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Abstract

This thesis dissertation presents new approaches to accelerate or increase the accuracy of integral

equations discretized by the Method of Moments (MoM) in computational electromagnetics.

Firstly, a fast iterative solver, the Multilevel Adaptive Cross Approximation (MLACA), for

accelerating the solution of the MoM linear system is detailed. In the quest for a general-purpose

scheme, the MLACA is a method independent of the kernel of the integral equation and is purely

algebraic. It improves both efficiency and compression rate with respect to the previously existing

single-level version, the ACA. Therefore, it represents an excellent alternative for the solution of

the MoM system of large-scale electromagnetic problems.

Secondly, the direct evaluation method, which has proved to be the main reference in terms

of efficiency and accuracy, is extended to overcome the computation of the challenging 4-D hyper-

singular integrals arising in the Magnetic Field Integral Equation (MFIE) and Combined Field

Integral Equation (CFIE) formulations. The maximum affordable accuracy –machine precision– is

obtained in a more than reasonable computation time, surpassing any other existing technique in

literature.

Thirdly, the aforementioned hyper-singular integrals become near-singular when the discretized

elements are very closely placed but not touching. It is shown how traditional integration rules fail

to converge also in this case, and a possible solution is proposed.

Finally, an effort to facilitate the usability of any antenna simulation software based on the

MoM has led to the development of a general mathematical model of an excitation port in the

discretized space. With this new model, it is no longer necessary to adapt the mesh edges to the

port.

Keywords: Method of Moments (MoM), Fast Solvers, Surface Integral Equations, Singular In-

tegrals, Numerical Simulation, Electromagnetism, Impedance Matrix Compression, Adaptive Cross

Approximation, Edge Adjacent Integration , Vertex Adjacent Integration.
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Chapter 1

Introduction

T
his chapter puts all the work developed during the realization of this thesis in context. It

establishes what was done before in literature showing weak points or gaps to be filled. Many

of them have been attempted by the author at some time in the last four years. The proposed

solutions are introduced as objectives of the dissertation. Finally, a description of the distribution

of the document is given.

1.1 State of the art

1.1.1 Method of Moments generalities

Surface integral equation formulations have proved to be one of the most powerful methods for

the solution of various electromagnetic (EM) antenna and scattering problems [1, 2, 3]. Galerkin

variants of the method of moments (MoM) [4] are most often utilized for the numerical solution of

these electromagnetic surface integral equations.

Normally, three different formulations are encountered, the Electric Field Integral Equation

(EFIE), the Magnetic Field Integral Equation (MFIE) and the Combined Field Integral Equation

(CFIE), which is a linear combination of the other two. However, each one of the above-mentioned

integral operators involve a handful of complications, which include, among others, the so-called

low-frequency breakdown, the bad conditioning of the MoM matrix, especially for the EFIE, and

inaccuracies in the solution for objects of certain shape or electrical size.

In front of all these difficulties, there are a number of possible strategies, all of them valid

and usually complementary. The first one is to develop a new formulation which ideally avoids all

the previously encountered problems. Some attempts in this direction can be found in literature

(Augmented-EFIE [5, 6], Current and Charge Integral Equation (CCIE) [7]), but they are still in a

preliminary state. Another strategy to face these problems is trying to mitigate them, for instance

with a preconditioning matrix [8, 9] or a clever choice of basis and testing functions. There is also

the possibility of reducing the possible sources of error, for example improving the accuracy on the

computation of the impedance matrix elements, to have a better understanding of the root of the

issue.

1.1.2 Basis and testing functions

The divergence-conforming basis functions ensure normal continuity of the current across the

edges arising from the discretization. They are well-suited for the MoM discretization of the EFIE

involving perfectly electric conducting (PEC) objects. The Rao-Wilton-Glisson (RWG) [10] set
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exhibits constant normal/linear tangential (CN/LT) variation along the edge. The variation of the

Linear-linear (LL) set [11, 12, 13] is linear normal/linear tangential (LN/LT), which doubles the

number of unknowns. Even though the LL set carries out a higher-order expansion of the current,

both RWG and LL sets produce a piecewise constant expansion of the charge density, whereby they

are zero-order examples of divergence-conforming sets.

A MoM-discretization of the EFIE for perfectly conducting objects (PeC-EFIE) with the tra-

ditional divergence-conforming basis functions suffers from the so-called low-frequency breakdown.

At very low frequency regime, the contribution of the vector potential to the impedance matrix

becomes negligible, according to the finite machine precision, compared with the scalar potential.

This makes the discretization of the PeC-EFIE ill-conditioned and the solution inaccurate.

The rearrangement of the divergence-conforming basis functions as the combination of solenoidal

and nonsolenoidal, quasi-irrotational, sets of functions leads to MoM-discretizations of the PeC-

EFIE also valid at very low frequencies. The solenoidal subspace captures the null space of the

scalar potential and thus allows a stable and accurate discretization at very low frequencies.

The Loop-Tree [14] or the Loop-Star [14, 15, 16] basis functions develop a rearrangement of the

RWG current space. The Loop basis functions, expanding the RWG-solenoidal space, are defined

around vertices and have zero divergence. They gather all the closed paths arising from the RWG

discretization of closed or open and simply connected surfaces. The Tree or the Star basis functions

capture the remaining nonsolenoidal space, whereby they have non-zero divergence.

Furthermore, there exist generalized Loop-Tree decomposition schemes for higher-order MoM-

discretizations of the EFIE for perfectly conducting objects [17]. Such schemes, though, are not

required for the RWG and LL basis functions, which are complete to zero divergence-order. To our

knowledge, there is no such decomposition for the LL basis functions available.

1.1.3 Accurate computation of the matrix elements

Weakly singular integrals appear in the EFIE formulations, when divergence-conforming basis

and testing functions are incorporated in the Galerkin MoM. Due to the non smooth behavior of the

weakly singular integral kernels, classical numerical quadrature rules fail to meet the requirements

for high precision results, and more sophisticated techniques are needed to tackle this problem.

Generally, various regularization methods for the computation of 4-D weakly singular integrals

have appeared in the literature over the last decades and interested readers could consult [18] for

a more detailed history of relevant previous work.

On the other hand, 4-D hyper-singular integrals (following the convention used in EM com-

munity) arise in the numerical solution of MFIE and CFIE formulations, since the latter are com-

bination of EFIE and MFIE formulations. Over the last years, numerous techniques have been

presented for the accurate and efficient evaluation of those multidimensional hyper-singular inte-

grals, which can be roughly categorized into two main families: singularity cancellation methods

[19, 20, 21, 22, 23] and singularity subtraction methods [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

The logical expectation is that both methods should lead to superior accuracy compared with direct

implementation of quadrature rules. This is not necessarily the case, especially when the quest for

machine precision is combined with the need of improved efficiency.



1.1. State of the art 3

1.1.4 Green’s functions

We could decide to include part of the problem to solve into the Green’s function (GF) itself

rather than discretizing everything. The reason is the reduction in the number of unknowns that

we can achieve. However, the GF is hard to find and calculate in a general case. Nonetheless, this

is not the case of a multi-layered media, with infinite planar layers or with symmetry properties,

or a cavity problem, where we avoid the discretization of the cavity walls.

In the case of rectangular cavities, the Green’s function can be expressed as a triple infinite

series of cavity modes or images. Both series have their advantages and disadvantages. While the

modal series satisfies the boundary conditions and converges fast for far-interactions, it is unable

to catch the singular behavior of the GF when source and observer are close to each other. On

the other hand, the image series works best in the latter case, but converges slowly if source and

observer are far away. Furthermore, it satisfies the boundary conditions only in the limit.

Due to their slow convergence these triple infinite series must be accelerated. For this, various

techniques can be found in literature [35, 36, 37, 38, 39, 40], that are often general approaches not

taking into account the physics behind the problem.

Another approach is Ewald’s technique [41, 42, 43, 44], which is one of the most popular ones

in the framework of Cartesian coordinates due to its high efficiency and precision. It is based

on a hybridization of both, modal and images series developments combining the “best” of them.

Unfortunately, the terms in the images part inside Ewald’s method requires the evaluation of the

complementary error function (erfc), which is computationally expensive, mainly for the complex

arguments needed in frequency dependent problems. To mitigate this problem, the GF could be

split into a static and dynamic part using Kummer’s transform [45]. But still, the static part

contains the evaluation of the erfc with real-valued arguments.

1.1.5 Fast iterative solvers

The main drawback of the MoM is the costly construction, storage, and solution considering

the unavoidable dense linear system. As a consequence, a wide range of fast methods [46] have

been developed for accelerating the iterative solution of the electromagnetic integral equations [47]

discretized by Method of Moments (MoM) [4]. Most of them are based on multilevel subdomain

decomposition and require a computational cost per iteration of order N logN or N log2 N . One

of these methods is the Multilevel Fast Multipole Algorithm (MLFMA) [48]. The MLFMA has

been widely used in the last years to solve very large electromagnetic problems [49, 50] due to its

excellent computational efficiency.

The main drawback of the MLFMA is the dependence of its formulation on the problem Green’s

function. Notwithstanding, other general purpose methods have been developed. For instance, the

Multilevel Matrix Decomposition Algorithm (MLMDA) [51, 52, 53], exploits the compressibility

of MoM sub-matrices corresponding to well separated sub-scatterers by using equivalent surface

basis/testing functions cleverly distributed that radiate and receive the same fields as the original

basis/testing functions. Another fast solver, the Adaptive Integral Method (AIM) [54] replaces the

actual basis and testing functions with a regular volumetrical grid, that again radiates and receives

the same fields as the original discretization, in order to efficiently compute the integral equations

convolution using the FFT algorithm.

However, all the aforementioned methods rely on the appropriate selection of elements with
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an equivalent physical behavior, either multipoles or equivalent surface or volume basis/testing

functions. Hence the interest of purely algebraic methods, whose formulation is still independent of

the problem Green’s function and operate solely with some of the impedance matrix elements, such

as the IE-QR Algorithm [55], the IES3 [56, 57] and the Adaptive Cross Approximation (ACA) [58].

Unfortunately, these algebraic methods present an asymptotic computational time and memory

requirement not as good as that of the above-mentioned methods.

1.1.6 Fast direct solvers

These new iterative algorithms have enormously extended the range of problems that MoM can

manage. The maximum affordable number of unknowns used to be limited to a few thousands. Now

problems with hundreds of thousands or even millions of unknowns are within reach, depending on

the available computational resources.

Based on the previous, one might be tempted to conclude that direct solution of the MoM

matrix equation, through Gaussian elimination or LU decomposition, has become obsolete. This

is not entirely the case, for the following number of reasons:

• First of all, the fast algorithms are very efficient for electrically large structures, while the

direct solution is faster for small and medium size problems, depending on the computational

resources and on the specifics of the problem. The turning point may be of the order of a few

thousand unknowns.

• Furthermore, iterative solution methods for matrix equations yield the solution to the linear

system for only one independent vector (excitation vector) at a time. Consequently, the

computational effort is proportional to the number of independent vectors. By contrast, the

bulk of the effort in LU decomposition, which is the generation of the L and U factors of the

impedance matrix, needs to be done only once for as many independent vectors as needed.

• Finally, the convergence rate of iterative methods can vary in an unpredictable way. It

is related to the matrix condition number, which is notoriously bad for the EFIE in large

problems. The only remedy is the use of a good preconditioner with a relatively large number

of non-zero elements, but the construction of such a preconditioner becomes the bottleneck

of the computation [59, 60, 61].

Therefore, the introduction of an accelerated direct solver would be of much interest.

1.1.7 Post-processing

A lot of resources can be saved in antenna design with the proper use of fast and accurate

simulation tools. Before its existence, one was forced to build an expensive prototype for each new

modification. Therefore, they call not only for the solution of the MoM linear system but for the

obtention of useful information which could be actually measured and contrasted at any time.

The S-parameters or the input impedance are very useful parameters for industry, giving infor-

mation on the behavior of the antenna or multi-port system. The computation of these parameters

requires the definition of a port in the MoM discretization and some post-processing with the re-

sulting surface equivalent currents. Traditionally, the RWG basis functions must have the edges

coinciding with the port feeding line. This is a drawback for the final user, who needs either to
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force this on the original mesh or to re-mesh near the port. Moreover, there are some situations in

which the mesh is given by an external peer and it cannot be changed.

1.2 Objectives and hypothesis

In the previous section, several deficiencies found in literature related to the Method of Moments

have been highlighted. In the following, a list with the topics which the author has attempted

during the realization of this thesis is presented. Moreover, a brief description of how the author

has contributed to fill these gaps is included for each item. They have been subdivided in two

different lists, depending on whether the item has been placed in the present manuscript or not. In

any case, when they are related to one or several publications, either as journal or conference papers,

it will be appropriately referenced. These references can be found at the end of the document at the

“Author Publications and Awards” Section. The nomenclature APJ-i and APC-i is used meaning

Author Publication i in Journal and Conference paper, respectively.

1.2.1 Included in this document

• Fast Iterative solver - MLACA [APJ-1, APC-10-14]:

We develop the MLACA as a MoM fast iterative solver. It is a multilevel version of the ACA,

maintaining the condition of being purely algebraic and GF independent, but reducing the

asymptotic computational time and memory requirement.

• Singular integrals - direct evaluation method [APJ-2, APC-2,4,7]:

The direct evaluation method for the computation of singular integrals is extended to the

hyper-singular integrals appearing in the matrix elements of the MFIE and CFIE formula-

tions. It is proved to reach unmatched efficiency and accuracy.

• Near-singular integrals:

The near-singular case in the hyper-singular integrals appearing in the MFIE and CFIE

formulation is analyzed and a possible treatment is given.

• Multi-port systems:

A generalization of port definition is given so that the port definition is independent of the

actual mesh, not needing any re-meshing. It gives freedom to the final user.

1.2.2 Not included in this document

• Green’s functions - Rectangular cavity [APJ-3]:

A novel accelerated technique for the computation of the static part of a rectangular cavity

GF is developed. Similarly to Ewald’s method, it combines the “best” of modal and images

series. Unlike Ewald’s method is has a clear physical interpretation and it does not require

the evaluation of the erfc function.

• Basis functions
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– Self-loop [APJ-5, APC-12,13]:

A Loop-Star decomposition for the LL set is obtained with the inclusion of the Self-

loop basis functions. The Self-loop basis function are solenoidal (zero divergence). The

LL basis functions are decomposed into solenoidal (RWG loops + Self-loops) and non-

solenoidal (RWG stars) parts to make the EFIE stable at very low frequencies, when a

LL discretization is utilized.

– Orthogonal basis functions [APJ-4, APC-4,9]:

A set of orthogonal basis functions as an alternative to the RWG is introduced to improve

the accuracy of MFIE for sharp-edged objects in the low frequency regime.

– Macrobasis functions [APC-16]:

Some facts on the use of macrobasis functions (functions defined over relatively large

domains) were highlighted and analyzed.

• Integral equation formulation - Electric-Magnetic Field Integral Equation (EMFIE) [APJ-4,

APC-1]:

The EMFIE is a formulation which forces at the same time electric and magnetic boundary

conditions. It is expected to solve the problems arising in other formulations with the proper

selection of basis and testing functions.

• Accelerated direct solver

– CBD[APJ-7,9,10, APC-26,27]:

Contribution to the Compressed Block Decomposition algorithm for the direct solution

of moderately large electromagnetic problems.

– MDA-CBI [APC-20,23]:

Introduction of the MDA algorithm inside the CBD as an alternative to the ACA.

– MSCBD [APJ-6, APC-5,6,8,19]:

Multiscale version of the CBD algorithm, which reduces the computational cost and

memory requirement, allowing for the solution of problems electrically larger.

• Fast iterative solvers

– MDA-SVD [APJ-8, APC-8,11,20,28]:

Introduction of a Singular Value Decomposition (SVD) re-compression to the MDA

algorithm which improves performance.

– MLFIA [APC-18,25]:

The Multilevel Field Interpolator Algorithm is a fast iterative method based on the

introduction of equivalent functions, phase subtraction, interpolation from one level to

the next and phase restoring.

1.3 Methodology

The utilized methodology throughout the thesis has been in general, in this order: detection of

a problem present or stated in literature; deep analysis of the problem to localize its causes, if any,
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usually based on numerical experiments; development of a theory, sometimes based on previous

existing works, combined with the simultaneous development of an algorithm related to the theory;

simulation of relevant numerical examples which prove the validity of the developed theory and

algorithm and its consequences.

1.4 Organization of the document

The present document has been globally subdivided in five parts: introduction, fast solvers,

singular integrals, multi-port systems and conclusions. As a general remark, every chapter starts

with a short paragraph in an abstract-like manner, usually followed by an introduction with a

specific state of the art to place the treated problem. Afterwards, the body of the chapter comes,

to be followed by numerical results and final conclusions.

The first part comprises the present introductory chapter and Chapter 2, which gives a brief

review of the Method of Moments (MoM), this being the common point to all the work-lines

presented in this dissertation. No novel material is found in this part.

The second part, Fast Solvers, comprises Chapters 3 and 4, which detail the theory, imple-

mentation and testing of the Multilevel Adaptive Cross Approximation (MLACA) algorithm. In

particular, Chapter 3 states the method in its original form and Chapter 4 sets a theoretically

justified modification in the tree decomposition. As a consequence of this modification, the results

are much improved making the method worth even for moderate electrically large electromagnetic

problems.

The third part, Singular Integrals, contains Chapters 5 and 6. The first one describes the direct

evaluation method adapted to the hyper-singular integrals appearing in the MFIE formulation.

The numerical results section proves the superiority in efficiency and accuracy in comparison with

the existing alternatives in literature to tackle these kind of integrals when the triangle domains

share a common edge or vertex. Chapter 6 continues with the treatment of this kind of integrals,

though forcing to use exclusively numerical integrations. Some problems arise and a number of pos-

sible solutions are presented, including the treatment of the near-singular case, where the triangle

domains are very close to each other but not touching.

The forth part, Multi-port Systems, coincides with Chapter 7 which deals with the obtention

of measurable parameters, like the input impedance of a system, from the current density solution

obtained from the MoM. Furthermore, a new theory to deal with ports, gives freedom to a final

user of an electromagnetic software to define the mesh independently of the position of the port.

Finally, some conclusions and further discussion from the present dissertation are outlined in

the last part.
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Chapter 2

Method of Moments (MoM)

T
his chapter provides a brief overview, in an introductory manner, of the so-called Method of

Moments. However no novel material is included in the chapter, the MoM represents the pilar

around which the rest of the chapters find a connecting point. Therefore, it is interesting, if not

mandatory, to supply the basics of the formulation, particularly for the Galerkin surface integral

equations, which are the most used ones during the manuscript.

2.1 Introduction

The MoM became popular in the middle 60s thanks to the work of Mei-Van Bladel [62], Rich-

mond [63] and Harrington [64, 4]. Since then, its use has grown in parallel with the modern

computer resources.

2.2 General algorithm formulation

In the process of solving integral equations we can represent these functional equations in the

form:

FX = Y (2.1)

where F is a linear operator, X is the unknown function (equivalent currents) and the function Y

is the independent term (incident field). To solve (2.1) in a computer, it is necessary to discretize

functions and operators converting the functional equation into a matrix equation or system.

Firstly, the unknown functionX is approximated by a finite linear combination of basis functions

xn

XN =

N∑

n=1

cnxn ≈ X (2.2)

where the N coefficients cn are the samples of the discretization of X and constitute the unknowns

of the numerical problem to solve. In order that XN is a good approximation of X, it is necessary

that the basis functions xn belong to the domain of the operator F, i.e., that they respect the

boundary and differentiability conditions of the operator.

Substituting (2.2) into the functional equation (2.1) and using the linearity of the operator F

we obtain

YN =

N∑

n=1

cnFxn ≈ Y (2.3)

which is a functional equation as well, though with N numerical unknowns cn instead. So that an
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appropriate solution exists, it is necessary that the function Y can be adequately approximated

by a linear combination of the functions Fxn. To accomplish this, the basis functions xn must be

chosen so that the functions Fxn are in the range space of the operator F and that the set {Fxn}
is a complete base of the range space of F when the order of the discretization N tends to infinite.

It is equivalent to say that the field must be representable in the basis of functions {Fxn}.
The error in the boundary conditions or residual is

R = Y − YN = Y −
N∑

n=1

cnFxn. (2.4)

To convert the functional equation (2.1) into a matrix system of M equations with N unknowns,

we set to zero the residual adjusted with M weighting functions wm

〈wm, R〉 = 0 m = 1 . . .M (2.5)

where the scalar product is defined as the Hilbert inner product

〈g, f〉 =
∫

D(S)
g∗(r′)f(r′)ds′ (2.6)

resulting finally in the system of M equations and N unknowns

〈wm, Y 〉 =
N∑

n=1

cn 〈wm,Fxn〉 m = 1...M (2.7)

which may be written in matrix form as

[A]c = b Amn = 〈wm,Fxn〉 bm = 〈wm, Y 〉 . (2.8)

To solve this system, if M = N the matrix [A] is square and the system easily solved as

c = [A]−1b (2.9)

otherwise (M > N), we need to solve the system in a minimum least squares way utilizing the

pseudo-inverse or generalized inverse

c = ([A]H [A])−1[A]Hb (2.10)

where [A]H is the adjoint matrix of [A], i.e., the conjugate transpose of [A].

When the coefficients cn are calculated utilizing either (2.9) or (2.10), the numerical solution

of the problem XN is obtained from (2.2). In general, it is an approximated solution because the

imposed conditions (2.5) do not necessarily imply a zero residual and because the functional space

in which the function X is defined has an infinite dimension, while it is approximated by a function

XN with a finite number N of coefficients cn.
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2.3 Integral operators in electromagnetism

The boundary conditions on the surface S of a perfectly electric conductor (PEC) state that

the total tangential electric and magnetic fields (Et(r), Ht(r)) must accomplish

n̂×Et(r)|S = n̂× (Ei(r) +Es(r))|S = 0

n̂×Ht(r)|S = n̂× (Hi(r) +Hs(r))|S = J(r)
(2.11)

where n̂ is the outward normal vector at the observation point. Moreover, we have decomposed the

total fields into incident (Ei(r), Hi(r)) and scattered (Es(r), Hs(r)) fields. The formers are those

which would exist in the absence of the object, whereas the latter are the ones generated by the

induced current on the surface of the object (J(r)).

Utilizing the mixed potentials theory and considering that the induced magnetic currents M(r)

are zero (only PEC are considered), the scattered electric and magnetic fields can be expressed in

terms of the electric vector potential A(r) and the electric scalar potential Φ(r) as

Es(r) = −jωA(r)−∇Φ(r)

Hs(r) =
1

µ
∇×A(r).

(2.12)

The vector and scalar potentials can be calculated using its respective dyadic Green’s function

which include the information of the medium where the electric currents are immersed [65]:

A(r) = µ

∫

S
G(r, r′)J(r′) ds′

Φ(r) = − 1

jωǫ

∫

S
G(r, r′)∇′ · J(r′) ds′.

(2.13)

Unless oppositely said, we mainly consider the homogeneous space Green’s function, although many

things can be extrapolated to other existing Green’s functions:

G(r, r′) =
e−jkR

4πR
=

e−jk|r−r′|

4π|r− r′| . (2.14)

In some cases and without loss of generality, the 4π constant is not considered to simplify the

notation, in which case it is always stated.

Substituting (2.13) into (2.12) and developing, we obtain the following expressions of the fields

scattered by the electric currents

Es(r) = −jωµ
∫

S
G(r, r′)J(r′) ds′ − 1

jωǫ
∇
∫

S
G(r, r′)∇′ · J(r′) ds′

Hs(r) =

∫

S
∇G(r, r′)× J(r′) ds′

(2.15)



12 Chapter 2

which can be represented in terms of the linear operators

L(J) = −jkη
∫

S
G(r, r′)J(r′) ds′ + j

η

k
∇
∫

S
G(r, r′)∇′ · J(r′) ds′

K(J) =

∫

S
∇G(r, r′)× J(r′) ds′.

(2.16)

Finally, introducing (2.16) into (2.11) we obtain the expressions of the so-called electric field

integral equation (EFIE) and magnetic field integral equation (MFIE)

n̂× L(J)|S = −n̂×Ei(r)|S EFIE

1

2
J(r)− n̂×K(J)|S = −n̂×Hi(r)|S MFIE

(2.17)

where the integral inside K(J) must be understood in the Cauchy Principal Value (CPV) sense, as

the other part is in the J(r)/2 term.

When including these operators in the framework of the Method of Moments, with the inclusion

of convenient basis and testing functions, it claims for the evaluation of the integrals at points r ∈ S,

which are infinitesimally close to the source point r′, and therefore with a singular integrand.

Consequently, to compute the matrix elements, we need to treat singular integrals, weakly-singular

in the EFIE or hyper-singular in the MFIE, which claim for sophisticated techniques or quadrature

rules. These sort of singular integrals are treated in Chapters 5 and 6.

Both EFIE and MFIE apply for closed surfaces, whereas only EFIE can be applied for open

surfaces. Moreover, when the problem is solved at a frequency equal to the resonance frequency

of the object, the uniqueness theorem fails and infinite solutions might appear accomplishing the

boundary conditions (they accomplish the homogeneous integral equations). This is translated into

a very ill-conditioned matrix system, which becomes hardly solvable.

To avoid the resonance problem, having into account that the resonance frequencies of EFIE

and MFIE differ form each other, the combined field integral equation (CFIE) appeared as a linear

combination of the EFIE and MFIE [3]. The main problems of the CFIE are that we need to

compute both EFIE and MFIE integrals, making it less efficient and that, at least in its first

approach, it is only applicable to closed surfaces.

As a last remark, the EFIE is a first kind integral operator while the MFIE is a second kind

operator. This property has direct consequences in the conditioning of the posterior matrix as well

as in the precision of the solution in terms of the number of unknowns.

2.4 Basis and testing functions

Having a deep look at (2.16) one observe that an appropriate choice of basis functions must

be able to correctly represent the current J(r) and its divergence. Presently, three schemes are

mainly being used to represent three-dimensional objects: rooftops [66] over rectangular patches,

Rao-Wilton-Glisson (RWG) basis functions over triangular patches [10] and the wire model when

a part of the object can be approximated by a thin wire. The main advantage of the triangular

mesh against the rectangular one is the larger flexibility to better model arbitrary surfaces with

complex shapes.

Although this is the general case, some effort is still being done in different groups both to
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find better behaved local basis functions, especially for the MFIE, and to use macrobasis functions

defined over large domains instead of very localized [67, 68, 69, 70, 71, 72]. The author has

contributed with some publications in this sense during the realization of the thesis, although

it has not been included in the present document (refer to Author Publications Section [APJ-5,

APC-1,4,9,12,13,16]).

We will now focus on triangular meshes with RWG basis functions and the wire model as they

have been our choice for the examples along the whole dissertation. As for the testing or weighting

functions, the same RWG or wire functions will be used. When basis and testing functions coincide

it is known as Galerkin method and has been shown to be more precise than point-matching method,

which uses Dirac deltas as testing functions. Moreover, with Galerkin method, some simplifications

in the formulation [10] can be done accelerating the computation of the elements of the impedance

matrix corresponding to the interaction between two far triangles, supposing that the incident field

and the potentials are constant inside these elements.

2.4.1 RWG functions

Once the object has been meshed into triangular elements, we define the RWG basis function

fn(r) associated to each edge ln, common to the triangles T+
n and T−

n (Fig. 2.1) as

fn(r) =

{
ln

2A+
n
ρ
+
n (r) if r ∈ T+

n

ln
2A−

n
ρ
−
n (r) if r ∈ T−

n

(2.18)

where ρ
+
n (r) is the vector from the vertex of T+

n opposite to ln to r, ρ−
n (r) from r to the vertex of

T−
n opposite to ln and A±

n is the area of the triangle T±
n .

ln

T+
n

T−
n

ρ
+
n

ρ
−
n

Figure 2.1: Triangular elements pair with a common edge above which the RWG basis functions are defined.

This div-conforming basis function have the following properties:

• The function fn(r) has no normal components crossing the external edges of the triangles

T+
n and T−

n . The normal component across the internal edge ln is equal to 1, constant and
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continuous along the edge. Then, in the approximation of the total current

J(r) ≈ JN (r) =

N∑

n=1

cnfn(r) (2.19)

where N is the number of edges common to two triangles, the coefficients cn are the value of

the current density which crosses the edge ln in the normal direction. A positive value of cn

indicates a current flux flowing from T+
n to T−

n . The value of J(r) inside each triangle is a

linear vectorial interpolation of the three values cn of the components of J(r) normal to the

three edges.

• The surface charge density is

− jωρs = ∇s · fn(r) =
{

ln
A+

n
if r ∈ T+

n

− ln
A−

n
if r ∈ T−

n

(2.20)

so that the total charge in the pair of elements is null.

• In the case of open surfaces, there are no normal components of JN (r) in the external bound-

ary, which corresponds with the physical reality.

2.4.2 Wire model functions

We have considered a very simple model which assumes a constant value of the current in the

revolution of the cylinder, i.e., it is constant along each circular section. We have a basis function

per each vertex common to a pair of wire segments, and its value decreases linearly to zero when

going to the outer edges of these wires. In particular, the expression of the basis function fn(r) is

fn(r) =





1
(2πa)l+n

(rc − r1) if r ∈W+
n

1
(2πa)l−n

(r2 − rc) if r ∈W−
n

(2.21)

where a is the radius of the cylinders, l±n is the length of the cylinder W±
n , rc is the projection of r

into the axis of the cylinder and r1 and r2 are the opposite vertices of the cylinders W+
n and W−

n ,

respectively.

2.5 Solvers

Commonly, the size of the discretized elements is chosen proportionally to the wavelength λ

(around λ/10 gives normally quite accurate results) considered that a larger variation in the surface

current is expected for larger frequencies. It is translated into an increasing number of unknowns

N with the growing of the electrical size of the object. Moreover, the MoM impedance matrix is a

full matrix, so the matrix storage scales with O(N2), limiting the size of the objects that we can

analyze if no improvement or compression is applied. To have an idea, with a PC with 64GB of

RAM memory, problems no larger than 65000 unknowns can be solved, while applying the fast

solvers existing in literature or in particular the ones developed in this thesis, we are able to solve
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problems in this same machine with more than 1 million of unknowns, which would need more than

16000GB of memory.

These solvers can be categorized into direct and iterative solvers, whose treatment is now in

order.

2.5.1 Direct methods

A direct method requires the computation of the inverse of the matrix or an equivalent fac-

torization, and the independent vectors are applied afterwards to this inverse matrix. The direct

methods are very well-suited for problems which require the solution of a system for many different

independent vectors, as is the case of the mono-static RCS for different incident angles. Further-

more, they are less affected than iterative methods by the bad-conditioning of the matrix, as a

solution is always reached. However, traditional general direct methods scale with O(N3) what

makes it unfeasible for objects with moderate electrical size. Notwithstanding, compression and

inversion techniques based on the physics of the problem, can reduce this asymptotical behaviors,

making affordable, in a reasonable time, the solution of much larger objects. When the solution

of the system is only needed for a reduced number of incident fields, iterative methods are still

the appropriate choice. The author has contributed in the development of these accelerated direct

methods ([APJ-6,9,10, APC-5,6,8,19,20,23,26,27]).

2.5.2 Iterative methods

Iterative methods are the most used nowadays for the solution of very large MoM problems.

They start from an initial guess of the solution, usually not very important and set to a null vector,

and performing one or more matrix-vector products per iteration, depending on the actual method,

they converge to the solution reducing the norm of the residual ri at each iteration i:

System to solve: Ax = b

ri =
‖Axi − b‖2
‖b‖2

.
(2.22)

There are several iterative methods present in literature, each of them with different properties

which determine per each problem the number of iterations necessary to converge up to a certain

residual. Without entering into the details, we just mention some of them: conjugate gradient (CG),

bi-conjugate gradient (BiCG), conjugate gradient squared (CGS), bi-conjugate gradient stabilized

(BiCGSTAB), transpose free quasi minimal residual (TFQMR) and generalized minimal residual

method (GMRES). Unless stated otherwise, we will use the GMRES for all the simulations.

The computational time of an iterative method is proportional to the product of the number

of iterations k and the cost of a matrix-vector product. If no compression is applied on the origi-

nal matrix it becomes O(kN2) which will represent an unreasonable time for very large problems.

Notwithstanding, several fast solvers have appeared in literature during the last decades which are

able to reduce the computational order of a matrix-vector product as well as of the computation

of the compressed form of the matrix. Without being exhaustive, a list of these techniques in-

clude: MLFMA, MDA-SVD [APJ-7,8, APC-8,11,18,20,25,28], ACA, MLACA [APJ-1, APC-10,14]

(Chapters 3 and 4).
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2.5.2.1 Preconditioning

Another important parameter which determines the total time to obtain a solution with an

iterative solver is the number of iterations. This number is dependent on the actual iterative

method we are using, but most worryingly, it can grow, even to order N , when the condition

number of the matrix to solve grows. This is the case of the EFIE formulation in the vast majority

of cases. To avoid this bad-conditioning effect, and therefore to reduce the number of iterations,

we can introduce a preconditioning matrix. The idea behind the preconditioning is the following:

modifying our system so that the solution is the same and the new resulting matrix has a better

condition number, i.e.

M−1Ax = M−1b (2.23)

where if M is as equal to A as possible, the product M−1A will be very close to the identity matrix.

Evidently, if M = A, one iteration suffices, but the cost of the preconditioning M−1 is the same as

directly solving the original system. Therefore, there is a trade-off between the cost and size of the

preconditioner and the number of iterations of the system.

There are several preconditioning techniques in literature, being the most used an incomplete

LU decomposition (ILU) [8] and the recently developed Calderon preconditioner [9], based on the

Buffa-Christiansen basis functions.



Fast Solvers





Chapter 3

Multilevel Adaptive Cross Approximation (MLACA)

T
he Multilevel Adaptive Cross Approximation (MLACA) is proposed as a fast method to ac-

celerate the matrix-vector products in the iterative solution of the linear system that results

from the discretization of electromagnetic Integral Equations (IE) with the Method of Moments

(MoM). The single level ACA, already described in literature, is extended with a multilevel recur-

sive algorithm in order to improve the asymptotical complexity of both the computational cost and

the memory requirements. The main qualities of ACA are maintained: it is purely algebraic and

independent of the integral equation kernel Green’s function as long as it produces pseudo-rank-

deficient matrix blocks. Examples are presented to show the potentiality of the method, although

we need to wait to the next Chapter 4, where a slight modification is introduced, to have really

relevant examples for the EM community. The algorithm is presented in such a way that it can be

easily implemented on top of an existing MoM code with most commonly used Green’s functions.

3.1 Introduction

In recent years, a wide range of fast methods [46] have been developed for accelerating the

iterative solution of the electromagnetic integral equations [47] discretized by Method of Moments

(MoM) [4]. Most of them are based on multilevel subdomain decomposition and require a compu-

tational cost per iteration of order N logN or N log2N . One of these methods is the Multilevel

Fast Multipole Algorithm (MLFMA) [48]. The MLFMA has been widely used in the last years to

solve very large electromagnetic problems [49, 50] due to its excellent computational efficiency.

The main drawback of the MLFMA is the dependence of its formulation on the problem Green’s

function. Notwithstanding, other general purpose methods have been developed. For instance,

the Multilevel Matrix Decomposition Algorithm (MLMDA) [51, 52, 53] or its renewed version,

the Matrix Decomposition Algorithm - Singular Value Decomposition (MDA-SVD) [73] exploit

the compressibility of MoM sub-matrices corresponding to well separated sub-scatterers by using

equivalent surface basis/testing functions cleverly distributed that radiate and receive the same

fields as the original basis/testing functions. Another fast solver, the Adaptive Integral Method

(AIM) [54] replaces the actual basis and testing functions with a regular volumetrical grid, that

again radiates and receives the same fields as the original discretization, in order to efficiently

compute the integral equations convolution using the FFT algorithm.

However, all the aforementioned methods rely on the appropriate selection of elements with

an equivalent physical behavior, either multipoles or equivalent surface or volume basis/testing

functions. Hence the interest of purely algebraic methods, whose formulation is independent of the

problem Green’s function and operate solely with some of the impedance matrix elements, such as
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the IE-QR Algorithm [55], the IES3 [56, 57] and the Adaptive Cross Approximation (ACA) [58].

Unfortunately, these algebraic methods present an asymptotic computational time and memory

requirement not as good as that of the above-mentioned methods.

The Adaptive Cross Approximation method (ACA), which is the basis of the multilevel algo-

rithm proposed here, was developed in 2000 by Bebendorf [58] and since then has been widely used

to solve large magnetostatic problems [74]. Recently, the ACA has been applied also to antenna

radiation and RCS computation [75, 76]. For very large problems, the compression of well sep-

arated sub-scatterers matrix blocks with ACA has an asymptotical computational complexity of

O(N̄3) for matrix compression and O(N̄2) for storage, as proved in [77], where N̄ is the number of

unknowns of each sub-scatterer. In practice, these asymptotical behaviors are not reached unless

N̄ is of the order of several millions, and therefore for moderately large values of N̄ one usually

observes a much lower computational complexity.

The aim of this chapter is to present a multilevel version of the ACA method, using physical

concepts similar to those presented in [51] for the MLMDA. Maintaining the purely algebraic

formulation and in comparison with the single level ACA, the computational cost and memory

requirements are reduced to O(N̄2) and O(N̄ log N̄), respectively. The memory, and therefore the

matrix-vector product time, is comparable to that of the MLFMA.

3.2 Description of the Algorithm

3.2.1 Binary Tree Domain Decomposition

The idea of the binary domain decomposition is to start with a discretized object and split it

recursively so that at each new level, every subset of the previous level is subdivided into two new

subsets. The criterion for the partition of each subset can be set depending on the application

but is usually related with the distribution of the discrete samples in space. Fig. 3.1 displays a

representation of such a decomposition.

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

1

2

3

4

56

Figure 3.1: Multilevel decomposition of a sphere resulting from a binary tree subdivision. Only one block
for each level is represented. This decomposition is used at two different stages in the algorithm: the global
object multilevel subdivision tree and for simple MLACA boxes.

A formalization of this idea can be found in appendix A. Just note that the splitting criterion
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in our algorithm is adjusting a cuboid to each subdomain and cutting it in half across its largest

dimension.

Similarly to many existing methods, this decomposition is first used to break the global object

under study, and consequently the associated impedance matrix, into near and far interactions.

Furthermore, and most importantly for us, when a far-interaction submatrix is to be computed,

both the source and the observation boxes are split using this binary decomposition in order to

apply the MLACA algorithm.

This was the original criterion we chose, and the one presented in some conferences. However, as

will be shown in the next Chapter, another tree subdivision based on the solid angle seen between

each pair of far-boxes will produce an important improvement on the behavior of the algorithm.

In the matrix representations throughout the chapter, the basis and testing functions will be

reordered following the tree decomposition described, in order to obtain a block-like representation.

It means that functions in the same box of the tree are represented by contiguous rows/columns of

the matrix.

3.2.2 Adaptive Cross Approximation - Singular Value Decomposition (ACA-

SVD)

The Adaptive Cross Approximation (ACA) [58] is a pure algebraic technique for matrix com-

pression. It accurately decomposes a low τ -rank matrix arising from an asymptotically smooth

function into the product of two new matrices in a compressed form:

M ≈ UV (3.1)

being M a m × n matrix, U a m × k matrix and V a k × n matrix with k ≪ m,n, where k is

the τ -rank or number of degrees of freedom (DoF). The error in this approximation is controlled

by a threshold τ which determines when to stop looking for more columns and rows of U and V ,

respectively.

Most of the open Green functions in electromagnetism lead to an integral equation function

(EFIE, MFIE, CFIE, . . . ) which, when dealing with the interaction between two well-separated

blocks in space, lead in turn to an interaction matrix with a deficient pseudo-rank that can be

efficiently compressed with the ACA technique.

The ACA has a computational cost or number of operations scaling with k2(m + n) whereas

the final amount of necessary memory scales with k(m + n). The last quantity coincides also

with the number of matrix elements evaluations in M to decompose M ≈ UV allowing us not to

compute the whole matrix. Although this number of evaluations is asymptotically smaller than the

computational cost of the ACA, for medium size problems it can dominate the total computational

time as Green function evaluations can be highly time consuming.

We are going to apply a singular value decomposition (SVD) recompression (see algorithm

ACA-SVD-R below) to the obtained ACA compression for two different reasons. First of all, to

have a better compression as the last or smallest singular values coming from the ACA decomposi-

tion are usually not very accurate and we can remove them without losing accuracy. And secondly,

it will allow us to make the right-hand side outer matrix orthonormal, which is a key point in the

multilevel ACA (MLACA), because all the information of the matrix (singular values) is kept in

the left-hand side.
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Table 3.1: Asymptotic Computational Order Cost of the Different Used Sub-methods

dims(M) DoF(M) Comp. Cost

QR(M) m× k - mk2

ACA(M, τ) m× n k k2(m+ n)

SVD(M, τ) k × k k′ < k k3

ACA-SVD-R(M, τ) m× n k k2(m+ n)

Function ACA-SVD-R(M, τ)

1: U, V ← ACA(M, τ/10)

2: Qu, Ru ← QR(U)

3: Qv, Rv ← QR(V H)

4: U,S, V ← SVD(RuR
H
v , τ)

5: return QuUS, V QH
v

where the subfunctions accomplish:

Q,R = QR(M) =⇒M = QR (3.2)

U, V = ACA(M, τ) =⇒M ≈ UV (3.3)

U,S, V = SVD(M, τ) =⇒M ≈ USV (3.4)

being QR and SVD the well known matrix algebra algorithms [78].

It can be easily proved that M ≈ (QuUS)(V QH
v ) and that the returning right-hand side outer

matrix V QH
v is orthonormal taking into account the orthogonality properties of the QR and SVD

decompositions. The computational cost and required storage scale the same as the single ACA

(see Table 3.1).

In the algorithm implementation there will be two different functionsACA-SVD-R andACA-

SVD-MR. The only difference between them is that in the former we have the input matrix M

already computed whereas in the latter the elements are computed on demand with the correspond-

ing Green function.

3.2.3 Degrees of Freedom

Let us consider the behavior of the number of degrees of freedom (DoF) of the matrix repre-

senting the interaction between two well-separated boxes of samples, source and observation boxes,

respectively.

For a given frequency and distance, when the size of the source box grows by a certain factor

and the size of the observation box decreases by the same factor, the number of DoF remains

asymptotically constant for large boxes (a proof of this can be found in [51]). This property allows

us to maintain the same number of DoF from one step to the other in the MLACA algorithm.

When the frequency grows, the sizes of the boxes and the distance between them become

electrically larger if they are physically the same. Now, if the physical size of one of the boxes,



3.2. Description of the Algorithm 23

the source box for instance, is reduced, so that its electrical size is constant, then the number of

DoF is also constant. This can be understood considering that the growth in electrical distance

compensates the growth in electrical size of the observation box. This means that if only the

frequency is changed, the only necessary thing to do to maintain the same number of DoF per

sub-block is to fix the electrical size of the finest level, which is what the defined binary tree does.

This property allows us to maintain the same number of DoF, more boxes, but with constant DoF,

when the frequency changes in the MLACA algorithm.

3.2.4 Multilevel Adaptive Cross Approximation (MLACA)

Hereupon and up to Section 3.5 we address the interaction between two boxes or sets of samples

contained within two spheres that do not intersect each other. These boxes come from a domain

decomposition of the object that will be introduced in Section 3.6. We shall call the two separated

boxes, source and observation boxes, respectively. Applying the Method of Moments (MoM) it is

possible to express the interaction between them with an impedance matrix Zmn with dimensions

m×n, where m and n are the number of basis functions in which the observation and source boxes

have been discretized, respectively. In the first place, we must subdivide each box recursively into

smaller domains in a binary tree manner, so that in each subdivision approximately half of the basis

functions goes to each side. If L is the number of levels, at the finest level we have in each subset

or subdomain approximately M = N̄/2L elements, considering N̄ = n = m. For asymptotical

analysis, L is chosen to yield a fixed minimum box electrical size.

For the sake of clarity, the algorithm will be explained below in the easiest way to under-

stand. The next Section will address the actual implementation in which a reordering of operations

improves performance.

In step 0 (Fig. 3.2(a)) Zmn is transformed into the product of two new matrices A
(1)
0 and B

(1)
0 .

The procedure to obtain them is to split Zmn into strips, each corresponding to the interaction of

one subset of basis functions at the finest level in the source box with the whole observation box

(see first row of pictures in Fig. 3.3). Each of those strips only has k degrees of freedom. They

can be compressed with the ACA-SVD algorithm and regrouped (see Fig. 3.2(a)) as follows. The

left-hand side matrices resulting from each ACA-SVD are horizontally concatenated forming the

new matrix A
(1)
0 , whereas the right-hand side matrices are diagonally concatenated forming the

new block-diagonal matrix B
(1)
0 . In that way, the product of the two new matrices gives us an

approximation of the original Zmn matrix. Then only the ‘B’ matrices need to be permanently

stored and the ‘A’ matrices will be subdivided and re-compressed in the next steps of the algorithm.

At step 1 (i = 1), the matrix A
(1)
0 from level 0 is transformed into four new matrices A

(2)
0 , A

(2)
1 ,

B
(2)
0 , B

(2)
1 (Fig. 3.2(b)) as follows. Due to the proper re-ordering of columns according to the tree

decomposition of the source box, consecutive couples of strips in matrix A
(1)
0 correspond to the two

children of each box in the next decomposition level. Similarly, due to the proper re-ordering of

rows according to the tree decomposition of the observation box, the matrix A
(1)
0 can be horizontally

split obtaining that each subblock corresponds to each one of the two halves of the observation

object. The resulting upper and lower matrices have new strips with again k degrees of freedom

because the size of the involved boxes is halved and doubled in the observation and source objects,

respectively. As the actual number of columns of the strips is 2k, they can be re-compressed with

the ACA-SVD and re-group for each matrix in the same manner as in step 0. The obtained new
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Figure 3.2: Graphical representation of the matrix transformations in the MLACA algorithm described in
Section 3.2. First step or step 0 (a) and step i (b) with i ≥ 1.

matrices A
(2)
0 and A

(2)
1 are sent to the next step in order to equally proceed recursively.

Generalizing this procedure in a recursive manner, at step i, the set of ‘A’ matrices from step

i − 1, A
(i)
j j = 0, . . . , 2i−1 − 1, are transformed into four new matrices A

(i+1)
2j , A

(i+1)
2j+1 , B

(i+1)
2j ,

B
(i+1)
2j+1 (Fig. 3.2(b)). The initial matrix A

(i)
j is split into two sets of rows corresponding to the two

children subdomains in the observation box tree. On the other hand, the strips are grouped in

pairs corresponding to the upper level, or parent box, in the source box tree. This procedure is

represented from the object point of view in Fig. 3.3 where each row corresponds to a step of the

algorithm. As mentioned in Section 3.2.1, the submatrix grouping and subdivision corresponds to

the object domain decomposition (Fig. 3.1 and Fig. 3.3). As the source domain is doubled in

size and the observation domain is divided by two, the number of degrees of freedom of the new

substrips is again k [51], and therefore can be re-compressed using the ACA-SVD algorithm to

obtain the new ‘A’ and ‘B’ matrices. After the step i = L we have the whole set of matrices which

correctly combined represent a compressed version of the matrix Zmn. Only the ‘B’ matrices and

the ‘A(L+1)’ from the last step need to be permanently stored.

In this procedure, all the matrices we extract to the right are orthonormal. According to

appendix B, each time we apply ACA-SVD-R to a strip, the resulting left-hand side matrix will

have exactly the same singular values as the original strip. If a SVD was not applied after the ACA

compression in function ACA-SVD-R, the singular values would not be the same.
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⋃ ⋃ ⋃· · ·⋃
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. . .
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... . .
.

. .
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. . .

Source

Observation

Figure 3.3: Schematic representation of the described multilevel procedure. Each row of figures represents
each step on the algorithm. Gray blocks are the ones considered at each step. It starts with the interaction
between all the finest level boxes of the source box “S” and the total observation box “O”. In the next steps,
the source blocks are sequentially grouped whilst the observation boxes are split.

n

2L

k

︸ ︷︷ ︸
B(1)

︸ ︷︷ ︸
B(2)

︸ ︷︷ ︸
B(3)

︸ ︷︷ ︸
B(L+1)

︸ ︷︷ ︸
A(L+1)

Figure 3.4: Multilevel decomposition matrices for L = 3 levels. White parts are zero elements whereas
gray blocks are filled.
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In order to have our original matrix Zmn decomposed as a product of matrices (see Fig. 3.4

and 3.5) we need to regroup the obtained matrices as follows:

B(1) = B
(1)
0 . (3.5)

For each i = 2, . . . , L+ 1:

B(i) =




B
(i)
0

B
(i)
1

. . .

B
(i)
2j

B
(i)
2j+1

. . .

B
(i)
2i−1−2

B
(i)
2i−1−1




; A(L+1) =




A
(L+1)
0

. . .

A
(L+1)

2L−1



. (3.6)

Note that in this representation we have matrices with a high sparsity distributed by blocks, but

actually we do not need to form those sparse matrices because we already know how to use the

subblocks.

︸ ︷︷ ︸
B(1)

︸ ︷︷ ︸
B(2)

︸ ︷︷ ︸
B(3)

︸ ︷︷ ︸
B(4)

︸ ︷︷ ︸
B(L+1)

︸ ︷︷ ︸
A(L+1)

Figure 3.5: Multilevel decomposition matrices for L = 4 levels. White parts are zero elements whereas
gray blocks are filled.

3.3 Algorithm Implementation

The previous procedure has a computational cost of O(N̄2) and a final storage of O(N̄ log N̄).

However, during the algorithm the amount of necessary memory at some steps can be temporarily of
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O(N̄2) (for instance, at step 0, the matrix A
(1)
0 has O(N̄2) elements). Nevertheless, this temporary

storage can be reduced by simply reordering the operations. It means that we do exactly the same

operations and the result is exactly the same but the order of the operations is different.

A representation of that reordering is shown in Fig. 3.6 and 3.7 for respectively 2 and 3 levels.

Each row in the figure represents all the matrix blocks involved at each step of the algorithm. The

numbers above each matrix determine the order in which the operations are computed.

1 2 5 6

3 4 7 8

9 10 11 12

︷ ︸︸ ︷ ︷ ︸︸ ︷

︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 3.6: Representation of the order to follow (numbers) showing schematically which are the elements
of the matrix involved. The arrows display which steps are necessary from the previous row in order to
compute the matrices below. In this case there are L = 2 levels.

Inside the algorithms, the notation of A
(l)
i [ν] and B

(l)
i [ν] is consistent with the matrices in Fig.

3.2 and in the previous section. Here the ν inside the square brackets means that it corresponds

to the ν-th vertical strip of the corresponding matrix.

Function computeCompressedMatrixMlaca(L, τ)

1: A
(L+1)
0 [1], . . . , A

(L+1)

2L−1
[1] = mlacaRec(L + 1, 1, τ)

2: store A
(L+1)
0 [1], . . . , A

(L+1)

2L−1
[1]

Function A
(l)
0 [ν], . . . , A

(l)

2l−1−1
[ν] = mlacaRec(l, ν, τ)

1: if l = 1 then

2: A
(1)
0 [ν], B

(1)
0 [ν]← ACA-SVD-MR(Zmnν , τ)

3: store B
(1)
0 [ν]
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1 2 5 6 13 14 17 18

3 4 7 8 15 16 19 20

9 10 11 12 21 22 23 24

25 26 27 28 29 30 31 32

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 3.7: Representation of the order to follow (numbers) showing schematically which are the elements
of the matrix involved. The arrows display which steps are necessary from the previous row in order to
compute the matrices below. In this case there are L = 3 levels.

4: return A
(1)
0 [ν]

5: else

6: A
(l−1)
0 [2ν − 1], . . . , A

(l−1)

2l−2−1
[2ν − 1]←

mlacaRec(l − 1, 2ν − 1, τ)

7: A
(l−1)
0 [2ν], . . . , A

(l−1)

2l−2−1
[2ν]←

mlacaRec(l − 1, 2ν, τ)

8: for j = 0 to 2l−2 − 1 do

9: aux ←
[
A

(l−1)
j [2ν − 1] A

(l−1)
j [2ν]

]

10: auxUpper, auxLower ← splitMatrix(aux)

11: A
(l)
2j [ν], B

(l)
2j [ν]← ACA-SVD-R(auxUpper,τ)

12: A
(l)
2j+1[ν], B

(l)
2j+1[ν]← ACA-SVD-R(auxLower,τ)

13: store B
(l)
2j [ν], B

(l)
2j+1[ν]
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14: end for

15: return A
(l)
0 [ν], . . . , A

(l)

2l−1−1
[ν]

16: end if

In order to compute the compressed interaction matrix we only need to call once the function

computeCompressedMatrixMlaca described above which in turn calls the recursive function

mlacaRec. The important work is done by the function mlacaRec and the former function just

initialize the recursion and stores the final resulting matrices.

Function y = matrixVector(A,B, x)

1: for l = 1 to L+ 1 do

2: x← matrixVectorLev(l, B, x)

3: end for

4: for i = 1 to 2L−1 do

5: ymi
← A

(L+1)
i [1]x{i}

6: end for

7: return y

Function y = matrixVectorLev(l, B, x)

1: if l = 1 then

2: for i = 1 to 2L do

3: y{i} ← B
(1)
0 [i]x{i}

4: end for

5: else

6: for i = 1 to 2L do

7: xaux{i} ←



x{2i − 1}

x{2i}




8: end for

9: for i = 1 to 2L do

10: j ←
⌊

i−1
2L−l+1

⌋

11: ν ← i− j2L−l+1

12: s← ν +
⌊

i−1
2L−l+2

⌋
2L−l+1

13: y{i} ← B
(l)
j [ν]xaux{s}

14: end for
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15: end if

16: return y

Once the compressed matrix is computed, to make a matrix-vector product with a vector x we

only need to call the function matrixVector. This function does the product of each matrix in the

multilevel decomposition with the corresponding sub-vector from right to left. Each matrix-vector

product with each matrix B(l) is performed by the subfunction matrixVectorLev.

There are some parts of the algorithms described above which need a further explanation.

There are four issues implicitly related with the binary decomposition defined in Section 3.2.1

and Appendix A. In the mlacaRec function line 2, the subindex nν is nν = T
(L)
ν and in function

matrixVectorLev line 3, x{i} is x{i} = x(T
(L)
i ), T being the tree decomposition of the source box

under study. In functionmlacaRec line 10, the function splitMatrix(aux) takes into account that

the matrix aux contains the rows related to a certain box in a certain level of the tree decomposition

of the observation box and it simply splits the matrix in an upper and lower side in terms of the

subdivision of that box at the next level. In function matrixVector line 5 ymi
is ymi

= y(T
(L)
i )

being T the tree decomposition of the observation box.

3.4 Computational Cost and Storage

We remind that this section deals with time and storage of the MLACA algorithm applied to

the interaction between two separated sets of samples and not to the global algorithm applied to

the entire problem under study.

Here k is the constant number of degrees of freedom of each submatrix interaction inside the

multilevel procedure defined in Section 3.2.4.

A first initial point is the knowledge of the dimensions of the different matrices involved in the

algorithm and from that, it will be easy to evaluate the complexity. For each level l = 1, . . . , L+1,

each matrix inside that level j = 0, . . . , 2l−1− 1 and each strip of the matrix ν = 1, . . . , 2L−l+1, the

matrix A
(l)
j [ν] is m

2l−1 × k. Similarly, for l = 2, . . . , L+ 1, j = 0, . . . , 2l−1 − 1 and ν = 1, . . . , 2L−l+1,

B
(l)
j [ν] is a matrix k × 2k. And for ν = 1, . . . , 2L, B

(1)
0 [ν] is k × n

2L
.

The final storage, and therefore the computational cost of a matrix-vector product, corresponds

with the whole set of B matrices and the A(L+1) matrices. The total size of the B matrices SB can
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be computed as follows:

SB =
L+1∑

l=1

2l−1−1∑

j=0

2L−l+1∑

ν=1

size(B
(l)
j [ν]) (3.7)

=
2L∑

ν=1

size(B
(1)
0 [ν]) +

L+1∑

l=2

2l−1−1∑

j=0

2L−l+1∑

ν=1

size(B
(l)
j [ν]) (3.8)

=

2L∑

ν=1

k
n

2L
+

L+1∑

l=2

2l−1−1∑

j=0

2L−l+1∑

ν=1

2k2 (3.9)

= kn+

L+1∑

l=2

2l−12L−l+12k2 = kn+

L+1∑

l=2

2k22L (3.10)

= kn+ 2k2L2L (3.11)

and the total of the A(L+1) matrices:

SA(L+1) =

2L−1∑

j=0

size(A
(L+1)
j [1]) =

2L−1∑

j=0

k
m

2L
= 2Lk

m

2L
= km. (3.12)

Therefore, the final storage is:

SEND = SB + SA(L+1) = kn+ 2k2L2L + km = 2kN̄ + 2k2
N̄

M
log

N̄

M
= O(N̄ log N̄) (3.13)

where it has been used that N̄ = m = n and L = log N̄
M and that k and M are independent of N̄ .

So finally, the total necessary amount of memory to store the matrix and the computational cost

of a matrix-vector product is O(N̄ log N̄).

Now let us consider which is the necessary memory at the worst part of the algorithm, including

temporary variables. We will do it without considering the B matrices and we will sum them up

in the end. Observing the function mlacaRec we can see that for l = 1 the worst case is when we

are at line 4 where we need to store A
(1)
0 [ν] and therefore:

S(1) = mk. (3.14)

When l > 1 there are two possible places where the amount of memory can be greater, so we

must consider the maximum of both of them. The first point would be inside line 7 comput-

ing mlacaRec with a smaller level. In that case we have previously stored the set of matrices

A
(l−1)
0 [2ν − 1], . . . , A

(l−1)

2l−2−1
[2ν − 1] and the amount of memory which needs the same function for

the last level:

S
(l)
1 = S(l−1) +

2l−2−1∑

j=0

size(A
(l−1)
j [2ν − 1]) = S(l−1) +

2l−2−1∑

j=0

size
m

2l−2
k = S(l−1) + km. (3.15)

The other possible point is when we are at line 15 where we have stored A
(l−1)
0 [2ν−1], . . . , A(l−1)

2l−2−1
[2ν−

1] and A
(l−1)
0 [2ν],. . . , A

(l−1)

2l−2−1
[2ν] and A

(l)
0 [ν], . . . , A

(l)

2l−1−1
[ν]. Making a similar count it can be
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proved that:

S
(l)
2 = 3km. (3.16)

Summarizing: {
S(1) = mk

S(l) = max
{
S
(l)
1 , S

(l)
2

}
, l > 1.

(3.17)

For l > 2, S
(l)
1 is always greater than S

(l)
2 . Therefore:

{
S(2) = 3mk

S(l) = S
(l)
1 = S(l−1) + km, l > 2

(3.18)

and as it grows with l, the worst case is S(L+1) and:

S(L+1) = S(2) + (L− 1)km = 3km+ (L− 1)km = kN̄(2 + log
N̄

M
). (3.19)

And finally, adding the amount of necessary memory for the B matrices we obtain:

STOTAL = kn+ 2k2L2L + 3km+ (L− 1)km = 3kN̄ + (k + 2
k2

M
)N̄ log

N̄

M
= O(N̄ log N̄). (3.20)

So it has been proved that at the worst point, the temporary storage of the algorithm is still

O(N̄ log N̄).

Only remains to obtain the computational cost of the construction of the compressed matrix.

To do so we will compute the cost of the function mlacaRec for a certain level l and we will obtain

then a recursion which finally will give us the total computational cost. For l = 1 we only need to

do an ACA (line 2) of the matrix Zmnν with size m× n
2L

and k degrees of freedom. Therefore:

CC(1) =
(
k2 + αk

) (
m+

n

2L

)
(3.21)

where α is the factor which tells us how much a single evaluation of the Green function costs with

respect to a single complex number operation.

To compute the cost at level l, CC(l), with l > 1 we go line by line. In line 6 and line 7 we

call the function mlacaRec with level l− 1 and they cost CC(l−1) each one. Then, the rest of the

time is spent in lines 11 and 12 which are done 2l−2 times because they are inside a loop. Each one

computes an ACA of a matrix m
2l−2 ×2k with k degrees of freedom. So each line costs k2( m

2l−2 +2k).

Putting it together:

CC(l) = 2CC(l−1) + 2l−22k2
( m

2l−2
+ 2k

)
= 2CC(l−1) + 2k2m+ k32l (3.22)

obtaining finally the recursion:

{
CC(1) =

(
k2 + αk

) (
m+ n

2L

)

CC(l) = 2CC(l−1) + 2k2m+ k32l, l > 1.
(3.23)
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Solving the recursion we can obtain an implicit formula:

CC(l) = 2l−1CC(1) + 2k2m
(
2l−1 − 1

)
+ k3 (l − 1) 2l. (3.24)

And the total computational cost of function computeCompressedMatrixMlaca is obtained by

substituting l by L+ 1 in the last equation:

CCTOTAL = CC(L+1) (3.25)

= 2LCC(1) + 2k2m
(
2L − 1

)
+ k3L2L+1 (3.26)

=
3k2 + αk

M
N̄2 + 2k3

N̄

M
log

N̄

M
+
(
αk − k2

)
N̄ (3.27)

= O(N̄2). (3.28)

So finally, the computational cost of computing the matrix is O(N̄2), and the computational cost

of a matrix-vector product as well as the storage is O(N̄ log N̄).

3.5 SVD Threshold

Similarly to what happens with real numbers, if we have a product of matrices and we want

to assure a certain relative error in the resulting matrix, we have to consider the worst case where

all the relative errors of each matrix are summed. So, to have a better error than with the direct

application of the ACA-SVD (equivalent to the MLACA with L = 0), we need to use a threshold

τ/(L + 2) instead of τ because the matrix is decomposed into the product of L + 2 matrices. So

actually we run computeCompressedMatrixMlaca(L, τ/(L+2)). The influence of that change

of threshold in the computational costs and storage is analyzed below.

The only thing which is affected by the threshold is the number of DoF k at each level that now

depends on L and therefore on N̄ . Let us consider that the singular values decay exponentially up

to some point:

σt = s010
−βt, β > 0, t ≥ t0. (3.29)

Then we must accomplish
σk( τ

L+2)

σ0
≤ τ

L+ 2
(3.30)

and substituting equation (3.29) for t = k
(

τ
L+2

)
and isolating k we finally obtain:

k

(
τ

L+ 2

)
=

⌈
1

β

[
log10(L+ 2) + log10

(
s0
τσ0

)]⌉
= O

(
log10

(
log

N̄

M

))
. (3.31)

As the coefficients of the order in the last section were proportional to k2, what we need to add

is a factor log2(log(N̄ )) to the O(N̄2) computational cost and O(N̄ log N̄) storage. In practice the

new factor is negligible against the others.
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3.6 Global algorithm (Putting it together)

In this section we are going to consider a complete radiation or scattering problem. It is

necessary to subdivide the whole set of interactions in near and far interactions, so that we can apply

the multilevel MLACA algorithm described above to the far parts. Commonly in the literature, a

hierarchical octal tree is used to split the object or the related matrix and this approach can also

be applied in our case if desired. Notwithstanding, we propose the utilization of a binary tree also

for this hierarchical subdivision. The differences in the results should not be too high in the vast

majority of the cases. The only gain comes when the object discretization is very non-uniformly

distributed or the object is much larger in one dimension than the rest, because in the proposed

decomposition the boxes are adapted to the object at each subdivision.

Once the matrix is divided in far and near interactions, the near parts are directly computed

whereas the far parts are computed with the presented MLACA algorithm. Then we have a routine

to perform a matrix-vector product which can be introduced in any existing iterative method, like a

GMRES for instance. This procedure adds a logN factor to the aforementioned asymptotical costs,

obtaining finally a computational cost growing with O(N2 logN) and a storage and matrix-vector

product with O(N log2 N).

3.7 Numerical Results

All the numerical experiments reported in this section have been performed on a PC with 64

GB of RAM and a Dual Intel Xeon X5460 processor at 3.16 GHz (8 cores). The computations were

done in MATLAB c© 7.8.0, always using only one CPU.

We present three different experiments where we consider only the interaction between two sets

of samples separated in space. They are the most important in order to evaluate the computational

cost and the necessary memory of the algorithm. They could well be a part of a major object or

electromagnetic problem. The evaluation for a complete object is left to the next chapter.

3.7.1 Space Separated Blocks

3.7.1.1 Opposite Square Plates

In this experiment a couple of 1m×1m square plates are placed face to face, separated 3m.

Varying the frequency, and accordingly the number of unknowns N̄ of each square plate to have a

fixed discretization size of λ/10, we perform the computation of the interaction MoM-EFIE matrix

between the two plates with the presented MLACA. Fig. 3.8 shows the required memory and the

computational time of this simulation when a threshold τ = 10−3 is used. Several computations

have been performed varying the size of the finest level in the multilevel decomposition. In the

legend, the size of this finest level is shown with a value M which is the approximate number of

unknowns at the finest level box. As the discretization size is electrically maintained, it is equivalent

to changing the box size. It has also been compared with the ACA method, which can be seen as

the MLACA with L = 0 levels. Reference lines with the expected asymptotical behavior have been

included as well. We can observe how the MLACA perfectly fits the theoretical asymptotic lines

when the number of unknowns grows. The compression rate, in comparison with the single level

ACA, is much higher, in particular when the number of unknowns grows, as the storage in ACA is
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asymptotically N̄2 instead of N̄ log N̄ . The compression is better when the size of the finest level

is smaller, i.e. when a larger number of levels is used. However, the computation becomes slightly

slower, so the choice of the minimum box size is transformed in a trade-off between storage and

computational time. For very large problems, the CPU time of the single level ACA starts to grow

faster than O(N̄2), theoretically O(N̄3) [77], whereas MLACA is maintained at O(N̄2). This ACA

N̄3 behavior is hardly seen in the figure because this asymptotical behavior is just starting at the

greatest represented problem sizes.
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Figure 3.8: Storage requirement and CPU time versus the number of unknowns, with a fixed electrical
discretization size, in the interaction between two separated opposite square plates for different finest level
sizes in the MLACA. The threshold τ equals 10−3.

3.7.1.2 Parallel Square Plates

The same experiment, except for the position of the plates, is now in order. The two square

plates are placed parallel instead of opposite with the centers separated 3m. Fig. 3.9 displays the

same kind of results as in the last experiment with the new configuration. Again, the theoretical

asymptotic behaviors are perfectly followed and the compression rate is better with the multilevel

version than with the single level ACA. In this case, however, ACA is quicker than its multilevel

version because the number of DoF, and consequently the ACA complexity, depend on the solid

angle between the two groups, which in this case is quasi-1D. Nevertheless, even in this biased

case, the expected complexity for very large blocks of ACA is O(N̄2) as in the MLACA, but with

a poorer storage complexity O(N̄3/2).

3.7.1.3 Spheres

In this case, the objects are replaced by spheres with radius 0.5m whose centers are separated

4m. This is a case in between the two studied ones, as it definitely has 2D against 2D as in the

opposite plates but it also has depth, similarly to the parallel plates. Fig. 3.10 shows the results for
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Figure 3.9: Storage requirement and CPU time versus the number of unknowns, with a fixed electrical
discretization size, in the interaction between two separated parallel square plates for different finest level
sizes in the MLACA. The threshold τ equals 10−3.

this experiment. We can conclude the same as in the parallel plates although in this case the ACA

is already behaving O(N̄2) and it is expected to behave O(N̄3) for larger objects. The MLACA

keeps following the expected asymptotical behaviors.
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Figure 3.10: Storage requirement and CPU time versus the number of unknowns, with a fixed electrical
discretization size, in the interaction between two separated spheres for different finest level sizes in the
MLACA. The threshold τ equals 10−3.
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3.8 Conclusion

The MLACA has been presented as a novel multilevel version of the well-known Adaptive

Cross Approximation (ACA) algorithm, for the compression of matrices appearing in the Method

of Moments discretization of radiation and scattering electromagnetic problems.

Equally to ACA, MLACA applies when the source and field domains corresponding to the

impedance matrix block being compressed are well-separated in space, which needs a previous hier-

archical domain decomposition of the object under study and a different treatment of compressible

far field blocks from non-compressible near field blocks.

It has been proven, both theoretically and numerically, that

1. The storage and the matrix-vector product (or iteration) time scale asymptotically as

O(N log2N) and the matrix compression time scales as O(N2 logN).

2. That the accuracy is easily controllable varying a threshold τ .

In the presented results, the gain with respect to ACA is not very impressive. However, in

the next chapter they will further improve thanks to a modification on the tree decomposition of

far-interaction boxes.
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Chapter 4

Modified Multilevel Adaptive Cross Approximation

A
lthough we could well have included this chapter inside the previous one, we have preferred

to separate it as a modification of the MLACA in its original version. The main reason is

twofold: to first focus the attention of the reader on the kernel of the method itself, making it

clearer; and to highlight the importance of the present modification to have a real improvement in

efficiency and compression with respect to the ACA method already for moderately large objects

and not only asymptotically for huge objects. The idea is to decompose each two far boxes with a

tree based on the solid angle of one block against the other rather than on the size of the sub-boxes

at each level.

4.1 Tree subdivision based on the solid angle

The number of Degrees of Freedom (DoF) of the interaction between two well-separated blocks

of samples depends essentially on the solid angle that one block occupies seen from the center of

the other, rather than only on the electrical size of the blocks. In a step of the MLACA, one of

the blocks is subdivided so that the interaction of the smaller sub-blocks with the other block has

a reduced number of DoF in comparison with the parent box. In other words, the DoF are split as

best as possible between the new sub-blocks.

Consequently, a block subdivision particularized for every block interaction, depending on both

source and observation boxes together, based on the solid angle seen from one box to the other,

should give much better numerical results, as will be shown in Section 4.2. Fig. 4.1 shows a pair

of example tree subdivisions, a coplanar case and a perpendicular case. A formalization of this

procedure is now in order.

Let us introduce the boxes of samples “Box1” and “Box2” with centers c1 and c2 and with

samples at points vi
1 and vi

2, respectively. We want to deal with the tree subdivision of “Box2”

when interacting with “Box1”. The reverse case is completely analogous. Overall, we need to place

spherical coordinates (see Fig. 4.2(a)) centered at the center of “Box1”, c1. The orientation must

be so that the other block, Box2 is centered at the x axis, or equivalently at φ = 0 and θ = 0 (see

Fig. 4.2(b)). This is to avoid deformations of the object and an unbalance between φ and θ which

would appear close to the poles, when seen in spherical coordinates. To do this, the following space

transformations are necessary.

First a translation with vector c1 to place the center of coordinates at the center of Box1:

rt = r− c1. (4.1)
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Figure 4.1: Representation of the subdivision of the blocks of samples based on the solid angle seen from
the other block. Coplanar on the left and perpendicular on the right.
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(a) Spherical coordinates.
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(b) Box to subdivide seen from the center of the other
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Figure 4.2: Representation of the spherical coordinates on the left and what we see of one block of samples
from the center of the other in spherical coordinates centered at the center of the box.

Afterwards a rotation with axis z and angle θ1 to put Box2 centered in the plane y = 0:

θ1 = tan−1

(
((c2)t)y
((c2)t)x

)
(4.2)



4.2. Numerical results 41

rrot1 =




cos(θ1) sin(θ1) 0

− sin(θ1) cos(θ1) 0

0 0 1


 · rt. (4.3)

Finally, another rotation with axis y and angle θ2 is performed to definitively center Box2 at the x

axis:

θ2 = tan−1

(
((c2)rot1)z

((c2)rot1)x cos(θ1) + ((c2)rot1)y sin(θ1)

)
(4.4)

rrot2 =




cos(θ2) 0 sin(θ1)

0 1 0

− sin(θ1) 0 cos(θ1)


 · rrot1. (4.5)

Once the transformation have been performed, it only remains to express the obtained Box2

points (vi
2)rot2 into the angular spherical coordinates φi and θi

φi = tan−1

(
((vi

2)rot2)y
((vi

2)rot2)x

)

θi = tan−1




√
((vi

2)rot2)
2
x + ((vi

2)rot2)
2
y

((vi
2)rot2)z


 .

(4.6)

The block Box2 is then enclosed in a rectangular box with sides ∆φ and ∆θ defined as

∆φ = max
i

(φi)−min
i
(φi)

∆θ = max
i

(θi)−min
i
(θi).

(4.7)

At each level, we split the block in pieces which have half the solid angle of the parent at the

previous level. The empirical criterion we have chosen for the definition of solid angle (which is not

the regular one in the mathematic community) is

Solid Angle = max(∆φ,∆θ) ·
[
min

(
((vi

2)rot2)x
λ

)]0.6
. (4.8)

4.2 Numerical results

All the numerical experiments reported in this section have been performed on a PC with 64

GB of RAM and a Dual Intel Xeon X5460 processor at 3.16 GHz (8 cores). The computations were

done in MATLAB c© 7.8.0, always using only one CPU.

We present two different experiments where we consider only the interaction between two sets

of samples separated in space (Section 4.2.1). They are the most important in order to evaluate

the computational cost and the necessary memory of the algorithm. They could well be a part of

a major object or electromagnetic problem. Then, three complete object examples are presented

(Section 4.2.2).

In all the presented numerical experiments, when reference is made to a relative error in a
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Table 4.1: Storage requirement and CPU time in the interaction between two separated parallel square
plates with N̄ = 2428200 samples per plate for different number of levels in the Modified MLACA. The
threshold τ equals 10−3.

L = 0 (ACA) L = 1 L = 2 L=3

Time 3h 24m 3h 8m 3h 16m 3h 42m

Size (GB) 16.47 10.27 6.79 4.9

computed (vector) parameter X, this error has been calculated according to

‖X −Xref‖
‖Xref‖

, (4.9)

where ‖·‖ is the 2-norm and Xref is an independently created reference solution. The proper

reference solution is usually hard to obtain when dealing with extremely large-scale problems due

to the limitations in the available resources. Therefore, the obtained error is usually an estimated

error which has only into account the error introduced by the accelerated solver rather than the

actual error, which would include the effect of the finite discretization among others.

4.2.1 Space Separated Blocks

4.2.1.1 Parallel Square Plates

In this experiment, a couple of 1m×1m square plates are placed in the same plane, separated

2m. Varying the frequency, and accordingly the number of unknowns N̄ of each square plate to

have a fixed discretization of λ/10, we perform the computation of the interaction MoM-EFIE

matrix between the two plates with the presented modified MLACA, for different number of used

levels.

Fig. 4.3 shows the required memory and the computational time of this simulation when a

threshold τ = 10−3 is used. Clearly, the memory requirement decreases significantly with the

number of levels, mainly when the electrical size of the plates grows.

With respect to the CPU time, the optimum for small electrical sizes is the single level ACA

(L = 0). Nonetheless, there is a certain point, approximately for N̄ = 29800 or a plate side of 10λ,

where the time for L = 1 levels starts to be equal or even better when the plates size increase.

The same happens for L = 2 at a further point, approximately for N̄ = 270000 or a plate side of

30λ. Exactly the same will happen for L = 3, not represented in the figure as it is beyond the

maximum computed value, and so on and so forth. Therefore, an appropriate utilization to have

a good trade-off between necessary memory and CPU time is the following: using the maximum

number of levels but assuring that the CPU time is at least equal to the CPU time for L = 0. The

number of levels to use is then chosen depending on the solid angles between the two blocks of

samples. For larger solid angles, larger number of levels.

To stress the gain that we are actually obtaining, we have extracted the results for the largest

computed parallel square plates (N̄ = 2428200 or square side 90λ) and included them in Table 4.1.

A good trade-off in this case would be to use L = 2, whose computation takes 8 minutes less than

with the single level ACA with 41% of the memory (from 16.47GB to 6.79GB).
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Figure 4.3: Storage requirement and CPU time versus the number of unknowns, with a fixed electrical
discretization size, in the interaction between two separated parallel square plates for different number of
levels in the Modified MLACA. The threshold τ equals 10−3.

4.2.1.2 Opposite Square Plates

As will be shown in the present Section, the gain is much greater when the two square plates

are placed face to face instead of in the same plane. The two 1m×1m square plates are oppositely

placed and separated 2m. Again, the computation of the MoM-EFIE compressed interaction matrix

is computed for different frequencies and number of MLACA levels. The used threshold is τ = 10−3

and the discretized elements have an average length of λ/10.

Fig. 4.4 shows the required memory and the computational time of this simulation. For

electrically large blocks, the memory requirement is much smaller when the number of levels grows.

For small blocks, the size with more levels is larger because the threshold is reduced proportionally

to the number of levels (see Chapter 3).

As for the CPU time, the single level ACA (L = 0) is faster until blocks with about N̄ = 7400

samples or a side size of 5λ. From this point, L = 1 becomes the reference until blocks with

N̄ = 67200 or a side size of 15λ. Afterwards, L = 2 is the fastest and it follows successively

for larger electrical sizes and number of MLACA levels. In this case, the better behavior of the

multilevel, even in terms of CPU time is much more evident.

Similarly to the parallel square plates case, we have included the results for the electrically

largest simulated plates into Table 4.2. It corresponds to square plates with N̄ = 606600 samples

or a side size of 45λ. If we use L = 2 levels, it only takes a 37% of the time with respect to the ACA

and it only needs a 15% of the memory. Furthermore, with L = 3, although it takes a 46% of the

ACA time which is a bit slower than with L = 2, it only needs a 7.2% of the memory. Therefore,

the number of MLACA levels to use will depend on our resources. If we are more restricted by

memory, we can use a larger number of levels. If CPU time is our main constraint there is always

an optimum number of levels in terms of time, with still an excellent compression.
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Figure 4.4: Storage requirement and CPU time versus the number of unknowns, with a fixed electrical
discretization size, in the interaction between two separated opposite square plates for different number of
levels in the Modified MLACA. The threshold τ equals 10−3.

Table 4.2: Storage requirement and CPU time in the interaction between two separated opposite square
plates with N̄ = 606600 samples per plate for different number of levels in the Modified MLACA. The
threshold τ equals 10−3.

L = 0 (ACA) L = 1 L = 2 L = 3

Time 14h 15m 6h 16m 5h 19m 6h 33m

Size (GB) 23.31 8.57 3.54 1.68

4.2.2 Complete Problem Solutions

4.2.2.1 Large PEC Square Plate

The first object under study is a PEC square plate with a length side of 59.7λ. The threshold τ

for the SVD re-compressions is 10−3 and the size of the finest level in the subdivision of the object

to split in far and near interactions is 0.5λ. The square plate has N = 1385840 RWG unknowns

with an average edge length of the discretized elements of λ/10. In this case we have used the EFIE

formulation and as iterative method we have used a GMRES with a residual threshold to stop of

10−5. Note that in this case all the far interactions are of the kind where there are square plates

in the same plane, which as proved before, is the case where the MLACA needs electrically larger

blocks to be worth using.

The reference current vector to compute the error has been obtained solving the problem with

the MLACA with a threshold τ = 10−4. We tried to obtain it with the ACA to be fairer but it

was then beyond the memory limit with the correspondent slowing down of the simulation when

the swapping to disk started, making it unfeasible in a reasonable time.

Table 4.3 shows the performance of this simulation with three different methods, the single level

ACA, the MLACA with the tree subdivision introduced in Chapter 3 and the MLACA with the

modified tree subdivision introduce in the present Chapter. With the modified MLACA method
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Table 4.3: MLACA performance on currents computation of 59.7λ side PEC square plate utilizing EFIE
formulation. N = 1385840 unknowns and threshold τ = 10−3.

ACA MLACA (Old) Modified MLACA

Build time 5h 57m 6h 27m 6h 11m

Size Near (GB) 9.30 9.30 9.30

Size Far (GB) 38.22 34.71 32.75

GMRES threshold 10−5 10−5 10−5

# iterations 141 142 142

Iterations time 4h 44m 4h 35m 4h 30m

Total Time 10h 41m 11h 2m 10h 41m

Total Size (GB) 47.52 44.01 42.05

Error in J(%) 0.29 0.18 0.19

we obtain a further compression of 5.5GB with respect to the ACA with the same total solution

time. It represents a reduction of an 11% of the total necessary memory. The estimated error is

also lower for the MLACA than for the ACA, and in particular is of the same order as the selected

threshold τ . With respect to the old MLACA, the gain in memory is lower and the CPU time is

higher, justifying the importance of the tree subdivision in terms of the solid angle presented in

this Chapter.

Something worth mentioning, which will appear in all the simulation from here on, is that

the iterations time is not improved in the same amount as the used memory. This is because

the GMRES has an additional cost apart from a matrix-vector product which increases with each

iteration.

Fig. 4.5 shows the bi-static RCS of this simulation for the different methods. As expected from

the errors in the surface currents, an excellent agreement can be observed for the RCS.
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Figure 4.5: Bistatic RCS of a 59.7λ side PEC square plate with N = 1385840 unknowns.

Note that we only use multiple levels for the far interaction of electrically large blocks. Therefore,
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Table 4.4: MLACA performance on currents computation of 26.4λ diameter PEC sphere utilizing CFIE
formulation. N = 786432 unknowns and threshold τ = 10−1.

ACA MLACA (Old) Modified MLACA

Build time 4h 17m 5h 18m 4h 40m

Size Near (GB) 7.19 7.19 7.19

Size Far (GB) 29.12 25.72 22.35

GMRES threshold 10−5 10−5 10−5

# iterations 77 77 77

Iterations time 1h 19m 1h 18m 1h 17m

Total Time 5h 36m 6h 36m 5h 57m

Total Size (GB) 36.31 32.91 29.54

Error in J(%) 7.97 7.63 7.80

in this case only a few interactions are improved, which do not represent a considerable percentage

of the total matrix size. However, this compression will increase considerably when the object is

larger. This behavior will be better analyzed for the PEC missile in Section 4.2.2.3.

4.2.2.2 Large PEC Sphere

In order to avoid conditioning problems, which are not the issue of this thesis, and having a

good convergence, in the next two examples we will only analyze closed geometries using the CFIE

formulation. A drawback of this approach is that the matrix is not symmetric. Therefore, all the

interactions need to be computed.

The next object under study is a PEC sphere with a diameter of 26.4λ with N = 786432

unknowns. The threshold τ for the SVD re-compressions is 10−1, the size of the finest level in the

subdivision of the object to split in far and near interactions is again 0.5λ and the threshold for

the GMRES residual to stop is 10−5. The discretization has an average length of the elements of

λ/10.

The reference current vector to compute the error has been obtained solving the problem with

the ACA with a threshold τ = 10−3. Therefore, in any case it should benefit the ACA simulation,

but as expected, the error will be slightly smaller for the MLACA.

Table 4.4 shows the results of this simulation. In this case, the MLACA has only been used

at the first level (largest blocks) of the object subdivision where there are far interactions, even

though it should not be applied yet if we want to optimize the CPU time. The memory requirement

is 6.77GB lower for the modified MLACA than for the ACA with CPU time 21 minutes higher.

It represents a gain in memory of a 18.6% with an increasing of 6.6% of CPU time. When the

object becomes electrically larger, the gain in memory will be much more important together with

a time improvement. The estimated relative error is slightly smaller for the MLACA and of the

same order as the used threshold τ . With respect to the old version of the MLACA, it doubles the

compression while reducing also the CPU time in 39 minutes.

Fig. 4.6 shows the bi-static RCS of the sphere computed from the surface currents obtained

with the different methods. We have also included the reference available for the sphere from the

Mie series development. There are slight differences which are normal considering the errors in the
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surface currents. These errors can be easily reduced by decreasing the threshold τ , which has been

set very high for this case (τ = 10−1).
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Figure 4.6: Bistatic RCS of a PEC sphere with diameter 26.4λ and N = 786432 unknowns.

4.2.2.3 PEC Missile

Finally, we analyze a PEC missile presented in [79] which has a length of 75λ. The shape

and dimensions of the missile can be extracted from the referenced paper. The missile has been

discretized with N = 1222419 unknowns and an average length of the elements of λ/10 as in the

previous cases. As in the sphere, we use the CFIE formulation with a threshold τ = 10−1 and

the size of the finest level in the subdivision of the object to split in far and near interactions of

0.5λ. However, the residual tolerance to stop the GMRES algorithm is set to 10−3 due to the worse

convergence rate.

We were not able to obtain a good reference solution as we are very close to the RAM memory

constraint of our computer. However, a comparison of the bi-static RCS with our results (see

Fig. 4.7) and the one included in [79], calculated with a very different approach, shows a good

agreement.

Table 4.5 shows the results for this simulation. In this case, there are two columns for the

modified MLACA. We use modified MLACA 1 when multiple levels are only applied to the block

interactions at the subdivision levels 2 and 3 of the object which correspond with the largest far-

interaction blocks. In the modified MLACA 2, also the forth level far-interactions are calculated

with multiple levels. With the inclusion of the forth level, the build time is a bit higher but the

gain in compression is considerable. In this case, the number of iterations is higher for the ACA

than the others. Often the one which takes longer to converge is the one with a higher relative

error in the matrix elements but this cannot be concluded in the absence of a good reference. In

any case, the total time of the modified MLACA is smaller than the ACA and even the build time,

without considering the iterations is very close. The gain in memory is 10.4GB with respect to the

ACA which corresponds with a 18% of the total.

To evaluate the contribution of the MLACA to the different far-interaction blocks, we have
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Table 4.5: MLACA performance on currents computation of 75λ PEC missile utilizing CFIE formulation.
N = 1222419 unknowns and threshold τ = 10−1.

ACA MLACA (Old) Modified MLACA 1 Modified MLACA 2

Build time 9h 45m 10h 11m 9h 52m 10h 9m

Size Near (GB) 8.55 8.55 8.55 8.55

Size Far (GB) 49.59 40.12 43.78 39.18

GMRES threshold 10−3 10−3 10−3 10−3

# iterations 235 195 197 195

Iterations time 9h 40m 7h 25m 7h 28m 7h 23m

Total Time 19h 25m 17h 35m 17h 20m 17h 32m

Total Size (GB) 58.14 48.67 52.33 47.73

Table 4.6: MLACA performance on the matrix computation of 75λ PEC missile utilizing CFIE formulation.
The contribution to sub-blocks of the original object of different sizes is contemplated. N = 1222419
unknowns and threshold τ = 10−1.

level 2 level 3 level 4

ACA MLACA ACA MLACA ACA MLACA

# interactions 6 6 48 48 6892 6892

Size (GB) 5.50 1.36 3.05 1.38 22.11 17.50

Time 53m 56m 20m 24m 2h 1m 2h 18m

included Table 4.6. When the MLACA is applied to the relatively electrically small blocks at level

4 of the object subdivision we save a 21% of the memory but with an increase of a 14% of CPU

time. In the next larger blocks level 3, the gain in memory is already a 55% with only 4 minutes

more of time. And finally, the gain at the largest level 2, with only 6 far-interactions, is a 75% with

just 3 extra minutes. Therefore, if the object is electrically larger, the compression of the larger

block interactions will be much better, and also the contribution of the largest blocks interactions

will represent a good proportion of the total memory.

Fig. 4.7 shows the bi-static RCS computed with the different methods. There are some small

differences which are normal considering the high threshold we are using. The main difference is

in the single level ACA.

4.3 Conclusion

A modified tree decomposition based on the solid angle has been presented as an improvement

to the Multilevel Adaptive Cross Approximation method. Several numerical experiments have

corroborated the gain in terms of memory requirement and CPU time with respect to the single

level version ACA, already for object of around one million of unknowns.

It has been proved that the MLACA will be much superior for problems that are one or two

orders of magnitude larger. Therefore, the author expects that the MLACA will find its place in

the framework of supercomputers and parallelization, which are becoming a reality nowadays even

at very low prices.
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Figure 4.7: Bistatic RCS of a 75λ length PEC missile with N = 1222419 unknowns.
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Chapter 5

Fast and accurate computation of hyper-singular

integrals in Galerkin surface integral equation

formulations via the direct evaluation method

I
n this chapter, hyper-singular 4-D integrals, arising in the Galerkin discretization of surface

integral equation formulations, are computed by means of the direct evaluation method. The

proposed scheme extends the basic idea of the singularity cancellation methods, usually employed

for the regularization of the singular integral kernel, by utilizing a series of coordinate transforma-

tions combined with a re-ordering of the integrations. The overall algebraic manipulation results

in smooth 2-D integrals – in the edge adjacent case – or smooth 3-D integrals – in the vertex

adjacent case – that can be easily evaluated via standard quadrature rules. Finally, the reduction

of the dimensionality of the original integrals together with the smooth behavior of the associated

integrands lead to unmatched accuracy and efficiency.

5.1 Introduction

Surface integral equation formulations have proved to be one of the most powerful methods for

the solution of various electromagnetic (EM) antenna and scattering problems [1, 2, 3]. Galerkin

variants of the method of moments (MoM) [4] are most often utilized for the numerical solution

of these electromagnetic surface integral equations, calling for the calculation of four-dimensional

(or double) integrals with singular kernels. Typically, the singular integrals arising in surface

field integral equations can be categorized according to the behavior of the kernel into weakly

singular (1/R), strongly singular (1/R2) and hyper-singular (1/R3). In EM community, though,

the definition might be quite different, i.e., kernels with 1/R2 and 1/R3 behaviors are called hyper-

singular and super hyper-singular, respectively, as discussed in detail by Tong and Chew [80, 81].

To be more specific, weakly singular integrals appear in the electric field integral equation

(EFIE) formulations, when divergence-conforming basis and testing functions, like the popular

Rao-Wilton-Glisson (RWG) [10], are incorporated in the Galerkin MoM. Due to the non smooth

behavior of the weakly singular integral kernels, classical numerical quadrature rules fail to meet

the requirements for high precision results, and more sophisticated techniques are needed to tackle

this problem. Generally, various regularization methods for the computation of 4-D weakly singular

integrals have appeared in the literature over the last decades and interested readers could consult

[18] for a more detailed history of relevant previous work.

On the other hand, 4-D hyper-singular integrals (following here and for the rest of the chapter

the convention used in EM community) arise in the numerical solution of magnetic field integral
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equation (MFIE) and combined field integral equation (CFIE) formulations, since the latter are

combination of EFIE and MFIE formulations. Over the last years, numerous techniques have

been presented for the accurate and efficient evaluation of those multidimensional hyper-singular

integrals, which can be roughly categorized into two main families: singularity cancellation methods

[19, 20, 21, 22, 23] and singularity subtraction methods [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

The logical expectation is that both methods should lead to superior accuracy compared with

direct implementation of quadrature rules. This is not necessarily the case, as demonstrated in this

chapter, especially when the quest for machine precision is combined with the need of improved

efficiency.

In this chapter, the direct evaluation method tailored for the hyper-singular integrals arising in

Galerkin surface integral equation formulations is developed. The proposed method utilizes a series

of coordinate transformations together with a re-ordering of the integrations in order to reduce the

dimensionality of the 4-D hyper-singular integrals into 2-D smooth integrals – in the edge adjacent

case – or smooth 3-D integrals – in the vertex adjacent case – that can be easily computed via

generalized Cartesian product rules based on standard Gauss quadratures, readily available in the

literature. The direct evaluation method was originally introduced by Gray et al. [82], [83] for the

evaluation of super hyper-singular Galerkin surface integrals arising in static problems and recently

it was extended by Polimeridis et al. for the case of the weakly singular integrals in Galerkin MoM

problems over coincident [18] and over edge adjacent and vertex adjacent triangle elements [84].

The extension to the dynamic hyper-singular integrals presented in this chapter was developed

during a short stay in the Laboratory of Electromagnetics and Acoustics (LEMA) department at

the École Polytechnique Fédérale de Lausanne (EPFL) in collaboration with Polimeridis et al.

In the following Section, the singular integrals arising in Galerkin surface integral equation

formulations are reported. In Sections 5.3 and 5.4, the direct evaluation method for the hyper-

singular integrals over edge adjacent and vertex adjacent triangle elements, respectively, is presented

in detail. The final formulas in the last part of Sections 5.3 and 5.4 together with the functions

provided in Appendix D form the complete setup for a convenient software implementation. Finally,

in Section 5.5, the proposed method is applied in some typical test case problems and the results

are compared with some of the most powerful methods available in the literature. Furthermore,

the sensitivity of the method performance against a tolerable deformation in the triangle elements

is presented.

5.2 Singular integrals

The evaluation of the Galerkin MoM matrix elements in EFIE, MFIE or CFIE formulations, us-

ing RWG basis functions f and either RWG or n̂×RWG testing functions g, calls for the calculation

of the following singular integrals [29]:

I1 :=

∫

Sm

g(r) · ∇
∫

Sn

G(r, r′)∇′

s · f(r′) dS′dS (5.1)

I2 :=

∫

Sm

g(r) ·
∫

Sn

G(r, r′) f(r′) dS′dS (5.2)

I3 :=

∫

Sm

g(r) ·
∫

Sn

∇G(r, r′)× f(r′) dS′dS (5.3)
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which incorporate the free-space Green’s function

G(r, r′) = G(R) =
e−jkR

R
(5.4)

with R = |r − r′| being the distance function and k = ω
√
εµ the wavenumber. Here, Sm and Sn

correspond to the supports of the associated testing and basis functions.

The integrands of the aforementioned integrals become singular when the integration domains

Sm and Sn have common points. Consequently, regular numerical quadrature rules can not con-

verge with a reasonable number of integration points and the need appears for more sophisticated

techniques to compute them. The integral I1 can be transformed, for the basis and testing func-

tions under consideration, to a weakly singular integral [29]. Therefore, both I1 and I2 can be

included in the cases which were already treated in previous works within the framework of the

direct evaluation method [18],[84].

Although the basis and testing functions used herein are defined over triangle pairs, the above

integrals can be reduced to integrals over the forming triangles, following a “triangle by triangle”

assembly procedure to fill the MoM impedance matrix. Hence, we consider the integrals over the

triangles EP and EQ instead of the domains Sm and Sn. In this chapter, we focus particularly on

the solution of the hyper-singular integral

I :=

∫

EP

g(r) ·
∫

EQ

∇G(r, r′)× f(r′) dS′dS (5.5)

when the triangles EP and EQ lie on different planes while either sharing a common edge or only

a common vertex. The co-planar case is directly zero because the integrand equals zero.

5.3 Direct evaluation method - Edge Adjacent

5.3.1 Equilateral triangle parameter space

x

z

y

( )x ,y ,z3 3 3

( )x ,y ,z2 2 2

( )x ,y ,z1 1 1

x

h

( )-1,0 ( )1,0

(0 ), 3

Figure 5.1: Equilateral parameter space transformation (original triangle → master triangle).

The first step of the direct evaluation method is to introduce an appropriate parameter space.
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In this manuscript, an equilateral parameter space {η, ξ}, where −1 ≤ η ≤ 1, 0 ≤ ξ ≤
√
3(1 − |η|)

(see Fig. 5.1) is employed for each one of the triangles, following the original work by Gray et

al. [82], [83]. This specific choice of parameter space is rather convenient for executing the edge

adjacent and the vertex adjacent integrations, in which we are interested here, due to its symmetry.

The governing transformation matrices are given by

r =



x

y

z


 =




x2+x1
2

y2+y1
2

z2+z1
2


+




x2−x1
2

2x3−x1−x2

2
√
3

y2−y1
2

2y3−y1−y2
2
√
3

z2−z1
2

2z3−z1−z2
2
√
3




[
η

ξ

]
= [A] + [Q]

[
η

ξ

]
(5.6)

with the Jacobian being a constant, J = A/
√
3, where A is the area of the original triangle. The

hyper-singular integral (5.5) in the new parametric space can be evaluated as

I = (JpJq)

∫ 1

−1
dη

∫ ξ(η)

0
dξ

∫ 1

−1
dη′
∫ ξ(η′)

0
g(η, ξ) ·

(
∇G(R)× f(η′, ξ′)

)
dξ′ (5.7)

where ξ(η) =
√
3(1−|η|) and Jp and Jq are the associated Jacobians of the transformation from the

original triangles to the equilateral parameter space master triangles. Moreover, R is a function of

all six nodal coordinates (for the two original triangles) as well as the four variables (two for the

inner integral EQ and two for the outer integral EP ) of the equilateral triangle parameter space.

Next, we need to orient the elements so that the shared edge is defined by ξ = 0 for EP , and

ξ′ = 0 for EQ, hence, the singularity is characterized by η + η′ = ξ = ξ′ = 0 (see Fig. 5.2). The

position vectors in the new parametric space are given according to (5.6), taking into account the

notation in Fig. 5.2, where EP : (r1p, r2p, r3p) ≡ (r1, r2, r3) and EQ : (r1q, r2q, r3q) ≡ (r2, r1, r4),

r = rP =




x2+x1
2

y2+y1
2

z2+z1
2


+




x2−x1
2

2x3−x1−x2

2
√
3

y2−y1
2

2y3−y1−y2
2
√
3

z2−z1
2

2z3−z1−z2
2
√
3




[
η

ξ

]
=

r1 + r2
2

+αe1η +αe2ξ (5.8)

r′ = rQ =




x2+x1
2

y2+y1
2

z2+z1
2


+




x1−x2
2

2x4−x1−x2

2
√
3

y1−y2
2

2y4−y1−y2
2
√
3

z1−z2
2

2z4−z1−z2
2
√
3




[
η′

ξ′

]
=

r1 + r2
2

−αe1η
′ −αe3ξ

′ (5.9)

where

αe1 =
r2 − r1

2

αe2 =
2r3 − r1 − r2

2
√
3

αe3 = −
2r4 − r1 − r2

2
√
3

(5.10)

which only depend on the vertices of the triangles. The distance function vector R can be derived

as follows:

R = rP − rQ = αe1(η + η′) +αe2ξ +αe3ξ
′. (5.11)
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Figure 5.2: Orientation of the triangular elements both in the original and the equilateral triangle parameter
space in the edge adjacent case.

5.3.2 First analytical integration - Polar coordinates changes

Thereafter, a polar coordinate transformation within the inner integration (triangle Q) is intro-

duced to cancel the line of singularity defined by ξ = ξ′ = 0 and η = −η′ (Fig. 5.3(a)),

η′ = ρ cos (θ)− η

ξ′ = ρ sin (θ).
(5.12)

The Jacobian of the transformation is ρ, which accumulated to the previous variable changes yields

J =
ApAq

3
ρ. (5.13)

The distance function vector takes the form

R = αe1ρ cos (θ) +αe2ξ +αe3ρ sin (θ). (5.14)
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The integration with respect to θ should be split into two pieces, as shown in Fig. 5.3(a),

I =
ApAq

3

∫ 1

−1
dη

∫ ξ(η)

0
dξ

[∫ Θ1(η)

0
dθ

∫ L(η,θ)

0
g(η, ξ) · (∇G× f(η, θ, ρ)) ρdρ

+

∫ π

Θ1(η)
dθ

∫ L(η,θ)

0
g(η, ξ) · (∇G× f(η, θ, ρ)) ρdρ

]
(5.15)

where

Θ1(η) =
π

2
− tan−1

(
η√
3

)

L(η, θ) =





√
3(1 + η)

sin (θ) +
√
3 cos (θ)

, 0 < θ < Θ1

√
3(1− η)

sin (θ)−
√
3 cos (θ)

, Θ1 < θ < π.

(5.16)

Bearing in mind that the break-point in θ is only a function of η, the integration can be directly

re-arranged,

I =
ApAq

3

∫ 1

−1
dη

∫ Θ1(η)

0
dθ

∫ ξ(η)

0
dξ

∫ L(η,θ)

0
g(η, ξ) · (∇G(R)× f(η, θ, ρ)) ρdρ

+
ApAq

3

∫ 1

−1
dη

∫ π

Θ1(η)
dθ

∫ ξ(η)

0
dξ

∫ L(η,θ)

0
g(η, ξ) · (∇G(R)× f(η, θ, ρ)) ρdρ.

(5.17)

As the singularity now occurs when ρ = ξ = 0, we proceed in accordance with [82] by introducing

a second polar coordinate transformation,

ρ = Λcos (Ψ)

ξ = Λsin (Ψ)
(5.18)

as shown in Fig. 5.3(b). The distance function vector in the new parametric system takes the form

R = Λ [αe1 cos (Ψ) cos (θ) +αe2 sin (Ψ) +αe3 cos (Ψ) sin (θ)] = ΛB(θ,Ψ) (5.19)

and the original integral can be written as a sum of 3-D integrals (whose integration limits are

defined later on),

I =

1∑

l=0

1∑

m=0

∫ 1

−1
dη

∫ Θl+1

Θl

dθ

∫ Ψm+1

Ψm

A(η, θ,Ψ,ΛL(η, θ,Ψ))dΨ (5.20)

since the integral over Λ,

A(η, θ,Ψ,ΛL) =
ApAq

3
cos(Ψ)

∫ ΛL

0
g(η,Λ,Ψ) · (∇G(R)× f(η, θ,Λ,Ψ)) Λ2dΛ (5.21)
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Figure 5.3: Polar coordinate transformations employed in the first analytical integration.

can be evaluated analytically, as will be shown below. In the last expression one can easily identify

the final Jacobian after the whole set of parametric transformations,

J =
ApAq

3
Λ2 cos(Ψ). (5.22)

The main kernel of the hyper-singular integral can be extended as

∇G(R) = ∇
(
e−jkR

R

)
= −e−jkR

R3
(1 + jkR)R (5.23)
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where both the distance vector R = rP − rQ and its modulus R are proportional to Λ,

R = ΛB(θ,Ψ)

B(θ,Ψ) = αe2 sin(Ψ) +αe1 cos(Ψ) cos(θ) +αe3 cos(Ψ) sin(θ)

R = ΛB(θ,Ψ)

B(θ,Ψ) =

√
βe1 sin

2 (Ψ) + βe2 sin (Ψ) cos (Ψ) + βe3 cos
2 (Ψ)

(5.24)

where

βe1 = |αe2 |2

βe2 = 2 [(αe1 · αe2) cos (θ) + (αe2 · αe3) sin (θ)]

βe3 = |αe1 |2 cos2 (θ) + 2(αe1 · αe3) cos (θ) sin (θ)

+ |αe3 |2 sin2 (θ).

(5.25)

Substituting (5.24) in (5.23) yields

∇G(R) = −e−jkΛB(θ,Ψ)

Λ2B(θ,Ψ)3
(1 + jkΛB(θ,Ψ))B(θ,Ψ). (5.26)

One of the key points of the direct evaluation method is that the singularity 1/Λ2 is canceled out

with the Jacobian (5.22), obtaining finally:

A(η, θ,Ψ,ΛL) =
ApAq

3

cos(Ψ)

B(θ,Ψ)3

∫ ΛL

0
e−jkΛB(θ,Ψ) (1 + jkΛB(θ,Ψ))

g(η,Λ,Ψ) · (f(η, θ,Λ,Ψ)×B(θ,Ψ)) dΛ.

(5.27)

Inasmuch as the testing and basis functions g(η,Λ,Ψ) and f(η, θ,Λ,Ψ) are either RWG or

n̂×RWG functions, it is easy to prove (see Appendix C) that after applying the parametric trans-

formations they have the following pattern:

v1(θ,Ψ) + v2(θ,Ψ)Λ + v3(θ,Ψ)η (5.28)

where v1, v2 and v3 are vectors independent of Λ and η, and are determined by the actual functions

we use. Consequently, in (5.27), only terms proportional (considering the variable Λ) to any of the

following:

e−jkΛB(θ,Ψ); Λe−jkΛB(θ,Ψ)

Λ2e−jkΛB(θ,Ψ); Λ3e−jkΛB(θ,Ψ)
(5.29)

appear. Of course, all of them can be analytically integrated with respect to Λ, therefore, justifying

the argument below (5.21).

After the first analytical integration, which can be done with the help of a symbolic mathemat-

ical software like Maple for the sake of a systematic approach, the function A takes the form

A(η, θ,Ψ,ΛL) =

12∑

i=1

ci(θ,Ψ)Mi(η,ΛL, B(θ,Ψ)) (5.30)
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where Mi(η,Λ, B) are fixed functions defined in Table 5.1 and the coefficients ci(θ,Ψ) depend on

the actual functions g and f under consideration.

Table 5.1: Functions Mi(η,Λ, B).

M1(η,Λ, B) = 1 M7(η,Λ, B) = η2

M2(η,Λ, B) = e−jkBΛ M8(η,Λ, B) = ηe−jkBΛ

M3(η,Λ, B) = Λe−jkBΛ M9(η,Λ, B) = η2e−jkBΛ

M4(η,Λ, B) = Λ2e−jkBΛ M10(η,Λ, B) = ηΛe−jkBΛ

M5(η,Λ, B) = Λ3e−jkBΛ M11(η,Λ, B) = η2Λe−jkBΛ

M6(η,Λ, B) = η M12(η,Λ, B) = ηΛ2e−jkBΛ

The integration limits in (5.20) are given by

Θ0 = 0; Θ1 =
π

2
− tan−1

(
η√
3

)
; Θ2 = π (5.31)

and

Ψ0 = 0; Ψ1 = tan−1

(√
3(1− |η|)
L(η, θ)

)
; Ψ2 =

π

2
(5.32)

while the integration limits with respect to Λ take the following form:

ΛL(η, θ,Ψ) =





L(η, θ)

cos(Ψ)
, Ψ0 < Ψ < Ψ1

√
3(1− |η|)
sin(Ψ)

, Ψ1 < Ψ < Ψ2.

(5.33)

Since the angle integrals cannot be evaluated analytically, it will be necessary to re-arrange the

aforementioned integrals by placing the η integral in the innermost position, taking into account

that the functions Mi(η,Λ, B) can be integrated analytically in terms of η. As a last remark, note

that for some combinations of testing and basis functions g and f , only some of the terms in (5.30)

appear, reducing the actual computational cost for those cases.

5.3.3 Second analytical integration - Reordering

In the next step, the integration is split for positive and negative values of η. Exploiting the

symmetry of the equilateral triangle parameter space, though, it suffices to proceed only to the

analytical integration over region η ≥ 0 [83]. The remaining part can be easily computed by

flipping the elements around, as presented in subsection 5.3.4.

Before starting with the second analytical integration, we introduce the three possible values of
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the function ΛL, for the case η ≥ 0, depending on the zone of the {θ,Ψ} plane:

ΛL1 =

√
3(1− η)

cos (Ψ)(sin(θ)−
√
3 cos(θ))

ΛL2 =
ξ(η)

sin(Ψ)
=

√
3(1− η)

sin(Ψ)

ΛL3 =

√
3(1 + η)

cos (Ψ)(sin(θ) +
√
3 cos(θ))

.

(5.34)

5.3.3.1 Integration over region Θ1 ≤ θ ≤ π

In this case, the splitting of Ψ integrals is independent of η, thus, leading, without complication,

to the following two integrals:

Iθ+ =

∫ 1

0
dη

∫ π

θη

dθ

∫ Ψ+
1

0
A(η, θ,Ψ,ΛL1)dΨ +

∫ 1

0
dη

∫ π

θη

dθ

∫ π/2

Ψ+
1

A(η, θ,Ψ,ΛL2)dΨ (5.35)

where the upper limit of the integration with respect to Λ (manifested as a parameter in the M

functions) is different in the two terms,

ΛL =




ΛL1 , 0 < Ψ < Ψ1

ΛL2 , Ψ1 < Ψ < π/2.
(5.36)

Moreover,

θη ≡ Θ1 =
π

2
− tan−1

(
η√
3

)
(5.37)

and the Ψ integral is split at

ΨA , Ψ+
1 = tan−1

(
sin (θ)−

√
3 cos (θ)

)
. (5.38)

Since Ψ1 is not a function of η, the integral with respect to η can be moved in the innermost

integration, once it is interchanged with the θ integral according to the geometry shown in Fig. 5.4

and the inversion formula

ηθ =

√
3

tan (θ)
. (5.39)

Finally, switching the integrals results in

Iθ+ =

∫ π

π/2
dθ

∫ ΨA

0
Xa(θ,Ψ)dΨ+

∫ π/2

π/3
dθ

∫ ΨA

0
Xb(θ,Ψ)dΨ

+

∫ π

π/2
dθ

∫ π/2

ΨA

Xc(θ,Ψ)dΨ+

∫ π/2

π/3
dθ

∫ π/2

ΨA

Xd(θ,Ψ)dΨ

(5.40)

where Xα(θ,Ψ), α = a, b, c, d, are the following analytically integrated with respect to η functions:
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p
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q( )h

h

q
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Figure 5.4: The {η, θ} domain for the first shift of the integral, Θ1 ≤ θ ≤ π.

Xa(θ,Ψ) =

∫ 1

0
A(η, θ,Ψ,ΛL1)dη

Xb(θ,Ψ) =

∫ 1

ηθ

A(η, θ,Ψ,ΛL1)dη

Xc(θ,Ψ) =

∫ 1

0
A(η, θ,Ψ,ΛL2)dη

Xd(θ,Ψ) =

∫ 1

ηθ

A(η, θ,Ψ,ΛL2)dη.

(5.41)

5.3.3.2 Integration over region 0 < θ ≤ Θ1

In this case, the two starting integrals are given by

Iθ− =

∫ 1

0
dη

∫ θη

0
dθ

∫ Ψ−

1

0
A(η, θ,Ψ,ΛL3)dΨ+

∫ 1

0
dη

∫ θη

0
dθ

∫ π/2

Ψ−

1

A(η, θ,Ψ,ΛL2)dΨ (5.42)

where, again,

ΛL =




ΛL3 , 0 < Ψ < Ψ1

ΛL2 , Ψ1 < Ψ < π/2
(5.43)

and

θη ≡ Θ1 =
π

2
− tan−1

(
η√
3

)
(5.44)

only now the breakpoint in Ψ is a function of η,

Ψ−
1 = tan−1

(
ξ(η)

L(η, θ)

)
= tan−1

(
1− η

1 + η
[sin (θ) +

√
3 cos (θ)]

)
. (5.45)

As before, the θ and η integrals are easily interchanged, the domain being the region below the
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θ(η) curve in Fig. 5.4. This results in the four integrals

Iθ− =

∫ π/3

0
dθ

∫ 1

0
dη

∫ Ψ−

1

0
A(η, θ,Ψ,ΛL3)dΨ+

∫ π/2

π/3
dθ

∫ ηθ

0
dη

∫ Ψ−

1

0
A(η, θ,Ψ,ΛL3)dΨ

+

∫ π/3

0
dθ

∫ 1

0
dη

∫ π/2

Ψ−

1

A(η, θ,Ψ,ΛL2)dΨ +

∫ π/2

π/3
dθ

∫ ηθ

0
dη

∫ π/2

Ψ−

1

A(η, θ,Ψ,ΛL2)dΨ

(5.46)

where ηθ is given in (5.39). Using the fact that Ψ−
1 (η = 1, θ) = 0, the geometry for interchanging

η and Ψ is shown in Figs. 5.5(a) and 5.5(b).

Y ( ,q)1 h

h

Y

1
h(q)

p/2

YB

YA

(a) Case η(θ) < 1.

Y ( ,q)1 h

h

Y

1

p/2

YB

(b) Case η(θ) = 1.

Figure 5.5: The domain for interchanging the integrals {η,Ψ}, for a fixed value of θ.

Integration over region 0 < Ψ ≤ Ψ−
1 :

Moving the η integral to the front in the first two integrals in (5.46) (0 < Ψ < Ψ−
1 ) and using

that Ψ−
1 (η = ηθ) ≡ ΨA, results in

Iθ−,Ψ− =

∫ π/3

0
dθ

∫ ΨB

0
Xe(θ,Ψ)dΨ+

∫ π/2

π/3
dθ

∫ ΨA

0
Xf (θ,Ψ)dΨ

+

∫ π/2

π/3
dθ

∫ ΨB

ΨA

Xg(θ,Ψ)dΨ

(5.47)

where

ΨB , Ψ−
1 (η = 0) = tan−1

(
sin (θ) +

√
3 cos (θ)

)
(5.48)
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and

Xe(θ,Ψ) = Xg(θ,Ψ) =

∫ Ψη

0
A(η, θ,Ψ,ΛL3)dη

Xf (θ,Ψ) =

∫ ηθ

0
A(η, θ,Ψ,ΛL3)dη.

(5.49)

Again, the functions Xα(θ,Ψ), α = e, f, g, are integrated analytically and the integration limit Ψη

is given by

Ψη =
1− tan (Ψ)

sin (θ)+
√
3 cos (θ)

1 + tan (Ψ)

sin (θ)+
√
3 cos (θ)

=
1− γ

1 + γ
. (5.50)

Integration over region Ψ−
1 < Ψ ≤ π/2:

Similarly, the second two integrals in (5.46) (Ψ−
1 < Ψ < π/2) become, after the analytical

integration with respect to η,

Iθ−,Ψ+ =

∫ π/3

0
dθ

∫ ΨB

0
Xh(θ,Ψ)dΨ+

∫ π/3

0
dθ

∫ π/2

ΨB

Xi(θ,Ψ)dΨ

+

∫ π/2

π/3
dθ

∫ ΨB

ΨA

Xk(θ,Ψ)dΨ +

∫ π/2

π/3
dθ

∫ π/2

ΨB

X l(θ,Ψ)dΨ

(5.51)

where

Xh(θ,Ψ) =

∫ 1

Ψη

A(η, θ,Ψ,ΛL2)dη

Xi(θ,Ψ) =

∫ 1

0
A(η, θ,Ψ,ΛL2)dη

Xk(θ,Ψ) =

∫ ηθ

Ψη

A(η, θ,Ψ,ΛL2)dη

X l(θ,Ψ) =

∫ ηθ

0
A(η, θ,Ψ,ΛL2)dη.

(5.52)

Finally, by adding all the components from (5.40), (5.47) and (5.51), we end up to the following

formula for the integration over positive values of η:

Iη+ = Iθ− + Iθ+ = Iθ−,Ψ− + Iθ−,Ψ+ + Iθ+ . (5.53)

More specifically, the hyper-singular integral for η > 0 has been reduced, after re-grouping the

integrals over disjoint domains in the space {θ,Ψ} (see Fig. 5.6), to the following 2-D smooth
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integral:

Iη+ =

∫ π/3

0
dθ

∫ ΨB

0
χa+(θ,Ψ)dΨ +

∫ π/2

π/3
dθ

∫ ΨB

ΨA

χa+(θ,Ψ)dΨ

+

∫ π/2

π/3
dθ

∫ ΨA

0
χb+(θ,Ψ)dΨ+

∫ π

π/2
dθ

∫ ΨA

0
χc+(θ,Ψ)dΨ

+

∫ π/2

0
dθ

∫ π/2

ΨB

χd+(θ,Ψ)dΨ+

∫ π

π/2
dθ

∫ π/2

ΨA

χd+(θ,Ψ)dΨ

(5.54)

which depends only on the four different functions

χa+(θ,Ψ) = Xe +Xh = Xd +Xg +Xk =

∫ Ψη

0
A(η, θ,Ψ,ΛL3)dη +

∫ 1

Ψη

A(η, θ,Ψ,ΛL2)dη

χb+(θ,Ψ) = Xb +Xf =

∫ ηθ

0
A(η, θ,Ψ,ΛL3)dη +

∫ 1

ηθ

A(η, θ,Ψ,ΛL1)dη

χc+(θ,Ψ) = Xa =

∫ 1

0
A(η, θ,Ψ,ΛL1)dη

χd+(θ,Ψ) = Xi = Xd +X l +Xc =

∫ 1

0
A(η, θ,Ψ,ΛL2)dη.

(5.55)

The function χa+(θ,Ψ) is defined over the integration domains Ω1 and Ω2, χb+(θ,Ψ) over Ω3,

χc+(θ,Ψ) over Ω4 and χd+(θ,Ψ) over Ω5 and Ω6, as shown in Fig. 5.6. Considering the expressions

of A in (5.30) and the linearity of the integrals, the abovementioned functions equal

χα+(θ,Ψ) =

12∑

i=1

ci(θ,Ψ)Nα
i (B(θ,Ψ), θ,Ψ) (5.56)

where α ∈ {a, b, c, d} and the new functions Nα
i (B, θ,Ψ) are defined using Mi(η,Λ, B) as:

Na
i (B, θ,Ψ) =

∫ Ψη

0
Mi(η,ΛL3 , B)dη +

∫ 1

Ψη

Mi(η,ΛL2 , B)dη

N b
i (B, θ,Ψ) =

∫ ηθ

0
Mi(η,ΛL3 , B)dη +

∫ 1

ηθ

Mi(η,ΛL1 , B)dη

N c
i (B, θ,Ψ) =

∫ 1

0
Mi(η,ΛL1 , B)dη

Nd
i (B, θ,Ψ) =

∫ 1

0
Mi(η,ΛL2 , B)dη.

(5.57)

5.3.4 Equilateral triangle parameter space’s symmetry effects

The remaining case (integration over negative values of η) can be handled by simply flipping the

master triangles (triangles in the equilateral triangle parametric space) and employing the formulas
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Figure 5.6: Integration domains in the {θ,Ψ} space.

for the η > 0 case (Fig. 5.7). More specifically, the flipping transformation is stated as

[
η

ξ

]
=

[
−1 0

0 1

] [
H

Ξ

]
(5.58)

[
η′

ξ′

]
=

[
−1 0

0 1

] [
H′

Ξ′

]
(5.59)

with the overall additional multiplicative Jacobian being equal to 1. After applying the two polar

coordinate transformations, analogously to (5.12) and (5.18) but with the extra aforementioned

transformation, the distance function R takes the form

R = ΛB(π − θ,Ψ). (5.60)

From the formulation point of view, the integral over η < 0, starting from eq. (5.7) can be

expressed as:

Iη
−

= (JpJq)

∫ 0

−1
dη

∫ ξ(η)

0
dξ

∫ 1

−1
dη′
∫ ξ(η′)

0
g(η, ξ) ·

(
∇G(R)× f(η′, ξ′)

)
dξ′ (5.61)

and after applying the flipping changes

Iη
−

= (JpJq)

∫ 1

0
dH

∫ ξ(−H)

0
dξ

∫ 1

−1
dH ′

∫ ξ(−H′)

0
g(−H, ξ) ·

(
∇G(R)× f(−H ′, ξ′)

)
dξ′. (5.62)

Considering that the integration limit function ξ(x) =
√

(3)(1− |x|) only depends on the absolute

value of its arguments, the aforementioned integral can be expressed equivalently as

Iη
−

= (JpJq)

∫ 1

0
dη

∫ ξ(η)

0
dξ

∫ 1

−1
dη′
∫ ξ(η′)

0
g(−η, ξ) ·

(
∇G(R)× f(−η′, ξ′)

)
dξ′. (5.63)

which is equivalent to the integration over the positive η but evaluating the integrand in −η and
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Figure 5.7: Flipping of the master triangles.

−η′. The new polar coordinate change

−η′ = ρ cos (θ) + η

ξ′ = ρ sin (θ)
(5.64)

equals the original one just using π−θ instead of θ and nothing affects the second polar coordinates

change.

5.3.5 Final formulas

Summarizing, the objective hyper-singular integral (5.5) can be computed by simply evaluating

numerically the 2-D smooth integral

I =

∫ π/3

0
dθ

∫ ΨB

0
χa(θ,Ψ)dΨ+

∫ π/2

π/3
dθ

∫ ΨB

ΨA

χa(θ,Ψ)dΨ +

∫ π/2

π/3
dθ

∫ ΨA

0
χb(θ,Ψ)dΨ

+

∫ π

π/2
dθ

∫ ΨA

0
χc(θ,Ψ)dΨ+

∫ π/2

0
dθ

∫ π/2

ΨB

χd(θ,Ψ)dΨ +

∫ π

π/2
dθ

∫ π/2

ΨA

χd(θ,Ψ)dΨ

(5.65)

where the functions χα(θ,Ψ) with α ∈ {a, b, c, d} are given by

χα(θ,Ψ) =
12∑

i=1

cη
+

i (θ,Ψ)Nα
i (B

+, θ,Ψ)

+ cη
−

i (θ,Ψ)Nα
i (B

−, θ,Ψ)

(5.66)
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with

B+ =

√
βe1 sin

2 (Ψ) + βe2 sin (Ψ) cos (Ψ) + βe3 cos
2 (Ψ)

B−(θ,Ψ) = B+(π − θ,Ψ)

cη
−

i (θ,Ψ) = cη
+

i (π − θ,Ψ)Si

(5.67)

and the case-dependent sign Si:

Si =




−1, i = 6, 8, 10, 12

+1, otherwise.
(5.68)

Also, cη
+

i (θ,Ψ) are the coefficients of the functions Mi(η,ΛL, B
+) in (5.30) after the first analytical

integration and the functions Nα
i (B, θ,Ψ) are explicitly derived in Appendix D. The sign Si comes

from those elements Mi which have an odd exponent for η, which carries a minus sign when changed

to −η.

5.4 Direct evaluation method - Vertex Adjacent

5.4.1 Equilateral triangle parameter space

Equivalently to the edge adjacent case, we first transform each of the two original triangles to

an equilateral triangle parameter space (see Fig. 5.8). However, in this case, it must be set so

that the common vertex r3 goes to the point (η, ξ) = (0,
√
3) in the first triangle EP : (r1, r2, r3),

and to (η′, ξ′) = (0,
√
3) in the second triangle EQ : (r3, r4, r5). The singularity is then placed at

η = η′ = 0 and ξ = ξ′ =
√
3 in the new parameter space. Keeping the notation used in the edge

adjacent case, the transformation can be expressed as

r = rP =




x2+x1
2

y2+y1
2

z2+z1
2


+




x2−x1
2

2x3−x1−x2

2
√
3

y2−y1
2

2y3−y1−y2
2
√
3

z2−z1
2

2z3−z1−z2
2
√
3




[
η

ξ

]
=

r1 + r2
2

+αe1η +αe2ξ (5.69)

r′ = rQ =




x4+x5
2

y4+y5
2

z4+z5
2


+




x5−x4
2

2x3−x4−x5

2
√
3

y5−y4
2

2y3−y4−y5
2
√
3

z5−z4
2

2z3−z4−z5
2
√
3




[
η′

ξ′

]
=

r4 + r5
2

+αe4η
′ +αe5ξ

′ (5.70)

where the vectors αi depend only in the vertex coordinates of the triangles and are explicitly defined

as

αe1 =
r2 − r1

2

αe2 =
2r3 − r1 − r2

2
√
3

αe4 =
r5 − r4

2

αe5 =
2r3 − r4 − r5

2
√
3

.

(5.71)
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Figure 5.8: Orientation of the triangular elements both in the original and the equilateral triangle parameter
space in the vertex adjacent case.

The Jacobian of this transformation is

J =
ApAq

3
(5.72)

where Ap and Aq are the areas of the respective triangles. The new integral to evaluate becomes

then:

I =
ApAq

3

∫ 1

−1
dη

∫ ξ(η)

0
dξ

∫ 1

−1
dη′
∫ ξ(η′)

0
g(η, ξ) ·

(
∇G(R)× f(η′, ξ′)

)
dξ′ (5.73)

which includes again the integration limit function ξ(η) =
√
3(1−|η|). Differently from the previous

section, the symmetries with respect to η and to η′ can be exploited, not just one of them. In this

section we will carry the whole symmetry development from the very beginning, so that the reader

can have two slightly different points of view of the same thing. Therefore, the last integral can

be expressed, considering the integration of positive η and η′ and benefiting from the symmetry of

the function ξ(η), as

I =
ApAq

3

∫ 1

0
dη

∫ ξ(η)

0
dξ

∫ 1

0
dη′
∫ ξ(η′)

0
F (η, ξ, η′, ξ′)dξ′ (5.74)

where the integrand function equals

F (η, ξ, η′, ξ′) =F η+(η, ξ, η′, ξ′) + F η+(−η, ξ, η′, ξ′)
+ F η+(η, ξ,−η′, ξ′) + F η+(−η, ξ,−η′, ξ′)

(5.75)
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whereas the generator or basic function F η+ for the four symmetries is

F η+(η, ξ, η′, ξ′) = g(η, ξ) ·
(
∇G(R(η, ξ, η′, ξ′))× f(η′, ξ′)

)
. (5.76)

5.4.2 Analytical integration - Polar coordinates changes

In order to cancel out the singularity, we perform a first polar coordinate transformation per

triangle with center at the common vertex (see Fig. 5.9)

ξ =
√
3− ρp cos (θp), η = ρp sin (θp)

ξ′ =
√
3− ρq cos (θq), η′ = ρq sin (θq).

(5.77)

In the new parametric space {ρp, θp, ρq, θq}, the singularity is placed at ρp = ρq = 0, a fact which

x

η

ξ

√
3 √

3

1

θ ρ

θ

ρ

0 0 π

6

2

√
3

cos(θ)

Figure 5.9: First polar coordinate transformation which applies to both triangle elements ({η, ξ} → {θp, ρp}
and {η′, ξ′} → {θq, ρq}).

is evidenced in the new expression of the distance function vector

R = rP − rQ = αe1ρp sin (θp)−αe2ρp cos (θp)−αe4ρq sin (θq) +αe5ρq cos (θq). (5.78)

The accumulated overall Jacobian, considering that the two previous polar changes have a

Jacobian ρp and ρq, respectively, is

J =
ApAq

3
ρpρq. (5.79)

The integral under study is then transformed in the new parametric space to

I =
ApAq

3

∫ π/6

0
dθp

∫ π/6

0
dθq

∫ √
3/ cos(θp)

0
dρp

∫ √
3/ cos(θq)

0
ρpρqF (θp, θq, ρp, ρq)dρq (5.80)
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where the integrals have been easily re-ordered as the integration limits of θq and ρp are independent.

In the new parametric space, when the integrand function depends on −η, this corresponds to a

−θp dependence and the same happens with −η′ and −θq. Therefore, the integrand function can

be expressed as

F (θp, θq, ρp, ρq) =F η+(θp, θq, ρp, ρq) + F η+(−θp, θq, ρp, ρq)
+ F η+(θp,−θq, ρp, ρq) + F η+(−θp,−θq, ρp, ρq)

(5.81)

where the generator equals

F η+(θp, θq, ρp, ρq) = g(θp, ρp) · (∇G(R(θp, θq, ρp, ρq))× f(θq, ρq)) . (5.82)

Another polar coordinates transformation to remove the singularity which still remains at ρp =

ρq = 0 is now in order (see Fig. 5.10):

ρp = Λcos (Ψ)

ρq = Λsin (Ψ).
(5.83)

x

ρp

ρq

√
3

cos(θp)

√
3

cos(θq)

ΨC

Ψ

ΨΨC00 π

2

√
3

cos(θp)

√
3

cos(θq)

√
3

cos(ΨC) cos(θp)
=

√
3

sin(ΨC) cos(θq)

√
3

cos(Ψ) cos(θp)

√
3

sin(Ψ) cos(θq)

Λ

Figure 5.10: Second polar coordinate transformation employed in the analytical integration in the vertex
adjacent case.

The singularity is displaced to Λ = 0, with the peculiarity that the distance vector function is
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proportional to Λ:

R = ΛΓ(θp, θq,Ψ) (5.84)

being the proportionality vector Γ:

Γ(θp, θq,Ψ) = (αe1 sin (θp)−αe2 cos (θp)) cos (Ψ)− (αe4 sin (θq) +αe5 cos (θq)) sin (Ψ). (5.85)

The new overall Jacobian is

J =
ApAq

3
Λ3 sin (Ψ) cos (Ψ) (5.86)

which, similarly to the edge adjacent case, will remove the singularity 1/R2. Actually, it would

be able to remove a singularity up to 1/R3. Furthermore, the resulting integral is analytically

integrable with respect to Λ, as will be seen in a while.

After applying the last coordinate change the integral takes the form:

I =
ApAq

3

∫ π/6

0
dθp

∫ π/6

0
dθq

[∫ ΨC

0
dΨ

∫ ΛL4

0
Λ3 cos(Ψ) sin(Ψ)F (θp, θq,Ψ,Λ)dΛ+

∫ π/2

ΨC

dΨ

∫ ΛL5

0
Λ3 cos(Ψ) sin(Ψ)F (θp, θq,Ψ,Λ)dΛ

] (5.87)

where the integration limits are defined as:

ΨC = tan−1

(
cos(θp)

cos(θq)

)

ΛL4 =

√
3

cos(Ψ) cos(θp)

ΛL5 =

√
3

sin(Ψ) cos(θq)
.

(5.88)

Regrouping the integrand and the integral with respect to Λ in a new function Ω it can be rewritten

as:

I =

∫ π/6

0
dθp

∫ π/6

0
dθq

[∫ ΨC

0
Ω(θp, θq,Ψ,ΛL4)dΨ +

∫ π/2

ΨC

Ω(θp, θq,Ψ,ΛL5)dΨ

]
. (5.89)

Substituting the new expression of R in eq. (5.23) the main kernel of the hyper-singular integral

can be extended as

∇G(R) = − e−jkΛΓ(θp,θq,Ψ)

Λ2Γ(θp, θq,Ψ)3
(1 + jkΛΓ(θp, θq,Ψ))Γ(θp, θq,Ψ) (5.90)

which after being included in the expression of Ω yields

Ω(θp, θq,Ψ,ΛL) =Ωη+(θp, θq,Ψ,ΛL) + Ωη+(−θp, θq,Ψ,ΛL)

+ Ωη+(θp,−θq,Ψ,ΛL) + Ωη+(−θp,−θq,Ψ,ΛL)
(5.91)
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where

Ωη+(θp, θq,Ψ,ΛL) =
ApAq

3
cos(Ψ) sin(Ψ)

∫ ΛL

0
Λ3F η+(θp, θq,Ψ,Λ)dΛ

=
ApAq

3

cos(Ψ) sin(Ψ)

Γ(θp, θq,Ψ)3

∫ ΛL

0
Λe−jkΛΓ(θp,θq,Ψ) (1 + jkΛΓ(θp, θq,Ψ))

g(θp,Ψ,Λ) · (f(θq,Ψ,Λ)× Γ(θp, θq,Ψ)) dΛ.

(5.92)

Similarly to the edge adjacent case, as the testing and basis functions g(θp,Ψ,Λ) and f(θq,Ψ,Λ)

are either RWG or n̂×RWG functions, it is easy to prove (see Appendix C) that after applying the

parametric transformations they have the following pattern:

v1(θp, θq,Ψ) + v2(θp, θq,Ψ)Λ (5.93)

where v1 and v2 are vectors independent of Λ, and are determined by the actual functions we

use. Consequently, in the last expression of the integral, only terms proportional (considering the

variable Λ) to any of the following:

Λe−jkΛΓ(θp,θq,Ψ); Λ2e−jkΛΓ(θp,θq,Ψ)

Λ3e−jkΛΓ(θp,θq,Ψ); Λ4e−jkΛΓ(θp,θq,Ψ)
(5.94)

appear. Of course, all of them can be analytically integrated with respect to Λ, justifying the

aforementioned argument.

5.4.3 Final formulas

Summarizing, to compute the original hyper-singular integral 5.5 in the vertex-adjacent case,

we only need to perform the two 3-D numerical integrals in (5.89), where the integrand function

Ω has been previously computed via a symbolic software like Maple utilizing the expressions in

equations (5.91) and (5.92).

5.5 Numerical results

In this section, we present some numerical results for the assessment of the proposed method

in terms of accuracy and efficiency, particularly for the edge-adjacent case, which is the most

challenging. More specifically, it would be sufficient to analyze a single, albeit representative, case

among the various combinations of basis and testing functions where all the terms in (5.29) are

present before the first analytical integration. The other possible combinations do not have any

particularity which could change the behavior of the results.

To start with, following the notation in Fig. 5.2, we consider two edge adjacent triangles

(T1:{r1, r2, r3} and T2:{r1, r2, r4}) with the following vertices (see Fig. 5.11):

r1 = [0, 0, 0]; r2 = [0, 0.1λ, 0]

r3 = [0, 0, 0.1λ]; r4 = [0.1λ, 0, 0]
(5.95)

where λ = 1 [m] corresponds to the wavelength. Note that r1 and r2 are the two common vertices.
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Figure 5.11: First case under study and the most representative one.

The actual computed integral is

I =

∫

EP

f3(r) ·
∫

EQ

∇G(r, r′)× f ′1(r
′) dS′dS (5.96)

where f3 and f
′

1 are the RWG functions

f3(r) =
|r2 − r1|
2Ap

(r− r3)

f
′

1(r
′) =

|r4 − r2|
2Aq

(r′ − r2).

(5.97)
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Figure 5.12: Comparison of the relative error as a function of the CPU time for the triangles T1 and T2.
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Figure 5.13: Comparison of the relative error as a function of the CPU time for the distorted triangles.

In Figs. 5.12a and 5.12b, the relative error

ε =
|I − Iref|
|Iref|

(5.98)

in calculating the real part (hyper-singular portion) and the imaginary part (weakly singular por-

tion) of the hyper-singular integral (5.96) in terms of the CPU time is presented. For the sake of

a fair comparison, we selected two of the most proven methods available in the literature, i.e., the

singularity subtraction method presented by Ylä-Oijala and Taskinen in [29] and the direct evalu-

ation method applied over the static integral, again in a singularity subtraction fashion, presented

by Gray et al. [83]. Without entering into much detail, the solution from the aforementioned

singularity subtraction method is obtained with the subtraction of the first two terms of the Taylor

expansion of the free-space Green’s function G

∇G = ∇
(
G− 1

R
+

k2

2
R

)
+∇ 1

R
− k2

2
∇R. (5.99)

The integrals related to the last two terms of the expression above can be computed semi -

analytically, where the remaining numerical integrals apply only to smooth functions. The first

term has a continuous derivative and, therefore, it can be integrated numerically as well. The

choice of removing two terms is somehow optimum as there is no real improvement after removing

more terms. The number of integration points for the singularity subtraction method is fixed for

the inner integral and a Gaussian quadrature tailored for triangles [85] is used for the outer integral.

Moreover, the reference solution has been obtained by means of the proposed method in com-

bination with the symbolic software Maple, using high precision arithmetic (300 digits) in all the

computations together with a high number of integration points until it converges smoothly up to
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any desired accuracy. The exact value up to 32 significant digits equals

I = 3.4928883683897266018383577695620 · 10−3

− j2.2540732129690316163209769145458 · 10−5.
(5.100)

According to the results, as depicted in Fig. 5.12, the proposed method converges up to machine

precision, even for the hyper-singular portion, much faster than the rest. To the best of our

knowledge, there is no method readily available in the literature that could provide better accuracy

in reasonable computational times. The behavior of the proposed method clearly reveals one of

its key features, i.e., the remaining integrands after analytical integrations and re-ordering are

sufficiently smooth functions. Hence, simple interpolatory quadratures, like the standard Gauss-

Legendre, are sufficient even for highly accurate results.

This is not the case, though, for the other competing methods, where the remaining integrands

after the cancellation or the subtraction of the singularity are non sufficiently smooth functions

of the outer (observation) triangle’s arguments. The accurate integration of such functions calls

for sophisticated 2-D cubatures, like the recently developed double-exponential based generalized

Cartesian product rules [86], still with considerable computational overhead. This problem would

therefore arise in any of the traditional singularity cancellation or singularity subtraction methods

mentioned in the introduction, considering that all of them deal separately with inner and outer

integrals.

As for the imaginary part, it seems that the singularity subtraction method stagnates at a

relative error of 10−7. A fair explanation of this behavior is based on the fact that the fixed

number of integration points used for the inner integral is not sufficient for high precision and it

should be increased, deteriorating even more its overall efficiency.

Although the example presented above stands as a representative case in the vast majority of

the state-of-the-art triangular meshing schemes, two additional extreme cases have been selected

in order to highlight the robustness of the proposed method against deformed triangles with bad

aspect ratio or quality. One commonly used quality measure for such “distorted” triangles is the

ratio between the radius of the largest inscribed circle (times two) and the smallest circumscribed

circle:

q = 2
rin
rout

. (5.101)

According to [87], a triangle with quality factor q lower than 0.7 or a minimum angle lower than 30

degrees is unacceptable in a mesh, and there are techniques to convert these bad meshes into others,

fulfilling those requirements [88, 89, 90]. Therefore, we have selected two triangles T3:{r1, r2, r5}
and T4:{r1, r2, r6} which are below this limit (quality factor of 0.46 and minimum angle of 30

degrees), i.e.,

r5 = [−0.05λ, 0, 0.087λ]; r6 = [−0.05λ, 0.087λ, 0]. (5.102)

The results for the combinations of triangles T3+T2 and T3+T4 are depicted in Fig. 5.13. The

reference solutions have been obtained in the same way as the previous case and they equal,
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respectively,

I = 3.1419955732525062504931041862416 · 10−3

− j1.9600239487556817889309129166796 · 10−5
(5.103)

I = 3.5226217019446727628139765841737 · 10−3

− j1.7135151374120059440368032702308 · 10−5.
(5.104)

Although convergence slightly deteriorates for the real part, the proposed method is still able to

practically reach machine precision in less than 0.1s and the same conclusions as in the previous,

more representative case can be drawn.

Evidently, the regularization of the hyper-singular kernel together with the reduction of the

dimensionality of the original integral from 4-D to 2-D via the direct evaluation method has resulted

in formulas which provide numerically exact results (more than 13 significant digits for the relative

error) with significantly reduced computational effort. In particular, using codes implemented in

MATLABr and run in a computer with an Intelr Core 2 Quad, 2.83 GHz (no parallelization has

been done), Linux 2.6.28 Ubuntu and MATLABr 7.7.0.471, the proposed scheme reaches a relative

error smaller than 10−5 in 10ms and almost machine precision in about 100ms.
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(c) E-plane zoomed in

Figure 5.14: Bi-static Radar Cross Section (RCS) of a 0.25λ regular tetrahedron .
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Finally, a relevant example is presented which shows the importance of leading an accurate

integration of the Method of Moments matrix elements. More specifically, an electrically small

regular tetrahedron with side 0.25λ has been chosen and modeled with a very coarse regular mesh

of N = 150 edges or basis functions, where all the triangles are equilateral. The reference value has

been obtained with a very fine mesh (N = 23436 edges), accumulating many triangular elements

close to the tetrahedron edges and solving with EFIE formulation. The following five simulations

have been performed for the coarse mesh: 1) Standard EFIE, 2), 3) MFIE with RWG and n̂×RWG

basis functions, respectively, together with standard singularity subtraction approach, 4), 5) MFIE

with RWG and n̂×RWG basis functions, respectively, with the edge adjacent interactions computed

with the proposed method. Note, that using n̂×RWG basis functions imply the same singular

integrals [91, 92]. For the singularity subtraction, four integration points per triangle were used.

Fig. 5.14 shows the bi-static RCS for all the cases. Clearly, MFIE with RWG basis functions has

the worst performance, although there is a substantial gain when the edge-adjacent integration is

done accurately. In this case there is an important error inherent to the formulation itself. However,

when using MFIE with n̂×RWG basis functions, the performance is even better than with EFIE

for the same mesh and an excellent result, without computational overhead, is obtained if the

integration is accurately done with the proposed method, as highlighted when zooming in (see Fig.

5.14(c)). Moreover, the fast and accurate evaluation of the matrix elements, allows the proper

study of the other (of different nature) well-known problems appearing in MFIE formulations.

5.6 Conclusion

In this chapter, the direct evaluation method is developed for the computation of the hyper-

singular integrals arising in Galerkin surface integral equation formulations. The key feature of the

proposed scheme lies in the appropriate regularization of the singular integrand together with the

reduction of the dimensionality of the original integral from 4-D to 2-D. The final formulas presented

herein succeed in providing numerical results of unmatched accuracy (close to the machine precision)

and efficiency, thus improving substantially the accuracy of the impedance matrix elements in

field integral equation formulations as well as reducing the overall filling time. In addition, we

hope that with the detailed analysis and the ready-to-use form of the final formulas, the direct

evaluation method will find its place in standard mathematical subroutine libraries widely used in

the computational electromagnetics community.

Another important remark after the whole study can be extracted:

• Coincident triangles: A singularity 1/R can be canceled out and three out of four integrals

can be analytically integrated.

• Edge Adjacent: A singularity 1/R2 can be canceled out and two out of four integrals can be

analytically integrated.

• Vertex adjacent: A singularity 1/R3 can be canceled out and one out of four integrals can be

analytically integrated.

Fortunately, the integration over coincident triangles in the MFIE formulation is directly zero

because its integrand is zero and it is unnecessary to tackle the 1/R2 singularity in this case.



80 Chapter 5

However, it sets a challenge for the near-singular MFIE case, i.e., when the two triangles have a

part of their surface very close to each other but not touching.



Chapter 6

On the numerical integration of singular integrals

T
his chapter includes a series of aspects which arise when dealing with singular integrals, and

in particular the hyper-singular integrals coming from Galerkin surface integral equation for-

mulations treated in the previous chapter. Specifically, the direct evaluation method is tackled

when no analytical integrations are done and the effect of the re-ordering in the numerical inte-

gration is investigated. Furthermore, the singular behavior of the field, i.e., the integrand of the

outer integral, even when the 1/R2 singularity has been canceled out, is highlighted, including the

development of a set of solutions.

6.1 Analysis of numerical integration in the direct evaluation me-

thod

In this section, some aspects of the direct evaluation method for the computation of hyper-

singular 4-D integrals, arising in the Galerkin discretization of surface integral formulations, are

analyzed. In particular the edge adjacent case will be our test case. In the previous chapter,

utilizing a series of coordinate transformations combined with a re-ordering of the integrations, the

integrand not only was regularized but also it was casted in a convenient form in order to perform

two of the integrals analytically. Here, we are going to test and compare the behavior when only

one or none of the dimensions is done analytically. Furthermore, the importance of the re-ordering

will be outlined, even when no analytical integration is performed.

For the sake of clarity and completeness in the chapter, some points regarding hyper-singular

integrals and the direct evaluation method will be briefly reviewed in the next two subsections.

6.1.1 Hyper-singular integrals

The hyper-singular integrals appearing in MFIE, and therefore in CFIE formulations using

RWG basis functions, can be reduced to integrals of the form

I :=

∫

EP

g(r) ·
∫

EQ

∇G(r, r′)× f(r′) dS′dS (6.1)

where the function f(r) is a RWG basis function and g(r) can be either a RWG or a n̂×RWG

testing function defined over the triangles EQ and EP , respectively. G(r, r′) corresponds to the free

space Green’s function G(R) = e−jkR/R, depending on the distance R = |r− r′|.
In particular, the case where the two triangles have a common edge (see Fig. 6.1 on the left),

which is actually the most challenging one, is in order.



82 Chapter 6

6.1.2 Direct evaluation method

The main idea of the direct evaluation method is to cancel out the singularity 1/R2 of the

integrand, performing a set of parameter transformations. Following the procedure described in

the last chapter and references therein, we start by moving to equilateral parameter spaces {η, ξ}
and {η′, ξ′} in each triangle (see Fig. 6.1):
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Figure 6.1: Geometry of the triangular elements both in the original and the equilateral triangle parameter
space.

Subsequently, two further consecutive polar coordinates changes are carried out:

η′ = ρ cos (θ)− η

ξ′ = ρ sin (θ)
and

ρ = Λcos (Ψ)

ξ = Λsin (Ψ).
(6.3)

Considering that the distance function R becomes proportional to Λ, the singularity, now placed
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at Λ = 0, is removed thanks to the global Jacobian

J =
ApAq

3
Λ2 cos(Ψ) (6.4)

yielding after some manipulations:

I =

∫ 1

0
dη

∫ Θ1

0
dθ

∫ ΨC

0
dΨ

∫ ΛL3

0
F (Λ, η,Ψ, θ) dΛ

+

∫ 1

0
dη

∫ Θ1

0
dθ

∫ π/2

ΨC

dΨ

∫ ΛL2

0
F (Λ, η,Ψ, θ) dΛ

+

∫ 1

0
dη

∫ π

Θ1

dθ

∫ ΨA

0
dΨ

∫ ΛL1

0
F (Λ, η,Ψ, θ) dΛ

+

∫ 1

0
dη

∫ π

Θ1

dθ

∫ π/2

ΨA

dΨ

∫ ΛL2

0
F (Λ, η,Ψ, θ) dΛ

(6.5)

where the transformed integrand F is smooth, with no singularities, and can be computed, in view
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Figure 6.2: Integration domains in eq. (6.5).

of a symmetry at η = 0 in the equilateral parameter space, as

F (Λ, η,Ψ, θ) =F+(Λ, η,Ψ, θ) + F+(Λ,−η,Ψ, π − θ)

F+(Λ, η,Ψ, θ) =
ApAq

3
cos(Ψ)

(
e−jkΛB(θ,Ψ)

B(θ,Ψ)3
(1 + jkΛB(θ,Ψ))

)

g(Λ, η, θ,Ψ) · (f(Λ, η, θ,Ψ)×B(θ,Ψ))

(6.6)

being B the proportionality constant, in terms of Λ, of the distance vector function R = ΛB(θ,Ψ):

B = αe2 sin(Ψ) +αe1 cos(Ψ) cos(θ) +αe3 cos(Ψ) sin(θ). (6.7)
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In the last expression, αei are constant vectors which only depend on the triangles’ vertices:

αe1 =
r2 − r1

2

αe2 =
2r3 − r1 − r2

2
√
3

αe3 = −2r4 − r1 − r2

2
√
3

.

(6.8)

The set of integration limits in expression (6.5) equal

Θ1(η) =
π

2
− tan−1

(
η√
3

)

ΨA = tan−1
(
sin (θ)−

√
3 cos (θ)

)

ΨB = tan−1
(
sin (θ) +

√
3 cos (θ)

)

ΨC = tan−1

(
1− η

1 + η

(
sin (θ) +

√
3 cos (θ)

))

ΛL1 =

√
3(1− η)

cos (Ψ)(sin(θ)−
√
3 cos(θ))

ΛL2 =
ξ(η)

sin(Ψ)
=

√
3(1− η)

sin(Ψ)

ΛL3 =

√
3(1 + η)

cos (Ψ)(sin(θ) +
√
3 cos(θ))

.

(6.9)

To simplify the notation we introduce a new function including the integration with respect to

Λ:

A(Λ, η,Ψ, θ) =

∫ Λ

0
F (Λ′, η,Ψ, θ)dΛ′. (6.10)

This integral can be performed either analytically or numerically. Indeed, numerical experiments

show that six integration points suffice to obtain machine precision.

6.1.3 Analysis of the integration domains

The original integral has been subdivided, using (6.5), into four integrals over the domains Πi

presented in Fig. 6.2. Though it is a 2-D cut representation, it should be understood as a four-

dimensional domain, varying the shape of the domains when η sweeps from zero to one, due to the

η-dependence of the curves ΨC and Θ1. The fourth dimension is evidenced with Λ going from zero

to ΛLi
, where i is determined by the gray tone in the figure, being ΛL2 the lightest, ΛL1 the one in

the middle and ΛL3 the darkest.

Notwithstanding, these domains can be split to have more regular domains, so that integration

re-ordering can be immediately applied. The new set of integration domains, nine to be more

specific, is represented in Fig. 6.3 (2-D cut) and Fig. 6.4 (3-D cut, including η-dependence). In this

exploded figure, the adjacent 3D blocks are depicted separated in space to better show their shape.

Clearly, the union of all the domains Ωi covers exactly the cuboid (θ,Ψ, η) ∈ [0, π]× [0, π/2]× [0, 1].
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The integral (6.5) is then computed as

I =

9∑

i=1

I(i) (6.11)

where the constituent integrals equal

I(1) =

∫ 1

0
dη

∫ π/3

0
dθ

∫ ΨC

0
A(ΛL3 , η,Ψ, θ)dΨ

=

∫ π/3

0
dθ

∫ ΨB

0
dΨ

∫ Ψη

0
A(ΛL3 , η,Ψ, θ)dη

(6.12)
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I(2) =

∫ 1

0
dη

∫ π/3

0
dθ

∫ ΨB

ΨC

A(ΛL2 , η,Ψ, θ)dΨ

=

∫ π/3

0
dθ

∫ ΨB

0
dΨ

∫ 1

Ψη

A(ΛL2 , η,Ψ, θ)dη

(6.13)

I(3) =

∫ 1

0
dη

∫ Θ1

π/3
dθ

∫ ΨC

ΨA

A(ΛL3 , η,Ψ, θ)dΨ

=

∫ π/2

π/3
dθ

∫ ΨB

ΨA

dΨ

∫ Ψη

0
A(ΛL3 , η,Ψ, θ)dη

(6.14)

I(4) =

∫ 1

0
dη

∫ Θ1

π/3
dθ

∫ ΨB

ΨC

A(ΛL2 , η,Ψ, θ)dΨ

+

∫ 1

0
dη

∫ π/2

Θ1

dθ

∫ ΨB

ΨA

A(ΛL2 , η,Ψ, θ)dΨ

=

∫ π/2

π/3
dθ

∫ ΨB

ΨA

dΨ

∫ 1

Ψη

A(ΛL2 , η,Ψ, θ)dη

(6.15)

I(5) =

∫ 1

0
dη

∫ Θ1

π/3
dθ

∫ ΨA

0
A(ΛL3 , η,Ψ, θ)dΨ

=

∫ π/2

π/3
dθ

∫ ΨA

0
dΨ

∫ ηθ

0
A(ΛL3 , η,Ψ, θ)dη

(6.16)

I(6) =

∫ 1

0
dη

∫ π/2

Θ1

dθ

∫ ΨA

0
A(ΛL1 , η,Ψ, θ)dΨ

=

∫ π/2

π/3
dθ

∫ ΨA

0
dΨ

∫ 1

ηθ

A(ΛL1 , η,Ψ, θ)dη

(6.17)

I(7) =

∫ 1

0
dη

∫ π

π/2
dθ

∫ ΨA

0
A(ΛL1 , η,Ψ, θ)dΨ

=

∫ π

π/2
dθ

∫ ΨA

0
dΨ

∫ 1

0
A(ΛL1 , η,Ψ, θ)dη

(6.18)

I(8) =

∫ 1

0
dη

∫ π/2

0
dθ

∫ π/2

ΨB

A(ΛL2 , η,Ψ, θ)dΨ

=

∫ π/2

0
dθ

∫ π/2

ΨB

dΨ

∫ 1

0
A(ΛL2 , η,Ψ, θ)dη

(6.19)

I(9) =

∫ 1

0
dη

∫ π

π/2
dθ

∫ π/2

ΨA

A(ΛL2 , η,Ψ, θ)dΨ

=

∫ π

π/2
dθ

∫ π/2

ΨA

dΨ

∫ 1

0
A(ΛL2 , η,Ψ, θ)dη.

(6.20)

Each integral I(i) in (6.12)-(6.20) is displayed with two different integration orders to cover

the domain Ωi, the original one (η, θ,Ψ,Λ) and the one bringing η integration right after Λ’s

one, (θ,Ψ, η,Λ). The latter was tackled in the previous chapter because the integrand function

A(Λ, η,Ψ, θ) is analytically integrable with respect to η, allowing us to perform two analytical

integrations and only two dimensions numerically, θ and Ψ. However, we are going to analyze the
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effect of the integration order when the four dimensions are integrated numerically using generalized

Cartesian product rules based on standard Gauss quadratures. There are two main reasons to

attempt to do everything numerically: the theoretical knowledge we obtain from this and the

increased simplicity of the implementation. Of course, the best option would be to obtain an

optimal set of weights and integration points adapted to these particular 3-D subdomains, but this

still remains as a task for future investigation. In Section 6.1.4, we will see that the re-ordered one

is close to this optimal even performing classical 1-D Gauss integrations, whereas with the original

order it fails to converge in a reasonable time in certain cases.

When the domains have a shape close to a cuboid, as is the case of Ω7, Ω8 and Ω9, the re-

ordering has almost no effect. Contrarily, when the shape changes to something close to a pyramid,

the integration points are distributed over the domain differently depending on the order. In our

case, it is numerically proved that it is important to make η-integration after Λ-integration. It

assures that for each taken angles θ and Ψ, we have N1D integration points in η, although they are

accumulated in a corner. From a theoretical point of view, an accurate inspection of the expression

of the integrand shows a smoother behavior for θ and Ψ parameters than for η, which is polynomial

apart from the complex exponential factors. Furthermore, the non-smooth η-dependence of the

integration limits for θ and Ψ in the non re-ordered case provokes a loss in the smoothness of the

integrand function with respect to η as showed in Section 6.1.4.

6.1.4 Numerical Results

6.1.4.1 Case under study

Without loss of generality, we are going to consider the representative integral case:

I =

∫

EP

f3(r) ·
∫

EQ

∇G(r, r′)× f ′1(r
′) dS′dS (6.21)

where f3 and f
′

1 are, following the notation in Fig. 6.1, the RWG functions

f3(r) =
|r2 − r1|
2Ap

(r− r3); f
′

1(r
′) =

|r4 − r2|
2Aq

(r′ − r2) (6.22)

which after applying the coordinate changes described in Section 6.1.2 can be expressed as

f3(Λ, η,Ψ, θ) =
|r2 − r1|
2Ap

(
−
√
3αe2 + αe1η + αe2 sin(Ψ)Λ

)

f ′1(Λ, η,Ψ, θ) =
|r4 − r1|
2Aq

(−αe1 + αe1η − (αe1 cos(θ) + αe3 sin(θ)) cos(Ψ)Λ) .

(6.23)

Substituting (6.23) into (6.6), the integrand function is

F31(Λ, η,Ψ, θ) =
|r2 − r1||r4 − r1|

12
(αe2 · (αe1 × αe3)) cos

2(Ψ) sin(θ)
[

1

(B+)3
(
√
3(1− η)− sin(Ψ)Λ)(1 + jkΛB+)e−jkΛB+

+
1

(B−)3
(
√
3(1 + η)− sin(Ψ)Λ)(1 + jkΛB−)e−jkΛB−

]
(6.24)
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and applying (6.10) yields

A31(Λ, η,Ψ, θ) =
|r2 − r1||r4 − r1|

12
(αe2 · (αe1 × αe3)) cos

2(Ψ) sin(θ)
[

1

(B+)3

(√
3(1 − η)S+

2 + (− sin(Ψ) +
√
3(1 − η)jkB+)S+

3 − sin(Ψ)jkB+S+
4

)

+
1

(B−)3

(√
3(1 + η)S−

2 + (− sin(Ψ) +
√
3(1 + η)jkB−)S−

3 − sin(Ψ)jkB−S−

4

)]
(6.25)

where

S2 :=

∫ Λ

0
e−jkΛ′BdΛ′ =

1− e−jkΛB

jkB

S3 :=

∫ Λ

0
Λ′e−jkΛ′BdΛ′ =

S2 − Λe−jkΛB

jkB

S4 :=

∫ Λ

0
(Λ′)2e−jkΛ′BdΛ′ =

2S3 − Λ2e−jkΛB

jkB
.

(6.26)

We consider the triangles defined by the vertices:

r1 = [0, 0, 0]; r2 = [0, 0.1λ, 0]

r3 = [0, 0, 0.1λ]; r4 = [0.1λ, 0, 0].
(6.27)

6.1.4.2 Results

We start isolating the error sources due to each one of the integration parameters. The justified

solution presented in the previous chapter is taken as a reference. Using the re-ordered version,

which we know works properly, we set the number of 1-D integration points of each variable at

a sufficient value to have machine precision. Then, only one of the parameters varies its number

of integration points to see the influence of this integration alone. Fig. 6.5 shows the results of

this experiment. We can see how for the two inner integrals (Λ, η), just six integration points per

dimension suffice to obtain machine precision. This is the part which can be analytically integrated.

The other two parameters converge with a slightly lower rate.

Fig. 6.6 shows the required CPU times to get the different relative errors. The three first curves

in the plot correspond to the re-ordered case doing two, three and four numerical integrations,

respectively. In view of the result of the last paragraph, in the second and the third curves, the

number of integration points for η and Λ has been set to six when integrated numerically. We can

observe that the optimum case is when two dimensions are carried out analytically, as expected.

The fourth curve corresponds to integrating four dimensions numerically but without applying the

re-ordering, indicated as w-r. In this case, to assure convergence, also the number of integration

points in η is gradually increased. The convergence without re-ordering is clearly worse than the

re-ordered one.

As a representative case of the sub-integrals with a deteriorated behavior when no re-ordering
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Figure 6.6: Relative error and CPU time relation for different approaches of the direct evaluation method.

is applied, the sub-integral I(2) is further analyzed:

I(2) =

∫ 1

0
dη

∫ π/3

0
dθ

∫ ΨB

ΨC

A(ΛL2 , η,Ψ, θ)dΨ

=

∫ π/3

0
dθ

∫ ΨB

0
dΨ

∫ 1

Ψη

A(ΛL2 , η,Ψ, θ)dη.

(6.28)

In the non re-ordered one, the integral can be grouped in an integration with respect to η as

I(2) =

∫ 1

0
H(η)dη (6.29)
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where the integrand function H(η) is:

H(η) =

∫ π/3

0
dθ

∫ ΨB

ΨC

A(ΛL2 , η,Ψ, θ)dΨ. (6.30)

Fig. 6.7 displays the integrand function with respect to η before and after integrating with respect

to θ and Ψ. In the figure on the left, the function can be approximated with a polynomial of

very low degree considering its smoothness. This fact explains the excellent convergence of the

integral in terms of the number of integration points when a Gauss quadrature rule is used in the

re-ordered case. However, when the integrations with respect to θ and Ψ are held before η (figure

on the right), the integrand becomes far from a low order polynomial, explaining the degradation

of the convergence rate when no re-ordering is performed.
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Figure 6.7: Real part of the integrand with respect to η for the integral I(2).

6.1.5 Conclusions

In this section, an alternative implementation of the direct evaluation method for the compu-

tation of the hyper-singular 4-D integrals is introduced. Although two of the four integrals can

be performed analytically, we have considered here the possibility of using standard numerical

quadratures for three and even for the four dimensions. This has the advantage of resulting in eas-

ier and more compact implementations, especially in the case of a full 4-D numerical integration.

For this last situation, the relevance of re-ordering the individual integrals has been clearly shown.

Obviously, re-ordering is essential for bringing the analytical integrations to the front. But even

when no analytical integration is attempted, re-ordering is a crucial step in the success of full 4-D

numerical evaluations. As clearly demonstrated, a full 4-D numerical implementation of the direct

evaluation method can achieve the same level of accuracy as hybrid analytical-numerical methods,

with similar efficiency, if a proper re-ordering is applied.

As a connection to the next section, although the integrand function has been properly regu-

larized, canceling out any singularity, the last integration can have a singular-like convergence due

to the irregularity introduced by the previous integrations, inherent in their integration limits.
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6.2 Singular behavior of the field when the observation point ap-

proaches the source domain

This section presents, based on relevant numerical examples, the relatively well-known fact that

the magnetic field is singular when approaching the source triangle domain. In other words, even

though the kernel might be regularized, the function after the inner integration has a logarithmic

singular behavior. This observation leads to some interesting conclusions and problems which are

treated in the next section.

In particular, the following function is considered

H(r) :=

∫

EQ

e−jkR

R2
dS′ (6.31)

which contains the most singular part of the ∇G kernel. Without loss of generality, the integration

source triangle EQ for the rest of the chapter will be EQ : {r1, r2, r4}, included in the XY plane,

where:

r1 = [0, 0, 0]; r2 = [0, 0.1λ, 0]

r3 = [0, 0, 0.1λ]; r4 = [0.1λ, 0, 0].
(6.32)

The function H(r) has been accurately evaluated using the R2 radial-angular transformation, a

singularity cancellation method described in [22], although other techniques such as singularity

subtraction would be possible as well.

The first experiment consists in approaching the triangle along lines perpendicular to the tri-

angle in two different points, the center of the triangle and the center of its edge in the y axis. The

choice of the second point comes from our quest for the computation of the edge-adjacent or near-

edge-adjacent cases. Fig. 6.8 shows the results for the real part of H(r) in the two experiments.

The imaginary part has been omitted due to its non-singular behavior. Clearly, the real part is

proportional to the logarithm of the distance when r tends to the triangle

Re{H(r)} = −k log(d) , d→ 0. (6.33)

The proportionality constant k is a bit larger when approaching the triangle center than when

approaching the edge.

The second experiment analyzes the behavior when passing the triangle parallelly. For this,

the function H(r) is computed in a large triangle parallel to EQ but separated in the z-direction a

distance 10−16m. Fig. 6.9 displays this result, showing the logarithmic singularity which appears

in the real part at the edges of the inner triangle. Therefore, some sophisticated techniques are

necessary to numerically perform the outer integral when there are parts very close to the source

triangle.

To further analyze how close to the triangle this sort of discontinuity appears another experiment

is in order. H(r) is evaluated along a line parallel to the x axis but regressively displaced in the

z-direction. Fig. 6.10 and 6.11 show the real and imaginary parts, respectively, in film-like frames

for the different z distances to the triangle. The imaginary part stabilizes and has a smooth shape

close to the triangle edges. The real part, however, becomes sharper and sharper when the distance
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Figure 6.8: Real part of H(r) along a line perpendicular to the integration triangle at two different points
inside the triangle.
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Figure 6.9: Value of H(r) sampling at a height very close (z = 10−16m) to the integration triangle. The
domain is larger than the original triangle to better see its effect when approaching the triangle edges.

to the triangle edge decreases. These real part results are summarized in Fig. 6.12.

Two important conclusions can be extracted from the previous results: If we were to compute the

self-term, i.e., the outer integral over an observation triangle equal to the source one, or a triangle

very close to it, some sophisticated numerical quadrature rules would be necessary to properly

handle the singularity close to the edges; For the edge-adjacent case, the singularity appears not

only in the direction which approaches the triangle perpendicularly but also in the direction parallel

to the inner triangle when it is very close to the common edge. Notwithstanding, all the existing

singularity cancellation and singularity subtraction methods in literature must handle this problem

independently of the regularization of the kernel, which is valid for the inner integral alone.
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Figure 6.10: Real part of H(r) when sampling along a line parallel to the x axis, where there is an edge
of the integration triangle, for different heights or distances to the triangle.
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Figure 6.11: Imaginary part of H(r) when sampling along a line parallel to the x axis, where there is an
edge of the integration triangle, for different heights or distances to the triangle.
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Figure 6.12: Real part of H(r) when sampling along a line parallel to the x axis, where there is an edge
of the integration triangle, for different heights or distances to the triangle.
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6.3 Possible solutions and open issues

Before starting with the real discussion, let us introduce, avoiding the fine details, a couple of 1-

D integration quadrature rules. The first one is the regular Gauss-Legendre quadrature rule, which

exactly integrates polynomials up to order 2n−1 where n is the number of integration points. This

quadrature is very well suited for smooth functions, which are accurately approximated by low order

polynomials. The other is the Double Exponential quadrature rule [93], also known as tanh-sinh

quadrature, which unlike Gaussian quadrature is very well suited for functions with singularities

or infinite derivatives at one or both endpoints of the integration interval. Both quadrature rules

allow arbitrary-precision integration by increasing the number of integration points. However,

the convergence rate can be appreciably different depending on the shape of the function. After

applying a variable change, the integration points in the Double Exponential are taken arbitrarily

close to the endpoints of the integration interval, allowing to extract all the information present at

the singular point with a reduced number of integration points.

With this in mind we will focus on different possibilities to numerically deal with the outer

integration

I =

∫

EP

H(r) dS (6.34)

for the different relative positions between inner EQ and outer EP triangles. Of course, if the

two triangles are very separated, the best option is using a 2-D Gauss-Legendre cubature rule,

considered the smoothness of the field function H(r) at large distances. A completely different

story appears when they are closely placed, as was shown in the last section. The edge-adjacent

and near-edge-adjacent cases are accurately treated in the next paragraphs and some hints are

given for the rest of the situations.

We select the representative edge-adjacent example EP :{r1, r2, r3} and EQ:{r1, r2, r4} with the

following vertices:

r1 = [0, 0, 0]; r2 = [0, 0.1λ, 0]

r3 = [0, 0, 0.1λ]; r4 = [0.1λ, 0, 0].
(6.35)

Firstly, we express the outer integral in the equilateral parameter space introduced in previous

sections:

I =
Ap√
3

∫ √
3

0
dξ

∫ (1−ξ)/
√
3

ξ/(
√
3−1)

H(r(η, ξ)) dη. (6.36)

The integrand function H(r), which corresponds to the inner integration, is again accurately eval-

uated using a singularity cancellation method. As was analyzed in the previous section, H(r)

has a logarithmic singularity when ξ tends to zero and when η tends to its extremes 1 and -1 for

very small values of ξ. This implies that a Gauss-Legendre quadrature rule applied to each of the

variables η and ξ fails to converge properly in an efficient manner.

A possible solution for this slow convergence was presented in [94, 86], which stated that utilizing

a Double Exponential rule at each variable solved the problem. Effectively, this approach achieves

close to machine precision in a reasonable time, but it is still further improvable. Note that we

need to apply Double Exponential to both variables and not only one because the singularity is

present in both directions.



96 Chapter 6

The last technique, from here on called DE-DE (not to be confused with Direct Evaluation), has

three main causes of inefficiency: it accumulates many integration points close to the upper vertex

or ξ =
√
3, where the function is smoothest, because the Double Exponential considers singularity

at both limits of ξ; it considers that the integrand with respect to η is singular at its integration

extremes independently of the fixed ξ value, however, this singularity is only present for extremely

small values of ξ; the integrand function is smoother as a η function and with a smaller domain

when ξ grows and this is not considered either.

The solution proposed here is based on the Double Exponential one though removing unneces-

sary integration points in a clever manner. A threshold of 0.1 is established for ξ, so that for values

of ξ smaller than the threshold, Double Exponential is used in the η integration, as in the DE-DE

technique. However, for values of ξ larger than the threshold, we use a Gauss-Legendre quadrature

rule utilizing the smoothness of the integrand in terms of η for large values of ξ. Furthermore, the

number of integration points utilized at each one of these GL integrations is decreased proportion-

ally as ξ grows. A minimum of three integration points per 1D integration has been set to avoid

further problems. For the ξ integration we use Double Exponential exactly as in the DE-DE case.

The first and second columns of subfigures in Fig. 6.13 show the integration points inside the

equilateral triangle parameter space in four equivalent cases for the combined DE-GL technique

presented here and the DE-DE technique, respectively. The number of integration points increases

at each case and the relative error of the whole integral is approximately reduced proportionally for

both cases. Clearly, the number of integration points with the new technique is smaller than in the

DE-DE method. Before showing some experimental results, note that the case where the triangles

are coincident or very close to each other, which has a logarithmic singularity along the three

edges, as proved in the previous section, can be dealt with subdividing the equilateral triangle by

its barycenter and applying the aforementioned techniques to each subtriangle. The distribution of

integration points for this case is shown in the third and forth columns of Fig. 6.13 for the DE-GL

and DE-DE techniques, respectively. The accumulation of integration points in the center of the

triangle, where the function is smooth, is clearly larger in the DE-DE case.

Fig. 6.14 shows the relative error of the real part of the integral both in terms of the number

of integration points for the outer triangle and in terms of the required CPU time in the edge-

adjacent case under study. The reference solution is taken from the last chapter. The two methods

presented here, the existing DE-DE and the proposed DE-GL converge relatively fast close to

machine precision. However, as expected, when the regular Gauss-Legendre quadrature rule is

used, the convergence is much slower. The improvement obtained with the combined method with

respect to the DE-DE method translates in half of the integration points or half the CPU time to

have the same relative error.

These results, however impressive, are still far from the Direct Evaluation method performance,

presented in the previous chapter. Nonetheless, the advantage of the present numerical technique is

that it can be applied in a number of different situations and not only the vertex or edge adjacent.

For instance, we next show its behavior when the edges of the triangles are slightly separated in

the z-direction. In particular, the new outer triangle is displaced as EP :{r1 + zẑ, r2 + zẑ, r3 + zẑ}.
Fig. 6.15 and 6.16 display the results for two different displacements z = 10−2m and z = 10−5m,

respectively. The reference for these cases are not accurately justified as in the previous case.

However, the convergence of all the methods up to nine significant digits should be enough to

consider the results reliable to this extent. In view of the results, when the triangles are extremely
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(d) Case 4.

Figure 6.13: Distribution of the integration points, increasing from (a) to (d), in the equilateral triangle
space. The first and second column correspond to the case when the singularity is placed along an edge
using DE+GL and DE+DE methods to sample η and ξ, respectively. The third and forth columns are the
same when the singularity is at all the edges.
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Figure 6.14: Convergence of the different presented methods for the outer integral when the inner and
outer triangle share a common edge.

close, z = 10−5m, it is worth to use the presented techniques. Contrarily, when the distance starts

to grow, about z = 10−2m, Gauss-Legendre quadrature rule becomes again the best choice.
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Figure 6.15: Convergence of the different presented methods for the outer integral when the inner and
outer triangle have an edge separated a distance z = 10−2m.

Considering that the singularity of the field function is logarithmic when ξ tends to 0, a Gauss-

Laguerre quadrature rule can be used as an alternative to the DE for the ξ integration after some

manipulations, with the advantage that it treats singularity only in one of the integration extremes,
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Figure 6.16: Convergence of the different presented methods for the outer integral when the inner and
outer triangle have an edge separated a distance z = 10−5m.

which is our case. The integrand for ξ integration is

M(ξ) =

∫ (1−ξ)/
√
3

ξ/(
√
3−1)

H(r(η, ξ)) dη (6.37)

and a variable transformation ξ =
√
3e−t yields

I =
Ap√
3

∫ √
3

0
M(ξ) dξ = Ap

∫ ∞

0
M(
√
3e−t)e−t dt = Ap

∫ ∞

0
S(t)e−t dt (6.38)

which has exactly the shape of the Gauss-Laguerre integration, where the integrand is

S(t) = M(
√
3e−t)) (6.39)

and the weighting function is the exponential e−t. As the integrand M(ξ) behaves logarithmically

when ξ tends to zero, it is translated in an integrand function S(t) very smooth, and therefore

integrable with a reduced number of integration points using Gauss-Laguerre rule:

M(ξ) ≈ −k log ξ =⇒ S(t) ≈ −k(−t+ log
√
3). (6.40)

Due to the smoothness of the integrand function S(t), the summation in the Gauss-Laguerre quadra-

ture rule has been truncated when the weights where smaller than the machine precision constant

10−16.

Fig. 6.17 shows the results comparing Double Exponential in the ξ integration with respect to

the utilization of Gauss-Laguerre, whilst the rest of parameters are set to have machine precision.

We can infer a very similar behavior between the two methods. The main disadvantage of the

Gauss-Laguerre one is that it could fail with different kernels, losing then the general purpose

objective.
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Figure 6.17: Convergence when using double exponential or Gauss Laguerre integration rules for the ξ
integration when the inner and outer triangle share a common edge.

Finally, in the presented cases it is very clear where the singularity is placed inside the outer

triangle. However, in a more general case, the relative position between inner and outer triangles

is a priori unknown. Therefore, there is a first important step in which the singularity position and

the kind -point-like, line-like or surface-like- must be determined. After this, the triangle should be

split accordingly in pieces which are equivalent to the previously treated cases. This issue becomes

even harder when a higher order mesh is considered, as there should be a search for the closest

points in the non-planar triangles. This work is left as a matter of future research.

6.4 Conclusions

After the whole development and analysis of the previous and the present chapters, our choice

for an accurate and efficient evaluation of the 4-D integrals appearing in Galerkin surface integral

formulations is the following:

• If the inner and outer triangles are well separated (no points closer than 10−2m), 2-D Gauss-

Legendre integration rule adapted to a triangle domain per triangle.

• If the triangles share a common vertex, a common edge or are coincident, the best choice is

using the Direct Evaluation method and performing the maximum of integrals analytically.

For an easier to implement formulation, all the integrals can be done numerically as well,

though keeping the variable changes and integration re-ordering of the Direct Evaluation

method.

• If the triangles have a very near interaction (closer than 10−2m) at some point, the first thing

is to determine where this near interaction is placed and separate the integration triangles

in domains which are in one of the treated cases. It is necessary to determine if the near

interaction is point-like, line-like or surface-like because the singularity is then differently

distributed. This point is still an open issue, specially regarding efficiency.
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• If the triangles have an edge-like near interaction, we use singularity cancellation or singularity

subtraction for the inner integral and the technique presented in this chapter, which combines

Double Exponential and Gauss-Legendre integration points, for the outer integral. Although

the results with this technique are already as accurate as desired and more efficient than other

existing ones, there is still some space for optimization.

• If the triangles have a surface-like near interaction, the same as in the previous item applies,

although this time the outer integral must deal with the singularity placed at all the edges,

splitting the triangle by its barycenter in three new sub-triangles and applying the edge-like

behavior at each sub-triangle.
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Chapter 7

Multi-port Systems

T
his chapter tries to establish a connection between two, sometimes distant though highly

related, worlds. On one hand we encounter the numerical or computational universe, par-

ticularly the Method of Moments, to which we have dedicated most of this thesis. On the other,

the more practical electromagnetic system or antenna design area. The latter calls for the compu-

tation of certain parameters such as S-parameters or input impedance among others which give a

descriptive and important idea of the behavior of the final system, and which might be actually

measured in a future prototype.

7.1 Introduction

Before starting, let us define what we understand by a multi-port system. Imagine an elec-

tromagnetic device which can be included in a bounded domain whose communication with the

outside world is reduced to N ports (see Fig. 7.1). One way of analyzing or characterizing this kind

of systems, commonly used in microwave theory, is observing the output of a certain port when the

rest of the ports are either loaded with a controlled impedance or with a voltage or current source.

Consequently, the first necessary thing is to properly model a port in our discretized space

arising from the MoM formulations. When a port is excited with a source, it is modeled with an

incident field which would produce the same, or at least similar, effect as the real source, in the

absence of this one. It determines in turn the values of the independent vector in the MoM linear

system when it is projected on the testing functions. If more than one port is excited, we can easily

apply superposition due to the linearity of the system.

The main contribution of the author to this chapter is the δ-gap source generalization to ports

crossing the RWG or the wire model basis functions arbitrarily, not necessarily at a triangle edge or

wire vertex as was done before to our knowledge. It provides freedom to define the position of the

ports, not having to care anymore about the discretization along the port. Although some authors

claim that the δ-gap source gives not very accurate results in some cases, it is still interesting

because the integral appearing in the δ-gap excitation coincides with the integral used to compute

the current related to the port as will be shown in Section 7.3. This current is used to compute

the Z-parameters, which are in turn necessary to compute the S-parameters first and the auto-

impedance in the end.

The chapter starts with the description of the two most used port excitation models in the

Method of Moments, the δ-gap and the magnetic frill (Sec. 7.2). Secondly, considering that it

is easy to simulate a short-circuit in the MoM, we explain how to obtain the Z-parameters from

the solution currents from the MoM (Sec. 7.3). Thirdly, we formulate the computation of the S-



106 Chapter 7

Multi-port
System

Port 1

Port 2

Port i

Port N

Figure 7.1: Multi-port system scheme.

parameters from the Z-parameters with the inclusion of a reference load Z0 in the system (Sec. 7.4).

Subsequently, we get the desired input impedances of the multi-port system from the S-parameters

and the loads applied to each port. Finally, some numerical results with commonly used test cases

are shown to corroborate the explained formulation (Sec. 7.6).

7.2 Port feeding

A convenient way of defining a port in our discretized electromagnetic problem is from the

intersection of the discretization elements (triangles or wires) with a pre-defined plane near a

determined point. The intersection will be a linear path, usually a close path, where we consider

that the port is situated. We need to imagine that the conductor is infinitesimally separated at

this path and the source is placed between these two separated paths. When no forced feeding

conditions are imposed in the port under study, it behaves as though it was short-circuited, taking

into account that the current can freely pass across the path.

7.2.1 δ-gap source

The main idea behind the δ-gap source model is forcing a 1V voltage gap following the conductor

when we cross the feeding plane and a constant voltage in each part of the conductor everywhere

else. As we will see, to formally obtain this voltage we need an incident electric field which behaves

as a Dirac delta distribution, leading to the model name. This incident electric field is actually not

Maxwellian and therefore not physical. Nonetheless, the simplified version presented here is still

very often used due to its simplicity, taking into account that sufficiently good results are commonly
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obtained in the vast majority of problems. Furthermore, as shown in Sec. 7.3, the δ-gap EFIE

independent vector coincides with some necessary coefficients to compute the current crossing the

port from the resulting surface current vector.

We start with the analysis when the port is defined over RWG basis functions and the same ideas,

with slight modifications, will do the work for wire model basis functions. As the RWG functions

are defined over triangles, it suffices to consider separately each triangle and the total will be the

addition of all of them. Our port is defined by a plane Π with normal vector n̂ characterized by

the points

Π : {r|n̂ · r = D}. (7.1)

We only care about the triangles which cross the plane, because in the rest we want to have constant

voltage, easily obtained with an incident electric field equal to zero. For the triangles crossing the

plane we have the situation shown in Fig. 7.2, where the vertex r2 of the triangle is the one

alone at one side of the plane. Fixed a normal vector to the triangle n̂T we can uniquely and

conveniently define a sorted orthonormal R3 vector basis (û, v̂, n̂T ), where û has the direction of

the intersection of the plane with the triangle and v̂ is orthogonal to û following the other direction

of the triangle and oriented with the normal of the plane n̂. The sense of û is then defined to

accomplish û× v̂ = n̂T . The actual computation of this parameters will be shown further on.

r1

r2

r3

rI0

rI1

T

Π : {r | n̂ · r = D}
n̂

û

v̂

Figure 7.2: Triangle from the discretization crossing the feeding plane Π and variables involved.

Any point in the space can then be expressed in the new basis in the new rectangular coordinates

(u, v, n) as:

r = rI0 + uû+ vv̂ + nn̂T (7.2)

where rI0 is the intersection of the edge defined by the points r1 and r2 of the triangle with the plane

Π. The triangle is then included in the points with coordinate n equaling zero. We define the so-

called delta-gap incident electric field over the triangle, considering only the tangential component,

as

Ei(r)

T
= v̂δ(v). (7.3)

To corroborate that with this incident field we have a 1V gap when crossing the plane, we integrate
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the incident field following a path over the triangle which crosses the intersection line perpendicu-

larly, or equivalently in the v̂ direction, as follows:

V =

∫ ∞

−∞
Ei(r) · dl =

∫ ∞

−∞
v̂δ(v) · dv̂

=

∫ ∞

−∞
δ(v)dv = 1V.

(7.4)

To compute the n-th element of the independent vector of the EFIE formulation with this

incident field we simply apply the following integration over the triangle corresponding to the

RWG basis function fn:

En =
〈
fn(r),E

i(r)
〉
=

∫

T
fn(r) ·Ei(r) dS =

∫

T
fn(r) · v̂δ(g(r)) dS (7.5)

where g(r) = v = (r− rI0) · v̂. Applying the general mathematical property

∫

Rn

f(x)δ(g(x))dx =

∫

g−1(0)

f(x)

|∇g| dσ(x) (7.6)

the bi-dimensional integral in (7.5) can be computed, after removing the δ, as a 1-dimensional

integral over the intersection line:

En =

∫ l

0
fn(rI0 ± uû) · v̂ du (7.7)

where it has been used that ∇g = v̂ and l is the length of the intersection line. The RWG basis

function can be expressed as:

fn(r)

T
= ± ln

2AT
(r− ri) (7.8)

where ri is the opposite vertex of the edge under consideration in the triangle T . Substituting into

(7.7) finally yields

En = ± ln
2AT

∫ l

0
(rI0 ± uû− ri) · v̂ du

= ± ln
2AT

(rI0 − ri) · v̂
∫ l

0
du

= ±l ln
2AT

(rI0 − ri) · v̂.

(7.9)

It still remains to actually compute the vectors û and v̂. To do so, we first compute the two

intersection points

rI0 = r1 +
D − n̂ · r1
n̂ · (r2 − r1)

(r2 − r1)

rI1 = r3 +
D − n̂ · r3
n̂ · (r2 − r3)

(r2 − r3).

(7.10)
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We can then introduce the vector defined by these two points

u1 = rI1 − rI0 (7.11)

whose length and unitary counterpart are

l = |u1|
û1 =

u1

l
.

(7.12)

The vectors û and v̂ are finally:

û = Siû1

v̂ = n̂T × û
(7.13)

where Si is just a case-dependent sign computed as:

Si =




+1, if n̂ · (n̂T × û1) > 0

−1, otherwise.
(7.14)

We have considered so far that the triangle completely crosses the plane, but it could happen

that the intersection line exactly coincides with one of the edges of the triangle, as shown in Fig.

7.3. In that case we could either consider that the plane is actually placed slightly upwards and

then apply the same as before for the upper triangle or that it is downwards and use the lower

triangle. The result is obviously independent of this choice as we show below.

r1

r2

r3

Π : {r | n̂ · r = D}

n̂
û

r4

ĥ

Figure 7.3: Situation when an edge of the discretized triangle element exactly coincides with the feeding
plane Π.

The vector v̂ in that case equals the height vector of the triangle ĥ. When ri is either r1 or

r3 then En = 0 because v̂ is orthogonal to rI0 − ri. When the edge associated to the RWG is the

intersection line then the opposite vertex ri is r2 or r4 depending on the triangle. When we apply
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(7.9), for instance to the upper triangle, we get:

En = ±ln
ln

2AT
(r1 − r2) · ĥ = ±ln

lnh

2AT
= ±ln. (7.15)

As we can see, it only depends on the length of the edge, which is common in both triangles, and

therefore independent of the choice as we wanted to show.

This concludes the analysis for RWG basis functions, and now it is time to do almost the same

when the fed basis functions are wire segments. The new situation is represented in Fig. 7.4 where

rIc is the intersection of the axis of the cylindrical segment with the plane. The intersection of the

cylinder surface with the plane is an ellipse. Due to the fact that the wire model assumes that the

current distribution is constant along the angle coordinate of the cylinder, it is better to consider

that the actual feeding is in a plane passing through the same point rIc but with normal vector

equal to the direction of the cylinder (see Fig. 7.5). The intersection is then a circle, much easier

to deal with.

Π : {r | n̂ · r = D}

n̂

r1

r2

C

.rIc

.

.

Figure 7.4: Original situation for the discretized cylindrical wire element intersected by the feeding plane
Π.

Similarly to what was done with the triangles, we can introduce a new ordered vector basis

(û1, û2, v̂) as shown in Fig. 7.6 where v̂ is the unitary vector following the direction of the wire

and oriented according to the normal vector n̂2. û1 and û2 are chosen arbitrarily so that they are

in the plane Π2 and û1 × û2 = v̂. Then, any point in the space in cylindrical coordinates (ρ, φ, v)

can be expressed as:

r = rIc + ρ cos(φ)û1 + ρ sin(φ)û2 + vv̂. (7.16)

The points of the cylinder are included in the points with coordinate ρ equal to the radius of the

cylinder a. The tangential incident electric field is again defined as:

Ei(r)

C
= v̂δ(v). (7.17)

This incident field assures a 1V gap among the two cylinder parts defined by the intersection
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Π  :{r | n̂ · r = D}

r1

r2

C

rIc

.

.
2

r.III

C
..

...

n̂2

n̂2

2

Figure 7.5: Situation for the discretized cylindrical wire element intersected by the feeding plane Π2 after
orienting the feeding plane with the axis of the cylinder.

v̂

.rIc

û1

û2

Figure 7.6: New reference vector basis at the intersection of the cylinder with the feeding plane.

circumference. To compute the independent vector element we proceed as before, now considering

that the basis function is:

fn(r) = ±
1

(2πa)ln
(rc − ri) (7.18)

where ln is the length of the cylinder, rc is the projection of r into the axis of the cylinder and ri

is either r1 or r2. Therefore,

En =
〈
fn(r),E

i(r)
〉
=

∫

C
fn(r) · Ei(r) dS =

∫

C
fn(r) · v̂δ(g(r)) dS = a

∫ 2π

0
fn(r) · v̂ dφ (7.19)
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and substituting the basis function:

En = ± 1

2πln

∫ 2π

0
(rIc − ri) · v̂ dφ = ±(rIc − ri) · v̂

ln
. (7.20)

The intersection point is easily computed as:

rIc = r1 +
D − n̂ · r1
n̂ · (r2 − r1)

(r2 − r1). (7.21)

And the vector v̂ is:

v̂ = Siv̂1 (7.22)

with

v̂1 =
r2 − r1

ln
(7.23)

Si =




+1, if n̂ · v̂1 > 0

−1, otherwise.
(7.24)

Similarly to the triangles, when the intersection point coincides with one of the extremes of the

cylinder, then we can choose to use the upper or the lower cylinder and the result will be the same.

In this case the result is zero, or ±1 depending on the basis function we are considering.

7.2.2 Magnetic frill source

The magnetic frill generator was introduced to calculate the near as well as the far zone fields

from coaxial apertures [95]. To use this model the feed gap is replaced with a circumferentially

directed magnetic current density that exists over an annular aperture with inner radius a, which is

usually chosen to fit as well as possible the elements at the port, and an outer radius b determined

by the characteristic impedance of the supposed transmission line feeding the port.

Over the annular aperture of the magnetic frill generator the electric field is represented by the

TEM mode field distribution of a coaxial transmission line given by

Ef = âρ
Vi

2ρ′ ln(b/a)
. (7.25)

Therefore the corresponding equivalent magnetic current density Mf for the magnetic frill generator

used to represent the aperture is equal to

Mf = −2n̂× Ef = −2âz × âρEρ = −âφ
Vi

ρ′ ln(b/a)
. (7.26)

The fields generated by the magnetic frill generator of (7.26) can be numerically calculated

using the electric vector potential F as stated in [95], where some approximations are done.

7.3 Z-parameters

Given a N ports system network, the Z-parameters relate the voltage present at a certain port

knowing the currents crossing all the ports. More specifically, if VT = [V1, . . . , VN ] is a vector
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containing the voltages at each port and IT = [I1, . . . , IN ] is a vector with the currents crossing

each port, then the Z-parameters are the elements of a N ×N matrix [Z] which accomplishes:

V = [Z]I. (7.27)

Each equation, reads

Vi =
N∑

j=1

ZijIj (7.28)

and therefore the element Zij can be computed leaving all the ports but the j-th open-circuited

and reading the voltage at port i:

Zij =
Vi

Ij

∣∣∣∣
Ik=0 ∀k 6=j

. (7.29)

Unfortunately, it can be hard to model an open-circuit in the MoM. However, modeling a short-

circuit is immediate, as it is equivalent to leave the basis functions at the port as they are, allowing

the current to flow freely. Hence, it is better to first compute the impedance parameters matrix

[Y] and compute [Z] as the inverse of this matrix. The equation is now,

I = [Y]V (7.30)

or row by row

Ii =
N∑

j=1

YijVj (7.31)

and the Yij elements can be easily computed short-circuiting all the ports but the j-th and reading

the current crossing port i:

Yij =
Ii
Vj

∣∣∣∣
Vk=0 ∀k 6=j

. (7.32)

The port j is fed with one of the sources previously described in last section. Afterwards it suffices

to perform

[Z] = [Y]−1. (7.33)

In order to compute the voltage Vj in terms of the surface currents obtained after solving the MoM

linear system, we can go through the supplied power, considering always the situation described

above, i.e., feeding at port j and short-circuit everywhere else. On one hand, the supplied power

Ps corresponds with the product of voltage and current at port j:

Ps = VjIj . (7.34)

On the other hand, the supplied power can also be computed from the field and surface currents

enclosed in a volume:

Ps = −
∫

V
(H ·M+E · J)dV. (7.35)

In our case of PEC objects, the magnetic currents equal zero, the electric field is the considered

incident electric field and the electric currents are the solution of the MoM system. Substituting
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the development of the currents in terms of the basis functions in (7.35), we can write:

Ps = −
∑

n

Jn

∫

T+
n

⋃
T−

n

Ei(r) · fn(r)dS = −
∑

n

Jn
〈
fn,E

i
〉
= −

∑

n

JnEn (7.36)

From (7.34) and (7.36) and isolating Vj we get the relation:

Vj = −
∑

n JnEn

Ij
(7.37)

and substituting (7.37) into (7.32):

Yij = −
IiIj∑
n JnEn

∣∣∣∣
Vk=0 ∀k 6=j

. (7.38)

It still remains the computation of the current at each port Ik. We are going to show that it can

be computed from the δ-gap incident field associated to the corresponding port k, independently

of the actual used source:

Ik =
∑

n

JnE
δ-gap (port k)
n . (7.39)

This is the reason why it is so important to have a good and versatile representation of the δ-gap

source. The surface equivalent current is

Js(r) =
∑

n

Jnfn(r) [A/m]. (7.40)

However, it considers that the current is defined over an infinitely thin layer and to have the real

current density we need to multiply by a δ distribution in the direction normal to the conductor. In

particular, for RWG basis functions and using the same notation as at the starting of the chapter:

J(r) =
∑

n

Jnfn(r)δ(n) [A/m2]. (7.41)

Then, the current crossing the port is computed integrating the current density over a surface with

directions n̂T and û close to each feeding triangle:

Ik =

∫

Sk

J · ds =
∑

n

Jn

∫ l

0
fn(r) · v̂ du =

∑

n

JnE
δ-gap (port k)
n (7.42)

as we wanted to prove. The same can also be obtained for wires, considering that the current

density is now:

J(r) =
∑

n

Jnfn(r)δ(ρ − a) [A/m2]. (7.43)

Summarizing,

Yij = −

(∑
n JnE

δ-gap (port i)
n

)(∑
n JnE

δ-gap (port j)
n

)

∑
n JnEn

(7.44)

where En is the tested incident field when only the port j is excited, Jn are the coefficients solution

of the MoM for said incident field and E
δ-gap (port i)
n and E

δ-gap (port j)
n are the tested fields when a
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δ-gap incident field is considered at ports i and j, respectively. Finally, [Z] is obtained inverting

the matrix [Y].

7.4 S-parameters

Voltages and currents are a priori difficult to measure directly at microwave frequencies. The

Z-parameters matrix requires ideal open-circuits, which are hard to obtain due to parasitic capaci-

tances and radiation. Likewise, the Y matrix requires short-circuits, which are impossible to obtain

at high frequencies due to the finite inductance. Furthermore, many active devices could oscillate

under the open or short terminations. On the contrary, the measurement of S-parameters only

involves measurement of relative quantities, such as the SWR or the location of the first minima

relative to the load, which can be done for any frequency.

The S-parameters matrix [S] is defined as

b = [S]a (7.45)

where the vectors a and b are the so-called incident and reflected power waves, respectively, and

are in turn defined as

a =
1

2
√
Z0

(V + Z0I)

b =
1

2
√
Z0

(V − Z0I)

(7.46)

being Z0 the reference load with which all the ports are loaded.

The matrix [S] can be easily obtained from the Z-parameters matrix with the expression [96]

[S] = ([Z] + Z0[Id])
−1([Z]− Z0[Id]) (7.47)

where [Id] is the N ×N identity matrix.

7.5 Auto-impedance or input impedance

In this case we are interested in the impedance that an external observer to the multi-port

system is seeing at port i, Z
(i)
in , when the rest of the ports j 6= i are loaded with a predefined

load Zlj , utilizing the S-parameters matrix [S]. This impedance can be computed in terms of the

reflexion coefficient Γ
(i)
in as

Z
(i)
in = Z0

1 + Γ
(i)
in

1− Γ
(i)
in

. (7.48)

The reflexion coefficient is in turn calculated using the S parameters with the following expression:

Γ
(i)
in = Si,i + SH

(i)[Γ](i)([Id]− [S](i)(i)[Γ](i))
−1SV

(i) (7.49)

where [S](i)(i) is the (N − 1) × (N − 1) sub-matrix of [S] in which row and column i have been

removed, SH
(i) is the i-th row of [S] removing the i-th element, SV

(i) is the i-th column of [S] removing

the i-th element and [Γ](i) is a diagonal matrix in which the diagonal equals the outer reflexion
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coefficients Γlj at each port except the port i:

[S] =




S1,1 . . . S1,N

...
. . .

...

SN,1 . . . SN,N


 (7.50)

[S](i)(i) =




S1,1 . . . S1,i−1 S1,i+1 . . . S1,N

...
. . .

...
...

. . .
...

Si−1,1 . . . Si−1,i−1 Si−1,i+1 . . . Si−1,N

Si+1,1 . . . Si+1,i+1 Si+1,i+1 . . . Si+1,N

...
. . .

...
...

. . .
...

SN,1 . . . SN,i+1 SN,i+1 . . . SN,N




(7.51)

SH
(i) =

[
Si,1 . . . Si,i−1 Si,i+1 . . . Si,N

]
(7.52)

SV
(i) =




S1,i

...

Si−1,i

Si+1,i

...

SN,i




(7.53)

[Γ](i) =




Γl1

. . .

Γli−1

Γli+1

. . .

ΓlN




(7.54)

Γlj =
Zlj − Z0

Zlj + Z0
(7.55)

There are a couple of particular cases which are worth a special mention. The first one is the

bi-port system in which the expression for Γ
(1)
in is reduced to

Γ
(1)
in = S1,1 +

S1,2S2,1Γl1

1− S2,2Γl1

. (7.56)

The second one is when all the ports are loaded with the reference impedance Z0 (matched ports),

in which the reflexion coefficient Γ
(1)
in coincides with the S-parameter Si,i.

7.6 Numerical results

To assess the validity of the presented scheme to treat ports defined arbitrarily over a discretiza-

tion, independently of the position of the discretized elements, we have selected a 0.5λ dipole with
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Table 7.1: Input impedance and S-parameter of a 0.5λ height dipole with radius 0.001 with different meshes
and feeding models.

Zin S (Z0 = 50)

δ-gap Wires Mesh1 85.85+45.69j 0.3387+0.2224j

δ-gap Wires Mesh2 84.79+46.50j 0.3370+0.2287j

Mag. Frill Wires Mesh1 85.78+45.74j 0.3386+0.2228j

Mag. Frill Wires Mesh2 84.79+46.50j 0.3370+0.2287j

δ-gap RWG Mesh1 86.21+47.56j 0.3456+0.2285j

δ-gap RWG Mesh2 85.49+48.03j 0.3444+0.2324j

Mag. Frill RWG Mesh1 85.74+47.85j 0.3447+0.2310j

Mag. Frill RWG Mesh2 85.45+48.06j 0.3443+0.2327j

a radius of 0.001m being the wavelength λ = 1m. For the wires model, two different meshes have

been selected, mesh1 and mesh2, dividing the dipole in 50 and 51 segments, respectively. Mesh1

has a vertex segment exactly at the central point of the dipole where the feeding port is placed.

Therefore, it can be considered as the usual case found in literature. Oppositely, mesh2 has no

vertex at the feeding point, and the central segment crosses the feeding in the middle point. For the

RWG model, the dipole has been considered with a square section and again two different meshes,

mesh1 and mesh2, with the same properties as the in the wire model, have been selected.

The resulting input impedance and S parameter for the different aforementioned models and

discretizations of the dipole are shown in Table 7.1. We can observe a very good agreement

between the different simulations, considering that the dipole is slightly different in the wires model

(cylindrical) and the RWG model (square section) and the effect of the different discretizations.

Therefore, the developed method allows a freedom to the user to define the port position and

orientation without having to care about the mesh or any mesh refinement.

7.7 Conclusion

It has been highlighted the importance of having an accurate and versatile port definition and

treatment in which no meshing restrictions are necessary to follow by a hypothetical user. The

approach presented here is completely general and avoids any mesh refinement, making it easier to

integrate in the framework of independent routines developed by different people. The obtention of

the most common parameters used in antenna design from the method of moments system solution

has been reviewed. A relevant dipole example has been analyzed to show the correctness of the

proposed scheme.
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Thesis Conclusions





Chapter 8

Conclusions and discussion

T
his chapter summarizes to which extent the author has contributed to the electromagnetic

(EM) community. In particular, to the Method of Moments (MoM), as one of the main

subjects inside numerical simulation techniques for the study of EM problems. Then, a number of

hints for further development or future work is given.

8.1 Conclusions

As stated in Chapter 1, there are several open issues regarding the solution of electromagnetic

problems with the MoM. Many of them have been addressed and solved with success in the present

document. In the following, the most important concluding remarks are stated:

1. We wanted a fast iterative solver for the MoM electromagnetic problems which was purely

algebraic, independent of the Green’s function and with improved computational cost and

memory requirements. The Multilevel Adaptive Cross Approximation (MLACA) has been

developed:

• The MLACA is a purely algebraic algorithm as it only uses several ACA and SVD

decompositions which are purely algebraic algorithms themselves.

• It is independent of the GF of the problem as long as the MoM matrix is block-wise

compressible, which is the most common case in electromagnetics and other physical

fields. It is basically a consequence of the decreasing of the GF with the distance.

• It has been proved to have a memory requirement growing with O(N log2N), in contrast

with its single-level counterpart (ACA) which grows with O(N2 logN).

• A matrix-vector product, and therefore the CPU time per iteration, scales with

O(N log2N) against the O(N2 logN) of the ACA.

• The computational cost for the creation of the matrix scales with O(N2 logN), whereas

it was O(N3 logN) for the ACA.

• The accuracy due to the solving method can be reduced as much as desired, with the

correspondent increase in computational cost.

• Numerical examples have corroborated the advantages of utilizing the MLACA for elec-

tromagnetic problems with around one million of unknowns.

• Based on the theory and on the numerical examples with large separated groups of

samples, a much larger gain is expected for larger problems.
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2. We wanted to tackle the fast and accurate computation of the hyper-singular integrals arising

in the MoM matrix elements of the MFIE and CFIE formulations. The direct evaluation

method has been extended to this sort of integrals:

• The direct evaluation method has been proved to reach machine precision much faster

than any previously existing technique.

• It has been presented so that it can be implemented and used by EM community without

a great effort. Even a fully numerical and very simple implementation is possible with

a small reduction in the efficiency.

• It is robust against reasonably distorted meshes.

• It improves total accuracy and CPU time of a MoM electromagnetic problem.

3. The non-singular but near-hyper-singular integrals arising in the MoM matrix elements of

the MFIE and CFIE formulations for closely-placed non-touching elements needed a detailed

analysis and treatment. It has been properly analyzed and solved when necessary.

• Numerical examples have localized the source of the problem in the outer 2-D integration

although the singularity has been previously canceled out.

• The Double Exponential-Gauss Legendre (DE-GL) improves the performance of DE-DE

approximately by half the time.

• The Gauss-Laguerre integration technique is presented as a good alternative to the DE

technique, and better for a very small number of integration points.

• Only extremely close elements need a special treatment.

4. An extra freedom to the user was desired when defining a mesh in which a port will be defined

to apply the MoM. A generalization of the δ-gap feeding together with a justification of its

use in the determination of certain system parameters of practical importance have been

presented.

8.2 Summary of Contributions

This section comprises a list with the main author contributions during the thesis realization

period. The most important remarks of several contributions which are only referenced in the

present document, but not developed, are also included.

1. Developed a fast and accurate algorithm, the MLACA, for the iterative solution of large-scale

MoM problems.

2. Demonstrated the improved performance of MLACA with respect to ACA, keeping its best

characteristics.

3. Developed a fast and accurate technique for the calculation of hyper-singular integrals of dy-

namic MoM problems with MFIE and CFIE formulations. Obtained up to machine precision,

which is the best one could do, in a more than reasonable time.

4. Demonstrated a much better performance in the integration than any other existing technique.
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5. Developed a possible strategy to deal with all the integrals arising in MFIE and CFIE for-

mulations.

6. Proved the correctness of a new generalized port definition independent of the mesh in its

vicinity.

7. Developed a new accelerated technique for the computation of the static part of a rectangular

cavity GF, with an efficiency comparable to Ewald method, but with a physical interpretation.

8. Developed a new set of basis functions, the Self-Loop, to overcome the low frequency break-

down of the EFIE when Linear-Linear basis functions are used.

9. Introduction of the orthogonal basis functions for the improvement of the accuracy of MFIE

for sharp-edged objects.

10. A new integral equation formulation, the EMFIE, is developed.

11. A useful direct method, the MSCBD, for the direct solution of large-scale MoM problems is

developed.

12. Improved the MDA iterative solver performance with the introduction of a SVD re-compression.

8.3 Future Research

• A systematical approach to obtain the optimum value for the parameters in the MLACA algo-

rithm is desirable. As its behavior basically depends on the computer and system themselves,

a determination with the previous simulations of some relevant test cases is presented as the

best option. This overload should be performed only once per computer so its contribution

to the final computational cost is irrelevant.

• The MLACA is somehow optimum in terms of asymptotical compression. However, the com-

putational cost could be further improved, if a technique less costly than the ACA was used.

Perhaps a fusion of MLMDA and MLACA could improve the efficiency while maintaining

compression and robustness.

• The efficiency of the computation of near-singular integrals arising in MFIE and CFIE for-

mulations for closely spaced triangle elements might be further improved with a more sophis-

ticated technique.

• A generalization of the direct evaluation method to higher order basis functions remains open.

Based on the theory developed during this document it should be practically direct. The only

difference is the expression of the basis functions in the new parameters spaces, but the kernel

and therefore the singularity cancellation remains equal.

• The direct evaluation method can be extended to polygonal domain meshes other than tri-

angles. It should be doable with slight changes in the formulation.

• Finally, a more challenging issue is the generalization of the direct evaluation method to non-

planar meshes. In this case, it should be studied how the non-linear behavior affects to the

formulation.
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Appendix A

Binary Tree Domain Decomposition

Let us formalize the procedure in section 3.2.1 for our particular case. The object is discretized

in a set of N basis (or testing) functions which are defined in a reduced portion of the space (local

subdomain functions):

F = {f1(r), . . . , fN (r)} . (A.1)

Note that it suffices to deal with the indexes because each index is uniquely related to a basis

function. A center point is assigned to each basis function which represents the position of the

geometrical domain of the function. Its definition slightly depends on the basis functions we use

(RWG on a triangular mesh, rooftops, . . . ), but the idea is clear. This point in the space will

determine the position of the function when the decomposition is done. The subsets of indexes of

the decomposition can be computed with the following simple recursion:

{
T
(0)
0 = {1, . . . , N}

T
(l)
2i , T

(l)
2i+1 = splitBox(T

(l−1)
i ) l = (1, . . . , L),∀i

(A.2)

where T
(l)
i is the box i at level l and L is the total number of levels of the decomposition. These

sets need to fulfil the following properties:

T
(l)
2i ∪ T

(l)
2i+1 = T

(l−1)
i and T

(l)
2i ∩ T

(l)
2i+1 = ∅ (A.3)

The breaking function splitBox works as follows: a minimum size cuboid (oriented with the axes)

containing all the center points of its box argument is determined. Then, it is split in half along

its longest dimension, getting the two new sets of indexes. The reason to cut the box with that

criterion is that we want the largest box at a given level to be as small as possible. The total

number of levels L is determined by applying the recursion until the sizes of the boxes at that level

are smaller than a certain quantity. That quantity is a first parameter to the algorithm.
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Appendix B

Orthonormal Matrices Properties

There are a good number of properties which orthonormal matrices accomplish. However, we are

going to show just three important and easy to proof properties which are applied in the MLACA

algorithm. Before starting, let us define an orthonormal matrix. A general complex matrix U is

orthonormal if and only if UHU = I, being UH the U matrix transposed and conjugated, and I

the identity matrix with the appropriate dimensions.

The first property is that the product of orthonormal matrices is in turn an orthonormal matrix.

Proof. Let be U1 and U2 two orthonormal matrices. We want to proof that the matrix product

U = U1U2 is orthonormal as well. To do so, it is only necessary to check that UHU = I:

UHU = (U1U2)
H(U1U2) = UH

2 UH
1 U1U2 = (B.1)

= UH
2 IU2 = UH

2 U2 = I (B.2)

The second property is that a block-diagonal matrix U

U =




U1

. . .

UN


 (B.3)

where the blocks in the diagonal Ui are orthonormal, is also orthonormal.

Proof.

UHU =




UH
1

. . .

UH
N







U1

. . .

UN


 (B.4)

=




UH
1 U1

. . .

UH
N UN


 = I (B.5)

And the last, but not the least is that the matrices A and AṼ H being Ṽ orthonormal, have

exactly the same singular values and therefore, it is equivalent to do a compression with a certain
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threshold τ in one or the other.

Proof. Let be A = USV H the singular value decomposition of the matrix A. Then

AṼ H = USV H Ṽ H = US(Ṽ V )H (B.6)

which is the unique singular value decomposition of the matrix AṼ H , being S the singular values

matrix and U and Ṽ V the outer orthonormal matrices. So S is the singular values matrix in both

cases A and AṼ H as we wanted to prove.
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Basis functions definitions

C.1 Edge adjacent changes

In equation (5.5) we accept different possibilities for the functions g and f . f could be any of

the RWG basis functions f ′1(r
′), f ′2(r

′) or f ′3(r
′) below and g could be any of the RWG weighting

functions f1(r), f2(r) or f3(r) or their n̂ cross versions g1(r), g2(r) or g3(r) being n̂ the unitary

normal vector of the triangle P corresponding to the outer integral.

f ′1(r
′) =

|r4 − r1|
2Aq

(r′ − r2)

f ′2(r
′) =

|r4 − r2|
2Aq

(r′ − r1)

f ′3(r
′) =

|r2 − r1|
2Aq

(r′ − r4)

f1(r) =
|r3 − r2|
2Ap

(r− r1)

f2(r) =
|r3 − r1|
2Ap

(r− r2)

f3(r) =
|r2 − r1|
2Ap

(r− r3)

g1(r) = n̂× f1(r)

g2(r) = n̂× f2(r)

g3(r) = n̂× f3(r)

(C.1)

After applying all the parametric transformations defined in section 5.3 and removing the con-

stants ln/(2A) we finally obtain the following expressions for the possible basis and weighting

functions:

f ′1(η, θ,Λ,Ψ) ∝ −αe1 +αe1η − (αe1 cos(θ) +αe3 sin(θ)) cos(Ψ)Λ

f ′2(η, θ,Λ,Ψ) ∝ αe1 +αe1η − (αe1 cos(θ) +αe3 sin(θ)) cos(Ψ)Λ

f ′3(η, θ,Λ,Ψ) ∝
√
3αe3 +αe1η − (αe1 cos(θ) +αe3 sin(θ)) cos(Ψ)Λ

f1(η, θ,Λ,Ψ) ∝ αe1 +αe1η +αe2 sin(Ψ)Λ

f2(η, θ,Λ,Ψ) ∝ −αe1 +αe1η +αe2 sin(Ψ)Λ

f3(η, θ,Λ,Ψ) ∝ −
√
3αe2 +αe1η +αe2 sin(Ψ)Λ

(C.2)
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g1(η, θ,Λ,Ψ) ∝ n̂×αe1 + n̂×αe1η + n̂×αe2 sin(Ψ)Λ

g2(η, θ,Λ,Ψ) ∝ −n̂×αe1 + n̂×αe1η + n̂×αe2 sin(Ψ)Λ

g3(η, θ,Λ,Ψ) ∝ −
√
3n̂×αe2 + n̂×αe1η + n̂×αe2 sin(Ψ)Λ

(C.3)

As a curiosity, note that the integral (5.5) is always zero when the basis and weighting functions

are f1(r) and f ′2(r
′) or f2(r) and f ′1(r

′), respectively, independently of the triangles vertices. It can

be seen with the following development:

f1 · (R× f ′2) = f1 ·
((

2Ap

|r3 − r2|
f1 −

2Aq

|r4 − r2|
f ′2

)
× f ′2

)
=

2Ap

|r3 − r2|
f1 ·
(
f1 × f ′2

)
= 0 (C.4)

f2 · (R× f ′1) = f2 ·
((

2Ap

|r3 − r1|
f2 −

2Aq

|r4 − r1|
f ′1

)
× f ′1

)
=

2Ap

|r3 − r1|
f2 ·
(
f2 × f ′1

)
= 0 (C.5)

where it has been used that the cross product of two parallel vectors and the dot product of

orthogonal vectors are zero.

C.2 Vertex adjacent changes

Similarly to the edge adjacent case, in equation (5.5) we accept different possibilities for the

functions g and f . f could be any of the RWG basis functions f ′1(r
′), f ′2(r

′) or f ′3(r
′) below and g

could be any of the RWG weighting functions f1(r), f2(r) or f3(r) or their n̂ cross versions g1(r),

g2(r) or g3(r) being n̂ the unitary normal vector of the triangle P corresponding to the outer

integral.

f ′1(r
′) =

|r4 − r3|
2Aq

(r′ − r4)

f ′2(r
′) =

|r5 − r3|
2Aq

(r′ − r5)

f ′3(r
′) =

|r4 − r5|
2Aq

(r′ − r3)

f1(r) =
|r3 − r2|
2Ap

(r− r1)

f2(r) =
|r3 − r1|
2Ap

(r− r2)

f3(r) =
|r2 − r1|
2Ap

(r− r3)

g1(r) = n̂× f1(r)

g2(r) = n̂× f2(r)

g3(r) = n̂× f3(r)

(C.6)

After applying all the parametric transformations defined in section 5.4 and removing the con-

stants ln/(2A) we finally obtain the following expressions for the possible basis and weighting
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functions:

f ′1(θp, θq,Ψ,Λ) ∝ (r3 − r4) + sin(Ψ)(αe4 sin(θq)−αe5 cos(θq))Λ

f ′2(θp, θq,Ψ,Λ) ∝ (r3 − r5) + sin(Ψ)(αe4 sin(θq)−αe5 cos(θq))Λ

f ′3(θp, θq,Ψ,Λ) ∝ sin(Ψ)(αe4 sin(θq)−αe5 cos(θq))Λ

f1(θp, θq,Ψ,Λ) ∝ (r3 − r1) + cos(Ψ)(αe1 sin(θp)−αe2 cos(θp))Λ

f2(θp, θq,Ψ,Λ) ∝ (r3 − r2) + cos(Ψ)(αe1 sin(θp)−αe2 cos(θp))Λ

f3(θp, θq,Ψ,Λ) ∝ cos(Ψ)(αe1 sin(θp)−αe2 cos(θp))Λ

g1(θp, θq,Ψ,Λ) ∝ n̂× (r3 − r1) + cos(Ψ)(n̂×αe1 sin(θp)− n̂×αe2 cos(θp))Λ

g2(θp, θq,Ψ,Λ) ∝ n̂× (r3 − r2) + cos(Ψ)(n̂×αe1 sin(θp)− n̂×αe2 cos(θp))Λ

g3(θp, θq,Ψ,Λ) ∝ cos(Ψ)(n̂×αe1 sin(θp)− n̂×αe2 cos(θp))Λ

(C.7)
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Implementation of Nα
i (B, θ,Ψ) functions

To compute the Nα
i (B, θ,Ψ) in an efficient and compact way, we first introduce the following

functions:

∆a(θ,Ψ) =
2
√
3

cos(Ψ)(sin(θ) +
√
3 cos(θ) + tan(Ψ))

∆b(θ,Ψ) =

√
3

cos(Ψ) sin(θ)

∆c(θ,Ψ) =

√
3

sin(Ψ)

∆d(θ,Ψ) =

√
3

cos(Ψ)(sin(θ)−
√
3 cos(θ))

.

(D.1)

The aimed functions can then be calculated in terms of two auxiliary functions Vi (B,∆1,∆2) and

Ui (B,∆) (actually one, considering Ui (B,∆) = Vi (B,∆,∆)) which are defined in Tables D.1 and

D.2, respectively, as

Na
i (B, θ,Ψ) = Vi (B,∆a(θ,Ψ),∆c(θ,Ψ))

N b
i (B, θ,Ψ) = Vi

(
B,∆b(θ,Ψ),∆d(θ,Ψ)

)

N c
i (B, θ,Ψ) = Ui (B,∆c(θ,Ψ))

Nd
i (B, θ,Ψ) = Ui

(
B,∆d(θ,Ψ)

)
.

(D.2)
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Table D.1: Functions Vi(B,∆1,∆2).

Vi(B,∆1,∆2) =
∫ H
0 Mi

(
η, ∆1

1+H (1 + η), B
)
dη

+
∫ 1
H Mi (η,∆2(1− η), B) dη, H = 1− ∆1

∆2

a = jkB; H = 1− ∆1
∆2

; ∆3 =
∆1
1+H

V1 = 1; V6 =
1
2 ; V7 =

1
3

T 1
1 = e−a∆3−e−a∆1

a∆3

T 1
2 =

T 1
1−He−a∆1

a∆3

T 1
3 =

2T 1
2−H2e−a∆1

a∆3

T 1
4 =

3T 1
3−H3e−a∆1

a∆3

V 1
2 = T 1

1

V 1
3 = ∆3(T

1
1 + T 1

2 )

V 1
8 = T 1

2

V 1
9 = T 1

3

V 1
10 = ∆3(T

1
2 + T 1

3 )

V 1
11 = ∆3(T

1
3 + T 1

4 )

V 1
12 = ∆3(V

1
10 + V 1

11)

V 1
4 = ∆3(V

1
3 + V 1

10)

V 1
5 = ∆3(V

1
4 + V 1

12)

T 2
1 = 1−e−a∆1

a∆2

T 2
2 =

1−He−a∆1−T 2
1

a∆2

T 2
3 =

1−H2e−a∆1−2T 2
2

a∆2

T 2
4 =

1−H3e−a∆1−3T 2
3

a∆2

V 2
2 = T 2

1

V 2
3 = ∆2(T

2
1 − T 2

2 )

V 2
8 = T 2

2

V 2
9 = T 2

3

V 2
10 = ∆2(T

2
2 − T 2

3 )

V 2
11 = ∆2(T

2
3 − T 2

4 )

V 2
12 = ∆2(V

2
10 − V 2

11)

V 2
4 = ∆2(V

2
3 − V 2

10)

V 2
5 = ∆2(V

2
4 − V 2

12)

Vi = V 1
i + V 2

i i ∈ {2, 3, 4, 5, 8, 9, 10, 11, 12}
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Table D.2: Functions Ui(B,∆).

Ui(B,∆) = Vi(B,∆,∆) =
∫ 1
0 Mi(η,∆(1 − η), B)dη

a = jkB

T1 =
1−e−a∆

a∆ U3 = ∆(T1 − T2) U11 = ∆(T3 − T4)

T2 =
1−T1
a∆ U6 =

1
2 U12 = ∆(U10 − U11)

T3 =
1−2T2
a∆ U7 =

1
3 U4 = ∆(U3 − U10)

T4 =
1−3T3
a∆ U8 = T2 U5 = ∆(U4 − U12)

U1 = 1 U9 = T3

U2 = T1 U10 = ∆(T2 − T3)
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