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Life is like riding a bicycle.
To keep your balance, you
must keep moving.

(Albert Einstein)

To all the beings that made this possible. To you as a reader.



Abstract
Background: Mathematical modeling is a required skill in systems and synt-
hetic biology. However, mastering the creation of mathematical models for
molecular systems biology typically involves a steep learning curve. Despite
the availability of numerous modeling tools, few incorporate interfaces that ex-
pedite this process by enhancing user-friendliness in modeling, simulation and
analysis. EasyModel was designed with a user-friendly philosophy to facilitate
the learning curve, accommodating both novice and advanced users effectively.

Methods: The main element of this work is the development of the web-based
tool EasyModel. EasyModel was designed to offer a user-friendly experience
in the scope of modeling, simulation and analysis of biological systems. The
tool has been developed using the Java EE technology in conjunction with the
Vaadin web UI framework, the Wolfram Mathematica calculus platform, the
MySQL database manager and others. Features include: deterministic and
stochastic simulations, steady state seeking, gains and sensitivities analysis,
parameter scanning analysis, kinetic laws as mathematical formalisms, downlo-
ad of the generated Mathematica notebook, import/export of models in SBML
file format and more.

Results: The present work presents the version 2.4 of EasyModel. This version
upgrades from Vaadin 8 to 24 offering an up-to-date and sleeker user interface.
It also introduces some functional improvements as a simulation job queue
system where users can launch simulation jobs at anytime and share the results
as well. The execution speed of the stochastic simulation has been improved
to approximately four times faster. Tool is available at: https://easymodel.
udl.cat.

Conclusions: EasyModel helps the novel user in systems biology modeling
by placing a user-friendly web interface layer over the Mathematica calculus
engine. Expert users can download the generated Mathematica notebook for
further tailoring and performing more advanced simulations and analyses.
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Resum
Introducció: La modelització matemàtica és una habilitat necessària per a la
biologia de sistemes i la biologia sintètica. No obstant això, dominar la creació
de models matemàtics per a la biologia molecular de sistemes sol implicar
una corba d’aprenentatge pronunciada. Malgrat la disponibilitat de nombroses
eines de modelització, poques incorporen interfícies que agilitin aquest procés
al millorar la facilitat d’ús en la modelització, simulació i anàlisi. EasyModel ha
estat dissenyat amb una filosofia de fàcil ús per facilitar la corba d’aprenentatge,
ajudant tant als usuaris novells com als avançats de manera efectiva.

Mètodes: L’element principal d’aquest treball és el desenvolupament de l’eina
web EasyModel. EasyModel ha estat dissenyada per oferir una experiència fàcil
d’utilitzar en l’àmbit de la modelització, simulació i anàlisi de sistemes biolò-
gics. L’eina s’ha desenvolupat utilitzant la tecnologia Java EE conjuntament
amb el framework d’interfície web Vaadin, la plataforma de càlcul Wolfram
Mathematica, el gestor de bases de dades MySQL i altres. Les característiques
inclouen: simulacions deterministes i estocàstiques, recerca d’estat estacionari,
anàlisi de guanys i sensibilitats, anàlisi d’escaneig de paràmetres, lleis cinèti-
ques com a formalismes matemàtics, descàrrega del notebook de Mathematica,
importació/exportació de models en format de fitxer SBML i més.

Resultats: El present treball presenta la versió 2.4 d’EasyModel. Aquesta
versió actualitza la versio de Vaadin de 8 a 24, oferint una interfície d’usuari
més actualitzada i refinada. També introdueix algunes millores funcionals,
com ara un sistema de cua de treballs de simulació on els usuaris poden llançar
treballs de simulació en qualsevol moment i compartir els resultats. La velocitat
d’execució de la simulació estocàstica s’ha millorat en aproximadament quatre
vegades. L’eina està disponible a: https://easymodel.udl.cat.

Conclusions: EasyModel ajuda als usuaris novells en la modelització de bi-
ologia de sistemes mitjançant una capa d’interfície web fàcil d’utilitzar sobre
el motor de càlcul de Mathematica. Els usuaris experts poden descarregar el
notebook de Mathematica generat per personalitzar-lo encara més i realitzar
simulacions i anàlisis més avançades.
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Resumen
Introducción: La modelización matemática es una habilidad necesaria para la
biología de sistemas y la biología sintética. Sin embargo, dominar la creación de
modelos matemáticos para la biología de sistemas moleculares suele implicar
una curva de aprendizaje pronunciada. A pesar de la disponibilidad de nume-
rosas herramientas de modelización, pocas incorporan interficies que agilicen
este proceso al mejorar la facilidad de uso en la modelización, simulación y
análisis. EasyModel fue diseñado con una filosofía de fácil uso para facilitar la
curva de aprendizaje, ayudando de manera efectiva tanto a usuarios novatos
como avanzados.

Métodos: El elemento principal de este trabajo es el desarrollo de la herra-
mienta web EasyModel. EasyModel fue diseñado para ofrecer una experiencia
amigable en el ámbito de la modelización, simulación y análisis de sistemas
biológicos. La herramienta se ha desarrollado utilizando la tecnología Java EE
junto con el framework de interfaz web Vaadin, la plataforma de cálculos Wol-
fram Mathematica, el gestor de bases de datos MySQL y otros. Las caracterís-
ticas incluyen: simulaciones deterministas y estocásticas, búsqueda de estado
estacionario, análisis de ganancias y sensibilidades, análisis de escaneo de pa-
rámetros, formalismos matemáticos, descarga del notebook de Mathematica,
importación/exportación de modelos en formato SBML, etc.

Resultados: El presente trabajo presenta la versión 2.4 de EasyModel. Esta
versión actualiza la versión de Vaadin de 8 a 24, ofreciendo una interfaz de
usuario más actualizada y refinada. También introduce algunas mejoras funcio-
nales, como un sistema de cola de trabajos de simulación en el que los usuarios
pueden lanzar trabajos de simulación en cualquier momento y compartir los
resultados. La velocidad de ejecución de la simulación estocástica se ha me-
jorado en aproximadamente cuatro veces. La herramienta está disponible en:
https://easymodel.udl.cat.

Conclusiones: EasyModel ayuda al usuario novato en la modelización de bio-
logía de sistemas al colocar una capa de interfaz web fácil de usar sobre el
motor de cálculos de Mathematica. Los usuarios expertos pueden descargar el
notebook de Mathematica para personalizarlo aún más y realizar simulaciones
y análisis más avanzados.
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1 Introduction and scope of the
research

Mathematics is the
language of nature, and
biological systems are its
expressions waiting to be
decoded.

(Albert Einstein)

Over the past few years, we’ve witnessed a notable uptick in the number of
user-friendly tools designed for modeling and simulating biological networks.
However, many of these tools are hindered by their limited range of applicability
and operational functions. At the same time, math-oriented languages like
Wolfram Mathematica (1, 2) offer greater modeling flexibility but necessitate a
higher level of user expertise. To address these concerns, this project endeavors
to supply a user-friendly web application that’s linked to the Mathematica
calculation language, thereby encouraging non-expert users to leverage this
powerful platform for their biological network modeling needs.

EasyModel (see Figure 1.1) is a user-friendly web application presented in
this thesis that empowers researchers to simulate and model their own biologi-
cal network models. With its intuitive interface and customizable features, this
application makes it easy for users to design and refine their models in a stream-
lined and efficient manner. Overall, EasyModel represents a powerful tool for
researchers seeking to analyze and better understand biological networks. The
application provides users with the flexibility to design and customize their own
models, reactions, and kinetic rate functions. In addition, EasyModel includes
numerous predefined and commonly used kinetic rate functions to facilitate the
modeling process.

In addition to the user-friendly property, it’s also important to note that
Easymodel provides value to expert users as well. Specifically, those who pos-
sess a higher degree of familiarity with the Mathematica symbolic language
can benefit from the option to download and fine-tune the code generated by
the application to better suit their individual use cases. This generated Math-
ematica notebook contains the full model as well as the simulation using the
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Mathematica language, so it can be executed in a local Mathematica instal-
lation. As a result, this project is well-suited to meet the needs of a broader
range of users and has the potential to be a valuable resource for the scientific
community as a whole.

We believe this tool will be a very useful service for researchers in Systems
and Synthetic Biology that want to create, simulate and analyze mathematical
models of biological circuits in a user-friendly way.

The present work discusses the latest version 2.4 of EasyModel.

Figure 1.1: EasyModel: a user-friendly web-based tool for model building,
simulation, and analysis in systems and synthetic biology.

1.1 Background
Molecular systems biology is a quantitative and integrative discipline that heav-
ily relies on the use of mathematical and statistical models. Thus, creating and
analyzing mathematical models are important skills for the systems biologist.
Acquiring these skills is usually a task with a slow learning curve.

Developing tools for the modeling and analysis of biological systems has al-
ways been a challenge. Currently, there is a considerable amount of tools for
modeling and simulation of biological systems (3, 4). Many of them are stan-
dalone and provide a fixed set of functionalities. Still, a small number of more
general platforms for mathematical computation (PMC), such as Mathemat-
ica (1) or Maple (5), can also be adapted for systems biology modeling. These
PMC offer the possibility of developing code to extend their already impressive
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set of functionalities. Mathematica and Maple stand aside from other PMCs
because they also support symbolic analysis. Users of a PMC for systems bi-
ology modeling must become experts in the coding language of the platform.
This drawback can be overcome by implementing a user-friendly application
that uses the PMC as the motor for calculations, as other modeling tools have
already demonstrated (6, 7, 8).

We have developed EasyModel to use the Wolfram Mathematica PMC as
the simulation motor and combine it with a user-friendly interface suitable for
the beginner mathematical modeler. EasyModel background is the mathemat-
ical modeling in systems biology. Specifically, it deals with kinetic modeling
of molecular biology networks. This means that the models work with flux re-
actions. Each reaction determines which substrates and regulators are needed
to generate a given set of products. Associated to each flux reaction there
is a rate function that determines the rate at which the reaction occurs, as a
function of the substrates and regulators.

While EasyModel stands out for its user-friendly graphical user interface
(GUI), it also provides the possibility of developing more advanced functionality
for expert users that will be described in further chapters.

1.2 Mathematical modeling in biology systems
A biological system is defined as a set of physical entities, usually numerous and
diverse, that influence each other and that are physically and functionally sep-
arated from their environment (9). The functional separation is a consequence
of the fact that biological systems are far from thermodynamic equilibrium, in
contrast with the environment. Thus, in order to analyze biological systems,
researchers must create a conceptual model of the system, where all the rele-
vant elements are included and unsubstantial elements are omitted. A need for
a mathematical model often arises due to the non linear dynamics of biolog-
ical systems. Such mathematical models can represent these dynamics, thus
providing a prediction method for the behavior of the system. Mathematical
models of biological systems are designed to allow researchers to attain qual-
itative and quantitative understanding and control over the systems that the
models represent (see Figure 1.2).

Molecular systems biology is a rapidly evolving and interdisciplinary field that
employs quantitative and integrative approaches in biomedical and biological
research. It seeks to unravel the intricate interactions between the molecular
components of cells and gain a comprehensive understanding of their behav-
ior (10). Computational methods play a crucial role in this discipline, enabling
researchers to analyze complex biological data and construct mathematical
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Figure 1.2: Mathematical modeling process in biosciences.

models that provide insights into cellular processes (11).
The integration of computational tools and techniques allows systems biolo-

gists to study biological systems at multiple scales, from individual molecules to
entire organisms (11). This integrative approach facilitates the identification
of key regulatory networks, signaling pathways, and functional relationships
between different biomolecules (12). As a result, researchers can elucidate the
emergent properties that arise from the collective behavior of these compo-
nents, shedding light on fundamental biological processes and disease mecha-
nisms (12, 13).

One of the important tools for research in Molecular Systems Biology is the
creation and analysis of mathematical models. These models serve as a virtual
representation of biological systems and enable researchers to simulate and pre-
dict cellular behaviors under different conditions (14). They provide a valuable
means to test hypotheses, optimize experimental designs, and guide future in-
vestigations. Through model-driven analyses, systems biologists can uncover
hidden patterns, validate experimental findings, and generate novel predictions,
enhancing the overall understanding of complex biological phenomena.

In addition to traditional experimental techniques, molecular systems biol-
ogists employ an array of computational tools, such as data mining, machine
learning, network analysis, and statistical modeling (11). These computational
methods empower researchers to extract meaningful information from vast
datasets and decipher complex biological relationships that may not be readily
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apparent through conventional approaches.
As a result of its quantitative nature and reliance on computational methods,

acquiring skills in molecular systems biology can be a challenging and gradual
process (13). Proficiency in these techniques often requires a combination of
biological knowledge, mathematical aptitude, and programming expertise. As-
piring systems biologists need to familiarize themselves with diverse disciplines,
including bioinformatics, genomics, systems theory, and statistics. However,
the growing availability of online courses, workshops, and research-oriented
programs can facilitate the learning journey for students and researchers inter-
ested in this field.

To stay at the forefront of this rapidly evolving discipline, systems biologists
must keep abreast of the latest advancements in computational tools and tech-
nologies (11). Moreover, collaboration with experts from various fields, such as
biology, computer science, and engineering, can foster a synergistic approach
to tackle complex biological questions and promote innovation in molecular
systems biology (12).

One of the primary goals of systems biology is to examine the emerging prop-
erties that arise from the interactions among molecular components within
cells. The ultimate objective is to identify design principles within molec-
ular and cellular circuits. These principles are derived from exploring the
topologies (15, 16, 17), parameter ranges (18, 19, 20), and dynamic behav-
iors (16, 21) of specific biological circuits. By correlating the impact of design
variations with the “fitness” of an organism (22, 23) and considering the action
of natural selection on alternative circuit designs, these studies help illuminate
why diverse designs for the same function can exist in different organisms.

1.3 Objectives
The primary objective of this project has been to develop a software program
for modeling and simulation in systems biology that offers a user-friendly ex-
perience, especially for newcomers such as students in the field. By simplifying
the learning curve, the software aims to make the subject more accessible. The
project has been aptly named EasyModel, reflecting its emphasis on providing
an intuitive and easy-to-use platform for modeling and simulation of biological
systems.

Before developing this project, expert users could use Wolfram Mathemat-
ica as a modeling, analysis and simulation environment to work with biological
systems. Mathematica stands as a formidable engine for mathematical model-
ing, boasting an expansive collection of pre-built functions that are suitable for
biological systems modeling. However, the utilization of Mathematica within
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the realm of systems biology necessitates a deep understanding of the Mathe-
matica symbolic programming language to manually construct and scrutinize
models. Unfortunately, this requirement renders Mathematica less accessible
to newcomers and students venturing into the realm of systems biology.

The inception of EasyModel was driven by the intention of bridging the gap
between novice users and the potent capabilities of Mathematica, as applied
to mathematical modeling in systems biology. Our approach involved crafting
an intuitive graphical user interface (GUI) that interfaces seamlessly with the
intricate functionalities of Mathematica. This GUI serves as a conduit that
simplifies the interaction with the robust Mathematica functions, making them
more user-friendly and approachable.

To further enhance the tool’s usability, we strategically designed EasyModel
as a web application. To do so, we leveraged the Java capabilities to connect to
the Mathematica kernel through the specific programming library. This decision
ensures accessibility to a broader audience, enabling individuals with nothing
more than a browser and internet connection to engage with the application.
This inclusive approach transcends operating system constraints and eliminates
the prerequisite of possessing a commercial Mathematica license.

Notably, EasyModel isn’t solely aimed at novices; it also significantly ben-
efits expert users. It encompasses fundamental operations as well as more
advanced features e.g. stochastic simulations and parameter scanning. By
providing a more streamlined workflow, it alleviates the potential for errors
and time wastage that may arise when manually constructing models within
the intricacies of Mathematica programming language code. Furthermore, for
those who are proficient in Mathematica, the application offers the choice to
download a Mathematica notebook file that encompasses the complete gen-
erated Mathematica code, encompassing the model, simulation, and analysis
components. This provides experienced users the flexibility to explore more
advanced operations by utilizing a locally installed Mathematica.

In essence, EasyModel serves as a conduit between the world of systems
biology and the immense capabilities of Mathematica. By fashioning a user-
friendly entry point and harnessing the web application framework, we’ve fos-
tered an environment where learners, students, and experts can get access to
mathematical modeling with ease.

1.4 Thesis contribution
Although there is already a considerable amount of tools for modeling and
simulation of biological systems (3, 4), many of them take a scientific user
interface approach, thus hindering its use to novel users. The main contribution
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of this thesis has been the development of the EasyModel tool, which cares for
the initiating user into this field of tools.

EasyModel has made a notable contribution to the systems biology com-
munity by providing an intuitive and user-friendly platform for modeling and
simulating biological systems. It simplifies the process of constructing and an-
alyzing models, enabling users to simulate both deterministic and stochastic
behaviors with ease. EasyModel allows users to perform dynamic and stochas-
tic simulations, making it suitable for studying complex molecular interactions,
gene regulation, and cellular processes.

A key feature of EasyModel is its use of Wolfram Mathematica to perform the
underlying calculus operations, similar to other advanced tools in the field. This
integration allows for robust computation and accurate simulations, leveraging
Mathematica’s powerful engine to handle complex biological systems efficiently.
As EasyModel allows advanced users to download the generated Mathematica
notebooks, it enables them to further leverage the capabilities of the Mathe-
matica program. This feature is relatively unique in the field of systems biology
software, as it provides users with the opportunity to directly interact with and
modify the underlying Mathematica code used in the simulations.

In addition to dynamic simulations, EasyModel supports parameter scanning
and sensitivity analysis, giving researchers deeper insights into model behavior
under various conditions. Its ability to handle parallel simulations helps reduce
computation time, particularly when running stochastic simulations that require
multiple replicates.

By supporting standard formats like SBML, EasyModel promotes collabora-
tion, data sharing, and reproducibility, making it a valuable tool for the systems
biology research community. Its versatility, combined with the computational
power of Mathematica, allows researchers to tackle both simple and large-scale
models effectively.

EasyModel development has focused primarily on providing a user-friendly
experience. The current version 2.4 also caters to advanced users by enabling
some advanced simulations and functionalities. While other simulation tools
may offer a broader range of simulation options, this was not the main objective
of EasyModel.

We believe this web application will meet the needs of both novice and expert
users and provide a valuable addition to the current array of tools in the field
of modeling and simulation in systems biology. A comparison with other tools
will be discussed in the following Chapter 2, Related Work.
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building and analysis of simple mathematical models in systems biol-
ogy. In Proceedings of the 19th International Conference Computational
and Mathematical Methods in Science and Engineering (CMMSE 2019),
Rota, Spain, June 30 - July 6, 2019.

• Bartolome, J.; Alves, R. and Solsona, F. (2019). EasyModel: user
friendly tool for building and analysis of simple mathematical models in
systems biology. In Proceedings of Workshop project IMPACTS (2019),
Universitat de Lleida, Lleida, Spain, 2019.

• Bartolome, J.; Alves, R. and Solsona, F. (2020). EasyModel 1.1: User-
friendly Stochastic and Deterministic Simulations for Systems Biology
Models. In Proceedings of the 13th International Joint Conference on
Biomedical Engineering Systems and Technologies (BIOSTEC 2020) -
BIOINFORMATICS; ISBN 978-989-758-398-8; ISSN 2184-4305, SciTePress,
pages 145-149. DOI: 10.5220/0008966001450149.

1.6 Availability and requirements
EasyModel is freely available on the web. No user registration is required. All
that is needed to use it is a standard web browser.

• Project name: EasyModel.
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• Project home page: https://easymodel.udl.cat/.

• Source code: https://github.com/jordibart/easymodel/.

• Operating system(s): Platform-independent. Tested on Linux, Win-
dows, macOS and Android.

• Programming language: Java, Mathematica and SQL.

• Other requirements: Any standard web browser. Tested on Mozilla
Firefox, Google Chrome, Safari and Microsoft Edge.

• License: GNU GPL.

• Any restrictions to use by non-academics: None.
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2 Related work
The true sign of intelligence
is not knowledge but
imagination.

(Albert Einstein)

A comparison between 12 software packages was carried out on June 2006 (3).
The comparison highlighted which applications were more appropriate to use
in a given task requirements. It was aimed for non-expert users who needed
to choose in an easy way a package by taking into account all the required
points of their kinetic modeling. The key points compared in this compari-
son were: running operating system, system requirements, cross-compatibility,
open sourced, type of user interface, compartmentalization support, type of
simulation engine, functionality for model analysis and others. Overall, the
study concluded that there was a fair amount of overlap in the functionality
of the software packages but that each of them was best suited for specific
classes of problems or systems. Certain software problems were uncovered in
this study which encouraged tool developers to improve their software. Despite
this, study stated that the available tools at that moment were a formidable
array of tools for applying mathematical models in biological research. The
fact that this kind of tools become one of the usual laboratory tools primarily
depends on how the software improve and on how the mainstream molecular
biology shifts its focus to understand how molecular processes work within the
larger context of biological systems.

Furthermore, another study was carried out on December 2015 (24). The
study concluded that Systems Biology Toolbox and COPASI could be a good
choice for academics. On the other side, Cellware, COPASI and Virtual Cell
could be a more appropriate choice for non-academic users.

Yet another study simulated the same systems in various software and then
compared the obtained simulating results (25). It was observed that there was
almost no differences in the accuracies of the simulated systems. The slight
changes in results were caused by the algorithms that were used for solving
the ordinary differential equations that were computed by distinct optimization
methods. The study also observed that each tool demanded different computa-
tional power, specially when the simulated system dimensions were increased.
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Also, authors observed that tools written in C++ were faster in execution time
since they used a compiled language.

2.1 Comparing EasyModel with other
stand-alone software

Stand-alone software refers to applications designed to operate independently,
without relying on other software or external services for their core functions. In
the context of modeling and simulation in systems biology, stand-alone tools
are particularly valuable because they offer self-contained environments that
include all the necessary components, libraries, and resources within a single
package. These applications typically run locally on a user’s device, such as a
desktop or laptop computer, and are capable of performing complex simulations
and analyses without requiring continuous network connectivity or additional
external modules.

For modeling and simulation tasks in systems biology, stand-alone soft-
ware often integrates advanced computational algorithms, extensive biologi-
cal databases, and user interfaces—whether graphical or text-based—into a
cohesive system. This integration enables researchers to build, simulate, and
analyze biological models effectively, even when offline. The absence of depen-
dencies on external services ensures that users can rely solely on the software’s
built-in features and tools without needing to access remote servers or cloud-
based resources.

In the following paragraphs, EasyModel will be compared to other stand-
alone software with similar and related features.

A similar stand-alone software is COPASI (26, 27) (see Figure 2.1)(available
for Windows, Linux, and Mac OS X), which is the successor to Gepasi (28)
(available for Windows). COPASI excels in handling both simple and complex
models, offering a user-friendly interface and advanced features. These include
stochastic simulation methods, essential for studying systems with inherent
randomness, and multicompartmentalization.

Randomness in biological systems often arises from the stochastic nature of
molecular interactions, especially when dealing with small numbers of molecules.
Stochastic simulations, such as the Gillespie algorithm, allow researchers to
capture this randomness and observe how it influences system dynamics. In
contrast to deterministic models, which provide the same result given the same
initial conditions, stochastic models generate different outcomes with each sim-
ulation run. This is crucial for studying processes like gene expression, where
randomness can lead to significant variation in cellular behavior.
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Multicompartmentalization refers to the modeling of biological systems as
divided into distinct compartments, each with its own specific environment
or set of conditions. This is particularly important when simulating processes
that occur in different cellular locations, such as the nucleus, cytoplasm, or
extracellular space. Multicompartmental models allow for the movement of
substances between these compartments, simulating more realistic biological
behaviors, such as diffusion, transport, and compartment-specific reactions.
This feature enables the accurate modeling of spatial heterogeneity, which can
significantly affect system behavior.

Figure 2.1: COPASI: A stand-alone software in systems biology.

EasyModel draws inspiration from various software tools, including COPASI,
but it distinguishes itself through several key differences. While COPASI offers
a robust platform for simulating and analyzing biochemical models, EasyModel
places a stronger emphasis on user-friendliness, particularly through its web-
based interface. This design choice makes EasyModel more accessible to a
broader audience, especially those who may not have extensive experience with
traditional simulation software.
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One of the primary distinctions is that EasyModel leverages the Mathemat-
ica kernel for performing complex calculus operations, which allows for more
sophisticated mathematical modeling. This integration with Mathematica not
only enhances the computational power of EasyModel but also provides users
with the unique ability to download the generated Mathematica code. This
feature is particularly valuable for advanced users who wish to customize their
simulations and analyses beyond the standard capabilities of the software. In
contrast, COPASI does not offer this level of flexibility, as it does not support
exporting or modifying the underlying simulation code in a similar manner.

Thus, while both tools are powerful in their own right, EasyModel is specifi-
cally designed to combine ease of use with the advanced analytical capabilities
provided by Mathematica, making it a versatile tool for both novice and expert
users.

Another noteworthy software is Virtual Cell (29), which also connects to an
Internet simulation server. Unlike EasyModel, Virtual Cell is a desktop ap-
plication (Windows/Linux/Mac OS X) that must be installed locally, though
the actual simulations are performed remotely on a server. It supports multi-
compartmentalization, offers a diagrammatic user interface for graphical model
definition, and provides features like stochastic simulation. Virtual Cell offers
free user accounts for storing biological models and facilitates collaboration
through shared project access. In contrast, EasyModel does not require local
installation, sharing the remote server simulation approach and user account
access. Additionally, EasyModel offers more comprehensive assistance through-
out the modeling process.

PLAS (30) (Power Law Analysis and Simulation) ) is a simulation tool for
Windows that offers similar functionality to EasyModel. It features a plain text
editor where users input the various stages of model construction, including
transformations (dynamic variables and constants definition) and differential
equations, across multiple lines. Like EasyModel, PLAS is well-suited for ed-
ucational purposes, as it requires users to define and understand each step of
the modeling process. However, EasyModel enhances usability by providing a
graphical user interface (GUI) instead of a text editor, making the modeling
process more intuitive and accessible.

The applications mentioned above are standalone and do not depend on pow-
erful calculation engines like Mathematica (1), MAPLE (5), or MATLAB (31).
This limitation restricts the level of customization available in these tools.
In contrast, applications integrated with Mathematica, MAPLE, or MATLAB
can leverage the advanced programming languages and predefined calculation
engines provided by these platforms, allowing for greater flexibility in model
building and analysis.

For example, the Systems Biology Toolbox (24) for MATLAB facilitates the
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analysis and simulation of biological and biochemical systems. The user in-
terface is primarily text-based, relying on a command line or text editor. The
toolbox includes features such as network identification, sensitivity analysis,
and bifurcation analysis. Researchers can also extend its capabilities by writ-
ing custom scripts in MATLAB. It supports various methods for deterministic
simulations as well as exact and approximate stochastic simulations. However,
the Systems Biology Toolbox requires users to have proficiency in MATLAB
programming. Similar tools are available for Mathematica and Maple, but they
share the same limitations.

In contrast, EasyModel focuses on delivering a user-friendly interface, making
it accessible even to those without prior knowledge of Mathematica.

2.2 Comparing EasyModel with other web-based
tools

In contrast to stand-alone applications, web applications in the realm of mod-
eling and simulation in systems biology are specifically designed to operate
within a web browser and generally depend on server-side components or cloud
services to function effectively. Unlike stand-alone applications, which are self-
contained and run locally on a user’s device, web applications rely on continuous
network connectivity to access and interact with server-based resources.

In the context of systems biology, web-based modeling and simulation tools
often utilize server-side components to perform complex computations, manage
large datasets, and handle intricate simulations that might be too resource-
intensive for local machines. These server-side components are responsible for
various tasks, including data processing, storage, and user authentication, all
of which are crucial for the web application’s core functionality. For instance,
these components may process and analyze large-scale biological data, store
simulation results, and maintain user accounts and permissions.

In the following paragraphs, EasyModel will be compared to other web-based
tools with similar and related features.

A notable tool in systems biology worth highlighting is JWS Online (6, 32)
(see Figure 2.2). Similar to EasyModel, JWS Online uses Mathematica as its
underlying calculus engine and supports a range of simulations and analyses.
The tool offers comprehensive features, including databases for users, models,
simulations, and manuscripts, and it supports SBML, just like EasyModel. Its
user interface is robust and user-friendly, though it can be overwhelming for
beginners. The availability of online documentation is a significant advantage.

JWS Online also includes features that EasyModel currently lacks, such as
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Figure 2.2: JWS Online: A web-based application in systems biology.

visual representation of model schemas and reaction plots. It is an incredibly
valuable resource for biologists. However, EasyModel offers unique advan-
tages, particularly for novice users, by easing and accelerating the learning
curve. Additionally, EasyModel offers advanced features not available in JWS
Online, such as stochastic simulations, kinetic laws derived from mathemati-
cal formalisms, and the ability to modify and simulate models from its public
database. While JWS Online provides a public database of curated models,
it does not allow users to modify these models for subsequent simulations, a
capability that EasyModel supports.

Overall, both JWS Online and EasyModel are powerful tools, each catering
to different audiences and needs in the field of systems biology.

Another noteworthy simulation tool is the APMonitor Optimization Suite (33,
34, 35), which adopts a different approach to solving problems. Unlike Easy-
Model, APMonitor uses its own modeling language, allowing users to define
models in a plain text editor, similar to the previously discussed PLAS soft-
ware. This approach provides significant flexibility, enabling programmers to
introduce new features more easily and focus heavily on expanding the tool’s
capabilities through coding.

Such tools are highly beneficial for expert users, offering a broad range of
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solutions. However, this flexibility comes at the cost of accessibility; the com-
plexity and extensive feature set result in a steeper learning curve compared to
a tool like EasyModel. Despite this, APMonitor compensates with comprehen-
sive online documentation and a series of webinars designed to educate its users
over time. The software is freely available online and can also be accessed as
a MATLAB toolbox and a Python package. Additionally, the developers offer
the GEKKO Python package for dynamic optimization.

Both EasyModel and APMonitor serve distinct user bases effectively. Easy-
Model excels in user-friendliness and accessibility, making it ideal for users with
less programming experience, while APMonitor provides powerful, flexible tools
for advanced users who require a more customizable environment.

Cellware (36) is a versatile simulation tool designed for modeling and simu-
lating both deterministic and stochastic cellular events. It effectively handles
the complexity of cellular processes by offering a broad range of simulation
methods. The tool features an intuitive diagrammatic graphical user interface,
making it accessible to users at various expertise levels. Cellware’s computa-
tional tasks are managed through a grid computing environment, leveraging
network resources rather than local hardware. Developed in Java, it is com-
patible with Windows, UNIX, and macOS. Its last release dates back to 2005,
which may lead to compatibility issues with modern operating systems. Addi-
tionally, the official website is no longer available, but we wanted to mention
Cellware due to its relevance as a comparative tool to EasyModel.
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3 Methods
Technology is best when it
becomes invisible,
empowering us to achieve
what once seemed
impossible without being
noticed.

(Alan Kay)

This chapter will provide an in-depth overview of EasyModel, including its
main features, application capabilities, technical implementation details, math-
ematical modeling notation, version history, availability and more.

3.1 EasyModel features
The most important implemented features of EasyModel are summarized in
Table 3.1.

These features have been formulated following the objectives that we set
for this project after analyzing the state of the art of similar applications,
conducted in the chapter 2, Related Work.
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Global Features

Type of application Web-based application. Users do not need to install any
application on their computers. More convenient for users.

User Interface Graphical User Interface.
Modern and sleek UI powered by Vaadin web framework.
User-friendly experience for both novel and expert users.
Low number of clicks to get to any functionality.
Step-oriented—from modeling to simulation—design.
Tutorial for beginner users.
Help button available across the application.

Calculus engine Wolfram Mathematica PMC
Downloadable Mathematica notebook of model and simulation.
Only one Mathematica kernel can be executed concurrently,
so a simulation job queue is used.
Mathematical formalisms can be defined within the Mathematica
language.

Models storage MySQL database.
Stores pre-implemented models and registered users information.
Predefined formulas available.

Tool Views
Tutorial A tutorial explaining all the basic use steps.
Model selector Starting page and first step.

New users are advised to read the tutorial.
Select from public-available models or create a new one.
SBML file format model import.

Model builder Definition of model name and description.
Definition of reaction processes.
Definition of species and variable types.
Definition of kinetic rate laws.
Import predefined rate laws into the current model.
Assign rate laws with parameters to reactions.

Simulation configurator Dynamic simulation. Species evolution over a period of time.
Steady State simulation. Seek of system’s equilibrium.
Stochastic simulation. Species evolution over a period of time.
Analyses. Gains, sensitivities, stability and parameter scan.
Configuration of plot views based on dependent variables.
Plot settings to define general graphics configuration.

Simulation results Results displayed in real-time.
Simulation cancelable at any time.
Launched simulations control panel.
Simulations downloable as graphics and text files.
Download of Mathematica notebook and model SBML file.
Results can be shared via hyperlinks.

Administration panel Restricted to administrators.
Administration of user, model and formula data entries.

Table 3.1: EasyModel’s main features.
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3.2 EasyModel implementation design
Figure 3.1 summarizes the overall EasyModel architecture.

Figure 3.1: EasyModel implementation architecture.

EasyModel has been built mainly over the Jakarta EE (37) programming
environment. Jakarta EE is the evolution of Java EE (Java Platform, Enterprise
Edition), a set of specifications that extend the Java SE (Standard Edition)
platform to provide a framework for developing robust, scalable, and secure
enterprise-level applications. After Oracle donated Java EE to the Eclipse
Foundation in 2017, the platform was rebranded as Jakarta EE, marking a new
phase in its development with a focus on community-driven innovation.

To build the web user interface, we chose the Vaadin (38) Flow web user
framework for Java. Vaadin Flow is a modern web framework for building rich,
interactive web applications entirely in Java. Unlike traditional web develop-
ment approaches that require developers to work with multiple languages (such
as HTML, CSS, and JavaScript) for the front end and Java for the back end,
Vaadin Flow allows developers to create the entire web application using only
Java. This approach simplifies the development process and enables developers
to focus on writing business logic rather than dealing with the complexities of
front-end development.

Vaadin Flow is considered a Full Stack Web Framework. A full stack appli-
cation is one that encompasses both the front-end (client-side) and back-end
(server-side) aspects of a web application. This means it handles everything

19



from the user interface and experience (UI/UX) to the underlying server logic,
database interactions, and server-side processing.

For performing the calculations for the simulations and analyses we chose the
Wolfram Mathematica (1) PMC (see Figure 3.2). Mathematica is a proprietary
software system developed by Wolfram Research, designed for symbolic com-
putation, numerical analysis, data visualization, and more. It is widely used in
various scientific, engineering, mathematical, and computing fields for complex
calculations and simulations. Mathematica offers a vast range of built-in func-
tions and algorithms that cover areas such as algebra, calculus, graph theory,
machine learning, and statistical analysis.

Figure 3.2: Wolfram Mathematica frontend on Microsoft Windows.

One of the key features of Mathematica is its ability to perform symbolic
computations, which allows it to manipulate mathematical expressions in sym-
bolic form, such as solving equations analytically or simplifying complex expres-
sions. This makes it a powerful tool for both theoretical research and practical
applications. In the case of EasyModel, this was a crucial factor, as it enabled
us to execute a wide range of complex mathematical operations essential for
the advanced calculations typically required in systems biology. Despite not
being open-source software, we chose it because it offers extensive functional-
ity and is widely recognized and utilized in the academic community we aim
to serve.
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We chose Vaadin because it is ideal for building user-friendly web interfaces
and integrates seamlessly into our Java application, which needs to connect
with Mathematica. Opting for a web application approach offers significant
advantages: It frees users from needing a personal Mathematica license, which
would be required if this were a locally installed application. Additionally, it
alleviates the need for users to own a powerful computer capable of handling
Mathematica’s computational demands, although this concern is diminishing
as technology becomes more affordable.

However, this approach comes with a notable limitation—only one user can
run simulations at a time. While EasyModel’s current user base is not large
enough for this to be a pressing issue, it could become problematic if the user
base grows. Addressing this limitation would require an expensive license, but
for now, our current setup is adequate.

It’s important to note that we strictly adhere to Wolfram’s policies; users
are not allowed to execute arbitrary code on our Mathematica license. They
are only permitted to run predefined Mathematica code for simulations. The
connection between the Java application and Mathematica is facilitated using
Wolfram’s proprietary JLink library, which enables communication with the
Mathematica kernel for both sending and receiving data. To optimize data
exchange between Java and Mathematica, we batch data into large chunks,
which helps to improve execution speed.

To address the limitation of having only one concurrent Mathematica kernel,
we developed a simulation job queue system to enhance user experience by
eliminating the need to wait for kernel availability. This issue was a significant
drawback in previous versions, impacting the tool’s effectiveness. In the latest
version, we implemented a simulation job queue system within the Java code.
This system operates through a dedicated Java thread running parallel to the
main web application execution thread.

While the main application processes user web requests, the simulation job
queue independently handles incoming jobs. When a new job is detected, the
system spawns a new thread to execute the simulation on the Mathematica
kernel. Although this solution is complex, it was deemed essential for improving
application usability. The implementation has proven to be highly effective,
significantly enhancing the tool’s performance and user experience.

To store the model and user data, we utilized the MySQL Community (39)
database manager. This open-source database manager is renowned for its
reliability and performance, offering robust support for a range of data storage
and retrieval needs. Its compatibility with various platforms and programming
languages makes it a versatile choice for managing the application’s data,
ensuring efficient handling of user interactions and model storage.

The application has been primarily coded in Java, though other languages
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have also been utilized, including Mathematica’s symbolic language, MySQL
query language, HTML for markup, and CSS for styling. These languages
collectively support the development of EasyModel.

The development environment chosen for this project was the JetBrains Intel-
liJ IDEA (40), which provided a powerful and versatile Integrated Development
Environment (IDE) for Java programming (see Figure 3.3). Coupled with the
Amazon Corretto 17 OpenJDK Java Platform (41), this setup ensured a stable
and up-to-date Java development environment. Maven (42) was used as the
dependency manager for the web application. For web application deployment,
we utilized the Apache Tomcat (43) web application server. To test the Math-
ematica code, we used the Wolfram Mathematica (1) version 14 in graphical
mode. To test the database environment we used the Laragon (44) universal
development environment which includes a MySQL server and the possibility
to deploy a phpmyadmin local website to manage the MySQL databases.

Figure 3.3: JetBrains IntelliJ IDEA on Microsoft Windows: The current Java
IDE used in the development of EasyModel.

In the initial stages of developing EasyModel, we used the Eclipse Java EE
IDE (45) instead of IntelliJ IDEA and employed Vaadin 6 rather than the
current Vaadin 24. The migration from Vaadin 8 to Vaadin 24 required a
substantial amount of work, as it involved a complete revision and rewriting of
the UI code to accommodate the updated Vaadin 24 coding syntax. Despite the
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significant investment of time and effort, we consider the upgrade to Vaadin 24
to have been worthwhile, as it greatly improved the application’s functionality
and user experience.

To implement the SBML (46, 47) file format specification for model ex-
change, the JSBML (48) Java library was used. SBML will be explained in the
following sections.

To deploy the EasyModel web application, the following requirements must
be met: a Java Runtime Environment, a MySQL Database Server, and Wol-
fram Mathematica software with a valid license. The application has been
successfully tested for deployment on both Linux and Microsoft Windows op-
erating systems.

3.3 Modeling
EasyModel employs a conceptual representation of molecular biology networks,
enabling users to model and analyze complex biological systems effectively. In
this representation, networks are broken down into individual reactions or pro-
cesses that involve the consumption of substrates, the generation of products,
and the modulation of reaction rates by modifiers such as activators or in-
hibitors. Each reaction’s speed rate is governed by an associated kinetic rate
law, which governs the rate at which the reaction proceeds. The integration
of all these elements conforms a mathematical model of the biological network
of interest (see Figure 3.4).

Users provide the program with the individual reactions using the notation
from the Equation 3.1.

n1 ∗ S1 + . . .− > m1 ∗ P1 + . . . ;M1; . . . (3.1)

In the Equation 3.1, Si refer to the substrate species (left-hand side of the
arrow). ni and mi refer to the stoichiometric coefficients for the substrates
and products, respectively. Finally, Mi refer to the modifier species (found at
the end and separated by a semicolon character).

A kinetic rate law needs to be associated to each of the reactions defined for
the model. These rate laws are mathematical functions that define the pace
at which reactions will occur. When associating rate laws to reactions, rate
parameters must be defined. Rate parameters can take either numerical values
or be linked to model species that behave like mathematical variables.

EasyModel offers predefined standard formalisms (Mass Action, Power Law,
Saturating, Saturating Cooperative, Henri-Michaelis Menten, Hill Cooperativ-
ity, Catalytic Activation and Competitive Inhibition and more (49)) that users
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Figure 3.4: A generic reactions diagram of a systems biology model.

can import into the model and use without the need to write functional for-
mulas.

Users can also create custom made formulas through the user interface. To
define custom rates and mathematical formalisms, see the following "How to
define rate expressions" text outline.

How to define rate expressions
Usable operators: + -/*^()
Reserved symbols:

Mathematica functions/constants: m:<Mathematica function >
Mathematica function indexes: i:<index >
Special variables:

b:t -> Time.
b:X[] -> Mathematica substrate list.
b:A[] -> Mathematica substrate coefficient list.
b:M[] -> Mathematica modifier list.
b:XF -> First substrate.
b:MF -> First modifier.
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Example: m:Product[b:X[[i:j]]^g[[i:j]],{i:j,1,m:Length[b:X]}]

Formulas definition also allow to set up reaction linking restrictions. This
means the formula will not be able to be bound to a reaction that doesn’t
comply with the formula restrictions. Possible restrictions that can be applied
to formulas are described in the next text outline.

Optional formula restrictions
-One substrate only.
-No products.
-One modifier only.

The species of a model can either be time-dependent (dependent variables)
or time-independent (independent or control variables). By default EasyModel
makes every variable dependent and attributes it an initial value of 1 concen-
tration units. Users can then change the initial value and type of the variables.

EasyModel doesn’t so far support multi-compartmentalization, so it is re-
sponsibility of the user to adjust the models manually if more than one com-
partment is considered.

Regarding the EasyModel model editor user interface (see Figure 3.5): It is a
combination of explicit textual interface and dialog boxes. Models are defined
in text mode, that is, users define reactions line by line using the reaction
syntax. Rate laws are also defined in text mode (see Figure 3.6).

Figure 3.5: EasyModel: Defining reactions in a model.
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Figure 3.6: EasyModel: Defining a custom formula in a model.

3.4 Types of simulation and analysis
Table 3.2 shows the different simulations and analysis supported by EasyModel.

Deterministic Simulations
Dynamic simulation Time evolution of the system.

Steady State simulation Search for the steady state of the system.
Stability analysis available.

Gains and Sensitivities Calculated for rate parameters and independent variables.
Available for dynamic and steady state simulations.

Parameter Scan Calculated for rate parameters and independent variables.
Available for dynamic and steady state simulations.

Stochastic Simulations
SSA method Exact numerical solution of the time evolution of the system.

Not available for all models.

τ -leaping method Approximated solution to reduce the CPU time of the SSA
method.
Not all models can benefit from it.

Table 3.2: EasyModel’s types of simulations.

3.4.1 Deterministic regime
Deterministic simulations numerically simulate ODE systems using determin-
istic algorithms (50). These simulations provide accurate descriptions of sys-
tems that have a large amount of molecules.
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An ODE, or Ordinary Differential Equation, is a mathematical equation that
describes the relationship between a function and its derivatives. In simpler
terms, it relates a dependent variable (often representing a physical quantity
like position, velocity, or concentration) to its rate of change with respect to
an independent variable, typically time. In the case of EasyModel, we take
the dependent variable to be the species concentrations and the independent
variable to be time.

Performing dynamic simulations generates concentration plots describing
the time course of the various dependent variables of the system from an
initial time (usually zero) to a final simulation time decided by the user.

Performing a steady state simulation directly calculates the non-trivial equi-
librium steady state of the system. This is done using Mathematica’s default
algorithms to find the roots of the ODE system. To account for pathologi-
cal failures of the root finding algorithms, if no roots are found, a dynamic
simulation with a final time of 500000 time units is performed. The final con-
centrations for this simulation are then inserted into the rate equations and
tested to see if a steady state is reached (see Algorithm 1).

Algorithm 1 Steady State Algorithm
1: Input: Rate Equations and Model ODE
2: Output: Steady State Concentrations
3: procedure CalculateSteadyState(RateEquations, ODE)
4: Root = FindRoot(RateEquations = 0, Random)
5: if Root ≤ threshold then
6: SteadyState = Root
7: else
8: t = 500000
9: SolvedODE = SolveODE(ODE, t− 1, t+ 1)

10: Root = FindRoot(RateEquations = 0, SolvedODE(t))
11: if Root ≤ threshold then
12: SteadyState = Root
13: else
14: SteadyState = empty
15: end if
16: end if
17: return SteadyState
18: end procedure

To perform steady state stability analysis, EasyModel determines the local
stability of a steady state by calculating the eigenvalues for the Jacobean
matrix of the system at steady state and testing to see if all real parts of those
eigenvalues are negative (stable steady state) or not (51).
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Local gains and sensitivities analyses are calculated as described in (52). In
short, this analyses measures the effect of changing a control variable (gains)
or parameter (sensitivities) on the dynamic or steady state behavior of the
system without changing those parameter directly. Both magnitudes can be
calculated for Dynamic and Steady State simulations.

Parameter scan allows to conduct a global sensitivity analysis (see Fig-
ure 3.7). This functionality allows the user to directly observe the effect of
changing a parameter or control variable on the dynamic behavior of the sys-
tem. To do so the user selects the parameter (or control variable) that will
be analyzed and defines the minimum and maximum values that it can as-
sume. When running the simulation, EasyModel will perform the selected
basic simulation (e.g. Dynamic simulation) and after that it will perform the
Parameter Scan by systematically launching multiple versions of the same base
simulation. These simulations will be performed individually by changing the
parameter value between its minimum and maximum values. The range of
values is divided into a user-defined number of intervals, using either a linear
or a logarithmic scale. The user may select multiple parameters to scan at once
and they will be displayed in the results separated by two factors: by dependent
variables and by selected parameters to scan. This display separation makes it
easier for the user to identify the changes in the model.

Parameter scanning is available for both dynamic and steady-state simula-
tions in the deterministic regime. The Parameter Scan is executed in parallel
across CPU cores for each parameter value, helping to reduce overall execution
time. Implementing Parameter Scan for stochastic simulations is feasible but
would require significantly more time compared to deterministic simulations.

3.4.2 Stochastic regime
Stochastic simulations were introduced into EasyModel after the deterministic
simulations. This type of simulation still numerically solves ODE systems that
describe the dynamic behavior of molecular networks. However, the numerical
solution relies on using a stochastic approximation instead of a deterministic
one. In very simple terms, only one process or reaction is executed in each
simulation step. The decision regarding which process is fired relies on a
random number that is generated in each integration step, used in combination
with the rate functions. This is a more accurate simulation procedure for
molecular systems with a small number of molecules (53). Still, it requires
significantly more computational time to be performed than the equivalent
deterministic simulation. Not all models can be simulated in the stochastic
regime, EasyModel will warn the user if that is the case.

The simulation engine uses deterministic simulation algorithms to solve
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Figure 3.7: An example of parameter scanning using BioModel 101. We
change the value of parameter kcd of the second reaction between
0 and 2, at intervals of 0.2. EasyModel performs a dynamic sim-
ulation for each single value in the scanning range, enabling our
understanding of how changing the parameter value will change
systemic behavior. The plot on the right side of the figure illus-
trates this effect for variable RII.

differential equation models. This kind of simulation is less computational-
demanding than the ones done using more realistic stochastic simulation algo-
rithms such as the Gillespie algorithm. However, as a rule of thumb one should
be aware that differences in the results of the simulations are only noticeable
when less than 1000 molecules are involved in the simulation.

Stochastic simulation algorithms were implemented by us, as no such prede-
fined algorithm is available in Mathematica. First, we implemented and thor-
oughly tested the Gillespie’s Stochastic Simulation Algorithm (SSA) (54,
55) by comparing the results of simulating the same model with deterministic
and stochastic simulation algorithms (see Figure 3.8). This algorithm provides
accurate simulations at the cost of an increase of the computational time.

In deterministic simulations, a system starting from a specific set of initial
conditions will always follow the same dynamic behavior, regardless of how
many times the simulation is repeated. In contrast, each run of a stochastic
simulation produces a unique time trajectory. Due to this variability, stochas-
tic simulations must be repeated multiple times—across several replicates—to
ensure that none of the individual trajectories deviate significantly from the
median behavior of the system. To reduce execution time, EasyModel exe-
cutes these independent replicates using parallel computing threads. The more
replicates are performed, the more precise and smooth the plot becomes (see
Figure 3.9).

Typically, the more replicates are plotted, the closer the plotted median
trajectory aligns with its deterministic counterpart. However, stochastic simu-
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Figure 3.8: A comparison of the results produced by deterministic and stochas-
tic simulations on the BioModel 191 Arginine catabolism model.
In this model, species follow a similar trajectory in all the differ-
ent simulation methods. a deterministic ODE solve method. b
stochastic SSA method. One stochastic replicate.c stochastic τ -
leaping method. One stochastic replicate.

lations do not always reproduce the same deterministic behavior. In fact, they
can provide different and potentially more accurate representations, especially
in simulations involving fewer than 1000 molecules.

Deterministic simulations rely on the assumption that the number of molecules
involved is sufficiently large, allowing stochastic fluctuations to be ignored and
concentrations to be treated as continuous variables. It is also important to
note that EasyModel does not yet support spatially non-homogeneous models,
which would require the use of partial differential equations (PDEs).

EasyModel works by default with concentrations. This is fine to operate
within the deterministic regime. However, stochastic simulations operate using
number of molecules. To account for this, EasyModel performs a numerical
translation based on a selectable cell size, which can be configured before
starting the simulation.

Regarding plotting of stochastic simulations, individual plots are generated
for each dependent variable, displaying the time course for all replicate curves
of that variable.

In addition, EasyModel implements stochastic simulation linear noise
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Figure 3.9: A comparison of the results produced by the SSA stochastic
method on the BioModel 191 Arginine catabolism model using dif-
ferent number of replicates. a Plot produced with one stochastic
replicate. b Plot produced with eight stochastic replicates. c Plot
produced with sixteen stochastic replicates. d Plot produced with
thirty two stochastic replicates.

analysis (56) (see Figure 3.10). This analysis of the intrinsic noise of the
system is a more appropriate tool than sensitivity analysis to understand the
limitations and regulation of a molecular system working in the stochastic
regime. EasyModel displays this analysis in the form of two graphics: One of
them shows the 0.25, the median and the 0.75 quantile coefficient of dispersion,
while the other one calculates the coefficient of variation according to paramet-
ric (standard deviation/median) and non-parametric ((Q0.75-Q0.25)/Median)
approaches. EasyModel automatically generates separated noise analysis for
each dependent variable of the system.

EasyModel is not the only tool capable of performing linear noise analysis in
the stochastic regime. Other simulation applications, such as NetBioDyn (57)
and StochPy (53), offer similar functionalities. However, these alternatives
either lack the user-friendly features that EasyModel provides or employ dif-
ferent modeling methodologies. For example, NetBioDyn is a user-friendly
agent-based simulator that uses different mathematical approaches than Easy-
Model. In contrast, StochPy is a Python package that requires programming
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Figure 3.10: Example of a stochastic simulation run on BioModel 3. Simula-
tion performs 6 replicates on the model using the SSA method. a
medians of all the dependent variables of the model. b The 6 tra-
jectories calculated for the time-dependent variable X. c Stochas-
tic noise analysis for variable X : Quantile coefficients of dispersion.
d Stochastic noise analysis for variable X : Coefficients of varia-
tion.

skills, making it less accessible to users without a coding background.
We also implemented a more efficient stochastic simulation algorithm known

as the τ -leaping method (58, 59, 60, 61, 62, 63, 64). This algorithm po-
tentially increases the simulation speed at the cost of an acceptable accuracy
loss in the simulation results. Not all models can benefit from the increased
efficiency of this algorithm compared to the SSA algorithm. This algorithm
has undergone multiple revisions, resulting in several different versions. We
implemented the "Efficient step size selection for the tau-leaping simulation
method" version of the τ -leaping method (64).

3.4.2.1 Stochastic algorithms

The Gillespie’s Stochastic Simulation Algorithm (SSA) (see Algorithm 2)
operates by simulating the occurrence of individual reaction events in a system
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where randomness is inherent, typically in systems with low molecular counts.
The algorithm calculates the time until the next reaction and determines which
reaction will occur based on their respective probabilities (54, 55).

The SSA follows these steps:

1. Calculate propensities: For each reaction, compute the propensity
function, which reflects how likely the reaction is to occur in a small
time interval. This depends on the number of molecules and the reac-
tion rates.

2. Generate random numbers: Two random numbers, r1 and r2, are
generated from a uniform distribution between 0 and 1. These random
numbers are used to determine the next event.

3. Time step calculation: The time to the next reaction event is calculated
using the first random number r1 and the total sum of propensities. The
time step is computed as:

∆t =
1

a0
ln

(
1

r1

)
where a0 is the sum of all reaction propensities.

4. Select reaction: The second random number r2 is used to select which
reaction will occur, by comparing r2 to cumulative propensities.

5. Update system: Once a reaction is selected, the state of the system is
updated to reflect the occurrence of that reaction (e.g., molecule counts
are modified).

6. Repeat: The process is repeated until the simulation reaches the desired
final time or the system reaches equilibrium.

This algorithm captures the inherent randomness of molecular interactions
in biochemical systems, making it especially useful for simulating biological re-
actions with small molecule counts where deterministic methods fail to capture
the stochastic effects.

The second implemented stochastic algorithm is the τ -leaping method (see
Algorithm 3), which improves computational efficiency by allowing multiple
reactions to occur within a single time step, τ . Unlike the original Gillespie
SSA, which simulates one reaction at a time, the τ -leaping method simulates
several reactions simultaneously, significantly reducing computational cost.

The version implemented in EasyModel follows the improved τ -leaping method
described in Efficient step size selection for the τ -leaping simulation method (64).
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Algorithm 2 Stochastic Simulation Algorithm (SSA) - Gillespie Algorithm
1: Input: Set of N molecular species S = (S1, . . . , SN ), M chemical re-

action channels R = (R1, . . . , SM ), initial number of molecules X(0) =
(X1(0), . . . , XN (0)), final time Tmax

2: Output: System state at each time step described by the vector X(t) =
(X1(t), . . . , XN (t) where Xi(t) is the number of molecules of species Si in the
system at time t

3: t = 0
4: while t < Tmax do
5: Compute propensity functions aj(X) for each reaction Rj , j = 1, . . . ,M ,

where X is the state of the system in the current time step
6: Compute total propensity a0(X) =

∑M
j=1 aj(X)

7: Generate two random numbers r1, r2 uniformly distributed in (0, 1)

8: Compute time to next reaction τ = 1
a0

ln
(

1
r1

)
9: Determine which reaction will occur: Find j such that

∑j−1
k=1 ak(X) < r2 ·

a0(X) ≤
∑j

k=1 ak(X)
10: Update system state: X = X +∆Xj , where ∆Xj is the change vector for

reaction Rj

11: Update time: t = t+ τ
12: end while
13: return X(t)
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This version dynamically adjusts the step size, τ , to optimize both speed and
accuracy.

The algorithm operates as follows:

1. Calculate propensities: As in SSA, the propensity functions for each
reaction are computed based on the current state of the system.

2. Estimate the leap condition: For each reaction, the algorithm esti-
mates whether a leap step (with multiple reactions occurring) is valid,
based on the system’s current state. The key goal is to avoid taking
too large of a leap, which would violate the assumptions about how
propensities change.

3. Determine optimal time step τ : The time step τ is selected dynam-
ically to ensure stability and accuracy. The efficient step size selection
algorithm adjusts τ to balance between accuracy and speed, based on
how rapidly the propensities are changing. This ensures that the leap
condition holds within the time step.

4. Poisson sampling: The number of occurrences for each reaction within
the time step τ is sampled from a Poisson distribution with a mean equal
to the product of the reaction’s propensity and τ :

ki ∼ Poisson(ai · τ)

where ki is the number of times reaction i occurs, and ai is the propensity
of reaction i.

5. Update system: The system’s state is updated by applying the effects
of all reactions sampled during the time step τ . This results in a leap
forward in time where multiple reactions occur simultaneously.

6. Adjust τ and repeat: Based on the updated system state, a new τ
is calculated for the next step. The process repeats until the desired
simulation end time is reached or the system reaches a steady state.

This improved version of the τ -leaping method offers an optimal trade-
off between speed and accuracy, allowing larger time steps when possible,
while dynamically reducing τ when necessary to maintain the validity of the
simulation. It is particularly useful for systems where the reactions have large
disparities in their propensities.
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Algorithm 3 Efficient Step Size Tau-Leaping Algorithm
1: Input: Set of molecular species S = (S1, . . . , SN ), set of chemical reac-

tion channels R = (R1, . . . , SM ), set of initial number of molecules X(0) =
(X1(0), . . . , XN (0)), final time Tmax

2: Output: System state at each time step described by the vector X(t) =
(X1(t), . . . , XN (t)

3: Initialize time t = 0
4: while t < Tmax do
5: Compute propensity functions aj(X) for each reaction Rj , j = (1, . . . ,M)

and a0(X) =
∑M

j=1 aj(X)
6: (1) Determine Jc for critical reactions and Jncr for non-critical reactions.

Any reaction Rj with aj(x) > 0 is deemed critical if min
i∈[1,N ];vij≤0

[ xi
|vij |

] < 10

7: if (2) Jnoncritical ̸= ∅ then
8: Compute τ ′ = min

i∈Inoncritical

{max{∈xi/gi,1}
|µ̂i(x)|

, max{∈xi/gi,1}2

|σ̂2
i (x)|

}

9: else
10: Set τ ′ =∞
11: end if
12: if (3) τ ′ < 10

a0(x)
then

13: Abandon temporally the tau leaping method and execute 100 single-
reactions SSA steps and return to step (1)

14: end if
15: (4) Compute acritical

0 (x) and generate a second candidate time leap τ ′′ as a
sample of Exp( 1

acritical
0 (x))

16: if (5a) τ ′ < τ ′′ then
17: Set τ = τ ′ and generate k to indicate reactions Rj that will be fired

during this time leap. For critical reactions, set kj = 0. For non-critical reactions,
generate kj ∼ Poisson(aj(x) · τ)

18: else if (5b) τ ′′ ≤ τ ′ then
19: Set τ = τ ′′ and generate k. Set kj = 0 for all critical reactions except for

one selected with Random(aj(x)/a
c
0(x)) set as kj = 1. For non-critical reactions,

generate kj ∼ Poisson(aj(x) · τ)
20: end if
21: if (6) any negative value in x+

∑
j kjvj then

22: Set τ ′ = τ ′

2
and return to step (3)

23: else
24: Leap by replacing t← t+ τ and x← x+

∑
j kjvj

25: end if
26: end while
27: Return X(t)
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3.4.2.2 Automatic stochastic method chose

Following EasyModel’s user-friendly philosophy, we implemented a quick-to-
execute internal control test that tentatively determines if a model can be
simulated using stochastic algorithms or not. Then, if the system can be sim-
ulated using stochastic algorithms, EasyModel further tentatively determines
if the model is more efficiently simulated using the τ -leaping algorithm or not.

This control test begins by executing 1000 simulation steps of the SSA
algorithm. If the system does not move away from its initial conditions, the
stochastic simulation is deemed not possible. If the simulation moves away
from its initial condition, EasyModel calculates the total SSA execution time
and the reached final simulation time after performing 1000 simulation steps.

Then, another stochastic simulation is performed using the τ -leaping method
until it reaches the simulation final time reached during the SSA simulation.
Once the τ -leaping pass is completed, we calculate the τ -leaping boost using
the Equation 3.2.

τ -leapingboost = (SSAexecution time)/τ -leapingexecution time)− 1 (3.2)

This rate value determines the gain in execution speed that the τ -leaping
method has over the SSA method on a particular model. If the calculated
gain is greater than zero, then EasyModel automatically deems the τ -leaping
algorithm as the recommended stochastic simulation method.

A limitation of this test is that it only analyses the beginning part of the
simulation. If performance gains are only achieved at later stages of the simu-
lation, EasyModel may end up choosing the least efficient algorithm. Still, in
all our tests with these and other models we found that usually τ -leaps are dis-
tributed along the simulation time course, which implies that such a selection
procedure will choose the most efficient algorithm most of the time.

To improve efficiency, this test is only executed during the first time the
model is simulated on the system. The result that indicates if the model can
be simulated using the SSA or the τ -leaping method is stored in the database
to avoid future calculations. Once the value is on the database, EasyModel
uses this value to inform the user about the model’s compatibility with the
stochastic regime when selecting this option on the simulation configurator.

3.5 Mathematica
Mathematica is considered one of the leading tools in the field of computa-
tional mathematics and symbolic computation. Developed by Wolfram Re-
search, it is widely used for mathematical modeling, scientific computing, data
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visualization, and algorithm development. Its comprehensive set of features
and powerful capabilities make it a top choice for researchers, engineers, and
scientists in various disciplines.

EasyModel benefits greatly from Mathematica’s extensive capabilities. Math-
ematica’s advanced computational engine enables EasyModel to handle com-
plex mathematical operations and large-scale simulations with ease. Its sym-
bolic computation abilities are crucial for manipulating and simplifying mathe-
matical expressions analytically, which aids in deriving insights and performing
precise calculations.

Despite the benefits, there are some drawbacks to using a platform like
Mathematica for a project like this, which we have addressed:

• Cost: Mathematica requires a paid license, making it relatively expensive
compared to other mathematical and computational tools. To address
this, we developed the tool to be accessed through a network using a
web application server. This approach ensures that only the owner of the
web server needs to handle the licensing cost. However, there are certain
limitations with this solution. For instance, only one Mathematica kernel
can be executed concurrently, meaning that any additional requests must
be placed in a waiting queue. To comply with Mathematica’s licensing
policies, EasyModel does not allow users to execute arbitrary Mathemat-
ica code to be executed on the server. Users can only execute a set of
pre-established commands that have been programmed into EasyModel,
specifically for the scope of our work.

• Steep learning curve: While powerful, Mathematica can be challenging
to learn, especially for beginners who are not familiar with its syntax
and programming style. We address this by implementing a user-friendly
interface on the web application with the open-source Vaadin web user
interface framework.

• Resource-intensive: Mathematica can be demanding on system resources,
particularly for large-scale computations, which may require a powerful
computer to run efficiently. We address this by deploying the application
on a remote web server, so the user doesn’t have to worry about this
aspect.

• Closed ecosystem: Mathematica is a proprietary software, meaning users
are limited to its ecosystem and may find it difficult to integrate with
other open-source tools or languages. Fortunately, the Mathematica
platform can be accessed through various libraries, such as the Java Link
library, which we conveniently used to connect with our program written
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in Java. This library enables a Java program to connect with a Math-
ematica kernel—essentially a Mathematica command prompt console—
that can exchange data in both text and binary formats.

As outlined, we successfully addressed the limitations associated with using
a PMC like Mathematica, which reinforced its suitability as a viable option for
the development of EasyModel.

EasyModel provides the capability to download the generated Mathematica
code, enabling further customization with a local Mathematica instance. The
code is downloaded as a Mathematica notebook and includes both the model
implementation and the associated simulation.

3.6 Simulation job queue system
In EasyModel 2.4, we introduced the Simulation Job Queue System, a feature
that was critical for improving the application’s usability. Although previous
versions of EasyModel were user-friendly, they had a significant limitation:
Due to licensing restrictions, we could only use a single Mathematica kernel
at a time. Moreover, user access to the Mathematica kernel was unmanaged,
meaning only one user could execute a simulation at any given time. If a user
attempted to run a simulation while the kernel was in use, they would receive
a message like "Mathematica is busy, please try again later." This was highly
inconvenient, as users had to manually retry launching the simulation without
any guarantee of success.

To address this issue, we implemented a queue system (see Figure 3.11)
that manages all simulation job requests to ensure none are left out. This
solution required expertise in Java threading as well as a deep understanding
of Vaadin’s asynchronous push user interface updates.

The Simulation Job Queue System operates on a continously running thread.
This thread continuously monitors the state of a LinkedList data structure
which holds the received pending jobs submitted by the users. When a pending
job is detected in the list, the system moves it to the Running state and
removes it from the queue. Once the Mathematica task is completed, the
queue system removes the job from the Running state and checks the list for
any additional pending jobs. This ensures a smooth and efficient process for
managing multiple simulation requests, significantly enhancing the overall user
experience.

Each simulation job is managed by a dedicated thread manager. This thread
manager is responsible for setting a timeout period and tracking the completion
status of the simulation job. The actual thread that performs the Mathematica
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operations is launched last. This thread executes the mathematical operations
by interacting with the Mathematica kernel through the JLink Java library.
Simulation jobs can be completed either by the successful end of the task, by
user cancellation, or by timeout.

Figure 3.11: EasyModel’s Simulation Job Queue System diagram.

3.7 Data storage
To store the application’s persistent data, we employed the widely used MySQL
database management system. We designed the EasyModel database using a
traditional relational database schema, which currently comprises 10 tables
interrelated by foreign keys (see Figure 3.12). To facilitate the connection
between the Java application and the database, we utilized the popular JDBC
driver library for Java.

Each Java entity class that needs to be stored in the database includes spe-
cific methods for various database operations: inserting new entities, updating
existing ones and deleting entities. For entities like Model, which have several
associated sub-entities, any database operation cascades down to the under-
lying classes, ensuring data consistency across related tables. The database is
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primarily divided into two main areas: model data and user data.
To enhance connectivity and optimize data transmission speed, a single

database connection is established during the EasyModel startup process and
remains active throughout the application’s runtime. This connection is then
properly closed during the shutdown process, ensuring efficient resource man-
agement.

During the application’s design, security was a key consideration. User pass-
words are securely stored using a strong cryptographic hash algorithm, and the
login dialog is specifically designed to protect user information from poten-
tial attacks. We have also implemented measures to prevent database query
injection by utilizing the latest methodologies throughout the application, safe-
guarding it against common vulnerabilities that hackers may exploit for data
collection. By prioritizing user privacy, EasyModel ensures that sensitive infor-
mation and user data remain confidential and safeguarded from unauthorized
access. This focus on data protection not only fosters a sense of trust and
confidence among users but also encourages open sharing of models and col-
laborative research without concerns about data misuse.

3.8 SBML model exchange format
The Systems Biology Markup Language (SBML) (46, 47) is an open standard
format for representing computational models in systems biology. Written in
XML, it enables the exchange and storage of biochemical network models, such
as metabolic networks and cell signaling pathways, across different software
tools. SBML supports modular and hierarchical model structures, allowing
complex systems to be broken down into manageable sub-models. It is versatile,
accommodating various types of biological models, including deterministic and
stochastic models. SBML also facilitates interoperability between software
tools, includes support for annotations and metadata, and can be extended
through custom packages to meet specific modeling needs. This makes SBML
a crucial tool for sharing, simulating, and analyzing biological models in the
systems biology community.

EasyModel currently utilizes the SBML Level 3 Version 2 specification for
importing and exporting biochemical network models. This is accomplished
using the JSBML (48) Java library which allows developers to read and write
SBML model files from within the Java developing environment.

Models are imported by uploading an XML file in the Model Select view of
the application, and exported by downloading the generated XML file from the
Simulation Results view after performing a simulation.
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Figure 3.12: EasyModel’s MySQL database table schema produced using ph-
pmyadmin.

3.9 BioModels
To offer a range of well-known models to the EasyModel’s user base, we decided
to import models from the BioModels Database (65, 66, 67, 68).

BioModels is a repository and an open-source resource for storing, sharing,
and retrieving computational models of biological processes. Hosted on the
EBI (European Bioinformatics Institute) website, BioModels provides access
to peer-reviewed, published models that describe a wide range of biological
phenomena, such as biochemical networks, signaling pathways, and systems
biology.

To achieve the import of the models, we designed a method to scrape all
the manually-curated models in SBML/XML format from the BioModels web-
site. This was easily achievable as all the models are named after the pattern
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"BIOMDXXXXXXXXX", e.g. "BIOMD0000000363". We designed a script
that generated a download URL for each model number, starting from 1 to the
total number of models. Then we downloaded the models using a download
manager. Afterwards, we imported the downloaded XML models into Easy-
Model trough an automated batch process. This special process is activated
through a private URL in the EasyModel web application. When the URL
is requested, EasyModel goes through all the XML files located in a specific
directory which contains all the downloaded BioModels files. For each XML
file, EasyModel tries to import the model using the already-implemented SBML
import method. Some BioModels cannot be imported into EasyModel as Easy-
Model doesn’t support some of the features of the SBML specification. These
models are skipped and not imported. To deem a model as valid, EasyModel
performs a series of checks on the model which includes trying to perform a
basic simulation on the Mathematica kernel. Once the model is deemed to be
compatible, it is saved into the public repository of the EasyModel’s models
database. Thanks to this, EasyModel has an hefty dataset of models to start
from.

In the meantime, this process must be performed manually. We are con-
sidering developing an unattended process to periodically update the database
with new available models.

3.10 EasyModel version history
The first version of EasyModel was the EasyModel 1.0 alpha (see Fig-
ure 3.13). This version was not released to the public, and its main objec-
tive was to tentatively assess the feasibility of creating a Java web application
using the Vaadin web user interface framework in conjunction with Wolfram
Mathematica to perform the underlying mathematical calculations. The ver-
sion featured a simple user interface, as its focus was primarily on evaluating
the technical capabilities of the programming environment.

The user interface consisted of a single view that included all functionality—
modeling editor, formula editor, simulation configurator, and simulation results—
within the same space. The set objectives were successfully achieved, proving
that EasyModel had potential under the chosen technologies such as Java EE
7, Vaadin 7, and Mathematica 10. This success encouraged further develop-
ment of the tool, leading to subsequent versions with more advanced features
and a refined user experience.

The first public release of EasyModel was the EasyModel 1.0 version (see
Figure 3.14). It was centered around providing fundamental yet comprehen-
sive functionality for a simulation software, inclusive of a user-friendly web-
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Figure 3.13: EasyModel version 1.0 alpha web user interface.

based GUI, capable of utilizing a Mathematica calculus core. The software
additionally featured a model editor, simulation configuration interface, and
database for models and users, among other features such as compatibility
with SBML (46) Level 3 Version 2 specifications, and Mathematica notebook
generation. The focus was on systems of ordinary differential equations and
deterministic algorithms, as detailed in (50). An article publication was made
for this version which can be found under (69).

The next version EasyModel 1.1 (70), introduced stochastic simulations
and analysis of models in systems biology (see Figure 3.15). EasyModel 1.0
focused on the simulation of systems of ordinary differential equations using
deterministic algorithms. Nevertheless, when the systems being modeled are
composed of a small number of molecules, stochastic algorithms are more ac-
curate (53), and linear noise analysis is a more appropriate tool than sensitivity
analysis to understand the limitations and regulation of the system (56). While
stochastic simulation and linear noise analysis are available in several simula-
tion applications (53, 57), they lack the usability characteristics EasyModel
provides to new systems biologists. Because of the importance of stochasticity
in molecular systems biology, it was important that EasyModel also provided
this functionality to its users.
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Figure 3.14: EasyModel version 1.0 web user interface.

Figure 3.15: EasyModel version 1.1 web user interface.

In the development of EasyModel 2.0, we introduced a suite of exciting new
features designed for systems biologists and scientists (see Figure 3.16). These
features included a new stochastic simulation method known as τ -leaping and
parameter scanning for the deterministic regime. The τ -leaping method per-
forms stochastic simulations more efficiently than the traditional SSA method
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by optimizing execution time, though it produces approximated results com-
pared to SSA. This approximation is typically acceptable, making τ -leaping a
valuable addition.

Figure 3.16: EasyModel version 2.0 web user interface.

Additionally, we incorporated parameter scanning, which enables a global
sensitivity analysis. This analysis is more accurate than the local sensitivity
analysis previously available, providing more detailed insights at the cost of
extended execution time.

For the latest version, EasyModel 2.4, our primary focus was on enhancing
the user experience (see Figure 1.1). We introduced a simulation job queue
system to address the inconvenience of manually relaunching simulations when
the Mathematica kernel was occupied by another user. Implementing this fea-
ture was complex, requiring a deep understanding of Java threads and Vaadin’s
asynchronous user interface updates. Nonetheless, we believe the effort was
well worth it.

Another significant change was the upgrade from Vaadin 8 to Vaadin 24.
This upgrade was far from straightforward, as it necessitated a complete rewrite
of the user interface to accommodate the new syntax system. Although time-
consuming, this update was crucial for the project’s long-term viability, ensuring
it remains future-proof by staying aligned with the latest Vaadin version. Ad-
ditionally, the new interface is more modern and sleek, while still adhering to
the user-friendly philosophy that defines the EasyModel project.

Alongside these major updates, we also made general improvements and
fixed minor bugs to further enhance the overall performance and stability of
the application.
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4 Results
Continuous effort, not
strength or intelligence, is
the key to unlocking our
potential.

(Winston Churchill)

This chapter will showcase the results obtained from the development of the
EasyModel web application.

4.1 EasyModel usage
This section provides a user manual for potential EasyModel users.

New users are advised to read the tutorial via the welcome dialog that appears
when first visiting the web application.

The application can be used either as a guest or as a logged-in user.

4.1.1 Usage design
The guiding principle in the design of EasyModel’s user interface was that it
should be easy to use by both novel and expert users. In consequence, we
minimized the number of screen changes required to use the application as
much as possible.

The interface guides the user through a series of conceptual steps in the
modeling and simulation process. The initial screen prompts the user to select
the model to work on or to create a new model from scratch. The next screen
deals with model implementation. This entails defining model name, model
description, reaction list, formula list, formula binding, etc. The third screen
deals with model simulation and analysis settings and the fourth and final
screen presents the simulation results. While it would be possible to put all
functionality in one screen, we believe this approach would make EasyModel
less user-friendly, because it would contain too much information and options
to select from simultaneously.
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Hence, the application has been meticulously crafted for utilization in four
consecutive steps (elaborated individually in the following sections):

1. Model Select.

2. Model Builder.

3. Simulation Launcher.

4. Simulation Results.

4.1.2 Tutorial
A short tutorial is provided to new users in order to facilitate usage. When
the user lands on the website for the first time, a dialog greets him/her (see
Figure 4.1) to advise to read the tutorial first before using the application. The
tutorial opens in a new browser tab (see Figure 4.2), allowing users to read
it while simultaneously using the application. The tutorials consist in a series
of slides depicting screenshots and text explanations about how to navigate
through the application. The Tutorial can be consulted anytime through the
Tools menu located in the top menu bar. Furthermore, EasyModel has Infor-
mation buttons all across the application to keep the user informed on what
to do next.

4.1.3 User login
Users can access the application without the need to log in or register.

Non-registered users can fully utilize the application without worrying about
causing any permanent change. Their actions will not affect the database or
the application itself.

Registered users, on the other hand, can create, store, and share models
within the EasyModel community. This feature allows users to contribute to the
growth of the tool with their models. Registered users can access their models
through the private repository available in the Model Select screen 4.1.4.

To log in with a username and password, use the Login option from the User
menu located in the top menu bar (see Figure 4.3).

To register a new account, use the Register option from the User menu
located in the top menu bar. Currently, to facilitate the process, creating a
new account only requires entering a username and a password (see Figure 4.3).
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Figure 4.1: EasyModel: First visit greeting dialog.

4.1.4 Model select
This is the first step in the modeling process. User begins by selecting one of the
three possible model sources as described in the following list (see Figure 4.4).

• Database model: A model can be chosen from the database. There are
2 repositories: the public and the private. The public repository houses a
collection of pre-built models, sourced from various places, including the
renowned BioModels Database (65, 68), as well as models developed
and shared by other users on the platform community. These readily
available models offer a convenient starting point for users. On the
other hand, logged users can access their private repository. This offers
users the flexibility to store their own created models or continue working
on existing models that are still in progress. This private space allows
users to experiment and iterate freely, without affecting the shared public
models. The core concept of the private repository is for users to prepare
models for publication, enabling other users to utilize them as well.

• Create a new model: Alternatively, you have the option to create a
brand-new model. This involves crafting a model from scratch, tailored
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Figure 4.2: EasyModel: Tutorial presented in slides.

Figure 4.3: EasyModel: Login and register dialogs.
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to your specific needs and objectives.

• Import from a local SBML file: You can import a model from a locally
stored SBML (46) file. SBML files contain a standardized representa-
tion of biological models, making it an efficient method for transferring
models between different platforms or software.

Figure 4.4: EasyModel: Model source. Model can be selected from the
database, created from scratch, or imported from a local SBML
file.

Afterwards, if the user has selected a database repository as model source,
he/she is prompted to select a model from the repository list (see Figure 4.5).

Guest users, although unable to save their created models in the system,
can still harness the modeling capabilities to generate new models. These
models can be downloaded in the SBML format, providing a way for guest
users to preserve their work externally. Subsequently, they have the option to
re-upload their models into EasyModel at a later time by importing the SBML
file, enabling continued development without the need of registering a user
account.
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Figure 4.5: EasyModel: Model select list from the public database repository.

4.1.5 Model builder
In this step, the user defines the model to be simulated or analyzed. The user
interface is divided in two panels by a vertical splitter (see Figure 4.6). The
left side focus on reaction definition and global settings. The right side focuses
on formula definition. Formulas are also known as rate laws or velocity rates.

First step should be to define the model name and description on the left
panel of the model builder.

4.1.5.1 Defining reactions

Next, reactions should be defined line by line using the following syntax.

Reaction definition: Substrates -> Products ; Modifiers
How to write: n1*A1 + n2*A2 + ... -> m1*B1 + m2*B2 + ... ; M1

M2 ...
Legend: nX ,mX: coefficient; AX ,BX: species; MX: modifier
Example: 3*x1 + 4*x2 -> x3 + 4*x4 ; x5 : x6

To facilitate writing, users can press the enter key at the end of a reaction to
continue writing a new reaction like he/she would in a text editor. When typing
a reaction, the system continuously checks if the reaction is valid and indicates
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Figure 4.6: EasyModel: Model builder interface.

this by changing the background color style of the reaction text field. Green
shade indicates a valid reaction while red shade indicates an invalid reaction.

After writing a reaction, the system recognizes the variable names as species
and integrates them into the system. After defining the reactions, species set-
tings can be changed by clicking the Species button. In the Species Settings di-
alog (see 4.7), user must define the initial concentrations and the variable type
for the species of the selected model. Concentrations are real numerical values.
Variable type can be either Time dependent (concentration values evolve over
time) or Constant (concentration values remain constant over time). In case
these initial concentrations are not explicitly provided, EasyModel automati-
cally sets them to a default value of 1, ensuring that the model is initialized
correctly.

4.1.5.2 Defining rate laws

For accurate representation, every reaction within the system must be associ-
ated with a rate law which governs the rate at which the reaction will occur
during the simulation. Before assigning rate laws, these have to previously
been defined in the editor.

EasyModel offers users a variety of rate law options with predefined for-
malisms, including Power Law, Mass Action, Saturating, and Cooperative (49).
These formalisms provide a convenient way to model a wide range of biochem-
ical and regulatory processes commonly encountered in molecular biology. Ad-
ditionally, EasyModel stores all the previously defined rate laws in a generic
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Figure 4.7: EasyModel: Model species settings.

format, creating a rate law database for future reference. There rate laws are
available in the Import Rates button from the rate laws editor (see Figure 4.8).

Figure 4.8: EasyModel: Import of predefined rate laws.

Users have also the flexibility to create custom-made rate law formulas,
enabling them to capture specialized or unique kinetic behaviors specific to
their research (see Figure 4.9). To define new formulas users must adhere to
the following guidelines.

How to define rate expressions
Usable operators: + -/*^()
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Figure 4.9: EasyModel: Defining a new rate law.

Reserved symbols:
Mathematica functions/constants: m:<Mathematica function >
Mathematica function indexes: i:<index >
Special variables:

b:t -> Time.
b:X[] -> Mathematica substrate list.
b:A[] -> Mathematica substrate coefficient list.
b:M[] -> Mathematica modifier list.
b:XF -> First substrate.
b:MF -> First modifier.

Example: m:Product[b:X[[i:j]]^g[[i:j]],{i:j,1,m:Length[b:X]}]

Rate law definition also allow to set up reaction assigning restrictions. This
means the formula will not be able to be bound to a reaction that doesn’t
comply with the rate law restrictions. Available restrictions are as follows.

• One substrate only. Reaction must have only one substrate, and nothing
more (e.g. X1 →).

• No products. Reaction must not have any product (e.g. X1 +X2 →)

• One modifier only. Reaction must have only one modifier, and nothing
more (e.g. →;M1).

4.1.5.3 Assigning rate laws

Once reactions and rate laws are defined, rate laws must be assigned to re-
actions. Each reaction must have one rate law assigned to it which describes
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the reaction speed. Rate laws contain parameters and these must be fulfilled
during the reaction assignment. These parameters must be filled with one of
the three sources described below.

• A numerical value: A real number.

• A substrate: One of the substrates of the selected reaction.

• A modifier: One of the modifiers of the selected reaction. Can also be
any species within the model that will act as a modifier of the selected
reaction.

The rate law assignment is done within the rate law selection dialog after
clicking the Rate Law selection button found in the reaction rows (see Fig-
ure 4.10). Within this dialog, the user must select a compatible rate law and
fill the parameter values with either numerical or text values. Text values must
refer to species names within the model.

Figure 4.10: EasyModel: Linking a rate law to a reaction with definition of
parameter values.

Some mathematical formalisms require to fulfill a special type of parame-
ters named Parameters dependent on substrates/modifiers. This parameters
require a numerical value for each substrate or modifier present in the selected
reaction. For example, in the Power Law formalism, the g parameter represents
exponential values dependent on substrates of the selected reaction. Same ap-
plies for the Km parameter in the Michaelis-Menten rate law. Formally, these
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parameters are defined as array type variables that require a numerical value
for every substrate or modifier found in the selected reaction.

4.1.6 Validating the model
After following the previous steps, the model should be able to get verified.
The Validate button from the Model Builder will display a dialog indicating
the validation status (see Figure 4.11). If the model contains errors, a list
of errors will be displayed. If the model is valid, EasyModel will display both
stoichiometric and regulatory matrices and suggest to proceed to simulation
configuration.

Figure 4.11: EasyModel: Model validation. Stoichiometric and regulatory ma-
trices are displayed.

A stoichiometric matrix is a mathematical representation used in systems
biology, biochemistry, and chemical engineering to describe the relationships
between substrates and products in a set of chemical reactions. It is a funda-
mental concept in metabolic network analysis and other fields where chemical
reactions are modeled.
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A regulatory matrix is a conceptual tool used in systems biology and gene
regulatory network analysis to represent the relationships between regulatory
elements, such as genes, proteins, or other molecules, and their targets. It helps
in understanding how different modifiers influence the expression of genes or
the activity of proteins within a biological system.

4.1.7 Simulation launcher
The next step is to configure the simulation before launching it into the job
queue system for execution. Once the model has been successfully validated,
users are given the opportunity to choose the specific simulations and anal-
yses to be performed (see Figure 4.12). For a deeper understanding of the
simulations, please refer to section 3.4.

Figure 4.12: EasyModel: Simulation configuration view.

Simulations can be performed under two types of regimes: deterministic and
stochastic. If the system under study comprises a large number of molecules,
users can opt for a deterministic simulation, which provides a more efficient and
computationally feasible approach for such cases. Otherwise, the stochastic
simulation can be chosen as it will provide more accurate results.

4.1.7.1 Deterministic regime

For deterministic simulations, users can conduct dynamic time course simula-
tions, which track the system’s behavior over time, and steady state simula-
tions, which focus on identifying stable equilibrium points.
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For dynamic simulations, users can configure the following Main Settings
(see Figure 4.13):

• Initial time: A non-negative real numerical value that defines the starting
point of the simulation. Time units must be the same as used in velocity
functions.

• Final time: A positive real numerical value that defines the end point of
the simulation. Value must be greater than the initial time value.

• Time step: A positive real numerical value that defines the level of detail
in the simulation’s sampling. Smaller values produce more detailed plots
but increase computational cost.

Figure 4.13: EasyModel: Dynamic (deterministic) simulation settings.

Analysis available for dynamic simulations include:

• Gains analysis: Provides detailed insights into how changes in control
variables (or constants) affect the model’s behavior. This analysis is
local and doesn’t make any actual change in the values of the control
variables.

• Sensitivities analysis: Provides detailed insights into how changes in rate
parameters affect the model’s behavior. This analysis is local and doesn’t
make any actual change in the values of the rate parameters.
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Another feature of dynamic simulations is Plot Views. This allows users
to filter which variables are plotted during the simulation by creating multi-
ple views, each with different assigned variables. All views will be generated
during the same simulation process. This feature is particularly useful for clar-
ifying situations where several variables overlap, providing users with a clearer
understanding of the simulation results.

Parameter scan is another available feature (see Figure 4.14). Parameter
scanning can be performed on both rate parameters and control variables.
Parameter scan allows to conduct a global sensitivity analysis. Unlike standard
sensitivity analysis, parameter scanning does actually change the values of the
parameters to be studied. This provides a more accurate study at the cost
of longer execution time. EasyModel allows to define numerical intervals to
be analyzed for different rate parameters. These are the settings that can be
configured:

• Parameters: Users can select multiple parameters to be analyzed during
the same simulation process.

• Begin value: A real numerical value that defines the initial value of the
parameter to be analyzed.

• End value: A real number that defines the final parameter value of the
analysis. Value must be greater than the begin value.

• Number of intervals: A natural number specifying how many divisions
to create between the begin value and the end value. By default, these
divisions are generated on a linear scale. The resulting values will be
used in the parameter scan.

• Logarithmic toggle: Indicates whether to use a logarithmic scale for cal-
culating the interval points.

EasyModel will run a separate simulation for each interval point, allowing
users to observe how changes in the parameter value affect the system’s behav-
ior. The results of the parameter scan are organized by two factors: dependent
variables and the selected parameters being scanned. This separation helps
users more easily identify how changes in each parameter affect the model’s
behavior.

For steady state simulations, the main settings are (see Figure 4.15):

• Threshold: A numerical value used to determine whether a result qualifies
as a valid steady state. This value is typically a small number close to
zero. Mathematica uses the built-in function FindRoot[] to search for
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Figure 4.14: EasyModel: Parameter scan configuration. Multiple parameter
can be selected to be performed during the same simulation.

steady states. While we generally aim to find steady states where rate
laws equal zero, the function may return approximate solutions that are
close to zero. To account for these results and avoid discarding them,
the user can set a threshold value.

Figure 4.15: EasyModel: Steady state simulation settings.

EasyModel allows to perform analyses for steady state simulations: linear
stability analysis, gains/sensitivities analysis and parameter scan. Linear sta-
bility analysis enables users to assess the stability of equilibrium points and
understand the system’s response to perturbations.
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4.1.7.2 Stochastic regime

The stochastic simulation is particularly valuable when dealing with systems
involving low molecule counts and intrinsic randomness, characteristics com-
monly encountered in biological systems. By incorporating stochastic sim-
ulations, EasyModel enables users to capture the inherent uncertainty and
fluctuations that play a critical role in biological processes.

The users can configure the following stochastic simulation settings (see
Figure 4.16):

• Initial time: A non-negative real number for defining beginning time of
simulation. Due to the nature of stochastic simulations, this value is
initialized to zero and can’t be changed afterward.

• Final time: A non-negative real number for defining end time of simula-
tion. Value must be higher than initial time.

• Replicates: A natural number that defines the number of times the sim-
ulation will be repeated. Performing several equal stochastic simulations
allows to assess the system’s behavior with statistical significance, cap-
turing the inherent randomness in biological processes. In this case, the
program sets the default number of repeated simulations to 3 to ensure
a reliable statistical representation.

• Cell size: It allows for changing between concentrations and number of
molecules. In cases where users do not have a specific cell size prefer-
ence, EasyModel considers a default cell size, which emulates that of a
Prokaryotic cell.

• Stochastic method: This option allows you to choose between the stan-
dard SSA method and the optimized τ -leaping method. The SSA method
provides more accurate results but requires more computational time,
whereas the τ -leaping method reduces processing time at the expense of
some loss in accuracy.

4.1.7.3 Plot settings

Use plot settings to configure how the plots will be generated (see Figure 4.17).
The available settings are:

• Line thickness: A non-negative real number for defining the thickness of
the graphs generated during simulation.
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Figure 4.16: EasyModel: Dynamic (stochastic) simulation settings.

• Image width: A natural number that defines the resolution of the images
by defining their width in pixels. Aspect ratio of images is maintained.

• Font size: A natural number that regulates the text size found in plots.

• Font bold toggle: Allows to show text found in plots in bold style.

• Font italic toggle: Allows to show text found in plots in italic style.

Once all actions are configured, the user presses the "Launch Simulation”
button to submit the simulation job into the simulation job queue system (see
Section 3.6) which will process it as soon as conditions are favorable.

4.1.8 Simulation results
4.1.8.1 Individual simulation results

After launching a simulation, the user is redirected to the individual simulation
results view of the launched simulation job (see Figure 4.18). In this view,
the user must wait for the simulation job to reach the execution status. The
position in the simulation job queue is displayed in the top status bar. Once
the simulation starts, its status will change from In queue to Running.
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Figure 4.17: EasyModel: Plot settings. Settings will be applied to the simu-
lation plots.

As the simulation progresses, results are added to the results view in real-
time. The platform ensures a seamless experience by providing individual re-
sults as soon as they are computed. This approach keeps the user continuously
informed about the simulation’s status as it advances toward completion.

The simulation outcomes are presented on the web page in multiple formats:

• Graphical representations.

• Textual form.

• Tabular data.

• Downloadable files.

For user convenience, EasyModel offers the flexibility to cancel simulations at
any point during the process. By simply clicking a button, the system halts the
simulation after the completion of the current Mathematica command being
evaluated. This feature empowers users to efficiently manage and control their
simulations, saving time and computational resources.

Moreover, in addition to graphical representations, users have the option
to download the generated Mathematica notebook and the model in SBML
format (see Figure 4.19).
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Figure 4.18: EasyModel: Simulation results view. Simulation results are up-
dated in real-time. Users can monitor the execution status and
share the results directly from this interface.

Figure 4.19: EasyModel: Generated files available for download.

A Mathematica notebook is a file type designed for use within the graphical
interface of Wolfram Mathematica, allowing users to perform computations,
visualize data, and write dynamic content. The downloadable Mathematica
notebook includes meticulously crafted code that defines the entire model,
along with the selected simulations and analyses. Users can examine and mod-
ify this code to run custom simulations and analyses. This feature empowers
users by offering flexibility and control over the model’s behavior.

The SBML downloadable files contain the full definition of the model, in-
cluding all its parameters, variables, and interactions. These files can be re-
uploaded to EasyModel at a later time, allowing users to resume their work
without needing to redefine the model. Additionally, the SBML format is a
widely recognized standard in systems biology, which means that these files
can also be imported into other compatible tools, such as simulation platforms
or bioinformatics software. This promotes seamless collaboration across dif-
ferent research groups and ensures that experiments can be reproduced and
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validated independently.
The simulation results can be shared via a hyperlink generated when the user

clicks the share button. These shared simulation results are stored temporarily
in the server’s memory, rather than being saved to the database. This approach
helps prevent the database from growing uncontrollably due to the storage
of multiple simulation results, ensuring that the system remains efficient and
scalable. Since the data is stored in-memory, it is accessible as long as the
server is running, but it is not permanently persisted, further reducing the load
on the database.

By streamlining the simulation process, providing real-time results, and offer-
ing versatile download options, EasyModel creates a user-friendly environment
that caters to researchers’ needs for swift, accurate, and insightful analysis of
biological models.

4.1.8.2 Simulation results list

When users click the back button from an individual simulation results view
or select the 4. Simulation Results button from the main menu, they are
redirected to the simulation results list (see Figure 4.20). This view displays all
simulations launched during the current session. Users can review the status
and queue position of each simulation job. Additionally, they have the option
to share or cancel pending simulation jobs.

Figure 4.20: EasyModel: Simulation results list. This view displays the sim-
ulations that had been launched during the current user session.
Users can access the individual simulation results as well as share
and cancel them.
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The simulation job queue system continuously monitors the job queue to
dispatch new jobs to the execution manager (see Section 3.6). The execution
manager leverages the Mathematica calculus engine to generate the simulation
results.

4.2 Benchmarking EasyModel
In this section we present the benchmark results of the implemented stochastic
algorithms.

4.2.1 Benchmarking the stochastic algorithms
We chose two representative models from our database and use them to bench-
mark the stochastic algorithms. First, we benchmarked the accuracy of the
stochastic algorithms, by running deterministic and stochastic simulations of
the same model independently. If the stochastic algorithms are working prop-
erly, the results should be in agreement between the stochastic and determin-
istic simulations provided that the model is mono stable i.e. the model has
only one steady state.

4.2.1.1 Benchmarking BioModel 101 TGF-β

First we chose EasyModel’s local version of BioModel 101 TGF-β (71), im-
ported from the BioModels database. This system models the pathway that
responds to changes in the extracellular concentration of Transforming growth
factor-β (TGF-β) in mammalian cells. The pathway helps cells interpret ex-
tracellular TGF-β into appropriate cell fate decisions.

The model contains 6 dependent variables and 13 reactions, all of them
following mass action kinetics. It has one stable steady state i.e. the model is
mono stable.

Using EasyModel, we performed three independent simulations using the
deterministic method (see Figure 4.21A), the SSA method (see Figure 4.21B)
and the τ -leaping method (see Figure 4.21C). Selected final time was three
thousand seconds to reach the steady state. For the deterministic simulation
we used the default 0.1 time step. For the stochastic simulation we set it
to perform 4 replicates i.e. stochastic simulation runs, and the cell size was
set to the Prokaryotic Cell size. We see that the deterministic and stochastic
algorithms follow a similar time course, indicating that our implementation
of the stochastic methods works properly (see Section 4.2.1.3 below for more
details).
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Figure 4.21: Studying the dynamic behavior of BioModel 101 TGF-β in a com-
parative benchmark between EasyModel and COPASI. The inter-
play of these variables allows the model to simulate the TGF-β
signaling process, from ligand binding to gene expression, captur-
ing both activation and regulation steps. a EasyModel determin-
istic dynamic simulation. b EasyModel stochastic SSA simula-
tion. Median values for eight stochastic replicates. c EasyModel
stochastic τ -leaping simulation. Median values for eight stochas-
tic replicates. d COPASI deterministic dynamic simulation using
the LSODA method.

Then we exported the model as a SBML file and imported it into COPASI
to try the same types of simulations performed on EasyModel. The determin-
istic simulation performed in COPASI using the LSODA method resulted in a
similar graph to the one performed by EasyModel (compare Figure 4.21A and
Figure 4.21D).

We attempted to perform stochastic simulations on this model in COPASI
but were unsuccessful. For the stochastic SSA method, we used the Stochastic
(Direct method) option, and for the τ -leaping method, we selected the Stochas-
tic (Adaptive SSA/τ -Leap) option. Performing the SSA method resulted in the
exception “CTrajectoryMethod (12): Internal step limit exceeded,” and per-
forming the τ -leaping method resulted in the exception “CTrajectoryMethod
(26): A tau-Leap step encountered numerical problems,” thus preventing the
model from being simulated. For more information about the typical errors en-
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countered during our testing of stochastic simulations, refer to the text block
below. To account for the possibility of an error in the exported SBML file, we
imported it back into EasyModel, and repeated the simulations successfully.

Some of the errors we encountered trying to perform stochastic simulations
in COPASI:

EXCEPTION: CTrajectoryMethod (12): Internal step limit
exceeded.

The program has the option to increase the internal step
limit. However , doing so often fails to resolve the issue ,
as the problem typically stems from the simulation
becoming trapped in an infinite loop during the initial
step calculation. This is likely due to a flaw in either
the model specification (or SBML file) or the simulation
algorithm.

--------------------------------------------------------------
ERROR: At least one particle number in the initial state is

too big.
At first glance , this may seem like a minor issue that could

be resolved by adjusting the initial particle numbers of
the species. However , significantly reducing the initial
particle numbers can drastically alter the system ’s
behavior , making this approach unsuitable.

--------------------------------------------------------------
ERROR: At least one reaction is reversible. That means

stochastic simulation is not possible.
This error can sometimes be addressed using a COPASI built -in

function , though its applicability depends on the specific
model and may not always be effective.

--------------------------------------------------------------
EXCEPTION: CTrajectoryMethod (26): A tau -Leap step encountered

numerical problems.
When encountering this error , it mostly indicates that the

model is not compatible with the $\tau$ -leaping method.

It is worth noting that although we were unable to simulate certain models
in the stochastic regime in COPASI, we successfully simulated other models
that were more appropriate for this type of simulation.

4.2.1.2 Benchmarking BioModel 148 Bone Remodeling

To further confirm the correct functioning of the stochastic algorithms im-
plemented in EasyModel we benchmarked them using BioModel 148 (Bone
Remodeling) (72). This system models the molecular network that regulates
bone remodeling in vertebrates. This model was originally used to study two
modes of bone remodeling. On the one hand the model correctly simulates
healthy bone remodeling in response to different external stimulus. On the
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other it also correctly reproduces an unstable behavior similar to that of patho-
logical bone remodeling in Paget’s disease.

The model contains 3 dependent variables, 2 control variables and 6 reac-
tions, all of them following mass action kinetics. The model doesn’t reach
steady state.

Using EasyModel, we performed three independent simulations using the de-
terministic method (see Figure 4.22A), the SSA method (see Figure 4.22B) and
the τ -leaping method (see Figure 4.22C). Selected final time was ten thousand
seconds. For the deterministic simulation we used the default 0.1 time step.
For the stochastic simulation we set it to perform 4 replicates i.e. stochastic
simulation runs, and the cell size was set to the Prokaryotic Cell size. We
see that the deterministic and stochastic algorithms (both SSA and τ -leaping)
follow a similar time course, indicating that our implementation of the stochas-
tic algorithms works properly. In the EasyModel’s stochastic simulations, the
variable x2 exhibits an initial upward movement, followed by a downturn, be-
fore eventually aligning with the trend observed in the deterministic algorithm.
This behavior is due to the conversion from concentration numbers to molecule
quantities that must be applied prior to running stochastic simulations. In fact,
in the deterministic simulations, a closer look reveals that x2 also shows a small
initial upward movement followed by a slight downturn, before continuing to
level off horizontally.

Then we exported the model as a SBML file and imported it into COPASI to
try the same types of simulations performed on EasyModel. The deterministic
simulation was similar to the one obtained in EasyModel (compare Figure 4.22A
and Figure 4.22D).

We tried to simulate this model on COPASI under the stochastic regime and
we encountered the same problems as previously described in the BioModel
101 Section 4.2.1.1. As before, to account for the possibility of an error in the
exported SBML file, we imported it back into EasyModel, and repeated the
simulations successfully.

4.2.1.3 Further validation of the stochastic τ -leaping implementation

A simulation that uses the τ -leaping algorithm mixes SSA and τ -leaping sim-
ulation time steps. In extreme cases, a simulation may only use τ -leaping or
SSA time steps. This comes as a consequence that τ -leaps can only be made
under specific numerical conditions, that are checked at every time step in the
simulation by resolving auxiliary numerical tasks. If the numerical conditions
for performing a τ -leap are met, the simulation time jumps ahead by a cer-
tain amount, bypassing many single SSA steps. The amount of time to leap
depends on the auxiliary calculations. As an overall consequence of exten-
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Figure 4.22: Studying the dynamic behavior of BioModel 148 Bone Remod-
eling in a comparative benchmark between EasyModel and CO-
PASI. The interaction between these variables helps simulate the
dynamic balance of bone remodeling, capturing both bone resorp-
tion (osteoclast activity) and bone formation (osteoblast activity).
a EasyModel deterministic dynamic simulation. b EasyModel
stochastic SSA simulation. Median values for eight stochastic
replicates. c EasyModel stochastic τ -leaping simulation. Median
values for eight stochastic replicates. d COPASI deterministic dy-
namic simulation the LSODA method.

sive τ -leaping being during the simulation is that computation times can be
greatly reduced. If a τ -leap cannot be performed, the algorithm executes a
small number of SSA time steps (usually 100), followed by resuming the auxil-
iary numerical tasks that permit checking if τ -leaps can be made. If τ -leaping
checking operations always fail to allow τ -leaping, a pure SSA simulation will
be performed instead, with the added overhead of the τ -leaping auxiliary oper-
ations. To know more about these auxiliary checking operations, please refer
to Section 3.4.2.1.

When performing a τ -leap, several reactions are fired multiple times and the
time point jumps forward the equivalent of many single SSA time steps. As a
consequence, the time course plot for simulations that extensively use τ -leaping
would show big gaps in the variables values between the leap time points. To
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avoid this visual effect, EasyModel applies linear interpolation between these
leap time points.

BioModel 101 is an example of a system where the τ -leaping method is less
efficient than the SSA method (see table 4.1). In this system, the τ -leaping
method can only perform one small τ -leap, at the beginning of the simulation,
making the full τ -leaping simulation slower than the SSA simulation. This is
because in this case the τ -leaping method ends up using the SSA method for
the whole simulation but one time step, with the overhead of the τ -leaping
checking operations. When comparing 4.21B and 4.21C, we can see that the
two curves are similar and have a similar ruggedness. This indicates that both
have been calculated using the same SSA method.

BioModel 101 (Time range=[0,3000])
Simulation type Exe. time (s) Int. steps No. Leaps Leap time Leap boost (%)
Deterministic 0.01 30000 n/a n/a n/a

Stochastic (SSA) 5605.995 408391 n/a n/a n/a
Stochastic (τ -leap) 5669.395 406928 1 0.002227 -1.12

BioModel 148 (Time range=[0,10000])
Simulation type Exe. time (s) Int. steps No. Leaps Leap time Leap boost (%)
Deterministic 0.008 100000 n/a n/a n/a

Stochastic (SSA) 444.806 170272 n/a n/a n/a
Stochastic (τ -leap) 136.704 124200 1492 570.2720 +225.38

Table 4.1: EasyModel’s efficiency of the alternative stochastic algorithms using
BioModel 101 and BioModel 148 as benchmarks. Average values
for eight runs are shown for the stochastic simulations.

In contrast, BioModel 148 is a good example of a model that can be more
efficiently simulated using the τ -leaping method than using the SSA algorithm,
as the required conditions for the algorithm to leap are met several times dur-
ing the simulation, resulting in a significant reduction of the execution time.
Simulation of this model shows that the τ -leaping code part of our implemen-
tation is working properly. By comparing Figure 4.22B and Figure 4.22C, we
can see that the two curves are similar, indicating that both algorithms have
similar accuracy. Still, the curves for the SSA algorithm are more ragged than
those of the τ -leaping method, indicating that the later uses linear interpolation
between the time leap points.

For information regarding on how to calculate the τ -leaping boost, please
refer to the Section 3.4.2.2.

72



5 Use cases
The path to solving
humanity’s greatest
challenges lies in our ability
to innovate and apply
technology effectively.

(Elon Musk)

In this section, we will delve into some of the key features of EasyModel and
showcase examples of how you can use the tool to solve a variety of real-world
problems. By following our comprehensive step-by-step instructions and tips,
you’ll be able to harness the potential of EasyModel’s features to gain insights
that can benefit your work in the biological field.

This section will extend on the information described in Section 4.1 about
the usage of EasyModel.

5.1 Brusselator: Deterministic simulations
We will utilize the Brusselator model to showcase the deterministic features
of EasyModel.

The Brusselator model is a classic theoretical model in systems biology used
to describe oscillatory chemical reactions. It represents a simplified reaction
network that exhibits periodic behavior, often used to study biochemical oscil-
lations and pattern formation in biological systems.

The specifications of this Brusselator model are extracted from the example
file brusselator.cps from the COPASI software (see Figure 5.1).

To perform simulations on this model, we will follow the Section 4.1 usage
instructions. To begin, let’s assume we have just landed on the home page of
EasyModel. The first step would be to select the Brusselator model from the
database. To do so, we first click on the Public Repository button to access
the public model list (see Figure 5.2). Next we scroll down the list, select
Brusselator and click on Load Model (see Figure 5.3).

From the Model Builder view, we can modify the model. In this case, no
modifications will be made. Typical changes that do not alter the model’s
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Figure 5.1: Brusselator: Simulation results for dynamic and steady state in
the COPASI software.

structure include adjusting the initial concentrations of species, updating con-
trol variable values, and modifying numerical parameters within the rate laws
associated with the model. The Model Builder interface is shown in Figure 5.4.

Next, we proceed to validate the model. If no structural changes have been
made, the model will validate successfully, as all models in the database are
verified to be valid. In the validation window, the stoichiometric matrix and the
regulatory matrix are displayed (see Figure 5.5). These two matrices provide an
alternative representation of the model’s reactions. The stoichiometric matrix
indicates the substrates and products of the reactions, while the regulatory
matrix identifies the modifiers involved in the reactions. In this case, the
regulatory matrix is filled with zeros, as no modifiers are present. Modifiers are
represented by a value of one, in contrast to zero. If variable X i modulates
process P j, then position {i, j} of the regulatory matrix will be one, instead of
zero. To continue, click on the Configure Simulation button.

In the Simulation Launcher we select Dynamic (Deterministic) and Steady
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Figure 5.2: From the landing page, we click on Public Repository.

Figure 5.3: We scroll down the list, select the Brusselator model and click on
Select Model.

State. For dynamic simulation settings we set the final time to 100 (see Fig-
ure 5.6).

We open the Analysis tab and select Gains and Sensitivities to perform a
local analysis on the control variables and rate laws parameters (see Figure 5.7).

We open the Plot Views tab and add a new view to create a view that
only contains the Y variable to analize more clearly the changes on this time-
dependent variable (see Figure 5.8).
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Figure 5.4: Model Builder: Structure of the Brusselator model. As no
changes are made, we click on the Validate button to proceed.

Figure 5.5: Validate model window: Displays the stoichiometric and regu-
latory matrices.

Next open the Analysis tab in the Steady State Simulation Settings box.
Check the Stability analysis checkbox (see Figure 5.9).
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Figure 5.6: Simulation Launcher: We select Dynamic (Deterministic and
Steady State.

Figure 5.7: Dynamic analysis: We select Gains and Sensitivities.

We launch the simulation using the Launch Simulation button (see Fig-
ure 5.6) and wait for the simulation process to finish. We will now analyze the
results.

The simulation results begins displaying the dynamic simulation in two plots:
The first shows all the variables, and the second isolates the variable Y to make
its behavior in the system clearer for analysis (see Figure 5.10). This separation
will also be applied to subsequent analyses.

The simulation results also include the gains and sensitivities analysis. This
analysis performs a local examination of how the system would behave if con-
stant values and parameters in the rate laws were altered. While this analy-
sis provides an approximate view—since it doesn’t account for global system
changes like in the Parameter Scan analysis—it is faster to execute.

We will use the Absolute Dynamic Gains plot to assess changes in the variable
Y (see Figure 5.11). This plot evaluates changes in absolute values, in contrast
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Figure 5.8: Plot Views: We add a new view that only contain the Y depen-
dent variable.

Figure 5.9: Steady State Simulation Settings: Check the Stability analysis
to add this analysis to the simulation job.

to relative values which are shown in a separate plot. Gains measure how
modifications to the constants affect the system.

In the analysis, we observe that the constant AA significantly impacts the
behavior of the dependent variable Y at specific time points: [23, 45, 68, 93].
From the plot, we can deduce that the influence of this constant increases
approximately every ~22 time units and persists over time. The constant B
also affects Y at these same intervals, but to a lesser degree.

Gains are denoted as: G_<dependent_variable_name>_<constant_name>.
The same notation is used for sensitivities—using S as the initial character in-
stead of G—which analyze how changes in parameter values affect the system.
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Figure 5.10: Simulation Results: The left plot displays the dynamic simu-
lation for the full system, while the right plot displays only the
evolution of the variable Y. Results are in accordance with CO-
PASI’s (see Figure 5.1).

Figure 5.11: Absolute Gains Plot: This plot shows how value changes in the
constants AA and B have an impact on the system’s dependent
variable Y.

To conclude this simulation example, we examine the Steady State Simu-
lation results (see Figure 5.12). A steady state was identified, and the con-
centrations of the dependent variables at this state are shown in table format.
However, a warning message indicates an “unstable steady state,” meaning that
while a steady state has been found, it is not stable. By observing the dynamic
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plot of the system, we can see that the system continuously fluctuates between
values 0 and ~9. A stable state would be represented as a perfectly stabilized
horizontal line. In this case, because the steady state is unstable, we perform
a dynamic simulation and observe a stable oscillation. The stable oscillation
repeats itself periodically. The stability of the steady state, which is found via
steady state simulations, is determined by calculating the Eigenvalues of the
Jacobian matrix. For the steady state to be locally stable, all the real parts of
the Eigenvalues must be negative (73).

Figure 5.12: Steady State Simulation results: Unstable steady state is
found. Stability analysis delves in the analysis by displaying the
Eigenvalues. Results are in accordance with COPASI’s (see Fig-
ure 5.1).

In this use case, we have illustrated how to simulate and analyze the Brus-
selator model using EasyModel. This example provided an overview of the
various stages involved in modeling, simulating, and interpreting the results for
a well-known biochemical system. We explored different types of simulations,
including dynamic and steady-state analyses, and discussed how to handle and
interpret the outputs generated. The process included examining the behavior
of the system under various conditions, assessing the stability of the steady
states, and understanding the impact of different control variables on the sys-
tem’s dynamics. This example serves to demonstrate the practical application
of EasyModel in studying complex biological systems.
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5.2 BioModel 191: Stochastic simulations
To showcase how to perform stochastic simulations, we will use the BioModel
191 imported from the BioModels database.

BioModel 191, developed by Montañez et al. (2008), focuses on arginine
catabolism in cellular metabolism. This model provides a comprehensive rep-
resentation of the biochemical processes involved in the breakdown of arginine,
an amino acid with crucial roles in cellular functions and metabolism.

To perform stochastic simulations, we will follow the guidelines of the previ-
ous Section 5.1). We begin by loading the model from the Public Repository.
In the Model Builder, we open the Species dialog (see Figure 5.13) and set
the initial concentrations of the time-dependent species ARGin and ORN to 0,
ensuring that the plot curves start at 0 on the molecule count axis (Y-axis).

We leave the remaining model settings unchanged and proceed to configure
the simulation by clicking the Validate button.

Figure 5.13: Species Settings: We set the initial concentrations of the time-
dependent species ARGin and ORN to 0, ensuring that the plot
curves start at 0 on the molecule count axis (Y-axis).

In the simulation configuration view (see Figure 5.14), we select the Dy-
namic (Stochastic) simulation to be performed. The specific settings for the
stochastic simulation are as follows:

• Final Time: Set to 300 so it reaches equilibrium state.

• Number of Replicates: Set to 32, to obtain more precise plotting.

• Cell Size: Set to Prokaryotic Cell.

81



• Stochastic Method : Set to Tau-leaping as this model can benefit from
it.

Then we launch the simulation by clicking the corresponding button.

Figure 5.14: Simulation Launcher: We select the Dynamic (Stochastic)
simulation to be performed and set the specific settings for the
stochastic simulation.

In the Simulation Results view, we analyze the stochastic simulation results.
When stochastic simulations are performed, a statistical table is produced to
measure the performance of the stochastic algorithm (see Figure 5.15). This
table measures, for each stochastic replicate—or run—the following metrics:

• Replicate: Indicates the measured stochastic replicate.

• Progress bar : Shows the progress of the replicate simulation in real-time.

• Execution time: The time, in seconds, that it took to finish the replicate
calculation.

• Internal steps: The number of time steps or time points created on the
time axis (X-axis) of the plot. Due to the nature of stochastic simula-
tions, steps are not uniformly distributed as in deterministic simulations,
but are randomly generated depending on the model, yielding a more
accurate representation of behavior.

• Number of leaps: A metric for the τ -leap method, indicating how many
leaps were executed. The more leaps, the more effectively the algorithm
performs on the selected model.
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• Leap time: A metric for the τ -leap method, indicating how much time
has been leaped during the simulation. During the leaped time, the algo-
rithm avoids executing the time-consuming SSA steps, saving computa-
tional resources. Larger values suggest higher efficiency of the algorithm
on the selected model.

Figure 5.15: Simulation Results: The initial part of the stochastic results
include a performance table of the stochastic simulation.

A significant metric that we can observed on this stochastic simulation is the
Leap time, as it covers around the 93% of the time to be simulated. This means
most of the simulation can be produced by leaping time instead of producing
single SSA steps. Thus the τ -leap method is effective on this model.

The median plot produced smooth curves as 32 replicates were performed
(see Figure 5.16). The greater the number of replicates, the smoother the
resulting curves typically become. This is because a larger number of repli-
cates helps to average out random fluctuations, providing a more accurate
representation of the underlying trends and reducing the impact of outliers.

From the plot, we observe that the system reaches equilibrium or a steady
state. Performing a steady-state stability analysis confirms this assumption:
A stable steady state is achieved, as all the real parts of the Eigenvalues are
negative.

Next, we study the linear noise analysis of the stochastic simulation shown in
Figure 5.17. In Figure 5.17A, we observe the 32 different trajectories calculated
for the ARGin variable. This plot provides a broad idea of the variability of the
variable under the stochastic regime. In Figure 5.17B, we observe the median
across all trajectories along with the quantile deviation from the median, giving
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Figure 5.16: Stochastic Median Plot: A general stochastic plot that consol-
idates all the calculated trajectories by applying a median function
across the replicates.

Figure 5.17: Linear Noise Analysis. a Raw simulation trajectories calculated
for the ARGin variable. b Quantile plot for the ARGin variable. c
Coefficient of Variation for the ARGin variable.
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a more precise interpretation of the results. Finally, in Figure 5.17C, we observe
the coefficient of variation, which indicates how much the deviation differs from
the median. Lower values reflect less variability in the variable across all the
trajectories.

Overall, stochastic simulations offer a more precise representation of the
system. Although these simulations often result in jagged curves, increasing
the number of replicates helps smooth the output and produce more reliable
results. Additionally, the Linear Noise Analysis assists researchers in assessing
the validity of the simulation by providing insights into the system’s inherent
variability.

5.3 BioModel 101: Parameter Scan
To illustrate how Parameter Scan can be used to interrogate models we per-
formed two experiments using BioModel 101.

BioModel 101, developed by Vilar et al. (2006), focuses on the TGF-beta
signaling pathway. This model provides a detailed representation of the sig-
naling cascade triggered by Transforming Growth Factor-beta (TGF-beta). It
aims to understand how TGF-beta influences cellular processes such as growth,
differentiation, and apoptosis.

This use case will illustrate the Parameter Scan functionality under the deter-
ministic regime. Currently, Parameter Scan is not available for the stochastic
regime, as it would be significantly more computationally expensive.

To perform the Parameter Scan, we will follow the guidelines of the previous
Section 5.1). We first select the model from the public repository, validate it
and proceed to simulation configuration. Once in the simulation configuration
view, we select the simulation types Dynamic (Deterministic) and Steady State
(see Figure 5.18). For dynamic simulations we set the final time at 3000. For
the Steady State simulations we used the default settings.

After adjusting the general settings, we configure the Parameter Scan by
clicking the Select Parameters button under the Parameter Scan tab in both
simulations. A dialog allows to setup the Parameter Scan, where we configure
one of the rate law parameters (see Figure 5.19).

It is well known that extracellular ligands induce the binding between receptor
types RI and RII in the membrane, followed by receptor internalization (71).
Here we ask about the effect of ligands that increase the affinity between the
two types of receptors on the dynamic behavior of the system. To measure this
effect we focus on parameter ka from the binding reaction between RI and RII
(Reaction 1). Low values for ka are equivalent to ligands that induce low affinity
binding between receptors. As ka increases so does the affinity between RI and
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Figure 5.18: Simulation Launcher: We select the simulation types Dynamic
(Deterministic) and Steady State.

Figure 5.19: Parameter Scan - Parameter: We configure the parameter
scan to be performed on the ka parameter from reaction 1.

RII. The Parameter Scan configuration can be found in Table 5.1. We will use
the values to fill the Parameter Scan configuration dialog (see Figure 5.19).

We launch the simulation and discuss the simulation results.
In Figure 5.20 (Dynamic simulations) we can see that when we change ka,

the time to reach steady state remains fairly constant for all species but the
internalized receptor forms, lRIRII and lRIRIIendo. Reaching steady state for
these variables is faster as ka increases.
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Parameter Begin Val End Val No. Intervals Scale
ka (from reaction 1 rate) 10−5 102 7 Logarithmic

Table 5.1: Parameter Scan settings for dynamic and steady state simulations.
BioModel 101.

Figure 5.20: Studying the effect of changing parameter ka from reaction 1
on the dynamic behavior of BioModel 101 TGF-β. We scan ka
between 0.00001 and 100 using 7 intervals evenly spaced on log-
arithmic scale. We plot each dependent variable of the model.

In Figure 5.21 (Steady State simulations) we see that increasing ka decreases
the steady state concentrations for the free receptors and increases the steady
state concentrations for the bound forms of the receptors. We also see that the
system only responds to stimulus that make ka be roughly between 0.001 and
1. Outside of this range of values the system has very similar steady states.

Parameter Scan is a powerful functionality that allows the user to globally
explore how parameters and control variables affect the system. This global
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Figure 5.21: Studying the effect of changing parameter ka from reaction 1 on
the steady state of BioModel 101 TGF-β. We scan ka between
0.00001 and 100 using 7 intervals evenly spaced on logarithmic
scale. We plot each dependent variable of the model.

analysis performs multiple complete simulations, systematically varying the
values of the parameters under study. It provides a more comprehensive analysis
than sensitivity analysis, which offer local, approximate estimations of how
parameters influence the system.

In this use case, we observed that the system’s variables are sensitive to
changes in the parameter ka in reaction 1, with variations spanning over two
orders of magnitude.
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6 Global discussion
The essence of science is
not in the results but in the
process of inquiry that leads
us to understanding the
universe.

(Richard Feynman)

In this chapter, we discuss the results obtained from this thesis work.

6.1 User interface
One of the primary objectives of EasyModel was to provide a user-friendly
interface, aimed at reducing the learning curve typically associated with tools
of this kind for both novel and expert users. In consequence, we minimized the
number of screen changes required to use the application as much as possible.
The application is designed to be used in four consecutive logical steps:

1. Select the model (or create a new one)

2. Modify or build the model

3. Configure the simulation

4. Get the simulation results

The interface guides the user through these conceptual steps in the mod-
eling and simulation process. The initial screen deals with model selection or
creation. The second screen deals with model implementation and validation.
The third screen deals with model simulation and analysis settings and the
fourth and final screen presents the results. While it would be possible to put
all functionality in one screen, we believe this approach would make EasyModel
less user-friendly, because it would contain too much information and options
to select from simultaneously. A short tutorial is also provided during access
to the application to the new users, in order to facilitate its use. This tutorial
remains available to consult from the Tools option found at the top bar. In
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addition, there are Information buttons all across the application to keep the
user informed on what to do next.

We believe we have successfully developed a user-friendly interface by lever-
aging the Vaadin UI web framework. The intuitive design not only simplifies
the user experience, significantly reducing the learning curve for new users,
but also enhances productivity for expert users, enabling them to work more
efficiently and complete tasks with greater agility. The interface design fo-
cuses on accessibility and ease of use, making advanced modeling tools more
approachable for a wider audience.

6.2 Intended use and comparison with other
tools

EasyModel’s main objective is to provide a user-friendly experience for model-
ing, simulation and analysis of models in systems biology. While many tools are
available for doing these tasks, they are often difficult to use by the novel user
because either they present a complex User Interface (UI), require knowledge
of a programming language or both. EasyModel circumvents these issues by
providing a user-friendly experience that uses a powerful mathematical calculus
platform without requiring programming knowledge. In addition, if the user is
more advanced, s/he can download the simulation script and personalize it for
more advanced analysis using their own Mathematica license.

While there is a wide range of simulation applications for systems biology,
JWS Online (6, 32) is the most similar to EasyModel. JWS Online also uses
Wolfram Mathematica as the underlying calculus engine. While EasyModel
targets novel users, JWS Online targets more advanced users, allowing them to
perform different types of analysis and simulations, and providing model schema
visual representation, reaction plots, etc. The application has databases for
users, models, simulations and manuscripts. It also has SBML compatibility
as EasyModel. Conveniently, it has online documentation.

JWS Online’s interface seems to be less intuitive than EasyModel’s for novel
users. We infer this from limited empirical comparative testing with four un-
dergraduate classes of biomedical and biotechnology students. Our interaction
with these students suggests that EasyModel has a faster learning curve than
JWS Online.

EasyModel also provides features that we haven’t found in JWS Online:
Stochastic simulations, automated implementation of kinetic laws derived from
structured mathematical formalisms, the ability to download the full model,
simulation, and analysis in the form of a Mathematica notebook (JWS Online
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allows to experimentally download the model as a Mathematica notebook),
etc.

Another tool on which EasyModel draws inspiration is COPASI (26, 27).
Features that both applications have in common include: Deterministic and
stochastic simulations, parameter scanning, SBML compatibility, etc. A differ-
entiating trait between EasyModel and COPASI is that the later is a standalone
software (available for Linux, Windows and macOS) with a fixed set of func-
tionalities, while the former gives the possibility that users can program locally
more sophisticated analysis using the Mathematica language.

There are other simulation tools like the APMonitor Optimization Suite (33,
34, 35) that take a different approach to modeling. This type of software uses
their own modeling language to define the models in plain text as a script. This
gives a lot of flexibility to the programmers as they can introduce new features
more easily to their own language. Also they can include a lot of features to
the program, centering most of the effort on the coding area. This kind of
tool is very profitable for expert users as it can offer a wide range of solutions.
Yet, because of this, the program becomes difficult to use and understand, as
it has a much slower learning curve than a tool like EasyModel. APMonitor
has online documentation and the team has uploaded several webinars trough
the years in order to educate its users. APMonitor is freely available as a
website, MATLAB toolbox and a Python package. The developers also offer
the GEKKO Python package for dynamic optimization. We think again that
both kind of tools are very profitable for different types of user.

Overall, we believe that EasyModel has successfully differentiated itself from
other tools by focusing on delivering a user-friendly experience through an
intuitive GUI that aids both novel and expert users. The application caters
to advanced users by offering the option to download the generated Mathe-
matica code for further, more sophisticated applications. Thanks to its SBML
format compatibility, EasyModel enables seamless model exchange and integra-
tion with other software programs, enhancing collaboration with other research
groups.

6.3 Results
The results of this thesis revolve around the creation of the EasyModel tool.

EasyModel provides a user-friendly web interface accessible from anywhere,
designed to offer a quick-to-learn experience. With its intuitive design, tuto-
rial guides, and information buttons throughout the application, EasyModel is
ideal for newcomers to systems biology modeling, offering a shallow learning
curve. Advanced users can also benefit from quickly mastering the tool, thereby
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boosting their productivity. Additionally, EasyModel provides advanced analy-
sis options and allows users to download the generated Mathematica code. By
adopting a web application design and a simulation job queue system, users
can leverage the computational power of Mathematica without needing their
own license or high-performance machine.

EasyModel allows users to exchange and communicate models with other
software programs through its compatibility with the SBML format. This fea-
ture facilitates collaboration among research groups and ensures that models
created or modified in EasyModel can be shared, edited, and analyzed in other
systems biology tools that support SBML.

Moreover, the platform supports a wide array of model analysis techniques,
including parameter scans, dynamic simulations, and steady-state analysis.
These features provide users with the capability to deeply interrogate the behav-
ior of their models under various conditions. Advanced users can explore com-
plex relationships between variables, observe how parameters influence model
behavior over time, and assess system stability through Eigenvalue analysis.

Another key feature of EasyModel is the stochastic simulation capability.
By supporting both the SSA (Stochastic Simulation Algorithm) and τ -leaping
methods, users can analyze the inherent randomness of biological processes.
This is especially relevant for models with small molecule populations where
stochastic effects play a significant role. While the SSA provides exact tra-
jectories, the τ -leaping method offers a computationally faster alternative for
models that meet the appropriate conditions, making large-scale simulations
more feasible.

In terms of performance, EasyModel’s primary objective was not focused
on execution speed but rather on usability. Software performance depends on
various factors such as code optimization, the choice of programming language,
and the hardware on which the software runs. The developers have made efforts
to enhance performance by writing efficient Java and Mathematica code for
the application’s backend. The Vaadin framework ensures a responsive user
interface aligned with modern design trends. When compared to other tools,
we can consider the current performance of EasyModel as acceptable, striking
a balance between usability and speed.

When implementing the τ -leaping variant of the stochastic dynamic sim-
ulation algorithm, we assessed its performance gains using the classic SSA
algorithm as a benchmark. The τ -leaping algorithm provides benefits only
when applied to certain models that meet its specific conditions. If a model
qualifies, the algorithm can leap over multiple individual SSA simulation steps,
significantly reducing execution time. The skipped time intervals are filled with
linear interpolation, ensuring the plot’s continuity. Our analysis of execution
time improvements from the τ -leaping method showed significant results, re-
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ducing execution time by more than half. This confirms that incorporating this
algorithm was a valuable enhancement to the system.

In conclusion, EasyModel offers a comprehensive toolset for both novice
and advanced users in systems biology. Its focus on usability, coupled with
robust analytical capabilities and compatibility with existing formats like SBML,
ensures that it is well-suited for a wide range of applications in biological
modeling, simulation, and analysis. Additionally, EasyModel provides users
with the ability to download the Mathematica notebook corresponding to their
model, enabling further customization and exploration beyond the platform’s
built-in features. This makes it particularly attractive for advanced users who
wish to delve deeper into specific mathematical or computational aspects of
their models.

By lowering the learning curve and maintaining high performance in simula-
tions, EasyModel effectively bridges the gap between ease of use and advanced
functionality, making it a valuable addition to the tools available in systems
biology research.

6.4 Use cases
EasyModel provides a comprehensive range of functionalities within the field
of systems and synthetic biology.

Some of the key use cases it supports include:

• Model editing: Users can create or modify models from the public
repository without affecting the original database entries. Registered
users can save their models to their private repository.

• Deterministic simulations: Users can perform time course simulations
and steady-state analysis under the deterministic regime, including sta-
bility, gains and sensitivities analyses.

• Stochastic simulations: Users can perform stochastic simulations, fea-
turing advanced algorithms like the τ -leaping method to analyze the
inherent randomness in biological systems. Users can also visualize the
stochastic noise analysis.

• Parameter scanning: Users can utilize parameter scan functionalities
under deterministic regimes, enabling global gains and sensitivities anal-
yses to assess how various parameters influence system behavior.

• SBML import/export: Users can import and export models in SBML
format, allowing them to save models for future use or to work with other
tools.
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• Mathematica code export: Advanced users can perform a simulation
and export the generated Mathematica code for further customization
and more complex computational analyses outside of the platform.

• Model publication: Registered users can save new models into the
database for public sharing. Models are validated for publication after
two weeks of no modifications. Publication is then done automatically
by the system.

• Model publication: Registered users can save new models into the
database for public sharing. Models are validated for publication after
two weeks of no modifications. Publication is then done automatically
by the system.

• Advanced kinetic rate laws: Users can use structured mathematical
formalisms as kinetic rate laws, a feature uncommon in most similar
platforms, catering to more advanced modeling needs.

• Sharing simulation results: Users can share simulation results through
a simple hyperlink, facilitating collaboration and review.

• Administration panel: For users with administrator privileges, the plat-
form provides a dedicated custom-made panel to manage database en-
tries.

In conclusion, EasyModel supports a wide range of use cases in systems and
synthetic biology, enabling users to create, edit, and simulate models with both
deterministic and stochastic approaches. The platform’s capabilities, including
model publication and result sharing, foster collaboration and extend its utility
across diverse research needs, solidifying EasyModel as a valuable tool for both
educational and professional applications.
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7 General conclusions and future
directions

When something is
important enough, you do
it even if the odds are not
in your favor.

(Elon Musk)

To conclude this thesis, we highlight the key features of EasyModel and
explore potential future developments.

7.1 Conclusions
This thesis focuses on the development of the EasyModel tool for modeling,
simulation, and analysis in systems and synthetic biology. EasyModel makes a
significant contribution to the community by offering a user-friendly experience
that caters to both novice and experienced users. The intuitive interface not
only reduces the learning curve but also enhances productivity by minimizing
errors and shortening the time required for users to complete tasks.

Since its inception, EasyModel has undergone continuous improvement, with
the latest version 2.4 (see Section 3.10) reflecting substantial advancements.
Initially designed to provide a user-friendly interface for harnessing the pow-
erful Wolfram Mathematica calculus engine, EasyModel has now evolved into
a robust platform. The current version incorporates advanced functionalities
beyond its original goals, including support for stochastic simulations and pa-
rameter scanning.

By leveraging technologies such as Java EE, the Vaadin framework, and
Mathematica for backend computations, EasyModel delivers a seamless and
efficient user experience within a web-based application that is easily accessible
from any location. Notably, users are not required to register on the platform,
further enhancing its accessibility.

Looking ahead, EasyModel has the potential to expand its capabilities and
incorporate additional computational methods and tools, ensuring that it con-
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tinues to serve the evolving needs of the systems biology community.
The following list summarizes the conclusions drawn from the development

and implementation of EasyModel:

• We conclude that EasyModel is presented in a streamlined user interface
that encourages deeper exploration of the tool and reduces complexity
for users.

• We conclude that EasyModel is accessible from anywhere and without
user registration, eliminating the requirement for a Mathematica license.

• We conclude that EasyModel includes a simple model editor with the
ability to import predefined kinetic rate laws, making model creation
more accessible.

• We conclude that EasyModel appropriately handles dynamic and steady
state simulations.

• We conclude that Easy model appropriately handles deterministic and
stochastic ODE simulations.

• We conclude that EasyModel can perform several analyses: steady state
stability analysis, gain/sensitivity analysis under deterministic regime and
noise analysis under stochastic regime.

• We conclude that EasyModel appropriately handles parameter scanning
for dynamic and steady state simulations, under deterministic regime.

• We conclude that EasyModel is able to export models and simulations
in the form of Mathematica notebooks for further offline customization
and analysis.

• We conclude that EasyModel packages a large collection of models, in-
cluding partially those from the BioModels database as well as user-
contributed models and other testing models.

• We conclude that EasyModel is compatible with the SBML file format,
ensuring model exchange with other software used in systems biology.

• We conclude that EasyModel facilitates its use by using a simulation job
queue system, which enables users to submit new simulation jobs at any
time.

• We conclude that EasyModel allows its users to share their simulation re-
sults through hyperlinks, enabling easy collaboration and data exchange.
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• We conclude that EasyModel allows its users to publish new created
models within the platform, fostering collaboration within the EasyModel
community.

• We conclude that EasyModel supports structured mathematical formalisms
as rate laws, catering to more complex modeling needs.

• We conclude that EasyModel allows its administrator users to access the
administrator panel, which enables easy management of the database
entries.

• We conclude that EasyModel appropriately includes a tutorial and infor-
mation buttons throughout the interface, assisting users in navigating
the tool and performing tasks efficiently.

The following list summarizes the conclusions drawn from comparing Easy-
Model to other tools:

• JWS Online: EasyModel offers a more user-friendly approach to its
users. EasyModel supports stochastic simulations, user-defined mathe-
matical formalisms as kinetic functions and allows to modify the models
from the public repository before simulation. These features aren’t avail-
able in JWS Online.

• COPASI: EasyModel is more easy to learn and use. EasyModel is more
accessible as it is directly accessed through a website. EasyModel offers
a public model database, sharing of simulation results via hyperlinks and
user-defined mathematical formalisms as rate laws, features that are not
available in COPASI. EasyModel allows to export the Mathematica code,
which allows for advanced local analyses.

• APMonitor: EasyModel’s emphasis on a user-friendly interface allows
for easier model construction and simulation without needing specialized
knowledge as learning a particular syntax code. EasyModel is compat-
ible with the SBML file format. APMonitor does not natively support
the SBML format, but a converter tool, SBFC: Systems Biology For-
mat Converter, can be used to translate APMonitor’s model format into
SBML format.

In conclusion, EasyModel demonstrates its value by addressing the needs of
both novice and expert users in the field of systems biology. Its intuitive in-
terface, combined with advanced functionality, makes it a unique and powerful
tool for the community. Future development of EasyModel will be discussed
in the next Section 7.2, Future directions.
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7.2 Future directions
As this work revolves around the EasyModel tool, future efforts will likely fo-
cus on expanding and enhancing its current functionalities. From a technical
standpoint, the potential to improve EasyModel is vast. By leveraging the
robust capabilities of the Java programming language, the modern and sleek
user interface provided by the Vaadin web UI framework, and the computa-
tional power of Wolfram Mathematica, we can further evolve this tool to meet
advanced goals in systems biology.

In terms of scope, there are numerous functionalities in systems biology that
could be integrated into EasyModel. As discussed in Chapter 2, Related Work,
other tools offer features currently unavailable in EasyModel. We could ex-
pand EasyModel’s functionality to match these tools, while maintaining and
enhancing its user-friendly approach. This philosophy has guided EasyModel’s
development since its inception. The key difference lies in EasyModel’s com-
mitment to implementing similar features in a more accessible and intuitive
manner, with improvements whenever possible.

We consider that at this point with the current version 2.4 we have im-
plemented the staple features as well as others more advanced. Through the
different versions we have refined the user experience to make it more friendly
while gathering feedback from the users to understand better their needs and
provide more value in the next version release. We have always tried to keep a
proactive attitude towards this project and to learn new knowledge along the
way.

For future releases of EasyModel, we envision the addition of several ad-
vanced features, which are summarized in the following list:

• Automatic BioModels Updates: Implement unattended and periodic
updates of the BioModels (65).

• SBML Test Suite Adaptation: Adapt EasyModel to conform to the
SBML Test Suite for enhanced validation of the simulation algorithms
and SBML compatibility. The SBML Test Suite is a conformance testing
system for SBML that consists of a collection of test models and a
framework for running software through the suite.

• Model Branching: Enable the creation of branches from preexisting
models, allowing users to complicate or simplify them as needed.

• Model Merging: Provide functionality to merge individual models into
a single cohesive model.

• Bifurcation Analysis: Incorporate bifurcation analysis (74).
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• Chemical Reaction Network Theory Analysis: Implement analysis
features based on chemical reaction network theory (75).

• Spatially Non-Homogeneous Models: Enhance the capability to han-
dle spatially non-homogeneous models, utilizing tools such as partial
differential equations (PDEs) (76).

These changes to EasyModel would enhance its versatility and power, im-
proving usability for both novice and expert users in the field of systems biology.
Importantly, these enhancements will adhere to the user-friendly philosophy
characteristic of EasyModel, ensuring that both new and experienced users
find the tool beneficial and accessible.
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The important thing is not
to stop questioning.
Curiosity has its own reason
for existing.

(Albert Einstein)
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