation is useful to analyze the performance of the protocol in terms of cost since
an inefficient implementation would result in high execution costs in terms of time
and gas consumption. To achieve all the desired properties, including confidentiality,
the protocol uses advanced cryptography. The use of ECC allows the use of shorter
parameter lengths than those used in previous proposals for e-commerce protocols
using blockchain, guaranteeing the same level of security. This allows controlling the
costs associated with the execution of smart contracts.
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15
MICROPURCHASES USING PAYMENT

CHANNELS PROTOCOL

After examining certified notification protocols and contract signing methods, we now
turn our attention to the use of blockchain for developing a micropurchases protocol.
As described in [121], a new, efficient, and secure micropurchases scheme was proposed
to facilitate low-value transactions while ensuring customer privacy. In this chapter, we
propose an enhanced version of this protocol by utilizing blockchain technology. Unlike
the previous system mentioned in [121], which employed specific currencies for each
dealer, our new system leverages cryptocurrencies to enable a fair exchange between
customers and dealers for goods or services. Furthermore, our proposal eliminates
the need for banks to manage customer and dealer accounts by implementing smart
contracts directly on the blockchain.

Our system establishes a payment channel that not only prevents double spending
and overspending but also protects against falsification. It also enables customers to
securely request refunds for unused amounts. Dealers, on the other hand, can collect
payments even before closing the channel. Additionally, the channel’s functional-
ity includes redirection, facilitating the transferability of cryptocurrencies in what is
called a multihop solution. For more detailed information on micropurchases and
micropayments, please refer to section 5.3.

15.1 Contribution

This work significantly advances the current understanding and implementation of
blockchain-based micropurchases systems by introducing a novel protocol that ad-
dresses several key issues inherent in previous systems. Firstly, our protocol eliminates
the need for Trusted Third Partys (TTPs), which are commonly required in traditional
micropurchases systems to manage and verify transactions. By deploying smart con-
tracts on the blockchain, our system autonomously manages transactions between
parties, ensuring integrity and reducing potential points of failure or fraud.
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Secondly, the protocol introduces a multihop payment channel feature, which
allows the transfer of funds across multiple parties without necessitating a liquidation
after each transaction. This capability not only enhances the fluidity of transactions
but also considerably reduces transaction fees, as fewer transactions are recorded on
the blockchain. This feature is particularly innovative, as it supports a dynamic and
flexible use of payment channels that can adapt to various user needs and transaction
contexts.

Moreover, our protocol emphasizes security and privacy, implementing mech-
anisms to prevent double spending, overspending, and falsification of transaction
records. It also ensures that all transactions within the payment channel are confiden-
tial and only accessible to the parties involved. These security measures are critical in
maintaining trust among users and ensuring the viability of the system for real-world
applications.

In addition to these technical contributions, the protocol also introduces an effi-
cient way to handle refunds and channel redirections, further enhancing the flexibility
and user-friendliness of the system. These features make it possible for users to manage
their funds more effectively, opting to redirect or refund their money as needed without
cumbersome processes or the involvement of intermediaries.

Comparing this protocol to the Lightning Network [129], there are both similari-
ties and differences in their architectures, functionalities, security mechanisms, and
efficiencies. Both systems utilize payment channels to facilitate off-chain transactions
and reduce blockchain costs. Our micropayments protocol uses µ-coins and proof
elements to prevent counterfeiting, double spending, and overspending, with a fo-
cus on specific security and privacy needs. It supports multihop transfers, enhancing
efficiency without requiring liquidation after each use. In contrast, the Lightning Net-
work, a second-layer Bitcoin solution, employs Hashed Timelock Contracts (HTLCs) to
ensure secure, fast, and low-cost transactions across multiple nodes, with automatic
payment route selection and continuous security monitoring. Both aim to minimize
blockchain congestion and transaction costs, but our protocol offers tailored solutions
for specialized environments, whereas the Lightning Network is designed for broader
applicability within the Bitcoin ecosystem.

Overall, the contributions of this protocol are multifaceted, addressing technical,
operational, and user experience aspects of blockchain-based micropayments. By
offering a solution that is both technologically advanced and aligned with user needs,
this work sets a new standard for the implementation of micropayment systems using
blockchain technology.

15.2 Protocol design

The protocol is made up of different phases. In the first one, the configuration of the
system and the generation of keys are carried out. Next, the buyer user selects the
business in which he wishes to make purchases and requests the service or product
to be purchased. In the next phase, the opening of the channel is carried out. Once
the channel is open, purchase operations can be carried out, which include payment
and delivery of the purchased product or service. Finally, the system has the channel
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payment or liquidation phase or, alternatively, the channel transfer phase (multihop
exchange), where the channel is converted for the purchase operation with a new user.

The actors involved in the purchase protocol are the buyer C and the seller M . In
addition to these, the protocol is regulated by a smart contract (SC ) deployed on the
blockchain that regulates operations on the open payment channel between C and M ,
saving the exchange data on the blockchain. As it is a system of transferable channels,
multiple vendors can also be involved. To define the transfer of the channel, the second
seller will be called N .

Table 15.1 shows the notation used in the protocol description.

Table 15.1: Notation of the Micropurchases using payment channels protocol

Notation Description

C Buyer
M Seller
N Seller on a transferred channel
SC Smart Contract
Si d Service identifier
Γ Channel Element Array
WLC Chain Generator
W0C Chain identifier
W0M Identifier for chain liquidation
c Number of µ-pay coins.
v Value of µ-coins
TE xp Expiration Date
∆T D Deposit Period
∆T R Redemption period.
Ks Session key
EK s[M ] Symmetric Encryption of the message M with the key Ks

C hannel I d Channel identifier
H() Hash Function
Q Amount associated to the payment channel

We describe the payment protocol in its different phases: Service request by a client,
Opening of the payment channel, Purchase (exchange between payment for a product
or service), Liquidation of the payment channel and, finally, Transfer of the payment
channel for other uses (multihop). All these phases, with the exception of the Buy phase,
are carried out with onchain communications. This means that the actions carried
out by the different actors are carried out through function calls to the smart contract
deployed to regulate the payment channel. This smart contract will control that each
actor can only carry out the actions that correspond to them and will record them in
the blockchain.

Each of the phases of the proposed protocol is described below:
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Figure 15.1: Structure of the chain of purchase items

Service Request

In this phase, the client must select a service offered by the different vendors. Therefore,
each seller M has published its list of available services, S I di . Then C selects a vendor
M and a service from the list of services it offers. The selected service is identified by
Si d . The client decides how many µ-coins c wants to use in the channel. Each µ-coin
will have a value v that can be determined based on the price of the selected service
(the price of Si d will be a multiple of v). The client sends this data to M which generates
WLM (where L = 2c + 1) and hashes this item L times W0M = H L(W LM). Seller M
transmits W0M to C so that it can open the payment channel for this service. It should
be noted that this chain is generated to allow partial liquidations of the channel. If only
one liquidation is allowed, then it would be enough for M to apply the hash function
once on the generator to obtain the identifier.

Channel Opening

C proceeds to open the channel for micropayments by transferring the amount Q = c∗v
to the smart contract. Remember that c is the number of µ-coins that you want to
deposit in the channel and that v is its value. It performs a transaction balance check
of C and stores the amount Q.

Then C generates WLC , where L = 2c +1 and hashes it L times to get W0C . We will
call W(L−1)C the result of hashing WLC . The last element of the chain will be called W0C .
Within this chain, the elements with odd subscript will represent µ-coins while the
elements with even subscript will represent the proof of payment of the previous µ-coin.
It has been decided that the chain of M has the same length as the chain of C to simplify
the notation although a chain with half the elements would be enough since the chain
of M does not contain payment items intercalated with proof items.

TE xp is the expiration date of the channel, ∆T D defines a period after the expiration
date in which the channel content can be transferred to the account of the payment
recipient or the transfer of the channel to a new seller, while ∆T R represents a period
for the reimbursement of the remaining money, not used for payments in the channel,
by C and for a possible transfer of the channel by part of M (see Figure 15.2).

Buyer C generates the elementΓ= (W0M ,S I d ,2c, v,TE xp ,∆T D ,∆T R ,W 0C ) with these
elements. Subsequently, the buyer C calls a function of the smart contract to publish
the element Γ on the blockchain and, in this way, make the creation of the payment
channel effective. Additionally, the counter j = 0 stored in the smart contract symbol-
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izes the count of disclosed secrets associated with the transaction of the µ-coins. We
will identify a specific channel by C hannel I d = H(Γ).

Purchase (Payment and Product/Service Exchange)

As many payment operations can be carried out as µ−coins the channel contains before
TE xp . For this reason, M , through the smart contract, will check before each payment
that the current date is less than the expiration date.

The purchase process is made up of three steps, forming an equitable exchange
between the µ−currency and the product or service. In each purchase operation, one
or several µ−coins can be used, so that the sum of their values is equal to the amount
to be paid in the purchase operation.

The fair purchase operation consists of three steps that are executed off-chain,
between C and M : sending the µ−coins, sending the product or service and sending
the proof of payment. µ−coins will be revealed in reverse order of their creation in the
hash chain. For this process, a secret session key Ks shared by C and M will be used.

1. Step 1.

C sends M the message m1 = [EK s[WiC ],C hannel I d ]. Upon receiving the mes-
sage, M decrypts WiC , and checks the date and the channel identifier, that is, it
checks that the channel is open in the smart contract.

Next, the seller M verifies that there has been no reuse of µ-coin, verifying that
i > j , where i is the order number of the µ-coin used in the payment and j the
order number of the proof of the last µ-coin used. Also, M verifies that WiC

belongs to the chain H i− j (WiC ) == W jC . If it is the first payment made in this
channel, the verification will be done as follows: H i (WiC ) == W0C . After these
checks are complete, M saves S I d , C hannel I d , WiC , and ( j = i ).

2. Step 2.

M sends the product or service via the message m2=EK s[ser vi ce/pr oduct ].
Upon receiving the message, C decrypts m2 and prepares the proof attached to
the µ-coin.

3. Step 3.

C sends the proof associated with µ-coin in encrypted form, together with the
index corresponding to its position in the chain. m3 = EK s[W(i+1)C , (i +1)]. Seller
M decrypts and verifies W(i+1)C . This verification is done by applying a hash
function on the proof and it is verified that the result corresponds to the µ-coin

Figure 15.2: Payment channel life cycle of the micropurchases protocol
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Figure 15.3: Purchase sub-protocol

used for the payment WiC . Finally, M stores the value W(i+1)C and updates
j = i +1.

Liquidation of channel

In order for the funds associated with the purchase operations to be transferred to M ,
it must perform the collection operation. This operation can be carried out once all
the µ-coins associated with the channel have been used. It can also be performed if M
has received one or several µ-coins associated with the payment channel, even if it has
not been fully utilized. In an extreme case, M could charge for each µ-individual coin
spent. For this, M must reveal each of the Wi M in reverse order of their creation. (It
should be noted that the purpose of payment channels is to reduce costs and therefore
the efficiency of the system is achieved through the simultaneous collection of different
µ−coins).

This operation is carried out on-chain and for this M accesses the smart contract,
which will carry out the transfer unifying the amount associated with the µ-coins
revealed. In the first step, the smart contract will verify that the current date is in the
correct period. The collection period is between TE xp and TE xp +∆T D . However, M can
also execute the collection function before TE xp to carry out a partial collection with
the µ-coins received (in this scenario, additional payments can be made subsequently
usins µ-coins of the channel). When executing the smart contract collection function,
M will use the values of C hannel I d , WkM , WkC , k, being k as parameters. the index of
the last received microcoin (or of the last coin to be charged).

The smart contract verifies that:

• k > j . This verification prevents the reuse of microcurrencies.

• W j M == H k− j (WkM ). This check makes it possible to verify that the user who
executes the function is the recipient of the payment channel.
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• W jC == H k− j (WkC ). It is verified that the µ-coin belongs to this channel.

Once all the verifications have been carried out, the smart contract transfers the
balance associated with the micropayments to M . To do this, it determines the value
based on the amount ofµ-coins transferred and the value of each of them established in
the channel. The number of µ-coins transferred is determined from the index provided
by M . If the index is even, the value of (k − j )/2 will be transferred, while if it is odd, the
value of (k − j −1)/2 will be transferred, since it is taken into account that the indices
include the µ-proof coins. After this operation, the smart contract has to update the
index j = k.

Channel Transfer

The protocol has been designed taking into account the interest in achieving transfer-
able channels (or multihop), that is, channels in which money can change hands on
different occasions without the need for a transfer of funds to a particular wallet.

For the purpose of making a simpler description, but without taking away generality
from the operation of the protocol, we will assume that M will use µ-coins of the
same value in both channels (the protocol could easily be extended to the use of mu-
coins of different value). The sub-protocol so that M can transfer the funds from the
channel used with C to make payments through a new channel to another seller N is
the following:

• M requests the smart contract that the µ-coins received go to another channel,
to make payments at N , calling a function of the smart contract that manages the
payment channels. This function can only be executed as an alternative to the
channel liquidation function. To do this, N generates W0N and M generates W ′

0M ,
analogously to how W0M and W0C were generated in the opening process of the
channel. W0N = H n(WnN ) and W ′

0M = H n(W ′
nM ). As we have already mentioned,

in this case, the value of the µ-coins v is the same as in the transferred channel.
On the other hand, the number of µ-coins in the channel can be equal to or less
than the number of microcoins in the original channel c ′ <= j . Therefore, the
value of n using is n = c ′∗ v .

• M generates Γ′= (W0N ,S I d N ,2c ′, v,T ′
E xp ,∆′

T D , ∆′
T R ,W ′

0M ).

• M can use the channel’s µ-coins to make purchases in N , following the purchase
sub-protocol described above. Finally, if desired, N would receive the money
transfer through the channel’s liquidation sub-protocol.

Refund

Once the channel has been settled, the µ-coins not used in payment operations will be
returned to C . It has been decided that this reimbursement is not made automatically
by the Smart Contract to allow C to decide if it wants to obtain the reimbursement or
reconvert the channel for payment to a new seller.

The channel transfer procedure can also be used by C to create a new channel to
exchange the unspent µ-coins for use in a new channel with another vendor M∗. This
change can be made in the window between (TE xp +∆T d ) and (TE xp +∆T d +∆Tr ).
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These channel transfer operations allow reducing the costs associated with transfer
operations on the blockchain.

15.3 Security properties analysis

In this section, the main properties of the channel management protocol for fair pur-
chasing will be briefly described.

Anonymity

Users C and M , (and N if applicable) access the smart contract through their blockchain
addresses.

However, the channel is associated with the knowledge of certain values. The user
who knows the elements of the liquidation chain associated with the channel will be
the user who can carry out the liquidation or transfer of the channel. Therefore, the
user executes the protocol without the need for identification.

The fact that they are multi-hop channels, with the possibility of channel transfer
without any movement of balances on the blockchain, allows a user to participate in
purchase operations without the need for their account on the blockchain to have
issued or received any transaction.

Equity

The purchase operation is considered an application of fair exchange of values. On the
one hand, a payment is made and on the other, a service or product is provided.

In this protocol, the exchange is carried out without the intervention of any trusted
third party. To carry out this fair exchange, an off-chain subprotocol is executed, where
messages are exchanged directly between users C and M .

The procedure consists of three steps and could be interrupted without completing
the operation. Possible breakpoints are as follows.

• After the first step of the exchange, where C provides the µ−coin WiC , M does
not follow the protocol and does not provide the product or service.

– In this case C will not send the proof element W(i+1)C .

– The purchase operation is considered not carried out. C does not receive
the product or service and M cannot include the µ−currency in the chan-
nel liquidation or transfer operation since it does not know the evidence
element associated with the last µ−currency .

– In this first scenario, effectively M will not be able to collect the last µ−coin
but it could collect all the previous ones. Therefore, if the client wants to
eliminate the risk of partially losing the last µ−payment, by not receiving
the corresponding service, he can adjust the value of the µ−coin to each
service and completely eliminate this conflict. However, it is foreseeable
that M does not engage in this type of conduct, since by committing this
µ−fraud he would lose the following sales to the client and, therefore, would
run the risk of losing more than what he has earned with this little fraud. In
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any case, it is risk-controlled and regulated by the client, it is up to him to
cancel or not this potential problem.

• After the second step of the exchange, C does not follow the protocol and does
not provide the proof item associated with the µ−coin, W(i+1)C ..

– In this case the purchase is considered as completed.

– C disposes of the acquired item while M cannot include the µ−currency in
the liquidation or transfer operations of the channel.

– When making a new payment with the channel, C will use the µ−coin
W(i+2)C . From this µ−coin, M can derive the proof element of the previous
buy operation W(i+1)C .

– In this scenario, a buyer can only leave a single µ−coin per channel without
validation, which falls within the acceptable risks in micropayment opera-
tions. On the other hand, the fraud associated with the creation of channels
for the theft of individual µ−coins is ruled out, taking into account that the
creation of the channel implies execution costs that make it unfeasible to
obtain a profit from the creation of a channel to proceed with the theft of a
µ−coin.

Transferability

The purchase protocol is based on the use of a payment channel established on the
blockchain. This channel allows payment from a buyer C to a seller V . In a simple
execution scenario, M will liquidate the channel after receiving payments with the
µ−coins associated with the channel. This liquidation will represent a transaction on
the blockchain.

However, in order to increase the efficiency of the system, the protocol has been
designed taking into account the possibility that the payment channels are multihop.
In a multihop channel, µ−coins can change hands several times without the need for
each change of hands to represent a transaction on the blockchain.

The channel transfer operation allows multiple hops of the channel multihop to be
performed. If you re-receive the µ−coins the receiver, instead of making the channel
liquidation, chooses to execute the transfer function, it can redirect the channel to
make payments with it towards a new receiver. The channels can be prepared for a
limited number of transfers since an unlimited transfer could lead to a loss of system
efficiency and it must be taken into account that in the usual execution scenario the
channels are not transferred more than a small number of times.

The protocol also contemplates the possibility that a buying user does not use all
the µ−coins in the channel before the expiration date of the channel. These funds can
be redeemed in the buyer’s account through a transaction operation programmed in
the smart contract. This operation has not been automated, providing the buyer with
the possibility of redirecting the channel to a new seller.

Impossibility of Falsification, Overspending and Double Spending

The protocol has been designed to prevent the falsification of µ−coins as well as their
reuse or the use of more µ−coins than those established in the channel.
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• All µ−coins received as means of payment in the purchase protocol must belong
to the associated channel. This check is performed by the operation H i (WiC ) ==
W0C , where W0C must match the value stored within the Γ element of the channel.

• The reuse of a µ−coin is avoided by checking H i− j (WiC ) == W jC , where i is
the index of the µ−current coin and j the index of the µ−coin used in the last
payment on the channel, so i must be greater than j .

• Overuse is avoided with two procedures. On the one hand, the money corre-
sponding to the µ−coins associated with the channel is deposited in the smart
contract before starting the purchase operations. On the other hand, the num-
ber of µ−coins associated with the channel is limited and the last µ−coin in
the channel is determined by the element W(L−1)C . The seller will not accept
any µ−currency that requires validation on the hash chain with more than L
operations.

Reduced Cost

A reduced cost per payment is a fundamental characteristic of µ−payments since it
should never exceed the benefit associated with that payment, much less the value of
the amount transferred.

The protocol presented in this work considerably reduces the cost of a payment
operation through cryptocurrencies by creating a payment channel. Although the
number of payment operations that can be carried out is c operations per channel, the
number of transfers on the blockchain is reduced to one channel, if transfer operations
are not contemplated.

The more long-term the relationships between buyer and seller are, the longer the
chains of µ−coins associated with the channel can be, and the greater the efficiency of
the system.

On the other hand, the design of multihop channels allows to reduce the num-
ber of real transfers on the blockchain, since a transferable channel does not require
liquidation after use between the first two users.

15.4 Conclusions

In this chapter, we have presented a micropurchase scheme, that is, a system of eq-
uitable exchange between a micropayment and access to the purchased product or
service. Micropayments are payments of very small amounts where the profit mar-
gin is low, so the system should not have associated costs that substantially reduce
or completely eliminate that profit margin. To achieve this, the security and privacy
mechanisms associated with micropayments must be designed accordingly.

In the case of cryptocurrencies, the solution to implement micropayments is to
design layer two protocols [130] in which each payment operation is prevented from
representing a transaction on the blockchain. A channel, once opened, allows the
execution of off-chain operations that will not materialize on the blockchain until the
moment of liquidation of the channel.

The chapter presents a channel management protocol using smart contracts. The
system is based on the blockchain-free micropayment protocol presented in [121].
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As in the [121] protocol, the payer builds a chain of elements where microcurrencies
and proof elements are interspersed that will allow granting atomicity to the purchase
operations.

The protocol consists of an initial service request phase followed by an on-chain
operation in which the channel is created. The channel is not associated with a specific
seller, but rather the seller will have an item that authenticates him or her as the chan-
nel’s truthful liquidator. Next, the purchase operation is carried out as many times as
necessary in an off-chain manner. Finally, the seller can liquidate the channel, which
will proceed to the fund transfer transaction on the blockchain.

We have added channel transfer and refund operations to the basic protocol to
increase system efficiency and avoid unnecessary transactions.

We also have provided an informal analysis of the properties of the system, including
anonymity, fairness, transferability, impossibility of counterfeiting, overspending, and
reuse of coins, as well as an assessment of the efficiency of the system.
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IDENTITY-RELATED ATTRIBUTE

VERIFICATION PROTOCOL USING SBTS AND

ZKPS

In the current context of growing concerns over privacy and the protection of personal
data, the need for robust safeguards, particularly for highly sensitive Personally Identifi-
able Information (PII), has become increasingly paramount. This chapter presents an
innovative approach to address these concerns through the utilization of Soulbound
tokens (SBTs), Public-key cryptography, and Zero-Knowledge Proofs (ZKPs), within an
identity verification framework. Through this integration, individuals gain control over
their data, selectively disclosing it to trusted entities while upholding both privacy and
security. Furthermore, this research contributes advancements to the verification of
diverse attributes associated with the user’s identity stored within an SBT and incor-
porating various comparator operators (equal, different, greater, less). Additionally, to
prevent replay attacks, a timestamp attribute has been incorporated into the ZKP circuit.
Relying on decentralized ledger technologies like blockchain, our protocol instills trust
and transparency in identity management, fostering trust among stakeholders and miti-
gating fraud risks. Implemented using Solidity for smart contracts and Circom for ZKPs,
the protocol undergoes a comprehensive analysis encompassing performance metrics
and security properties. The obtained results reveal that the costs associated with the
protocol are economically viable. We also demonstrate that the inherent properties of
the employed technologies afford critical security assurances. Additionally, we outline
several practical applications and use cases of these technologies, such as digital voting,
online banking, and e-commerce. The convergence of public-key cryptography, SBTs
and ZKPs presents a transformative paradigm for Self-Sovereign Identity (SSI) and data
privacy. By endowing individuals with greater autonomy over their personal data and
enabling secure, decentralized data sharing, these technologies lay the groundwork for
a trust-centric digital society.
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16.1 Contribution

In this chapter, we delve into a pioneering approach to decentralized and confidential
digital identity management through the integration of Zero-Knowledge Proofs (ZKPs)
and Soulbound tokens (SBTs). Our work introduces a novel protocol, termed zkSBT,
which combines the encryption of SBTs using the public key of the identity holder with
ZKPs for the verification of identity attributes without compromising personal infor-
mation. This integration not only advances the privacy and security features in digital
identity verification but also marks a significant leap from existing methodologies.

To the best of our knowledge, the present work constitutes the first proposal that
jointly considers the use of SBTs, ZKP, and the private/public key of the identity holder
in a comprehensive approach to develop an Identity-Related Attribute Verification
Protocol. This integration represents a key strength of our proposal, where these three
elements converge to represent attributes related to personal identity, facilitating secure
and private data sharing in a decentralized and distributed manner. The features of our
proposal align with the principles of SSI for several reasons:

• Immutability and Non-Transferability: SBTs within an SSI framework repre-
sent immutable credentials tied to an individual’s identity, ensuring that the
credentials or attributes they represent cannot be transferred or sold. This non-
transferability emphasizes personal control over identity and credentials.

• Blockchain Verification: SBTs can be verified on a blockchain, providing a trans-
parent and tamper-proof method for confirming the authenticity of an individ-
ual’s credentials, thereby enhancing the trustworthiness of the SSI system.

• Enhanced Privacy through ZKPs: By integrating ZKPs with SBTs, individuals
can prove certain attributes or credentials without revealing the underlying data,
which strengthens privacy within an SSI framework.

• Advanced Verification Mechanisms: Our protocol introduces a novel advanced
verification mechanism that allows the validation of specific identity-related
data against predetermined criteria, providing an effective solution for attribute
verification in identity contexts.

• Encryption for Enhanced Privacy: Encrypting the identity holder’s data stored
in the SBT with their public key further enhances privacy.

As a result, the proposed zkSBTs complement SSI by providing a robust method
for representing and verifying personal credentials in a non-transferable, privacy-
preserving manner, thus enhancing the overall trust and utility of digital identity sys-
tems.

A cornerstone of our contribution is the utilization of the Non-Transferable Tokens
(NTTs), as standardized by EIP-4671, which enhances the interoperability and security
of the SBTs across various blockchain ecosystems. Distinctively, EIP-4671 facilitates
the revocation of tokens without their deletion, fostering a more secure and coherent
digital identity infrastructure. Furthermore, the protocol leverages the immutable
and secure nature of blockchain technology, thus reinforcing the trust and integrity in
Self-Sovereign Identity (SSI) systems.
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To accommodate a variable amount of data, our protocol introduces a dynamic data
storage solution employing a Merkle tree structure. This feature is complemented by
an advanced data verification mechanism that supports various comparator operators,
including equal, different, greater than, greater or equal than, less than and less or equal
than, extending the protocol’s utility to a wider array of applications. Furthermore, to
mitigate replay attacks, a timestamp attribute has been integrated into the ZKP circuit.
Our implementation and testing on the Polygon PoS Chain demonstrate the protocol’s
viability across any EVM-compatible network, showcasing its broad applicability and
ease of integration into existing blockchain infrastructures.

Additionally, the use of tokens offers several significant advantages, particularly
in terms of traceability and auditability. Tokens allow for the tracking and auditing
of their creation process, including when they are minted, who created them, and
when they were accepted. Furthermore, as an Ethereum Improvement Proposal (EIP)
standard, similar to fungible and non-fungible tokens, they benefit from the advantages
of standardized smart contracts. These contracts share interfaces (functions) with other
smart contracts of the same type, enabling their generic use across various applications,
such as listing on web services.

Although revocability is an important consideration, it falls outside the scope of
the present proposal and is currently addressed as future work. At present, there is no
established protocol for an authority to remove a SBT from an account. Nevertheless,
revocation can be managed by maintaining a database of revoked SBTs or by incorpo-
rating a ’revoked’ field that only the issuing authority can modify. The existing protocol
does support the inclusion of an expiration date as an additional field within the SBT,
which would provide temporal validity to the identity information of the identity holder.

The employment of Circom for circuit compilation and snarkjs for the generation
and verification of zkSNARK proofs exemplifies the efficiency and user-friendliness
of our approach. Opting for the Poseidon [55] hashing algorithm underscores our
commitment to leveraging cutting-edge technology for optimal security and privacy
outcomes. Our comprehensive analysis of the protocol’s security properties, alongside
the exploration of its versatility through various use cases, underscores the robustness
and practical applicability of our solution in enhancing user privacy and security.

Moreover, the performance evaluation of the smart contracts associated with our
protocol ensures that our solution is not just secure and private but also scalable and
cost-effective for real-world applications. Through this integrated approach, combining
the latest technological advancements with rigorous testing and detailed analysis,
our contribution sets a new standard in the field of blockchain-based digital identity
management, particularly within the context of e-commerce. This work paves the way
for future innovations in secure and user-centric digital identity solutions, significantly
enhancing the privacy and security landscape of digital identities in SSI systems.

16.2 Protocol design

The Identity-related attribute verification protocol proposed in this chapter comprises
three essential actors: the Identity holder, the Authority or Issuer, and the Verifier (See
Figure 16.1).
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The Identity holder is the person who owns personal identity information. He has
sovereignty over who can access its identity-related information and he can choose
which aspects to share with each external entity. In our protocol, the Identity holder
stores their information in an SBT issued by the Authority. Additionally, he generates a
ZKP to prove its identity or identity-related attributes to a third party without disclosing
any extra personal information.

Figure 16.1: Participants of the zkSBT protocol

The Authority (or Issuer) is the entity responsible for certifying the identity infor-
mation of the Identity holder. Authorities can encompass various organizations or
entities with a legitimate interest in confirming individual identities, such as govern-
ments, banks, or employers. The Authority generates digital credentials attesting to
specific attributes of the Identity holder, such as name, date of birth, or educational qual-
ifications. In our protocol, these credentials are encrypted using the Identity holder’s
public key and then stored on a blockchain within an SBT that is transferred to the
Identity holder.

The Verifier user is the entity seeking access to some data regarding the identity
information of the Identity holder. Verifiers can be organizations or entities requiring
identity verification or confirmation of specific identity-related attributes, including
financial institutions, government agencies, or online service providers, among oth-
ers. The Verifier initiates a request for access to specific attributes within the Identity
holder’s information and validates the genuineness of digital credentials issued by the
Authority through cryptographic proofs. The Verifier places trust in the credibility of
the digital credentials issued by the Authority, given their storage on a decentralized
ledger, ensuring they remain unaltered and immune to forgery.

Within the SSI model, individuals have absolute control over their personal identity
information, allowing them the discretion to share it with verifiers as required. This
empowers individuals with enhanced privacy, security, and authority over their identity
details, simultaneously diminishing dependence on centralized identity management
systems. The incorporation of cryptographic methods, decentralized ledgers, and
digital credentials guarantees the security, reliability, and resistance to tampering of
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Table 16.1: Notation of the decentralized and confidential digital identity using ZKP
protocol

Name Description
I Identity holder user
A Authority or Issuer user
V Verifier user

H() Secure hash algorithm
p Private key of Identity holder
P Public key of Identity holder

d = d1,d2, ...dn Identity data
D = D1,D2, ...Dn Encrypted identity data

aI Address of Identity holder user
H(d) Merkle tree root of identity data d

C Circuit
l ambd a Random number to generate proving and verification keys

pk Proving key of the ZKP
vk Verification key of the ZKP
i Index in the data array d of the value

that we want to verify
o Operator to compare the value di with the threshold t

(==, !=, >, >=, <, <=)
t Threshold that the user needs to meet

t s Timestamp indicating the specific moment in time when the
verification request is made, used to prevent replay attacks

prf Proof generated by the Identity holder

the SSI model.

We employ the notation detailed in Table 16.1 to describe the protocol. The fun-
damental concept behind the proposed protocol is to encrypt identity-related data
with the Identity holder’s public key, encapsulating it within an SBT. Subsequently, the
Identity holder can provide proof of the data to a verifier through the utilization of a
ZKP without disclosing the data content.

Initially, the system provider needs to create the system setup. This involves gener-
ating a Zero-Knowledge Soulbound Token (zkSBT) smart contract, wherein any user
can mint, because any account can act as an Authority A. Allowing any user to mint
is not a problem, as each Verifier V will decide which authorities to trust, and thus
which zkSBTs will support for validation. The zkSBT smart contract will be an SBT (an
ERC-721 compatible token that cannot be transferred) that will contain all encrypted
data of the Identiy holders encrypted with their public key P .

Figure 16.2: ZKP deterministic program circuit
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Before executing the protocol, the system provider also needs to establish a ZKP
system for validating a specific claim. The generation of this ZKP system involves the
following steps:

1. Develop a circuit C (see Figure 16.2) designed to verify that the data fulfills specific
criteria (having a value di that meets an operation o through a defined threshold
t , for example, that the Identity holder has a credit score greater or equal than
10) and that the Merkle tree root of this data H (d) corresponds to the Merkle tree
root stored in the zkSBT.

2. The circuit C will need a private input, the data d , along with some public inputs:
the Merkle tree root of the data H(d), the index i of the data in the data array
d (to know which value we want to check from the data), the threshold t , and
the operator o that we want to use to compare the value di with the threshold t .
Possible operators are: ==, !=, >, >=, <, <=. For example, with this information,
we will be able to check if a user is older than 18 years using the operator >=
(i.e. o ← >=), and t = 18 for a date of birth attribute. Another example could be
the case of a user has a credit score greater or equal to a certain threshold using:
o ← >=, and t set to the desired credit score threshold.

3. We also will incorporate another public value to the circuit, the address of the
Identity holder user, aI , to avoid collisions in the Merkle tree root hashes when
we have few values stored in that tree of data. To avoid these collisions, we need
to add this address aI to the Merkle tree data as its first element. Incorporating
the user’s address into the Merkle tree is a strategy to enhance the uniqueness of
each leaf node, thereby reducing the chances of hash collisions, especially when
the number of values stored in the tree is relatively small.

4. Additionally, we will add a t s (timestamp) public value to the circuit. The times-
tamp t s indicates the specific moment in time when the verification request is
made and is used to prevent replay attacks. By incorporating the timestamp into
the ZKP circuit, we ensure that each proof is unique to the specific verification
request and time, thereby preventing malicious actors from reusing previously
submitted proofs. This enhancement is essential for maintaining the integrity
and security of the verification process.

5. Create a pair of cryptographic keys for the circuit, consisting of a proving key
pk and a verification key vk. These keys are derived from a secret parameter
l ambd a and the circuit C . They serve as public parameters and require genera-
tion only once for a specific circuit C .

6. Using tools like snarkjs, it becomes feasible to automatically generate a smart
contract for validating the proof. This process entails integrating public inputs,
the verification proof prf, and the verification key vk. Through this utility, we can
establish a verifier.sol smart contract designed to verify the validity of the
proof. This verifier.sol smart contract can be invoked from the zkSBT smart
contract, adding the capability to confirm the authenticity of the proof.
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7. In the smart contract’s side we will also need to include a check to verify that the
submitted zkSBT belongs to the Identity holder user and that this zkSBT shares
the same hash as the data H(d) submitted by the Identity holder user to the ZKP
verification function.

Figure 16.3: ZKP Soulbound token sequence diagram, with roles, smart contracts,
functions and their parameters

The steps of the protocol are detailed in Figure 16.3, where we depict the general
sequence diagram of the protocol. In this diagram, we can see the three different actors
(Identity holder, Authority, and Verifier), that will be able to interact with the system
with a web interface, the smart contracts deployed on the blockchain (ZKSBT.sol and
verifier.sol), and all the messages (methods or functions) invoked by these actors
with their respective parameters. The steps outlined in the diagram are elaborated in
the following points:
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1. The Identity holder I requests a zkSBT from the Authority A. To facilitate this, I
must send their public key P to the Authority A. The Identity holder can either
generate a dedicated public-private key pair for this transaction or use the public
key linked to their blockchain address. While the public key P can be shared with
anyone, the private key p must remain confidential.

2. The Authority A uses the public key P to encrypt the identity data d . This process
can be executed through an asymmetric encryption algorithm such as RSA or
Elliptic Curve Cryptography (ECC). However, it is important to note that en-
cryption with asymmetric cryptosystems is typically not recommended for large
amounts of data, and it is more suitable for encrypting small blocks of data, such
as a secret key. We specifically employ asymmetric encryption for small 32-byte
blocks, emphasizing its appropriateness for this particular context.

The data d represents a claim regarding the user seeking the zkSBT and is en-
dorsed by the Authority, given that verifiers place trust in A. The Authority also
needs to calculate the Merkle tree root of the data d using the ZK-friendly hash-
ing algorithm Poseidon [55]. In situations where the encrypted information is
excessively large, an alternative approach is to upload this encrypted data D to
services like IPFS and store in the zkSBT only the corresponding URL pointing to
this file, together with the Merkle tree root of the data H(d). These calculations
are shown in Subprotocol 27.

To mint the SBT the Authority must send both the encrypted data D and the
Merkle tree root of the data H(d).

Subprotocol 27: Encrypt the data

1. A encrypts: D = encr y ptP (d)
2. A calculates: H(d) = mer kl eTr eeRoot (d)

3. After minting the zkSBT, the corresponding tokenI d , which uniquely identifies
the newly created token, is then forwarded to the Identity holder.

4. When a verifier seeks specific data from the Identity holder, they request the index
i of the value that we need to check inside the data d , a particular threshold t , and
an operator o that the piece of data di must satisfy, applied to threshold t . He will
also need to provide the timestamp t s of the request. For instance, the Verifier
might ask for a credit score di greater or equal (o) than a specified threshold
t . The communication exchange between I and V takes place over a secure
channel that provides end-to-end authenticity, integrity and confidentiality (e.g.
an SSL/TLS channel1).

5. The Identity holder reads the data stored in their zkSBT, uniquely identified by a
tokenI d .

6. The retrieved information encompasses both the Merkle tree root of the data
(H(d)) and the Encrypted identity data (D).

1Guide to TLS Standards Compliance: https://www.ssl.com/guide/tls-standards-compliance/
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7. After reading the stored data in their zkSBT, the Identity holder proceeds to
decrypt it using their private key p. This step results in the Identity holder obtain-
ing their own decrypted identity data d . This decryption process is performed
off-chain, within the identity holder’s own computer, to ensure that sensitive
information is not revealed or exposed during the process.

Subsequently, the Identity holder produces the proof prf by using the circuit C ,
the cryptographic proving key pk, and the inputs for the computation (including
the private data d and the public values: the Merkle tree root of the data H (d), the
Identity holder address aI , the index of the value i , the operator o, and the thresh-
old t , and the timestamp t s). This process is also performed off-chain, within
the identity holder’s own computer, to avoid revealing any private information.
Through this process, the Identity holder generates a proof prf demonstrating
the accurate execution of the computation without disclosing any private inputs
or intermediate computations and sends it to the Verifier.

All these steps needed by the Identity holder to generate prf are shown in Subpro-
tocol 28.

Subprotocol 28: Generate the proof

1. I decrypts: d = decr y ptp (D)
2. I calculates: H(d) = mer kl eTr eeRoot (d)
3. I generates: pr f =C (pk,d , H(d), aI , i ,o, t , t s)

8. Upon receiving the proof prf, the Verifier calls the verifyProof() function of the
zkSBT, which invokes the previously described verifier.sol smart contract.
The verification process involves confirming that the provided zkSBT belongs to
I , that the zkSBT is issued by A, that the Merkle tree root of the data sent by the
Identity holder to the Verifier aligns with the one stored in the zkSBT (H(d)), and
the data complies with the criteria outlined in the circuit C , ensuring that the
value di satisfies a specified operator o through a threshold t and that the sent
data d matches the Merkle tree root of the data H(d), and that the timestamp t s
is valid. These checks are shown in Subprotocol 29.

Subprotocol 29: Verify the proof

1. V checks: if ((owner O f (tokenI d) == I ) &&
(mi nter O f (tokenI d) == A) &&
(g etRoot (tokenI d) == H(d)) &&
(ver i f yPr oo f (C , vk, H(d), aI , i ,o, t , t s))) then

pr oo f I sV al i d
end if

9. If the verification smart contract provides a positive confirmation, the verifying
user can be assured that the user’s private data di satisfies the threshold t without
having access to the actual private data d .

Considering all aspects, we accomplish the following objectives:
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• The information stored on-chain within the zkSBT remains confidential, and
only I has the capability to decrypt it using their private key p.

• The verifying user can be confident that the identity data is originated from the
Authority A.

• The verifying user can ensure that the Identity holder has not manipulated the
data by verifying the Merkle tree root of the on-chain stored data.

• The verifying user can specify any requirement or threshold that users must fulfill.

• The verifying user can be sure that the received information is not reused thanks
to the introduction of the timestamp.

• Although the proof prf is generated by the Identity holder off-chain, no private
data is disclosed.

• Using ZKPs, the Identity holder can demonstrate compliance with a specific
threshold t without disclosing any of their personal information or data.

16.3 Implementation

We have written some smart contracts in Solidity language to implement, test, and
check the performance of the zkSBT, following the protocol presented in section 16.2.
The code for this smart contract and their corresponding tests can be accessed in
the zksbt2 GitHub repository, which is maintained by the Security and e-Commerce
(SECOM) Research Group from the University of the Balearic Islands. For evaluating
performance and gas costs, we employed Polygon PoS, an Ethereum Virtual Machine
(EVM) compatible blockchain. EVM-compatible blockchains use programs known
as smart contracts and a distributed Turing Complete machine to record changes
in the system state. These EVM blockchains leverage their native currency, such as
Ethers (ETHs) in Ethereum or Matic in Polygon PoS, to measure and restrict the costs
of resources used in code execution. In this Section, we will see the development
procedure and the description of the necessary Smart Contracts.

To test the complete workflow of the zkSBT protocol, we also have implemented
a prototype user interface. The code for this interface is available on GitHub3. The
application is deployed on Vercel and can be accessed at zkSBT Vercel App4. With this
UI we also aimed to evaluate the protocol’s performance, security, and usability in a
real-world scenario.

To implement the described protocol, we also need to write some circuits to gen-
erate the ZKPs. We will use Circom, a compiler written in Rust for compiling circuits
written in the Circom language. It is part of the Circom ecosystem, which also includes
a library of templates called circomlib, and the snarkjs tools for testing and working
with Circom circuits.

2https://github.com/secomuib/zksbt
3https://github.com/secomuib/zksbt-ui
4https://zksbt.vercel.app/
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Zero-knowledge proof circuit

As we have seen in the protocol description (section 16.2), we need to create the system
setup, that involves the generation of a ZKP circuit C that will let Identity holder I
generate a proof prf that he owns an SBT that includes a piece of data di that meets an
operation o through a defined threshold t .

To do this, we will use Circom, a language designed for creating ZKP circuits. It is
specifically tailored for the development of circuits used in Zero-Knowledge Succinct
Non-Interactive Argument of Knowledges (zkSNARKs), a type of ZKP.

To compile and generate the Circom circuits, we will set up a new Node.js project
with the npm init instruction from the command line. Then, we will install some
packages needed for Circom inside this project using the command npm install
circomlib circomlibjs snarkjs.

Before writing the main circuit, we will write two Circom templates, Compare and
verifyZKSBT. A template is a predefined circuit structure that can be reused for similar
tasks. Templates provide a way to modularize and reuse common components across
different circuits, making the development process more efficient.

The first template is for comparing two inputs based on the given operator op (see
Listing 33). This template is taken from the GPL licensed repository zkcertree5.

The Compare template takes two inputs a and b, and an operator op. The operator is
a 3-bit bitmap, representing different comparison operations. The circuit then returns
an output out which can be 1 if the condition is satisfied or 0 otherwise.

Here is a step-by-step explanation of the circuit:

• The circuit starts by including two external Circom libraries, mux3.circom and
comparators.circom. These libraries provide the components used in the cir-
cuit, such as the multiplexer (mux) and the comparison components (LessThan,
IsEqual, GreaterThan, etc.).

• The Compare template is declared with four signals: a, b, op, and out. a and b
are the inputs to be compared, op is the operator representing the comparison
operation, and out is the output of the comparison.

• The validOp component is a LessThan comparator with a limit of 252 bits. It
checks if the operator op is less than 6, which is the number of supported opera-
tions. If the operator is not supported, the assert statement will fail.

• The eq, gt, gte, lt, and lte components are comparison components that
compare a and b using the corresponding operations: equal to, greater than,
greater than or equal to, less than, and less than or equal to.

• The mux component is a 3-bit multiplexer. It uses the n2b component to convert
the operator op into a 3-bit binary number, which is used as the selector for the
multiplexer.

• The selectors for the multiplexer are set to the outputs of the comparison compo-
nents. This means that the multiplexer will select the output of the comparison
operation that corresponds to the operator op.

5https://github.com/r0qs/zkcertree
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� �
pragma circom 2 . 0 . 4 ;

include "../../node_modules/circomlib/circuits/mux3.circom" ;
include "../../node_modules/circomlib/circuits/comparators.circom" ;

// Ret: 1 if condition is satisfied. 0 otherwise
template Compare ( ) {

s ignal input a ;
s ignal input b ;
s ignal input op ;
s ignal output out ;

component validOp = LessThan (252) ;
validOp . in [ 0 ] <== op ;
validOp . in [ 1 ] <== 6 ;
// Restrict to supported operators
assert ( validOp . out ) ;

component eq = IsEqual ( ) ;
eq . in [ 0 ] <== a ;
eq . in [ 1 ] <== b ;
component gt = GreaterThan (252) ;
gt . in [ 0 ] <== a ;
gt . in [ 1 ] <== b ;
component gte = GreaterEqThan (252) ;
gte . in [ 0 ] <== a ;
gte . in [ 1 ] <== b ;
component l t = LessThan (252) ;
l t . in [ 0 ] <== a ;
l t . in [ 1 ] <== b ;
component l t e = LessEqThan (252) ;
l t e . in [ 0 ] <== a ;
l t e . in [ 1 ] <== b ;

component mux = Mux3( ) ;
component n2b = Num2Bits ( 3 ) ;
n2b . in <== op ;
mux. s [ 0 ] <== n2b . out [ 0 ] ;
mux. s [ 1 ] <== n2b . out [ 1 ] ;
mux. s [ 2 ] <== n2b . out [ 2 ] ;

mux. c [ 0 ] <== eq . out ; // 000: ==
mux. c [ 1 ] <== 1 − eq . out ; // 001: !=
mux. c [ 2 ] <== gt . out ; // 010: >
mux. c [ 3 ] <== gte . out ; // 011: >=
mux. c [ 4 ] <== l t . out ; // 100: <
mux. c [ 5 ] <== l t e . out ; // 101: <=
mux. c [ 6 ] <== 0 ;
mux. c [ 7 ] <== 0 ;

mux. out ==> out ;
}
� �

Listing 33: Code of the circuit compare.circom
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� �
pragma circom 2 . 0 . 0 ;
include "../../node_modules/circomlib/circuits/poseidon.circom" ;
include "./compare.circom" ;

// length = length of the data array
template verifyZKSBT ( length ) {

// public
s ignal input index ;
s ignal input root ;
s ignal input owner ;
s ignal input threshold ;
s ignal input operator ;
s ignal input timestamp ;

// private
s ignal input value ;
s ignal input data [ length ] ;

s ignal output out ;

assert (owner == data [ 0 ] ) ;
assert ( value == data [ index ] ) ;
assert ( timestamp > 0) ;

component merkleTree = Poseidon ( length ) ;
for ( var i = 0 ; i < length ; i ++) {

merkleTree . inputs [ i ] <== data [ i ] ;
}
root === merkleTree . out ;

component cmp = Compare ( ) ;
cmp. a <== value ;
cmp. b <== threshold ;
cmp. op <== operator ;
cmp. out === 1 ;

// output
out <== cmp. out ;

}
� �
Listing 34: Code of the circuit verifyZKSBT.circom

• The output of the multiplexer is the output of the Compare circuit. It will be 1 if
the condition is satisfied (i.e., if the selected comparison operation returns 1),
and 0 otherwise.

Another circuit that we need to write is a template for generating a zkSBT proof
(see Listing 34). It’s used to verify that a certain condition is met without revealing any
information about the data inside the zkSBT being verified.

The circuit is defined as a template verifyZKSBT which takes a single parameter
length, which represents the length of the data array.

There are several public inputs:

• index: The index i of the value in the data array.
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� �
pragma circom 2 . 0 . 0 ;

include "verifyZKSBT.circom" ;

component main { public [
index , root , owner , threshold , operator
] } = verifyZKSBT ( 4 ) ;
� �

Listing 35: Code of the circuit verify4.circom

• root: The root of the Merkle tree H(d).

• owner: The address of the owner of the SBT (Identity holder address) aI .

• threshold: The threshold t to compare with the value.

• operator: The operator o to compare the value di with the threshold t .

• timestamp: Timestamp t s of the proof.

The circuit also has a private input value (di ) and an array of private inputs data
(d) of length length. It also has one output out, which is a boolean value indicating
whether the proof is valid or not.

There are included two templates: Poseidon and Compare, previously defined. The
circuit creates a merkleTree component that uses the Poseidon template to create
a Merkle tree and calculate the root using the Poseidon hash algorithm. The Merkle
tree is a binary tree of hashes, where each non-leaf node is the hash of its children. The
root of the Merkle tree is a hash of all the data in the tree. The merkleTree component
takes the data array as input and produces the root of the Merkle tree as output. The
circuit checks that the root of the Merkle tree is equal to the root (H(d)) public input.

Then, the circuit creates the cmp component that uses the Compare template, al-
ready defined in this section. It takes three inputs: a, b, and op. The a and b inputs are
the values to be compared, the value di and the threshold t , and the op input is the
operator o to be used for the comparison. The cmp component produces a boolean
output indicating whether the comparison is true or false, that is, that the value di

meets certain criteria over the threshold t , applying the operator o. The circuit checks
that this comparison is true.

The circuit also includes several assertions. The first assertion checks that the owner
(aI ) is equal to the owner in the data (we will always set it as the first element of the data
array). The second assertion checks that the value (di ) is equal to the data at the index
(i ) position. The third assertion checks that the timestamp (t s) is valid. In addition,
the circuit sets the out output to be equal to the output of the cmp component. If the
comparison is true, the out output will be 1; otherwise, it will be 0.

Finally, we will define the verify4 circuit, which will call the verifyZKSBT tem-
plate defined previously. This circuit is used to verify a zkSBT data condition, without
revealing any information about the data being verified. In this case, we define a data
array of size 4 to use in our example demonstration. We can see the verify4 circuit in
Listing 35.

The circuit has several public inputs:
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• index: The index i of the value in the data array.

• root: The root of the Merkle tree H(d).

• owner: The address of the owner of the SBT (Identity holder address) aI .

• threshold: The threshold t to compare with the value.

• operator: The operator o to compare the value di with the threshold t .

• timestamp: Timestamp t s of the proof

The circuit also has a private input value (di ) and an array of private inputs data
(d) of length 4.

The circuit has one output out, which is a boolean value indicating whether the
proof is valid or not.

Compile the zero-knowledge proof circuit and generate the proving and
verification keys

As a prerequisite, to compile the ZKP circuit, we need to have installed the Circom
ecosystem (Circom and snarkjs) following its installation instructions6.

We can compile the verify4 circuit described before, using the following com-
mand:� �
$ circom verify4 . circom --r1cs --wasm� �

• –r1cs will generate the file verify4.r1cs that contains the R1CS constraint
system7 of the circuit in binary format.

• –wasm: will generate the directory verify4_js that contains the Wasm code
(verify4.wasm) and other files needed to generate the witness8.

Download the trusted setup, specifically the Powers of Tau file which is a community-
generated trust establishment (powersOfTau28_hez_final_11.ptau9). A trusted
setup refers to an algorithm designed to derive a protocol’s public parameters using
confidential information to safeguard the security of the protocol. The Powers of Tau
file, in this context, is a crucial component of the trusted setup process.

Generate the proving and verification keys, starting from verify4.r1cs (contain-
ing the circuit’s description and constraints) andpowersOfTau28_hez_final_11.ptau
(the trusted setup). The resulting file from this process is verify4.zkey, representing
a zero-knowledge key that includes both the proving and verification keys (pk and vk)
associated with the circuit.� �
$ snarkjs groth16 setup \

verify4 .r1cs \
powersOfTau28_hez_final_11 .ptau \
verify4 .zkey� �

6https://docs.circom.io/getting-started/installation/
7https://docs.circom.io/background/background#rank-1-constraint-system
8https://docs.circom.io/background/background#witness
9https://hermez.s3-eu-west-1.amazonaws.com/powersOfTau28_hez_final_11.ptau
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� �
interface IERC4671 {

event Minted ( address owner , uint256 tokenId ) ;

event Revoked ( address owner , uint256 tokenId ) ;

function balanceOf ( address owner) external view returns ( uint256 ) ;

function ownerOf ( uint256 tokenId ) external view returns ( address ) ;

function i s V a l i d ( uint256 tokenId ) external view returns ( bool ) ;

function hasValid ( address owner) external view returns ( bool ) ;
}
� �

Listing 36: Interface of an ERC-4671 token

Verifier ZKP smart contract

At this point, we can generate a Solidity verifier smart contract using the snarkjs tool,
which facilitates the creation of a Solidity smart contract for proof validation. This
process starts with the verify4.zkey file, and the result is the verifier.sol file
produced by the program.� �
$ snarkjs zkey export solidityverifier \

verify4 .zkey verifier .sol� �
This verifier.sol contract contains a function called verifyProof() that can

be used to verify the proofs on an EVM-compatible blockchain. The verification func-
tion takes the proof and the public inputs to the computation, and returns whether the
proof is valid.

Soulbound token smart contract

Instead of implementing our own version of an SBT, we will use the EIP-4671 standard.
The EIP-4671 token can be used as an SBT because it implements the Non-Transferable
Token (NTT) standard, which is designed to represent inherently personal possessions,
such as university diplomas, online training certificates, government-issued documents,
and so on. These tokens are meant to be non-tradable or "soulbound", meaning they
can’t be transferred, and they include all necessary functions and properties required to
have an SBT implementation. It is important to note that this standard doesn’t inherit
from the ERC-721 standard, which has transfer-related functions that we don’t need.

In Listing 36 we can see the interface of an ERC-4671 token. Its implementation is
public in a public repository 10.

The IERC4671 interface includes the following events and functions:

• Minted event: This event is emitted when a token is minted for a specific owner.
It includes the owner address and the tokenId of the minted token.

• Revoked event: This event is emitted when a token is revoked. It includes the
owner address and the tokenId of the revoked token.

10https://github.com/ethereum/ERCs/blob/master/assets/erc-4671/ERC4671.sol
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• balanceOf(): This function returns the number of tokens owned by a specific
address. It takes an owner address as an input and returns a uint256 represent-
ing the number of tokens owned.

• ownerOf(): This function returns the owner of a specific token. It takes a
tokenId as an input and returns the address of the owner.

• isValid(): This function checks if a token is valid (i.e., it hasn’t been revoked).
It takes a tokenId as an input and returns a bool indicating whether the token
is valid.

• hasValid(): This function checks if an address owns a valid token. It takes an
owner address as an input and returns a bool indicating whether the owner has
a valid token.

Zero-knowledge Soulbound token smart contract

To implement the zkSBT smart contract, we will inherit from the ERC-4671 smart con-
tract implementation, to have all the necessary SBT-related functions and properties,
and then we will add all ZKP related code. This will include all needed functions and
properties to mint a new zkSBT, and to write and get the information stored inside this
kind of token.

In Listing 37 we can see the basic structure of the zkSBT smart contract. This code
defines a contract named ZKSBT.sol that extends the ERC4671 contract. The ERC4671
contract, as we have explained before, is a standard for creating Non-Transferable
Tokens (NTTs), also known as Soulbound tokens (SBTs), on the Ethereum blockchain.

The ZKSBT.sol contract includes the following elements:

• Interface IVerifier: This interface declares a function verifyProof that takes
in two arrays of unsigned integers and an array of unsigned integers, and re-
turns a boolean value. These parameters are used to verify a proof using the
verifier.sol smart contract sending the cryptographic proof and the public
parameters.

• Internal variable _verifier: This variable is of type IVerifier and is used to
store the verifier.sol smart contract that will be used to verify proofs.

• Struct SBTData: This struct includes two fields: root and encryptedData. The
root field is a byte array, and represents the Merkle tree root of the data associ-
ated with a zkSBT, and the encryptedData field is an array of byte arrays, that
represents all the encrypted data stored in each token.

• Mapping sbtData: This mapping maps a uint256 token ID to an SBTData struct.
This mapping is used to store the data for each SBT.

• constructor function: The constructor takes in three parameters: a string for
the name of the token, a string for the symbol of the token, and an IVerifier
contract. It initializes the ERC4671 contract with the provided name and symbol,
and sets the _verifier variable to the provided verifier.sol contract.
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� �
pragma s o l i d i t y ^ 0 . 8 . 1 8 ;

import "./eip-4671/ERC4671.sol" ;

interface I V e r i f i e r {
function veri fyProof (

uint [ 2 ] memory a ,
uint [ 2 ] [ 2 ] memory b ,
uint [ 2 ] memory c ,
uint [ 7 ] memory input

) external view returns ( bool ) ;
}

contract ZKSBT i s ERC4671 {
I V e r i f i e r internal _ v e r i f i e r ;

struct SBTData {
bytes root ;
bytes [ ] encryptedData ;

}

mapping( uint256 => SBTData ) public sbtData ;

constructor (
string memory name,
string memory symbol ,
I V e r i f i e r v e r i f i e r

) ERC4671(name, symbol ) {
_ v e r i f i e r = v e r i f i e r ;

}
}
� �

Listing 37: General structure of the ZKSBT smart contract

We also need to define a mint function, that lets any authority create a new zkSBT,
send it to any Identity holder I , and store the encrypted data D. It lets mint to any
account because any account can act as an authority, because of the principles of
self-sovereignty and the decentralized nature of the system.

The mint function is listed in Listing 38, and it includes the following parameters:

• to: This is the address of the Identity holder I to which the new token will be
minted.

• root: This is a byte array that likely represents the root of the Merkle tree (H(d))
of the data that we will associate with this new zkSBT.

• encryptedData: This is an array of byte arrays that represents encrypted data D
associated with the token.

The function calls the _mint private function of the parent ERC4671 contract, to
mint a new token and assign it to the address of the Identity holder. The function then
creates a new SBTData struct with the provided root and encryptedData, and stores
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� �
function mint (

address to ,
bytes c a l l d a t a root ,
bytes [ ] c a l l d a t a encryptedData

) external payable v i r t u a l returns ( uint256 ) {
uint256 tokenId = _mint ( to ) ;

sbtData [ tokenId ] = SBTData ( {
root : root ,
encryptedData : encryptedData

} ) ;

return tokenId ;
}
� �

Listing 38: mint() function

it in the sbtData mapping with the tokenId as the key. Finally, the function returns
the tokenId of the newly minted token.

Finally, we also need to create a function called verifyProof, which is depicted in
Listing 39. This function is used to verify the ZKP, sending the tokenId of the zkSBT,
and the cryptographic proof and the public values of the ZKP.

The verifyProof function first retrieves the owner of the token and checks if the
owner is the same as the address that is stored in the public values of the proof. The
function then retrieves the root of the Merkle tree associated with the token and checks
if it matches the root stored in the proof. Then, the function formats the proof and the
public values in the format expected by the _verifier smart contract and calls the
verifyProof function of that verifier contract to verify the proof. Finally, the function
returns true if the proof is verified successfully.

Another two functions that we will need are the getRoot and getEncryptedData
to read the stored sbtData from a specific tokenId. These two functions are detailed
in Listing 40. These functions simply return the root of the Merkle Tree’s data without
encryption H(d) and encrypted data D , given a specific tokenId.

Once the ZKSBT.sol and verifier.sol smart contracts are completely defined,
we can deploy them to any EVM-compatible network, like Ethereum or Polygon PoS
using tools like Truffle, Hardhat, or Remix.

Authority encrypts data and mints a zkSBT

Now, the Authority can encrypt the data of the Identity holder, mint a new zkSBT, and
transfer it to that user.

The first step will be to encrypt the data of the Identity holder, using the Identity
holder’s public key P , which must have been sent to the Authority. Once the Author-
ity has the P public key, he will encrypt the data using any asynchronous encryption
method. In our example, we have used the JavaScript Elliptic Curve Integrated Encryp-
tion Scheme (ECIES) library ecies-geth11.

11https://www.npmjs.com/package/ecies-geth
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� �
function veri fyProof (

uint256 tokenId ,
uint [ ] memory proof ,
uint [ ] memory publicValues

) external view returns ( bool ) {
address owner = address ( uint160 ( publicValues [ 3 ] ) ) ;
require (

ownerOf ( tokenId ) == owner ,
"The SBT doesn’t belong to the address stored in the ZK proof"

) ;
bytes memory root = getRoot ( tokenId ) ;
require (

keccak256 ( abi . encodePacked ( root ) ) ==
keccak256 ( abi . encodePacked ( publicValues [ 2 ] ) ) ,

"The root of the Merkle Tree’s data doesn’t match the root stored in the
SBT"

) ;

uint [ 2 ] memory a = [ proof [ 0 ] , proof [ 1 ] ] ;
uint [ 2 ] [ 2 ] memory b = [ [ proof [ 2 ] , proof [ 3 ] ] , [ proof [ 4 ] , proof [ 5 ] ] ] ;
uint [ 2 ] memory c = [ proof [ 6 ] , proof [ 7 ] ] ;
uint [ 7 ] memory p = [

publicValues [ 0 ] ,
publicValues [ 1 ] ,
publicValues [ 2 ] ,
publicValues [ 3 ] ,
publicValues [ 4 ] ,
publicValues [ 5 ] ,
publicValues [ 6 ]

] ;

require ( _ v e r i f i e r . ver i fyProof ( a , b , c , p) ,
"Proof verification failed" ) ;

return true ;
}
� �

Listing 39: verifyProof() function

� �
function getRoot (

uint256 tokenId
) public view override returns ( bytes memory) {

return sbtData [ tokenId ] . root ;
}

function getEncryptedData (
uint256 tokenId

) external view override returns ( bytes [ ] memory) {
return sbtData [ tokenId ] . encryptedData ;

}
� �
Listing 40: getRoot() and getEncryptedData() functions

In the Listing 41 we can see the Typescript code used to encrypt a piece of data
using a public key.
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� �
encryptedCreditScore = await encryptWithPublicKey (

identityHolder . publicKey ,
creditScore . toStr ing ( )

) ;

encryptedIncome = await encryptWithPublicKey (
identityHolder . publicKey ,
income . toStr ing ( )

) ;

encryptedReportDate = await encryptWithPublicKey (
identityHolder . publicKey ,
reportDate . toStr ing ( )

) ;
� �
Listing 42: Encrypt data using a public key

� �
const ecies = require ("ecies-geth" ) ;
const ethUti l = require ("ethereumjs-util" ) ;

const toBuffer = ( value : any ) => {
i f ( typeof value === "string" ) {

return Buffer . from ( value ) ;
} else {

return Buffer . from ( value . toStr ing ( ) ) ;
}

} ;

const encryptWithPublicKey = async ( publicKey : string , value : any ) => {
// Convert the public key to a buffer
const publicKeyBuffer = ethUti l . toBuffer ( publicKey ) ;
// Convert the value to a buffer
const valueBuffer = toBuffer ( value ) ;

// Encrypt the message
const encryptedMessage = await ecies . encrypt ( publicKeyBuffer , valueBuffer ) ;

return "0x" + encryptedMessage . toStr ing ("hex" ) ;
} ;
� �

Listing 41: Function to encrypt data using a public key

Using this encryptWithPublicKey function, we can encrypt any kind of data. In
our case, we will encrypt a sample CreditScore, Income and ReportDate values to
be stored inside the zkSBT. This process can be viewed in Listing 42.

Another piece of information that we need to mint a new zkSBT is the Merkle tree
root of the unencrypted data. In our case, we will use the ZK-friendly hashing algorithm
Poseidon, using the buildPoseidon function of the circomlibjs library. The code to
create this Merkle tree root can be viewed in Listing 43. Notice that the first piece of data
stored in the Merkle tree is the address of the Identity holder (aI ) that will receive the
zkSBT. This value is always added to prevent collisions in the Merkle tree root hashing
function.
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� �
const buildPoseidon = require ("circomlibjs" ) . buildPoseidon ;

const poseidon = await buildPoseidon ( ) ;
const root = poseidon ( [

BigInt ( identityHolder . address ) ,
BigInt ( creditScore ) ,
BigInt ( income ) ,
BigInt ( reportDate )

] ) ;
const rootHex = "0x" + BigInt ( poseidon . F . toStr ing ( root ) ) . toStr ing (16) ;
� �

Listing 43: Get Merkle tree root

� �
const hre = require ("hardhat" ) ;
const ethers = hre . ethers ;

const wal let = new ethers . Wallet (’AUTHORITY_PRIVATE_KEY’ ) ;
const authoritySigner = wallet . connect ( provider ) ;

const zkSBT = await ethers . getContractAt ("ZKSBT" , "CONTRACT_ADDRESS" ,
authoritySigner ) ;

await zkSBT
. mint ( identityHolder . address , rootHex , [

encryptedCreditScore ,
encryptedIncome ,
encryptedReportDate

] ) ;
� �
Listing 44: Mint new zkSBT to Identity holder

Once we have the Merkle tree root of the unencrypted data H(d), and all the en-
crypted data D , we can mint a new zkSBT sending it to the Identity holder address aI .
This process is listed in Listing 44. Once we have minted the new zkSBT, the Identity
holder will own this token, and the encrypted data will be stored on-chain, together
with the Merkle tree root of the unencrypted data.

Identity holder reads zkSBT and generates a ZK proof

When a Verifier user asks the Identity holder to check some information about his data,
he needs to send a question containing this information:

• index (i ) of the data that we want to check. This information is related to the
position of the data inside the Merkle tree. In our example, 0 is the address of the
Identity holder, 1 is the credit score, 2 is the income and 3 is the report date

• operator (o) that we want to apply

– 0: equal (==)

– 1: different (!=)

– 2: greater (>)
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� �
const ecies = require ("ecies-geth" ) ;
const ethUti l = require ("ethereumjs-util" ) ;

const decryptWithPrivateKey = async ( privateKey : string , valueHex : string ) => {
// Convert the private key to a buffer
const privateKeyBuffer = ethUti l . toBuffer ( privateKey ) ;
// Convert the value in hex to a buffer
const valueBuffer = Buffer . from ( valueHex . s l i c e ( 2 ) , "hex" ) ;

// Decrypt the message
const decryptedMessage = await ecies . decrypt ( privateKeyBuffer , valueBuffer ) ;
return decryptedMessage . toStr ing ( ) ;

} ;
� �
Listing 46: Function to decrypt data using the private key

– 3: greater or equal (>=)

– 4: less (<)

– 5: less or equal (<=)

• threshold (t ) to be compared with the data specified by the index (di )

For example, we can suppose that the Verifier asks the Identity holder that he wants
to check that he has a credit score (index = 1) greater or equal (operator = 3) than
9 (threshold = 9).

To generate the proof, the first step that the Identity holder needs to do is to read the
Merkle tree root and the encrypted data from the on-chain stored data. This process is
listed in Listing 45.� �
const hre = require ("hardhat" ) ;
const ethers = hre . ethers ;

const zkSBT = await ethers . getContractAt ("ZKSBT" , "CONTRACT_ADDRESS" ) ;

const root = await zkSBT . getRoot ( tokenId ) ;
const encryptedData = await zkSBT . getEncryptedData ( tokenId ) ;
� �

Listing 45: Read the data from zkSBT and decrypt it

Another step that needs to be done by the Identity holder is to decrypt the encrypted
data with his private key p. To do this, we need a similar function to the listed in
Listing 41, encryptWithPublicKey, but with the inverse direction. We have created
the decryptWithPrivateKey to do this process, showing it on Listing 46.

The decryption process of the encrypted on-chain data using thedecryptWithPrivateKey
function is listed on Listing 47. This process is done off-chain. With this, the private
data is not revealed.

To generate the proof, we have created a function called genProof, which is listed
on Listing 48. This function will use the snarkjs library, which provides tools for working
with zkSNARKs, and will be executed off-chain, as the decryptWithPrivateKey func-
tion, to avoid revealing confidential data. Two variables, wasm_path and zkey_path,
are defined to hold the paths to the .wasm and .zkey files. These files are generated
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� �
const decryptedCreditScore = await decryptWithPrivateKey (

identityHolder . privateKey ,
encryptedData [ 0 ]

) ;

const decryptedIncome = await decryptWithPrivateKey (
identityHolder . privateKey ,
encryptedData [ 1 ]

) ;

const decryptedReportDate = await decryptWithPrivateKey (
identityHolder . privateKey ,
encryptedData [ 2 ]

) ;
� �
Listing 47: Decrypt data using the private key

� �
const snarkjs = require ("snarkjs" ) ;

const wasm_path = "circuits/verify4_js/verify4.wasm" ;
const zkey_path = "circuits/verify4.zkey" ;

const genProof = async ( input ) => {
const { proof , publicSignals } = await snarkjs . groth16 . ful lProve (

input ,
wasm_path ,
zkey_path

) ;

const s o l i d i t y C a l l D a t a = await snarkjs . groth16 . exportSolidityCallData (
proof ,
publicSignals

) ;

const argv = s o l i d i t y C a l l D a t a . replace ( / [ "[\]\s]/g, "").split(" ,");

const Proof = argv.slice(0, 8);
const PubSignals = argv.slice(8);

return { Proof, PubSignals };
};
� �

Listing 48: genProof() function

during the compilation of the circuit and contain the compiled circuit and the proving
key, respectively.

The genProof function takes an input parameter that contains all public and
private inputs of the ZKP proof and returns an object containing two arrays, Proof
and PubSignals. Inside the genProof function, the snarkjs.groth16.fullProve
method is used to generate a proof and the associated public signals. This method takes
three arguments: the input data, the path to the .wasm file, and the path to the .zkey
file. The call of the snarkjs.groth16.exportSolidityCallData method and the
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� �
const proof = await genProof ( {

index : 1 , // credit score
root : root ,
owner : identityHolder . address ,
threshold : 9 ,
operator : 3 , // 3 = greater or equal than
timestamp : 1675195348511, // current timestamp
value : +creditScore ,
data : [

identityHolder . address ,
+creditScore ,
+income ,
+reportDate

]
} ) ;
� �

Listing 49: call genProof() function

following lines are used to export the proof and public signals data in a format suitable
for use in a Solidity smart contract, which are two unidimensional arrays.

Now the Identity holder can generate the proof by calling the genProof function,
passing all necessary public and private arguments of the proof. This is listed on
Listing 49. As we can see, the Identity holder will provide all the information asked by the
Verifier (index of the data that he wants to query, with the operator and threshold),
the timestamp, the root of the Merkle tree, stored in the zkSBT, the Identity holder
address, and the private values, the value that we want to check di and the rest of the
unencrypted data d .

As a result, we will have a variable proof that contains two unidimensional array
elements, one containing the cryptographic proof of the ZKP (Proof) and another
containing the public signals of the ZKP (PubSignals). These values can be sent to the
Verifier user, who will check the validity of this proof.

Verifier verifies ZK proof

The last step is the verification process done by the Verifier user. This step is very simple
because it only consists of getting the generated proof, and calling the verifyProof
function of the zkSBT smart contract. This process is listed in Listing 50

� �
const hre = require ("hardhat" ) ;
const ethers = hre . ethers ;

const zkSBT = await ethers . getContractAt ("ZKSBT" , "CONTRACT_ADDRESS" ) ;

const proofValid = await zkSBT . ver i fyProof (
tokenId ,
proof . Proof ,
proof . PubSignals

) ;
� �
Listing 50: Verify the proof
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As we have described previously, this function will check:

• That the owner of the specified tokenId is the same as the address that is stored
in the public values of the proof.

• That the Merkle tree root stored in the specified tokenId token is the same as
the root stored in the proof.

• That the verifier.sol smart contract verifies correctly the proof. That is, the
Merkle tree root stored in the proof (and in the smart contract) is the same as the
Merkle tree root generated from the data without encryption (this means that the
Identity holder hasn’t modified the data), and the value stored at position index
meets the condition operator over a threshold.

With the blockchain public information, the Verifier user can also be sure that the
tokenId is minted by a specific Authority account and owned by a specific Identity
holder account.

16.4 Security properties analysis

In this section, we will evaluate the security, privacy, and functionality aspects of the
protocol. The properties under consideration include Integrity, Authenticity, Effective-
ness, Fairness, Transferability of evidence, Timeliness, Timestamping, Non-repudiation,
and Confidentiality, key attributes for a Private Identity-Related Attribute Verification
Protocol. The security properties exclude the efficiency property for a distinct evalua-
tion, which is conducted in section 16.5 that includes the presentation of results and a
series of experiments aimed at assessing the protocol’s performance.

1. Integrity.

Proposition 1 The identity-related attributes included in the zkSBT cannot be
modified since the user attributes issued by trusted authorities cannot be counter-
feited.

Claim 1 The data included in the blockchain operations, such as the mint of a
token, the identity of the Authority and the Identity holder, cannot be modified.

Proof: All blockchain transactions are stored in the blockchain. Immutability is
an intrinsic feature of the blockchain. Then all the data included in the blocks
cannot be modified.

Claim 2 Identity-related attributes are strongly linked to the zkSBT.

Proof: Identity-related attributes are used in the generation of the zkSBT. The
root of a Merkle tree of these data in clear is stored in the zkSBT. This data cannot
be modified since any change will influence the resulting value of the Merkle Tree
root.
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2. Authenticity.

Proposition 2 Both the origin of the token and its holder can be authenticated.

Claim 3 The minter’s identity of the token is publicly verifiable.

Proof: Due to the features of blockchain, anyone can check the blockchain address
from which each zkSBT has been minted. This address must correspond to the
Authority trusted by the verifiers to issue this kind of attribute. There is a public
transaction on the blockchain from the Authority’s address when executing the
Mint() function in order to create any specific zkSBT.

Claim 4 The identity of the Holder of the token can be publicly verified.

Proof: Due to the features of blockchain, anyone can check the identifier of the
Holder of the specific zkSBT. This is facilitated by a mapping within the smart
contract to register the ownership information of each token. This mapping can
be publicly verified.

3. Effectiveness.

Proposition 3 If all the actors follow the protocol, it is effective and the private
identity-related attributes can be verified by the Verifier.

Claim 5 The Effectiveness property is achieved through the meticulous integration
of SBTs and ZKPs. The protocol demonstrates its efficacy in reliably and accurately
verifying identity-related attributes while maintaining privacy and confidentiality.

Proof: The use of SBTs ensures secure and tamper-resistant identity binding,
while ZKPs enable attribute validation without disclosing sensitive information.
This seamless integration of components not only fulfills the protocol’s objectives
but also does so with exceptional effectiveness, establishing it as a robust solution
for private identity verification.

Proposition 4 The fairness property arises in this protocol when one party (i.e. the
Verifier) wants to trustfully check an attribute from an Identity holder while this
user wants to proof that the attribute’s value is correct without revealing it. Thus,
on the one hand, the Verifier gets the proof and, on the other hand, the Identity
holder does not need to reveal a private attribute.

Claim 6 The protocol ensures equitable treatment of participants by incorporating
mechanisms that prevent bias or favoritism in the attribute verification process.
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Proof: This fairness is maintained through transparent and unbiased procedures,
assuring that all involved parties have an equal and fair experience within the
identity verification framework. The utilization of SBTs and ZKPs contributes to
the impartiality of the protocol, as these cryptographic techniques inherently
prioritize privacy and prevent any undue advantage or discrimination during the
verification process. Consequently, the implementation guarantees a fair and
equitable environment for all entities involved in the identity-related attribute
verification, fostering trust and reliability in the protocol.

Claim 7 The protocol is fair because a Verifier, which seeks specific data from an
Identity holder, requests whether an attribute has a value that is in accordance
with a certain threshold or not and the protocol can assure him the correctness of
that proof.

Proof: The protocol assures the correctness of the proof because it is made us-
ing the data inside the zkSBT owned by the Identity holder and minted by the
Authority. At the same time, the Identity holder does not have to reveal the at-
tribute’s value because it is encrypted inside the token but it can be properly
verified using the pr f proof generated by the identity holder and the function
verifyProof() of the zkSBT smart contract deployed on the blockchain by the
trusted Authority. Therefore, the protocol is fair because the Verifier can get what
he wants (the verification of the attribute according to an established threshold)
while the Identity holder preserves the confidentiality of his data. In this way, the
protocol guarantees equitable treatment to the parties.

4. Transferability of evidence.

Proposition 5 Evidence supporting identity-related attributes can be seamlessly
transferred and utilized across different entities or systems, all the while ensuring
its authenticity and integrity remain intact.

Claim 8 The use of SBTs and ZKPs enhances the transferability of evidence by
allowing for secure and privacy-preserving sharing of relevant information. ZKPs,
in particular, enable the verification of identity-related attributes without dis-
closing the actual information, ensuring that evidence can be presented without
compromising the confidentiality of sensitive data.

Proof: The cryptographic nature of SBTs further contributes to the secure transfer
of evidence. These tokens, bound to the identity attributes, serve as verifiable
credentials that can be presented across various interactions, establishing a
consistent and reliable basis for attribute verification.

Therefore, the protocol’s design, incorporating advanced cryptographic tech-
niques, ensures that evidence supporting identity-related attributes can be ef-
fectively transferred between different entities or systems, meeting the criteria
for the "Transferability of evidence" property in a secure and privacy-preserving
manner.
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5. Temporal parameters.

Proposition 6 The protocol achieves Reduced delay and Timestamping.

Claim 9 The protocol ensures that the time required in the protocol operations is
reduced by implementing efficient and prompt processes for attribute verification.

Proof: Through optimized algorithms and streamlined procedures, the protocol
minimizes the time required to verify identity-related attributes. This is crucial in
scenarios where swift verification is essential, such as access to time-sensitive
services or applications. The protocol’s design prioritizes minimizing processing
delays while upholding the accuracy and security of attribute verification.

Claim 10 The inclusion of timestamping mechanisms within the protocol estab-
lishes a temporal reference for each verification transaction.

Proof: The timestamping of the blocks ensures a clear chronological order of
events, aiding in auditing, accountability, and dispute resolution. The times-
tamping feature, combined with the cryptographic assurances of ZKPs and SBTs,
enhances the overall reliability of the protocol by providing a verifiable record of
when attribute verifications occurred.

6. Non-repudiation.

Proposition 7 The protocol provides both non-repudiation of origin and non-
repudiation of reception in all the involved deliveries.

The accomplishment of the "Non-repudiation" property in the implementation of
the Private Identity-Related Attribute Verification Protocol using SBTs and ZKPs
is grounded in the cryptographic and secure design of the protocol, ensuring
that entities involved in the verification process cannot deny their actions or
involvement.

Claim 11 The protocol provides non-repudiation of data origin.

Proof: Anyone can check who minted a zkSBT. Thus, the origin of the data inside
each token has been produced by the entity that generates the token. If this entity
is not a trusted authority, then the validity of the data can be put under question.
However, the entity that minted the token cannot reject the origin of the data
since there is a signed transaction from its blockchain address to create the new
zkSBT.

Claim 12 The protocol provides non-repudiation of delivery.
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Proof: In this scenario, we understand by non-repudiation of delivery the fact
that the Identity holder cannot deny having generated the pr f proof of the ZKP
procedure in order to create a piece of evidence to demonstrate if the requested
attribute associated with his identity meets the threshold requirement or not.
This pr f proof has been delivered to the Verifier. After receiving pr f , the Verifier
calls the verifyProof() function of the zkSBT. The smart contract checks that
the owner of the token is the intended holder and, if pr f meets the requirements
of the criteria outlined in the circuit, then the authenticity of the Identity holder
is proven, since only the genuine owner of the token can generate a proper pr f .
However, if the verification fails because the value of pr f does not meet the
established requirement, then we need to add a secure communication channel
between Identity holder and Verifier that guarantees the non-repudiation of
delivery of the message containing the pr f item. Nevertheless, the addition of a
secure channel (e.g. a TLS secure channel12) does not change the specification of
the protocol proposed in this chapter.

Claim 13 The protocol provides non-repudiation evidence of reception of the veri-
fication results.

Proof: The Verifier, after receiving the proof from the Identity holder, is not able to
get any kind of acknowledgment of the value of the attribute if it does not execute
the verifyProof() of the zkSBT smart contract. This function will provide
the result of the verification that will be available. The verification process also
includes the attestation of the token owner and the token issuer. Since there is a
signed transaction from the Verifier address to run the verifyProof() function,
then this user cannot deny having received the verification results because they
are available on the blockchain due to the execution of the transaction the Verifier
submitted.

7. Confidentiality.

Proposition 8 The confidentiality of identity-related attributes is maintained
even when some of its properties are proven to the Verifier.

Claim 14 Data contained in the zkSBTis never revealed to the Verifier of the identity-
related attributes.

Proof: The encrypted identity-based attributes are stored in the token. The en-
cryption is performed using the public key of the Identity holder, ensuring that
only the Identity holder can decrypt them using its private key. Although the
verifier can check if the values of these attributes fulfill specific requirements, the
values themselves remain confidential.

12https://www.ncsc.gov.uk/guidance/using-tls-to-protect-data

240



16.5. Performance analysis

16.5 Performance analysis

After incorporating this protocol’s implementation, we have evaluated its performance
using the hardhat–gas–reporter plugin13, an integral component of the Hardhat
development environment. This plugin enables the calculation of Gas usage per unit
test by leveraging metrics for method calls and deployments.

We have created some tests to verify the accuracy of this protocol correction. These
tests, coupled with the aforementioned hardhat–gas–reporter plugin, enable us to
assess the system’s efficiency in terms of gas cost.

Gas execution costs play a crucial role in Ethereum Virtual Machine (EVM) compat-
ible blockchains, the platforms on which we execute the developed smart contracts.
These costs can be a significant consideration in the development of this service.

To assess the gas cost in US Dollars (USDs), we have used the Polygon PoS network,
an Ethereum layer 2 scaling solution designed for faster and more economical trans-
actions. Polygon PoS generally incurs lower gas costs compared to Ethereum due to
its distinct fee structure. Furthermore, being a layer 2 scaling solution, Polygon PoS
consolidates transactions and settles them on the Ethereum mainnet in a single trans-
action, effectively lowering the overall gas expenditure. In summary, opting for Polygon
PoS can yield substantial cost savings for users engaging in frequent or high-value
transactions, presenting an appealing alternative to Ethereum for those seeking gas
cost reductions.

Based on the test results, we have analyzed the gas cost associated with the deploy-
ment of verifier.sol and ZKSBT.sol smart contracts, and the mint function, the
only one that has a gas cost, because the rest of the functions are "view" functions,
that is, read-only. View functions in Ethereum Virtual Machine (EVM) blockchains do
not cost gas when they are called externally. This is because they are simply reading
from the blockchain state and not modifying it. This is the case of the verifyProof
function, which doesn’t have any cost.

Figure 16.4 depicts these costs as reported by the hardhat–gas–reporter plugin.
It’s essential to note that these costs are measured in gas units. To check the precise
transaction price, we need data on the current gas price in MATIC (the native currency

13https://www.npmjs.com/package/hardhat–gas–reporter

Figure 16.4: Gas cost of the ZKSBT and Verifier smart contracts
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Table 16.2: Average costs of the ZKSBT and Verifier smart contracts

USD
ZKSBT deployment 0.36712
Verifier deployment 0.18814

ZKSBT.mint() 0.11168

of the Polygon PoS) and the MATIC to USDs exchange rate. For this evaluation, we
referenced the MATIC price as of December 2023, which stands at 0.86 USD/MATIC.
This dollar reference is for illustrative purposes only, calculated at the time of the
study. For comparing different results, it is more accurate to compare gas costs directly
(Figure 16.5).

Figure 16.5: Gas cost comparison of the ZKSBT and Verifier deployments and mint
function

Analyzing the gas cost and average gas cost (see Table 16.2) associated with both
smart contract deployment and function execution, it becomes evident that the most
expensive function, in terms of gas cost, is the deployment of the ZKSBT.sol smart
contract itself. This incurs a cost of 0.18 USD during our test executions and maintains
an average cost of 0.37 USD over the past year. The deployment of the verifier.sol
smart contract is cheaper, with an average cost of 0.19 USD, and the mint() function
is relatively economical, with an average cost of 0.11 USD. It is necessary to note that
in the long term, the cost of the mint() function is the most important, since once
deployed all smart contracts, we only need to call this minting function.

Additionally, it is important to note that the cost of the mint() function depends
significantly on the attribute set for the zkSBT being minted. In the specific case of
the report, the attributes are creditScore, income, and reportDate, with values ‘45’,
‘3100’, and ‘2023-01-31T20:23:01.804Z’ respectively. These details can be verified in the
test section of the protocol’s GitHub repository. The resultant gas cost of the mint()
function will vary depending on the number and length of attributes added.
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Taking into account these findings, in conjunction with a noticeable spike in gas
costs detected in mid-November 2023, the expenses linked to the specified and im-
plemented protocol are reasonably budget-friendly, aligning well with the desired
attributes for managing a Private Identity-Related attribute verification system.

16.6 Conclusions

The integration of public-key cryptography, SBTs, and ZKPs holds the promise to trans-
form our approach to SSI and data privacy. Empowering individuals with enhanced
control over their personal data and facilitating secure and private data sharing in a
decentralized fashion, these technologies will foster the development of a trust-driven
digital society.

In the identity-related attribute verification protocol that we propose for privacy
preservation, we’ve illustrated the utilization of zkSBTs to represent and verify attributes
related to personal identity. Additionally, ZKPs facilitate secure and private data sharing,
eliminating the reliance on centralized authorities. Through the integration of these
technologies, we can establish a system that empowers individuals to retain control
over their personal data, selectively sharing it with trusted parties while ensuring both
privacy and security.

zkSBTs have a variety of potential use cases in the context of SSI and digital asset
management. Here are a few examples:

1. Secure Identity Verification: zkSBTs can be used to enable secure and private
identity verification without the need for a central authority or third-party verifi-
cation service. For example, an authority could create a zkSBT that represents an
identity, and then, the holder of that zkSBT, use a ZKP to prove their identity to a
third party without revealing any additional personal information.

2. Selective Data Sharing: zkSBTs can be used to enable selective data sharing in
an SSI system. For example, an authority could create a zkSBT that represents the
age of a user, and then the user could use a ZKP to prove their age to a third party
without revealing their exact date of birth or any other personally identifying
information. Other data-sharing examples are: credit scoring, voting rights,
reputation systems, and medical data.

3. Secure Access Control: zkSBTs can be used to enable secure access control to
digital resources, such as websites or online services. For example, we can create
a zkSBT that represents an authorization to access a particular online service,
and use the token to securely authenticate their access without the need for
usernames, passwords, or other traditional authentication methods.

The zkSBT protocol has been adopted by Masa14, a company leveraging this tech-
nology to power privacy-preserving data exchange. This adoption further validates the
practical applicability and effectiveness of the protocol in real-world financial services.
For more details, refer to Masa’s announcement15.

14https://masa.ai
15https://medium.com/masa-finance/masa-invents-the-zksbt-to-power-privacy-preserving-data-

exchange-9159cf72ff10
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Overall, zkSBTs have the potential to greatly enhance the security and privacy of SSI
systems and digital asset management, by enabling selective data sharing, secure iden-
tity verification, and decentralized asset management, all while maintaining individual
control over personal data.

The integration of public-key cryptography, SBTs, and ZKPs holds the promise
to transform our approach to SSI and data privacy. Empowering individuals with
enhanced control over their personal data and facilitating secure and private data
sharing in a decentralized fashion, these technologies will foster the development of a
trust-driven digital society.

In the identity protocol that we propose for privacy preservation, we’ve illustrated
the utilization of zkSBTs to represent attributes related to personal identity. Additionally,
ZKPs facilitate secure and private data sharing, eliminating the reliance on centralized
authorities. Through the integration of these technologies, we can establish a system
that empowers individuals to retain control over their personal data, selectively sharing
it with trusted parties while ensuring both privacy and security.

Moreover, it utilizes decentralized and distributed ledger technologies, such as
blockchain, to create trust and transparency in identity management. Transactions
and interactions documented on a blockchain are subject to audit and verification,
fostering trust between parties and diminishing the risk of fraud.

In this chapter we also have seen that the costs associated with the specified and
implemented protocol are reasonably affordable, aligning seamlessly with the desired
characteristics for managing a system for Private Identity-Related attribute verifica-
tion. We also have demonstrated that thanks to the inherent characteristics of the
technologies used in this protocol, we acquire key security properties.

Deploying the zkSBT protocol at scale involves several challenges that need to be
addressed to ensure its widespread adoption and effectiveness:

• Blockchain networks like Ethereum, while secure, can face scalability issues
when handling a large number of transactions simultaneously. This can lead
to increased transaction times and higher costs. To solve this, Layer 2 scaling
solutions, such as Polygon, can be used to alleviate network congestion and
reduce transaction costs. Additionally, ongoing developments in blockchain
technology, such as Ethereum 2.0, aim to enhance scalability.

• Generating and verifying Zero-Knowledge Proofs can be computationally in-
tensive, potentially slowing down the verification process. However, optimiza-
tion techniques in ZKP algorithms and the use of efficient ZKP frameworks like
zkSNARKs can reduce computational overhead. Research into more efficient ZKP
protocols, such as Zero-Knowledge Scalable Transparent Argument of Knowl-
edges (zkSTARKs), is ongoing and shows promise for further improvements.

• Ensuring that users can easily interact with the protocol and understand the
privacy benefits without being overwhelmed by the technical complexities. To
solve this, is important to develop intuitive user interfaces, such as the prototype
UI implemented in our project, and provide clear, user-friendly documentation
and support that can enhance user adoption.
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In considering future work for the implementation of a Private Identity-Related
Attribute Verification Protocol using SBTs and ZKPs, we think that several options merit
exploration to enhance the protocol’s functionality and address emerging challenges:

• Revocation mechanism for identity. To fortify the protocol’s adaptability, a
crucial aspect of future development involves exploring mechanisms for identity
revocation. Implementing a system that allows authorized entities to revoke an
individual’s identity under specific circumstances would further enhance the
security and flexibility of the protocol.

• Implementation of data expiration. To enhance the temporal control and pri-
vacy of the data shared through SBTs, a valuable option for future work involves
the incorporation of an expiration date mechanism. This feature would enable
authorities to set time limits on the validity of the data associated with SBTs sent
to Identity holders. Introducing this capability would not only align with evolving
privacy regulations but also provide individuals with greater autonomy over the
lifecycle of their shared information, contributing to the overall robustness of the
protocol.

• Enhanced token transfer control. The protocol could benefit from an extended
capability to reject the transfer of SBTs. Integrating the Rejectable NFT imple-
mentation, as outlined in Chapter 7, would improve the protocol by providing
identity holders with the ability to exercise control over the transfers of the zkSBTs
sent by authorities, aligning with evolving user preferences and security needs.

• Incorporation of off-chain data. Enabling the addition of off-chain data repre-
sents an essential avenue for future work. Investigating methods to seamlessly
integrate off-chain data, whether through decentralized solutions like IPFS or
centralized databases, would expand the protocol’s utility. This enhancement
would empower users to include a bigger amount of information while maintain-
ing the privacy and security afforded by the existing protocol.

• Utilizing EIP-4337 standard for mass adoption. To promote mass adoption of
the protocol, exploring compatibility with emerging standards is pivotal. In-
tegrating the EIP-4337 standard, which encompasses account abstraction and
introduces paymasters capable of sponsoring transactions for users, could signifi-
cantly enhance accessibility. This approach allows users to engage with the proto-
col without directly managing transaction costs, potentially fostering widespread
adoption.

In summary, these proposed avenues for future work aim to fortify the security,
flexibility, and usability of the Private Identity-Related Attribute Verification Protocol,
positioning it as a robust and adaptable solution in the rapidly evolving landscape of
digital identity and privacy technologies.

The potential advantages of a privacy-focused identity protocol employing public-
key cryptography, SBTs, and ZKPs are vast. Ranging from secure and private identity
verification to decentralized management of digital assets and controlled data shar-
ing, these technologies have the potential to foster a more fair and reliable digital
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environment. Consequently, we emphasize the importance of ongoing research and
development in this field for the advancement of privacy and digital security in the
future.
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CONCLUSIONS

This chapter synthesizes the findings from the thesis, providing a critical evaluation of
the research and its implications for the future of e-commerce and blockchain technol-
ogy. By addressing the research questions and objectives, this chapter contributes to a
deeper understanding of the challenges and opportunities presented by the integration
of blockchain in e-commerce.

17.1 Thesis summary

The thesis has explored the potential of blockchain technology in revolutionizing
e-commerce by enhancing security, transparency, privacy, and efficiency in online
transactions. Initially, it reviews the limitations and challenges inherent in traditional
e-commerce systems, such as security vulnerabilities, lack of transparency, and over-
reliance on centralized third-party intermediaries.

The research delves into the unique attributes of blockchain technology, such as
decentralization, immutability, and transparency, and assesses their applicability in
addressing the aforementioned challenges in e-commerce. It outlines the design, de-
velopment, and evaluation of novel blockchain-based e-commerce protocols aimed
at overcoming these limitations. These protocols leverage smart contracts, crypto-
graphic proofs, and blockchain’s inherent properties to facilitate secure, transparent,
and efficient online transactions.

Enumerated within this thesis are comprehensive analyses and developments of
various blockchain protocols for e-commerce, including:

1. Certified Notifications Protocols: Both two-party and multiparty formats, which
secure digital notifications without the need for Trusted Third Partys, enhancing
efficiency and privacy.

2. Rejectable NFTs Protocol: Introduces a user-centric approach for asset manage-
ment by allowing the rejection or acceptance of tokens.
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3. Contract Signing Protocols: Utilize blockchain to execute agreements securely
and efficiently, ensuring non-repudiation in B2B and B2C transactions.

4. Micropurchases Using Payment Channels Protocol: Offers a scalable solution
for microtransactions, reducing costs and processing times.

5. Decentralized and Confidential Digital Identity Protocol Using ZKP: Ensures
privacy-preserving identity verification, allowing users to prove identity attributes
without revealing personal data.

The study presents the implementation of smart contracts for different e-commerce
scenarios, offering insights into their real-world applicability, technical challenges, and
user acceptance.

Additionally, the thesis discusses the practical implications of integrating block-
chain technology into e-commerce, highlighting the existing gap between technological
capabilities and practical implementation. It acknowledges the need for user-friendly
interfaces, educational initiatives, and regulatory frameworks to bridge this gap and
facilitate wider adoption.

In summary, this thesis contributes to the academic and practical understanding
of how blockchain technology can be harnessed to advance e-commerce protocols,
making online transactions more secure, transparent, and efficient. It sets the founda-
tion for future research in this rapidly evolving field, pointing out potential areas for
improvement and further investigation. The exploration of these protocols underscores
the transformative potential of blockchain in e-commerce, while also highlighting sig-
nificant challenges that remain, including user accessibility, interoperability between
blockchain platforms, and the complexity of large-scale implementation.

17.2 Discussion

The integration of blockchain technology within e-commerce platforms has demon-
strated significant improvements in transactional transparency, security, and efficiency.
This study’s findings reveal how blockchain can mitigate common e-commerce chal-
lenges such as fraud, data breaches, and lack of trust among parties. By providing a
decentralized ledger for transactions, blockchain technology promotes an environ-
ment where all parties can verify transactional data directly, reducing the potential for
discrepancies and enhancing the overall trustworthiness of online markets.

However, while blockchain presents a robust solution, the research has also high-
lighted the challenges of integrating such a decentralized system, particularly regarding
scalability, economic cost of transactions, user adoption, and regulatory compliance.
The transition from centralized systems, which many businesses rely on due to their
established infrastructure and ease of use, to decentralized blockchains, introduces
technical, organizational, and legal hurdles. The study discusses strategies for overcom-
ing some of these barriers, such as developing hybrid models that combine the best
features of both centralized and decentralized systems, or decreasing economic costs
with different technical approaches.

Based on the comprehensive review of blockchain protocols and their implications
for e-commerce within the thesis, the integration of blockchain technology into e-
commerce protocols has shown to have profound impacts on enhancing transactional
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security, efficiency, and user privacy. Through the detailed examination of various
protocols, including two-party and multiparty certified notifications, rejectable NFTs,
contract signing protocols, micropurchases using payment channels, and identity-
related attribute verification protocol using SBTs and ZKPs, the study offers valuable
insights into the practical applications and challenges of blockchain in e-commerce.

The development and analysis of certified notifications protocols, both in two-party
and multiparty contexts, reveal the capabilities of blockchain to streamline and secure
the process of digital notifications. These protocols eliminate the need for Trusted
Third Partys (TTPs), enhancing the efficiency and integrity of electronic deliveries. The
confidential variants of these protocols further ensure the privacy of communications,
a critical aspect in business transactions and personal exchanges alike.

Rejectable NFTs introduce a novel approach to ownership and transferability, offer-
ing users the ability to reject or accept tokens, thereby providing a mechanism for more
user-centric asset management. This protocol signifies a departure from traditional
Non-Fungible Token standards by adding an extra layer of user consent, potentially
revolutionizing how digital assets are exchanged and controlled in online marketplaces.

The exploration of contract signing protocols on the blockchain demonstrates a
secure and efficient framework for executing agreements without the necessity for
intermediaries. By leveraging the immutable and transparent nature of blockchain,
these protocols offer a robust solution for facilitating binding agreements with non-
repudiation, a key requirement in both B2B and B2C e-commerce settings.

Micropurchases using payment channels protocol showcases a scalable solution
for handling small transactions, a common challenge in e-commerce. This protocol
reduces transaction fees and processing times, making it viable for a wide range of
microtransaction-based business models, from digital content purchases to IoT appli-
cations.

Lastly, the identity-related attribute verification protocol using SBTs and ZKPs
addresses one of the most pressing issues in online interactions: privacy-preserving
identity verification. This protocol enables users to prove their identity or the possession
of specific attributes without disclosing the actual data, a significant advancement in
protecting user privacy online.

These protocols collectively underscore the transformative potential of blockchain
in enhancing the foundational aspects of e-commerce, from transaction processing
to user privacy and digital identity verification. However, the findings also highlight
the existing challenges, such as scalability, user adoption, and regulatory compliance,
that need to be addressed to fully realize the benefits of blockchain technology in
e-commerce.

The exploration of blockchain protocols within this thesis underscores their trans-
formative capabilities for e-commerce, which herald notable improvements in transac-
tional efficiency and the safeguarding of user privacy. The in-depth analysis reveals that
these protocols hold considerable promise for revolutionizing e-commerce practices
by streamlining operations and enhancing the security framework. Nonetheless, the
research also delineates significant challenges that impede their widespread imple-
mentation. These include the need for enhanced user accessibility, ensuring seamless
interoperability across diverse blockchain platforms, and addressing the complexities
associated with large-scale deployment. Addressing these challenges is crucial for har-
nessing the full potential of blockchain technologies in e-commerce, pointing towards
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the necessity for ongoing innovation and strategic collaborations to overcome these
barriers and unlock the comprehensive benefits these protocols offer.

The study has extensively explored security and privacy considerations, which
are essential in e-commerce settings. The implementation of smart contracts and
Zero-Knowledge Proofs has been demonstrated to enhance data integrity and privacy,
allowing for secure and confidential transactions without revealing unnecessary in-
formation. However, the research also points out the inherent risks associated with
smart contract vulnerabilities and the challenges in achieving a balance between trans-
parency and privacy. This leads to a discussion on the importance of ongoing security
audits, the development of best practices for smart contract design, like the use of
Factory Clone programming pattern used in Chapter 11, and the potential for new
cryptographic methods to further enhance security without compromising efficiency.

The practical implications of applying blockchain technology in real-world e-com-
merce scenarios have been a significant focus of this thesis. The development and
testing of smart contracts for various e-commerce protocols have provided valuable
insights into their real-world applicability and user acceptance. While the results are
promising, the discussion acknowledges the gap between technological capability and
practical implementation, highlighting the need for user-friendly interfaces, and edu-
cational initiatives to facilitate wider adoption. Additionally, this segment explores the
economic and social implications of widespread blockchain adoption in e-commerce,
such as the potential for reduced transaction fees, increased market access for small
and medium-sized enterprises, and greater consumer protection and empowerment.

17.3 Contributions

This thesis has made significant contributions to the field of blockchain technology,
particularly in the realm of e-commerce protocols. The key contributions are as follows:

1. Development of Blockchain-based E-commerce Protocols: The thesis presents
a comprehensive study on the integration of blockchain technology into e-com-
merce systems. By designing and implementing innovative blockchain-based
solutions, this research addresses various e-commerce challenges such as fraud,
transparency, and efficiency.

2. Analysis of Blockchain Protocols for E-commerce: An extensive evaluation of
different blockchain protocols has been conducted, focusing on their suitability
for e-commerce applications. This includes a detailed examination of payment
channel networks, NFTs, and smart contracts, contributing to a better under-
standing of how these technologies can enhance e-commerce platforms.

3. Security and Privacy Considerations: This research has contributed to the se-
curity and privacy aspects of blockchain in e-commerce by implementing and
assessing the effectiveness of smart contracts and zero-knowledge proofs. These
mechanisms are crucial for maintaining data integrity and privacy in online trans-
actions, representing a significant step forward in developing secure e-commerce
platforms.
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4. Real-world Application and User Acceptance: The thesis goes beyond theoreti-
cal analysis by exploring the practical implications of applying blockchain tech-
nology in real-world e-commerce scenarios. This includes the development,
testing, and evaluation of smart contracts for various e-commerce protocols,
providing valuable insights into their applicability and user acceptance. Notably,
the collaboration with Masa1 for the implementation and deployment of zkSBT
smart contracts within the "Decentralized and Confidential Digital Identity Pro-
tocol Using ZKP" underscores the practical application and industry relevance of
the research findings.

5. Addressing Scalability and Interoperability Challenges: The research identifies
and proposes solutions to key challenges in integrating blockchain with existing
e-commerce systems, such as scalability and interoperability. This contributes
to the ongoing discussion on how to effectively adopt blockchain technology in
mainstream e-commerce operations.

6. Future Directions for Blockchain in E-commerce: Finally, the thesis outlines
potential future research areas, emphasizing the importance of user-friendly
interfaces, educational initiatives, and regulatory frameworks. This sets the
stage for further advancements in the field and encourages a multidisciplinary
approach to overcoming the current limitations of blockchain in e-commerce.

These contributions not only advance the academic understanding of blockchain
in e-commerce but also offer practical insights and solutions for businesses looking
to leverage blockchain technology to improve their online platforms. The partnership
with Masa, particularly, highlights the thesis’s impact on bridging theoretical research
with practical, real-world applications and deployments, emphasizing the potential of
blockchain technology to solve critical issues in digital identity verification and privacy.

17.4 Limitations

While this thesis has provided significant insights into the integration of blockchain
technology within e-commerce, there are several limitations to the study that should
be acknowledged:

1. Scalability and Performance: The blockchain protocols developed and tested
within this research demonstrate potential for improving e-commerce transac-
tions’ security and transparency. However, scalability remains a major concern.
The high transaction costs and slow processing times associated with popular
blockchain platforms like Ethereum could hinder widespread adoption, particu-
larly during peak times.

2. User Adoption and Experience: The thesis assumes a level of familiarity and
comfort with blockchain technology that may not exist among all e-commerce
users and businesses. The complexity and technical nature of blockchain could
deter widespread adoption without significant educational efforts and user-
friendly interface designs.

1https://masa.ai
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3. Regulatory and Legal Challenges: While the thesis explores the technical fea-
sibility of blockchain protocols in e-commerce, it does not delve deeply into
the regulatory and legal challenges. The lack of standardized regulations across
different jurisdictions could pose significant challenges to implementing these
solutions on a global scale.

4. Integration with Existing Systems: The research primarily focuses on block-
chain’s potential in isolation. In practice, integrating blockchain solutions with
existing e-commerce platforms and payment systems will present technical and
operational challenges not fully addressed in this study.

5. Privacy Concerns: Despite blockchain’s potential for enhancing transaction se-
curity, privacy concerns arise, particularly in public blockchain networks where
transaction details are transparent. The balance between transparency and pri-
vacy remains a complex issue that requires further exploration.

6. Middleware Dependence: The proposed protocols, particularly those involving
confidential notifications and contract signings, rely on middleware for certain
functionalities. This dependence could introduce a single point of failure and
might contradict the decentralized ethos of blockchain.

7. Real-world Identity Verification: The thesis does not fully address the challenge
of linking digital blockchain identities to real-world identities, which is crucial
for many e-commerce transactions, particularly in legal and regulatory contexts.

8. Technological Assumptions: The study’s findings are based on the current state
of blockchain technology and might not hold if significant technological advance-
ments or changes occur in the blockchain landscape.

This thesis has addressed and resolved many of the acknowledged limitations of
blockchain technology, thereby enhancing its practical applicability and effectiveness.
By identifying these gaps and providing solutions, the research laid out in this thesis
sets a strong foundation for future studies to build upon, aiming to further refine and
expand upon these advancements.

17.5 Future work

The chapter concludes with recommendations for future research, emphasizing areas
such as cross-chain interoperability, privacy-preserving mechanisms, and the devel-
opment of more scalable blockchain solutions. The potential for integrating emerging
technologies like AI and IoT with blockchain for e-commerce is also discussed, suggest-
ing a multidisciplinary approach for future studies. Building upon the current research,
the following future directions are recommended:

1. Rust Implementation of Proposed Algorithms: Future studies could explore
implementing the proposed blockchain protocols using Rust, a programming
language known for its safety and performance features. This could particularly
be beneficial for protocols where security and speed are paramount. Additionally,
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17.5. Future work

examining the feasibility of deploying these algorithms on the Solana blockchain,
known for its high throughput and lower transaction costs, could address some
of the scalability issues identified in this thesis.

2. Use of EIP-4337 Account Abstraction: The implementation of EIP-4337[183]
could be explored in future research to simplify user interactions with blockchain-
based e-commerce platforms. Account abstraction could allow for more user-
friendly transaction processes, potentially increasing blockchain technology’s
adoption among non-technical e-commerce users. Notable additions of this stan-
dard include gasless transactions, account recovery facilitated by multi-signature
wallets, as well as the integration of social recovery features.

3. Integration of Blockchain-Based Identity Systems: Current protocols identify
users solely by their blockchain addresses. Future research should explore the
integration of blockchain-based identity systems, which would enable interac-
tions based on verified user identities rather than anonymous addresses. This
integration could enhance security and trust in blockchain transactions, facili-
tating more personalized and legally compliant interactions across various plat-
forms. Such systems could include identity verification (KYC processes) used
on Centralized Exchanges, or leveraging self-sovereign identity systems that use
Decentralized Identifiers (DIDs) on the blockchain, providing a reliable method
to associate users with their accounts.

4. Exploration of IPFS for Encrypted Data: Future work will delve into a more de-
tailed examination of using the InterPlanetary File System (IPFS) for encrypted
data storage in blockchain networks. This research will address potential vulner-
abilities associated with the public sharing of sensitive information, aiming to
reinforce data security while maintaining system integrity.

5. Adoption of the Foundry Framework: Future work should consider utilizing
the Foundry framework for testing, deploying, and compiling smart contracts.
This framework can provide a more efficient and streamlined development envi-
ronment, facilitating the creation of robust and secure blockchain protocols for
e-commerce.

6. Cross-Chain Interoperability: Further research should focus on enhancing cross-
chain interoperability to enable seamless transactions across different blockchain
networks. This would address the current limitations related to platform depen-
dency and promotes a more integrated and efficient blockchain ecosystem for
e-commerce.

7. Privacy-Preserving Mechanisms: Continuing the development of privacy-pre-
serving mechanisms is crucial. Future research should delve deeper into the inte-
gration of advanced cryptographic techniques, such as Zero-Knowledge Proofs
and homomorphic encryption, to balance transparency and privacy in block-
chain-based e-commerce.

8. Scalability of Blockchain Solutions: Addressing the scalability challenges iden-
tified in this thesis is critical for the future success of blockchain in e-commerce.
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17. CONCLUSIONS

Research should focus on developing more scalable blockchain solutions that can
handle large volumes of transactions without compromising speed or increasing
costs.

9. Integration with Artificial Intelligence (AI) and Internet of Things (IoT): The
integration of blockchain with other emerging technologies like Artificial Intelli-
gence (AI) and the Internet of Things (IoT) presents a promising route for future
research. These integrations could lead to more intelligent, automated, and
personalized e-commerce experiences, further enhancing efficiency and user
satisfaction.

By focusing on these areas, future research can build upon the foundations laid by
this thesis, addressing its limitations and contributing to the continued evolution and
application of blockchain technology in the e-commerce sector.
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